
Shiho Moriai
Huaxiong Wang (Eds.)

LN
CS

 1
24

92

26th International Conference on the Theory
and Application of Cryptology and Information Security
Daejeon, South Korea, December 7–11, 2020
Proceedings, Part II

Advances in Cryptology –
ASIACRYPT 2020

Lecture Notes in Computer Science 12492

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Shiho Moriai • Huaxiong Wang (Eds.)

Advances in Cryptology –

ASIACRYPT 2020
26th International Conference on the Theory
and Application of Cryptology and Information Security
Daejeon, South Korea, December 7–11, 2020
Proceedings, Part II

123

Editors
Shiho Moriai
Network Security Research Institute (NICT)
Tokyo, Japan

Huaxiong Wang
Nanyang Technological University
Singapore, Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-64833-6 ISBN 978-3-030-64834-3 (eBook)
https://doi.org/10.1007/978-3-030-64834-3

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7669-8922
https://doi.org/10.1007/978-3-030-64834-3

Preface

The 26th Annual International Conference on Theory and Application of Cryptology
and Information Security (ASIACRYPT 2020), was originally planned to be held in
Daejeon, South Korea, during December 7–11, 2020. Due to the COVID-19 pandemic,
it was shifted to an online-only virtual conference.

The conference focused on all technical aspects of cryptology, and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a total of 316 submissions from all over the world, the Program
Committee (PC) selected 85 papers for publication in the proceedings of the confer-
ence. The two program chairs were supported by a PC consisting of 66 leading experts
in aspects of cryptology. Each submission was reviewed by at least three PC members
(or their sub-reviewers) and five PC members were assigned to submissions
co-authored by PC members. The strong conflict of interest rules imposed by the IACR
ensure that papers are not handled by PC members with a close working relationship
with authors. The two program chairs were not allowed to submit a paper, and PC
members were limited to two submissions each. There were approximately 390
external reviewers, whose input was critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and
first-round discussions, the PC selected 205 submissions to proceed to the second
round, including 1 submission with early acceptance. The authors of 204 papers were
then invited to provide a short rebuttal in response to the referee reports. The second
round involved extensive discussions by the PC members.

The three volumes of the conference proceedings contain the revised versions of the
85 papers that were selected, together with the abstracts of 2 invited talks. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The program of ASIACRYPT 2020 featured two excellent invited talks by Shweta
Agrawal and Jung Hee Cheon. The conference also featured a rump session which
contained short presentations on the latest research results of the field.

The PC selected three papers to receive the Best Paper Award, via a voting-based
process that took into account conflicts of interest, which were solicited to submit the
full versions to the Journal of Cryptology: “Finding Collisions in a Quantum World:
Quantum Black-Box Separation of Collision-Resistance and One-Wayness” by Akinori
Hosoyamada and Takashi Yamakawa; “New results on Gimli: full-permutation dis-
tinguishers and improved collisions” by Antonio Flórez Gutiérrez, Gaëtan Leurent,
María Naya-Plasencia, Léo Perrin, André Schrottenloher, and Ferdinand Sibleyras; and
“SQISign: Compact Post-Quantum signatures from Quaternions and Isogenies” by
Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski.

Many people contributed to the success of ASIACRYPT 2020. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge
and expertise, and for the tremendous amount of work that was done with reading
papers and contributing to the discussions. We are greatly indebted to Kwangjo Kim,
the general chair, for his efforts and overall organization. We thank Michel Abdalla,
McCurley, Kay McKelly, and members of the IACR’s emergency pandemic team for
their work in designing and running the virtual format. We thank Steve Galbraith, Joo
Young Lee, and Yu Sasaki for expertly organizing and chairing the rump session. We
are extremely grateful to Zhenzhen Bao for checking all the latex files and for
assembling the files for submission to Springer. Finally, we thank Shai Halevi and the
IACR for setting up and maintaining the Web Submission and Review software, used
by IACR conferences for the paper submission and review process. We also thank
Alfred Hofmann, Anna Kramer, and their colleagues at Springer for handling the
publication of these conference proceedings.

December 2020 Shiho Moriai
Huaxiong Wang

vi Preface

Organization

General Chair

Kwangjo Kim Korea Advanced Institute of Science and Technology
(KAIST), South Korea

Program Chairs

Shiho Moriai Network Security Research Institute (NICT), Japan
Huaxiong Wang Nanyang Technological University, Singapore

Program Committee

Shweta Agrawal IIT Madras, India
Gorjan Alagic University of Maryland, USA
Shi Bai Florida Atlantic University, USA
Zhenzhen Bao Nanyang Technological University, Singapore
Paulo Barreto University of Washington Tacoma, USA
Lejla Batina Radboud University, The Netherlands
Amos Beimel Ben-Gurion University, Israel
Sonia Belaïd CryptoExperts, France
Olivier Blazy University of Limoges, France
Jie Chen East China Normal University, China
Yilei Chen Visa Research, USA
Chen-Mou Cheng Osaka University, Japan
Jun Furukawa NEC Israel Research Center, Israel
David Galindo University of Birmingham, Fetch.AI, UK
Jian Guo Nanyang Technological University, Singapore
Swee-Huay Heng Multimedia University, Malaysia
Xinyi Huang Fujian Normal University, China
Andreas Hülsing TU Eindhoven, The Netherlands
Takanori Isobe University of Hyogo, Japan
David Jao University of Waterloo, evolutionQ, Inc., Canada
Jérémy Jean ANSSI, France
Zhengfeng Ji University of Technology Sydney, Australia
Hyung Tae Lee Jeonbuk National University, South Korea
Jooyoung Lee KAIST, South Korea
Benoît Libert CNRS, ENS, France
Dongdai Lin Chinese Academy of Sciences, China
Helger Lipmaa University of Tartu, Estonia, and Simula UiB, Norway
Feng-Hao Liu Florida Atlantic University, USA

Giorgia Azzurra Marson University of Bern, Switzerland, and NEC Laboratories
Europe, Germany

Daniel Masny Visa Research, USA
Takahiro Matsuda AIST, Japan
Brice Minaud Inria, ENS, France
Shiho Moriai NICT, Japan
Kartik Nayak Duke University, VMware Research, USA
Khoa Nguyen Nanyang Technological University, Singapore
Svetla Nikova KU Leuven, Belgium
Carles Padró UPC, Spain
Jiaxin Pan NTNU, Norway
Arpita Patra Indian Institute of Science, India
Thomas Peters UCL, Belgium
Duong Hieu Phan University of Limoges, France
Raphael C.-W. Phan Monash University, Malaysia
Josef Pieprzyk CSIRO, Australia, and Institute of Computer Science,

Polish Academy of Sciences, Poland
Ling Ren VMware Research, University of Illinois

at Urbana-Champaign, USA
Carla Ràfols Universitat Pompeu Fabra, Spain
Rei Safavi-Naini University of Calgary, Canada
Yu Sasaki NTT laboratories, Japan
Jae Hong Seo Hanyang University, South Korea
Ron Steinfeld Monash University, Australia
Willy Susilo University of Wollongong, Australia
Qiang Tang New Jersey Institute of Technology, USA
Mehdi Tibouchi NTT laboratories, Japan
Huaxiong Wang Nanyang Technological University, Singapore
Xiaoyun Wang Tsinghua University, China
Yongge Wang The University of North Carolina at Charlotte, USA
Chaoping Xing Shanghai Jiao Tong University, China, and NTU,

Singapore
Yu Yu Shanghai Jiao Tong University, China
Mark Zhandry Princeton University, NTT Research, USA

External Reviewers

Behzad Abdolmaleki
Parhat Abla
Mamun Akand
Orestis Alpos
Hiroaki Anada
Benny Applebaum
Diego F. Aranha

Marcel Armour
Gilad Asharov
Man Ho Au
Benedikt Auerbach
Khin Mi Mi Aung
Sepideh Avizheh
Christian Badertscher

Saikrishna
Badrinarayanan

Mir Ali Rezazadeh Baee
Joonsang Baek
Karim Baghery
Gustavo Banegas
Laasya Bangalore

viii Organization

Subhadeep Banik
James Bartusek
Carsten Baum
Rouzbeh Behnia
Aner Ben-Efraim
Fabrice Benhamouda
Francesco Berti
Luk Bettale
Tim Beyne
Shivam Bhasin
Nina Bindel
Nir Bitansky
Xavier Bonnetain
Katharina Boudgoust
Florian Bourse
Zvika Brakerski
Jaqueline Brendel
Olivier Bronchain
Benedikt Bunz
Seyit Camtepe
Ignacio Cascudo
Gaëtan Cassiers
Suvradip Chakraborty
Jorge Chávez Saab
Hao Chen
Hua Chen
Long Chen
Rongmao Chen
Yu Chen
Yuan Chen
Ding-Yuan Cheng
Ji-Jian Chin
Seongbong Choi
Wonseok Choi
Ashish Choudhury
Sherman S. M. Chow
Heewon Chung
Michele Ciampi
Benoît Cogliati
Craig Costello
Nicholas Courtois
Geoffroy Couteau
Alain Couvreur
Daniele Cozzo
Hongrui Cui
Edouard Cuvelier

Jan Czajkowski
João Paulo da Silva
Jan-Pieter D’anvers
Joan Daemen
Ricardo Dahab
Nilanjan Datta
Bernardo David
Gareth Davies
Yi Deng
Amit Deo
Patrick Derbez
Siemen Dhooghe
Hang Dinh
Christoph Dobraunig
Javad Doliskani
Jelle Don
Xiaoyang Dong
Dung Duong
Betül Durak
Avijit Dutta
Sabyasachi Dutta
Sébastien Duval
Ted Eaton
Keita Emura
Muhammed F. Esgin
Thomas Espitau
Xiong Fan
Antonio Faonio
Prastudy Fauzi
Hanwen Feng
Shengyuan Feng
Tamara Finogina
Apostolos Fournaris
Ashley Fraser
Philippe Gaborit
Steven Galbraith
Pierre Galissant
Chaya Ganesh
Romain Gay
Chunpeng Ge
Kai Gellert
Nicholas Genise
Alexandru Gheorghiu
Hossein Ghodosi
Satrajit Ghosh
Benedikt Gierlichs

Kristian Gjøsteen
Aarushi Goel
Huijing Gong
Junqing Gong
Zheng Gong
Alonso González
Rishab Goyal
Benjamin Grégoire
Jiaxin Guan
Cyprien de Saint Guilhem
Aldo Gunsing
Chun Guo
Fuchun Guo
Qian Guo
Felix Günther
Ariel Hamlin
Ben Hamlin
Jinguang Han
Kyoohyung Han
Keisuke Hara
Debiao He
Chloé Hébant
Javier Herranz
Shoichi Hirose
Deukjo Hong
Akinori Hosoyamada
Hector Hougaard
Qiong Huang
Shih-Han Hung
Kathrin Hövelmanns
Akiko Inoue
Tetsu Iwata
Ashwin Jha
Dingding Jia
Shaoquan Jiang
Chanyang Ju
Eliran Kachlon
Saqib A. Kakvi
Ghassan Karame
Sabyasachi Karati
Angshuman Karmakar
Shuichi Katsumata
Marcel Keller
Dongwoo Kim
Jihye Kim
Jinsu Kim

Organization ix

Jiseung Kim
Jongkil Kim
Minkyu Kim
Myungsun Kim
Seongkwang Kim
Taechan Kim
Elena Kirshanova
Fuyuki Kitagawa
Susumu Kiyoshima
Michael Kloss
François Koeune
Lisa Kohl
Markulf Kohlweiss
Chelsea Komlo
Yashvanth Kondi
Nishat Koti
Toomas Krips
Veronika Kuchta
Thijs Laarhoven
Jianchang Lai
Qiqi Lai
Huy Quoc Le
Byeonghak Lee
Changmin Lee
Moon Sung Lee
Liang Li
Shuaishuai Li
Shun Li
Xiangxue Li
Xinyu Li
Ya-Nan Li
Zhe Li
Bei Liang
Cheng-Jun Lin
Fuchun Lin
Wei-Kai Lin
Dongxi Liu
Fukang Liu
Guozhen Liu
Jia Liu
Joseph K. Liu
Meicheng Liu
Qipeng Liu
Shengli Liu
Yunwen Liu
Zhen Liu

Julian Loss
Yuan Lu
Zhenliang Lu
Lin Lyu
Fermi Ma
Hui Ma
Xuecheng Ma
Bernardo Magri
Monosij Maitra
Christian Majenz
Nathan Manohar
Ange Martinelli
Zdenek Martinasek
Ramiro Martínez
Pedro Maat C. Massolino
Loïc Masure
Bart Mennink
Lauren De Meyer
Peihan Miao
Kazuhiko Minematsu
Rafael Misoczki
Tarik Moataz
Tal Moran
Tomoyuki Morimae
Hiraku Morita
Travis Morrison
Pratyay Mukherjee
Sayantan Mukherjee
Pierrick Méaux
Helen Möllering
Michael Naehrig
Yusuke Naito
Maria Naya-Plasencia
Ngoc Khanh Nguyen
Jianting Ning
Ryo Nishimaki
Ariel Nof
Kazuma Ohara
Daniel Esteban Escudero

Ospina
Giorgos Panagiotakos
Bo Pang
Lorenz Panny
Anna Pappa
Anat Paskin-Cherniavsky
Alain Passelègue

Shravani Patil
Sikhar Patranabis
Kateryna Pavlyk
Alice Pellet-Mary
Geovandro Pereira
Thomas Peyrin
Phuong Pham
Stjepan Picek
Zaira Pindado
Rafael del Pino
Rachel Player
Geong Sen Poh
David Pointcheval
Yuriy Polyakov
Ali Poostindouz
Frédéric de Portzamparc
Chen Qian
Tian Qiu
Sai Rahul Rachuri
Adrian Ranea
Divya Ravi
Jean-René Reinhard
Peter Rindal
Francisco

Rodríguez-Henríquez
Mélissa Rossi
Partha Sarathy Roy
Ajith S.
Yusuke Sakai
Kosei Sakamoto
Amin Sakzad
Simona Samardjiska
Olivier Sanders
Partik Sarkar
Santanu Sarkar
John Schanck
André Schrottenloher
Jacob Schuldt
Mahdi Sedaghat
Ignacio Amores Sesar
Siamak Shahandashti
Setareh Sharifian
Yaobin Shen
Sina Shiehian
Kazumasa Shinagawa
Janno Siim

x Organization

Javier Silva
Ricardo Dahab
Siang Meng Sim
Leonie Simpson
Daniel Slamanig
Daniel Smith-Tone
Fang Song
Yongcheng Song
Florian Speelman
Akshayaram Srinivasan
Jun Xu
Igors Stepanovs
Ling Sun
Shi-Feng Sun
Akira Takahashi
Katsuyuki Takashima
Benjamin Hong

Meng Tan
Syh-Yuan Tan
Titouan Tanguy
Adrian Thillard
Miaomiao Tian
Ivan Tjuawinata
Yosuke Todo
Alin Tomescu
Junichi Tomida
Ni Trieu
Viet Cuong Trinh
Ida Tucker
Aleksei Udovenko
Bogdan Ursu
Damien Vergnaud
Fernando Virdia

Srinivas Vivek
Misha Volkhov
Quoc Huy Vu
Alexandre Wallet
Ming Wan
Chenyu Wang
Han Wang
Junwei Wang
Lei Wang
Luping Wang
Qingju Wang
Weijia Wang
Wenhao Wang
Yang Wang
Yuyu Wang
Zhedong Wang
Gaven Watson
Florian Weber
Man Wei
Weiqiang Wen
Thom Wiggers
Zac Williamson
Lennert Wouters
Qianhong Wu
Keita Xagawa
Zejun Xiang
Hanshen Xiao
Xiang Xie
Yanhong Xu
Haiyang Xue
Shota Yamada
Takashi Yamakawa
Sravya Yandamuri

Jianhua Yan
Zhenbin Yan
Bo-Yin Yang
Guomin Yang
Kang Yang
Rupeng Yang
Shao-Jun Yang
Wei-Chuen Yau
Kisoon Yoon
Yong Yu
Zuoxia Yu
Chen Yuan
Tsz Hon Yuen
Aaram Yun
Alexandros Zacharakis
Michal Zajac
Luca Zanolini
Arantxa Zapico
Ming Zeng
Bin Zhang
Bingsheng Zhang
Cong Zhang
Hailong Zhang
Jiang Zhang
Liang Feng Zhang
Xue Zhang
Zhenfei Zhang
Zhifang Zhang
Changan Zhao
Yongjun Zhao
Zhongxiang Zheng
Yihong Zhu
Arne Tobias Ødegaard

Organization xi

Contents – Part II

Public Key Cryptography

Incrementally Aggregatable Vector Commitments and Applications
to Verifiable Decentralized Storage . 3

Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos,
and Luca Nizzardo

Non-committing Encryption with Constant Ciphertext Expansion from
Standard Assumptions . 36

Yusuke Yoshida, Fuyuki Kitagawa, Keita Xagawa, and Keisuke Tanaka

Collusion Resistant Trace-and-Revoke for Arbitrary Identities
from Standard Assumptions . 66

Sam Kim and David J. Wu

Subvert KEM to Break DEM: Practical Algorithm-Substitution Attacks
on Public-Key Encryption . 98

Rongmao Chen, Xinyi Huang, and Moti Yung

Unbounded HIBE with Tight Security . 129
Roman Langrehr and Jiaxin Pan

Multi-client Oblivious RAM with Poly-logarithmic Communication 160
Sherman S. M. Chow, Katharina Fech, Russell W. F. Lai,
and Giulio Malavolta

Privacy-Preserving Pattern Matching on Encrypted Data 191
Anis Bkakria, Nora Cuppens, and Frédéric Cuppens

Efficient Homomorphic Comparison Methods with Optimal Complexity 221
Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim

Lattice-Based Cryptography

Practical Exact Proofs from Lattices: New Techniques to Exploit
Fully-Splitting Rings . 259

Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler

Towards Classical Hardness of Module-LWE: The Linear Rank Case 289
Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois,
and Weiqiang Wen

Lattice-Based E-Cash, Revisited . 318
Amit Deo, Benoît Libert, Khoa Nguyen, and Olivier Sanders

Twisted-PHS: Using the Product Formula to Solve Approx-SVP
in Ideal Lattices . 349

Olivier Bernard and Adeline Roux-Langlois

Simpler Statistically Sender Private Oblivious Transfer from Ideals
of Cyclotomic Integers. 381

Daniele Micciancio and Jessica Sorrell

Isogeny-Based Cryptography

Cryptographic Group Actions and Applications. 411
Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 440
Craig Costello

Calamari and Falafl: Logarithmic (Linkable) Ring Signatures
from Isogenies and Lattices . 464

Ward Beullens, Shuichi Katsumata, and Federico Pintore

Radical Isogenies . 493
Wouter Castryck, Thomas Decru, and Frederik Vercauteren

Oblivious Pseudorandom Functions from Isogenies 520
Dan Boneh, Dmitry Kogan, and Katharine Woo

SiGamal: A Supersingular Isogeny-Based PKE and Its Application
to a PRF . 551

Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi

Quantum Algorithms

Estimating Quantum Speedups for Lattice Sieves . 583
Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite,
and John M. Schanck

A Combinatorial Approach to Quantum Random Functions 614
Nico Döttling, Giulio Malavolta, and Sihang Pu

Improved Classical and Quantum Algorithms for Subset-Sum. 633
Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen

Security Limitations of Classical-Client Delegated Quantum Computing 667
Christian Badertscher, Alexandru Cojocaru, Léo Colisson,
Elham Kashefi, Dominik Leichtle, Atul Mantri, and Petros Wallden

xiv Contents – Part II

Quantum Circuit Implementations of AES with Fewer Qubits. 697
Jian Zou, Zihao Wei, Siwei Sun, Ximeng Liu, and Wenling Wu

Quantum Collision Attacks on AES-Like Hashing with Low Quantum
Random Access Memories . 727

Xiaoyang Dong, Siwei Sun, Danping Shi, Fei Gao, Xiaoyun Wang,
and Lei Hu

Authenticated Key Exchange

Fuzzy Asymmetric Password-Authenticated Key Exchange 761
Andreas Erwig, Julia Hesse, Maximilian Orlt, and Siavash Riahi

Two-Pass Authenticated Key Exchange with Explicit Authentication
and Tight Security. 785

Xiangyu Liu, Shengli Liu, Dawu Gu, and Jian Weng

Author Index . 815

Contents – Part II xv

Public Key Cryptography

Incrementally Aggregatable Vector
Commitments and Applications

to Verifiable Decentralized Storage

Matteo Campanelli1, Dario Fiore2(B), Nicola Greco4, Dimitris Kolonelos2,3,
and Luca Nizzardo4

1 Aarhus University, Aarhus, Denmark
matteo@cs.au.dk

2 IMDEA Software Institute, Madrid, Spain
{dario.fiore,dimitris.kolonelos}@imdea.org

3 Universidad Politecnica de Madrid, Madrid, Spain
4 Protocol Labs, San Francisco, USA

{nicola,luca}@protocol.ai

Abstract. Vector commitments with subvector openings (SVC) [Lai-
Malavolta, Boneh-Bunz-Fisch; CRYPTO’19] allow one to open a com-
mitted vector at a set of positions with an opening of size independent
of both the vector’s length and the number of opened positions.

We continue the study of SVC with two goals in mind: improving
their efficiency and making them more suitable to decentralized settings.
We address both problems by proposing a new notion for VC that we
call incremental aggregation and that allows one to merge openings in a
succinct way an unbounded number of times. We show two applications
of this property. The first one is immediate and is a method to generate
openings in a distributed way. The second application is an algorithm
for faster generation of openings via preprocessing.

We then proceed to realize SVC with incremental aggregation. We
provide two constructions in groups of unknown order that, similarly
to that of Boneh et al. (which supports aggregating only once), have
constant-size public parameters, commitments and openings. As an addi-
tional feature, for the first construction we propose efficient arguments
of knowledge of subvector openings which immediately yields a keyless
proof of storage with compact proofs.

Finally, we address a problem closely related to that of SVC: storing
a file efficiently in completely decentralized networks. We introduce and
construct verifiable decentralized storage (VDS), a cryptographic prim-
itive that allows to check the integrity of a file stored by a network of
nodes in a distributed and decentralized way. Our VDS constructions
rely on our new vector commitment techniques.

M. Campanelli—Work done while author was at IMDEA Software Institute.
A full version of this paper can be found at https://ia.cr/2020/149.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 3–35, 2020.
https://doi.org/10.1007/978-3-030-64834-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_1&domain=pdf
https://ia.cr/2020/149
https://doi.org/10.1007/978-3-030-64834-3_1

4 M. Campanelli et al.

1 Introduction

Commitment schemes are one of the most fundamental cryptographic primitives.
They have two basic properties. Hiding guarantees that a commitment reveals
no information about the underlying message. Binding instead ensures that one
cannot change its mind about the committed message; namely, it is not possible
to open a commitment to two distinct values m �= m′.

Vector commitments (VC) [LY10,CF13] are a special class of commitment
schemes in which one can commit to a vector �v of length n and to later open the
commitment at any position i ∈ [n]. The distinguishing feature of VCs is that
both the commitment and an opening for a position i have size independent of
n. In terms of security, VCs should be position binding, i.e., one cannot open a
commitment at position i to two distinct values vi �= v′

i.
VCs were formalized by Catalano and Fiore [CF13] who proposed two realiza-

tions based on the CDH assumption in bilinear groups and the RSA assumption
respectively. Both schemes have constant-size commitments and openings but
suffer from large public parameters that are O(n2) and O(n) for the CDH- and
RSA-based scheme respectively. Noteworthy is that Merkle trees [Mer88] are
VCs with O(log n)-size openings.

Two recent works [BBF19,LM19] proposed new constructions of vector com-
mitments that enjoy a new property called subvector openings (also called batch
openings in [BBF19]). A VC with subvector openings (called SVC, for short)
allows one to open a commitment at a collection of positions I = {i1, . . . , im}
with a constant-size proof, namely of size independent of the vector’s length n
and the subvector length m. This property has been shown useful for reduc-
ing communication complexity in several applications, such as PCP/IOP-based
succinct arguments [LM19,BBF19] and keyless Proofs of Retrievability (PoR)
[Fis18].

In this work we continue the study of VCs with subvector openings with
two main goals: (1) improving their efficiency, and (2) enabling their use in
decentralized systems.

With respect to efficiency, although the most attractive feature of SVCs is
the constant size of their opening proofs, a drawback of all constructions is that
generating each opening takes at least time O(n) (i.e., as much as committing).
This is costly and may harm the use of SVCs in applications such as the ones
mentioned above.

When it comes to decentralization, VCs have been proposed as a solution for
integrity of a distributed ledger (e.g., blockchains in the account model [BBF19]):
the commitment is a succinct representation of the ledger, and a user responsible
for the i-th entry can hold the corresponding opening and use it to prove validity
of vi. In this case, though, it is not obvious how to create a succinct subvector
opening for, say, m positions held by different users each responsible only of its
own position/s in the vector. We elaborate more on the motivation around this
problem in Sect. 1.2.

Incrementally Aggregatable Vector Commitments and Applications 5

1.1 A New Notion for SVCs: Incremental Aggregation

To address these concerns, we define and investigate a new property of vector
commitments with subvector openings called incremental aggregation. In a nut-
shell, aggregation means that different subvector openings (say, for sets of posi-
tions I and J) can be merged together into a single concise (i.e., constant-size)
opening (for positions I ∪ J). This operation must be doable without knowing
the entire committed vector. Moreover, aggregation is incremental if aggregated
proofs can be further aggregated (e.g., two openings for I ∪ J and K can be
merged into one for I ∪ J ∪ K, and so on an unbounded number of times) and
disaggregated (i.e., given an opening for set I one can create one for any K ⊂ I).

While a form of aggregation is already present in the VC of Boneh et al.
[BBF19], in [BBF19] this can be performed only once. In contrast, we define (and
construct) the first VC schemes where openings can be aggregated an unbounded
number of times. This incremental property is key to address efficiency and
decentralized applications of SVCs, as we detail below.

Incremental Aggregation for Efficiency. To overcome the barrier of generat-
ing each opening in linear time1 Oλ(n), we propose an alternative preprocessing-
based method. The idea is to precompute at commitment time an auxiliary
information consisting of n/B openings, one for each batch of B positions of the
vector. Next, to generate an opening for an arbitrary subset of m positions, one
uses the incremental aggregation property in order to disaggregate the relevant
subsets of precomputed openings, and then further aggregate for the m positions.
Concretely, with this method, in our construction we can do the preprocessing
in time Oλ(n log n) and generate an opening for m positions in time roughly
Oλ(mB log n).

With the VC of [BBF19], a limited version of this approach is also viable: one
precomputes an opening for each bit of the vector in Oλ(n log n) time; and then,
at opening time, one uses their one-hop aggregation to aggregate relevant open-
ings in time roughly Oλ(m log n). This however comes with a huge drawback: one
must store one opening (of size p(λ) = poly(λ) where λ is the security parame-
ter) for every bit of the vector, which causes a prohibitive storage overhead, i.e.,
p(λ) · n bits in addition to storing the vector �v itself.

With incremental aggregation, we can instead tune the chunk size B to obtain
flexible time-memory tradeoffs. For example, with B =

√
n one can use p(λ)

√
n

bits of storage to get Oλ(m
√

n log n) opening time. Or, by setting B = p(λ) as
the size of one opening, we can obtain a storage overhead of exactly n bits and
opening time Oλ(m log n).

Incremental Aggregation for Decentralization. Essentially, by its defini-
tion, incremental aggregation enables generating subvector openings in a dis-
tributed fashion. Consider a scenario where different parties each hold an open-
ing of some subvector; using aggregation they can create an opening for the union
of their subvectors, moreover the incremental property allows them to perform
1 We use the notation Oλ(·) to include the factor depending on the security parameter

λ. Writing “Oλ(t)” essentially means “O(t) cryptographic operations”.

6 M. Campanelli et al.

this operation in a non-coordinated and asynchronous manner, i.e. without the
need of a central aggregator. We found this application of incrementally aggre-
gatable SVCs to decentralized systems worth exploring in more detail. To fully
address this application, we propose a new cryptographic primitive called veri-
fiable decentralized storage which we discuss in Sect. 1.2.

Constructing VCs With Incremental Aggregation. Turning to realiz-
ing SVC schemes with our new incremental aggregation property, we propose
two SVC constructions that work in hidden-order groups [DK02] (instantiatable
using classical RSA groups, class groups [BH01] or the recently proposed groups
from Hyperelliptic Curves [DG20]).

Our first SVC has constant-size public parameters and constant-size sub-
vector openings, and its security relies on the Strong RSA assumption and an
argument of knowledge in the generic group model. Asymptotically, its efficiency
is similar to the SVC of Boneh et al. [BBF19], but concretely we outperform
[BBF19]. We implement our new SVC and show it can obtain very fast opening
times thanks to the preprocessing method described earlier: opening time reduces
by several orders of magnitude for various choices of vector and opening sizes,
allowing us to obtain practical opening times—of the order of seconds—that
would be impossible without preprocessing—of the order of hundred of seconds.
In a file of 1 Mibit (220 bits), preprocessing reduces the time to open 2048 bits
from one hour to less than 5 s!

For the second construction, we show how to modify the RSA-based SVC of
[LM19] (which in turn extends the one of [CF13] to support subvector openings)
in order to make it with constant-size parameters and to achieve incremental
aggregation. Compared to the first construction, it is more efficient and based
on more standard assumptions, in the standard model.

Efficient Arguments of Knowledge of Subvector Opening. As an addi-
tional result, we propose efficient arguments of knowledge (AoK) with constant-
size proofs for our first VC. In particular, we can prove knowledge of the sub-
vector that opens a commitment at a public set of positions. An immediate
application of this AoK is a keyless proof of storage (PoS) protocol with com-
pact proofs. PoS allows a client to verify that a server is storing intactly a file via
a short-communication challenge-response protocol. A PoS is said keyless if no
secret key is needed by clients (e.g., mutually distrustful verifiers in a blockchain)
and the server may even be one of these clients. With our AoK we can obtain
openings of fixed size, as short as 2KB, which is 40x shorter than those based
on Merkle trees in a representative setting without relying on SNARKs (that
would be unfeasible in terms of time and memory). For lack of space, these AoK
results appear in the full version.

1.2 Verifiable Decentralized Storage (VDS)

We now turn our attention to the problem of preserving storage integrity in a
highly decentralized context which some of the distributed features of our VCs
(i.e. incremental aggregation) can help us address. We are interested in studying

Incrementally Aggregatable Vector Commitments and Applications 7

the security of the emerging trend of decentralized and open alternatives to
traditional cloud storage and hosting services: decentralized storage networks
(DSNs). Filecoin (built on top of IPFS), Storj, Dat, Freenet and general-purpose
blockchains like Ethereum2 are some emerging projects in this space.

Background on DSNs. Abstracting from the details of each system, a DSN
consists of participants called nodes. These can be either storage providers (aka
storage nodes) or simple client nodes. Akin to centralized cloud storage, a client
can outsource3 the storage of large data. However, a key difference with DSN is
that storage is provided by, and distributed across, a collection of nodes that can
enter and leave the system at will. To make these systems viable it is important to
tackle certain basic security questions. DSNs can have some reward mechanism
to economically incentivize storage nodes. This means, for example, that there
are economic incentives to fake storing a file. A further challenge for security
(and for obtaining it efficiently) is that these systems are open and decentralized:
anyone can enter the system (and participate as either a service provider or a
consumer) and the system works without any central management or trusted
parties.

In this work we focus on the basic problem of ensuring that the storage nodes
of the DSN are doing their job properly, namely: How can any client node check
that the whole DSN is storing correctly its data (in a distributed fashion)?

While this question is well studied in the centralized setting where the stor-
age provider is a single server, for decentralized systems the situation is less
satisfactory.

The Problem of Verifiable Decentralized Storage in DSNs. Consider
a client who outsources the storage of a large file F , consisting of blocks
(F1, . . . , FN), to a collection of storage nodes. A storage node can store a portion
of F and the network is assumed to be designed in order to self-coordinate so
that the whole F is stored, and to be fault-resistant (e.g., by having the same
data block stored on multiple nodes). Once the file is stored, clients can request
to the network to retrieve or modify a data block Fi (or more), as well as to
append (resp. delete) blocks to (resp. from) the file.

In this scenario, our goal is to formalize a cryptographic primitive that can
provide clients with the guarantee of integrity of the outsourced data and its
modifications. The basic idea of VDS is that: (i) the client retains a short digest
δF that “uniquely” points to the file F ; (ii) any operation performed by the
network, a retrieval or a file modification, can be proven by generating a short
certificate that is publicly verifiable given δF .

This problem is similar in scope to the one addressed by authenticated data
structures (ADS) [Tam03]. But while ADS is centralized, VDS is not. In VDS
nodes act as storage in a distributed and uncoordinated fashion. This is more
challenging as VDS needs to preserve some basic properties of the DSN:
2 filecoin.io, storj.io, datproject.org, freenetproject.org, ethereum.org.
3 We point out that in systems like Filecoin some nodes do not effectively outsource

anything. Yet they participate (for economic rewards) verifying that others are actu-
ally storing for some third party node.

8 M. Campanelli et al.

Highly Local. The file is stored across multiple nodes and no node is required to
hold the entire F : in VDS every node should function with only its own local
view of the system, which should be much smaller than the whole F . Another
challenge is dynamic files: in VDS both the digest and the local view must be
locally updatable, possibly with the help of a short and publicly verifiable update
advice from the node holding the modified data blocks.

Decentralized Keyless Clients. In a decentralized system the notion of a client
who outsources the storage of a file is blurry. It may for example be a set of
mutually distrustful parties (even the entire DSN), or a collection of storage
nodes themselves that decide to make some data available to the network. This
comes with two implications:

1. VDS must work without any secret key on the clients side, so that everyone
in the network can delegate and verify storage. This keyless setting captures
not only clients requiring no coordination, but also a stronger security model.
Here the attacker may control both the storage node and the client, yet it
must not be able to cheat when proving correctness of its storage. The latter
is crucial in DSNs with economic rewards for well-behaving nodes4.

2. In VDS a file F exists as long as some storage nodes provide its storage and
a pointer to the file is known to the network through its digest. When a file
F is modified into F ′ and its digest δF is updated into δF ′ , both versions of
the file may coexist. Forks are possible and it is left to each client (or the
application) to choose which digest to track: the old one, the new one, or
both.

Non-Coordinated Certificates Generation. There are multiple ways in which
data retrieval queries can be answered in a DSN. In some cases (e.g., Freenet
[CSWH01] or the original Gnutella protocol), data retrieval is also answered
in a peer-to-peer non-coordinated fashion. When a query for blocks i1, . . . , im
propagates through the network, every storage node replies with the blocks that
it owns and these answers are aggregated and propagated in the network until
they reach the client who asked for them. To accommodate arbitrary aggregation
strategies, in VDS we consider the incremental aggregation of query certificates
in an arbitrary and bandwidth-efficient fashion. For example, short certificates
for file blocks Fi and Fj should be mergeable into a short certificate for (Fi, Fj)
and this aggregation process should be carried on and on. Noteworthy that hav-
ing certificates that stay short after each aggregation keeps the communication
overhead of the VDS integrity mechanism at a minimum.5

A New Cryptographic Primitive: VDS. To address the problem described
above, we put forward the definition of a new cryptographic primitive called

4 Since in a decentralized system a storage node may also be a client, an attacker could
“delegate storage to itself” and use the client’s secret key to cheat in the proof in
order to steal rewards (akin to the so-called “generation attack” in Filecoin [Lab17]).

5 The motivation of this property is similar to that of sequential aggregate signatures,
see e.g., [LMRS04,BGR12].

Incrementally Aggregatable Vector Commitments and Applications 9

verifiable decentralized storage (VDS). In a nutshell, VDS is a collection of algo-
rithms that can be used by clients and storage nodes to maintain the system. The
basic ideas are the following: every file F is associated to a succinct digest δF ; a
storage node can answer and certify retrieval queries for subportions of F that
it stores, as well as to push updates of F that enable anyone else to update the
digest accordingly. Moreover, certified retrieval results can be arbitrarily aggre-
gated. With respect to security, VDS guarantees that malicious storage nodes
(even a full coalition of them) cannot create certificates for falsified data blocks
that pass verification. For efficiency, the key property of VDS is that digests and
every certificate are at most O(log |F |), and that every node in the system works
with storage and running time that depends at most logarithmically in F ’s size.
We discuss our definition of VDS in Section 5.

Constructing VDS. We propose two constructions of VDS in hidden-order
groups. Both our VDS schemes are obtained by extending our first and second
SVC scheme respectively, in order to handle updates and to ensure that all such
update operations can be performed locally. We show crucial use of the new
properties of our constructions: subvector openings, incremental aggregation and
disaggregation, and arguments of knowledge for sub-vector commitments (the
latter for the first scheme only).

Our two VDS schemes are based on the Strong RSA [BP97] and Strong
distinct-prime-product root [LM19], and Low Order [BBF18] assumptions and
have similar performances. The second scheme has the interesting property that
the storage node can perform and propagate updates by running in time that is
independent of even its total local storage.

Finally, we note that VDS shares similarities with the notion of updatable
VCs [CF13] extended with incrementally aggregatable subvector openings. There
are two main differences. First, in VDS updates can be applied with the help of a
short advice created by the party who created the update, whereas in updatable
VC this is possible having only the update’s description. The second difference
is that in VDS the public parameters must be short, otherwise nodes could not
afford storing them. This is not necessarily the case in VCs and in fact, to the best
of our knowledge, there exists no VC construction with short parameters that is
updatable (according to the updatability notion of [CF13]) and has incrementally
aggregatable subvector openings. We believe this is an interesting open problem.

1.3 Concurrent Work

In very recent concurrent works, Gorbunov et al. [GRWZ20] and Tomescu
et al. [TAB+20] study similar problems related to aggregation properties of
vector commitments. In [TAB+20], Tomescu et al. study a vector commitment
scheme based on the Kate et al. polynomial commitment [KZG10]: they show
how it can be made both updatable and aggregatable, and propose an efficient
Stateless Cryptocurrency based on it. In Pointproofs [GRWZ20] they propose
the notion of Cross-Commitment Aggregation, which enables aggregating open-
ing proofs for different commitments, and show how this notion is relevant to

10 M. Campanelli et al.

blockchain applications. The VC schemes in both [TAB+20] and [GRWZ20] work
in bilinear groups and have linear-size public parameters. Also, these construc-
tions do not support incremental aggregation or disaggregation. In contrast, our
VCs work in hidden-order groups, which likely makes them concretely less effi-
cient, but they have constant-size parameters, and they support incremental
aggregation and disaggregation. Finally, we note that by using techniques simi-
lar to [GRWZ20] we can extend our constructions to support cross-commitment
aggregation; we leave formalizing this extension for future work.

1.4 Preliminaries

In the paper we use rather standard cryptographic notation and definitions that
for completeness are recalled in the full version. More specific to this paper we
denote by Primes(λ) the set of all prime integers less than 2λ.

Groups of Unknown Order and Computational Assumptions. Our con-
structions use a group G of unknown (aka hidden) order [DK02], in which the
Low Order assumption [BBF18] and the Strong RSA assumption [BP97] hold.
We let Ggen(1λ) be a probabilistic algorithm that generates such a group G with
order in a specific range [ordmin, ordmax] such that 1

ordmin
, 1
ordmax

, 1
ordmax−ordmin

∈
negl(λ). As discussed in [BBF18,BBF19,LM19], two concrete instantiations of
G are class groups [BH01] and the quotient group Z

∗
N/{1,−1} of an RSA group

[Wes18]. See the full version for the formal definitions of the assumptions and for
a recall of Shamir’s trick [Sha83] that we use extensively in our constructions.

2 Vector Commitments with Incremental Aggregation

In this section, we recall vector commitments with subvector openings [CF13,
LM19,BBF19] and then we formally define our new incremental aggregation
property.

2.1 Vector Commitments with Subvector Openings

In our work we consider the generalization of vector commitments proposed
by Lai and Malavolta [LM19] called VCs with subvector openings6 (we call them
SVCs for brevity) in which one can open the commitment to an ordered collection
of positions with a short proof. Below is a brief recap of their definition.

Let M be a set, n ∈ N be a positive integer and I = {i1, . . . , i|I|} ⊆ [n] be an
ordered index set. The I-subvector of a vector �v ∈ Mn is �vI := (vi1 , . . . , vi|I|).
Let I, J ⊆ [n] be two sets, and let �vI , �vJ be two subvectors of some �v ∈ Mn.
The ordered union of �vI and �vJ is the subvector �vI∪J , where I ∪J is the ordered
union of I and J .

6 This is also called VCs with batchable openings in an independent work by Boneh
et al. [BBF19] and can be seen as a specialization of the notion of functional vector
commitments [LRY16].

Incrementally Aggregatable Vector Commitments and Applications 11

A vector commitment scheme with subvector openings (SVC) is a tuple of
algorithms VC = (VC.Setup,VC.Com,VC.Open,VC.Ver) that work as follows. The
probabilistic setup algorithm, VC.Setup(1λ,M) → crs, which given the secu-
rity parameter λ and description of a message space M for the vector com-
ponents, outputs a common reference string crs; the committing algorithm,
VC.Com(crs, �v) → (C, aux), which on input crs and a vector �v ∈ Mn, out-
puts a commitment C and an auxiliary information aux; the opening algorithm,
VC.Open(crs, I, �y, aux) → πI which on input the CRS crs, a vector �y ∈ Mm,
an ordered index set I ⊂ N and auxiliary information aux, outputs a proof πI

that �y is the I-subvector of the committed message; the verification algorithm,
VC.Ver(crs, C, I, �y, πI) → b ∈ {0, 1}, which on input the CRS crs, a commitment
C, an ordered set of indices I ⊂ N, a vector �y ∈ Mm and a proof πI , accepts
(i.e., it outputs 1) only if πI is a valid proof that C was created to a vector
�v = (v1, . . . , vn) such that �y = �vI . We require three properties from a vector
commitment: correctness (verification acts as expected on honestly generated
commitments and openings); position binding (no adversary can produce two
valid openings for different subvectors); conciseness (if its commitments and
openings are of size independent of |�v|).
Vector Commitments with Specializable Universal CRS. The notion of
VCs defined above slightly generalizes the previous ones in which the generation
of public parameters (aka common reference string) depends on a bound n on
the length of the committed vectors. In contrast, in our notion VC.Setup is
length-independent. To highlight this property, we also call this primitive vector
commitments with universal CRS.

Here we formalize a class of VC schemes that lies in between VCs with uni-
versal CRS (as defined above) and VCs with length-specific CRS (as defined
in [CF13]). Inspired by the recent work of Groth et al. [GKM+18], we call
these schemes VCs with Specializable (Universal) CRS. In a nutshell, these are
schemes in which the algorithms VC.Com,VC.Open and VC.Ver work on input
a length-specific CRS crsn. However, this crsn is generated in two steps: (i) a
length-independent, probabilistic setup crs ← VC.Setup(1λ,M), and (ii) a length-
dependent, deterministic specialization crsn ← VC.Specialize(crs, n). The advan-
tage of this model is that, being VC.Specialize deterministic, it can be executed
by anyone, and it allows to re-use the same crs for multiple vectors lengths.

See the full version for the formal definition of VCs with specializable CRS.

2.2 Incrementally Aggregatable Subvector Openings

In a nutshell, aggregation means that different proofs of different subvector open-
ings can be merged together into a single short proof which can be created without
knowing the entire committed vector. Moreover, this aggregation is composable,
namely aggregated proofs can be further aggregated. Following a terminology
similar to that of aggregate signatures, we call this property incremental aggre-
gation (but can also be called multi-hop aggregation). In addition to aggregating
openings, we also consider the possibility to “disaggregate” them, namely from

12 M. Campanelli et al.

an opening of positions in the set I one can create an opening for positions in a
set K ⊂ I.

We stress on the two main requirements that make aggregation and disaggre-
gation non-trivial: all openings must remain short (independently of the number
of positions that are being opened), and aggregation (resp. disaggregation) must
be computable locally, i.e., without knowing the whole committed vector. With-
out such requirements, one could achieve this property by simply concatenating
openings of single positions.

Definition 2.1 (Aggregatable Subvector Openings). A vector commit-
ment scheme VC with subvector openings is called aggregatable if there exists
algorithms VC.Agg, VC.Disagg working as follows:

VC.Agg(crs, (I,�vI , πI), (J,�vJ , πJ)) → πK takes as input
triples (I,�vI , πI), (J,�vJ , πJ) where I and J are sets of indices, �vI ∈ M|I|

and �vJ ∈ M|J| are subvectors, and πI and πJ are opening proofs. It outputs a
proof πK that is supposed to prove opening of values in positions K = I ∪ J .

VC.Disagg(crs, I, �vI , πI ,K) → πK takes as input a triple (I,�vI , πI) and a set of
indices K ⊂ I, and it outputs a proof πK that is supposed to prove opening
of values in positions K.

The aggregation algorithm VC.Agg must guarantee the following two properties:

Aggregation Correctness. Aggregation is (perfectly) correct if for all λ ∈ N,
all honestly generated crs ← VC.Setup(1λ,M), any commitment C and triple
(I,�vI , πI) s.t. VC.Ver(crs, C, I, �vI , πI) = 1, the following two properties hold:

1. for any triple (J,�vJ , πJ) such that VC.Ver(crs, C, J,�vJ , πJ) = 1,

Pr
[
VC.Ver(crs, C, K,�vK , πK)=1 : πK ←VC.Agg(crs, (I, �vI , πI), (J,�vJ , πJ))

]
=1

where K = I ∪ J and �vK is the ordered union �vI∪J of �vI and �vJ ;
2. for any subset of indices K ⊂ I,

Pr
[
VC.Ver(crs, C,K,�vK , πK) = 1 : πK ← VC.Disagg(crs, I, �vI , πI ,K)

]
= 1

where �vK = (vil
)il∈K , for �vI = (vi1 , . . . , vi|I|).

Aggregation Conciseness. There exists a fixed polynomial p(·) in the security
parameter such that all openings produced by VC.Agg and VC.Disagg have length
bounded by p(λ).

We remark that the notion of specializable CRS can apply to aggregatable
VCs as well. In this case, we let VC.Agg� (resp. VC.Disagg�) be the algorithm
that works on input the specialized crsn instead of crs.

Incrementally Aggregatable Vector Commitments and Applications 13

3 Applications of Incremental Aggregation

We discuss two general applications of the SVC incremental aggregation
property.

One application is generating subvector openings in a distributed and decen-
tralized way. Namely, assume a set of parties hold each an opening of some
subvector. Then it is possible to create a (concise) opening for the union of
their subvectors by using the VC.Agg algorithm. Moreover, the incremental (aka
multi-hop) aggregation allows these users to perform this operation in an arbi-
trary order, hence no coordination or a central aggregator party are needed.
This application is particularly useful in our extension to verifiable decentralized
storage.

The second application is to generate openings in a faster way via preprocess-
ing. As we mentioned in the introduction, this technique is useful in the scenario
where a user commits to a vector and then must generate openings for various
subvectors, which is for example the use case when the VC is used for proofs of
retrievability and IOPs [BBF19].

So, here the goal is to achieve a method for computing subvector openings
in time sub-linear in the total size of the vector, which is the barrier in all
existing constructions. To obtain this speedup, the basic idea is to (A) compute
and store openings for all the positions at commitment time, and then (B) use
the aggregation property to create an opening for a specific set of positions. In
order to obtain efficiency using this approach it is important that both steps (A)
and (B) can be computed efficiently. In particular, step (A) is challenging since
typically computing one opening takes linear time, hence computing all of them
would take quadratic time.

In this section, we show how steps (A) and (B) can benefit from disaggrega-
tion and aggregation respectively. As a preliminary for this technique, we begin
by describing two generic extensions of (incremental) aggregation (resp. disag-
gregation) that support many inputs (resp. outputs). Then we show how these
extended algorithms can be used for committing and opening with preprocessing.

3.1 Divide-and-Conquer Extensions of Aggregation and
Disaggregation

We discuss how the incremental property of our aggregation and disaggregation
can be used to define two extended versions of these algorithms. The first one
is an algorithm that can aggregate many openings for different sets of positions
into a single opening for their union. The second one does the opposite, namely
it disaggregates one opening for a set I into many openings for partitions of I.

Aggregating Many Openings. We consider the problem of aggregating sev-
eral openings for sets of positions I1, . . . , Im into a single opening for

⋃m
j=1 Ij .

Our syntax in Definition 2.1 only considers pairwise aggregation. This can be
used to handle many aggregations by executing the pairwise aggregation in a
sequential (or arbitrary order) fashion. Sequential aggregation might however be

14 M. Campanelli et al.

costly since it would require executing VC.Agg on increasingly growing sets. If
fa(k) is the complexity of VC.Agg on two sets of total size k, then the complex-
ity of the sequential method is

∑m
j=2 f(

∑j−1
l=1 |Il| + |Ij |), which for example is

quadratic in m, for fa(k) = Θ(k).
In Fig. 1, we show an algorithm, VC.AggManyToOne, that is a nearly optimal

solution for aggregating m openings based on a divide-and-conquer methodology.
Assuming for simplicity that all Ij ’s have size bounded by some s, then the
complexity of VC.AggManyToOne is given by the recurrence relation T (m) =
2T

(
m
2

)
+ fa(s · m), which solves to Θ(s · m log m) if fa(n) ∈ Θ(n), or to Θ(s ·

m log(sm) log m) if fa(n) ∈ Θ(n log n).

Fig. 1. Extensions of aggregation and disaggregation

Disaggregating from One to Many Openings. We consider the problem
that is dual to the one above, namely how to disaggregate an opening for a
set I into several openings for sets I1, . . . , Im that form a partition of I. Our
syntax in Definition 2.1 only considers disaggregation from I to one subset K of
I. Similarly to aggregation, disaggregating from one set to many subsets can be
trivially obtained via a sequential application of VC.Disagg on all pairs (I, Ij).
This however can be costly if the number of partitions approaches the size of I,
e.g., if we want to disaggregate to all the elements of I.

In Fig. 1, we show a divide-and-conquer algorithm, VC.DisaggOneToMany,
for disaggregating an opening for a set I of size m into m′ = m/B open-
ings, each for a partition of size B. For simplicity, we assume that m is a
power of 2, and B | m. Let fd(|I|) be the complexity of VC.Disagg. The com-
plexity of VC.DisaggOneToMany is given by the recurrence relation T (m) =
2T

(
m
2

)
+ 2fd(m/2), which solves to Θ(m log(m/B)) if fd(n) ∈ Θ(n), or to

Θ(m log m log(m/B)) if fd(n) ∈ Θ(n log n).

3.2 Committing and Opening with Precomputation

We present a construction of committing and opening algorithms (denoted
VC.PPCom and VC.FastOpen respectively) that works generically for any SVC

Incrementally Aggregatable Vector Commitments and Applications 15

with incremental aggregation and that, by relying on preprocessing, can achieve
fast opening time.

Our preprocessing method works with a flexible choice of a parameter B that
allows for different time-memory tradeoffs. In a nutshell, ranging from 1 to n,
a larger B reduces memory but increases opening time while a smaller B (e.g.,
B = 1) requires larger storage overhead but gives the fastest opening time.

Let B be an integer that divides n, and let n′ = n/B. The core of our idea
is that, during the commitment stage, one can create openings for n′ = n/B
subvectors of �v that cover the whole vector (e.g., B contiguous positions). Let
πP1 , . . . , πPn′ be such openings; these elements are stored as advice information.

Next, in the opening phase, in order to compute the opening for a subvector
�vI of m positions, one should: (i) fetch the subset of openings πPj

such that, for
some S, I ⊆ ∪j∈SPj , (ii) possibly disaggregate some of them and then aggregate
in order to compute πI .

The two algorithms VC.PPCom and VC.FastOpen are described in detail in
Fig. 2.

Fig. 2. Generic algorithms for committing and opening with precomputation.

In terms of auxiliary storage, in addition to the vector �v itself, one needs
at most (n/B)p(λ) bits, where p(λ) is the polynomial bounding the concise-
ness of the SVC scheme. In terms of time complexity, VC.PPCom requires
one execution of VC.Com, one execution of VC.Open, and one execution of
VC.DisaggOneToMany, which in turn depends on the complexity of VC.Disagg;
VC.FastOpen requires to perform (at most) |S| disaggregations (each with a set
|Ij | such that their sum is |I|)7, and one execution of VC.AggManyToOne on |S|
openings. Note that VC.FastOpen’s running time depends only on the size m
of the set I and size B of the buckets Pj , and thus offers various tradeoffs by
adjusting B.

7 Note that for B = 1 the disaggregation step can be skipped.

16 M. Campanelli et al.

More specific running times depend on the complexity of the algorithms
VC.Com, VC.Open, VC.Agg, and VC.Disagg of the given SVC scheme. See Sect. 4.3
and the full version for these results for our constructions.

4 Our Realizations of Incrementally Aggregatable SVCs

In this section we describe our new SVC realizations.

4.1 Our First SVC Construction

An overview of our techniques. The basic idea underlying our VC can
be described as a generic construction from any accumulator with union proofs.
Consider a vector of bits �v = (v1, . . . , vn) ∈ {0, 1}n. In order to commit to this
vector we produce two accumulators, Acc0 and Acc1, on two partitions of the set
S = {1, . . . , n}. Each accumulator Accb compresses the set of positions i such
that vi = b. In other words, Accb compresses the set S=b := {i ∈ S : vi = b} with
b ∈ {0, 1}. In order to open to bit b at position i, one can create an accumulator
membership proof for the statement i ∈ S̃b where we denote by S̃b the alleged
set of positions that have value b.

However, if the commitment to �v is simply the pair of accumulators
(Acc0,Acc1) we do not achieve position binding as an adversary could for exam-
ple include the same element i in both accumulators. To solve this issue we set
the commitment to be the pair of accumulators plus a succinct non-interactive
proof πS that the two sets S̃0, S̃1 they compress constitute together a partition of
S. Notably, this proof πS guarantees that each index i is in either S̃0 or S̃1, and
thus prevents an adversary from also opening the position i to the complement
bit 1 − b.

The construction described above could be instantiated with any accu-
mulator scheme that admits an efficient and succinct proof of union. We,
though, directly present an efficient construction based on RSA accumulators
[Bd94,BP97,CL02,Lip12,BBF19] as this is efficient and has some nice extra
properties like aggregation and constant-size parameters. Also, part of our tech-
nical contribution to construct this VC scheme is the construction of efficient
and succinct protocols for proving the union of two RSA accumulators built with
different generators.

Succinct AoK Protocols for Union of RSA Accumulators. Let G be a
hidden order group as generated by Ggen, and let g1, g2, g3 ∈ G be three honestly
sampled random generators. We propose a succinct argument of knowledge for
the following relation

RPoProd2 =
{
((Y,C), (a, b)) ∈ G

2 × Z
2 : Y = ga

1gb
2 ∧ C = ga·b

3

}

Our protocol (described in Fig. 3) is inspired by a similar protocol of Boneh
et al. [BBF19], PoDDH, for a similar relation in which there is only one generator

Incrementally Aggregatable Vector Commitments and Applications 17

(i.e., g1 = g2 = g3, namely for DDH tuples (ga, gb, gab)). Their protocol has a
proof consisting of 3 groups elements and 2 integers of λ bits.

As we argue later PoProd2 is still sufficient for our construction, i.e., for the
goal of proving that C = gc

3 is an accumulator to a set that is the union of sets
represented by two accumulators A = ga

1 and B = gb
2 respectively. The idea is

to invoke PoProd2 on (Y,C) with Y = A · B.

Fig. 3. PoProd2 protocol

To prove the security of our protocol we rely on the adaptive root assumption
and, in a non-black-box way, on the knowledge extractability of the PoKRep
and PoKE∗ protocols from [BBF19]. The latter is proven in the generic group
model for hidden order groups (where also the adaptive root assumption holds),
therefore we state the following theorem.

Theorem 4.1. The PoProd2 protocol is an argument of knowledge for RPoProd2

in the generic group model.

For space reasons the full proof is in the full version. The basic intuition is to use
the extractors of PoKRep and PoKE∗ to extract (a, b, c) such that Y = ga

1gb
2∧C =

ga·b
3 . Then c = a · b comes from the fact that � is randomly chosen, which makes

the equality rc = ra · rb mod � happen with negligible probability if c �= a · b.
In the full version we also give a protocol PoProd that proves ga

1 = A∧gb
2 = B

instead of ga
1gb

2 = Y (i.e., a version of PoDDH with different generators). Despite
being conceptually simpler, it is slightly less efficient than PoProd2, and thus we
use the latter in our VC construction.

Hash to prime function and non-interactive PoProd2. Our protocols
can be made non-interactive by applying the Fiat-Shamir transform. For this we
need an hash function that can be modeled as a random oracle and that maps
arbitrary strings to prime numbers, i.e., Hprime : {0, 1}∗ → Primes(2λ)8. A simple
8 As pointed out in [BBF18], although for the interactive version of such protocols the

prime can be of size λ, the non-interactive version requires at least a double-sized
prime 2λ, as an explicit square root attack was presented.

18 M. Campanelli et al.

way to achieve such a function is to apply a standard hash function H : {0, 1}∗ →
{0, 1}2λ to an input �y together with a counter i, and if py,i = H(�y, i) is prime then
output py,i, otherwise continue to H(�y, i + 1) and so on, until a prime is found.
Due to the distribution of primes, the expected running time of this method is
O(λ), assuming that H’s outputs are uniformly distributed. For more discussion
on hash-to-prime functions we refer to [GHR99,CMS99,CS99,BBF19,OWB19].

Our First SVC Construction. Now we are ready to describe our SVC scheme.
For an intuition we refer the reader to the beginning of this section. Also, we
note that while the intuition was given for the case of committing to a vector
of bits, our actual VC construction generalizes this idea to vectors where each
item is a block of k bits. This is done by creating 2k accumulators, each of them
holding sets of indices i for specific positions inside each block vj .

Notation and Building Blocks

– Our message space is M = {0, 1}k. Then for a vector �v ∈ Mn, we denote
with i ∈ [n] the vector’s position, i.e., vi ∈ M, and with j ∈ [k] the position
of its j’th bit. So vi,j denotes the j-th bit in position i.

– We make use of a deterministic collision resistant function PrimeGen that
maps integers to primes. In our construction we do not need its outputs to
be random (see e.g., [BBF19] for possible instantiations).

– As a building block, we use the PoProd2 AoK from the previous section.
– PartndPrimeProd(I, �y) → ((aI,1, bI,1), . . . , (aI,k, bI,k)): given a set of indices

I = {i1, . . . , im} ⊆ [n] and a vector �y ∈ Mm, this function computes

(aI,j , bI,j) :=

⎛

⎝
m∏

l=1:yl,j=0

pil
,

m∏

l=1:yl,j=1

pil

⎞

⎠ for j = 1, . . . , k

where pi ← PrimeGen(i) for all i.
Basically, for every bit position j ∈ [k], the function computes the products
of primes that correspond to, respectively, 0-bits and 1-bits.
In the special case where I = [n], we omit the set of indices from the notation
of the outputs, i.e., PartndPrimeProd([n], �v) outputs aj and bj .

– PrimeProd(I) → uI : given a set of indices I, this function outputs the product
of all primes corresponding to indices in I. Namely, it returns uI :=

∏
i∈I pi.

In the special case I = [n], we denote the output of PrimeProd([n]) as un.
Notice that by construction, for any I and �y, it always holds aI,j · bI,j = uI .

SVC Scheme. We describe our SVC scheme and then show its incremental
aggregation.

VC.Setup(1λ, {0, 1}k) → crs generates a hidden order group G ← Ggen(1λ) and
samples three generators g, g0, g1 ← G. It also determines a deterministic
collision resistant function PrimeGen that maps integers to primes.
Returns crs = (G, g, g0, g1,PrimeGen)

Incrementally Aggregatable Vector Commitments and Applications 19

VC.Specialize(crs, n) → crsn computes un ← PrimeProd([n]) and Un = gun , and
returns crsn ← (crs, Un). One can think of Un as an accumulator to the set
[n].

VC.Com�(crsn, �v) → (C�, aux�) does the following:
1. Compute ((a1, b1), . . . , (ak, bk)) ← PartndPrimeProd([n], �v); next,

for all j ∈ [k] compute Aj = g
aj

0 and Bj = g
bj

1

One can think of each (Aj , Bj) as a pair of RSA accumulators for two sets
that constitute a partition of [n] done according to the bits of v1j , . . . , vnj .
Namely Aj and Bj accumulate the sets {i ∈ [n] : vi,j = 0} and {i ∈ [n] :
vi,j = 1} respectively.

2. For all j ∈ [k], compute Cj = Aj · Bj ∈ G and a proof π
(j)
prod ←

PoProd2.P(crs, (Cj , Un), (aj , bj)). Such proof ensures that the sets rep-
resented by Aj and Bj are a partition of the set represented by Un. Since
Un is part of the CRS (i.e., it is trusted), this ensures the well-formedness
of Aj and Bj .

Return C� :=
(
{A1, B1, . . . , Ak, Bk} ,

{
π
(1)
prod, ..., π

(k)
prod

})
and aux� := �v.

VC.Open�(crsn, I, �y, aux�) → πI proceeds as follows:
– let J = [n] \ I and compute ((aJ,1, bJ,1), . . . , (aJ,k, bJ,k)) ←

PartndPrimeProd(J,�vJ);
– for all j ∈ [k] compute ΓI,j := g

aJ,j

0 and ΔI,j = g
bJ,j

1 .
Notice that aJ,j = aj,/aI,j and bJ,j = bj,/bI,j . Also ΓI,j is a membership
witness for the set {il ∈ I : yl,j = 0} in the accumulator Aj , and similarly for
ΔI,j .
Return πI := {πI,1, . . . , πI,k} ← {(ΓI,1,ΔI,1), . . . , (ΓI,k,ΔI,k)}

VC.Ver�(crsn, C�, I, �y, πI) → b computes ((aI,1, bI,1), . . . , (aI,k, bI,k)) using
PartndPrimeProd(I, �y), and then returns b ← bacc ∧ bprod where:

bacc ←
k∧

j=1

(
Γ

aI,j

I,j = Aj ∧ Δ
bI,j

I,j = Bj

)
(1)

bprod ←
k∧

j=1

(
PoProd2.V(crs, (Aj · Bj , Un), π(j)

prod)
)

(2)

Remark 4.1. For more efficient verification, VC.Open� can be changed to include
2k (non-interactive) proofs of exponentiation PoE (which using the PoKCR
aggregation from [BBF19] add only k elements of G). This reduces the expo-
nentiations cost in VC.Ver�. As noted in [BBF19], although the asymptotic com-
plexity is the same, the operations are in Z22λ instead of G, which concretely
makes up an improvement.

20 M. Campanelli et al.

The correctness of the vector commitment scheme described above is obvious
by inspection (assuming correctness of PoProd2).

Incremental Aggregation. We show incremental aggregation of our SVC
scheme.

VC.Disagg(crs, I, �vI , πI ,K) → πK . Let L := I \K, and �vL be the subvector of �vI

at positions in L. Then compute {aL,j , bL,j}j∈[k] ← PartndPrimeProd(L,�vL),
and for each j ∈ [k] set: ΓK,j ← Γ

aL,j

I,j , ΔK,j ← Δ
bL,j

I,j and return πK :=
{πK,1, . . . , πK,k} := {(ΓK,1,ΔK,1), . . . , (ΓK,k,ΔK,k)}

VC.Agg(crs, (I,�vI , πI), (J,�vJ , πJ)) → πK := {(ΓK,1,ΔK,1), . . . , (ΓK,k,ΔK,k)}.
1. Let L := I ∩ J . If L �= ∅, set I ′ := I \ L and compute πI′ ←

VC.Disagg(crs, I, �vI , πI , I
′); otherwise let πI′ = πI .

2. Compute {aI′,j , bI′,j}j∈[k] ← PartndPrimeProd(I ′, �vI′) and
{aJ,j , bJ,j}j∈[k] ← PartndPrimeProd(J,�vJ).

3. Parse πI′ := {(ΓI′,j ,ΔI′,j)}k
j=1, πJ := {(ΓJ,j ,ΔJ,j)}k

j=1, and for all j ∈
[k], compute ΓK,j ← ShamirTrick(ΓI′,j , ΓJ,j , aI′,j , aJ,j) and
ΔK,j ← ShamirTrick(ΔI′,j ,ΔJ,j , bI′,j , bJ,j).

Note that our algorithms above can work directly with the universal CRS crs,
and do not need the specialized one crsn.

Aggregation Correctness. The second property of aggregation correctness
(the one about VC.Disagg) is straightforward by construction:
if we let {aK,j , bK,j}j∈[k] ← PartndPrimeProd(K,�vK), then aI,j = aL,j ·aK,j , and
thus Aj = Γ

aI,j

I,j = Γ
aL,j ·aK,j

I,j = Γ
aK,j

K,j (and similarly for ΔK,j).
The first property instead follows from the correctness of Shamir’s trick if

the integer values provided as input are coprime; however since I ′ ∩ J = ∅, aI′,j
and aJ,j (resp. bI′,j and bJ,j) are coprime unless a collision occurs in PrimeGen.

Security. The security of our SVC scheme, i.e., position binding, can be reduced
to the Strong RSA and Low Order assumptions in the hidden order group G used
in the construction and to the knowledge extractability of PoProd2.

A bit more in detail the steps of the proof are as follows. Let an adversary to
the position binding output (C, I, �y, π, �y′, π′). First from knowledge extractabil-
ity of PoProd2 it comes that AjBj = g

aj

1 g
bj

2 and gajbj = Un = gun . However,
this does not necessarily means that ajbj = un over the integers and to prove it
we need the Low Order assumptions, under which it holds. Afterwards we prove
that since AjBj = g

aj

1 g
bj

2 no different proofs π, π′ for the same positions can
pass the verification under the strong RSA assumption, which is the core of our
proof. The main caveat of the proof is that instead of knowing that Aj = g

aj

1

and Bj = g
bj

2 we know only that AjBj = g
aj

1 g
bj

2 . The former case would directly
reduce to RSA Accumulator’s security (strong RSA assumption). For this we
first need to prove an intermediate lemma which shows that specifically for our
case AjBj = g

aj

1 g
bj

2 is enough, since the choice of the primes pi in the exponent
is restricted to a polynomially bounded set.

For lack of space, the proof is in the full version. For an intuition we refer to
the overview given at the beginning of this section.

Incrementally Aggregatable Vector Commitments and Applications 21

Theorem 4.2 (Position-Binding). Let Ggen be the generator of hidden order
groups where the Strong RSA and Low Order assumptions hold, and let PoProd2
be an argument of knowledge for RPoProd2 . Then the subVector Commitment
scheme defined above is position binding.

On Concrete Instantiation. Our SVC construction is described generically
from a hidden order group G, an AoK PoProd2, and a mapping to primes
PrimeGen. The concrete scheme we analyze is the one where PoProd2 is instan-
tiated with the non-interactive version of the PoProd2 protocol described in
Sect. 4.1. The non-interactive version needs a hash-to-prime function Hprime. We
note that the same function can be used to instantiate PrimeGen, though for
the sake of PrimeGen we do not need its randomness properties. One can choose
a different mapping to primes for PrimeGen and even just a bijective mapping
(which is inherently collision resistant) would be enough: this is actually the
instantiation we consider in our efficiency analysis. Finally, see Sect. 1.4 for a
discussion on possible instantiations of G.

We note that by using the specific PoProd2 protocol given in Sect. 4.1 we are
assuming adversaries that are generic with respect to the group G. Therefore,
our SVC is ultimately position binding in the generic group model.

4.2 Our Second SVC Construction

In this section we propose another SVC scheme with constant-size parameters
and incremental aggregation. This scheme builds on the SVC of [LM19] based
on the RSA assumption, which in turn extends the VC of [CF13] to support
subvector openings. Our technical contribution is twofold. First, we show that
the SVC of [CF13,LM19] can be modified in order to have public parameters
and verification time independent of the vector’s length. Second, we propose new
algorithms for (incremental) aggregation and disaggregation for this SVC.

Our Second SVC Construction. Let us start by giving a brief overview of
the [CF13] VC scheme and of the basic idea to turn it into one with succinct
parameters and verification time. In brief, in [CF13] a commitment to a vector
�v is C = Sv1

1 · · · Svn
n , where each Si := g

∏
j∈[n]\{i} ej with g ∈ G a random

generator and ej being distinct prime numbers (which can be deterministically
generated using a suitable map-to-primes). The opening for position i is an
element Λi such that Λei

i · Svi
i = C and the key idea is that such Λi is an ei-

th root that can be publicly computed as long as one does it for the correct
position i and value vi. Also, as it can be seen, the element Si is necessary to
verify an opening of position i, and thus (S1, . . . , Sn) were included in the public
parameters. Catalano and Fiore observed that one can remove the Si-s from crs
if the verifier opts for recomputing Si at verification time at the price of linear-
time verification. Our goal though is to obtain constant-size parameters and
constant-time verification. To do that we let the prover compute Si and include
it in the opening for position i. To prevent adversaries from providing false Si’s,
we store in the public parameters Un = g

∏
i∈[n] ei (i.e., an accumulator to all

22 M. Campanelli et al.

positions) so that the verifier can verify the correctness of Si in constant-time
by checking Sei

i = Un. This technique easily generalizes to subvector openings.
In the following, we describe the scheme in details and then propose our

incremental aggregation algorithms. To simplify our exposition, we use the fol-
lowing notation: for a set of indices I ⊆ [n], eI :=

∏
i∈I ei denotes the product of

all primes corresponding to the elements of I, and SI := g
∏

i∈[n]\I ei = ge[n]\I =
U

1/eI
n (which is a generalization of the former Si), where, we recall, the ei’s are

defined from the crs.

VC.Setup(1λ, �, n) → crs generates a hidden order group G ← Ggen(1λ) and sam-
ples a generator g ←$G. It also determines a deterministic collision resistant
function PrimeGen that maps integers to primes.
Returns crs = (G, g,PrimeGen)

VC.Specialize(crs, n) → crsn computes n primes of (� + 1) bits e1, . . . , en, ei ←
PrimeGen(i) for each i ∈ [n], and Un = ge[n] and returns crsn ← (crs, Un).
One can think of Un as an accumulator to the set [n].

VC.Com(crs, �v) → (C, aux) Computes for each i ∈ [n], Si ← ge[n]\{i} and then
C ← Sv1

1 . . . Svn
n and aux ← (v1, . . . , vn).

VC.Open(crs, I, �y, aux) → πI Computes for each j ∈ [n] \ I, S
1/eI

j ← ge[n]\(I∪{j})

and SI ← ge[n]\I and then

ΛI ←
n∏

j=1,j /∈I

(
S
1/eI

j

)yj

=

⎛

⎝
n∏

j=1,j /∈I

S
yj

j

⎞

⎠

1/eI

Returns πI := (SI , ΛI)
VC.Ver(crs, C, I, �y, πI) → b Parse πI := (SI , ΛI), and compute Si = S

eI\{i}
I =

U
1/ei
n for every i ∈ I. Return 1 (accept) if both the following checks hold, and

0 (reject) otherwise:

SeI

I = Un ∧ C = ΛeI

I

∏

i∈I

Syi

i

The correctness of the above construction holds essentially the same as the
one of the SVC of [CF13,LM19] with the addition of the SI elements of the
openings, whose correctness can be seen by inspection (and is the same as for
RSA accumulators).

Incremental Aggregation. Let us now show that the SVC above has incre-
mental aggregation. Note that our algorithms also implicitly show that the RSA-
based SVC of [LM19] is incrementally aggregatable.

VC.Disagg(crs, I, �vI , πI ,K) → πK Parse πI := (SI , ΛI). First compute SK from
SI , SK ← S

eI\K

I , and then, for every j ∈ I \K, χj = S
1/ej

K , e.g., by computing
χj ← S

eI\(K∪{j})

I .

Incrementally Aggregatable Vector Commitments and Applications 23

Return πK := (SK , ΛK) where

ΛK ← Λ
eI\K

I ·
∏

j∈I\K

χ
vj

j

VC.Agg(crs, (I,�vI , πI), (J,�vJ , πJ)) → πK Parse πI := (SI , ΛI) and similarly πJ .
Also, let K = I ∪ J , and assume for simplicity that I ∩ J = ∅ (if this is not
the case, one could simply disaggregate πI (or πJ) to πI\J (or πJ\I)).
First, compute SK ← ShamirTrick(SI , SJ , eI , eJ). Next, compute φj ←
S

eJ\{j}
K = S

1/ej

I for every j ∈ J , and similarly ψi ← S
eI\{i}
K = S

1/ei

J for every
i ∈ I. Then compute

ρI ← ΛI∏
j∈J φ

vj

j

and σJ ← ΛJ∏
i∈I ψvi

i

Return πK := (SK , ΛK) where ΛK ← ShamirTrick(ρI , σJ , eI , eJ).

Aggregation Correctness. It follows from the correctness of Shamir’s trick
and by construction. The details are in the full version

Security. For the security of the above SVC scheme we observe that the dif-
ference with the corresponding [LM19] lies in the generation of Si’s. In [LM19]
they are generated in the trusted setup phase, thus they are considered “well-
formed” in the security proof. In our case, the Si’s are reconstructed during
verification time from the SI that comes in the opening πI which can (possibly)
be generated in an adversarial way. However, in the verification it is checked that
SeI

I = U , where U = ge[n] is computed in the trusted setup. So under the Low
Order assumption we get that SI has the correct form, SI = ge[n]/eI = ge[n]\I ,
with overwhelming probability. Except for this change, the rest reduces to the
position binding of the [LM19] SVC. The proof of the theorem is in the full
version.

Theorem 4.3 (Position-Binding). Let Ggen be the generator of hidden order
groups where the Low Order assumption holds and the [LM19] SVC is position
binding. Then the SVC scheme defined above is position binding.

As showed in [LM19], their SVC is position binding under the strong Distinct-
Prime-Product Root assumption in the standard model. We conclude that the
above SVC is position binding in hidden order groups where the Low Order and
the Strong Distinct-Prime-Product Root assumptions hold.

4.3 Comparison with Related Work

We compare our two SVC schemes with the recent scheme proposed by Boneh
et al. [BBF19] and the one by Lai and Malavolta [LM19], which extends [CF13]
to support subvector openings.9 We present a detailed comparison in Table 1,
9 We refer to [BBF19] to see how these schemes compare with Merkle trees.

24 M. Campanelli et al.

considering to work with vectors of length N of �-bit elements and security
parameter λ. In particular we consider an instantiation of our first SVC with
k = 1 (and thus n = N · �). A detailed efficiency analysis of our schemes is in
the full version.

Setup Model. [BBF19] works with a fully universal CRS, whereas our schemes
have both a universal CRS with deterministic specialization, which however, in
comparison to [CF13,LM19], outputs constant-size parameters instead of linear.

Aggregation. The VC of [BBF19] supports aggregation only on openings cre-
ated by VC.Open (i.e., it is one-hop) and does not have disaggregatable proofs
(unless in a different model where one works linearly in the length of the vector
or knows the full vector). In contrast, we show the first schemes that satisfy
incremental aggregation (also, our second one immediately yields a method for
the incremental aggregation of [LM19]). As we mention later, incremental aggre-
gation can be very useful to precompute openings for a certain number of vector
blocks allowing for interesting time-space tradeoffs that can speedup the running
time of VC.Open.

Efficiency. From the table, one can see that our first SVC has: slightly worse
commitments size than all the other schemes, computational asymptotic perfor-
mances similar to [BBF19], and opening size slightly better than [BBF19]. Our
second SVC is the most efficient among the schemes with constant-size param-
eters; in particular, it has faster asymptotics than our first SVC and [BBF19]
for having a smaller logarithmic factor (e.g., log(N − m) vs. log(�N)), which is
due to the avoidance of using one prime per bit of the vector. In some cases,
[CF13,LM19] is slightly better, but this is essentially a benefit of the linear-size
parameters, namely the improvement is due to having the Si’s elements already
precomputed.

When considering applications in which a user creates the commitment to
a vector and (at some later points in time) is requested to produce openings
for various subvectors, our incremental aggregation property leads to use pre-
processing to achieve more favorable time and memory costs. In a nutshell, the
idea of preprocessing is that one can precompute and store information that
allows to speedup the generation of openings, in particular by making opening
time less dependent on the total length of the vector. Our method in Sect. 3.2
works generically for any SVC that has incremental aggregation. A similar pre-
processing solution can also be designed for the SVC of [BBF19] by using its
one-hop aggregation; we provide a detailed description of the method in the full
version. The preprocessing for [BBF19] however has no flexibility in choosing
how much auxiliary storage can be used, and one must store (a portion of) a
non-membership witness for every bit of the vector.

Even in the simplest case of B = 1 (shown in Table 1) both our SVCs save
a factor � in storage, which concretely turns into 3× less storage.

Incrementally Aggregatable Vector Commitments and Applications 25

Furthermore we support flexible choices of B thus allowing to tune the
amount of auxiliary storage. For instance, we can choose B =

√
N so as to

get 2
√

N |G| bits of storage, and opening time about O(�m log n(
√

n + log m))
and O(m(

√
n + log2 m)) in the first and second scheme respectively. Our flex-

ibility may also allow one to choose the buckets size B and their distribution
according to applications-dependent heuristics; investigating its benefit may be
an interesting direction for future work.

Table 1. Comparison between the SVC’s of [BBF19], [LM19] and this work; our con-
tributions are highlighted in gray. We consider committing to a vector �v ∈ ({0, 1}�)N

of length N , and opening and verifying for a set I of m positions. By ‘O(x) G’ we
mean O(x) group operations in G; |G| denotes the bit length of an element of G. An
alternative algorithm for VC.Open in [LM19] costs O(� · (N − m) · log(N − m)). Our
precomputation is for B = 1.

Metric Our First SVC Our Second SVC [BBF19] [CF13,LM19]

Setup

VC.Setup O(1) O(1) O(1) O(1)

|crs| 3 |G| 1 |G| 1 |G| 1 |G|
VC.Specialize O(� · N · log(�N)) G O(� · N) G — O(� · N · log N) G

|crsN | 1 |G| 1 |G| — N |G|
Commit a vector �v ∈ ({0, 1}�)N

VC.Com O(� · N · log(�N)) G O(� · N · log N) G O(� · N · log(�N)) G O(� · N) G

|C| 4 |G| + 2 |Z22λ | 1 |G| 1 |G| 1 |G|
Opening and Verification for �vI with |I| = m

VC.Open O(� · (N − m) · log(�N)) G O(� · (N − m) · log(N − m)) G O(� · (N − m) · log(�N)) G O(� · (N − m) · m log m) G

|πI | 3 |G| 2 |G| 5 |G| + 1 |Z22λ | 1 |G|
VC.VerO(� · m · log(�N)) Z22λ + O(λ) G O(� · m log m) |G| O(m · � · log(�N)) Z22λ + O(λ) G O(� · m) G

Commitment and Opening with Precomputation

VC.Com O(� · N · log(� · N) · log(N)) G O(� · N log2(N)) G O(� · N · log(� · N) · log(N)) G O(� · N log2(N))

|aux| 2N |G| 2N |G| 2N |G| + O(� · N log(�N)) 2N |G|
VC.Open O(m · � · log(m) log(�N)) G O(m · � · log2 m) G O(m · � · log(m) log(�N)) G O(m · � · log2(m)) G

Aggregation Incremental Incremental One-hop Incremental

Disaggregation Yes Yes No Yes

4.4 Experimental Evaluation

We have implemented in Rust our first SVC scheme of Sect. 4.1 (with and
without preprocessing) and the recent SVC of [BBF19] (referred as BBF in
what follows). Here we discuss an experimental evaluation of these schemes.10

Below is a summary of the comparison, details of the experiments are in the full
version.

– Our SVC construction is faster in opening and verification than BBF (up to
2.5× and 2.3× faster respectively), but at the cost of a slower commitment
stage (up to 6× slower). These differences tend to flatten for larger vectors
and opening sizes.

10 We did not include BBF with precomputation in our experimental evaluation because
this scheme has worse performances than our preprocessing construction in terms of
both required storage and running time. We elaborate on this in the full version.

26 M. Campanelli et al.

– Our SVC construction with preprocessing allows for extremely fast opening
times compared to non-preprocessing constructions. Namely, it can reduce
the running time by several orders of magnitude for various choices of vector
and opening sizes, allowing to obtain practical opening times—of the order
of seconds—that would be impossible without preprocessing—of the order of
hundred of seconds. In a file of 1 Mibit (220 bits), preprocessing reduces the
time to open 2048 bits from one hour to less than 5 s! This efficient opening,
however, comes at the cost of a one-time preprocessing (during commitment)
and higher storage requirements. We discuss how to mitigate these space
requirements by trading for opening time and/or communication complexity
later in this section. We stress that it is thanks to the incremental aggregation
property of our construction that allows these tradeoffs (they are not possible
in BBF with preprocessing).

– Although our SVC construction with preprocessing has an expensive com-
mitment stage, this tends to be amortized throughout very few openings11,
as few as 30 (see full version for more details). These effects are particularly
significant over a higher number of openings: over 1000 openings our SVC
construction with preprocessing has an amortized cost of less than 6 s, while
our SVC construction and BBF have amortized openings above 90 s.

Time/Storage Tradeoffs. Our construction allows for some tradeoffs between
running times and storage by selecting larger precomputed chunks or by com-
mitting to hashed blocks of the file. See the full version for a detailed discussion.

5 Verifiable Decentralized Storage

In this section we introduce verifiable decentralized storage (VDS). We recall
that in VDS there are two types of parties (called nodes): the generic client
nodes and the more specialized storage nodes (a storage node can also act as a
client node). We refer the reader to Sect. 1.2 for a discussion on the motivation
and requirements of VDS.

5.1 Syntax

Here we introduce the syntax of VDS. A VDS scheme is defined by a collection of
algorithms that are to be executed by either storage nodes or client nodes. The
only exception is the Bootstrap algorithm that is used to bootstrap the entire
system and is assumed to be executed by a trusted party, or to be implemented
in a distributed fashion (which is easy if it is public coin).

The syntax of VDS reflects its goal: guaranteeing data integrity in a highly
dynamic and decentralized setting (the file can change and expand/shrink often
11 Amortized opening time roughly represents how computationally expensive a scheme

is “in total” throughout all its operations. Amortized opening time for m openings
is the cost of one commitment plus the cost of m openings, all averaged over the m
openings.

Incrementally Aggregatable Vector Commitments and Applications 27

and no single node stores it all). In VDS we create both parameters and an
initial commitment for an empty file at the beginning (through the probabilis-
tic Bootstrap algorithm, which requires a trusted execution). From then on this
commitment is changed through incremental updates (of arbitrary size). Updat-
ing is divided in two parts. A node can carry out an update and “push” it to
all the other nodes, i.e. providing auxiliary information (that we call “update
hint”) other nodes can use to update their local certificates (if affected by the
change) and a new digest12. These operations are done respectively through
StrgNode.PushUpdate and StrgNode.ApplyUpdate. Opening and verifying are
where VC (with incremental aggregation) and VDS share the same mechanism.
To respond to a query, a storage node can produce (possibly partial) proofs of
opening via the StrgNode.Retrieve algorithm. If these proofs need to be aggre-
gated, any node can use algorithm AggregateCertificates. Anyone can verify a
proof through ClntNode.VerRetrieve.

Some more details about our notation follow. In VDS we model the files to
be stored as vectors in some message space M (e.g., M = {0, 1} or {0, 1}�), i.e.,
F = (F1, . . . ,FN). Given a file F, we define a portion of it as a pair (I,FI) where
FI is essentially the I-subvector of F. We denote input (resp. output) states by
st (resp. st′). Update operations op are modifications, additions or deletions, i.e.
op ∈ {mod, add, del}, and Δ denotes the update description, e.g., which positions
to change and the new values. We denote by ΥΔ the update hint that whoever is
producing the update can share with other nodes to generate a new digest from
the changes. The output bit b marks acceptance/rejection. For a query Q, we
mark by πQ a certificate vouching for a response FQ.

Definition 5.1 (Verifiable Decentralized Storage). Algorithm to bootstrap
the system:

Bootstrap(1λ) → (pp, δ0, st0) which outputs a digest and storage node’s local
state for an empty file. All the algorithms below implicitly take the public
parameters pp as input.

The algorithms for storage nodes are:

StrgNode.AddStorage(δ, n, st, I,FI , Q,FQ, πQ) → (st′, J,FJ) by which a storage
node can extend its storage from (I,FI) to (J,FJ) := (I,FI) ∪ (Q,FQ). Note:
this allows anyone holding a valid certificate for a file portion FQ to become
a storage node of such portion.

StrgNode.RmvStorage(δ, n, st, I,FI ,K) → (st′, J,FJ) by which a storage node can
shrink its local storage to (J,FJ).

StrgNode.PushUpdate(δ, n, st, I,FI , op,Δ) → (δ′, n′, st′, J,F′
J , ΥΔ) which allows a

storage node to perform an update on (I,FI) generating a corresponding new
digest, length and local view, along with hint ΥΔ others can use to update their
own digests/local view.

12 One can also see this update hint as a certificate to check that a new digest is
consistent with some changes. This issue does not arise in our context at all but the
Bootstrap algorithms are deterministic.

28 M. Campanelli et al.

StrgNode.ApplyUpdate(δ, n, st, I,FI , op,Δ, ΥΔ) → (b, δ′, n′, st′, J,F′
J) which

allows a storage node to incorporate changes in a file pushed by another node.
StrgNode.Retrieve(δ, n, st, I,FI , Q) → (FQ, πQ) which allows a storage node to

respond to a query and to create a certificate vouching for the correctness of
the returned blocks.

The algorithms for clients nodes are:

ClntNode.ApplyUpdate(δ, op,Δ, ΥΔ) → (b, δ′) which updates a digest by hint ΥΔ.
ClntNode.VerRetrieve(δ,Q,FQ, πQ) → b which verifies a response to a query.
AggregateCertificates(δ, (I,FI , πI), (J,FJ , πJ)) → πK which aggregates two cer-

tificates πI and πJ into a single certificate πK (with K := I∪J). In a running
VDS, any node can aggregate two (or more) incoming certified data blocks into
a single certified data block.

Remark 5.1 (On CreateFrom). For completeness, our VDS syntax also includes
the functionalities (StrgNode.CreateFrom,ClntNode.GetCreate) that allow a stor-
age node to initialize storage (and corresponding digest) for a new file that is
a subset of an existing one, and a client node to verify such resulting digest.
Although this feature can be interesting in some application scenarios, we still
see it as an extra feature that may or may not be satisfied by a VDS construc-
tion. We refer to the full version for more discussion and a detailed description
of this functionality.

5.2 Correctness and Efficiency of VDS

Intuitively, we say that a VDS scheme is efficient if running VDS has a “small”
overhead in terms of the storage required by all the nodes and the bandwidth
to transmit certificates. More formally, a VDS scheme is said efficient if there
is a fixed polynomial p(·) such that p(λ, log n) (with λ the security parameter
and n the length of the file) is a bound for all certificates and advices generated
by the VDS algorithms as well as for digests δ and the local state st of storage
nodes. Note that combining this bound with the requirement that all algorithms
are polynomial time in their input, we also get that no VDS algorithm can run
linearly in the size of the file (except in the trivial case that the file is processed
in one shot, e.g., in the first StrgNode.AddStorage).

Efficiency essentially models that running VDS is cost-effective for all the
nodes in the sense that it does not require them to store significantly more data
than they would have to store without. Notice that by requiring certificates to
have a fixed size implies that they do not grow with aggregation.

For correctness, intuitively speaking, we want that for any (valid) evolution
of the system in which the VDS algorithms are honestly executed we get that
any storage node storing a portion of a file F can successfully convince a client
holding a digest of F about retrieval of any portion of F. And such (intuitive
notion of) correctness is also preserved when updates, aggregations, or creations
of new files are done.

Incrementally Aggregatable Vector Commitments and Applications 29

Turning this intuition into a formal correctness definition turned out to be
nontrivial. This is due to the distributed nature of this primitive and the fact that
there could be many possible ways in which, at the time of answering a retrieval
query, a storage node may have reached its state starting from the empty node
state. The basic idea of our definition is that an empty node is “valid”, and
then any “valid” storage node that runs StrgNode.PushUpdate “transfers” such
validity to both itself and to other nodes that apply such update. A bit more
precisely, we model “validity” as the ability to correctly certify retrievals of any
subsets of the stored portion. A formal correctness definition follows. To begin
with, we define the notion of validity for the view of a storage node.

Definition 5.2 (Validity of storage node’s view). Let pp be public param-
eters as generated by Bootstrap. We say that a local view (δ, n, st, I,FI) of a
storage node is valid if ∀Q ⊆ I: ClntNode.VerRetrieve(δ,Q,FQ, πQ) = 1, where
(FQ, πQ) ← StrgNode.Retrieve(δ, n, st, I,FI , Q)

Remark 5.2. By Definition 5.2 the output of a bootstrapping algorithm
(pp, δ0, st0) ← Bootstrap(1λ) is always such that (pp, δ0, 0, st0, ∅, ∅) is valid. This
provides a “base case” for Definition 5.4.

Second, we define the notion of admissible update, which intuitively models
when a given update can be meaningfully processed, locally, by a storage node.

Definition 5.3 (Admissible Update). An update (op,Δ) is admissible for
(n, I,FI) if:

– for op = mod, K ⊆ I and |F′
K | = |K|, where Δ := (K,F′

K).
– for op = add, K ∩ I = ∅ and |F′

K | = |K| and K = {n + 1, n + 2, . . . , n + |K|},
where Δ := (K,F′

K).
– for op = del, K ⊆ I and K = {n − |K| + 1, . . . , n}, where Δ := K.

In words, the above definition formalizes that: to push a modification at positions
K, the storage node must store those positions; to push an addition, the new
positions K must extend the currently stored length of the file; to push a deletion
of position K, the storage node must store data of the positions to be deleted
and those positions must also be the last |K| positions of the currently stored
file (i.e., the file length is reduced).

Definition 5.4 (Correctness of VDS). A VDS scheme VDS is correct if for
all honestly generated parameters (pp, δ0, st0) ← Bootstrap(1λ) and any storage
node’s local view (δ, n, st, I,FI) that is valid, the following conditions hold.
Update Correctness. For any update (op,Δ) that is admissible for (n, I,FI)
and for any (δ′, n′, st′, J,F′

J , ΥΔ) ← StrgNode.PushUpdate(δ, n, st, I,FI , op,Δ):

1. (pp, δ′, n′, st′, J,F′
J) is valid;

2. for any valid (δ, n, sts, Is,FIs
), if (bs, δ

′
s, n

′, st′s, I
′
s,F

′
s) ←

StrgNode.ApplyUpdate(δ, n, sts, Is,FIs
, op,Δ, ΥΔ) then we have: bs = 1, δ′

s =
δ′, n′

s = n′, and (δ′
s, n

′
s, st

′
s, I

′
s,F

′
s) is valid;

30 M. Campanelli et al.

3. if (bc, δ
′
c) ← ClntNode.ApplyUpdate(δ, op,Δ, ΥΔ), then δ′

c = δ′ and bc = 1.

Add-Storage Correctness. For any (Q,FQ, πQ) such that
ClntNode.VerRetrieve(δ,Q,FQ, πQ) = 1, if (st′, J,FJ) ← StrgNode.AddStorage
(δ, st, I,F, Q,FQ, πQ) then (δ, n, st′, J,FJ) is valid.
Remove-Storage Correctness. For any K ⊆ I,if (st′, J,FJ) ←
StrgNode.RmvStorage(δ, st, I,F,K) then (δ, n, st′, J,FJ) is valid.
Create Correctness. For any J ⊆ I, if (δ′, n′, st′, J,FJ , ΥJ) is output
of StrgNode.CreateFrom(δ, n, st, I,FI , J) and (b, δ′′) ← ClntNode.GetCreate(δ, J,
ΥJ), then b = 1, n′ = |J |, δ′′ = δ′ and (pp, δ′, n′, st′, J,FJ) is valid.
Aggregate Correctness. For any pair of triples (I,FI , πI) and (J,FJ , πJ)
such that ClntNode.VerRetrieve(δ, I,FI , πI) = 1 and ClntNode.VerRetrieve(δ, J,
FJ , πJ) = 1, if πK ← AggregateCertificates((I,FI , πI), (J,FJ , πJ)) and (K,
FK) := (I,FI) ∪ (J,FJ), then ClntNode.VerRetrieve(δ,K,FK , πK) = 1.

Remark 5.3 (Relation with Updatable VCs). Our notion of VDS is very close to
the notion of updatable VCs [CF13] extended to support subvector openings and
incremental aggregation. On a syntactical level, in comparison to updatable VCs,
our VDS notion makes more evident the decentralized nature of the primitive,
which is reflected in the definition of our algorithms where for example it is clear
that no one ever needs to store/know the entire file. One major difference is that
in VDS the public parameters must necessarily be short since no node can run
linearly in the size of the file (nor it can afford such storage), whereas in VCs
this may not be necessarily the case. Another difference is that in updatable VCs
[CF13] updates can be received without any hint, which is instead the case in
VDS. Finally, it is interesting to note that, as of today, there exists no VC scheme
that is updatable, incrementally aggregatable and with subvector openings, that
enjoys short parameters and has the required short verification time. So, in a
way, our two VDS realizations show how to bypass this barrier of updatable VC
by moving to a slightly different (and practically motivated) model.

5.3 Security of VDS

In this section we discuss the security definition of VDS schemes. For lack of
space a formal definition is in the full version. Intuitively speaking, we require
that a malicious storage node (or a coalition of them) cannot convince a client
of a false data block in a retrieval query. To formalize this, we let the adversary
fully choose a history of the VDS system that starts from the empty state and
consists of a sequence of steps, where each step is either an update (addition,
deletion, modification) or a creation (from an existing file) and is accompanied
by an advice. A client’s digest δ is updated following such history and using
the adversarial advices, and similarly one gets a file F corresponding to such
digest. At this point, the adversary’s goal is to provide a tuple (Q, πQ,F∗

Q) that
is accepted by a client with digest δ but where F∗

Q �= FQ.

Incrementally Aggregatable Vector Commitments and Applications 31

VDS Proof of Storage. As an additional security mechanism we consider
the possibility to ensure a client that a given file is stored by the network at a
certain point of time without having to retrieve it. To this end, we extend the
VDS notion to provide a proof of storage mechanism in the form of a proof of
retrievability (PoR) [JK07] or a proof of data possession (PDP) [ABC+07]. Our
proof of storage model for VDS is such that proofs are publicly verifiable given
the file’s digest. Also, in order to support the decentralized and open nature of
DSNs, the entire proof mechanism should not use any secret, and proofs should
be generatable in a distributed fashion (this is a main distinguishing feature
compared to existing PoRs/PDPs) while staying compact. The formalization of
this property is in the full version.

5.4 Realizing VDS

We show two realizations of VDS in hidden-order groups, summarized below.

Theorem 5.1 (VDS1). Under the strong RSA assumption in a hidden-order
group G, there exists a VDS scheme VDS1 in which, for a file F: a digest δF

is 2|G| + log |F| bits-long; a storage node holding (I,FI) keeps a state stI of
2|G| bits, answers retrieval of portion Q with a certificate of 2|G| bits in time
O(� · (|I| − |Q|) log |F|), and pushes an update Δ in time O(� · |I| log |F|) for
op = mod, O(� · |Δ| log |F|) for op = add, and O(� · (|I| − |Δ|) log |F|) for op =
del; a client verifies a query for positions in Q (resp. an update Δ) in time
O(� · |Q| log |F |) (resp. O(� · |Δ| log |F |)).
Theorem 5.2 (VDS2). Under the strong distinct-prime-product root and the
Low Order assumptions in a hidden-order group G, there exists a VDS scheme
VDS2 in which, for a file F: a digest δF is 2|G|+ log |F| bits-long; a storage node
holding (I,FI) keeps a state stI of 2|G| bits, answers retrieval of portion Q with
a certificate of 2|G| bits in time O(� · (|I| − |Q|) log(|I| − |Q|)), and pushes an
update Δ in time O(� · |Δ| log |Δ|) for op = mod, add, and O(� ·(|I|+ |Δ| log |Δ|))
for op = del; a client verifies a query for positions in Q (resp. an update Δ) in
time O(� · |Q| log |Q|) (resp. O(� · |Δ| log |Δ|)).

In terms of assumptions, VDS1 is based on a weaker assumption than VDS2
(although the assumptions are equivalent when G is instantiated with RSA
groups).

In terms of performances, as one can see, VDS1 and VDS2 do similarly, with
VDS2 being slightly more efficient. In VDS1 the complexity of all operations
includes a factor α = log |F|, whereas in VDS2 operations are affected by a factor
logarithmic only in the number of positions involved in the given operation (e.g.,
how many are updated), which is typically much smaller than the entire file. Also,
VDS2 has the interesting feature that storage nodes can add and modify values
in time which depends only on the update size but not on the size of the local
storage.

Finally, VDS1 has the additional feature of being compatible with our succinct
arguments of knowledge, which enable the StrgNode.CreateFrom functionality

32 M. Campanelli et al.

and compact Proofs of Data Possession (see next section for an intuition and
the full version for the details).

The main ideas of the two constructions are described in the following para-
graphs; full constructions are in the full version.

Our First VDS Construction. Our first VDS VDS1 is obtained by extending
the techniques used for our SVC of Sect. 4.1.

Let us assume for a moment that a digest for file F is a commitment to F.
Then, a storage node holding a portion (I,FI) keeps as local state stI = πI =
(ΓI ,ΔI), and this clearly enables it to certify retrieval queries for any portion
Q ⊆ I by using disaggregation in order to create πQ from πI . Moreover, such
certificates of retrieval queries can be arbitrarily aggregated over the network.

In order to support updates, the main obstacle is that our commitment can-
not be publicly updated without knowing the entire vector due to the presence of
the AoK of union of Acc0 and Acc1. To solve this, we exploit the fact that in the
VDS security model the digest provided by the adversary must be compatible
with the claimed history of changes. So we can remove the AoK. Then, updat-
ing the digest boils down to updating the two RSA accumulators (Acc0,Acc1)
appropriately. For instance, changing the i-th bit from 0 to 1 requires to remove
pi from Acc0 (i.e., Acc′

0 = Acc
1/pi

0 computable through πI) and adding it to Acc1
(i.e., Acc′

1 = Accpi

1). This can be performed by a storage node holding positions
in the set I such that i ∈ I, and verified by anyone having previous and new
digest. As we show in the full description of the scheme, by using similar ideas
other storage nodes holding other positions, say J , can also update their local
state stJ accordingly.

Finally, in this VDS we take advantage of our efficient AoK protocols to sup-
port two additional features. The first one is a compact proof of data possession
by which the storage node can convince a verifier that it stores a certain subset
of positions without sending the data at those positions. The second one is what
we call “CreateFrom”: a storage node holding a prefix F′ of F can publish a new
digest δF′ corresponding to F′ as a new file, and to convince any client about its
correctness without the need for them to know neither F′ nor F.

Our Second VDS Construction. Our second scheme VDS2 is obtained by
modifying our second SVC scheme from Sect. 4.2 and makes key use of its
aggregation/disaggregation properties.

As in our first VDS scheme, a storage node holding (I,FI) keeps an opening
πI as local state, and uses our disaggregation and aggregation methods to certify
retrieval queries for Q ⊂ I.

Let us now turn to how we can support updates. Let us consider an update
on a subset K of the vector. First, the commitment is updatable as C ′ ← C ·
∏

i∈K S
F′

i−Fi

i . To update the opening proof, which we recall is πI := (SI , ΛI),
we note that the ΛI -part is updatable without the need of hint as Λ′

I ← ΛI ·
(∏

j∈K\I S
1/

∏
i∈I ei

j

)F′
j−Fj

. This part works as in [CF13] with some additional

Incrementally Aggregatable Vector Commitments and Applications 33

techniques that let a node do this in time O(|I|+|K| log |K|) and without having
to store all the Sj values. The SI -part resembles an RSA accumulator witness
as observed in Sect. 4.2, and thus we can use techniques similar to those of our
first VDS construction to update it. That is, upon update on K, SK is sufficient
for any node to update SI (more details are in the full version).

A remaining problem is that the SVC scheme works with a specialized CRS,
Un = ge[n] , which depends on the vector’s length. In the SVC schemes, this CRS
is generated (deterministically) only once, but in VDS the vector’s length evolves
according to the updates, i.e., for each addition or deletion Un should also be
updated. To solve this problem, in our VDS2 scheme we make Un part of the
digest together with C, and each node is responsible to verifiably update Un.
Technically, Un is an RSA accumulator to the vector positions, and thus it can
be updated by using techniques similar to our first scheme.

Acknowledgements. We thank Ben Fisch for valuable clarifications about the
notions of Proof of Retrievable Commitment and Proof of Replication, and Justin
Drake for pointing out the need (due to the attack discussed in [BBF18]) of using a
hash function mapping into Primes(2λ) in the Fiat-Shamir transformation when making
our succinct arguments of knowledge non-interactive.

Research leading to these results has been partially supported by the Spanish
Government under projects SCUM (ref. RTI2018-102043-B-I00), CRYPTOEPIC (refs.
ERC2018-092822, EUR2019-103816), and SECURITAS (ref. RED2018-102321-T), by
the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339),
and by research gifts from Protocol Labs.

References

[ABC+07] Ateniese, R.C., et al.: Provable data possession at untrusted stores. In:
Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS
2007, pp. 598–609. ACM Press, October 2007

[BBF18] Boneh, D., Bünz, B., Fisch, B.: A Survey of Two Verifiable Delay Func-
tions. Cryptology ePrint Archive, Report 2018/712 (2018). https://eprint.
iacr.org/2018/712

[BBF19] Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with
applications to IOPs and stateless blockchains. In: Boldyreva, A., Miccian-
cio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 20

[Bd94] Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alter-
native to digital signatures (Extended Abstract). In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48285-7 24

[BGR12] Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures
with lazy verification from trapdoor permutations (Extended Abstract).
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
644–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
34961-4 39

https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-642-34961-4_39
https://doi.org/10.1007/978-3-642-34961-4_39

34 M. Campanelli et al.

[BH01] Buchmann, J., Hamdy, S.: A Survey on IQ Cryptography (2001)
[BP97] Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop sig-

nature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997.
LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-69053-0 33

[CF13] Catalano, D., Fiore, D.: Vector commitments and their applications.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36362-7 5

[CL02] Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to
efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 5

[CMS99] Cachin, C., Micali, S., Stadler, M.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X 28

[CS99] Cramer, R., Shoup, V.: Signature schemes based on the strong RSA
assumption. In: Motiwalla, J., Tsudik, G. (eds.) ACM CCS 1999, pp. 46–
51. ACM Press, November 1999

[CSWH01] Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: a distributed
anonymous information storage and retrieval system. In: Federrath, H.
(ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp.
46–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44702-
4 4

[DG20] Dobson, S., Galbraith, S.D.: Trustless Groups of Unknown Order with
Hyperelliptic Curves. Cryptology ePrint Archive, Report 2020/196 (2020).
https://eprint.iacr.org/2020/196

[DK02] Damg̊ard, I., Koprowski, M.: Generic lower bounds for root extraction
and signature schemes in general groups. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7 17

[Fis18] Fisch, B.: PoReps: Proofs of Space on Useful Data. Cryptology ePrint
Archive, Report 2018/678 (2018). https://eprint.iacr.org/2018/678

[GHR99] Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures with-
out the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol.
1592, pp. 123–139. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48910-X 9

[GKM+18] Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable
and universal common reference strings with applications to zk-SNARKs.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993,
pp. 698–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96878-0 24

[GRWZ20] Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: Aggregat-
ing Proofs for Multiple Vector Commitments. Cryptology ePrint Archive,
Report 2020/419 (2020). https://eprint.iacr.org/2020/419

[JK07] Juels, A., Kaliski Jr, B.S.: PORs: proofs of retrievability for large files. In:
Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS
2007, pp. 584–597. ACM Press, October 2007

https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-44702-4_4
https://doi.org/10.1007/3-540-44702-4_4
https://eprint.iacr.org/2020/196
https://doi.org/10.1007/3-540-46035-7_17
https://eprint.iacr.org/2018/678
https://doi.org/10.1007/3-540-48910-X_9
https://doi.org/10.1007/3-540-48910-X_9
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://eprint.iacr.org/2020/419

Incrementally Aggregatable Vector Commitments and Applications 35

[KZG10] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to
polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17373-8 11

[Lab17] Labs, P.: Filecoin: A Decentralized Storage Network (2017). https://
filecoin.io/filecoin.pdf

[Lip12] Lipmaa, H.: Secure accumulators from Euclidean rings without trusted
setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol.
7341, pp. 224–240. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31284-7 14

[LM19] Lai, R.W.F., Malavolta, G.: Subvector commitments with application to
succinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7 19

[LMRS04] Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggre-
gate signatures from trapdoor permutations. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 5

[LRY16] Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes:
from polynomial commitments to pairing-based accumulators from sim-
ple assumptions. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y.,
Sangiorgi, D. (eds.) ICALP 2016, LIPIcs, vol. 55, pp. 30:1–30:14. Schloss
Dagstuhl, July 2016

[LY10] Libert, B., Yung, M.: Concise mercurial vector commitments and indepen-
dent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2 30

[Mer88] Merkle, R.C.: A digital signature based on a conventional encryption func-
tion. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

[OWB19] Ozdemir, A., Wahby, R.S., Boneh, D.: Scaling Verifiable Computation
Using Efficient Set Accumulators. Cryptology ePrint Archive, Report
2019/1494 (2019). https://eprint.iacr.org/2019/1494

[Sha83] Shamir, A.: On the generation of cryptographically strong pseudorandom
sequences. ACM Trans. Comput. Syst. 1(1), 38–44 (1983)

[TAB+20] Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich,
D.: Aggregatable Subvector Commitments for Stateless Cryptocurrencies.
Cryptology ePrint Archive, Report 2020/527 (2020). https://eprint.iacr.
org/2020/527

[Tam03] Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick,
U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39658-1 2

[Wes18] Wesolowski, B.: Efficient verifiable delay functions. Cryptology ePrint
Archive, Report 2018/623 (2018). https://eprint.iacr.org/2018/623

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://doi.org/10.1007/978-3-642-31284-7_14
https://doi.org/10.1007/978-3-642-31284-7_14
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/3-540-48184-2_32
https://eprint.iacr.org/2019/1494
https://eprint.iacr.org/2020/527
https://eprint.iacr.org/2020/527
https://doi.org/10.1007/978-3-540-39658-1_2
https://eprint.iacr.org/2018/623

Non-committing Encryption
with Constant Ciphertext Expansion

from Standard Assumptions

Yusuke Yoshida1(B), Fuyuki Kitagawa2, Keita Xagawa2, and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
yoshida.y.aw@m.titech.ac.jp, keisuke@is.titech.ac.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
fuyuki.kitagawa.yh@hco.ntt.co.jp, keita.xagawa.zv@hco.ntt.co.jp

Abstract. Non-committing encryption (NCE) introduced by Canetti
et al. (STOC ’96) is a central tool to achieve multi-party computation
protocols secure in the adaptive setting. Recently, Yoshida et al. (ASI-
ACRYPT ’19) proposed an NCE scheme based on the hardness of the
DDH problem, which has ciphertext expansion O(log λ) and public-key
expansion O(λ2).

In this work, we improve their result and propose a methodology to
construct an NCE scheme that achieves constant ciphertext expansion.
Our methodology can be instantiated from the DDH assumption and
the LWE assumption. When instantiated from the LWE assumption, the
public-key expansion is λ · poly(log λ). They are the first NCE schemes
satisfying constant ciphertext expansion without using iO or common
reference strings.

Along the way, we define a weak notion of NCE, which satisfies only
weak forms of correctness and security. We show how to amplify such a
weak NCE scheme into a full-fledged one using wiretap codes with a new
security property.

Keywords: Non-committing encryption · Wiretap codes · Learning
with errors

1 Introduction

1.1 Background

In secure multi-party computation (MPC) protocols, a group of parties can com-
pute some function of their private inputs by communicating with each other.
Depending on when corrupted parties are determined, two types of adversarial
settings called static and adaptive have been considered for MPC. In the static
setting, an adversary is required to declare which parties it corrupts before the
protocol starts. On the other hand, in the adaptive setting, an adversary can
choose which parties to corrupt on the fly, and thus the corruption pattern can
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 36–65, 2020.
https://doi.org/10.1007/978-3-030-64834-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_2

Non-committing Encryption with Constant Ciphertext Expansion 37

depend on the messages exchanged during the protocol. Security guarantee in
the adaptive setting is more desirable than that in the static setting since the
former naturally captures adversarial behaviors in the real world while the latter
is somewhat artificial.

Beaver and Haber [3] showed if honest parties are assumed to be able to
erase sensitive local information completely, then adaptively secure MPC can
be obtained efficiently. However, as discussed by Canetti et al. [8], such trusted
erasure may be unrealistic in many scenarios.

If private channels are provided between each pair of parties, information-
theoretically secure MPC protocols such as those proposed by Ben-Or et al. [7]
and Chaum et al. [12] are secure against adaptive adversaries.1 In order to use
those protocols in the actual usage scenarios, we have to simulate private chan-
nels by using encryption primitives. For this aim, non-committing encryption
(NCE) was introduced by Canetti et al. [8]. Informally, an encryption scheme
is said to be non-committing if it can generate a dummy ciphertext that is
indistinguishable from real ones but can later be opened to any message by pro-
ducing a secret key and encryption randomness that “explain” the ciphertext
as an encryption of the message. Canetti et al. showed that the information-
theoretically secure MPC protocols are still adaptively secure if private channels
are replaced by NCE over insecure channels (assumed they are authenticated).
Canetti, Lindell, Ostrovsky, and Sahai [9] also showed a slightly augmented ver-
sion of NCE is useful to achieve adaptive security in the universally composable
(UC) setting.

Prior Works on Non-committing Encryption. The ability to open a dummy
ciphertext to any message is generally achieved at the price of efficiency. This is
in contrast to the ordinary public-key encryption for which we can easily obtain
schemes the size of whose ciphertext is n + poly(λ) by using hybrid encryption
methodology, where n is the length of an encrypted message and λ is the security
parameter. Thus, many previous works have focused on constructing efficient
NCE schemes. Especially, they tried to improve ciphertext expansion which is the
ratio of ciphertext length and message length since ciphertext length dominates
the online communication complexity.

In literature, the term NCE was also used to indicate 3-round message trans-
mission protocols which have the non-committing property [2,15]. In this work,
we only focus on 2-round schemes, that is, public-key encryption with the non-
committing property.

Canetti et al. [8] constructed the first NCE scheme, based on common-domain
trapdoor permutations which can be instantiated from the computational Diffie-
Hellman (CDH) or RSA problem. Ciphertext expansion of their scheme is O(

λ2
)
.

Choi, Dachman-Soled, Malkin, and Wee [13] constructed an NCE scheme with
ciphertext expansion O(λ) from trapdoor simulatable PKE. Their construction

1 On the other hand, for the MPC protocols relying on complexity assumption such as
the one proposed by Goldreich et al. [20], the security proof fails against an adaptive
adversary as observed by Damg̊ard and Nielsen [15].

38 Y. Yoshida et al.

can be instantiated under many computational problems including factoring
problem, since many existing (ordinary) PKE schemes satisfy trapdoor simu-
latability.

The first NCE scheme with sub-linear ciphertext expansion was proposed
by Hemenway, Ostrovsky, and Rosen [23]. They proposed an NCE scheme with
ciphertext expansion O(log n) for n-bit messages based on the Φ-hiding problem,
which we can easily modify its ciphertext expansion to O(log λ) by dividing long
messages to λ-bit blocks. Hemenway, Ostrovsky, Richelson, and Rosen [22] also
showed constructions of NCE with ciphertext expansion poly(log λ) from the
learning with errors (LWE) and Ring-LWE problems.

Canetti, Poburinnaya, and Raykova [10] studied the construction of NCE in
the common reference strings (CRS) model. They achieved optimal ciphertext
expansion 1 + o (1) assuming the existence of indistinguishability obfuscation
(iO) and one-way function.

Recently, Yoshida, Kitagawa, and Tanaka [31] constructed an NCE scheme
with ciphertext expansion O(log λ) from a primitive called chameleon encryp-
tion (CE), which additionally satisfies oblivious sampleability. They showed an
instantiation of obliviously sampleable CE based on the decisional Diffie-Hellman
(DDH) problem.

1.2 Our Contribution

We propose the first NCE schemes with constant ciphertext expansion without
the use of iO or CRS.

We construct such an NCE scheme based on the construction paradigm using
obliviously sampleable CE proposed by Yoshida et al. [31]. Yoshida et al. showed
obliviously sampleable CE can be realized based on the DDH problem. In this
work, we also show that it can be realized based on the LWE problem for super-
polynomially large modulus. As a result, we obtain constant ciphertext expansion
NCE schemes based on the DDH problem and LWE problem.

One of the disadvantage of the NCE scheme proposed by Yoshida et al. is
its relatively large public-key size. The size of public key for each message bit
of their scheme is O(

λ2
)
. In addition to the ciphertext expansion, our LWE

based NCE scheme also improves public-key size compared to Yoshida et al.’s
scheme. The size of the public key for each message bit of our LWE based
scheme is λ · poly(log λ). This is the same as that of NCE scheme proposed
by Hemenway et al. [22], which is also based on the LWE problem for super-
polynomially large modulus. We provide a comparison between our NCE schemes
and existing NCE schemes in Table 1.

1.3 Overview

Weak Non-committing Encryption. Our starting point is the observation that
by adjusting the parameters of an intermediate version of Yoshida et al. ’s NCE
scheme, its ciphertext expansion can be reduced to a constant, at the cost of its
perfect form of correctness and security.

Non-committing Encryption with Constant Ciphertext Expansion 39

Table 1. Comparison of existing (2-round) NCE schemes in terms of their ciphertext
and public-key expansion. The security parameter is denoted by λ. (∗) This scheme
uses common reference strings.

CT expansion PK expansion Assumption

Canetti et al. [8] O(
λ2) O(

λ2)
Common-Domain TDP (CDH, RSA)

Choi et al. [13] O(λ) O(λ) Trapdoor Simulatable PKE (DDH etc.)

Hemenway et al. [23] O(log λ) λ · poly(log λ) Φ-hiding

Hemenway et al. [22] poly(log λ) λ · poly(log λ) LWE

Hemenway et al. [22] poly(log λ) poly(log λ) Ring-LWE

Canetti et al. [10] (∗) 1 + o (1) 1 + o (1) Indistinguishability Obfuscation

Yoshida et al. [31] O(log λ) O(
λ2)

Obliviously Sampleable CE (DDH)

This work O(1) O(
λ2)

Obliviously Sampleable CE (DDH)

This work O(1) λ · poly(log λ) Obliviously Sampleable CE (LWE)

Specifically, the scheme only satisfies weak correctness, which means that
each bit of decrypted plaintext is flipped with constant probability. Moreover,
the scheme only satisfies weak security that only guarantees the secrecy of some
part of encrypted plaintexts. In Sect. 3, we formally define weak correctness and
weak security for NCE and introduce the notion of weak NCE as NCE satisfying
only those weak correctness and weak security.

In Sect. 5, we give the description of the above scheme and its building block,
obliviously sampleable CE. Then we prove that the scheme is indeed a weak
NCE scheme.

Amplification for Non-committing Encryption. Next, we show that we can
amplify a weak NCE scheme into a full-fledged NCE scheme in Sect. 4. As a
tool of amplification, we use a coding scheme called wiretap codes. More specif-
ically, we define a new security property, conditional invertibility for wiretap
codes. We show an instantiation of wiretap codes constructed from randomness
extractor and linear error-correcting codes satisfies the conditional invertibility.

This amplification increases the ciphertext expansion by only a constant fac-
tor. Thus, by applying this transformation to the weak NCE scheme shown in
Sect. 5, we obtain an NCE scheme with a constant ciphertext expansion.

Lattice-Based Instantiation. We propose a lattice-based instantiation of obliv-
iously sampleable CE in Sect. 6. The construction is a natural composition of
the lattice-based hash encryption by Döttling et al. [17] and the lattice-based
chameleon hash functions by Cash et al. [11].

One caveat of our construction is that we need the modulus of lattices to
be super-polynomially large for the correctness of it. This seems unavoidable
since the chameleon encryption implies non-interactive key exchange, which is
considered difficult to be realized from lattice problems for polynomially large
modulus as discussed by Guo et al. [21].

40 Y. Yoshida et al.

1.4 Related Works on Amplification for Public-Key Encryption

Studies on security amplification have asked and answered the question: “How
far can we weaken a security definition so that schemes satisfying the defini-
tion can still be transformed into those satisfying full-fledged security?” Dwork,
Naor, and Reingold [18] first studied the amplification of public-key encryption.
They showed that a public-key encryption scheme that satisfies weak forms of
one-wayness and correctness can be transformed into one satisfies the ordinary
correctness and IND-CPA security. Holenstein and Renner [24] showed a more
efficient amplification method, starting from a scheme satisfying weak forms of
IND-CPA security and correctness. Lin and Tessaro [26] provided an amplifi-
cation method for schemes with IND-CCA security. In this work, we show an
amplification method for NCE, which can be seen as one of this line of research.

2 Preliminaries

Notations. In this paper, PPT denotes probabilistic polynomial time. x ← X
denotes an element x is sampled from uniform distribution over a set X. y ←
A(x; r) denotes A given input x, using internal randomness r, outputs y. f(λ) =
negl(λ) denotes function f is negligible, that is, f(λ) = 2−ω(log λ) holds.

For an integer n, [n] denotes a set {1, . . . , n}. For a subset I ⊂ [n] and a vector
x = (xi)1≤i≤n ∈ {0, 1}n, xI denotes (xi)i∈I . For a matrix M = (mi)1≤i≤n ∈
{0, 1}k×n, MI ∈ {0, 1}k×|I| denotes the matrix composed from column vectors
mi of M for i ∈ I.

h2(·) denotes the binary entropy function, h2(p) = −p log p−(1−p) log(1−p).
H(Y |X) denotes the conditional entropy.

Lemma 1 (Chernoff Bound). Let X be a binomial random variable. If

E [X] ≤ μ, then for all δ > 0, Pr [X ≥ (1 + δ)μ)] ≤ e− δ2
2+δ μ holds.

Lemma 2 (Leftover hash lemma). Let H := {h : {0, 1}n → {0, 1}�} be a
universal hash family. If � ≤ H∞(x) − ω(log λ), (h, h(x)) and (h, u) are statisti-
cally indistinguishable where u ← {0, 1}�.

Channel Model. When a sender transmits a message x ∈ {0, 1}n through a
channel ChR, the receiver gets a noisy version of the message x̃ ∈ {0, 1,⊥}n. We
define the procedure of such channels as probabilistic functions, x̃ ← ChR(x; rch).
We review two channel models, Binary Erasure Channel (BEC) and Binary
Symmetric Channel (BSC).

Let Bn
p be the n-bit Bernoulli distribution with parameter p. In other words,

rch ← Bn
p is an n-bit string where for each i ∈ [n], Pr[rchi = 1] = p and

Pr[rchi = 0] = 1 − p.

Definition 1 (Binary Erasure Channel (BEC)). Through a binary erasure
channel BECp, each bit of input x ∈ {0, 1}n is erased with probability p.

BECp(x; rch) samples randomness rch ← Bn
p . Output of the channel is x̃ where

x̃i = ⊥ if rchi = 1 and x̃i = xi if rchi = 0.

Non-committing Encryption with Constant Ciphertext Expansion 41

We also denote the output of BEC by xI ← BECp(x; rch) where I = {i ∈
[n] | rchi = 0} is the set of non-erased indices.

Definition 2 (Binary Symmetric Channel (BSC)). Through a binary sym-
metric channel BSCp, each bit of input x ∈ {0, 1}n is flipped with probability p.

BSCp samples randomness rch ← Bn
p . Output of the channel is x̃ = x ⊕ rch.

We denote by BEC≤p, a binary symmetric channel with parameter p′ ≤ p.

3 (Weak) Non-committing Encryption

A non-committing encryption (NCE) scheme is a public-key encryption (PKE)
scheme that has efficient simulator algorithms (Sim,Open) satisfying the follow-
ing properties. The simulator Sim can generate a simulated public key pk and a
simulated ciphertext CT . Later Open can explain the ciphertext CT as encryp-
tion of any message. Concretely, given a message m, Open can output a pair
of randomness for key generation rGen and encryption rEnc, as if pk was gener-
ated by the key generation algorithm with the randomness rGen, and CT is an
encryption of m with the randomness rEnc.

Some previous works proposed NCE schemes that are three-round proto-
cols [2,15]. In this work, we focus on NCE that needs only two rounds, which is
also called non-committing public-key encryption, and we use the term NCE to
indicate it unless stated otherwise.

In this work, we abstract the intermediate construction of NCE by
Yoshida et al. [31] and formalize it as weak NCE. Specifically, we introduce
weak correctness and weak security for NCE.

Syntax. Since an NCE scheme is public-key encryption, we recall its syntax.

Definition 3 (Public-Key Encryption). A PKE scheme consists of the fol-
lowing PPT algorithms (Gen,Enc,Dec).

– Gen
(
1λ; rGen

)
: Given the security parameter 1λ, using a randomness rGen, it

outputs a public key pk and a secret key sk.
– Enc (pk,m; rEnc): Given a public key pk and a plaintext m ∈ {0, 1}μ, using a

randomness rEnc, it outputs a ciphertext CT .
– Dec (sk, CT): Given a secret key sk and a ciphertext CT , it outputs m or ⊥.

Public-Key/Ciphertext Expansion. Public-key expansion and ciphertext expan-
sion of a public-key encryption scheme are defined by |pk|/|m| and |CT |/|m|,
respectively, for |m| = poly(λ).

42 Y. Yoshida et al.

Correctness. Since the ordinary correctness can be seen as a special case of
weak correctness, we first introduce the notion of weak correctness and then
define correctness. Informally, we say that a PKE scheme is weakly correct if it
has decryption error for each message bit as defined below.

Definition 4 ((Weak) Correctness). We say that a PKE scheme NCE =
(Gen,Enc,Dec) is weakly correct if it has non-negligible decryption error for each
plaintext bit. Specifically, we say that NCE has ε-decryption error if for all plain-
text m ∈ {0, 1}μ and i ∈ [μ],

Pr [mi
= Dec (sk,Enc (pk,m; rEnc))i] ≤ ε

holds, where (pk, sk) ← Gen
(
1λ; rGen

)
and the probability is taken over the choice

of rGen and rEnc. In other words, the procedure of encryption and decryption works
as the binary symmetric channel

Dec(sk,Enc(pk, ·)) = BSC≤ε(·).

Furthermore, we say that NCE satisfies correctness if ε = negl(λ).

Security. We first introduce the notion of weak security. We then recall the
ordinary security of NCE.

Weak security allows an adversary to learn some partial information of a
plaintext Leak(m). Still, it guarantees that other information of m remains hid-
den. Furthermore, in the security experiment of weak security, the challenge
message is fixed in advance independently of the public key.

Definition 5 (Weak Security for NCE). For a PKE scheme NCE =
(Gen,Enc,Dec) and a probabilistic function Leak, consider the following PPT
simulators (SimGen,SimEnc,Open):

– SimGen
(
1λ

)
: Given the security parameter 1λ, it outputs a simulated public

key pk and its internal state information st1.
– SimEnc(m̃ ← Leak(m; r), st1): Given a partial information of a plaintext m̃

which is computed by the probabilistic function Leak with randomness r, and
a state st1, it outputs a simulated ciphertext CT and a state st2.

– Open(m, r, st2): Given a plaintext m, randomness r used by Leak, and a state
st2, it outputs randomness for key generation rGen and encryption rEnc.

For an adversary A and a message m, define two experiments as follows.

ExpWeak Real
NCE,A ExpWeak Ideal

NCE,A
(pk, sk) ← Gen

(
1λ; rGen

)
(pk, st1) ← SimGen

(
1λ

)

CT ← Enc (pk,m; rEnc) (CT, st2) ← SimEnc(Leak(m; r), st1)
(rGen, rEnc) ← Open(m, r, st2)

out ← A (pk,CT, rGen, rEnc) out ← A (pk,CT, rGen, rEnc)

Non-committing Encryption with Constant Ciphertext Expansion 43

We say that NCE is weakly secure with respect to Leak if there exist PPT
simulators (SimGen,SimEnc,Open) such that for any PPT adversary A and any
message m,

AdvWeak
NCE,A (λ) :=

∣
∣
∣Pr

[
out = 1 in ExpWeak Real

NCE,A
]

− Pr
[
out = 1 in ExpWeak Ideal

NCE,A
]∣∣
∣

= negl(λ)

holds.

Weak security with respect to Leak = ⊥ in which the target message is chosen
by the adversary is exactly the same notion as the full-fledged security for NCE
which we recall below.

Definition 6 (Security for NCE). For a PKE scheme NCE = (Gen,Enc,Dec),
consider the following PPT simulators (Sim,Open):

– Sim
(
1λ

)
: Given the security parameter 1λ, it outputs a simulated public key

pk, a simulated ciphertext CT and its state st.
– Open(m, st): Given a message m and a state st, it outputs randomness for

key generation rGen and encryption rEnc.

For a stateful adversary A, we define two experiments as follows.

ExpReal
NCE,A ExpIdealNCE,A

(pk, sk) ← Gen
(
1λ; rGen

)
(pk,CT, st) ← Sim

(
1λ

)

m ← A (pk) m ← A (pk)
CT ← Enc (pk,m; rEnc) (rGen, rEnc) ← Open(m, st)
out ← A (CT, rGen, rEnc) out ← A (CT, rGen, rEnc)

We say that NCE is secure if there exist PPT simulators (Sim,Open) such that
for all PPT adversary A,

AdvNCE,A (λ) :=
∣
∣
∣Pr

[
out = 1 in ExpReal

NCE,A
]

− Pr
[
out = 1 in ExpIdealNCE,A

]∣∣
∣ = negl(λ)

holds.

Definition 7 ((Weak) Non-Committing Encryption). Let NCE be a PKE
scheme. NCE is said to be NCE if it satisfies the above correctness and security for
NCE. Also, NCE is said to be weak NCE if it satisfies the above weak correctness
and weak security for NCE.

4 Amplification for Non-committing Encryption

When weak NCE is used to communicate, roughly speaking, the receiver gets
a noisy version of the transmitted message x, and the adversary can see some
partial information of x. In fact, such a situation is very natural and studied as
physical layer security in the Information and Coding (I&C) community since the

44 Y. Yoshida et al.

wiretap channel model was proposed by Wyner [30]. Based on this observation,
in this section, we show how to amplify a weak NCE scheme into a full-fledged
one by using wiretap codes.2

4.1 Wiretap Codes

As described in Fig. 1, when the sender transmits a message x over the wiretap
channel, on one hand, the receiver gets the message affected by noise over receiver
channel ChR(x). On the other hand, an adversary can interrupt the transmission
and gets a noisier version of the message ChA(x).

In such a model, using the difference in the amount of noise the receiver and
the adversary are affected, wiretap codes WC enable us to transmit a message m
correctly to the receiver while keeping it information-theoretically secure against
the adversary.

Fig. 1. Wiretap channel model.

Wiretap codes have an encoding and a decoding algorithm similar to error-
correcting codes. Wiretap codes satisfy two properties. One is correctness, which
ensures that the receiver can decode codewords even if they are affected by some
amount of noise. The other is security, which guarantees that the adversary can
get no information about the message given some part of the codeword. It is
known that the encoding algorithm must use randomness to satisfy security.

Originally in the I&C community, the security of wiretap codes was defined
by mutual information. Bellare et al. [4–6] proposed several equivalent defini-
tions in a cryptographic manner. Among them, we recall one adopting the dis-
tinguishing style of security below. Then we proposed a new security property,
conditional invertibility for wiretap codes, which we need in the security proof
of our amplification for NCE.

Note that the following definition adopts the seeded version of wiretap codes
also proposed by Bellare et al. [6]. In the seeded wiretap channel, the sender,
receiver, and an adversary can see a public random seed. We adopt the seeded
wiretap codes to give a simple construction of the codes. The seed can be removed
without increasing the rate of the codes by a transformation shown in [4]. In this
work, we put the seed into a part of the public key when constructing NCE.
2 In literature, wiretap codes sometimes appeared in the name of “encryption” or

“one-way secret-key agreement”. It can be also interpreted as a kind of secret sharing
scheme.

Non-committing Encryption with Constant Ciphertext Expansion 45

Definition 8 (Wiretap Codes). (Seeded) wiretap codes WC consist of the fol-
lowing PPT algorithms (WC.Setup,WC.Encode,WC.Decode).

– WC.Setup(1λ): Given the security parameter 1λ, it samples a public seed p.
– WC.Encode(p,m; s): It encodes a message m ∈ {0, 1}μ with a public seed p

and randomness s ← S, and outputs a codeword x ∈ {0, 1}n.
– WC.Decode(p, x): On input a noisy codeword x ∈ {0, 1}n and a public seed

p, it outputs a message m.

Rate of Wiretap Codes. The rate of WC is the length of messages over the
length of codewords μ/n ∈ (0, 1). The rate of WC is at most the secrecy capacity
of the wiretap channel. The secrecy capacity of wiretap channel, defined with
symmetric channels ChR and ChA, is equal to H(U |ChA(U))−H(U |ChR(U)) for
a uniformly random bit U [25], where H(Y |X) denotes the conditional entropy.

Usually, wiretap codes are required to satisfy the following correctness and
security.

As a security property, we present a definition of distinguishing secu-
rity adopted for seeded wiretap codes. This is a natural extension
of the distinguishing security for seedless wiretap codes proposed by
Bellare et al. [6].

Correctness: WC is correct over the receiver’s channel ChR if for all message
m ∈ {0, 1}μ and public seed p, we have

Pr[WC.Decode(p,ChR(WC.Encode(p,m)))
= m] = negl(λ) .

Security: WC is DS-secure against adversary’s channel ChA if for any unbounded
stateful adversary A, we have

∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎣

b = b′

∣
∣
∣
∣
∣
∣
∣
∣
∣

p ← WC.Setup(1λ), (m0,m1) = A(p),
b ← {0, 1}, x ← WC.Encode(p,mb),
x̃ ← ChA(x; rch),
b′ = A(x̃)

⎤

⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣

= negl(λ) .

Next, we introduce a new security property for wiretap codes, conditional
invertibility.

Intuitively, this security notion states that after the adversary sees the partial
information x̃ ← ChA(x) resulted from the codeword x of a message m′, we can
efficiently explain that x̃ has resulted from another message m. The security
definition involves a PPT inversion algorithm WC.Invert, which on inputs seed
p, a condition x̃, and a message m, outputs randomness s′ and rch

′ such that
ChA(WC.Encode(p,m; s′); rch′) is equal to the condition x̃.

Conditional invertibility implies the ordinary distinguishing security. It can
be seen as non-committing security for wiretap codes. Note that wiretap codes

46 Y. Yoshida et al.

are inherently non-committing in the sense that they usually required to statis-
tically lose the information of messages. Thus, the only point conditional invert-
ibility additionally requires is that the inversion can be computed efficiently.

Definition 9 (Conditional Invertibility). For an unbounded stateful adver-
sary A and a PPT algorithm WC.Invert, define two experiments as follows:

ExpReal
WC,A ExpIdealWC,A

p ← WC.Setup(1λ) p ← WC.Setup(1λ)
(m,m′) = A(p) (m,m′) = A(p)
x ← WC.Encode(p,m; s) x ← WC.Encode(p,m′; s)
x̃ ← ChA(x; rch) x̃ ← ChA(x; rch)

(s′, rch′) ← WC.Invert(p, x̃,m)
out = A (x̃, s, rch) out = A (x̃, s′, rch′)

We say that WC is invertible conditioned on ChA if there exists a PPT inverter
WC.Invert such that for any unbounded adversary A,

∣
∣
∣Pr

[
out = 1 in ExpReal

WC,A
]

− Pr
[
out = 1 in ExpIdealWC,A

]∣∣
∣ = negl(λ)

holds.

4.2 Instantiation of Wiretap Codes

Overview. We recall a modular construction of wiretap codes proposed by
Bellare et al. [6] called Invert-then-Encode construction. The building blocks are
error-correcting codes and invertible extractors. This idea of composing error-
correcting codes and extractors can be found also in the construction of a linear
secret sharing scheme proposed by Cramer et al. [14].

Consider an seeded extractor Ext : {0, 1}k → {0, 1}μ which on inputs X ∈
{0, 1}k and a seed p, outputs m ∈ {0, 1}μ. The extractor is invertible if there
is an efficient inverter Inv, which on inputs m ∈ {0, 1}μ and seed p, samples a
preimage X ∈ {0, 1}k using randomness s. The Invert-then-Encode construction
takes input m with seed p, first inverts the extractor X ← Inv(m, p; s), then
encodes X by the error-correcting code as x = Encode(X).

For a concrete instantiation, Bellare et al. suggested to use the polar codes [1]
as error-correcting codes to achieve the optimal rate. Note that we can compute
the encoding of input m by mG where G is a generator matrix of the linear error-
correcting code. Invertible extractors can be instantiated using multiplication
over GF(2k). Concretely, the extractor takes inputs x ∈ {0, 1}k and seed p ∈
GF(2k), and outputs the first μ bit of x � p, where � denotes multiplication
over GF(2k). The inverter Inv for this extractor is obtained by Inv(m, p; s) =
(m‖s) � p−1.

Construction. We describe the construction of wiretap codes for μ = O(λ) bit
messages. For a longer message, we can encode it by first dividing it into blocks
of μ bit and then encoding each block by the following codes (see [4]).

Non-committing Encryption with Constant Ciphertext Expansion 47

Let μ, k, n = O(λ). Let G ∈ {0, 1}k×n be a generator matrix of a lin-
ear error-correcting code, and ECC.Decode a corresponding decoding algorithm.
Choose a constant ε > 0 such that the error-correcting code can be correct over
ChR = BSC≤ε. We construct wiretap codes which is correct over ChR = BSC≤ε

and invertible conditioned on ChA = BEC0.5. Thus, in this construction, the wire-
tap decoding algorithm takes as input x′ ← BSCε(x), and the wiretap inverter
algorithm takes as input xI ← BEC0.5(x; rch) where I ∈ [n] is the set of non-
erased indices determined by a uniformly random n-bit string rch.

– WC.Setup(1λ): Sample and output p ← GF(2k)\{0}.
– WC.Encode(p,m; s): For input m ∈ {0, 1}μ, sample s ← {0, 1}k−μ, output

x = ((m‖s) � p)G ∈ {0, 1}n.
– WC.Decode(p, x′): Output the first μ bits of ECC.Decode(x′) � p−1.
– WC.Invert(p, xI ,m): On input a condition xI ← BEC0.5(x; rch), sample and

output s′ which satisfies xI = ((m‖s′) � p)GI .
Concretely, let

∑
i zici + c0 (ci ∈ {0, 1}k, zi ∈ {0, 1}) be the general solution

of linear equation xI = yGI . Then, uniformly sample a solution {zi}i of
linear equation m =

∑
i zi(ci�p−1){1,...,μ}+(c0�p−1){1,...,μ}. Finally, output

s′ =
∑

i zi(ci � p−1){μ+1,...,k} + (c0 � p−1){μ+1,...,k}.
It also outputs randomness for the channel rch

′ = rch, which is a uniformly
random n-bit string representing the non-erased indices I.

Rate of the Scheme. The rate μ/n of the scheme can be set to a constant smaller
than (k

n − 1
2). If the rate k/n of the error-correcting codes is close to its capacity

1 − h2(ε), the rate of WC can be close to its secrecy capacity 1/2 − h2(ε), which
is the optimal rate of wiretap codes.

Correctness. The correctness of the wiretap codes directly follows from the cor-
rectness of the underlying error-correcting codes.

Conditional Invertibility. To show the invertibility conditioned on BEC0.5, we
need to show that distributions of (x̃, s, rch) are statistically indistinguishable
in the real and ideal experiments of the definition. We introduce the hybrid
experiment defined as follows:

ExpReal
WC,A ExpHybrid

WC,A ExpIdealWC,A
p ← WC.Setup(1λ) p ← WC.Setup(1λ) p ← WC.Setup(1λ)
(m,m′) = A(p) (m,m′) = A(p) (m,m′) = A(p)
x ← WC.Encode(p,m; s) x ← WC.Encode(p,m; s′) x ← WC.Encode(p,m′; s)
x̃ ← ChA(x; rch) x̃ ← ChA(x; rch) x̃ ← ChA(x; rch)

(s′, rch′) ← WC.Invert(p, x̃,m) (s′, rch′) ← WC.Invert(p, x̃,m)
out = A (x̃, s, rch) out = A (x̃, s′, rch′) out = A (x̃, s′, rch′)

Claim. The distribution of output in the real and hybrid experiments are same.

Proof. In general, for a function f : X → Y,

{(x, y) | x ← X , y = f(x)} ≡ {
(x′, y) | x ← X , y = f(x), x′ ← f−1(y)

}

holds, where f−1(y) denotes the set of pre-images of y.

48 Y. Yoshida et al.

By applying the above fact to fp,m(s, rch) = ChA(WC.Encode(p,m; s); rch),
what we need to show is that WC.Invert implements sampling (s′, rch′) ←
f−1

p,m(x̃).
Since we consider ChA = BEC0.5, WC.Invert can uniquely determine rch

′ = rch
from the representation of x̃ = xI . Recall that WC.Invert samples s′ satisfying
xI = ((m‖s′) � p)GI = BEC0.5(WC.Encode(p,m; s′); rch) uniformly at random.
Hence, the claim follows. ��
Claim. The hybrid and ideal experiments are statistically close if the wiretap
codes are secure in the ordinarily sense.

Proof. Consider the adversary A that distinguished the two experiments. We
can construct another adversary A′ against the security of the wiretap codes as
follows: Given p, run A′ on p and obtain m,m′; send them to its challenger and
receive x̃; compute (s, rch) ← WC.Invert(p, x̃,m); run A′ on x̃, s, rch and receive
out; output out. The claim is proven, since the simulation by A is perfect. ��
Claim. The wiretap codes are secure in the ordinarily sense.

Bellare et al. [6] show a detailed security proof of the wiretap codes for general
ChA. Below, we show a specific security proof for ChA = BEC0.5.

Proof. Recall that the parameter is selected to satisfy μ/n < (k/n − 1/2). Let
2δ := ((k − μ)/n − 1/2) > 0 be a constant.

Since ChA = BEC0.5, the input for the adversary is xI = ((m‖s) � p)GI . By
the Chernoff bound, |I| < (12 + δ)n holds except negligible probability.

Let us decompose the submatrix of the generator GI = PDQ, where
P ∈ {0, 1}k×k and Q ∈ {0, 1}|I|×|I| are invertible. Furthermore D = (di,j) ∈
{0, 1}k×|I| satisfies di,i = 1 for 1 ≤ i ≤ r := Rank(GI) and di,j = 0 for other
elements. We interpret the multiplication by D as getting the first r bits and
concatenating 0|I|−r. Thus xI = ((((m‖s) � p)P)[r]‖0|I|−r)Q.

For input m‖s and seed p, hp(m‖s) := ((m‖s�p)P)[r] forms a universal hash
family. Note that the input has min-entropy H∞(m‖s) = k − μ.

Since r ≤ |I| ≤ (12 + δ)n ≤ k − μ − δn < H∞(m‖s) − ω(log λ) holds,
by the left over hash lemma, (p, hp(m‖s)) is statistically indistinguishable from
(p, u) where u ← {0, 1}r. Therefore xI is statistically indistinguishable from
(u‖0|I|−r)Q, which is independent of m. Thus, the claim is proven. ��

By combining the above three claims, conditional invertibility of the wiretap
codes follows.

4.3 Full-Fledged NCE from Weak NCE

In this section, we amplify a weak NCE scheme into a full-fledged one using
conditionally invertible wiretap codes.

Non-committing Encryption with Constant Ciphertext Expansion 49

Construction. Let NCE = (Gen,Enc,Dec) be a weak NCE scheme which has ε-
decryption error and weak security with respect to BEC0.5, and wiretap codes
WC = (WC.Setup,WC.Encode,WC.Decode) which is correct over receiver channel
BSC≤ε and conditionally invertible against the adversary channel BEC0.5. We
construct a full-fledged NCE scheme NCE′ = (Gen′,Enc′,Dec′) as follows.

Gen′(1λ):
– Sample a public seed of the wiretap codes p ← WC.Setup(1λ).
– Generate a key pair of weak NCE (pk, sk) ← Gen

(
1λ; rGen

)
.

– Output (pk′, sk′) := ((p, pk), sk).
The randomness for key generation rGen

′ is rGen.
Enc′(pk′,m):

– Sample a key for one-time pad k ← {0, 1}μ.3

– Encode the key as x ← WC.Encode(p, k; s) ∈ {0, 1}n.
– Compute CT ← Enc(pk, x; rEnc).
– Output ciphertext CT ′ = (CT,m ⊕ k).

The randomness for encryption rEnc
′ is (rEnc, k, s).

Dec′(sk′, CT ′):
– Parse CT ′ as (c1, c2).
– Compute k = WC.Decode(p,Dec(sk, c1)).
– Output m = c2 ⊕ k.

Ciphertext Expansion. The ciphertext expansion of NCE′ is

ciphertext expansion of NCE
rate of WC

+ 1. (1)

Since the rate of the wiretap codes is constant, this amplification increases
ciphertext expansion only by a constant factor. Combining the ciphertext expan-
sion given in Sect. 5, we will estimate its concrete value for our scheme in Sect. 7.

Correctness. Due to the decryption error of NCE, each bit of the decrypted
codeword x is flipped with probability at most ε. The wiretap codes correct this
error as shown below.

Theorem 1 (Correctness). If NCE has ε-decryption error, and WC is correct
over BSC≤ε, then NCE′ is correct.

Proof. The probability of NCE′ fails to decrypt is evaluated as

Pr[k
= WC.Decode(p,Dec(sk,Enc(pk, x)))]
= Pr[k
= WC.Decode(p,BSC≤ε(WC.Encode(p, k; s)))]
= negl(λ) .

Thus NCE′ is correct.
3 Note that weak security of NCE requires the challenge message to be independent

of the public key. To address this issue, we use one-time pad in this amplification.

50 Y. Yoshida et al.

Security. We now show the security of NCE′.

Theorem 2 (Security). If NCE is weakly secure with respect to BEC0.5, and
WC is invertible conditioned on BEC0.5, then NCE′ is secure.

Proof. We first construct a simulator of NCE′ (Sim′,Open′) from the simulator
(SimGen,SimEnc,Open) of NCE, and the inverter WC.Invert of WC.

Sim′(1λ):
– Sample p ← WC.Setup(1λ).
– Generate (pk, st1) ← SimGen

(
1λ

)
.

– Sample k ← {0, 1}μ.
– Compute x̃ ← BEC0.5(WC.Encode(p, 0μ; s′); rch′).
– Compute (CT, st2) ← SimEnc(x̃, st1).
– Set pk′ = (p, pk), CT ′ = (CT, k), st′ = (st2, p, k, x̃).
– Output (pk′, CT ′, st′).

Open′(m, st′):
– Parse st′ as (st2, p, k, x̃).
– (s, rch) ← WC.Invert(p, x̃,m ⊕ k).
– (rGen, rEnc) ← Open(WC.Encode(p,m ⊕ k; s), rch, st2).
– Output (rGen′, rEnc′) = (rGen, (rEnc,m ⊕ k, s)).

Let A be an adversary against the security of NCE′. We then define the fol-
lowing experiments:

Exp 0: This experiment is the same as ExpReal
NCE′A. Specifically,

1. Sample p ← WC.Setup(1λ).
2. Generate the key pair (pk, sk) ← Gen

(
1λ; rGen

)
.

3. Run the adversary to output plaintext m ← A(p, pk).
4. Sample k ← {0, 1}μ and encoded it as x ← WC.Encode(p, k; s).
5. Encrypt the codeword as CT ← Enc(pk, x; rEnc).
6. Output this experiment is out ← A((CT,m ⊕ k) , rGen, (rEnc, k, s)).

Exp 1: In this experiment, we use the simulator (SimGen,SimEnc,Open) for NCE.
The ciphertext CT is simulated by SimEnc only given partial information of
the message x̃ ← Leak(x), where Leak = BEC0.5 and x ← WC.Encode(p, k; s)
now. Specifically,
1. Sample p ← WC.Setup(1λ).
2. Simulate the public key as (pk, st1) ← SimGen

(
1λ

)
.

3. Run the adversary to output plaintext m ← A(p, pk).
4. Sample k ← {0, 1}μ and encoded it as x ← WC.Encode(p, k; s).
5. Compute partial information x̃ ← BEC0.5(x; rch).
6. Simulate the ciphertext as (CT, st2) ← SimEnc(x̃, st1).
7. Explain the randomness for key generation and encryption as

(rGen, rEnc) ← Open(WC.Encode(p, k; s), rch, st2).
8. Output of this experiment is out ← A((CT,m ⊕ k) , rGen, (rEnc, k, s)).

Exp 2: In this experiment, we completely eliminate the information of k from
the input of SimEnc to simulate the ciphertext. Later WC.Invert determines
the randomness s used in the encode. Specifically,

Non-committing Encryption with Constant Ciphertext Expansion 51

1. Sample p ← WC.Setup(1λ).
2. Simulate the public key as (pk, st1) ← SimGen

(
1λ

)
.

3. Run the adversary to output plaintext m ← A(p, pk).
4. Sample k ← {0, 1}μ, but the codeword is x ← WC.Encode(p, 0μ; s′).
5. Compute partial information x̃ ← BEC0.5(x; rch′).
6. Simulate the ciphertext as (CT, st2) ← SimEnc(x̃, st1).
7. Invert the randomness for encode as (s, rch) ← WC.Invert(p, x̃, k).
8. Explain the randomness for key generation and encryption as

(rGen, rEnc) ← Open(WC.Encode(p, k; s), rch, st2).
9. Output of this experiment is out ← A((CT,m ⊕ k) , rGen, (rEnc, k, s)).

Exp 3: In this experiment, we completely eliminate m from the ciphertext by
switching k to m ⊕ k. Specifically,
1. Sample p ← WC.Setup(1λ).
2. Simulate the public key as (pk, st1) ← SimGen

(
1λ

)
.

3. Run the adversary to output plaintext m ← A(p, pk).
4. Sample k ← {0, 1}μ, but the codeword is x ← WC.Encode(p, 0μ; s′).
5. Compute partial information x̃ ← BEC0.5(x; rch′).
6. Simulate the ciphertext as (CT, st2) ← SimEnc(x̃, st1).
7. Invert the randomness for encoding as (s, rch) ← WC.Invert(p, x̃,m ⊕ k).
8. Explain the randomness for key generation and encryption as

(rGen, rEnc) ← Open(WC.Encode(p,m ⊕ k; s), rch, st2).
9. Output of this experiment is out ← A((CT, k) , rGen, (rEnc,m ⊕ k, s)).

Note that the last experiment Exp 3 is identical to ExpIdealNCE′A.

We show the difference between each experiments are negligible.

Lemma 3. If NCE is weakly secure with respect to BEC0.5, the difference of
Pr[out = 1] in Exp 0 and Exp 1 is negligible.

This lemma directly follows from the weak security of NCE. Note that the message
encrypted by NCE is the key of one-time pad k, which is independent of the public
key.

Lemma 4. If WC is invertible conditioned on BEC0.5, the difference of Pr[out =
1] in Exp 1 and Exp 2 is negligible.

By the conditional invertibility of WC, the following items are statistically indis-
tinguishable.

– (BEC0.5(WC.Encode(p, k; s); rch), (s, rch))
– (BEC0.5(WC.Encode(p, 0μ; s′); rch′), (s, rch)) where (s, rch) is output of

WC.Invert(p,BEC0.5(WC.Encode(p, 0μ; s′); rch′), k)

The lemma follows because (CT ′, r′
Gen, r

′
Enc), and hence out in Exp 1 are computed

from the former item, while those in Exp 2 are computed from the latter item.

Lemma 5. Pr[out = 1] is identical in Exp 2 and Exp 3.

This lemma holds unconditionally, because (k,m ⊕ k) and (m ⊕ k, k) distribute
identically when k is sampled uniformly at random.

Combining the above lemmas, we complete the proof of Theorem 2.

52 Y. Yoshida et al.

5 Construction of Weak NCE

In this section, we show an intermediate version of the NCE scheme in
Yoshida et al. [31] is a weak NCE scheme. Their scheme is constructed from
obliviously sampleable CE. We first recall the definition of obliviously sam-
pleable CE. We then describe the construction of weak NCE, show that it has
1/2�+1-decryption error, where � is a constant which appears in the chameleon
encryption, and prove its weak security with respect to BEC0.5. The ciphertext
expansion of the resulting weak NCE is 2� + o(1).

5.1 Obliviously Sampleable Chameleon Encryption

Chameleon encryption (CE) was proposed by Döttling and Garg [16]. We recall
its obliviously sampleable variant, introduced by Yoshida et al. [31] as a building
block of their NCE scheme. They showed an instantiation of obliviously sam-
pleable CE from the DDH problem. We also show an instantiation from the LWE
problem in Sect. 6.

Definition 10 (Obliviously Sampleable Chameleon Encryption). An
obliviously sampleable chameleon encryption scheme CE consists of PPT algo-
rithms for hash functionality

(
G,H,H−1

)
, those for encryption functionality

(E1,E2,D), and those for oblivious sampling
(
Ĝ, Ê1

)
. We first introduce algo-

rithms for the first two functionality. Below, we let RH (and RE, resp.) be the
randomness space of H (and that of E1 and E2, resp.). We let {0, 1}� be the key
space.

– G
(
1λ, 1n

)
: Given the security parameter 1λ and the length of inputs to the

hash function 1n, it outputs a hash key hk and a trapdoor td.
– H (hk, x; r): Given a hash key hk and an input x ∈ {0, 1}n, using randomness

r ∈ RH, it outputs a hash value y.
– H−1 (td, (x, r), x′): Given a trapdoor td, an input to the hash function x,

randomness for the hash function r, and another input to the hash function
x′, it outputs randomness r′.

– E1 (hk, (i, b); ρ): Given a hash key hk, an index i ∈ [n], b ∈ {0, 1}, using ran-
domness ρ ∈ RE, it outputs a ciphertext ct.

– E2 (hk, (i, b), y; ρ): Given a hash key hk, an index i ∈ [n], b ∈ {0, 1}, and a
hash value y, using randomness ρ ∈ RE, it outputs K ∈ {0, 1}�.

– D (hk, (x, r), ct): Given a hash key hk, a pre-image of the hash function (x, r),
and a ciphertext ct, it outputs K ∈ {0, 1}�.

We then introduce algorithms for oblivious sampling.

– Ĝ
(
1λ, 1n

)
: Given the security parameter 1λ, it outputs only a hash key ĥk

without using any randomness other than ĥk itself.
– Ê1

(
ĥk, (i, b)

)
: Given a hash key ĥk, an index i ∈ [n], and b ∈ {0, 1}, it outputs

a ciphertext ĉt without using any randomness except ĉt itself.

Non-committing Encryption with Constant Ciphertext Expansion 53

An obliviously sampleable CE scheme satisfies the following trapdoor collision
property, correctness, oblivious sampleability of hash keys, and security with
oblivious sampleability.

Trapdoor Collision: For a chameleon encryption scheme and a stateful adver-
sary A, we define two experiments as follows.

ExpReal ExpIdeal

(hk, td) ← G
(
1λ, 1n

)
(hk, td) ← G

(
1λ, 1n

)

(x, x′) = A(hk) (x, x′) = A(hk)
y ← H (hk, x; r) y ← H(hk, x′; r′)

r ← H−1(td, (x′, r′), x)
out = A (y, r) out = A (y, r)

We say the chameleon encryption scheme satisfies trapdoor collision if for
any unbounded stateful adversary A,

∣
∣
∣Pr

[
out = 1 in ExpReal

]
− Pr

[
out = 1 in ExpIdeal

]∣∣
∣ = negl(λ)

holds.
Correctness: For all x ∈ {0, 1}n, r ∈ RH, i ∈ [n], hk output by either G

(
1λ, 1n

)

or Ĝ
(
1λ, 1n

)
, we have

Pr[E2(hk, (i, xi), y; ρ) = D (hk, (x, r), ct)] = 1 − negl(λ)

where ρ ← RE, y ← H (hk, x; r) , ct ← E1(hk, (i, xi); ρ), and xi denotes the
i-th bit of x.

Oblivious Sampleability of Hash Keys: hk ← G
(
1λ, 1n

)
and ĥk ←

Ĝ
(
1λ, 1n

)
are computationally indistinguishable.

Security with Oblivious Sampleability: For any x ∈ {0, 1}n, r ∈ RH, i ∈ [n],
and PPT adversary A, define two experiments as follows.

ExprealCE,A ExposCE,A
(hk, td) ← G

(
1λ, 1n

)
(hk, td) ← G

(
1λ, 1n

)

ct ← E1(hk, (i, 1 − xi); ρ) ct ← Ê1(hk, (i, 1 − xi))
K ← E2(hk, (i, 1 − xi),H(hk, x; r); ρ) K ← {0, 1}�

out ← A (hk, ct,K) out ← A (hk, ct,K)

Then, we have

AdvCE,A (λ) :=
∣
∣
∣Pr

[
out = 1 in ExprealCE,A

]
− Pr

[
out = 1 in ExposCE,A

]∣∣
∣ = negl(λ) .

Remark 1. In the original definition of Yoshida et al. [31], security of an obliv-
iously sampleable CE scheme and its oblivious sampleability of ciphertexts are
defined separately. In the above definition, we combine them into a single notion,
security with oblivious sampleability. This yields a clean and simple security
proof of obliviously sampleable CE based on the LWE assumption and that of
NCE scheme based on obliviously sampleable CE.

54 Y. Yoshida et al.

5.2 Construction

We show a construction of weak NCE scheme NCE for message space {0, 1}n based
on an obliviously sampleable CE scheme CE below. NCE has constant ciphertext
expansion and ε-decryption error, and satisfies weak security with respect to
Leak = BEC0.5. We can set ε to be arbitrarily small constant by appropriately
selecting the constant parameter � of CE; we require that ε ≥ 2−�−1 + negl(λ).

Gen
(
1λ; rGen

)
:

– Generate ĥk ← Ĝ
(
1λ, 1n

)
, and sample z ← {0, 1}n.

– For all i ∈ [n], sample ρi ← RE.
– For all i ∈ [n] and b ∈ {0, 1}, compute

cti,b ←
⎧
⎨

⎩

E1

(
ĥk, (i, b); ρi

)
(if b = zi)

Ê1

(
ĥk, (i, b)

)
(otherwise)

.

– Output

pk :=
(
ĥk,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
and sk := (z, (ρ1, . . . , ρn)) . (2)

The key generation randomness rGen is
(
ĥk, z, {ρi}i∈[n], {cti,1−zi

}i∈[n]

)
.

Enc(pk, x ∈ {0, 1}n; rEnc):
– Parse public key pk as the Eq. 2.
– Sample randomness r ← RH and compute y ← H(ĥk, x; r).
– For all i ∈ [n] and b ∈ {0, 1}, compute

Ki,b ←
{
D

(
ĥk, (x, r), cti,b

)
(if b = xi)

{0, 1}� (otherwise) .

– Output

CT :=
(

y,

(
K1,0, . . . ,Kn,0

K1,1, . . . ,Kn,1

))
. (3)

The encryption randomness rEnc is
(
r, {Ki,1−xi

}i∈[n]

)
.

Dec (sk, CT):
– Parse sk and CT as the Eqs. 2 and 3, respectively.
– For all i ∈ [n], compute

xi :=

{
zi

(
if Ki,zi

= E2

(
ĥk, (i, zi), y; ρi

))

1 − zi (otherwise)

– Output x.

Non-committing Encryption with Constant Ciphertext Expansion 55

Ciphertext Expansion. Ciphertext length of this scheme is |CT | = |y| + 2n�,
where length of the output of the chameleon hash |y| does not depend on n.
Therefore ciphertext expansion of this scheme is

|CT | /n = 2� + o(1).

Next, we show that NCE is weak NCE. More concretely, we show that NCE
has ε-decryption error and satisfies weak security with respect to BEC0.5.

Theorem 3 (Weak Correctness). Let � be a constant noticeably larger than
log(1/ε) − 1. If CE satisfies correctness, then NCE has ε-decryption error.

Proof. Let x ∈ {0, 1}n be a message encrypted by NCE and z ∈ {0, 1}n a random
string sampled when generating a key pair of NCE.

We fail to decrypt xi if the underlying chameleon encryption causes cor-
rectness error when zi = xi, or Ki,1−zi

← {0, 1}� accidentally coincides with
E2 (hk, (i, zi), y; ρi) when zi
= xi. The probability of the former is negligible
since CE is correct, and that of the later is 1/2�. Notice that correctness of CE
holds for obliviously sampled hash key ĥk. Thus, the probability of failure to
decrypt xi is evaluated as

Pr [xi
= (Dec (sk, CT))i]

= Pr

⎡

⎣

(
zi = xi ∧ D

(
ĥk, (x, r), cti,xi

)
= E2

(
ĥk, (i, zi), y; ρi

))

∨
(
zi
= xi ∧ Ki,1−xi

= E2

(
ĥk, (i, zi), y; ρi

))

⎤

⎦

=
1
2

(
negl(λ) +

1
2�

)
≤ ε .

��
Theorem 4 (Weak Security). If CE is an obliviously sampleable CE scheme,
then NCE is weakly secure with respect to Leak = BEC0.5.

Proof. We construct a tuple of simulators as follows.

SimGen
(
1λ

)
:

– Generate (hk, td) ← G
(
1λ, 1n

)
.

– For all i ∈ [n] and b ∈ {0, 1}, compute cti,b ← E1 (hk, (i, b); ρi,b).

– Output a simulated public key pk :=
(
hk,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
and state

st1 = (hk, td, {ρi,b}i∈[n],b∈{0,1}).
SimEnc(xI ← BEC0.5(x; rch), st1):

– Sample r′ ← RH and compute y ← H (hk, 0; r′).
– For all i /∈ I, compute Ki,b ← E2 (hk, (i, b), y; ρi,b) for b ∈ {0, 1}. For all

i ∈ I, compute

Ki,b ←
{
E2 (hk, (i, b), y; ρi,b) (if b = xi)
{0, 1}� (otherwise)

.

56 Y. Yoshida et al.

– Output a simulated ciphertext CT :=
(

y,

(
K1,0, . . . ,Kn,0

K1,1, . . . ,Kn,1

))
and state

st2 = (st1, r′, {Ki,b}i∈[n],b∈{0,1}).
Open(x, rch, st2):

– Sample r ← H−1 (td, (0, r′) , x).
– Set z = x ⊕ 1n ⊕ rch.
– Output the following simulated randomness

rGen :=
(
hk, z, {ρi,zi

}i∈[n], {cti,1−zi
}i∈[n]

)
and

rEnc :=
(
r, {Ki,1−xi

}i∈[n]

)
.

Let A be a PPT adversary against weak security of NCE and x ∈ {0, 1}n. We
define the following sequence of experiments.4

Exp 0: This experiment is exactly the same as ExpReal
NCE,A. Specifically;

1. Generate ĥk ← Ĝ
(
1λ, 1n

)
and z ← {0, 1}n.

2. For all i ∈ [n], sample ρi ← RE.
3. For all i ∈ [n] and b ∈ {0, 1}, compute

cti,b ←
⎧
⎨

⎩

E1

(
ĥk, (i, b); ρi

)
(if b = zi)

Ê1

(
ĥk, (i, b)

)
(otherwise)

.

4. Set

pk :=

(
ĥk,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
and rGen :=

(
ĥk, z, {ρi}i∈[n], {cti,1−zi}i∈[n]

)
.

5. Sample r ← RH and compute y ← H(ĥk, x; r).
6. For all i ∈ [n] and b ∈ {0, 1}, compute

Ki,b ←
{
D

(
ĥk, (x, r), cti,b

)
(if b = xi)

{0, 1}� (otherwise) .

7. Set

CT :=
(

y,

(
K1,0, . . . ,Kn,0

K1,1, . . . ,Kn,1

))
and rEnc :=

(
r, {Ki,1−xi

}i∈[n]

)
.

8. Output of this experiment is out ← A(pk,CT, rGen, rEnc).

4 The flow of the hybrids is slightly different from the proof given by Yoshida et al. [31]
as the security definition of obliviously sampleable CE is reorganized.

Non-committing Encryption with Constant Ciphertext Expansion 57

Exp 1: In this experiment, instead of sampling z ← {0, 1}n, we first compute
xI ← BEC0.5(x; rch) and set z = x ⊕ 1n ⊕ rch.

Notice that z distributes uniformly at random over {0, 1}n also in Exp 1 since
rch ← Bn

0.5. Thus, Pr[out = 1] in Exp 1 is identical to that in Exp 0. Also notice
that i ∈ I iff zi
= xi holds by the setting of z.

Exp 2: In this experiment, we run (hk, td) ← G
(
1λ, 1n

)
instead of ĥk ←

Ĝ
(
1λ, 1n

)
.

From the oblivious sampleability of hash keys of CE, the difference of Pr[out =
1] between Exp 1 and Exp 2 is negligible.

In subsequent experiments, we eliminate information of xi for i /∈ I from the
ciphertext CT = (y, {Ki,b}i∈[n],b∈{0,1}).

Exp 3.j: This experiment is defined for j = 0, . . . , n. Exp 3.j is the same experi-
ment as Exp 2 except that we modify the procedures 3 and 6 as follows.
3. For all i ≤ j, compute cti,b for b ∈ {0, 1} as cti,b ← E1 (hk, (i, b); ρi,b).

For all i > j, compute them in the same way as Exp 2.
6. For all i ≤ j, if i /∈ I, compute Ki,0,Ki,1 as Ki,xi

← D (hk, (x, r), cti,xi
)

and Ki,1−xi
← E2 (hk, (i, 1 − xi), y; ρi,1−xi

).
For all i ≤ j, if i ∈ I, compute them in the same way as Exp 2.
Also, for all i > j, compute them in the same way as Exp 2 regardless of
whether i ∈ I or not.

Note that Exp 3.0 is exactly the same as Exp 2.

Lemma 6. If CE satisfies security with oblivious sampleability, the difference of
Pr[out = 1] between Exp 3.(j − 1) and Exp 3.j is negligible for every j ∈ [n].

Proof. Using A, we construct a reduction algorithm A′ which attacks the security
with oblivious sampleability of CE with respect to x, r, and j.

What differ in Exp 3.(j − 1) and Exp 3.j are cti,1−xi
, Kj,xj

, and Kj,1−xj
.

Kj,xj
is the same in both experiments except negligible probability due to

the correctness of CE. We consider the following two cases.

Case 1. zj = xj: ctj,1−xj
is output of Ê1 (hk, (j, 1 − xj)) or

E1

(
hk, (j, 1 − xj); ρj,1−xj

)
. Kj,1−xj

is uniform random or output of
E2

(
hk, y; ρi,1−xj

)
. In this case, the reduction algorithm A′, given

(hk∗, ct∗,K∗), embed cti,1−xi
= ct∗, Kj,1−xj

= K∗.
Case 2. zj
= xj: ctj,1−xj

is output of Ê1 (hk, (j, 1 − xj)) or
E1

(
hk, (j, 1 − xj); ρj,1−xj

)
.

Kj,1−xj
is uniform random in both experiments.

In this case, the reduction algorithm A′, given (hk∗, ct∗,K∗), embed cti,1−xi
=

ct∗, set Kj,1−xj
← {0, 1}�.

58 Y. Yoshida et al.

In both cases, A′ returns output out ← A(pk,CT, rGen, rEnc).
Depending on A′ playing in either ExprealCE,A′ or ExposCE,A′ , A′ perfectly simulates

ExpWeak Real
NCE,A or ExpWeak Ideal

NCE,A except correctness error on Kj,xj
, which occurs with

negligible probability.
Hence assuming the CE satisfies security with oblivious sampleability, the

difference of Pr[out = 1] in Exp 3.(j − 1) and Exp 3.j is negligible.

Exp 4: This experiment is the same as Exp 3.n except that Ki,xi
is generated by

Ki,xi
← E2 (hk, (i, xi), y; ρi,xi

) instead of Ki,xi
← D (hk, (x, r), cti,b) for every

i ∈ [n].

From the correctness of CE, the difference of Pr[out = 1] between Exp 3.n and
Exp 4 is negligible.

Exp 5: In this experiment, we compute y as y ← H (hk, 0; r′), where r′ ← RH.
Later, we compute r as r ← H−1 (td, (0, r′) , x). Note that this experiment is
exactly the same as ExpWeak Ideal

NCE,A in which Leak = BSC0.5 is used. In detail,
the experiment proceeds as follows.
1. Generate (hk, td) ← G

(
1λ, 1n

)
and z ← {0, 1}n.

For all i ∈ [n], b ∈ {0, 1}, compute cti,b ← E1 (hk, (i, b); ρi,b). Set

pk :=
(
hk,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
.

Note that this pk does not depend on z.
2. Compute y ← H (hk, 0; r′),

Ki,b ←
{
E2 (hk, y; ρi,b) (b = xi ∨ zi = xi)
{0, 1}� (b
= xi ∧ zi
= xi)

for all i ∈ [n], b ∈ {0, 1}, and

CT :=
(

y,

(
K1,0, . . . ,Kn,0

K1,1, . . . ,Kn,1

))
.

Note that this CT can be computed only from xI , where I = {i ∈ [n] |
zi
= xi}. Moreover, we can regard xI ← BEC0.5(x; rch = x⊕z⊕1n), since
z ← {0, 1}n has not appeared elsewhere in this experiment.

3. Sample r ← H−1 (td, (0, r′) , x).
Set the randomness as

rGen :=
(
hk, z, {ρi,zi

}i∈[n], {cti,1−zi
}i∈[n]

)

rEnc :=
(
r, {Ki,1−xi

}i∈[n]

)
.

4. out ← A(pk,CT, rGen, rEnc)

Non-committing Encryption with Constant Ciphertext Expansion 59

Lemma 7. If the obliviously sampleable CE satisfies trapdoor collision, the dif-
ference of Pr[out = 1] in Exp 4 and Exp 5 is negligible.

From the above arguments, we see that NCE satisfies weak security with
respect to Leak = BSC0.5. This completes the proof of Theorem 4. ��

6 Obliviously Sampleable Chameleon Encryption from
Lattices

We propose a lattice-based construction of obliviously sampleable CE. The
ciphertext length of the proposed scheme is λ · poly(log λ), which is smaller than
O(

λ2
)

of the construction from the DDH problem [31].
The construction is similar to the construction of hash encryption from LWE

proposed by Döttling et al. [17]. However we need a super-polynomially large
modulus Zq for the scheme to satisfy correctness. Although security of the hash
encryption is claimed to be proved from a valiant of the LWE assumption, called
extended-LWE, we prove the security directly from the LWE assumption.

Before describing our construction, we recall preliminaries on lattices.

6.1 Preliminaries on Lattices

Notations. Let A,B be matrices or vectors. [A|B] and [A;B] denotes concate-
nation of columns and rows respectively. A\i denotes the matrix obtained by
removing the i-th column of A.

The n-dimensional Gaussian function with parameter s is defined as ρs(x) :=
exp(−π‖x‖2/s2). For positive real s and countable set A, the discrete Gaussian
distribution DA,s is defined by DA,s(x) = ρs(x)/

∑
y∈A ρs(y). We note that, if

s = ω(log m),
Pr

r←DZm,s

[‖r‖ ≤ s
√

m] ≥ 1 − 2−m+1.

(See [28].)

Parameters. We let n = λ, m = O(n log q) (e.g., m = 2n log q), q =
2poly(log λ). Let χ be the discrete Gaussian distribution over Z with parameter
s = ω(

√
m log n), that is, DZ,s. Rounding function round : Zq → {0, 1} is defined

as round(v) = �2v/q�. If input for round is a vector v ∈ Z
�
q, the rounding is

applied to each component. � be a constant.

Definition 11 ((Decisional) Learning with Errors [29]). The LWE
assumption with respect to n dimension, m samples, modulus q, and error dis-
tribution χ over Zq states that for all PPT adversary A, we have

∣
∣Pr[A(A,STA + E) = 1] − Pr[A(A,B) = 1]

∣
∣ = negl(λ) ,

where A ← Z
n×m
q ,S ← Z

n×�
q ,E ← χm×�,B ← Z

m×�
q .

60 Y. Yoshida et al.

Definition 12 (Lattice Trapdoor [19,27]). There exists following PPT algo-
rithms TrapGen and Sample.

TrapGen(1λ): Output a matrix AT ∈ Z
n×m
q together with its trapdoor T .

Sample(AT ,T ,u, s): Given a matrix AT with its trapdoor T , a vector u ∈ Z
n
q ,

and a parameter s, output a vector r ∈ Z
m.

These algorithms satisfy the following two properties.

1. AT is statistically close to uniform in Z
n×m
q .

2. If s ≥ ω(
√

m · log n), then r ∈ Z
m output by Sample(AT ,T ,u, s) is statis-

tically close to DZm,s conditioned on r ∈ Λu (AT) := {r ∈ Z
m | ATr ≡ u

(mod q)}.

6.2 Construction

We construct an obliviously sampleable CE scheme from the LWE problem for
super-polynomially large modulus.

G(1λ, 1N):
– Sample R ← Z

n×N
q and (AT ∈ Z

n×m
q ,T) ← TrapGen(1λ).

– Output

hk := A = [R | AT] and td := T .

H (hk, x; r):
– Sample r ∈ Z

m
q according to distribution RH = χm.

– Output
y := A · [x; r] mod q.

H−1 (td, (x, r), x′):
– Set y′ = R(x−x′)+ATr mod q. Sample and output a short collision by

the sampling algorithm of the lattice trapdoor

r′ ← Sample(AT ,T ,y′, s).

E1 (hk, (i, b); ρ):
– Sample ρ = (S,E) where S ← Z

n×�
q ,E ← χ�×(N+m).

– Output
ct := STA\i + E\i ∈ Z

�×(N+m−1)
q .

E2(hk, (i, b), y; ρ):
– Compute v = ST(y − b · ai) + ei and output K := round(v), where ai

and ei are the i-th rows of A and E.
D (hk, (x, r), ct):

– Compute v′ = ct · [x\i; r] and output K := round(v′).
Ĝ(1λ, 1N):

– Sample and output
ĥk ← Z

n×(N+m)
q .

Ê1

(
ĥk, (i, b)

)
:

– Sample and output
ĉt ← Z

�×(N+m−1)
q .

Non-committing Encryption with Constant Ciphertext Expansion 61

Trapdoor Collision. For all x,x′, H(hk,x; r) = H(hk,x′; r′) holds, because the
lattice trapdoor samples r such that ATr

′ ≡ y′ (mod q) where y′ = R(x−x′)+
ATr mod q. Moreover, if r ← χm, ATr mod q is statistically close to uniform
over Z

n
q [19, Cor. 5.4], hence y′ is also statistically close to uniform. Thus, the

distribution of r′ is statistically close to χm (conditioned on Rx′ + ATr
′ ≡

Rx + ATr (mod q)).

Correctness. Let Δ :=
∣
∣vj − v′

j

∣
∣, where vj and v′

j are the j-th component of the
inputs to the rounding function in the computation of E2 and D respectively.

Δ =
∣
∣(sj

T(y − xi · ai) + ei,j

) − (
ctj · [x\i; r]

)∣∣

=
∣
∣sj

T(A · [x; r] − xi · ai) + ei,j − (
sj

TA\i + e\i,j

)
[x\i; r]

∣
∣

=
∣
∣ei,j − e\i,j [x\i; r]

∣
∣

≤ ‖ej‖ · ‖[x; r‖
≤ s

√
N + m ·

√
N + s2m ≤ s2(N + m),

holds with overwhelming probability. The probability of decryption error on j-th
bit is bounded by

Pr[round(vj)
= round(v′
j)] ≤ 2Δ/q = negl(λ) ,

which is negligible since the modulus q is super-polynomially large. Thus, by
taking the union bound for all |v| = � bits, the probability of decryption error
is bounded by

Pr[round(v)
= round(v′)] ≤ 2�Δ/q = negl(λ) .

Oblivious Sampleability of Hash Keys. R distributes uniformly at random. The
distribution of AT output by TrapGen(1λ) is also statistically close to uniform.
Thus, A output by G

(
1λ, 1n

)
is statistically indistinguishable from the output

of Ĝ
(
1λ, 1n

)
.

Security with Oblivious Sampleability. Let A be an adversary that distinguishes
experiments ExprealCE,A and ExposCE,A.

We construct a reduction algorithm A′ that breaks the LWE assumption
with (N + m) samples by using A as follows:

1. A′ receives
(
A = [R | AT] ∈ Z

n×(N+m)
q ,B ∈ Z

�×(N+m)
q

)
, where B is either

STA + E or uniformly random.
2. A′ sets

a′ := (2xi − 1)
(
ai − A\i[x\i; r]

)
,

R′ := [a1 | · · · | ai−1 | a′ | ai+1 | · · · | aN].

and set

hk := [R′ | AT], ct := B\i, and K := round(bi).

62 Y. Yoshida et al.

3. Finally, A′ returns A(hk, ct,K).

In the LWE case, that is, B = STA + E and bi = STai + ei, A′ statistically
simulates ExprealCE,A: (1) The distribution of hk = [R | AT] is the uniform one and
statistically close to the real distribution of hk, in which AT is one of output of
TrapGen(1λ); (2) The distribution of ct is perfectly correct; (3) The distribution
of K = round(bi) is also perfectly correct: By our reduction algorithm, we have
y = H(hk,x; r) = hk · [x; r] = A\i[x\i; r] + xia

′. Thus, in the computation of
K ← E2(hk, (i, 1 − xi),y; ρ), we compute

vi = ST(y − (1 − xi) · a′) + ei

= ST(A\i[x\i; r] + xia
′ − (1 − xi) · a′) + ei

= ST(A\i[x\i; r] + (2xi − 1)a′) + ei

= ST
(
A\i[x\i; r] + (2xi − 1)(2xi − 1)

(
ai − A\i[x\i; r]

))
+ ei

= ST
(
A\i[x\i; r] +

(
ai − A\i[x\i; r]

))
+ ei

= STai + ei = bi,

where we use the fact (2xi − 1)(2xi − 1) = 1 for xi ∈ {0, 1} to move forth line
to fifth line. Therefore, K = round(vi) = round(bi) has the correct distribution.

In the random case, A′ statistically simulates ExposCE,A.
Therefore, assuming the LWE assumption, we obtain AdvCE,A (λ) = negl(λ).

Public-Key Size of the Resulting NCE. The ciphertext space of this chameleon
encryption is Z

�×(N+m)
q , where q = 2poly(log λ), � = O(1), N = O(λ), m =

O(n log q) = λ · poly(log λ). Thus the length of ciphertexts is

|ct| = poly(log λ) · O(1) · (O(λ) + λ · poly(log λ)) = λ · poly(log λ).

The length of the hash key is

|hk| = poly(log λ) · λ · (O(λ) + λ · poly(log λ)) = λ2 · poly(log λ).

The length of seed for the wiretap codes is |p| = O(λ). Public key expansion
of the resulting NCE scheme is

|p| + |hk| + 2N |ct|
N

= λ · poly(log λ).

7 Conclusion

In this work, we constructed NCE schemes with constant ciphertext expansion
from the DDH or LWE problem.

Along the way, we defined weak NCE. Given that the full-fledged NCE is a
tool to establish private channels in adaptively secure MPC, weak NCE can be
interpreted as a tool to establish wiretap channels in adaptively secure MPC.

Non-committing Encryption with Constant Ciphertext Expansion 63

Through wiretap channels, we can securely transmit a message by encoding with
wiretap codes that satisfy conditional invertibility.

We showed instantiation of weak NCE that has constant ciphertext expansion
and amplified it by using constant rate wiretap codes. Finally, we roughly esti-
mate the ciphertext expansion of the resulting NCE scheme. As we see in Sect. 5,
ciphertext expansion of our weak NCE scheme is 2� asymptotically. Suppose the
wiretap codes used in the amplification achieve the secrecy rate 1/2−h2(ε) where
ε = 1/2�+1. Then, the ciphertext expansion in Eq. 1 has minimum value ≈ 27
when � = 5.

We also showed the public-key expansion of our NCE scheme can be reduced
to λ · poly(log λ) if it is instantiated from the LWE problem. One may think
that the use of the ring-LWE problem may further reduce public-key expansion
similar to the LWE based NCE scheme by Hemenway et al. [22]. However, unfor-
tunately, it seems that the ring-LWE problem is not helpful to reduce the public-
key size asymptotically. Constructing an NCE scheme with constant ciphertext
expansion and better public-key expansion is a natural future direction.

Acknowledgments. A part of this work was supported by NTT Secure Platform Lab-
oratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAKENHI
JP16H01705, JP17H01695, JP19J22363.

References

1. Arikan, E.: Channel polarization: a method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory
55(7), 3051–3073 (2009)

2. Beaver, D.: Plug and play encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 75–89. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0052228

3. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic
adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–
323. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9 26

4. Bellare, M., Tessaro, S.: Polynomial-time, semantically-secure encryption achieving
the secrecy capacity. Cryptology ePrint Archive, Report 2012/022 (2012)

5. Bellare, M., Tessaro, S., Vardy, A.: A cryptographic treatment of the wiretap chan-
nel. Cryptology ePrint Archive, Report 2012/015 (2012)

6. Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 294–311.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 18

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, pp. 1–10
(1988)

8. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party com-
putation. In: 28th Annual ACM Symposium on Theory of Computing, Philadephia,
PA, USA, pp. 639–648 (1996)

https://doi.org/10.1007/BFb0052228
https://doi.org/10.1007/BFb0052228
https://doi.org/10.1007/3-540-47555-9_26
https://doi.org/10.1007/978-3-642-32009-5_18

64 Y. Yoshida et al.

9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In 34th Annual ACM Symposium on
Theory of Computing, Montréal, Québec, Canada, pp. 494–503 (2002)

10. Canetti, R., Poburinnaya, O., Raykova, M.: Optimal-rate non-committing encryp-
tion. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
212–241. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 8

11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

12. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, pp. 11–19 (1988)

13. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10366-7 17

14. Cramer, R., Damg̊ard, I.B., Döttling, N., Fehr, S., Spini, G.: Linear secret sharing
schemes from error correcting codes and universal hash functions. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 313–336. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 11

15. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44598-6 27

16. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

17. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 1

18. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 21

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: 40th Annual ACM Symposium on Theory of Com-
puting, Victoria, BC, Canada, pp. 197–206 (2008)

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: 19th Annual ACM Sym-
posium on Theory of Computing, New York City, NY, USA, pp. 218–229 (1987)

21. Guo, S., Kamath, P., Rosen, A., Sotiraki, K.: Limits on the efficiency of (ring)
LWE based non-interactive key exchange. In: Kiayias, A., Kohlweiss, M., Wallden,
P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 374–395. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45374-9 13

22. Hemenway, B., Ostrovsky, R., Richelson, S., Rosen, A.: Adaptive security with
quasi-optimal rate. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9562, pp. 525–541. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49096-9 22

https://doi.org/10.1007/978-3-319-70700-6_8
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-10366-7_17
https://doi.org/10.1007/978-3-662-46803-6_11
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-030-45374-9_13
https://doi.org/10.1007/978-3-662-49096-9_22
https://doi.org/10.1007/978-3-662-49096-9_22

Non-committing Encryption with Constant Ciphertext Expansion 65

23. Hemenway, B., Ostrovsky, R., Rosen, A.: Non-committing encryption from Φ-
hiding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 591–608.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 24

24. Holenstein, T., Renner, R.: One-way secret-key agreement and applications to
circuit polarization and immunization of public-key encryption. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 478–493. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 29

25. Leung-Yan-Cheong, S.K.: On a special class of wiretap channels (corresp.). IEEE
Trans. Inf. Theory 23(5), 625–627 (1977)

26. Lin, H., Tessaro, S.: Amplification of chosen-ciphertext security. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 503–519. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 30

27. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

28. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37th Annual ACM Symposium on Theory of Computing, Baltimore, MA,
USA, pp. 84–93 (2005)

30. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)
31. Yoshida, Y., Kitagawa, F., Tanaka, K.: Non-committing encryption with quasi-

optimal ciphertext-rate based on the DDH problem. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 128–158. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34618-8 5

https://doi.org/10.1007/978-3-662-46494-6_24
https://doi.org/10.1007/11535218_29
https://doi.org/10.1007/978-3-642-38348-9_30
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-030-34618-8_5

Collusion Resistant Trace-and-Revoke
for Arbitrary Identities from Standard

Assumptions

Sam Kim1(B) and David J. Wu2(B)

1 Stanford University, Stanford, CA, USA
skim13@cs.stanford.edu

2 University of Virginia, Charlottesville, VA, USA
dwu4@virginia.edu

Abstract. A traitor tracing scheme is a multi-user public-key encryp-
tion scheme where each user in the system holds a decryption key that
is associated with the user’s identity. Using the public key, a content
distributor can encrypt a message to all of the users in the system. At
the same time, if a malicious group of users combine their respective
decryption keys to build a “pirate decoder,” there is an efficient tracing
algorithm that the content distributor can use to identify at least one of
the keys used to construct the decoder. A trace-and-revoke scheme is an
extension of a standard traitor tracing scheme where there is an addi-
tional key-revocation mechanism that the content distributor can use to
disable the decryption capabilities of compromised keys. Namely, during
encryption, the content distributor can encrypt a message with respect
to a list of revoked users such that only non-revoked users can decrypt
the resulting ciphertext.

Trace-and-revoke schemes are challenging to construct. Existing con-
structions from standard assumptions can only tolerate bounded collu-
sions (i.e., there is an a priori bound on the number of keys an adversary
obtains), have system parameters that scale exponentially in the bit-
length of the identities, or satisfy weaker notions of traceability that are
vulnerable to certain types of “pirate evolution” attacks. In this work, we
provide the first construction of a trace-and-revoke scheme that is fully
collusion resistant and capable of supporting arbitrary identities (i.e.,
the identities can be drawn from an exponential-size space). Our scheme
supports public encryption and secret tracing, and can be based on the
sub-exponential hardness of the LWE problem (with a super-polynomial
modulus-to-noise ratio). The ciphertext size in our construction scales
logarithmically in the size of the identity space and linearly in the size
of the revocation list. Our scheme leverages techniques from both com-
binatorial and algebraic constructions for traitor tracing.

The full version of this paper is available at https://eprint.iacr.org/2019/984.pdf.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 66–97, 2020.
https://doi.org/10.1007/978-3-030-64834-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_3&domain=pdf
https://eprint.iacr.org/2019/984.pdf
https://doi.org/10.1007/978-3-030-64834-3_3

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 67

1 Introduction

Traitor tracing schemes [CFN94] provide content distributors a way to identify
malicious receivers and pirates. Specifically, a traitor tracing scheme is a public-
key encryption scheme that is defined over a set of global public parameters
pp and many secret decryption keys {skid}. Each of the decryption keys skid is
associated with an identifier id (e.g., a user’s name or profile picture). Anyone
is able to encrypt a message using the public parameters pp and any user who
holds a valid decryption key skid can decrypt the resulting ciphertext. The main
security property is traceability, which says that if a coalition of users combine
their respective decryption keys to create a new decryption algorithm (i.e., a
“pirate decoder”), there is an efficient tracing algorithm that, given (black-box)
access to the decoder, will successfully identify at least one of the secret keys
that was used to construct the pirate decoder. As such, traitor tracing schemes
provide an effective way for content distributors to combat piracy.

In practice, simply identifying the keys that went into a pirate decoder is not
enough; we also require a way for the content distributor to disable the decryp-
tion capabilities of a compromised key. Traitor tracing schemes that support
efficient key-revocation mechanisms are called trace-and-revoke schemes [NP00].
In a trace-and-revoke scheme, the encryption algorithm additionally takes in a
list of revoked users L. A ciphertext that is generated with respect to a revo-
cation list L can only be decrypted by keys for identities id /∈ L. Furthermore,
the revocation mechanism should remain compatible with tracing: namely, if an
adversary builds a pirate decoder that can still decrypt ciphertexts encrypted
with respect to a revocation list L, the tracing algorithm should successfully
identify at least one of the non-revoked decryption keys (i.e., some id /∈ L) that
went into the construction of the pirate decoder. We give the formal definition
in Sect. 4.

Properties of Trace-and-Revoke Schemes. There are a number of possible proper-
ties that a trace-and-revoke scheme could provide. We enumerate several impor-
tant ones below:

– Collusion resistance: A trace-and-revoke scheme is t-collusion resistant if
tracing works as long as the pirate obtains fewer than t decryption keys,
and the scheme parameters are allowed to depend on t. When t can be an
arbitrary polynomial, the scheme is fully collusion resistant.

– A priori unbounded revocation: Some trace-and-revoke schemes support
bounded revocation where at setup time, there is an a priori bound r on the
maximum number of revoked users the scheme supports. A scheme supports a
priori unbounded revocation if the number of revoked users can be an arbitrary
polynomial. We note here that while we can require an even stronger property
that supports revoking a super-polynomial number of users, the scheme we
develop in this work does not support this stronger property (except in certain
restricted settings; see Sect. 1.1).

– Black box tracing: A trace-and-revoke scheme supports black box tracing
if the tracing algorithm only requires oracle access to the pirate decoder.

68 S. Kim and D. J. Wu

This means we do not need to impose any restrictions on the structure of
the adversary’s decoder. Tracing must work on any decoder that is able to
decrypt (or even better, distinguish) ciphertexts.

– Identity-based: A trace-and-revoke scheme is “identity-based” or supports
arbitrary identities if the set of possible identities ID the scheme supports
can be exponential in size [NWZ16]. In most trace-and-revoke schemes, the
set of possible identities is assumed to have polynomial size (i.e., identities
are represented by an element of the set [N] = {1, . . . , N}). This means that
there is an a priori bound on the maximum number of users supported by
the system, and moreover, in practical scenarios, the tracing authority needs
to separately maintain a database mapping from a numeric index id ∈ [N] to
a user’s actual identifier (which may not fit into a string of length log N). In
addition, as noted in [NWZ16], an added benefit of trace-and-revoke schemes
that support arbitrary identities is anonymity: namely, a user can obtain a
decryption key for their identity without needing to reveal their identity to
the key issuer.

Our Results. In this work, we focus on constructing trace-and-revoke schemes
that provide each of the above guarantees. Namely, we seek schemes that are
flexible (e.g., can support arbitrary identities of polynomial length and an arbi-
trary polynomial number of revocations) while providing strong security (i.e.,
full collusion resistance and security against arbitrary adversarial strategies).
We achieve these properties assuming sub-exponential hardness of the learning
with errors (LWE) assumption [Reg05]. Specifically, we show the following:

Theorem 1.1 (informal). Let λ be a security parameter and ID = {0, 1}n

be the set of possible identities. Assuming sub-exponential hardness of LWE,
there exists a fully collusion resistant trace-and-revoke scheme where the secret
key for an identity id ∈ {0, 1}n has size n · poly(λ, log n) and a ciphertext
encrypting a message m with respect to a revocation list L ⊆ {0, 1}n has size
|m| + |L| · poly(λ, log n). Encryption in our scheme is a public operation while
tracing requires knowledge of a secret key.

Previous trace-and-revoke constructions were either not collusion resistant
[NWZ16,ABP+17], could only support a polynomial-size identity space [BW06,
GKSW10,GQWW19], achieved weaker models of tracing [NNL01,DF02], or
relied on strong assumptions such as indistinguishability obfuscation [NWZ16]
or (positional) witness encryption [GVW19]. We refer to Sect. 1.2 for a more
detailed comparison of our construction with existing ones.

Open Questions. Before giving an overview of our construction, we highlight sev-
eral interesting directions to further improve upon our trace-and-revoke scheme:

– Public tracing: Our tracing algorithm requires a secret key. It is an inter-
esting open problem to obtain fully collusion resistant trace-and-revoke for
arbitrary identities with public tracing from standard assumptions. In fact,
even obtaining a collusion resistant traitor tracing scheme with succinct keys
and public tracing from standard assumptions is currently open.

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 69

– Succinct broadcast: The length of the ciphertexts in our construction scales
linearly in the size of the revocation list, and as such, our scheme only sup-
ports revocation for a polynomial number of users. It is an open question
is to develop an scheme that supports arbitrary identities and where the
ciphertext size scales sublinearly in the number of revoked users (and more
generally, where the ciphertext size scales with the description length of the
revocation list rather than its size). Schemes with these properties are often
called “broadcast, trace, and revoke” schemes [BW06] as they combine both
the succinctness of a “broadcast encryption” [FN93] with the tracing capa-
bility of a traitor tracing scheme. Existing broadcast, trace, and revoke con-
structions [BW06,GKSW10,GQWW19] from standard assumptions can only
handle a polynomial number of users. We provide a more thorough compari-
son in Sect. 1.2.

– Polynomial hardness: Security of our tracing construction relies on the sub-
exponential hardness of LWE. Our reliance on sub-exponential hardness
assumptions is due to our use of complexity leveraging [BB04] to instanti-
ate adaptively-secure variants of the underlying cryptographic primitives we
require in our construction. An important open problem is to base security on
polynomial hardness. The work of Goyal et al. [GKW19] show how to obtain
traitor tracing for an exponential-size identity space from a polynomial hard-
ness assumption, but their scheme does not support revocation.

1.1 Construction Overview

In this section, we provide a high-level overview of our construction. Our app-
roach combines an identity-based traitor tracing scheme based on the tech-
niques developed in [NWZ16,GKW18] with the combinatorial revocation scheme
from [NNL01]. We describe each of these components below.

Traitor Tracing from Private Linear Broadcast. Boneh et al. [BSW06] showed
how to construct a collusion resistant traitor tracing scheme from a private linear
broadcast encryption (PLBE) scheme. A PLBE scheme is an encryption scheme
where decryption keys are associated with an index i ∈ [N], and ciphertexts are
associated with a secret index j ∈ [N] and a message m. The correctness prop-
erty guarantees that a decryption key ski for index i can decrypt all ciphertexts
encrypted to indices j where i ≤ j. There are two ways to generate a ciphertext.
The public encryption algorithm allows anyone to encrypt to the index N , which
can be decrypted by secret keys ski for all i ∈ [N]. The secret encryption algo-
rithm allows the tracing authority who holds a tracing key to encrypt to indices
j ≤ N . The “index-hiding” requirement guarantees that an adversary who does
not have a key for index j cannot distinguish an encryption to index j from an
encryption to index j + 1. Finally, the “message-hiding” requirement says that
ciphertexts encrypted to index 0 are semantically secure (given any subset of
decryption keys for indices 1 ≤ j ≤ N). These properties form the basis of the
tracing algorithm described in [BSW06]. Boneh et al. showed how to construct

70 S. Kim and D. J. Wu

PLBE from pairing-based assumptions where the ciphertexts have size O(
√

N).
Hence their scheme only supports a polynomial-size identity space.

Recently, Goyal et al. [GKW18] gave a new construction of a PLBE scheme
from the LWE assumption by combining a new cryptographic notion called
mixed functional encryption (mixed FE) with an attribute-based encryption
(ABE) scheme [SW05,GPSW06]. Their construction has the appealing prop-
erty that the size of all of the system parameters (e.g., the public parameters,
decryption keys, and ciphertexts) scale with poly(λ, log N). Thus, the construc-
tion of Goyal et al. [GKW18] can in principle support arbitrary set of identities.
However, the tracing algorithm in the PLBE framework runs in time that scales
linearly with the size of the identity space. As a result, the [GKW18] construction
does not support tracing over an exponential space of identities.

Identity-Based Traitor-Tracing from Functional Encryption. In [NWZ16], Nishi-
maki et al. introduced a more general tracing algorithm for PLBE that supports
an exponential identity space (by abstracting the tracing problem as an “ora-
cle jump-finding” problem). Their construction relies on a PLBE scheme that
satisfies a more general notion of index-hiding security. Namely a ciphertext
encrypted to index j1 should be indistinguishable from a ciphertext encrypted
to index j2 as long as the adversary does not have any keys in the interval
(j1, j2].1 A limitation of this construction is that the ciphertexts scale linearly
in the bit-length of the identities. Nishimaki et al. then show how to construct
a traitor tracing scheme with short ciphertexts (i.e., one where the ciphertext
size scales with poly(log log N)) from a private broadcast encryption scheme
that support slightly more general broadcast sets. Finally, they note that pri-
vate broadcast is just a special case of general-purpose functional encryption
which can be instantiated using indistinguishability obfuscation [GGH+13], or,
in the bounded-collusion setting, from LWE [GKP+13] or even just public-key
encryption [SS10,GVW12].

A More General View of [GKW18]. In this work, we take a more general view
of the PLBE construction in [GKW18] and show that the construction in fact
gives a secret-key predicate encryption scheme with a broadcast functionality. In
turn, PLBE can be viewed as a specific instantiation of the predicate encryption
scheme for the particular class of threshold predicates. This view will enable
our generalization to identity-based traitor tracing with short ciphertexts (by
following the approach of [NWZ16]) as well as enable an efficient mechanism for
key revocation. Note that the “broadcast functionality” considered here refers
to a method to publicly encrypt a message that can be decrypted by all secret
keys in the system (i.e., broadcasting a message to all users in the system). We
are not requiring the ability to succinctly broadcast messages to subsets of users
(as in the setting of broadcast encryption [FN93]).

1 This property follows from the usual index-hiding security game by a standard hybrid
argument when the indices are drawn from a polynomial-size space, but not when
the indices are drawn from an exponentially-large one.

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 71

Specifically, in a secret-key (ciphertext-policy) predicate encryption scheme,
ciphertexts are associated with a predicate f and a message m, while decryption
keys are associated with an attribute x. Decrypting a ciphertext ctf,m associ-
ated with a predicate f and a message m with a function key for an attribute x
yields m if f(x) = 1 and ⊥ otherwise. Moreover, the policy f associated with
a ciphertext is hidden irrespective of whether decryption succeeds or not—this
property is the analog of the “strong” attribute-hiding property considered in
the study of key-policy predicate encryption [BW07,KSW08,SBC+07]. Finally,
while the predicate encryption scheme is secret-key, there exists a public encryp-
tion algorithm that allows anyone to encrypt a message with respect to the
“always-accept” policy (i.e., f(x) = 1 for all inputs x). In Sect. 3.1, we show how
to combine mixed FE (for general circuits) and attribute-based encryption (for
general circuits) to obtain a secret-key ciphertext-policy predicate encryption
scheme with broadcast. This construction is a direct analog of the [GKW18]
construction of PLBE from the same set of underlying primitives. Next, we note
that this type of predicate encryption directly implies a fully collusion resistant
traitor tracing scheme with short ciphertexts via [NWZ16]. The one difference,
however, is that since the predicate encryption scheme is in the secret-key set-
ting, only the tracing authority who holds the master secret key is able to run
the tracing algorithm. Thus in contrast to [NWZ16], our scheme only supports
secret tracing. We note that working in the secret-key setting introduces some
new challenges in the security analysis of the [NWZ16] construction. These can
be handled using similar techniques as those developed in [GKW18], and we
discuss this in greater detail in Sect. 4.1.

Trace-and-Revoke via Revocable Predicate Encryption. Thus far, we have shown
how to combine ideas from [GKW18] and [NWZ16] to obtain a collusion resis-
tant traitor tracing scheme for arbitrary identities. The next step is to develop a
mechanism for key revocation. Previously, Nishimaki et al. showed how to use a
revocable functional encryption scheme to construct a trace-and-revoke scheme.
In this work, we show that a revocable variant of our secret-key predicate encryp-
tion scheme with broadcast also suffices for this general transformation. Namely,
in a revocable predicate encryption scheme, each decryption key is additionally
tagged with an identity id, and at encryption time (both secret and public), the
encrypter provides both the decryption policy f and the revocation list L. The
resulting ciphertext can then be decrypted by all keys skid,x associated with an
identity id and an attribute x such that f(x) = 1 and id /∈ L.

A natural approach to support revocation is to include the revocation list L
as part of the ciphertext policy in the predicate encryption scheme. We would
then embed the identity id as part of the decryption key, and the final decryp-
tion policy would first check that id /∈ L and then check that f(x) = 1. While
this basic approach seems straightforward, it unfortunately does not apply in
our setting. As noted above, the predicate encryption scheme we construct is a
secret-key scheme, and the only public operation it supports is the broadcast

72 S. Kim and D. J. Wu

functionality.2 Obtaining a public-key analog of collusion resistant, strong
attribute-hiding predicate encryption seems quite challenging (and in fact,
implies public-key functional encryption). But as we note in Remark 3.3, even
in the bounded-collusion setting (where we can construct public-key predicate
encryption from standard assumptions), this basic approach seems to run into a
barrier, and any such instantiation from standard assumptions would likely have
to assume a bound on the maximum number of revoked users. In this work,
we seek solutions from standard assumptions that are collusion resistant and
support unbounded revocation.

Revocable Predicate Encryption via Subset Cover Set Systems. As we described
above, constructing a collusion resistant trace-and-revoke scheme for arbitrary
identities reduces to constructing a secret-key revocable predicate encryption
scheme with a broadcast functionality. To build the necessary revocable predicate
encryption scheme, we leverage ideas from combinatorial constructions of traitor
tracing. We note that while we rely on combinatorial ideas in our construction,
we do not provide a generic transformation of any predicate encryption scheme
into a revocable analog. Rather, our construction relies on a careful integra-
tion of the algebraic approach from [GKW18] with the combinatorial approach
from [NNL01].

The core combinatorial ingredient that we use for our construction is a subset-
cover set system, a notion that has featured in several traitor tracing construc-
tions [NNL01,DF02,HS02]. Let [N] be the identity space. A subset-cover set
system for [N] is a set of indices [K] with the following two properties. Each
identity id ∈ [N] is associated with a small number of indices Iid ⊆ [K]. More-
over, given a revocation list L ⊆ [N], there is an efficient algorithm to compute
a “covering” set of indices JL ⊆ [K] with the property that id ∈ L if and only if
Iid ∩ JL = ∅. If we instantiate using the subset-cover set system from [NNL01],
then K = O(N), |Iid| = O(log N), and |JL| = O(|L| log(N/ |L|)).

Given a subset-cover set system, a first attempt to construct a revocable
predicate encryption scheme is as follows. We associate a set of public parameters
ppi and master secret key mski with each index i ∈ [K]. A key for an identity
id ∈ [N] and an attribute x would consist of predicate encryption keys skid,x ←
KeyGen(mski, x) for all the predicate encryption schemes i ∈ Iid associated with
id. Finally, an encryption of a message m with respect to the revocation list
L ⊆ [N] would consist of a collection of ciphertexts {cti}i∈JL where each cti is
an encryption of m with respect to ppi for i ∈ JL. By the property described
above, if id /∈ L, then Iid∩JL 	= ∅. This means that all non-revoked users id /∈ L
will possess a key ski,x for some i ∈ JL, and therefore, will be able to decrypt
(provided that f(x) = 1). For a revoked user, it will be the case that i /∈ JL for

2 The recent work of Goyal et al. [GQWW19] introduces a notion of broadcast mixed
FE that supports a succinct public broadcast to a restricted set of identities (of
polynomial size). The notion we develop in this work supports an exponential-sized
identity space, but in a non-succinct manner (i.e., the ciphertext size scales linearly
with the size of the revocation list).

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 73

all i ∈ Iid, and they will be unable to decrypt. The problem though is that the
size of the public parameters now scale linearly with K (which is as large as N).
As such, this scheme only supports a polynomial number of identities. Thus, we
need a different approach. We describe two candidate ideas below:

– If the underlying predicate encryption scheme has the property where the
master secret key msk can be sampled after the public parameters pp, then
in principle, the construction above would suffice. Namely, we would use a
single set of public parameters for all of the predicate encryption schemes,
and derive the master secret key mski for each i ∈ [K] from a pseudorandom
function (PRF). Unfortunately, such a predicate encryption scheme cannot
be secure since the adversary can always generate for itself a master secret
key and use it to decrypt.

– If the scheme supports a public encryption algorithm, then we can support
revocation by including the index i ∈ [K] as part of the policy associated
with the ciphertext as well as the attribute in the decryption key. Then, the
decryption policy would additionally check that the index associated with
the key matched the index associated with the ciphertext. Essentially, we
ensure that a decryption key for i can only be used to decrypt ciphertexts
encrypted to index i. However, this revocation approach also does not seem to
apply in our setting because our predicate encryption scheme is in the secret-
key setting, and it is not clear how to generalize to a public-key encryption
algorithm that can support more general policies (while retaining the same
security properties).3

While neither of these approaches directly apply in our setting, we can combine
both ideas in our construction to obtain a revocable predicate encryption scheme.
As noted above, our basic secret-key predicate encryption scheme with broad-
cast combines a mixed FE scheme with an ABE scheme. Without getting into
too many details, the construction has the following properties. Each ciphertext
in the scheme consists of a mixed FE ciphertext and an ABE ciphertext, and
analogously, each decryption key consists of a mixed FE decryption key and an
ABE decryption key. The mixed FE scheme is a secret-key scheme that supports
a broadcast mechanism while the ABE scheme is a standard public-key scheme.
The key observation is that if both the underlying mixed FE scheme and the ABE
scheme support revocation, then the resulting predicate encryption scheme also
supports revocation. For our construction it is critical that both schemes sup-
port revocation as we rely on the mixed FE scheme to hide the ciphertext policy
and the ABE scheme to hide the message. If only one of the underlying schemes

3 While the notion of attribute-based mixed FE from [CVW+18] seems like it would
also provide this functionality, this revocation approach only preserves the message
hiding property and not the mixed FE attribute hiding property of the underly-
ing attribute-based mixed FE scheme. For our trace-and-revoke scheme, we require
both message hiding and attribute hiding (which we refer to as “function hiding”).
Obtaining the latter property seemingly requires a way to revoke mixed FE decryp-
tion keys.

74 S. Kim and D. J. Wu

supports revocation, then one or both of these security properties become incom-
patible with revocation. We now describe how we implement revocation for the
underlying mixed FE and ABE schemes:

– The mixed FE scheme is a secret-key scheme that supports public broadcast.
Unlike standard predicate encryption, the security properties of mixed FE can
be satisfied by schemes where the master secret key is sampled after the public
parameters, and this property is satisfied by existing constructions [GKW18,
CVW+18]. This means that we can associate a different mixed FE scheme
with each index i ∈ [K] where the master secret key associated with each
instance is derived from a PRF. All of the mixed FE schemes share a common
set of public parameters. We can now use the first revocation idea described
above to implement revocation for the mixed FE scheme.

– Next, the ABE scheme is a public-key encryption scheme, and thus, we can use
the second type of revocation described above. Namely, we require a single
set of ABE parameters and simply include the index i ∈ [K] in both the
decryption key and the ciphertext to identity which index is being targeted.

By combining these two approaches for revocation, we show in Sect. 3.1 how
to construct a secret-key revocable predicate encryption with broadcast scheme
from the sub-exponential hardness of LWE. Notably, our final revocation mech-
anism relies critically on both the combinatoric properties of the subset-cover
set system as well as the specific algebraic nature of the predicate encryp-
tion construction. Together, this yields the first collusion resistant trace-and-
revoke scheme for arbitrary identities from the same underlying assumptions
(Theorem 1.1).

A Simple Extension: More General Revocation Policies. While the basic scheme
we described above supports revoking any polynomial number of identities, it
naturally extends to support any revocation policy supported by the underly-
ing subset-cover set system. Specifically, if we use the prefix-based subset-cover
set system by Naor et al. [NNL01], our scheme supports revoking any number
of identities that can be specified by a polynomial number of prefix-based pat-
terns. For instance, we can revoke all users whose identity starts with a fixed
prefix—which may consist of an exponential number of identities. In a concrete
application, if the first few bits of a user’s identity specifies a region, then we can
use prefix-based policies to efficiently revoke all of the users from one or more
regions. We provide more discussion in Remark 3.10.

1.2 Related Work

In this section, we survey some of the related work on traitor tracing and trace-
and-revoke schemes and compare our results to existing notions.

Traitor Tracing and Trace-and-Revoke. Numerous works have studied construc-
tions of both traitor tracing and trace-and-revoke schemes from a wide range of

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 75

assumptions and settings. Very broadly, most existing constructions can be catego-
rized into two main categories: combinatorial approaches [CFN94,NP98,SSW01,
CFNP00,NNL01,HS02,DF02,SSW01,BN08] and algebraic approaches [KD98,
NP00,BSW06,BW06,GKSW10,LPSS14,KT15,NWZ16,
ABP+17,GKW18,CVW+18,GVW19,GQWW19]. We refer to these works and
the references therein for a survey of the field.

Many existing traitor-tracing and trace-and-revoke schemes (from standard
assumptions) are only secure against bounded collusions [CFN94,KD98,NP00,
SSW01,LPSS14,KT15,NWZ16,ABP+17]. Other schemes are fully collusion
resistant, but can only handle a polynomial-size identity space [BSW06,BW06,
GKSW10,GKW18,CVW+18,GQWW19]. In this work, we focus on schemes
that are fully collusion resistant and support arbitrary identity spaces. While
there are schemes that are both collusion resistant and support a super-
polynomial identity space [NWZ16,GVW19], these construction require strong
assumptions such as indistinguishability obfuscation [BGI+12] or positional
witness encryption and cannot currently be based on standard intractability
assumptions.

Several of the aforementioned schemes from standard assumptions [BW06,
GKSW10,GQWW19] additionally provide a succinct broadcast mechanism
where anyone can encrypt a message to any subset of the users with a cipher-
text whose size scales with N1/2 [BW06,GKSW10] or with Nε [GQWW19] for
any constant ε > 0, where N is the total number of users in the system. Such
schemes are commonly referred to as “broadcast, trace, and revoke” schemes.
Notably, the ciphertext size in these constructions is independent of the number
of revoked users and only depends on the total number of users. In our trace-
and-revoke construction (Theorem 1.1), the ciphertext size scales linearly with
the number of revoked users (which can be Ω(N) in the worst case). Thus, in the
setting where we have a polynomial-size identity space and when the number of
revoked users is a sufficiently-large fraction of the total number of users, exist-
ing broadcast, trace, and revoke constructions will have shorter ciphertexts. In
the setting where there is an exponential identity space, the ciphertexts in these
existing constructions are also exponential, and they do not provide a compelling
solution.

Several works [NP98,CFNP00,BN08] consider a threshold notion of traitor
tracing where the tracing algorithm is only guaranteed to work for decoders that
succeed with probability at least δ = 1/poly(λ) (and the scheme parameters are
allowed to depend on the parameter δ). In this work, we focus on schemes that
work for any decoder that succeeds with non-negligible probability.

Some combinatorial constructions [NNL01,HS02,DF02] are fully collusion
resistant, but they only satisfy a weaker notion of traceability where the tracing
algorithm either succeeds in extracting a pirated key or identifies an encryption
strategy that disables the pirate decoder (this latter strategy increases the cipher-
text size). This weaker traceability notion has led to pirate evolution [KP07]
and Pirate 2.0 attacks [BP09] on schemes satisfying this weaker security notion.
In this work, we focus on the strong notion of traceability where the tracing

76 S. Kim and D. J. Wu

algorithm always succeeds in extracting at least one pirate key from any func-
tional decoder. This notion is not affected by the pirate evolution attacks.

Cryptographic Watermarking. A closely-related notion to traitor tracing is
cryptographic watermarking [BGI+12,CHN+16]. Very briefly, a cryptographic
watermarking scheme allows an authority to embed arbitrary data into the secret
key of a cryptographic function such that the marked program preserves the orig-
inal functionality, and moreover, it is difficult to remove the watermark from the
program without destroying its functionality. A collusion resistant watermark-
ing scheme for a public-key encryption scheme would imply a collusion resistant
traitor tracing scheme. Existing constructions [KW17,QWZ18,KW19b] of water-
marking from standard assumptions are not collusion resistant and they are also
limited to watermarking PRFs, which are not sufficient for traitor tracing. The
recent construction of watermarking for public-key primitives [GKM+19] does
imply a traitor tracing scheme for general identities (with public tracing), but
only provides bounded collusion resistance (in fact, in this setting, their con-
struction precisely coincides with the bounded collusion resistant traitor tracing
construction from [NWZ16]). Moreover, it is not clear that existing constructions
of watermarking can be extended to support key revocation.

Concurrent Work. In a recent and concurrent work, Goyal et al. [GKW19] also
study the problem of identity-based traitor tracing for arbitrary identities (i.e.,
which they call “traitor tracing with embedded identities”). Their focus is on
traitor tracing (without revocation) and achieving security based on polyno-
mial hardness assumptions. In contrast, our focus is on supporting both tracing
and revocation while still supporting arbitrary identities. Security of our con-
struction, however, does rely on making a stronger sub-exponential hardness
assumption.

2 Preliminaries

We begin by introducing some notation. We use λ (often implicitly) to denote
the security parameter. We write poly(λ) to denote a quantity that is bounded
by a fixed polynomial in λ and negl(λ) to denote a function that is o(1/λc)
for all c ∈ N. We say that an event occurs with overwhelming probability if its
complement occurs with negligible probability. We say an algorithm is efficient if
it runs in probabilistic polynomial time in the length of its input. For two families
of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N, we write D1

c≈ D2

if the two distributions are computationally indistinguishable (i.e., no efficient
algorithm can distribution D1 from D2 except with negligible probability).

For an integer n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}.
For integers 1 ≤ m ≤ n, we write [m,n] to denote the set of integers {m,m +
1, . . . , n}, and [m,n]R to denote the closed interval between m and n (inclusive)
over the real numbers. For a distribution D, we write x ← D to denote that x

is drawn from D. For a finite set S, we write x
r← S to denote that x is drawn

uniformly at random from S.

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 77

Cryptographic Primitives. We now recall the standard definition of pseudoran-
dom functions and collision-resistant hash functions.

Definition 2.1 (Pseudorandom Function [GGM84]). A pseudorandom
function (PRF) with key-space K = {Kλ}λ∈N, domain X = {Xλ}λ∈N, and range
Y = {Yλ}λ∈N is an efficiently-computable function F : K × X → Y such that for
all efficient adversaries A,

Pr[k r← K : AF (k,·)(1λ) = 1] − Pr[f r← Funs[X ,Y] : Af(·)(1λ) = 1] = negl(λ).

Definition 2.2 (Keyed Collision-Resistant Hash Function). A keyed
collision-resistant hash function with key-space K = {Kλ}λ∈N, domain X =
{Xλ}λ∈N, and range Y = {Yλ}λ∈N is an efficiently-computable function H : K ×
X → Y such that for all efficient adversaries A and sampling k

r← K,

Pr[(x0, x1) ← A(1λ, k) : x0 	= x1 and H(k, x0) = H(k, x1)] = negl(λ).

Subset-Cover Set Systems. As discussed in Sect. 1.1, the subset-cover framework
introduced by Naor et al. [NNL01] is the basis for many combinatorial trace-
and-revoke schemes. We provide the formal definition below:

Definition 2.3 (Subset-Cover Set System [NNL01]). Let N be a positive
integer. A subset-cover set system for [N] is a set of indices [K] where K =
poly(N) together with a pair of algorithms (Encode,ComputeCover) satisfying
the following properties:

– Encode(x) → Ix: On input an element x ∈ [N], the encoding algorithm out-
puts a set of indices Ix ⊆ [K].

– ComputeCover(L) → JL: On input a revocation list L ⊆ [N], the cover-
computation algorithm outputs a collection of indices JL ⊆ [K].

We require the following efficiency and security requirements for a subset-cover
set system.

– Efficiency: Take any element x ∈ [N] and any revocation list L ⊆ [N].
Then, Encode(x) runs in time poly(log N) and ComputeCover(L) runs in time
poly(|L| , log N).

– Correctness: Take any element x ∈ [N] and revocation list L ⊆ [N], and
let Ix ← Encode(x), JL ← ComputeCover(L). Then, x ∈ L if and only if
Ix ∩ JL = ∅.

In this work, we will use the “complete subtree” system from [NNL01, §3.1].
The details of this construction are not essential to our construction, so we omit
them and just summarize the main properties below:

Fact 2.4 (Subset-Cover Set System [NNL01, §3.1]). Let N be a positive
integer. Then there exists a subset-cover set system [K] for [N] where K =
2N − 1, and where the algorithms (Encode,ComputeCover) satisfy the following
properties:

– For all elements x ∈ [N], if Ix ← Encode(x), then |Ix| = log N + 1.
– For all revocation lists L ⊆ [N], if JL ← ComputeCover(L), then |JL| =

O(|L| log(N/ |L|)).

78 S. Kim and D. J. Wu

The Generalized Jump-Finding Problem. Next, we recall the generalized jump-
finding problem introduced by Nishimaki et al. [NWZ16, §3.1] for construct-
ing identity-based traitor tracing schemes with succinct ciphertexts. We note
that [NWZ16] also introduced a simpler variant of the jump-finding problem that
essentially abstracts out the algorithmic core of the traitor tracing construction
from private linear broadcast. Here, we consider the generalized version because
it enables shorter ciphertexts (where the ciphertext size scales logarithmically
with the bit-length of the identities).

Definition 2.5 (Generalized Jump-Finding Problem [NWZ16, Defini-
tion 3.9]). For positive integers N, r, q ∈ N and δ, ε > 0, the (N, r, q, δ, ε)
generalized jump-finding problem is defined as follows. An adversary begins by
choosing a set C of up to q tuples (s, b1, . . . , br) ∈ [N]×{0, 1}r where all of the s
are distinct. Each tuple (s, b1, . . . , br) describes a curve between grid points from
the top to bottom of the grid [1, r]× [0, 2N], which oscillates about the column at
position 2s−1, with b = (b1, . . . , br) specifying which side of the column the curve
is on in each row. The curves divide the grid into |C|+1 contiguous regions. For
each pair (i, x) ∈ [1, r]× [0, 2N], the adversary chooses a probability pi,x ∈ [0, 1]R
with the following properties:

– For any two pairs (i, 2x), (j, 2x) ∈ [1, r]×[0, 2N], it holds that |pi,2x − pj,2x| < δ.
– Let Ci = {(s, b1, . . . , br) ∈ C : 2s− bi} be the set of values 2s− bi for tuples in

C. For any two pairs (i, x), (i, y) ∈ [1, r] × [0, 2N] such that (x, y] ∩ Ci = ∅,
then |pi,x − pi,y| < δ.

– For all i, j ∈ [r], it holds that pi,0 = pj,0 and pi,2N = pj,2N . Define p0 = pi,0

and p2N = pi,2N .
– Finally, |p2N − p0| > ε.

Next, define the oracle Q : [1, r]× [0, 2N] → {0, 1} to be a randomized oracle that
on input (i, x) outputs 1 with probability pi,x. Repeated calls to Q on the same
input (i, x) will yield a fresh and independently-sampled bit. The (N, r, q, δ, ε)
generalized jump-finding problem is to output some element in C given oracle
access to Q.

Theorem 2.6 (Generalized Jump-Finding Algorithm [NWZ16, Theo-
rem 3.10]). There is an efficient algorithm QTraceQ(λ,N, r, q, δ, ε) that runs
in time t = poly(λ, log N, r, q, 1/δ) and makes at most t queries to Q that solves
the (N, r, q, δ, ε) generalized jump-finding problem with probability 1 − negl(λ)
whenever ε ≥ δ(9 + 4(log N� − 1)q). Moreover, any element (s, b1, . . . , br) ∈
[N]×{0, 1}r output by QTraceQ satisfies the following property (with overwhelm-
ing probability):

– For all i ∈ [r], |P (i, 2s − bi) − P (i, 2s − 1 − bi)| ≥ δ, where P (i, x) :=
Pr[Q(i, x) = 1].

Remark 2.7 (Cheating Oracles [NWZ16, Remark 3.8]). The algorithm QTraceQ

from Theorem 2.6 succeeds in solving the (N, r, q, δ, ε) generalized jump-finding

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 79

problem even if the oracle Q does not satisfy all of the requirements in Defi-
nition 2.5. As long as the first two properties hold for all pairs (i, x) and (j, y)
queried by QTraceQ, the algorithm succeeds in outputting an element in C.

2.1 Functional Encryption

In this section, we recall the notions of attribute-based encryption (ABE) and
mixed functional encryption (mixed FE) that we use in this work.

Mixed FE. A mixed FE scheme [GKW18] is a secret-key FE scheme (i.e., a
secret key is needed to encrypt) where ciphertexts are associated with binary-
valued functions f : X → {0, 1} and decryption keys are associated with inputs
x ∈ X . When a secret key skx associated with an input x is used to decrypt
a ciphertext encrypting a message f , the decryption algorithm outputs f(x).
The special property in a mixed FE scheme is that there additionally exists a
public-key encryption algorithm that can be used to encrypt to the “always-
accept” function (i.e., the function f where f(x) = 1 for all x ∈ X). Moreover,
ciphertexts encrypted using the public key are computationally indistinguishable
from ciphertexts produced by using the secret key to encrypt the “always-accept”
function. Finally, for our constructions, we require an additional property where
the master public key and the master secret key for the mixed FE scheme can
be generated independently. This means that we can have a family of mixed
FE schemes sharing a common set of public parameters. As we discuss in the
full version of this paper [KW19a], all existing mixed FE schemes satisfy this
requirement.

Definition 2.8 (Mixed Functional Encryption [GKW18]). A mixed func-
tional encryption scheme ΠMFE with domain X and function family F =
{f : X → {0, 1}} is a tuple of algorithms ΠMFE = (PrmsGen,MSKGen,KeyGen,
PKEnc,SKEnc,Dec) with the following properties:

– PrmsGen(1λ) → pp: On input the security parameter λ, the parameter gener-
ation algorithm outputs the public parameters pp.

– MSKGen(pp) → msk: On input the public parameters pp, the master secret
key generation algorithm outputs a master secret key msk.

– KeyGen(msk, x) → skx: On input the master secret key msk and an input
x ∈ X , the key-generation algorithm outputs a secret key skx.

– PKEnc(pp) → ct: On input the public parameters pp, the public encryption
algorithm outputs a ciphertext ct.

– SKEnc(msk, f) → ctf : On input the master secret key msk and a function
f ∈ F , the secret encryption algorithm outputs a ciphertext ctf .

– Dec(sk, ct) → b: On input a secret key sk and a ciphertext ct, the decryption
algorithm outputs a bit b ∈ {0, 1}.

80 S. Kim and D. J. Wu

A mixed FE scheme should satisfy the following properties:

– Correctness: For all functions f ∈ F and all inputs x ∈ X , and setting pp ←
PrmsGen(1λ), msk ← MSKGen(pp), skx ← KeyGen(msk, x), ct ← PKEnc(pp),
ctf ← SKEnc(msk, f), it follows that

Pr[Dec(skx, ct) = 1] = 1 − negl(λ) and Pr[Dec(skx, ctf) = f(x)] = 1 − negl(λ).

– Semantic security: For a bit b ∈ {0, 1}, we define the security experiment
ExptMFESS[λ,A, b] between a challenger and an adversary A. The challenger
begins by sampling pp ← PrmsGen(1λ), msk ← MSKGen(pp), and gives pp to
A. The adversary is then given access to the following oracles:

• Key-generation oracle: On input x ∈ X , the challenger replies with
skx ← KeyGen(msk, x).

• Encryption oracle: On input f ∈ F , the challenger replies with ctf ←
SKEnc(msk, f).

• Challenge oracle: On input two functions f0, f1 ∈ F , the challenger
replies with ct ← SKEnc(msk, fb).

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is also
the output of the experiment. An adversary A is admissible for the mixed FE
semantic security game if it makes one challenge query (f0, f1), and for all
inputs x ∈ X the adversary submits to the key-generation oracle, f0(x) =
f1(x). The mixed FE scheme satisfies (adaptive) semantic security if for all
efficient and admissible adversaries A,

|Pr[ExptMFESS[λ,A, 0] = 1] − Pr[ExptMFESS[λ,A, 1] = 1]| = negl(λ).

– Public/secret key indistinguishability: For a bit b ∈ {0, 1}, we define
the security experiment ExptMFEPK/SK[λ,A, b] between a challenger and an
adversary A. The challenger begins by sampling pp ← PrmsGen(1λ), msk ←
MSKGen(pp), and gives pp to A. The adversary is then given access to the
following oracles:

• Key-generation oracle: On input x ∈ X , the challenger replies with
skx ← KeyGen(msk, x).

• Encryption oracle: On input f ∈ F , the challenger replies with ctf ←
SKEnc(msk, f).

• Challenge oracle: On input a function f ∈ F , the challenger computes
ct0 ← PKEnc(pp) and ct1 ← SKEnc(msk, f) and gives skb to the adver-
sary.

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is also the
output of the experiment. An adversary A is admissible for the public/secret key
indistinguishability game if it makes a single challenge query f ∈ F and for all
inputs x ∈ X the adversary submits to the key-generation oracle, f(x) = 1. The
mixed FE scheme satisfies (adaptive) public/secret key indistinguishability if for
all efficient and admissible adversaries A, it holds that
∣
∣
∣Pr[ExptMFEPK/SK[λ,A, 0] = 1] − Pr[ExptMFEPK/SK[λ,A, 1] = 1]

∣
∣
∣ = negl(λ).

We include additional preliminaries and discussion about mixed FE (e.g., impos-
ing a bound on the number of encryption oracle queries the adversary can make
in the security games) in the full version of this paper [KW19a].

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 81

3 Revocable Predicate Encryption

In this section, we introduce our notion of a secret-key revocable predicate
encryption scheme that supports a public broadcast functionality (i.e., a public-
key encryption algorithm that outputs ciphertexts that can be decrypted by all
secret keys in the system). This will be the primary primitive we use to construct
our identity-based trace-and-revoke scheme (described in Sect. 4). Our defini-
tions can be viewed as a special case of the more general notion of (public-key)
revocable functional encryption from [NWZ16]. The advantage of considering
this relaxed notion is that it enables constructions from standard assumptions
(whereas we only know how to construct fully secure revocable functional encryp-
tion from indistinguishability obfuscation). We introduce our notion below and
then show how to construct it by combining mixed FE, ABE, and a subset-cover
set system in Sect. 3.1.

Definition 3.1 (Secret-Key Revocable Predicate Encryption with
Broadcast). A secret-key revocable predicate encryption scheme (RPE)
scheme with broadcast for an identity space ID, an attribute space X , a function
family F = {f : X → {0, 1}}, and a message space M is a tuple of algorithms
ΠRPE = (Setup,KeyGen,Broadcast,Enc,Dec) defined as follows:

– Setup(1λ) → (pp,msk): On input the security parameter λ, the setup algo-
rithm outputs the public parameters pp and the master secret key msk.

– KeyGen(msk, id, x) → skid,x: On input the master secret key msk, an identity
id ∈ ID, and an attribute x ∈ X , the key-generation algorithm outputs a
decryption key skid,x.

– Broadcast(pp,m,L) → ctm,L: On input the public key, a message m, and a
revocation list L ⊆ ID, the broadcast algorithm outputs a ciphertext ctm,L.

– Enc(msk, f,m,L) → ctf,m,L: On input the master secret key msk, a function
f ∈ F , a message m ∈ M, and a revocation list L ⊆ ID, the encryption
algorithm outputs a ciphertext ctf,m,L.

– Dec(sk, ct) → m/⊥: On input a decryption key sk and a ciphertext ct, the
decryption algorithm either outputs a message m ∈ M or a special symbol ⊥.

A secret-key RPE scheme with broadcast should satisfy the following properties:

– Correctness: For all functions f ∈ F , all identities id ∈ ID, all attributes
x ∈ X where f(x) = 1, all messages m ∈ M, and all revocation lists L ⊆ ID
where id /∈ L, if we set (pp,msk) ← Setup(1λ), skid,x ← KeyGen(msk, id, x),
the following holds:

• Broadcast correctness: If ctm,L ← Broadcast(pp,m,L), then

Pr[Dec(skid,x, ctm,L) = m] = 1 − negl(λ).

• Encryption correctness: If ctf,m,L ← Enc(msk, f,m,L), then

Pr[Dec(skid,x, ctf,m,L) = m] = 1 − negl(λ).

82 S. Kim and D. J. Wu

– Message hiding: For a bit b ∈ {0, 1}, we define the experiment
ExptRPEMH[λ,A, b] between a challenger and an adversary A. The challenger
begins by sampling (pp,msk) ← Setup(1λ) and gives pp to A. The adversary
is then given access to the following oracles:

• Key-generation oracle: On input an identity id ∈ ID and an attribute
x ∈ X , the challenger replies with skid,x ← KeyGen(msk, id, x).

• Encryption oracle: On input a function f ∈ F , a message m ∈ M,
and a revocation list L ⊆ ID, the challenger replies with ctf,m,L ←
Enc(msk, f,m,L).

• Challenge oracle: On input a function f ∈ F , two messages m0,m1 ∈
M, and a revocation list L ⊆ ID, the challenger computes ctb ←
Enc(msk, f,mb,L) and gives ctb to the adversary.

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is
the output of the experiment. An adversary A is admissible for the message
hiding game if it makes a single challenge query (f,m0,m1,L) such that for
all pairs (id, x) the adversary submitted to the key-generation oracle, it holds
that f(x) = 0 or id ∈ L. We say that ΠRPE satisfies (adaptive) message hiding
if for all efficient and admissible adversaries A,

|Pr[ExptRPEMH[λ,A, 0] = 1] − Pr[ExptRPEMH[λ,A, 1] = 1]| = negl(λ).

– Function hiding: For a bit b ∈ {0, 1}, we define the experiment ExptRPEFH[λ,
A, b] between a challenger and an adversary A exactly as ExptRPEMH[λ,A, b],
except the challenge oracle is replaced with the following:

• Challenge oracle: On input two functions f0, f1 ∈ F , a message
m ∈ M, and a revocation list L ⊆ ID, the challenger computes ctb ←
Enc(msk, fb,m,L) and gives ctb to the adversary.

We say an adversary A is admissible for the function-hiding game if it makes
a single challenge query (f0, f1,m,L) such that for all pairs (id, x) the adver-
sary submitted to the key-generation oracle, either f0(x) = f1(x) or id ∈ L.
We say that ΠRPE satisfies (adaptive) function hiding if for all efficient and
admissible adversaries A,

|Pr[ExptRPEFH[λ,A, 0] = 1] − Pr[ExptRPEFH[λ,A, 1] = 1]| = negl(λ).

– Broadcast security: For a bit b ∈ {0, 1}, we define the security experi-
ment ExptRPEBC[λ,A, b] between a challenger and an adversary A exactly as
ExptRPEMH[λ,A, b], except the challenge oracle is replaced with the following:

• Challenge oracle: On input a message m ∈ M and a revocation
list L ⊆ ID, the challenger computes ct0 ← Broadcast(pp,m,L) and
ct1 ← Enc(msk, f,m,L) where faccept is the “always-accept” function (i.e.,
faccept(x) = 1 for all x ∈ X). It gives ctb to the adversary.

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is the
output of the experiment. We say that ΠRPE satisfies (adaptive) broadcast
security if for all efficient adversaries A that make at most one challenge
query,

|Pr[ExptRPEBC[λ,A, b] = 1] − Pr[ExptRPEBC[λ,A, 1]]| = negl(λ).

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 83

Remark 3.2 (Non-Adaptive q-Query Security). For each of the security notions
in Definition 3.1 (message hiding, function hiding, and broadcast security), we
define a notion of non-adaptive q-query security where the corresponding security
notion only holds against all adversaries that make at most q ∈ N queries to the
encryption oracle, and moreover, all of the non-encryption queries occur before
the encryption queries. Achieving this notion is easier and suffices for our main
construction (adaptively-secure trace-and-revoke).

Remark 3.3 (Embedding the Revocation List in the Attribute). A natural app-
roach for constructing a revocable predicate encryption scheme from any vanilla
predicate encryption scheme is to include the revocation list L as part of the
function in the predicate encryption scheme. A decryption key for an identity
id would then check that id is not contained in the revocation list L associated
with the ciphertext. This is the approach suggested in [NWZ16, Remark 6.2] in
the context of constructing a revocable functional encryption scheme. While this
approach may seem straightforward, it has a significant drawback in most set-
tings. In existing predicate encryption schemes from standard assumptions, the
decryption functionality is represented as a circuit, which takes fixed-size inputs.
Thus, if the revocation list is embedded as part of the ciphertext, then a predicate
encryption scheme for circuit-based predicates would only be able to support an
a priori bounded number of revocations. In contrast, the our construction allows
for revoking an arbitrary polynomial number of users (Sect. 3.1). Of course, if
we can construct predicate or functional encryption for Turing machine or RAM
computations, then this natural revocation approach would suffice. Existing con-
structions of functional encryption for Turing machine computations all rely on
indistinguishability obfuscation [KLW15,AJS17,AS16,GS18].

3.1 Constructing Secret-Key Revocable Predicate Encryption with
Broadcast

In this section, we describe our construction of a secret-key revocable pred-
icate encryption with broadcast scheme for general predicates by combining
a mixed FE scheme, an ABE scheme, and a subset-cover set system. As dis-
cussed in Sect. 1.1, our core construction (without revocation) can be viewed as
a direct generalization of the construction of private linear broadcast encryption
from mixed FE and ABE from [GKW18]. We next augment our construction
with a subset cover set system to support revocation. Our techniques allow
revoking an arbitrary number of users (in contrast to previous trace-and-revoke
schemes from standard assumptions that could only handle bounded revoca-
tions [NWZ16,ABP+17]). We give our full construction and its analysis below:

Construction 3.4 (Secret-Key Revocable Predicate Encryption with
Broadcast). Fix an identity space ID = {0, 1}n, attribute space X , function
family F = {f : X → {0, 1}} and message space M, where n = n(λ).

– Let [K] be the subset-cover set system for the set ID = {0, 1}n. Let ΠSC =
(Encode,ComputeCover) be the algorithms associated with the set system.

84 S. Kim and D. J. Wu

– Let ΠMFE = (MFE.PrmsGen,MFE.MSKGen,MFE.KeyGen,MFE.PKEnc,
MFE.SKEnc,MFE.Dec) be a mixed FE scheme with domain X and function
family F . Let ρ = ρ(λ) be the randomness complexity of the master secret
key generation algorithm MFE.MSKGen, let CT denote the ciphertext space
of ΠMFE (i.e., the range of MFE.PKEnc and MFE.SKEnc), and let SK denote
the secret key space of ΠMFE (i.e., the range of MFE.KeyGen). We will require
that ΠMFE be sub-exponentially secure, so let ε > 0 be a constant such that
2−Ω(λε) bounds the advantage of any efficient adversary A for the security of
ΠMFE.

– For a secret key mfe.sk ∈ SK and an index i∗ ∈ [K], define the function
gmfe.sk,i∗ : CT × [K] → {0, 1} to be the function

gmfe.sk,i∗(ct, i) =

{

1 MFE.Dec(mfe.sk, ct) = 1 and i = i∗

0 otherwise.

– Let ΠABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) be an attribute-
based encryption scheme over message space M, attribute space X ′ = CT ×
[K] and function family F ′ = {mfe.sk ∈ SK, i∗ ∈ [K] : gmfe.sk,i∗}.

– Let F : K × [K] → {0, 1}ρ be a pseudorandom function.

We construct a secret-key revocable predicate encryption scheme as follows:

– Setup(1λ): On input the security parameter λ, the setup algorithm sets λ′ =
max(λ, (log K)2/ε). It then generates mixed FE public parameters mfe.pp ←
MFE.PrmsGen(1λ′

). It also instantiates an attribute-based encryption scheme
(abe.pp, abe.msk) ← ABE.Setup(1λ), samples a PRF key k

r← K, and outputs

pp = (mfe.pp, abe.pp) and msk = (pp, abe.msk, k).

– KeyGen(msk, id, x): On input a master secret key msk, an identity id ∈ ID,
and an attribute x ∈ X , the key-generation algorithm does the following:
1. Compute a subset-cover encoding of the identity Iid ← Encode(id).
2. For each index i ∈ Iid, the algorithm samples randomness ri ←

F (k, i). It then generates a mixed FE master secret key mfe.mski ←
MFE.MSKGen(mfe.pp; ri) and a mixed FE decryption key mfe.ski,x ←
MFE.KeyGen(mfe.mski, x).

3. Finally, for each i ∈ Iid, it constructs an ABE decryption key
with respect to the function gmfe.mski,x,i as follows: abe.ski,x ←
ABE.KeyGen(abe.msk, gmfe.ski,x,i).

4. It outputs the collection of keys skid,x = {(i, abe.ski,x)}i∈Iid
.

– Broadcast(pp,m,L): On input the public parameters pp = (mfe.pp, abe.pp), a
message m, and a revocation list L ⊆ ID, the broadcast algorithm does the
following:
1. Obtain a cover for ID\L by computing JL ← ComputeCover(L).
2. For each i ∈ JL, it generates a mixed FE ciphertext mfe.cti ←

MFE.PKEnc(mfe.pp) and an ABE ciphertext abe.cti ← ABE.Enc
(abe.pp, (mfe.cti, i),m).

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 85

3. It outputs the ciphertext ctm,L = {(i, abe.cti)}i∈JL .
– Enc(msk, f,m,L): On input the master secret key msk = (pp, abe.msk, k), a

function f ∈ F , a message m ∈ M, and a revocation list L ⊆ ID, where
pp = (mfe.pp, abe.pp), the encryption algorithm does the following:
1. Obtain a cover for ID\L by computing JL ← ComputeCover(L).
2. Then,

for each i ∈ JL, it computes ri ← F (k, i) and derives the correspond-
ing mixed FE master secret key mfe.mski ← MFE.MSKGen(mfe.pp; ri). It
then encrypts mfe.cti ← MFE.SKEnc(mfe.mski, f).

3. For each i ∈ JL, it computes abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m),
and outputs the ciphertext ctf,m,L = {(i, abe.cti)}i∈JL .

– Dec(sk, ct): On input a key sk = {(i, abe.ski)}i∈I and a ciphertext ct =
{(i, abe.cti)}i∈J , the decryption algorithm first checks if I ∩ J = ∅. If so, it
outputs ⊥. Otherwise, it chooses an arbitrary index i ∈ I ∩ J and outputs
m ← ABE.Dec(abe.ski, abe.cti).

Correctness and Security Analysis. We state our main theorems on the proper-
ties of Construction 3.4 below, but defer their analysis to the full version of this
paper [KW19a].

Theorem 3.5 (Correctness). Suppose that ΠMFE, ΠABE, and ΠSC are correct.
Then, the predicate encryption scheme ΠRPE from Construction 3.4 is correct.

Theorem 3.6 (Message Hiding). Suppose that ΠMFE and ΠSC are correct,
and ΠABE satisfies semantic security. Then, the predicate encryption scheme
ΠRPE from Construction 3.4 satisfies message hiding.

Theorem 3.7 (Function Hiding). Suppose that ΠMFE satisfies sub-
exponential non-adaptive q-query (resp., adaptive) semantic security. Specifi-
cally, suppose that the advantage of any adversary running in time poly(λ) in the
semantic security game is bounded by 2−Ω(λε). In addition, suppose that ΠABE

is secure, F is a secure PRF, and ΠSC is correct. Then, the predicate encryp-
tion scheme in Construction 3.4 satisfies non-adaptive q-query (resp., adaptive)
function hiding security.

Theorem 3.8 (Broadcast Security). Suppose that ΠMFE satisfies sub-
exponential non-adaptive q-query (resp., adaptive) public/secret key indistin-
guishability. Specifically, suppose that the advantage of any adversary running
in time poly(λ) in the public/secret key indistinguishability game is bounded
by 2−Ω(λε). In addition, suppose that F is a secure PRF. Then the predi-
cate encryption scheme ΠRPE in Construction 3.4 satisfies non-adaptive q-query
(resp., adaptive) broadcast security.

3.2 Instantiating Secret-Key Revocable Predicate Encryption with
Broadcast

In this section, we describe one possible instantiation of secret-key revoca-
ble predicate encryption with broadcast from Construction 3.4. In particular,
combining Construction 3.4 with Theorems 3.5 through 3.8 yields the following
corollary:

86 S. Kim and D. J. Wu

Corollary 3.9 (Secret-Key Revocable Predicate Encryption from
LWE). Take an identity-space ID = {0, 1}n, attribute space X = {0, 1}�,
and message space M = {0, 1}t where n = n(λ), � = �(λ), and t = t(λ).
Let F = {f : X → {0, 1}} be a function family where every function f ∈ F
can be specified by a string of length z = z(λ) and computed by a Boolean
circuit of depth d = d(λ). Then, assuming sub-exponential hardness of LWE
(with a super-polynomial modulus-to-noise ratio), there exists a non-adaptive 1-
key secure secret-key revocable predicate encryption scheme with broadcast ΠRPE

over the identity space ID, attribute space X , and function family F . Moreover,
ΠRPE satisfies the following properties:

– Public parameter size: |pp| = � · poly(λ, d, n, z).
– Secret key size: The secret key skid,x for an identity id ∈ {0, 1}n and an

attribute x ∈ {0, 1}� has size |skid,x| = � + poly(λ, d, n, z).
– Ciphertext size: An encryption ctm,L of a message m ∈ {0, 1}t with revo-

cation list L has size |ctm,L| = t + |L| · poly(λ, d, n, z).

Proof. We instantiate Construction 3.4 using the subset-cover set system from
Fact 2.4, the mixed FE scheme using the construction of Chen et al. [CVW+18],
the ABE scheme using the construction of Boneh et al. [BGG+14], and the PRF
from any one-way function [GGM84]. We describe the exact instantiations in
greater detail in the full version of this paper [KW19a]. The mixed FE scheme
is instantiated with domain X = {0, 1}� and function family F , while the ABE
scheme is instantiated with message space M, attribute space X ′ = CT × [K]
and function family F ′ = {mfe.sk ∈ SK, i∗ ∈ [K] : gmfe.sk,i∗}. We will use the
following bounds in our analysis:

– From Fact 2.4, we have that K = O(N), and correspondingly, log K =
O(log N) = O(n).

– We have that the length of a mixed FE ciphertext mfe.ct ∈ CT is bounded by
|mfe.ct| = poly(λ, d, z). Correspondingly, this means that the length �ABE of
an ABE attribute is bounded by �ABE = poly(λ, d, z)+log K = poly(λ, d, n, z).

– Each function gmfe.sk,i∗ can be implemented by a circuit with depth at most
poly(λ, d)+log log K = poly(λ, d, log n). Specifically, the mixed FE decryption
circuit can be evaluated by a circuit of depth poly(λ′, d) = poly(λ, d, n, z) and
the equality-check circuit can be evaluated by a circuit of depth log log K
(since each input to the equality-check circuit is a (log K)-bit value). Thus,
the functions in F ′ can be computed by Boolean circuits with depth at most
dABE ≤ poly(λ, d, n, z). The description length of functions in F ′ is |mfe.sk| +
log K = � + poly(λ, n, z).

Putting all the pieces together, we now have the following:

– Public parameter size: The public parameters pp consist of the ABE public
parameters abe.pp and the mixed FE public parameters mfe.pp. Then,

|abe.pp| = poly(λ, dABE, �ABE) = poly(λ, d, n, z),

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 87

and correspondingly,

|mfe.pp| = � · poly(λ′, d, z) = � · poly(λ, d, n, z),

since λ′ = poly(λ, log K) = poly(λ, n). Thus, |pp| = � · poly(λ, d, n, z).
– Secret key size: The secret key skid,x = {(i, abe.ski,x)}i∈Iid

for an identity
id and attribute x consists of |Iid| ABE secret keys, where |Iid| ← Encode(id).
By Fact 2.4, |Iid| = log N + 1 = poly(n). Finally,

|abe.ski,x| =
∣
∣gmfe.ski,x,i

∣
∣ + poly(λ, dABE, �ABE) = � + poly(λ, d, n, z).

Thus, |skid,x| = |Iid| · |abe.ski,x| = � + poly(λ, d, n, z).
– Ciphertext size: Without loss of generality, we can always use hybrid

encryption for the ciphertexts. Namely, the encryption algorithm samples
a symmetric key k to encrypt the message and then encrypts k using
the secret-key revocable predicate encryption scheme. The final ciphertext
ctm,L then consists of a symmetric encryption of the message m (which
has size |m| + poly(λ)) and a revocable predicate encryption ciphertext ĉt
of the key k. In this case, |k| = poly(λ), and the overall ciphertext size is
|ct| = |m| + poly(λ) +

∣
∣ĉt

∣
∣, where ĉt = {(i, abe.cti)}i∈JL is an encryption of

k using ΠRPE. By construction, ĉt consists of |JL| ABE ciphertexts, where
JL ← ComputeCover(L). By Fact 2.4, |L| = O(|L| log(N/ |L|)) = |L| ·poly(n).
Finally, |abe.cti| = |k| + �ABE · poly(λ, dABE, �ABE) = poly(λ, d, n, z), and so

|ctm,L| = |m| + poly(λ) +
∣
∣ĉt

∣
∣ = t + |L| · poly(λ, d, n, z). ��

Remark 3.10 (Handling More General Revocation Policies). Construction 3.4
naturally supports any revocation policy that can be described by a polynomial-
size cover in the underlying subset-cover set system. In particular, the prefix-
based subset-cover set system by Naor et al. [NNL01] from Fact 2.4 can compute
a cover that excludes any polynomial number of prefixes (in addition to full
identities). For instance, we can use the set system to revoke all users whose
identities start with “000” or “01” (i.e., revoke all identities of the form 000***
and 01****). This way, the number of revoked users in the set L can be expo-
nential, as long as they can be described by a polynomial-number of prefix-based
clusters. Correspondingly, the traitor tracing scheme we construct in Sect. 4 will
also support these types of revocation policies.

4 Identity-Based Trace-and-Revoke

In this section, we describe how to construct an identity-based trace-and-revoke
scheme using a secret-key revocable predicate encryption scheme with broadcast
(Definition 3.1). We begin by recalling the formal definition of a trace-and-revoke
scheme. Our definitions are adapted from the corresponding ones in [BW06,
NWZ16]. As we discuss in greater detail in Remark 4.2, our definition combines
aspects of both definitions and is strictly stronger than both of the previous
notions.

88 S. Kim and D. J. Wu

Definition 4.1 (Trace-and-Revoke [NWZ16, adapted]). A trace-and-revoke
scheme for a set of identities ID and a message space M is a tuple of algorithms
ΠTR = (Setup,KeyGen,Enc,Dec,Trace) defined as follows:

– Setup(1λ) → (pp,msk): On input the security parameter λ, the setup algo-
rithm outputs the public parameters pp and the master secret key msk.

– KeyGen(msk, id) → skid: On input the master secret key msk and an identity
id ∈ ID, the key-generation algorithm outputs a secret key skid.

– Enc(pp,m,L) → ctm,L: On input the public parameters pp, a message m ∈
M, and a list of revoked users L ⊆ ID, the encryption algorithm outputs a
ciphertext ctm,L.

– Dec(sk, ct) → m/⊥: On input a decryption key sk and a ciphertext ct, the
decryption algorithm either outputs a message m ∈ M or a special symbol ⊥.

– TraceD(msk,m0,m1,L, ε) → id/⊥: On input the master secret key msk, two
messages m0,m1 ∈ M, a revocation list L ⊆ ID, a decoder-success parameter
ε > 0, and assuming oracle access to a decoder algorithm D, the tracing
algorithm either outputs an identity id ∈ ID or ⊥.

Moreover, a trace-and-revoke scheme should satisfy the following properties:

– Correctness: For all messages m ∈ M, all identities id ∈ ID, and all
revocation lists L ⊆ ID where id /∈ L, if we set (pp,msk) ← Setup(1λ),
skid ← KeyGen(msk, id), and ctm,L ← Enc(pp,m,L), then

Pr[Dec(skid, ctm,L) = m] = 1 − negl(λ).

– Semantic Security: For a bit b ∈ {0, 1}, we define the security experiment
ExptTRSS[λ,A, b] between a challenger and an adversary A. The challenger
begins by sampling (pp,msk) ← Setup(1λ) and gives pp to A. The adversary
is then given access to the following oracles:

• Key-generation oracle. On input an identity id ∈ ID, the challenger
replies with skid ← KeyGen(msk, id).

• Challenge oracle. On input two messages m0,m1 ∈ M and a revocation
list L ⊆ ID, the challenger replies with ctb ← Enc(pp,mb,L).

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is
the output of the experiment. An adversary A is admissible for the semantic
security game if it makes a single challenge query (m0,m1,L), and moreover,
for all key-generation queries id the adversary makes, id ∈ L. We say that
ΠTR is semantically secure if for all efficient and admissible adversaries A,

|Pr[ExptTRSS[λ,A, 0] = 1] − Pr[ExptTRSS[λ,A, 1] = 1]| = negl(λ).

– Traceability: We define the experiment ExptTRTR[λ,A] between a challenger
and an adversary A. The challenger begins by sampling (pp,msk) ← Setup(1λ)
and gives pp to A. The adversary is then given access to the key-generation
oracle:

• Key-generation oracle. On input an identity id ∈ ID, the challenger
replies with skid ← KeyGen(msk, id).

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 89

At the end of the game, the adversary outputs a decoder algorithm D, two
messages m0,m1 ∈ M, a revocation list L ⊆ ID, and a non-negligible
decoder-success probability ε > 0. Let R ⊆ ID be the set of identi-
ties the adversary submitted to the key-generation oracle and let id∗ ←
TraceD(msk,m0,m1,L, ε). Then the output of the experiment is 1 if id∗ /∈ R\L
and 0 otherwise. We say that an adversary A is admissible for the traceability
game if the decoder algorithm output by A satisfies

Pr[b r← {0, 1} : D(Enc(pp,mb,L)) = b] ≥ 1/2 + ε.

Finally, we say that ΠTR satisfies traceability security if for all efficient and
admissible adversaries A,

Pr[ExptTRTR[λ,A] = 1] = negl(λ).

Remark 4.2 (Comparison to Previous Traceability Notions). Our notion of trace-
ability in Definition 4.1 combines aspects of the notions considered in [BW06]
and [NWZ16] and is stronger than both of these previous definitions. First, sim-
ilar to [NWZ16], we only require that the decoder D output by A to be able
to distinguish the encryptions of two adversarially-chosen messages. The previ-
ous notion in [BW06] made the more stringent requirement that the adversary’s
decoder must correctly decrypt a noticeable fraction of ciphertexts. Thus, our def-
initions enable tracing for much weaker decoders. Next, and similar to [BW06],
our tracing definition naturally incorporates revocation. Namely, if an adversary
constructs a decoder that is able to distinguish encryptions of two messages with
respect to a revocation list L, then the tracing algorithm must identify a compro-
mised key that is outside L. In contrast, the definition in [NWZ16] only consid-
ered tracing in a standalone setting: namely, while the scheme supports revoca-
tion, the tracing definition only considered decoders that can decrypt ciphertexts
encrypted to an empty revocation list. Overall, our definition is stronger than
the previous definitions and we believe provides a more realistic modeling of the
security demands in applications of trace-and-revoke systems.

Remark 4.3 (Adaptive Security). We note that all of the security requirements
in Definition 4.1 are adaptive: namely, the adversary chooses its challenge mes-
sages and revocation list after seeing the public parameters and (adaptively-
chosen) secret decryption keys. Our final construction is fully adaptive (Con-
struction 4.4, Corollary 4.8), but we do rely on complexity leveraging and sub-
exponential hardness assumptions. We remark here that a selective notion of
security where the adversary commits to its revocation list ahead of time does
not seem to directly imply adaptive security by the usual complexity leveraging
technique [BB04] unless we additionally impose an a priori bound on the size of
the revocation list (which we do not require in our analysis). It is an interest-
ing problem to construct a fully collusion resistant trace-and-revoke scheme for
arbitrary identities from standard polynomial hardness assumptions.

90 S. Kim and D. J. Wu

4.1 Constructing an Identity-Based Trace-and-Revoke Scheme

Our construction follows the general high-level schema as that by Nishimaki
et al. [NWZ16], except our construction is secretly-traceable (but will provide
full collusion resistance). Very briefly, we use a secret-key revocable predicate
encryption scheme to embed an instance of the generalized jump-finding problem
(Definition 2.5) where the position of the “jumps” correspond to non-revoked
keys. The tracing algorithm relies on the generalized jump-finding algorithm
(Theorem 2.6) to identify the compromised keys. We give our construction below.

Construction 4.4 (Identity-Based Trace-and-Revoke). Let ID = {0, 1}n

be the identity space and let M be a message space. We additionally rely on the
following primitives:

– Let H : K × ID → [2�] be a keyed collision-resistant hash function.
– Let ID0 = [2�+1]. For a pair (i, u) ∈ [n] × [0, 2�+1], define the function

fi,u : IDn
0 → {0, 1} to be the function that takes as input v = (v1, . . . , vn),

where each vi ∈ ID0, and outputs 1 if vi ≤ u and 0 otherwise. When u = 0,
fi,u(v) = 0 for all i ∈ [n] and v ∈ IDn

0 . Similarly, when u = 2�+1, fi,u(v) = 1
for all i ∈ [n] and v ∈ IDn

0 . We will use a canonical “all-zeroes” function to
represent fi,0 and a canonical “all-ones” function to represent fi,2�+1 for all
i ∈ [n].

– Let ΠRPE = (RPE.Setup,RPE.KeyGen,RPE.Broadcast,RPE.Enc,RPE.Dec) be
a secret-key revocable predicate encryption scheme with broadcast with
attribute space IDn

0 , label space [2�], message space M, and function space
F = {i ∈ [n], u ∈ [0, 2�+1] : fi,u}.

We construct a trace-and-revoke scheme ΠTR = (Setup,KeyGen,Enc,Dec,Trace)
with identity space ID and message space M as follows:

– Setup(1λ): On input the security parameter λ, the setup algorithm samples a
key hk

r← K, parameters (rpe.pp, rpe.msk) ← RPE.Setup(1λ), and outputs

pp = (hk, rpe.pp) and msk = (hk, rpe.msk).

– KeyGen(msk, id): On input the master secret key msk = (hk, rpe.msk) and
an identity id = (id1, . . . , idn) ∈ ID, the key-generation algorithm computes
sid ← H(hk, id) and defines the vector vid = (2sid − id1, . . . , 2sid − idn) ∈ IDn

0 .
It outputs skid ← RPE.KeyGen(rpe.msk, sid, vid).

– Enc(pp,m,L): On input the public parameters pp = (hk, rpe.pp), a message
m, and a revocation list L ⊆ ID, the encryption algorithm first constructs
a new list L′ ⊆ {0, 1}� where L′ = {id ∈ L : H(hk, id)}. Then, it outputs
ctm,L ← RPE.Broadcast(rpe.pp,m,L′).

– Dec(sk, ct): On input a secret key sk and a ciphertext ct, the decryption
algorithm outputs m ← RPE.Dec(sk, ct).

– TraceD(msk,m0,m1,L, ε): On input the decryption oracle D, the master
secret key msk = (hk, rpe.msk), messages m0,m1 ∈ M, a revocation list

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 91

L ⊆ ID, and a success probability ε, the tracing algorithm begins by con-
structing the set L′ ⊆ {0, 1}� where L′ = {id ∈ L : H(hk, id)}. It then defines
the following randomized oracle Q (Fig. 1):

Fig. 1. The randomized oracle Q used for tracing.

Let q = 1, set δq = ε/(9 + 4(� − 1)q), and
compute Tq ← QTraceQ(λ, 2�, n, q, δq, ε). If Tq is non-empty, take any ele-
ment (sid, id1, . . . , idn) ∈ Tq, and output id = (id1, . . . , idn) ∈ ID. Otherwise,
update q ← 2q and repeat this procedure.4

Correctness and Security Analysis. We now show that ΠTR from Construc-
tion 4.4 satisfies correctness, semantic security, and traceability. We state the
main theorems below, but defer their formal proofs to the full version of this
paper [KW19a]. The analysis proceeds similarly to the corresponding analysis
from [NWZ16], except we operate in the secret-traceability setting. The main
challenge in the secret-key setting is that when the adversary in the traceabil-
ity game outputs a pirate decoder, the reduction algorithm cannot easily tell
whether the decoder is “useful” or not (where a “useful” decoder is one that can
be leveraged to break the security of the underlying secret-key revocable predi-
cate encryption scheme). The analysis in [NWZ16] solves this problem by having
the reduction algorithm sample ciphertexts of its own and observe the decoder’s
behavior on those ciphertexts. In this way, the reduction is able to estimate the
decoder’s distinguishing advantage and identify whether the adversary produced
a good decoder or not. In the secret-key setting, the reduction cannot sample
ciphertexts of its own and as such, it cannot estimate the decoder’s success prob-
ability. To solve this problem, we adopt the approach taken in [GKW18] and

4 We will argue in the proof of Theorem 4.7 that this algorithm will terminate with
overwhelming probability. Alternatively, we can set an upper bound on the maximum
number of iterations qmax. In this case, the tracing algorithm succeeds as long as the
total number of keys issued is bounded by 2qmax . Note that this is not an a priori
bound on the number of keys that can be issued, just a bound on the number of
iterations on which to run the tracing algorithm, which can be a flexible parameter
(independent of other scheme parameters).

92 S. Kim and D. J. Wu

allow the reduction algorithm to make a single encryption query to the secret-
key predicate encryption scheme. Using the same type of analysis as in [GKW18],
we then show that with just a single encryption query, the reduction can lever-
age the decoder output by the traceability adversary to break security of the
underlying predicate encryption scheme. The full analysis is provided in the full
version of this paper [KW19a].

Theorem 4.5 (Correctness). If H is collision-resistant and ΠRPE is correct,
then ΠTR from Construction 4.4 is correct.

Theorem 4.6 (Semantic Security). If ΠRPE satisfies broadcast security and
message hiding (without encryption queries), then ΠTR from Construction 4.4
is semantically secure.

Theorem 4.7 (Traceability). If H is collision-resistant and ΠRPE satisfies
non-adaptive 1-query message hiding security, non-adaptive 1-query function
hiding, and non-adaptive 1-query broadcast security, then ΠTR is traceable. In
particular, the tracing algorithm Trace is efficient.

4.2 Instantiating the Trace-and-Revoke Scheme

In this section, we describe our instantiation of our resulting trace-and-revoke
scheme using the secret-key revocable predicate encryption scheme from Sect. 3.1
(Construction 3.4, Corollary 3.9). In particular, combining Construction 4.4 with
Theorems 4.5 through 4.7 yields the following corollary:

Corollary 4.8 (Identity-Based Trace-and-Revoke from LWE). Assum-
ing sub-exponential hardness of LWE (with a super-polynomial modulus-to-noise
ratio), there exists a fully secure identity-based trace-and-revoke scheme with
identity space ID = {0, 1}n and message space M = {0, 1}t with the following
properties:

– Public parameter size: |pp| = n · poly(λ, log n).
– Secret key size: The secret key skid for an identity id ∈ {0, 1}n has size

skid = n · poly(λ, log n).
– Ciphertext size: An encryption ctm,L of a message m ∈ {0, 1}t with respect

to a revocation list L has size ctm,L = t + |L| · poly(λ, log n).

Proof. The claim follows by instantiating Construction 4.4 with the following
primitives:

– We can instantiate the collision-resistant hash function H with the standard
SIS-based collision-resistant hash function [Ajt96,GGH96]. In this case, the
hash key hk has size |hk| = poly(λ) and the output length of the hash function
is also � = poly(λ).

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 93

– We instantiate the secret-key revocable predicate encryption scheme with
broadcast ΠRPE with the construction from Corollary 3.9. For i ∈ [n] and
u ∈ [0, 2�+1], the description length z of the functions fi,u ∈ F satisfies

z = |i| + |u| ≤ log n + � + 3 = poly(λ, log n).

Moreover, each function fi,u is computing a comparison on �-bit values and
selecting one out of the n components of the vector. This can be computed by
a Boolean circuit with depth d = poly(λ, log n)—poly(λ) for the comparison
and poly(log n) to select the element to compare. Finally, the identity-space
for the underlying revocable predicate encryption scheme is ID0 = [2�+1] and
the attribute space is IDn

0 .

We now verify the parameter sizes for the resulting construction:

– Public parameters size: The public parameters pp consists of the hash key
hk and the public parameters rpe.pp for the revocable predicate encryption
scheme. Thus,

|pp| = |hk| + |rpe.pp| = poly(λ) + n� · poly(λ, d, �, z) = n · poly(λ, log n).

– Secret key size: The secret key skid for an identity id ∈ {0, 1}n consists of
a secret key for the underlying revocable predicate encryption scheme. By
Corollary 3.9, we have that |skid| = n� + poly(λ, d, �, z) = n · poly(λ, log n).

– Ciphertext size: The ciphertext ctm,L for a message m ∈ {0, 1}t with
respect to a revocation list L consists of a ciphertext for the underlying revo-
cable predicate encryption scheme. By Corollary 3.9,

|ctm,L| = t + |L| · poly(λ, d, �, z) = t + |L| · poly(λ, log n). ��

Acknowledgments. We thank Ahmadreza Rahimi for helpful discussions on this
work and the anonymous reviewers for useful suggestions on improving the exposition.
S. Kim is supported by NSF, DARPA, a grant from ONR, and the Simons Founda-
tion. D. J. Wu is supported by NSF CNS-1917414 and a University of Virginia SEAS
Research Innovation Award. Opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of DARPA.

References

[ABP+17] Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.:
Efficient public trace and revoke from standard assumptions: extended
abstract. In: ACM CCS, pp. 2277–2293 (2017)

[AJS17] Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation for turing
machines: constant overhead and amortization. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 252–279. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 9

https://doi.org/10.1007/978-3-319-63715-0_9

94 S. Kim and D. J. Wu

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: STOC, pp. 99–108 (1996)

[AS16] Ananth, P., Sahai, A.: Functional encryption for turing machines. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
125–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49096-9 6

[BB04] Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3 14

[BGG+14] Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit
ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 30

[BGI+12] Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM
59(2), 6:1–6:48 (2012)

[BN08] Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In:
ACM CCS, pp. 501–510 (2008)

[BP09] Billet, O., Phan, D.H.: Traitors collaborating in public: pirates 2.0.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 189–205.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-
9 11

[BSW06] Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing
with short ciphertexts and private keys. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 34

[BW06] Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and
revoke system. In: ACM CCS, pp. 211–220 (2006)

[BW07] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on
encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 535–554. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-70936-7 29

[CFN94] Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48658-5 25

[CFNP00] Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Trans.
Inf. Theory 46(3), 893–910 (2000)

[CHN+16] Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs,
D.: Watermarking cryptographic capabilities. In: STOC, pp. 1115–1127
(2016)

[CVW+18] Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-
tracing from LWE made simple and attribute-based. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 341–369.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 13

[DF02] Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless
receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp.
61–80. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 5

[FN93] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 40

https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-01001-9_11
https://doi.org/10.1007/978-3-642-01001-9_11
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/978-3-540-44993-5_5
https://doi.org/10.1007/978-3-540-44993-5_5
https://doi.org/10.1007/3-540-48329-2_40

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 95

[GGH96] Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lat-
tice problems. IACR Cryptology ePrint Archive 1996/9 (1996)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: FOCS, pp. 40–49 (2013)

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions (extended abstract). In: FOCS, pp. 464–479 (1984)

[GKM+19] Goyal, R., Kim, S., Manohar, N., Waters, B., Wu, D.J.: Watermarking
public-key cryptographic primitives. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 367–398. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 12

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In:
STOC, pp. 555–564 (2013)

[GKSW10] Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building effi-
cient fully collusion-resilient traitor tracing and revocation schemes. In:
ACM CCS, pp. 121–130 (2010)

[GKW18] Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing
from learning with errors. In: STOC, pp. 660–670 (2018)

[GKW19] Goyal, R., Koppula, V., Waters, B.: New approaches to traitor tracing
with embedded identities. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019.
LNCS, vol. 11892, pp. 149–179. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-36033-7 6

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In: ACM CCS, pp. 89–98
(2006)

[GQWW19] Goyal, R., Quach, W., Waters, B., Wichs, D.: Broadcast and trace with Nε

ciphertext size from standard assumptions. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 826–855. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 27

[GS18] Garg, S., Srinivasan, A.: A simple construction of iO for turing machines.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240,
pp. 425–454. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03810-6 16

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with
bounded collusions via multi-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 11

[GVW19] Goyal, R., Vusirikala, S., Waters, B.: Collusion resistant broadcast and
trace from positional witness encryption. In: Lin, D., Sako, K. (eds.) PKC
2019. LNCS, vol. 11443, pp. 3–33. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17259-6 1

[HS02] Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45708-9 4

[KD98] Kurosawa, K., Desmedt, Y.: Optimum traitor tracing and asymmet-
ric schemes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol.
1403, pp. 145–157. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054123

[KLW15] Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for
turing machines with unbounded memory. In: STOC, pp. 419–428 (2015)

https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-030-36033-7_6
https://doi.org/10.1007/978-3-030-36033-7_6
https://doi.org/10.1007/978-3-030-26954-8_27
https://doi.org/10.1007/978-3-030-03810-6_16
https://doi.org/10.1007/978-3-030-03810-6_16
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-030-17259-6_1
https://doi.org/10.1007/978-3-030-17259-6_1
https://doi.org/10.1007/3-540-45708-9_4
https://doi.org/10.1007/BFb0054123
https://doi.org/10.1007/BFb0054123

96 S. Kim and D. J. Wu

[KP07] Kiayias, A., Pehlivanoglu, S.: Pirate evolution: how to make the most of
your traitor keys. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 448–465. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74143-5 25

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 9

[KT15] Kiayias, A., Tang, Q.: Traitor deterring schemes: using bitcoin as collat-
eral for digital content. In: ACM CCS, pp. 231–242 (2015)

[KW17] Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from stan-
dard lattice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 503–536. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 17

[KW19a] Kim, S., David, J.W.: Collusion resistant trace-and-revoke for arbi-
trary identities from standard assumptions. IACR Cryptol. ePrint Arch.
2019/984 (2019)

[KW19b] Kim, S., Wu, D.J.: Watermarking PRFs from lattices: stronger security
via extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11694, pp. 335–366. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 11

[LPSS14] Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k-LWE
and applications in traitor tracing. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 315–334. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 18

[NNL01] Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for
stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 41–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44647-8 3

[NP98] Naor, M., Pinkas, B.: Threshold traitor tracing. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0055750

[NP00] Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y.
(ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45472-1 1

[NWZ16] Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to
embed arbitrary information in a key. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9666, pp. 388–419. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 14

[QWZ18] Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under stan-
dard assumptions: public marking and security with extraction queries.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240,
pp. 669–698. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03810-6 24

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC, pp. 84–93 (2005)

[SBC+07] Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-
dimensional range query over encrypted data. In: IEEE S&P, pp. 350–364
(2007)

[SS10] Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption
with public keys. In: ACM CCS, pp. 463–472 (2010)

https://doi.org/10.1007/978-3-540-74143-5_25
https://doi.org/10.1007/978-3-540-74143-5_25
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/BFb0055750
https://doi.org/10.1007/3-540-45472-1_1
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/978-3-030-03810-6_24
https://doi.org/10.1007/978-3-030-03810-6_24

Collusion Resistant Trace-and-Revoke for Arbitrary Identities 97

[SSW01] Staddon, J., Stinson, D.R., Wei, R.: Combinatorial properties of frame-
proof and traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049
(2001)

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11426639 27

https://doi.org/10.1007/11426639_27

Subvert KEM to Break DEM: Practical
Algorithm-Substitution Attacks on

Public-Key Encryption

Rongmao Chen1, Xinyi Huang2(B), and Moti Yung3,4

1 College of Computer, National University of Defense Technology, Changsha, China
chromao@nudt.edu.cn

2 Fujian Provincial Key Laboratory of Network Security and Cryptology, College of
Mathematics and Informatics, Fujian Normal University, Fuzhou, China

xyhuang@fjnu.edu.cn
3 Google LLC, New York, NY, USA

4 Columbia University, New York City, USA
moti@cs.columbia.edu

Abstract. Motivated by the currently widespread concern about mass
surveillance of encrypted communications, Bellare et al. introduced at
CRYPTO 2014 the notion of Algorithm-Substitution Attack (ASA)
where the legitimate encryption algorithm is replaced by a subverted one
that aims to undetectably exfiltrate the secret key via ciphertexts. Prac-
tically implementable ASAs on various cryptographic primitives (Bel-
lare et al., CRYPTO’14 & ACM CCS’15; Ateniese et al., ACM CCS’15;
Berndt and Lískiewicz, ACM CCS’17) have been constructed and ana-
lyzed, leaking the secret key successfully. Nevertheless, in spite of much
progress, the practical impact of ASAs (formulated originally for sym-
metric key cryptography) on public-key (PKE) encryption operations
remains unclear, primarily since the encryption operation of PKE does
not involve the secret key, and also previously known ASAs become rel-
atively inefficient for leaking the plaintext due to the logarithmic upper
bound of exfiltration rate (Berndt and Lískiewicz, ACM CCS’17).

In this work, we formulate a practical ASA on PKE encryption algo-
rithm which, perhaps surprisingly, turns out to be much more efficient
and robust than existing ones, showing that ASAs on PKE schemes are
far more effective and dangerous than previously believed. We mainly
target PKE of hybrid encryption which is the most prevalent way to
employ PKE in the literature and in practice. The main strategy of our
ASA is to subvert the underlying key encapsulation mechanism (KEM)
so that the session key encapsulated could be efficiently extracted, which,
in turn, breaks the data encapsulation mechanism (DEM) enabling us
to learn the plaintext itself. Concretely, our non-black-box yet quite gen-
eral attack enables recovering the plaintext from only two successive
ciphertexts and minimally depends on a short state of previous internal
randomness. A widely used class of KEMs is shown to be subvertible by
our powerful attack.

Our attack relies on a novel identification and formalization of cer-
tain properties that yield practical ASAs on KEMs. More broadly,

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 98–128, 2020.
https://doi.org/10.1007/978-3-030-64834-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_4

Subvert KEM to Break DEM 99

it points at and may shed some light on exploring structural weaknesses
of other “composed cryptographic primitives,” which may make them
susceptible to more dangerous ASAs with effectiveness that surpasses
the known logarithmic upper bound (i.e., reviewing composition as an
attack enabler).

Keywords: Algorithm-substitution attacks · Public-key encryption ·
Key encapsulation mechanism

1 Introduction

Provable security provides strong guarantees for deploying cryptographic tools
in the real world to achieve security goals. Nevertheless, it has been shown that
even provably secure cryptosystems might be problematic in practice. Such a
security gap—between the ideal and the real world—lies in the fact that the
robustness of provable security closely depends on the adopted adversarial model
which, however, often makes idealized assumptions that are not always fulfilled
in actual implementations.

An implicit and common assumption—in typical adversarial models for prov-
able security—is that cryptographic algorithms should behave in the way speci-
fied by their specifications. In the real world, unfortunately, such an assumption
may turn out to be invalid due to a variety of reasons such as software/hardware
bugs and even malicious tampering attacks. In particular, attackers (manufactur-
ers and supply-chain intermediaries), in reality, may be able to modify the algo-
rithm implementation so that the subverted one remains indistinguishable—in
black-box testing—from the specification, while leaking private information (e.g.,
secret keys) during its subsequent runs. The threat was originally identified as
kleptography by Young and Yung [30,31] over two decades ago, while the Snow-
den revelations of actual deployments of such attacks (in 2013) attracted renewed
attention of the research community [3–9,11,12,14,15,17,18,24,25,27–29].

1.1 Algorithm-Substitution Attacks

In Crypto 2014, Bellare, Paterson, and Rogaway [7] initiated the formal study
of algorithm-substitution attack (ASA), which was defined broadly, against sym-
metric encryption. In the ASA model, the encryption algorithm is replaced by
an altered version created by the adversary. Such a substitution is said to be
undetectable if the detector—who knows the secret key—cannot differentiate
subverted ciphertexts from legitimate ones. The subversion goal of an ASA adver-
sary is to gain the ability to recover the secret key from (sequential) subverted
ciphertexts. Concretely, [7] proposed actual substitution attacks against certain
symmetric encryption schemes.

Subsequently, Degabriele, Farshim and Poettering [14] further justified
Bellare et al.’s ASA model [7] from an increased practical perspective, and
redefined the security notion by relaxing the assumption that any subverted

100 R. Chen et al.

ciphertext produced by the altered algorithm should be decryptable. Bellare,
Jaeger and Kane [6] strengthened the undetectability notion of [7] by consider-
ing stronger detectors which are able to adaptively feed the encryption code with
some specified inputs and see all outputs written to memory, including the cur-
rent state of the encryption code. They then designed stateless ASAs against
all randomized symmetric encryption schemes. In [3], Ateniese, Magri and
Venturi extended the ASA model and studied signature schemes in the setting
of fully-adaptive and continuous subversion. Berndt and Lískiewicz [8], in turn,
rigorously investigated the relationship between ASAs and steganography—a
well-known concept of hiding information in unsuspicious communication. By
modeling encryption schemes as steganographic channels, they showed that suc-
cessful ASAs correspond to secure stegosystems on the channels and vice versa.
This indicates a general result that there exist universal ASAs—work with no
knowledge on the internal implementation of the underlying cryptographic prim-
itive—for any cryptographic algorithm with sufficiently large min-entropy, and
in fact almost all known ASAs [3,6,7] are universal ASAs.

In this work, we turn to another fundamental cryptographic primitives, i.e.,
public-key encryption (PKE), aiming at better understanding the impact of
ASAs on PKE systems. Indeed, Bellare, Paterson and Rogaway mentioned in
[7] that:

“...one can consider subversion for public-key schemes or for other cryp-
tographic goals, like key exchange. There are possibilities for algorithms-
substitution attacks (ASAs) in all these settings...the extensions to cover
additional schemes is an obvious and important target for future research.”

At first glance, the general result by Berndt and Lískiewicz [8] has already
illustrated the feasibility of ASAs on randomized PKE algorithms, and, further,
a concrete attack was indeed exhibited on the CPA-secure PKE by Russell et al.
[28] (where their main result was a concrete architectural setting and construc-
tion to prevent such attacks). However, as we will explain below, the impact of
such univerisal ASAs on PKE encryption algorithm turns out to be much weaker
(i.e., much less efficient) than those on symmetric encryption [6,7]. We concen-
trate in this work on subverting the system via the content of its ciphertexts.

Limited Efficiency and Impact of Previously Known ASAs on PKE. It
is proved that the exfiltration rate of universal ASAs—the number of embedded
bits per ciphertext—suffers a logarithmic upper bound [8]. Concretely, for the
case of encryption schemes, no universal and consistent ASA is able to embed
more than log(κ) (κ is the key length) bits of information into a single ciphertext
in the random oracle model. Although this upper bound is somewhat limited, it
does not significantly weaken the impact of universal ASAs on secret-key algo-
rithms [3,6,7], since given sufficient ciphertexts—or sufficient signatures in the
case of signature schemes—the adversary can extract the whole secret key, and
afterwards can completely break the security of these algorithms, as long as
the underlying secret key remains unchanged. However, when it comes to the
case of PKE, the impact of universal ASAs turns out to be quite impractical as

Subvert KEM to Break DEM 101

the encryption procedure of PKE has only access to the public key, and thus
it is impossible to leak the secret key via subverting the PKE encryption algo-
rithm itself (via the ciphertexts). Hence, as we see it, the best possible goal for
ASAs on PKE encryption procedure is to recover plaintexts. For legitimate users,
this seems somewhat positive as different from the (fixed) secret key, the plain-
text is usually much longer, and thus the adversary needs to collect much more
ciphertexts—due to the logarithmic upper bound of universal ASAs—to recover
the whole plaintext successfully. Note that although gaining one-bit informa-
tion of plaintext suffices for the adversary to win the indistinguishibility-based
security game (e.g., IND-CPA), such a bit-by-bit recovery of plaintext is rather
inefficient and thus not desirable from the point of view of the adversary, espe-
cially given the fact that plaintexts are usually fresh across various encryption
sessions in reality.

Concrete examples. We apply Bellare et al.’s ASAs [6,7] to PKE to give a
more intuitive picture. Precisely, the biased ciphertext attack [7]—using rejection
sampling of randomness—could be also mounted on PKE and it has been indeed
proposed by Russell et al. [28] to leak the plaintext bit from the subverted
PKE ciphertext. However, such an attack could only leak one bit of information
per subverted ciphertext, and thus fully recovering a plaintext would (at least)
require as many ciphertexts as the length of a plaintext. This concretely shows
that existing ASAs are relatively inefficient on PKE. Moreover, such an attack is
stateful with a large state, as it needs to maintain a global counter that represents
which bit(s) of the plaintext it is trying to exfiltrate in each run. This weakens the
robustness of attacks in practice as it depends on a state related to a long system
history, in order to successfully leak the whole plaintext of PKE encryption. Note
also that the strong ASA proposed in [6]—although being stateless—is much less
efficient on PKE due to the application of the coupon collector’s problem.

Our Concrete Question: Efficient and Robust ASAs on PKE? The
aforementioned observations and the importance of better understanding of the
impact of ASAs, motivated us to consider the following question:

Are there ASAs that could be efficiently mounted on a wide range of PKE
schemes and only have much limited (i.e., constant length) dependency on
the system history?

In particular, we mainly consider the possibility of practical ASAs on PKE
that enable the plaintext recovery with a constant number—independent of the
plaintext length—of ciphertexts while only depending on a short system history.
Generally, a stateful attack is more robust if its state depends on just a small
history. For example, in the backdoored Dual EC DRBG (Dual Elliptic Curve
Deterministic Random Bit Generator) [10], an attack which apparently was suc-
cessfully employed, there is a dependency on prior public randomness and learn-
ing the current seed. Nevertheless, it turned out to be deployed and the limited
dependency does not weaken its impacts on practical systems. This is mainly
due to the fact that an implementation of pseudo-random generators (PRGs),

102 R. Chen et al.

in fact, needs to maintain some states and the state of generators always persists
for a while at least in systems (hence, some limited dependency on the past is
natural, whereas long history dependency is not that typical and creates more
complicated state management).

Remark: Young and Yung’s Kleptography [30–32]. In the line of kleptography,
subversions of PKE have been studied (primarily of key generation procedures
of PKE) by Young and Yung [30–32]. They introduced the notion of secretly
embedded trapdoor with universal protection (SETUP) mechanism, which enables
the attacker to exclusively and efficiently recover the user private information.
Young and Yung showed how SETUP can be embedded in several concrete
cryptosystems including RSA, ElGamal key generation and Diffie-Hellman key
exchange [30–32]. Our motivation may be viewed as a modern take on Young
and Yung’s kleptographic attacks on PKE key generation, but in the ASA model
against the encryption operation itself, and particularly we ask: to what extent
their type of attacks may be extended to cover PKE encryption algorithms (and
composed methods like hybrid encryption) more generally?

1.2 Our Results

In this work, we provide an affirmative answer to the above question by proposing
a practical ASA that is generically applicable to a wide range of PKE schemes,
demonstrating that ASAs on PKE could be much more dangerous than pre-
viously thought. Our idea is initially inspired by the observation that almost
all primary PKE constructions adopt the hybrid encryption: a public key cryp-
tosystem (the key encapsulation mechanism or KEM) is used to encapsulate the
so-called session key which is subsequently used to encrypt the plaintext by a
symmetric encryption algorithm (the data encapsulation mechanism or DEM).
Specifically, we turn to consider the possibility of substituting the underlying
KEM stealthily so that the attacker is able to recover the session key to break
the DEM (and thereafter recover the plaintext). The idea behind our attack
strategy is somewhat intuitive as compared with the plaintext that might be
of arbitrary length, the session key is usually much shorter and thus easier to
recover. However, this does not immediately gain much efficiency improvement
in subverting PKE encryption, mainly due to the fact that the underlying KEM
produces fresh session keys in between various encryption invocations. Hence,
we further explore the feasibility of efficient ASA on KEMs that could success-
fully recover a session key from a constant number of ciphertexts. Given the
logarithmic upper bound of universal ASAs [8], we turn to study the possibility
of non-black-box yet still general ASAs.

To the end, due to the successful identification of a general structural weak-
ness in existing KEM constructions, we manage to mount a much more efficient
ASA on KEMs that could recover a session key from only two successive cipher-
texts, which means that the state required by the attack is much smaller than the
generic one. In fact, the state relation (as we will discuss below) in our proposed
ASA is similar to that of the well-known Dual EC DRBG attack, and thus it is

Subvert KEM to Break DEM 103

similar to typical state cryptosystems keep in operation, which indicates that the
attack is very robust in actual systems. Our proposed attack relies on the novel
identification of non-black-box yet general enough properties that yield practi-
cal ASAs on KEMs. Also, it is a fundamental property that turns out to be
conceptually easy to explain after we formulate the non-black-box assumption.
However, we remark that the exact formulations and analysis are challenging.
In particular, we are able to prove that the attack works only assuming that
the underlying KEM satisfies some special properties, and we formally define
them, rigorously showing a wide range of KEMs suffering from our ASA. This
new finding explains why the attack was not considered before, even though the
rationale behind our attack (as briefly shown below) was implicitly informally
already hinted about if one considers the cases given in [30]. In fact, our attack
could be regarded as a general extension of Young and Yung’s kleptographic
attacks in the ASA model against the modern encryption procedures of PKE
schemes. More broadly, our work may shed some light on further exploring the
non-black-box but quite general structural weaknesses of other composed cryp-
tographic primitives (which the KEM/ DEM paradigm is an example of), that
may make them susceptible to more efficient and effective ASAs surpassing the
logarithmic upper bound of universal ASAs [8].

Our Contributions. To summarize, we make the following contributions.

1. We formalize an asymmetric ASA model for KEMs. Compared with previous
works that mainly studied symmetric ASAs [3,6,7,14], in this work we con-
sider a stronger setting where revealing the hard-wired subversion key does
not provide users with the same cryptographic capabilities as the subverter.

2. We redefine the KEM syntax in a module level with two new properties—
namely universal decryptability and key-pseudo-randomness—that are vital
to our proposed ASA. We then introduce a generic ASA and rigorously prove
its session-key-recoverability and undetectability in our ASA model.

3. We show that our attack works on a wide range of KEMs including the generic
construction from hash proof system [20,23]; and concrete KEMs derived from
popular PKE schemes such as the Cramer-Shoup scheme [13], the Kurosawa-
Desmedt scheme [23], and the Hofheinz-Kiltz scheme [20].

Below we further elaborate on the results presented in this work.

Asymmetric ASA model. We start with briefly introducing the adopted ASA
model in our work. Current ASA models [3,6–8,14] are in the symmetric setting
where the subversion key hard-wired in the (subverted) algorithm is the same
with the one used for secret key recovery. Such a symmetric setting would enable
anyone who reverse-engineers the subversion key from the subverted algorithm
to have the same cryptographic ability as the subverter. In this work, we turn to
the asymmetric ASA setting advocated by kleptograhic attacks [31], and we care-
fully formalize an asymmetric ASA model specifically for KEMs. In our model,
the subverted KEM contains the public subversion key while the corresponding
secret subversion key is only known to the subverter. The session key recovery
requires the secret subversion key and thus the attacking ability is exclusive to

104 R. Chen et al.

the subverter (and is not acquired by reverse engineering the subverted device).
Also, we further enhance the notion of undetectability in the sense that the
detector is allowed to know the public subversion key in the detection game. We
note that in [7], an asymmetric ASA model is also discussed in the context of
symmetric encryption, whereas all the proposed ASAs are symmetric. In fact,
as we will show later, the asymmetric setting essentially enables our proposed
effective ASAs.

r1 r2 r3 · · · ri ri+1

(K1, C1) (K2 , C2) (K3 , C3) (Ki, Ci) (Ki+1 , Ci+1)

KEM.Enc KEM.Enc KEM.Enc

KEM.Dec KEM.Dec KEM.Dec

Fig. 1. The sketc.h map of our ASA on (simplified) KEMs. The dashed line at the
top represents that in the subverted encapsulation algorithm, ri+1 is derived from ri (i
starts with “1”) via running the legitimate algorithm KEM.Enc. The dashed diagonal
line indicates that the attacker recovers ri+1 (and Ki+1) from Ci via running KEM.Dec.

A sketch map of our ASA (simplified version). We now informally
describe our identified non-black-box structural weakness in existing KEM con-
structions and show how it enables our efficient attack. We remark that here
we only take the case of simplified KEM as an example to illustrate our basic
idea. For more details and formal analysis we refer the reader to Sect. 4.2
where we present our ASA on more general KEMs. We first roughly recall
the syntax of (simplified) KEM. Informally, a KEM is defined by a tuple of
algorithms (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec). The key generation
algorithm KEM.Gen generates the public/secret key pair (pk, sk). The encap-
sulation algorithm KEM.Enc takes as input pk and output the session key K
with the key ciphertext C. The decapsulation algorithm KEM.Dec uses sk to
decrypt C for computing K. Our proposed ASA is essentially inspired by the
observation that many popular KEM constructions, in fact, produce “public-
key-independent” ciphertexts which only depend on the internal random coins
generated by KEM.Enc while is independent of the public key. Consequently,
such kind of key ciphertexts are “decryptable” with any key pair honestly gen-
erated by KEM.Gen (formalized as universal decryptability in our work). Relying
on this fact, we manage to mount a substitution attack on KEM.Enc via manip-
ulating the internal random coin. Specifically, the subverter runs the legitimate
algorithm KEM.Gen—with the public parameter—to generate the subversion key
pair (psk, ssk) of which psk is hard-wired in the subverted KEM.Enc (denoted
by ASA.Enc in our ASA model), while ssk is exclusively held by the subverter.

Subvert KEM to Break DEM 105

Note that KEM.Enc would be run repeatedly in an ongoing encryption proce-
dure of PKE and let ri denote the random coin generated by KEM.Enc in its
i-th invocation. Ideally, it is expected that random coins from different invoca-
tions are generated independently. However, in our designed ASA.Enc, as roughly
depicted in Fig. 1, the random coin ri+1 is actually derived via KEM.Enc taking
psk and ri (maintained as an internal state) as inputs. Consequently, due to
the universal decryptability of KEM, the subverter is able to recompute ri+1

(and thereafter recover the session key Ki+1) by running KEM.Dec to decrypt
Ci using ssk. In this way, our attack enables the subverter to recover the session
key of a subverted ciphertext with the help of the previous subverted ciphertext.

On the Robustness of Our Stateful Attacks. As pointed out by Bellare
et al. [6], stateful ASAs may become detectable upon the system reboot (e.g.,
resetting the state). However, we argue below that the state in our attack is prac-
tically acceptable, and our attack could still be very robust and meaningful in
cryptographic implementation practices nowadays. The state relation (i.e., only
the previous randomness) in our proposed ASA is similar to that of Dual EC
DRBG, and is much more limited than the stateful ASA on symmetric encryp-
tion [7], which needs to maintain a global counter that represents which bit(s) of
the secret is trying to exfiltrate in each run. More broadly, modern cryptosystems
in the cloud services are implemented typically in secure hardware modules that
are rented to cloud customers. This has become a popular configuration in recent
years. It is inconceivable that such service cannot be temporarily non-volatile
and stateful. Even if it happens or all relevant tools are reinitiated at system
initiation, our attack persists since we do not really need a state depending on
the entire system history, but only the randomness generated in the previous
session. Therefore, we categorically see no practical weakness with our configu-
ration, primarily in view of modern secure hardware modules as cryptographic
implementations, and the successful large scale attack on Dual EC DRBG [10].

2 Preliminaries

Notations. For any randomized algorithm F , y := F(x; r) denotes the output
of F on the fixed randomness r and y ←$ F(x) denotes the random output of
F . We write AO1,O2,···(x, y, · · ·) to indicate that A is an algorithm with inputs
x, y, · · · and access to oracle O1,O2, · · · . Let z ← AO1,O2,···(x, y, · · ·) denote the
outputs of running A with inputs (x, y, · · ·) and access to oracles O1,O2, · · · .

2.1 Entropy Smoothing Hash Functions

Let H = {Hk̂}k̂∈K̂ (K̂ is the key space) be a family of keyed hash functions,
where every function Hk̂ maps an element of group X to another element of
group Y . Let D be a PPT algorithm that takes as input an element of K̂, and
an element from Y , and outputs a bit. The ES-advantage of D is defined as

106 R. Chen et al.

AdvesH,D(n) := |Pr
[
D(k̂, Hk̂(x)) = 1|k̂ ←$ K̂, x ←$ X

]

−Pr
[
D(k̂, y) = 1|k̂ ←$ K̂, y ←$ Y

]
|.

We say H is εes(n)-entropy smoothing if for any PPT algorithm D,
AdvesH,D(n) ≤ εes(n). It has been shown in [16] that the CBC-MAC, HMAC and
Merkle-Damg̊ard constructions meet the above definition on certain conditions.

2.2 Key Encapsulation Mechanism (KEM)

Syntax. A key encapsulation mechanism KEM consists of algorithms
(KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec) which are formally defined as
below.

– KEM.Setup(1n). Takes as input the security parameter n ∈ N and outputs
the public parameter pp. We assume pp is taken by all other algorithms as
input (except of KEM.Gen where it is explicitly given).

– KEM.Gen(pp). Takes as input pp, and outputs the key pair (pk, sk).
– KEM.Enc(pk). Takes as input the public key pk, and outputs (K,ψ) where K

is the session key and ψ is the ciphertext.
– KEM.Dec(sk, ψ). Takes as input the secret key sk and the ciphertext ψ, and

outputs the session key K or ⊥.

Correctness. We say KEM satisfies (perfect) correctness if for any n ∈ N,
for any pp ←$KEM.Setup(1n), for any (pk, sk) ←$ KEM.Gen(pp) and for any
(K,ψ) ←$ KEM.Enc(pk), we have KEM.Dec(sk, ψ) = K.

Security. Let KEM = (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec) be a KEM.
We say KEM is IND-CCA-secure if for any PPT adversary A,

Advccakem,A(n) :=

∣∣∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎢⎢⎣

b = b′ :

pp ←$KEM.Setup(1n)
(pk, sk) ←$KEM.Gen(pp)
(K0, ψ

∗) ←$KEM.Enc(pk)
K1 ←$ Kkem, b ←$ {0, 1}
b′ ← AODec(·)(pk,Kb, ψ

∗)

⎤
⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣
≤ negl(n) ,

where Kkem is the key space of KEM, and ODec is a decryption oracle that on
input any ciphertext ψ, returns K := KEM.Dec(sk, ψ) on the condition that
ψ �= ψ∗. As a weak security definition, we say KEM is IND-CPA-secure if in the
above definition, the adversary is restricted not to query ODec.

3 Asymmetric ASA Model for KEMs

In this section, we extend the notion of ASA model by Bellare et al. [7] to
the asymmetric setting for KEMs. Here we mainly consider substitution attacks

Subvert KEM to Break DEM 107

against the encapsulation algorithm while assuming that the key generation and
decapsulation algorithm are not subverted. It is worth noting that via subverting
the decapsulation algorithm it is possible to exfiltrate decapsulation key. Par-
ticularly, Armour and Poettering [1] demonstrated the feasibility of exfiltrating
secret keys by subverting the decryption algorithm of AEAD.

3.1 Asymmetric ASA on KEMs

An ASA on KEM is that in the real-world implementation, the attacker replaces
the legitimate algorithm KEM.Enc by a subverted one denoted by ASA.Enc, which
hard-wires some auxiliary information chosen by the subverter. The goal of sub-
verter is to gain some advantages in breaking the security of the subverted KEM.
The algorithm ASA.Enc could be arbitrary. Particularly, the randomness space
in ASA.Enc could be different from that of KEM.Enc, and the subverted cipher-
text space is not necessarily equal to the valid ciphertext space of KEM.Enc1.
Also, ASA.Enc may be stateful by maintaining some internal state, even in the
case that KEM.Enc is not.

Syntax. Let KEM = (KEM.Setup, KEM.Gen,KEM.Enc, KEM.Dec) be a KEM
which generates pp ←$KEM.Setup(1n) and (pk, sk) ←$KEM.Gen(pp). An asym-
metric ASA on KEM is denoted by ASA = (ASA.Gen,ASA.Enc,ASA.Rec).

– (psk, ssk) ←$ASA.Gen(pp). The subversion key generation algorithm takes
as input pp, and outputs the subversion key pair (psk, ssk). This algorithm
is run by the subverter. The public subversion key psk is hard-wired in the
subverted algorithm while the secret subversion key ssk is hold by the attacker.

– (K,ψ) ←$ASA.Enc(pk, psk, τ). The subverted encapsulation algorithm takes
as input pk, psk, and the (possible) internal state τ , outputs (K,ψ) and
updates the state τ (if exists). This algorithm is created by the subverter and
run by the legitimate user. The state τ is never revealed to the outside.

– K ←$ASA.Rec(pk, ssk, ψ, Φψ). The key recovery algorithm takes as input pk,
ssk, ψ, the associated ciphertext set Φψ, and outputs K or ⊥. This algorithm
is run by the subverter to recover the session key K encapsulated in ψ.

Remark. The algorithm ASA.Rec is run by the subverter to “decrypt” the
subverted ciphertext ψ—output by ASA.Enc—using the secret subversion key
ssk that is associated with psk hard-wired in ASA.Enc. However, due to the
information-theoretic reasons, it might be impossible for the subverter to recover
the key given the subverted ciphertext only. Therefore, we generally assume that
the subverter needs some associated ciphertexts (e.g., a tuple of previous cipher-
texts) to successfully run ASA.Rec. More details are provided in Sect. 4.2.

Below we define the notion of decryptability which says that the subverted
ciphertext—produced by ASA.Enc—is still decryptable to the legitimate receiver.
In fact, decryptability could be viewed as the basic form of undetectability notion
defined in Sect. 3.3.
1 For example, the subverted algorithm ASA.Enc may directly output the key as its

ciphertext.

108 R. Chen et al.

Definition 1 (Decryptability). Let ASA = (ASA.Gen,ASA.Enc,ASA.Rec) be
an ASA on KEM = (KEM.Setup, KEM.Gen,KEM.Enc, KEM.Dec). We say ASA
preserves decryptability for KEM if for any n ∈ N, any pp ←$KEM.Setup(1n),
and any (pk, sk) ←$KEM.Gen(pp), for any (psk, ssk) ←$ASA.Gen(pp), and all
state τ ∈ {0, 1}∗,

Pr[Dec(sk, ψ) �= K : (K,ψ) ←$ASA.Enc(pk, psk, τ)] ≤ negl(n) ,

where the probability is taken over the randomness of algorithm ASA.Enc.

3.2 Session Key Recovery

Generally, the goal of the subverter is to gain some advantages in attacking the
scheme. In the ASA model for symmetric encryption and signature schemes, the
notion of key recovery is defined as a strong goal [3,6]. However, for KEMs, the
encapsulation algorithm has no access to the secret (decapsulation) key and thus
it is impossible to exfiltrate the long-term secret of a subverted encapsulation
algorithm. Alternatively, we define another notion which captures the ability of
the subverter—who has the secret subversion key ssk—to recover the session
key from the subverted ciphertext. In the following definition, we let Γ denote
the internal state space of ASA.

Definition 2 (Session-Key-Recoverability). Let ASA = (ASA.Gen,
ASA.Enc, ASA.Rec) be an ASA on KEM = (KEM.Setup, KEM.Gen,KEM.Enc,
KEM.Dec). We say that ASA is session-key-recoverable if for any n ∈
N, any pp ←$ KEM.Setup(1n), any (pk, sk) ←$KEM.Gen(pp), any (psk, ssk)
←$ASA.Gen(pp), and any τ ∈ Γ ,

Pr[ASA.Rec(pk, ssk, ψ, Φψ) �= K : (K,ψ) ←$ASA.Enc(pk, psk, τ)] ≤ negl(n) .

Here we implicitly assume that for every state τ ∈ Γ , the subverted ciphertext ψ
and the associated ciphertext set Φψ exist, i.e., Φψ �= ∅.

3.3 Undetectability

The notion of undetectability denotes the inability of ordinary users to tell
whether the ciphertext is produced by a subverted encapsulation algorithm
ASA.Enc or the legitimate encapsulation algorithm KEM.Enc. Different from con-
ventional security games, here the challenger is the subverter who aims to subvert
the encapsulation algorithm without being detected, while the detector (denoted
by U) is the legitimate user who aims to detect the subversion via a black-box
access to the algorithm.

Note that our undetectability notion does not cover all possible detection
strategies in the real world, such as comparing the (possibly subverted) code
execution time with that of a legitimate code. In fact, as argued by Bellare et al.
[6], it is impossible for an ASA to evade all forms of detection and there is usually
a tradeoff between detection effort and attack success.

Subvert KEM to Break DEM 109

Definition 3 (Secret Undetectability). Let ASA = (ASA.Gen,ASA.Enc,
ASA.Rec) be an ASA on KEM = (KEM.Setup, KEM.Gen,KEM.Enc, KEM.Dec).
For a user U , we define the advantage function

Advu-det
asa,U (n) :=

∣∣∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎢⎢⎣

b = b′ :

pp ←$KEM.Setup(1n)
{(pk�, sk�)}u

�=1 ←$KEM.Gen(pp)
(psk, ssk) ←$ASA.Gen(pp)
τ := ε, b ←$ {0, 1}
b′ ← UOEnc ({(pk�, sk�)}u

�=1 , psk)

⎤
⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣
,

where OEnc is an encapsulation oracle that for each query of input pk�(∈ [1, u])
by user U , returns (K,ψ) which are generated depending on the bit b:

– if b = 1, (K,ψ) ←$KEM.Enc(pk�);
– if b = 0, (K,ψ) ←$ASA.Enc(pk�, psk, τ).

We say ASA is secretly (u, q, ε)-undetectable w.r.t. KEM if for all PPT
users U that make q ∈ N queries with u ∈ N key pairs, Advu-det

asa,U (n) ≤ ε.

Alternatively, we say ASA is publicly (u, q, ε)-undetectable w.r.t. KEM if in
the above definition of advantage function, user U is only provided with pk but
not sk. Such an undetectability notion may still make sense in the real world as
when the user is the encryptor, it may only know the public key. Nevertheless,
since that secret undetectability clearly implies public undetectability, we only
consider secret undetectability for ASAs on KEMs in this work.

Strong Undetectability. The notion of strong undetectability was introduced
by Bellare et al. [6] for the case of subverting symmetric encryption. In the
definition of strong undetectability, the challenger also returns the state to the
user. This mainly considers a strong detection where the detector may be able
to see all outputs written to the memory of the machine when the subverted
code is running. Meeting such a strong notion naturally limits the ASA to be
stateless otherwise it would be detectable to the user.

Multi-user Undetectability. Here we only consider the case of a single user
in Definition 3 for simplicity. One could extend our notion to the more general
setting of multi-user. Precisely, in the undetectability definition for the multi-
user setting, user U also receives multiple key pairs from the challenger and is
allowed to make polynomially many queries to ν identical encapsulation oracles
independently and adaptively (ν denotes the user number).

4 Mounting ASAs on KEMs

We present an ASA on KEMs that enables the subverter to recover the session
key efficiently while the attack is undetectable to the user. We first revisit the
KEM syntax in the module level so that it has some notational advantages in
describing our proposed ASA. New properties with respect to the module-level
KEM are then explicitly defined for the formal analysis of the proposed attack.

110 R. Chen et al.

4.1 A Module-Level Syntax of KEM

The module-level KEM syntax is mainly depicted in Fig. 2.

– pp ← KEM.Setup(1n). Takes as input the security parameter n ∈ N and
outputs the public parameter pp which includes the descriptions of the session
key space Kkem and the randomness space Rkem.

– (pk = (ek, tk), sk = (dk, vk)) ← KEM.Gen(pp). Takes as input the public
parameter and runs the following sub-algorithms.

• (ek, dk) ← KEM.Ek(pp). The encapsulation key generation algorithm gen-
erates the key pair (ek, dk) for key encapsulation and decapsulation.

• (tk, vk) ← KEM.Tk(pp). The tag key generation algorithm generates the
key pair (tk, vk) for tag generation and verification. This algorithm is
usually required only for KEM of strong security, e.g.., IND-CCA security.

– (K,ψ = (C, π)) ← KEM.Enc(pk). Takes as input the public key and runs the
following sub-algorithms.

• r ← KEM.Rg(pp). The randomness generation algorithm picks r ←$ Rkem.
• K ← KEM.Kg(ek, r). The encapsulated key generation algorithm takes

as input ek and randomness r, and outputs key K.
• C ← KEM.Cg(r). The key ciphertext generation algorithm takes as input

randomness r, and outputs key ciphertext C.
• π ← KEM.Tg(tk, r). The tag generation algorithm takes as input tk and

r, and outputs the ciphertext tag π.
– K/⊥ ← KEM.Dec (sk, ψ = (C, π)). Takes as input the secret key and the

ciphertext, and runs the following sub-algorithms.
• K ← KEM.Kd(dk,C). The ciphertext decapsulation algorithm takes as

input dk and C, and outputs key K.
• π′ ← KEM.Vf(vk,C) . The tag re-generation algorithm takes as input vk

and C, and outputs tag π′.
The key K is finally output if π′ = π. Otherwise, ⊥ is output.

Fig. 2. Module-level Syntax of KEM. The boxed algorithms are optional.

Remark. Our syntax mainly covers KEMs of the following features. First, the
generation of key ciphertext (KEM.Cg) is independent of the public key. Although
this is quite general for most KEM constructions, it fails to cover KEMs that

Subvert KEM to Break DEM 111

require public key for ciphertext generation. For example, the lattice-based KEM
in [26] produces ciphertexts depending on the encapsulation key and thus it is
not captured by our framework. Second, the separation of ciphertext and tag
clearly indicates explicit-rejection KEMs, i.e., all inconsistent ciphertexts get
immediately rejected by the decapsulation algorithm. Although explicit-rejection
variants are generally popular, some special setting requires implicit-rejection
KEMs, where inconsistent ciphertexts yield one uniform key and hence will be
rejected by the authentication module of the encryption scheme. Concrete exam-
ples could be found in [20]. Nevertheless, in Sect. 5.2, we show that our defined
KEM framework already covers many known KEM constructions derived from
popular schemes, such as the Cramer-Shoup scheme [13], the Kurosawa-Desmedt
scheme [23], and the Hofheinz-Kiltz scheme [20].

4.2 Our Non-Black-Box ASA on KEMs

Following the above module-level syntax, we first identify and formalize two
new non-black-box properties for KEMs, which essentially enable our extremely
efficient ASA against KEMs.

Non-Black-Box Properties Formulations. Our notions, namely universal
decryptability and key-pseudo-randomness, are actually met by all known KEMs
that could be interpreted using our module-level syntax. Here we explicitly define
them as they are vital to our proposed ASA.

The first non-black-box assumption, i.e., universal decryptability, says that
any key ciphertext C output by KEM.Cg is decryptable via KEM.Kd with any
dk output by KEM.Ek.

Definition 4 (Universal Decryptability). Let KEM = (KEM.Setup,
KEM.Gen, KEM.Enc, KEM.Dec) be a KEM defined in Fig. 2. We say KEM
is universally decryptable if for any n ∈ N, pp ←$KEM.Setup(1n), for any
r ←$KEM.Rg(pp) and C := KEM.Cg(r), we have

KEM.Kd(dk,C) = KEM.Kg(ek, r)

holds for any (ek, dk) ←$KEM.Ek(pp).

The second notion, i.e., key-pseudo-randomness, indicates that the key pro-
duced by KEM.Kg is computationally indistinguishable from a random key.

Definition 5 (Key-Pseudo-Randomness). Let KEM = (KEM.Setup,
KEM.Gen, KEM.Enc, KEM.Dec) be a KEM as defined in Fig. 2. We say KEM
is εprk-key-pseudo-random if for any PPT adversary A, we have

Advprkkem,A(n) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b = b′ :

pp ←$KEM.Setup(1n)
r ←$KEM.Rg(pp)
C := KEM.Cg(r)
(ek, dk) ←$KEM.Ek(pp)
b ←$ {0, 1},K0 ←$ Kkem

K1 := KEM.Kg(ek, r)
b′ ← A(ek,Kb, C)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ εprk.

112 R. Chen et al.

Remark. One may note that for those KEMs that are only IND-CPA-
secure (i.e., no tag generation/verification is involved in key encapsula-
tion/decapsulation), our formalized notions of universal decryptability and key-
pseudo-randomness are actually the typical properties of “perfect correctness”
and “IND-CPA security” respectively for KEMs that follows the above module-
level syntax. Here we explicitly redefine them for generality consideration since
we are also interested in exploring effective ASAs on IND-CCA-secure KEMs.

The Proposed Attack. We now describe our proposed (asymmetric) ASA.
Let KEM = (KEM.Setup, KEM.Gen, KEM.Enc,KEM.Dec) be a KEM. Consider
a sequential execution of KEM.Enc. Suppose pp ←$KEM.Setup(1n) and

(pk = (ek, tk), sk = (dk, vk)) ←$KEM.Gen(pp).

Let (Ki, ψi = (Ci, πi)) denote the output of the i-th execution of KEM.Enc, for
which the internal randomness is denoted as ri ←$ KEM.Rg(pp). That is, Ki :=
KEM.Kg(ek, ri), Ci := KEM.Cg(ri), and πi := KEM.Tg(tk, ri).

Our ASA on KEM is depicted in Fig. 3. Below are more details.

Fig. 3. The generic ASA on KEMs. The grey background highlights the difference
between ASA.Enc and KEM.Enc.

Subversion Key Generation (ASA.Gen). The subversion key generation algo-
rithm runs (psk, ssk) ←$KEM.Ek(pp). Note that psk is hard-wired in the sub-
verted key encapsulation algorithm ASA.Enc while ssk is kept by the subverter.
Our ASA also makes use of a family of keyed hash function H := {Hk̂}k̂∈K̂,
where each Hk̂ maps Kkem to Rkem (both Kkem and Rkem are defined by pp).
Therefore, the hash function key k̂ is also hard-wired in the subverted algorithm
ASA.Enc.

Subverted Encapsulation (ASA.Enc). As depicted in the right of Fig. 3, the sub-
verted encapsulation algorithm ASA.Enc takes the public key pk, the hard-wired
key psk and the internal state τ as input. The initial value of τ is set as τ := ε.
Then for the i-th execution (i ≥ 1), ASA.Enc executes the same as KEM.Enc
does except of:

Subvert KEM to Break DEM 113

– For algorithm KEM.Enc, the randomness ri is generated via running KEM.Rg
to sample ri ←$ Rkem uniformly.

– For algorithm ASA.Enc, if τ = ε, the randomness ri is generated via running
KEM.Rg; otherwise, ri is generated via firstly running t := KEM.Kg(psk, τ)
and then computing ri := Hk̂(t). The internal state τ is then updated to ri.

The generation of ciphertext Ci and the session key Ki still follow the legitimate
procedure, i.e., by running algorithm KEM.Cg and KEM.Kg respectively.

Session Key Recovery (ASA.Rec). The left down part of Fig. 3 depicts the encap-
sulated key recovery algorithm ASA.Rec run by the subverter. To recover the
session key encapsulated in the subverted ciphertext Ci (i > 1), the subverter
first uses ssk to decrypt the ciphertext Ci-1 to recover t and then computes ri,
based on which the key Ki—encapsulated in Ci—could be trivially computed.
It is worth noting that the subverted ciphertext Ci is in fact not used in the run-
ning of ASA.Rec to recover the underlying key Ki. The core idea of the session
key recovery is to recover the randomness ri by using ssk to decapsulate Ci-1

which is actually the associated ciphertext of Ci.

4.3 Formal Analysis

Let KEM = (KEM.Setup, KEM.Gen, KEM.Enc,KEM.Dec) be a KEM and
ASA = (ASA.Gen, ASA.Enc,ASA.Rec) be an ASA on KEM described in Fig. 3.
Then we have the following results.

Theorem 1. The ASA depicted in Fig. 3 preserves the decryptability of KEM.

Proof. This clearly holds as ASA.Enc is the same as the original algorithm
KEM.Enc except of the internal randomness generation. Particularly, the gen-
eration of ciphertext and key essentially remain unchanged in ASA.Enc.

Theorem 2. The ASA depicted in Fig. 3 is session-key-recoverable if KEM is
universally decryptable.

Proof. Note that the notion of session-key-recoverability is defined for the sub-
verted ciphertext ψ which has the associated ciphertexts Φ, i.e., Φψ �= ∅. That
is, here we consider the session-key-recoverability for all subverted ciphertext
Ci where i ≥ 2. By the fact that KEM is universally decryptable, we have
that KEM.Kd(ssk, Ci-1) = KEM.Kg(psk, ri-1) holds for all ri-1 ∈ Rkem (i ≥ 2)
and Ci-1 := KEM.Cg(ri-1), and for all (psk, ssk) ←$KEM.Ek. Note that the ran-
domness recovered in ASA.Rec equals to that from ASA.Enc. Therefore, for any
(pk, sk) ←$KEM.Gen and any (Ki, ψi = (Ci, πi)) ←$ ASA.Enc(pk, psk, ri-1), we
have ASA.Rec(pk, ssk, Ci, Ci-1) = Ki.

Theorem 3. Assume KEM is εprk(n)-key-pseudo-random and H is εes(n)-
entropy smoothing, then our ASA depicted in Fig. 3 satisfies (u, q, ε)-
undetectability where q is the query number by the adversary in the detection
game and

ε ≤ (q − 1)(εprk(n) + εes(n)).

114 R. Chen et al.

Fig. 4. Games G0 in the proof of Theorem 3

Fig. 5. Games G1,1,G1,2,G2,1,G2,2, · · · ,Gq-1,1,Gq-1,2 in the proof of Theorem 3.
Game Gj-1,2 contains the corresponding boxed statements, but game Gj-1,1 does not.

Subvert KEM to Break DEM 115

Proof. We prove this theorem via a sequence of games. Suppose that the adver-
sary A makes q queries in total to the oracle OEnc in the security game. We define
a game sequence: {G0,G1,1,G1,2,G2,1,G2,2, · · · ,Gq-1,1,Gq-1,2}. G0 is the real
game and depicted in Fig. 4 while {G1,1,G1,2,G2,1,G2,2, · · · ,Gq-1,1,Gq-1,2}
are described in Fig. 5. Note that in the following illustrations, we also let G0,2

denote the game G0 for the consideration of notational consistency. Let Advx

be the advantage function with respect to A in Game Gx. Below we provide
more details of G0, Gj−1,1 and Gj−1,2 for all j ∈ [2, q]. Note that in all games
Gj−1,1 and Gj−1,2 (j ∈ [2, q]), an internal counter i (initialized to 0) is set for
the encapsulation oracle and increments upon each query by the adversary.

– Game G0 (i.e., G0,2): This game is the real game and thus we have

Advu-det
asa,U (n) = Adv0.

– Game Gj-1,1 is identical to Gj-2,2 except that for the case of b = 0, to
generate the response for the j-th query of A, the challenger picks t ←$ Kkem

instead of computing t := KEM.Kg(psk, τ). We claim that from the view of A,
Gj-1,1 is indistinguishable from Gj-2,2 if KEM is key-pseudo-random. That
is, |Advj-2,2 − Advj-1,1| ≤ εprk(n). See Lemma 1 for more details.

– Game Gj-1,2 is identical to Gj-1,1 except that for the case of b = 0, to
generate the response for the j-th query of A,r is derived by r ←$KEM.Rg(pp)
(i.e., r ←$ Rkem) instead of r := Hk̂(t). We claim that from the view of A,
Gj-1,2 is indistinguishable from Gj-1,1 if H is entropy smoothing. That is,
|Advj-1,2 − Advj-1,1| ≤ εes(n). See Lemma 2 for more details.

Lemma 1 (Gj-1,1 ≈c Gj-2,2). For all j ∈ [2, q] and all PPT adversary A,

|Advj-2,2 − Advj-1,1| ≤ εprk(n).

Proof. To prove this transition, we construct an adversary Bj-1 attacking
the property of key-pseudo-randomness of KEM. Suppose that Bj-1 receives
(pp∗, ek∗, K∗, C∗) from the challenger in the game defined in Definition 5. Its
goal is to tell whether K∗ is the key encapsulated in C∗ or a random value.

Bj-1 then simulates the detection game to interact with A via the procedure
depicted in Fig. 6. Bj-1 first sets psk = ek∗ as the public subversion key and
simulates the encapsulation oracle (denoted by Osim

Enc) for A. Precisely, if b = 0,
for each query with input pk� = (ek�, tk�), Osim

Enc performs depending on the
internal counter i as follows.

– Case 1: i = (j − 1). Bj-1 sets C = C∗, computes K := KEM.Kd(dk�, C∗) and
π := KEM.Vf(C∗, vk�), and returns (K,C, π).

– Case 2: i < (j-1). Bj-1 runs the algorithm KEM.Enc, i.e., KEM.Rg,KEM.Cg
and KEM.Tg sequentially, updates τ and returns the output.

– Case 3: i = j. Bj-1 sets t = K∗, computes r := Hk̂(t), K := KEM.Kg(ek�, r),
C := KEM.Cg(r) and π := KEM.Tg(tk�, r), updates τ and returns (K,C, π).

116 R. Chen et al.

Fig. 6. Adversary B attacking the key-pseudo-randomness of KEM in the proof of
Lemma 1.

– Case 4: i > j. Bj-1 sets t := KEM.Kg(psk, τ), computes r := Hk̂(t), runs
K := KEM.Kg(ek�, r), C := KEM.Cg(r) and π := KEM.Tg(tk�, r), updates τ
and returns (K,C, π).

Finally, Bj-1 outputs 1 if A outputs b′ = b otherwise outputs 0.
One could note that if K∗ is the key encapsulated in C∗, then the game

simulated by Bj-1 is exactly the game Gj-2,2 from the view of A. Otherwise,
the simulated game is Gj-1,1 from the view of A. Therefore, we have |Advj-2,2 −
Advj-1,1| ≤ εprk(n).

Lemma 2 (Gj-1,2 ≈c Gj-1,1). For all j ∈ [2, q] and all PPT adversary A,

|Advj-1,1 − Advj-1,2| ≤ εes(n).

Proof. To prove this transition, we construct an adversary Dj-1 attacking the
entropy smoothing hash function Hk̂ : Kkem → Rkem. Suppose that Dj-1 receives
(k̂, y∗) from the challenger. Its goal is to tell whether y∗ = Hk̂(x) where
x ←$ Kkem, or y∗ ←$ Rkem.

Dj-1 then simulates the detection game to interact with A via the procedure
depicted in Fig. 7. Dj-1 simulates the encapsulation oracle (denoted by Osim

Enc)

Subvert KEM to Break DEM 117

Fig. 7. Adversary D attacking the entropy smoothing hash function Hk̂ in the proof
of Lemma 2.

for A. Precisely, if b = 0, for each query with input pk� = (ek�, tk�), Osim
Enc

performs depending on the internal counter i as follows.

– Case 1: i < j. Dj-1 runs the algorithm KEM.Enc, i.e., runs KEM.Rg,KEM.Cg
and KEM.Tg sequentially, updates τ and returns the output.

– Case 2: i = j. Dj-1 sets r := y∗, runs K := KEM.Kg(ek�, r), C := KEM.Cg(r)
and π := KEM.Tg(tk�, r), updates τ and returns (K,C, π).

– Case 3: i > j. Dj-1 sets t := KEM.Kg(psk, τ), computes r := Hk̂(t), runs
K := KEM.Kg(ek�, r), C := KEM.Cg(r) and π := KEM.Tg(tk�, r), updates τ
and returns (K,C, π).

Finally, Dj-1 outputs 1 if A outputs b′ = b otherwise outputs 0.
One could note that from the view of A, if y∗ = Hk̂(x) where x ←$ Kkem, then

the game simulated by Dj-1 is exactly the game Gj-1,1. Otherwise, the simulated
game is Gj-1,2. Hence, we have |Advj-1,2 − Advj-1,1| ≤ εes(n).

Summary. Note that in Game Gq-1,2, for all queries to OEnc, the challenger
always runs the algorithm KEM.Enc to generate the response and thus the view
of the detector A actually does not depend on the chosen bit b. Therefore,

Advq-1,2 ≤ negl(n) .

118 R. Chen et al.

Putting all the above together, we have

Advu-det
asa,U (n) = Adv0

= |Adv0 − Adv1,1 + Adv1,1 − Adv1,2 + Adv1,2 − Adv2,1 + · · ·
+Advq-2,2 − Advq-1,1 + Advq-1,1 − Advq-1,2 + Advq-1,2|

≤ |Adv0 − Adv1,1| + |Adv1,1 − Adv1,2| + |Adv1,2 − Adv2,1| + · · ·
+|Advq-2,2 − Advq-1,1| + |Advq-1,1 − Advq-1,2| + Advq-1,2|

≤ (q − 1)(εprk(n) + εes(n)).

This completes the proof of Theorem 3.

5 Instantiations

In this section, we describe some popular KEM constructions that are subvertible
to our proposed generic ASA.

5.1 KEMs from Hash Proof Systems

Syntax of HPS [13]. Let X , Y be sets and L ⊂ X be a language. Let
Λhk : X → Y be a hash function indexed with hk ∈ HK where HK is
a set. We say a hash function Λhk is projective if there exists a projection
ϕ : HK → HP such that, (1) for every x ∈ L, the value of Λhk(x) is uniquely
determined by ϕ(hk) and x; and (2) for any x ∈ X \ L, it is infeasible to com-
pute Λhk(x) from ϕ(hk) and x. Formally, a hash proof system HPS consists of
(HPS.Setup,HPS.Gen,HPS.Pub,HPS.Priv):

• HPS.Setup(1n). The parameter generation algorithm takes as input 1n, and
outputs pp = (X ,Y,L,HK, HP,Λ(·) : X → Y, ϕ : HK → HP).

• HPS.Gen(pp). The key generation algorithm takes as input pp. It outputs the
secret hashing key hk ←$ HK and the public key hp := ϕ(hk) ∈ HP.

• HPS.Pub(hp, x, w). The public evaluation algorithm takes as input hp =
ϕ(hk), a language element x ∈ L with the witness w of the fact that x ∈ L.
It outputs the hash value y = Λhk(x).

• HPS.Priv(hk, x). The private evaluation algorithm takes as input hk, an ele-
ment x ∈ X . It outputs the hash value y = Λhk(x).

It is generally assumed that one could efficiently sample elements from X . In
this work, for sampling x ∈ L, we explicitly define the following algorithms.

• HPS.Wit(pp). The witness sampling algorithm takes as input pp. It outputs
a witness w as w ←$ W where W is the witness space included in pp.

• HPS.Ele(w). The language element generation algorithm takes as input w. It
outputs the language element x ∈ L.

Note that here we require the language element generation only takes as input
the witness (and public parameter) and mainly consider the HPS where the

Subvert KEM to Break DEM 119

projection key is independent from the language element, which is also known
as KV-type HPS [22].

Correctness. For all pp ←$HPS.Setup, all (hk, hp) ←$HPS.Gen, all
w ←$HPS.Wit(pp) and x := HPS.Ele(w), it holds that HPS.Pub(hp, x, w) =
Λhk(x) = HPS.Priv(hk, x).

Subset Membership Problem. We say the subset membership problem is hard in
HPS if it is computationally hard to distinguish a random element L from a
random element from X \ L. A formal definition appears in Appendix A.1.

Computational Smoothness. We say HPS satisfies computational smoothness if
the hash value of a random element from X \ L looks random to an adversary
only knowing the projection key. A formal definition appears in Appendix A.1.

KEMs from HPS [20,23]. Kurosawa and Desmedt [23] proposed a generic
KEM based on HPS. Their paradigm is later explicitly given by Hofheinz and
Kiltz in [20]. Let HPS = (HPS.Setup, HPS.Gen, HPS.Pub,HPS.Priv,HPS.Wit,
HPS.Ele) be an HPS. The constructed KEM KEM = (KEM.Setup, KEM.Gen,
KEM.Enc,KEM.Dec) is as follows.

– KEM.Setup(1n). Run pp ←$HPS.Setup(1n), output the public parameter pp.
– KEM.Gen(pp). Run (hk, hp) ←$HPS.Gen(pp), set ek := hp, dk := hk, output

(pk = ek, sk = dk).
– KEM.Enc(pk). Run the following sub-algorithms.

• KEM.Rg(pp) : Run w ←$HPS.Wit(pp), and return r := w;
• KEM.Cg(r) : Run x := HPS.Ele(r), and return C := x;
• KEM.Kg(ek, r) : Run y := HPS.Pub(ek, C, r), and return K := y.

Output (K,C).
– KEM.Dec(sk, C). Run y := HPS.Priv(dk,C), output K := y.

For their generic construction, we have the following result.

Theorem 4. The above generic construction KEM is universally decryptable
and key-pseudo-random if HPS is of computational smoothness and the subset
membership problem is hard in HPS.

We defer the detailed proof to Appendix A.2.

5.2 Concrete KEMs

Below we present some known KEM constructions subvertible by our ASA.

Cramer-Shoup KEMs [13]. In [13], Cramer and Shoup designed a hybrid
encryption framework based on KEMs and provided instantiations based on
various hardness assumptions.

The DDH-Based. Let G be a cyclic group of prime order p, and g1, g2 are gen-
erators of G. Figure 8 shows the DDH-based KEM proposed in [13]. The public

120 R. Chen et al.

Fig. 8. The DDH-Based KEM from Cramer-Shoup Encryption Scheme [13]

parameter is pp = (G, p, g1, g2). The key space Kkem is G and the randomness
space Rkem is Z

∗
p. H : G2 → Z

∗
p is a collision resistant hash function.

The DCR-Based. Let p, q, p′, q′ denote distinct odd primes with p = 2p′ + 1 and
q = 2q′ + 1. Let N = pq and N ′ = p′q′. The group Z

∗
N2 = GN · GN ′ · G2 · G

where each group Gρ is a cyclic group of order ρ, and G is the subgroup of
Z

∗
N2 generated by (−1 mod N2). Let η ←$Z

∗
N2 and g = −η2N . Figure 9 shows

the DCR-based KEM proposed in [13]. The public parameter is pp = (N, g).
The key space Kkem is Z

∗
N2 and the randomness space Rkem is {0, · · · , �N/2}.

H : Z∗
N2 → Rkem is a target collision resistant hash function.

Fig. 9. The DCR-Based KEM from Cramer-Shoup Encryption Scheme [13]

The QR-Based. Let p, q, p′, q′ be distinct odd primes with p = 2p′ + 1 and q =
2q′ + 1. Let N = pq and N ′ = p′q′. Group Z

∗
N = GN ′ · G2 · G where each

group Gρ is a cyclic group of order ρ, and G is the subgroup of Z∗
N generated

by (−1 mod N). Let η ←$Z
∗
N and g = η2. Figure 10 describes the QR-based

KEM proposed in [13]. The public parameter is pp = (N, g, k, k̂). The key space
Kkem is (Z∗

N)k and the randomness space Rkem is {0, · · · , �N/4}. Let Ω =
{0, . . . , �N/2}. H : Z∗

N → {0, 1} is an efficiently computable injective map.

Kurosawa-Desmedt KEM [23]. In [23], Kurosawa and Desmedt designed a
KEM that is not CCA-secure whereas the resulting hybrid encryption scheme
is CCA secure. In [20], Hofheinz and Kiltz generalized the Kurosawa-Desmedt
KEM to be based on the k-linear assumption. Here we show the generalized
Kurosawa-Desmedt KEM in its implicit-rejection variant. Let G be a cyclic group
of prime order p, and g1, · · · , gk, ĝ are randomly chosen generators of G. Figure 11

Subvert KEM to Break DEM 121

Fig. 10. The QR-Based KEM from Cramer-Shoup Encryption Scheme [13].
x = {x1, · · · , xk},h = {h1, · · · , hk},y = {y1, · · · , yk̂}, z = {z1, · · · , zk̂}, c =
{c1, · · · , ck̂},d = {d1, · · · , dk̂}.

depicts the generalized Kurosawa-Desmedt KEM based on k-linear assumption.
The public parameter is pp = (G, p, k, g1, · · · , gk, ĝ). The key space Kkem is G

and the randomness space Rkem is Z
k
p. H : G

k+1 → Z
∗
p is a target collision

resistant hash function. Note that DDH assumption is equivalent to the 1-linear
assumption, and the scheme instantiated with k = 1 precisely reproduces the
Kurosawa-Desmedt KEM [23].

Fig. 11. Generalized Kurosawa-Desmedt KEM based on k-Linear Assumption [20,23].
x = {x1, · · · , xk},y = {y1, · · · , yk},h = {h1, · · · , hk}, ĥ = {ĥ1, · · · , ĥk}}

Hofheinz-Kiltz KEMs [20]. In [20], Hofheinz and Kiltz formalized a new
notion of CCCA (constrained chosen-ciphertext security) security for KEM and
designed a new CCCA-secure KEM from the DDH assumption. As depicted by
Fig. 12, the construction (the public parameter is pp = (G, p, g)) is almost the
same as the DDH-based one by Cramer and Shoup [13] except that the cipher-
text consists of only one group element. Therefore, the DDH-based KEM by
Hofheinz and Kiltz is also subvertible by our ASA.

Fig. 12. Hofheinz-Kiltz KEM based on k-Linear Assumption [20]

122 R. Chen et al.

Remark. In [21], Hofheinz and Kiltz generalized their DDH-based KEM to the
k-linear based one. We remark that their k-linear version is not subvertible by
our ASA as all the group generators must be parts of the public key and thus
the public subversion key cannot be generated before the public key is generated
by the user. Moreover, an implicit-rejection variant of the above DDH-based
KEM (Fig. 12) is also proposed in [21], we claim that it is not subvertible to our
ASA either as the key ciphertext depends on the public key and thus is not of
universal decryptability. For more details we refer the reader to [21].

6 Discussions on Countermeasures

In this section, we mainly discuss how to design KEMs secure against ASAs.
Indeed, as we have discussed previously, there exist several KEMs that are not
subvertible by our ASA [21,26]. Nevertheless, we generally consider the security
of KEMs against a wider range of possible subversion attacks in the real world.
Noting that almost all known ASAs are mainly due to the free choice of random-
ness in the cryptographic algorithm, current defense approaches could be roughly
classified as two types, depending on whether the randomness is permitted.

6.1 Abandoning Randomized Algorithms

Some prior works [3,5–7,14] have suggested to use deterministic schemes that
produce unique output (e.g., unique ciphertext for encryption). For such schemes,
any subversion attack could be detected via comparing the output of the (pos-
sibly) subverted algorithm with the expected output of the legitimate one at
running time. The notion of unique-ciphertext public-key encryption has been
proposed by Bellare and Hoang [5] as a useful primitive to resist undetectable
subversion attacks. Unfortunately, although abandoning randomized algorithms
could well resist subversions, it naturally makes some desirable security notions
unachievable. In particular, it is a common wisdom that the conventional IND-
CPA security is impossible for deterministic encryption.

6.2 Permitting Randomized Algorithms with Further Assumptions

Some other approaches permitting randomized algorithms have been proposed
to defeat subversions. Note that it is generally impossible for randomized algo-
rithms to resist subversion attacks without making further assumptions (regard-
ing trusted component assumptions and architectural requirements). Indeed, all
current generic approaches that permit randomized algorithms require various
assumptions. Here we mainly introduce three generic techniques using which
one could possibly secure KEM against subversion. Note that all these defensive
techniques rely on different assumptions and thus are generally incomparable.

(1) Split-program methodology [2,12,27–29]. The split-program methodol-
ogy is introduced by Russell et al. [27,28] where an algorithm is decomposed into

Subvert KEM to Break DEM 123

several functional components that are executed independently (as in threshold
cryptography or multiparty computation elements is often assumed, and as can
be implemented based on well isolated enclaves architecturally). It mainly relies
on a so-called watchdog that is trustworthy for detecting subversions of each
individual component of the randomized algorithm. Particularly, in the split-
program model, the adversary is required to supply implementations of all com-
ponents to the watchdog who has the specification of these components. The
watchdog ’s goal is to test whether the (possibly subverted) implementation of
each individual component is compliant with the specification via black-box test-
ing. The split-program methodology is generally applicable for every randomized
algorithm and has nice properties in resisting the complete subversion including
subverted key generation. Note that Russell et al.’s PKE construction [28] triv-
ially implies an IND-CPA-secure KEM with subversion resilience in the offline
watchdog model. However, it remains unknown how to achieve stronger security
(e.g., IND-CCA security) for KEMs in the subversion setting.

(2) Cryptographic reverse firewall [11,17,25]. Cryptographic reverse fire-
wall was firstly introduced by Mironov and Stephens-Davidowitz [25] to secure
arbitrary two-party protocol that are run on possibly subverted machines. The
reverse firewall model requires an on-line external party to re-randomize all
incoming/outgoing communication of the randomized algorithm. This model is
quite powerful in the sense that it could secure the fully black-box use of (possi-
bly subverted) algorithms without complex detection mechanisms. However, it
requires a source of trusted randomness, and may not be readily applicable to
every existing protocol as it requires some “re-randomizable” structure of the
cryptographic scheme. In [17], Dodis et al. showed how to design secure message
transmission protocols on corrupted machines. Their CPA-secure rerandomizable
PKE trivially implies IND-CPA-secure KEMs with reverse firewalls. However, as
pointed out by Dodis et al., such a construction usually requires the computation
of public-key operations on the entire plaintext and thus is inefficient.

(3) Self-guarding mechanism [18]. The self-guarding mechanism, introduced
by Fischlin and Mazaheri [18], assumes the existence of a good initial phase when
the randomized algorithm is not subverted. It could be viewed as an alternative
approach to reverse firewall, but does not depend on external parties and applies
more smoothly to some primitives like symmetric encryption. The core idea is
to use samples gathered from its underlying primitives during their good initial
phase in addition to basic operations to resist subversion attacks that are later
on mounted on the primitives. That is, self-guarding mechanism mainly counter
subversion attacks that are triggered to wake up at a later point in time. Here we
roughly discuss how to construct self-guarding KEMs. Once a set of fresh samples
are gathered at the good initial phase, for each output (K,ψ) of the possibly
subverted encapsulation algorithm, a sample (K$, ψ$) is first randomly chosen
(and deleted) from the set, and then K$ is used to mask ψ while ψ$ is appended
to the updated ciphertext. To decapsulate the key K, K$ is first recovered to
remove the mask in the ciphertext and thereafter the recovered ciphertext is

124 R. Chen et al.

decrypted. Note that the security of KEM in this setting is inherently bounded
by the number of samples collected during the good initial phase.

Note that in [19], Giacon et al. introduced the notion of KEM combiners as
an approach to garner trust from different KEM constructions instead of relying
on a single one. We remark that their proposed combiners could be potentially
used to restore security against subversion attacks by assuming at least one of the
underlying KEMs is not subverted. Further, there are several other approaches
for protecting specific primitives against subversions, e.g., anonymous attestation
protocols by Camenisch et al. [9], and backdoored pseudorandom generators by
Dodis et al. [15].

Acknowledgement. We would like to thank all anonymous reviewers for their valu-
able comments. Part of this work was done while Rongmao Chen was visiting COSIC
in KU Leuven, Belgium. This work is supported in part by the National Natural Sci-
ence Foundation of China (Grant No. 62032005, Grant No. 61702541, and Grant No.
61872087), Science Foundation of Fujian Provincial Science and Technology Agency
(Grant No. 2020J02016) and the Young Elite Scientists Sponsorship Program by China
Association for Science and Technology.

A Omitted Definitions and Proof

A.1 Hash Proof System

Below we formally define the subset membership problem and computational
smoothness for HPSs.
(1). Subset membership problem. We say the subset membership problem is hard
in HPS if it is computationally hard to distinguish a random element L from a
random element from X \ L. Formally, for any PPT algorithm A,

Advsmp
hps,A(n) := |Pr[A(X , L, x) = 1|x ←$ L] −

Pr[A(X , L, x) = 1|x ←$ X \ L] | ≤ negl(n) .

(2). Computational smoothness. We say HPS is of computational smoothness if
the hash value of a random element from X \L looks random to an adversary only
knowing the projection key. Formally, for any PPT algorithm A, its advantage
Advsmooth

hps,A (n) defined as below is negligible.

Advsmooth
hps,A (n) :=

∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

b′ = b :

pp ←$HPS.Setup(1n);
(hp, hk) ←$HPS.Gen(pp);
x ←$ X \ L; b ←$ {0, 1};
y0 ←$ Y;
y1 := HPS.Priv(hk, x);
b′ ← A(pp, hp, x, yb)

⎤
⎥⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣

.

Subvert KEM to Break DEM 125

A.2 Proof of Theorem 4

Theorem 4. The generic construction of KEM depicted in Sect. 5.1 is univer-
sally decryptable and key-pseudo-random if HPS is computationally smooth and
the subset membership problem is hard in HPS.

Proof. The property of universal decryptability clearly holds due to the projec-
tion property of HPS. We now prove the key-pseudo-randomness via games:
{G0,G1,G2,G3}. Let Advx be the advantage of A in Game Gx. Below we
provide more details of each game.

– Game G0: This is the real game and thus Advprkkem,A(n) = Adv0.
– Game G1: Same as G0 except that instead of computing K1 :=

KEM.Kg(ek, r), the challenger computes K1 := KEM.Kd(dk,C). One can see
that from the view of the adversary, G1 is identical to G0 due to the property
of universal decryptability. Therefore, we have Adv1 = Adv0.

– Game G2: Same as G1 except that the challenger chooses C ←$ X \ L. One
can see that from the view of the adversary, G2 is indistinguishable from
G1 due to the hard subset membership problem in HPS. Therefore, we have
|Adv2 − Adv1| ≤ Advsmp

hps,A(n).
– Game G3: Same as G2 except that the challenger chooses K1 ←$ Kkem

instead of computing K1 := KEM.Kd(dk,C). Below we show that a distin-
guisher between both games could be turned into an attacker A′ against
the smoothness of KEM. Precisely, when A′ receives (pp, hp, x∗, y∗) from
its challenger, it sets ek := hp, C := x and K1 := y∗. One can note that
if y∗ := HPS.Priv(hk, x∗), then the simulation is Game G2, otherwise it is
Game G3. This yields |Adv3 − Adv2| ≤ Advsmooth

hps,A (n).

In Game G3, the view of the adversary actually does not depend on the
chosen bit b and thus we have Adv3 = 0. Putting all the above together,

Advprkkem,A(n) = Adv0
= |Adv0 − Adv1 + Adv1 − Adv2 + Adv2 − Adv3 + Adv3|
≤ |Adv0 − Adv1| + |Adv1 − Adv2| + |Adv2 − Adv3| + Adv3
≤ Advsmp

hps,A(n) + Advsmooth
hps,A (n).

This completes the proof of the theorem.

References

1. Armour, M., Poettering, B.: Subverting decryption in AEAD. In: Albrecht, M.
(ed.) IMACC 2019. LNCS, vol. 11929, pp. 22–41. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-35199-1 2

2. Ateniese, G., Francati, D., Magri, B., Venturi, D.: Public immunization against
complete subversion without random oracles. In: Deng, R.H., Gauthier-Umaña, V.,
Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 465–485. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 23

https://doi.org/10.1007/978-3-030-35199-1_2
https://doi.org/10.1007/978-3-030-35199-1_2
https://doi.org/10.1007/978-3-030-21568-2_23

126 R. Chen et al.

3. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
Ray, I., Li, N., Kruegel: C. (eds.) ACM CCS, vol. 15, pp. 364–375. ACM Press,
October 2015. https://doi.org/10.1145/2810103.2813635

4. Auerbach, B., Bellare, M., Kiltz, E.: Public-key encryption resistant to parame-
ter subversion and its realization from efficiently-embeddable groups. In: Abdalla,
M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 348–377. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76578-5 12

5. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 21

6. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: Ray, I., Li, N., Kruegel: C. (eds.)
ACM CCS, vol. 15, pp. 1431–1440. ACM Press, October 2015. https://doi.org/10.
1145/2810103.2813681

7. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

8. Berndt, S., Liskiewicz, M.: Algorithm substitution attacks from a steganographic
perspective. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS, vol. 17, pp. 1649–1660. ACM Press, October/November 2017. https://doi.
org/10.1145/3133956.3133981

9. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation with subverted
TPMs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp.
427–461. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 15

10. Checkoway, S., et al.: On the Practical Exploitability of Dual EC in TLS Imple-
mentations, pp. 319–335 (2014)

11. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse
firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 844–876. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 31

12. Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.-S.: Let a non-
barking watchdog bite: cliptographic signatures with an offline watchdog. In: Lin,
D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 221–251. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17253-4 8

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

14. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 28

15. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 5

https://doi.org/10.1145/2810103.2813635
https://doi.org/10.1007/978-3-319-76578-5_12
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1145/3133956.3133981
https://doi.org/10.1145/3133956.3133981
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-662-53887-6_31
https://doi.org/10.1007/978-3-030-17253-4_8
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-46800-5_5

Subvert KEM to Break DEM 127

16. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28628-8 30

17. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 13

18. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks. In: 31st IEEE Computer Security Foundations Symposium,
CSF 2018, Oxford, United Kingdom, 9–12 July 2018, pp. 76–90 (2018). https://
doi.org/10.1109/CSF.2018.00013

19. Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10769, pp. 190–218. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5 7

20. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 31

21. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
Cryptology ePrint Archive, Report 2007/288 (2007). http://eprint.iacr.org/2007/
288

22. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 18

23. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 26

24. Kwant, R., Lange, T., Thissen, K.: Lattice klepto. In: Adams, C., Camenisch, J.
(eds.) SAC 2017. LNCS, vol. 10719, pp. 336–354. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-72565-9 17

25. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

26. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

27. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 2

28. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against
a kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS, vol. 17, pp. 907–922. ACM Press, October/November 2017.
https://doi.org/10.1145/3133956.3133993

29. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 241–
271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 9

30. Young, A., Yung, M.: The dark side of “black-box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

https://doi.org/10.1007/978-3-540-28628-8_30
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1109/CSF.2018.00013
https://doi.org/10.1109/CSF.2018.00013
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-540-74143-5_31
http://eprint.iacr.org/2007/288
http://eprint.iacr.org/2007/288
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-319-72565-9_17
https://doi.org/10.1007/978-3-319-72565-9_17
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1145/3133956.3133993
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/3-540-68697-5_8

128 R. Chen et al.

31. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

32. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based
cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–
276. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052241

https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/BFb0052241

Unbounded HIBE with Tight Security

Roman Langrehr1(B) and Jiaxin Pan2

1 ETH Zurich, Zurich, Switzerland
roman.langrehr@inf.ethz.ch

2 Department of Mathematical Sciences, NTNU – Norwegian University of Science
and Technology, Trondheim, Norway

jiaxin.pan@ntnu.no

Abstract. We propose the first tightly secure and unbounded hierarchi-
cal identity-based encryption (HIBE) scheme based on standard assump-
tions. Our main technical contribution is a novel proof strategy that
allows us to tightly randomize user secret keys for identities with arbi-
trary hierarchy depths using low entropy hidden in a small and hierarchy-
independent master public key.

The notion of unbounded HIBE is proposed by Lewko and Waters
(Eurocrypt 2011). In contrast to most HIBE schemes, an unbounded
scheme does not require any maximum depth to be specified in the setup
phase, and user secret keys or ciphertexts can be generated for identities
of arbitrary depths with hierarchy-independent system parameters.

While all the previous unbounded HIBE schemes have security loss
that grows at least linearly in the number of user secret key queries,
the security loss of our scheme is only dependent on the security param-
eter, even in the multi-challenge setting, where an adversary can ask
for multiple challenge ciphertexts. We prove the adaptive security of
our scheme based on the Matrix Decisional Diffie-Hellman assumption
in prime-order pairing groups, which generalizes a family of standard
Diffie-Hellman assumptions such as k-Linear.

Keywords: Unbounded hierarchical identity-based encryption · Tight
security · Multi-challenge security

1 Introduction

1.1 Motivation

Hierarchical identity-based encryption (HIBE) [16,26] is a generalization of
identity-based encryption (IBE) [36]. It offers more flexibility in sharing sen-
sitive data than IBE or classical public-key encryption (PKE).

In an HIBE scheme, users’ identities are arranged in an organizational hier-
archy and, more precisely, a hierarchical identity is a vector of identities of some

R. Langrehr—Part of the work done at Karlsruhe Institute of Technology, Karlsruhe,
Germany. Supported in part by ERC CoG grant 724307.
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 129–159, 2020.
https://doi.org/10.1007/978-3-030-64834-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_5

130 R. Langrehr and J. Pan

length p > 0. As in an IBE scheme, anyone can encrypt a message with respect to
an identity id := (id1, ..., idp) by access to only the public parameters. To decrypt
this encrypted message, one of id’s ascendants at level p′ where 0 < p′ < p can
delegate a user secret key for id, in addition to asking the trusted authority
for id’s user secret key as in the IBE setting. Furthermore, a user at level p is
not supposed to decrypt any ciphertext for a recipient who is not among its
descendants.

The security we focus on in this paper is adaptive security, where an adver-
sary is allowed to declare a fresh challenge identity id� adaptively and obtain
a challenge ciphertext of id� after seeing user secret keys for arbitrary chosen
identities and (master) public keys. It is a widely accepted security notion for
both HIBE and IBE schemes. Most of the existing HIBE schemes in the stan-
dard model have a security loss of at least Qe (such as [6,9]) or even QL

e [39],
where Qe is the maximum number of user secret key queries and L is the max-
imum hierarchy depth. Constructions from recent work of Langrehr and Pan
(LP) [29,30] are the known exceptions. Their security loss depends only on the
security parameter, but not Qe. However, their master public key size1 depends
on L. As L grows, the master public key becomes larger.

In particular, the maximum hierarchy depth L needs to be fixed in the setup
phase. Once it is fixed and master public keys are generated, there is no way to
add new levels into the hierarchy. This can be an undesirable burden to deploy
HIBE in practice since institutions grow rapidly nowadays. Hence, it is more
desirable to construct a tightly secure HIBE scheme whose master public keys
are independent of the maximum hierarchy depth.

We note that the limitation mentioned above exists not only in the LP
schemes but also in almost all the HIBE schemes even with non-tight secu-
rity in the standard model. The notion of unbounded HIBE from Lewko and
Waters [33] is proposed to overcome this limitation. In an unbounded HIBE, the
whole scheme is not bounded to the maximum depth L. In particular, its master
public keys, user secret keys and ciphertexts are all independent of L. (Though
the user secret keys and ciphertexts can still depend on the actual hierarchy
depth of the identity.) They and the follow-up work [18,31] give constructions
of unbounded HIBE in composite- and prime-order pairing groups, respectively,
to implement this notion. Unfortunately, none of these constructions is tight.

Our goal: Tightly secure unbounded HIBE. In this paper, we aim at
constructing unbounded HIBE with tight reductions based on standard assump-
tions. We start recalling tight security and then give some reasons about why it
is technically challenging to achieve this goal.

A security reduction is usually used to prove the security of a cryptographic
scheme S by reducing any attacker A against S to an attacker R against a
corresponding computational hard problem P in an efficient way. After that, we
can conclude that breaking the security of S is at least as hard as solving P .
More precisely, we establish a relation that states εA ≤ � · εR. Here εA and εR
1 We measure the size of the master public key in terms of the number of group

elements.

Unbounded HIBE with Tight Security 131

are success probability of A and R, respectively, and for simplicity we ignore the
additive negligible terms and assume that the running time of R is approximately
the same as that of A.

Ideally, we want a reduction to be tight, namely, � to be a small constant.
Recent works are also interested in “almost tight security”, where � may be
(for instance, linearly or logarithmically) dependent on the security parameter,
but not the size of A. We will not distinguish these two tightness notions, but
state the precise security loss in security proofs and comparison of schemes.
A tight security reduction means the security of S is tightly coupled with the
hardness of P . A scheme with tight reductions is more desirable since it pro-
vides the same level of security regardless of the application size. Moreover,
we can implement it with smaller parameters and do not need to compensate
for the security loss. As a result, tightly secure schemes drew a lot of atten-
tion in the last few years, from basic primitives, such as PKE [13,14,21] and
signature [1,15] schemes, to more advanced ones, such as (non-interactive) key
exchange [10,17,22], zero-knowledge proof [2,3], IBE [6,9,20,23] and functional
encryption [37] schemes. Currently, research is carried out to reduce the cost
for tight security. For instance, for PKE, the public key size is shortened from
being linear [13] (in the security parameter) to constant [14,21]. In particular,
the scheme in [14] only has one element more in the ciphertext overhead than its
non-tight counterpart [28] asymptotically. By taking the concrete security loss
into account, we are optimistic that scheme in [14] will have shorter ciphertext
length in terms of bits.

Difficulties in achieving our goal. Given the existing research, it is quite
challenging to construct a tightly secure HIBE, even for a bounded one. Firstly, the
potential difficulty of this task has been shown by Lewko and Waters [34], namely,
it is hard to prove an HIBE scheme with security loss less than exponential in L,
if its user secret keys are rerandomizable over all “functional” keys. Secondly, the
work of Blazy, Kiltz, and Pan (BKP) [6] is the first that claimed to have solved this
challenge by proposing a bounded tightly secure HIBE. Their scheme has indeed
bypassed the impossibility result of [34] by having its user secret keys only reran-
domizable in a subspace of all “functional” keys, which is similar to schemes based
on the dual system technique [9,32]. Unfortunately, shortly after its publication,
a technical flaw was found in their proof, which shows that their proof strategy is
insufficient for HIBE with flexible identity depth.

Recently, Langrehr and Pan have proposed the first tightly secure HIBE in
the standard model [29]. A very recent and concurrent work [30] improves this
HIBE and proposes a tightly secure HIBE in the multi-challenge setting. Core
techniques in both papers crucially require their master public key size depend
on the maximum hierarchy, L. More precisely, they need to know L in advance
so that they can choose independent master secret keys for different levels, which
will be turned into master public keys. With these relatively large master secret
keys, they can apply their independent randomization to isolate randomization
for identities with different maximum levels. As a result, their scheme is bounded
to the maximum level L of the whole HIBE scheme and its master public key
size is dependent on L.

132 R. Langrehr and J. Pan

1.2 Our Contribution

We construct the first tightly secure unbounded HIBE based on standard
assumptions. Our scheme is furthermore tightly multi-challenge secure. The
multi-challenge security is a more realistic notion for (H)IBE, where an adver-
sary is allowed to query multiple challenge identities adaptively and obtain the
corresponding ciphertexts. It has comparable efficiency to its non-tight counter-
parts [18,31], and, in particular, it has shorter ciphertext and user secret key
than the scheme of [31]. At the core of our construction is a novel technique
that allows us to prove tight adaptive security of HIBE with “small”, hierarchy-
independent master public keys.

More precisely, the identity space for our scheme ID := S∗ has unbounded
depth and the base set S can be arbitrary. In this section, we consider
S := {0, 1}n for simplicity, where n is the security parameter. The master public
key of our scheme is independent of L and contains only O(n)-many group ele-
ments, which is the same as the existing tightly secure IBE schemes [6,9,20,23].

All our security proofs are in the standard model and based on the Matrix
Decisional Diffie-Hellman (MDDH) assumption [11] in prime-order asymmetric
pairing groups. The MDDH assumption is a generalization of a class of Deci-
sional Diffie-Hellman assumptions, such as the k-Lin [24] and aSymmetric eXter-
nal Diffie-Hellman (SXDH) (for k = 1) assumptions. The security of our MAC
requires an additional assumption on the existence of collision-resistant hash
functions. There exist collision-resistant hash functions in the standard model
that maps arbitrary-length bit-strings to fixed-length ones using fixed-length
keys. For instance, one can use the Merkle-Damgård construction with hash
functions from the SHA familiy or the less efficient but completely provably
secure one from the discrete logarithm assumption.

Efficiency comparison. We compare the efficiency of bounded and
unbounded HIBE schemes in the standard model with prime-order pairings in
Table 1. We note that [35] achieves a weaker notion of unbounded HIBE in
the sense that their master public key is independent of L, but the size of the
user secret key is dependent on L. More precisely, their user secret key contains
Ω(L − p)-many group elements for an identity id := (id1, . . . , idp).

According to Table 1, our scheme has shorter ciphertexts and user secret
keys than Lew12, which is comparable to GCTC16. We note that both Lew12
and GCTC16 are unbounded HIBE with non-tight reductions, while ours are
tight. Thus, when accounting for a larger security loss in the reduction with
larger groups, our scheme may have shorter ciphertexts and user secret keys
than GCTC16 at the concrete level. We want to emphasize that our scheme is
not fully practical yet, but it lays down a theoretical foundation for more efficient
unbounded HIBE with tight security in the future.

Extensions. Our unbounded HIBE scheme directly implies a tightly secure
unbounded identity-based signature by the Naor transformation. Furthermore,
our HIBE is compatible with the Quasi-Adaptive NIZK (QANIZK) for linear
subspaces and thus, similar to [23] it can be combined with a tightly simulation-
sound QANIZK to construct a tightly CCA-secure unbounded HIBE in the

Unbounded HIBE with Tight Security 133

multi-challenge setting. We give a detailed treatment in the full version for
completeness.

Table 1. Comparison of bounded and unbounded HIBEs in prime-order pairing groups
with adaptive security in the standard model based on static assumptions. The second
column indicates whether an HIBE is bounded (✗) or unbounded (✓). The identity
space for bounded HIBE is ({0, 1}n)≤L and that for unbounded HIBE is ({0, 1}n)∗. γ
is the bit length of the range of a collision-resistant hash function. ‘|mpk|,’ ‘|usk|,’ and
‘|C|’ stand for the size of the master public key, a user secret key and a ciphertext,
respectively. We count the number of group elements in G1,G2, and GT . For a scheme
that works in symmetric pairing groups, we write G(:= G1 = G2). In the ‘|usk|’ and ‘|C|’
columns p stands for the hierarchy depth of the identity vector. In bounded HIBEs, L
denotes the maximum hierarchy depth. In the security loss, Qe denotes the number of
user secret key queries by the adversary. MC stands for multi-challenge and this column
indicates whether the adversary is allowed to query multiple challenge ciphertexts (✓)
or just one (✗). Lew12 is the prime-order variant of the unbounded scheme in [33].

Scheme U |mpk| |usk| |C| Loss MCAssumption
Wat05 [39] ✗ O(nL)|G| O(nL)|G| (1 + p)|G| O(nQe)L ✗ DBDH
Wat09 [38] ✗ O(L)|G| O(p)(|G| + |Zq|) O(p)(|G| + |Zq|) O(Qe) ✗ 2-LIN
Lew12[31] ✓ 60|G| + 2|GT | (60 + 10p)|G| 10p|G| O(Qe) ✗ 2-LIN
OT12 [35] ✗ 160|G| O(p2L)|G| 3 + 6p|G| O(QeL

2) ✗ 2-LIN
CW13 [9] ✗ O(L)(|G1| + |G2|) O(L)|G2| 4|G1| O(Qe) ✗ SXDH
BKP14 [6] ✗ O(L)(|G1| + |G2|) O(L)|G2| 4|G1| O(Qe) ✗ SXDH
GCTC16 [18] ✓18(|G1| + |G2|) + 3|GT |(18�p/3� − 3p + 18)|G2| 9�p/3�|G1| O(QL) ✗ SXDH
LP19H

1 [29] ✗ O(γL)(|G1| + |G2|) O(γL)|G2| 5|G1| O(γL) ✗ SXDH
LP19H

2 [29] ✗ O(γL)(|G1| + |G2|) (3p + 2)|G2| (3p + 2)|G1| O(γ) ✗ SXDH
LP20H

1 [30] ✗ O(γL)(|G1| + |G2|) O(γL)|G2| 5|G1| O(γL) ✓ SXDH
LP20H

2 [30] ✗ O(γL)(|G1| + |G2|) (3p + 2)|G2| (3p + 2)|G1| O(γL) ✓ SXDH
Ours (Fig. 14)✓ O(γ)(|G1| + |G2|) (7p + 2)|G2| (7p + 2)|G1| O(γ) ✓ SXDH

1.3 Technical Overview

To achieve our goal, we develop a novel tight method that uses (limited) entropy
hidden in hierarchy-independent master public key to generate enough entropy
to randomize user secret keys of identities with unbounded hierarchy depths
(in a computational manner). As a bonus, our technique naturally give us tight
multi-challenge security.

A modular treatment: From MAC to HIBE. We follow the modular app-
roach of Blazy, Kiltz, and Pan (BKP) [6] to construct our unbounded HIBE.
The basis of our construction is a novel tightly secure message authentication
code (MAC). Our MAC has suitable algebraic structures and thus can be turned
into an unbounded HIBE tightly by adapting the BKP framework.

The BKP framework [6] tightly reduces constructing an (H)IBE to a suitable
affine MAC. As a result, we only need to focus on constructing the suitable
MAC. Affine MACs are algebraic MACs that have affine structures, and such

134 R. Langrehr and J. Pan

structures allow transformation to (H)IBEs. This framework abstracts the first
tightly secure IBE from Chen and Wee (CW) [9] and can be viewed as extending
the “MAC → Signature” framework of Bellare and Goldwasser [5] to the IBE
setting by using the affine structure and pairings. Most of the tightly secure IBE
and HIBE schemes are related to this framework, such as [19,20,23,25,29,30].

Preparation: Shrinking the message space via hashing. We first apply a
collision-resistant hash function to shrink the message space which the “bit-by-
bit” argument applies on. More precisely, let H : {0, 1}∗ → {0, 1}n be a collision-
resistant hash function. For an (unbounded) hierarchical message m := (m1, . . . ,
mp) ∈ ({0, 1}n)p, we hash every i-th prefix (1 ≤ i ≤ p) and have the hashed
message hm := (hm1, hm2, . . . , hmp) where hmi := H(m1, . . . ,mi) ∈ {0, 1}n.
The collision-resistance guarantees that it is hard for an adversary to find two
distinct m and m� messages with H(m) = H(m�). In particular, after hashing
every prefixes of a message, if a hierarchical message m is not a prefix of m�,
then the last hash value of m is different to every hash value of m�. As a result,
our argument is only applied on the last hash value.

Our strategy: “Inject-and-Pack”. Our strategy contains two steps: (1)
injecting enough randomness into MAC tags locally and (2) packing the local
randomness and lift it up to the global level. Both steps are compatible with each
other, and they only rely on the limited entropy in the hierarchy-independent
MAC keys and can provide tight security even in the multi-challenge setting.

Our MAC has the following structures that enable our “inject-and-pack”
strategy. This is captured by our MAC scheme MACu in Sect. 3.2.

For a hierarchical message m := (m1, . . . ,mp), our MAC tag τm := (([ti]2,[
t̃i

]
2, [ui]2)1≤i≤p, [ũ]2) has the following form:

ti := Bsi ∈ Z
n1
q and t̃i := B̃s̃i ∈ Z

n2
q for si, s̃i

$← Z
n3
q

ui :=
∑n

j=1 Xj,hmi�j�ti + X̃1t̃i ∈ Z
n4
q (1)

ũ :=
∑p

j=1 X̃2t̃j + x′ ,

where B $← Z
n1×n3
q , B̃ $← Z

n2×n3
q

2, Xj,b
$← Z

n4×n1
q for 1 ≤ j ≤ n, b ∈ {0, 1} and

X̃1, X̃2
$← Z

n4×n2
q and x′ $← Z

n4
q and they are all contained in the secret key

of our MAC, namely, skMAC := (B, B̃, (Xj,b)for 1≤j≤n,b∈{0,1}, X̃1, X̃2, x′). Here
the (hierarchical) message space of a MAC is the identity space of the resulting
HIBE.

We highlight different purposes of different parts in our MAC tags:

– randomizing x′ is our end goal. In the resulting HIBE, once x′ is randomized,
it will further randomize challenge ciphertexts;

– the linear part,
∑n

j=1 Xj,hmi�j�ti , is used to inject randomness;

2 For simplicity, we choose B and B̃ uniformly at random here, while in the actual
scheme we choose them based on the underlying assumption.

Unbounded HIBE with Tight Security 135

– with the packing helpers, X̃1t̃i and
∑p

j=1 X̃2t̃j , we can transfer the

injected randomness in up to randomize x′ .

We will discuss how to choose the dimensions of these random matrices and
vectors to enable our strategy.

Before that, we stress that it is crucial to generate ([ti]2,
[
t̃i

]
2, [ui]2) for all

1 ≤ i ≤ p and hmi := H(m1, ...,mi) so that we can delegate and randomize MAC
tags for further levels by publishing ([B]2,

[
B̃

]
2, ([Xj,bB]2)j,b,

[
X̃1B̃

]
2,

[
X̃2B̃

]
2).

Details about public delegation can be found in Remark 1 and the full version.

Interlude: Security requirement. The MAC security we need for the
“MAC-to-HIBE” transformation is pseudorandomness against adaptive chosen
message attacks, which is a decisional version of the EUF-CMA security of MAC.
To simplify our discussion, we use the EUF-CMA notion only in this chapter, but
in the main body we prove the decisional one. In the EUF-CMA security game,
an adversary can adaptively ask many MAC tag queries and at some point it
will submit one forgery. For the multi-challenge security, we allow the adversary
submit multiple forgeries. Here we only consider one forgery for simplicity. Note
that our technique works tightly for multiple forgeries.

Local step: Injecting randomness. Here we only focus terms in the solid
box of Eq. (1) and find a right way to define the dimensions to implement the
injection strategy. We note that one cannot use the idea of BKP MAC here, since
it uses a square full-rank matrix B ∈ Z

k×k
q and there is no room to hide Xj,b from

the published terms [Xj,bB]2. These terms have to be public to delegate secret
keys, while it is not a problem for IBE. Moreover, the same (Xj,b)1≤j≤n,b∈{0,1} is
re-used for all ui and the injected randomness will be leaked along them, which
is another issue we encounter with the BKP MAC.

To have control on where to inject randomness, we increase the number of
row vectors in B $← Z

3k×k
q , namely, n1 := 3k, as the LP method in [29], where

Xj,b
$← Z

1×3k
q are row vectors. Now the column space of B, Span(B) := {v |

∃w ∈ Z
k
q s.t. v = B · w}, is a subspace of Z

3k
q and there is a non-zero kernel

matrix B⊥ ∈ Z
3k×2k
q such that (B⊥)�B = 0 ∈ Z

2k×k
q . Span(B⊥) is orthogonal

to Span(B).
We introduce a random function “inside” Span(B⊥) by tight reductions to

the MDDH assumption and all ui (1 ≤ i ≤ p) in Eq. (1) will distribute according
to the following new form:

ui :=
(∑n

j=1
X�

j,hmi�j� + RF(hmi) · (B⊥)�
)

ti + X̃1t̃i ∈ Zq . (2)

Now RF(hmi) is multiplied by B⊥ and we can control where it gets introduced
by choose ti /∈ Span(B). More precisely, we only introduce the random function,
RF, in up at level p for a hierarchical identity m := (m1, ...,mp).

The above idea is borrowed from [29], but it is still not enough to correctly
inject randomness: It only helps us to hide RF in MAC tag queries, but we
still have issue in answering the verification query for an adversary’s forgery.

136 R. Langrehr and J. Pan

The issue described below does not happen in the BKP and LP [29] schemes,
since our MAC has more expressive structure. More precisely, on a forgery of mes-
sage m� := (m�

1, ...,m�
p), we need to verify whether the forgery satisfies Eq. (1),

which form an explicit hierarchy. Since we have no control of how an adversary
computes its random t�

i , in answering one verification query, we compute RF on
p many distinct messages, hm�

1, ..., hm�
p. This leaks too much information about

RF.
Our solution is to increase the number of row vectors in Xj,b from 1 to k,

namely, n4 := k. As a result, there is room for us to use an assumption (namely,
the MDDH assumption [11]) to tightly inject randomness into these row vectors.
Thus, in the end, verification equations defined by Eq. (1) get randomized and
the information about RF is properly hidden. We refer Lemma 4 for technical
details. The whole core step is formally captured by the Randomness Injection
Lemma (cf. Lemma 4). Furthermore, this lemma abstracts the core ideas of [30].
Global step: Packing randomness. After the randomness is injected in ui

at the local level, we pack and move it into the global level to randomize x′

which will be use to randomize the challenge ciphertexts. Implicitly, we pack the
randomness firstly in t̃p for an identity has p levels via the packing helper X̃1t̃p.
Secondly, via another packing helper X̃2t̃p, we move the randomness into ũ.

We choose B̃ $← Z
2k×k
q , namely, n2 := 2k, so that there is enough room

to implement the above packing steps. Although the randomness is successfully
injected, it may be leaked from MAC tag and verification queries during the
packing process. In particular, we have small MAC secret keys. To accomplish
the task, we carefully design several intermediate hybrid steps and apply the
MDDH assumption several times. We refer Lemma 5 for details. The whole core
step is formally captured by the Randomness Packing Lemma (cf. Lemma 5).
An alternative interpretation: Localizing HIBEs into IBEs,

tightly. In contrast to the methods of Langrehr and Pan [29,30], our over-
all idea can be viewed as localizing a p-level HIBE into p IBE pieces which
share the same master public and secret keys, and p is an arbitrary integer. In
the security proof, we generate enough entropy locally and then extract it to
the global level to argue the security of HIBE. Such an idea is borrowed from
[18,31,33], where some variants of Boneh-Boyen’s IBE [7] are used at the local
level and all these IBE pieces are connected via a secret sharing method. How-
ever, implementing this idea with tight reductions is rather challenging, even
with the existing tightly secure (H)IBEs (such as [6,9,20,29,30]). We observed
that these techniques either fail to introduce local entropy or cannot collect the
local randomness to argue the security of the (global) HIBE.

1.4 More Discussion on Related Work

The family of LP HIBE schemes. To implement the “level-by-level” argu-
ment, the LP HIBEs [29,30] require the size of master public keys dependent on
the maximum hierarchy depth, L, so that they have enough entropy to randomize
corresponding MAC tags.

Unbounded HIBE with Tight Security 137

Our approach provides an economic, tightly secure technique to do the ran-
domization with more compact and hierarchy-independent master keys. Our
technique uses and abstracts the core technique in a very recent and concurrent
work [30] to inject randomness. As we showed above, injecting randomness is not
enough for our goal and we require an additional suitable randomness packing
technique. [30] achieves tight multi-challenge security for bounded HIBE, while
ours is for unbounded HIBE.

Other techniques for tight multi-challenge security. Over the last
few years, several techniques have been proposed for tightly secure IBE in the
multi-challenge setting, such as [4,19,20,23,25], where [4,19] are based on strong
and non-standard assumptions and [25] requires a composite-order group. Moti-
vated by [25], the work of [20,23] construct the tightly multi-challenge secure
IBE schemes in the prime-order group and they both follow the BKP method.
They have the same limitation as discussed in the “Local Step: Injecting

randomness” section and cannot be used for our goal, since their B is also
full-rank square matrix. The same kind of information about Xj,b is leaked.

Furthermore, in the work of Hofheinz, Jia, and Pan [23] (also in [20] and
BKP), they randomize their MAC by developing a random function, RF, in the
Zq full space gradually. This is problematic in the unbounded HIBE setting:
When we “plug” their MAC into our framework, there is no room to hide RF
and by a “mix-and-match” approach an adversary can learn RF(hm�), where
hm� := H(m�). Imagine a challenge message m� ∈ {0, 1}n. By asking a MAC
tag of (m�,m), an adversary can easily learn RF(hm�) from u1. Finally, [29]
has discussed why these multi-challenge security techniques cannot be used for
HIBEs.

Other unbounded technique. Chen et al. [8] proposes a variant of the
bilinear entropy expansion lemma [27] in prime-order groups, which can be
used to transform a (bounded) attribute-based encryption (ABE) scheme to
an unbounded one in a tight manner. However, we note that their lemma
requires a certain algebraic structure of the underlying scheme, which the LP
schemes [29,30] do not have. Moreover, they only prove their scheme in the
single-challenge setting, and it is not clear for us whether their single-challenge
security tightly implies multi-challenge security.

Open problems. It is interesting to consider if we can extend our “inject-and-
pack” strategy in a more general setting, such as predicate encryption schemes.
Another open problem is to consider the Master-Key-KDM security [12] for
HIBEs. Garg et al. [12] proposed a Master-Key-KDM secure IBE based on a
tightly multi-challenge secure IBE. We are optimistic that our unbounded HIBE
can be adapted to achieve the KDM security by following the approach of Garg
et al., since our scheme has tight multi-challenge security as well. However, we
leave a formal treatment of it as an open problem.

138 R. Langrehr and J. Pan

2 Preliminaries

Notations. We use x $← S to denote the process of sampling an element x
from S uniformly at random if S is a set and to denote the process of running
S with its internal randomness and assign the output to x if S is an algorithm.
The expression a

?= b stands for comparing a and b on equality and returning
the result in Boolean value. For positive integers k, η ∈ N+ and a matrix A ∈
Z
(k+η)×k
q , we denote the upper square matrix of A by A ∈ Z

k×k
q and the lower

η rows of A by A ∈ Z
η×k
q . Similarly, for a column vector v ∈ Z

k+η
q , we denote

the upper k elements by v ∈ Z
k
q and the lower η elements of v by v ∈ Z

η
q . We

use A−� as shorthand for
(
A−1)�. GLk(Zq) denotes the set of invertible k × k

matrices in Zq. Ik is the k × k identity matrix. For a matrix A ∈ Z
n×m
q , we use

Span(A) :=
{

Av | v ∈ Z
m
q

}
to denote the linear span of A and – unless state

otherwise – A⊥ denotes an arbitrary matrix with Span
(
A⊥)

=
{

v | A�v = 0
}

.
For a set S and n ∈ N+, Sn denotes the set of all n-tuples with components

in S and S∗ :=
⋃∞

n=1 Sn. For an n-tuple or string m ∈ Sn, mi ∈ S and m�i� ∈ S
both denote the i-th component of m (1 ≤ i ≤ n) and m|i ∈ Si denotes the
prefix of length i of m.

All algorithms in this paper are probabilistic polynomial-time unless we state
otherwise. If A is an algorithm, then we write a $← A(b) to denote the random
variable outputted by A on input b.

Games. Following [6], we use code-based games to define and prove security. A
game G contains procedures Init and Finalize, and some additional procedures
P1, . . . ,Pn, which are defined in pseudo-code. Initially all variables in a game are
undefined (denoted by ⊥), all sets are empty (denote by ∅), and all partial maps
(denoted by f : A ��� B) are totally undefined. An adversary A is executed in
game G (denote by GA) if it first calls Init, obtaining its output. Next, it may
make arbitrary queries to Pi (according to their specification), again obtaining
their output. Finally, it makes one single call to Finalize(·) and stops. We use
GA ⇒ d to denote that G outputs d after interacting with A, and d is the output
of Finalize. T (A) denotes the running time of A.

2.1 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial-time (PPT) algorithm that on input 1λ

returns a description G := (G1,G2,GT , q, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order q for a λ-bit prime q. The group
elements P1 and P2 are generators of G1 and G2, respectively. The function e :
G1×G2 → GT is an efficient computable (non-degenerated) bilinear map. Define
PT := e(P1, P2), which is a generator in GT . In this paper, we only consider Type
III pairings, where G1
= G2 and there is no efficient homomorphism between
them. All constructions in this paper can be easily instantiated with Type I
pairings by setting G1 = G2 and defining the dimension k to be greater than 1.

Unbounded HIBE with Tight Security 139

We use the implicit representation of group elements as in [11]. For s ∈
{1, 2, T} and a ∈ Zq define [a]s = aPs ∈ Gs as the implicit representation of a in
Gs. Similarly, for a matrix A = (aij) ∈ Z

n×m
q we define [A]s as the implicit rep-

resentation of A in Gs. Span(A) := {Ar|r ∈ Z
m
q } ⊂ Z

n
q denotes the linear span

of A, and similarly Span([A]s) := {[Ar]s|r ∈ Z
m
q } ⊂ G

n
s . Note that it is efficient

to compute [AB]s given ([A]s, B) or (A, [B]s) with matching dimensions. We
define [A]1 ◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed
given [A]1 and [B]2.

Next we recall the definition of the matrix Diffie-Hellman (MDDH) and
related assumptions [11].

Definition 1 (Matrix distribution). Let k, � ∈ N with � > k. We call D�,k a
matrix distribution if it outputs matrices in Z

�×k
q of full rank k in polynomial

time.

Without loss of generality, we assume the first k rows of A $← D�,k form an
invertible matrix. The D�,k-matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A $← D�,k, w $← Z

k
q and

u $← Z
�
q.

Definition 2 (D�,k-matrix Diffie-Hellman assumption). Let D�,k be a
matrix distribution and s ∈ {1, 2, T}. We say that the D�,k-matrix Diffie-Hellman
(D�,k-MDDH) assumption holds relative to PGGen in group Gs if for all PPT
adversaries A, it holds that

Advmddh
D�,k,PGGen,s(A) := |Pr[A(PG, [A]s, [Aw]s) = 1] − Pr[A(PG, [A]s, [u]s) = 1]|

is negligible where the probability is taken over PG $← PGGen(1λ), A $← D�,k,
w $← Z

k
q and u $← Z

�
q.

The uniform distribution is a particular matrix distribution that deserves
special attention, as an adversary breaking the U�,k assumption can also distin-
guish between real MDDH tuples and random tuples for all other possible matrix
distributions. For uniform distributions, they stated in [13] that Uk-MDDH and
U�,k-MDDH assumptions are equivalent.

Definition 3 (Uniform distribution). Let k, � ∈ N+ with � > k. We call U�,k

a uniform distribution if it outputs uniformly random matrices in Z
�×k
q of rank

k in polynomial time. Let Uk := Uk+1,k.

Lemma 1 (U�,k-MDDH ⇔ Uk-MDDH [13]). Let �, k ∈ N+ with � > k. An
U�,k-MDDH instance is as hard as an Uk-MDDH instance. More precisely, for
each adversary A there exists an adversary and vice versa with

Advmddh
U�,k,PGGen,s(A) = Advmddh

Uk,PGGen,s(B)

and T (A) ≈ T (B).

140 R. Langrehr and J. Pan

Lemma 2 (D�,k-MDDH ⇒ Uk-MDDH [11]). Let �, k ∈ N+ with � > k and let
D�,k be a matrix distribution. A Uk-MDDH instance is at least as hard as an
D�,k instance. More precisely, for each adversary A there exists an adversary B
with

Advmddh
Uk,PGGen,s(A) ≤ Advmddh

D�,k,PGGen,s(B)

and T (A) ≈ T (B).

For Q ∈ N+, W $← Z
k×Q
q , U $← Z

�×Q
q , consider the Q-fold D�,k-MDDH prob-

lem which is distinguishing the distributions (PG, [A], [AW]) and (PG, [A], [U]).
That is, the Q-fold D�,k-MDDH problem contains Q independent instances of the
D�,k-MDDH problem (with the same A but different wi). By a hybrid argument,
one can show that the two problems are equivalent, where the reduction loses a
factor Q. The following lemma gives a tight reduction.

Lemma 3 (Random self-reducibility [11]). For � > k and any matrix distri-
bution D�,k, the D�,k-MDDH assumption is random self-reducible. In particular,
for any Q ∈ N+ and any adversary A there exists an adversary B with

(� − k)Advmddh
D�,k,PGGen,s(B) + 1

q − 1 ≥ AdvQ-mddh
D�,k,PGGen,s(A) :=

| Pr[A(PG, [A], [AW] ⇒ 1)] − Pr[A(PG, [A], [U] ⇒ 1)]| ,

where PG $← PGGen
(
1λ

)
, A $← D�,k, W $← Z

k×Q
q , U $← Z

(k+1)×Q
q , and T (B) ≈

T (A) + Q · poly(λ), where poly is a polynomial independent of A.

To reduce the Q-fold U�,k-MDDH assumption to the Uk-MDDH assumption we
have to apply Lemma 3 to get from Q-fold U�,k-MDDH to standard U�,k-MDDH
and then Lemma 1 to get from U�,k-MDDH to Uk-MDDH. Thus for every adver-
sary A there exists an adversary B with

AdvQ-mddh
U�,k,PGGen,s(A) ≤ (� − k)Advmddh

Uk,PGGen,s(B) + 1
q − 1 .

Formal definitions of collision-resistant hash functions (CRHF) and message
authentication codes (MACs) can be found in the full version.

3 Unbounded Affine MAC

3.1 Core Lemmata

The following two core Lemmata contain the main ingredient for the security
proof of our new unbounded MAC. They form the main technical novelty of this
work. Lemma 4 abstracts the technique used in [30]. It shows that the prototypic
MAC MAClin allows the injection of randomness in the tags.

We give a brief overview of how MACu is constructed from MAClin: For a
p-level hierarchical message m := (m1, . . . ,mp) ∈ ({0, 1}γ)p, we divide it into

Unbounded HIBE with Tight Security 141

p pieces hm1, . . . , hmp and each hmi := H(m1, . . . ,mi) where H is a collision-
resistant hash function (CRHF). For each hmi we apply MAClin on it and the
purpose of MAClin is to inject suitable randomness at the local level.

Lemma 5 is then used to move the entropy from up to the vector ũ and ran-
domize it. This makes the user secret keys information-theoretically independent
from the secret x′ and allows us to randomize hK in the Chal queries.

Fig. 1. Our linear MAC MAClin for the message space {0, 1}γ

Randomness Injection Lemma. We start our exposition with a message
authentication code (MAC) with linear structure3 in Fig. 1, MAClin. This MAC
scheme is abstracted from [30]. The tags of this MAC can be verified by checking
whether u =

∑γ
j=1 Xj,hm�j�t, but we require the more sophisticated randomized

verification procedure as in Fig. 1 for the transformation to an unbounded HIBE
later.

The MAC MAClin is correct, since

e
([

h�]
1, [u]2

)
=> h� ∑γ

j=1
Xj,hm�j�t = e

([
h�
0

]
1, [t]2

)
.

Our MAClin is a stepping stone for our unbounded MAC for constructing
HIBEs. For the transformation to unbounded HIBE our MAClin satisfies a spe-
cial security notion which is captured by Lemma 4. This security notion needs
to combine with Lemma 5 to get a secure MAC for the unbounded HIBE
(cf. Sect. 3.2).

In the security experiment (defined in Fig. 2), the adversary gets values in
dk1 that allow her to rerandomize tags. These values also allows her to forge
3 We call it “linear” since it matches the affine MAC definition from [6] without using

the affine part, i.e. the message dependent part u of the tags depends linear on the
randomness t of the tags.

142 R. Langrehr and J. Pan

Fig. 2. Games RIreal and RIrand that define the security of MAClin. The function RF : {0,

1}γ → Z
k×2k
q is a random function, defined on-the-fly.

arbitrary tags. This is the reason why it is not a secure MAC, but the goal of
the adversary here is not to forge a tag, but to distinguish two games RIreal and
RIrand. More precisely, A gets access to two oracles, Evalri that gives her a tag for
a message, and Chalri that gives her necessary values to check validity of a tag.
She can query these two oracles arbitrary times in an adaptive manner, but for
each message A can query it for either Evalri or Chalri, but not both. A wins if
she can distinguish game RIreal from RIrand. For technical reasons the verification
tokens are also randomized over Span

(
B⊥)

when the tags are random. The
formal security game can be found in Fig. 2. Interestingly, Lemma 4 can be used
to prove the security of LP HIBEs in [30] in a black-box manner. Essentially,
Lemma 4 has a similar purpose as the core lemma in [15], namely, to inject
randomness.

Lemma 4 (Randomness Injection Lemma). For all adversaries A there
exist adversaries B1 and B2 with

∣
∣
∣Pr

[
RIAreal ⇒ 1

]
− Pr

[
RIArand ⇒ 1

]∣
∣
∣ ≤ (8kγ + 2k)Advmddh

Uk,PGGen,2(B1)

+ kγAdvmddh
Uk,PGGen,1(B2) + γQc + 6γ + 1

q − 1 + Qe

q2k

and T (B1) ≈ T (B2) ≈ T (A)+(Qe + Qc)·poly(λ), where Qe resp. Qc denotes the
number of Evalri resp. Chalri queries of A and poly is a polynomial independent
of A. RIreal and RIrand are defined as in Fig. 2.

We give the overall hybrids used to prove this Lemma in Fig. 3. The proof can
be found in the full version.

Unbounded HIBE with Tight Security 143

Fig. 3. Hybrids for the security proof of Lemma 4.

Randomness Packing Lemma. We will use a tight variant of the Lewko-Waters
approach [33] to tie these local, linear tags together and move entropy from the
local to the global part. Lemma 5 captures this approach.

Lemma 5 (Randomness Packing Lemma). For all adversaries A there
exist adversaries B1 and B2 with

∣
∣
∣Pr

[
RPA

real ⇒ 1
]

− Pr
[
RPA

rand ⇒ 1
]∣
∣
∣ ≤ 2kAdvmddh

Uk,PGGen,2(B1)

+ kAdvmddh
Uk,PGGen,1(B2) + 6

q − 1

and T (B1) ≈ T (B2) ≈ T (A) + (Qe + Qc) · poly(λ), where Qe resp. Qc denotes
the number of Evalrp resp. Chalrp queries of A and poly is a polynomial inde-
pendent of A. RPreal and RPrand are defined as in Fig. 5.

Proof. The proof uses a hybrid argument with hybrids G0 (the RPreal game), G1,
G2, and G3 (the RPrand game). The hybrids are given in Fig. 6. A summary can
be found in Table 2.

Lemma 6. (G0 � G1). For all adversaries A there exists an adversary B with

and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).

144 R. Langrehr and J. Pan

Fig. 4. Our unbounded affine MAC MACu. It uses a CRHF H with domain S∗ and range
{0, 1}γ . Throughout the scheme, skMAC :=

(
H,B, B̃, (Xj,b)1≤j≤γ,b∈{0,1}, X̃1, X̃2,x′)

with values generated in GenMAC. The linear MAC components are highlighted in gray.

Proof. The only difference between these two games is, that the Eval queries
pick the vectors t̃ uniformly random from Z

2k
q instead of only from Span

(
B̃

)
.

This leads to a straightforward reduction to the Qe-fold U2k,k-MDDH assumption
on B̃. ��
Lemma 7 (G1 � G2). For all adversaries A there exists an adversary B with

and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).

Proof. In game G2 the B̃⊥-part of h̃0 (for all i ∈ {1, . . . , p}) is uniformly ran-
dom. To switch to this game, pick a Qc-fold U2k,k-MDDH challenge and use the
reduction in Fig. 7.

Assume that D is invertible. This happens with probability at least (1 −
1/(q − 1)). The Init, Eval, and Finalize oracles are identical in both games.
The reduction correctly simulates Init because the summand D−�D�(

B̃⊥)�

cancels out in public key.

Unbounded HIBE with Tight Security 145

Fig. 5. Games RPreal and RPrand for Lemma 5.

Table 2. Summary of the hybrids in Fig. 6. Evalrp queries draw t̃ from the set described
by the second column and add a uniform random element from the set rũ to ũ. The
Chalrp queries add a uniform random element from rh̃0 to each h̃0. The background
color indicates repeated transitions.

Hybrid t̃ drawn from rũ rh̃0 Transition
G0 Span

(
B̃

)
{0} {0} —

G1 Z
2k
q {0} {0} Uk-MDDH in G2

G2 Z
2k
q {0} Span

(
B̃⊥)

Uk-MDDH in G1

G3 Z
2k
q Z

k
q Span

(
B̃⊥)

Uk-MDDH in G2

To analyze the Chal queries define fc =:
(

Dwc
Dwc+rc

)
where wc is uniform

random in Z
k
q and rc is 0 ∈ Z

k
q or uniform random in Z

k
q . The reduction defines

h := fc, which is a uniform random vector.
The vector h̃0 is then computed as

h̃0 := J̃�
1 h + X̃�

2 h̃ + B̃⊥fc

= J̃�
1 h + X̃�

2 h̃ + B̃⊥DD−1h + B̃⊥rc

= X̃�
1 h + X̃�

2 h̃ + B̃⊥rc

If rc = 0, the reduction is simulating game G1 and if rc is uniform, the reduction
is simulating G2. ��

146 R. Langrehr and J. Pan

Fig. 6. Hybrids for the security proof of Lemma 5.

Lemma 8 (G2 � G3). For all adversaries A there exists an adversary B with

and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).

Proof. In game G3 the vector ũ is chosen uniformly random. For the transition
to this game, we need a Qe-fold U2k,k-MDDH challenge. The reduction is given
in Fig. 8.

The reduction aborts if the upper or lower k × k-submatrix of B̃ does not
have full rank. This happens only with probability at most 2/(q − 1). Assume
in the following, that the reduction does not abort. Furthermore assume q > 2.

The way we defined B̃⊥ and B̃′ we get the following three properties:

(
B̃⊥)�B̃ = B̃

−1
B̃ − B̃−1B̃ = Ik − Ik = 0 (3)

(
B̃⊥)�B̃′ = 1

2

(
B̃

−1
B̃ + B̃−1B̃

)
= 1

2(Ik + Ik) = Ik (4)

Unbounded HIBE with Tight Security 147

Fig. 7. Reduction for the transition from G1 to G2 to the Qc-fold U2k,k-MDDH challenge(
[D]1, [f1]1, . . . , [fQc]1

)
.

Fig. 8. Reduction for the transition from G2 to G3 to the Qe-fold U2k,k-MDDH challenge(
[D]2, [f1]2, . . . , [fQe]2

)
.

B̃, B̃′ is a basis of Z2k
q (5)

To see Eq. (5), note that this is equivalent to the column vectors b1, . . . , b2k of

(
B̃|2B̃′) =

(
B̃ B̃
B̃ −B̃

)

being linear independent. Assume there exist μ1, . . . , μ2k ∈ Zq with

μ1b1 + · · · + μ2kb2k = 0 .

Looking at the first k entries in each vector and using that B̃ has full rank we
get

μ1 = −μk+1, . . . , μk = −μ2k .

148 R. Langrehr and J. Pan

Now looking at the remaining lower k entries and using that the column vectors
of B̃ can not be 0 (because we already assumed that B̃ has full rank) we get
that

μ1 = 0, . . . , μ2k = 0 .

The Init oracle is identically distributed in both games and correctly simu-
lated by the reduction, because the DD−1(

B̃⊥)� cancels out in the public key.
The Chal oracle is also distributed identically in both games and simulated

correctly since the B̃⊥-part of h̃0 is uniform random. More precisely, r is iden-
tically distributed to r + D−�D�h̃. Thus h̃0 as computed by the reduction:

h̃0 := X̃�
1 h + J̃�

2 h̃ + B̃⊥r

is identically distributed to

X̃�
1 h + J̃�

2 h̃ + B̃⊥
(

r + D−�D�h̃
)

= X̃�
1 h + X̃�

2 h̃ + B̃⊥r ,

which is the real h̃0.
To analyze the Eval queries, define fc =:

(
Dwc

Dwc+rc

)
where wc is uniform

random in Z
k
q and rc is 0 ∈ Z

k
q or uniform random in Z

k
q . In the Eval queries

the reduction computes t̃ as t̃ := B̃s̃ + B̃′fc, but this is distributed identically to
a uniform random vector, because s̃ and fc are uniform random and B̃, B̃′ are a
basis of Z2k

q (see Eq. (5)).
The vector ũ is computed as

If rc = 0, the reduction is simulating game G2 and if rc is uniform, the
reduction is simulating G3. ��

Summary. To prove Lemma 5, we combine Lemmata 6–8. ��

3.2 An Unbounded Affine MAC

Our next step is to construct an unbounded affine MAC as in Fig. 4. Again,
our idea is to divide a hierarchical message (m1, . . . ,mp) into p pieces hmi :=

Unbounded HIBE with Tight Security 149

Fig. 9. Games uMACreal and uMACrand for defining security for MACu.

H(m1|| . . . ||mi) (1 ≤ i ≤ p) by using a CRHF H. In stark contrast to methods
in [29,30], we generate a MAC tag for each hmi with the same secret key. More
precisely, we apply MAClin on each hmi, and additionally we have a wrapper,
namely, X̃1 · t̃i to connect all these p pieces together.

One can show MACu is a secure MAC according to the (standard) UF-CMA
security (cf. the full version). Our MACu has stronger security which is formally
stated in Theorem 1.4 It is not a standard security for a MAC scheme, but it
is exactly what we need for the transformation to unbounded HIBE. As in the
security game for linear MACs, values in dk1 and dk2 can be used to rerandomize
tags (cf. Remark 1). Oracle Eval is available to an adversary A for a tag on any
message of her choice. Moreover, oracle Chal provides A necessary values to
check validity of a tag. She can query these two oracles arbitrary many times in
an adaptive manner. In the end, A needs to distinguish during the experiment
Chal always gives her the real values or the random ones. Of course, we exclude
the case where A trivially wins by asking Eval for any prefix of a challenge
message m�. The formal security game can be found in Fig. 9.

Remark 1 (Delegation). The tags of MACu are delegatable in the following sense:
Given a tag τ =

((
[ti]2,

[
t̃
]
2, [ui]2

)
1≤i≤p

, [ũ]2
)

for a message m = (m1, . . . ,mp),
one can compute a fresh tag τ ′′ for a message m′ := (m1, . . . ,mp,mp+1) for
arbitrary mp+1 ∈ S using only the “public key” returned from the InitMAC
oracle in the uMACreal game. We call the tag τ ′′ fresh, because its distribution is
independent of τ .

4 Our security notion is stronger than UF-CMA since a forged tag could be used to
distinguish the real from the random Chal queries.

150 R. Langrehr and J. Pan

First, we define the tag τ ′ for m′ as τ ′ :=
((

[t′
i]2,

[
t̃′]

2, [u′
i]2

)
1≤i≤p+1, [ũ′]2

)
.

This tag is identical to τ on the first p levels, i.e., for all i ∈ {1, . . . , p} we define
t′

i := ti, t̃′ := t̃ and u′
i := ui. Furthermore we define t′

p+1 := 0, t̃′ := 0, u′
p+1 = 0

and ũ′ := ũ. The resulting tag τ is indeed a valid tag for m′, but it is not fresh.
To get a fresh tag τ ′′ :=

((
[t′′

i]2,
[
t̃′′]

2, [u′′
i]2

)
1≤i≤p+1, [ũ′′]2

)
, we rerandomize

the tag τ ′. That is, for all i ∈ {1, . . . , p + 1} we define t′′
i := t′

i + Bs′
i and

t̃′′
i := t̃′ + Bs̃′ for uniform random s′

i
$← Z

n′
q and s̃ $← Z

ñ′
q . Moreover, we adapt

ui and ũ to the new t′′
i and t̃′′

i in the following way:

Theorem 1 (Security of MACu). MACu is tightly secure under the Uk-MDDH
assumption for G1, the Uk-MDDH assumption for G2 and the collision resistance
of H. More precisely, for all adversaries A there exist adversaries B1, B2 and
B3 with

∣
∣
∣Pr

[
uMACA

real ⇒ 1
]

− Pr
[
uMACA

rand ⇒ 1
]∣
∣
∣ ≤ (8k + 16kγ)Advmddh

Uk,PGGen,2(B1)

+ (1 + 2k(γ + 1))Advmddh
Uk,PGGen,1(B2) + 2AdvcrH(B3) + 16 + (12 + 2QcL)γ

q − 1 + 2Qe

q2k

and T (B1) ≈ T (B2) ≈ T (B3) ≈ T (A) + (Qe + Qc)L ·poly(λ), where Qe resp. Qc

denotes the number of Eval resp. Chal queries of A, L denotes the maximum
length of the messages for which the adversary queried a tag or a challenge, and
poly is a polynomial independent of A.

Proof. The proof uses a hybrid argument with hybrids G0–G5, where G0 is the
uMACreal game. The hybrids are given in Fig. 10. They make use of the random
function RF : {0, 1}γ → Z

k×2k
q , defined on-the-fly.

Lemma 9 (G0 � G1).

Proof. In game G1 each time the adversary queries a tag for a message m, where
she queried a tag for m before, the adversary will get a rerandomized version of
the first tag she queried. The RerandTag algorithm chooses t′

i := ti + Bs′
i and

t̃′ := t̃+B̃s̃′, which is uniformly random in Span(B) resp. Span
(
B̃

)
, independent

of ti and t̃, because s′
i and s̃′ are uniform random in Z

k
q . The RerandTag algorithm

then computes u′
i and ũ′ such to get another valid tag for m, that is distributed

like a fresh tag, independent of the input tag. Thus the games are equivalent.
Note that the rerandomization uses only the “public key” returned by the

Init oracle so that it could be carried out by the adversary herself. In the
following, we will ignore these duplicated Eval queries. ��

Unbounded HIBE with Tight Security 151

Fig. 10. Hybrids G0–G5 for the security proof of MACu. The algorithm RerandTag is
only helper function and not an oracle for the adversary. The partial map Φ is initially
totally undefined.

152 R. Langrehr and J. Pan

Lemma 10 (G1 � G2). For all adversaries A there exist adversaries B1 and
B2 with

and T (B) ≈ T (A) + (Qe + Qc)L · poly(λ).

Proof. Compared to G1, the hybrid G2 aborts if two different messages, for which
the adversary queried a tag, have the same hash value. Furthermore, in G2 the
adversary looses (i.e., the output of FinalizeMAC is always 0), if the hash of a
prefix of a message sent to the Chal oracle is identical to the hash of a message
send to the Eval oracle. So the two games are identical, except when a hash
function collision occurs. ��

Lemma 11 (G2 � G3). For all adversaries A there exists an adversary B with

and T (B) ≈ T (A) + (Qe + Qc)L · poly(λ).

Fig. 11. Reduction for the transition from G2 to G3 to the Randomness Injection
Lemma.

Unbounded HIBE with Tight Security 153

Proof. In game G3 the value up is chosen uniformly random (and some side-effect
changes are made). For the transition to this game, we use the security of the
underlying linear MAC. The reduction is given in Fig. 11.

We use the Randomness Injection Lemma to compute the components h
and h0,i for all levels i in the Chal oracle and to compute tp and u′

p, i.e. the
last-level components of the tags. For the other components, we use the public
key returned from Initri. This is important to avoid asking both the Evalri and
Chalri oracles on common prefixes of Evalri-messages and Chalri-messages.

If the reduction is accessing the RIreal game, it simulates G2. Otherwise, it
simulates G3. ��
Lemma 12 (G3 � G4). For all adversaries A there exists an adversary B with

and T (B) ≈ T (A) + (Qe + Qc)L · poly(λ).

Proof. In game G4 the value ũ is chosen uniformly random (and some side-effect
changes are made). For the transition to this game, we use the Randomness
Packing Lemma (Lemma 5). The reduction is given in Fig. 12.

Fig. 12. Reduction for the transition from G3 to G4 to the Randomness Packing
Lemma.

154 R. Langrehr and J. Pan

We use the Randomness Packing Lemma to compute the components h and
h̃0 for all levels i in the Chal oracle and to compute t̃ and ũ′. Everything else
can be computed with the delegation key returned from Initrp.

If the reduction is accessing the RPreal game, it simulates G3. Otherwise, it
simulates G4. ��

Lemma 13 (G4 � G5). For all adversaries A there exists an adversary B with

and T (B) ≈ T (A) + (Qe + Qc)L · poly(λ).

Fig. 13. Reduction for the transition from G4 to G5 to the Qc-fold Uk-MDDH challenge(
[D]1, [f1]1, . . . , [fQc]1

)
.

Unbounded HIBE with Tight Security 155

Proof. In game G5 the value hK is chosen uniformly random. For the transition
to this game, we need a Qc-fold Uk-MDDH challenge

(
[D]1, [f1]1, . . . , [fQc

]1
)
. The

reduction is given in Fig. 13.
Assume that D is invertible. This happens with probability at least (1 −

1/(q − 1)). The Init and Eval oracles are identical in both games and simulated
correctly by the reduction, because they do not return anything depending on
x′. Write fc =:

(
Dwc

Dwc+rc

)
where wc is uniform random in Z

k
q and rc is 0 or

uniform random in Zq. In the Chal queries the reduction picks h̃ := fc. Since
fc is a uniform random vector, h̃ is distributed correctly. Furthermore, hK is
computed as

hK := (j′)�h̃ + fc = (j′)�h̃ + DD−1fc + rc = (x′)�h̃ + rc .

If rc = 0, we are simulating game G4. If rc is uniform random we are simulating
game G5. ��

Summary. To prove Theorem 1, we combine Lemmata 9–13 to change hK from
real to random and then apply all Lemmata (except Lemma 13) in reverse order
to get to the uMACrand game. ��

4 Transformation to Unbounded HIBE

Our unbounded affine MAC can be tightly transformed to an unbounded HIBE
under the Uk-MDDH assumption in G1. The transformation follows the same
idea as [6]. It can be found in the full version.

The unbounded HIBE obtained from our unbounded affine MAC can be
instantiated with any MDDH assumption. The result for the SXDH assumption
can be found in Fig. 14.

156 R. Langrehr and J. Pan

Fig. 14. The scheme obtained from MACu instantiated with the SXDH assumption.

Unbounded HIBE with Tight Security 157

References
1. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-

preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0_19

2. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK
and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11923, pp. 669–699. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34618-8_23

3. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018. LNCS, vol. 11272, pp. 627–656. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2_21

4. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based
encryption with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6_22

5. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interative zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990).
https://doi.org/10.1007/0-387-34805-0_19

6. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2_23

7. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptol. 24(4), 659–693 (2011)

8. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9_19

9. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25

10. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 767–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8_25

11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1_8

12. Garg, S., Gay, R., Hajiabadi, M.: Master-key KDM-secure IBE from pairings. In:
Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol.
12110, pp. 123–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45374-9_5

13. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3_1

https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-030-45374-9_5
https://doi.org/10.1007/978-3-030-45374-9_5
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1

158 R. Langrehr and J. Pan

14. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 133–160. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_5

15. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure
structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8_8

16. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2_34

17. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0_4

18. Gong, J., Cao, Z., Tang, S., Chen, J.: Extended dual system group and shorter
unbounded hierarchical identity based encryption. Designs, Codes and Cryptogra-
phy 80(3), 525–559 (2015). https://doi.org/10.1007/s10623-015-0117-z

19. Gong, J., Chen, J., Dong, X., Cao, Z., Tang, S.: Extended nested dual system
groups, revisited. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
PKC 2016, Part I. LNCS, vol. 9614, pp. 133–163. Springer, Heidelberg (2016)

20. Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to stan-
dard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6_21

21. Han, S., Liu, S., Lyu, L., Gu, D.: Tight leakage-resilient CCA-security from quasi-
adaptive hash proof system. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019, Part II. LNCS, vol. 11693, pp. 417–447. Springer, Heidelberg (2019)

22. Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key exchange.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 65–94. Springer, Heidelberg (2018)

23. Hofheinz, D., Jia, D., Pan, J.: Identity-based encryption tightly secure under
chosen-ciphertext attacks. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11273, pp. 190–220. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03329-3_7

24. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_31

25. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight
security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2_36

26. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7_31

27. Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional lin-
ear assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 524–541. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7_26

28. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_26

https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/s10623-015-0117-z
https://doi.org/10.1007/978-3-662-53890-6_21
https://doi.org/10.1007/978-3-030-03329-3_7
https://doi.org/10.1007/978-3-030-03329-3_7
https://doi.org/10.1007/978-3-540-74143-5_31
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/3-540-46035-7_31
https://doi.org/10.1007/978-3-662-48000-7_26
https://doi.org/10.1007/978-3-662-48000-7_26
https://doi.org/10.1007/978-3-540-28628-8_26

Unbounded HIBE with Tight Security 159

29. Langrehr, R., Pan, J.: Tightly secure hierarchical identity-based encryption. In:
Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 436–465. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17253-4_15

30. Langrehr, R., Pan, J.: Hierarchical identity-based encryption with tight multi-
challenge security. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020. LNCS, vol. 12110, pp. 153–183. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45374-9_6

31. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_20

32. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2_27

33. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_30

34. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_4

35. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4_22

36. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7_5

37. Tomida, J.: Tightly secure inner product functional encryption: multi-input
and function-hiding constructions. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 459–488. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8_16

38. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

39. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639_7

https://doi.org/10.1007/978-3-030-17253-4_15
https://doi.org/10.1007/978-3-030-45374-9_6
https://doi.org/10.1007/978-3-030-45374-9_6
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-030-34618-8_16
https://doi.org/10.1007/978-3-030-34618-8_16
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/11426639_7

Multi-client Oblivious RAM
with Poly-logarithmic Communication

Sherman S. M. Chow1(B) , Katharina Fech2, Russell W. F. Lai2,
and Giulio Malavolta3

1 The Chinese University of Hong Kong, Shatin, Hong Kong
sherman@ie.cuhk.edu.hk

2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{fech,lai}@cs.fau.de

3 UC Berkeley & Carnegie Mellon University, Pittsburgh, USA
giulio.malavolta@hotmail.it

Abstract. Oblivious RAM enables oblivious access to memory in the
single-client setting, which may not be the best fit in the network setting.
Multi-client oblivious RAM (MCORAM) considers a collaborative but
untrusted environment, where a database owner selectively grants read
access and write access to different entries of a confidential database to
multiple clients. Their access pattern must remain oblivious not only to
the server but also to fellow clients. This upgrade rules out many tech-
niques for constructing ORAM, forcing us to pursue new techniques.
MCORAM not only provides an alternative solution to private anony-
mous data access (Eurocrypt 2019) but also serves as a promising build-
ing block for equipping oblivious file systems with access control and
extending other advanced cryptosystems to the multi-client setting.

Despite being a powerful object, the current state-of-the-art is unsat-
isfactory: The only existing scheme requires O(

√
n) communication and

client computation for a database of size n. Whether it is possible to
reduce these complexities to polylog(n), thereby matching the upper
bounds for ORAM, is an open problem, i.e., can we enjoy access control
and client-obliviousness under the same bounds?

Our first result answers the above question affirmatively by giving
a construction from fully homomorphic encryption (FHE). Our main
technical innovation is a new technique for cross-key trial evaluation of
ciphertexts. We also consider the same question in the setting with N
non-colluding servers, out of which at most t of them can be corrupt. We
build multi-server MCORAM from distributed point functions (DPF),
and propose new constructions of DPF via a virtualization technique

S. S. M. Chow—This work is supported in parts by General Research Funds (CUHK
14209918 and 14210217) and Germany/Hong Kong Joint Research Scheme G-
CUHK406/17 of the Research Grants Council, University Grant Committee, Hong
Kong, and German Academic Exchange Service under Grant No.: PPP-HK 57391915.
The authors would like to thank Brice Minaud and anonymous reviewers for their
helpful comments.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 160–190, 2020.
https://doi.org/10.1007/978-3-030-64834-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_6&domain=pdf
http://orcid.org/0000-0001-7306-453X
https://doi.org/10.1007/978-3-030-64834-3_6

Multi-client Oblivious RAM with Poly-logarithmic Communication 161

with bootstrapping, assuming the existence of homomorphic secret shar-
ing and pseudorandom generators in NC0, which are not known to imply
FHE.

Keywords: Multi-client oblivious RAM · Access control ·
Homomorphic encryption · Distributed point function · Homomorphic
secret sharing

1 Introduction

Oblivious RAM (ORAM) [22] allows random accesses to physical memory loca-
tions without revealing the logical read/write access patterns. The original moti-
vation considers a software accessing the local memory, where the latter is mod-
eled as a machine that can only perform read and write operations but no com-
putation (known as the “balls and bins” model). Later, ORAM was also con-
sidered in a network setting, where a client wishes to obliviously access its data
outsourced to a remote server, where computation might be allowed. Besides
direct applications in local and remote storage, ORAM techniques have been
shown useful for many other cryptographic goals.

In a realistic setting, a database can be accessed by hundreds of mutu-
ally untrusted clients. The security of ORAM or even its parallel variant
(OPRAM) [3,13] becomes insufficient as all clients (processors in the same
machine in OPRAM) share the same secret key. To remedy this, Maffei et al. [29]
considered multi-client ORAM (MCORAM), which aims to capture the following
natural scenario: A database owner encodes an array of data M and outsources
the encoded database to a server. Clients can dynamically join the system and
request access rights to individual entries of M . After the permission is granted,
a client can obliviously perform random access to the permitted entries of M ,
without communicating with the database owner or other clients.

For privacy, MCORAM expects two strengthened requirements against an
adversary who can corrupt an arbitrary subset of clients and the server:

– Read and write accesses are anonymous.
– Read and write accesses are indistinguishable, except when the adversary has

read access to the address being written.

Integrity is another interesting security feature needed in a multi-client sce-
nario – legitimately written entries should be retrievable by any permitted clients
and cannot be overwritten by malicious clients, assuming an honest server.

After three decades of development, the complexities of ORAM schemes are
well-understood. Unfortunately, many techniques for constructing ORAM break
down completely when the client can be corrupt. This forces us to pursue new
techniques in building MCORAM, regardless of the many ORAM constructions.

The only (fully-oblivious) MCORAM by Maffei et al. [30] requires O(n)
server computation and O(

√
n) communication and client computation. They

also show Ω(n) server computation is necessary (in the balls-and-bins model),

162 S. S. M. Chow et al.

Table 1. Comparison of MCORAM schemes for storing n messages in the following
criteria: security against malicious clients (MC), support of multiple data owners (MD),
security against t out of N corrupt servers, server computation, client computation,
and communication of the access protocol (factors of poly(λ) are omitted.)

Scheme MC MD (t, N) S Comp C Comp Comm

[29] ✘ ✘ (1, 1) O(log n) O(log n) O(log n)

[30] ✓ ✓ (1, 1) O(n) O(
√

n) O(
√

n)

This work ✓ ✓ (1, 1) O(n) O(log n) O(log n)

This work ✓ ✓ (N ′ − 1, N ′2), N ′ ∈ {2, 3, 4} O(n) polylog(n) polylog(n)

in contrast to polylog(n) computation of ORAM. For communication, no non-
trivial lower bound for MCORAM is known, while the upper bounds for ORAM
and MCORAM are polylog(n) and O(

√
n), respectively. The inherent complexi-

ties of MCORAM are still poorly understood. We are thus motivated to ask:

Is multi-client ORAM with polylog(n) communication possible?

Our Results. We answer the above question affirmatively. Our main contribu-
tion is a single-server MCORAM construction with O(log n) communication and
client computation, and O(n) server computation (omitting factors of poly(λ)).
This scheme relies on a new usage of key-indistinguishable FHE, in which cipher-
texts encrypted under an unknown key are evaluated under non-matching keys.
When instantiated with a rate-1 FHE [8,19], the communication complexity is
optimal (log n) up to an additive fixed polynomial factor. In other words:

Theorem 1 (Informal). Assuming FHE, there exists a multi-client ORAM
scheme with poly-logarithmic communication complexity.

We also consider the setting with multiple (non-colluding) servers, in which
we propose an N2-server MCORAM scheme resilient against the corruption of
t servers, with polylog(n) communication and client computation. The scheme
assumes the existence of a (t,N) distributed point function (DPF) [21], where
N is the number of parties and t is the corruption threshold. We then show
new constructions of DPFs for parameters (t,N) ∈ {(2, 3), (3, 4)}, respectively,
assuming homomorphic secret sharing (HSS) and constant-depth pseudorandom
generators (PRGs), which are not known to imply FHE. Together with the exist-
ing (1, 2)-DPF [21], we show the following theorem.

Theorem 2 (Informal). Assuming HSS and PRG in NC0, there exist multi-
client {4, 9, 16}-servers ORAM schemes with poly-logarithmic communication
complexity, resilient against the corruption of {1, 2, 3} servers respectively.

As summarized in Table 1, we made clear contributions in communication
and client computation complexities. One may further ask for an even better
construction as (i) the computation of the servers is linear in the database size

Multi-client Oblivious RAM with Poly-logarithmic Communication 163

and (ii) the client storage is proportional to the number of entries with access
granted. While the former is inherent to some extent (as shown in [30]) and
the latter appears to be natural for fine-grained access control allowing O(2n)
possible policies for each user, we show how to reduce the client storage by
constrained PRFs [2]. For simple access structures (such as prefix predicates),
known constrained PRFs (e.g., [24]) do not add any extra assumption.

2 Technical Overview

2.1 MCORAM with Poly-log Communication: Initial Attempts

A first attempt to construct MCORAM with poly-logarithmic communication is
to extend an ORAM with the same complexity. Simply sharing the same ORAM
secret key among all clients (e.g., [25]) fails. The secret state kept by each client is
the root issue. For obliviousness against the server and fellow clients, they must
be kept confidential from others. To ensure consistency of the operations across
all clients, they must be correlated. These contradicting requirements seem to
forbid the adoption of many ORAM techniques. Another idea is to secret-share
the ORAM secret key to all clients, and emulate the ORAM accesses using secure
multi-party computation. This requires interactions between many clients for
each access and is clearly undesirable when the number of clients is large.

We note that a database can be privately accessed without a persistent secret
client state in (single-server) private-information retrieval (PIR) [14], in which
a stateless client can read an entry while hiding its address. For the discussion
below, it is useful to recall the standard FHE-based PIR scheme, which achieves
poly-logarithmic communication. Recall that FHE allows homomorphic evalu-
ations of any circuits over ciphertexts. To read the entry M [a] of a database
M at address a, the client samples a fresh FHE key pair (pk, sk) and sends
(pk,Enc(pk, a)) to the server. The server homomorphically evaluates the follow-
ing circuit ReadM parameterized by M over Enc(pk, a):

ReadM (addr): Return M [addr].

This results in a ciphertext encrypting M [a] to be sent to the client.
We can extend a PIR scheme to the multi-client setting and yield a read-only

MCORAM. More concretely, the data owner encrypts each database entry with
a different key. Granting read access means delegating the decryption key of the
corresponding address. To read, recall that PIR clients are stateless, the client
first performs PIR, and then decrypts the retrieved encrypted entry locally.

Challenge: Write Access. Towards supporting write access, a rough idea
is as follows. First, each database entry M [a] is encrypted under FHE, so the
server cannot just see which entries have changed after a write access. Next, when
writing data m∗ to address a∗, the client encrypts its update instruction (a∗,m∗)
using FHE, so that the server could “somehow” update the database entries
homomorphically by evaluating a Write function over the ciphertexts of (a∗, m∗)

164 S. S. M. Chow et al.

and (each entry of) M . This raises the question of – Under which key should (1)
each entry M [a], and (2) the update instruction (a∗,m∗) be encrypted?

Using the same key across all M [a] fails as we discussed – all clients need to
hold the same decryption key to access their data. Now we need to encrypt each
M [a] under a key pka independently generated for each a. With O(n) communi-
cation and client computation, the client can just create n FHE-ciphertexts,
each using a different key, and sends them to the server. With the poly-
logarithmic constraint, we face a dilemma: Either the client informs the server
about (a∗, pka∗) so that the latter knows which ciphertext it should update,
which violates obliviousness; or the server would need to somehow evaluate Write
over a∗, m∗, and M [a], where the first two are encrypted under pka∗ , and the
last is under pka, for a ∈ [n], and then it is unclear if correctness would hold.
Multi-key FHE does not seem to be useful in this context because its homomor-
phic evaluation results in a ciphertext under a new combined key, which creates
a complicated key-management problem and suffers from the problem of high
interaction similar to the secure multi-party computation solution.

2.2 FHE-Based Construction

Our insight into resolving the dilemma is that some meaningful operations can
actually be done over FHE ciphertexts encrypted under different keys. Specifi-
cally, we introduce a cross-key trial evaluation technique that interprets a cipher-
text as one encrypted under a possibly mismatching key.1 Below, we illustrate
our technique with a simplified setting that is sufficient to capture the essence.

Cross-Key Trial Evaluation. Recall that the server database stores
(a,Enc(pka,M [a])) for a ∈ [n]. To write, a client sends the encrypted instruction
(Enc(pka∗ , a∗),Enc(pka∗ ,m∗)) to the server, which evaluates for each a ∈ [n] the
following simplified writing circuit, parameterized by a, over Enc(pka∗ , a∗) and
Enc(pka∗ ,m∗) from the client, and Enc(pka,M [a]) from the server storage, by
treating as if all of them were created under pka:

SimpleWritea(addr, data′, data): If addr = a, return data′; else return data.

For each a ∈ [n], the server overwrites the a-th ciphertext it stored with the
ciphertext output by evaluating SimpleWritea. Let us examine what happens
depending on whether a matches a∗ from the update instruction. If a = a∗,
all three ciphertexts are encrypted under the same key; the server would get a
ciphertext of m∗ under pka∗ , i.e., M [a∗] is correctly overwritten with m∗.

If a �= a∗, it seems paradoxical that this evaluation gives us anything
meaningful since there is no correctness guarantee when homomorphic eval-
uations are performed under a wrong public key pka∗ �= pka. However, as a

1 This technique is reminiscent of decrypting a random string interpreted as an FHE
ciphertext in the surprising result of Canetti, Lombardi, and Wichs [12], which con-
structs non-interactive zero-knowledge from any circular-secure FHE.

Multi-client Oblivious RAM with Poly-logarithmic Communication 165

matter of fact, the homomorphic evaluation still proceeds as if everything is
encrypted under pka. Namely, it interprets its input, particularly the first cipher-
text Enc(pka∗ , a∗), as if it is encrypted under pka. With this treatment, it is
very unlikely that Enc(pka∗ , a∗) is also a ciphertext of a under pka. More pre-
cisely, Dec(ska,Enc(pka∗ , a∗)) should be “independent” of a (we will revisit this
shortly), and therefore the check addr = a would most likely fail. Then, by the
correctness of FHE, the evaluation would result in a new ciphertext encrypting
data = M [a] under pka, i.e., entries M [a] with a �= a∗ remain unchanged.

The critical insight here is that the random outcomes of operating on a
“wrong” ciphertext, with overwhelming probability, “match” with the desired
behavior we expect as if cross-key evaluation is possible. Note that after each
write operation, the entries are left in a consistent state, i.e., each entry M [a]
is still encrypted under pka, and the database size stays the same. For this to
be true, our FHE scheme must satisfy a strong variant of correctness, where the
evaluation algorithm must be well-defined and correct over the entire ciphertext
space (and not necessarily in the support of a particular public key). In Sect. 4.2,
we show how to generically transform any FHE scheme to satisfy this notion,
provided that it meets some weak structural requirements.

Finally, the FHE scheme here needs to be key-private, i.e., ciphertexts under
different keys are indistinguishable. Fortunately, essentially all known FHE
schemes are key-private, as their ciphertexts are typically indistinguishable from
uniformly sampled elements from the ciphertext space.

Achieving Integrity and a Formal Reduction. The above approach can
provide writing functionality, but not integrity as everyone can encrypt using the
keys pka. Furthermore, we relied on the heuristic that Dec(ska,Enc(pka∗ , a∗)) �= a
with high probability, which is difficult to guarantee formally.

We propose a technique that resolves both issues simultaneously using any
signature scheme Σ. Clients with writing rights to a are granted an address-
dependent signing key skΣ

a . Instead of encrypting (a∗,m∗), the client computes
Enc(pka∗ , σ∗) and Enc(pka∗ ,m∗), where σ∗ is a signature of (r,m∗) under pkΣ

a∗ ,
and r is a random nonce chosen by the server for each access. Correspondingly,
the server homomorphically evaluates for each a the circuit WritepkΣ

a ,r, param-
eterized by (pkΣ

a , r), over the ciphertexts of Enc(pka∗ , σ∗), Enc(pka∗ ,m∗), and
Enc(pka,M [a]), again as if they are all ciphertexts under pka:

WritepkΣ
a ,r(sig, data

′, data): If sig is a valid signature of (r, data′) under pkΣ
a ,

return data′; else return data.

With a similar argument as above, M [a] would be overwritten by m∗ if a∗ = a
and σ∗ is a valid signature, which can only be generated by clients having writing
rights to a∗. Unlike using SimpleWritea, we can further argue about the converse
without relying on heuristics. Concretely, if a �= a∗ but Dec(ska,Enc(pka∗ , σ∗))
is a valid signature of (r,Dec(ska,Enc(pka∗ ,m∗))) under pkΣ

a , we can extract a
signature forgery with respect to the verification key pkΣ

a , violating the unforge-

166 S. S. M. Chow et al.

ability of the signature scheme. Consequently, it holds that when a �= a∗, M [a]
would not be overwritten except with negligible probability.

Applications. The above technique can be generalized to enable (key-
dependent) conditional evaluations of FHE ciphertexts, with the condition
depends on not only the messages encrypted within but also the keys used to
generate the ciphertexts. This feature is useful in (outsourced) access-control
applications such as an “oblivious whitelisting firewall” that only allows incom-
ing ciphertexts encrypted under one of the whitelisted keys to pass through
without the firewall keeping any secret key.

Reducing Secret Key Size. So far, we have assumed that the data owner
generates address-dependent secret keys, and grants clients reading and writing
rights by delegating the keys for the corresponding addresses. In the worst case,
data owner and client keys are of size linear in the size of the database.

A common technique to reduce the data-owner key size is to generate those
address-dependent secret keys by a pseudorandom function (PRF). Towards
reducing the client key size, a constrained PRF (cPRF) can be used. Recall
that cPRF can create a constrained key KX that constrains the PRF key K
within some subset X of the domain. Given KX , one can evaluate the PRF on
all inputs x ∈ X, while the PRF values of all x /∈ X remain pseudorandom. That
means the data owner can delegate to the clients cPRF keys that allow deriva-
tion of the address-dependent secret keys. If the cPRF keys are succinct, e.g.,
of size sublinear in the size of X, the client key size is also short. For example,
the well-known PRF construction by Goldreich, Goldwasser, and Micali [24] is
a cPRF for prefix constraints with logarithmic-size keys.

On Sublinear Server Computation. The focus of our work is to minimize the
communication complexity of the protocol. We note that recent works [7,11] have
investigated the possibility of sublinear server computation (with preprocessing)
in PIR (essentially a read-only MCORAM with no access control) in the single-
client setting, and have proposed a solution based on new hardness assumptions
on permuted Reed-Solomon codes. They also consider the public-key setting,
which does not require any secret state to read the database, i.e., multiple clients
are allowed to query the database obliviously. Unfortunately, the only proposed
solutions build on a strong notion of virtual black-box obfuscation. We consider
constructing an MCORAM with sublinear server computation (from standard
assumption) as a fascinating open problem.

2.3 DPF-Based Multi-server Construction

The scheme described above resolves the open question of communication effi-
ciency for MCORAM using FHE schemes, which are yet to become efficient in a
practical sense, and are only known to be realizable from lattices. Towards find-
ing more practical solutions, to broaden the spectrum of assumptions, and to get

Multi-client Oblivious RAM with Poly-logarithmic Communication 167

a larger variety of MCORAM schemes, we turn our attention to the multi-server
setting, in which we leverage the non-collusion between different servers. We
restrict to the three-message setting where the servers do not talk to each other.
This motivates the non-collusion assumption and rules out trivial constructions.2

In this direction, we rely on another tool known as distributed point functions
(DPF), which were shown to be useful in constructing PIR and in complexity
theory [21], as well as private queries on public data [32]. A DPF allows a client
to split a given point function into keys (k1, . . . , kN). Given ki, one can locally
evaluate the shared function at some input point to obtain a value zi. Computing
z1+ · · ·+zN reconstructs the function output at the evaluated point. If the point
function is hidden even if t-out-of-N shares are leaked, we call it a (t,N)-DPF.
The main efficiency measure for a DPF is the size of the shares, which can be
as small as log n, where n is the size of the truth table of the point function.

We are going to build DPFs for new values of (t,N) not achieved before. In
particular, the existing query system [32] was only instantiated by (1, 2)-DPF.

From DPF to Multi-server MCORAM. There is a folklore N2-server
ORAM construction (a.k.a. distributed ORAM [9]) assuming only a (t,N)-DPF.
Using a DPF with polylog(n) communication, the construction achieves
polylog(n) communication. While its server computation complexity is O(n),
it has been shown to outperform other optimized competitors in practice [16].
More importantly, we observe that we can adopt this DPF-based scheme to the
multi-client setting in a relatively simple manner.

On a very high level, the construction arranges a set of N2 servers in a
square matrix according to some (e.g., lexicographical) ordering. The database
M is split into N shares such that M̄1+ · · ·+M̄N = M , and all servers belonging
to the i-th row are given the i-th share M̄i. Clients can read the a-th location
M [a] by sharing a point function (which evaluates to a bit-string with the a-th
bit being 1) to each server in some i-th row. The responses from a server allow
the client to decode the i-th share of M [a]. Repeating this for all N rows, the
client could recover all shares and hence M [a]. Writing can be done similarly,
except that shares of the DPF are distributed row-wise to keep the share of the
databases consistent (see Sect. 7 for more details).

New DPF Constructions. With the generic transformation, we can focus
on constructing DPFs. The only known DPF with (poly)logarithmic-size shares
from non-lattice assumptions is due to Boyle et al. [4]. They show how to con-
struct a (1, 2)-DPF with logarithmic-size shares, assuming only the existence of

2 In the three-message setting, the accessing client sends one message to each of the
servers, each server sends one message back to the client, and the client sends one
final message back to each server. Thus, the servers cannot communicate with each
other (even through the client) in coming up with the responses to the client. Not
letting the servers communicate also ruled out any straightforward adaption that
evaluates an ORAM under the hood of secure two/multi-party computation.

168 S. S. M. Chow et al.

PRGs, which is equivalent to the existence of one-way functions. This yields a
(1, 4)-MCORAM resilient against a single server.

For improving resilience against a higher number of faulty servers, we investi-
gate new constructions of DPFs with different parameters. In this work, we build
a (2, 3)-DPF and a (3, 4)-DPF with poly-logarithmic communication. These new
constructions give us a (2, 9)-MCORAM and a (3, 16)-MCORAM, respectively.

The design blueprint is as follows. We start with a crucial observation that the
evaluation algorithm of the existing (1, 2)-DPF [4] can be run in an NC1 circuit by
instantiating the underlying PRG appropriately. Our key insight into increasing
the number of parties is a virtualization technique for emulating the execution
of the DPF evaluation algorithm of each party by 2 servers. To realize such
bootstrapping, we leverage another tool called homomorphic-secret sharing [6].
By applying our techniques to one or two parties, we obtain a (2, 3)-DPF and a
(3, 4)-DPF, respectively. Both schemes rely on a PRG that can be computed in
NC0 (e.g., Goldreich PRG [23]) and either the decisional Diffie-Hellman (DDH)
or the decisional composite residuosity (DCR) assumption.

3 Related Work

ORAM has been extensively studied for more than three decades, but mostly
in the single client setting, with drastically different research challenges com-
pared to the multi-client setting. For example, S3ORAM [27] is a single-client
ORAM that splits the server-side computation across 3 servers via secure multi-
party computation, which we aim to avoid. Recent works [3,13] considered how
to preserve obliviousness when a large number of clients access the database
in parallel, without considering security against malicious clients or access con-
trol. These works require the clients to synchronize with each other and peri-
odically interact with the data owner, which is not needed by our MCORAM
constructions.

ORAM and similar cryptographic techniques such as private information
retrieval (PIR) [14,28] have been utilized in building oblivious file systems (e.g.,
TaoStore [31] and prior works cited by [30,31]). These systems do not support
access control, and their obliviousness does not hold against malicious clients.
(Also see [30, Table 1].) Oblivious transfer (OT) can be considered as an ORAM
without writing. Camenisch et al. [10] proposed OT with access control. Seeing
a valid zero-knowledge proof of the client credential, the “server” helps the client
decrypt one (randomized) entry of the encrypted database previously sent to the
client. Since the decryption key is needed, the data owner should remain online.

Also relying on zero-knowledge proofs, group ORAM [29] allows the client to
access the database according to a predefined policy without any interaction with
the data owner. Yet, the obliviousness does not hold against malicious clients.

Blass, Mayberry, and Noubir [1] proposed “multi-client ORAM” in a model
different from ours, in which all the clients trust each other. Their focus is
security against a server that is actively malicious and may rewind the state
information shared by multiple clients (and stored by the server).

Multi-client Oblivious RAM with Poly-logarithmic Communication 169

A recent work of Hamlin et al. [26] considered a closely related problem
called private anonymous data access (PANDA), yet with some crucial differ-
ences. PANDA can be considered as combining the best of PIR and ORAM. It
focuses on achieving sublinear server computation, leveraging assumptions such
as only t out of the N clients can be corrupt for some predefined threshold t,
and the set of clients are fixed at setup. In contrast, MCORAM allows any sub-
set of the clients to be corrupt, and clients can dynamically join the system.
All PANDA schemes have both communication and computation complexities
scale multiplicatively in t. One of their schemes (Secret-Writes PANDA) achieves
the closest functionality aimed by MCORAM. However, writing is append-only,
meaning that their server storage grows linearly in the total number of writes
performed by all clients. Reads and writes are also distinguishable. While one
could hide the access type by performing dummy reads and writes, the append-
only nature makes the server storage grows linearly in the number of reads and
writes. In short, MCORAM with polylog(n) communication provides a better
alternative with no reliance on the client corruption threshold for security or
communication efficiency.

4 Preliminaries

Let PPT denote probabilistic polynomial time. The security parameter is denoted
by λ ∈ N. We say that a function negl(·) is negligible if it vanishes faster than
any inverse polynomial. We write the set {1, . . . , N} as [N].

4.1 Constrained Pseudorandom Functions

A constrained PRF (cPRF) [2] is a PRF equipped with the additional algorithms
Constrain and cEval. Let X be the domain of the PRF. For any subset X ⊆ X ,
Constrain produces a constrained key KX from the secret key K. Given KX ,
cEval can evaluate the PRF over any input x ∈ X, yet the PRF values for
x′ /∈ X remain pseudorandom. We focus on polynomial-size domains, so the
membership x ∈ X for any X ⊆ X can be checked in polynomial time.

Definition 1 (Constrained Pseudorandom Functions). A constrained
pseudorandom function family with domain X and range Y is defined as a tuple
of PPT algorithms (KGen,Eval,Constrain, cEval) such that:

KGen(1λ): On input the security parameter 1λ, the key generation algorithm
returns a secret key K.

Eval(K,x): On input the secret key K and a value x ∈ X , the deterministic
evaluation algorithm returns a (pseudorandom) value y ∈ Y.

Constrain(sk,X): On input the secret key and a set X ⊆ X , the constrain algo-
rithm returns a constrained secret key KX .

cEval(KX , x): On input a constrained key KX and a value x ∈ X , the determin-
istic constrained evaluation algorithm returns a value y ∈ Y or ⊥.

170 S. S. M. Chow et al.

Fig. 1. Correctness and Pseudorandomness Experiments for Constrained PRFs

We only require a cPRF to satisfy weak selective-input variants of correctness
and pseudorandomness, where the adversary first commits to a set ChSet before
given access to the evaluation and constrain oracles. The adversary promises not
to query the oracles over inputs which has any intersection with ChSet.

Definition 2. A constrained PRF cPRF with domain X and range Y is said to
be selective-input correct if, for all PPT algorithms A, it holds that

Pr
[
CorrectnessA,cPRF(1λ) = 1

] ≤ negl(λ)

where CorrectnessA,cPRF is defined in Fig. 1.

Definition 3. A constrained PRF cPRF with domain X and range Y is said to
be selective-input pseudorandom if, for all PPT algorithms A, it holds that
∣
∣Pr

[
Pseudorandom0

A,cPRF(1
λ) = 1

] − Pr
[
Pseudorandom1

A,cPRF(1
λ) = 1

]∣∣ ≤ negl(λ)

where Pseudorandomb
A,cPRF is defined in Fig. 1.

4.2 Fully Homomorphic Encryption

Definition 4 (Fully Homomorphic Encryption). Let K = Kλ be a secret
key space, M = Mλ be a plaintext space, and C = Cλ be a ciphertext space. For
each n ∈ N, let Cn be the set of all polynomial-size circuits from Mn → M. A
homomorphic encryption scheme is defined as a tuple of PPT algorithms below.

KGen(1λ): On input the security parameter λ ∈ N, this key generation algorithm
returns a pair of public and secret keys (pk, sk) where sk ∈ K.

Multi-client Oblivious RAM with Poly-logarithmic Communication 171

Enc(pk,m): On input pk and a message m ∈ M, this encryption algorithm
returns a ciphertext c ∈ C.

Dec(sk, c): On input sk ∈ K and a ciphertext c ∈ C, this decryption algorithm
returns the plaintext m ∈ M.

Eval(pk,C, (c1, . . . , cn)): On input a public key pk, a polynomial-size circuit C ∈
Cn, and a set of ciphertexts (c1, . . . , cn) ∈ Cn for some n ∈ N, this evaluation
algorithm returns an evaluation output c′ ∈ C.

Fix λ ∈ N. For each (pk, sk) ∈ KGen(1λ), we recursively define Cpk :=
{

c :
(∃m ∈ M s.t. c ∈ Enc(pk,m))

∨
(
∃n ∈ N,C ∈ Cn, (c1, . . . , cn) ∈ Cn

pk s.t. c ∈ Eval(pk,C, (c1, . . . , cn))
)

}

to be the space of “well-formed” ciphertexts under the key pk, i.e., all ciphertexts
produced by Enc(pk, ·) and Eval(pk, ·, ·). Apparently, C ⊇ ⋃

pk:(pk,sk)∈KGen(1λ) Cpk.
Typically, the decryption algorithm Dec(sk, ·) is only required to be well-

defined over Cpk for (pk, sk) ∈ KGen(1λ), but not necessarily over the entire
ciphertext space C (which includes ciphertexts produced under other public
keys).

Correspondingly, evaluation correctness is defined upon “valid” ciphertexts.
In this work, we explicitly require the decryption algorithm Dec(·, ·) of an

FHE to be well-defined over the entirety of K × C, in the sense that it always
outputs something in the message space M (albeit the message obtained when
decrypting with a wrong key might be unpredictable). We also require the scheme
to satisfy a stronger variant of evaluation correctness over all ciphertexts in C.
We bundle these extra requirements into the strong correctness property.

Correctness. An FHE scheme is correct if the following are satisfied.

– (Decryption Correctness) For any λ ∈ N, any (pk, sk) ∈ KGen(1λ), and any
message m ∈ M, we have that

Pr[Dec(sk,Enc(pk,m)) = m] ≥ 1 − negl(λ)

where the probability is taken over the random coins of Enc.
– (Evaluation Correctness) For any λ ∈ N, any (pk, sk) ∈ KGen(1λ), any positive

integer n ∈ poly (λ), any polynomial-size circuit C ∈ Cn, any ciphertexts
(c1, . . . , cn) ∈ Cn

pk, if there exists mi = Dec(sk, ci) ∈ M for all i ∈ {1, . . . , n},
then

Pr[Dec(sk, c) = C(m1, . . . ,mn) : c ← Eval(pk,C, (c1, . . . , cn))] ≥ 1 − negl(λ)

where the probability is taken over the random coins of Enc and Eval.

The scheme is perfectly correct if the above probabilities are exactly 1.

Strong Correctness. A strongly-correct FHE scheme satisfies all below.

172 S. S. M. Chow et al.

Fig. 2. Security Experiments of FHE (st is the state information of (A1, A2))

– (Decryption Correctness) Same as in the (usual) correctness definition above.
– (Well-Defined Decryption) Dec(·, ·) is well-defined over K × C, i.e., for any

(sk, c) ∈ K × C, there exists m ∈ M such that m = Dec(sk, c).
– (Strong Evaluation Correctness) Evaluation correctness holds even for cipher-

texts taken in C. Formally, for any λ ∈ N, any (pk, sk) ∈ KGen(1λ), any posi-
tive integer n ∈ poly(λ), any polynomial-size circuit C ∈ Cn, any ciphertexts
(c1, . . . , cn) ∈ Cn (possibly with ci /∈ Cpk), if there exists mi = Dec(sk, ci) ∈ M
for all i ∈ {1, . . . , n}, then

Pr[Dec(sk, c) = C(m1, . . . ,mn) : c ← Eval(pk,C, (c1, . . . , cn))] ≥ 1 − negl(λ)

where the probability is taken over the random coins of Enc and Eval.

The scheme is perfectly strongly correct if the above probabilities are exactly 1.

Security. We recall the standard IND-CPA-security and define a new notion
called IK-IND-CPA-security, which combines key privacy and message indistin-
guishability. We also recall the notion of circular security.

Definition 5 (IND-CPA). An FHE scheme E is IND-CPA-secure (has indis-
tinguishable messages under chosen-plaintext attack) if for any PPT adversary
A = (A1,A2), it holds that

∣
∣
∣Pr

[
IND-CPA0

E,A(1λ) = 1
] − Pr

[
IND-CPA1

E,A(1λ) = 1
] ∣
∣
∣ ≤ negl(λ)

where IND-CPAb
E,A is defined in Fig. 2.

Definition 6 (IK-IND-CPA). An FHE scheme E is IK-IND-CPA-secure (has
indistinguishable keys and indistinguishable messages under chosen-plaintext
attack) if for any PPT adversary A = (A1,A2), it holds that

∣
∣
∣Pr

[
IK-IND-CPA0

E,A(1λ) = 1
] − Pr

[
IK-IND-CPA1

E,A(1λ) = 1
] ∣
∣
∣ ≤ negl(λ)

where IK-IND-CPAb
E,A is defined in Fig. 2.

Multi-client Oblivious RAM with Poly-logarithmic Communication 173

Definition 7 (Circular Security). Let E be an FHE scheme such that K =
M. E is circular secure if for any PPT adversary A = (A1,A2), it holds that
∣
∣
∣Pr

[
IND-CIRC-CPA0

E,A(1λ) = 1
] − Pr

[
IND-CIRC-CPA1

E,A(1λ) = 1
] ∣
∣
∣ ≤ negl(λ)

where IND-CIRC-CPAb
E,A is defined in Fig. 2.

Instantiations. While IND-CPA security is the de facto standard of FHE
schemes, virtually all of them satisfy the stronger notion of IK-IND-CPA security.
This is because FHE ciphertexts are typically indistinguishable from elements
uniformly sampled from the ciphertext space (see, e.g. [20]).

Typically, FHE schemes are proven to satisfy the standard correctness notion.
Below, we show how these schemes can be transformed into one with strong
correctness, assuming circular security and the decryption algorithm Dec(·, ·) is
well-defined over K × C. The former assumption is “for free” as it is already
needed for bootstrapping the FHE scheme [18]. The latter is already satisfied
by most existing FHE schemes and can be otherwise obtained by artificially
extending the decryption algorithm to be well-defined over any input. For the
case of FHE schemes based on learning with errors (LWE), Dec(·, ·) typically
consists of an inner product of two vectors in Z

�
q, followed by rounding. Thus

Dec(·, ·) is well defined for any pair of vectors in Z
�
q if we set C := K := Z

�
q.

Let E be such an FHE scheme. A public key in our transformed scheme E ′

is of the form pk′ = (pk, csk) where csk = E .Enc(pk, sk) is an encryption of the
secret key sk under pk. The secret key sk′ is identical to sk. The encryption (with
input pk) and decryption algorithms of E and E ′ are identical.

The evaluation algorithm E ′.Eval, on input pk′, a circuit C ∈ Cn, and (not
necessarily well-formed) ciphertexts (c1, . . . , cn) ∈ Cn works as follows:

– homomorphically decrypts ci using csk for each i ∈ [n], i.e., compute

c′
i ← E .Eval(pk, E .Dec(·, ci), csk),

– then, evaluates C homomorphically over (c′
1, . . . , c

′
n), i.e., output

c′ ← E .Eval(pk,C, (c′
1, . . . , c

′
n)).

Clearly, if E is IK-IND-CPA-secure and circular secure, then E ′ is IK-IND-
CPA-secure. To see why E ′ has strong correctness, we note that csk ∈ Cpk by
construction and Dec(·, ci) is well-defined over K = M for all i ∈ [n] by assump-
tion. Therefore, by the (standard) correctness of E , for all i ∈ [n], E .Dec(sk, c′

i) =
E .Dec(sk, ci). Next, since c′

i ∈ Cpk for all i ∈ [n], we have c′ ∈ Cpk. Using the (stan-
dard) correctness of E again, if mi = E ′.Dec(sk′, ci) = E .Dec(sk, ci) for all i ∈ [n],
then E ′.Dec(sk′, c′) = E .Dec(sk, c′) = C(m1, . . . ,mn) as we desired.

To draw an analogy to LWE-based schemes, even though (c1, . . . , cn) might
have very large noise (with respect to pk), E .Eval is executed over csk, which is
well-formed (has small noise) and (c1, . . . , cn) are just constants in the descrip-
tion of the circuits E .Dec(·, ci). This is analogous to Gentry’s bootstrapping
procedure [18] and works for exactly the same reason.

174 S. S. M. Chow et al.

Our modification essentially introduces an additional bootstrapping step
before every homomorphic evaluation. Thus, fast bootstrapping techniques can
be applied to make the overhead we added minimal when compared to the cost
of the homomorphic evaluation. As the communication complexity of our scheme
depends on the rate (message-to-ciphertext size ratio) of the FHE scheme, one
can achieve optimal communication (for large enough data blocks) by using the
rate-1 FHE [8,19]. It is not hard to see that those schemes also satisfy the notion
of IK-IND-CPA security (since ciphertexts are identical to those of [20]).

4.3 Distributed Point Functions

A point function is a function whose images are zero at all points except one.

Definition 8 (Point Function). A point function Fa,b : {0, 1}d → {0, 1}r, for
a ∈ {0, 1}d and b ∈ {0, 1}r, is defined by Fa,b(a) = b, and Fa,b(c) = 0r if c �= a.

Unless differently specified, we interpret the output domain {0, 1}r of F as an
Abelian group G with respect to the group operator ⊕.

A distributed point function (DPF) allows secret-sharing a point function f
to multiple servers. The servers can locally evaluate the shared function at any
point x and produce output shares, which can be combined to recover f(x).

Definition 9 (Distributed Point Function [4]). For N ∈ N and t ∈ [N], a
(t,N)-DPF is a tuple of PPT algorithms DPF.(Gen,Eval,Dec) defined as follows.

DPF.Gen(1λ, Fa,b): On input the security parameter 1λ and the description of a
point function Fa,b, the key generation algorithm returns N keys (k1, . . . , kN).

DPF.Eval(i, ki, x): On input a party index i, a key ki, and a string x ∈ {0, 1}d,
the evaluation algorithm returns a share si.

DPF.Dec(s1, . . . , sN): On input a set of shares (s1, . . . , sN), the decoding algo-
rithm returns the function output y.

We consider an N -party additive output decoder for an Abelian group (G,+)
that returns y =

∑N
i=1 si on input (s1, . . . , sN) ∈ G

N . We state a relaxed cor-
rectness notion that allows the evaluation algorithm to have an error Δ, and
recall the standard notion of security.

Definition 10 (Δ-Correctness). A (t,N)-DPF = (DPF.Gen,DPF.Eval,
DPF.Dec) is correct if there exists an inverse polynomial error bound Δ such
that for all λ ∈ N, x ∈ {0, 1}d, and point functions Fa,b,

Pr

[
(k1, . . . , kN) ← DPF.Gen(1λ, Fa,b)
{si ← DPF.Eval(i, ki, x)}i∈[N]

: DPF.Dec(s1, . . . , sN) �= Fa,b(x)
]

≤ Δ.

If Δ = 0 then we say that the scheme is perfectly correct.

Multi-client Oblivious RAM with Poly-logarithmic Communication 175

Definition 11 (Security). A (t,N)-DPF = DPF.(Gen,Eval,Dec) is secure if
there exists a negligible function negl(·) such that for all λ ∈ N, subsets T ⊆ [N]
such that |T | = t, all PPT non-uniform distinguishers A, it holds that

Pr

⎡

⎣
((a0, b0), (a1, b1)) ← A(1λ)
β ← {0, 1}
(k1, . . . , kN) ← DPF.Gen(1λ, Faβ ,bβ)

: β = A({ki}i∈T)

⎤

⎦ ≤ negl(λ).

Boyle et al. [4] showed that (1, 2)-DPF can be built from one-way functions.

Theorem 3 ([4]). A perfectly-correct (1, 2)-DPF of poly (d(λ + log(|G|)))-size
key can be built from one-way functions.

We also observe that the complexity of the DPF.Eval algorithm in their con-
struction [4] is dominated by d-many sequential evaluations of a length-doubling
PRG. This fact is going to be useful for our later construction.

4.4 Homomorphic Secret Sharing

Homomorphic secret sharing (HSS) can be seen as generalizing a distributed
point function where the evaluation algorithm supports the evaluation of more
complex circuits. We focus on single-client HSS. In such a scheme, a single client
secret shares an input x to multiple servers. These servers can then locally eval-
uate any circuit C in the supported class of circuits to produce some output
shares. The value C(x) can then be recovered by combining these output shares.

Definition 12 (Homomorphic Secret Sharing [6]). For N ∈ N, t ∈ [N], a
(t,N)-HSS for a circuit family C is defined by the following PPT algorithms:

HSS.Gen(1λ, x): On input the security parameter 1λ and an input x, the share
generation algorithm returns a set of shares (s1, . . . , sN).

HSS.Eval(i, si, C): On input a party index i, a share si, and a circuit C ∈ C, the
evaluation algorithm returns an evaluated share zi.

HSS.Dec(z1, . . . , zN): On input a set of shares (z1, . . . , zN), the decoding algo-
rithm returns the output y.

We say that an HSS scheme is compact if the size of the output shares does
not grow with the size of the circuit given as input to the HSS.Eval algorithm.
We define correctness where the evaluation algorithm may incur an error with
probability at most Δ, for some inverse polynomial function Δ.

Definition 13 (Δ-Correctness). A (t,N)-HSS = HSS.(Gen,Eval,Dec) is cor-
rect if there exists an inverse polynomial error bound Δ such that for all λ ∈ N,
inputs x, and circuits C ∈ C, we have that

Pr

[
(s1, . . . , sN) ← HSS.Gen(1λ, x)
{zi ← HSS.Eval(i, si, C)}i∈[N]

: HSS.Dec(z1, . . . , zN) �= C(x)
]

≤ Δ.

176 S. S. M. Chow et al.

Security is defined canonically.

Definition 14 (Security). A (t,N)-HSS = HSS.(Gen,Eval,Dec) is secure if
there exists a negligible function negl(·) such that for all λ ∈ N, subsets T ⊆ [N]
such that |T | = t, all PPT non-uniform distinguishers A, it holds that

Pr

⎡

⎣
(x0, x1) ← A(1λ)
β ← {0, 1}
(s1, . . . , sN) ← HSS.Gen(1λ, xβ)

: β = A({si}i∈T)

⎤

⎦ ≤ negl(λ).

It is useful to recall a theorem from Boyle et al. [5], where they propose an
HSS scheme for NC1 circuits assuming the hardness of the DDH problem. There
also exists a similar construction based on the hardness of the DCR problem [17].

Theorem 4 ([5]). If the DDH problem is hard, there exists a compact Δ-correct
(1, 2)-HSS for circuits in NC1, for any inverse polynomial Δ.

5 Multi-client ORAM and Its Simulation-Based Security

5.1 Syntax

MCORAM was introduced by Maffei et al. [29] and later extended to the mali-
cious client setting [30]. Existing MCORAM definitions are mostly verbal, which
left many subtleties. We recall (a slightly rephrased version of) its definition.

Definition 15. An MCORAM scheme for message space M �⊇ {ε} consists of
a PPT algorithm Setup and protocols (ChMod,Access) executed between a data
owner D, polynomially many independent instances of client C, and a server S:
(pp,msk, M̄) ← Setup(1λ, 1n,M): The setup algorithm is run by the database
owner D. It inputs the security parameter λ, a size parameter n, and an array
M ∈ Mn of initial data. It outputs the public parameter pp (an implicit input
of all other algorithms), the master secret key msk (to be kept secret by the
owner D), and a database M̄ (to be forwarded to the server S).
〈ε; sk′; M̄ ′〉 ← ChMod〈D(msk, AR, AW);C(sk, AR, AW);S(M̄)〉: The data owner
D grants access rights to a client C, possibly with the help of the server S, using
the change-mode protocol. If C has not joined the system yet, it is assumed that
sk = ε. The basic model only allows granting additional rights.

To run ChMod, D inputs the master (owner) secret key msk, a client identifier
id ∈ {0, 1}∗, and two sets AR, AW ⊆ [n] of addresses. C inputs his secret key sk,
and the same sets of addresses AR and AW . The server S inputs the database
M̄ . Supposedly, C will be granted reading rights to AR, and writing rights to AW .

At the end of ChMod, D outputs a the empty string ε. C outputs an updated
secret key sk′. S outputs a possibly updated database M̄ ′.

〈m′; M̄ ′〉 ← Access〈C(sk, a,m);S(M̄)〉: To access a certain address of the mem-
ory, client C engages in the access protocol with the server. The client C inputs
its secret key sk, an address a ∈ [n], and some data m ∈ M∪{ε}. Read access is

Multi-client Oblivious RAM with Poly-logarithmic Communication 177

indicated by m = ε. Otherwise, the data m �= ε is to be written to the address a.
The server S inputs M̄ . Regardless of the type of access, the client outputs some
data m′ read from the address a, while the server updates its database to M̄ ′.

It is straightforward to extend the MCORAM syntax and security defini-
tions to the multi-server setting. Setup outputs multiple encoded databases
M̄1, . . . , M̄N to be maintained by the respective servers. ChMod becomes an
(N + 2)-party protocol between the database owner D, the client C, and the
servers S1, . . . , SN . The outputs of D and C remain unchanged, while Si outputs
an updated database M̄ ′

i . Similarly, Access becomes an (N + 1)-party protocol
between the client C and S1, . . . , SN . Their outputs are defined analogously.

Although our model allows ChMod and Access to be general multi-party
protocols, we are primarily interested in constructions where the servers do not
communicate with each other to better justify the non-colluding assumption.

5.2 Correctness and Integrity

An MCORAM scheme should not only be correct but satisfy an even stronger
property called integrity (subsuming correctness): The database entry at the
address a can only be changed by clients having write access to a, other clients
who might attempt to maliciously tamper with the data of the honest clients
will fail. It is a unique property here and is absent in the single-client setting.

More formally, integrity is modeled by an experiment involving an adver-
sary A. The experiment acts as an honest MCORAM server, provides the inter-
face of an MCORAM instance to A, i.e., A can request to corrupt a client,
request for access permissions on behalf of a client, and access the data. To cap-
ture the notion of correctness, A maintains a plaintext copy of the MCORAM-
encoded database, i.e., all accesses are mirrored to the plaintext copy. The win-
ning condition of A is to make the maintained plaintext copy of the database
ends up inconsistent with the one encoded in the MCORAM.

Definition 16 (Integrity of MCORAM). An MCORAM Θ has integrity if,
for all PPT adversaries A, size parameters n = poly(λ), and arrays M ∈ Mn,
with experiment Int as defined in Fig. 3, we have

Pr
[
IntΘ,A(1λ, 1n,M) = 1

] ≤ negl(λ).

Integrity in the multi-server setting is almost identical, except that all oracles
now return the views of all servers, which reflects that they are all honest but
curious. However, integrity in this setting seems challenging to achieve, especially
if we assume that the servers do not communicate with each other. Instead, one
may consider a weaker notion known as accountable integrity (defined in the
single-server setting [29]), which requires that any violation of integrity can be
caught after-the-fact. Extending it to the multi-server setting is straightforward.

178 S. S. M. Chow et al.

Fig. 3. MCORAM’s Integrity against Malicious Clients and Honest-but-Curious Server

5.3 Obliviousness

Access in MCORAM is fully specified by (id, a,m), meaning that client id is
reading address a (if m = ε) or writing m to address a. Obliviousness mandates
that such information would not be leaked to any other parties, unless the access
is write access and the parties have read access to a.

More formally, (indistinguishability-based) obliviousness is modeled by a pair
of experiments, labeled by b = 0, 1 respectively, involving an adversary A. As in
the integrity experiment, the experiments provide the interface of an instance of
MCORAM to A, with some differences. First, A has to provide malicious server
codes to the interfaces, which models the setting where the server is always
trying to compromise clients’ obliviousness. Second, the interface for the access
protocol is parameterized by the bit b (which specifies the experiment) and
takes as input two access instructions (idβ , aβ ,mβ) for β ∈ {0, 1}. The interface
would execute instruction labeled with β = b. After some interactions with the
interface, A would output a bit b′, which can be interpreted as a guess of b. An
MCORAM is said to be (indistinguishably) oblivious against malicious clients if
the probabilities of A outputting 1 in either experiment are negligibly close.

Multi-client Oblivious RAM with Poly-logarithmic Communication 179

Fig. 4. Obliviousness Experiment of MCORAM against Malicious Clients and Server

Definition 17 (Indistinguishability-based Obliviousness). An MCO-
RAM scheme Θ is indistinguishably oblivious against malicious clients if, for
all PPT A, all λ and n = poly(λ), all arrays M ∈ Mn, with Obl as in Fig. 4,

∣
∣Pr

[
Obl0Θ,A(1λ, 1n,M) = 1

] − Pr
[
Obl1Θ,A(1λ, 1n,M) = 1

]∣∣ ≤ negl(λ).

So far, we followed Maffei et al. [29] and defined an indistinguishability-based
obliviousness definition. However, when constructing higher-level protocols, it
is often more convenient to prove security based on simulation-based security
notions of the building blocks. We thus propose a new simulation-based oblivi-
ousness definition for MCORAM, which turns out to be an equivalent one.

Our simulation-based obliviousness notion is also modeled by a pair of exper-
iments involving an adversary A, called the real and ideal experiment, respec-
tively. Both experiments provide the interface of an MCORAM instance to A.
However, the way that queries to the interface are answered varies greatly.

In the real experiment, the interface is backed by a real execution of the
MCORAM instance (as in the integrity experiment), where A needs to pro-

180 S. S. M. Chow et al.

Fig. 5. Real Experiment for Obliviousness against Malicious Clients and Server

vide the malicious server code (as in the indistinguishability-based obliviousness
experiment). Answering a query in the ideal experiment generally invokes a sim-
ulator S with the leakage of the query as the input. For example, upon receiving
a query (id, a,m) to the interface for the access protocol, if A has read access to
a and m �= ε, then S is given (a,m). Otherwise, S is given no information (other
than the fact that the query is issued to the access interface). In any case, given
such a leakage, S is supposed to simulate the response of a real execution. After
some interactions, A would output a bit b′, which can be interpreted as a guess
of whether it has interacted with the real experiment or the ideal experiment.
An MCORAM is said to be semantically oblivious against malicious clients if
the probabilities of A outputting 1 in either experiment are negligibly close.

Definition 18 (Semantic Obliviousness). An MCORAM scheme Θ is
semantically oblivious against malicious clients if, for all PPT adversaries A,
all λ and n = poly(λ), and all arrays M ∈ Mn, there exists a PPT simulator S,
with Real-Obl and Ideal-Obl as defined in Figs. 5 and 6 respectively, such that
∣
∣
∣Pr

[

Real-OblΘ,A(1λ, 1n, M) = 1
]

− Pr
[

Ideal-OblΘ,A,S(1λ, 1n, M) = 1
]∣
∣
∣ ≤ negl(λ).

The above two definitions can be shown equivalent using arguments for prov-
ing similar statements in encryption. See the full version for formal treatment.

Extending obliviousness to the multi-server setting where at most t of the N
servers are corrupt is slightly more complicated. To model this, we modify the

Multi-client Oblivious RAM with Poly-logarithmic Communication 181

Fig. 6. Ideal Experiment for Obliviousness against Malicious Clients and Server

security experiments such that all N servers are initially honest, and at most t
of them can be corrupted using a modified CorrO oracle. Correspondingly, the
inputs of the modified ChModO oracle and AccessO oracle now include at most t
pieces of malicious codes {S∗

j } for the respective servers, such that S∗
j will be

used to generate the communication transcript if server j is corrupt.

6 FHE-based Single-Server Construction

6.1 Formal Description

Fix a database size n ∈ N with n = poly(λ). Let cPRF be a constrained PRF
family (Sect. 4.1) with domain [n]∪{0}. Let E .(KGen,Enc,Dec, Eval) be an FHE
scheme (Sect. 4.2) with message space ME . Let Σ.(KGen,Sig,Verify) be a signa-
ture scheme with message space MΣ := {0, 1}λ × ME . For any array M̄ , nonce
r ∈ {0, 1}λ, and public key pk of Σ, we define the following circuits:

ReadM̄ (addr) := M̄ [addr]

Writepk,r(sig, data′, data) :=

{
data′ if Σ.Verify(pk, (r, data′), sig) = 1
data otherwise

182 S. S. M. Chow et al.

Fig. 7. FHE-based Single-Server MCORAM Construction

With the above, Fig. 7 presents an MCORAM Θ for the message space ME .
We highlight some key steps. We assume for now that the data owner D generates
the keys (pkE

k , skE
k) and (pkΣ

k , skΣ
k) for k ∈ [n] ∪{0} during setup, and publishes

all public keys as public parameters. Naturally, the keys indexed by k ∈ [n]
corresponds to the n addresses of the database, while the keys indexed by 0 are
reserved for other purposes. The database at the server S is M̄ = {m̄k}k∈[n],
where m̄k = E .Enc(pkE

k ,mk). Reading and writing rights to an address a ∈ [n] is
granted to a client C by simply sending to C the key skE

a and skΣ
a , respectively.

To obliviously access an address a ∈ [n], the client C first requests a nonce r
from the server S. C then generates a fresh FHE key p̃kE , and uses it to encrypt
a in c0. Then, for a write access, C uses skΣ

a to sign r and the data m to be

Multi-client Oblivious RAM with Poly-logarithmic Communication 183

stored, and encrypts the resulting signature σ in c1 and m in c2. For a read
operation, C sets both σ and m to 0, and uses pkE

0 to generate c1 and c2 instead.
As S is supposedly oblivious to the address, it homomorphically evaluates

the reading circuit ReadM̄ parameterized by the entire database M̄ over c0. This
results in a ciphertext encrypting ma under p̃kE , whose secret key is only known
by C. S also evaluates the writing circuit WritepkΣ

k ,r over (c1, c2, m̄k) for each
address k ∈ [n]. Under the hood of FHE, WritepkΣ

k ,r checks if σ is a valid signature
of (r,m) w.r.t. pkΣ

k , and if so (C has writing rights to k and intends to write
m there), returns a ciphertext m̄′

k encrypting the new m under pkE
k . If not, m̄′

k

would be encrypting mk (the original data) under pkE
k . Regardless of the result

(which S is oblivious to), S updates the k-th entry of the database to m̄′
k.

To reduce the size of the master secret key, D can derive the E and Σ keys
using the pseudorandomness generated by cPRF. Correspondingly, D sends the
appropriately constrained PRF keys, so that the clients can re-derive the E and
Σ secret keys. If cPRF features succinct constrained keys (of size sublinear in the
description size of the constraining set), then the MCORAM features succinct
client keys (of size sublinear in the number of permitted addresses).

6.2 Security

Integrity requires that data written honestly can be successfully read by honest
clients, which largely follows from the correctness of the building blocks. The
more challenging requirement is to ensure the adversary can not overwrite entries
without write access. We first use the correctness of FHE and the signature
scheme to argue that, unless a valid signature of a random nonce is given, an
entry would never be overwritten, then we argue for its unforgeability.

Obliviousness is intuitive, too, because a client always sends a fresh public key
and three FHE ciphertexts during access, regardless of the access type. Although
the ciphertexts are generated using keys that may depend on the access, we can
rely on the key privacy of FHE and argue that they are still indistinguishable.
The proofs for our theorems can be found in the full version.

Theorem 5. If cPRF is selective-input correct and pseudorandom, E is strongly
correct, Σ is correct, and Σ is EUF-CMA-secure, then Θ has integrity.

Theorem 6. If cPRF is selective-input pseudorandom, and E is IND-CPA-
secure and IK-IND-CPA-secure, then Θ is oblivious.

6.3 Access Rights Revocation

Generic techniques for revocation are compatible with our construction. First of
all, the data owner could always re-encrypt database entries and/or re-generate
the corresponding signature verification keys. However, this requires the data
owner to re-grant the access rights of the refreshed entries from scratch. Using
a constrained PRF for a powerful enough class of constraints, we can save the
data owner from some troubles in always re-granting the keys to the clients.

184 S. S. M. Chow et al.

Recall that cPRF is used for deriving the address-dependent secret keys. To
support revocation, we consider an equivalent formulation of cPRF, where the
PRF key is constrained by a predicate P , such that the constrained key allows
evaluations of the PRF over the inputs x satisfying P (x) = 1. The core idea is to
put the latest client revocation list as an input of P for deriving the latest keys.

In more detail, the data owner publishes (e.g., via the server) the client
revocation lists LRead,a and LWrite,a for each a ∈ [n], which contain the identifiers
of clients whose read access and respectively write access to address a have been
revoked. Suppose client id is entitled to read access to addresses a ∈ AR and
write access to addresses a ∈ AW , respectively. The data owner delegates to
client id a PRF key constrained with respect to the following predicate PAR,AW ,id

parameterized by AR, AW , and id (i.e., they are embedded in the constraint key):

PAR,AW ,id(op, addr,CRL): If (id /∈ CRL) ∧ ((op = Read ∧ addr ∈ AR) ∨
(op = Write ∧ addr ∈ AW)), return 1; else return 0.

The last input CRL can be changing (LRead or LWrite). We still use the PRF
output to generate the signing and verification keys for the address a, but it
would be the PRF value on (Write, a,LWrite,a) for write access, for example. If
a ∈ AW and id /∈ LWrite,a, client id can evaluate the PRF on (Write, a,LWrite,a),
and hence derive the signing key needed for write access to a.

To revoke (more) clients their write access to a, the data owner informs the
server of a new verification key (which is a PRF value of the new blacklist).
Read access can be revoked similarly, except that the data owner would need to
re-encrypt those database entries whose revocation policies have been changed.

7 DPF-based Multi-server Construction

7.1 Our Distributed Point Function

Let (DPF′.Gen,DPF′.Eval,DPF′.Dec) be a (1, 2)-DPF such that DPF′.Eval is
in NC1, and let (1, 2)-HSS = (HSS.Gen,HSS.Eval,HSS.Dec) be a homomor-
phic secret sharing as defined in Sect. 4.4 for NC1 circuits. Figure 8 shows our
(3, 4)-DPF construction. The (2, 3)-DPF follows a straightforward modification,
which we include in the full version.

Theorem 7 (Correctness). Let Δ̂ and Δ̃ be inverse polynomials. Let
(1, 2)-DPF′ be a Δ̂-correct distributed point function and let (1, 2)-HSS be a Δ̃-
correct homomorphic secret sharing. Our construction in Fig. 8 is a Δ-correct
(3, 4)-DPF, for some inverse polynomial Δ.

Theorem 8 (Security). Let (1, 2)-DPF′ be a secure distributed point function
and let (1, 2)-HSS be a secure homomorphic secret sharing. The construction
in Fig. 8 is a secure (3, 4)-DPF.

The proofs of Theorems 7 and 8 can be found in the full version.

Multi-client Oblivious RAM with Poly-logarithmic Communication 185

Fig. 8. (3, 4)-DPF Construction

Instantiations. By Theorem 4, there exists a (1, 2)-HSS for NC1 circuits with
share size poly(λ|a|), which is Δ-correct for any inverse polynomial Δ, assum-
ing the hardness of the DDH (or DCR) problem. By Theorem 3, there exists a
perfectly-correct (1, 2)-DPF′ with poly(d(λ + log(|G|))) key size, where {0, 1}d

is the domain of the point function, assuming the existence of one-way func-
tions. What is left to be shown is that our (3, 4)-DPF is efficient when plugging
in these two building blocks. More precisely, we will show that DPF′.Eval of
the (1, 2)-DPF′ is computable by an NC1 circuit. Recall that the complexity of
the algorithm of [4] is dominated by d calls for a length-doubling PRG. For a
point function with a polynomial-size domain, we can set d = c log(λ), for some
constant c, then implementing the length-doubling PRG with a construction
in NC0 (such as Goldreich PRG [23]) gives us an evaluation algorithm com-
putable by an NC1 circuit. The size of the resulting keys of our (3, 4)-DPF is
poly(λd · (λ + log(|G|))) = poly(λc log(λ) · (λ + log(|G|))). We thus obtain:

Corollary 1. If the DDH or DCR problem is hard and there exists a PRG in
NC0, there exists a Δ-correct (3, 4)-DPF for any inverse polynomial Δ, for func-
tions with polynomial-size domain {0, 1}d with key size poly(λd · (λ + log(|G|))).

7.2 Multi-client ORAM from Distributed Point Functions

As described in the introduction, there exists a folklore way (e.g., [9]) to construct
distributed ORAM (DORAM) with stateless client from any (t,N)-DPF with
linear reconstruction. Such a DORAM can be further transformed into a multi-
server MCORAM by equipping it with access control. Incorporating reading
rights (while achieving obliviousness) is straightforward via encryption. Granting
meaningful writing rights and achieving integrity, however, seems impossible in
the setting where the servers cannot communicate (even indirectly).

To show the legitimacy of an update, the client needs to prove the knowledge
of a witness for a statement about the database, which is secret-shared among
the servers. As any single server has no information about the statement, the

186 S. S. M. Chow et al.

Fig. 9. DPF-based Multi-Server MCORAM Construction

proof cannot be verified during the access. (We discuss an alternative later).
In Fig. 9, we propose a transformation in a simplified setting where all clients
have writing rights to all addresses by default, so the ChMod protocol is used
only for granting reading rights (via decryption keys). In this setting, the syntax
of ChMod can be simplified, which inputs a set of addresses A (cf., AR and AW).

Figure 9 assumes N2 servers, indexed by (i, j) ∈ [N]2, with at most t of them
collude. Each entry M [a] of the initial data array M is first encrypted with an
independent public key pka of a public-key encryption scheme E , and then secret-

Multi-client Oblivious RAM with Poly-logarithmic Communication 187

shared using the additive N -out-of-N secret sharing scheme. The (i, j)-th server
gets the i-th share M̄i of the ciphertext. We use independent encryption and
decryption keys for each address for simplicity. The master and client secret key
sizes can be reduced using constrained PRFs as in the FHE-based construction.

To access address a, the client generates fresh DPF keys (k1, . . . , kN) for the
point function Fa,1, and sends kj to server (i, j) for (i, j) ∈ [N]2. Using the
additive reconstruction property of the DPF, the (i, j)-th server can compute
the j-th share of M̄i[a] =

∑
a′∈[n] Fa,1(a′)M̄i[a]. Collecting all N2 shares, the

client can recover M̄ [a], and decrypt it using ska to get M [a]. Regardless of
whether logical access is a read or a write, the client must write something to
ensure obliviousness. In case of a write access, the client encrypts the new data
item as m̄, and sets b := m̄ − M̄ [a]; in case of a read access, the client sets
b := 0. The client then generates another fresh tuple of DPF keys (k1, . . . , kN)
for the point function Fa,b, and sends ki to server (i, j) for (i, j) ∈ [N]2. Using
the reconstruction property again, the i-th row of servers can obtain, for each
a′ ∈ [n], the same i-th share of M̄ ′[a′] being M̄ [a′] for a′ �= a, m̄ otherwise.

Properties of The Resulting Multi-Server MCORAM. Since the DPF is
resilient against the disclosure of any t < N shares, the multi-server (MC)ORAM
scheme is secure against a t/N2 fraction of corruptions. One can show that the
scheme is oblivious with a simple reduction to the security of DPF.

Meaningful selective writing rights can be granted by settling for accountable
integrity. The techniques for it are rather standard [29]. Roughly, assuming there
is an underlying versioning system (as in a typical storage system) that stores
each (encrypted) update instruction, we additionally require the client to anony-
mously sign the update with traceable signatures (e.g., [15]). The data owner
can then trace the misbehaving party via the anonymity revocation mechanism.

Consistency is another issue. Due to the underlying HSS [5], our DPF might
fail with a certain probability. This is undesirable, especially for write operations,
as it would leave the database in a corrupted state. Fortunately, the same HSS [5]
allows the servers to detect potential errors; thus, they can abort accordingly.

Finally, note that we can even use different DPF algorithms of different
parameters for read and write. This allows some tunable trade-offs, e.g., using a
(t,N)-DPF for write and a (t′, N ′)-DPF for read brings the threshold/server-ratio
to min{t, t′} /(NN ′). Specifically, using a (t,N)-DPF for write and a (1, 1)-DPF
(i.e., a PIR scheme) for read brings the threshold/server-ratio down to t/N .

8 Concluding Remarks

Since many techniques for constructing single-client ORAM break down com-
pletely when the client can be corrupt, it was unclear whether the poly-
logarithmic communication complexity of ORAM can be attained by MCORAM
with an access control mechanism and obliviousness against fellow clients. We

188 S. S. M. Chow et al.

devise a cross-key trial evaluation technique and two new distributed point func-
tions for building (multi-server) MCORAM with poly-logarithmic communica-
tion complexity. Besides, existing MCORAM definitions are indistinguishability
based and may not be readily applicable in higher cryptographic applications.
This paper also filled in this gap. Our study benefits the applications of MCO-
RAM for building higher cryptographic primitives and enriches our understand-
ing of homomorphic secret sharing. Application-wise, our MCORAM is especially
useful for private anonymous data access in an outsourced setting.

References

1. Blass, E.-O., Mayberry, T., Noubir, G.: Multi-client oblivious RAM secure against
malicious servers. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017.
LNCS, vol. 10355, pp. 686–707. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61204-1 34

2. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 15

3. Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM and applications. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 175–204.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0 7

4. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 12

5. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

6. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: ITCS, pp. 21:1–21:21 (2018)

7. Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both locally
and privately? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol.
10678, pp. 662–693. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 22

8. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryp-
tion: rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 407–437. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 16

9. Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party distributed
ORAM. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp.
215–232. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6 11

10. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control.
In: CCS, pp. 131–140 (2009)

11. Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private infor-
mation retrieval. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol.
10678, pp. 694–726. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 23

https://doi.org/10.1007/978-3-319-61204-1_34
https://doi.org/10.1007/978-3-319-61204-1_34
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-662-49099-0_7
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-70503-3_22
https://doi.org/10.1007/978-3-319-70503-3_22
https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1007/978-3-319-70503-3_23
https://doi.org/10.1007/978-3-319-70503-3_23

Multi-client Oblivious RAM with Poly-logarithmic Communication 189

12. Canetti, R., Lombardi, A., Wichs, D.: Non-interactive zero knowledge and corre-
lation intractability from circular-secure FHE. Cryptology ePrint Archive, Report
2018/1248 (2018)

13. Chen, B., Lin, H., Tessaro, S.: Oblivious parallel RAM: improved efficiency and
generic constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC-A 2016, Part
II. LNCS, vol. 9563, pp. 205–234. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49099-0 8

14. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

15. Chow, S.S.M.: Real traceable signatures. In: Jacobson, M.J., Rijmen, V., Safavi-
Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 92–107. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-05445-7 6

16. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS, pp. 523–
535 (2017)

17. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith III, W.E.: Homomorphic secret shar-
ing from paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.)
ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68637-0 23

18. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

19. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz,
D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 438–464. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 17

20. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

21. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 35

22. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC, pp. 182–194 (1987)

23. Goldreich, O.: A primer on Pseudorandom Generators, vol. 55. American Mathe-
matical Society (2010)

24. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

25. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: SODA,
pp. 157–167 (2012)

26. Hamlin, A., Ostrovsky, R., Weiss, M., Wichs, D.: Private anonymous data access.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 244–273.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 9

27. Hoang, T., Ozkaptan, C.D., Yavuz, A.A., Guajardo, J., Nguyen, T.: S3ORAM: a
computation-efficient and constant client bandwidth blowup ORAM with Shamir
secret sharing. In: CCS, pp. 491–505 (2017)

28. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)

29. Maffei, M., Malavolta, G., Reinert, M., Schröder, D.: Privacy and access control
for outsourced personal records. In: S&P, pp. 341–358 (2015)

https://doi.org/10.1007/978-3-662-49099-0_8
https://doi.org/10.1007/978-3-662-49099-0_8
https://doi.org/10.1007/978-3-642-05445-7_6
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-030-17656-3_9

190 S. S. M. Chow et al.

30. Maffei, M., Malavolta, G., Reinert, M., Schröder, D.: Maliciously secure multi-client
ORAM. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol.
10355, pp. 645–664. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61204-1 32

31. Sahin, C., Zakhary, V., Abbadi, A.E., Lin, H., Tessaro, S.: TaoStore: overcoming
asynchronicity in oblivious data storage. In: S&P, pp. 198–217 (2016)

32. Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M.: Splinter:
practical private queries on public data. In: NSDI, pp. 299–313 (2017)

https://doi.org/10.1007/978-3-319-61204-1_32
https://doi.org/10.1007/978-3-319-61204-1_32

Privacy-Preserving Pattern Matching
on Encrypted Data

Anis Bkakria1(B), Nora Cuppens1,2, and Frédéric Cuppens1,2

1 IMT Atlantique, Rennes, France
{anis.bkakria,nora.cuppens,frederic.cuppens}@imt-atlantique.fr

2 Polytechnique Montréal, Montréal, Canada
{nora.cuppens,frederic.cuppens}@polymtl.ca

Abstract. Pattern matching is one of the most fundamental and impor-
tant paradigms in several application domains such as digital forensics,
cyber threat intelligence, or genomic and medical data analysis. While
it is a straightforward operation when performed on plaintext data, it
becomes a challenging task when the privacy of both the analyzed data
and the analysis patterns must be preserved. In this paper, we propose
new provably correct, secure, and relatively efficient (compared to similar
existing schemes) public and private key based constructions that allow
arbitrary pattern matching over encrypted data while protecting both
the data to be analyzed and the patterns to be matched. That is, except
the pattern provider (resp. the data owner), all other involved parties
in the proposed constructions will learn nothing about the patterns to
be searched (resp. the data to be inspected). Compared to existing solu-
tions, the constructions we propose have some interesting properties: (1)
the size of the ciphertext is linear to the size of plaintext and indepen-
dent of the sizes and the number of the analysis patterns; (2) the sizes
of the issued trapdoors are constant on the size of the data to be ana-
lyzed; and (3) the search complexity is linear on the size of the data to
be inspected and is constant on the sizes of the analysis patterns. The
conducted evaluations show that our constructions drastically improve
the performance of the most efficient state of the art solution.

Keywords: Searchable encryption · Pattern Matching

1 Introduction

In several application domains such as deep-packet inspection and genomic data
analysis, learning the presence of specific patterns as well as their positions in
the data are essential. In the previous two use cases, pattern searches are often
performed by entities that are not fully trusted by data owners. For instance, in
the case of deep-packet inspection (DPI), a company that aims to outsource its
network traces to a third party forensic scientist to find indictors of compromise
might not be comfortable revealing the full contents of its traces to the forensic
scientist. Similarly, in the case of genomic data analysis, a patient that wants
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 191–220, 2020.
https://doi.org/10.1007/978-3-030-64834-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_7

192 A. Bkakria et al.

to check whether its genome contains particular patterns representing a genetic
predisposition to specific diseases might not be comfortable revealing the full
contents of its genome to the laboratory that performs the analysis.

Existing solutions that may be used to overcome the previous problem rely
mainly on searchable encryption based techniques [1–6]. Unfortunately, these
techniques suffer from at least one of the following limitations. First, the lack
of support for pattern-matching with evolving patterns, such as virus signatures
which are updated frequently (case of symmetric searchable encryption [2–4]);
second, the lack of support for variable pattern lengths (e.g., tokenization-based
techniques such as BlindBox [5]); third, the incompleteness of pattern detection
methods which yield false negatives (case of BlindIDS [6]); and fourth, the disclo-
sure of detection patterns (case of searchable encryption with shiftable trapdoors
[1]). We provide a full comparison with related literature in Sect. 2.

In this paper, we propose two technically sound constructions: S4E sup-
porting pattern matching of adaptively chosen and variable (upper bounded)
lengths patterns on secret key encrypted streams, and AS3E supporting pattern
matching of adaptively chosen and variable (upper bounded) lengths patterns
on public key encrypted streams. Both S4E and AS3E ensure that (1) both the
data owner and the third-party entity performing pattern matching operations
will learn nothing about the searched patterns except their lengths, (2) both
the pattern provider and the third-party entity that is going to perform pattern
matching will learn nothing about the data to be analyzed except the presence
or the absence of the set of unknown patterns (i.e., the third-party entity will
not have access to patterns plaintexts), (3) the third-party entity will be able to
perform pattern matching correctly over the data to be analyzed. From a prac-
tical point of view, our construction has some interesting properties. First, the
size of the ciphertext depends only on the size of the plaintext (it is independent
of the sizes and the number of analysis patterns). Second, the size of the issued
trapdoors is independent of the size of the data to be analyzed. Third, the search
complexity depends only on the size of the data to be analyzed and is constant
on the size of the analysis patterns. The two constructions we propose in this
paper are – to our knowledge – the first constructions to provide all previously
mentioned properties without using costly and complex cryptographic scheme
such as fully homomorphic encryption. The conducted evaluations show that
the two proposed constructions improve by up to four orders of magnitude the
performance of the most efficient state of the art solution SEST [1].

The paper is organized as follows. Section 2 reviews related work and details
the main contributions of our work. Section 3 presents the assumptions under
which our schemes achieve provable security. The intuition behind the proposed
constructions is presented in Sect. 4. Section 5 and 6 formalize our S4E and
AS3E primitives and provide their security results. In Sects. 7 and 8, we discuss
the complexity of our constructions and provide experimental results. Finally,
Sect. 9 concludes.

Privacy-Preserving Pattern Matching on Encrypted Data 193

2 Related Work

One possible solution for pattern matching over encrypted traffic is to use
techniques that allow evaluation of functions over encrypted data. Generic
approaches such as fully homomorphic encryption (FHE) [7,9] and func-
tional encryption (FE) [8] are currently impractical due to their very high
complexities.

Several searchable encryption (SE) techniques have been proposed for key-
word searching over encrypted data [2–4]. The main idea is to associate a trap-
door with each keyword to allow searching for these keywords within a given
encrypted data. Ideally, an entity which does not have access to the plaintext
and encryption key should learn nothing about the plaintext except the pres-
ence or the absence of the keyword. For most existing SE techniques, searches
are performed on keywords that have been pre-chosen by the entity encrypting
the data. Such approaches are more suitable for specific types of searches, such
as database searches in which records are already indexed by keywords, or in
the case of emails filtering in which flags such as “urgent” are used. Unfortu-
nately, SE techniques become useless when the set of keywords cannot be known
before encryption. This is usually the case for messaging application and Internet
browsing traffic where keywords can include expressions that are not sequences
of words per se (e.g., /chamjavanv.inf?aapf/login.jsp?=). The two constructions
we propose in this paper offer better search flexibility as, even after the plaintext
has been encrypted, they can allow arbitrarily chosen keywords to be searched
without re-encryption.

To overcome the previous limitations, tokenization-based approaches have
been proposed. In [5], the authors propose BlindBox, an approach that splits
the data to be encrypted into fragments of the same size l and encrypts each of
those fragments using a searchable encryption scheme where each fragment will
represent a keyword. Nevertheless, this solution suffers from two limitations: (1)
it is useful only if all the searchable keywords have the same length l. Obviously
the previous condition is seldom satisfied in real-world applications that requires
pattern matching (e.g., DPI). If we want to use this approach with keyword of
different lengths L, we should for each li ∈ L, split the data to be encrypted into
fragments of size li and encrypt them, which quickly becomes bulky. (2) The
proposed approach may easily cause false negatives since, even if the keyword
is of size l (the size of each fragment), it cannot be detected if it straddles
two fragments. Recently, in [6], Canard et al. proposed BlindIDS – a public
key variant of the BlindBox approach [5] that additionally ensures keywords
indistinguishability. That is, the entity that is going to search over the encrypted
data will lean nothing about the keywords. Unfortunately, BlindIDS suffers from
the same limitations as BlindBox. The two constructions we propose in this paper
address the main drawbacks of these tokenization-based techniques since they
allow for arbitrary trapdoors to be matched against the encrypted data, without
false negatives or false positives.

Several approaches [10–12] proposed solutions for substring search over
encrypted data based on secure multi-party computation. Unfortunately, to offer

194 A. Bkakria et al.

pattern matching operation, these solutions require often several interactions
between the searcher and the data encrypter.

As pointed out in [1], anonymous predicate encryption (e.g., [13]) or hidden
vector encryption [14] may provide a convenient solution for pattern matching
over encrypted data. However, in order to search a pattern p of length l on a
data of length n, the searcher should obtain n − l keys to be able to check the
presence of p on every possible offset of the data, which is clearly a problem
when dealing with large datasets.

One of the most interesting techniques for pattern matching over encrypted
traffic is the searchable encryption with shiftable trapdoor (SEST) [1]. The pro-
posed construction relies on public-key encryption and bilinear pairings to over-
come most of the limitations of previously mentioned techniques. It allows for
patterns of arbitrary lengths to be matched against the encrypted data, with-
out false negatives or false positives. This improvement comes at the cost of the
practicability of the technique. In fact, the proposed schema requires a public
key of size linear to the size of the data to be encrypted (a public key of � 8000
GB is required for encrypting 1GB of data). Moreover, the trapdoor generation
technique used by the SEST leaks many information (such as, the number of
different characters, the maximum number of occurrences of a character) about
the patterns to be searched. Furthermore, the number of pairings needed for
testing the presence of a keyword in an offset of the data depends on the max-
imum number of occurrences of the characters contained in the keyword. This
makes the proposed technique quite inefficient when used for bit level match-
ing. By contrast, for testing the presence of a pattern in encrypted data, our
constructions require a constant number of pairings in the size of the pattern
(see Sect. 7 for more details). This makes our constructions more efficient when
matching long keywords at bit level.

As we have seen, many different approaches can be used to address pattern
matching over encrypted data. To give better understanding of the benefits of the
two approaches we propose in this paper compared to existing ones, we provide in
Table 1 a comparative overview of their asymptotic complexities, and their abil-
ity to ensure the security properties we are aiming to provide. Note that we only
consider BlindBox (a symmetric searchable encryption-based solution), Blin-
dIDS (an asymmetric searchable encryption-based solution), Predicate Encryp-
tion/Hidden Vector Encryption and the SEST approach. Other approaches, as
explained before, require data re-encryption each time a new keyword is consid-
ered [2–4], induce higher complexity [7–9], require interactivity [10–12] or ensure
weaker privacy level [4].

According to the Table 1, the two constructions we propose in this paper (S4E
and AS3E) are the only primitives that simultaneously enable arbitrary trap-
doors (with upper bounded keyword size), provides a correct keyword detection,
and ensures the privacy of the used trapdoors.

In Table 1, (✓) is used to denote that a property is provided under specific
conditions. AS3E ensures trapdoor’s privacy for patterns of high-min entropy
(see Sect. 6 for more details). In addition, both S4E and AS3E support pattern

Privacy-Preserving Pattern Matching on Encrypted Data 195

Table 1. Complexity and ensured security properties comparison between related work
and our primitive. The scalars n, q, li, L, s denotes respectively the length of the traffic
to encrypt, the number of pattern to be searched, the length of each pattern, the
number of different lengths among the q patterns to be searched and the number of
data encrypters. We used (✓) to denote that the property is provided under specific
conditions.

Primitives

BlindBox BlindIDS PE/HVE SEST S4E AS3E

Number of Trapdoors O(s · q) O(q) O(n · q) O(q) O(q) O(q)

Public Parameters size O(1) O(1) O(1) O(1) O(li) O(1)

Encryption keys size O(1) O(1) O(n) O(n) O(li) O(li)

Ciphertext size O(n · L) O(n · L) O(n) O(n) O(n) O(n)

Number of trapdoors O(q) O(q) O(n · q) O(q) O(q) O(q)

Search complexity q · log(q) q q · n 2 × ∏q
1 li · n 2 · q · n 2 · q · n

comparisons pairings pairings pairings pairings pairings

Arbitrary trapdoors ✗ ✗ ✓ ✓ (✓) (✓)

Trapdoor’s privacy ✗ (✓) ✗ ✗ ✓ (✓)

Correctness (no false positives) ✗ ✗ ✓ ✓ ✓ ✓

matching of arbitrary but upper bounded lengths patterns. As we show in Sect. 7,
we stress that in both S4E and AS3E, increasing the upper bound size of patterns
affects only the size of the trapdoor generated for each pattern. The size of later
increases linearly with the increase of the size of the former.

The two constructions we propose do not require very large public parame-
ters, secret key or very large public keys as SEST and PE/HVE. Moreover, their
search complexities is lower than SEST by a factor of li (the length of the pat-
tern wi to be searched), since they are constant in the size of the pattern to be
searched. Therefore, the proposed constructions are an interesting middle way
which provides the best of PE/HVE and SEST while ensuring patterns’ privacy.
Their only limitation compared to PE/HVE and SEST is the upper bounded
size of patterns to be searched that should be fixed before the data encryption,
which we believe to be a reasonable price to pay to achieve all the other features.

3 Security Assumption

In this section, we describe the security assumptions under which our two con-
structions S4E and AS3E achieve provable security.

Definition 1 (Bilinear Maps). Let G1,G2,GT be three finite cyclic groups
of large prime order p. We assume that there is an asymmetric bilinear map
e : G1 × G2 → GT such that, for all a, b ∈ Zp the following conditions hold:

– For all g ∈ G1, g̃ ∈ G2, e(ga, g̃b) = e(g, g̃)a·b

– For all g ∈ G1, g̃ ∈ G2, e(ga, g̃b) = 1 iff a = 0 or b = 0
– e(·, ·) is efficiently computable

196 A. Bkakria et al.

As in [1], the security of the proposed constructions hold as long as G1 �=
G2 and no efficiently computable homomorphism exists between G1 and G2 in
either directions. In the sequel, the tuple (G1,G2,GT , p, e(·, ·)) is refereed to as
a bilinear environment.

Some of the security proofs of the proposed constructions, given in the full
version of this paper [22], rely partially on showing that given a number of pat-
tern trapdoors, the adversary will be unable to distinguish a new valid trapdoor
from a random element. Thus, the leakage can be bounded only by considering
the adversary’s query to the issuing oracle. Hence, either we considerably reduce
the maximum length of the patterns to be searched (≤ 30), which allow to define
a GDH instance providing all public parameters, the trapdoors for all possible
patterns, and the challenge elements. Or we use an interactive variant of the
GDH assumption to offer flexibility to the simulator by allowing the elements
gR(i)(x1,··· ,xc), g̃S(i)(x1,··· ,xc), and e(g, g̃)T (i)(x1,··· ,xc) of the GDH assumption [19]
to be queried to specific oracles.

So, we prove the security of the proposed constructions under an interactive
assumption. That is, we use a slightly modified General Diffie-Hellman (GDH)
problem assumption [19] to allow the adversary to request the set of values on
which the reduction will break the GDH assumption. This interactive aspect of
the GDH instance we are considering reduces slightly the security of the con-
struction we are proposing. However, this interactive assumption makes possible
the definition of quite efficient constructions with interesting properties. First,
the size of the ciphertext depends only on the size of the plaintext (it is indepen-
dent of the sizes and the number of the analysis patterns). Second, the size of
the issued trapdoors is independent of the size of the data to be searched. Third,
the search complexity depends only on the size of the data and is constant
on the sizes of the patterns to be matched. Attaining all previously mentioned
properties while protecting both the data to be analyzed and the patterns to
be matched and being able to handle arbitrary analysis pattern query is not
obvious and may justify the use of such an interactive assumption.

Definition 2 (independence [19]). Let p be some large prime, r, s, t, c, and
k be five positive integers and R ∈ Fp[X1, · · · ,Xc]r, S ∈ Fp[X1, · · · ,Xc]s, and
T ∈ Fp[X1, · · · ,Xc]t be three tuples of multivariate polynomials over Fp. Let
R(i) , S(i) and T (i) denote respectively the i-th polynomial contained in R, S,
and T . For any polynomial f ∈ Fp[X1, · · · ,Xc], we say that f is dependent on
<R,S, T> if there exist constants {ϑ

(a)
j }s

j=1, {ϑ
(b)
i,j }i=r,j=s

i=1,j=1, {ϑ
(c)
k }t

k=1 such that

f · (
∑

j

ϑ
(a)
j · S(j)) =

∑

i,j

ϑ
(b)
i,j · R(i) · S(j) +

∑

k

ϑ
(c)
k T (k)

We say that f is independent of <R,S, T> if f is not dependent on <R,S, T>.

Definition 3 (i-GDH assumption). Let p be some large prime, r, s, t, c,
and k be five positive integers and R ∈ Fp[X1, · · · ,Xc]r, S ∈ Fp[X1, · · · ,Xc]s,
and T ∈ Fp[X1, · · · ,Xc]t be three tuples of multivariate polynomials over Fp.

Privacy-Preserving Pattern Matching on Encrypted Data 197

Let Or, (resp. Os and Ot) be oracle that, on input {{a
(k)
i1,··· ,ic

}dk
ij=0}k, adds the

polynomials {
∑

i1,·,ic
a
(k)
i1,·,ic

∏

j X
ij

j }k to R (resp. S and T).
Let (x1, · · · , xc) be secret vector and qr (resp. qs) (resp. qt) be the number of

queries to Or (resp. Os) (resp. Ot). The i-GDH assumption states that, given
{gR(i)(x1,··· ,xc)}r+k·qr

i=1 , {g̃S(i)(x1,··· ,xc)}s+k·qs

i=1 , and {e(g, g̃)T (i)(x1,··· ,xc)}t+k·qt

i=1 , it is
hard to decide whether (i) U = gf(x1,··· ,xc) or U is random and (ii) U ′ =
g̃f(x1,··· ,xc) or U ′ is random if f is independent of <R,S, T>.

As argued in [1], the hardness of the i-GDH problem depends on the same
argument as the GDH problem which has already been proven in the generic
group model [19]. That is, as long as the challenge polynomial that we denote f
is independent of <R,S, T>, an adversary cannot distinguish gf(x1,··· ,xc) (resp.
g̃f(x1,··· ,xc)) from a random element of G1 (resp. G2). The definition method of
the content of the sets R,S, and T (by assumption or by the queries to oracles)
does not fundamentally change the proof.

4 The Intuition

The intuition behind the proposed constructions relies on two observations. First,
the number of analysis patterns is often very small compared to the quantity of
data that are going to be analyzed, e.g., in a deep packet inspection scenario, the
number of patterns provided by the SNORT intrusion detection system is 3734
[20]. Second, the sizes of the detection patterns are also very small compared
to the size of the traces to be analyzed (e.g., the largest pattern size used by
SNORT is 364 Bytes).

For a data with alphabet Σ, the proposed constructions associate each ele-
ment σ of Σ with a secret encoding (α′

σ, ασ). They fragment the sequence of
symbols that represents the data B as described in the Fig. 1 in which Φ repre-
sents the number of symbols (i.e., the size) of each fragment and pmax represents
the largest number of symbols in a pattern. To allow the matching of patterns
at any possible offset of the data to be searched, in the proposed constructions,
we require that Φ ≥ 2 ·(pmax −1). In the rest of the paper, we will use {xi}i=b

i=a to
denote the set of elements xi, i ∈ [a, b] and |B| to denote the number of symbol
(i.e., the size) that compose |B|.

As illustrated by the Fig. 1, the sequence of symbols B is fragmented into
2 × η − 1 fragments {Fi, F j}i=η−1,j=η−2

i=0,j=0 where η = |B|/Φ (for simplicity we will
suppose that |B| is a multiple of Φ). Each Fi, i ∈ [0, η − 1], contains the symbols
at indexes [i · Φ, (i + 1) · Φ − 1], while F i, i ∈ [0, η − 2], contains the symbols at
indexes [(i + 1) · Φ − pmax − 1, (i + 1) · Φ + pmax − 1] of B.

Given an i ∈ [0, |B| − 1], in the rest of this paper, we will denote by iF the
index of i inside the fragment F where F ∈ {F0, · · · , Fη−1, F 0, · · · , F η−2}. If
i /∈ F , iF is not defined. Formally, assuming that F = [a, b]:

iF =
{

i mod a if i ∈ F
not defined otherwise

198 A. Bkakria et al.

Fig. 1. Fragmentation approach

A trapdoor for a pattern w = σw,0 · · · σw,l−1 will be associated with a set of
polynomials {Vi = vi

∑l−1
k=0 α′

σw,k
· αk+i

σw,k
· zk}i=Φ−l

i=0 where vi is a random secret
scalar used to prevent new trapdoor forgeries and z a random scalar belonging
to the secret key Ks. The trapdoor generated for w consists then in the elements
{g̃Vi , g̃vi}i=Φ−l

i=0 . Each of the previous elements will be used to check the presence
of w at a specific index of the previously constructed fragments.

Meanwhile, the encryption of each symbol σi is the tuple Ci =
{Ci, C

′
i, Ci, C ′

i} that depends on the fragment in which the index i of σi in
B belongs. If it belongs to Fε (resp. F ε) then Ci and C ′

i (resp. Ci and C ′
i) con-

tain the encryption of σi regarding the index iFε
of i in Fε (resp. the index iF ε

of i in F ε).
Then, if we want to test the presence of w at the index i, if i belongs to Fε

(resp. F ε), then we compare the bilinear mapping results of the elements CiFε
,

g̃viFε (resp. CiF ε
, g̃

vi
F ε) and C ′

iFε
, g̃ViFε (resp. C ′

iF ε
, g̃

Vi
F ε). If w is not present,

then the bilinear mapping results will be random-looking elements of GT which
will be useless to the adversary for learning any information about the plaintext
and/or the content of the tested pattern.

5 S4E Construction

In this section, we propose S4E, a construction that supports pattern matching
of adaptively chosen and variable (upper bounded) lengths patterns on secret
key encrypted streams. Before formalizing S4E, we present a use-case scenario
on which S4E can be useful.

5.1 Usage Scenario

To cope with new and sophisticated cybercrime threats, new threat intelligence
platforms such as [18] are relying on the collaboration between different involved
entities that include, on one side, companies, organizations, and individuals that
are targeted by cyber attacks, and on the other, security editors that are in
charge of defining and providing strategies for effectively detect and prevent
cyber attacks. To be useful, such platforms should, on one hand, be fueled by
data owners, i.e., companies, organizations, and individuals that agree to share
the traces (e.g., network and operating system traces) of the cyber attacks that

Privacy-Preserving Pattern Matching on Encrypted Data 199

they have suffered. On the other hand, the platform should allow the security
editors to analyze (e.g., search specific patterns) and correlate the traces that are
shared by the data owners. The considered threat intelligence platform is often
managed by non-fully trusted third-party service provider (SP) which provides
the required storage space and computation power with affordable cost.

Unfortunately, both data owners (i.e., attack traces owners) and security edi-
tors are still very reluctant for adopting such kind of threat intelligence platforms
because of two main reasons. First, the traces to be shared contain often highly
sensitive information that may raise serious security and/or business threats
when disclosed to non-fully trusted third parties (e.g., SP). Second, the shared
traces analysis rely mainly on techniques that use pattern matching for inspect-
ing and detecting malicious behaviors. Those analysis patterns are the result of
extensive threat intelligence conducted by security editors. They are often put
forward as a key competitive differentiator arguing that they can cover a wider
set of malicious behaviors. Thus, security editors are typically reluctant to share
their analysis patterns with non-fully trusted third-parties.

The S4E construction can be used to overcome the previous two limitations
by building a platform that is (1) market compliant meaning that both the data
owner and the third-party entity performing the pattern matching operations
will learn nothing about the patterns to be used by security editors for analyzing
the shared traces (as proved by Theorem 4), and (2) privacy-friendly, signifying
that (2.1) the third-party entity performing pattern matching will learn nothing
about the shared data except the presence or the absence of a set of unknown
analysis patterns, and (2.2) the pattern provider will learn no more than the
indexes on which the searched pattern exists (as proved by Theorem 2).

5.2 Architecture

The architecture considered for the S4E construction involves three parties: the
data owner (DO) representing the entity that holds the data to be analyzed (e.g.,
the network traces in the case of DPI), the pattern provider (PP) representing the
entity that supplies the patterns that will be matched, and the service provider
(SP) are stakeholders that offer computation infrastructures that will be used
to perform the pattern matching operations on the data to be analyzed. To test
the presence of a pattern on DO’s data, PP starts by generating collaboratively
with DO a trapdoor for the pattern to be matched. Then, PP sends the gener-
ated trapdoor to SP who performs the matching operation and notifies the PP
with the results (i.e., the presence of the patterns as well as their corresponding
positions in the DO’s data).

5.3 Security Requirements and Hypothesis

PP, DO, and SP are considered in S4E as Honest-but-curious entities. First,
we expect PP to provide valid patterns allowing an effective analysis of DO’s
shared data. This a fairly reasonable assumption since a pattern provider (e.g.,
a security editor in the case of DPI or a laboratory in the case of genomic

200 A. Bkakria et al.

data analysis) will not defile its reputation by issuing incorrect or misleading
analysis patterns. Otherwise, this will result in many false positives, which may
considerably degrade the quality of the analyses that will be provided to the DO.
Nevertheless, we expect the PP to be curious: it may try to derive information
about the analyzed data by accessing the data analyzed by the SP and/or the
pattern matching results returned by the SP.

Second, we suppose that SP will perform the pattern matching operations
honestly over the DO’s data using the analysis patterns provided by PP. How-
ever, we suppose that SP may try to learn additional information about either
or both the DO’s outsourced data and the analysis patterns provided by PP.
In addition, we assume that the SP that may try to create values by analyzing
other third-parties data using the set of patterns provided by PP for the analysis
of DO’s outsourced data.

Third, we suppose DO to follow honestly the S4E protocol. However, we
expect that he/she may try to learn additional information about the patterns
provided by PP for analyze his/her data.

In addition, we suppose that (i) SP and PP will not collude to learn more
information about the traffic, and (ii) SP and DO will not collude to learn more
information about the patterns to be searched. We believe that these two last
assumptions are fairly reasonable since, in a free market environment, an open
dishonest behavior will result in considerable damages for involved entities.

Finally, we require S4E to provide correct results. That is, (1) any part of
DO’s data that matches one of PP’s patterns when not encrypted must be
matched by S4E (no false negatives), and (2) we require that for any traffic
that does not match any of the PP’s analysis patterns when not encrypted, the
probability that S4E returns a false positive is negligible.

5.4 Definition of S4E

S4E is defined using five algorithms that we denote Setup, Keygen, Encrypt,
Issue, and Test. The first three algorithms are performed by DO, the Issue
algorithm is performed collaboratively by DO and PP, and the Test algorithm
is performed by SP.

– Setup(1λ, Φ, pmax) is a probabilistic algorithm that takes an input a security
parameter λ, the fragmentation size to be used Φ, and the maximum size of
a pattern pmax. It returns the public parameters params.

– Keygen(params,Σ) is a probabilistic key generation algorithm that takes
as input the public parameters params and a finite set Σ representing the
alphabet to be used for representing the data to be searched and the pattern
to be matched. It outputs a secret key Ks and a trapdoor generation key Kt.
The latter will be sent to PP using a secure channel.

– Encrypt(params,Ks,B) is a probabilistic algorithm that takes as input the
public parameters params, the secret key Ks, and a finite sequence (string)
of elements B of Σ of size n. It returns a ciphertext C.

Privacy-Preserving Pattern Matching on Encrypted Data 201

– Issue(params,Ks,Kt, w) is a probabilistic algorithm executed interactively
between PP and DO. It takes as input the public parameters params, the
secret key Ks, the trapdoor generation key Kt, and w – a sequence of elements
of Σ of length smaller or equal to pmax, and returns a trapdoor tdw.

– Test(params, C, tdw) is a deterministic algorithm that takes as input the
public parameters params, a ciphertext C encrypting a sequence of m ele-
ments B = σ0 · · · σm−1 of Σ, and the trapdoor tdw for the sequence of Σ’s
elements of length l, w = σw,0 · · · σw,l−1. This algorithm is executed inter-
actively between PP and SP. The former provides the trapdoor tdw and the
latter executes the algorithm and returns the set of indexes I ⊂ {0,m− l−1}
where for each i ∈ I, σi · · · σi+l−1 = σw,0 · · · σw,l−1 to PP.

We note that the sizes of the elements defined in the previous algorithms,
i.e., the size of the data to be analyzed B, the size of the pattern to be searched
w, and the largest analysis pattern size pmax refer to the number of symbols of
Σ that compose each element. In addition, we note that S4E does not consider a
decryption algorithm since there is no need for decrypting the outsourced data.
However, we stress that a decryption feature can be straightforwardly performed
by issuing a trapdoor for all characters σ ∈ Σ and running the Test algorithm
on the encrypted data for each of them.

5.5 S4E’s Security Requirements

As said in Sect. 5.3, there are mainly 4 security requirements that should be
satisfied by our construction: Trace indistinguishability for both PP and SP,
pattern indistinguishability for both DO and SP, trapdoor usefulness (i.e., the
trapdoors are useful only to search DO’s data), and the correctness property.

In the following, we use the game-based security definition proposed in [1] for
trace indistinguishability by adapting the standard notion of IND-CPA which
requires that no adversary A (e.g., PP or SP), even with an access to an oracle
Os that issues a trapdoor tdpi

for any adaptively chosen pattern pi, can decide
whether an encrypted trace contains T0 or T1 as long as the trapdoors {tdpi

}
issued by Os do not allow trivial distinction of the traces T0 and T1. We note
that we consider the quite standard selective security notion [16]. This notion
requires the adversary to choose and commit T0 and T1 at the beginning of the
experiment, before seeing params.

Definition 4 (Data indistinguishability). Let λ be the security parameter,
Σ be the alphabet to be used, A be the adversary and C be the challenger. We
consider the following game that we denote ExpS4E D IND CPA

A,β :

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and the algorithm
Keygen(params,Σ) to generate the keys Ks and Kt. Then it sends params
to the adversary.

(2) Query: A can adaptively ask Os for the trapdoor tdwi
for any pattern wi =

σi,0 · · · σi,li−1 where σi,j ∈ Σ. We denote W the set of patterns submitted by
A to Os in this phase.

202 A. Bkakria et al.

(3) Challenge: Once A decides that Phase (2) is over, it chooses two data streams
T0 = σ∗

0,0 · · · σ∗
0,m−1 and T1 = σ∗

1,0 · · · σ∗
1,m−1 and sends them to C.

(a) If ∃w = σ0 · · · σli ∈ W, k ∈ {0, 1}, and j such that:

σ∗
k,j · · · σ∗

k,j+li = σ0 · · · σli �= σ∗
1−k,j · · · σ∗

1−k,j+li then return 0.

(b) C chooses a random β ∈ {0, 1}, creates C = Encrypt(param,Ks, Tβ),
and sends it to A.

(4) Guess. A outputs the guess β′.
(5) Return (β = β′).

We define A’s advantage by AdvExpS4E D IND CP A
A,β (λ) = |Pr[β = β′] − 1/2|. S4E

is said to be data indistinguishable if AdvExpS4E D IND CP A
A,β (λ) is negligible.

We note that in the previous definition, the restriction used in phase (3)(a)
ensures that if one of the data streams Tk contains a pattern wi ∈ W in the
position j, then this is also the case for T1−k. If such a restriction is not used,
A will trivially win the game by running Test(params, C, tdwi

).
We want to be able to evaluate the advantage of the SP for using the issued

trapdoors to analyze other third-parties’ data (i.e., data that are not provided
and encrypted by DO). Since encrypted data and trapdoors should be created
using the same secret key Ks (the trapdoor generation key Kt is created using
Ks), such an advantage is equivalent to the ability of the SP to forge valid DO’s
encrypted data.

Definition 5 (Encrypted Data Forgery). Let λ be a security parameter,
Σ be the alphabet to be used, A be the adversary, C be the challenger, Os be
an oracle that issues a trapdoor for any adaptively chosen pattern, and Or be
an oracle that encrypts any adaptively chosen data. We consider the following
ExpS4E EDF

A game:

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and the algorithm
Keygen(params,Σ) to generate the keys Ks and Kt. Then it sends params
to the adversary.

(2) Query:
– A can ask Os for issuing the trapdoor tdwi

for any adaptively chosen pat-
tern wi = σi,1 · · · σi,li where σi,j ∈ Σ. We denote W the set of patterns
submitted by A to Os in this phase.

– A can adaptively ask Or to create CT = Encrypt(params,Ks, T). We
denote T the set of datasets encrypted by the Or.

(3) Forgery: The adversary chooses the dataset T ∗ /∈ T such that T ∗ contains
w (w ∈ W) at index i and forges the encrypted dataset CT ∗

of T ∗.

We define A’s advantage of winning the game ExpS4E EDF
A by AdvExpS4E EDF

A

(λ) = Pr[i ∈ Test(params,CT ∗
, tdw)]. S4E is said to be encrypted data forgery

secure if AdvExpS4E EDF
A (λ) is negligible.

Privacy-Preserving Pattern Matching on Encrypted Data 203

The following definition formalizes the patterns indistinguishability property
for SP. That is, we evaluate the advantage of the SP to decide whether a trapdoor
encrypts the pattern w∗

0 or w∗
1 even with an access to an oracle Os that issues a

trapdoor for any adaptively chosen pattern.

Definition 6 (Pattern Indistinguishability to SP). Let λ be the security
parameter, Σ be the alphabet to be used, A be the adversary and C the challenger.
We consider the following game that we denote ExpS4E P IND CPA

ASP ,β :

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and the algorithm
Keygen(params,Σ) to generate the keys Ks and Kt. Then it sends params
to the adversary.

(2) Observation: A may observe the ciphertext CTi of a set of (unknown) traces
Ti ∈ T .

(3) Query: A can adaptively ask Os for the trapdoor tdwi
for any pattern wi =

σi,1 · · · σi,li where σi,j ∈ Σ. We denote by W the set of patterns submitted
by A to Os in this phase.

(4) Challenge: Once A decides that Phase (2) is over, it chooses two patterns
w∗

0 = σ∗
0,0 · · · σ∗

0,l and w∗
1 = σ∗

1,0 · · · σ∗
1,l such that w∗

0 , w
∗
1 /∈ W and sends

them to C. If ∃T ∈ T such that w∗
0 ∈ T or w∗

1 ∈ T then return 0. Otherwise,
C chooses a random β ∈ {0, 1}, creates tdw∗

β
, and sends it to A.

(5) Guess:
– A may try to forge the ciphertext of chosen date and uses the Test algo-

rithm to try to find out the chosen value of β.
– A outputs the guess β′.

(6) Return (β = β′).

We define the advantage of the adversary A for winning ExpS4E P IND CPA
ASP ,β

by AdvExpS4E P IND CP A
ASP ,β (λ) = |Pr[β′ = β] − 1/2|. S4E is said to be pattern

indistinguishable to SP if AdvExpS4E P IND CP A
ASP ,β (λ) is negligible.

In addition, we aim to evaluate the advantage of DO for deciding whether
a trapdoor encrypts the patterns w∗

0 or w∗
1 even with an access to an oracle

Os that plays the role of PP and perform the issue algorithm for any adaptively
chosen pattern. The following definition formalizes the pattern indistinguishably
property for DO.

Definition 7 (Pattern Indistinguishability to DO). Let λ be the security
parameter, Σ be the alphabet to be used, A be the adversary and C the challenger.
We consider the following game that we denote ExpS4E P IND CPA

ADO,β :

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and the algorithm
Keygen(params,Σ) to generate the keys Ks and Kt. Then it sends params
to the adversary.

(2) Query: A can ask Os to play the role of PP in the issue algorithm for any
adaptively chosen pattern wi = σi,1 · · · σi,li where σi,j ∈ Σ. We denote by
W the set of patterns chosen by A in this phase.

204 A. Bkakria et al.

(3) Challenge: Once A decides that Phase (2) is over, it chooses two patterns
w∗

0 = σ∗
0,0 · · · σ∗

0,l and w∗
1 = σ∗

1,0 · · · σ∗
1,l such that w∗

0 , w
∗
1 /∈ W and sends

them to C. The latter chooses a random β ∈ {0, 1}, and plays the role of PP
in the issue algorithm to generate a trapdoor for w∗

β.
(4) Guess: A outputs the guess β′.
(5) Return (β = β′).

We define the advantage of the adversary A for winning ExpS4E P IND CPA
ADO,β

by AdvExpS4E P IND CP A
ADO,β (λ) = |Pr[β′ = β] − 1/2|. S4E is said to be pattern

indistinguishable to DO if AdvExpS4E P IND CP A
ADO,β (λ) is negligible.

We say that S4E provides pattern indistinguishability if it is pattern indis-
tinguishable to both DO and SP.

Definition 8 (S4E Correctness). Let B = σ0, · · · σm−1 and w =
σw,0, · · · σw,l−1 be respectively the data to be analyzed and the pattern to be
matched. S4E is correct iff the following conditions hold:

(i) Pr[i ∈ Test(params,Encrypt(params,B,Ks), Issue(params,Ks,Kt,
w))] = 1 if B contains p at index i.

(ii) Pr[i ∈ Test(params,Encrypt(params,B,Ks), Issue(params,Ks,Kt, w))]
is negligible if B does not contain w at index i.

Condition (i) of the previous definition ensures that the Test algorithm used
by S4E produces no false negatives. Condition (ii) ensures that false positives
(i.e., the case in which Test algorithm returns i notwithstanding the fact that
σi · · · σi+l−1 �= σw,0 · · · σw,l−1) only occur with negligible probability.

5.6 A Trivial Protocol

A trivial attempt for defining a construction that ensures all of the security
requirements we defined in Sect. 5.3 would consist of modifying the most effi-
cient state of the art solution SEST [1] towards a secret key based-construction
as described in the following algorithms. The Setup, Keygen, and Encrypt algo-
rithms are to be performed by the DO. The Issue algorithm will be performed
collaboratively by the DO and the PP, while the Test algorithm will be performed
by the SP.

– Setup(1λ, n): Let (G1,G2,GT , p, e(·, ·)) be a bilinear environment. This algo-

rithm selects g
$←− G1, g̃

$←− G2 and returns params ← (G1,G2,GT , p, e(·, ·),
g, g̃, n).

– Keygen(params,Σ): On input of the alphabet Σ, this algorithm selects z
$←−

Zp and {ασ
$←− Zp}σ∈Σ , computes and adds {gzi}i=n−1

i=0 to params (required
for proving the trace indistinguishability property). It returns the secret key
Ks = {z, {ασ}σ∈Σ}.

Privacy-Preserving Pattern Matching on Encrypted Data 205

– Encrypt(params,B,Ks): To encrypt B = σ1 · · · σn, this algorithm chooses

a
$←− Zp and returns C = {Ci, C

′
i}n−1

i=0 where Ci = ga·zi

and C ′
i = ga·ασi

·zi

.
– Issue(params,w,Ks) issues a trapdoor tdw for a pattern w =

σw,0, · · · , σw,l−1 of length l ≤ n as described in Algorithm 1. We denote
by L the array that will be used to store random scalars that will be used to
encode each symbol of the pattern w, and by I the array of sets representing
the indices of symbols in w that are encoded using the same random scalar.
Actually, a random scalar can be re-used as long as it has not been used to
encode the same symbol. That is, L[i] is the random scalar to use with the
(imperatively distinct) symbols at indices Ii of w.

– Test(params, C, tdw) checks whether the encrypted data C contains w by
parsing tdw as {c, {Ij}j=c−1

j=0 , {g̃L[j]}j=c−1
j=0 , g̃V } and C as {Ci, C

′
i}n−1

i=0 , and
checking for all j ∈ [0, n − l] if the following equation holds:

c−1
∏

t=0

e(
∏

i∈It

C ′
j+i, g̃

L[t]) = e(Cj , g̃
V)

Input: Ks, params,w = σw,0, · · · σw,l−1

Output: tdw

tdw = ∅, V = 0, c = 0
L[i] = 0 for all i ∈ [0, l − 1]
Ind[σ] = 0 for all σ ∈ Σ
foreach i ∈ [0, l − 1] do

if L[Ind[σw,i]] = 0 then

L[c] $←− Zp, Ic = {i}, c = c + 1
else

IInd[σw,i] = IInd[σw,i] ∪ {i}
end
V = V + zi · ασw,i

· L[Ind[σw,i]]
Ind[σw,i] = Ind[σw,i] + 1

end
tdw = {c, {Ij}j=c−1

j=0 , {g̃L[j]}j=c−1
j=0 , g̃V }

Algorithm 1: Issue

We can prove the correctness, the data indistinguishability, and encrypted
data unforgeability properties by following the same strategies as in [22] (Sections
A.1, A.2, and A.3). Unfortunately, this construction inherits the three main
limitations of the SEST construction. First, the size of the public parameters
params is linear to the size of the data to be analyzed (which may be very large).
Second, the pattern indistinguishability requirement cannot be satisfied since the
Issue algorithm (Algorithm 1) leaks many information (such as, the number of
different symbols and the maximum number of occurrences of a symbol) about
the pattern to be matched. Third, searching the presence of a pattern w is linear

206 A. Bkakria et al.

to the maximum number of occurrences of each symbol in w, which makes this
construction impractical for matching small alphabet based patterns (e.g., bit,
or hexadecimal patterns).

5.7 The S4E’s Protocol

– Setup(1λ, Φ, pmax): Let (G1,G2,GT , p, e(·, ·)) be a bilinear environment.
This algorithm selects g

$←− G1, g̃
$←− G2, chooses Φ such that Φ ≥ 2·(pmax−1),

and returns params ← (G1,G2,GT , p, e(·, ·), g, g̃, pmax, Φ).
– Keygen(params,Σ): On input of the alphabet Σ, this algorithm selects z

$←−
Zp, {α′

σ
$←− Zp, ασ

$←− Zp}σ∈Σ , r
$←− Zp, and computes and adds {gzi}i=Φ−1

i=0 to
params. It returns the secret key Ks = {r, z, {α′

σ, ασ}σ∈Σ} and the trapdoor
generation key Kt = {g̃r·α′

σ·αi
σ·zj }i=Φ−1,j=pmax−1

i=0,j=0,σ∈Σ which will be sent to PP
using a secure channel.

– Encrypt(params,B,Ks): it starts by fragmenting B = σ0, · · · σm−1 into
{Fi, F j}i=η−1,j=η−2

i=0,j=0 where Fi = [i · Φ, (i + 1) · Φ − 1] and F j = [(j + 1) ·
Φ− pmax − 2, (j +1) ·Φ+ pmax − 1]. It chooses ak

$←− Zp for each k ∈ [0, η − 1]
and ak

$←− Zp for each k ∈ [0, η − 2] and returns C = {Ci, Ci, C
′
i, C

′
i}m−1

i=0 as
described in the following algorithm.

Input: params,B = σ0, · · · σm−1, Ks,
{Fi, ai, F j , aj}i=η−1,j=η−2

i=0,j=0

Output: C = {Ci, Ci, C
′
i, C

′
i}m−1

i=0

C ← ∅
foreach i ∈ [0,m − 1] do

ε ← i/Φ #find the fragment Fε to which i belongs
Ci ← gaε·α′

σi
·(ασi

·z)iFε , C ′
i ← gaε·ziFε

if ε > 0 and i ∈ F ε−1 then

Ci ← gaε−1·α′
σi

·(ασi
·z)

i
F ε−1

, C ′
i ← gaε−1·z

i
F ε−1

else if ε < η − 1 and i ∈ F ε then

Ci ← gaε·α′
σi

·(ασi
·z)i

F ε , C ′
i ← gaε·zi

F ε

else
Ci ← Null, C ′

i ← Null
end
C ← C ∪ {Ci, C

′
i, Ci, C ′

i}
end

Algorithm 2: Encrypt

– Issue(params,Ks,Kt, w) issues a trapdoor tdw for the sequence of symbols
w = σw,0, · · · , σw,l−1 of length l < pmax as described in the following:

• PP generates {vi
$←− Zp}i=Φ−l−1

i=0 , uses Kt to compute
⎧

⎨

⎩

⎛

⎝

l−1
∏

j=0

g̃
r·α′

σw,j
·αi+j

σw,j
·zj

⎞

⎠

vi
⎫

⎬

⎭

Φ−l−1

i=0

=

⎧

⎨

⎩

g̃
vi·r

l−1∑

j=0
α′

σw,j
·αi+j

σw,j
·zj

⎫

⎬

⎭

Φ−l−1

i=0

Privacy-Preserving Pattern Matching on Encrypted Data 207

and sends it to DO.
• DO computes

⎧

⎪

⎨

⎪

⎩

⎛

⎝g̃
vi·r

l−1∑

j=0
α′

σw,j
·αi+j

σw,j
·zj

⎞

⎠

−r
⎫

⎪

⎬

⎪

⎭

Φ−l−1

i=0

=

⎧

⎨

⎩

g̃
vi

l−1∑

j=0
α′

σw,j
·αi+j

σw,j
·zj

⎫

⎬

⎭

Φ−l−1

i=0

and sends it to PP.

• PP computes tdw = {g̃Vi , g̃vi}Φ−l−1
i=0 with Vi = vi

l−1
∑

j=0

α′
σw,j

· αi+j
σw,j

· zj

– Test(params,C, tdw) tests whether the encrypted data C contains w using
the following algorithm. It returns the set I of indexes i in which w exists in
C.

Input: C = {Ci, Ci, C
′
i, C

′
i}m−1

i=0 , tdw = {Vi, vi}i=Φ−l−1
i=0

Output: I
I ← ∅
foreach i ∈ [0,m − 1] do

ε ← i/Φ #find the fragment Fε to which i belongs
if i ∈ Fε ∩ F ε then

if e(
∏l−1

j=0 Ci+j , g̃
vi

F ε) = e(C ′
i, g̃

Vi
F ε) then

I ← I ∪ i
end

else
if e(

∏l−1
j=0 Ci+j , g̃

viFε) = e(C ′
i, g̃

ViFε) then
I ← I ∪ i

end
end

end
Algorithm 3: Test

We note here that the size of the ciphertext produced by the Encrypt algo-
rithm does not depend on the set of patterns to be used but depends only on the
size of data to be encrypted. In addition, our Issue and Test algorithms allow to
search an arbitrary (upper bounded size) and unforgeable (without the knowl-
edge of the secret key Ks) patterns. The sizes of those trapdoors do not depend
on the size of the data to be encrypted but only on the size of the data fragment
(around the double of the maximum size of a pattern). Finally, we underline
that the elements {g̃vi}Φ−l−1

i=0 of a trapdoor tdw will not be accessible to the DO,
since the trapdoor is to be used only between PP and SP in the Test algorithm
to match the pattern w on the encrypted data.

208 A. Bkakria et al.

5.8 S4E’s Security Results

In this section, we prove that the S4E construction described in Sect. 5.7 provides
the security requirements we described in Sect. 5.3. The proofs of the following
theorems are provided in the full version [22].

Theorem 1. S4E is correct.

Theorem 2. S4E is trace indistinguishable under the i-GDH assumption.

Theorem 3. S4E is encrypted data forgery secure under the i-GDH assumption.

Theorem 4. S4E is pattern indistinguishable under the i-GDH assumption.

6 AS3E Construction

The S4E construction, introduced in Sect. 5, allows for pattern matching on sym-
metrically encrypted data. In this section we show that the data fragmentation
approach we propose in Sect. 4 can also be used to build AS3E: a pattern match-
ing of upper bounded length keywords on asymmetrically encrypted stream. In
particular, we show in Sect. 7 that considering the same system and threat model
as the most efficient state of the art solution SEST [1], AS3E is far more prac-
tical than SEST as it reduces (1) considerably the size of public keys and (2)
slightly the search complexity while increasing the size of ciphertext only by a
factor of 2.

6.1 Architecture

AS3E involves four roles: Pattern Provider (PP), Service Provider (SP), a sender,
and a receiver. PP and SP are the same two entities we used in the S4E construc-
tion. That is, PP is the entity that supplies the patterns that will be searched,
and the Service Provider SP are stakeholders that offer computation infrastruc-
tures that will be used to perform pattern matching operations on the data to
be analyzed. The role sender is used to represent the entities that are going to
generate the data that is going to be analyzed (e.g., a website that provides web
contents). The role receiver represents the entities that will receive and process
the traffic sent by the sender. The receiver and the sender roles are interchange-
able. That is, within the same secure network connection session, each end-point
may play both the sender and the receiver roles. In this context, we suppose
that the receiver want to analyze the data (e.g., to detect malicious contents)
to be sent by the sender before using it. In AS3E, we require that the sender
and the receiver will not collaborate together, otherwise, they could use a secure
channel that is out of reach for the SP. This scenario should not be considered as
a limitation of AS3E since, in such scenario pattern matching cannot be provided
by SP even in the context of a plaintext traffic.

Privacy-Preserving Pattern Matching on Encrypted Data 209

6.2 Security Requirements and Hypothesis

We consider the same hypothesis for the two entities PP and SP as in our
S4E construction. That is, PP and SP are considered to be honest-but-curious
entities. Specifically, PP is supposed to provide valid patterns that allow SP to
effectively analyze the data generated by the sender while SP is supposed to
perform correctly the matching between the patterns provided by PP and the
sender ’s data. Nevertheless, we expect PP and SP to be curious as the former
may try to learn information about the sender’s data and the latter may try
to get additional information about both the patterns provided by PP and the
sender’s data.

Moreover, we expect the receiver to be honest-but-curious. That is, he/she
will correctly follow AS3E’s protocol. However, he/she may try to learn more
information about the patterns that are provided by PP.

In addition, we suppose that the receiver and SP will not collude to learn
more information about the patterns provided by PP. Otherwise, they could
easily mount a dictionary attack. Again, we believe that this last assumption
is fairly reasonable since an open dishonest behavior will result in considerable
damages for both entities.

Finally, as in S4E, the pattern matching functionality provided by AS3E
should be correct in a way that (1) any traffic that matches a least one of the
analysis patterns provided by PP when not encrypted must be detected as mali-
cious traffic by our construction, and (2) the probability that our construction
returns a false positive for any traffic that does not match any of the PP’s anal-
ysis patterns when not encrypted is negligible.

6.3 Definition of AS3E

Similarly to the S4E construction, we used five algorithms to define our construc-
tion: Setup, Keygen, Encrypt, Issue, and Test. The algorithms Setup and
Keygen are performed by the entity playing receiver role. The Issue algorithm
is performed collaboratively by the receiver and the PP. The Encrypt algorithm
is performed by the sender while the Test algorithm is performed by SP.

– Setup(1λ, Φ, pmax) is a probabilistic algorithm that takes as input a security
parameter λ, the fragmentation size to be used Φ, and the maximum size of
a pattern pmax. It returns the public parameters params which will be an
implicit input to all other algorithms.

– Keygen(Σ) is a probabilistic algorithm that takes as input a finite set of
symbols Σ representing the alphabet (e.g., bit symbols, byte symbols) used
to represent the data to be analyzed. It returns the keys Ks, Kp, and Kt,
where Ks is private and known only to the receiver, Kt is know only to PP,
and Kp is public.

– Encrypt(B,Kp) is a probabilistic algorithm that takes as input the data to
be encrypted B along with the public key Kp and returns a ciphertext C.

210 A. Bkakria et al.

– Issue(Ks,Kt, w) is a probabilistic algorithm performed collaboratively by
the receiver and the PP. It takes as input the receiver ’s private key Ks, the
trapdoor generation key Kt, and a pattern w of length l (l ≤ pmax) and
returns a trapdoor tdw.

– Test(C, tdw) is a deterministic algorithm that takes as input a ciphertext C
encrypting a data stream B along with a trapdoor tdw for a pattern w and
returns the set of indexes at which the pattern w occurs in B.

Similarly to the S4E construction, we omit the decryption algorithm in the pre-
vious description since we focus mainly on providing arbitrary universal1 pattern
matching over encrypted traffic. The decryption functionality can be easily added
by encrypting the data stream B under a conventional encryption scheme.

6.4 Security Model

For the AS3E construction, there are mainly three security requirements that
should be satisfied: the traffic indistinguishability to SP and PP, the pattern
indistinguishability to SP and the receiver, and the correct detection require-
ments. We note that, similarly to our S4E construction, we consider the selective
security notion [16]. In the following, we denote by Os a trapdoor-issuing oracle
that can be queried to create a trapdoor for any pattern.

The following definition states that it is not feasible for the SP or PP to learn
any information about the content of the traffic more than the presence or the
absence of the patterns to be matched.

Definition 9 (Trace indistinguishability). Let λ be the security parameter,
Σ be the alphabet to be used, A be the adversary and C be the challenger. We
consider the following game that we denote ExpAS3E T IND CPA

A,β :

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and Keygen(Σ)
to generate Ks, Kt, and Kp. Then it sends params, Kp, and Kt to A.

(2) Query: A can adaptively query Os to create a trapdoor tdwi
for any adap-

tively chosen pattern wi = σi,0 · · · σi,li−1 where σi,j ∈ Σ. We denote W the
set of patterns submitted by A to Os in this phase.

(3) Challenge: Once A decides that Phase (2) is over, it chooses two data streams
T0 = σ∗

0,0 · · · σ∗
0,m−1 and T1 = σ∗

1,0 · · · σ∗
1,m−1 and sends them to C.

(a) If ∃w = σ0 · · · σl ∈ W, k ∈ {0, 1}, and j such that:

σ∗
k,j · · · σ∗

k,j+l = σ0 · · · σl �= σ∗
1−k,j · · · σ∗

1−k,j+l then return 0.

(b) C chooses a random β ∈ {0, 1}, creates C = Encrypt(Tβ ,Kp), and sends
it to A.

(4) Guess. A outputs the guess β′.
(5) Return (β = β′).

1 The trapdoor generated collaboratively by the receiver and PP can be used to analyze
any sender ’s data that is sent to the receiver.

Privacy-Preserving Pattern Matching on Encrypted Data 211

We define A’s advantage by AdvExpAS3E T IND CP A
A,β (λ) = |Pr[β = β′] − 1/2|.

AS3E is data indistinguishable if AdvExpAS3E T IND CP A
A,β (λ) is negligible.

The pattern indistinguishability property informally requires that it is not
feasible for an adversary (the SP or the receiver) to learn any information about
the detection patterns. Since our construction is a public-key based scheme, we
need to take into consideration the fact that an adversary can create any traffic
of its choice using the public key Kp. In this case, an adversary can mount a brute
force attack on PP’s patterns by adaptively creating as much traffic as needed to
understand the logic behind them. However, a pattern matching-based solution
over plaintext or public-key encryption ciphertext cannot resist such an attack,
and therefore, it should not be considered in the security model of AS3E. Hence,
for AS3E, the pattern indistinguishability property requires that the adversary
A will not learn more information than what is provided as output to the Test
algorithm. Formally, we use the high-min entropy property [17] which informally
states that A cannot obtain the patterns “by chance”.

Definition 10 (min-entropy). Given a set of detection patterns W, and a
random bit β ∈ {0, 1}. A probabilistic adversary A = (Af ,Ag) has min-entropy
μ if

∀λ ∈ N,∀w ∈ W,∀β : Pr[w′ ← A(λ, β) : w = w′] ≤ 2−μ(λ)

A is said to have high-min entropy if it has min-entropy μ with μ(λ) ∈ ω(log(λ)).

In the experiment ExpAS3E P IND
ASP =(Af ,Ag),β

(Definition 11), we define the security
notion AS3E P IND for an adversary ASP = (Af ,Ag) (Af and Ag are non
colluding entities, as in e.g., [6,17]) with high-min entropy, that can create any
traffic of its choice.

Definition 11 (Pattern indistinguishability to SP). Let λ be the secu-
rity parameter, Σ be the alphabet to be used, ASP = (Af ,Ag) be the adver-
sary and C be the challenger. We consider the following game that we denote
ExpAS3E P IND

ASP =(Af ,Ag),β
:

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and Keygen(Σ)
to generate Ks, Kt, and Kp. Then it sends params and Kp to ASP .

(2) Query: ASP can adaptively query Os to create a trapdoor tdwi
for any pat-

tern wi = σi,1 · · · σi,li where σi,j ∈ Σ. We denote by W the set of patterns
submitted by ASP to Os in this phase.

(3) Challenge: Once ASP decides that Phase (2) is over, Af chooses two patterns
w∗

0 = σ∗
0,0 · · · σ∗

0,l and w∗
1 = σ∗

1,0 · · · σ∗
1,l such that w∗

0 , w
∗
1 /∈ W and sends them

to C. C chooses a random β ∈ {0, 1}, creates tdw∗
β
, and sends it to Ag.

(4) Guess: Ag outputs the guess β′.
(5) Return (β = β′).

212 A. Bkakria et al.

We define A’s advantage by Adv
ExpAS3E P IND

ASP =(Af ,Ag),β (λ) = |Pr[β = β′]−1/2|. AS3E
is said to be pattern indistinguishable to SP if for any probabilistic polynomial-

time ASP = (Af ,Ag) having high-min entropy, Adv
ExpAS3E P IND

ASP =(Af ,Ag),β (λ) is
negligible.

In addition, since the Issue algorithm is performed interactively between the
receiver and PP, we aim to evaluate the advantage of the receiver to decide
whether a trapdoor encrypts w∗

0 or w∗
1 even with an access to an oracle Os that

plays the role of a PP and performs the Issue algorithm for any adaptively cho-
sen pattern. The following definition formalizes the pattern indistinguishability
property for the receiver.

Definition 12 (Pattern Indistinguishability to the receiver). Let λ be the
security parameter, Σ be the alphabet to be used, A be the adversary and C the
challenger. We consider the following game that we denote ExpAS3E P IND CPA

AR,β :

(1) Setup: C executes Setup(1λ, Φ, pmax) to generate params and Keygen(Σ)
to generate Ks, Kp, and Kt. Then it sends params, Ks, Kp, and Kt to the
adversary.

(2) Query: A can use Os as a PP in the Issue algorithm to create a trapdoor for
any adaptively chosen pattern wi = σi,1 · · · σi,li where σi,j ∈ Σ. We denote
by W the set of patterns chosen by A in this phase.

(3) Challenge: Once A decides that Phase (2) is over, it chooses two patterns
w∗

0 = σ∗
0,0 · · · σ∗

0,l and w∗
1 = σ∗

1,0 · · · σ∗
1,l such that w∗

0 , w
∗
1 /∈ W and sends

them to C. C chooses a random β ∈ {0, 1}, and plays the role of PP in the
issue algorithm to generate collaboratively with A a trapdoor for w∗

β.
(4) Guess: A outputs the guess β′

(5) Return (β = β′).

We define the advantage of the adversary A for winning ExpAS3E P IND CPA
AR,β

by AdvExpAS3E P IND CP A
AR,β (λ) = |Pr[β′ = β] − 1/2|. AS3E is said to be pattern

indistinguishable for the receiver if AdvExpAS3E P IND CP A
ARβ (λ) is negligible.

Finally, the pattern matching correctness property is formally defined in the
following Definition.

Definition 13 (Correctness). Given a data stream T and a pattern w. AS3E
is correct iff the following conditions hold:

(i) Pr[i ∈ Test(Encrypt(T,Kp), Issue(Ks,Kt, w))] = 1 if T contains w at
index i.

(ii) Pr[i ∈ Test(Encrypt(T,Kp), Issue(Ks,Kt, w))] is negligible if T does not con-
tain w at index i.

Privacy-Preserving Pattern Matching on Encrypted Data 213

6.5 The Protocol

– Setup(1λ, Φ, pmax): Let (G1,G2,GT , p, e(·, ·)) be a bilinear environment.

This algorithm selects g
$←− G1, g̃

$←− G2 and returns params ← (G1,G2,GT ,
p, e(·, ·) , g, g̃, Φ, pmax).

– Keygen(Σ): On input of the alphabet Σ, this algorithm chooses Φ such

that Φ ≥ 2 · (pmax − 1), selects z
$←− Zp, {α′

σ
$←− Zp, ασ

$←− Zp}σ∈Σ , and

r
$←− Zp, computes and sets the public key Kp = {gzi

, gα′
σ·(ασ·z)i}i=Φ−1

i=0,σ∈Σ ,
the private key Ks = {r, ασ, α′

σ, z}σ∈Σ , and the trapdoor generation key
Kt = {g̃r·α′

σ·αi
σ·zj }i=Φ−1,j=pmax−1

i=0,j=0,σ∈Σ . It sends Kt to PP.
– Encrypt(B,Kp) fragments B = σ1, · · · σm into {Fi, F j}i=η−1,j=η−2

i=0,j=0 where
Fi = [i · Φ + 1, (i + 1) · Φ] and F j = [(j + 1) · Φ − pmax − 1, (j + 1) · Φ + pmax].

It chooses ak
$←− Zp for each k ∈ [0, η − 1] and ak

$←− Zp for each k ∈ [0, η − 2]
and returns C = {Ci, Ci, C

′
i, C

′
i}m

i=1 as described in the following algorithm.

Input: B = σ1, · · · σm,Kp, {Fi, ai, F j , aj}i=η−1,j=η−2
i=0,j=0

Output: C = {Ci, Ci, C
′
i, C

′
i}m

i=1

C ← ∅
foreach i ∈ [1,m] do

ε ← i/Φ #find the fragment Fε to which i belongs
Ci ← gaε·α′

σi
·(ασi

·z)iFε , C ′
i ← gaε·ziFε

gα′
σi

·(ασi
·z)iFε and gziFε are retrived from Kp

if ε > 0 and i ∈ F ε−1 then

Ci ← gaε−1·α′
σi

·(ασi
·z)

i
F ε−1

, C ′
i ← gaε−1·z

i
F ε−1

else if ε < η − 1 and i ∈ F ε then

Ci ← gaε·α′
σi

·(ασi
·z)i

F ε , C ′
i ← gaε·zi

F ε

else
Ci ← Null, C ′

i ← Null
end
C ← C ∪ {Ci, C

′
i, Ci, C ′

i}
end

Algorithm 4: Encrypt

– Issue(Ks,Kt, w) issues a trapdoor tdw for the sequence of symbols w =
σw,0, · · · , σw,l−1 of length l < pmax. AS3E uses the same Issue algorithm as
S4E except that DO will be replaced by the receiver.

– Test(C, tdw) tests whether the encrypted traces C contains the sequence of
symbols w. It returns the set I of indexes i in which w exists in C. The Test
algorithm is the same as described for the S4E construction (Algorithm 3).

6.6 AS3E Security Results

This section presents the security results of AS3E. The proofs of the following
theorems are given in the full version of this paper [22].

214 A. Bkakria et al.

Theorem 5. AS3E is correct.

Theorem 6. AS3E is trace indistinguishable under the i-GDH assumption.

Theorem 7. AS3E is pattern-indistinguishable to SP for patterns of high min-
entropy under the i-GDH assumption.

Theorem 8. AS3E is pattern-indistinguishable to the receiver under the i-GDH
assumption.

7 The Complexity

We evaluate the practicability of S4E and AS3E regarding several properties:
the sizes of the public parameters for S4E, public keys for AS3E, the trapdoor
generation key, the ciphertext, the trapdoor, and the encryption and search com-
plexities. Let Φ be the size of a fragment, pmax be the maximum size of a pattern,
n be the total number of symbols in the data to be analyzed. Note that S4E and
AS3E share the same sizes for the ciphertext, the trapdoor generation key, the
trapdoors, and the same complexities for trapdoor generation, encryption, and
search operations.

The Size of the Public Parameters Used in S4E: The public parameters
params used in the S4E construction contain Φ elements of G1 which represents
32 × Φ bytes using Barreto-Naehrig (BN) [15].

The Size of the Public Keys Used in AS3E: The public key Kp used in the
S4E construction contains 2 × Φ elements of G1 which represents 64 × Φ bytes
using BN. We underline that the size of the required public key is independent
of the size of the data to be analyzed n and depends only on the maximum size
of a pattern pmax (n � Φ ≥ 2 × (pmax − 1)). Hence, compared to the most
efficient state of the art solution SEST, AS3E reduces considerably the size of
the required public key. To illustrate, if we suppose that 1G of data is to be
analyzed using a set of patterns, each composed of at most 10000 bytes, SEST
requires a public key of size 32 × (1 + 256) × 109 bytes � 8000 GB while AS3E
requires a public key of size 20000 × 64 bytes � 1.20 MB.

The Size of the Pattern Generation Key Kt: For both S4E and AS3E, Kt

contains Φ × pmax × |Σ| elements of G2. A key allowing to generate trapdoors
for a binary pattern of length l ≤ 1000 will have a size equals to 128 MB.

The Size of the Ciphertext: In the worst case (i.e., Φ = 2× (pmax −1)), each
symbol is represented by 4 elements of G1. Thus, encrypting n symbols requires
128 × n bytes, while SEST produces a ciphertext of size 64 × n bytes using BN.

Trapdoor’s Size: A trapdoor is composed of 2 × (Φ − pmax) elements of G2

which represents 64 × (Φ − pmax) bytes using BN.

Trapdoor Generation Complexity. Generating a trapdoor for a pattern of
length l (l ≤ pmax), as described in the Issue algorithm, requires (Φ− l)×(2l+2)
exponentiations and 4l(Φ − l) multiplications in G2.

Privacy-Preserving Pattern Matching on Encrypted Data 215

The Upper Bound Size of Patterns: The upper bound size pmax of the
patterns that can be searched by S4E and AS3E depends Φ (p max = Φ/2 −
1). Increasing p max will increase linearly the trapdoor’s sizes and generation
complexity. However, it will not affect any of the other properties of S4E and
AS3E.

Encryption Complexity: According to the Encrypt algorithm (Algorithm 2),
in the worst case (i.e., Φ = 2 × (pmax − 1)), encrypting a sequence of n sym-
bols using S4E requires 10 × n exponentiations in G1. In case in which n is
large (i.e., n � Φ and n � |Σ|), the previous complexity can be reduced
by pre-computing {gα′

σ·(ασ·z)i

, gzi}i=Φ−1
i=0,σ∈Σ . Then for each symbol to encrypt,

the encryptor needs only to perform four exponentiations: (gα′
σ·(ασ×z)iFε)aε ,

(gziFε)aε , (gα′
σ·(ασ×z)

i
F ε)aε , and (gz

i
F ε)aεwhich reduces the overall complexity

to Φ × |Σ| + 4 × n exponentiations in G1. As for AS3E, encrypting a sequence
of n symbols requires 2 × n exponentiations in G1.

Search Complexity: According to the Test algorithm (Algorithm 3), searching
a pattern of size l on a sequence of symbols of size n requires nl − l2 multiplica-
tions on the group G1 and 2×(n− l) pairings. In fact, the Test algorithm verifies
the presence of a pattern (using its associated trapdoor) in each possible offset in
the data to be analyzed. Let us denote by s0 and s1 the two sequences of symbols
of length l to be analyzed to check the presence of a pattern in offsets 0 and 1
respectively of the fragment Fi (resp. F i). Checking the presence of the pattern
in the offset 0 requires the computation of

∏l−1
i=0 Ci (resp.

∏l−1
i=0 Ci) while check-

ing the presence of the pattern in offset 1 requires the computation of
∏l−1

i=0 Ci+1

(resp.
∏l−1

i=0 Ci+1). Obviously, for the offset 1, we can avoid the recomputation
of

∏l−1
i=1 Ci since it has already been computed for the offset 0. Following the

previous observation, searching a pattern of length l on a sequence of symbols
of length n requires only n multiplications and n divisions on the group G1, and
2 × (n − l) pairings. Considering the fact that l � n, we can upper bound the
search complexity by n multiplications, n divisions and 2n pairings. Finally, we
note that pairing operations can be implemented very efficiently [21] and that
our Test procedure is highly parallelizable.

8 Empirical Evaluation

In this section, we experimentally evaluate the performance of S4E and AS3E2.
We implement the two constructions using the RELIC cryptographic library
[21] over the 254-bits BN curve3. For all conducted experiments, we used real
2 We note that the goals of this section is to (1) provide a more concrete estimations

of the different operations used by S4E and AS3E and (2) show that S4E and AS3E
are more practical than SEST. Particularly, we do not claim that S4E and AS3E are
practical enough to perform pattern matching on very large data streams.

3 The objective behind the usage of the 254-bits BN is to consider the same elliptic
curve as in the implementation of the SEST construction. We note that the pairings
over the 254-bits BN curve provides almost 100-bit security level.

216 A. Bkakria et al.

network traces as the data to be encrypted and analyzed, and we (pseudo)
randomly generated the analysis patterns to be searched. In addition, since in
both S4E and AS3E, the encryption and the trapdoor generation algorithms
are to be performed by entities (data owners in case of S4E or data sender in
case of AS3E) which may not have a large computation power, we run both the
trapdoor generation and the encryption algorithms tests on an Amazon EC2
instance (a1.2xlarge) running Linux with an Intel Xeon E5-2680 v4 Processor
with 8 vCPU and 16 GB of RAM. In contrast, as the search operations are
performed by SP which is supposed to have a large computation power, we run
search experiments on an Amazon EC2 instance (m5.24xlarge) running Linux
with an Intel Xeon E5-2680 v4 Processor with 96 vCPU and 64 GB of RAM.

In our empirical evaluation, we aim to quantify the following characteristics
of the proposed constructions:

– The time required to generate a trapdoor and its corresponding size as a
function of the size of the largest analysis pattern pmax that can be searched.

– The time taken to encrypt a data stream as a function of its size (i.e. the
size of the sequence of symbols that composed the data to be encrypted), the
fragmentation size Φ and the size of the considered alphabet.

– The time needed to perform a pattern matching query as a function of the
size of the data to be queried and the size of the patterns to be searched.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Pattern length

0

0.5

1

1.5

2

2.5

3

Ti
m

e
in

 s
ec

on
ds

(a) as a function of the number
of symbols in the pattern to be
searched

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
fragment size (fs)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

tim
e

in
 s

ec
on

ds

(b) as a function of Φ

Fig. 2. Trapdoor generation time

Trapdoor Generation. Figure 2 describes the time required for issuing a trap-
door for a pattern w as a function of its length (Fig. 2 (a)) as well as the size
Φ of data a data fragment (Fig. 2 (b)). According to our experiments, issuing a
trapdoor for a pattern of 5000 symbols take 1.4 s. In addition, the sizes of the
generated trapdoors are relatively small (256 KB for a pattern of 4000 symbols
and a fragmentation size of 10000 symbols).

Encryption Time. According to Sect. 7, the duration of an encryption opera-
tion depends mainly on the number of symbols in the data to be encrypted n but

Privacy-Preserving Pattern Matching on Encrypted Data 217

also on the fragmentation size Φ and the size |Σ| of the considered alphabet Σ.
Table 2 reports the time needed to encrypt a data stream fragmented in chunks,
each containing 1000 bits (Φ = 1000 and Σ = {0, 1}), as a function of the data
stream length n.4.

Table 2. Encrypting time as a function of n

Data length (bytes) Time (seconds)

1000 0.031

3000 0.097

5000 0.158

10000 0.371

30000 1.01

100000 3.0355

103 104 105

Fragment size (fs)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ti
m

e
in

 s
ec

on
ds

Binary alpahbet
Hexadicimal alphabet
ASCII alphabet

Fig. 3. Time required for encrypt-
ing 105 symbols as a function of Φ
and Σ

As we noted in Sect. 4, the fragmentation size Φ and the considered alphabets
are important parameters in our construction. The former directly influences
the size of the largest analysis pattern that can be searched over the encrypted
data since the bigger the size of the fragments are, the bigger the size of the
supported analysis patterns could be. The latter parameter determines the type
of search that can be performed by our construction. In Fig. 3, we compute the
time required for the encryption of a data stream composed of 105 symbols as a
function of the fragmentation size Φ and the type of the considered symbols. We
consider three types of alphabets: binary, hexadecimal, and base 256 (i.e., ASCII
alphabet) where each symbol is represented respectively in 1, 4 and 8 bits. For
Φ, we consider 3 different fragment sizes: 103, 104, and 105 symbols.

As illustrated in Fig. 3, the time required for encrypting a dataset composed
of 105 symbols increases only by a factor of 0.02 (from 3,04 to 3,2 s) when
increasing the size of the fragments by a factor of 100 (from 103 to 105) and
increasing the size of the considered alphabet by a factor of 128 (from a base 2
alphabet where Σ = {0, 1} to a base 256 alphabet where Σ = {0, 1, · · · , 255}).
The previous results show that the increase of the size of supported patterns
and the size of the considered alphabet affects very little the encryption time
required by the proposed constructions.

Search Time. As shown in Sect. 7, the complexity of the search operation
depends mainly on the number of encrypted symbols n that compose the data
to be analyzed. Figure 4 describes the time required for searching a pattern as
a function of the number of encrypted symbols in the data to be analyzed.

4 Encryption time would be roughly 8 times slower with a single-threaded execution.

218 A. Bkakria et al.

0 100 200 300 400 500 600 700 800 900 1000
Number of symbols (103)

0

10

20

30

40

50

60

70

Ti
m

e
in

 s
ec

on
ds

Fig. 4. Time required for searching a pattern as a function of the number of encrypted
symbols in the data to be analyzed

The conducted evaluations show that the average search throughput of our
construction is 139078 symbols per second with a multi-threaded implemen-
tation5. Thus, if an ASCII (resp. binary) alphabet is considered, the search
throughput is 139 KB (resp. Kb) per second.

10 102 103 104

Number of bytes in the analysis pattern

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ti
m

e
in

 s
ec

on
ds

S4E
AS3E
SEST
symmetric SEST (Section 5.6)

(a) byte-level search (Σ = {0, · · · , 255})
4 16 64 256

Number of bits in the analysis pattern

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ti
m

e
in

 s
ec

on
ds

S4E
AS3E
SEST
Symmetric SEST (Section 5.6)

(b) bit-level search (Σ = {0, 1}})

Fig. 5. Timing comparison for testing the presence of a pattern in a string of 107

symbols as a function of the pattern size

Figure 5 (a) (resp. Fig. 5 (b)) compares the time needed for both our and the
SEST (both its asymmetric [1] and symmetric (Sect. 5.6) variants) constructions
to test the presence of a pattern of bytes (resp. of bits) in a 10 MB (resp. Mb)
dataset as a function of the length of the pattern to be searched. In both bit and
byte searches, our construction drastically reduces the search time compared to
SEST. This is because that our Test algorithm is constant on the size and on
the content of the searched pattern which is not the case for SEST.

5 Search time would be roughly 96 times slower with a single-threaded execution.

Privacy-Preserving Pattern Matching on Encrypted Data 219

9 Conclusion

In this work, we introduced two new provably correct and secure constructions
S4E and AS3E. S4E (resp. AS3E) supporting pattern matching of adaptively
chosen and variable (upper bounded) lengths patterns on secret key (resp. public
key) encrypted streams. The proposed constructions have several interesting
properties. First, they ensure data and pattern indistinguishability meaning that
the entity that is going to perform pattern matching will learn nothing about
the patterns to be searched as well as the data to be inspected, except the
presence or the absence of a set of “unknown” patterns (since the entity charged
to perform pattern matching will not have access to the patterns plaintexts).
Second, the size of the ciphertext is linear to the size of the plaintext and is
constant on the sizes and the number of analysis patterns. Third, the size of
the issued trapdoors is constant on the size of the data to be analyzed. Finally,
the search complexity is linear to the size of the trace and is constant on the
size of the analysis patterns. The proposed constructions can be useful for other
application scenarios such as subtrees search and searching of structured data.

To prove the security of the two proposed schemes, we used a slightly modified
GDH assumption where the adversary is allowed to choose on which input to play
the GDH instance. This relatively minor modification of the GDH assumption
allow to define constructions that offer an interesting compromise between the
secure and quite costly solutions and the fast and unsecure solution where the
data has to be decrypted by the third-party entity that performs the pattern
matching.

References

1. Desmoulins, N., Fouque, P.-A., Onete, C., Sanders, O.: Pattern matching on
encrypted streams. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS,
vol. 11272, pp. 121–148. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03326-2 5

2. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. J. Comput. Secur. 19(5),
895–934 (2011)

3. Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage sup-
pression. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991,
pp. 339–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-
1 12

4. Chase, M., Shen, E.: Substring-searchable symmetric encryption. In: Proceedings
on Privacy Enhancing Technologies, no. 2, pp. 263–281 (2015)

5. Sherry, J., Lan, C., Popa, R.A., Ratnasamy, S.: Blindbox: deep packet inspection
over encrypted traffic. ACM SIGCOMM Comput. Commun. Rev. 45(4), 213–226
(2015)

6. Canard, S., Diop, A., Kheir, N., Paindavoine, M., Sabt, M.: Blindids: market-
compliant and privacy-friendly intrusion detection system over encrypted traffic.
In: Proceedings of the 2017 ACM on Asia Conference on Computer and Commu-
nications Security, pp. 561–574. ACM, April 2017

https://doi.org/10.1007/978-3-030-03326-2_5
https://doi.org/10.1007/978-3-030-03326-2_5
https://doi.org/10.1007/978-3-319-96884-1_12
https://doi.org/10.1007/978-3-319-96884-1_12

220 A. Bkakria et al.

7. Gentry, C., Boneh, D.: A fully homomorphic encryption scheme, vol. 20, no. 09.
Stanford University, Stanford (2009)

8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

9. Lauter, K., López-Alt, A., Naehrig, M.: Private computation on encrypted genomic
data. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895,
pp. 3–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9 1

10. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. J. Cryptol. 23(3), 422–456
(2010)

11. Gennaro, R., Hazay, C., Sorensen, J.S.: Automata evaluation and text search pro-
tocols with simulation-based security. J. Cryptol. 29(2), 243–282 (2016)

12. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error
resilient DNA searching through oblivious automata. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security, pp. 519–528. ACM,
October 2007

13. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. J. Cryptol. 26(2), 191–224 (2013)

14. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

15. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

16. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

17. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

18. MISP - Open Source Threat Intelligence Platform & Open Standards For Threat
Information Sharing (2011). https://www.misp-project.org/

19. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3

20. Snort Rules. https://www.snort.org/. Accessed 31 Aug 2019
21. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography.

https://github.com/relic-toolkit/relic
22. Bkakria, A., Cuppens, N., Cuppens, F.: Pattern matching on encrypted data. Cryp-

tology ePrint Archive, Report 2020/422 (2020). https://eprint.iacr.org/2020/422

https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-319-16295-9_1
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-540-74143-5_30
https://www.misp-project.org/
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://www.snort.org/
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2020/422

Efficient Homomorphic Comparison
Methods with Optimal Complexity

Jung Hee Cheon1,2, Dongwoo Kim1, and Duhyeong Kim1(B)

1 Department of Mathematical Sciences, Seoul National University,
Seoul, Republic of Korea

{jhcheon,dwkim606,doodoo1204}@snu.ac.kr
2 Crypto Lab Inc., Seoul, Republic of Korea

Abstract. Comparison of two numbers is one of the most frequently
used operations, but it has been a challenging task to efficiently compute
the comparison function in homomorphic encryption (HE) which basi-
cally supports addition and multiplication. Recently, Cheon et al. (Asi-
acrypt 2019) introduced a new approximate representation of the com-
parison function with a rational function, and showed that this rational
function can be evaluated by an iterative algorithm. Due to this iterative
feature, their method achieves a logarithmic computational complexity
compared to previous polynomial approximation methods; however, the
computational complexity is still not optimal, and the algorithm is quite
slow for large-bit inputs in HE implementation.

In this work, we propose new comparison methods with optimal
asymptotic complexity based on composite polynomial approximation.
The main idea is to systematically design a constant-degree polynomial
f by identifying the core properties to make a composite polynomial
f ◦ f ◦ · · · ◦ f get close to the sign function (equivalent to the compari-
son function) as the number of compositions increases. We additionally
introduce an acceleration method applying a mixed polynomial compo-
sition f ◦ · · · ◦ f ◦ g ◦ · · · ◦ g for some other polynomial g with different
properties instead of f ◦f ◦· · ·◦f . Utilizing the devised polynomials f and
g, our new comparison algorithms only require Θ(log(1/ε)) + Θ(logα)
computational complexity to obtain an approximate comparison result
of a, b ∈ [0, 1] satisfying |a − b| ≥ ε within 2−α error.

The asymptotic optimality results in substantial performance
enhancement: our comparison algorithm on 16-bit encrypted integers for
α = 16 takes 1.22ms in amortized running time based on an approximate
HE scheme HEAAN, which is 18 times faster than the previous work.

1 Introduction

Homomorphic Encryption (HE) is a primitive of cryptographic computing, which
allows computations over encrypted data without any decryption process. With
HE, clients who sent encrypted data to an untrusted server are guaranteed data
privacy, and the server can perform any operations over the encrypted data. In
recent years, HE has gained worldwide interest from various fields related to data
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 221–256, 2020.
https://doi.org/10.1007/978-3-030-64834-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_8

222 J. H. Cheon et al.

privacy issues including genomics [37–39] and finances [3,31]. In particular, HE
is emerging as one of the key tools to protect data privacy in machine learning
tasks, which now became a necessary consideration due to public awareness of
data breaches and privacy violation.

The comparison function comp(a, b), which outputs 1 if a > b, 0 if a < b
and 1/2 if a = b, is one of the most prevalent operations along with addition
and multiplication in various real-world applications. For example, many of the
machine learning algorithms such as cluster analysis [17,33], gradient boost-
ing [25,26], and support-vector machine [19,40] require a number of comparison
operations. Therefore, it is indispensable to find an efficient method to compute
the comparison function in an encrypted state for HE applications.

Since HE schemes [7,11,24] basically support homomorphic addition and
multiplication, to compute non-polynomial operations including the comparison
function in an encrypted state, we need to exploit polynomial approximations
on them. The usual polynomial approximation methods such as minimax find
approximate polynomials with minimal degree on a target function for given a
certain error bound. However, the computational complexity to evaluate these
polynomials is so large that it is quite inefficient to obtain approximate results
with high-precision by these methods. Recently, to resolve this problem, Cheon
et al. [12] introduced a new identity comp(a, b) = limk→∞ ak/(ak + bk), and
showed that the identity can be computed by an iterative algorithm. Due to
this iterative feature, their algorithm achieves a logarithmic computational com-
plexity compared to usual polynomial approximation methods. However, the
algorithm only achieves quasi-optimal computational complexity, and it is quite
slow in HE implementation; more than 20min is required to compute a single
homomorphic comparison of 16-bit integers.

In this work, we propose new comparison methods using composite polyno-
mial approximation on the sign function, which is equivalent to the comparison
function. Starting from the analysis on the behavior of a composite polynomial
f (d) := f ◦f ◦ · · · ◦f , we identify the core properties of f that make f (d) get close
to the sign function as d increases. We additionally introduce a novel accelera-
tion method by applying a mixed composition of f and some other polynomial
g with different properties instead of a simple composition of f . Applying these
systematically devised polynomials f and g, we construct new comparison algo-
rithms which firstly achieve the optimal computational complexity among all
polynomial evaluations to obtain an approximate value of the comparison result
within a certain error bound.

Our composite polynomial methods can be directly applied to evaluate
piecewise polynomials with two sub-polynomials including the absolute func-
tion: For example, the function p such that p(x) = p1(x) if x ∈ [0, 1] and
p(x) = p2(x) if x ∈ [−1, 0) for polynomials p1 and p2 can be represented by
p1(x) · (1+ sgn(x))/2+p2(x) · (1− sgn(x))/2. Furthermore, our method is poten-
tially applicable to more general piecewise polynomials including step functions
(see Remark 1).

Efficient Homomorphic Comparison Methods with Optimal Complexity 223

1.1 Our Idea and Technical Overview

Our key idea to identify several core properties of the basic function f essentially
comes from a new interpretation of the previous work [12]. To be precise, [12]
exploits the following identity to construct a comparison algorithm:

lim
k→∞

ak

ak + bk
=

⎧
⎨

⎩

1 if a > b
1/2 if a = b
0 if a < b

⎫
⎬

⎭
= comp(a, b)

for positive numbers a, b ∈ [1/2, 3/2]. Since very large exponent k = 2d is
required to obtain a comparison result within small error, they suggest to iter-
atively compute a ← a2/(a2 + b2) and b ← b2/(a2 + b2) with an initial step
a ← a/(a + b) and b ← b/(a + b), which results in a2d

/(a2d

+ b2
d

) � comp(a, b)
after d iterations. The inverse operation 1/(a2+b2) in each iteration is computed
by Goldschmidt’s division algorithm [30].

The computational inefficiency of the comparison algorithm in [12] mainly
comes from that inverse operation which should be done at least d times. Then,
the natural question would be

“How can we construct an efficient comparison algorithm
without inverse operation?”

To do this, we analyze the comparison algorithm in [12] with a new perspective.
Let f0(x) = x2/(x2 + (1 − x)2), then each iteration a ← a2/(a2 + b2) and
b ← b2/(a2+b2) can be interpreted as an evaluation of f0(a) and f0(b) = 1−f0(a)
for 0 ≤ a, b ≤ 1, respectively. Indeed, the d iterations correspond to the d-time
composition of the basic function f0 denoted by f

(d)
0 := f0 ◦ f0 ◦ · · · ◦ f0, and the

comparison algorithm can be interpreted as approximating (sgn(2x − 1) + 1)/2
by a composite polynomial f

(d)
0 (Fig. 1).

Fig. 1. Illustration of f
(d)
0 for d = 1, 2, 3

Our key observation on the basic function f0 is that we actually do not
need the exact formula of f0(x) = x2/(x2 + (1 − x)2). Instead, it suffices to use

224 J. H. Cheon et al.

other polynomials with similar shape to f0: convex in [0, 0.5], concave in [0.5, 1],
symmetric to the point (0.5, 0.5), and have a value 1 at x = 1. For example,
the composition h

(d)
1 of our devised polynomial h1(x) = −2x3 + 3x2, which has

similar shape to f0, gets close to (sgn(2x − 1) + 1)/2 as d increases. As a result,
we can approximate the comparison function by a composite polynomial f (d) for
some constant-degree polynomial f with several core properties, and identifying
these core properties is the most important step in our algorithm construction.

Core Properties of f . Since the sign function is equivalent to the comparison
function, via sgn(x) = 2 · comp(x, 0) − 1 and comp(a, b) = (sgn(a − b) + 1)/2,
it is enough to find a polynomial f such that f (d)(x) gets close to sgn(x) over
[−1, 1] for some proper d. The core properties of f are as following:

Prop I. f(−x) = −f(x)

Prop II. f(1) = 1, f(−1) = −1

Prop III. f ′(x) = c(1 − x)n(1 + x)n for some constant c > 0

The first property is necessary from the origin symmetry of the sign function,
and the second property is required to achieve limd→∞ f (d)(x) = 1 for 0 < x ≤ 1.
The last property makes f to be concave in [0, 1] and convex in [−1, 0], and the
multiplicity n of ±1 in f ′(x) accelerates the convergence of f (d) to the sign
function. Interestingly, for each n ≥ 1, a polynomial fn satisfying above three
properties is uniquely determined as

fn(x) =
n∑

i=0

1
4i

·
(
2i
i

)

· x(1 − x2)i.

Since sgn(x) is a discontinuous function at x = 0, the closeness of a polyno-
mial f(x) to sgn(x) should be considered carefully. Namely, we do not consider a
small neighborhood (−ε, ε) of zero when measuring the difference between f(x)
and sgn(x) (if not, the infinite norm is always ≥ 1). In Sect. 3.2, we prove that
the infinite norm of f

(d)
n (x) − sgn(x) over [−1,−ε] ∪ [ε, 1] is smaller than 2−α

if d ≥ dn for some dn > 0. Then, (f (dn)
n (a − b) + 1)/2 outputs an approximate

value of comp(a, b) within 2−α error for a, b ∈ [0, 1] satisfying |a − b| ≥ ε.

Acceleration Method. Along with {fn}n≥1, we provide another family of odd
polynomials {gn}n≥1 which reduces the required number of polynomial compo-
sitions dn. At a high-level, we can interpret dn as dn := dε + dα where each of
the terms dε and dα has distinct aim as following: The first term dε is a required
number of compositions to map the interval [ε, 1] into the interval [1 − τ, 1] for
some fixed constant 0 < τ < 1 (typically, τ = 1/4), and the second term dα is a
required number of compositions to map [1 − τ, 1] into [1 − 2−α, 1], i.e.,

f (dε)
n ([ε, 1]) ⊆ [1 − τ, 1],

f (dα)
n ([1 − τ, 1]) ⊆ [1 − 2−α, 1].

In this perspective, our idea is to reduce dε by substituting f
(dε+dα)
n with f

(dα)
n ◦

g
(dε)
n for some other (2n + 1)-degree polynomial gn with weaker properties than

Efficient Homomorphic Comparison Methods with Optimal Complexity 225

the core properties of fn. Since the first dε compositions only need to map [ε, 1]
into [1 − τ, 1], Prop II & III are unnecessary in this part. Instead, the following
property along with Prop I is required:

Prop IV. ∃ 0 < δ < 1 s.t. x < gn(x) ≤ 1 for x ∈ (0, δ] and gn([δ, 1]) ⊆ [1 − τ, 1]

For gn satisfying Prop I & IV, the composition g
(d)
n does not get close to

the sign function as d increases; however, we can guarantee that g
(dε)
n ([ε, 1]) ⊆

[1− τ, 1] for some dε > 0 which is exactly the aim of first dε compositions. With
some heuristic properties on gn obtained by Algorithm 2, the required number
of the first-part compositions dε is reduced by nearly half (see Sect. 3.5).

1.2 Our Results

New Comparison Methods with Optimal Complexity. We first propose
a family of polynomials {fn}n≥1 whose composition f

(d)
n gets close to the sign

function (in terms of (α, ε)-closeness) as d increases. Based on the approximation

f
(d)
n (a − b) + 1

2
� sgn(a − b) + 1

2
= comp(a, b),

we construct a new comparison algorithm NewComp(a, b;n, d) which achieves
optimal asymptotic complexity among the polynomial evaluations obtaining an
approximate value of comparison within a certain level of error. The following
theorem is the first main result of our work:

Theorem 1. If d ≥ 2+o(1)
log n · log(1/ε) + 1

log n · logα+O(1), the comparison algo-
rithm NewComp(a, b;n, d) outputs an approximate value of comp(a, b) within 2−α

error for a, b ∈ [0, 1] satisfying |a − b| ≥ ε.

The theorem implies that one can obtain an approximate value of comp(a, b)
within 2−α error for a, b ∈ [0, 1] satisfying |a−b| ≥ ε with Θ(log(1/ε))+Θ(logα)+
O(1) complexity and depth with NewComp.

We also provide another family of polynomials {gn}n≥1, which enables to
reduce the number of polynomial compositions by substituting f

(d)
n with f

(df)
n ◦

g
(dg)
n . From the mixed polynomial composition, we construct another comparison

algorithm NewCompG with the following result:

Theorem 2 (Heuristic). If dg ≥ 1+o(1)
log n ·log(1/ε)+O(1) and df ≥ 1

log n ·logα+
O(1), the comparison algorithm NewCompG(a, b;n, df , dg) outputs an approximate
value of comp(a, b) within 2−α error for a, b ∈ [0, 1] satisfying |a − b| ≥ ε.

Since gn and fn have the same degree, the total depth and computational com-
plexity of NewCompG are strictly smaller than those of NewComp.

The variety on choosing n in our comparison algorithms provides flexibility
in complexity-depth tradeoff. For instance, one can choose n = 4 to achieve the
minimal computational complexity (see Sect. 3.4). On the other hand, if one

226 J. H. Cheon et al.

wants to obtain comparison results with larger complexity but smaller depth,
one can choose n larger than 4. Assuming some heuristic properties of gn, the
total depth of NewCompG(·, ·;n, df , dg) gets close to the theoretical minimal depth
as n increases (see Sect. 3.5).

Improved Performance. For two 8-bit integers which are encrypted by an
approximate HE scheme HEAAN [11], the comparison algorithm NewComp (for
ε = 2−8 and α = 8) takes 0.9ms in amortized running time, and the performance
is twice accelerated by applying the other comparison algorithm NewCompG. The
implementation result on NewCompG is about 8 times faster than that on the
comparison algorithm of the previous work [12] based on HEAAN. Note that
this performance gap grows up as the bit-length of input integers increases: For
two encrypted 20-bit integers, our algorithm NewCompG is about 30 times faster
than the previous work.

Application to Max. Since the max function is expressed by the sign function
as max(a, b) = a+b

2 + a−b
2 ·sgn(a−b), we can directly obtain max algorithms from

the family of polynomials {fn}n≥1 (and hence {gn}n≥1). Our max algorithms
NewMax and NewMaxG outperform the max algorithm in the previous work [12]
in terms of both computational complexity and depth. To be precise, the max
algorithm in [12] requires 4α + O(1) depth and 6α + O(1) complexity to obtain
an approximate value of min/max of two numbers in [0, 1] within 2−α error. In
our case, the max algorithm NewMax applying f4 only require 3.08α+O(1) depth
and complexity, and it can be even reduced to 1.54α+1.72 logα+O(1) by using
the other max algorithm NewMaxG. In practice, for encrypted 20-bit integers our
NewMaxG algorithm is 4.5 times faster than the max algorithm in [12].

Moreover, our max algorithms fundamentally solve a potential problem of the
max algorithm in [12] when inputs are encrypted by HEAAN. When two input
numbers are too close so that the difference is even smaller than approximate
errors of HEAAN, then the max algorithm in [12] may output a totally wrong
result; in contrast, our max algorithms works well for any inputs from [0, 1].

1.3 Related Works

Numerical Analysis on the Sign Function. In the literature of numerical
analysis, to the best of our knowledge, there exist two main approaches on the
polynomial approximation of the sign function. One is to naively apply general
polynomial approximation methods (Taylor, least squares, minimax, etc.), and
the other is to apply Newton’s root-finding algorithm on a function which has
±1 as roots.

General polynomial approximation methods provide an approximate poly-
nomial with minimal degree under a certain upper bound of the approximate
error. However, the evaluation of such approximate polynomial requires at least
Θ(

√
degree) multiplications, which yields super-large computational complexity

when we aim to obtain a high-precision approximation. For example, when we
want to obtain an approximate polynomial of the sign function with α-bit preci-
sion over [−1,−2−α] ∪ [2−α, 1] via general polynomial approximation methods,

Efficient Homomorphic Comparison Methods with Optimal Complexity 227

the required computational complexity is at least Θ(
√

α · 2α/2) which is expo-
nential to α (see Sect. 2.2 for more details). There have been recent works [8,32]
applying Chebyshev polynomial approximation (on the sine function) instead
of the minimax polynomial approximation for better efficiency. However, the
Chebyshev polynomial approximation method still requires exponential compu-
tational complexity with respect to α when it is applied to the sign function.

Newton’s root-finding algorithm outputs an approximate value of roots of a
function r(x) by iteratively computing xn+1 = xn − r(xn)

r′(xn) for an initial point

x0. That is, an iterative computation of the function f(x) = x − r(x)
r′(x) gives

an approximate value to one of the roots of r. The most simple choice of r to
compute the sign function is r(x) = 1 − x2 which derives f(x) = 1

2 · (x + 1
x

)

so-called Newton’s method [34,36]. There have also been several attempts to
improve the convergence rate of this iterative method to the sign function by
changing f to f(x) = 3x+x3

1+3x2 (Halley’s method [42]), f(x) = 5x+10x3+x5

1+10x2+5x4 [18],
and f(x) = 10x+98x3+126x5+22x7

1+42x2+140x4+70x6+3x8 [46].1 However, all these methods com-
monly require the inverse operation, and additional polynomial approximation
on inverse is required to apply these methods in HE as the previous work [12].
Consequently, these methods are much less efficient than our methods for the
evaluation of the sign function in HE due to a number of expensive inverse
operations.

There has been proposed another choice of r that makes f a polynomial as
in this paper, so-called Newton-Schulz method [34,36]. When we take r(x) =
1 − 1/x2, the function f is expressed as f(x) = x

2 · (3 − x2) and we can obtain
an approximate value of the sign function by the iterative computation of f .
Interestingly, this function is one of our devised polynomials f1. However, we
note that the design rationale of our methods, setting core properties of f that
makes f (d) get close to the sign function as d increases, is totally different from
that of the Newton’s root-finding method. With Newton’s method it is not clear
at all how to generalize f1 to fn for n > 1 or how to obtain the intuition for
devising other polynomials {gn}n≥1 for convergence acceleration. Our methods
applying {fn}n>1 and {gn}n≥1 achieve much less computational complexity and
depth than the previous numerical method (see Sect. 3.4 and Sect. 3.5).

HE-Based Comparison Methods. There have been several works on com-
parison algorithms for HE schemes [7,11,24] basically supporting addition and
multiplication. The most recent work was proposed by Cheon et al. [12] which
exploits the identity comp(a, b) = limk→∞ ak

ak+bk for a, b > 0 with an iterative
inverse algorithm. Their comparison algorithm requires Θ(α logα) complexity,
which is quasi-optimal, to obtain an approximate value of comp(a, b) within 2−α

error for a, b ∈ [1/2, 3/2] satisfying max(a, b)/min(a, b) ≥ 1 + 2−α.

1 In fact, this line of work in numerical analysis aims to compute the matrix sign
function [36] which is a more general object than the sign function in our context. An
inverse operation is not much more costly than a multiplication in their (asymptotic)
cost analysis and experiments, which is a crucial difference from HE which requires
an additional costly polynomial approximation for inverse [12].

228 J. H. Cheon et al.

There have been several approaches to approximate the sign function by poly-
nomials to obtain a comparison algorithm. In 2018, Boura et al. [5] proposed an
analytic method to compute the sign function by approximating it via Fourier
series over a target interval which has an advantage on numerical stability. In
this method, one should additionally consider the error induced by the polyno-
mial approximation on eix. Another approach is to approximate the sign function
by tanh(kx) = ekx−e−kx

ekx+e−kx for sufficiently large k > 0 [14]. In order to efficiently
compute tanh(kx), they repeatedly apply the double-angle formula tanh(2x) =
2 tanh(x)

1+tanh2(x)
≈ 2x

1+x2 where the inverse operation is substituted by a low-degree min-
imax approximate polynomial. This procedure can be interpreted as a composi-
tion of polynomial f which is the low-degreeminimax approximation polynomial of
2x

1+x2 . However, theirmethod does not catch core properties of the basic polynomial
f (e.g., f(1) = 1), so the error between f (d) and sgn(x) cannot be reduced below a
certain bound even if we increase d to ∞. As an independent work, Bajard et al. [4]
recently proposed a new approach to approximately compute the sign function by
applying the Newton’s root-finding method on the function r(x) = 1−1/x2, which
corresponds to one of our devised polynomials f1.

When each bit of message is encrypted separately [13,16,20], one can perform
a comparison operation of two α-bit integers with O(logα) depth and O(α) com-
plexity. The bit-by-bit encryption method was recently generalized to encrypt
an integer a after decomposing it as a =

∑
aib

i for a power of small prime
b = pr [47]. However, since these encryption methods are quite inefficient for
addition and multiplication, they are not desirable when comparison operations
are mixed with a number of polynomials such as cluster analysis and gradient
tree boosting.

2 Preliminaries

2.1 Notations

All logarithms are of base 2 unless otherwise indicated, and e denotes the Euler’s
constant. Z, R and C denote the integer ring, the real number field and complex
number field, respectively. For a finite set X, we denote the uniform distribution
over X by U(X). For a real-valued function f defined over R and a compact
set I ⊂ R, we denote the infinity norm of f over the domain I by ||f ||∞,I :=
maxx∈I |f(x)|. The d-times composition of f is denoted by f (d) := f ◦ f ◦ · · · ◦ f .
We denote the sign function and the comparison function by

sgn(x) :=

⎧
⎨

⎩

1 if x > 0
0 if x = 0

−1 if x < 0
, comp(a, b) :=

⎧
⎨

⎩

1 if a > b
1/2 if a = b

0 if a < b
,

which are in fact equivalent to each other by comp(a, b) = (sgn(a − b) + 1)/2.

Efficient Homomorphic Comparison Methods with Optimal Complexity 229

For α > 0 and 0 < ε < 1, we say a polynomial f is (α, ε)-close to sgn(x) over
[−1, 1] if it satisfies

||f(x) − sgn(x)||∞,[−1,−ε]∪[ε,1] ≤ 2−α.

For a, b ∈ R, we denote the complexity a·log(1/ε)+b·logα+O(1) by L(a, b). The
O notation in this paper regards to α and 1/ε. In the rest of this paper, we only
consider the (non-scalar) multiplicative depth and (non-scalar) multiplicative
computational complexity, i.e., we do not count the number of additions nor
scalar multiplications in computational complexity.

2.2 Minimax Polynomial Approximation Method

In this paper, we measure the accuracy of polynomial approximation methods
by the maximal error between the target function and an approximate polyno-
mial over a predetermined domain. In this respect, the minimax approximation
method provides the best approximate polynomials among general polynomial
approximation methods. For a positive odd integer k, let us denote by pk,ε the
degree-k polynomial p which minimizes ||sgn(x) − p(x)||∞,[−1,−ε]∪[ε,1]. For the
sign function sgn(x), there exists a tight lower bound on the approximation error:

lim
k→∞

√
k − 1
2

·
(
1 + ε

1 − ε

) k−1
2

· ||sgn(x) − pk,ε(x)||∞,[−1,−ε]∪[ε,1] =
1 − ε√

πε

for 0 < ε < 1, which was proved by Eremenko and Yuditskii [23]. More general
works on minimax polynomial approximation of piecewise analytic function have
been proposed [2,44], but [23] provides more tight and accurate results on error
analysis for the sign function.

Assume that k is large enough so that the left-hand side
√

k−1
2 ·

(
1+ε
1−ε

) k−1
2 ·

||sgn(x)− pk,ε(x)||∞,[−1,−ε]∪[ε,1] is sufficiently close to the limit value. To bound
the approximation error by 2−α for sgn(x) over [−1,−ε] ∪ [ε, 1], the degree k
should be chosen to satisfy

√
k − 1
2

·
(
1 + ε

1 − ε

) k−1
2

·
√

πε

1 − ε
> 2α,

which implies that k should be at least Θ(α/ε) from the fact log
(

1+ε
1−ε

)
≈ ε

2

for small ε. Then, the evaluation of the polynomial pk,ε requires at least
logα+log(1/ε)+O(1) depth and Θ

(√
α/ε

)
complexity applying the Paterson-

Stockmeyer method [43] which is asymptotically optimal.
There exists a well-known theorem called the equioscillation theorem

attributed to Chebychev, which specifies the shape of the minimax approximate
polynomial pk,ε.

230 J. H. Cheon et al.

Lemma 1 (Equioscillation Theorem for sign function [23]). Let sgn(x)
be the sign function (Sect. 2.1). For k ≥ 1 and 0 < ε < 1, an odd polynomial
pk,ε of degree (2k + 1) minimizes the infinity norm ||sgn − pk,ε||∞,[−1,−ε]∪[ε,1] if
and only if there are k + 2 points ε = x0 < x1 < · · · < xk+1 = 1 such that
sgn(xi) − pk,ε(xi) = (−1)i||sgn − pk,ε||∞. Here, x1, x2,..., xk are critical points.

Note that the if-and-only-if statement of the above lemma also implies the
uniqueness of the minimax polynomial approximation of sgn(x) on [−1,−ε]∪[ε, 1]
for given ε and degree 2k + 1. In the rest of paper, we will use the fact that pk,ε

is concave and increasing in the interval [0, x0] (in fact it holds for [0, x1]).

2.3 Homomorphic Encryption

HE is a cryptographic primitive which allows arithmetic operations including
addition and multiplication over encrypted data without decryption process. HE
is regarded as a promising solution which prevents leakage of private information
during analyses on sensitive data (e.g., genomic data, financial data). A num-
ber of HE schemes [6,7,11,15,22,24,28] have been suggested following Gentry’s
blueprint [27], and achieving successes in various applications [5,9,29,37].

In this paper, we mainly focus on word-wise HE schemes, i.e., the HE schemes
whose basic operations are addition and multiplication of encrypted message
vectors over Z/pZ for p ≥ 2 [7,24,28] or the complex number field C [11]. An
HE scheme consists of the following algorithms:
• KeyGen(params). For parameters params determined by a level parameter L

and a security parameter λ, output a public key pk, a secret key sk, and an
evaluation key evk.

• Encpk(m). For a message m, output the ciphertext ct of m.
• Decsk(ct). For a ciphertext ct of m, output the message m.
• Addevk(ct1, ct2). For ciphertexts ct1 and ct2 of m1 and m2, output the cipher-

text ctadd of m1 + m2.
• Multevk(ct1, ct2). For ciphertexts ct1 and ct2 of m1 and m2, output the cipher-

text ctmult of m1 · m2.

Though any arithmetic circuit can be computed by HE theoretically, the num-
ber of multiplications and multiplicative depth of the circuit are major factors
affecting the practical performance and feasibility in real-world applications.

3 Our New Comparison Method

Since the comparison function and the sign function are equivalent, it suffices
to find a nice approximate polynomial (with one variable) of the sign function
instead of the comparison function (with two variables). In this section, we will
introduce new polynomial approximation methods for the sign function which
we call composite polynomial approximation, and analyze their computational
efficiency. As in [12], we assume that the input numbers are contained in the
bounded interval [0, 1], since x ∈ [c1, c2] for known constants c1 < c2 can be
scaled down into [0, 1] via mapping x �→ (x−c1)/(c2−c1). Therefore, the domain
of sgn(x) we consider in this paper is [−1, 1].

Efficient Homomorphic Comparison Methods with Optimal Complexity 231

3.1 Composite Polynomial Approximation of Sign Function

As described in [12], approximating a non-polynomial function by composite
polynomials has an advantage in computational complexity: A composite func-
tion F of a constant-degree polynomial f , i.e., F := f◦f◦· · ·◦f , can be computed
within O(log(degF)) complexity, while the evaluation of an arbitrary polynomial
G requires at least Θ(

√
degG) [43]. However, even if this methodology achieves a

log-degree computational complexity, it would be meaningless if the total degree
of F is extremely large (e.g., degF = 2deg G). Therefore, it is very important
to well-design a constant polynomial f so that it requires small d to make f (d)

sufficiently close to sgn(x) over [−1, 1]. Since sgn(x) is discontinuous at x = 0,
we are not able to obtain a nice polynomial approximation of sgn(x) over (−ε, ε)
for any 0 < ε < 1. As a result, we set our goal to find f whose composition f (d)

is (α, ε)-close to the sign function for α > 0 and 0 < ε < 1 with small d.
The key observation for designing such polynomial f is as follows: For x0 ∈

[−1, 1], let xi be the i-time composition value f (i)(x0). Then, the behavior of
xi’s can be easily estimated with the graph of f . For example, given x0 on the
x-coordinate, x1 can be identified by the x-coordinate of the intersection point of
the graph y = x and the horizontal line y = f(x0). Note that we can iteratively
estimate xi+1 with the previous point xi (see Fig. 2).

-1 1

−1

1

x0 x1 x2

x0x1x2

x

f(x)

Fig. 2. Behavior of xi = f (i)(x0) for f(x) = − 5
16

x7 + 21
16

x5 − 35
16

x3 + 35
16

x

In this perspective, the basic polynomial f should be constructed so that xi

gets close to 1 if x0 ∈ (0, 1] and −1 if x0 ∈ [−1, 0) as i increases. We can formally
identify three properties of f as follows: Firstly, since the sign function is an odd
function, we also set f to be an odd function. Secondly, we set f(1) = 1 and
f(−1) = −1 to make f (d)(x) point-wise converge to sgn(x) whose value is ±1
for x �= 0. More precisely, if f (d)(x) for some x ∈ [−1, 1] converges to y as d
increases, it must hold that f(y) = f

(
limd→∞ f (d)(x)

)
= limd→∞ f (d)(x) = y.

Lastly, f should be considered as a better polynomial if it is more concave over
[0, 1] (hence more convex over [−1, 0]), which will accelerate the convergence of
f (d) to the sign function. In order to increase convexity, we set the derivative

232 J. H. Cheon et al.

function f ′ of f to have maximal multiple roots at 1 and −1. These properties
are summarized as following.

Core Properties of f :

Prop I. f(−x) = −f(x) (Origin Symmetry)

Prop II. f(1) = 1, f(−1) = −1 (Convergence to ±1)

Prop III. f ′(x) = c(1 − x)n(1 + x)n for some c > 0 (Fast convergence)

For a fixed n ≥ 1, a polynomial f of the degree (2n + 1) satisfying those
three properties is uniquely determined, and we denote this polynomial by fn

(and the uniquely determined constant c by cn): From Prop I and III, we get
fn(x) = cn

∫ x

0
(1 − t2)ndt, and the constant cn is determined by Prop II. By

applying the following identity
∫ x

0

cosm t dt =
1
m

· cosm−1 x · sinx +
m − 1

m
·
∫ x

0

cosm−2 t dt

which holds for any m ≥ 1, we obtain

fn(x) =
n∑

i=0

1
4i

·
(
2i
i

)

· x(1 − x2)i.

See Appendix A for more details. Hence, we can easily compute fn as following:

• f1(x) = − 1
2x3 + 3

2x
• f2(x) = 3

8x5 − 10
8 x3 + 15

8 x
• f3(x) = − 5

16x7 + 21
16x5 − 35

16x3 + 35
16x

• f4(x) = 35
128x9 − 180

128x7 + 378
128x5 − 420

128x3 + 315
128x

-1 1

−1

1
f1

f2

f3

f4

(a) fn for n = 1, 2, 3, 4

-1 1

−1

1
f
(2)
1

f
(4)
1

f
(6)
1

(b) f (d)
1 for d = 2, 4, 6

Fig. 3. Illustration of f
(d)
n

Efficient Homomorphic Comparison Methods with Optimal Complexity 233

Since
(
2i
i

)
= 2 · (2i−1

i−1

)
is divisible by 2 for i ≥ 1, every coefficient of fn can be

represented as m/22n−1 for m ∈ Z (Fig. 3).

Size of the Constant cn . The constant cn takes an important role on the
convergence of f

(d)
n (on d) to the sign function. Informally, since the coefficient

of x term is exactly cn, we can regard fn as fn(x) � cn · x for small x > 0, and
then it holds that 1 − fn(x) � 1 − cn · x � (1 − x)cn . In the next subsection, we
will present a rigorous proof of the inequality 1−fn(x) ≤ (1−x)cn for 0 < x < 1.
(see Sect. 3.2). From a simple computation, we obtain cn as a linear summation
of binomial coefficients

cn =
n∑

i=0

1
4i

(
2i
i

)

,

which is simplified by the following lemma.

Lemma 2. It holds that cn =
∑n

i=0
1
4i

(
2i
i

)
= 2n+1

4n

(
2n
n

)
.

Proof. We prove the statement by induction. It is easy to check for n = 1.
Assume that cn = 2n+1

4n

(
2n
n

)
for some n ≥ 1. Then, it holds that

cn+1 = cn +
1

4n+1

(
2n + 2
n + 1

)

=
1

4n+1
·
(
2 · (2n + 2)!
(n + 1)!n!

+
(2n + 2)!

(n + 1)!(n + 1)!

)

=
2n + 3
4n+1

(
2n + 2
n + 1

)

.

Therefore, the lemma is proved by induction. ��
To measure the size of cn, we apply Wallis’s formula [35] which gives us very

tight lower and upper bound:

1√
π

· 2n + 1
√

n + 1
2

<
2n + 1
4n

(
2n
n

)

<
1√
π

· 2n + 1√
n

.

From the inequality, we can check that cn = Θ(
√

n), which diverges as n → ∞.

Remark 1. Our method can be naturally generalized to the composite polyno-
mial approximation on step functions. For example, if we substitute Prop III by
f ′(x) = cx2m(1− x2)n for m,n ≥ 1, then f (d) would get close to a step function
F (as d increases) such that F (x) = −1 if x ∈ [−1,−t), F (x) = 0 if x ∈ [−t, t]
and F (x) = 1 if x ∈ (t, 1], for some 0 < t < 1 as d increases.

3.2 Analysis on the Convergence of f (d)
n

In this subsection, we analyze the convergence of f
(d)
n to the sign function as

d increases. To be precise, we give a lower bound of d which makes f
(d)
n (α, ε)-

close to the sign function. The following lemma gives a nice upper bound on
1 − fn(x), which is even tighter than the Bernoulli’s inequality [41]: This well-
known inequality implies 1 − cnx ≤ (1 − x)cn , but since 1 − cnx ≤ 1 − fn(x) we
cannot directly obtain the upper bound of 1 − fn(x) from this inequality.

234 J. H. Cheon et al.

Lemma 3. It holds that 0 ≤ 1 − fn(x) ≤ (1 − x)cn for x ∈ [0, 1].

Proof. It is trivial that fn(x) ≤ fn(1) = 1 for x ∈ [0, 1]. We will prove G(x) :=
(1 − x)cn − (1 − fn(x)) ≥ 0 for x ∈ [0, 1] by showing

1. G(0) = G(1) = 0,
2. there exists x0 ∈ (0, 1) s.t. G(x0) > 0,
3. there exists a unique y0 ∈ (0, 1) s.t. G′(y0) = 0.

We first check why these three conditions derive the result G(x) ≥ 0. Assume
that there exists x1 ∈ (0, 1) such that G(x1) < 0. Since G is continuous, there
exists a root x2 of G between x0 and x1. Then by the mean value theorem,
there exist y1 ∈ (0, x2) and y2 ∈ (x2, 1) satisfying G′(y1) = G′(y2) = 0, which
contradicts to the third condition.

Now we prove the three conditions. The first condition is trivial. To show
the second condition, we observe G(0) = 0, G′(0) = 0 and G′′(0) > 0 which can
be easily checked. Since G′′ is continuous, G′(0) = 0 and G′′(0) > 0 imply that
G′(x) > 0 for x ∈ (0, δ) for some δ > 0. Combining with G(0) = 0, we obtain
G(x) > 0 for x ∈ (0, δ) which implies the second condition.

To show the uniqueness, let G′(x) = cn(1 − x2)n − cn(1 − x)cn−1 = 0. Then
it holds that (1 − x)n−cn+1 · (1 + x)n = 1 for x ∈ (0, 1) which is equivalent to

log(1 + x)
log (1 − x)

= −n − cn + 1
n

.

Since log(1+ x)/ log(1− x) is a strictly increasing function, there should exist a
unique y0 ∈ (0, 1) satisfying the equation which implies G′(y0) = 0. ��

We give another inequality on 1− fn(x) which is tighter than the inequality
in the previous lemma when x is close to 1.

Lemma 4. It holds that 0 ≤ 1 − fn(x) ≤ 2n · (1 − x)n+1 for x ∈ [0, 1].

Proof. Let y = 1 − x, and set

H(y) =
cn · 2n

n + 1
· yn+1 − (1 − fn(1 − y)).

Then H ′(y) = cn · 2n · yn − f ′
n(1 − y) = cn · 2n · yn − cn · yn(2 − y)n ≥ 0 for

y ∈ [0, 1]. Since H(0) = 0, it holds that H(y) ≥ 0. Therefore, we obtain

1 − fn(x) ≤ cn · 2n

n + 1
· (1 − x)n+1 ≤ 2n · (1 − x)n+1

for x ∈ [0, 1], where the second inequality comes from cn < n + 1. ��

Now we obtain the theorem on the convergence of f
(d)
n to the sign function.

Theorem 3 (Convergence of f
(d)
n). If d ≥ 1

log cn
· log(1/ε)+ 1

log(n+1) · log(α−
1) + O(1), then f

(d)
n (x) is an (α, ε)-close polynomial to sgn(x) over [−1, 1].

Efficient Homomorphic Comparison Methods with Optimal Complexity 235

Proof. Since fn is an odd function, it suffices to consider the case that the input
x is non-negative. We analyze the lower bound of d for the convergence of f

(d)
n by

applying Lemma 3 and Lemma 4. Note that Lemma 3 is tighter than Lemma 4
if x is close to 0 while the reverse holds if x is close to 1. To this end, to obtain
a tight lower bound of d, our analysis is divided into two steps:

Step 1. Since fn is an odd function, it suffices to consider the case x ∈ [ε, 1]
instead of [−1,−ε] ∪ [ε, 1]. Let dε =

⌈
1

log(cn) · log (log (1
τ

)
/ε
)⌉

for some constant
0 < τ < 1. Then applying Lemma 3, we obtain following inequality for x ∈ [ε, 1].

1 − f (dε)
n (x) ≤ (1 − x)c

dε
n

≤ (1 − ε)log(
1
τ)/ε <

(
1
e

)log(1
τ)

< τ.

Step 2. Now let dα =
⌈

1
log(n+1) · log ((α − 1)/ log

(
1
2τ

))⌉
. Applying previous

result and Lemma 4, we obtain following inequality for x ∈ [ε, 1].

2 ·
(
1 − f (dε+dα)

n (x)
)

≤
(
2 ·

(
1 − f (dε)

n (x)
))(n+1)dα

≤ (2τ)(n+1)dα ≤ (2τ)(α−1)/ log(1
2τ) = 2−α+1.

Therefore, if d ≥ dε + dα, we obtain 1 − f
(d)
n (x) ≤ 2−α for x ∈ [ε, 1].

Note that the choice of the constant τ is independent to ε and α. When τ =
1/4, then we get dε+dα = 1

log(cn) · log (1/ε)+ 1
log(n+1) · log(α−1)+ 1

log(cn) +O(1).
Since 1

log(cn) ≤ 2, the theorem is finally proved. ��

Remark 2. In Appendix D, we also described the erroneous version of the con-
vergence of f

(d)
n considering the approximate error induced by HEAAN evalua-

tion.

3.3 New Comparison Algorithm NewComp

Now we introduce our new comparison algorithm based on the previous compos-
ite function approximation (Theorem 3) of the sign function. From the identity
comp(a, b) = (sgn(a − b) + 1)/2 and approximation f

(d)
n (x) � sgn(x), we get

comp(a, b) � f
(d)
n (a − b) + 1

2
,

which results in our new comparison algorithm NewComp (Algorithm 1).
It is quite natural that the larger d gives more accurate result. Since the

comparison algorithm NewComp(·, ·;n, d) is obtained from the evaluation of f
(d)
n ,

Theorem 3 is directly transformed into the context of NewComp as Corollary 1,
which informs us how large d is sufficient to get the result in certain accuracy.

236 J. H. Cheon et al.

Algorithm 1. NewComp(a, b;n, d)
Input: a, b ∈ [0, 1], n, d ∈ N

Output: An approximate value of 1 if a > b, 0 if a < b and 1/2 otherwise
1: x ← a − b
2: for i ← 1 to d do
3: x ← fn(x) // compute f

(d)
n (a − b)

4: end for
5: return (x + 1)/2

Corollary 1. If d ≥ 1
log cn

· log(1/ε)+ 1
log(n+1) · log(α−2)+O(1), then the error

of the output of NewComp(a, b;n, d) compared to the true value is bounded by 2−α

for any a, b ∈ [0, 1] satisfying |a − b| ≥ ε.

Remark 3. One can substitute non-integer scalar multiplications in the evalua-
tion of fn with integer scalar multiplications by linearly transforming fn to an
integer-coefficient polynomial hn as

hn(x) :=
fn(2x − 1) + 1

2
=

n∑

i=0

1
4i

·
(
2i
i

)

· (2x − 1) · (4x − 4x2)i

=
n∑

i=0

(
2i
i

)

· (2x − 1) · (x − x2)i.

Note that it is easily proved that h
(d)
n (x) = f(d)(2x−1)+1

2 by induction, so we can
express the comparison functions as

comp(a, b) � f
(d)
n (a − b) + 1

2
= h(d)

n

(
(a − b) + 1

2

)

.

Therefore, Algorithm 1 can be naturally converted into the context of hn which
does not require non-integer scalar multiplications that consume level in HE.

3.4 Computational Complexity of NewComp and Its Asymptotic
Optimality

In this subsection, we analyze the computational complexity of our new compar-
ison method, and compare the result with the previous methods. Note that the
(multiplicative) computational complexity of NewComp(·, ·;n, d) equals to that of
evaluating f

(d)
n , so it suffices to focus on this composite polynomial.

For each n ≥ 1, let Cn be the required number of multiplications (hence the
computational complexity) of fn using some polynomial evaluation algorithm,
and denote the lower bound of d in Theorem 3 by dn := 1

log cn
· log(1/ε) +

1
log(n+1) · log(α − 1) + O(1). Then the total computational complexity of f

(dn)
n

is TCn := dn · Cn which varies on the choice of n. When n becomes larger, then

Efficient Homomorphic Comparison Methods with Optimal Complexity 237

dn becomes smaller but Cn becomes larger. Namely, there is a trade-off between
dn and Cn, so we need to find the best choice of n which minimizes the total
computational complexity TCn of f

(dn)
n .

Table 1. Depth/Computational complexity of fn and f
(dn)
n

n Dn Cn dn TDn TCn

1 2 2 L(1.71, 1) L(3.42, 2) L(3.42, 2)

2 3 3 L(1.1, 0.63) L(3.3, 1.89) L(3.3, 1.89)

3 3 4 L(0.89, 0.5) L(2.67, 1.5) L(3.56, 2)

4 4 4 L(0.77, 0.43) L(3.08, 1.72) L(3.08,1.72)

5 4 5 L(0.7, 0.39) L(2.8, 1.56) L(3.5, 2.45)

6 4 6 L(0.64, 0.36) L(2.56, 1.44) L(3.84, 2.16)

7 4 7 L(0.61, 0.33) L(2.44, 1.32) L(4.27, 2.31)

We assume that each polynomial fn is computed by the Paterson-Stockmeyer
method [43] which achieves an optimal computational complexity upto constant.
Then, the depth is Dn := log(deg fn) + O(1) = log n + O(1), and the compu-
tational complexity is Cn := Θ(

√
deg fn) = Θ(

√
n)2. The total depth of f

(dn)
n

is TDn := dn · Dn = L
(

log n+O(1)
log cn

, log n+O(1)
log(n+1)

)
(see Sect. 2.1 for L notation).

Since cn = Θ(
√

n) by Lemma 2, the total depth TDn gets close to L(2, 1) as n

increases3. On the other hand, the total computational complexity of f
(dn)
n is

TCn := dn · Cn = L

(
1

log cn
· Θ(

√
n),

1
log(n + 1)

· Θ(
√

n)
)

,

which diverges as n increases, contrary to the total depth TDn. Therefore, the
optimal choice of n which minimize the total complexity TCn exists. The exact
number of multiplications Cn of fn and the exact value of TCn for small n’s are
described in Table 1. From simple computations, we can check that n = 4 gives
the minimal computational complexity TC4.

Asymptotic Optimality. As described in Sect. 2.2, the minimal degree of an
(α, ε)-close approximate polynomial of the sign function over [−1, 1] is Θ(α/ε).
Since the sign function and the comparison function are equivalent, this implies
that any comparison algorithm on inputs a, b ∈ [0, 1] whose output is within
2−α error when |a − b| ≥ ε requires at least Θ(logα) + Θ(log(1/ε)) complex-
ity. As described above, the computational complexity of NewComp(·, ·;n, dn) is

2 The complexity notations in Dn and Cn only depend on n, not α and ε.
3 It does not mean the “convergence” to L(2, 1) as n → ∞, since the equation TDn =

L
(

log n+O(1)
log cn

, log n+O(1)
log(n+1)

)
only holds when n = O(1) with respect to α and 1/ε.

238 J. H. Cheon et al.

Θ(logα) + Θ(log(1/ε)) for each n. Therefore, our method achieves an optimal-
ity in asymptotic computational complexity upto constant, while the previous
method [12] only achieves quasi-optimality with an additional logα factor.

For several settings of α and ε, we compare the computational complexity of
our method to the minimax approximation and the method in [12] as Table 2.

Table 2. Asymptotic computational complexity for each comparison method

Parameters Minimax approx [12] Method Our method

log(1/ε) = Θ(1) Θ(
√

α) Θ(log2 α) Θ(log α)

log(1/ε) = Θ(α) Θ(
√

α · 2α/2) Θ(α · logα) Θ(α)

log(1/ε) = 2α Θ
(√

α · 22α−1
)

Θ(α · 2α) Θ (2α)

3.5 Heuristic Methodology of Convergence Acceleration

In this subsection, we introduce a heuristic methodology to reduce the con-
stants a and b in L(a, b) of the computational complexity TCn, which accelerates
NewComp in practice.

The intuition of our acceleration method can be found in the proof of The-
orem 3. The proof is divided into two steps: Step 1 is to make f

(dε)
n ([ε, 1]) ⊆

[1 − τ, 1] for some constant 0 < τ < 1 (applying Lemma 3), and Step 2 is to
make f

(dα)
n ([1− τ, 1]) ⊆ [1− 2−α, 1] (applying Lemma 4). Our key observation is

that we can accelerate Step 1 by using another function g rather than fn. The
convergence of f

(d)
n (1 ≤ d ≤ dε) in Step 1 mainly depends on the constant cn,

the derivative of fn at zero. Therefore, we may expect that the required number
of polynomial compositions dε in Step 1 can be reduced if we substitute fn by
some other odd polynomial g which satisfies g′(0) > f ′

n(0).
However, we cannot take any g with large derivative at 0, since the range of

g(d) over the domain [ε, 1] must be contained in [1− τ, 1] when d is large enough.
In particular, the polynomial g must satisfy following properties (compare it
with the Core Properties of f in Sect. 3.1):

Prop I. g(−x) = −g(x) (Origin Symmetry)

Prop IV. ∃ 0 < δ < 1 s.t. x < g(x) ≤ 1 for all x ∈ (0, δ], (Toward [1 − τ, 1])

and g([δ, 1]) ⊆ [1 − τ, 1] (Keep in [1 − τ, 1])

For each g, we denote the minimal δ in Prop IV by δ0 in the rest of paper.
Note that Prop IV is necessary to make g(d)(x) ∈ [1 − τ, 1] for x ∈ [ε, 1]

when d ≥ d0 for some sufficiently large d0 > 0. Intuitively, among all g of the
same degree satisfying above properties, a smaller d is required for g(d)([ε, 1]) ⊆
[1−τ, 1] if g satisfies Prop IV with smaller δ0 and has bigger value on the interval
(0, δ0) (hence g′(0) is bigger).

Efficient Homomorphic Comparison Methods with Optimal Complexity 239

We introduce a novel algorithm (Algorithm 2) which outputs a degree-(2n+1)
polynomial denoted by gn,τ having minimal δ0 of Prop IV among all degree-
(2n + 1) polynomials satisfying Prop I & IV. In a certain condition, we can
additionally show that gn,τ (x) > g(x) on x ∈ (0, δ) (hence larger derivative at
zero) for any other polynomials g satisfying Prop I & IV (see Theorem 4 and
Corollary 2). It implies that gn,τ is the best polynomial among all same-degree
polynomials achieving our goal, i.e., g

(d)
n,τ ([ε, 1]) ⊆ [1 − τ, 1] with minimal d.

Algorithm 2. FindG(n, τ)
Input: n ≥ 1, 0 < τ < 1
Output: A degree-(2n+1) polynomial gn,τ satisfying Prop I & IV with minimal δ of

Prop IV.
1: gn,τ ← x // Initialize gn,τ (x) = x
2: repeat
3: δ0 ← minimal δ s.t. gn,τ ([δ, 1]) ⊆ [1 − τ, 1] // Initial δ0 is 1 − τ
4: gmin ← degree-(2n + 1) minimax approx. poly. of (1− τ

2
)·sgn(x) over [−1, −δ0]∪

[δ0, 1]
5: gn,τ ← gmin

6: S ← ||gn,τ − (1 − τ
2
)||∞,[δ0,1]

7: until S == τ
2

8: return gn,τ

In Algorithm 2, the equality check S == τ
2 on line 7 is done with a certain

precision in practice (e.g., 2−10 or 2−53). Note that S converges (increases) to
τ
2 , δ0 converges (decreases) to some δconv > 0, and hence gn,τ converges to
some polynomial gconv

n,τ (see Appendix B). From this, we obtain two facts: First,
Algorithm 2 terminates in finite iterations given a finite precision for the equality
check. Second, the algorithm output satisfies Prop I & IV4.

We provide a theoretical analysis on gconv
n,τ to which gn,τ converges, which

we call the ideal output polynomial of Algorithm 2. Note that the ideal output
polynomial gconv

n,τ satisfies ||gconv
n,τ − (1 − τ

2)||∞,[δ0,1] = τ
2 . The following theorem

shows the optimality of gconv
n,τ , which implies that the real output of Algorithm 2

with a certain precision is nearly optimal.

Theorem 4 (Optimality of gconv
n,τ). The ideal output polynomial gconv

n,τ of Algo-
rithm 2 satisfies Prop I & IV with minimal δ0 among all degree-(2n+1) polyno-
mials satisfying Prop I & IV. Let x2 > 0 be the smallest positive x-coordinate of
local minimum points of gn,τ following the notation in Lemma 1 (If local mini-
mum does not exist, set x2 = 1). If x2 ≥ 1−τ , then gn,τ (x) > g(x) for x ∈ (0, δ0)
for any other degree-(2n + 1) polynomial g satisfying Prop I & IV.

4 In every iteration of Algorithm 2, the minimax approximate polynomial gmin of
(1 − τ

2
) · sgn(x) over [−1, δ0] ∪ [δ0, 1] satisfies Prop I & IV. Prop I is trivial, and

gmin([δ0, 1]) ⊂ [1 − τ, 1] by Lemma 1. Since gmin(δ0) > 1 − τ ≥ δ0 and gmin is
concave & increasing in [0, δ0], it holds that x < gmin(x) < 1 for x ∈ (0, δ0].

240 J. H. Cheon et al.

Fig. 4. Example description of intersections of g and gconv
n,τ for n = 3

Proof. Let δconv be the minimal δ such that gconv
n,τ ([δ, 1]) ⊆ [1 − τ, 1]. Assume

that there exists a degree-(2n + 1) polynomial g satisfying Prop I & IV with
δ ≤ δconv. By Prop IV, we get ||g − (1 − τ

2)||∞,[δ,1] ≤ τ
2 , and then it trivially

holds that ||g − (1− τ
2)||∞,[δconv,1] ≤ τ

2 = ||gconv
n,τ − (1− τ

2)||∞,[δconv,1]. Therefore,
g = gconv

n,τ by Lemma 1 which implies the minimality of δconv.
Now we prove the second statement. Let g be a degree-(2n + 1) polynomial

satisfying Prop I & IV which is distinct from gconv
n,τ , and δg be the minimal δ such

that g([δ, 1]) ⊆ [1−τ, 1]. From the minimality of δconv and Prop IV, it holds that
δconv < δg ≤ 1−τ ≤ x2. By Lemma 1, gconv

n,τ oscillates on [δconv, 1] with 1 and 1−τ
as maximum and minimum, respectively, and it has n critical points in (δconv, 1).
Since g([δg, 1]) ⊆ [1 − τ, 1] and δg ≤ x2, the polynomial g intersects with gconv

n,τ

on at least n points in [δg, 1]: when g(x) = gconv
n,τ (x) and g′(x) = gconv′

n,τ (x), then
x is counted as two points (see Fig. 4). Now our second argument is proved as
following: If g(x) ≥ gconv

n,τ (x)5 on some x ∈ (0, δconv) ⊂ (0, δg), then g and gconv
n,τ

intersect on at least one point in (0, δg) by intermediate value theorem since there
exists y ∈ (δconv, δg) such that g(y) < 1 − τ ≤ gconv

n,τ (y) by the definition of δg.
This leads to a contradiction since g and gconv

n,τ intersect on 2(n+1)+1 = 2n+3
points (the factor 2 comes from the fact that both are odd polynomials) including
the origin while the degree of both g and gconv

n,τ is 2n + 1 < 2n + 3. Therefore,
gconv

n,τ (x) > g(x) for all x ∈ (0, δconv). ��
Corollary 2. Let gconv

n,τ be the ideal output polynomial of Algorithm 2, and δ0
be the corresponding minimal δ satisfying Prop IV. If n = 1, (n, τ) = (2, 0.25),
or (n, τ) = (3, 0.35), then δ0 < δg and gconv

n,τ (x) > g(x) on x ∈ (0, δ0) for any
other degree-(2n + 1) polynomial g satisfying Prop I & IV.

Though gn,τ is hard to be expressed in closed form contrary to fn, we can find
it with a certain precision (e.g., 2−10) by running Algorithm 2 in MATLAB. For

5 If g(x) = gconv
n,τ (x) on some x ∈ (0, δ0), it is the point of intersection in (0, δg), and

proof continues.

Efficient Homomorphic Comparison Methods with Optimal Complexity 241

example, we provide explicit descriptions of the polynomials gn,τ for n = 1, 2, 3, 4
and τ = 1

4 (Fig. 5). In this case, the equality check in Algorithm 2 was done
with 10−4 precision. We omit the subscript τ of gn,τ for τ = 1

4 for convenience.

• g1(x) = − 1359
210 · x3 + 2126

210 · x

• g2(x) = 3796
210 · x5 − 6108

210 · x3 + 3334
210 · x

• g3(x) = − 12860
210 · x7 + 25614

210 · x5 − 16577
210 · x3 + 4589

210 · x

• g4(x) = 46623
210 · x9 − 113492

210 · x7 + 97015
210 · x5 − 34974

210 · x3 + 5850
210 · x

Fig. 5. Illustration of gn and the comparison of f
(df+dg)

1 and f
(df)

1 ◦ g
(dg)
1

We can empirically check that gn also satisfies the following two heuristic
properties. The first property shows how large g′

n(0) is when it compared to
f ′

n(0), and the second property shows how fast gn(x) gets close to ±1, i.e., the
gn-version of Lemma 3.

Heuristic Properties of gn :

1. g′
n(0) � 0.98 · f ′

n(0)
2 (Hence, log g′

n(0) � 2 · log cn)
2. 1 − gn(x) ≤ (1 − x)g

′
n(0) for x ∈ [0, δ0] where δ0 is the minimal δ in Prop IV

Experimental results supporting above heuristic properties are described in
Appendix C. Applying these gn polynomials, we can provide a new compari-
son algorithm (Algorithm 3), which is a modified version of Algorithm 1 and
offers the same functionality with the reduced computational complexity and
depth. We can also estimate the number of compositions df and dg required for
this modified algorithm to achieve a certain accuracy as Corollary 3.

Corollary 3 (With Heuristic Properties). If dg ≥ 1
log g′

n(0) · log(1/ε) + O(1) =
1/2+o(1)
log cn

· log(1/ε)+O(1) and df ≥ 1
log n · log(α− 2)+O(1), then the error of the

output of NewCompG(a, b;n, df , dg) compared to the true value is bounded by 2−α

for any a, b ∈ [0, 1] satisfying |a − b| ≥ ε.

242 J. H. Cheon et al.

Algorithm 3. NewCompG(a, b;n, df , dg)
Input: a, b ∈ [0, 1], n, df , dg ∈ N

Output: An approximate value of 1 if a > b, 0 if a < b and 1/2 otherwise
1: x ← a − b
2: for i ← 1 to dg do
3: x ← gn(x) // compute g

(dg)
n (a − b)

4: end for
5: for i ← 1 to df do
6: x ← fn(x) // compute f

(df)
n ◦ g

(dg)
n (a − b)

7: end for
8: return (x + 1)/2

Proof. Following the proof of Theorem 3, it suffices to show that 1−g
(dg)
n (x) ≤ τ

for x ∈ [ε, 1] where τ = 1/4. Let en := g′
n(0). By the second heuristic property of

gn, we obtain two inequalities: 1−g
(d)
n (x) ≤ (1−x)e

d
n for d satisfying g

(d−1)
n (x) ≤

δ0, and 1 − g
(d)
n (x) ≤ τ for g

(d−1)
n (x) > δ0. Therefore, it holds that

1 − g(d)n (x) ≤ max
(
(1 − x)e

d
n , τ

)

for any d > 0. Applying d = dg :=
⌈

1
log en

· log (log (1
τ

)
/ε
)⌉

, we finally obtain

1 − g
(dg)
n (x) ≤ τ since (1 − x)e

dg
n ≤ (1 − ε)log(

1
τ)/ε < τ . ��

The important point is that dg is reduced as approximately half (applying
the first heuristic property of gn) compared to the previous case that only uses
fn to approximate the sign function. Since gn and fn requires same number of
non-scalar multiplications, we can conclude that the computational complexity
of f

(df)
n ◦ g

(dg)
n is L

(
an

2 , bn

)
where an and bn are defined from TCn = L(an, bn).

The total depth of f
(df)
n ◦ g

(dg)
n is L

(
logn+O(1)
2·log cn

, log n+O(1)
log(n+1)

)
which gets close

to L(1, 1) as n increases6. Note that L(1, 1) is theoretically the minimal depth
obtained by minimax polynomial approximation (see Sect. 2.2).

4 Application to Min/Max

As described in [12], min/max functions correspond to the absolute function as

min(a, b) =
a + b

2
− |a − b|

2
and max(a, b) =

a + b

2
+

|a − b|
2

.

Therefore, an approximate polynomial of |x| directly gives us the approximate
polynomial of min/max functions. Since |x| = x · sgn(x), we can consider the

6 It does not mean the “convergence” to L(1, 1) as n → ∞, since n should be O(1)
with respect to α and 1/ε.

Efficient Homomorphic Comparison Methods with Optimal Complexity 243

convergence of x ·f (d)
n (x) to |x| as an analogue. As min(a, b) is directly computed

from max(a, b), we only describe an algorithm of max for convenience.
Contrary to sgn(x), the absolute function |x| is continuous so that the param-

eter ε is unnecessary. The following theorem provides the convergence rate of
x · f

(d)
n (x) to |x|.

Theorem 5 (Convergence of x · f
(d)
n). If d ≥ 1

log cn
· (α − 1), then the error

of x · f
(d)
n (x) compared to |x| is bounded by 2−α for any x ∈ [−1, 1].

Proof. Since |x| = x · sgn(x), the error is upper bounded as
∣
∣
∣x · f (d)

n (x) − |x|
∣
∣
∣ = |x| ·

∣
∣
∣f (d)

n (x) − sgn(x)
∣
∣
∣ ≤ |x| · |1 − |x||cd

n .

Let y = |x| ∈ [0, 1] and k = cd
n, then the error upper bound is expressed as

E(y) = y · (1 − y)k. By a simple computation, one can check that E(y) has the
maximal value at y = 1/(k + 1). Therefore, k should satisfy

E

(
1

k + 1

)

=
kk

(k + 1)k+1
≤ 2−α.

Since 2 ≤ (1 + 1/k)k ≤ e for k ≥ 1, setting k ≥ 2α−1 implies d ≥ 1
log cn

·
(α − 1). ��

We denote an algorithm which evaluates a+b
2 + a−b

2 · f
(d)
n (a − b) by NewMax

(see Algorithm 4), and Theorem 5 is naturally transformed into the context of
min/max as Corollary 4.

Algorithm 4. NewMax(a, b;n, d)
Input: a, b ∈ [0, 1], n, d ∈ N

Output: An approximate value of max(a, b)
1: x ← a − b, y ← a+b

2

2: for i ← 1 to d do
3: x ← fn(x) // compute f

(d)
n (a − b)

4: end for
5: y ← y + a−b

2
· x

6: return y

Corollary 4. If d ≥ 1
log cn

· (α − 2), then the error of the output of
NewMax(a, b;n, d) compared to the true value is bounded by 2−α for any a, b ∈
[0, 1].

Our Max v.s. Previous Max. In [12], Cheon et al. introduced a max algorithm
exploiting the same identity max(a, b) = a+b

2 + |a−b|
2 , but they interpret the

244 J. H. Cheon et al.

absolute function as |x| =
√

x2 which is different with our our interpretation
|x| = x · sgn(x). To compute

√
(a − b)2, they exploit Wilkes’s algorithm [48]

denoted by Sqrt(y; d) which approximately computes √
y for y ∈ [0, 1]: Let

a0 = y and b0 = y − 1, and iteratively compute an+1 = an

(
1 − bn

2

)
and bn+1 =

b2n
(

bn−3
4

)
for 0 ≤ n ≤ d − 1, where the final output is ad.

We note that the output of Sqrt(x2; d) equals to x ·f (d)
1 (x), which means our

max algorithm NewMax(a, b; 1, d) (in the case of n = 1) gives the same output to
the max algorithm in [12]. However, there are several significant advantages to
use our max algorithm instead of the max algorithm in [12].

– Sqrt(x2; d) requires 3 multiplications including 1 square multiplication for
each iteration, while f1(x) can be computed by only 2 multiplications. There-
fore, NewMax(·, ·; 1, d1) is faster than the max algorithm in [12].

– We can further optimize our max algorithm by substituting f1(x) with fn(x)
for some n > 1. As an analogue of Sect. 3.4, we can select an optimal n which
minimizes d · Cn where d = 1

log cn
· (α − 2), where n = 4 is optimal.

– Applying the approximate HE scheme HEAAN [10,11], the max algorithm in
[12] is unstable when two inputs a and b are too close. To be precise, if the
input (a − b)2 is close to zero and even smaller than an error accompanied
by HEAAN, then the input attached with the error can be a negative value.
However, the output of Sqrt(y; d) for y < 0 diverges as d increases. In con-
trary, f

(d)
n is stable over the interval [−1, 1], so our max algorithm still works

well even if two inputs are very close.

Applying {gn}n≥1 to Max. As a construction of NewCompG, we can also apply
the family of polynomials {gn}n≥1 with heuristic properties to accelerate our
NewMax algorithm. We denote an algorithm which evaluates a+b

2 + a−b
2 · f (df) ◦

g(dg)(a− b) by NewMaxG(a, b;n, df , dg). Applying ε = 2−α to Corollary 3, one can
easily obtain the following result on NewMaxG.

Corollary 5. If dg ≥ 1
log g′

n(0) ·α+O(1) and df ≥ 1
log n · log(α − 2)+O(1), then

the error of the output of NewMaxG(a, b;n, df , dg) compared to the true value is
bounded by 2−α.

5 Experimental Results

We measured the performance of our algorithms with comparison to Comp or Max
of [12]. The experiments are divided into two categories: 1. Running algorithms
on plain inputs, 2. Running algorithms on encrypted inputs. All experiments were
conducted on Linux with Intel Xeon CPU at 2.10GHz processor with 8 threads.
For experiments in an encrypted state, we used HEAAN library [11,45].

5.1 Approximate HE Scheme HEAAN

Cheon et al. [11] proposed an HE scheme HEAAN which supports approximate
computations of real/complex numbers. Let N be a power-of-two integer and

Efficient Homomorphic Comparison Methods with Optimal Complexity 245

L be the bit-length of initial ciphertext modulus, and define q� = 2� for 1 ≤
	 ≤ L. For R = Z[X]/(XN + 1) and Rq := R/qR, let χkey, χerr and χenc be
distributions over R. A (field) isomorphism τ : R[X]/(XN+1) → C

N/2 is applied
for encoding/decoding of plaintexts.

• KeyGen(N,L,D).
– Sample s ← χkey. Set the secret key as sk ← (1, s).
– Sample a ← U(RqL

) and e ← χerr. Set pk ← (−a · s + e, a) ∈ R2
qL

.
– Sample a′ ← U(Rq2

L
) and e′ ← χerr, and set evk ← (b′ = −a′ · s + e′ +

qL · s2, a′) ∈ R2
q2

L
.

• Encpk(m;Δ).
– For a plaintext m = (m0, ...,mN/2−1) in C

N/2 and a scaling factor Δ =
2p > 0, compute a polynomial m ← �Δ · τ−1(m)� ∈ R

– Sample v ← χenc and e0, e1 ← χerr. Output ct = [v · pk+ (m+ e0, e1)]qL
.

• Decsk(ct;Δ).
– For a ciphertext ct = (c0, c1) ∈ R2

q�
, compute m′ = [c0 + c1 · s]q�

.

– Output a plaintext vector m′ = Δ−1 · τ(m′) ∈ C
N/2.

• Add(ct, ct′). For ct, ct′ ∈ R2
q�

, output ctadd ← [ct+ ct′]q�
.

• Multevk(ct, ct′). For ct = (c0, c1), ct′ = (c′
0, c

′
1) ∈ R2

q�
, let (d0, d1, d2) =

(c0c′
0, c0c

′
1 + c1c

′
0, c1c

′
1). Compute ct′mult ← [(d0, d1) + �q−1

L · d2 · evk�]q�
, and

output ctmult ← [�Δ−1 · ct′mult�]q�−p
.

The secret key distribution χkey is set to be HWTN (256), which uniformly sam-
ples an element with ternary coefficients in R that has 256 non-zero coefficients.

5.2 Parameter Selection

We have two parameters α and ε which measure the quality of our comparison
algorithms. In our experiments, we set ε = 2−α, which is the case expecting that
input and output of algorithms have the same precision bits.

HEAAN Parameters. We fix the dimension N = 217, then we can set the
initial ciphertext modulus qL upto 21700 to achieve 128-bit security estimated
by Albrecht’s LWE estimator [1] (Refer to Appendix E for the script). In each
experiment, we set the initial modulus such that the modulus bit after each algo-
rithm is logΔ+10. For example, on our comparison algorithm NewComp(·, ·;n, d),
we set the initial modulus bit as

log qL = (logΔ · �log(2n + 1)� + 2n − 1) · d + logΔ + 10.

Note that each coefficient of fn is of the form m/22n−1 for m ∈ Z (Sect. 3.1).
We progress the scalar multiplication of m/22n−1 in an encrypted state by mul-
tiplying m and scaling (2n − 1) bits down which results in the factor (2n − 1) in
the above equation. In the case of NewCompG(·, ·;n, df , dg), we similarly set

log qL = logΔ · �log(2n + 1)� · (df + dg) + (2n − 1) · df + 10 · dg + logΔ + 10.

246 J. H. Cheon et al.

The bit-length of the scaling factor Δ is set to be around 40 as in [12].
Note that one can evaluate N/2 comparison functions simultaneously in a

single homomorphic comparison. In this sense, an amortized running time of our
algorithm is obtained by dividing the total running time by N/2 = 216.

Choice of n in {fn}n≥1 and {gn}n≥1. One should consider a different cost
model other than TCn in the case of experiments in an encrypted state. When
running our algorithms with HEAAN, not only the complexity TCn but also the
depth TDn is an important factor affecting the running time, since the compu-
tational cost of a homomorphic multiplication is different for each level. Instead
of TCn, we take another cost model TDn ·TCn considering that a multiplication
in Rq takes (quasi-)linear time with respect to log q. Under the setting ε = 2−α,
one can check by simple computation that n = 4 also minimizes TDn · TCn as
well as TCn, and we used fn and gn with n = 4 for the experiments.

5.3 Performance of NewComp and NewCompG

We compare the performance of our new comparison algorithms NewComp and
NewCompG with the previous comparison algorithm Comp proposed in [12]. The
following experimental results show that NewComp is much faster than Comp in
practice, and applying gn polynomials (NewCompG) substantially improves the
performance of NewComp.

Plain State Experiment. For “plain inputs” a, b ∈ [0, 1] satisfying |a − b| ≥
ε = 2−α, we measured the required computational complexity and depth of each
comparison algorithm to obtain an approximate value of comp(a, b) within 2−α

error. The parameters d, df and dg are chosen as the lower bounds described in
Corollary 1 and Corollary 3, and we checked that these theoretical lower bounds
are indeed very close to those obtained experimentally.

From Fig. 6, we can see that NewComp requires much less depth and com-
plexity than Comp, and those of NewCompG are even smaller. Note that the gap
between these algorithms in terms of both depth and complexity grows up as
α increases. For example, when α = 8, the required complexity is ×3–4 less in
NewComp and NewCompG; when α = 32, it is over ×7 less in NewCompG.

Table 3. Running time (amortized running time) of Comp, NewComp and NewCompG on
HEAAN for various α and ε = 2−α; an asterisk (∗) means that the parameter for
HEAAN does not achieve 128-bit security due to large log qL ≥ 1700.

α Comp NewComp NewCompG

8 238 s (3.63 ms)∗ 59 s (0.90 ms) 31 s (0.47 ms)
12 572 s (8.73 ms)∗ 93 s (1.42 ms) 47 s (0.72 ms)
16 1429 s (21.8 ms)∗ 151 s (2.30 ms)∗ 80 s (1.22 ms)
20 2790 s (42.6 ms)∗ 285 s (4.35 ms)∗ 94 s (1.43 ms)∗

Efficient Homomorphic Comparison Methods with Optimal Complexity 247

Fig. 6. Comp, NewComp and NewCompG on various α with ε = 2−α in a plain state

Encrypted State Experiment. We also measured the performance of our
algorithms which output an approximate value of comp(a, b) within 2−α error
for “encrypted inputs” a, b ∈ [0, 1] satisfying |a − b| ≥ ε. Note that parameters
d, df and dg are chosen as the lower bounds in Corollary 1 and 3. We checked
through 100 experiments that our algorithms with chosen parameters give accu-
rate results in spite of errors accompanied by HEAAN.

In Table 3, we can see the running time (and amortized running time) of our
algorithms NewComp, NewCompG, and that of Comp [12] for various α. Note that
our new algorithms NewComp and NewCompG provide outstanding performance in
terms of amortized running time: NewComp takes 0.9ms for 8-bit comparison, and
NewCompG only takes about 1ms to compare up to 20-bit inputs. It is a significant
improvement over the previous algorithm Comp. For example, NewCompG is about
×8 faster than Comp when α = 8, about ×18 faster when α = 16, and the ratio
increases as α increases.

Note that the required depth of Comp is much larger than that of our algo-
rithms as described in Fig. 6. Consequently, to run Comp for α ≥ 10 in an
encrypted state with 128-bit security, one must increase the HEAAN parameter
from N = 217 to N = 218, or use bootstrapping techniques [10], both of which
yields more than twice performance degradation, especially in total running time.

5.4 Performance of NewMax and NewMaxG

We also compared the performance of NewMax and NewMaxG in an encrypted state
to that of the max algorithm Max in the previous work [12]. The parameters d, df

and dg were chosen from the theoretical lower bounds described in Corollary 4
and Corollary 5, and were confirmed that they are very close to those obtained
experimentally. In Fig. 7, we can see the running time of our new algorithms
NewMax, NewMaxG, and that of Max in [12]. Our algorithms improve the Max con-
siderably in running time (and depth), and the gap increases for larger α: when
α = 8, our NewMax and NewMaxG algorithms are ×1.6 and ×2 faster than Max,
respectively; when α = 20, our NewMaxG algorithm is ×4.5 faster than Max.

248 J. H. Cheon et al.

8 12 16 20

0

100

200

300

400

α

R
un

ni
ng

T
im

e(
se
c)

Max
NewMax
NewMaxG

Fig. 7. Running Time of Max, NewMax and NewMaxG on HEAAN for various α. Hollow
marker implies that the parameter does not achieve 128-bit security due to log qL ≥
1700.

Acknowledgement. We thank Kyoohyung Han for useful discussions in the early
stage of this work, anonymous reviewers of Eurocrypt 2020 for suggesting us to inves-
tigate the line of work in numerical analysis, and those of Asiacrypt 2020 for valuable
comments. This work was supported by the Institute for Information & Communica-
tions Technology Promotion (IITP) Grant through the Korean Government (MSIT),
(Development and Library Implementation of Fully Homomorphic Machine Learning
Algorithms supporting Neural Network Learning over Encrypted Data), under Grant
2020-0-00840.

A Derivation of fn from Core Properties

Given fn(x) = cn

∫ x

0
(1 − s2)nds, we use substitution s = sin t to get fn(x)

cn
=

∫ sin−1 x

0
cos2n+1 t dt. Applying the following identity (which holds for any m ≥ 2)
∫ x

0

cosm t dt =
1
m

· cosm−1 x · sinx +
m − 1

m
·
∫ x

0

cosm−2 t dt,

we obtain
fn(x)

cn
=

1
2n + 1

(1 − x2)nx +
2n

2n + 1
fn−1(x)

cn−1

for n ≥ 2, and f1(x)
c1

= 1
3 (1 − x2)x + 2

3 · x. By induction, we can obtain fn as

fn(x)
cn

=
1

2n + 2
·

n∑

i=0

n∏

k=i

2k + 2
2k + 1

· (1 − x2)ix (1)

Now, since fn(1) = 1, evaluating above equation at x = 1 gives,

cn =
n∏

k=1

2k + 1
2k

=
1
4n

(
2n
n

)

(2n + 1).

Efficient Homomorphic Comparison Methods with Optimal Complexity 249

Substituting this cn into Eq. (1) and arranging, we get

fn(x) =
n∑

i=0

1
4i

·
(
2i
i

)

· x(1 − x2)i.

B Convergence of δ0, S and gn,τ

It is trivial that S ≤ τ
2 . Let us denote S, δ0 and gn,τ updated in the i-th iteration

by Si, δ0,i and gn,τ,i respectively. Assume that Si < τ
2 for some i ≥ 1. Then it

holds that gn,τ,i(x) ≥ (1 − τ
2) − Si > 1 − τ for x ∈ [δ0,i, 1]. Therefore, δ0,i+1

should be smaller than δ0,i, and hence Si+1 is larger than Si. Since δ0,i has a
lower bound 0, δ0,i converges to some constant δconv > 0 as i increases. Hence,
gn,τ,i converges to some gconv

n,τ , and Si converges to some Sconv ≤ τ
2 .

Now, assume that Sconv < τ
2 and let ρ = τ

2 − Sconv > 0. Since δ0,i converges
(and decreases) to δconv, there exists some i ≥ 1 such that δ0,i < 1−τ+ρ

1−τ · δconv.
Note that gn,τ,i is concave in [0, δ0,i] as noted in Sect. 2.2. Therefore, it holds
that gn,τ,i(δ0,i)−(1−τ)

δ0,i−δ0,i+1
<

gn,τ,i(δ0,i)
δ0,i

where gn,τ,i(δ0,i+1) = 1− τ . Since gn,τ,i(δ0,i)−
(1 − τ) ≥ ρ, we obtain

δ0,i − δ0,i+1 >
gn,τ,i(δ0,i) − (1 − τ)

gn,τ,i(δ0,i)
δ0,i = δ0,i − 1 − τ

gn,τ,i(δ0,i)
δ0,i

≥ δ0,i − 1 − τ

1 − τ + ρ
δ0,i =

ρ

1 − τ + ρ
δ0,i.

Hence, we get δ0,i > 1−τ+ρ
1−τ · δ0,i+1 ≥ 1−τ+ρ

1−τ · δconv, which is a contradiction.

C Heuristic Properties on gn

We provide experimental results validating the heuristic properties in Sect. 3.5:

1. g′
n(0) � 0.98 · f ′

n(0)
2 (Hence, log g′

n(0) � 2 · log cn)

2. 1 − gn(x) ≤ (1 − x)g
′
n(0) for x ∈ [0, δ0] where δ0 is the minimal δ in Prop IV

On the First Heuristic. Using MATLAB, we computed g′
n(0) and compared

it with f ′2
n (0) derived from Lemma 2. See Fig. 8 for 1 ≤ n ≤ 20.

On the Second Heuristic. Let Gn(x) := 1 − (1 − x)g
′
n(0), then we can exper-

imentally check that Gn(x) ≤ gn(x) when x ∈ (0, δ0], which is equivalent to
1− gn(x) ≤ (1− x)g

′
n(0). Let δ1 be the largest δ such that Gn(x) ≤ gn(x) for all

x ∈ [0, δ] (see Fig. 9a). The experiment results show that 1/δ0 > 1/δ1 which is
equivalent to δ0 < δ1 (see Fig. 9b for 1 ≤ n ≤ 20).

250 J. H. Cheon et al.

0 5 10 15 20 25
0

5

10

15

20

25

f 2
n (0)

g n
(0
)

(f 2
n (0), gn(0))

0.98 · x − 0.18

Fig. 8. f ′2
n (0) and g′

n(0) (R2 = 0.9999); n = 1, 2, ..., 20 from the left to the right

Fig. 9. Experimental evidence on 1 − gn(x) ≤ (1 − x)g
′
n(0) when x ∈ (0, δ0]

D Convergence of f (d)
n in Erroneous Case

Due to the approximate nature of HEAAN, the evaluation of fn on an input x
in an encrypted stated output an approximate value of fn(x) rather than the
exact value. In this section, we analyze the convergence of f

(d)
n considering errors

induced by HEAAN evaluation, and show that the convergence is still valid in
some sense under some conditions on parameters.

Les us denote by f̂n(x) an approximate value of fn(x) obtained from HEAAN
evaluation, i.e., |f̂n(x) − fn(x)| ≈ 0. For a fixed n ≥ 1, let us assume that an
approximate error |f̂n(x) − fn(x)| is bounded by 0 < B � 1 (e.g.., B ≈ 2−20).
Then it holds that

|1 − f̂n(x)| ≤ |1 − fn(x)| + B.

Note that B can be easily controlled by changing the scaling factor Δ of HEAAN.
Now we provide some variants of Lemma 3 and Lemma 4 considering the

approximation errors. To simplify the proofs, we assume that n ≥ 3 so that
cn > 2.

Efficient Homomorphic Comparison Methods with Optimal Complexity 251

Lemma 5. Let B ≤
(

1
2n+1

) cn−1
n −

(
1

2n+1

) cn
n

. For
(

cn

cn−1

)cn−1

· B ≤ x ≤

1 −
(

1
2n+1

) 1
n

, it holds that −B < 1 − f̂n(x) < (1 − x)cn−1.

Proof. The first inequality is trivial since f̂n(x) ≤ fn(x) + B ≤ 1 + B. For
K(x) = (1 − x)cn−1 − (1 − x)cn , it is easy to check that K has a unique local

maximal point
(

x0 = 1
cn

,K(x0) = 1
cn

·
(
1 − 1

cn

)cn−1
)

over [0, 1] and is convex

in [0, x0]. As a result, for x0
K(x0)

· B =
(

cn

cn−1

)cn−1

· B ≤ x ≤ 1
cn

, it holds

that B ≤ K(x). Since B ≤
(

1
2n+1

) cn−1
n −

(
1

2n+1

) cn
n

= K

(

1 −
(

1
2n+1

) 1
n

)

and K decreases in
[

1
cn

, 1 −
(

1
2n+1

) 1
n

]

, the inequality B ≤ K(x) also holds

for 1
cn

≤ x ≤ 1 −
(

1
2n+1

) 1
n

. Therefore, we get 1 − f̂n(x) ≤ 1 − fn(x) + B ≤
(1 − x)cn + K(x) = (1 − x)cn−1. ��

Lemma 6. For 0 ≤ x ≤ 2
(

n+1
cn

) 1
n − 1, it holds that |1 − f̂n(x)| < (2n + 1) ·

max
{|1 − x|n+1, B

}
.

Proof. We first observe that Lemma 4 can be extended from the domain [0, 1]

to the larger domain
[

0, 2
(

n+1
cn

) 1
n − 1

]

when we consider |1−fn(x)| and |1−x|

instead of 1 − fn(x) and 1 − x respectively. Assume that 1 < x ≤ 2
(

n+1
cn

) 1
n −

1, and let H(x) = 2n · |1 − x|n+1 − |1 − fn(x)| = 2n · (x − 1)n+1 + (−1)n ·
(1 − fn(x)). Then H ′(x) = (n + 1)2n · (x − 1)n − (−1)n · cn(1 − x2)n = (x −
1)n ((n + 1)2n − cn(1 + x)n), so there exists a unique local maximal point of H

at x = 2
(

n+1
cn

) 1
n − 1. Since H(1) = 0, it holds that H(x) ≥ 0 for 1 ≤ x ≤

2
(

n+1
cn

) 1
n − 1. As a result, we obtain

|1 − fn(x)| < 2n · |1 − x|n+1

for 0 ≤ x ≤ 2
(

n+1
cn

) 1
n −1. Now we get the result from |1− f̂n(x)| ≤ |1−fn(x)|+

B < 2n · |1 − x|n+1 + B ≤ (2n + 1) · max
{|1 − x|n+1, B

}
. ��

Lemma 7. Assume that B < 1
2n+1 ·min

{(
1

2n+1

) 1
n

, 2
((

n+1
cn

) 1
n − 1

)}

. If |1−
x| < (2n + 1) · B, then it holds that |1 − f̂n(x)| < (2n + 1) · B.

Proof. Since B < 2
2n+1 ·

((
n+1
cn

) 1
n − 1

)

, if |1 − x| < (2n + 1) · B, then it holds

that 0 < x < 1+(2n +1) ·B < 2
(

n+1
cn

) 1
n −1. Therefore, we can apply Lemma 6

252 J. H. Cheon et al.

as following:

|1 − f̂n(x)| < (2n + 1) · max
{
(2n + 1)n+1 · Bn+1, B

}
= (2n + 1) · B,

where the equality comes from B <
(

1
2n+1

)n+1
n

. ��

Theorem 6. Let B < 1
2n+1 · min

{(
1

2n+1

) 1
n

, 2
((

n+1
cn

) 1
n − 1

)}

, and B <

(
1

2n+1

) cn−1
n −

(
1

2n+1

) cn
n

. For ε, α > 0 satisfying ε ≥
(

cn

cn−1

)cn−1

· B and

α ≤ log(1/B)− log(2n+1), if d ≥ 1
log(cn−1) · log(1/ε)+ 1

log(n+1) · log(α−1)+O(1),

then ||f̂n
(d)

(x) − sgn(x)||[−1,−ε]∪[ε,1] ≤ 2−α.

Proof. The proof follows the flow of the proof of Theorem 3.

Step 1. It suffices to consider the case x ∈ [ε, 1] instead of [−1,−ε] ∪ [ε, 1]. Let

0 < τ =
(

1
2n+1

) 1
n

< 1. Our claim is, for any x ∈ [ε, 1] the inequality −B <

1 − f̂n
(dε)

(x) < τ holds for some 0 ≤ dε ≤ d′ :=
⌈

1
log(cn−1) · log (log (1

τ

)
/ε
)⌉

.
Assume that there exists some x0 ∈ [ε, 1] that does not satisfy this claim.

Since ε ≤ x0 ≤ 1 − τ , we obtain −B < 1 − f̂n(x0) < (1 − x0)cn−1 by applying
Lemma 5 on x0. Then we obtain ε < x0 < 1− (1− x0)cn−1 < f̂n(x0) < 1 +B <

1+τ . Since |1− f̂n(x0)| ≥ τ by the assumption, it holds that ε < f̂n(x0) ≤ 1−τ ,

so we can apply Lemma 5 on f̂n(x0) again which implies −B < 1 − f̂n
(2)

(x0) <
(
1 − f̂n(x0)

)cn−1

. By induction, we obtain

−B < 1 − f̂n
(d′)

(x0) ≤ (1 − x0)(cn−1)d′

≤ (1 − ε)log(
1
τ)/ε <

(
1
e

)log(1
τ)

< τ,

which contradict to the assumption.

Step 2. Similarly to Step 1, we can set our second claim as following: for any
x ∈ [1 − τ, 1 + B] the inequality |1 − f̂n

(dα)
(x)| ≤ 2−α holds for some 0 ≤ dα ≤

d′′ :=
⌈

1
log(n+1) · log

(

(α − 1)/ log
(

1

(2n+1)
1
n ·τ

))⌉

.

Assume that there exists some x1 ∈ [1 − τ, 1 + B] that does not satisfy this

claim:
∣
∣
∣
∣1 − f̂n

(d′′′)
(x1)

∣
∣
∣
∣ ≥ 2−α ≥ (2n + 1) · B for all 0 ≤ d′′′ ≤ d′′. By the

assumption, we can say that x1 ∈ [1 − τ, 1 − (2n + 1) · B], and by applying
Lemma 6 on x1, we get |1− f̂n(x1)| ≤ (2n+1) · (1−x1)n+1 ≤ (2n+1) ·τn+1 = τ .
Therefore, we obtain 1− τ ≤ f̂n(x1) ≤ fn(x1)+B ≤ 1+B so that we can apply

Efficient Homomorphic Comparison Methods with Optimal Complexity 253

Lemma 6 on f̂n(x1). By induction, it holds that

(2n + 1)
1
n ·

∣
∣
∣
∣1 − f̂n

(d′′)
(x1)

∣
∣
∣
∣ ≤

(
(2n + 1)

1
n · (1 − x1)

)(n+1)d′′

≤
(
(2n + 1)

1
n · τ

)(n+1)d′′

≤ 2−α+1,

which contradicts to the assumption.
Combining Step 1, Step 2 and Lemma 7, the proof is completed. ��

Corollary 6 (Special Case of Theorem 6 (n = 4)). Let B < 0.02282. For
ε ≥ 2.15B and α ≤ log(1/B)−4.09, if d ≥ 1.83 log(1/ε)+0.431 log(α−1)+O(1),

then ||f̂4(d)(x) − sgn(x)||[−1,−ε]∪[ε,1] ≤ 2−α.

Remark 4. We only addressed about the erroneous evaluation of fn, but the same
logic can be applied to that of gn: Substituting all cn’s in Lemma 5 by g′

n(0), then
it holds that −B < 1 − ĝn(x) < (1 − x)g

′
n(0)−1. As an analogue, by substituting

all cn’s in Theorem 6 by g′
n(0), we can directly convert the theorem into the

context of f̂n
(df) ◦ ĝn

(dg) instead of f̂n
(d)

for dg ≥ 1
log(g′

n(0)−1) · log(1/ε) + O(1)
and df ≥ 1

log(n+1) · log(α − 1) + O(1).

One can check that ε and α have lower and upper bounds in terms of B,
respectively, and this is quite natural: If an input x > 0 is so small so that
fn(x) < B, then its approximate value f̂n(x) may be negative due to B-bounded
approximation error. Furthermore, if |x−1| � B, then fn(x) should be also very
close (even closer) to 1, but a B-bounded approximation error accompanied to
f̂n(x) would disrupt this closeness. In this sense, those lower/upper bounds on
ε and α with respect to B is actually inevitable.

In fact, Theorem 6 is a worst-case analysis on the convergence of f
(d)
n in

erroneous case by regarding the HEAAN error size in fn evaluation as B. We
also note that inequalities in Lemma 5, 6 and 7 are not as tight as those in
Lemma 3 and Lemma 4. In practice, as noted in Sect. 5, even in experiments
based on HEAAN, the number of compositions can still be chosen very close
to the theoretical lower bounds in Corollary 1 and 3 which are based on the
convergence analysis in errorless case.

E Script for Security Estimation

We specified the parameter with security level λ ≥ 128 using the latest LWE
estimator [1]7. We excluded dec estimates which might not be accurate and often
not competitive [21]. The script for checking our parameter is as follows.

7 Available on https://bitbucket.org/malb/lwe-estimator.

https://bitbucket.org/malb/lwe-estimator

254 J. H. Cheon et al.

load (" es t imator . py")
n = 2∗∗17 ; q = 2∗∗3400; alpha = 8/q
duald = pa r t i a l (drop_and_solve , dual_sca le)
primald = pa r t i a l (drop_and_solve , primal_usvp)
duald (n , alpha , q , s e c r e t_d i s t r i bu t i o n =((−1 ,1) , 256) ,

reduction_cost_model=BKZ. s i e v e)
primald (n , alpha , q , s e c r e t_d i s t r i bu t i o n =((−1 ,1) , 256) ,

r o t a t i o n s=False , reduction_cost_model=BKZ. s i eve ,
po s tp roc e s s=False)

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

2. Andrievskii, V.: Polynomial approximation of piecewise analytic functions on a
compact subset of the real line. J. Approx. Theory 161(2), 634–644 (2009)

3. Armknecht, F., et al.: A guide to fully homomorphic encryption. Cryptology ePrint
Archive, Report 2015/1192 (2015)

4. Bajard, J.-C., Martins, P., Sousa, L., Zucca, V.: Improving the efficiency of SVM
classification with FHE. IEEE Trans. Inf. Forensics Secur. 15, 1709–1722 (2019)

5. Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for B/FV,
TFHE and HEAAN fully homomorphic encryption and predictions for deep learn-
ing. Accepted to Number-Theoretic Methods in Cryptology (NuTMiC) (2019)

6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5_50

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of ITCS, pp. 309–325. ACM
(2012)

8. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-
morphic encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 34–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3_2

9. Cheon, J.H., et al.: Toward a secure drone system: flying with real-time homomor-
phic authenticated encryption. IEEE Access 6, 24325–24339 (2018)

10. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9_14

11. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8_15

12. Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical method for com-
parison on homomorphically encrypted numbers. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 415–445. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34621-8_15

https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-34621-8_15

Efficient Homomorphic Comparison Methods with Optimal Complexity 255

13. Cheon, J.H., Kim, M., Kim, M.: Search-and-compute on encrypted data. In: Bren-
ner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp.
142–159. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-
9_11

14. Chialva, D., Dooms, A.: Conditionals in homomorphic encryption and machine
learning applications. Cryptology ePrint Archive, Report 2018/1032 (2018)

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6_1

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8_14

17. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space anal-
ysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

18. Cordero, A., Soleymani, F., Torregrosa, J.R., Ullah, M.Z.: Numerically stable
improved Chebyshev-Halley type schemes for matrix sign function. J. Comput.
Appl. Math. 318, 189–198 (2017)

19. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

20. Crawford, J.L., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work with
FHE: the case of logistic regression (2018)

21. Curtis, B.R., Player, R.: On the feasibility and impact of standardising sparse-
secret LWE parameter sets for homomorphic encryption. In: Proceedings of the 7th
ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
pp. 1–10 (2019)

22. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5_24

23. Eremenko, A., Yuditskii, P.: Uniform approximation of sgn x by polynomials and
entire functions. Journal d’Analyse Mathématique 101(1), 313–324 (2007)

24. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive, 2012:144 (2012)

25. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29, 1189–1232 (2001)

26. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4),
367–378 (2002)

27. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

28. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

29. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning (2016)

30. Goldschmidt, R.E.: Applications of division by convergence. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1964)

https://doi.org/10.1007/978-3-662-48051-9_11
https://doi.org/10.1007/978-3-662-48051-9_11
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
http://crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-642-40041-4_5

256 J. H. Cheon et al.

31. Han, K., Hong, S., Cheon, J.H., Park, D.: Logistic regression on homomorphic
encrypted data at scale. In: The AAAI Conference on Innovative Applications of
Artificial Intelligence (2019)

32. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
Cryptology ePrint Archive, Report 2019/688 (2019). To Appear in CT-RSA 2020

33. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J.
Royal Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

34. Higham, N.J.: Functions of matrices: theory and computation. SIAM (2008)
35. Kazarinoff, D.K.: On Wallis’ formula. Edinb. Math. Notes 40, 19–21 (1956)
36. Kenney, C.S., Laub, A.J.: The matrix sign function. IEEE Trans. Autom. Control

40(8), 1330–1348 (1995)
37. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-

ing based on the approximate homomorphic encryption. BMC Med. Genomics
11(4), 83 (2018)

38. Kim, D., Son, Y., Kim, D., Kim, A., Hong, S., Cheon, J.H.: Privacy-preserving
approximate GWAS computation based on homomorphic encryption. Cryptology
ePrint Archive, Report 2019/152 (2019)

39. Kim, M., Song, Y., Li, B., Micciancio, D.: Semi-parallel logistic regression for
GWAS on encrypted data. Cryptology ePrint Archive, Report 2019/294 (2019)

40. Lin, Y.: A note on margin-based loss functions in classification. Stat. Probab. Lett.
68(1), 73–82 (2004)

41. Mitrinović, D.S., Pečarić, J.E., Fink, A.: Bernoulli’s inequality. In: Mitrinović, D.S.,
Pečarić, J.E., Fink, A. (eds.) Classical and New Inequalities in Analysis, pp. 65–81.
Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-017-1043-5

42. Nakatsukasa, Y., Bai, Z., Gygi, F.: Optimizing Halley’s iteration for computing the
matrix polar decomposition. SIAM J. Matrix Anal. Appl. 31(5), 2700–2720 (2010)

43. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-
essary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66 (1973)

44. Saff, E., Totik, V.: Polynomial approximation of piecewise analytic functions. J.
London Math. Soc. 2(3), 487–498 (1989)

45. Snucrypto. HEAAN (2017). https://github.com/snucrypto/HEAAN
46. Soheili, A.R., Toutounian, F., Soleymani, F.: A fast convergent numerical method

for matrix sign function with application in SDEs. J. Comput. Appl. Math. 282,
167–178 (2015)

47. Tan, B.H.M., Lee, H.T., Wang, H., Ren, S.Q., Khin, A.M.M.: Efficient private
comparison queries over encrypted databases using fully homomorphic encryption
with finite fields. IEEE Trans. Dependable Secure Comput. (2020)

48. Wilkes, M.V.: The Preparation of Programs for an Electronic Digital Computer:
With special reference to the EDSAC and the Use of a Library of Subroutines.
Addison-Wesley Press (1951)

https://doi.org/10.1007/978-94-017-1043-5
https://github.com/snucrypto/HEAAN

Lattice-Based Cryptography

Practical Exact Proofs from Lattices:
New Techniques to Exploit Fully-Splitting

Rings

Muhammed F. Esgin1,2, Ngoc Khanh Nguyen3,4(B), and Gregor Seiler3,4

1 Monash University, Melbourne, Australia
2 Data61, CSIRO, Eveleigh, Australia
3 IBM Research, Zurich, Switzerland

nkn@zurich.ibm.com
4 ETH Zurich, Zurich, Switzerland

Abstract. We propose a very fast lattice-based zero-knowledge proof
system for exactly proving knowledge of a ternary solution �s ∈
{−1, 0, 1}n to a linear equation A�s = �u over Zq, which improves upon
the protocol by Bootle, Lyubashevsky and Seiler (CRYPTO 2019) by
producing proofs that are shorter by a factor of 8.

At the core lies a technique that utilizes the module-homomorphic
BDLOP commitment scheme (SCN 2018) over the fully splitting cyclo-
tomic ring Zq[X]/(Xd+1) to prove scalar products with the NTT vector
of a secret polynomial.

1 Introduction

Zero-knowledge proofs1 of knowledge are a central building-block in many cryp-
tographic schemes, especially in privacy-preserving protocols (e.g. group sig-
natures). In these protocols there are often underlying basic public-key primi-
tives, such as encryption and signature schemes, and one has to prove certain
statements about the ciphertexts and signatures produced by the underlying
primitives. In addition to their usefulness in privacy-preserving protocols, zero-
knowledge proof systems have also gained a lot of attention in recent years due
to their applications in blockchain protocols.

For post-quantum security the underlying public-key primitives have to be
built based on quantum-safe computational hardness assumptions, and lattice-
based primitives are a leading choice in this regard. Now, when proving state-
ments related to lattice-based primitives, one always ends up proving knowledge

1 We use the term “proof” instead of the slightly more precise “argument”, and mean
computationally sound zero-knowledge proof when we just write zero-knowledge
proof.

This research was supported by the SNSF ERC starting transfer grant FELICITY.
M. F. Esgin—Work done while at IBM Research – Zurich.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 259–288, 2020.
https://doi.org/10.1007/978-3-030-64834-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_9

260 M. F. Esgin et al.

of a short solution to a linear system of equations over some prime field Zq.
More precisely, we want to be able to prove knowledge of a ternary solution
�s ∈ {−1, 0, 1}n to the equation

A�s = �u, (1)

where the matrix A ∈ Z
m×n
q and the right hand side �u ∈ Z

m
q are public. There

is no loss of generality in Eq. (1) in the sense that it encompasses the situations
when the secret vector �s has coefficients from a larger interval, or when the equa-
tion in fact describes linear relations between polynomials in some polynomial
ring Rq of higher rank over Zq, which arise in important so-called ring-based
constructions. In the first situation the secret coefficients can be expanded in
base 3 and thereby the equation transformed to the above form. In the second
situation the matrix A has a certain structure that describes the linear relations
over Rq with respect to some Zq-basis of Rq. Then the equation is equivalent to
an equation

A�s = �u (2)

with polynomial matrix A, polynomial vector �u and short polynomial vector �s
with coefficients that are ternary polynomials.

We call a proof system that exactly proves knowledge of a ternary vector
�s as in Eq. (1), and hence does not have any knowledge gap, an exact proof
system. The goal of this paper is to construct an efficient exact lattice-based
proof system.

Currently the most efficient lattice-based protocols that include zero-
knowledge proofs utilize so-called approximate proof systems which are based
on the rejection sampling technique by Lyubashevsky [Lyu09,Lyu12]. Examples
are the signature schemes [Lyu12,BG14,DKL+18], the group signature schemes
[dPLS18,YAZ+19,EZS+19], and the ring signatures [ESLL19,EZS+19]. Effi-
cient approximate proofs work over polynomial rings Rq and the prover ends up
proving knowledge of a vector �s∗ over Rq fulfilling only the perturbed equation

A�s∗ = c̄�u,

where c̄ is a short polynomial. Moreover, the coefficients of the polynomials in
�s∗ are from a much larger range then the ternary coefficients in the vector �s
that the prover actually knows. The most important reason for the practical
efficiency of approximate proofs is that they achieve negligible soundness error
with only one repetition.

While approximate proofs are sufficient for many applications, their biggest
drawback is that one has to account for the longer vector �s∗ when setting parame-
ters for the underlying schemes so that these schemes are still secure with respect
to �s∗. Concretely, suppose that as part of a larger protocol one has to encrypt
some message and prove linear relations on the message. Then, when using an
approximate proof system, one cannot choose a standard and vetted lattice-
based encryption scheme such as Kyber [BDK+18], NTRU, or another scheme
in round 2 of the NIST PQC standardization effort. This is problematic for both
theoretical and practical reasons. Moreover, if some part of the protocol does not

Practical Exact Proofs from Lattices 261

require zero-knowledge proofs, then the efficiency of this part still suffers from
the other parts involving zero-knowledge proofs because of the described effect
on parameters.

Finally, there are applications for which approximate proof systems are not
sufficiently expressive. Natural examples are range proofs for integers and proofs
of integer relations, which have applications in blockchain protocols. In these
protocols one wants to commit to integers, prove that they lie in certain intervals,
and prove additive and multiplicative relations between them. All these problems
can be directly solved with an exact proof system that is capable of proving
linear equations as above [LLNW18], but approximate proof systems alone are
not sufficient for this task. One reason is that one has to commit to the integers
in their binary or some other small-base representation and then prove that the
committed message really is a binary vector, i.e. that it does not have coefficients
from a larger set. This cannot directly be achieved with approximate proofs.

Coming back to exact proof systems, there is a long line of research using
Stern’s protocol [Ste93] in a lattice setting to exactly prove Equations as in (1)
[LLNW17]. But even for the smallest equations, which for example arise when
proving a Ring-LWE sample, the proofs produced by this approach have several
Megabytes in size and hence are not really practical. The reason behind this is
that a single protocol execution has a very large soundness error of 2/3, and
thus many protocol repetitions (in the order of hundreds) are required to reach
a negligible soundness error.

In [BLS19,YAZ+19], the authors use the BDLOP commitment scheme
[BDL+18] to construct an exact proof system and achieve proof sizes of several
hundred Kilobytes for proving Ring-LWE samples. The results in the present
paper can be seen as an extension of the results of [BLS19].

Now, for post-quantum security, even when relying on underlying lattice-
based primitives, it is of course not necessary to also built the zero-knowledge
proof system with lattice techniques, as long as the proof system does not intro-
duce computational assumptions that are known to be insecure against quantum
computers. In fact, there are PCP-type proof systems using Kilian’s framework
[Kil92], such as Ligero [AHIV17] or Aurora [BCR+19], that are capable of exactly
proving linear equations as above, and that are secure assuming only the security
of a hash function. These proof systems are even succinct and produce proofs
with sizes that are sublinear or even logarithmic in the size of the witness �s, but
they have a base cost in the order of 100 KB for Ligero and around 70 KB for
Aurora.

The proof system that we present in this paper scales linearly in the witness
size but produces proofs of only 47 KB for proving a Ring-LWE sample. So there
is a regime of interesting statements where linear-sized proof systems can beat
the best logarithmic PCP-type systems in terms of proof size.

For larger equations where we cannot quite achieve proof sizes as small
as the PCP-type systems, lattice-based systems still have one big advantage.
Namely, they are very computationally lightweight. Implementations of lattice-
based cryptography are generally known to be very fast. For example, the fastest

262 M. F. Esgin et al.

lattice-based CCA-secure KEMs have encapsulation and decapsulation times in
the order of a few microseconds on standard laptop processors [LS19] and are
thus about one order of magnitude faster than a single elliptic curve scalar mul-
tiplication. The reason for this very high speed is essentially twofold. Firstly,
there is usually no multi-precision arithmetic needed since efficient lattice-based
schemes use finite field moduli q that are below 232. And secondly, the required
arithmetic has a high degree of data-level parallelism that is favourable to mod-
ern CPUs, which is especially true for schemes whose arithmetic natively sup-
ports the Number Theoretic Transform (NTT). The protocols that we present in
this paper are no exception to this; they use single-precision 32-bit moduli, are
NTT-friendly, and don’t introduce any computational tasks that are not also
present in standard lattice-based basic encryption or signature schemes. We
demonstrate the fast speed of our protocols with an optimized implementation
for Intel CPUs that achieves prover and verifier running times of 3.52 and 0.4
ms, respectively, for the case of proving a ternary solution to a linear equation
of dimensions 1024 × 2048 (see [ENS20, Appendix C] for more details).

Contrary to this, existing studies of using logarithmic PCP-type proof sys-
tems for proving the linear equations (1) that arise in lattice-based privacy-
preserving protocols show that one ends up with prover runtimes in the order
of several tens of seconds even for the smallest instances and on very powerful
processors [BCOS20]. This also seems to be the case for the logarithmic but not
quantum-safe Bulletproofs proof system [dPLS19]. For example, in [BCOS20]
the authors construct a lattice-based group signature scheme using Aurora as
the proof system. They found that proving a Ring-LWE sample takes 40 s on
a laptop computer. Even worse, they could not successfully run the full signing
algorithm, due to very large memory requirements, even with the help of Google
Cloud large-memory compute instances. This is especially problematic since for
privacy-preserving protocols to be used in practice, the prover would often need
to be run on constraint devices, possibly down to smart cards or TPM chips.
We summarize the above comparison in Table 1.

Table 1. Proof length comparison for proving knowledge of a Ring-LWE sample in
dimension 1024 modulo a prime q ≈ 232. Here the dimensions of the corresponding
Equation as in (1) are m = 1024 and n = 2048. The sizes for the Stern-type proof is
taken from [BLS19]. The sizes for Ligero and the scheme from [Beu20] are taken from
[Beu20] and are for the parameter m = 512.

Stern-type proofs 3522 KB

[BLS19] 384 KB

[Beu20] 233 KB

Ligero [AHIV17] 157 KB

Aurora [BCR+19,BCOS20] 72 KB

Our work 47 KB

Practical Exact Proofs from Lattices 263

1.1 Our Approach

The proof system in the present work extends the system from [BLS19]. On a
high level, the approach entails committing to a polynomial š ∈ Rq whose NTT
basis representation is equal to the secret vector �s, NTT(š) = �s. Then, using
a product proof protocol that allows to prove multiplicative relations between
committed polynomials, the prover shows that š(1− š)(1+ š) = 0. This implies
that �s has ternary coefficients since the polynomial product is component-wise
in the NTT basis,

NTT(š(1 − š)(1 + š)) = �s ◦ (�1 − �s) ◦ (�1 + �s),

where �1 = (1, . . . , 1)T is the all-ones vector and ◦ denotes the component-wise
product. What remains is the linear part where the prover needs to show that �s
is a solution to Eq. (1). The linear part was the biggest obstacle to smaller proof
sizes in [BLS19]. The reason is that while the BDLOP commitment scheme makes
it very easy to prove linear relations over the polynomial ring Rq, one needs to
be able to prove linear relations between the NTT coefficients corresponding to
the committed polynomials when using the above encoding of the secret vector.

Essentially there are two ways to commit to vectors using the BDLOP com-
mitment scheme. Either one commits to polynomials whose coefficient vectors
are equal to the secret vectors, or one commits to polynomials whose NTT vec-
tors are the secret vectors. The first way makes it easy to prove structured linear
equations as in (2) by directly using the homomorphic property of the commit-
ment scheme. The second way allows for efficient range proofs with the help of
an efficient product proof. But we need to prove a linear equation and conduct
a range proof at the same time.

In [BLS19] the problem is side-stepped by reusing a masked opening z of the
committed polynomial š with scalar challenge c ∈ Zq,

z = y + cš,

which is sent as part of the product proof. The verifier can apply the NTT to
get a masked opening of the secret vector �s, NTT(z) = ŷ + c�s, and then check
that ANTT(z) = �w + c�u, where �w = Aŷ is sent by the prover before seeing the
challenge c. This approach crucially requires that the challenge c is an integer
from Zq and not a proper polynomial. Otherwise the masked opening NTT(z)
of �s would include a component-wise product that is incompatible with the
linear equation. But with only an integer challenge c the protocol is restricted
to soundness error 1/q and hence needs to be repeated multiple times.

The main new technique in this paper is a more efficient method to directly
prove linear relations among NTT coefficients of the message polynomials in the
BDLOP commitment scheme. Then the product proof can make use of proper
polynomial challenges and our proof system profits from further improvements
in the product proof presented recently in [ALS20].

We now go a bit more into detail and describe our method for the linear
proof. For concreteness, let us define Rq = Zq[X]/(Xd + 1), where d is a power

264 M. F. Esgin et al.

of two and Xd + 1 splits fully into linear factors over Zq. Then the i-th NTT
coefficient of a polynomial š ∈ Rq is equal to the evaluation of š at the i-th

primitive 2d-th root of unity ri. Therefore, if �s = NTT(š) and �γ
$← Z

d
q is a

random vector, we have

〈A�s − �u,�γ〉 = 〈A�s,�γ〉 − 〈�u,�γ〉 = 〈�s,AT�γ〉 − 〈�u,�γ〉

=
d−1∑

i=0

š(ri)
(
NTT−1(AT�γ)

)
(ri) − 〈�u,�γ〉

=
1
d

d−1∑

i=0

f(ri) = f0,

where f = NTT−1(dAT�γ)š − 〈�u,�γ〉 ∈ Rq and f0 ∈ Zq is the constant coefficient
of f . The last equality follows from Lemma 2.1. The idea is then to prove that
f0, the constant coefficient of f , is zero. This proves that 〈A�s − �u,�γ〉 = 0. For a
uniformly random �γ ∈ Z

d
q , the probability that 〈A�s − �u,�γ〉 = 0 when A�s �= �u is

1/q. Therefore, allowing the verifier to choose a random �γ ∈ Z
d
q as a challenge,

proving f0 = 0 proves that A�s = �u with a soundness error 1/q.
To prove that f has vanishing constant coefficient, the prover initially com-

mits to š and a polynomial g with vanishing constant coefficient. The polynomial
g will be used to mask f . Upon receiving a challenge �γ ∈ Z

d
q , the prover com-

putes f and sets h = f + g. Using the given information, we show that the
verifier can compute a commitment to f (without requiring it to be sent by the
prover). This allows to prove that h is of the correct form and the verifier can
simply observe that h has a zero constant coefficient.

The above proof system has a soundness error of 1/q, which is not negligibly
small for typical choices of q. We show in Sect. 3.2 how to amplify the soundness
of this protocol at a low cost using Galois automorphisms. Informally, consider
k uniformly random vectors �γ0, . . . , �γk−1 such that 1/qk is negligible. Similarly
as before, we can write

fi := dNTT−1(AT�γi)š − 〈�u,�γi〉
and thus the constant coefficient of fi is 〈A�s − �u,�γi〉. For each i = 0, . . . , k − 1,
we will define maps Li : Rq → Rq which satisfies the following property. Denote
p = Li(fi) and (p0, . . . , pd−1) to be the coefficient vector of p. Then, p0 = . . . =
pi−1 = pi+1 = . . . = pk−1 = 0 and pi = 〈A�s − �u,�γi〉. We can observe that if
A�s = �u then f defined now as

f = L0(f0) + . . . + Lk−1(fk−1)

has the first k coefficients equal to 0. Therefore, we can construct a protocol
for proving this similarly as above. On the other hand, when A�s �= �u then the
probability that all the first k coefficients of f are equal to zero is 1/qk. The
advantage of this approach over the standard way of having k-parallel repetitions
is that the size of the commitment part of the non-interactive proof remains the

Practical Exact Proofs from Lattices 265

same as that of a single protocol run. Therefore, the overall cost is significantly
reduced.

We believe that this protocol can be useful in other settings, where one wants
to switch from the the coefficient basis to the NTT basis.

Another obstacle against practical efficiency (as encountered in [BLS19,
YAZ+19]) is that a proof of such a non-linear relation as in (1) requires com-
munication of “garbage terms”. These garbage terms end up being a substantial
cost in the proofs in [BLS19,YAZ+19]. In [ALS20], a better product proof is
presented that reduces the cost of the garbage terms, also using Galois automor-
phisms.

Applications. Having an efficient proof system to prove knowledge of �s ∈
{−1, 0, 1}n satisfying (1) paves the way for various efficient zero-knowledge
proofs that can be used in many applications. In order to show the effective-
ness of our new techniques, we present two example applications with concrete
parameters in the full version of our paper [ENS20]. The first one is to prove
knowledge of secrets in LWE samples. This is an important proof system to be
used, for example, with fully homomorphic encryption (FHE) schemes. The goal
here is to prove that �u is a proper LWE sample such that �u = A′�s′ + �e mod q
for �s′, �e ∈ {−1, 0, 1}k, which is equivalent to proving �u = (A′ ‖ Ik) · �s mod q
for �s = (�s′, �e) ∈ {−1, 0, 1}2k. As shown in Table 1, our proof system achieves an
improvement of 8× in terms of proof length over the state-of-the-art result by
Bootle, Lyubashevsky and Seiler [BLS19], and is dramatically shorter than the
Stern-based proofs.

Our other example application is a proof of plaintext knowledge. In this case,
the goal is to create a ciphertext and a zero-knowledge proof to prove that the
ciphertext is a proper encryption of a message known by the prover. Proofs of
plaintext knowledge have applications, for example, in the settings of verifiable
encryption, verifiable secret sharing and group signatures.

Being a very core proof system, there are many other applications beyond
the two examples above, where our main protocol and our new techniques can
be useful. For example, one can apply our unstructured linear proof to prove
that one vector is a NTT representation of a polynomial (written as a vector of
coefficients). Indeed, the matrix A in (1) simply becomes a Vandermonde matrix.
Furthermore, one can see [YAZ+19] for various applications that all build on a
similar core proof system.

2 Preliminaries

2.1 Notation

Table 2 summarizes the notation and parameters that will appear in this paper.
Let q be an odd prime, and Zq denote the ring of integers modulo q. We write

[a, b[= {a, a + 1, . . . , b − 1} ⊂ Z for the half-open interval of integers between
a and b. For r ∈ Z, we define r mod q to be the unique element in the interval
[− q−1

2 , q−1
2] that is congruent to r modulo q. We write �v ∈ Z

m
q to denote vectors

266 M. F. Esgin et al.

Table 2. Overview of parameters and notation

Parameter Explanation

d Degree of the polynomial Xd + 1, power of two

q Rational prime modulus

Zq = Z/qZ The field over which the linear system is defined

m ∈ Z The number of rows in the linear system

n ∈ Z The number of columns in the linear system

R = Z[X]/(Xd + 1) The ring of integers in the 2d-th cyclotomic
number field

Rq = Zq[X]/(Xd + 1) The ring of integers R modulo q

k ∈ Z Repetition rate

σ = σ2d/k+1 Automorphism in Aut(Rq) of order k

C ⊂ R Challenge set

C Probability distribution over C for challenges

T Bound for honest prover’s c�r in the infinity norm

δ1 Width of the uniform distribution for sampling �y

λ M-LWE dimension

κ M-SIS dimension

χ Error distribution on R in the M-LWE problem

over Zq and matrices over Zq will be written as regular capital letters M . By
default, all vectors are column vectors. We write �v ‖ �w for the concatenation of
�v and �w (which is still a column vector).

Let d be a power of two and denote R and Rq to be the rings Z[X]/(Xd +1)
and Zq[X]/(Xd + 1), respectively. Bold lower-case letters p denote elements in
R or Rq and bold lower-case letters with arrows �b represent column vectors with
coefficients in R or Rq. We also use bold upper-case letters for matrices B over
R or Rq. For a polynomial denoted as a bold letter, we write its i-th coefficient
as the corresponding regular font letter with subscript i, e.g. f0 ∈ Zq is the
constant coefficient of f ∈ Rq.

We write x
$← S when x ∈ S is sampled uniformly at random from the finite

set S and similarly x
$← D when x is sampled according to the distribution D.

Norms and Sizes. For an element w ∈ Zq, we write |w| to mean |w mod q|.
Define the �∞ and �2 norms for w ∈ Rq as follows,

‖w‖∞ = max
i

|wi| and ‖w‖2 =
√

|w0|2 + . . . + |wd−1|2.

Similarly, for �w = (w1, . . . ,wk) ∈ Rk, we define

‖ �w‖∞ = max
i

‖wi‖∞ and ‖ �w‖2 =
√

‖w1‖22 + . . . + ‖wk‖22.

Practical Exact Proofs from Lattices 267

2.2 Prime Splitting and Galois Automorphisms

Let l be a power of two dividing d and suppose q − 1 ≡ 2l (mod 4l). Then, Zq

contains primitive 2l-th roots of unity but no elements with order a higher power
of two, and the polynomial Xd + 1 factors into l irreducible binomials Xd/l − ζ
modulo q where ζ runs over the 2l-th roots of unity in Zq [LS18, Theorem 2.3].

The ring Rq has a group of automorphisms Aut(Rq) that is isomorphic to
Z

×
2d,

i �→ σi : Z×
2d → Aut(Rq),

where σi is defined by σi(X) = Xi. In fact, these automorphisms come from the
Galois automorphisms of the 2d-th cyclotomic number field which factor through
Rq.

The group Aut(Rq) acts transitively on the prime ideals (Xd/l − ζ) in Rq

and every σi factors through field isomorphisms

Rq/(Xd/l − ζ) → Rq/(σi(Xd/l − ζ)).

Concretely, for i ∈ Z
×
2d it holds that

σi(Xd/l − ζ) = (Xid/l − ζ) = (Xd/l − ζi−1
)

To see this, observe that the roots of Xd/l − ζi−1
(in an appropriate extension

field of Zq) are also roots of Xid/l − ζ. Then, for f ∈ Rq,

σi

(
f mod (Xd/l − ζ)

)
= σi(f) mod (Xd/l − ζi−1

).

The cyclic subgroup 〈2l + 1〉 < Z
×
2d has order d/l [LS18, Lemma 2.4] and sta-

bilizes every prime ideal (Xd/l − ζ) since ζ has order 2l. The quotient group
Z

×
2d/〈2l + 1〉 has order l and hence acts simply transitively on the l prime ideals.

Therefore, we can index the prime ideals by i ∈ Z
×
2d/〈2l + 1〉 and write

(
Xd + 1

)
=

∏

i∈Z
×
2d/〈2l+1〉

(
Xd/l − ζi

)

Now, the product of the k | l prime ideals (Xd/l − ζi) where i runs over
〈2l/k + 1〉/〈2l + 1〉 is given by the ideal (Xkd/l − ζk). So, we can partition the l
prime ideals into l/k groups of k ideals each, and write
(
Xd + 1

)
=

∏

j∈Z
×
2d/〈2l/k+1〉

(
Xkd/l − ζjk

)
=

∏

j∈Z
×
2d/〈2l/k+1〉

∏
i∈〈2l/k+1〉/〈2l+1〉

(
X

d
l − ζij

)
.

Another way to write this, which we will use in our protocols, is to note that
Z

×
2d/〈2l/k + 1〉 ∼= Z

×
2l/k and the powers (2l/k + 1)i for i = 0, . . . , k − 1 form

a complete set of representatives for 〈2l/k + 1〉/〈2l + 1〉. So, if σ = σ2l/k+1 ∈
Aut(Rq), then

(
Xd + 1

)
=

∏

j∈Z
×
2l/k

k−1∏

i=0

σi
(
X

d
l − ζj

)
,

and the prime ideals are indexed by (i, j) ∈ I = {0, . . . , k − 1} × Z
×
2l/k.

268 M. F. Esgin et al.

The Fully Splitting Case. In this paper our main attention lies on the setup
where q ≡ 1 (mod 2d) and hence q splits completely. In this case there is a
primitive 2d-th root of unity ζ ∈ Zq and

(Xd + 1) =
∏

i∈Z
×
2d

(X − ζi).

Then, for a divisor k of d and σ = σ2d/k+1 of order k, we have the partitioning

(Xd + 1) =
∏

j∈Z
×
2d/〈2d/k+1〉

∏

i∈〈2d/k+1〉
(X − ζij) =

∏

j∈Z
×
2d/k

k−1∏

i=0

σi(X − ζj)

2.3 The Number Theoretic Transform

The Number Theoretic Transform (NTT) of a polynomial f ∈ Rq is defined by

NTT(f) = (f̂i)i∈Z
×
2l

∈
∏

i∈Z
×
2l

Zq[X]/(Xd/l − ζi) ∼= (Fqd/l)l

where f̂i = f mod (Xd/l − ζi). We write NTT−1(f̂) = f for the inverse map,
which exists due to the Chinese remainder theorem. Note that for f , g ∈ Rq,
NTT(fg) = NTT(f)◦NTT(g) where ◦ denotes the coefficient-wise multiplication
of vectors.

The (scaled) sum of the NTT coefficients of a polynomial f ∈ Rq is equal to
its first d/l coefficients. This will be later used when proving unstructured linear
relations over Zq.

Lemma 2.1. Let f ∈ Rq. Then 1
l

∑
i∈Z

×
2l

f̂i = f0 + f1X + · · · + fd/l−1X
d/l−1,

when we lift the f̂i to Zq[X].

Proof. Write f(X) = f0(Xd/l) + f1(Xd/l)X + · · · + fd/l−1(Xd/l)Xd/l−1 Then,
it suffices to prove

1
l

∑

i∈Z
×
2l

fj(ζi) = fj

for all j = 0, . . . , d/l−1, which is the sum over the coefficients of a fully splitting
length-l NTT. We find

∑

i∈Z
×
2l

fj(ζi) =
∑

i∈Z
×
2l

l−1∑

ν=0

fνd/l+jζ
iν =

l−1∑

ν=0

fνd/l+j

∑

i∈Z
×
2l

ζiν

and it remains to show that for every ν ∈ {1, . . . , l − 1},
∑

i∈Z
×
2l

ζiν = 0. Indeed,

∑

i∈Z
×
2l

ζiν =
l−1∑

i=0

ζ(2i+1)ν = ζν
l−1∑

i=0

ζ2iν = ζν ζ2lν − 1
ζ2ν − 1

= 0

since ζ2lν = 1. ��

Practical Exact Proofs from Lattices 269

2.4 Challenge Space

Let C = {−1, 0, 1}d ⊂ Rq be the set of ternary polynomials, which have coeffi-
cients in {−1, 0, 1}. We define C : C → [0, 1] to be the probability distribution on

C such that the coefficients of a challenge c
$← C are independently identically

distributed with Pr(0) = 1/2 and Pr(1) = Pr(−1) = 1/4.

In [ALS20] it is shown that if c
$← C then the distribution of c mod Xkd/l−ζk

is almost uniform.

Lemma 2.2. Let c
$← C. The coefficients of c mod Xkd/l−ζk are independently

identically distributed, say with distribution X. Then, for x ∈ Zq,

Pr(X = x) ≤ 1
q

+
2l/k

q

∑

j∈Z∗
q/〈ζk〉

l/k−1∏

i=0

∣∣∣∣
1
2

+
1
2

cos(2πjζki/q)
∣∣∣∣ . (3)

For example, by numerical computing the probability in Lemma 2.2, one finds
for d = 128, q ≈ 232 fully splitting, i.e. l = d, and k = 4, that the maximum
probability for the coefficients of c mod X4 − ζ4 is bounded by 2−31.4.

2.5 Module-SIS and Module-LWE Problems

We employ the computationally binding and computationally hiding commit-
ment scheme from [BDL+18] in our protocols, and rely on the well-known
Module-LWE (MLWE) and Module-SIS (MSIS) [PR06,LPR10,LS15] problems
to prove the security of our constructions. Both problems are defined over a ring
Rq for a positive modulus q ∈ Z

+. For the Module-SIS problem we use the
variant with respect to the infinity norm.

Definition 2.3 (MSISn,m,βSIS). The goal in the Module-SIS problem with

parameters n,m > 0 and βSIS > q is to find, for a given matrix A
$← Rn×m

q ,
�x ∈ Rm

q such that A�x = �0 over Rq and 0 < ‖�x‖∞ ≤ βSIS. We say that a PPT
adversary A has advantage ε in solving MSISn,m,βSIS if

Pr
[
0 < ‖�x‖∞ ≤ βSIS ∧ A�x = �0 over Rq

∣∣∣ A
$← Rn×m

q ; �x ← A(A)
]

≥ ε.

Definition 2.4 (MLWEn,m,χ). In the Module-LWE problem with parameters
n,m > 0 and an error distribution χ over R, the PPT adversary A is asked to
distinguish (A, �t) $← Rm×n

q × Rm
q from (A,A�s + �e) for A

$← Rm×n
q , a secret

vector �s
$← χn and error vector �e

$← χm. We say that A has advantage ε in
solving MLWEn,m,χ if

∣∣∣Pr
[
b = 1

∣∣∣ A
$← Rm×n

q ; �s
$← χn; �e

$← χm; b ← A(A,A�s + �e)
]

(4)

− Pr
[
b = 1

∣∣∣ A
$← Rm×n

q ; �t
$← Rm

q ; b ← A(A, �t)
]∣∣∣ ≥ ε.

270 M. F. Esgin et al.

For our practical security estimations of these two problems against known
attacks, the parameter m in both of the problems does not play a crucial role.
Therefore, we sometimes simply omit m and use the notations MSISn,B and
MLWEn,χ. The parameters κ and λ denote the module ranks for MSIS and MLWE,
respectively.

2.6 Error Distribution, Discrete Gaussians and Rejection Sampling

For sampling randomness in the commitment scheme that we use, and to define
the particular variant of the Module-LWE problem that we use, we need to
specify the error distribution χd on R. In general any of the standard choices
in the literature is fine. So, for example, χ can be a narrow discrete Gaussian
distribution or the uniform distribution on a small interval. In the numerical
examples in Sect. 4.2 we assume that χ is the computationally simple centered
binomial distribution on {−1, 0, 1} where ±1 both have probability 5/16 and 0
has probability 6/16. This distribution is chosen (rather than the more “natural”
uniform one) because it is easy to sample given a random bitstring by computing
a1 + a2 − b1 − b2 mod 3 with uniformly random bits ai, bi.

Rejection Sampling. In our zero-knowledge proof, the prover will want to output
a vector �z whose distribution should be independent of a secret randomness
vector �r, so that �z cannot be used to gain any information on the prover’s secret.
During the protocol, the prover computes �z = �y +c�r where �r is the randomness
used to commit to the prover’s secret, c

$← C is a challenge polynomial, and �y is
a “masking” vector. To remove the dependency of �z on �r, we use the rejection
sampling technique by Lyubashevsky [Lyu08,Lyu09,Lyu12]. In the two variants
of this technique the masking vector is either sampled uniformly from some
bounded region or using a discrete Gaussian distribution.

Although the Gaussian variant allows to sample �y from narrower distribu-
tions for acceptable rejection rates, we use the uniform variant in this paper. The
reasons for this are that, firstly, uniform sampling is much faster in implemen-
tations and much easier to protect against side-channel attacks, and, secondly,
uniform sampling allows to be combined with the compression techniques from
[BG14,DKL+18], which make up for the disadvantage concerning the width of
the distribution.

The gist of uniform rejection sampling is the following. Let T be a bound on
the infinity norm of c�r and let the coefficients of the polynomials of �y be sampled
from the interval [−δ1, δ1[. Then, the conditioned distribution of the coefficients
of �z given that ‖�z‖∞ < δ1−T is the uniform distribution on]− (δ1−T), δ1−T [,
independent of c�r.

2.7 Commitment Scheme

In our protocol, we use a variant of the commitment scheme from [BDL+18],
which allows to commit to a vector of messages in Rq. Suppose that we want

Practical Exact Proofs from Lattices 271

to commit to a message vector �m = (m1, . . . ,ml)T ∈ Rl
q and that module

ranks of κ and λ are required for MSIS and MLWE security, respectively. Then,
in the key generation, a uniformly random matrix B0

$← Rκ×(λ+κ+l)
q and vec-

tors �b1, . . . ,�bl
$← Rλ+κ+l

q are generated and output as public parameters. In
practice, one may choose to generate B0,�b1, . . . ,�bl in a more structured way
as in [BDL+18] since it saves some computation. However, for readability, we
write the commitment matrices in the “Knapsack” form as above. In our case,
the hiding property of the commitment scheme is established via the duality
between the Knapsack and MLWE problems. We refer to [EZS+19, Appendix C]
for a more detailed discussion.

To commit to the message �m, we first sample �r
$← χ(λ+κ+l)d. Now, there are

two parts of the commitment scheme; the binding part and the message encoding
part. Particularly, we compute

�t0 = B0�r,

ti = 〈�bi, �r〉 + mi for i = 1, . . . , l,

where �t0 forms the binding part and each ti encodes a message polynomial
mi. The commitment scheme is computationally hiding under the Module-LWE
assumption and computationally binding under the Module-SIS assumption; see
[BDL+18].

The utility of the commitment scheme for zero-knowledge proof systems
stems from the fact that one can compute module homomorphisms on com-
mitted messages. For example, let a1 and a2 be from Rq. Then

a1t1 + a2t2 = 〈a1
�b1 + a2

�b2, �r〉 + a1m1 + a2m2

is a commitment to the message a1m1 + a2m2 with matrix a1
�b1 + a2

�b2. This
module homomorphic property together with a proof that a commitment is
a commitment to the zero polynomial allows to prove linear relations among
committed messages over Rq.

2.8 Opening and Product Proof

We use the opening proof from [ALS20, Fig. 2] that we sketch now. Suppose that
the prover knows an opening to the commitment

�t0 = B0�r,

t1 = 〈�b1, �r〉 + m1.

As in previous opening proofs the prover gives an approximate proof for the first
equation. To this end, the prover and verifier engage in k parallel executions of
a sigma protocol with challenges σi(c), i = 0, . . . , k − 1, that are the rotations

of a global challenge c
$← C. Concretely, in the first flow, the prover samples

k short masking vectors �yi from the discrete Gaussian distribution D
(λ+κ+1)d
s

272 M. F. Esgin et al.

and sends commitments �wi = B0�yi over to the verifier. The verifier replies with
the challenge c. Then the prover applies rejection sampling, and, if this does not
reject, sends �zi = �yi + σi(c)�r. The verifier checks that the �zi are short and the
equations B0�zi = �wi + σi(c)�t0.

Now, unlike in previous protocols, the algebraic setup is such that it is not
possible to extract a pair of accepting transcript with invertible challenge dif-
ference c̄ = c − c′. Instead, extraction works by piecing together l/k accepting
transcripts where for each ideal (Xkd/l − ζkj), there is a transcript pair with
challenge difference c̄j mod (Xkd/l − ζkj) �= 0. For this to work out it is required
that the maximum probability p over Zq of the coefficients of c mod (Xkd/l−ζk),
as given by Lemma 2.2, is such that pkd/l is negligible. For example, if d = 128,
q ≈ 232 fully splits so that l = d, and k = 4, then pkd/l = p4 ≈ 2−128.

Next, the analysis of the protocol given in [ALS20, Theorem 4.4] shows that
it is possible to extract a weak opening from a prover with non-negligible high
success probability, as given in the following definition.

Definition 2.5. A weak opening for the commitment �t = �t0 ‖ t1 consists of
l polynomials σi(c̄j) ∈ Rq, a randomness vector �r∗ over Rq and a message
m∗

1 ∈ Rq such that
∥∥σi(c̄j)

∥∥
1

≤ 2d and σi(c̄j) mod σi(Xd/l − ζj) �= 0 for all (i, j) ∈ I,
∥∥σi(c̄j)�r∗∥∥

2
≤ 2β for all (i, j) ∈ I,

B0�r
∗ = �t0,

〈�b1, �r
∗〉 + m∗

1 = t1.

The commitment scheme is binding with respect to weak openings,
c.f. [ALS20, Lemma 4.3]. Furthermore, in the extraction it is also possible to
obtain vectors �y∗

i such that every accepting transcript satisfies the following

�zi = �y∗ + σi(c)�r∗,

when it contains the same prover commitments �wi that were used in the extrac-
tion.

We also apply the product proof from [ALS20, Fig. 4], adapted to the case
of a cubic relation, to prove that our secret vector has ternary coefficients. In
addition to the opening proof, the product proof only requires two additional
commitments to garbage terms.

3 Proving Unstructured Linear Relations over Z
n
q

Our goal for this section is to construct an efficient protocol for proving unstruc-
tured linear relations among committed Zq-elements. By this we mean that we
want to be able to commit to a vector �s ∈ Z

n
q and prove that it fulfills an

arbitrary linear equation A�s = �u for a public matrix A ∈ Z
m×n
q and vector

Practical Exact Proofs from Lattices 273

�u ∈ Z
m
q . We borrow LWE terminology and call the linear equation “unstruc-

tured” to highlight the fact that A can be an arbitrary matrix over Zq that does
not necessarily express linear relations over some ring of higher rank.

Proofs of linear relations are useful for applications in lattice cryptography
only if it is possible to amend them by a proof of shortness. So, we will also
want to be able to prove that the vector �s is short. As opposed to the so-called
approximate proofs that are ubiquitous in lattice cryptography and where the
prover only proves knowledge of a vector that is much longer than the one
it actually knows, we are interested in exact proofs of shortness. These have
the advantage that the parameters of underlying cryptographic schemes do not
have to account for the longer vectors that can be extracted from a prover,
i.e. the schemes do not need to be secure with respect to the longer vectors. This
results in more efficient schemes. For example, one interesting goal of this line of
research is to construct a proof of plaintext knowledge or a verifiable encryption
scheme for a standard unmodified lattice-based public-key encryption scheme. In
particular, for one of the schemes submitted to the NIST PQC standardization
effort.

The most efficient lattice-based exact proofs of shortness work by encoding
the vector �s in the NTT representations NTT(ši) of possibly several polynomials
ši ∈ Rq. In the first step, we restrict to the case where q splits completely in R.
Then NTT(ši) is a vector in Z

d
q .

Now, for simplicity, assume that n is divisible by d. Suppose the prover P
knows an opening to a commitment �t = �t0 ‖ t1 ‖ · · · ‖ tn/d to n/d secret
polynomials š1, . . . , šn/d ∈ Rq. More precisely,

�t0 = B0�r,

ti = 〈�bi, �r〉 + ši for i ∈ {1, . . . , n/d}.

Then, the goal of P is to prove that the vector

�s = NTT(š1) ‖ · · · ‖ NTT(šn/d) ∈ Z
n
q

satisfies the linear equation A�s = �u over Zq where A ∈ Z
m×n
q and �u ∈ Z

m
q are

public.
Firstly, we describe the main ideas and present a protocol which achieves

soundness error 1/q. Then, in Sect. 3.2 and [ENS20, Appendix A] we present
two methods to efficiently decrease the soundness error to negligible quantities.
The latter one, however, is only interesting when the secret vector �s is strictly
shorter than d. In that case, we make use of non-fully splitting rings Rq.

Although we present all of our protocols so that only non-aborting protocol
transcripts are simulatable, there is a standard generic method to simulate aborts
of an interactive protocol as given in [BCK+14], which is also used, e.g., in
[ESS+19]. In particular, for all but the last move of the prover, the prover sends
aCom(M) instead of the transmitted text M for an auxiliary commitment aCom.
In the last move, all of these committed texts are revealed unless aborted. In the
case of abort, the prover just sends an error message ⊥. The abort can easily

274 M. F. Esgin et al.

be simulated in this case by relying on the hiding property of aCom. We refer
to [BCK+14,ESS+19] for more details. Also, note that the simulation of aborts
is not important for most of the practical applications as the protocol is made
non-interactive and the simulation of aborts is not needed in that case.

3.1 Basic Protocol

Let us assume that n = d and denote š := š1. We show how to deal with the case
n > d in Sect. 3.3. The first protocol relies on the following simple observation.
Suppose that A�s = �u. This means that for all �γ ∈ Z

m
q , we have 〈A�s − �u,�γ〉 = 0.

On the contrary, if A�s �= �u, then for a uniformly random �γ ∈ Z
m
q , 〈A�s − �u,�γ〉 = 0

only with probability 1/q. Hence, �γ will become a challenge generated from the
verifier. Using Lemma 2.1, we rewrite the inner product,

〈A�s − �u,�γ〉 = 〈A�s,�γ〉 − 〈�u,�γ〉 = 〈�s,AT�γ〉 − 〈�u,�γ〉
=

∑

j∈Z
×
2d

s(ζj)
(
NTT−1(AT�γ)

)
(ζj) − 〈�u,�γ〉 =

1
d

∑

j∈Z
×
2d

f(ζj) = f0,

where f ∈ Rq is the polynomial defined by f := NTT−1(dAT�γ)š − 〈�u,�γ〉 and
f0 ∈ Zq is the constant coefficient of f . So, by utilizing the polynomial product
in Rq, it is possible to compute a scalar product over Zq with a vector encoded
in the NTT representation of the polynomial. We observe that the verifier can
compute a commitment to f . Indeed, note that

NTT−1(dAT�γ)t1 − 〈�u,�γ〉 = 〈NTT−1(dAT�γ) �b1, �r〉 + f .

Hence, V can compute the commitment

τ = NTT−1(dAT�γ)t1 − 〈�u,�γ〉. (5)

Now, P needs to prove that f has a zero constant coefficient. The idea is to first
send a commitment t2 to a random polynomial g with a zero constant coefficient
before �γ is generated. Intuitively, g is introduced to mask f . After getting �γ, P
sends h = f + g and the verifier can check that h0 = 0. Note that by knowing
τ , t2 and h, the verifier can compute a commitment τ + t2 − h to the zero
polynomial 0. Hence, in the final stage, P needs to prove that this polynomial
is indeed a commitment to 0 in the usual way.

The full protocol is presented as follows. First, the prover P generates a
random polynomial g ∈ Rq with zero constant coefficient and computes a com-
mitment to g defined as t2 = 〈�b2, �r〉 + g. The prover also starts the opening
proof with soundness error 1/q for the commitments and samples a vector of
small polynomials �y and computes the commitment �w = B0�y. Then, P sends
t2 and �w to the verifier. Next, V generates and sends a uniformly random vector
�γ ∈ Z

m
q . P can then compute the polynomial f defined above and h = f + g.

Practical Exact Proofs from Lattices 275

Furthermore, it sets v = 〈NTT−1(dAT�γ) �b1 + �b2, �y〉 and sends h,v to V. Then,

the verifier generates a challenge c
$← C and sends it to the prover. Eventually,

P sends a response �z = �y + c�r.
The verifier V first checks that �z consists of small polynomials and that h

has constant coefficient equal to 0. Also, V checks that B0�z = �w + c�t0 and

〈NTT−1(dAT�γ) �b1 + �b2, �z〉 = v + c (τ + t2 − h)

where τ is computed as in Eq. (5).
One can observe that if A�s �= �u then the constant coefficient of f becomes a

uniformly random element of Zq, outside the control of the prover. Thus, also the
constant coefficient of h = f +g will be uniformly random because the constant
coefficient of g is independent of the constant coefficient of f . In particular, it
will be non-zero with probability 1−1/q and this can be detected by the verifier.
Therefore, the probability that a malicious prover manages to cheat is essentially
1/q.

3.2 Boosting Soundness by Mapping Down

More abstractly, in the above protocol we checked 〈A�s − �u,�γ〉 = 0 by investigat-
ing whether L(�γ) has a zero constant coefficient where L : Zm

q → Rq is defined
as

L(�γ) := NTT−1(dAT�γ)š − 〈�u,�γ〉. (6)

As we observed earlier, the constant coefficient of L(�γ) is indeed 〈A�s − �u,�γ〉.
Now, suppose we can define k functions L0, . . . , Lk−1 with the following prop-

erty. For any 0 ≤ μ < k and �γμ ∈ Z
m
q , p = Lμ(�γμ) ∈ Rq is a polynomial such that

p0 = . . . = pμ−1 = pμ+1 = . . . = pk−1 = 0 and pμ = 〈A�s − �u,�γμ〉. This would
mean that for 0 ≤ μ < k, the μ-th coefficient related to Xμ of the polynomial

f = L0(�γ0) + L1(�γ1) + . . . + Lk−1(�γk−1)

is equal to 〈A�s − �u, �γμ〉. In particular, if A�s = �u, then f0 = f1 = . . . = fk−1 = 0.
Thus, in order to decrease the soundness error, we can let the verifier V send
k independently uniformly random vectors �γ0, . . . , �γk−1 and then P proves that
f ∈ Rq has the first k coefficients equal to zero. Note that we still need to find
a way for V to compute a commitment to f from �t1 and �γ0, . . . , �γk−1.

Constructing Lμ. Let Sq be the Zq-submodule of Rq generated by Xk, i.e.

Sq = {p0 + p1X
k + · · · + pd/k−1X

d−k ∈ Rq} ⊂ Rq.

We have Sq
∼= Zq[X]/(Xd/k + 1). From Galois theory, there is a corresponding

subgroup H of Aut(Rq) of order k such that σ(p) = p for all σ ∈ H if and only if
p ∈ Sq. It is easy to see that this group is generated by σ = σ2d/k+1 ∈ Aut(Rq),
which is the same automorphism that we use in the automorphism opening proof.
In fact, this follows from the fact that ord(σ) = k and σ(Xk) = Xk(2d/k+1) = Xk.

276 M. F. Esgin et al.

We have the trace map Tr : Rq → Sq given by

Tr(p) =
k−1∑

ν=0

σν(p).

Notice that the constant coefficient of Tr(p) is equal to kp0. Now define Lμ by

Lμ(�γ) =
1
k

XμTr(L(�γ)) =
1
k

Xμ
k−1∑

ν=0

σν
(
NTT−1(dAT�γ)š − 〈�u,�γ〉) .

If p = Lμ(�γ), then p is of the form

p = pμXμ + pk+μXk+μ + · · · + pd−k+μXd−k+μ

and thus has the property that the first k coefficients except the μ-th coefficient
are zero. Moreover, it is clear from above that pμ = 〈A�s − �u,�γ〉.

Finally, given the commitment t1 to s, the verifier can compute a commit-
ment to f = L0(�γ0) + · · · + Lk−1(�γk−1) via

τ =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
NTT−1(dAT�γμ)t1 − 〈�u,�γμ〉)

=
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
〈NTT−1(dAT�γμ)�b1, �r〉

)
+ f . (7)

The Protocol. We present the full protocol in Fig. 1 with the verification algo-
rithm given in Fig. 2.

It is natural to separate the commitment (�t0, t1) to the secret polynomial š
from our protocol for proving the linear relation. Then, (�t0, t1) is given as input
to the protocol, which also proves knowledge of an opening to the external com-
mitment. Now, for efficiency reasons, one wants to avoid sending a completely
fresh commitment to the masking polynomial g and instead reuse the top part
�t0 of the commitment to š, but this creates a problem with the standard notion
of a zero-knowledge proof. Namely, with this approach it is required that the
randomness vector �r, which is a part of the witness, is really random so that the
commitment to g is hiding, but the zero-knowledge definition demands simulata-
bility for any (fixed) witness. Hence, we don’t take this approach and also send
the commitment to š as part of our protocol. Then, our protocol only shows
knowledge of a solution �s to the linear equation A�s = �u. This in itself is not
a solution to a hard problem but our protocol is still useful because it can be
combined with a shortness proof that simultaneously shows that �s is short (see
Sect. 4). In isolation our protocol is best viewed as a so-called commit-and-proof
protocol [CLOS02], which is interesting even without involving a hard problem
because of the commitment that can later be used outside of the protocol.

Practical Exact Proofs from Lattices 277

The Prover P starts by generating a uniformly random polynomial g satis-
fying g0 = . . . = gk−1 = 0 and then computes the commitment

�t0 = B0�r

t1 = 〈�b1, �r〉 + š

t2 = 〈�b2, �r〉 + g.

Now the prover needs to start an opening proof with soundness 1/qk. Also,
it is going to prove a relation which involves the k automorphisms σi. There-
fore, it uses the automorphism opening proof from [ALS20] and samples vectors
�y0, . . . , �yk−1 of short polynomials that are going to be used to mask �r k times
with challenges of the form σi(c). Also, P computes �wi = B0�yi. The prover
sends �t0, t1, t2 and �wi to V.

Next, the verifier selects uniformly random vectors �γ0, . . . , �γk−1 ∈ Z
m
q and

sends them to P. Then, the prover computes

f =
k−1∑

μ=0

Lμ(�γμ) =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
NTT−1(dAT�γμ)š − 〈�u,�γμ〉) .

By construction, f0 = . . . = fk−1 = 0. Note that V can compute a commitment
τ to f as explained above. Now the prover sets h = f + g and computes for
i = 0, . . . , k − 1,

vi =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
〈NTT−1(dAT�γμ)�b1, �yi−ν mod k〉

)
+ 〈�b2, �yi〉.

It sends h and v0, . . . ,vk−1. The verifier sends a random challenge polynomial

c
$← C. Eventually, P computes �zi = �yi + σi(c)�r for i = 0, . . . , k − 1 and sends

�z0, . . . , �zk−1.
The Verifier V first checks that for all i = 0, . . . , k − 1, �zi is short, and

B0�zi = �wi + σi(c)�t0.

Then, V checks that h0, . . . , hk−1 are all equal to zero and computes τ as in (7).
Finally, the verifier checks whether for all i = 0, . . . , k − 1,

k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
〈NTT−1(dAT�γμ)�b1, �zi−ν mod k〉

)
+ 〈�b2, �zi〉

= vi + σi(c)(τ + t2 − h)

to test whether τ + t2 − h really is a commitment to zero.

278 M. F. Esgin et al.

Fig. 1. Automorphism proof of knowledge of a solution to an unstructured linear equa-
tion over Zq. Verification equations are described in Fig. 2.

Security Analysis

Theorem 3.1. The protocol in Fig. 1 is complete, computational honest verifier
zero-knowledge under the Module-LWE assumption and computational special
sound under the Module-SIS assumption. More precisely, let p be the maximum
probability over Zq of the coefficients of c mod Xk − ζk as in Lemma 2.2.

Then, for completeness, unless the honest prover P aborts due to the rejection
sampling, it always convinces the honest verifier V.

For zero-knowledge, there exists a simulator S, that, without access to secret
information, outputs a simulation of a non-aborting transcript of the protocol
between P and V for every statement A�s = �u. Then for every algorithm A that
has advantage ε in distinguishing the simulated transcript from an actual tran-

Practical Exact Proofs from Lattices 279

Fig. 2. Verification equations for Fig. 1.

script, there is an algorithm A′ with the same running time that has advantage
ε in distinguishing MLWEλ,χ.

For soundness, there is an extractor E with the following properties. When
given rewindable black-box access to a deterministic prover P∗ that sends the
commitment �t in the first round and convinces V with probability ε ≥ q−k + pk,
E either outputs a weak opening for �t with message š∗ such that ANTT(š∗) = �u,
or a MSISκ,8dβ solution for B0 in expected time at most 1/ε + (d/k)(ε − pk)−1

when running P∗ once is assumed to take unit time.

Proof. Completeness. It follows by careful inspection that the verification equa-
tions are always true for the messages sent by P.

Zero-Knowledge. We can simulate a non-aborting transcript between the hon-
est prover and the honest verifier in the following way. First, in a non-
aborting transcript the vectors �zi are independently uniformly random in
] − (δ1 − T), δ1 − T [(λ+κ+2)d and also independent from c�r. So the simulator

can just sample �zi
$←]− (δ1 −T), δ1 −T [(λ+κ+2)d and c

$← C. The polynomial h
is such that h0 = · · · = hk−1 = 0 in honest transcripts and the other coefficients
are uniformly random because of the additive term g. Hence, the simulator sam-
ples h

$← {h ∈ Rq | h0 = · · · = hk−1 = 0}. Then, the challenges �γμ ∈ Z
m
q are

independently uniformly random and the simulator samples them in this way.
Now, we turn to the commitment �t. In the honest execution the randomness
vector �r is statistically independent from the �zi and the other messages already
handled, i.e. c, h, �γμ. So, it follows that the additive term B0�r ‖ 〈�b1, �r〉 ‖ 〈�b2, �r〉
is indistinguishable from uniform given �zi, c,h, �γμ if MLWEλ is hard. Hence �t
is indistinguishable from uniform since the committed polynomials š and g are
also independent from �r in the honest execution. Therefore, we let the simu-
lator sample a uniformly random �t ∈ Rκ+2

q . Now, in an honest transcript, the
remaining messages �wi and vi are all uniquely determined from the already
handled messages and the verification equations because of completeness. We
see that if the simulator computes these messages so that the verification equa-
tions become true, then the resulting transcript is indistinguishable from the
honest transcript. More precisely, if there exists some distinguisher that is able
to distinguish a simulated transcript from an honest transcript, then it must be

280 M. F. Esgin et al.

able to distinguish the MLWE samples in the commitment �t from uniform with
the same advantage.

Soundness. First, the extractor opens the commitments t1 and t2. From [ALS20,
Theorem 4.4], unless E finds an MSISκ,8dβ solution, the extractor can compute
vectors �y∗ and �r∗ such that for every accepting transcript with first messages t2
and �wi,

zi = �y∗
i + σi(c)�r∗.

The expected runtime for this equals the runtime in the theorem statement.
Then let š∗ ∈ Rq and g∗ ∈ Rq be the extracted messages, which are defined by

t1 = 〈�b1, �r
∗〉 + š∗ and t2 = 〈�b2, �r

∗〉 + g∗.

Now substituting these expressions into τ gives

τ =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
〈NTT−1(dAT�γμ)�b1, �r

∗〉
)

+ f∗,

where

f∗ =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
NTT−1(dAT�γμ)š∗ − 〈�u,�γμ〉) .

From the discussion in this section we know that f∗
μ = 〈A�s∗ − �u,�γμ〉 for μ =

0, . . . , k − 1, �s∗ = NTT(š∗). Next we find from the last verification equations,
(

k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν
(
〈NTT−1(dAT�γμ)�b1, �y

∗
i−ν mod k〉

)
+ 〈�b2, �y

∗〉 − vi

)

= σi(c) (f∗ + g∗ − h) . (8)

for all i = 0, . . . , k − 1. The coefficients of these linear polynomials in σi(c) are
independent from c in a random accepting transcript. We bound the success
probability ε of the prover under the assumption A�s∗ �= �u. In this case the
coefficients f∗

μ for μ = 0, . . . , k − 1 are uniformly random elements in Zq in a
random transcript. Hence, f∗

μ + g∗
μ is uniformly random since g∗ is independent

from the �γμ. Also we know that hμ = 0 in every accepting transcript. So, suppose
f∗

μ + g∗
μ − h∗

μ = f∗
μ + g∗

μ �= 0 for some μ. Then there exists some j ∈ Z
×
2d with

f∗+g∗−h mod (X −ζj) �= 0. Therefore, there is only one possible value modulo
(Xk − ζjk) for the challenge in such a transcript, otherwise Eq. 8 cannot be true
for all i. Since the maximum probability of every coefficient of c mod (Xk − ζjk)
is less than p we see that the success probability is bounded by

ε = Pr [accepting] <

(
1
q

)k

+ Pr
[
accepting

∣∣ f∗
μ + g∗

μ �= 0 for some μ
]

≤
(

1
q

)k

+ pk.

This is in contradiction to the bound in the theorem statement and thus it must
hold A�s∗ = �u. ��

Practical Exact Proofs from Lattices 281

3.3 General Case

Previously, we assumed that n = d so that �s = NTT(š) = NTT(š1). When n > d,
we slightly modify our approach. We have �s = NTT(š1) ‖ · · · ‖ NTT(šn/d) and
now also define polynomials ψj such that

AT�γ = NTT(ψ1) ‖ · · · ‖ NTT(ψn/d).

Then the inner product 〈A�s,�γ〉 = 〈�s,AT�γ〉 can be written as a sum of smaller
inner products. We find

〈A�s − �u,�γ〉 =
n/d∑

j=1

〈NTT(šj),NTT(ψj)〉 − 〈�u,�γ〉

=
n/d∑

j=1

∑

i∈Z
×
2d

šj(ζi)ψj(ζi) − 〈�u,�γ〉 =
1
d

∑

i∈Z
×
2d

⎛

⎝
n/d∑

j=1

dšjψj − 〈�u,�γ〉
⎞

⎠ (ζi).

Next, similarly as before, we incorporate more challenges. So, for �γ0, . . . , �γk−1 ∈
Z

m
q we write

AT�γμ = NTT(ψ(μ)
1)‖ · · · ‖NTT(ψ(μ)

n/d)

and then set

f =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν

⎛

⎝
n/d∑

j=1

dψ
(μ)
j sj − 〈�u,�γμ〉

⎞

⎠ .

It holds that for μ = 0, . . . , k − 1, fμ = 〈A�s − �u,�γμ〉. Now, note that τ defined
as

τ =
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν

⎛

⎝
n/d∑

j=1

dψ
(μ)
j tj − 〈�u,�γμ〉

⎞

⎠

=
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν

⎛

⎝
n/d∑

j=1

〈dψ
(μ)
j

�bj , �r〉 + dψ
(μ)
j šj − 〈�u,�γ〉

⎞

⎠

=
k−1∑

μ=0

1
k

Xμ
k−1∑

ν=0

σν

⎛

⎝
〈

n/d∑

j=1

dψ
(μ)
j

�bj , �r

〉⎞

⎠ + f

is indeed a commitment to f and can be computed by the verifier.

4 Main Protocol

In this section we present our main protocol for proving knowledge of a ternary
solution �s ∈ {−1, 0, 1}n to an arbitrary linear equation A�s = �u over Zq. The

282 M. F. Esgin et al.

protocol is essentially an amalgamation of the linear proof from Sect. 3 and the
product proof from [ALS20]. We use a fully splitting prime q and automorphisms
to boost the soundness. So, at a high level the prover commits to n/d polynomials
šj whose NTT coefficients are the coefficients of �s. That is,

�s =

⎛

⎜⎝
NTT(š1)

...
NTT(šn/d)

⎞

⎟⎠ .

Then the prover uses a generalization of the product proof to many cubic rela-
tions to show that

šj(šj + 1)(šj − 1) = 0

for all j. This shows that NTT(šj) ∈ {−1, 0, 1}d since the polynomial product
in Rq is coefficient-wise in the NTT representation. This is the technique that
was used in [BLS19].

In parallel, the prover uses the linear proof for the general case from Sect. 3.3,
to show that the polynomials šj really give a solution to the linear equation. The
complete protocol is given in Fig. 3 and it is proven secure in Theorem 4.1.

4.1 Security Analysis

Theorem 4.1. The protocol in Fig. 3 is complete, computational honest verifier
zero-knowledge under the Module-LWE assumption and computational special
sound under the Module-SIS assumption. More precisely, let p be the maximum
probability over Zq of the coefficients of c mod Xk − ζk as in Lemma 2.2.

Then, for completeness, in case the honest prover P does not abort due to
rejection sampling, it always convinces the honest verifier V.

For zero-knowledge, there exists a simulator S, that, without access to secret
information, outputs a simulation of a non-aborting transcript of the protocol
between P and V for every statement A�s = �u, �s ∈ {−1, 0, 1}n. Then for every
algorithm A that has advantage ε in distinguishing the simulated transcript from
an actual transcript, there is an algorithm A′ with the same running time that
also has advantage ε in distinguishing MLWEλ,χ.

For soundness, there is an extractor E with the following properties. When
given rewindable black-box access to a deterministic prover P∗ that convinces
V with probability ε > (3p)k, E either outputs a solution �s∗ ∈ {−1, 0, 1}n to
A�s∗ = �u, or a MSISκ,8dβ solution for B0 in expected time at most 1/ε+(ε−pk)−1

when running P∗ once is assumed to take unit time.

We provide the proof of this theorem in the full version of this paper [ENS20].

4.2 Proof Size

We now look at the size of the non-interactive proof outputs via the Fiat-Shamir
transform of the protocol in Fig. 3. First, note that for the non-interactive proof

Practical Exact Proofs from Lattices 283

Fig. 3. Proof of knowledge of a ternary solution to an unstructured linear equation
over Zq. Verification equations are defined in Fig. 4.

284 M. F. Esgin et al.

Fig. 4. Verification equations for Fig. 3.

the messages wi, v and vi need not be included in the output as they are
uniquely determined by the remaining components. Further, the challenges can
be generated from a small seed of 256 bits, which itself is generated as the hash
of some components. Therefore, the contribution of the challenges to the total
proof length is extremely small and thus we neglect it.

As “full-sized” elements of Rq, we have �t0, tj , and h (in fact, h is missing k
coefficients, but that is a negligible consideration). Therefore, we have in total

κ + n/d + 3 + 1

full-sized elements of Rq, which altogether costs

(κ + n/d + 4) d�log q� bits.

Now, the only remaining part are the vectors �zi. Since the k vectors �zi of length
(λ + κ + n/d + 3)d over Zq are bounded by δ1 in infinity norm, they require

k(λ + κ + n/d + 3)d�log 2δ1� bits

in the proof. It is easy to see that no coefficient of the product σi(c)�r can exceed
d for any 0 ≤ i ≤ k − 1. Hence, we set T = d.

In conclusion, the overall proof length is about

(κ + n/d + 4) d�log q� + k (λ + κ + n/d + 3) d�log 2δ1� bits, (9)

Practical Exact Proofs from Lattices 285

Proof Length Optimizations. The size of the non-interactive proof can be
reduced with a number of standard techniques. The first techniques are the two
compression techniques from the Bai-Galbraith [BG14] and Dilithium [DKL+18]
signature schemes. They reduce the size of the masked openings �zi and the top
part �t0 of the commitment. As we have mentioned in Sect. 2.7, the commitment
matrix B0 can be decomposed as B0 = (B′

0, I), where I is the identity matrix
of dimension κ. Then we can similarly decompose �r = �r1 ‖ �r2 and write

�t0 = B0�r = B′
0�r1 + �r2.

Now, we see that when we give an approximate proof for this equation that
proves c̄�t0 = B′

0 �̄z1 + �̄z2, we are essentially proving knowledge of a short vector
�̄z1 such that B1 �̄z1 is close to c̄�t0. But this can be achieved in zero-knowledge
without sending both masked openings �z1 and �z2 as follows. Let �y be the masking
vector for �r1, �z = �y + c�r1, and �w = B′

0�y. Then decompose �w as quotient and
remainder modulo α = 2δ2 ≈ δ1,

�w = α �w1 + �w0

where ‖ �w0‖∞ ≤ δ2. It follows that

B′
0�z − c�t0 = α �w1 + �w0 − c�r2.

Hence, when we keep the remainder �w0 secret, it can serve as the masking
vector for �r2. Moreover, by rejecting if ‖ �w0 − c�r2‖∞ ≥ δ2 − T , this doesn’t
leak information about �r2 and the equation can be checked by the verifier by
decomposing B′

0�z−c�t0. The second compression technique starts with the same
observation that it suffices to prove knowledge of a preimage of B′

0 that is close
to c̄�t0. When we decompose

�t0 = �t0,12D + �t0,0,

then it is actually sufficient to only send the high bits �t0,1, because the low bits
only introduce an additional noise term c̄�t0,0 in the verification equation that
can be handled with sending a few hint bits. We defer to the Dilithium paper
for the details.

Another optimization we employ is in the calculation of a maximum absolute
coefficient in σi(c)�r. In our applications, we aim to minimize d and set d = 128.
Now in this case, a coefficient of σi(c)�r is the sum of 128 coefficients with i.i.d.
P (−1) = P (1) = 5/32 and P (0) = 22/32.2 If we calculate the convolution of
this distribution, we find that a coefficient is bigger than 78 in absolute value
with probability less than 2−114. Hence, by a union bound the probability that
any of the coefficients in

(
σ0(c)�r, . . . , σk−1(c)�r

)
is bigger than 78 will still be

negligibly small. Therefore, we can set T = 78 instead of T = d = 128.

2 Recall that a coefficient of c is zero with probability 1/2 and a coefficient of �r is zero
with probability 6/16. The probabilities of ±1 are always equal to each other.

286 M. F. Esgin et al.

The previous optimization can be combined with the following optimization.
Instead of using the k rotations σi(c) of one dense challenge for the masked
openings �zi, we can write c in the subring generated by Xk and fixed by σ,
i.e. c = c0 + c1X + · · · + ck−1X

k−1 where the polynomials cj are sparse with
only at most d/k nonzero coefficients. Then all the images σi(c) are just different
linear combinations of the cj . So it suffices to use these sparse challenges cj in the
masked openings that are transmitted and the verifier can then recombine them
to obtain the masked openings with challenges σi(c) as needed in the protocols.

References

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: ACM Con-
ference on Computer and Communications Security, pp. 2087–2104. ACM
(2017)

[ALS20] Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for
lattice commitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020, Part II. LNCS, vol. 12171, pp. 470–499. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 17

[BCK+14] Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.:
Better zero-knowledge proofs for lattice encryption and their application
to group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-45611-8 29

[BCOS20] Boschini, C., Camenisch, J., Ovsiankin, M., Spooner, N.: Efficient post-
quantum SNARKs for RSIS and RLWE and their applications to pri-
vacy. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100,
pp. 247–267. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
44223-1 14

[BCR+19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4

[BDK+18] Bos, L., Ducas, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and
Privacy, EuroS&P, pp. 353–367 (2018)

[BDL+18] Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.:
More efficient commitments from structured lattice assumptions. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 20

[Beu20] Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature
schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12107, pp. 183–211. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45727-3 7

[BG14] Bai, S., Galbraith, S.D.: An improved compression technique for signa-
tures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014.
LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-04852-9 2

https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-030-44223-1_14
https://doi.org/10.1007/978-3-030-44223-1_14
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-04852-9_2

Practical Exact Proofs from Lattices 287

[BLS19] Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er)
exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26948-7 7

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: STOC, pp. 494–503.
ACM (2002)

[DKL+18] Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler,
G., Stehlé, D.: Crystals-dilithium: a lattice-based digital signature scheme.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

[dPLS18] del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures
and zero-knowledge proofs of automorphism stability. In: ACM CCS, pp.
574–591. ACM (2018)

[dPLS19] del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for
FHE and ring-LWE ciphertexts. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11442, pp. 344–373. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17253-4 12

[ENS20] Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices:
new techniques to exploit fully-splitting rings (2020). https://eprint.iacr.
org/2020/518

[ESLL19] Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge
proofs: new techniques for shorter and faster constructions and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11692, pp. 115–146. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26948-7 5

[ESS+19] Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-
based one-out-of-many proofs and applications to ring signatures. In:
Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019.
LNCS, vol. 11464, pp. 67–88. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 4

[EZS+19] Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: effi-
cient, scalable and post-quantum blockchain confidential transactions pro-
tocol. In: CCS, pp. 567–584. ACM (2019). https://eprint.iacr.org/2019/
1287.pdf

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: STOC, pp. 723–732. ACM (1992)

[LLNW17] Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments
for lattice-based prfs and applications to E-cash. In: Takagi, T., Peyrin,
T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 304–335. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 11

[LLNW18] Libert, B., Ling, S., Nguyen, K., Wang, H.: Lattice-based zero-knowledge
arguments for integer relations. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 700–732. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 24

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1

[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module
lattices. Des. Codes Cryptogr. 75(3), 565–599 (2015)

https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-17253-4_12
https://eprint.iacr.org/2020/518
https://eprint.iacr.org/2020/518
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/978-3-030-21568-2_4
https://eprint.iacr.org/2019/1287.pdf
https://eprint.iacr.org/2019/1287.pdf
https://doi.org/10.1007/978-3-319-70700-6_11
https://doi.org/10.1007/978-3-319-96881-0_24
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1

288 M. F. Esgin et al.

[LS18] Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially split-
ting cyclotomic rings and applications to lattice-based zero-knowledge
proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 204–224. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 8

[LS19] Lyubashevsky, V., Seiler, G.: NTTRU: truly fast NTRU using NTT. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 180–201 (2019)

[Lyu08] Lyubashevsky, V.: Lattice-based identification schemes secure under
active attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp.
162–179. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78440-1 10

[Lyu09] Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and
factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7 35

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29011-4 43

[PR06] Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.
org/10.1007/11681878 8

[Ste93] Stern, J.: A new identification scheme based on syndrome decoding. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48329-2 2

[YAZ+19] Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Effi-
cient lattice-based zero-knowledge arguments with standard soundness:
construction and applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 147–175. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-3-030-26948-7_6

Towards Classical Hardness
of Module-LWE: The Linear Rank Case

Katharina Boudgoust(B), Corentin Jeudy, Adeline Roux-Langlois,
and Weiqiang Wen

Univ Rennes, CNRS, IRISA, Rennes, France
katharina.boudgoust@irisa.fr

Abstract. We prove that the module learning with errors (M-LWE)
problem with arbitrary polynomial-sized modulus p is classically at least
as hard as standard worst-case lattice problems, as long as the module
rank d is not smaller than the number field degree n. Previous publica-
tions only showed the hardness under quantum reductions. We achieve
this result in an analogous manner as in the case of the learning with
errors (LWE) problem. First, we show the classical hardness of M-LWE
with an exponential-sized modulus. In a second step, we prove the hard-
ness of M-LWE using a binary secret. And finally, we provide a modulus
reduction technique. The complete result applies to the class of power-
of-two cyclotomic fields. However, several tools hold for more general
classes of number fields and may be of independent interest.

Keywords: Lattice-based cryptography · Module learning with
errors · Classical hardness · Binary secret

1 Introduction

The learning with errors (LWE) problem, introduced by Regev [Reg05], is used
as a core computational problem in lattice-based cryptography. Given positive
integers n (the dimension) and q (the modulus), and a secret vector s ∈ Z

n
q ,

an LWEn,q,ψ sample is defined as (a, b = 1
q 〈a, s〉 + e), where a is sampled from

the uniform distribution on Z
n
q and e (the error), is sampled from a probability

distribution ψ on the torus T = R/Z. In many cases, the error distribution is
given by a Gaussian distribution Dα of width α, for a positive real α. The search
version of LWE asks to recover the secret s, given arbitrarily many samples
of the LWE distribution. Its decision variant asks to distinguish between LWE
samples and samples drawn from the uniform distribution on Z

n
q × T.

The LWE problem is fundamental in lattice-based cryptography as it allows
to construct a wide range of cryptographic primitives, from the basic ones,
as public-key encryption (e.g. [Reg05,MP12]), to the most advanced ones, as
fully homomorphic encryption (e.g. [BGV12,BV14,DM15]) or non-interactive
zero-knowledge proof systems (e.g. [PS19]). A very appealing aspect of LWE is
its connection to well-studied lattice problems. Lattices are discrete additive
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 289–317, 2020.
https://doi.org/10.1007/978-3-030-64834-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_10

290 K. Boudgoust et al.

subgroups of R
n and arise in many different areas of mathematics, such as

number theory, geometry and group theory. There are several lattice problems
that are conjectured to be computationally hard to solve, for instance, the prob-
lem of finding a set of shortest independent vectors (SIVP) or the decisional
variant of finding a shortest vector (GapSVP). A standard relaxation of those
two problems consists in solving them only up to a factor γ, denoted by SIVPγ

and GapSVPγ , respectively. In the seminal work of Regev [Reg05,Reg09], a
worst-case to average-case quantum reduction from GapSVPγ or SIVPγ to LWE
was established. In other words, if there exists an efficient algorithm that
solves LWE, then there also exists an efficient quantum algorithm that solves
GapSVPγ and SIVPγ in the worst-case. Later, Peikert [Pei09] showed a classical
reduction from GapSVPγ to LWE, but requiring the resulting modulus q to be
exponentially large in the dimension n. With the help of a modulus reduction,
Brakerski et al. [BLP+13] proved the hardness of LWE via a classical reduction
from GapSVPγ , for any polynomial-sized modulus q.

Structured Variants. Cryptographic protocols, whose security proofs rely on
the hardness of LWE, inherently suffer from large public keys, usually consist-
ing of m elements of Z

n
q , where m ∈ O(n log2 n). To improve their efficiency,

structured variants of LWE have been proposed, e.g., [SSTX09,LPR10,LS15].
Within this paper, we focus on the module learning with errors (M-LWE) prob-
lem, first defined by Brakerski et al. [BGV12] and thoroughly studied by Langlois
and Stehlé [LS15]. Instead of working over integers, it uses a more algebraic
setting. Let K be a number field of degree n and R its ring of integers with
dual R∨. Further, let q and d be positive integers. Let ψ be a distribution on the
torus TR∨ = KR/R∨, where KR = K ⊗Q R, and let s ∈ (R∨

q)d be a secret vector.
An M-LWEn,d,q,ψ sample is given by (a, b = 1

q 〈a, s〉 + e), where a ← U((Rq)d)
and e ← ψ. Again, usually ψ is a Gaussian distribution Dα of width α. We refer
to the special case of d = 1 as the ring learning with errors (R-LWE) problem.

Similar to its unstructured counterpart, M-LWE also enjoys worst-case to
average-case connections from lattice problems such as SIVPγ [LS15]. Whereas
the hardness results for LWE start from the lattice problem in the class of general
lattices, the set has to be restricted to module lattices in the case of M-LWE.
These module lattices correspond to modules in the ring R and we refer to
the related lattice problem as Mod-SIVPγ and Mod-GapSVPγ , respectively.
Whereas both problems are conjectured to be hard to solve for γ polynomial
in the lattice dimension, the problem Mod-GapSVPγ becomes easy in the spe-
cial case of module lattices of rank 1 as their minimum can also be bounded
below [PR07].

Since its introduction, the M-LWE problem has enjoyed more and more popu-
larity as it offers a fine-grained trade-off between concrete security and efficiency.
Within the NIST standardization process1, several third round candidates rely
on the hardness of M-LWE, e.g., the signature scheme Dilithium [DKL+18] and
the key encapsulation mechanism Kyber [BDK+18] from the CRYSTALS suite.

1 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Towards Classical Hardness of Module-LWE: The Linear Rank Case 291

Binary Secret. Several variants of LWE have been introduced during the last 15
years. One very interesting and widely-used version is the binary secret learning
with errors (bin-LWE) problem, where the secret vector s is chosen from {0, 1}n.
Besides gaining in efficiency, this variant also plays an important role in some
applications like fully homomorphic encryption schemes, e.g., [DM15]. A first
study of this problem was provided by Goldwasser et al. [GKPV10] in the
context of leakage-resilient cryptography. Whereas their proof structure has
the advantage of being easy to follow, their result suffers from a large error
increase. Informally, they showed a reduction from LWE�,q,Dα

to bin-LWEn,q,Dβ
,

where α
β = negl(n) and n ≥ � log2 q+ω(log2 n). Later, Brakerski et al. [BLP+13]

improved the state of the art in order to show the classical hardness of LWE
with a polynomial-sized modulus. Micciancio [Mic18] published another reduc-
tion from LWE to its binary version. Whereas the two reduction techniques dif-
fer, both paper achieved similar results. The dimension is still increased roughly
by a factor log2 q, but the error only by a factor of

√
n, where n is the result-

ing LWE dimension. More concretely, in [BLP+13] a reduction from LWE�,q,Dα

to bin-LWEn,q,Dβ
is shown, where α

β ≤ 1√
10n

and n ≥ (� + 1) log2 q + ω(log2 n).
The increase in dimension from � to roughly � log2 q is reasonable, as it essen-
tially preserves the number of possible secrets. As stated by Micciancio [Mic18],
an important open problem is whether similar results carry over to the structured
variants, in particular to M-LWE, which seems to be an interesting problem to
use in practice.

Our Contributions. Our first main contribution is a reduction from M-LWE
to its binary secret version, bin-M-LWE, if the module rank d is at least of
size log2 q + ω(log2 n), where n denotes the degree of the underlying number field
and q the modulus. To the best of our knowledge, this is the first result on the
hardness of a structured variant of LWE with binary secret. We then use this new
result to show our second main contribution, the classical hardness of M-LWE
for any polynomial-sized modulus p and module rank d at least 2n + ω(log2 n),
assuming the hardness of Mod-GapSVPγ with module rank at least 2. This
was stated as an open problem by Langlois and Stehlé [LS15], as only quantum
hardness of M-LWE for any polynomial-sized modulus p was known.

Technical Overview. At a high level, we follow the structure of the classical
hardness proof of LWE from Brakerski et al. [BLP+13]. Overall, we need three
ingredients: First, the classical hardness of M-LWE with an exponential-sized
modulus. As a second component, we need the hardness of M-LWE using a
binary secret, and finally, a modulus reduction technique.

We begin with the hardness of bin-M-LWE in Sect. 3. We follow the original
proof structure of Goldwasser et al. [GKPV10], while achieving much better
parameters by using the Rényi divergence instead of the statistical distance.
The improvement on the noise rate compared to [GKPV10] stems from the
fact that the Rényi divergence only needs to be constant for the reduction to
work, compared to negligibly close to 0 for the statistical distance. Using the
Rényi divergence as a tool for distance measurement requires to move to the
search variants of M-LWE and its binary version, respectively. Additionally, it
asks to fix the number of samples m a priori, which we denote by a suffix m,

292 K. Boudgoust et al.

i.e., M-LWEm
n,d,q,ψ. Throughout the paper, we assume that m is polynomial in the

security parameter. At the core of the hardness proof of bin-M-LWE lies a lossy
argument, where the public matrix A is replaced by a lossy matrix B · C + Z,
which corresponds to the second part of some multiple-secrets M-LWE sample.
To argue that an adversary cannot distinguish between the two cases, we need
the hardness of the decisional M-LWE problem as well. However, prior to our
work, the hardness of decisional M-LWE was only proven for polynomial-sized
modulus, see [LS15]. For our purpose, we need the hardness of decisional M-LWE
with an exponential-sized modulus. We solve this problem by adapting the main
result of Peikert et al. [PRS17] to the module setting (Lemma 12).

This leads us to the first ingredient, the classical hardness of M-LWE with
an exponential-sized modulus. In their introduction, Langlois and Stehlé [LS15]
claimed that Peikert’s dequantization [Pei09] carries over to the module case.
In this paper, we prove this claim in Theorem 4. The proof idea is the same
as the one from Peikert, but with two novelties. First, we look at the struc-
tured variants of the corresponding problems, i.e., GapSVP over module lattices
and M-LWE, where the underlying ring R is the ring of integers of a number
field K. Second, we replace the main component, a reduction from the bounded
distance decoding (BDD) problem to the search version of LWE, by the reduc-
tion from the gaussian decoding problem (GDP) over modules to the decisional
version of M-LWE (Lemma 12, adapted from [PRS17]). Thus, we also generalize
the hardness of the decisional variant of M-LWE to all number fields K, not only
cyclotomic fields as in [LS15].

Finally, we provide a modulus reduction technique, the last required ingredi-
ent, where the rank of the underlying module is preserved. This corresponds to
the modulus reduction for LWE shown by Brakerski et al. [BLP+13, Cor. 3.2].
Prior to this paper, Albrecht and Deo [AD17] adapted the more general result
from [BLP+13, Thm. 3.1], from which the necessary Corollary 3.2 is deduced.
Thus, in Sect. 4.1, we first recall their general result [AD17, Thm. 1] and then
derive Corollary 1, that we need, from it. The quality of the latter depends on the
underlying ring structure and how the binary secret distribution behaves. For
the case of power-of-two cyclotomics, we provide concrete bounds. This involves
the computation of lower and upper bounds of the singular values of the rota-
tion matrix. Note that Langlois and Stehlé [LS15] proved a modulus switching
result from modulus q to modulus p, but the error increases at least by a mul-
tiplicative factor q

p , which is exponential if q is exponential-sized and p only
polynomial-sized. Further note that the reason why we need to go through the
binary variant of M-LWE is because we want to keep the noise amplification
during the modulus switching part as small as possible.

Putting the Ingredients Together. We now explain how to complete the
proof of our second main contribution, the classical hardness of M-LWE for any
polynomial-sized modulus p and module rank d at least 2n+ω(log2 n), as stated
in Theorem 2. See Fig. 1 for an overview of the full proof.

Step 1: Classical worst-case to average-case reduction. Our result holds for any
number field K of degree n with ring of integers R. Let � ≥ 2 denote the rank
of the R-module. Informally, Theorem 4 shows a reduction from Mod-GapSVPγ

Towards Classical Hardness of Module-LWE: The Linear Rank Case 293

Fig. 1. Overview of the complete classical hardness proof of M-LWE for linear rank d
and arbitrary polynomially large modulus p̂, as stated in Theorem 2 for K the ν-th
cyclotomic number field of degree n. The parameter Δ is determined by the underlying
ring R and is poly(n) for the case of power-of-two cyclotomics.

to M-LWEn,�,q,Υα
, where α ∈ (0, 1), γα ≥ n�

√
� and the modulus q ≥ 2

n�
2 .

Here, Υα defines a distribution on some special elliptical Gaussian distributions
in the canonical embedding, which we define properly later.

Step 2: Hardness of the binary secret variant. Theorem 1 shows a reduction
from M-LWEm,d

n,�,q,DR∨,α′q
and M-SLWEm

n,�,q,DR∨,βq
to bin-M-SLWEm

n,d,q,DR∨,βq
,

where the underlying number field K = Q(ζ) is a cyclotomic field, d ≥
� · log2 q + ω(log2 n) and β ≥ α′ · √

mn2d. Further, the modulus q has to be

294 K. Boudgoust et al.

prime and is preserved by the reduction. The starting error distribution is given
by a discrete Gaussian DR∨,α′q, where α′ = α·ω(log2 n). We explain in Lemma 13
how to move from Υα to DR∨,α′q. Again, the Gaussian distribution is defined
with regard to the canonical embedding, but the binary secret is taken with
regard to the coefficient embedding as we argue below.

Step 3: Modulus reduction. Using Corollary 1, we show a reduction from the
problem bin-M-SLWEm

n,d,q,D√
2β

to bin-M-SLWEm
n,d,p,Dβ′ , where q ≥ p ≥ 1

and (β′)2 ≥ (
√

2β)2 + Δ. Note that we show in Lemma 14 how to move
from DR∨,βq to D√

2β . In the case of power-of-two cyclotomics (Corollary 2)
the additional error factor is Δ = 2dr2, with r polynomial in n.

Step 4: Search to decision. To conclude the classical hardness result of deci-
sional M-LWE with polynomial-sized modulus p, we use the search to deci-
sion reduction from [LS15, Section 4.3], which is restricted to any ν-th cyclo-
tomic field such that p is prime and satisfies p = 1 mod ν. Adding a modulus
switching step [LS15, Thm. 4.8], we can then reduce to any polynomial-sized
modulus p̂ close to p by increasing the noise from β′ to β̂ ≥ β′ · max(1, p

p̂) ·
n3/4d1/2ω(log2

2(nd)).

Canonical Versus Coefficient Embedding. In previous publications about
structured variants of LWE, many authors argued in praise of the canonical
embedding σ : K → H for the sake of achieving tighter reductions, e.g. [LPR10].
That is also the reason why most of the former results that we use within our
proofs are formulated in the canonical embedding. However, it should be ques-
tioned again for M-LWE with a binary secret. In practice, a small secret means
that its coefficients, when seen as a polynomial, are small. In particular, the
coefficients of a binary secret are chosen from the set {0, 1}. For instance, for
the security level 3, the signature scheme Dilithium [DKL+18] samples the coef-
ficients of the secret vector of polynomials from the set {−3, . . . , 3}. One big
disadvantage of using the canonical embedding σ is that the preimage of the
set {0, 1}n ∩ H under σ does not necessarily lie in R. More concretely, for the
case of power-of-two cyclotomics, one can show that the only elements in R
that have binary coefficients under the canonical embedding are the elements 0
and 1. Going from the coefficient to the canonical representation can be done
by the linear transformation defined by the Vandermonde matrix. Thus, the dis-
tortion between the two embeddings depends on the norm of the Vandermonde
matrix. Even though there are nice classes where the perturbation is relatively
small, see [RSW18], in general, the problem of a binary secret with regard to
the canonical embedding does not translate to a binary secret in the coefficient
embedding. That is why we keep the definition of the binary secret in Theorem 1
with regard to the coefficient embedding. In order to keep the parameters as small
as possible, this implies that the whole classical hardness proof then needs to be
restricted to the class of power-of-two cyclotomics, where both embeddings are
nearly isometric. Furthermore, the leftover hash lemma over rings (Lemma 7)

Towards Classical Hardness of Module-LWE: The Linear Rank Case 295

asks for the coefficient embedding. Note that elements sampled from a Gaussian
distribution are still sampled with respect to the canonical embedding.

Classical Hardness of R-LWE. The first result about the classical hard-
ness of R-LWE with exponential-sized modulus has been informally mentioned
in [BLP+13]. It can be achieved in two steps. First, by a dimension-modulus
switching as in [BLP+13], LWE in dimension d and modulus q can be reduced
to LWE in dimension 1 and modulus qd with a slightly increased error rate.
Then, by a ring switching technique as in [GHPS12], the latter one can be
reduced to R-LWE over a ring of any degree n and modulus qd, while keeping
the same error rate. For more details on the second step, we refer to [AD17,
App. B].

On the other hand, as a direct application of our classical hardness result
of M-LWE, we can provide an alternative solution for the classical hardness
result of R-LWE with exponential-sized modulus. The idea is that, using a rank-
modulus switching as in [WW19], we can instead reduce from M-LWE over d-
rank modules of n-degree ring and modulus q, to R-LWE with n-degree ring
and modulus qd, with a slightly increased error rate. However, we remark that
the underlying worst-case lattice problems are different for these two results.
Suppose that we consider the classical hardness of R-LWE over n-degree ring
and qd modulus where d = O (n). Then, the underlying problem is the stan-
dard GapSVP over general lattices of dimension O(

√
n) for the first result, while

it is Mod-GapSVP over rank-2 modules of O(n)-degree ring for the second one.

Related Work. We now compare the results of Theorem 1 with the former
results on LWE. The LWE problem can be seen as a special case of M-LWE,
where the ring is Z and the degree n equals 1. In this case, the rank � of the
module corresponds to the dimension of the LWE problem and should be poly-
nomial in the security parameter. Hence, the error-ratio is given by β ≥ α

√
m ·d

and d ≥ � log2 q + ω(log2 �). Asymptotically, we lose a factor of
√

d in the error-
ratio in our reduction compared to the former results for LWE [BLP+13,Mic18].
However, our proof is as direct and short as the original one in [GKPV10]. We
don’t need to define intermediate problems such as First-is-errorless LWE and
Extended-LWE as in [BLP+13] and no gadget matrix construction as in [Mic18].
Note that adapting the proof of [Mic18] asks to define a corresponding gadget
matrix, which does not seem to work in an obvious way and that adapting the
proof of [BLP+13] asks to define a corresponding notion of (a constant) quality
for binary secrets, which is not straightforward. By replacing the statistical dis-
tance by the Rényi divergence and switching to the search variants we obtain a
much better result than in the original paper from Goldwasser et al. [GKPV10].

Open Problems. In the course of this paper, we incurred several restrictions
on the class of number fields we look at. Lemma 10 restricts the hardness
proof of bin-M-SLWE (Theorem 1) to cyclotomic fields, in order to bound the
norm of the Vandermonde matrix. The hardness of bin-M-SLWE for a rank
which is smaller than log2 q + ω(log2 n), in particular for binary R-LWE, is
still an open problem. In practice, we usually chose a small constant rank

296 K. Boudgoust et al.

(<10), as for instance in the submission to the NIST standardization pro-
cess Kyber [BDK+18]. Furthermore, adapting the techniques of Brakerski et
al. [BLP+13] and Micciancio [Mic18] to the module setting may help to fur-
ther improve the error-ratio by a factor of

√
nd. Further, quantifying the error

increase in the modulus reduction from Sect. 4.1 for other number fields than
power-of-two cyclotomics may be interesting. The current bounds heavily depend
on the singular values of the secret’s rotation matrix, which further depend on
the underlying number field.

2 Preliminaries

Let q be a positive integer, then Zq denotes the ring of integers modulo q. For
any n ∈ N, we represent the set {1, . . . , n} by [n]. Vectors are denoted in bold low-
ercase and matrices in bold capital letters. By aT (resp. a†) and AT (resp. A†)
we denote the transpose (resp. conjugate transpose) of the vector a and the
matrix A. The standard basis of C

n is identified by {ei}i∈[n]. For a ∈ C
n, we

define diag(a) = (aiδij)i,j∈[n] to be the diagonal matrix whose diagonal entries
are the entries of a, where δij denotes the Kronecker delta. The identity matrix
of order n is denoted by In. For any a ∈ R

n, we set ‖a‖∞ and ‖a‖2 as the infin-
ity and the Euclidean norm, respectively. For any matrix A = (aij)i∈[m],j∈[n],
we define the norm ‖A‖ = maxj∈[n] ‖aj‖2, where aj is the j-th column vec-
tor of A for j ∈ [n]. Further, we denote by ‖A‖F the Frobenius norm given
by ‖A‖2

F =
∑

i∈[m]

∑
j∈[n] aij

2 and, by GS(A) = (GS(aj))j∈[n] the Gram–
Schmidt orthogonalization of A from left to right.

2.1 Algebraic Number Theory

A number field K = Q(ζ) of degree n is a finite extension of the rational num-
ber field Q obtained by adjoining an algebraic number ζ. We define the tensor
field KR = K ⊗Q R which can be seen as the finite field extension of the reals
by adjoining ζ. The set of all algebraic integers of K defines a ring, called the
ring of integers which we denote R. It is always true that Z[ζ] ⊆ R, where this
inclusion can be strict. Lemma 7 is restricted to the class of number fields where
the equality R = Z[ζ] holds. This is the case for some quadratic extensions (i.e.,
when ζ =

√
d with d square-free and d �= 1 mod 4), cyclotomic fields (i.e., when ζ

is a primitive root of the unity) and number fields with a defining polynomial f
of square-free discriminant Δf .

A subset M ⊆ Kd is an R-module of rank d if it is closed under addition
by elements of M and under multiplication by elements of R. It is a finitely
generated module if there exists a finite family {bk}k of vectors in Kd such
that M =

∑
k R · bk.

Space H. We introduce the space H ⊆ R
t1 × C

2t2 , where n = t1 + 2t2, as

H =
{
x = (x1, . . . , xn)T ∈ R

t1 × C
2t2 : xt1+t2+j = xt1+j ,∀j ∈ [t2]

}
.

Towards Classical Hardness of Module-LWE: The Linear Rank Case 297

For j ∈ [t1], we set hj = ej , and for j ∈ {t1 +1, . . . , t1 +t2}, we set hj = 1√
2
(ej +

ej+t2) and hj+t2 = i√
2
(ej −ej+t2). The set {hj}j∈[n] forms an orthonormal basis

of H as a real vector space, showing that H is isomorphic to R
n. The change of

basis is given by the unitary matrix

UH =

⎡

⎢
⎣

It1 0 0
0 1√

2
It2

i√
2
It2

0 1√
2
It2

−i√
2
It2

⎤

⎥
⎦ .

Canonical Embedding. Any number field K = Q(ζ) of degree n has exactly n
field homomorphisms σi : K → C fixing each element of Q, where i ∈ [n].
Let σ1, . . . , σt1 be the real embeddings and σt1+1, . . . , σt1+2t2 the complex embed-
dings. The complex ones come in conjugate pairs, thus σi = σi+t2 for i ∈
{t1 + 1, . . . , t1 + t2}. In the particular case of cyclotomic fields, all n embed-
dings are complex. The canonical embedding σ is defined as the map σ : K → H,
where σ(x) = (σi(x))i∈[n]. It describes a field homomorphism, where multiplica-
tion and addition in H are component-wise. By abuse of notation, for an x ∈ Kd,
we also write σ(x) to denote the vector (σ(xi))i∈[d] ∈ C

nd. We can repre-
sent σ(x) via the real vector σH(x) ∈ R

n through the change of basis described
above, i.e., σH(x) = (UH)† · σ(x). Note that multiplication is not component-
wise for σH . More concretely, in the basis {ei}i∈[n], multiplication by x ∈ K
can be described as the left multiplication by the matrix X = (xij)i,j∈[n],
where xij = σi(x) · δij . Hence, changing to the basis {hi}i∈[n] leads to the corre-
sponding matrix of multiplication XH = (UH)†XUH , having the same singular
values as X, given by |σi(x)| for i ∈ [n].

The trace Tr : K → Q is defined as the sum of the embeddings, i.e., for
any x ∈ K, we have Tr(x) =

∑
i∈[n] σi(x). For any fractional ideal I ⊂ K, we

define the dual I∨ of I as I∨ = {x ∈ K : Tr(xI) ⊆ Z} . In the case of R = Z[ζ],
it yields R∨ = 1

f ′(ζ)R, where f is the defining polynomial of K. In particular,
for K ∼= Q[x]/〈xn + 1〉 the ν-th cyclotomic field, where ν is a power of two
and n = ν/2, it holds R∨ = 1

nR.

Coefficient Embedding. Every number field K = Q(ζ) of degree n defines
an n-dimensional vector space over Q with basis {1, ζ, . . . , ζn−1}. Thus, every
element x ∈ K can be written as x =

∑n−1
i=0 xiζ

i, where xi ∈ Q. The coeffi-
cient embedding τ : K → R

n is the map that sends every element x ∈ K to its
coefficient vector τ(x) = (x0, . . . , xn−1)T . Multiplication by x in the coefficient
embedding can be represented by a matrix multiplication, where we denote the
corresponding matrix by Rot(x) ∈ R

n×n. Note that the matrix Rot(x) is invert-
ible in K for every x �= 0 and that its concrete form depends on the field K.
Again, looking at the example, where K = Q(ζ) is the ν-th cyclotomic field,

298 K. Boudgoust et al.

with ν a power of two and thus K ∼= Q[x]/〈xn + 1〉 with n = ν/2, it yields

Rot(x) =

⎡

⎢
⎢
⎣

x0 −xn−1 − −x1

x1 x0 � |
| | � −xn−1

xn−1 xn−2 − x0

⎤

⎥
⎥
⎦ .

As both embeddings play an important role in this paper, we recall how to go
from one to the other. For any x ∈ K, the embeddings σ(x) and τ(x) are linked
through the Vandermonde matrix V of the roots of the defining polynomial f .
For i ∈ [n], we let αi = σi(ζ) be the i-th root of f . Then, σ(x) = V ·τ(x), where

V =

⎡

⎢
⎢
⎣

1 α1 − αn−1
1

1 α2 − αn−1
2

| | |
1 αn − αn−1

n

⎤

⎥
⎥
⎦ .

2.2 Lattices

An n-dimensional lattice Λ ⊆ R
n is a discrete additive subgroup of R

n. Within
this work, we assume Λ to be of full rank n, i.e., span

Q
(Λ) = R

n. It can be
seen as the set of all linear integer combinations of some n linearly indepen-
dent vectors B = {bi}i∈[n] ⊆ R

n, thus Λ =
{∑

i∈[n] zibi : zi ∈ Z

}
. We call B

a basis of Λ. The minimum λ1(Λ) of a lattice Λ is the Euclidean norm of
any of its shortest nonzero vectors. The dual lattice Λ∗ is defined by Λ∗ =
{x ∈ R

n : 〈x,y〉 ∈ Z,∀y ∈ Λ}. If B is basis of Λ, then B∗ = (BT)−1 is a basis
of Λ∗. The fundamental parallelepiped P(B) of the lattice Λ generated by the
basis B = {bi}i∈[n] is defined as P(B) =

{∑
i∈[n] zibi : zi ∈ [− 1

2 , 1
2

)
,∀i ∈ [n]

}
.

For any w ∈ R
n, we write x = w mod B to denote the unique point x ∈ P(B)

such that w − x ∈ Λ. One of the most studied lattice problems is the shortest
vector problem (SVP). It exists in both search and decisional versions, but within
this paper we are only using the approximation variant of the latter.

Definition 1 (Shortest vector problem). Let γ = γ(n) ≥ 1 be a function
in the dimension n. An input to the shortest vector problem GapSVPγ is a
pair (B, δ), where B is a basis of an n-dimensional lattice Λ and δ > 0 is
a real number. It is a YES instance if λ1(Λ) ≤ δ, and it is a NO instance
if λ1(Λ) > γ · δ. The problem asks to distinguish whether a given instance is a
YES or a NO instance. If λ1(Λ) falls in (δ, γ · δ], we can return anything.

Let R be of degree n. Any rank d module M ⊆ Kd of R is mapped by the canon-
ical embedding (σH , . . . , σH) : Kd → R

nd to a lattice in R
nd. By abuse of nota-

tion, we simply write σH . Such lattices are called module lattices. The GapSVPγ

restricted to module lattices is denoted by Mod-GapSVPγ . For any x ∈ Kd, we
define three different norms ‖x‖2 = ‖(σH(xk))k∈[d]‖2, ‖x‖∞ = ‖(σH(xk))k∈[d]‖∞
and ‖x‖2,∞ = maxi∈[n](

∑
k∈[d] |σi(xk)|2)1/2. Within this paper, we further need

two intermediate lattice problems, presented in the setting of module lattices.

Towards Classical Hardness of Module-LWE: The Linear Rank Case 299

Definition 2 (Bounded distance decoding). Let K be a number field with R
its ring of integers of degree n and M ⊆ Kd be a module of R of rank d. Further,
let δ be a positive real number. An input to the bounded distance decoding
problem BDDM,δ is a point y ∈ Kd of the form y = x + e, where x ∈ M
and ‖e‖2,∞ ≤ δ. The problem asks to find x.

By Dg we denote the continuous Gaussian distribution of width g on Kd
R
, which

we define properly in the next subsection.

Definition 3 (Gaussian decoding problem). Let K be a number field with R
its ring of integers of degree n and M ⊆ Kd be a module of R of rank d. Fur-
ther, let g > 0 be a Gaussian parameter. An input to the gaussian decoding
problem GDPM,g is a coset y + M , where y ← Dg. The goal is to find y.

Every GDPM,g instance defines a BDDM,δ one with δ = g ·√d ·ω(
√

log2 n). Note
that GapSVP, BDD and GDP can also be defined with regard to other norms.

Lemma 1 ([LLL82], [Bab85]). There exists a polynomial-time algorithm that
solves BDDM,δ for δ = 2− N

2 · λ1(M), where N = nd.

2.3 Probabilities

For a set S and a distribution χ on S, we denote by x ← χ the process of
sampling x ∈ S according to χ. By U(S) we denote the uniform distribution
on S. For s > 0 and a vector c ∈ R

n, the Gaussian function ρs,c is defined
by ρs,c(x) = exp

(
−π‖x−c‖2

2
s2

)
. By normalizing the Gaussian function, we obtain

the density function of the n-dimensional continuous Gaussian distribution Ds,c

of width s and center c. If the center is the zero vector 0, we simply omit
the index c and write Ds. For an n-dimensional lattice Λ ⊆ R

n, the discrete
Gaussian distribution DΛ,s,c of width s and center c for Λ is defined by its
density function DΛ,s,c(x) = Ds,c(x)

Ds,c(Λ) , where Ds,c(Λ) =
∑

y∈Λ Ds,c(y). Again, if
the center is 0, we simply omit the index c and write DΛ,s.

Using the identification of H as R
n, we can extend the definition of the

continuous Gaussian distribution to an elliptical Gaussian distribution in the
basis {hi}i∈[n] as follows. Let r = (r1, . . . , rn)T ∈ R

n be a vector such that ri > 0
for all i ∈ [n] and rt1+j = rt1+t2+j for all j ∈ [t2], where n = t1 + 2t2. A sample
from Dr on H is given by

∑
i∈[n] xihi, where xi ← Dri

over R for i ∈ [n].
By applying the inverse of the canonical embedding σ, this provides Gaussian
distributions on Kd

R
for any d. For 0 ≤ α < α′, we define Ψ[α,α′] to be the set of

Gaussian distributions Dr with α < ri ≤ α′ for all i ∈ [n]. If α = 0, we simply
write Ψ≤α′ . Further, for any positive real α, we define the distribution Υα on
distributions on H as done by Peikert et al. [PRS17]. Fix an arbitrary f(n) =
ω(
√

log2 n). A distribution sampled from Υα is an elliptical Gaussian Dr, where r
is sampled as follows: For i ∈ [t1], sample xi ← D1 and set r2

i = α2(x2
i +f2(n))/2.

300 K. Boudgoust et al.

For i ∈ {t1 + 1, . . . , t1 + t2}, sample xi, yi ← D1/
√

2 and set r2
i = r2

i+t2
=

α2(x2
i +y2

i +f2(n))/2. Additionally, we define the smoothing parameter ηε(Λ) of a
lattice Λ which was first introduced by Micciancio and Regev [MR07]. Informally,
this gives a threshold above which many properties of the continuous Gaussian
distribution also hold for its discrete counterpart.

Definition 4 (Smoothing parameter). Let Λ be an n-dimensional lattice
and ε be a positive real number, the smoothing parameter ηε(Λ) is defined as
the smallest positive real s such that ρ1/s(Λ∗ \ {0}) ≤ ε.

In particular, we need the following bounds on the smoothing parameter.

Lemma 2 (Lem. 1.5 [Ban93] and Claim 2.13 [Reg05]). Let Λ be an n-
dimensional lattice and ε = exp(−n), it holds

√
n√

πλ1(Λ∗)
≤ ηε(Λ) ≤

√
n

λ1(Λ∗) .

The statistical distance is a widely used measure of distribution closeness.

Definition 5 (Statistical distance). Let P and Q be two discrete probabil-
ity distributions on a discrete domain E. The statistical distance is defined
as Δ(P,Q) = 1

2

∑
x∈E |P (x) − Q(x)|.

The statistical distance fulfills the probability preservation property.

Lemma 3. Let P,Q be two probability distributions with Supp(P) ⊆ Supp(Q)
and E ⊆ Supp(Q) be an arbitrary event. Then, P (E) ≤ Δ(P,Q) + Q(E).

Within the paper, we need the following two results about the statistical distance
of two Gaussian distributions.

Lemma 4 (Thm. 1.2 [DMR18]). Let Dg denote the continuous Gaussian dis-
tribution on KR and let z ∈ K. The statistical distance between Dg and Dg,z is
bounded above by

√
2π‖z‖2

g .

Lemma 5 (Claim 2.2 [Reg05]). Let α and β be positive reals such that α < β.
The statistical distance between Dα and Dβ is bounded above by 10 ·

(
β
α − 1

)
.

The following lemma describes the behavior of the sum of a continuous Gaussian
and a discrete one.

Lemma 6 (Claim. 3.9 [Reg09]). Let Λ be an n-dimensional lattice, s > 0, r >
0 and t =

√
r2 + s2. Assume that rs

t ≥ ηε(Λ) for some ε ∈ (0, 1
2). Consider the

distribution Y on R
n obtained by sampling from DΛ,r and then adding a vector

taken from Ds. Then, it yields Δ(Y,Dt) ≤ 2ε.

Further, we need a ring version of the leftover hash lemma, where the secret
vector contains binary polynomials. For this purpose, we adapt a result from
Micciancio [Mic07]. A proof can be found in the full version [BJRW20].

Towards Classical Hardness of Module-LWE: The Linear Rank Case 301

Lemma 7. Let n,m, d, q be positive integers, with q prime. Further, let f be the
defining polynomial of degree n of the number field K ∼= Q[x]/〈f〉 such that its
ring of integers is R = Z[x]/〈f〉. We set Rq = R/qR and R2 = R/2R. Then,

Δ ((A,Ax), (A,v)) ≤ 1
2

√(

1 +
qd

2m

)n

− 1,

where A ← U((Rq)d×m), x ← U((R2)m) and v ← U((Rq)d).

In order to guarantee a statistical distance negligibly small in n for a fixed rank d,
we require m ≥ d log2 q + ω(log2 n). Note that the requirement Ω(log2 n) is not
strong enough as limn→∞

(
1 + 1

c·n
)n = e

1
c , for any positive constant c.

The Rényi divergence [R61,vEH14] defines another measure of distribution
closeness and was thoroughly studied for its use in cryptography as a powerful
alternative for the statistical distance measure by Bai et al. [BLL+15]. In this
paper, it suffices to use the Rényi divergence of order 2.

Definition 6 (Rényi divergence of order 2). Let P and Q be two discrete
probability distributions such that Supp(P) ⊆ Supp(Q). The Rényi divergence
of order 2 is defined as RD2(P‖Q) =

∑
x∈Supp(P)

P (x)2

Q(x) .

The Rényi divergence is multiplicative and fulfills the probability preservation
property, as proved by van Erven and Harremoës [vEH14].

Lemma 8. Let P,Q be two discrete probability distributions with Supp(P) ⊆
Supp(Q) and E ⊆ Supp(Q) be an arbitrary event. Further, let (Pn)n∈N,
(Qn)n∈N be two families of independent discrete probability distributions
with Supp(Pn) ⊆ Supp(Qn) for all n ∈ N. Then, the following properties are
fulfilled:

RD2

(
∏

n∈N

Pn‖
∏

n∈N

Qn

)

=
∏

n∈N

RD2(Pn‖Qn), and Q(E) · RD2(P‖Q) ≥ P (E)2.

In Sect. 3, we need the Rényi divergence of two shifted discrete Gaussians.

Lemma 9 (Adapted from Lem. 4.2 [LSS14]). Let s and ε be positive real
numbers with ε ∈ (0, 1), c be a vector of R

n and Λ be a full-rank lattice in R
n.

We assume that s ≥ ηε(Λ). Then,

RD2(DΛ,s,c‖DΛ,s) ≤
(

1 + ε

1 − ε

)2

· exp
(

2π‖c‖2

s2

)

.

2.4 The Module Learning with Errors Problem

The module variant of LWE was first defined by Brakerski et al. [BGV12] and
thoroughly studied by Langlois and Stehlé [LS15]. It describes the following
problem. Let K be a number field of degree n and R its ring of integers with

302 K. Boudgoust et al.

dual R∨. Further, let d denote the rank and let ψ be a distribution on KR

and s ∈ (R∨
q)d be a vector. We let A

(Rd)
s,ψ denote the distribution on (Rq)d ×

TR∨ obtained by choosing a vector a ← U((Rq)d), an element e ← ψ and
returning (a, 1

q 〈a, s〉 + e mod R∨).

Definition 7. Let q, d be positive integers with q ≥ 2. Let Ψ be a family of distri-
butions on KR. The search version M-SLWEn,d,q,Ψ of the module learning with
errors problem is as follows: Let s ∈ (R∨

q)d be secret and ψ ∈ Ψ . Given arbitrar-

ily many samples from A
(Rd)
s,ψ , the goal is to find s. Let Υ be a distribution on a

family of distributions on KR. Its decision version M-LWEn,d,q,Υ is as follows:
Choose s ← U((R∨

q)d) and ψ ← Υ . The goal is to distinguish between arbitrar-

ily many independent samples from A
(Rd)
s,ψ and the same number of independent

samples from U((Rq)d × TR∨).

Fixed Number of Samples. When using the Rényi divergence as a tool to
measure the distance of two given probability distributions, we need to fix the
number of requested samples a priori. Let m be the number of requested M-LWE
samples (ai,

1
q 〈ai, s〉 + ei) for i ∈ [m], then we consider the matrix A ∈ Rm×d

q

whose rows are the ai’s and we set e = (e1, . . . , em)T . We obtain the representa-
tion (A, 1

qA ·s+e), where s ∈ (R∨
q)d. We denote this problem by M-LWEm

n,d,q,Υ.

Multiple Secrets. Let k,m be natural numbers, where m denotes the number of
requested samples of A

(Rd)
s,ψ . In the multiple secrets version, the secret vector s ∈

(R∨
q)d is replaced by a secret matrix S ∈ (R∨

q)d×k and the error vector e ← ψm

by an error matrix E ← ψm×k. There is a simple polynomial-time reduction
from M-LWE using a secret vector to M-LWE using a secret matrix for any k
polynomially large in d via a hybrid argument, as given for instance in [Mic18,
Lem. 2.9]. We denote the corresponding problem by M-LWEm,k

n,d,q,Υ.

Binary Secret. Another possibility is to choose a small secret. We are interested
in the case where the secret vector s is a binary vector, thus chosen from the
set (R∨

2)d. We denote the corresponding problem by bin-M-LWEn,d,q,Υ. Note
that R∨

2 is defined with regard to the coefficient embedding τ , see Sect. 2.1.

Discrete Version. As pointed out by Lyubashevsky et al. [LPR10], sometimes it
can be more convenient to work with a discrete variant, where the second compo-
nent b of each sample (a, b) is taken from a finite set, and not from the continuous
domain TR∨ . Indeed, for the case of M-LWE, if the rounding function �·� : KR →
R∨ is chosen in a suitable way, see Lyubashevsky et al. [LPR13, Sec. 2.6] for
more details, then every sample (a, b = 1

q 〈a, s〉+ e) ∈ (Rq)d × TR∨ of the distri-

bution A
(Rd)
s,ψ can be transformed to (a, �q · b�) = (a, 〈a, s〉 + �q · e� mod qR∨) ∈

(Rq)d × R∨
q . For technical reasons, we use the latter representation in Sect. 3.

Towards Classical Hardness of Module-LWE: The Linear Rank Case 303

3 Hardness of Binary M-LWE

In the following, we show a reduction from M-LWE to its binary secret version,
if the module rank d is at least of size log2 q + ω(log2 n), where q is the modulus
and n is the degree of the underlying number field.

Our proof follows the proof structure of Goldwasser et al. [GKPV10], but
achieves better parameters by using the Rényi divergence, while being as direct
and short as the original proof. The improvement on the noise rate α

β compared
to [GKPV10] stems from the fact that the Rényi divergence only needs to be
constant for the reduction to work and not necessarily negligibly close to 1
(compared to negligibly close to 0 for the statistical distance). However, using
the Rényi divergence as a tool for distance measurement requires to move to the
search variants of M-LWE and its binary version, respectively.

Within the proof of Theorem 1 we need to apply the leftover hash lemma
over rings (Lemma 7), and thus need to require that the modulus q is prime.
Further, we need Lemma 10, which only holds for cyclotomic number fields K =
Q(ζ), where ζ is a primitive root of unity. As stated in Sect. 2.1, in this case it
holds R∨

q = 1
f ′(ζ)Rq for all q ∈ Z. In order to ease notation, we set λ = f ′(ζ)

and write x = 1
λ · x̃ for every x ∈ R∨

q , where x̃ ∈ Rq.
In the following, we study the M-LWE problem in its discrete version, as

introduced in Sect. 2.4. This is convenient as we replace in the course of the
proof the public matrix A ∈ (Rq)m×d by the second part of some multiple-
secret M-LWE sample. Thus, we need to ensure that the second part is also
an element of (Rq)m×d. Hence, we represent m samples by (A,A · s + e mod
qR∨) ∈ (Rq)m×d × (R∨

q)m, with s ∈ (R∨
2)d and e ← ψ, where ψ is a distribution

on R∨. The theorem uses the discrete Gaussian distribution ψ = DR∨,αq, for
some positive real α.

Theorem 1. Let K be a cyclotomic number field of degree n with R its ring of
integers. Let �, d,m and q be positive integers with q prime and m polynomial
in n. Further, let α and β be positive real numbers such that α

β ≤ 1√
m·n2d

.
Let ε be a positive real number with ε ∈ [0, 1) such that βq ≥ ηε(R∨).
and ε = O(1

m). Then, for any d ≥ � · log2 q + ω(log2 n), there is a probabilis-
tic polynomial-time reduction from M-SLWEm

n,�,q,DR∨,βq
and M-LWEm,d

n,�,q,DR∨,αq

to bin-M-SLWEm
n,d,q,DR∨,βq

.

The degree n of the number field K and the number of samples m are preserved.
The reduction increases the rank of the module from � to � · log2 q + ω(log2 n)
and the Gaussian width from αq to αq · √

m · n2d. Further, M-LWEm
n,�,q,DR∨,αq

trivially reduces to M-SLWEm
n,�,q,DR∨,βq

, as β ≥ α.

Proof. Fix any n, �, d,m, q, α, β and ε as in the statement of the theorem. Given
a bin-M-SLWEm

n,d,q,DR∨,βq
sample (A,A · s + e) ∈ (Rq)m×d × (R∨

q)m, with s ∈
(R∨

2)d and e ← (DR∨,βq)m, the search problem asks to find s and e. In order to
prove the statement, we define different hybrid distributions:

304 K. Boudgoust et al.

– H0 : (A,A · s + e), as in bin-M-SLWEm
n,d,q,DR∨,βq

,
– H1 : (A′ = λ(BC+Z),A′ ·s+e), where B ← U((Rq)m×�), C ← U((R∨

q)�×d),
and Z ← (DR∨,αq)m×d and s, e as in H0,

– H2 : (B,C,Z,B(λCs) + Z(λs) + e), where B,C,Z, s, e as in H1,
– H3 : (B,C,Z,B(λCs) + e′), where e′ ← (DR∨,βq)m and B,C,Z, s as in H2,
– H4 : (B,C,Z,Bs′ + e′), where s′ ← U((R∨

q)�) and B,C,Z, e′ as in H3.

For i ∈ {0, . . . , 4}, we denote by Pi the problem of finding the secret s (resp. s′

in H4), given a sample of the distribution Hi. We say that problem Pi is hard
if for any probabilistic polynomial-time attacker A the advantage of solving Pi

is negligible, thus AdvPi
[A(Hi) = s] ≤ n−ω(1), where n is the degree of K. The

overall idea is to show that if P4 is hard, then P0 is hard as well.

Problem P4 is hard: By the hardness assumption of M-SLWEm
n,�,q,DR∨,βq

, it
yields

AdvP4 [A(H4) = s′] ≤ n−ω(1).

From P4 to P3: By the probability preservation property of the statistical dis-
tance (Lemma 3), we have

AdvP3 [A(H3) = s] ≤ AdvP4 [A(H4) = s′] + Δ(H3,H4).

The only difference between the distributions H3 and H4 is that the element λCs
in H3 is replaced by s′ in H4. Our aim is to show that λCs is statisti-
cally close to the uniform distribution on (R∨

q)�. We set C̃ = λC ∈ (Rq)�×d

and s = 1
λ s̃, where s̃ ∈ (R2)d. By the leftover hash lemma (Lemma 7) it yields

that the distribution (C̃, C̃s̃) is statistically close to the distribution (C̃, s̃′),
where s̃′ ← U((Rq)�), as d ≥ � log2 q + ω(log2 n). Dividing the first and the sec-
ond part of both distributions by λ preserves the statistical distance and yields
that the distribution (C, λCs) is statistically close to the distribution (C, s′),
where s′ ← U((R∨

q)�). Overall, it yields Δ(H3,H4) ≤ 1
2

√
(1 + q�/2d)n − 1. As

we require d ≥ � log2 q + ω(log2 n), we obtain Δ(H3,H4) ≤ n−ω(1).

From P3 to P2: By the probability preservation property of the Rényi divergence
(Lemma 8), we have

AdvP2 [A(H2) = s]2 ≤ AdvP3 [A(H3) = s] · RD(H2‖H3).

In order to compute the Rényi divergence of H2 and H3, we need to compute the
Rényi divergence of Z(λs) + e and e′. We claim that each of the m coefficients
of Z(λs) is bounded above by αqdn2 with probability 1 − 2−Ω(n), and provide
a detailed proof below in Lemma 10. Thus, it suffices to compute the Rényi
divergence of (DR∨,βq,c)m and (DR∨,βq)m, where c ∈ R∨ with norm bounded
above by αqdn2. Using that βq ≥ ηε(R∨), the multiplicativity of the Rényi
divergence (Lemma 8) and the result of Lemma 9 about the Rényi divergence of
shifted discrete Gaussians, we deduce

Towards Classical Hardness of Module-LWE: The Linear Rank Case 305

RD2 ((DR∨,βq,c)m‖(DR∨,βq)m) = RD2 (DR∨,βq,c‖DR∨,βq)
m

≤
(

1 + ε

1 − ε

)2m

· exp
(

2π‖c‖2

(βq)2

)m

≈
(

1 + ε

1 − ε

)2m

·
(

1 +
2π‖c‖2

(βq)2

)m

.

The last approximation comes from considering the function f(x) = exp(x),
developing its first-order Taylor expansion at the point 0, i.e. f(x) ≈ 1 + x, and
evaluating the function f at the small point 2π‖c‖2

(βq)2 . By setting 2π‖c‖2

(βq)2 ≤ 2π
m ,

which leads to α
β ≤ 1√

m·n2d
, we get exp

(
2π‖c‖2

(βq)2

)m

≈ e2π.
For the Rényi divergence to be bounded by a constant, we also need ε =

O(1
m). Indeed, we have

(
1+ε
1−ε

)2

=
(
1 + 4ε/1−ε

2

)2

< exp
(

4ε
1−ε

)
as
(
1 + x

y

)y

<

exp(x) for any x, y > 0. Without loss of generality, assume ε < 1
2 , then 1

1−ε < 2

and thus, we get
(

1+ε
1−ε

)2m

< exp(8mε) and therefore ε = O(1
m) suffices.

From P2 to P1: Since more information is given in distribution H2 than in
distribution H1, the problem P1 is harder than P2 and hence

AdvP1 [A(H1) = s] ≤ AdvP2 [A(H2) = s].

From P1 to P0: By the hardness assumption of M-LWEm,d
n,�,q,DR∨,αq

, the distri-
butions H0 and H1 are computationally indistinguishable. More concretely,

AdvP0 [A(H0) = s] ≤ AdvP1 [A(H1) = s] + d · AdvM-LWE

≤ AdvP1 [A(H1) = s] + d · n−ω(1)

where d is the number of secret vectors, represented as the columns of the
matrix C. Putting all equations from above together, we obtain

AdvP0 [A(H0) = s] ≤ AdvP1 [A(H1) = s] + d · AdvM-LWE

≤ AdvP2 [A(H2) = s] + d · AdvM-LWE

≤
√

AdvP3 [A(H3) = s] · RD2(H2‖H3) + d · AdvM-LWE

≤
√

(AdvP4 [A(H4) = s′] + Δ(H3,H4)) · RD2(H2‖H3)
+ d · AdvM-LWE

≤ n−ω(1).

��
To complete the proof above, we now show the following bound on the norm of
the product of some discrete Gaussian matrix (in the canonical embedding) and
a binary vector in the dual ring (in the coefficient embedding).

306 K. Boudgoust et al.

Lemma 10. Let K be a cyclotomic number field with R its ring of integers
of degree n. Let Z ← (DR∨,αq)m×d and s ← U((R∨

2)d), where R∨
2 = λR2 as

in the statement of Theorem 1 above. We set s̃ = λs. Then, with overwhelm-
ing probability ‖Zs̃‖2 ≤ αqn2d

√
m. In particular, the Euclidean norm of each

coefficient (Zs̃)i for i ∈ [m] is bounded above by αqn2d.

Proof. We want to bound the norm ‖Zs̃‖2 = ‖σH(Zs̃)‖2, where the latter norm
is taken in R

nm. Since σ and σH only differ by a unitary transformation, we can
consider σ instead of σH . For all i ∈ [m] it yields

σ((Zs̃)i) = σ

⎛

⎝
∑

j∈[d]

zij · s̃j

⎞

⎠ =
∑

j∈[d]

diag(σ(zij)) · σ(s̃j).

Let θ denote the ring homomorphism from Km×d → C
nm×nd, where

θ(Z) =

⎡

⎣
Z11 − Z1d

| � |
Zm1 − Zmd

⎤

⎦ , with Zij = diag(σ(zij)) ∈ C
n×n.

Then, σ(Zs̃) = θ(Z)σ(s̃) and thus ‖σ(Zs̃)‖2 ≤ ‖θ(Z)‖2 · ‖σ(s̃)‖2. Using the
Vandermonde matrix V to switch from the coefficient embedding τ to the
canonical embedding σ, we can bound ‖σ(s̃)‖2 ≤ ‖V‖2 · ‖τ(s̃)‖2 ≤ n · √

nd,
where we use that for cyclotomic number fields it yields ‖V‖2 ≤ ‖V‖F =
(∑

i,j∈[n] |αj−1
i |2

)1/2

≤ n (as α is a unit) and that τ(s̃) is a binary vector
of dimension nd. Further, for each i ∈ [m] and j ∈ [d] it holds ‖σ(zij)‖2 ≤ αq

√
n

with probability 1 − 2−Ω(n). Hence,

‖θ(Z)‖2 ≤ ‖θ(Z)‖F =
√∑

i∈[m]

∑

j∈[d]

∑

k∈[n]

|σk(zij)|2

=
√∑

i∈[m]

∑

j∈[d]

‖σ(zij)‖2
2 ≤ αq

√
nd

√
m.

Combining both bounds proves the claim. ��

4 Classical Hardness for Linear Rank Modules

In the following, we use the result from Sect. 3 to prove a classical reduction
from Mod-GapSVP to M-LWE for any polynomial-sized modulus p̂ and module
rank d at least 2n + ω(log2 n), for the case of power-of-two cyclotomics.

Theorem 2. Let ν be a power of 2, defining the ν-th cyclotomic number field
with R its ring of integers of degree n = ν/2. Let d, p̂,m be positive integers
and β̂ and γ be positive reals. Fix ε ∈ (0, 1

2) such that β̂ ≥ √
2 · 2−n · ηε(R∨)

Towards Classical Hardness of Module-LWE: The Linear Rank Case 307

and ε = O
(

1
m

)
. There is a classical probabilistic polynomial-time reduction

from Mod-GapSVPγ to M-LWEm
n,d,p̂,Υβ̂

, where d ≥ 2n + ω(log2 n) and

β̂ = Θ̃

(√
m · n

21
4

γ

)

.

We quickly recall the proof structure for Theorem 2 as pictured in Fig. 1 in the
introduction:

1. A reduction from Mod-GapSVP to M-LWE with an exponential-sized mod-
ulus q in Theorem 4, Sect. 4.2,

2. A reduction from M-LWE and M-SLWE to bin-M-SLWE in Theorem 1,
Sect. 3, still with an exponential-sized modulus q,

3. A modulus reduction from bin-M-SLWE with exponential-sized modulus q
to bin-M-SLWE with polynomial-sized modulus p in Corollary 1, Sect. 4.1
(Corollary 2 for the power-of-two cyclotomic case),

4. A trivial reduction from bin-M-SLWE to M-SLWE,
5. A reduction from M-SLWE to M-LWE with polynomial-sized prime modu-

lus p, satisfying p = 1 mod ν, using [LS15, Sec. 4.3],
6. A reduction from M-LWE with prime modulus p satisfying p = 1 mod ν

to M-LWE with arbitrary polynomially large modulus p̂.

We first provide a modulus reduction in Sect. 4.1, using the results of Albrecht
and Deo [AD17]. Finally, we adapt in Sect. 4.2 the classical reduction from
Peikert [Pei09] to the module setting. In Sect. 4.3, we explain how to switch
between different error distributions.

4.1 Modulus Switching

In order to prove the classical hardness of M-LWE, we provide a modulus
reduction, where the rank of the underlying module is preserved. This corre-
sponds to the modulus reduction for LWE shown by Brakerski et al. [BLP+13,
Cor. 3.2]. Note that Langlois and Stehlé [LS15] proved a modulus switching
result from M-LWEn,d,q,Υβ

to M-LWEn,d,p,Υβ′ , but the error increases at least
by a multiplicative factor q

p , which is exponential if q is exponential-sized and p
only polynomial-sized.

Prior to this paper, Albrecht and Deo [AD17] adapted the more general result
from [BLP+13, Thm. 3.1], from which Corollary 3.2 is deduced. Thus, we first
recall their general result [AD17, Thm. 1] and then derive the corollary we need
from it. Let K be a number field and let R be its ring of integers.

Theorem 3 (Thm. 1 [AD17]). Let d, d′, q, p be positive integers, ε ∈ (0, 1
2)

and G ∈ Rd′×d. Fix a vector s = (s1, . . . , sd)T ∈ (R∨
q)d. Further, let Λ be

the lattice given by Λ = 1
pG

T
HRd′

+ Rd with known basis BΛ in the canonical
embedding, let BR be some known basis of R in H and let BsjR be a known basis

308 K. Boudgoust et al.

of sjR in the canonical embedding for j ∈ [d]. Let further be r a real number
such that

r ≥ max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖B̃Λ‖ ·√2 ln(2nd(1 + 1/ε))/π
1
q ‖B̃R‖ ·√2 ln(2nd(1 + 1/ε))/π

1
q max

j∈[d]

(

‖B̃sjR‖ · 1
min
i∈[n]

|σi(sj)|

)
√

2 ln(2n(1 + 1/ε))/π

.

There exists an efficient mapping F : (Rq)d × TR∨ → (Rp)d′ × TR∨ such that:

1. The output distribution F(U((Rq)d × TR∨)) given uniform input is within
statistical distance 4ε of the uniform distribution on (Rp)d′ × TR∨ .

2. Set B = maxi∈[n],j∈[d] |σi(sj)| . The output distribution F(A(Rd)
q,s,Dβ

) is within

statistical distance (4d + 6)ε of A
(Rd′

)
p,Gs,Dβ′ , where

(β′
i)

2 = β2 + r2(γ2 +
∑

j∈[d]

|σi(sj)|2),

for i ∈ [n] and γ satisfying γ2 ≥ B2d.

4.1.1 General Case
Whereas Albrecht and Deo [AD17] proved a rank-modulus trade-off, defining a
map from M-LWE in module rank d to d/k and from modulus q to qk for any
divisor k of d, we are interested in another particular instance of Theorem 3
where the rank of the module is preserved. The following corollary specializes
the general result to the case of G = Id ∈ Rd×d and its proof is essentially the
same as in [AD17]. Overall, we obtain a modulus reduction, where the rank d is
preserved.

Corollary 1. Let d, q, p be positive integers with q ≥ p, ε and β be real numbers
with ε ∈ (0, 1

2) and β > 0 and G = Id ∈ Rd×d. Let χ be a distribution on R∨
q

satisfying

Prs←χ

[

max
i∈[n]

|σi(s)| > B

]

≤ δ and Prs←χ

[

max
i,j∈[n]

|σi(s)|
|σj(s)| > B′

]

≤ δ′,

for some non-negative real numbers B,B′, δ, δ′. By χd we denote the distribution
on (R∨

q)d, where every coefficient is sampled from χ independently. Let further
be r a real number such that

r ≥ max

{
1
p‖B̃R‖ ·√2 ln(2nd(1 + 1/ε))/π
1
q B′‖B̃R‖ ·√2 ln(2n(1 + 1/ε))/π

.

Then, there is a polynomial-time reduction from M-SLWEm
n,d,q,Dβ

(χd) to the
problem M-SLWEm

n,d,p,Dβ′ (χ
d) for (β′)2 ≥ β2 + 2r2B2d. This reduction reduces

the advantage by at most 1 − (1 − δ − δ′)d + (4d + 6)εm.

Towards Classical Hardness of Module-LWE: The Linear Rank Case 309

Proof. We use the transformation from Theorem 3 by taking γ2 = B2d and
replacing

∑
j∈[d] |σi(sj)| for every i ∈ [n] by B. For all j ∈ [d] it holds ‖B̃sjR‖ ≤

maxi∈[n] |σi(sj)|·‖B̃R‖. Thus, we can replace the maximum in the third condition
on r of Theorem 3 by B′‖B̃R‖. We can write G in the coefficient embedding
as Ĝ = Id ⊗ In = Idn, defining the corresponding lattice Λ̂ = 1

pĜ
T

Z
dn + Z

dn

with basis BΛ̂ = 1
pIdn. To move from the coefficient embedding to the canonical

embedding, we can simply multiply the basis by the matrix BRd = Id ⊗BR. The
basis for Λ = 1

pG
T
HRd + Rd given in the canonical embedding is thus given by

BΛ = (
1
p
Id ⊗ In) · (Id ⊗ BR) =

1
p
Id ⊗ BR,

using the mixed product property of the Kronecker product. Orthogonalizing
from left to right gives ‖B̃Λ‖ = 1

p‖B̃R‖. As q ≥ p, we have 1
q ‖B̃R‖ ≤ 1

p‖B̃R‖ =
‖B̃Λ‖ and we can thus merge the first and second condition on r of Theorem 3.
The loss in advantage is the result of a simple probability calculus. Let E be
the event that maxi∈[n] |σi(s)| ≤ B, which happens with probability greater
than 1 − δ, and F be the event that maxi,j∈[n]

|σi(s)|
|σj(s)| ≤ B′, which happens

with probability greater than 1 − δ′ for any s ← χ. It yields Pr(E ∩ F) =
Pr(E) + Pr(F) − Pr(E ∪ F) ≥ Pr(E) + Pr(F) − 1 ≥ 1 − δ − δ′. As the secret
vector s = (s1, . . . , sd)T ∈ (R∨

q)d is chosen by drawing d times independently
from χ, we have to add the advantage loss of 1 − (1 − δ − δ′)d to the one coming
from Theorem 3. ��

4.1.2 Power-of-two Cyclotomic Rings
The quality of Corollary 1 depends on the factor Δ = 2r2B2d, that we have to
add to the error β2. This factor is determined by the rank d, the first bound B
on the secret distribution χ and the number r, which itself is quantified by the
second bound B′ on the secret distribution χ, the field degree n, the starting
modulus q, the reduced modulus p and the norm ‖B̃R‖. In the following, we give
a concrete calculation example for those parameters in the case of power-of-two
cyclotomic rings and where χd is the uniform distribution on (R∨

2)d, denoted
by U((R∨

2)d). Let ν be a power of two, defining the ring of integers of the ν-th
cyclotomic field, given by R = Z[ζ] ∼= Z[x]/〈f〉, where f(x) = xn+1 and n = ν/2.

Corollary 2. Let R be the ring of integers of degree n, where n is a power of 2.
Let d, q, p be positive integers with q ≥ p, ε and β be real numbers with ε ∈ (0, 1

2)
and β > 0 and G = Id ∈ Rd×d. Let further be r a real number such that

r ≥ max

{
1
p

√
n ·√2 ln(2nd(1 + 1/ε))/π

1
q · n5/2 · 2(n−2)/2 ·√2 ln(2n(1 + 1/ε))/π

.

For (β′)2 ≥ β2 + 2dr2, there is a probabilistic polynomial-time reduction from
the problem M-SLWEm

n,d,q,Dβ
(U((R∨

2)d)) to M-SLWEm
n,d,p,Dβ′ (U((R∨

2)d)). This
reduction reduces the advantage by at most 1 − (1 − 1

2n)d + (4d + 6)εm.

310 K. Boudgoust et al.

In order to guarantee a negligible loss in advantage, we require n and d to be
polynomial in the security parameter and ε negligibly small. If q is exponentially
large, as it is the case in the classical hardness result of Sect. 4.2, say q ≥ 2n,
then we know that r is polynomial in n.

Proof. Let R be the ring of integers of degree n, where n is a power of 2. Its
dual R∨ = 1

nR is just a scaling of the ring R itself. Further, the map that takes
the vector of an element in R defined by its canonical embedding to the vector
corresponding to the coefficient embedding is a scaled isometry with scaling
factor 1√

n
. A basis BR for R in H is given by

√
n · U, where U is unitary.

For any element s ∈ R, let SH be the matrix of multiplication by s in the
canonical embedding written in the basis {hi}i∈[n] of H. Let Rot(s) be the matrix
of multiplication by s in the coefficient embedding. As mentioned above, going
from the coefficient embedding to the canonical embedding is a scaled isometry
of scaling factor

√
n. Thus,

SH = (BR)−1 · Rot(s) · BR =
1√
n

· U† · Rot(s) · √
n · U = U† · Rot(s) · U,

where U is unitary. As explained in the preliminaries, the singular values of SH

are given by |σi(s)| for i ∈ [n]. It yields

(SH)†SH = (U† · Rot(s) · U)†(U† · Rot(s) · U)

= U−1 · Rot(s)T · Rot(s) · U.

As a conclusion, the singular values of Rot(s) are exactly the values given
by |σi(s)| for i ∈ [n]. The smallest (resp. largest) singular value of Rot(s)
thus determines the minimum (resp. maximum) of the set {|σi(s)|}i∈[n].

We use this observation to compute the bounds B and B′ of Corollary 1 for
the case where χ equals U((R∨

2)d). Note that we provide new bounds, as the ones
calculated by Albrecht and Deo [AD17] hold for a Gaussian, and not a binary
secret distribution.

Using the identity R∨
2 = 1

nR2, we know that Rot(s) = 1
nRot(s̃), where s̃ ∈ R2

and Rot(s̃) only has entries from the set {0, 1}. Let Rot(s̃) = U · Σ · V† be the
singular value decomposition of Rot(s̃), where U and V are unitary matrices
over R and Σ is a diagonal matrix with the singular values of Rot(s̃) on its
diagonal. The singular value decomposition of Rot(s) is thus given by Rot(s) =
U · 1

nΣ · V† and we can deduce that the singular values of Rot(s) are just the
singular values of Rot(s̃), shrank by a factor of 1

n .
The largest singular value s1(Rot(s̃)) of Rot(s̃) is bounded above by its Frobe-

nius norm ‖Rot(s̃)‖F and hence

s1(Rot(s̃)) ≤ ‖Rot(s̃)‖F =

⎛

⎝
∑

i,j∈[n]

|Rot(s̃)ij |2
⎞

⎠

1/2

≤ n.

It follows s1(Rot(s)) ≤ 1.

Towards Classical Hardness of Module-LWE: The Linear Rank Case 311

The smallest singular value sn(Rot(s̃)) of Rot(s̃) is bounded below by the
following formula given in [PP02]:

sn(Rot(s̃)) ≥ |det(Rot(s̃))|
2(n−2)/2‖Rot(s̃)‖F

≥ |det(Rot(s̃))|
2(n−2)/2 · n

≥ 1
2(n−2)/2 · n

.

The last equation stems from the fact that every entry of Rot(s̃) is an integer
and Rot(s̃) is invertible (in K) for every nonzero s̃, thus |det(Rot(s̃))| ≥ 1 for
every s̃ �= 0. It follows sn(Rot(s)) ≥ 1

2(n−2)/2·n2 . We can thus set B = 1 with δ = 0
and B′ = n2 · 2(n−2)/2 with δ′ = 1

2n as

max
i,j∈[n]

|σi(s)|
|σj(s)| =

s1(Rot(s))
sn(Rot(s))

≤ n2 · 2(n−2)/2,

for every s �= 0, which happens with probability 1 − 1
2n . ��

As the bound on the smallest singular value of [PP02] does not take the nega-
cyclic structure of Rot(s̃) for power-of-two cyclotomics into account, we conjec-
ture that it is very loose. Experiments in dimensions up to 210 show that Rot(s̃)
behaves as a random binary matrix and the smallest singular value sn(Rot(s̃))
can thus with high probability be bounded below by 1

10
√

n
.2 With this heuristic

bound and requiring p to be large enough, we can achieve Δ = β2. Overall, this
leads to an error increase from

√
2β to

√
3β in Step 3 of Figure 1, as explained

in the introduction. We refer to [vNG47] for more details on heuristic bounds on
the smallest singular values of random sub-Gaussian matrices.

4.2 Classical Reduction for M-LWE

In this section, we adapt the classical hardness reduction of LWE from Peik-
ert [Pei09, Thm. 3.1] to the module setting. In their introduction, Langlois and
Stehlé [LS15] claimed that Peikert’s dequantization [Pei09] carries over to the
module case. We prove this claim in the following. By using the more recent
results of Peikert et al. [PRS17], our reduction directly reduces Mod-GapSVP
to the decisional variant M-LWE and holds for any number field K.

Throughout this section, let K be a number field of degree n with R its
ring of integers. Any module M ⊆ K� of R of rank � ≥ 2 can be identified
with a module lattice Λ of dimension N = n�. First, we recall the following
results about sampling discrete Gaussians over lattices and about reducing the
decisional variant of M-LWE from the GDP problem over modules.

Lemma 11 (Thm. 4.1 [GPV08] and Lem. 2.3 [BLP+13]). There exists a
probabilistic polynomial-time algorithm D that, given a basis B of a lattice Λ of
dimension N , r ≥ ‖GS(B)‖ ·√ln(2N + 4)/π and a center c ∈ R

N , outputs a
sample whose distribution is DΛ,r,c.

2 The Python code is publicly available on https://github.com/KatinkaBou/
Probabilistic-Bounds-On-Singular-Values-Of-Rotation-Matrices.

https://github.com/KatinkaBou/Probabilistic-Bounds-On-Singular-Values-Of-Rotation-Matrices
https://github.com/KatinkaBou/Probabilistic-Bounds-On-Singular-Values-Of-Rotation-Matrices

312 K. Boudgoust et al.

Let n = t1 + 2t2. As in [PRS17], for any r > 0, ζ > 0, and T ≥ 1, we define the
set of non-spherical parameter vectors Wr,ζ,T as the set of cardinality (t1 + t2) ·
(T + 1), containing for each i ∈ [t1 + t2] and j ∈ {0, . . . , T} the vector ri,j which
is equal to r in all coordinates except in the i-th (and the (i + t2)-th if i > t1),
where it is equal to r · (1 + ζ)j .

Lemma 12 (Adapted from Lem. 6.6 [PRS17]). There exists a probabilis-
tic polynomial-time algorithm that, given an oracle that solves M-LWEq,Υα

, a
real α ∈ (0, 1) and an integer q ≥ 2 together with its factorization, a rank �
module M ⊆ K�, a parameter r ≥ √

2q · ηε(M) for ε = exp(−�n), and
polynomially many samples from the discrete Gaussian distribution DM,r for
each r ∈ Wr,ζ,T (for some ζ = 1/poly(n) and T = poly(n)), solves GDPM∨,g,
for g = αq/(

√
2�r).

A proof can be found in the full version [BJRW20].
Using these results, we are able to adapt the classical hardness result of LWE

from Peikert [Pei09, Thm. 3.1] to modules.

Theorem 4. Let α, γ be positive real numbers such that α ∈ (0, 1). Let n, �

and q be positive integers and set N = n�. Further, assume that � ≥ 2, q ≥ 2
N
2

and γ ≥ N
√

�
α . Let M ⊆ K� be a rank-� module. There exists a probabilis-

tic polynomial-time reduction from solving Mod-GapSVPγ in the worst-case to
solving the problem M-LWEn,�,q,Υα

, using poly(N) samples.

The proof idea is the same as the one from Peikert, but with two novelties. First,
we look at the structured variants of the corresponding problems, i.e., GapSVP
over module lattices (of rank ≥ 2) and M-LWE, where the underlying ring R is
the ring of integers of a number field K. Second, we replace the main compo-
nent, a reduction from the BDD problem to the search version of LWE ([Pei09,
Prop. 3.4], originally from [Reg05, Lem. 3.4]), by the reduction from the GDP
problem over modules to the decisional version of M-LWE (Lemma 12).

Proof. Let M ⊆ K� be a rank-� module over R, such that the corresponding
module lattice of dimension N has basis B = (bi)i∈[N]. Further, let δ be a
positive real. The Mod-GapSVPγ problem asks to decide whether λ1(M) ≤ δ
(YES instance) or λ1(M) > γδ (NO instance). Without loss of generality, we
assume that the basis B is LLL-reduced (Lemma 1) and appropriately scaled,
thus the following three conditions hold:

C1) λ1(M) ≤ 2
N
2 ,

C2) mini∈[N] ‖GS(bi)‖2 ≥ 1,
C3) 1 ≤ γδ ≤ 2

N
2 .

Note for C3, that Mod-GapSVPγ becomes trivial if δ lies outside this range. The
reduction executes the following procedure poly(N) many times:

– Choose w ← Dg′ with g′ = δ
2 · √

N ,
– Compute w + M ,

Towards Classical Hardness of Module-LWE: The Linear Rank Case 313

– Run the GDPg oracle from Lemma 12 with w+M , r = q
√

2N
γδ , g = αq√

2�r
, and

using the Gaussian sampler from Lemma 11,
– Compare the output of the oracle with w.

If the oracle’s answer is always correct, output NO, otherwise YES.
First, we show that the Gaussian sampler from Lemma 11 always succeeds

to provide polynomially many samples from the discrete Gaussian distribu-
tion DM∨,r for each r ∈ Wr,ζ,T (for some ζ = 1/poly(n) and T = poly(n)),
needed in Lemma 12. Note that for every r = (ri)i∈[n] ∈ Wr,ζ,T it yields ri ≥ r
for every i ∈ [n]. Thus, it suffices to show that the Gaussian sampler succeeds
for r. Let D = (B−1)T denote the basis of the dual M∨, where we denote
by di its column vectors for i ∈ [N]. It yields for the �2-norm that ‖GS(D)‖2 =
‖GS(B)‖−1

2 . As we require in condition C2 that mini∈[N] ‖GS(bi)‖2 ≥ 1, it fol-
lows maxi∈[N] ‖GS(di)‖2 ≤ 1. Using the condition C3 and that q ≥ 2

N
2 , it yields

r =
q
√

2N

γδ
≥

√
2N ≥ 1 ·

√
ln(2N + 4)/π,

and thus the Gaussian sampler always succeeds.
Now, we assume that the reduction is given a NO instance, i.e., λ1(M) > γδ.

We claim that in this case, all requirements from Lemma 12 are fulfilled and thus
the oracle always outputs the correct answer. Using Lemma 2 it yields ηε(M∨) ≤√

N/λ1(M) for ε = exp(−N). Thus,

r =
q
√

2N

γδ
>

q
√

2N

λ1(M)
≥

√
2q · ηε(M∨).

Further, w is sampled from Dg′ with

g′ =
δ

2
·
√

N ≤ αγδ

2
√

n�
=

αq√
2�r

= g.

Additionally, w is the unique solution to this problem as with high probability

2 · ‖w‖2 ≤ 2 · g′√n� = 2 · δ

2
·
√

N ·
√

n� ≤ αγδ√
�

< γδ < λ1(M).

If, on the other hand, the reduction is given a YES instance, i.e., λ1(M) ≤ δ,
we can consider the following alternate experiment. Let z be a shortest vector
in M with ‖z‖2 = λ1(M) ≤ δ. Now, we replace w by w′ = w + z in the second
step of the reduction and thus hand in w′ + M to the GDP oracle. Using the
statistical distance of w and w′, it yields

Pr[R(w + M) = w] ≤ Δ(w,w′) + Pr[R(w′ + M) = w′]
≤ Δ(w,w′) + 1 − Pr[R(w′ + M) = w],

where R denotes the GDP oracle. Note that w′ + M = w + M , so in the real
experiment we have Pr[R(w′ + M) = w] = Pr[R(w + M) = w] and thus

Pr[R(w + M) = w] ≤ 1 + Δ(w,w′)
2

.

314 K. Boudgoust et al.

Using the statistical distance of two Gaussian distributions with the same width
but different means, Lemma 4, we obtain

Δ(w,w′) ≤
√

2π‖z‖2

g′ ≤ 2
√

2π√
N

,

and thus Pr[R(w + M) = w] ≤ 1
2 +

√
2π√
N

. For sufficiently many iterations,
the oracle gives a wrong answer in at least one iteration and the reduction
outputs YES. ��

4.3 Adapting the Error Distribution

In order to complete our classical hardness result for M-LWE, Theorem 2, we
need to adapt twice the error distribution.

First, we have to move from the distribution Υα on elliptical Gaussian dis-
tributions, as used within Sect. 4.2, to a discrete Gaussian distribution DR∨,α′q,
as used in Sect. 3. To achieve this, we use the techniques of [LS15, Sec. 4.4].

Lemma 13. Let n, �, q be positive integers and α be a positive real. There exists
a probabilistic polynomial-time reduction from M-LWEn,�,q,Υα

to M-LWEn,�,q,φ,
where φ = DR∨,α′q with α′ = α · ω(log2 n).

Proof. First, we reduce M-LWEn,�,q,Υα
to M-LWEn,�,q,Ψ≤α′ , where α′ is given

by α · ω(log2 n). Recall, that Υα is a distribution on elliptical Gaussian distri-
butions Dr, where r2

i is distributed as a shifted chi-squared distribution for the
real embeddings (i ∈ [t1]) and as a shifted chi-squared distribution with two
degrees of freedom for complex embeddings (i ∈ {t1 + 1, . . . , t1 + t2}). Using
properties about chi-squared distributions (see for instance [LM00, Lem. 1]), it
yields that ri ≤ α√

2
· ω(log2 n) ≤ α · ω(log2 n) = α′ with probability negligible

close to 1. Thus, M-LWEn,�,q,Ψ≤α′ is not easier than M-LWEn,�,q,Υα
. Second, we

use the error re-randomization from Peikert [Pei10] to reduce the continuous ver-
sion M-LWEn,�,q,Ψ≤α′ to the discrete version M-LWEn,�,q,φ, where φ = DR∨,α′q.
Let Dr be arbitrarily chosen from Ψ≤α′ , thus r = (ri)i∈[n] with ri ≤ α′ for
all i ∈ [n]. For any e ← Dr , we sample e′ ← e + D 1

q R∨−e,r ′ , where r′ = (r′
i)i∈[n]

with r′
i =

√
(α′)2 − (ri)2. Following Theorem 1 of [Pei10], the new error e′ is

statistically close to D 1
q R∨,α′ . Multiplying by q completes the claim. ��

Second, we need to move from the discrete Gaussian DR∨,βq, as used in Sect. 3,
back to the continuous Gaussian D√

2β , as used in Sect. 4.1. To achieve this, we
add a continuous noise of the same width and use Lemma 6.

Lemma 14. Let n, d, q be positive integers and β be a positive real such that β ≥√
2 ·ηε(1

q R∨) for some ε ∈ (0, 1
2). There is a probabilistic polynomial-time reduc-

tion from M-SLWEn,�,q,φ to M-SLWEn,�,q,D√
2β

, where φ = DR∨,βq.

Towards Classical Hardness of Module-LWE: The Linear Rank Case 315

Proof. Given a sample of M-SLWEn,�,q,φ with φ = DR∨,βq, we first divide the
second part of the instance by q, thus the noise is distributed as a vector drawn
from D 1

q R∨,β . Then, we add to the second part of the instance a vector drawn
from Dβ . Now, we apply Lemma 6 with σ = r = β to obtain that this new
sample is statistically close to a sample of M-SLWEn,�,q,D√

2β
. ��

Acknowledgments. This work was supported by the European Union PROMETH-
EUS project (Horizon 2020 Research and Innovation Program, grant 780701). It has
also received a French government support managed by the National Research Agency
in the “Investing for the Future” program, under the national project RISQ P141580-
2660001/DOS0044216. Katharina Boudgoust is funded by the Direction Générale de
l’Armement (Pôle de Recherche CYBER). We also thank our anonymous referees for
their helpful and constructive feedback.

References

[AD17] Albrecht, M.R., Deo, A.: Large modulus ring-LWE ≥ module-LWE. In: Tak-
agi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 267–296.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_10

[Bab85] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point prob-
lem. In: Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 13–20.
Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0023990

[Ban93] Banaszczyk, W.: New bounds in some transference theorems in the geom-
etry of numbers. Math. Ann. 296(4), 625–635 (1993)

[BDK+18] Bos, J.W.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM.
In: 2018 IEEE European Symposium on Security and Privacy, EuroS&P
2018, London, United Kingdom, 24–26 April 2018, pp. 353–367 (2018)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Innovations in Theoretical Computer
Science 2012, Cambridge, MA, USA, 8–10 January 2012, pp. 309–325 (2012)

[BJRW20] Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Towards classical
hardness of module-lwe: The linear rank case. IACR Cryptol. ePrint Arch.
2020:1020 (2020)

[BLL+15] Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved secu-
rity proofs in lattice-based cryptography: using the rényi divergence rather
than the statistical distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 3–24. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48797-6_1

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: Symposium on Theory of Computing
Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 575–584
(2013)

[BV14] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

[DKL+18] Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler,
G., Stehlé, D.: Crystals-dilithium: A lattice-based digital signature scheme.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

https://doi.org/10.1007/978-3-319-70694-8_10
https://doi.org/10.1007/BFb0023990
https://doi.org/10.1007/978-3-662-48797-6_1
https://doi.org/10.1007/978-3-662-48797-6_1

316 K. Boudgoust et al.

[DM15] Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption
in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5_24

[DMR18] Devroye, L., Mehrabian, A., Reddad, T.: The Total Variation Distance
Between High-dimensional Gaussians (2018)

[GHPS12] Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in BGV-style
homomorphic encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012.
Ring switching in bgv-style homomorphic encryption, vol. 7485, pp. 19–37.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_2

[GKPV10] Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness
of the learning with errors assumption. In: Innovations in Computer Sci-
ence - ICS 2010, Tsinghua University, Beijing, China, 5–7 January 2010.
Proceedings, pp. 230–240. Tsinghua University Press (2010)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, 17–20 May 2008, pp. 197–206. ACM (2008)

[LLL82] Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261(4), 515–534 (1982)

[LM00] Laurent, B., Massart, P.: Adaptive estimation of a quadratic functional by
model selection. Ann. Statist. 28(5), 1302–1338 (2000)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5_1

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. J. ACM 60(6), 43:1–43:35 (2013)

[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module
lattices. Des. Codes Cryptogr. 75(3), 565–599 (2015)

[LSS14] Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear
maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5_14

[Mic07] Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions. Comput. Complex. 16(4), 365–411 (2007)

[Mic18] Micciancio, D.: On the hardness of learning with errors with binary secrets.
Theory Comput. 14(1), 1–17 (2018)

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4_41

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In Proceedings of the 41st Annual ACM Sym-
posium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31
May–2 June 2009, pp. 333–342 (2009)

https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-32928-9_2
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41

Towards Classical Hardness of Module-LWE: The Linear Rank Case 317

[Pei10] Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In:
Rabin, T. (ed.) CRYPTO 2010. An efficient and parallel gaussian sam-
pler for lattices, vol. 6223, pp. 80–97. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14623-7_5

[PP02] Piazza, G., Politi, T.: An upper bound for the condition number of a matrix
in spectral norm. J. Comput. Appl. Math. 143(1), 141–144 (2002)

[PR07] Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to
average-case connection factors. In: Proceedings of the 39th Annual ACM
Symposium on Theory of Computing, San Diego, California, USA, 11–13
June 2007, pp. 478–487 (2007)

[PRS17] Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-
LWE for any ring and modulus. In: Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, 19–23 June 2017, pp. 461–473 (2017)

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (Plain)
learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7_4

[R61] Rényi, A.: On measures of entropy and information. In: Proceedings of 4th
Berkeley Symposium on Mathematical Statistics and Probability, vol. I, pp.
547–561. University of California Press, Berkeley, California (1961)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6), 34:1–34:40 (2009)

[RSW18] Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE
problems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. On the
ring-lwe and polynomial-lwe problems, vol. 10820, pp. 146–173. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_6

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10366-7_36

[vEH14] van Erven, T., Harremoës, P.: Rényi divergence and kullback-leibler diver-
gence. IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014)

[vNG47] von Neumann, J., Goldstine, H.H.: Numerical inverting of matrices of high
order. Bull. Amer. Math. Soc. 53, 1021–1099 (1947)

[WW19] Wang, Y., Wang, M.: Module-lwe versus ring-lwe, revisited. IACR Cryptol-
ogy ePrint Archive 2019:930 (2019)

https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

Lattice-Based E-Cash, Revisited

Amit Deo1,3, Benôıt Libert1,2, Khoa Nguyen4, and Olivier Sanders5(B)

1 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL),
Lyon, France

2 CNRS, Laboratoire LIP, Lyon, France
3 Inria, Lyon, France

4 School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore, Singapore

5 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
olivier.sanders@orange.com

Abstract. Electronic cash (e-cash) was introduced 40 years ago as the
digital analogue of traditional cash. It allows users to withdraw elec-
tronic coins that can be spent anonymously with merchants. As advo-
cated by Camenisch et al. (Eurocrypt 2005), it should be possible to
store the withdrawn coins compactly (i.e., with logarithmic cost in the
total number of coins), which has led to the notion of compact e-cash.
Many solutions were proposed for this problem but the security proofs
of most of them were invalidated by a very recent paper by Bourse et
al. (Asiacrypt 2019). The same paper describes a generic way of fixing
existing constructions/proofs but concrete instantiations of this patch
are currently unknown in some settings. In particular, compact e-cash is
no longer known to exist under quantum-safe assumptions. In this work,
we resolve this problem by proposing the first secure compact e-cash sys-
tem based on lattices following the result from Bourse et al. Contrarily to
the latter work, our construction is not only generic, but we describe two
concrete instantiations. We depart from previous frameworks of e-cash
systems by leveraging lossy trapdoor functions to construct our coins.
The indistinguishability of lossy and injective keys allows us to avoid the
very strong requirements on the involved pseudo-random functions that
were necessary to instantiate the generic patch proposed by Bourse et al.

Keywords: Lattice-based cryptography · e-cash · Anonymity ·
Exculpability · Provable security

1 Introduction

The last decades have witnessed major changes in consumer habits, with a grad-
ual shift to credit/debit cards for payments. Since 2016, the total amount of card
payment transactions worldwide has indeed exceeded that of cash transactions,1

as card transactions simply make spending easier and enable online purchases.
1 https://avpsolutions.com/blog/payment-cards-now-set-to-surpass-cash/.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 318–348, 2020.
https://doi.org/10.1007/978-3-030-64834-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_11&domain=pdf
https://avpsolutions.com/blog/payment-cards-now-set-to-surpass-cash/
https://doi.org/10.1007/978-3-030-64834-3_11

Lattice-Based E-Cash, Revisited 319

However, the benefits of electronic payments come at a price. Each transac-
tion indeed leaks very sensitive information (at least to the entity managing the
payment system), such as the identity of the recipient, the amount, the location
of the spender, etc. For example, a patient paying his cardiologist with his card
implicitly reveals to his bank that he probably has a heart condition, which is
far from insignificant.

One could argue that, in some cases, the users’ or recipients’ identities can be
masked through pseudonyms, but the concrete privacy benefits of this solution
are questionable. Indeed, even for systems without central authority such as
Bitcoin, pseudonymity only provides limited anonymity guarantees as shown for
example by Ron and Shamir [32]. A natural question in this context is whether
we can achieve the best of the two worlds. Namely, can we combine the features
of electronic payments together with the anonymity of traditional cash?

Related Work. A first answer to this question was provided by Chaum in
1982 [13] when he introduced the notion of electronic cash (e-cash). Concretely,
an electronic coin is the digital analogue of a standard coin/banknote that is
issued by an authority, called a bank, to users. The authenticity of coins can
be checked publicly, which allows users to spend them anonymously with any
merchant who knows the bank public key. Unfortunately, the comparison stops
there, as there is a major difference between physical and electronic coins. In the
first case, the physical support is assumed to be unclonable, unless for extremely
powerful adversaries. Obviously, the same assumption does not hold for digital
data, and it is thus necessary to deter multiple spendings of the same coin.

However, detecting multiple uses of the same coin without affecting the
anonymity of honest users is challenging. Chaum achieved this using blind sig-
natures [13], by associating each coin with a serial number that remains hidden
until the coin is spent. At this time, the serial number is added to a register that
can be public, preluding crypto-currency ledgers. Using this register, anyone can
detect the reuse of a coin, which leads to two families of e-cash systems.

The first one allows detecting frauds but does not enable the identification
of perpetrators. In this case, detection must be performed before accepting pay-
ments. These systems are thus inherently online, as any recipient must be able
to check the ledger at any time. This entails incompressible latencies to pro-
cess payments that can be prohibitive in some situations, such as payments at
tollgates, or at turnstiles for public transport.

The second family allows for the identification of defrauders. In this case, it
is no longer necessary to check the coin upfront, as the defrauders know that
they will ultimately be identified and then prosecuted. This simplifies the whole
payment process as the e-cash system can now work offline. In 2020, the ability
to process transactions offline might seem less appealing but it is still necessary
today as mentioned in recent Visa [33] or Mastercard [28] technical documen-
tations. Indeed, offline payments are inevitable in situations with no (or very
limited) internet connections (aboard a plane, a boat, etc) and are still preferred
in some regions. For example, a study by the french central bank [15] shows

320 A. Deo et al.

that, in 2013, less than 10 % of credit/debit cards in use in France are exclu-
sively online (such cards being usually attributed to financially fragile persons);
for the other cards, online checks are only performed on a random basis of for
relatively large amounts.

It is hard today to discuss e-cash without mentioning crypto-currencies such
as Bitcoin, or even post-quantum ones such as MatRiCT [19]. The distinction
between the two families above highlights the first difference between such sys-
tems. Crypto-currencies are indeed necessarily online whereas e-cash can be
offline. However the main difference between these two systems rather lies in
the trust model. The main strength of crypto-currencies is probably the absence
of a central authority. This helps them circumvent the traditional reluctance
of banks to novelties because a crypto-currency can be launched (almost) from
scratch. In contrast, an e-cash system requires the support of a financial institu-
tion. Nevertheless, the absence of a central authority is also the main drawback
of crypto-currencies. It indeed means that, in case of theft or loss of secret keys,
the users lose everything, which is a major issue that we believe to be unaccept-
able for the general public. In the e-cash setting, where some authority manages
the system, handling these situations is quite easy (corresponding procedures
already exist for current payments systems such as debit/credit cards). There
are also differences such as compliance with legislation, etc. In all cases, the very
different features of both systems mean that they cannot be opposed. The real-
ity is in fact the opposite and we should rather see crypto-currencies and e-cash
systems as complementary solutions for privacy-preserving payments. From now
on, we will only consider offline e-cash.

Following Chaum’s seminal work, blind signatures were the first cornerstone
of e-cash systems. Unfortunately, this design strategy comes with some limita-
tions, such as the need to withdraw and store coins one by one, which quickly
becomes cumbersome (see, e.g., [9]). This problem was addressed by Camenisch
et al. [11] who proposed the notion of compact e-cash, where users withdraw and
store N coins (that constitute a wallet) with constant, or at least logarithmic,
complexity. The core idea of their construction – which has become the blueprint
of most following works – is to associate each wallet with two seeds k and t for a
pseudo-random function (PRF) family. These two seeds are then used to generate
N pairs of pseudo-random values (PRFk(i),PRFt(i)). The former (i.e., PRFk(i))
serves as the coin serial number whereas PRFt(j) essentially acts as a one-time
pad on the spender’s identity, resulting in a so-called double-spending tag. In
case a coin is spent more than once, the same mask PRFt(j) is used twice and
can thus be cancelled out to reveal the defrauder’s identity.

This elegant construction underlies many subsequent systems, including a
candidate based on lattices [26]. Unfortunately, a recent result by Bourse et al. [9]
has shown the limitations of this framework. In particular, they highlighted that
systems based on it may fail to provably achieve exculpability, i.e., the property
that honest users cannot be wrongly accused of double-spending a coin, even
when the bank and other users conspire against them. As this issue underlies
most of our design choices, we need to recall some details on it.

Lattice-Based E-Cash, Revisited 321

In the CHL construction [11], the serial number and the double-spending
tag are constructed from the PRF outputs mentioned above but also from the
spender’s public key and some public data that can be seen as the unique iden-
tifier of a transaction. In case of double-spendings, it can be shown that the
perpetrator will necessarily be identified. Unfortunately, Bourse et al. pointed
out that the opposite is not true, except in some very specific settings excluding
lattices, as carefully crafted serial numbers and double-spending tags might lead
the identification process to output a public key that was not even involved in
the fraudulent transactions. Actually, two spendings from different users may
even be considered as a double-spending by the system. As a consequence, the
security proofs of the e-cash construction of Libert et al. [26] and of a subsequent
improvement by Yang et al. [35] (the only schemes relying on quantum-resistant
computational assumptions) are invalid and there is no known simple fix.

Before accusing a user, it is therefore necessary to perform additional veri-
fications on the serial number occurring in a double-spending, in particular to
ensure that it was constructed from the same seed and the same identity. This
unfortunately seems infeasible given only PRFk(i), as in [11]. To overcome this
problem, the authors of [9] extended the serial number with new elements, each
one being protected by a fresh PRF output. To ensure exculpability, it is then
necessary to exclude collisions that could result from the PRF, leading to strong
and non-standard requirements on the latter in [9]. Indeed, Bourse et al. need a
notion of collision-resistance where, given the public parameters of a PRF fam-
ily, the adversary should be unable to output two seeds k, k′ and inputs x, x′

such that PRFk(x) = PRFk′(x′). This might seem achievable by using a PRF
based on symmetric primitives or by applying the techniques of Farshim et al.
[20] to key-injective PRFs [24]. However, this would result in extremely ineffi-
cient e-cash constructions. Indeed, achieving security against cheating spenders
requires to have them prove in zero-knowledge that they behaved honestly and
correctly evaluated these PRFs, using certified seeds with valid inputs, etc. Such
complex relations hardly coexist with the two solutions above. In particular, the
Kim-Wu PRF [24] relies on a complex encoding of inputs into matrices which
is hardly compatible with zero-knowledge techniques in lattices (recall that the
PRF inputs should be part of witnesses). These rather require PRFs with a sim-
pler algebraic structure, in the spirit of [3,4,7]. Unfortunately, the latter are not
known to achieve collision-resistance. As of today, instantiating the Bourse et
al. framework [9] from lattices would thus require to translate all statements to
be proved into Boolean circuits. This would be much more expensive (by several
orders of magnitude) than what we can hope for by leveraging the most efficient
zero-knowledge techniques in standard lattices [8,35].

Our Contribution. In this paper, we show that we can dispense with the
need for strong collision-resistance requirements by significantly departing from
previous frameworks [9,11]. Our core idea is to perform only one standard PRF
evaluation and use the resulting output to mask all the components of the serial
number and double-spending tag, thanks to the use of a lossy trapdoor func-

322 A. Deo et al.

tion FLTF [30]. Recall that these are function families where injective evaluation
keys are computationally indistinguishable from lossy evaluation keys, for which
image elements reveal very little information on their preimages. In our construc-
tion, during a spending, we reveal FLTF(PRFk(i)) instead of PRFk(i) and then
extract randomness from the remaining entropy of PRFk(i) in order to mask the
spender’s public key. This masked public key constitutes the second part of our
serial number. When FLTF is set up in its lossy mode in the proof of anonymity,
we can show that the resulting serial number is indistinguishable from random
and does not leak any sensitive information on the spender. Moreover, as FLTF

can be generated in injective mode in the real scheme, in case of colliding serial
numbers, we are guaranteed that the same value PRFk(i) is used in all the corre-
sponding transactions. Together with the equality of serial numbers, this implies
that the involved public keys necessarily coincide.

At this stage, we are ensured that a double-spending alert can only be gen-
erated by two transactions involving the same user. Then, it only remains to
adapt the same technique to our double-spending tags, which is fairly simple.
We can then prove security of our construction based only on the standard secu-
rity properties of the pseudo-random function and the lossy trapdoor function.

However, as we intend to provide concrete constructions and not just frame-
works, we still have to realise the missing component of the coin, namely the
non-interactive zero-knowledge (NIZK) proofs that both the serial number and
the double-spending tag are well-formed. Indeed, NIZK proofs are notoriously
hard to produce in the lattice setting, at least compared to their counterparts
in cyclic groups. We start from a very recent result by Yang et al. [35] which
provides a protocol capturing many interesting lattice-related relations and show
that it can be used to prove the statements required by our e-cash system. This
is far from trivial as, in particular, spenders need to prove their correct composed
evaluation of a pseudo-random function and a lossy trapdoor function using dif-
ferent parameters for the two primitives. We nevertheless manage to propose
such NIZK arguments for two different PRF constructions [4,7], leading to two
different instantiations. Notably, the GGM-based PRF [23] of Banerjee et al. [4]
allows for the use of a polynomial modulus.

However, despite this nice asymptotic complexity, one should keep realistic
expectations about the concrete performances of our scheme according to the
current lattices state-of-the-art. We indeed note that, as of writing, most of our
building blocks (zero-knowledge proofs, PRFs, etc) remain complex tools that
can hardly compete with their pairing-based counterparts. This is highlighted by
the recent paper by Yang et al. [35] showing that existing (insecure) lattice e-cash
constructions [26,35], which use building blocks similar to ours, generate trans-
actions ranging from 260 MB to 720 TB. Fortunately, any future improvements
of these tools could easily be leveraged by our construction. This is particularly
true for our zero-knowledge proofs that we manage to represent as a standard
instance of the powerful framework from [35].

Eventually, we propose the first concrete e-cash systems based on quantum-
resistant hardness assumptions, following the reset of the state-of-the art result-

Lattice-Based E-Cash, Revisited 323

ing from [9]. Unlike [9] that modifies the CHL framework [11] by requiring
stronger properties on the original building blocks, we upgrade it by considering
alternative building blocks that are instantiable from standard lattice assump-
tions. Our work does not only lead to concrete constructions, but it also sheds
new lights on e-cash by implicitly relying on a new framework which differs
from [9,11] and does not require PRFs with non-standard security properties.

2 Preliminaries

We use lower-case bold characters (e.g. x) to denote vectors and upper-case bold
characters (e.g. M) to denote matrices. The (n × n) identity matrix is denoted
by In. A superscript � for a vector or matrix denotes its transpose (e.g. M� is
the transpose of M). For any integer q > 0, Zq denotes the integers modulo q.
For integers a < b, [a, b] denotes the set {a, a + 1, . . . , b}. Alternatively if b > 1,
we define [b] := {1, . . . , b}. For any real x, we denote by �x� the greatest integer
smaller than or equal to x. In addition, for positive integers n, p, q such that
q > p, we define the rounding operation �·�p : Zn

q → Z
n
p as �x�p := �(p/q) · x�.

For probability distribution D, we write s ←↩ D to denote that s is a sample of
the distribution D. If X is a set, then s ←↩ U(X) represents the sampling of a
uniform element of X. We also define the min-entropy of a discrete distribution
D as H∞(D) := − log maxx′ Prx←↩D[x = x′]. The statistical distance between
two distributions D1 and D2 is denoted Δ(D1,D2). Throughout, we let λ denote
a security parameter and use standard asymptotic notation O, Θ,Ω, ω etc. We
also use the standard notion of a pseudo-random function (PRF) and a zero-
knowledge argument of knowledge (ZKAoK).

Binary Decompositions. We use the same decompositions as those in [26] as
explained next. Firstly, for any positive integer B and δB := �log(B)� + 1,
we define the sequence B1, . . . , BδB

where Bj := �B+2j−1

2j � for j ∈ [1, δB]. It
can be verified that

∑
j∈[1,δB] Bj = B. For any integer x ∈ [0, B], there is

an efficiently computable deterministic function idecB : [0, B] → {0, 1}δB out-
putting a vector idecB (x) =: y ∈ {0, 1}δB satisfying

∑
j∈[1,δB] Bj · yj = x.

The function idecB can be extended to handle vector inputs, resulting in
vdecm,B : [0, B]m → {0, 1}m·δB , for any integer m > 0. Explicitly, for any
x ∈ [0, B]m, vdecm,B (x) := (idecB (x1)

�
, . . . , idecB (xm)�)�. In order to invert

vdecm,B, we define the matrix Hm,B := (B1, . . . , BδB
)⊗Im. It is easy to see that

Hm,B · vdecm,B (y) = x. In addition, for any x ∈ [0, B], we denote by ibinB(x)
the standard binary decomposition of x that fits into �log(B)�+1 bits. We define
the binary representation of a vector to be the concatenation of the binary rep-
resentations of its entries. Concretely, for any vector x ∈ [0, B]m, we define its
binary representation to be binB(x)� := (ibin(x1), . . . , ibin(xm)).

2.1 Lattice Preliminaries

An m-dimensional lattice is a discrete subgroup of Rm. For any integers n and
q, A ∈ Z

n×m
q and u ∈ Z

n
q we define the full-rank lattice Λ⊥

q (A) := {x ∈ Z
m :

324 A. Deo et al.

A · x = 0 mod q} and the lattice coset Λu
q (A) := {x ∈ Z

m : A · x = u mod q}.
Defining ρσ : R

m → R as ρσ(x) := exp(−π‖x‖2/σ2), the discrete Gaussian
distribution over a lattice coset L with parameter σ (denoted as DL,σ) is the
distribution with support L and mass function proportional to ρσ.

Hardness Assumptions. We will be assuming that both the learning with errors
(LWE) and short integer solution (SIS) problems (as defined next) are hard for
appropriate parameter settings.

Definition 1. Let m,n, q ∈ N with m > n and β > 0. The short integer solution
problem SISn,m,q,β is, given A ←↩ U(Zn×m

q), find a non-zero x ∈ Λ⊥
q (A) with 0 <

‖x‖ ≤ β.

Definition 2. Let q, α be functions of a parameter n. For a secret s ∈ Z
n
q , the

distribution Aq,α,s over Z
n
q × Zq is obtained by sampling a ←↩ U(Zn

q) and a
noise e ←↩ DZ,αq, and returning (a, 〈a, s〉 + e). The learning with errors problem
LWEn,m,q,α is, for s ←↩ U(Zn

q), to distinguish between m independent samples
from U(Zn

q × Zq) and the same number of samples from Aq,α,s.

If m is omitted in the LWE problem, it is assumed that m = poly(n).
If q ≥ βnδ for any constant δ > 0 and m,β = poly(n), then standard worst-
case lattice problems with approximation factors γ = max{1, β2/q} · Õ(β

√
n)

reduce to SISn,m,q,β [29]. Alternatively, if q ≥ √
nβ and m,β = poly(n), then

standard worst-case lattice problems with approximation factors γ = O(β
√

n)
reduce to SISm,q,β (see, e.g., [22, Sec. 9]). Similarly, if αq = Ω(

√
n), standard

worst-case lattice problems with approximation factors γ = Õ(n/α) reduce
to LWEn,q,α[10,31].

2.2 Lossy Trapdoor Functions

We will be using the notion of lossy trapdoor function (LTF) families from [30].
Informally, a lossy trapdoor function family can be used in one of two modes: a
lossy mode and an injective mode. In the lossy mode, functions lose information
on their inputs and cannot be inverted whereas in the injective mode, a trap-
door enables efficient inversion. In addition, there are generation algorithms that
sample functions in either the lossy or injective mode. A crucial requirement is
that no efficient adversary can distinguish whether a generation algorithm is out-
putting lossy functions or injective functions. We now recall the formal syntax
and definition of an LTF family.

Definition 3. An (m, k) lossy trapdoor function family with security parameter
λ is a 4-tuple of PPT algorithms (G0,G1,F,F−1) such that:

– (Injective Mode) G0(1λ) outputs a function index u and trapdoor τ . For any
pair (u, τ) output by G0, F(u, ·) computes an injective function fu : {0, 1}m →
{0, 1}∗ and F−1(τ,F(u, x)) = x.

Lattice-Based E-Cash, Revisited 325

– (Lossy Mode) G1(1λ) outputs a function index u. For any u output by G1,
F(u, ·) computes a lossy function fu : {0, 1}m → {0, 1}∗, whose image is of
size at most 2m−k.

– (Indistinguishability) Let (u, τ) ← G0(1λ) and u′ ← G1(1λ). Then the
distributions of u and u′ are computationally indistinguishable.

We will use the algorithms of the LTF family given in [30]. This family was
reconstructed by Wee [34] where n,m, q, α are functions of λ, p ≤ q/(4n) and
n̄ = m/log p. In the following, G ∈ Z

m×n̄
q is a special public matrix that allows

to efficiently solve the bounded error decoding problem [30].

– G0(n,m, q, α): Sample A ←↩ U(Zn×m
q),S ←↩ U(Zn×n̄

q),E ←↩ (Ψ̄α)m×n̄ and
output the index

(
A,B := S�A + E� + G�)

along with trapdoor S.
– G1(n,m, q, β): Sample A ←↩ U(Zn×m

q),S ←↩ U(Zn×n̄
q),E ←↩ (Ψ̄α)m×n̄ and

output the index
(
A,B := S�A + E�)

– F: On input ((A,B),x) where A ∈ Z
n×m
q ,B ∈ Z

n̄×m
q and x ∈ {0, 1}m, output

(Ax,Bx)
– F−1: On input (S, (y1,y2)) where S ∈ Z

n×n̄
q ,y1 ∈ Z

n
q and y2 ∈ Z

n̄
q , compute

y := y2 − S�y1. Use the efficient bounded-error decoder with respect to G
on y to recover a vector x∗ ∈ {0, 1}m such that e∗ + G�x∗ = y for some
small e∗ with ‖e∗‖∞ ≤ q/p. Output x∗.

Lemma 1 ([34]). For any constant γ < 1 and n, take q = Θ(n1+1/γ), p =
Θ(n1/γ) such that p ≤ q/(4n). Further, take m = O(n log q), α = Θ(

√
n/q)

and n̄ = m/log p. Assuming that the LWEn,m,q,α problem is hard, the above
construction is an (m, k)-LTF family where k = (1 − γ)m − n log q.

The following instantiation of the generalized Leftover Hash Lemma of [17,
Lemma 2.4] will be particularly useful:

Lemma 2. Choose γ, n, q, p, α as in Lemma 1, arbitrary integers n′, q′ > 2 and
an arbitrary distribution X over {0, 1}m. Then, for A ←↩ U(Zn′×m

q′), (Ā, B̄) ←↩

G1(n,m, q, α), x ←↩ U(X) and u ←↩ U(Zn′
q′), we have

Δ
((
Ax,A, (Ā, B̄, Āx, B̄x)

)
,
(
u,A, (Ā, B̄, Āx, B̄x)

))

≤ 1
2

·
√

2−(H∞(X)−(mγ+n log q+n′ log q′)).

2.3 Witness Extraction and Forking Lemma

Recall that the transcript of a Σ-protocol consists of three messages starting with
a message from a prover to a verifier. The Fiat-Shamir transform [21] provides a
well-known method to remove interaction from a Σ-protocol. In particular, the
second message (which is a uniformly chosen “challenge” value from the verifier
to the prover) is replaced by the evaluation of a random oracle on input given by
the first message. When adopting this method, it is important to carefully argue
that the resulting non-interactive protocol is still an argument of knowledge.

326 A. Deo et al.

That is, if a prover convinces the verifier to accept with non-negligible prob-
ability, then replaying the prover allows for the extraction of a witness to the
statement in question. This is usually achieved by applying a “forking lemma”.

We will focus on the argument system of Yang et al.[35] which takes the
three-message form of a Σ-protocol. The witness extraction for the interactive
ZKAoK of Yang et al. requires any � = 3 accepting transcripts, all with the same
first prover message but distinct challenge values. We refer to � such accepting
transcripts as an �-fork.

When using a random oracle to remove interaction with our chosen argument
system, a forking lemma that considers the probability of producing an �-fork for
� = 3 should be used. The extended/generalised forking lemma of El Kaafarani
and Katsumata [18, Lemma 1] provides a forking lemma for any � ≥ 2. For
simplicity, we state their result in the special case that � = 3.

Lemma 3 ([18]). Fix some input x ∈ {0, 1}∗ and take some arbitrary set accept.
Let A be an efficient algorithm outputting triples (m1,m2,m3) on input x that
has oracle access to a random oracle H : {0, 1}∗ → [h] and let Q be an upper
bound on the number of queries that A makes to H. Denote

acc := Pr
[
(m1,m2,m3) ← AH(·)(x) : (m1,m2,m3) ∈ accept ∧

m2 is the result of an H-query

]

frk3 := Pr
[
((m1,m2,i,m3,i))3i=1 ← FA(x) : ∀i∈{1,2,3} : (m1,m2,i,m3,i) ∈ accept

∧ (m2,i)
3
i=1are pairwise distinct

]

for any efficient algorithm FA that runs A at most 3 times. Then, for a particular
choice of FA,

frk3 ≥ acc ·
((

acc

Q

)2

− 3
h

)

.

2.4 E-Cash Security Definitions

E-cash systems involve three types of parties: banks denoted B, users denoted
U and merchants denoted M. The syntax of an offline compact e-cash system
consists of the following algorithms/protocols:

ParGen (1λ, 1L): On input a security parameter λ and wallet size L =
log(poly (λ)), outputs public parameters par containing L (amongst other
things).

BKeyGen(1λ, par): On input par, outputs a key pair (PKB, SKB) for the bank,
which allows B to issue wallets of size 2L.

UKeyGen
(
1λ, par

)
: On input par, generates a key pair (PKU , SKU) for the user.

MKeyGen(1λ, par): On input par, generates (PKM, SKM) for the merchant.

We henceforth assume that all algorithms implicitly take par as input.

Withdraw (U(PKB, SKU),B(PKU , SKB)): An interactive protocol that allows
U to obtain a wallet W consisting of 2L coins or an error message ⊥. The
bank B obtains tracing information TW .

Lattice-Based E-Cash, Revisited 327

Spend (U(W, PKB, PKM),M(SKM, PKU , PKB, info)): A protocol allowing a
user U to give a coin from W to merchant M with respect to transaction
metadata info. The user outputs an updated wallet W ′ whereas the output
of M is a coin coin consisting of info, a serial number, a security tag and a
proof of validity or an error symbol ⊥.

VerifyCoin (PKB, coin): Outputs 1 if the proof of validity in coin verifies correctly
with respect to PKB and 0 otherwise.

VerifyDeposit (PKB, PKM, coin, μ): Outputs 1 if the proof of validity in coin
verifies correctly with respect to PKB and if the data μ verifies correctly
with respect to PKM. Else, outputs 0.

Deposit (M(SKM, coin, PKB),B(PKM, SKB, stateB)): This is a protocol allow-
ing M to deposit coin (containing some metadata info) in its account
with B. In the protocol, M sends coin along with some data μ. Then, B
uses a list stateB of previously deposited coins to proceed as follows. If
VerifyCoin (PKB, coin) = 0 or VerifyDeposit (PKB, PKM, coin, μ) = 0, B out-
puts ⊥. If info and PKM exist in the same entry of stateB, then B returns
this entry (coin, PKM, μ′). If the serial number yS derived from coin is not in
stateB, then B adds the tuple (coin, PKM, μ,yS) to stateB. If there is some
tuple (coin′, PK ′

M, μ′,yS) in stateB, then B outputs such a tuple.
Identify (PKB, coin1, coin2): An algorithm allowing to identify a double spender

U whenever coin1 and coin2 share the same serial number. The output of this
algorithm is a public key PKU and a proof that this public key corresponds
to a double spender ΠG.

E-cash systems should provide the following properties whose formal defini-
tions, adapted from [9,26], are provided below.

– Anonymity: no coalition of banks and merchants can identify the wallet
that a coin originates from.

– Traceability: the bank is always able to identify at least one member of a
coalition that has spent more than it has withdrawn. This property introduced
by Canard et al. [12] simultaneously captures the balance and identification
properties considered in [6,11].

– Strong exculpability: no coalition of banks and merchants can convincingly
accuse an innocent user of double-spending.

– Clearing: an honest merchant is always able to deposit the received coins.
In particular, no coalition of bank, merchants and users can generate a con-
vincing proof that the latter have already been deposited.

Definition 4. An e-cash system provides anonymity if there exists an efficient
simulator S = (SimParGen,SimSpend) such that no PPT adversary A has non-
negligible advantage in the anonymity game described below:

1. The challenger flips a fair coin d ←↩ U({0, 1}) and runs par ← ParGen(1λ, 1L)
if d = 1 and (par, τsim) ←↩ SimParGen(1λ, 1L) otherwise. In either case, it
gives par to A.

2. A outputs some public key PKB and adaptively invokes the following oracles:

328 A. Deo et al.

• QGetKey(i): this oracle generates (SKUi
, PKUi

) ←↩ UKeygen(par) if it does
not exist yet and returns PKUi

.
• QWithdraw(PKB, i): this oracle plays the role of user Ui – and creates their

key pair if it does not exist yet – in an execution of the withdrawal protocol
Withdraw

(
U(par, PKB, SKUi

),A(state)
)
, with the adversary A playing the

role of the bank. At the j-th query, we denote by Wj the user’s output
which may be a valid wallet or an error message ⊥.

• QSpend

(
PKB, i, j, PKM, info

)
: the oracle first checks if the wallet Wj has

been issued to Ui by the bank B via an invocation of QWithdraw(PKB, i). If
not, the oracle outputs ⊥. Otherwise, QSpend checks if the internal counter
J of Wj satisfies J < 2L − 1. If J = 2L − 1, it outputs ⊥. Otherwise,
QSpend responds as follows:
– If d = 1, it runs Spend

(
Ui(Wj , PKB, PKM),A(state, info)

)
with the

merchant-executing A in order to spend a coin from Wj.
– If d = 0, QSpend runs SimSpend

(
par, τsim, PKB, PKM, info

)
.

3. When A halts, it outputs a bit d′ ∈ {0, 1} and wins if d′ = d. The adver-
sary’s advantage is the distance Advanon

A (λ) := |Pr[d′ = d] − 1/2|, where the
probability is taken over all coin tosses.

Definition 5. An e-cash system ensures traceability if, for any PPT adver-
sary A, the experiment below outputs 1 with negligible probability:

1. The challenger generates public parameters par ←↩ ParGen(1λ, 1L) and a pub-
lic key (PKB, SKB) ←↩ BKeyGen(par). It gives par and PKB to A.

2. A is granted access to the oracle QWithdraw (PKU) that plays the role of the
bank B in an execution of Withdraw(A(state),B(par, PKU , SKB)) with A, act-
ing as a cheating user. After each query, the challenger stores in a database
T the information TW = PKU , or ⊥ if the protocol fails.

3. After Qw polynomially many queries, A outputs coins {coini}N
i=1 which are

parsed as (infoi, PKMi
, Si, πi). The experiment returns 1, unless (at least)

one of the following conditions holds (in which case, it returns 0):
• N ≤ 2L · Qw;
• ∃(i, j) ∈ {1, . . . , N}2 such that (infoi, PKMi

) = (infoj , PKMj
);

• ∃i ∈ {1, . . . , N} such that VerifyCoin (PKB, coini) = 0;
• ∃(i, j) ∈ {1, . . . , N}2 such that Identify

(
par, PKB, coini, coinj

)
returns a

public key PKU that belongs to the database T.

Definition 6. An e-cash system provides strong exculpability if no PPT
adversary A has noticeable success probability in the game below:

1. The challenger runs par ← ParGen(1λ, 1L), gives par to A and initializes
empty sets of honest users HU , wallets TFW and double spent coins Tds.

2. A generates PKB on behalf of the bank and interacts with these oracles:
• QGetKey(i): this oracle generates (SKUi

, PKUi
) ←↩ UKeygen(par) if it does

not exist yet and returns PKUi
, which is added to HU .

Lattice-Based E-Cash, Revisited 329

• QWithdraw(PKB, i): this oracle plays the role of Ui – and creates (SKUi
,

PKUi
) if it does not exist yet – in an execution of Withdraw

(
U(par, PKB,

SKUi
),A(state)

)
where A plays the role of the bank. At the j-th such

query, we denote by Wj the user’s output. If the protocol succeeds (Wj =⊥
), then (j,Wj) is added to TFW.

• QSpend

(
PKB, i, j, PKM, info

)
: the oracle first checks if the wallet Wj was

provided to Ui via an invocation of QWithdraw(par, PKB, i) using TFW. If
not, the oracle outputs ⊥. If the internal counter of Wj satisfies J = 2	−1,
then Wj is reset to its original state, where J = 0. Then, QSpend spends a
coin from Wj by running Spend

(
Ui(Wj , PKB, PKM),A(state, info)

)
with

A. If the resulting coin has the same serial number S as a previous query
QSpend

(
PKB, i, j, ·, ·

)
then add (i, j, S) to Tds.

3. When adversary A halts, it outputs two coins coin1, coin2. It is declared suc-
cessful if Identify(par, PKB, coin1, coin2) ∈ HU and ∀(i, j), (i, j, S) /∈ Tds where
S is the common serial number shared by coin1 and coin2.

Definition 7. An e-cash system ensures clearing if for any PPT adversary A,
the probability of A winning the clearing game below is negligible:

1. The challenger runs par ← ParGen(1λ, 1L), gives par to A and initializes a
set of honest merchants HM which is initially empty.

2. A generates PKB on behalf of the bank and interacts with these oracles:
• QGetKey(i): this oracle generates (SKMi

, PKMi
) ←↩ MKeygen(par) if it

does not exist yet and returns PKMi
, which is added in HM.

• QReceive

(
PKB, i

)
: this oracle plays the role of a merchant – and cre-

ates (SKMi
, PKMi

) if it does not exist yet – in an execution of
Spend

(
A(state),Mi(SKM, PKU , info)

)
where A plays the role of the user.

At the j-th query, we denote by coinj the merchant’s output.
• QDeposit

(
PKB, i, j

)
: this oracle plays the role of the merchant in an execu-

tion of Deposit(Mi(SKMi
, coinj , PKB),A(state)) with A playing the role

of B. It however aborts if PKMi
/∈ HM, if coinj has not been received by

merchant i or if it has already been deposited.
3. When A halts, it outputs a tuple (PKM, coin, μ). The adversary wins if

PKM ∈ HM, VerifyDeposit (PKB, PKM, coin, μ) = 1 and coin has not been
involved in a previous QDeposit query.

3 Intuition

The core of an e-cash system is the pair constituted by the serial number yS and
the double-spending tag yT of a coin. Besides zero-knowledge proofs, they are
essentially the only elements made public during a spending and therefore must
comply with very strong anonymity requirements while allowing the identifica-
tion of double-spenders. In addition, it should be possible to (efficiently) prove
that they are well-formed, which rules out most simple constructions.

Designing such elements is thus far from trivial which partially explains why

330 A. Deo et al.

most e-cash systems have followed the elegant idea proposed by Camenisch et al.
[11]. It relies on a pseudo-random function PRF as follows. For a wallet of N = 2L

coins, a first seed k is used to generate N pseudo-random values PRFk(i), for
i ∈ [1, N], acting as the coins’ serial numbers. Meanwhile, a second seed t allows
generating independent values PRFt(i) acting as one-time pads on the spender’s
identity. The concealed identity constitutes the double-spending tag.

Any user can generate at most N fresh pairs (PRFk(i),PRFt(i)) per wallet.
In case of double-spending, a pair must have been re-used, meaning that a serial
number PRFk(i) will appear twice in the bank database, thus making frauds
easy to detect. Moreover, in such a case, the spender’s identity will be masked
using the same value PRFt(i). An appropriate combination of the correspond-
ing double-spending tags thus allows to remove PRFt(i) and so to identify the
defrauder. Some adjustments are necessary in the lattice setting [26], but the
high-level principle remains the same.

However, Bourse et al. [9] recently showed that this approach may fail to pro-
vide a sound proof of exculpability in many cases. Indeed, the identity returned
by the identification algorithm is a complex mix of PRF outputs, public keys
and random values, most of them being totally controlled by the adversary. It is
therefore impossible to guarantee that the returned identity corresponds to the
author of these fraudulent payments nor even to guarantee that both payments
have been performed by the same user.

In [9], Bourse et al. point out that this problem is partially due to a misiden-
tification of the properties that must be satisfied by the pseudo-random function
PRF. They therefore propose to strengthen the requirements on PRF, introducing
in particular a notion of collision resistance that essentially states the difficulty
of finding (s, s′, i, i′) such that PRFs(i) = PRFs′(i′). Assuming that the PRF sat-
isfies such suitable properties, they prove security of generic constructions that
are reminiscent of the seminal scheme proposed by Camenisch et al. An inter-
esting aspect of [9] is thus the rehabilitation of the original intuition of compact
e-cash [11] that has been common to all following works.

Unfortunately, this is done by relying on unconventional security notions for
PRFs that have not been considered by designers of such functions. Bourse et
al. show that, under suitable assumptions, these notions are actually already
satisfied by some PRFs in cyclic groups, but similar results are not known in
the lattice setting. Indeed, existing lattice-based PRFs are not known to provide
collision-resistance in this strong sense, which prevents instantiation of their
frameworks in this setting. Concretely, this means that secure lattice-based e-
cash systems are not known to exist for the time being.

In this work, we choose a very different strategy that we believe to be better
suited for the lattice setting as it does not rely on collision-resistant PRFs.

Our first step is to modify the construction of the serial numbers to ensure
that collisions only occur for spendings performed by the same user. In [9], this
is achieved by using the same seed (but different public parameters) to generate
all the pseudo-random values used during a spending. Assuming that pseudo-
randomness still holds in this context and that collision resistance is achieved by

Lattice-Based E-Cash, Revisited 331

some of the PRFs, they prove that a collision only occurs for spendings involving
the same seed. They are then able to prove that the use of the same seed implies
the involvement of the same user, and so on until proving exculpability of their
construction. Here, we still use a PRF as a source of pseudo-random values but
our serial numbers are not simply the outputs of such a function. We indeed want
to reuse the same pseudo-random values for different parts of our serial numbers
and double-spending tags to rule out the adversarial strategy pointed out in [9].
To achieve this while retaining anonymity, we use the notion of a lossy trapdoor
function FLTF introduced in [30] and more specifically, the elegant instantiation
based on LWE proposed in [34] related to the original construction in [30].

The first element of yS is now FLTF(PRFk(i)), which still allows to extract
random bits from PRFk(i) using a universal hash function HUH, as proved in [30].
We can thus incorporate PKU + HUH(PRFk(i)) in yS while ensuring anonymity
of the user U that owns the public key PKU . In the exculpability proof, we will
generate FLTF in the injective mode, thus ensuring that a collision yS = yS′ can
only occur when the same value PRFk(i) is used for both transactions. Together
with PKU +HUH(PRFk(i)) = PKU ′ +HUH(PRFk(i)), this implies PKU = PKU ′ .

We then adapt this idea to double-spending tags. We similarly extract ran-
dom bits from PRFk(i) using a different universal hash function H ′

UH to define
yT = PKU +FRD(R) ·H ′

UH(PRFk(i)), where FRD(R) is some public matrix spe-
cific to the transaction. As PRFk(i) and the public key PKU are the same for
both transactions, the formula yT −FRD(R)·[(FRD(R) − FRD(R′))−1·(yT −yT ′)]
necessarily returns such a public key whose owner is guilty of double-spendings.

As far as efficiency goes, we essentially add some matrix-vector products to
the construction of [26]. Moreover, since all of these matrices are public, a NIZK
proof of correct computations can be produced using the framework provided in
[26] or the more efficient techniques in Sect. 5.

4 Construction

We present a new e-cash system that overcomes the aforementioned issues in
the proof of exculpability. We use the PRF from [7] that allows for a simpler
description of our system. We nevertheless explain in Sect. 7 how to improve
efficiency by using the alternative PRF from [4]. While the Withdraw protocol is
a simplification of [26], the Spend protocol is very different in the way to construct
coin serial numbers and security tags. Additional details on the zero-knowledge
arguments of knowledge used in our construction are given in Sect. 5.

ParGen (1λ, 1L): Given security parameter λ and integer L > 0 such that 2L is
the desired number of coins per wallet issued, perform the following:
1. Choose secure public parameters parPRF =

(
m,n, p, q,P0,P1

)
for the

BLMR PRF family [7]. Namely,

a. For n = O(λ), set α = 2−ω(log1+c(n)) for some constant c > 0; a prime
p = 2log

1+c(n); a prime power q = O(
√

n/α) such that p divides q;
and m = n · �log q�.

332 A. Deo et al.

b. Sample P0,P1 ←↩ U({0, 1}m×m) over Zq-invertible matrices.
2. Choose parameters parsig = (qs, �, σ, (mi)3i=0,ms,mf) for a signature

scheme allowing to sign committed values [25]. Namely,
a. Choose a prime power modulus qs = Õ(n3) dividing q, an integer � =

Θ(λ) and a Gaussian parameter σ = Ω(
√

n log qs log n). Set δqs−1 =
�log2(qs)�, δq−1 = �log2(q)� and δp−1 = �log2(p)�. Define the message
block lengths m0 = ms := 2nδqs−1, as well as m1 = m and m2 = m̄ :=
mδq−1.

b. Sample D′
0,D

′′
0 ←↩ U(Zn×m0

qs
) and Di ←↩ U(Zn×mi

qs
), for

i ∈ {1, 2}, and define the commitment key to be CK :=
(D0 := [D′

0|D′′
0],D1,D2) .

c. Sample F ←↩ U(Zn×m
p).

3. Choose parameters parLTF for the lossy trapdoor function of [30]. In
terms of nLTF = Õ(λ) for constant c > 0, these consist of moduli
qLTF = Θ(n1+1/γ

LTF) that divides q and pLTF = Θ(n1/γ
LTF) for some con-

stant γ < 1; matrix dimensions nLTF and mLTF = Θ(nLTF log qLTF) and
n̄LTF = m̄LTF/ log pLTF such that pLTF < qLTF/4nLTF; and an LWE error
rate αLTF = Θ(

√
n/qLTF). We additionally require that mLTF = m ·�log p�.

Then, select an evaluation key ekLTF for a lossy trapdoor function in
injective mode FLTF : {0, 1}mLTF → Z

nLTF+n̄LTF
qLTF

, meaning that ekLTF =
(
ALTF,ULTF

)
consists of a random ALTF ←↩ U(ZnLTF×mLTF

q) and a matrix

ULTF = S�
LTF · ALTF + E�

LTF + G�
LTF ∈ Z

n̄LTF×mLTF
qLTF

,

for some SLTF ←↩ U(ZnLTF×n̄LTF
qLTF

), ELTF ←↩ DZ
mLTF×n̄LTF ,αLTFqLTF and GLTF

referred to in the preliminaries.
4. Choose an integer p̄ > 0 such that p̄ < p/2 which will define a challenge

space {−p̄, . . . , p̄} for the argument system of [35]. Choose a hash function
HFS : {0, 1}∗ → {−p̄, . . . , p̄}κ, for some κ = O(λ/ log p̄), which will be
modelled as a random oracle in the security analysis.

5. Choose a full-rank difference function FRD : Zn
p → Z

n×n
p such as the one

in [1]; two universal hash functions HUH : ZmLTF
p → Z

n
p ,H ′

UH : ZmLTF
p → Z

n
p

keyed by two uniformly random matrices UUH,U′
UH ←↩ U(Zn×mLTF

p); and
a collision resistant hash function H0 : {0, 1}∗ → Z

n
p\{0n}.

6. Select a digital signature algorithm2 Σ able to sign any bitstring.

The final output is par = (parPRF, parsig, parLTF,F,FRD,UUH,U′
UH,H0, ekLTF,

HFS, CK,Σ).
BKeyGen(1λ, par): The bank B generates a key pair for the signature scheme by

conducting the following steps.
1. Sample (A,TA) ←↩ TrapGen(1n, 1ms , qs) (details are provided in the full

version of this work [16]) so that TA is a short basis of Λ⊥
qs

(A) that allows
B to sample Gaussian vectors in Λ⊥

qs
(A) with parameter σ.

2. Choose uniform A0, . . . ,A	 ←↩ U(Zn×ms
qs

).

2 Any EUF-CMA secure scheme Σ can be selected here.

Lattice-Based E-Cash, Revisited 333

3. Choose D ←↩ U(Zn×ms/2
qs) and u ←↩ U(Zn

qs
).

The key pair consists of PKB :=
(
A, {Aj}	

j=0 ,D,u
)

and SKB := TA.

UKeyGen
(
1λ, par

)
: Choose a secret key SKU := eu ←↩ U({0, 1}m) and set the

public key to be PKU := F · eu ∈ Z
n
p .

MKeyGen(1λ, par): Generate and output (SKM, PKM) ← Σ.Keygen(1λ).
Withdraw

(
U(PKB, SKU , 2L),B(PKU , SKB, 2L)

)
: A user U withdraws a wallet

with 2L coins from a bank B by engaging in the following protocol:
1. U picks a PRF key k ←↩ U(Zm

q) and computes its binary decomposition
k̃ = vdecm,q−1 (k) ∈ {0, 1}m̄. Then, U commits to the 2-block message
(eu, k̃) ∈ {0, 1}m × {0, 1}m̄ by sampling r0 ←↩ DZms ,σ and sending

cU = D′
0 · r0 + D1 · eu + D2 · k̃ ∈ Z

n
qs

to B. In addition, U generates an interactive zero-knowledge argument of
knowledge of an opening (r0, eu, k̃) such that PKU = F · eu with B. This
argument of knowledge can be instantiated using the methods of [35] by
applying the technique of [14] to parallel repetitions.3

2. If the argument of U verifies, then B extends the commitment cU by
sampling r1 ←↩ DZms ,σ, and computing c′

U = cU +D′′
0 ·r1. Next B chooses

τ ←↩ U({0, 1}), defines uU = u + D · vdecn,qs−1 (c′
U), sets

Aτ := [A|A0 +
	∑

j=1

τ [j] · Aj] ∈ Z
n×2ms
qs

and computes a short basis Tτ of Λ⊥
qs

(Aτ) using TA. Using Tτ , it then
samples a short vector v ←↩ DΛ

uU
qs (Aτ),σ

and sends (τ,v, r1) to U .
3. U verifies that ‖v‖ ≤ σ

√
2ms, ‖r1‖ ≤ σ

√
ms and

Aτ · v = u + D · vdecn,qs−1 (cU + D′′
0 · r1) ∈ Z

n
qs

.

If so, U sets r = (r�
0 | r�

1)� ∈ Z
2ms
qs

and stores the wallet W :=
(
eu,k,SigB = (τ,v, r), J = 0

)
whereas B records a debit of 2L for the

account associated to PKU .
Spend (U(W, PKB, PKM),M(SKM, PKB, info)): A user U in possession of a

wallet W =
(
eu,k,SigB = (τ,v, r), J

)
wants to spend a coin with M. If

J > 2L − 1, U outputs ⊥. Otherwise, they run the following protocol:
1. U generates a digital coin by first hashing the transaction information to

R = H0(PKM, info) ∈ Z
n
p before conducting the following steps.

a. Compute a BLMR PRF evaluation on the standard binary represen-
tation of J in {0, 1}L using key k ∈ Z

m
q ; i.e., set

yk =

⌊
L∏

i=1

PJ[L+1−j] · k
⌋

p

and let ỹk = binp(yk) ∈ {0, 1}mLTF its standard bit-decomposition.
3 Technically, we should add a CRS to par but we leave this implicit for simplicity.

334 A. Deo et al.

b. Using ekLTF, compute y1 = FLTF(ỹk) and y2 = PKU + HUH(ỹk) to
form the serial number yS := (y1,y2) ∈ Z

nLTF+n̄LTF
qLTF

× Z
n
p .

c. Compute the security tag yT = PKU + FRD(R) · H ′
UH(ỹk) ∈ Z

n
p .

d. Generate a non-interactive argument of knowledge πK to show knowl-
edge of (J,k, eu, (τ,v, r)) such that:

– The vector k and secret key eu associated with W and PKU have
been certified by B through the signature (τ,v, r).

– yS and yT were computed correctly using par, the secret key eu,
the PRF seed k and a valid J ∈ {0, . . . , 2L−1}.

More precisely, letting yS = (y1,y2), πK argues knowledge of (J,k,
eu, (τ,v, r)) where J ∈ {0, 1}L, k ∈ Z

m
q , eu ∈ {0, 1}m, τ ∈ {0, 1}	,

v ∈ Z
2ms s.t. ‖v‖∞ ≤ σ

√
2ms and r ∈ Z

ms s.t. ‖r‖∞ ≤ σ
√

2ms,
satisfying the relations

[A | A0+
�∑

j=1

τ [j] · Aj] · v

= u + D · vdecn,qs−1

(
[D′

0|D′′
0] · r + D1 · eu + D2 · vdecm,q−1 (k)

)

y1 = FLTF

⎛

⎝binp

⎛

⎝
⌊

L∏

i=1

PJ[L+1−j] · k
⌋

p

⎞

⎠

⎞

⎠ ∈ Z
nLTF+n̄LTF
qLTF

y2 = F · eu + HUH

⎛

⎝binp

⎛

⎝
⌊

L∏

i=1

PJ[L+1−j] · k
⌋

p

⎞

⎠

⎞

⎠ ∈ Z
n
p

yT = F · eu + FRD(R) · H ′
UH

⎛

⎝binp

⎛

⎝

⌊
L∏

i=1

PJ[L+1−j] · k
⌋

p

⎞

⎠

⎞

⎠ ∈ Z
n
p

The non-interactive argument πK is produced by running the proof
described in Sect. 5.2 κ = O(λ/ log p̄) times in parallel and using the
Fiat-Shamir heuristic with random oracle HFS. We may write

πK =
(
{CommK,j}κ

j=1 ,ChallK ,
{
RespK,j

}κ

j=1

)

where ChallK = HFS(par, R,yS ,yT , {CommK,j}κ
j=1).

U sends coin = (info′, PKM,yS ,yT , πK) to M.

2. If info′ = info and VerifyCoin (par, PKB, coin) outputs 1, then M outputs
coin. Otherwise, M outputs ⊥. In either case, U outputs an updated
wallet W ′ where J is increased by 1.

VerifyCoin (PKB, coin): Parse the coin as coin = (info, PKM,yS ,yT , πK) and
output 1 if and only if πK verifies.

VerifyDeposit (PKB, PKM, coin, μ): If VerifyCoin (PKB, coin) = 0, return 0.
Otherwise, return 1 if and only if μ is a valid signature on coin with respect
to PKM: i.e., Σ.Verify(PKM, μ, coin) = 1.

Lattice-Based E-Cash, Revisited 335

Deposit (M(SKM, coin, PKB),B(PKM, SKB, stateB)): M and B interact in the
following way.
1. M sends coin = (info, PKM,yS ,yT , πK) to B along with a signature

μ = Σ.Sign(SKM, coin).
2. If VerifyDeposit (PKB, PKM, coin, μ) = 0 or VerifyCoin (PKB, coin) = 0,

then B outputs ⊥. If info and PKM are found in stateB, then B out-
puts the corresponding entry (coin′, PKM, μ′,y′

S). If the serial number
yS contained in coin is not found in stateB, then B accepts the coin, adds
the tuple (coin, PKM, μ,yS) to stateB and credits M’s account. If there
exists a tuple (coin, PK ′

M, μ′,yS) in stateB, then B outputs such a tuple.

Identify (PKB, coin1, coin2): Parse coini = (infoi, PKMi
,yS,i,yT,i, πK,i) for each

i ∈ {1, 2}. If any of the following conditions hold, output ⊥:
– yS,1 �= yS,2,
– VerifyCoin (par, PKB, coin1) or VerifyCoin (par, PKB, coin2) �= 1,
– (info1, PKM1) = (info2, PKM2).

Otherwise, compute y′
T = (FRD(R1) − FRD(R2))

−1 · (yT,1 −yT,2) ∈ Z
n
p with

Ri = H0(PKMi
, infoi) and set PKU = yT,1 − FRD(R1) · y′

T ∈ Z
n
p . Note that

this calculation is performed using publicly known values, so the proof of
guilt of a double spender is simply ΠG = (coin1, coin2). The output of this
algorithm is then the pair (PKU ,ΠG).

5 Zero-Knowledge Arguments with Soundness Error
1/poly(λ) in Standard Lattices

We proceed in two steps to describe the ZKAoK used to spend a coin. We
first describe an argument of knowledge of a (seed,input) pair generating a given
BLMR evaluation. We then extend this to capture the whole statement proved by
a user during a spending. For the ZKAoK in the withdrawal protocol, we directly
rely on results of [35]. Throughout our construction, we use the argument system
of Yang et al. [35] which was originally proved computationally honest-verifier
ZK (HVZK) with polynomial soundness error. However, we can use known tech-
niques to transform parallel repetitions of this protocol into a 3-round, malicious
verifier ZK protocol with negligible soundness error in the CRS model [14]. This
is how we instantiate the interactive ZKAoK in the withdrawal protocol. In the
spend protocol, we use the standard result that the Fiat-Shamir transform [21]
applied to parallel repetitions of an HVZK protocol yields a NIZK argument in
the ROM. We also note that one may use a statistically hiding configuration of
the commitment scheme from [5] instead of the more efficient computationally
hiding configuration chosen in [35] to obtain statistical ZK arguments.

336 A. Deo et al.

5.1 Zero-Knowledge Arguments for the BLMR PRF

We extend the protocol of Yang et al. [35] to build a ZKAoK of a (seed,input)
pair producing a given BLMR evaluation. A similar result for the GGM-based
PRF implied by [4] is provided in the full version [16], leading to a more efficient
instantiation.

In [35], Yang et al. provide an argument of knowledge for the “instance-
relation” set given by

R∗ =
{(

(M′,y′,M),x′) : M′·x′=y′ mod q ∧
∀(h,i,j)∈M,x′[h]=x′[i]·x′[j] mod q

}
. (1)

where M′ ∈ Z
m′×n′
q ,y′ ∈ Z

m′
q and M ⊆ [n′]× [n′]× [n′], for some prime power q.

The tuple (M′,y′,M) is the instance whereas x′ ∈ Z
n′
q is the witness. By care-

fully crafting each of these elements, we show that a proof of correct evaluation
of the BLMR PRF is an instance of this argument of knowledge.

Indeed, recall that, for any seed k and input x ∈ {0, 1}L, the PRF out-
put is defined as y =

⌊∏L
i=1 PxL+1−i

· k
⌋

p
, where P0,P1 ∈ {0, 1}m×m are

public parameters and p is a prime power dividing q. If we write yj =
∏L

i=L+1−j PxL+1−i
· k for j ∈ [L], we can represent a PRF evaluation using

the linear system over Zq:

y1 − P0 · (1 − x1)k − P1 · x1k = 0

y2 − P0 · (1 − x2)y1 − P1 · x2y1 = 0
...

yL − P0 · (1 − xL)yL−1 − P1 · xLyL−1 = 0

yL − e =
q

p
· y

where e ∈ [0, q/p]m. This system is a linear system in the (quadratic) unknowns
(1 − x1)k, x1k, (1 − x2)y1, x2y1, . . . , (1 − xL)yL−1, xLyL−1,yL, e. As a first step
towards transforming our system into one captured by R∗, we can embed the
above system in a larger system whose solution is given by

(x′)� =
(
(x′

1)
�, (x′

2)
�, (x′

3)
�, ẽ�)

(2)

where

– (x′
1)

� =
(
(1 − x1), x1, . . . , (1 − xL), xL

)
∈ {0, 1}2L,

– (x′
2)

� =
(
y�
0 ,y�

1 , . . . ,y�
L

)
∈ Z

(L+1)·m
q , with y0 := k,

– x′
3 ∈ Z

2L·m
q is of the form

(x′
3)

� =
(
(1 − x1)y0, x1y0, (1 − x2)y1, x2y1, . . . , (1 − xL)yL−1, xLyL−1

)
,

– ẽ = vdecm, q
p −1 (e) ∈ {0, 1}m·(�log(q

p −1)+1), which ensures that ‖e‖∞ < q/p.

Lattice-Based E-Cash, Revisited 337

One aspect of this extended solution is that every consecutive pair of entries
of x′

1 is either (0, 1) or (1, 0). In other words, each consecutive pair of entries
of x′

1 sums to 1 and is binary. The fact that consecutive pairs add to 1 can be
captured by a linear constraint that will constitute the first block of our matrix
M′. Next, the fact that the entries of x′

1 are binary may be captured by the set
of equations x′

1[i] = x′
1[i] · x′

1[i]. In fact, proving this relation only for even i is
sufficient as x′

1[2i] ∈ {0, 1} and x′
1[2i]+x′

1[2i−1] = 1 implies x′
1[2i−1] ∈ {0, 1}.

The next part of a valid solution’s structure is that entries of x′
3 are the result

of multiplying entries of x′
1 and x′

2. This can be written as x′
3[h

′] = x′
1[i

′] ·x′
2[j

′]
for appropriate choices of h′, i′, j′. It then only remains to prove that the entries
of ẽ are binary, which is captured by the equations ẽ[i] = ẽ[i] · ẽ[i].

Following the details outlined above, we may represent a BLMR evaluation
as the system M′ · x′ = y′ mod q for

– x′ ∈ Z
2L+(L+1)·m+2L·m+(�log(q/p−1)+1)·m
q which is subject to the following

constraints, when parsed as in Eq. 2:
• for i ∈ [L]: x′

1[2i] = x′
1[2i] · x′

1[2i]
• for (i, j) ∈ [m] × [L]: x′

3[2m(j − 1) + i] = x′
1[2j − 1] · x′

2[m(j − 1) + i] and
x′
3[2m(j − 1) + m + i] = x′

1[2j] · x′
2[m(j − 1) + i]

• for i ∈ [(�log(q/p − 1)� + 1) · m]: ẽ[i] = ẽ[i] · ẽ[i]

– (y′)� = (
L

︷ ︸︸ ︷
1, . . . , 1,

m·L
︷ ︸︸ ︷
0, . . . , . . . , 0, (q/p)y�)

–

M′ =

⎡

⎣
IL ⊗ (1, 1)

0mL×m‖Im·L −IL ⊗ [P0‖P1]
0m×L·m‖Im −Hm,q/p−1

⎤

⎦ (3)

where all blank blocks consist of 0 entries.

5.2 Zero-Knowledge Arguments for the Spend Protocol

The previous protocol enables to prove correct evaluation of the BLMR PRF
but is not sufficient to produce the proof πK expected by the merchant during
the Spend protocol. In particular, we also need to prove

– knowledge of (short) solutions to linear systems (e.g., the user’s secret key);
– knowledge of solutions to an equation involving a subset sum of known-matrix

and secret vector multiplications (i.e. the computation of Aτ);
– correct evaluation of the lossy trapdoor function FLTF.

All these statements can be captured by the relation R∗ from [35], as explained
below. Together with our proof of correct PRF evaluation, this means that
πK can be instantiated using only the Yang et al. framework. We can then
achieve inverse-polynomial soundness error 1/p̄ in one ZKAoK protocol run.
To achieve a soundness error of 2−λ, we only need O(λ/log p̄) repetitions. This
clearly improves upon the Stern-type protocols used in [26], which require O(λ)
repetitions.

338 A. Deo et al.

Remark 1. It should be noted that we have different equations over various mod-
uli in our Spend protocol. However, as long as q is a prime power and all remain-
ing moduli divide q, we may lift all equations to use the modulus q. For example,
to lift an equation over Zq′ to an equation over Zq where q′ divides q, we simply
multiply by q/q′ ∈ Z. We will use this trick in what follows.

The Explicit Linear System. Transforming the argument of knowledge produced
by a user during the Spend protocol into an instance of the Yang et al. protocol
is far from trivial as there are several details to address. Besides the moduli issue
mentioned above, we indeed need to juggle with two different types of binary
decomposition in order to ensure security of the whole system.

We use the notation from the Spend protocol specification in Sect. 4. We
further parse v as (v1,v2), where v1,v2 ∈ Z

ms . Also, we define σ′ := �σ√
ms+1�

and v+
i = vi+σ′ ·1 for i ∈ {1, 2}, where 1 denotes the all-one vector. This implies

that valid values of vi (i.e., such that ‖vi‖∞ ≤ σ′) give rise to v+
i ∈ [0, 2σ′]ms .

We also set r+ := r +
√

2σ′ · 1 so that r+ ∈ [0, 2
√

2σ′]2ms for valid choices of r
(i.e. values such that ‖r‖∞ ≤

√
2σ′). We can then define ṽi := vdecms,2σ′

(
v+

i

)

for i ∈ {1, 2}, r̃ := vdec2ms,2
√
2σ′ (r+), k̃ := vdecm,q−1 (k) and

w̃ := vdecn,qs−1

(

[D′
0|D′′

0] · r + D1 · eu + D2 · k̃
)

.

We begin by considering the equation associated to the signature. We can express
it as the following linear system over Zq

q

qs

[

A (Hms,2σ′ · ṽ1 − σ′1) +

A0 (Hms,2σ′ · ṽ2 − σ′1) +
	∑

j=1

Aj (Hms,2σ′ · (τ [j] · ṽ2) − σ′τ [j] · 1) − D · w̃
]

=
q

qs
u

q

qs

[

Hn,qs−1 · w̃ −
(

[D′
0|D′′

0]
(
H2ms,2

√
2σ′ · r̃ −

√
2σ′1

)
+

D1 · eu + D2 · k̃
)]

= 0

Hm,q−1 · k̃ − k = 0,

whose solution is x1 :=
(
τ, ṽ1, ṽ2, τ [1] · ṽ2, . . . , τ [�] · ṽ2, w̃, r̃, eu,k, k̃

)
, with

some quadratic constraints amongst unknowns.
We next consider the evaluation of y1, as written in the Spend protocol. Here

a subtlety arises as we need to use two different types of binary decomposition.
So far, we have only used the vdecm,p−1 function because it allows achieving
exact soundness with the proofs of Yang et al. Unfortunately, the decomposi-
tion of an integer according to the sequences B1, . . . , Bδp−1 implicitly defined

Lattice-Based E-Cash, Revisited 339

by vdecm,p−1 (see Sect. 2) may not be unique, which might lead to undetected
frauds in our system. We will then also use the standard binary decomposition
(that is unique) to ensure that the user is not evaluating FLTF on two different
decompositions of the same PRF output. It then remains to prove consistency
of both decompositions, which is explained below.

Concretely, let ỹk denote the standard binary decomposition of the PRF
output yk =

⌊∏L
i=1 PJ[L+1−j] · k

⌋

p
. Importantly, we must ensure that ỹk does

really correspond to binary decomposition of a vector in [0, p − 1]m rather than
some larger space. Alternatively, we need to ensure that yk (which is unknown)
has entries in [0, p − 1]. We achieve this by considering ỹ′

k = vdecm,p−1 (yk). By
multiplying the evaluation equation of y1 by q/qLTF and denoting the LTF key
ekLTF as BLTF ∈ Z

(nLTF+n̄LTF)×mLTF
qLTF , we can derive the following equations over Zq:

q

qLTF
BLTF · ỹk =

q

qLTF
· y1

yk − Hm,p−1 · ỹ′
k = 0

yk − Im ⊗
(
1, 2, . . . , 2�log p�

)
· ỹk = 0

Conveniently, the restriction that the entries of ỹk and ỹ′
k are binary is easily

captured using quadratic constraints. Therefore all boxed equations so far con-
stitute a linear system whose solution is x2 := (x1‖ỹk, ỹ′

k,yk), subject to some
quadratic constraints that can easily be handled with the Yang et al. framework.
However, we still need some equations to ensure that yk is computed correctly as
a BLMR PRF output. In order to describe these equations, we will use the obser-
vations from Sect. 5.1 and the matrix M′ given in Equation (3). In particular,
we set the unknown vector

xk =(1 − J [1], J [1], . . . , 1 − J [L], J [L],yk0, . . . ,ykL,

(1 − J [1])yk0, J [1]yk0, . . . , (1 − J [L])ykL−1, J [L]ykL−1, ek)

where yki ∈ Z
m
q for i ∈ [0, L] and ek ∈ {0, 1}m·(�log(q

p −1)+1). As noted in
Sect. 5.1 (and shown by the form of xk), the constraints on these unknown
vectors are quadratic as required. To capture the PRF computation, we extend
the vector of unknowns by defining x3 := (x2‖xk). We then add the following to
the boxed linear equations over Zq above (where M′ is defined in Equation (3)):

yk0 − k = 0

M′ · xk −
(

0(m+1)·L,
q

p
y�
k

)�
= (1L, 0m·(L+1))�

340 A. Deo et al.

Finally, it remains to prove that y2 and yT are well-formed. This consists in
proving the following relation over Zq:

q

p
F · eu +

q

p
UUH · ỹk =

q

p
y2

q

p
F · eu +

q

p
FRD(R) · U′

UH · ỹk =
q

p
yT ,

where the witnesses are already included in x3.
We have shown that the whole statement proved during the Spend protocol

can be expressed as the collection of the boxed linear systems with a vector x3

of unknowns subject to quadratic constraints supported by the protocol of [35].

6 Security Proofs

In this section and the full version [16], we prove Theorem 1, which states that
our construction provides all the required security properties.

Theorem 1. Our construction is a secure e-cash system in the random oracle
model assuming that the following conditions hold:

– The SISn,ms,qs,β′ for β′ = O
(
σ2m

1/2
s (ms + m log q)

)
and SISn,m,p,2

√
m prob-

lems are hard;
– Parameters are chosen so that the interactive AoK Π1 in the withdrawal pro-

tocol is zero-knolwedge (ZK) and that the non-interactive AoK Π2 in the spend
protocol is honest-verifier zero-knowledge (HVZK);

– Parameters m,n, q, p are chosen so that the BLMR PRF is pseudo-random;
– The LWEnLTF,mLTF,qLTF,α problem is hard;
– Σ is an EUF-CMA secure signature scheme.

Proof of Exculpability. Suppose the lossy trapdoor function is sampled in its
injective mode. The proof of exculpability relies on the fact that an adversary
producing two valid coins with the same serial number must produce at least
one fresh proof of knowledge of a secret key underlying an honestly produced
public key. In particular, our construction guarantees that this public key is the
one that Identify points to. The ability to produce fresh arguments of knowledge
for an honest public key can be used to solve the SIS problem. We first present a
lemma about collision probabilities on PRFs with randomly sampled seeds and
polynomial-size domain.

Lemma 4. Let PRF =
{
PRFk : {0, 1}L → {0, 1}M | k ∈ K

}
be a family of

pseudo-random functions where 2L = poly(λ) and M = poly(λ). Take any N =
poly(λ) and sample k1, . . . ,kN ←↩ U(K). The probability that ∃(i, j, x1, x2) ∈
[N]2 × {0, 1}L × {0, 1}L such that PRFki

(x1) = PRFkj
(x2) is negligible.

Lattice-Based E-Cash, Revisited 341

Proof. We first describe a challenger algorithm C. In the first stage, C sam-
ples k1, . . . ,kN ←↩ U(K), samples N uniform functions U1, . . . , UN : {0, 1}L →
{0, 1}M and samples a challenge bit b ←↩ U({0, 1}). In the second phase, C waits
for queries x ∈ {0, 1}L. If b = 1, it answers with (PRFk1(x), . . . ,PRFkN

(x)). On
the other hand, if b = 0, it responds with (U1(x), . . . , UN (x)). By a standard
hybrid argument, no PPT adversary A can guess the bit b with non-negligible
advantage under the assumption that PRF is a PRF family and N = poly(λ).
Consider the following adversary A∗ that queries C on the entire set {0, 1}L.
Denote the response to query x as (y1,x, . . . , yN,x). Now, A∗ outputs b∗ = 1 if
there exists (i, j, x1, x2) such that yi,x1 = yj,x2 . Otherwise, A∗ outputs b∗ = 0.
Note that, if b = 0, the probability that A∗ outputs b∗ = 1 is equal to

1 −
2LN∏

k=1

(

1 − (k − 1)
2M

)

which is negligible since 2LN = poly(λ) and 2M = 2poly(λ). Therefore, under the
assumption that PRF is a PRF family, the probability that A∗ outputs b∗ = 1
when b = 1 is also negligible. ��

Lemma 5. Our construction provides strong exculpability in the random ora-
cle model assuming that: (i) The SISn,m,p,2

√
m problem is hard; (ii) Parameters

(m,n, p, q) are chosen so that the BLMR PRF is pseudo-random; (iii) Π1 and
Π2 are ZK and HVZK, respectively; (iv) The protocols underlying Π1 and Π2

are arguments of knowledge.

Recall that a successful adversary returns coin1 and coin2 such that PKU∗ =
Identify(PKB, coin1, coin2) for honest user U∗. This implies two things:

– First, the two coins have been generated using the public key PKU∗ . Indeed,
the fact that the identification procedure succeeds implies that these coins
share the same serial number yS := (y1,y2). Since the evaluation key of FLTF

was sampled in injective mode, the serial number yS uniquely determines
the value PK ′ = y2 − HUH(F−1

LTF(y1)), which underlies both coin1 and coin2.
Then, the soundness of Π2 ensures that

yT,1 = PK ′ + FRD(R1) · H ′
UH(F−1

LTF(y1)),
yT,2 = PK ′ + FRD(R2) · H ′

UH(F−1
LTF(y1)),

which implies that PK ′ is the public key PKU∗ pointed to by Identify.
– Second, there exists d ∈ {1, 2} such that coind = (Rd,yS,d,yT,d, πK,d) is not

the result of a QSpend-query w.h.p. To see why, consider the case that coin1
and coin2 are both the result of QSpend-queries, but do not appear in Tds. This
occurs if, when sampling polynomially many seeds, one finds k,k′ satisfying
PRFk(J) = PRFk′(J ′) for some (J, J ′) ∈ [0, 2L −1]2. By Lemma 4, this occurs
with negligible probability negl1(λ).

342 A. Deo et al.

Proof. Using these two observations, we will prove the strong exculpability of
our scheme by defining the following sequence of games. Let ε be the probability
that A succeeds against the exculpability of our scheme and let Qw (resp. Qs)
denote the maximal number of QWithdraw queries (resp. QSpend queries).

Game0: This is exactly the strong exculpability experiment, as defined in Sect. 2.
The probability ε0 that A succeeds in this game is then exactly ε.

Game1,0: In this game, our reduction S (acting as a challenger in the strong
exculpability experiment) proceeds as in Game0 except that it defines F as
Ā ∈ Z

n×m
p , where Ā is a uniform matrix provided in a SISn,m,p,2

√
m instance.

We denote by eu∗ ∈ {0, 1}m the secret key generated by S for the accused user
PKU∗ = F ·eu∗ . Note that A is given black-box access to HFS and S answers
queries to HFS by returning uniformly random elements of {−p̄, . . . , p̄}κ. In
addition, S initialises empty lists of honest users HU and double-spent coins
Tds. As Ā is distributed as F in the original setup, the probability that A
succeeds in this game is ε1,0 = ε0.

Game1,i: For i ∈ [1, Qw], this game is defined as Game1,i−1, except that S now
answers the i-th QWithdraw-query (if any) by running the simulator of Π1 to
simulate the interactive proof generated by the user at this stage. This is done
for every user PKU , and not just PKU∗ . Any change of behaviour of A can
thus be straightforwardly used against the zero-knowledge property of Π1.
We therefore have ε1,i−1 − AdvΠ1

ZK(A) ≤ ε1,i for all i ∈ [1, Qw].
Game1,Qw+i: For i ∈ [1, Qs], this game is defined as Game1,Qw+i−1, except that

S now answers the i-th QSpend-query (if any) by running the simulator of Π2

to simulate the non-interactive argument generated by the spender at this
stage. This can be done (using only the user’s public key PKU) by apply-
ing the standard technique of programming the random oracle HFS on new
inputs, which only requires the statistical HVZK property of Π2. The simu-
lation fails whenever the random oracle HFS needs to be programmed at an
input that it was previously queried on. However, this happens with negli-
gible probability at most CollH := (QS + QH)/2λ, where QH is the total
number of queries made by A to HFS and the denominator 2λ is a lower
bound on the domain-size of HFS-inputs. Therefore, we can conclude that
ε1,Qw+i−1 − AdvΠ2

HV ZK(A) − CollH ≤ ε1,Qw+i for all i ∈ [1, Qs].

It is important to note that, in Game1,Qw+Qs
, the reduction S only needs

PKU∗ and not eu∗ to simulate the game. This concretely means that the adver-
sary’s view is independent of the preimage eu∗ of PKU∗ selected by S. Thanks
to [27, Lemma 8], we know that this preimage is not unique: i.e., there exists at
least one vector e ∈ {0, 1}m\{eu∗} such that Ā · eu∗ = Ā · e mod p with all but
negligible probability. This observation will be crucial in what follows.

Game2: Let QH be a polynomial bounding the number of random oracle queries
made by A to HFS. Up until A terminates, S answers A’s queries as in the
previous games, recording the random oracle queries as (q1, q2, . . .) and the
corresponding uniformly distributed responses as (h1, h2, . . .). Our second

Lattice-Based E-Cash, Revisited 343

observation at the beginning of the proof implies that at least one coin coind

returned by A is not the result of a QSpend-query with overwhelming proba-
bility (if none of the coins were generated as a response to QSpend-query, then
select a random d ∈ {1, 2}. Define

πK,d :=
(
{CommK,d,j}κ

j=1 ,ChallK,d,
{
RespK,d,j

}κ

j=1

)
,

ChallK,d := HFS

(
par, R,yS,d,yT,d, {CommK,d,j}κ

j=1

)
.

In this game, S aborts if the above query was not made to HFS. We note
that in such a case the proof πK,d would only have been acceptable with
probability at most (2p̄ + 1)−κ. We then have ε1,Qw+Qs

− (2p̄ + 1)−κ ≤ ε2.

From now on, we know that there exists an index i∗ ∈ [QH] such that the
i∗-th HFS-query is used to produce ChallK,d (i.e., ChallK,d = hi∗) and that A
succeeds in Game2 with probability ε2 ≥ ε−Qw ·AdvΠ1

ZK(A)−Qs(AdvΠ2
HV ZK(A)+

CollH) − (2p̄ + 1)−κ. We then define our last game Game3 as follows:

1. Run Game2 once: S runs A by behaving as in Game2. If A fails to win the
game, then S aborts. Otherwise, it records coind, πK,d,ChallK,d, (q1, q2, . . .),
(h1, h2, . . .), i∗, sets a variable fork = 1 and proceeds to the next step.

2. (Search for a 3-fork). This step is repeated twice. S runs A with the same
random tape as in the beginning of the first step. In addition, it sends A the
same par as before, giving A oracle access to HFS. S allows A to run until
termination, answering queries to HFS as follows:

– Answer queries q1, . . . , qi∗−1 (which are identical to those of the first run)
using the same values h1, . . . , hi∗−1 as before.

– At the i∗-th query qi∗ (which is also the same as the first time A was
run), pick a fresh uniform response h′

i∗ .
– For the remaining queries made by A denoted q′

i∗+1, . . . , q
′
QH

, pick fresh
uniform random responses h′

i∗+1, . . . , h
′
QH

.

If this is the first repetition, S sets h
(2)
i∗ = h′

i∗ . At the second repetition,
it sets h

(3)
i∗ = h′

i∗ . If A terminates without winning the strong exculpability
game, then S begins the next repetition of this step. If A terminates and wins
the game, denote its output as (PK ′

B′ , coin
′
1, coin

′
2). As before, let d′ ∈ {1, 2}

denote the index that was not the result of a QSpend-query (picking d′ ∈ {1, 2}
randomly if neither coin was the result of a spend query). Recall that both
coins can be the result of QSpend-queries with at most negligible probability
negl(λ)1, but if this is the case, S skips to the next repetition of this step.
Denote coin′

d′ = (R′
d′ ,y′

S,d′ ,y′
T,d′ , π′

K,d′). Write

π′
K,d′ =

({
Comm′

K,d′,j
}κ

j=1
,Chall′K,d′ ,

{
Resp′

K,d′,j
}κ

j=1

)
.

S skips to the next repetition of this step at this point if
(
Rd,yS,d,yT,d, {CommK,d,j}κ

j=1

)
�=

(
R′

d′ ,y′
S,d′ ,y′

T,d′ ,
{
Comm′

K,d′,j
}κ

j=1

)

344 A. Deo et al.

or if hi∗ = h′
i∗ . Otherwise, S sets fork ← fork + 1 and π

(fork+1)
K = π′

K,d′ .
3. (Derive SIS solution from 3-fork). If fork < 3 or, fork = 3 but there exists

no j ∈ [κ] such that (hi∗ [j], h(2)
i∗ [j], h(3)

i∗ [j]) take three distinct values, then S
terminates outputting ⊥. Otherwise, S has access to arguments πK,d, π

(2)
K , π

(3)
K

sharing the same first message which we denote as {Commj}κ
j=1. In addi-

tion, ∃j∗ ∈ [κ] at where hi∗ [j∗], h(2)
i∗ [j∗], h(3)

i∗ [j∗] take three distinct val-
ues in {−p̄, . . . , p̄}. Now a witness can be extracted from the transcripts
πK,d, π

(2)
K , π

(3)
K by considering the j∗-th parallel repetition and the special-

soundness/extractor of the ZKAoK protocol [35]. We denote this witness as
(J̄ , k̄, ēu∗). If ēu∗ = eu∗ , then S aborts. Otherwise, S terminates, outputting
v := ēu∗ − eu∗ ∈ {−1, 0, 1}m as a SIS solution.

It then remains to evaluate the probability ε3 that A succeeds in this last game.
We begin by noting that the first and second steps corresponds exactly to the
forking algorithm denoted as FA in Lemma 3. Therefore, a direct application of
this forking lemma implies that the variable fork reaches the value fork = 3 at
the beginning of Step 3 with probability at least

frk := ε2 ·
((ε2

QH

)2

− 3
(2p̄ + 1)κ

)

.

which is non-negligible if ε2 is non-negligible as 1/(2p̄+1)κ is negligible and QH

is polynomial. Next, note that S extracts a witness (J̄ , k̄, ēu∗) if and only if it
does not terminate at, or before the beginning of Step 3. In order to analyse the
probability that this occurs, we define three events:

– GF (“Good fork”): This is the event that fork = 3 and there exists an index
j∗ ∈ [κ] such that (hi∗ [j∗], h(2)

i∗ [j∗], h(3)
i∗ [j∗]) is a triple of 3.

– F (“Any fork”): This is the event that fork = 3 at the beginning of Step 4.
– GH (“Good hashes”): This is the event that there is an index j∗ ∈ [κ] such

that (hi∗ [j∗], h(2)
i∗ [j∗], h(3)

i∗ [j∗]) take 3 distinct values.

It is easy to see that Pr[GH] = ((6p̄ + 1)/(2p̄ + 1)2)κ is negligible and that
Pr[F] = frk. We also have

Pr[F] ≤ Pr[F|GH] · 1 + 1 · Pr[GH] = Pr[F|GH] + negl(λ) .

This implies that S does not abort at the beginning of Step 3 or before with
non-negligible probability

Pr[GF] = Pr[F ∩ GH] = Pr[F|GH] · Pr[GH] ≥ (frk − negl(λ)) · (1 − negl(λ)).

The last step is to evaluate the probability that ēu∗ = eu∗ , leading S to
abort. Here we rely on our previous observation, namely that the adversary’s
view has been independent of eu∗ since Game1,Qw+Qs

and that there is, with
overwhelming probability, at least another vector ēu∗ �= eu∗ that is a valid secret
key for PKU∗ . We therefore know that the probability of the event ēu∗ �= eu∗ is

Lattice-Based E-Cash, Revisited 345

at least 1
2 . In summary, we get the following bound on the probability ε3 that A

succeeds in Game3:

ε3 ≥ 1
2

· (frk − negl(λ)) · (1 − negl(λ))

where frk is defined above. Any adversary A succeeding with non-negligible prob-
ability ε against the exculpability of our scheme can thus be used to solve the
SIS problem, distinguish the BLMR PRF from pseudo-random, or break the
zero-knowledge property of Π1 or Π2, which completes the proof. ��

7 A More Efficient GGM-based Construction

In Sect. 4, we use the BLMR PRF because it allows for a simpler description
of the argument of knowledge, as it only requires one rounding per evaluation.
Unfortunately, this comes at the price of a super-polynomial modulus q. We
can do better by using a PRF obtained by applying the seminal construction
of Goldreich, Goldwasser and Micali [23] to the LWR-based PRG of Banerjee et
al. [4] for which the LWE-to-LWR reduction of [2] allows the use of a polynomial
modulus. This leads to an e-cash construction with q = poly(λ) which still relies
on the hardness of standard worst-case lattice problems. Explicitly, the PRF we
have in mind relies on the hardness of the LWRm,m,q,p problem (which is at least
as hard as LWEm′,m,q,α′ for m′ ≥ log q

log(2γ′)m, q ≥ γ′m2α′p for any γ′ ≥ 1 [2]).
This PRF uses public parameters m, p, q,A0,A1 ∈ Z

m×m
q where A0,A1 ←↩

U(Zm×m
q). The evaluation on seed k ∈ Z

m
q and input x ∈ {0, 1}L is

Fk(x) :=

⌊

AxL
·
⌊

.
⌊
Ax2 · �Ax1 · k�p

⌋

p
.

⌋

p

⌋

p

. (4)

When replacing the BLMR PRF with the above in our e-cash construction, it
is more convenient to keep the parameters m and n as described in Sect. 4. This
allows us to reuse our security proofs without any issues. However, in contrast
with the BLMR instantiation, we choose polynomially large p and q such that
q2 > m5/2p in the ParGen() phase. In addition, the binary public matrices P0,P1

must be replaced by uniformly sampled A0,A1 ∈ Z
m×m
q . In the full version

[16], we show that this alternative PRF is compatible with the ZK relation R∗

considered in [35], as we did for the BLMR PRF in Sect. 5.1. Combining this
with the reasoning in Sect. 5.2 allows us to show that the GGM-based PRF is
compatible with the ZKAoKs used in Spend.

7.1 Parameters

We provide in this section some details on the parameters and the complexity
of an instantiation of our e-cash system using the GGM-based PRF. Firstly,
Theorem 1 states that the security of our construction relies on:

346 A. Deo et al.

– LWRm,m,q,p (which is at least as hard as LWEm′,m,q,α′ for m′ ≥ log q
log(2γ′)m, q ≥

γ′m2α′p for any γ′ ≥ 1 [2])
– LWEnLTF,mLTF,qLTF,α with α = Θ

(√
nLTF

qLTF

)
, qLTF = Θ(n1+1/γ

LTF) for constant γ < 1
– SISn,m,p,2

√
m

– SISn,ms,qs,β′ for β′ = O(σ2m
1/2
s (ms + m̄))

and also that we use secure ZKAoKs. Since all moduli will be polynomial, we may
safely assume that there is a parameter setting such that the argument system of
Yang et al. is a ZKAoK. Additionally, our proof of the clearing property requires
use of a signature scheme. Note that we can use the signature scheme of [22] so
that the arising assumption is made redundant by the final item listed above.
Recall that for our zero-knowledge proofs, we require that qs, qLTF and p all divide
the prime power q. In order to achieve this, we now set q = qe

0 where q0 is prime
and e > 1 is a constant integer. Since all moduli are polynomial, we may take
nLTF = Θ(m) = Θ(n log q) = Õ(n). Additionally, m, m̄,ms,mLTF, n̄LTF and n′

are all Õ(n). Note that we will take γ′ = 1 in the LWE-to-LWR reduction result
stated above and γ = 1/2. To comply with hardness results relating standard
worst-case lattice problems to SIS [22,29] and LWE [10,31], we require:

q2/p = Ω̃(n5/2) qLTF = Θ̃(n3) p = Ω̃(n) qs = Ω̃(σ2n2) = Ω̃(n3).

Therefore, to base security on worst-case lattice problems, we may take
n,m, nLTF, n̄LTF,mLTF,ms all Õ(λ), p = q0 = Õ(λ) and q = qs = qLTF = q30 =
Õ(λ3). Additional details on the communication costs are provided in the full
version of this work.

Acknowledgements. This work is supported by the European Union
PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant
780701) and also partly funded by BPI-France in the context of the national project
RISQ (P141580). Khoa Nguyen is supported in part by the Gopalakrishnan - NTU PPF
2018, by A*STAR, Singapore under research grant SERC A19E3b0099, and by Vietnam
National University HoChiMinh City (VNU-HCM) under grant number NCM2019-18-
01.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 4

3. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2 20

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20

Lattice-Based E-Cash, Revisited 347

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

5. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

6. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-cash and sim-
ulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 114–131. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03298-1 9

7. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

8. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 7

9. Bourse, F., Pointcheval, D., Sanders, O.: Divisible E-cash from constrained pseudo-
random functions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11921, pp. 679–708. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34578-5 24

10. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: On the classical
hardness of learning with errors. In: STOC (2013)

11. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

12. Canard, S., Pointcheval, D., Sanders, O., Traoré, J.: Divisible E-cash made practi-
cal. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 77–100. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2 4

13. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston,
MA (1983). https://doi.org/10.1007/978-1-4757-0602-4 18

14. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

15. Observatoire de l’épargne réglementée. Rapport annuel (2013). https://
www.banque-france.fr/sites/default/files/medias/documents/observatoire-de-
l-epargne-reglementee-rapport 2013.pdf

16. Deo, A., Libert, B., Nguyen, K., Sanders, O.: Lattice-based E-cash, revisited (full
version). IACR Cryptology ePrint Archive 2020/614 (2020)

17. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. In: SIAM (2008)

18. El Kaafarani, A., Katsumata, S.: Attribute-based signatures for unbounded circuits
in the ROM and efficient instantiations from lattices. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10770, pp. 89–119. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76581-5 4

https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-642-03298-1_9
https://doi.org/10.1007/978-3-642-03298-1_9
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-34578-5_24
https://doi.org/10.1007/978-3-030-34578-5_24
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-662-46447-2_4
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-45539-6_30
https://www.banque-france.fr/sites/default/files/medias/documents/observatoire-de-l-epargne-reglementee-rapport_2013.pdf
https://www.banque-france.fr/sites/default/files/medias/documents/observatoire-de-l-epargne-reglementee-rapport_2013.pdf
https://www.banque-france.fr/sites/default/files/medias/documents/observatoire-de-l-epargne-reglementee-rapport_2013.pdf
https://doi.org/10.1007/978-3-319-76581-5_4
https://doi.org/10.1007/978-3-319-76581-5_4

348 A. Deo et al.

19. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient,
scalable and post-quantum blockchain confidential transactions protocol. In: ACM
CCS (2019)

20. Farshim, P., Orlandi, C., Rosie, R.: Security of symmetric primitives under incor-
rect usage of keys. In: ToSC (2017)

21. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

23. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In:
FOCS (1984)

24. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lat-
tice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 17

25. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

26. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based PRFs and applications to E-cash. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10626, pp. 304–335. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70700-6 11

27. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 10

28. Mastercard: Transaction processing rules (2019). https://www.mastercard.us/
content/dam/mccom/global/documents/transaction-processing-rules.pdf

29. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

30. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC
(2008)

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC (2005)

32. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

33. Visa: Transaction acceptance device guide (2016). https://www.visa.com.pe/dam/
VCOM/regional/na/us/partner-with-us/documents/transaction-acceptance-
device-guide-tadg.pdf

34. Wee, H.: Dual projective hashing and its applications—lossy trapdoor functions
and more. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 246–262. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 16

35. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-319-70700-6_11
https://doi.org/10.1007/978-3-319-70700-6_11
https://doi.org/10.1007/978-3-540-78440-1_10
https://www.mastercard.us/content/dam/mccom/global/documents/transaction-processing-rules.pdf
https://www.mastercard.us/content/dam/mccom/global/documents/transaction-processing-rules.pdf
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-39884-1_2
https://www.visa.com.pe/dam/VCOM/regional/na/us/partner-with-us/documents/transaction-acceptance-device-guide-tadg.pdf
https://www.visa.com.pe/dam/VCOM/regional/na/us/partner-with-us/documents/transaction-acceptance-device-guide-tadg.pdf
https://www.visa.com.pe/dam/VCOM/regional/na/us/partner-with-us/documents/transaction-acceptance-device-guide-tadg.pdf
https://doi.org/10.1007/978-3-642-29011-4_16
https://doi.org/10.1007/978-3-642-29011-4_16
https://doi.org/10.1007/978-3-030-26948-7_6

Twisted-PHS: Using the Product Formula
to Solve Approx-SVP in Ideal Lattices

Olivier Bernard1,2(B) and Adeline Roux-Langlois1(B)

1 Univ Rennes, CNRS, IRISA, Rennes, France
{olivier.bernard,adeline.roux-langlois}@irisa.fr

2 Thales, Gennevilliers, Laboratoire CHiffre, Gennevilliers, France

Abstract. Approx-Svp is a well-known hard problem on lattices, which
asks to find short vectors on a given lattice, but its variant restricted to
ideal lattices (which correspond to ideals of the ring of integers OK of a
number field K) is still not fully understood. For a long time, the best
known algorithm to solve this problem on ideal lattices was the same as
for arbitrary lattice. But recently, a series of works tends to show that
solving this problem could be easier in ideal lattices than in arbitrary
ones, in particular in the quantum setting.

Our main contribution is to propose a new “twisted” version of the
PHS (by Pellet-Mary, Hanrot and Stehlé 2019) algorithm, that we call
Twisted-PHS. As a minor contribution, we also propose several improve-
ments of the PHS algorithm. On the theoretical side, we prove that our
Twisted-PHS algorithm performs at least as well as the original PHS
algorithm. On the practical side though, we provide a full implementation
of our algorithm which suggests that much better approximation factors
are achieved, and that the given lattice bases are a lot more orthogonal
than the ones used in PHS. This is the first time to our knowledge that
this type of algorithm is completely implemented and tested for fields of
degrees up to 60.

Keywords: Ideal lattices · Approx-SVP · PHS algorithm

1 Introduction

Lattice-based cryptography is one of the most promising post-quantum solution
to build cryptographic constructions, as shown by the large number of lattice-
based submissions to the recent NIST post-quantum competition. Among those
submissions, and the other recent more advanced constructions, several hard
problems are used to build the security proofs, such as the Learning With Errors
(LWE) problem [Reg05], its ring [SSTX09,LPR10] or module [LS15] variants
(respectively Ring-LWE and Module-LWE) or the NTRU problem [HPS98]. In
particular the Ring variant of the Learning With Errors problem is widely used
as it seems to allow a nice trade-off between security and efficiency. Indeed,
it is defined in a ring, usually R = Z/〈xn + 1〉 for n a power of 2, whose

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 349–380, 2020.
https://doi.org/10.1007/978-3-030-64834-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_12

350 O. Bernard and A. Roux-Langlois

structure allows constructions having a much better efficiency than if based on
unstructured problems like LWE. Concerning its hardness, there exists quantum
worst-case to average case reductions [SSTX09,LPR10,PRS17] from the approx
Shortest Vector Problem on ideal-lattices (Approx-id-Svp) to the Ring-LWE
problem.

Approx-Svp is a well-known hard problem on lattices, which asks to find short
vectors on a given lattice, but its variant restricted to ideal lattices (correspond-
ing to ideals of the ring of integers R of a number field K) is still not fully under-
stood. For a long time, the best known algorithm to solve this problem on ideal
lattices was the same as for arbitrary lattices. The best trade-off in this case is
given by Schnorr’s hierarchy [Sch87], which allows to reach an approximation fac-
tor 2Õ(nα) in time 2Õ(n1−α), for α ∈ (0, 1), using the BKZ algorithm. But recently,
a series of works [CGS14,EHKS14,BS16,CDPR16,CDW17,DPW19,PHS19a]
tends to show that solving this problem could be easier in ideal lattices than
in arbitrary ones, in particular in the quantum setting.

Hardness of Approx-SVP on Ideal Lattices. This series of works starts
with a claimed result [CGS14] of a quantum polynomial-time attack against a
scheme named Soliloquy, which solves the Approx-Svp problem on a principal
ideal lattice. The algorithm has two steps: the first one is solving the Principal
Ideal Problem (Pip), and finds a generator of the ideal, the second one is solv-
ing a Closest-Vector Problem (Cvp) in the log-unit lattice to find the shortest
generator of the ideal. On one hand, the results of [EHKS14,BS16] on describ-
ing a quantum algorithm to compute class groups and then solve Pip in arbi-
trary degree number fields allow to have a quantum polynomial-time algorithm
for the first step. On the other hand, a work by Cramer et al. [CDPR16] pro-
vides a full proof of the correctness of the algorithm described by [CGS14], and
then concludes that there exists a polynomial-time quantum algorithm which
solve Approx-Svp on ideal lattices for an approximation factor 2Õ(

√
n). In 2017,

Cramer, Ducas and Wesolowski [CDW17] show how to use the Stickelberger lat-
tice to generalize this result to any ideal lattice in prime power cyclotomic fields.
The practical impact of their result was evaluated by the authors of [DPW19] by
running extensive simulations. They conclude that the CDW algorithm should
beat BKZ-300 for cyclotomic fields of degree larger than 24000.

In parallel, Pellet-Mary, Hanrot and Stehlé [PHS19a] proposed an extended
version of [CDPR16,CDW17] which is now proven for any number fields K.
The main feature of their algorithm, that we call PHS, is to use an exponential
amount of preprocessing, depending only on K, in order to efficiently combine the
two principal resolution steps of [CDW17], namely the Cpmp (Close Principal
Multiple Problem) and the Sgp (Shortest Generator Problem). Combining these
two steps in a single Cvp instance provides some guarantee that the output of
the Cpmp solver has a generator which is “not much larger” than its shortest
non-zero vector. Hence, the PHS algorithm in a number field K of degree n and
discriminant ΔK is split in two phases, given ω ∈ [0, 1/2]:

1. The preprocessing phase builds a specific lattice, depending only on the
field K, together with some hint allowing to efficiently solve Approx-Cvp

Twisted-PHS 351

instances. This phase runs in time 2Õ(log|ΔK |) and outputs a hint V of bit-
size 2Õ(log1−2ω|ΔK |).

2. The query phase reduces each Approx-id-Svp challenge to an Approx-Cvp
instance in this fixed lattice. It takes as inputs any ideal of OK , whose alge-
braic norm has bit-size bounded by 2poly(log|ΔK |), the hint V, and runs in
time 2Õ(log1−2ω|ΔK |) + TSu(K). It outputs a non-zero element x of the ideal
which solves Approx-Svp with an approximation factor 2Õ(logω+1|ΔK |/n).

The term TSu(K) denotes the running time for computing S-unit groups which
can then be used to compute class groups, unit groups, and class group discrete
logarithms [BS16]. In the quantum world, TSu(K) = Õ

(
ln|ΔK |) is polynomial,

as shown in [BS16], building upon [EHKS14]. In the classical world, it remains
subexponential in ln|ΔK |, i.e. TSu(K) = exp Õ(lnα|ΔK |), where α = 1/2 for
prime power cyclotomic fields [BEF+17], and α = 2/3 in the general case [BF14],
being recently lowered to 3/5 by Gélin [Gél17].

Forgetting about the preprocessing cost, the query phase beats the tradi-
tional Schnorr’s hierarchy [Sch87] when log|ΔK | ≤ Õ(n1+ε) with ε = 1/3 in the
quantum case, and ε = 1/11 in the classical case [PHS19a, Fig. 5.3]. It should
be noted however that these bounds on the discriminant are not uniform as the
approximation factor varies, e.g. for an approximation factor set to 2

√
n, the time

complexity of the PHS algorithm asymptotically beats Schnorr’s hierarchy only
in the quantum case and only for ε ≤ 1/6.

Our Contribution. Our main contribution is to propose a new “twisted” ver-
sion of the PHS [PHS19a] algorithm, that we call Twisted-PHS. As a minor con-
tribution, we also propose several improvements of the PHS algorithm, in a opti-
mized version described in Sect. 3.3. On the theoretical side, we prove that our
Twisted-PHS algorithm performs at least as well as the original PHS algorithm,
using the same Cvp solver using a preprocessing hint by Laarhoven [Laa16].

On the practical side though, we provide a full implementation of our algo-
rithm, which suggests that much better approximation factors are achieved and
that the given lattice bases are much more orthogonal than the ones used
in [PHS19a]. To our knowledge, this is the first time that this type of algo-
rithm is completely implemented and tested for fields of degrees up to 60. As a
point of comparison, experiments of [PHS19a] constructed the log-S-unit lattice
for cyclotomic fields of degrees at most 24, all but the last two being principal
[PHS19a, Fig. 4.1]. We shall also mention the extensive simulations performed
by [DPW19] using the Stickelberger lattice in prime power cyclotomic fields.
Adapting these results to our construction is not immediate, as we need explicit
S-units to compute our lattice. This is left for future work.

We explain our experiments in Sect. 5, where we evaluate three algorithms:
the original PHS algorithm, as implemented in [PHS19b]; our optimized version
Opt-PHS (Sect. 3.3), and our new twisted variant Tw-PHS (Sect. 4). We target
two families of number fields, namely non-principal cyclotomic fields Q(ζm) of
prime conductors m ∈ [[23, 71]], and NTRU Prime fields Q(zq) where zq is a root
of xq − x − 1, for q ∈ [[23, 47]] prime. These correspond to the range of what

352 O. Bernard and A. Roux-Langlois

Fig. 1. Approximation factors reached by Tw-PHS, Opt-PHS and PHS for cyclotomic
fields of conductors 23, 29, 31, 37, 41, 43, 47 and 53 (in log scale).

is feasible in a reasonable amount of time in a classical setting. For cyclotomic
fields, we managed to compute S-units up to Q(ζ71) for all factor bases in less
than a day, and all log-S-unit lattice variants up to Q(ζ61). For NTRU Prime
fields, we managed all computations up to Q(z47).

Experiments. We chose to perform three experiments to test the performances
of our Twisted-PHS algorithm, and to compare it with the two other algorithms:

– We first evaluate the geometric characteristics of the lattice output by the
preprocessing phase: the root Hermite factor δ0, the orthogonality defect δ,
and the average vector basis angle θavg, as described in details in Sect. 2.5.
The last one seems difficult to interpret as it gives similar results in all cases,
but the two other seem to show that the lattice output by Twisted-PHS is of
better quality than in the two other cases. It shows significantly better root
Hermite factor and orthogonality defect than any other lattice.

– For our second experiment, we evaluate the Gram-Schmidt log norms of each
produced lattice. We propose two comparisons, the first one is before and
after BKZ reduction to see the evolution of the norms in each case: it shows
that the two curves are almost identical for Twisted-PHS but not for the
other PHS variants. The second one is between the lattices output by the
different algorithms, after BKZ reduction. The experiments emphasises that
the decrease of the log norms seems much smaller in the twisted case than in
the two other. Those two observations seem to corroborate the fact that the
Twisted-PHS lattice is already quite orthogonal.

– Finally, we implemented all three algorithms from end to end and used them
on numerous challenges to estimate their practically achieved approximation
factors. This is to our knowledge the first time that these types of algo-
rithms are completely run on concrete examples. The results of the experi-
ments, shown in Fig. 1, suggest that the approximation factor reached by our

Twisted-PHS 353

algorithm increases very slowly with the dimension, in a way that could reveal
subexponential or even better. We think that this last feature would be par-
ticularly interesting to prove.

Technical Overview. We first quickly recall the principle of the PHS algorithm
described in [PHS19a], which is split in two phases. The first phase consists in
building a lattice that depends only on the number field K and allowing to
express any Approx-id-Svp instance in K as an Approx-Cvp instance in the
lattice. This preprocessing chooses a factor base FB, and builds an associated
lattice consisting in the diagonal concatenation of some log-unit related lattice
and the lattice of relations in the class group ClK between ideals of FB, with
explicit generators. It then computes a hint of constrained size for the lattice
to facilitate forthcoming Approx-Cvp queries. Concretely, they suggest to use
Laarhoven’s algorithm [Laa16], which for any ω ∈ [0, 1/2] outputs a hint V of bit-
size bounded by 2Õ(log1−2ω|ΔK |) that allows to deliver answers for approximation
factors Õ(log|ΔK |ω) in time bounded by the bit-size of V [Laa16, Cor. 1–2].
The second phase reduces the resolution of Approx-id-Svp to a single call to
an Approx-Cvp oracle in the lattice output by the preprocessing phase, for any
challenge ideal b in the maximal order of K. The main idea of this reduction is
to multiply the principal ideal output by the Cldl of b on FB by ideals in FB
until a “better” principal ideal is reached, i.e. having a short generator.

Our first contribution is to propose three improvements of the PHS algo-
rithm. The first one consists in expliciting a candidate for the isometry used in
the first preprocessing phase to build the lattice, and to use its geometric prop-
erties to derive a smaller lattice dimension, while still guaranteeing the same
proven approximation factor. The last two respectively modify the composition
of the factor base and the definition of the target vector in a way that signifi-
cantly improves the approximation factor experimentally achieved by the second
phase of the algorithm. Although these improvements do not modify the core of
PHS algorithm and have no impact on the asymptotics, they nevertheless are of
importance in practice, as shown by our experiments in Sect. 5.

We now explain our main contribution, called Twisted-PHS, which is based
on the PHS algorithm. As in PHS algorithm, our algorithm relies on the so-
called log-S-unit lattice with respect to a collection FB of prime ideals, called the
factor base. This lattice captures local informations on FB, not only on (infinite)
embeddings, to reduce a close principal multiple of a target ideal b to a principal
ideal containing b which is guaranteed to have a somehow short generator. The
main feature of our algorithm is to use the Product Formula to describe this
log-S-unit lattice. This induces two major changes in PHS algorithm:

1. The first one is twisting the p-adic valuations by lnN (p), giving weight to the
fact that using a relation increasing the valuations at big norm ideals costs
more than a relation involving smaller norm ideals.

2. The second one is projecting the target directly inside the log-S-unit lattice
and not only into the unit log-lattice corresponding to fundamental units.

354 O. Bernard and A. Roux-Langlois

In fact, the way our twisted version uses S-units with respect to FB to reduce
the solution of the Cldl problem can be viewed as a natural generalization of the
way classical algorithms reduce principal ideal generators using regular units.

Adding weights lnN (p) to integer valuations at any prime ideal p intuitively
allows to make a more relevant combination of the S-units we use to reduce the
output of the Cldl, quantifying the fact that increasing valuations at big norm
prime ideals costs more than increasing valuations at small norm prime ideals.
Besides, the product formula induces the possibility to project elements on the
whole log-S-unit lattice instead of projecting only on the subspace corresponding
to the log-unit lattice. As a consequence, it maintains inside the lattice the size
and the algebraic norm logarithm of the S-units. At the end, the Cvp solver
in this alternative lattice combines more efficiently the goal of minimizing the
algebraic norm for the Cpmp while still guaranteeing a small size for the Sgp
solution in the obtained principal multiple.

In Sect. 4, we describe two versions of our Twisted-PHS algorithm. The first
one, composed by A(Laa)

tw-pcmp and A(Laa)
tw-query is proven to perform at least as well as

the original PHS algorithm with the same Cvp solver using a preprocessing hint
by Laarhoven. But in practice, we propose two alternative algorithms A(bkz)

tw-pcmp

and A(np)
tw-query with the following differences. Algorithm A(bkz)

tw-pcmp performs a min-
imal reduction step of the lattice as sole lattice preprocessing to smooth the
input basis. Algorithm A(np)

tw-query resorts to Babai’s Nearest Plane algorithm for
the Cvp solver role. Experimental evidence in Sect. 5 suggest that these algo-
rithms perform remarkably well, because the twisted description of the log-S-unit
lattice seems much more orthogonal than expected. Proving this property would
remove, in a quantum setting, the only part that is not polynomial in ln|ΔK |.

2 Preliminaries

Notations. A vector is designated by a bold letter v, its i-th coordinate by vi

and its 	p-norm, p ∈ N
∗ ∪ {∞}, by ‖v‖p. As a special case, the n-dimensional

vector whose coefficients are all 1’s is written 1n. All matrices will be given using
row vectors, Dv is the diagonal matrix with coefficients vi on the diagonal, In is
the identity and 1n×n denotes the square matrix of dimension n filled with 1’s.

2.1 Number Fields, Ideals and Class Groups

In this paper, K always denotes a number field of degree n over Q and OK its
maximal order. The algebraic trace and norm of α ∈ K, resp. denoted by Tr(α)
and N (α), are defined as the trace and determinant of the endomorphism x 	→ αx
of K, viewed as a Q-vector space. The discriminant of K is written ΔK and
can be defined, for any Z-basis ω1, . . . , ωn of OK , as det

(
Tr(ωiωj)

)
i,j

. Most
complexities of number theoretic algorithms depend on ln|ΔK |.

The fractional ideals of K are designated by gothic letters, like b, and form a
multiplicative group IK . The class group ClK of K is the quotient group of IK

Twisted-PHS 355

with its subgroup of principal ideals PK
def
:=

{〈α〉, for all α ∈ K
}
. The class

group is a finite group, whose order hK is called the class number of K. For any
ideal b ∈ IK , the class of b in ClK is denoted by

[
b
]
.

We will specifically target two families of number fields, widely used in
cryptography [Pei16]: cyclotomic fields Q(ζm), where ζm is a primitive m-th
root of unity, and NTRU Prime [BCLV17] fields Q(zq), where zq is a root
of xq − x − 1 for q prime. Both families have discriminants of order nn. More
exactly, for cyclotomic fields OQ(ζm) = Z[ζm], so we have [Was97, Pr. 2.7]:

ΔQ(ζm) = (−1)ϕ(m)/2 mϕ(m)
∏

p|m pϕ(m)/(p−1) .

For NTRU Prime fields, the siuation is marginally more involved, as Z[zq]
is maximal if and only if its discriminant D0 = qq − (q − 1)q−1 [Swa62, Th.
2] is squarefree [Kom75, Th. 4]: ΔQ(zq) =

∏
p|D0

pvp(D0) mod ∗2, where pvp(D0)

divides exactly D0. Note however that there is strong evidence that such D0’s
are generically squarefree, say with probability roughly 0.99 [BMT15, Conj. 1.1].
Actually, we checked that the conductor of Z[zq] is not divisible by any of the
first 106 primes for all q ≤ 1000 outside the set {257, 487}, for which 592 | D0.

2.2 The Product Formula

Let (r1, r2) be the signature of K with n = r1 + 2r2. The real embeddings
of K are numbered from σ1 to σr1 , whereas the complex embeddings come in
pairs

(
σj , σj

)
for j ∈ [[r1 + 1, r2]].

Each embedding σ of K into C induces an archimedean absolute value |·|σ
on K, such that for α ∈ K, |α|σ = |σ(α)|; two complex conjugate embeddings
yield the same absolute value. Thus, it is common to identify the set S∞ of
infinite places of K with the embeddings of K into C up to conjugation, so
that S∞ =

{
σ1, . . . , σr1 , σr1+1, . . . , σr1+r2

}
. The completion of K with respect

to the absolute value induced by an infinite place σ ∈ S∞ is denoted by Kσ; it
is R (resp. C) for real places (resp. complex places).

Likewise, let p be a prime ideal of OK above p ∈ Z of residue degree f .
For α ∈ K, the largest power of p that divides 〈α〉 is called the valuation of α
at p, and denoted by vp(α); this defines a non-archimedean absolute value |·|p
on K such that |α|p = p−vp(α). This absolute value can also be viewed as induced
by any of the f embeddings of K into its p-adic completion Kp ⊆ Cp, which is
an extension of Qp of degree f . Hence, the set S0 of finite places of K is specified
by the infinite set of prime ideals of OK , and Ostrowski’s theorem for number
fields ([Con, Th. 3], [Nar04, Th. 3.3]) states that all non archimedean absolute
values on K are obtained in this way, up to equivalence.

Probably the most interesting thing is that these absolute values are tied
together by the following product formula ([Con, Th. 4], [Nar04, Th. 3.5]):

∏

σ∈S∞

|α|[Kσ :R]
σ ·

∏

p∈S0⊃pZ

|α|[Kp:Qp]
p

(
= N (α) ·

∏

p∈S0

N (p)−vp(α)

)
= 1. (21)

As all but finitely many of the |α|v’s, for v ∈ S∞∪S0, are 1, their product is really
a finite product. Note that the S∞ part is |N (α)|, and each term of the S0 part

356 O. Bernard and A. Roux-Langlois

can be written as N (p)−vp(α). This formula is actually a natural generalization
to number fields of the innocuous looking product formula for r ∈ Q, written
as: |r| · ∏p prime p−vp(r) = 1.

2.3 Unit Groups

A more thorough version of this section is given in the full version [BR20, § 2.3].
Let O×

K be the multiplicative group of units of OK , i.e. the group of all elements
of K of algebraic norm ±1, and let μ

(O×
K

)
be its torsion subgroup of roots of

unity of K. Classically, the logarithmic embedding from K to R
r1+r2 is defined

as [Coh93, Def. 4.9.6]: Log∞α = ([Kσ : R] · ln|σ(α)|)σ∈S∞
. Actually, it will be

more convenient to use a flat logarithmic embedding from K to R
r1+2r2 , as in

[PHS19a,BDPW20], and defined as follows:

Log∞ α =
({

ln|σi(α)|}
i∈[[1,r1]]

,
{
ln|σr1+j(α)|, ln|σr1+j(α)|}

j∈[[1,r2]]

)
. (22)

Dirichlet’s unit theorem [Nar04, Th. 3.13] states that O×
K is a finitely gener-

ated abelian group of rank ν = r1+r2−1. Further, its image Log∞ O×
K under the

flat logarithmic embedding is a lattice, called the log-unit lattice, which spans H0,
defined as L0 ∩ R

n
0 , i.e. the intersection of the trace zero hyperplane of R

n and
of L0 =

{
y ∈ R

n : yr1+2j−1 = yr1+2j , j ∈ [[1, r2]]
}
: there exist fundamental

torsion-free elements ε1, . . . , εν ∈ O×
K such that:

O×
K μ

(O×
K

) × εZ1 × · · · × εZν . (23)

Let ΛK = (Log∞εi)1≤i≤ν be any Z-basis of Log∞O×
K . The regulator of K,

written RK , quantifies the density of the unit group in K. It is defined as the
absolute value of the determinant of Λ

(j)
K , where Λ

(j)
K is the submatrix of ΛK

without the j-th coordinate, for any j ∈ [[1, r1 + r2]].

On the S-unit Group. The S-unit group generalizes the unit group O×
K by

allowing inverses of elements whose valuations are non zero exactly over a cho-
sen finite set of primes of S0. Let FB =

{
p1, . . . , pk

}
be such a factor basis,

and let O×
K,FB denote the S-unit group of K with respect to FB. Formally, we

have O×
K,FB =

{
α ∈ K : ∃e1, . . . , ek ∈ Z, 〈α〉 =

∏
p

ej

j

}
. Similarly, we define a flat

S-logarithmic embedding [Nar04, §3, p. 98] from K to L = L0 × R
k by:

Log∞,FB α =
(
Log∞ α,

{−vp(α) · ln N (p)
}
p∈FB

)
. (24)

From the product formula (21), the image of O×
K,FB lies in H = L ∩ R

n+k
0 , the

trace zero hyperplane of L. This fact is used to prove the following theorem:

Theorem 2.1 (Dirichlet-Chevalley-Hasse [Nar04, Th. III.3.12]). The S-
unit group is a finitely generated abelian group of rank S∞+FB−1. Further, the

Twisted-PHS 357

image Log∞,FB

(O×
K,FB/μ

(O×
K

))
is a lattice which spans the (ν +k)-dimensional

space H: there exist fundamental torsion-free S-units η1, . . . , ηk ∈ O×
K,FB st.:

O×
K,FB μ

(O×
K

) × εZ1 × · · · × εZν × ηZ

1 × · · · × ηZ

k .

Let Λ̃K,FB =
({Log∞,FB εi}, {Log∞,FB ηj}

)
be a row basis of Log∞,FB O×

K,FB,
which will be called the log-S-unit lattice. Using that Log∞,FB εi is uniformly zero
on coordinates corresponding to finite places, the shape of Λ̃K,FB is:

Λ̃K,FB
def
:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ̃K 0

Log∞ η1
...

(
−vpj

(ηi) ln N (pj)
)

1≤i,j≤k

Log∞ηk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (25)

Similarly, Theorem 2.1 allows to define the S-regulator RK,FB of K wrpt. FB
as the absolute value of any of the (r1 + r2 + k) minors of any row basis ΛK,FB

of Log∞,FBO×
K,FB. The value of RK,FB is given by the following proposition:

Proposition 2.2. Let h
(FB)
K the cardinal of the subgroup Cl(FB)

K of ClK gen-
erated by classes of ideals in FB. Then, the S-regulator RK,FB can be written
as: RK,FB = h

(FB)
K RK

∏
p∈FB ln N (p).

The proof is given in the full version. We stress that the S-regulator could not
be consistently defined anymore if these twistings by the ln N (p)’s were removed,
as in this case, the property that all columns sum to 0 disappears. Finally, the
volume of the log-S-unit lattice is tied to RK,FB by the following proposition,
which generalizes [BDPW20, Lem. A.1], and that we also prove in [BR20]:

Proposition 2.3. Under the flat S-logarithmic embedding, the log-S-unit lattice
has volume: Vol

(
Log∞,FB O×

K,FB

)
=

√
n + k · 2−r2/2 · h

(FB)
K RK

∏
p∈FB ln N (p).

Using an empty factor basis, it implies Vol
(
Log∞ O×

K

)
=

√
n · 2−r2/2 · RK .

2.4 Algorithmic Number Theory

This section is split into Sect. 2.4 and Sect. 2.5 in the full version [BR20]. The
former recalls useful number theoretic bounds and relations, such as the analytic
class number formula, allowing to bound hKRK , Bach’s bound on the algebraic
norm of class group generators , and the Prime Ideal Theorem on the density of
prime ideals . All rely on the Generalized Riemann Hypothesis (GRH). We only
recall problem definitions discussed in the latter, the most essential being the
Cldl.

358 O. Bernard and A. Roux-Langlois

Problem 2.4 (Class Group Discrete Logarithm (ClDL) [BS16]). Given
a set FB of prime ideals generating a subgroup Cl(FB)

K of ClK , and a fractional
ideal b st.

[
b
] ∈ Cl(FB)

K , output α ∈ K and vi ∈ Z st. 〈α〉 = b · ∏pi∈FB pvi
i .

Problem 2.5 (Close Principal Multiple Problem (CPMP) [CDW17,
§ 2.2]). Given a fractional ideal b, output a “reasonably small” integral ideal c
such that

[
c
]

=
[
b
]−1.

Problem 2.6 (Shortest Generator Problem (SGP)). Given a = 〈α〉, prin-
cipal ideal generated by some α ∈ K, find the shortest α′ ∈ a such that a = 〈α′〉.

2.5 Lattices Geometry and Hard Problems

Let L be a lattice. For any p ∈ N
∗ ∪ {∞} and 1 ≤ i ≤ dim L, the i-th

minimum λ
(p)
i (L) of L for the 	p-norm is the minimum radius r > 0 such

that {v ∈ L : ‖v‖p ≤ r} has rank i [NV10, Def. 2.13]. For any t in the span of L,
the distance between t and L is distp(t, L) = infv∈L‖t − v‖p, and the covering
radius of L wrpt. 	p-norm is μp(L) = supt∈L⊗R

distp(t, L). For the euclidean
norm, we omit p = 2 most of the time.

A fractional ideal b of K can be seen, under the canonical embedding, as
a full rank lattice in R

n, called an ideal lattice, of volume
√|ΔK | · N (b). The

arithmetic-geometric mean inequality, using that |N (α)| ≥ N (b) for all α ∈ b,
and the Minkowski’s inequality [NV10, Th. 2.4] imply:

N (b)1/n ≤ λ
(∞)
1 (b) ≤

√
|ΔK |1/nN (b)1/n (26)

√
n · N (b)1/n ≤ λ

(2)
1 (b) ≤ √

n ·
√

|ΔK |1/nN (b)1/n (27)

More precisely, λ1(b) ≤ (1+o(1))
√

2n/πe·Vol1/n(b), and the Gaussian Heuristic
for full rank random lattices [NV10, Def. 2.8] predicts λ1(b) ≈ √

n/2πe·Vol1/n(b)
on average. In the case of ideal lattices, this yields a pretty good estimation of
the shortness of vectors, even if λ1(b) is not known precisely.

We will consider the following algorithmic lattice problems. Both problems
can be readily restricted to ideal lattices under the labels Approx-id-Svp and
Approx-id-Cvp.

Problem 2.7 (Approximate Shortest Vector Problem (Approx-SVP)
[NV10, Pb. 2.2]). Given a lattice L and an approximation factor γ ≥ 1, find a
vector v ∈ L such that ‖v‖ ≤ γ · λ1(L).

Problem 2.8 (Approximate Closest Vector Problem (Approx-CVP)
[NV10, Pb. 2.5]). Given a lattice L, a target t ∈ L ⊗ R and an approxima-
tion factor γ ≥ 1, find a vector v ∈ L such that ‖t − v‖ ≤ γ · dist(t, L).

Actually, it will be more convenient to work with a slightly modified version of
Approx-Cvp, where the output is required to be at distance absolutely bounded
by some B, independently of the target distance to the lattice. By abuse of
terminology, we still call this variant Approx-Cvp.

Twisted-PHS 359

Evaluating the Quality of a Lattice Basis. Let B = (b1, . . . ,bn) be a
basis of a full rank n-dimensional lattice L, and let the Gram-Schmidt Orthog-
onalization of B be GSO(B) = (b

1, . . . ,b

n). Approximation algorithms usually

attempt to compute a good basis of the given lattice, i.e. whose vectors are as
short and as orthogonal as possible. These lattice reduction algorithms, such as
LLL [LLL82] or BKZ [CN11], try to limit the decrease of the Gram-Schmidt
norms ‖b

i ‖: intuitively, a wide gap in this sequence reveals that bi is far from
orthogonal to

〈
b1, . . . ,bi−1

〉
. Evaluating the quality of a lattice basis is actually

a tricky task that depends partly on the targeted problem (see e.g. [Xu13]). We
will use the following geometric metrics:

1. the root-Hermite factor δ0 is widely used to measure the performance of lat-
tice reduction algorithms [NS06,GN08,CN11], especially for solving Svp-like
problems: δn

0 (B) = ‖b1‖
Vol1/nL

. Experimental evidence suggest that on aver-
age, LLL achieves δLLL0 ≈ 1.02 [NS06,GN08] and BKZ with block size b

achieves δBKZb
0 ≈ (

b
2πe (πb)1/b

)1/(2b−2) for b ≥ 50 [Che13,CN11].
2. the normalized orthogonality defect δ [MG02, Def. 7.5] captures the global

quality of the basis, not just of the first vector, and is especially useful for Cvp-
like problems e.g. if the lattice possesses abnormally short vectors: δn(B) =
∏n

i=1‖bi‖
VolL . For purely orthogonal bases δ = 1, and its smallest possible value

is
(∏

i λi(L)/VolL
)1/n ≤ √

1 + n
4 by Minkowski’s second theorem [NV10, Th.

2.5].
3. the minimum vector basis angle, defined as [Xu13, Eq. (15)]: θmin(B) =

min1≤i<j≤n min
{
θij , π − θij

}
for θij =

arccos
〈
bi,bj

〉

‖bi‖‖bj‖ . We propose to consider
the mean vector basis angle θavg(B), which averages over all min

{
θij , π−θij

}
.

3 The PHS Algorithm

This section describes the PHS algorithm for solving Approx-id-Svp, as intro-
duced by Pellet-Mary, Hanrot and Stehlé in [PHS19a], and discusses several
improvements. The PHS algorithm extends the techniques from [CDPR16,
CDW17] to any number field K and is split in two phases:

1. the preprocessing phase Apre-proc, described in Sect. 3.1, builds a specific
lattice together with some hint allowing to efficiently solve Approx-Cvp
instances;

2. the query phase Aquery, detailed in Sect. 3.2, reduces each Approx-id-Svp
challenge to an Approx-Cvp instance in this fixed lattice.

More precisely, under the GRH and several heuristic assumptions detailed in
[PHS19a, H. 1–6], they prove the following theorem:

Theorem 3.1 ([PHS19a, Th. 1.1]). Let ω ∈ [0, 1/2] and K be a number field
of degree n and discriminant ΔK with a known basis of OK . Under some con-
jectures and heuristics, there exist two algorithms Apre-proc and Aquery such that:

360 O. Bernard and A. Roux-Langlois

– Algorithm Apre-proc takes as input OK , runs in time 2Õ(log|ΔK |) and outputs
a hint V of bit-size 2Õ(log1−2ω|ΔK |);

– Algorithm Aquery takes as inputs any ideal b of OK , whose algebraic norm
has bit-size bounded by 2poly(log|ΔK |), and the hint V output by Apre-proc, runs
in time 2Õ(log1−2ω|ΔK |) + TSu(K), and outputs a non-zero element x ∈ b such
that ‖x‖2 ≤ 2Õ(logω+1|ΔK |/n) · λ1(b).

We start by describing the preprocessing phase Apre-proc in Sect. 3.1, then the
query phase together in Sect. 3.2. We thereafter discuss several algorithmic and
theoretic minor improvements in Sect. 3.3.

3.1 Preprocessing of the Number Field

From a number field K and a size parameter ω ∈ [0, 1/2], the preprocessing
phase consists in building and preparing a lattice Lphs that depends only on the
number field K and allows to express any Approx-id-Svp instance in K as an
Approx-Cvp instance in Lphs. The most significant part of this preprocessing is
devoted to the computation of a hint of constrained size that can be used to
facilitate those forthcoming Approx-Cvp queries.

We first define the lattice which is used in [PHS19a], discuss how the authors
derive its dimension from volume considerations, and then expose the full pre-
processing algorithm.

Definition of the Lattice Lphs. Let FB =
{
p1, . . . , pk

}
be a set of prime

ideals generating the class group ClK . The lattice Lphs proposed in [PHS19a,
§ 3.1] consists in the diagonal concatenation of some log-unit related lattice and
the lattice of relations in ClK between ideals of FB, with explicit generators.
Formally, it is generated by the (ν + k) rows of the following square matrix:

BLphs
def
:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c · BΛ 0

c · fH0(h
(0)
η1

)
... ker fFB =

(
−vpj

(ηi)
)

1≤i,j≤k

c · fH0(h
(0)
ηk

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (31)

– where fH0 is an isometry from H0 ⊂ R
n to R

ν , where H0 is the intersection of
the span L0 of Log∞ OK , i.e. L0 =

{
y ∈ R

n : yr1+2i−1 = yr1+2i, i ∈ [[1, r2]]
}
,

and of the trace zero hyperplane R
n
0 = 1⊥

n ;
– the matrix BΛ is a row basis of fH0

(
Log∞ O×

K

)
;

– the bottom right part of BLphs generates the lattice of all relations in ClK
between ideals of FB, i.e. is the kernel of fFB :

(
e1, . . . , ek

) ∈ Z
k 	→ ∏

j

[
pj

]ej ;

Twisted-PHS 361

– each row basis vector vi = (vi1, . . . , vik) of ker fFB is associated to ηi ∈ K
such that 〈ηi〉 ·∏j p

vij

j = OK , thus vij = −vpj
(ηi), and h(0)

ηi
= πH0

(
Log∞ ηi

)
,

where πH0 is the projection on H0 in R
n;

– c is a scaling parameter whose value depends on fH0 (set later to n3/2/k).

The condition that the factor base generates ClK guarantees that for any chal-
lenge ideal there exists a solution to the Cldl on FB. It can be relaxed to some
extent to generate only a small index subgroup of ClK like in [CDW17]. As we
discuss in more details in [BR20, § 3.1], the choice of the isometry fH0 is actually
not innocuous, and we exhibit in Sect. 3.3 a candidate with nice properties.

Finally, we detail in the full version a simpler formalism, viewing Lphs as
generated by the images of the fundamental elements generating O×

K,FB under
the following isomorphism between O×

K,FB/μ
(O×

K

)
and Lphs � R

ν × Z
k:

ϕphs(α) =
(
c · fH0 ◦ πH0

(
Log∞ α

)
,
{−vpi

(α)
}
1≤i≤k

)
. (32)

Volume of Lphs and Cardinality of FB. It remains to derive an explicit value
for the cardinality k of the factor base FB. As detailed in the full version [BR20]:

VolLphs = cν ·
√

n

2r2/2
· hKRK . (33)

The idea is then to choose k such that Vol1/(ν+k) = O(1), e.g. by taking (ν +
k) = ln VolLphs. Using the analytic class number formula as pointed in Sect. 2.4,
and using the fact that c will be later set to n3/2/k, VolLphs is asymptotically
bounded by exp Õ

(
ln|ΔK | + n ln ln|ΔK |); therefore, (ν + k) can be set to:

ν + k = max
{
ν + log hK , ln|ΔK | + n ln ln|ΔK |}. (34)

The log hK part is there as a sufficient but not necessary condition ensuring
that ClK can be generated by k ≥ log hK ideals [PHS19a, Lem. 2.7]. As hK ≤
Õ(

√|ΔK |), we remark that the second term dominates, so the maximum in
the above formula can be ignored; in the associated code [PHS19b], (k + ν) is
explicitly set to �ln|ΔK |�. We stress that in practice the dimension of Lphs is
quite sensitive to small changes in the value of c or the targeted root volume.
We refer to Sect. 3.3 for more details and examples.

Preprocessing Algorithm. Algorithm 3.1 details the complete preprocessing
procedure that, from a number field and some precomputation size parameter,
chooses a factor base FB, builds the associated matrix BLphs, and processes Lphs

in order to facilitate Approx-Cvp queries.
The dimension k of the factor base and the scaling factor c are set in step 1 as

in the published code [PHS19b]. Steps 2 and 3 are a concise version of [PHS19a,
Alg. 3.1, st. 1–5]; it basically enlarges a generating set of ClK of size k′ ≤ log hK

by picking (k−k′) random prime ideals of bounded norms. The crucial point is to
invoke the prime ideal theorem to show that taking a bound which is polynomial
in k and log|ΔK | [PHS19a, Cor. 2.10] is actually sufficient.

362 O. Bernard and A. Roux-Langlois

Algorithm 3.1. PHS Preprocessing Apre-proc
Input: A number field K of degree n and a parameter ω ∈ [0, 1/2].
Output: The basis BLphs with the preimages O×

K,FB of its rows, and Laarhoven’s
hint V(Lphs).

1: Set k =
(⌊

ln|ΔK |⌋ − ν
)

and c =
(
n3/2/k

)
.

2: Compute ClK =
〈[
p1

]
, . . . ,

[
pk′

]〉
, with k′ ≤ log hK .

3: Randomly extend
{
p1, . . . , pk′

}
by prime ideals of bounded norm to get FB ={

p1, . . . , pk

}
.

4: Compute fundamental elements ε1, . . . , εν , η1, . . . , ηk of O×
K,FB as in Th. 2.1.

5: Create the matrix BLphs whose rows are ϕphs(ε1), . . . , ϕphs(ηk) as defined in Eq.
(31).

6: Use Laarhoven’s algorithm to compute a hint V = V(Lphs) of size 2Õ(log1−2ω|ΔK |).
7: return

(O×
K,FB, BLphs, V(Lphs)

)
.

The last step consists in preprocessing Lphs in order to solve Approx-Cvp
instances efficiently. As noted in [PHS19a, p. 6], the problem is easy without
any constraint on the size of the output hint. To guarantee a hint size that
is not exceeding the query phase time, they suggest to use Laarhoven’s algo-
rithm [Laa16], which outputs a hint V of bit-size bounded by 2Õ((ν+k)1−2ω),
i.e. 2Õ(log1−2ω|ΔK |) using (ν + k) = Õ(log|ΔK |), allowing to deliver the answer
for approximation factors (ν + k)ω in time bounded by the bit-size of V [Laa16,
Cor. 1–2].

3.2 Query Phase: Solving id-Svp Using the Preprocessing

This section describes the query phase Aquery of PHS algorithm; for any challenge
ideal b ⊆ K having a polynomial description in log|ΔK |, it reduces the resolution
of Approx-id-Svp in b to a single call to an Approx-Cvp oracle in Lphs as output
by the preprocessing phase.

The main idea of this reduction is to multiply the principal ideal output by
the Cldl of b on FB by ideals in FB until a “better” principal ideal is reached,
i.e. having a short generator. In Lphs, it translates into adding vectors of Lphs to
some target vector derived from b until the result is short, hence into solving a
Cvp instance. This is formalized in Algorithm 3.2, which rewrites [PHS19a, Alg.
3.2] to take into account our change of conventions in the definition of Lphs and
the choice of Laarhoven’s algorithm as the Approx-Cvp oracle [Laa16, § 4.2].

Note that the output of the Cldl in step 1 is a S-unit if and only if b is only
divisible by prime ideals in the factor base. Each exponent vi can be expressed
as vi = vpi

(α) − vpi
(b). Then, the target defined in step 2 can be viewed as a

drifted by β image of α in Lphs; using the formalism we introduced in Eq. (32), it
writes simply as t = ϕphs(α) + bphs, where bphs = (0, . . . , 0, β, . . . , β) is non zero
only on the k last coordinates. We stress that the role of bphs in the definition of
the target serves a unique purpose: guarantee that α/s ∈ b. In practice, this is not
an anecdotic condition, and choosing carefully β has a significant impact on the
length of the output, as we will see in Sect. 3.3. The rest of the proof of correctness,
quality and running time of Algorithm 3.2 is recalled in the full version.

Twisted-PHS 363

Algorithm 3.2. PHS Query Aquery

Input: A challenge b, Apre-proc(K, ω) =
(O×

K,FB, BLphs, V
)
, and β > 0 st. for any t, the

Approx-Cvp oracle using V(Lphs) outputs w ∈ Lphs with ‖t − w‖∞ ≤ β.
Output: A short element x ∈ b \ {0}.
1: Solve the Cldl for b on FB, i.e. find α ∈ K st. 〈α〉 = b · ∏

pi∈FB p
vi
i .

2: Define the target as t =
(
c · fH0 ◦ πH0

(
Log∞ α

)
,
{−vi + β

}
1≤i≤k

)
.

3: Use the Approx-Cvp solver with V(Lphs) to output w ∈ Lphs st. ‖t − w‖∞ ≤ β.

4: Compute s = ϕ−1
phs(w) ∈ O×

K,FB, using the preimages of BLphs rows.

5: return α/s.

3.3 Optimizing PHS Parameters

In this section, we propose three improvements of the PHS algorithm. The first
one consists in expliciting a candidate for fH0 and using its geometric properties
to derive a smaller lattice dimension, while still guaranteeing the same proven
approximation factor. The last two respectively modify the composition of the
factor base and the definition of the target vector in a way that drastically
improves the approximation factor experimentally achieved by Aquery.

Although these improvements do not modify the core of PHS algorithm and
have no impact on the asymptotics, they nevertheless are of importance in prac-
tice, as we will see in Sect. 5.

Expliciting the Isometry: Towards Smaller Factor Bases. We exhibit
explicitly a candidate for the isometry fH0 going from H0 = R

n
0 ∩L0 ⊆ R

n to R
ν

and evaluate its effect on the infinity norm. It allows to lower the value of c in
Algorithm 3.2 from n

√
n/k to n(1 + ln n)/k, inducing a smaller VolLphs, and

in turn implies using a smaller factor base for the same proven approximation
factor. We define the isometry fH0 as the linear map represented by GSO

T
(MH0),

with:

MH0

def
:=

−1 1
−1 1

.
−1 1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

ν + 1

ν ·

Ir1

1
2

1
2

1
2

1
2

.
1
2

1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

r1 2r2

r 1
r 2

. (35)

Actually, MH0 is simply a basis of R
n
0 ∩L0 in R

n, constituted of vectors that
are orthogonal to 1n and to each of the r2 independent vectors vj , j ∈ [[1, r2]],
that sends any y ∈ L0 to 0 by substracting yr1+2j from its copy yr1+2j−1 and
forgetting every other coordinate.

364 O. Bernard and A. Roux-Langlois

We prove that this isometry verifies ∀h ∈ H0, ‖h‖∞ ≤ (1+ ln n) · ‖fH0(h)‖∞
[BR20, Pr. 3.2]. Hence, as fully explained in [BR20, § 3.3], we can choose:

c = max
(

1,
(1 + ln n)n

∑
p∈FB ln N (p)

)
. (36)

We quantify the gain obtained by this new value of c using several experiments,
all described and discussed in the full version of this paper [BR20, Tab. 3.1–2].

Lowering the Factor Base Weight. Second, we suggest choosing the k ele-
ments of the factor base as the k prime ideals of least possible norm, instead
of randomly picking them up to some polynomial bound. As discussed in the
full version, this incidentally lowers the approximation factor, which depends
on

∏
p∈FB N (p).

Formally, this only modifies step 3 of Algorithm 3.1 as follows.
Let

{
p1, . . . , pk′

}
be a generating set of ClK , with k′ ≤ log hK , as obtained by

the previous step 2. As in Algorithm 3.1, using the prime ideal theorem yields
that we can choose some bound B polynomial in k and log|ΔK | such that the
set of prime ideals of norm bounded by B contains at least k elements. Then,
we order this set by increasing norms, choosing an arbitrary permutation for
isonorm ideals, and remove ideals that were already present in

{
p1, . . . , pk′

}
. It

remains to extract the first (k − k′) elements to obtain our factor base.
There is one issue to consider, namely adapting the justification of [PHS19a,

H. 4], relying on Lphs being a “somehow random” lattice to derive that μ∞(Lphs)
is close to λ

(∞)
1 (Lphs). We discuss this in more details for Heuristic 4.8 in Sect. 4.2.

Moreover, in practice, it is always possible to empirically upper bound the infin-
ity covering radius of Lphs to verify that this heuristic holds. For example,
as described in [PHS19a, § 4.1]: take sufficiently many random samples ti in
the span of Lphs from a continuous Gaussian distribution of sufficiently large
deviation; solve Approx-Cvp for the 	2-norm for each of them to obtain vec-
tors wi ∈ Lphs close to ti; finally, majorate μ∞(Lphs) by maxi‖ti − wi‖∞. Then,
if the expected heuristic behaviour is too far from this estimate, we could still
replace one ideal of FB by an ideal of bigger norm and iterate the process.

Minimizing the Target Drift. Our last suggested improvement modifies the
definition of the target vector to take into account the fact that valuations at
prime ideals are integers. Hence, the condition enforcing α/s ∈ b, which was
written as ∀p ∈ FB, vp(α) − vp(s) ≥ 0, can be replaced by the equivalent
requirement that ∀p ∈ FB, vp(α) − vp(s) > −1. Intuitively, this reduces the val-
uations at prime ideals of the output element by one on average, hence lowering
the approximation factor bound. Formally, using the notations of Algorithm 3.2,
we only modify the definition of the target t in step 2 of Algorithm 3.2. For
any 0 < ε < 1, let β̃ = (β − 1 + ε) and let b̃phs = (0, . . . , 0, β̃, . . . , β̃) with non
zero values only on the k last coordinates. The modified target is defined as:

t̃ = ϕphs(α) + b̃phs =
(
c · fH0 ◦ πH0

(
Log∞ α

)
,
{−vi + β̃

}
1≤i≤k

)
. (37)

Twisted-PHS 365

The remaining steps of Algorithm 3.2 stay unchanged. We have to prove that
the output is still correct, i.e. that α/s ∈ b, where w = ϕphs(s) ∈ Lphs veri-
fies ‖t̃ − w‖∞ ≤ β. This is done in the following Proposition 3.2, which adapts
[PHS19a, Th. 3.3] to benefit from all the improvements of this section. Its proof
is moved to [BR20, Pr. 3.5].

Though this adjustment might seem insignificant at first sight, we stress that
the induced gain is of order

∏
p∈FB N (p)1/n, which is roughly subexponential

in n, and that its impact is very noticeable experimentally. In fact, the quality
of the output is so sensitive to this β̃ that we implemented a dichotomic strategy
to find, for each challenge b, the smallest possible translation β̃ that must be
applied to ϕphs(α) to ensure (α/s) ∈ b.

Proposition 3.2. Given access to an Approx-Cvp oracle that, on any input,
output w ∈ Lphs at infinity distance at most β, the modified algorithm Aquery

using the isometry fH0 defined in Eq. (35), the value c defined in Eq. (36), and
for any 0 < ε < 1, the modified target t̃ defined in Eq. (37), computes x ∈ b\{0}
such that: ‖x‖2 ≤ √

n · N (b)1/n · exp
[
(β+2β−1�)·∑p∈FB lnN (p)

n

]
.

4 Twisted-PHS Algorithm

Our main contribution is to propose a twisted version of the PHS algorithm.
The main modification is to use the natural description of the log-S-unit lattice
given in Eq. (25) that is deduced from the product formula of Eq. (21).

On the theoretical side, we prove that our twisted-PHS algorithm performs
at least as well as the original PHS algorithm with the same Cvp solver using a
preprocessing hint by Laarhoven. More precisely:

Theorem 4.1. Let ω ∈ [0, 1/2] and K be a number field of degree n and dis-
criminant ΔK . Assume that a basis of OK is known. Under GRH and heuristics
Heuristic 4.8 and 4.9, there exist two algorithms A(Laa)

tw-pcmp and A(Laa)
tw-query such

that:

– Algorithm A(Laa)
tw-pcmp takes as input OK , runs in time 2Õ(log|ΔK |) and outputs

a hint V of bit-size 2Õ(log1−2ω|ΔK |);
– Algorithm A(Laa)

tw-query takes as inputs any ideal b of OK , whose algebraic norm

has bit-size bounded by 2poly(log|ΔK |), and the hint V output by A(Laa)
tw-pcmp, runs

in time 2Õ(log1−2ω|ΔK |) + TSu(K), and outputs a non-zero element x ∈ b such
that ‖x‖2 ≤ 2Õ(logω+1|ΔK |/n) · λ1(b).

All the results of this section are fully proven in the full version [BR20, §4].
On the practical side though, experimental evidence given in Sect. 5 suggest

that we achieve much better approximation factors than expected, and that the
given lattice bases are a lot more orthogonal than the ones used in [PHS19a].
Thus, in practice, we propose two alternative algorithms A(bkz)

tw-pcmp and A(np)
tw-query:

366 O. Bernard and A. Roux-Langlois

the former applies a minimal reduction strategy as sole lattice preprocessing,
and the latter resorts to Babai’s Nearest Plane algorithm for the Cvp solver
role.

4.1 Preprocessing of the Number Field

As for the PHS algorithm, the preprocessing phase consists, from a number
field K and a size parameter ω ∈ [0, 1/2], in building and preparing a lattice Ltw

that depends only on the number field and allows to express any Approx-id-Svp
instance in K as an Approx-Cvp instance in Ltw.

Theoretically, the only difference between the original PHS preprocessing
and ours resides in the lattice definition and in the factor base elaboration. Its
most significant part still consists in computing a hint of constrained size to
facilitate forthcoming Approx-Cvp queries. In practice though, we replace this
hint computation by merely a few rounds of BKZ with small block size (see
Sect. 5). In a quantum setting this removes the only part that is not polynomial
in ln|ΔK |, and in a classical setting avoids the dominating exponential part.

Defining the Lattice Ltw: A Full-Rank Version of the log-S-unit Lat-
tice. Let FB =

{
p1, . . . , pk

}
be a set of prime ideals generating the class

group ClK . The lattice Ltw used by our twisted-PHS algorithm is basically the
log-S-unit lattice Log∞,FB O×

K,FB wrpt. FB under the flat logarithmic embed-
ding, to which we apply an isometric transformation to obtain a full-rank lattice
in R

ν+k.
Formally, Ltw is defined as the lattice generated by the images of the funda-

mental elements generating the S-unit group O×
K,FB, as given by Theorem 2.1,

under the following map ϕtw from K to R
ν+k:

ϕtw(α) = fH ◦ πH

(
Log∞,FB α

)
, (41)

– where fH is an isometry from H ⊂ R
n+k to R

ν+k, with H the intersection of
the trace zero hyperplane R

n+k
0 = 1⊥

n+k, and of the span of Log∞,FB O×
K,FB,

i.e. L =
{
y ∈ R

n+k : yr1+2i−1 = yr1+2i, i ∈ [[1, r2]]
}
;

– πH is the projection on H, in particular it is the identity on the S-unit group.

This map naturally inherits from the homomorphism properties of Log∞,FB,
i.e. ϕtw(αα′) = ϕtw(α) + ϕtw(α′) and ∀λ ∈ Z, ϕtw(αλ) = λ · ϕtw(α), and also
defines an isomorphism between O×

K,FB

/
μ
(O×

K

)
and Ltw.

The isometry fH must be carefully chosen in order to control its effect on
the 	∞-norm. Nevertheless, it should be seen as a technicality allowing to work
with tools designed for full-rank lattices. Formally, let fH be the linear map
represented by GSO

T
(MH), which denotes the transpose of the Gram-Schmidt

orthonormalization of the following matrix:

Twisted-PHS 367

MH
def
:=

−1 1
−1 1

.
−1 1

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

ν + 1 + k

ν
+

k ·

Ir1

1
2

1
2

1
2

1
2

.
1
2

1
2

Ik

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

r1 2r2 k

r 1
r 2

k

. (42)

Actually, MH is simply a basis of R
n+k
0 ∩ L in R

n+k, constituted of vectors that
are orthogonal to 1n+k and to each of the r2 independent vectors vj , j ∈ [[1, r2]]
that sends any y ∈ L to 0 by substracting yr1+2j from its copy yr1+2j−1 and
forgetting every other coordinate. Hence, graphically, a row basis of Ltw is:

BLtw
def
:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ̃K 0

Log∞ η1
...

(
−vpj

(ηi) ln N (pj)
)

1≤i,j≤k

Log∞ ηk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

· GSO
T
(MH), (43)

where the first part is the basis Λ̃K,FB of Log∞,FB O×
K,FB defined in Sect. 2.3.

Volume of Ltw and Optimal Factor Base Choice. First, we evaluate the
volume of Ltw = fH

(
Log∞,FB O×

K,FB

)
. As the isometry fH stabilizes the span of

the log-S-unit lattice, it preserves its volume, which is given by Proposition 2.3.
Using that ideal classes of FB generate the class group, hence h

(FB)
K = hK , yields:

VolLtw =
√

n + k · 2−r2/2 · hKRK

∏

1≤i≤k

ln N (pi). (44)

Certainly, the volume of Ltw is growing with the log norms of the factor base
prime ideals, but a remarkable property is that this growth is at first slower
than the lattice density increase induced by the bigger dimension. The meaning
of this is that we can enlarge the factor base to densify our lattice up to an
optimal point, after which including new ideals become counter-productive.

Formally, let Vk′ denote the reduced volume Vol1/(ν+k′)Ltw for a factor base
of size k′ ≥ k0, where k0 is the number of generators of ClK . We have:

Vk′+1 = Vk′ ·
(√

1 + 1
n+k′ · ln N (pk′+1)

Vk′

)1/(ν+k′+1)

. (45)

368 O. Bernard and A. Roux-Langlois

This shows that Vk′+1 < Vk′ is equivalent to lnN (pk′+1) < Vk′
/√

1 + 1
n+k′ .

Using this property, Algorithm 4.1 outputs a factor base maximizing the density
of Ltw.

First, for a fixed factor base of size k, we compare the reduced volume Vk

of Ltw with the reduced volume of Lphs, denoted Vphs
not
:=

(√
n
2r2 · hKRK

)1/(ν+k).

Lemma 4.2. We have:
Vk

Vphs
≤ e1/ne

k
· ∑p∈FB ln N (p).

This means that the gap between the reduced volume of the twisted lattice and
the reduced volume of the untwisted lattice evolves roughly as the arithmetic
mean of the ln N (p). We stress that this bound is valid for any k.

Although the reduced volume significantly decreases in the first loop itera-
tions, reaching precisely the minimum value can be very gradual, so that it might
be clever to early abort the loop in Algorithm 4.1 when the gradient is too low,
or truncate the output to at most k′ = Õ(ln|ΔK |). We quantify the fact that
the density loss is at most constant in the worst case in the following result.

Lemma 4.3. Let k′ = C
(
ln|ΔK | + n ln ln|ΔK |). Let Vmin be the minimum

reduced volume output by Atw-FB, and suppose Vmin is reached for some k > k′,
then Vk′ ≤ e1/C+1/ne · Vmin.

Proposition 4.4. Algorithm Atw-FB terminates in time TSu(K)+poly(ln|ΔK |)
and outputs a factor base of size k = poly(ln|ΔK |) using B = poly(ln|ΔK |).

In practice, experiments of Sect. 5 report that the dimensions of the factor
bases output by Atw-FB are significantly smaller than those showed in [BR20,
Tab. 3.1–2] for the (optimized) PHS algorithm, so that Lemma 4.3 is never
triggered.

Algorithm 4.1. Tw-PHS Factor Base Choice Atw-FB
Input: A number field K of degree n.
Output: An optimal factor base FB generating ClK that minimizes Vol1/(ν+k)Ltw.
1: Compute ClK =

〈[
q1

]
, . . . ,

[
qk0

]〉
, with k0 ≤ log hK .

2: Compute P(B) =
{
pi : N (pi) ≤ B

} \ {
q1, . . . , qk0

}
ordered by increasing norms,

where B is chosen st. πK(B) = poly(ln|ΔK |) ≥ k0.
3: FB ← {

q1, . . . , qk0

}
.

4: i ← 0.
5: while ln N (pi+1) < Vk0+i

/√
1 + 1

n+k0+i
do

6: Add pi+1 to FB.
7: i ← i + 1.
8: end while
9: return FB.

Twisted-PHS 369

Preprocessing Algorithm. Algorithm 4.2 details the complete preprocessing
procedure that, from a number field and some precomputation size parameter,
chooses a factor base FB, builds the associated matrix BLtw, and processes Ltw

in order to facilitate Approx-Cvp queries.

Algorithm 4.2. Tw-PHS Preprocessing Atw-pcmp

Input: A number field K of degree n and a parameter ω ∈ [0, 1/2] or b.
Output: The basis BLtw with the preimages O×

K,FB of its rows, and Laarhoven’s
hint V(Ltw).

1: Get an optimal factor base FB = Atw-FB(K) of size k = 	FB. If needed, truncate
the output to k = Õ(ln|ΔK |) as in Lem. 4.3.

2: Compute fundamental elements ε1, . . . , εν , η1, . . . , ηk of O×
K,FB as in Th. 2.1.

3: Create BLtw, whose rows are ϕtw(ε1), . . . , ϕtw(ηk) as defined in Eq. (43).

4: Use Laarhoven’s algorithm to compute a hint V = V(Ltw) of size 2Õ(log1−2ω|ΔK |).
5: (or) Use a BKZ of small block size to reduce the basis of Ltw.
6: return

(O×
K,FB, BLtw, V(Ltw)

)
.

This Tw-PHS preprocessing differs from the original PHS preprocessing given
in Algorithm 3.1 on two aspects: the factor base, output by Atw-FB in step 1 and
which is essentially much smaller in practice, and the new twisted lattice in
step 3.

The last two alternative steps consists in preprocessing Ltw in order to solve
Approx-Cvp instances efficiently. Theoretically, we retain in step 4 the same
approach as in step 6 of the original PHS preprocessing Algorithm 3.1, that
guarantees a hint size not exceeding the query phase time using Laarhoven’s
algorithm [Laa16]. This outputs a hint V of bit size bounded by 2Õ(ν+k)1−2ω

,
i.e. 2Õ(log1−2ω|ΔK |) using (ν + k) = Õ(log|ΔK |), allowing to deliver the answer
for approximation factors (ν + k)ω in time bounded by the bit size of V [Laa16,
Cor. 1–2]. This theoretic version will be denoted by A(Laa)

tw-pcmp.
Nevertheless, in practice the twisted lattice output by Algorithm 4.2 inciden-

tally appears to be a lot more orthogonal than expected. That’s the reason why
we suggest to replace the exponential step 4 of Algorithm 4.2 by step 5, which
performs some polynomial lattice reduction using a small block size BKZ. In a
quantum setting this removes the only part that is not polynomial in ln|ΔK |,
and in a classical setting avoids the dominating exponential part. This practical
version will be denoted by A(bkz)

tw-pcmp.

4.2 Query Phase

This section describes the query phase Atw-query of the Tw-PHS algorithm. As
for the query phase of the original PHS algorithm, it reduces the resolution
of Approx-id-Svp in b, for any challenge ideal b ⊆ K having a polynomial
description in log|ΔK |, to a single call to an Approx-Cvp oracle in Ltw as output

370 O. Bernard and A. Roux-Langlois

by the preprocessing phase. The main idea of this reduction remains to multiply
the principal ideal generator output by the Cldl of b on FB by elements of O×

K,FB

until we reach a principal ideal having a short generator. This translates into
adding vectors of Ltw to some target vector derived from b until the result is
short, hence into solving a Cvp instance in the log-S-unit lattice Ltw.

The essential difference of the Tw-PHS version lies in the definition of this
target, which is adapted in order to benefit from the twisted description of the
log-S-unit lattice. This is formalized in Algorithm 4.3.

Note that the output of the Cldl in step 1 is not a S-unit unless b is divisible
only by prime ideals of FB. For each i, vi = vpi

(α) − vpi
(b). For convenience

and without any loss of generality we shall assume that b is coprime with all
elements of the factor base, i.e. ∀p ∈ FB, vp(b) = 0. In that case, the target
in step 2 writes naturally as t = ϕtw(α) + fH

(
btw

)
. This target definition calls

a few comments. First, the output of the Cldl is projected on the whole log-
S-unit lattice instead of only on the log-unit sublattice, hence maintaining its
length and algebraic norm logarithms in the instance scope. Thus, the way our
algorithm uses S-units to reduce the solution of the Cldl problem can be seen
as a smooth generalization of the way traditional Sgp solvers use regular units
to reduce the solution of the Pip as in [CDPR16]. Second, the sole purpose of
the drift by btw is to ensure that α/s ∈ b. Adapting its definition to the twisted
setting is slightly tedious and deferred to the next paragraph. The most notable
novelty is that we force the use of a drift that is inside the log-S-unit lattice
span. This somehow captures and compensates for the perturbation induced on
infinite places for correcting negative valuations on finite places using S-units.

Finally, as already mentioned, Ltw seems much more orthogonal in practice
than expected, so that we advise to resort to Babai’s Nearest Plane algorithm for
solving Approx-Cvp in Ltw, instead of using Laarhoven’s query phase with the
precomputed hint. We only keep Laarhoven’s algorithm to theoretically prove the
correctness and complexity of our new algorithm. The theoretical and practical
versions of Atw-query are respectively denoted by A(Laa)

tw-query and A(np)
tw-query.

Algorithm 4.3. Tw-PHS Query Atw-query
Input: Challenge b, Atw-pcmp(K, ω) =

(O×
K,FB, BLtw, V)

, and β̃ > 0 st. for any t, the

Approx-Cvp oracle using V(Ltw) outputs w ∈ Ltw with ‖f−1
H (t − w)‖∞ ≤ β̃.

Output: A short element x ∈ b \ {0}.
1: Solve the Cldl for b on FB, i.e. find α ∈ K st. 〈α〉 = b · ∏

pi∈FB p
vi
i .

2: Define the target t as f−1
H (t) = πH

(
Log∞ α,

{−vi lnN (pi)
}
1≤i≤k

)
+ btw, where the

drift btw ∈ H will be defined in Eq. (46).

3: Solve Approx-Cvp with V(Ltw) to get w ∈ Ltw st. ‖f−1
H (t − w)‖∞ ≤ β̃.

4: (or) Use Babai’s Nearest Plane to get w ∈ Ltw st. ‖f−1
H (t − w)‖∞ is small.

5: Compute s = ϕ−1
tw (w) ∈ O×

K,FB, using the preimages of the rows of BLtw.

6: return α/s.

Twisted-PHS 371

We now detail explicitly our target choice, from which we deduce the cor-
rectness and the output quality of Algorithm 4.3, as fully proven in [BR20].

Definition of the Target Vector. Recall that we assumed that b is coprime
with FB, hence f−1

H (t) = πH

(
Log∞,FB α

)
+ btw, for some btw ∈ H that must

ensure α/s ∈ b, for s = ϕ−1
tw (w) and when ‖f−1

H (t − w)‖∞ ≤ β̃. Indexing coor-
dinates by places, we exhibit btw =

({bσ}σ∈S∞∪S∞
, {bp}p∈FB

)
, where:

{
bσ = − k

n

(
lnN (b)

n+k + β̃
)

+ 1
n

∑
p∈FB lnN (p) for σ ∈ S∞ ∪ S∞,

bp = β̃ − ln N (p) + lnN (b)
n+k for p ∈ FB.

(46)

It is easy to verify that all coordinates sum to 0, i.e. btw ∈ H. We now explain
this choice, first showing that under the above hypotheses, Algorithm 4.3 is
correct.

Proposition 4.5. Given access to an Approx-Cvp oracle that on any input t,
outputs w ∈ Ltw st. ‖f−1

H (t − w)‖∞ ≤ β̃, Atw-query outputs x ∈ b \ {0}.
The proof of Proposition 4.5 also quantifies the intuition that the output

element has smaller valuations at big norm prime ideals. In particular, strictly
positive valuations occur only for ideals st. lnN (p) ≤ β̃. This has a very valuable
consequence: estimating the 	∞-norm covering radius of Ltw allows to control
the prime ideal support of any optimal solution. Hence, even if the Approx-Cvp
cannot reach μ∞(Ltw), it is possible to confine the algebraic norm of each query
output by not including in FB the prime ideals whose log-norm would in fine
exceed μ∞(Ltw), and at which the optimal solution provably has a null valuation.
Roughly speaking, this is what Atw-FB tends to achieve in Algorithm 4.1.

Translating Infinite Coordinates. As already mentionned, one important nov-
elty consists in forcing the drift used to ensure α/s ∈ b to be inside the log-
S-unit span. The underlying intuition is that “correcting” negative valuations
at finite primes should only involve S-units. We modelize this by splitting the
weight of the bp’s evenly across the infinite places coordinates, hence obtaining
Eq. (46). This heuristically presumes that S-units absolute value logarithms are
generically balanced on infinite places. Let us summarize our target definition:

t = fH

({
ασ − 1

n

[
kβ̃ + ln N (b) − ∑

p∈FB ln N (p)
]}

σ
,
{

αp + β̃ − ln N (p)
}

p∈FB

)
. (47)

Quality of the Output of A(Laa)
tw-query. To bound the quality of the output of

Algorithm 4.3, the general idea is that minimizing the distance of our target to
the twisted lattice directly minimizes the p-adic absolute values −vp(α) ln N (p)
instead of minimizing the valuations vp(α) independently of lnN (p).

This makes use of the following log-S-unit lattice structure lemma, adapting
its log-unit lattice classical equivalent [PHS19a, Lem. 2.11–12], [CDPR16, § 6.1]:

372 O. Bernard and A. Roux-Langlois

Lemma 4.6. For α ∈ K, let hα
def
:= πH

(
Log∞,FB α

)
. Decompose 〈α〉 on FB

as b ·∏p∈FB pvp(α), with b coprime to FB. Then Log∞,FB α = hα+ lnN (b)
n+k ·1n+k.

Furthermore, the length of α is bounded by:

‖α‖2 ≤ √
n · N (b)1/(n+k) · exp

[
max
1≤j≤n

(hα)j

]
.

Note that using the max of the coordinates of hα instead of its 	∞-norm
norm acknowledges for the fact that logarithms of small infinite valuations can
become large negatives that should be ignored when evaluating the length of α.

Theorem 4.7. Given access to an Approx-Cvp oracle that on any input t, out-
puts w ∈ Ltw st. ‖f−1

H (t − w)‖∞ ≤ β̃, Atw-query computes x ∈ b \ {0} such that

‖x‖2 ≤ √
n · N (b)1/n · exp

[
(n+k)β̃−∑

p∈FB lnN (p)

n

]
.

This outperforms the bound of Proposition 3.2 if (n + k) · β̃ ≤ 2β ·∑
p∈FB ln N (p). In particular, this is implied by Lemma 4.2 if β̃/β ≈ Vk/Vphs

for k ≥ n. We will see that under some reasonable heuristics, this is indeed the
case when using the same factor base, and that experiments suggest a much
broader gap. One intuitive reason for this behaviour is that the covering radius
of our twisted lattice grows at a slower pace than the log-norm of the prime
ideals of FB.

Heuristic Evaluation of β̃. Proving the second part of Theorem 4.1 necessi-
tates to evaluate β̃. This evaluation rely on several heuristics that adapt heuris-
tics [PHS19a, H. 4–6]. We argue that the arguments developped in [PHS19a, §4]
to support these heuristics can be transposed to our setting, as fully discussed
in the full version, and both heuristics are validated by experiments in Sect. 5.

Heuristic 4.8 (Adapted from [PHS19a, H. 4]). The 	∞-norm covering radius
of Ltw is O

(
Vol1/(ν+k)Ltw

)
. Likewise, μ2(Ltw) = O

(√
ν + k · Vol1/(ν+k)Ltw

)
.

This assumption relies on Ltw to behave like a random lattice. Heuristically,
prime ideals of FB represent uniform random classes in ClK , and S-units
archimedean absolute value logarithms are likely to be uniform in R

n
/
Log∞ O×

K .

Heuristic 4.9 (Adapted from [PHS19a, H. 5–6]). With non-negligible prob-
ability over the input target vector t, the vector w output by Laarhoven’s algo-
rithm satisfies ‖f−1

H (t − w)‖∞ ≤ O
(
ln(n + k)/

√
n + k

) · ‖t − w‖2.
This heuristic conveys the idea that coefficients of the output of Laarhoven’s

algorithm are somehow balanced, so that ‖w‖2 ≈ √
n + k · ‖f−1

H (w)‖∞. In our
setting, this is justified by assuming t is uniformly distributed in

(
R⊗Ltw

)
/Ltw,

and can be randomized by multiplying b by small ideals coprime to FB.

Twisted-PHS 373

5 Experimental Data

This is the first time to our knowledge that this type of algorithm is completely
implemented and tested for fields of degrees up to 60. As a point of compar-
ison, the experiments of [PHS19a] constructed the log-S-unit lattice Lphs for
cyclotomic fields of degrees at most 24 and hK ≤ 3, all but the last two being
principal [PHS19a, Fig. 4.1].

Hardware and Library Description. All S-units and class group computations, for
the log-S-unit lattice description and the Cldl resolution, were performed using
Magma v2.24-10 [BCP97].1 The BKZ reductions and Cvp/Svp computations
used fplll v5.3.2 [The16]. All other parts of the experiments rely on SageMath
v9.0 [The20]. All the sources and scripts are available as supplementary material
on https://github.com/ob3rnard/Twisted-PHS. The experiments took less than
a week on a server with 36 cores and 768 GB RAM.

Targeted Algorithms. We evaluate three algorithms: the original PHS algo-
rithm, as implemented in [PHS19b]; our optimized version Opt-PHS described
in Sect. 3.3, and our new twisted variant Tw-PHS, which is described in Sect. 4.
This yields three different lattices, respectively denoted by Lphs, Lopt and Ltw.
Note that there are a few differences between [PHS19a] and its implementation
in [PHS19b], but we chose to stick to the provided implementation as much as
possible.

In order to separate the improvements due to Atw-FB outputting smaller fac-
tor bases from those purely induced by our specific use of the product formula to
describe the log-S-unit lattice, we also built lattices L(0)

phs and L(0)
opt corresponding

to PHS and Opt-PHS algorithms, but using the same factor base as Ltw.

Number Fields. As announced in Sect. 2.1, we consider two families of number
fields, namely non-principal cyclotomic fields Q(ζm) of prime conductors m ∈
[[23, 71]], and NTRU Prime fields Q(zq) where zq is a root of xq − x − 1, for q ∈
[[23, 47]] prime. These correspond to the range of what is feasible in a reasonable
amount of time, as the asymptotics of TSu(K) rapidly speak in a classical setting.

For cyclotomic fields, we managed to compute S-units up to Q(ζ71) for all
factor bases in less than a day, and all log-S-unit lattice variants up to Q(ζ61).
For NTRU Prime fields, we managed all computations up to Q(z47).

BKZ Reductions and Cvp Solving. We applied the same reduction strategy to
all of our lattices. Namely, lattices of dimension less than 60 were HKZ reduced,
while lattices of greater dimension were reduced using at most 300 loops of BKZ
with block size 40. This yields reasonably good bases for a small computational
cost [CN11, p. 2]. Note the loop limit was in practice never hit.

For Cvp computations, we applied with these reduced bases Babai’s Nearest
Plane algorithm, as described in [Gal12, § 18.1, Alg. 26].
1 Note that SageMath is significantly faster than Magma for computing class groups,

but behaves surprisingly poorly when it comes to computing S-units.

https://github.com/ob3rnard/Twisted-PHS

374 O. Bernard and A. Roux-Langlois

Precision Issues. Choosing the right bit precision for floating point arithmetic
in the experiments is particularly tricky. We generically used at most 500 bits
of precision in our experiments (corresponding to the lattice volume logarithm
in base 2 plus some extra margin). There are two notable exceptions:

1. The S-units wrpt. FB can have huge coefficients. Computing the absolute
values of their embeddings must then be performed at very high precision.
All our lattice constructions were conducted using 10000 bits of precision.

2. Computing the target involves the challenge and the Cldl solution, whose
coefficients are potentially huge rational numbers, up 225000 for e.g. Q(ζ53).
As above, we adjust the precision in order to obtain sensible values.

In all cases, once in the log space the resulting high precision data can be rounded
back to the generic precision before lattice reduction or Cvp computations.

5.1 Geometric Characteristics

First, we evaluated the geometric characteristics of each produced lattice, using
indicators recalled in Sect. 2.5, namely: the root Hermite factor δ0, the orthog-
onality defect δ, and the minimum θmin (resp. average θavg) vector basis angle.
Each of these indicators is declined before and after BKZ reduction to compare
their evolution. We also evaluated experimentally the relevance of Heuristic 4.8
and 4.9, according to the protocol we detailed in the full version [BR20]. Example
results are given in Table 1 for NTRU Prime fields, aside the lattices dimension
d = ν + k and reduced volume V 1/d. Extensive data can be found in the full
version [BR20, Tab. B.1–2] for both cyclotomic and NTRU primes fields.

Table 1. Geometric characteristics of log-S-unit lattices for NTRU Prime field Q(z47).

d V 1/d δ0 δ θmin θavg μ2 μ∞ ‖·‖∞/‖·‖2

– bkz – bkz – bkz – bkz Real Heuristic 4.9

Q(z47) Ltw 40 4.576 0.913 0.913 1.650 1.358 49 60 82 84 11.04 5.607 0.632 0.519

L
(0)
opt 40 6.231 0.938 0.938 4.628 1.915 37 57 81 81 16.59 8.398 0.658 0.583

L
(0)
phs

40 12.06 0.951 0.951 7.908 1.946 38 55 81 81 30.85 15.50 0.662 0.583

Lopt 129 1.376 0.981 0.981 6.189 3.632 21 56 80 83 6.575 2.925 0.696 0.427

Lphs 180 1.309 0.989 0.989 10.15 4.527 31 53 80 83 8.022 2.882 0.704 0.387

Orthogonality Indicators. We first remark that the minimum and average vector
basis angles seem difficult to interpret. They are slightly better for the NTRU
Prime field but it is harder to extract a general tendency for cyclotomic fields.

After a light BKZ reduction, twisted lattices show significantly better root
Hermite factor and orthogonality defect than any other log-S-unit lattice repre-
sentations, even when the lattices have the same dimension, i.e. when the same
factor base is used. Second, the evolution of the orthogonality defect before and
after the reduction is more restricted in the twisted case than in the others. In

Twisted-PHS 375

particular, we observe that the BKZ-reduced versions of L(0)
opt and L(0)

phs have big-
ger orthogonality defects than the unreduced Ltw. This last observation is true
for all NTRU Prime fields we tested except Q(z23).

These two phenomenons (better values and small variations) are particularly
clear for NTRU Prime fields. We remark that in this case, the twisted version
of the log-S-unit lattice fully expresses, since for NTRU Prime fields most factor
base elements have distinct norms. On the contrary, factor bases for our targeted
cyclotomic fields are composed of one (or two, as for Q(ζ59)) Galois orbits whose
elements all have the same norm. Finally, we stress that reducing Ltw lattices is
much faster in practice than reducing L(0)

opt and L(0)

phs. This is corroborated by the
graphs of the Gram-Schmidt log norms in Sect. 5.2.

5.2 Plotting Gram-Schmidt Log Norms

For our second experiment, we evaluate the Gram-Schmidt norms of each pro-
duced lattice. We propose two comparisons, the first one is before and after
BKZ reduction to see the evolution of the norms in each case at iso factor bases
in Fig. 2, and the second one is between the different lattices (after BKZ reduc-
tion) in Fig. 3. Again, extensive data for other examples can be found in [BR20,
§ B.2] for both cyclotomic fields and NTRU Prime fields.

Fig. 2. Log-S-unit lattices for Q(ζ59): Gram-Schmidt log norms before and after BKZ
reduction at iso factor base Atw-FB(K) for: (a) Ltw; (b) L(0)

opt; (c) L(0)
phs.

We first remark that in Fig. 2 the two curves, before and after BKZ reduction,
are almost superposed for the Twisted-PHS lattice. This does not seem to be
the case for the two other PHS variants we consider here.

Since the volume of Ltw is bigger, by roughly the average log norm of the
factor base elements by Lemma 4.2, the Gram-Schmidt log norms of our bases
have bigger values. The important phenomenon to consider is how these log
norms decrease. Figure 3 emphasises that the decrease of the Gram-Schmidt log
norms is very limited in the twisted case, compared to other cases (with iso factor
base on the left, and the original algorithms on the right), where the decrease of
the log norms seems significant. This observation seems to corroborate the fact
that the twisted-PHS lattice is already quite orthogonal.

376 O. Bernard and A. Roux-Langlois

Fig. 3. Log-S-unit lattices for Q(ζ59): Gram-Schmidt log norms after BKZ reduction:
(a) at iso factor base Atw-FB(K); (b) at designed factor bases.

Finally, we note that both phenomenons do not depend on the lattices having
the same dimension.

5.3 Approximation Factors

We implemented all three algorithms from end to end and used them on numer-
ous challenges to estimate their practically achieved approximation factors. This
is to our knowledge the first time that these types of algorithms are completely
run on concrete examples.

Ideal Svp challenges and Cldl computations. For each targeted field, we chose 50
prime ideals b of prime norm q. Indeed, these are the most interesting ideals: in
the extreme opposite case, taking b inert of norm qn implies that q reaches the
lower bound of Eq. (27), as ‖q‖2 =

√
n · q, hence the id-Svp solution is trivial.

We then tried to solve the Cldl for these challenges wrpt. all targeted factor
bases. We stress that, using Magma, S-units computations for the Cldl become
harder as the norm of the challenge grows. This is especially true when the factor
base inflates, hence providing an additional motivation for taking as small as
possible factor bases. Therefore, we restricted ourselves to challenges of norms
around 100 bits. Computing the Cldl solutions for these challenges revealed
much harder than computing S-units on all factor bases, which contain only
relatively small prime ideals. As a consequence, we were able to compute the
Cldl step only up to Q(ζ53) (partially) and Q(z47).

Query Algorithm. We exclusively used Babai’s Nearest Plane algorithm on the
BKZ reduced bases of all log-S-unit lattices to solve the Approx-Cvp instances.
Actually, the hardest computational task was to compute the output α/s, which
necessitates a multi-exponentiation over huge S-units. As a particular point of
interest, we stress that using directly the drift proposed in [PHS19a] would be
especially unfair. Hence, for a challenge b, the target drifts bphs, b̃phs and btw

were all minimized using an iterative dichotomic approach on β and β̃, taking a
bigger value if the output x /∈ b, and a smaller value if x ∈ b. After 5 iterations,
the shortest x that verified x ∈ b is returned.

Twisted-PHS 377

Results. Figure 1 and 4 report the obtained approximation factors. Note that
for these dimensions, it is still possible to exactly solve id-Svp in the Minkowski
space, so that these graphs show real approximation factors. We stress that
we used a logarithmic scale to represent on the same graphs the performances
of the Twisted-, Opt-PHS and PHS algorithms. The figures suggest that the
approximation factor reached by our algorithm increases very slowly with the
dimension, in a way that could reveal subexponential or even better. This feature
would be particularly interesting to prove.

Fig. 4. Approximation factors reached by Tw-PHS, Opt-PHS and PHS for NTRU
Prime fields of degrees 23, 29, 31 and 37 (in log scale).

As a final remark, we point out that increasing the factor base for our
Twisted-PHS algorithm has very little impact on the quality of the output. This
is expected, since the log norm of the prime ideals constrain the valuation of the
output, as in the proof of Proposition 4.5 [BR20]. On the contrary, increasing
the factor base for the PHS and Opt-PHS variants clearly sabotages the quality
of their output, as their lattice description is blind to these prime norms.

Acknowledgements. We thank Thomas Ricosset for valuable discussions on the
geometry of lattices. Part of this work was performed while the first author was visiting
Alice Pellet-Mary and Damien Stehlé at LIP, ENS Lyon for six weeks. This work is
supported by the European Union PROMETHEUS project (Horizon 2020 Research
and Innovation Program, grant 780701).

References

[BCLV17] Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.:
NTRU prime: reducing attack surface at low cost. In: Adams, C.,
Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 235–260. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-72565-9 12

https://doi.org/10.1007/978-3-319-72565-9_12

378 O. Bernard and A. Roux-Langlois

[BCP97] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The
user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computa-
tional algebra and number theory (London, 1993)

[BDPW20] de Boer, K., Ducas, L., Pellet-Mary, A., Wesolowski, B.: Random Self-
reducibility of Ideal-SVP via Arakelov Random Walks. Cryptology ePrint
Archive, Report 2020/297 (2020)

[BEF+17] Biasse, J.-F., Espitau, T., Fouque, P.-A., Gélin, A., Kirchner, P.: Comput-
ing generator in cyclotomic integer rings. In: Coron, J.-S., Nielsen, J.B.
(eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 60–88. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 3

[BF14] Biasse, J., Fieker, C.: Subexponential class group and unit group computa-
tion in large degree number fields. LMS J. Comput. Math. 17(A), 385–403
(2014)

[BMT15] Boyd, D.W., Martin, G., Thom, M.: Squarefree values of trinomial discrim-
inants. LMS J. Comput. Math. 18(1), 148–169 (2015)

[BR20] Bernard, O., Roux-Langlois, A.: Twisted-PHS: Using the Product Formula
to Solve Approx-SVP in Ideal Lattices (full version). Cryptology ePrint
Archive, Report 2020/1081 (2020). https://eprint.iacr.org

[BS16] Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number
fields. In: SODA, pp. 893–902. SIAM (2016)

[CDPR16] Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators
of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 20

[CDW17] Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations
and application to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7 12

[CGS14] Campbell, P., Groves, M., Shepherd, D.: Soliloquy: a cautionary
tale (2014). http://docbox.etsi.org/Workshop/2014/201410 CRYPTO/
S07 Systems and Attacks/S07 Groves Annex.pdf

[Che13] Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement
complètement homomorphe. Ph.D. thesis, Paris 7 (2013)

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

[Coh93] Cohen, H.: A Course in Computational Algebraic Number Theory. Grad-
uate Texts in Mathematics, vol. 138. Springer, Heidelberg (1993)

[Con] Conrad, K.: Ostrowski for number fields. In Expository papers on Algebraic
Number Theory. https://kconrad.math.uconn.edu/blurbs/gradnumthy/
ostrowskinumbfield.pdf

[DPW19] Ducas, L., Plançon, M., Wesolowski, B.: On the shortness of vectors to be
found by the ideal-SVP quantum algorithm. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 322–351. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26948-7 12

[EHKS14] Eisenträger, K., Hallgren, S., Kitaev, A.Y., Song, F.: A quantum algo-
rithm for computing the unit group of an arbitrary degree number field.
In: STOC, pp. 293–302. ACM (2014)

[Gal12] Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge
University Press, Cambridge (2012)

https://doi.org/10.1007/978-3-319-56620-7_3
https://eprint.iacr.org
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-319-56620-7_12
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://doi.org/10.1007/978-3-642-25385-0_1
https://kconrad.math.uconn.edu/blurbs/gradnumthy/ostrowskinumbfield.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/ostrowskinumbfield.pdf
https://doi.org/10.1007/978-3-030-26948-7_12

Twisted-PHS 379

[Gél17] Gélin, A.: Calcul de groupes de classes d’un corps de nombres et applica-
tions à la cryptologie. Ph.D. thesis, UPMC Paris 6 (2017)

[GN08] Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 3

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

[Kom75] Komatsu, K.: Integral bases in algebraic number fields. Journal für die
reine und angewandte Mathematik 1975(278–279), 137–144 (1975)

[Laa16] Laarhoven, T.: Sieving for closest lattice vectors (with preprocessing). In:
Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 523–542.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 28

[LLL82] Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with ratio-
nal coefficients. Math. Ann. 261, 515–534 (1982)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1

[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for mod-
ule lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.
1007/s10623-014-9938-4

[MG02] Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems. The
Springer International Series in Engineering and Computer Science, vol.
671. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0897-7

[Nar04] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Num-
bers. Springer Monographs in Mathematics. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-662-07001-7

[NS06] Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst,
M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg
(2006). https://doi.org/10.1007/11792086 18

[NV10] Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm. Information Security
and Cryptography. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-02295-1

[Pei16] Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Com-
put. Sci. 10(4), 283–424 (2016)

[PHS19a] Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices with
pre-processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 685–716. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 24

[PHS19b] Pellet-Mary, A., Hanrot, G., Stehlé, D.: Published code of “Approx-SVP
in Ideal Lattices with Pre-processing” (2019). https://apelletm.github.io/
code/code-approx-ideal-svp.zip/

[PRS17] Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of
ring-LWE for any ring and modulus. In: STOC, pp. 461–473. ACM (2017)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC, pp. 84–93. ACM (2005)

[Sch87] Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theor. Comput. Sci. 53, 201–224 (1987)

https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-69453-5_28
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/978-3-662-07001-7
https://doi.org/10.1007/11792086_18
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-030-17656-3_24
https://doi.org/10.1007/978-3-030-17656-3_24
https://apelletm.github.io/code/code-approx-ideal-svp.zip/
https://apelletm.github.io/code/code-approx-ideal-svp.zip/

380 O. Bernard and A. Roux-Langlois

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7 36

[Swa62] Swan, R.G.: Factorization of polynomials over finite fields. Pacific J. Math.
12(3), 1099–1106 (1962)

[The16] The FPLLL development team: FPLLL, a lattice reduction library (2016).
https://github.com/fplll/fplll

[The20] The Sage Developers: SageMath, the Sage Mathematics Software System
(Version 9.0) (2020). https://www.sagemath.org

[Was97] Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Texts in
Mathematics, vol. 83. Springer, New York (1997). https://doi.org/10.1007/
978-1-4612-1934-7

[Xu13] Xu, P.: Experimental quality evaluation of lattice basis reduction meth-
ods for decorrelating low-dimensional integer least squares problems.
EURASIP J. Adv. Signal Process. 137–165, 2013 (2013)

https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://github.com/fplll/fplll
https://www.sagemath.org
https://doi.org/10.1007/978-1-4612-1934-7
https://doi.org/10.1007/978-1-4612-1934-7

Simpler Statistically Sender Private
Oblivious Transfer from Ideals of

Cyclotomic Integers

Daniele Micciancio and Jessica Sorrell(B)

University of California San Diego, San Diego, USA
{daniele,jlsorrel}@cs.ucsd.edu

Abstract. We present a two-message oblivious transfer protocol achiev-
ing statistical sender privacy and computational receiver privacy based
on the RLWE assumption for cyclotomic number fields. This work
improves upon prior lattice-based statistically sender-private oblivious
transfer protocols by reducing the total communication between parties
by a factor O(n log q) for transfer of length O(n) messages.

Prior work of Brakerski and Döttling uses transference theorems to
show that either a lattice or its dual must have short vectors, the exis-
tence of which guarantees lossy encryption for encodings with respect
to that lattice, and therefore statistical sender privacy. In the case of
ideal lattices from embeddings of cyclotomic integers, the existence of
one short vector implies the existence of many, and therefore encryption
with respect to either a lattice or its dual is guaranteed to “lose” more
information about the message than can be ensured in the case of general
lattices. This additional structure of ideals of cyclotomic integers allows
for efficiency improvements beyond those that are typical when moving
from the generic to ideal lattice setting, resulting in smaller message sizes
for sender and receiver, as well as a protocol that is simpler to describe
and analyze.

1 Introduction

Oblivious transfer (OT) is a cryptographic primitive first introduced by Rabin
[Rab05]. An OT protocol is carried out between two parties: a sender and a
receiver. For our purposes, the sender possesses exactly two messages (binary
strings), and the receiver possesses a bit corresponding to the sender’s message
that it wishes to receive. The protocol should satisfy security properties for
both sender and receiver as well as a correctness property: the receiver should
obtain the message corresponding to its bit with high probability while learning

Research supported in part by the National Science Foundation (NSF) under grant
CNS-1936703, and by the Simons Foundation. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views, position or policy of the Government.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 381–407, 2020.
https://doi.org/10.1007/978-3-030-64834-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_13

382 D. Micciancio and J. Sorrell

essentially nothing about the other message, and the sender should be unable to
guess the receiver’s bit with noticeable advantage.

There are a variety of models for the parties involved in an OT protocol,
as well as notions of security. In the semi-honest setting, the parties may be
assumed to follow the protocol exactly, whereas in the malicious setting we
require security even when either or both parties may deviate from the protocol.
Using zero-knowledge proofs [GMW87], it is in fact possible to transform a
semi-honest OT protocol into one secure against malicious parties, but given the
overhead of this transformation, we will be interested in constructing malicious
OT directly.

One of the strongest definitions of security we might hope to satisfy with our
OT protocol is universally composable (UC) security. This definition requires
that for any amount of deviation from the protocol, the outputs of both parties
can still be efficiently simulated, even in an environment in which a variety
of protocols are concurrently executed. This notion can already be achieved
from standard lattice assumptions [PVW08], but requires a trusted third party
to generate a common reference string during setup that may only be used a
bounded number of times before this trusted setup must again be invoked. More
recently, it has been shown how to compile an OT protocol satisfying a much
weaker notion of security into one satisfying UC security [DGH+20]. This weaker
notion requires computational privacy for the receiver against a cheating sender,
and only requires that a cheating receiver should not be able to output both of
the sender’s messages in their entirety. This compiler could potentially be used
to give a UC-secure oblivious transfer protocol from lattice assumptions with a
common reference string usable for an unbounded number of executions, but the
compiled protocols are fairly complex and inefficient. In any case, it is known
that a common reference string (and therefore a trusted third party) is required
for any UC-secure OT protocol [CF01], and so other notions of security must be
adopted in settings where no trusted party can be assumed.

Another notion, statistically sender-private OT (SSP OT), was introduced in
[NP01,AIR01] and requires simulation security only against a cheating receiver,
adopting a relaxed notion of computational security against a cheating sender.
No setup is required to achieve this notion of security, and many constructions
have been given from number theoretic assumptions [Kal05,HK12,BGI+17].
In recent years, SSP OT constructions based on conjectured quantum-secure
cryptographic assumptions have also begun to appear in the literature [BD18,
DGI+19], and [BGI+17] used with the results of [GH19] or [BDGM19].

Oblivious transfer has myriad uses in cryptography, and perhaps most
notably is complete for secure multiparty computation (MPC) [Kil88,IPS09].
Since the security guarantees of the cryptographic constructions built from obliv-
ious transfer depend very much on the properties of the underlying OT proto-
col, it is important to consider which cryptographic tasks motivate the study of
SSP OT specifically. Badrinarayanan et al. [BGI+17] used SSP OT to construct
witness-indistinguishable arguments for NP, for which statistical sender privacy
is required in the proof of zero knowledge. Jain et al. [JKKR17] showed that

Simpler Statistically Sender Private Oblivious Transfer 383

two-round SSP OT is sufficient to construct two-round delayed-input interactive
arguments for NP that guarantee witness-indistinguishability, witness-hiding,
and distributional weak zero-knowledge against delayed-input verifiers, though
a computational notion of sender privacy also suffices for their constructions.
Badrinarayanan et al. [BGJ+18] subsequently showed that such arguments can
be used to compile a three-round semi-malicious MPC protocol into a four-round
malicious MPC protocol. SSP OT has been used in constructions of three-round
concurrent MPC [BGJ+17], two-message non-malleable commitments [KS17],
and two-message witness-indistinguishable proof systems [KKS18]. It also has
applications in fully-homomorphic encryption (FHE), as shown by Ostrovsky,
Paskin-Cherniavsky, and Paskin-Cherniavsky [OPP14], in their construction of
statistically circuit private FHE from SSP OT and any FHE scheme.

1.1 Related Work

To compare prior work on statistically sender private two-round oblivious trans-
fer, we will first need to introduce some convenient vocabulary for referring to
the communication complexity of these protocols. We will be interested in the
communication rate of existing protocols – the fractional bits of information
transferred from sender to receiver per bit of communication in the protocol.
Somewhat more quantitatively, the overall rate of a protocol that transfers a
π bit message to the receiver, requires ν bits of receiver communication and
τ bits of sender communication is π

ν+τ . It is sometimes useful to distinguish
between the contribution of the receiver’s communication to the overall rate and
the sender’s. We refer to the former (π/ν) as the upload rate, and the latter
(π/τ) as the download rate. Our protocol has (upload, download and overall)
rate O(1/ log(λ)).

The first statistically sender private two-round oblivious transfer protocol
based on lattice assumptions was given by [BD18], and we take this work as a
starting point for our OT protocol. Brakerski and Döttling [BD18] gave a very
nice generalization of an existing regularity lemma for lattices, and showed how
to use this lemma along with duality properties of lattices to achieve statistically
sender private OT with download rate 1/ log(λ) (similar to our protocol) but
much worse upload (and overall) rate 1/(λ · polylog(λ)).

There has since been significant progress in low-communication oblivious
transfer from the Learning with Errors (LWE) assumption. Döttling et al.
[DGI+19] give a constant-rate SSP OT scheme via their construction of trapdoor
hash functions. They use these functions to build download rate-(1 − O(1/λ))
semi-honest OT, but with upload rate still inversely proportional to λ. They
then observe that, for very long (polynomial in λ) messages, the upload rate
(and therefore their overall rate) can be brought up to 1 − O(1/λ) by amor-
tization. The sender’s poly(λ)-length strings may be divided up into blocks,
and each block can be transferred using the receiver’s first message. To achieve
statistical sender privacy, they leverage a result from [BGI+17], which gives a
generic transformation from semi-honest OT with rate above 1/2 to statistically
sender private OT with constant rate. Though this improves on our protocol’s

384 D. Micciancio and J. Sorrell

O(1/ log λ) overall rate, we observe that similar amortization may be applied to
our protocol to achieve a constant upload rate by reuse of the receiver’s first
message, provided that the sender’s messages are strings of length at least Õ(n)
(see Sect. 2.1, Lemma 1). However, many of the previously described applica-
tions of SSP OT do not call for polynomially large sender messages, and so the
amortization method of [DGI+19] is not applicable.

Furthermore, for applications requiring long sender messages in which statis-
tical sender privacy can be relaxed to computational privacy, a different approach
to amortization can be applied to both protocols. The receiver’s first message is
unchanged, but the sender will use the receiver’s message to instead send one of
two keys for a constant-rate symmetric encryption scheme, e.g., using a pseudo-
random generator or a stream cipher. The sender may encrypt each of its two
poly(λ)-length messages under their respective keys, and send these ciphertexts
as well. The receiver can then recover the key corresponding to its choice bit, and
use this key to decrypt the longer message. The other key will be statistically
hidden, by the SSP property of the OT protocol, however the sender’s security
will be reduced to that of the symmetric encryption scheme.

Badrinarayanan et al. [BGI+17] also give a construction of constant rate
SSP OT from any linear homomorphic encryption system with rate greater than
1/2. Such a homomorphic encryption system was later given by Gentry and
Halevi [GH19], building off the GSW [GSW13] cryptosystem. Applied to the
construction of [BGI+17], their compressible FHE scheme allows compression of
both the sender’s and receiver’s communication, but to achieve constant rate, the
receiver must need super-linearly (in the security parameter) many O(λ)-length
messages from the receiver. Concurrent work by Brakerski et al. [BDGM19] also
gives a rate-1 FHE scheme based on a batched version [PVW08,BGH13] of the
Regev [Reg05] encryption scheme. [BDGM19] also achieves high rate FHE via
compression of multiple ciphertexts into a single ciphertext, and so will similarly
require settings in which the sender’s messages are of length polynomial in the
security parameter to realize the benefit of compression.

1.2 Our Contribution

We give a simple, module lattice-based oblivious transfer protocol which
improves over the overall rate of similar protocols [BD18] beyond the typical
savings achieved when restricting to module lattices, saving a factor O(λ log λ).
We compare our protocol to other lattice-based SSP OT protocols in two nat-
ural settings: a single execution of the protocol and λ parallel executions. We
show that for applications requiring at most O(λ) messages of length O(λ), we
achieve the best known overall rate for SSP OT, giving significant improvements
in both asymptotic and concrete parameters. Our protocol is also comparatively
simple and efficient, requiring only a constant number of polynomial multipli-
cations (see Sect. 4 for a more thorough comparison of the communication and
computational complexity of this work with those of other SPP OT protocols).

Simpler Statistically Sender Private Oblivious Transfer 385

1.3 Techniques

A lossy encryption scheme [KN08,PVW08] is a public-key encryption scheme
that admits the generation of “lossy” public keys – public keys under which
encryption statistically hides the encrypted message. The works of Peikert et al.
[PVW08] and Hemenway et al. [HLOV11] show that, in fact, lossy encryption is
equivalent to statistically sender private 2-round oblivious transfer.

Brakerski and Döttling [BD18] demonstrate one method for achieving such
lossy encryption for lattice-based schemes, by showing that a single basis for a
lattice can serve as both a lossy and lossless public key. In their OT protocol,
the receiver sends a matrix A, defining a q-ary lattice Λq(A). The sender then
encodes a string with respect to Λq(A), and a second string with respect to
the dual lattice Λ∗

q(A). They show that for any valid A, for a definition of
validity that is efficiently verifiable, encoding with respect to at least one of
Λq(A) or Λ∗

q(A) will statistically hide a constant fraction of the encoded string.
The partially hidden string, given its encoding, will have sufficient min-entropy
for the application of a randomness extractor, yielding a uniformly random one-
time pad that can mask one of the sender’s messages.

To provide some intuition as to why encoding with respect to both primal
and dual lattices guarantees one of the two encodings will be somewhat lossy, we
now describe their encoding method informally and at a high level. Encoding a
string m with respect to a lattice Λ consists of injectively mapping m to a lattice
point x ∈ Λ, and perturbing this lattice point by discrete Gaussian error e to
produce a new point t = x + e. Because e is drawn from a discrete Gaussian, a
maximum likelihood decoding of t will identify the vector x′ ∈ Λ that minimizes
‖e‖2 = ‖t − x′‖2, and given a short basis for Λ∗, this can be done efficiently.

To see why such an encoding could be lossy for some lattices, consider the
result of maximum likelihood decoding when ‖e‖2 is much larger than the mini-
mum distance λ1 of the lattice, λ1(Λ) = minv∈Λ ‖v‖2. In this case, there will be
several candidate lattice points x′ that correspond to similarly probable values
for e. This means that the most probable x′ is not overwhelmingly likely to be
correct – there is some entropy in at least one dimension of x, given t.

That one of Λ and Λ∗ must contain enough short vectors to guarantee suffi-
cient min-entropy for extraction follows in principle from a transference theorem
of Banaszczyk [Ban93]. This theorem implies that for a lattice Λ of rank n, there
must be at least n linearly independent vectors in Λ ∪ Λ∗ of euclidean length no
more than

√
n. So if Λ has no vectors of length less than

√
n, Λ∗ must have a

basis B for which maxv∈B ‖v‖2 ≤ √
n. In this case, for a large enough Gaussian,

encoding with respect to Λ∗ will be highly lossy. Less conditional min-entropy
can be guaranteed in the more balanced case, however, when there may be a few
short vectors in both Λ and Λ∗. Statistical privacy for the sender is therefore
limited by this intermediate case.

We show that applying these same principles restricted to ideal lattices for
ideals of cyclotomic integers guarantees more lossiness in the worst case for the
sender. The structure of these ideal lattices ensures that Λ must either have
many short vectors or none at all, limiting the extent to which Λ and Λ∗ can be

386 D. Micciancio and J. Sorrell

Sender(m0, m1)

μ0, μ1
$← Send(m0, m1, σ)

σ
μ0, μ1

Receiver(β)

σ,St $← Rec(1)(β)

m ← Rec(2)(β, St, μ0, μ1)

Fig. 1. Two-message oblivious transfer protocol.

adversarially balanced by a cheating receiver. We exploit this structure to give
a simpler statistically sender private OT protocol with smaller message sizes,
yielding improvements in efficiency beyond those that are expected when moving
from a generic lattice to ideal lattice scheme. The receiver’s message, which dom-
inates the communication complexity of [BD18], is reduced from O(n2 log2 n) to
O(n log n) bits (see Fig. 5), giving a O(log n) factor improvement on top of the
O(n) improvements typical of ideal lattice schemes. This is asymptotically mod-
est, but as shown in Fig. 6, yields significantly improved concrete parameters
for lattice-based statistically sender secure oblivious transfer, even compared to
other subsequent works.

2 Preliminaries

2.1 Oblivious Transfer

A two-message oblivious transfer protocol, OT, comprises three algorithms:

OT = (Rec(1),Send,Rec(2))

which are executed by two parties: a sender and a receiver. The protocol pro-
ceeds in stages as shown in Fig. 1. (All algorithms additionally take a security
parameter 1λ as input, but we suppress this for notational convenience.) At the
outset, the sender is given inputs m0,m1 ∈ {0, 1}n for some fixed n = poly(λ),
and the receiver is given input bit β ∈ {0, 1}. The receiver runs Rec(1) on its
input β ∈ {0, 1}. Rec(1) then outputs a message σ to the sender, and some
state information St to be passed to Rec(2). On receiving σ, the sender runs
Send(m0,m1, σ), which outputs a message pair (μ0, μ1) to be transmitted to
the receiver. In the final step, the receiver runs Rec(2)(β,St, μ) which returns a
message in {0, 1}n ∪ {⊥}.

We will be exclusively interested in two-message oblivious transfer protocols
satisfying the following security and correctness properties.

Definition 1 (Correctness). An OT = (Rec(1),Send,Rec(2)) protocol is cor-
rect if for any pair of messages m0,m1 and bit b ∈ {0, 1},

Pr[Rec(2)(Send(m0,m1,Rec
(1)(b))) = mb] ≥ 1 − ε

for some negligible function ε(n) = n−ω(1).

Simpler Statistically Sender Private Oblivious Transfer 387

Definition 2 (Statistical sender privacy). An OT = (Rec(1),Send,Rec(2))
protocol is statistically sender private if there exists a potentially computationally
unbounded extractor Ext such that for any receiver message σ, Ext(σ) outputs a
bit b ∈ {0, 1} such that for any pair of messages (m0,m1) the two distributions

{Send(σ,m0,m1)} ≈Δ {Send(σ,mb,mb)}

are statistically close.

Computational sender privacy is defined similarly, replacing statistical close-
ness ≈Δ with computational indistinguishability. The main difference between
sender privacy and full simulation security is that sender privacy does not require
the bit b to be efficiencly computable from σ. So, sender privacy can be described
as a form of security with respect to a computationally unbounded simulator.
For this reason, statistical security is perhaps a more natural requirement for
the sender, and we do not consider computational sender privacy, except when
discussing length extension techniques below.

Definition 3 (Computational receiver privacy). An OT = (Rec(1),Send,
Rec(2)) protocol is computationally receiver private if the distributions Rec(1)(0)
and Rec(1)(1) are computationally indistinguishable, i.e., for any (potentially
cheating, probabilistic polynomial time) sender S∗

|Pr[S∗(σ) = 1 | σ ← Rec(1)(1)] − Pr[S∗(σ) = 1 | σ ← Rec(1)(0)]| < ε

for some negligible function ε(n) = n−ω(1).

Notice also that the sender security with efficient simulator (i.e., the ability
to efficiently extract the bit b from the receiver message σ) is clearly at odds
with receiver security. In fact, two round protocols cannot achieve full simulation
security, and goind beboynd sender privacy requires adding more communication
rounds to the protocol.

As discussed in the introduction, it is possible to generically boost the upload
rate of a statistically sender private oblivious transfer protocol from 1/poly(λ)
to a constant. Let n(λ) ∈ poly(λ), and let OT = (Rec(1),Send,Rec(2)) be a
statistically sender private oblivious transfer protocol with sender messages
m0,m1 ∈ {0, 1}n. Let
(n) ∈ poly(n). The protocol OT	 = (Rec(1)	 ,Send	,Rec

(2)
),

described in Fig. 2, transfers length
(n) strings by reusing the output of Rec(1)

to execute
/n parallel repetitions of the Send and Rec(2) subroutines.

Lemma 1 (Parallel OT execution). Let OT = (Rec(1),Send,Rec(2)) be
a statistically sender private oblivious transfer protocol with sender messages
m0,m1 ∈ {0, 1}n, upload rate υ, and download rate δ. Then for
(n) ∈ poly(n),
the protocol OT	 = (Rec(1)	 ,Send	,Rec

(2)
) of Fig. 2 is a statistically sender pri-

vate oblivious transfer protocol with sender messages m0,m1 ∈ {0, 1}	(n), upload
rate υ
/n, and download rate δ.

388 D. Micciancio and J. Sorrell

Algorithm 1 Rec
(1) Input: β ∈ {0, 1}

σ,St ← Rec(1)(β)
return σ

Algorithm 2 Send Input: m0, m1 ∈ {0, 1} , σ

m
(1)
0 m

(2)
0 . . . m

()
0 ← m0 Divide m0 into blocks of length n

m
(1)
1 m

(2)
1 . . . m

()
1 ← m0 Divide m1 into blocks of length n

for i ∈ {1 } do
μ
(i)
0 , μ

(i)
1 ← Send(σ, m

(i)
0 , m

(i)
1)

return {μ
(i)
0 , μ

(i)
1 }i=1

Algorithm 3 Rec
(2) Input: β, St, (μ0, μ1)

for i ∈ {1 } do
m(i) ← Rec(2)(β,St, μ

(i)
0 , μ

(i)
1)

return m(1) m(2) . . . m() Concatenate the m(i)s

Fig. 2. Amortization of upload rate for an OT protocol for transfer of a single, poly(λ)-
length message.

Proof. The output of Send	 is by definition the same length as that of Send, while
the sender’s messages are of length
(n), and so the upload rate is υ
/n. Both
the output of Send	 and the length of the sender’s messages have increased by a
factor
/n compared to Send, and so the upload rate remains the same. Statistical
sender privacy is preserved for a setting of
(n) ∈ poly(n), by a hybrid argument
on the distributions of (μ(1)

0 , μ
(2)
0 , . . . , μ

(/n)
0) and (μ(1)

1 , μ
(2)
1 , . . . , μ

(/n)
1).

It is also possible to generically boost a statistically sender private OT
protocol to one with constant overall rate, by trading statistical sender pri-
vacy for computational. Given a statistically sender private OT protocol OT =
(Rec(1),Send,Rec(2)) and a pseudorandom generator G with sufficiently large
stretch, the protocol OTG = (Rec(1)G ,SendG,Rec

(2)
G) shown in Fig. 3 will have

constant overall rate.

Lemma 2 (OT Length extension). Let OT = (Rec(1),Send,Rec(2)) be a
statistically sender private oblivious transfer protocol with sender messages
m0,m1 ∈ {0, 1}n, upload rate υ, and download rate δ. Let
(n) ∈ poly(n)
and G be a pseudorandom generator with stretch
(n). Then protocol OTG =
(Rec(1)G ,SendG,Rec

(2)
G) of Fig. 3 is an oblivious transfer protocol with computa-

tional privacy for both sender and receiver, sender messages m0,m1 ∈ {0, 1}	(n),
upload rate υ
/n, and download rate at least (1 − n/δ
).

Simpler Statistically Sender Private Oblivious Transfer 389

Algorithm 4 Rec
(1)
G Input: β ∈ {0, 1}

σ,St ← Rec(1)(β)
return σ

Algorithm 5 SendG Input: m0, m1 ∈ {0, 1} , σ

s0 s1 ← {0, 1}2

μ0, μ1 ← Send(s0, s1, σ)
mask0 ← G(s0)
mask1 ← G(s1)
return (μ0, μ1, m0 ⊕ mask0, m1 ⊕ mask1)

Algorithm 6 Rec
(2)
G Input: β, St, (μ0, μ1, m0 ⊕ mask0, m1 ⊕

mask1)

s ← Rec(2)(μ0, μ1)
mask ← G(s)
return mask ⊕ μβ

Fig. 3. Length extension of an OT protocol for transfer of a single, poly(λ)-length
message

Proof. The upload rate can be shown to be υ
/n as in Lemma 1. The output of
SendG has increased over that of Send by an additive factor of
, and therefore
the download rate is 	

	+n/δ ≥ 1−n/δ
. The seed s1−β is statistically hidden from
the receiver, and so m1−β is computationally hidden, with security reducing to
the security of the pseudorandom generator G that was used as its mask.

2.2 Entropy and Extractors

For random variables X,Y , the conditional min-entropy of X conditioned on Y
is

H∞(X | Y) := − log max
x,y

Pr[X = x | Y = y].

[ILL89] show that a weak conditional min-entropy source X, along with a uni-
formly random seed s, can be used to generate an output distribution ε-close
to the uniform distribution, even given the seed s and the possibly correlated
value Y .

Definition 4 ((k,m, ε)-strong extractor). A function E : {0, 1}l × X →
{0, 1}m is a (k,m, ε)-strong extractor (with seed length l) if for all random
variables X over X and Y over Y such that H∞(X | Y) ≥ k, and for S uniform

390 D. Micciancio and J. Sorrell

on {0, 1}l, the statistical distance

Δ((E(S,X), S, Y), (Um, S, Y)) ≤ ε,

where Um is the uniform distribution over {0, 1}m.

There are many constructions of such (k,m, ε)-strong extractors, all with
varying seed lengths, codomain sizes, and runtimes. To ensure that our protocol’s
runtime is not asymptotically dominated by the application of the randomness
extractor, we make use of a particular extractor from modified Toeplitz matrices,
given by [Hay11]. This choice is more carefully justified in Sect. 3.5.

Theorem 1 ([Hay11]). For any n, k ≤ n, and ε > 0, the following family of
modified Toeplitz matrices over Fq is a (k,m, ε)-strong extractor, for m = k −
2 log(1/ε), seed length l = log q(n−1), and input space X = F

n
q , running in time

O(n log n).
The seed s selects a matrix M from the (implicitly defined) family as follows.

Sample n − 1 elements xi ∈ Fq using s. Define the matrix X ∈ F
m×n−m
q by

Xi,j = xn−m−j+i. Let Im be the m-dimensional identity matrix. Then the matrix
M is

M = [X | I].

2.3 Lattices and Gaussian Measures

We write [x,y] to indicate horizontal concatenation of vectors (or matrices) x
and y, and (x,y) to indicate vertical concatenation.

We define a lattice as a discrete additive subgroup of the space R
n. A full-

rank lattice of dimension n is generated as all Z-linear combinations of a set of
n linearly independent basis vectors in R

n. When a basis B = [b1, . . . ,bn] is
specified, we write the lattice generated by B as

Λ(B) = {Btz : z ∈ Z
n}

The ith successive minimum of a lattice Λ, for 1 ≤ i ≤ n, is defined as

λi(Λ) = min{λ ∈ R≥0 : rank(λB ∩ Λ) = i}

where λB denotes the ball of radius λ centered on the origin. The dual lattice
of Λ is the set of vectors in R

n with integer inner product with all vectors of Λ,
and is denoted Λ∗.

Λ∗ := {x ∈ R
n | ∀y ∈ Λ : 〈x,y〉 ∈ Z}

The Gaussian function ρs : R
n → (0, 1] is ρs(x) = exp(−π(‖x‖/s)2). We

denote the Gaussian sum on a set X ⊂ R
n as ρs(X) =

∑
x∈X ρs(x). The smooth-

ing parameter of a lattice, denoted by ηε(Λ), is the smallest s ∈ R such that
ρ1/s(Λ∗) ≤ 1 + ε. We write DΛ,s to indicate the discrete Gaussian distribution
of parameter s over the points of lattice Λ, so that DΛ,s(x) = ρs(x)/ρs(Λ).

Simpler Statistically Sender Private Oblivious Transfer 391

We call a random variable X or its distribution subgaussian over R of param-
eter s if its tails are dominated by a Gaussian of parameter s, so that

Pr{|X| ≥ t} ≤ 2e−πt2/s2
for all t ≥ 0.

A subgaussian variable X with parameter s > 0 satisfies

E[e2πtX] ≤ eπs2t2 , for all t ∈ R.

The distribution DΛ,s is subgaussian with parameter s for any lattice Λ and
s > 0, s ∈ R. A random vector x of dimension n is subgaussian of parameter
s if for all unit vectors u ∈ R

n, its one-dimensional marginals 〈u,x〉 are also
subgaussian of parameter s. This extends to random matrices, where Xm×n is
subgaussian of parameter s if for all unit vectors u ∈ R

m,v ∈ R
n, utXv is

subgaussian of parameter s. It follows immediately from these definitions that
the concatenation of independent subgaussian vectors, all with parameter s,
interpreted as either a vector or matrix, is also subgaussian with parameter s.

We will need the following tail bound on the length of a vector sampled from
DΛ,s.

Lemma 3 ([Ban93]). For any n-dimensional lattice Λ and s > 0, a point sam-
pled from DΛ,s has Euclidean norm at most s

√
n, except with probability at most

2−2n.

We will also need the following bounds on the smoothing parameter of any
lattice Λ.

Lemma 4 ([MR04]). For any n-dimensional lattice Λ, the smoothing parameter
η2−2n(Λ) ≤ √

n/λ1(Λ∗).

Lemma 5 ([MR04]). For any n-dimension lattice Λ, and ε > 0,

ηε(Λ) ≤
√

ln(2n(1 + 2/ε))
π

.

It follows from the above that for ε = 2−n, ηε(Z) ≤ √
n.

The Poisson summation formula allows us to relate the Gaussian measure
over a lattice to that over its dual.

Lemma 6 (Poisson summation formula). For any lattice Λ ⊂ R
n and any

complex-valued function f : Rn → C, f(Λ) = 1
det(Λ) f̂(Λ∗).

For f = ρs, it immediately follows from the above and the observation that
ρ̂s = snρ1/s, that ρs(Λ) = sn

det(Λ)ρ1/s(Λ∗).
The following lemma of [BD18] gives a lower bound on the Gaussian measure

over a lattice in terms of its successive minima.

Lemma 7. For any n-dimensional lattice Λ, k ∈ Z, k ≤ n,

ρs(Λ) ≥ (s/λk(Λ))k.

392 D. Micciancio and J. Sorrell

Cyclotomic Integers and Module Lattices. Our protocol makes use of the
structure of ideal lattices over cyclotomic integers. Let ζ2n be a primitive 2nth
root of unity, for n a power of 2. We denote by Φ2n(X) the 2nth cyclotomic
polynomial

Φ2n(X) =
∏

i∈Z
∗
2n

(X − ωi
2n) = Xn + 1,

which is the minimal polynomial of ζ2n, i.e. the lowest degree monic polynomial
with coefficients in Q having ζ2n as a root.

Our protocol operates on elements of the ring R = Z[X]/(Φ2n(X)), and we
write Rq to indicate the quotient ring R/qR. We embed elements of R into Z

n

via the coefficient embedding, denoted σ, which takes an element a ∈ R to its
coefficient vector. This embedding induces a geometry on R, so that for any
norm ‖ · ‖ defined on Z

n, and any a ∈ R, we take ‖a‖ = ‖σ(a)‖. An ideal I ⊂ R
embeds under σ as a lattice in Z

n. Such a lattice Λ = σ(I) is called an ideal
lattice.

We may also use σ to embed k-dimensional vectors over R into Z
nk by

applying σ element-wise, so that for y ∈ Rk, σ(y) = (σ(y1), . . . , σ(yl)). Let
A ∈ Rl×k

q be generators of an R module M ⊂ Rk. Then we may define the
module lattice Λ = σ(M), suppressing the embedding notation, as

Λ(A) = {y ∈ Rk : y = Atx, x ∈ Rl}
We will also want to define two q-ary lattices in terms of A ∈ Rl×k

q :

Λq(A) = {y ∈ Rk : y = Atx mod qR, x ∈ Rl}
and Λ⊥

q (A) = {x ∈ Rk : Ax = 0 mod qR}.

Note that
Λ⊥

q (A)∗ = Rk
q + { 1

qA
ts : s ∈ Rk

q} = 1
q Λ(A).

We will rely heavily on the following lemma on the successive minima of
module lattices over a ring of cyclotomic integers. This is a well-established
result (see, for instance, [FP11]), but we re-prove it here for completeness.

Lemma 8. Let Λ be a module lattice over R. Then λ1(Λ) = λ2(Λ) = · · · =
λn(Λ).

Proof. Let y ∈ Rk, σ(y) ∈ Λ, such that ‖y‖2 = λ1(Λ). Then taking y(i) = Xiy
for all 0 ≤ i < n, the multiplicative structure of R gives ‖y(i)‖2 = ‖Xiy‖2 =
‖y‖2 = λ1. Suppose the y(i) are not linearly independent. Then there exist
α0, . . . , αn−1 ∈ Z such that

α0y + α1Xy + · · · + αn−1X
n−1y = (α0 + α1X + · · · + αn−1X

n−1)y = 0 ∈ Rk.

However, R is a Dedekind domain, and so this cannot be the case. Therefore the
y(i) and y are linearly independent and all of length λ1.

The following is a corollary of Lemmata 8 and 7, taking k = n in Lemma 7.

Simpler Statistically Sender Private Oblivious Transfer 393

Corollary 1. For any m-dimensional module lattice Λ over R,

ρs(Λ) ≥ (s/λ1(Λ))n.

The following lemma follows from techniques of [BD18] and [CDLP14].

Lemma 9. Let Λ′ ⊆ Λ ⊆ Z
n be lattices, and let S be a symmetric set such that

∀u ∈ Λ, u can be written uniquely as a sum u = x+ s, where x ∈ Λ′ and s ∈ S.
Let t ∈ Z

n and let σ ∈ R. Then

ρσ(Λ′ + t)
ρσ(Λ + t)

≤ 1
ρσ(S)

.

Proof.

ρσ(Λ + t) =
∑

x∈Λ′

∑

s∈S

ρσ(x + t + s)

=
∑

x∈Λ′

∑

s∈S

1
2
(ρσ(x + t + s) + ρσ(x + t − s))

=
∑

x∈Λ′

∑

s∈S

1
2
(e−π‖x+t+s‖2/σ2

+ e−π‖x+t−s‖2/σ2
)

=
∑

x∈Λ′

∑

s∈S

e−π‖x+t‖2/σ2
e−π‖s‖2/σ2

(e−2π〈x+t,s〉/σ2
+ e2π〈x+t,s〉/σ2

)

≥
∑

x∈Λ′
ρσ(x + t)

∑

s∈S

ρσ(s)

= ρσ(Λ′ + t)ρσ(S).

All proofs of correctness and security for our protocol hold for general cyclo-
tomic rings of integers, beyond just power of 2 cyclotomics, by considering the
canonical embedding of ring elements rather than the coefficient embedding
described above. For the sake of simplicity, however, we restrict the description
and analysis of the protocol to rings of integers for power of 2 cyclotomics only.
In this case, one embedding gives a scaled isometry of the other, so either result-
ing lattice will have the structural properties we will require for lossy encryption.
Other cyclotomic rings will give lattices that are distorted under the two choices
of embedding, and so if other concerns force the use of this protocol in an alter-
native cyclotomic ring, the canonical embedding can be used instead.

2.4 Ring-LWE

The computational receiver privacy of our oblivious transfer protocol will rely
on the RingLWE assumption for cyclotomic integers. Informally, it assumes that
any probabilistic polynomial time adversary should have only negligible advan-
tage distinguishing the RingLWE distribution described below from the uniform
distribution over matrices with equivalent parameters.

394 D. Micciancio and J. Sorrell

Definition 5 (RingLWE). Let R be the mth cyclotomic ring of dimension n =
ϕ(m). Let q ∈ Z>0 and χ be a sub-Gaussian distribution over R with parameter
αq. The RingLWEq,α problem is to distinguish between independent samples of
the form (a, sa + e) for s ← χ fixed across samples, a ← Rk

q , and e ← χk, and
the same number of samples of the form (r0, r1), where each sample is chosen
uniformly at random from Rk

q × Rk
q .

Theorem 2 ([PRS17]). Let K = Q(ζ2n) for n a power of 2, and let R be
the ring of integers of K. Let α = α(n) ∈ (0, 1), and let q = q(n) ≥ 2
be an integer such that αq ≥ 2

√
n. There is a polynomial-time quantum

reduction from K-SIVPγ to (average-case, decision) RingLWEq,α for any γ ≤
max{ω(

√
n log n/α),

√
2n}.

3 Oblivious Transfer Protocol

We now present our OT protocol. In the following, let R denote the ring of
integers of the 2n-th cyclotomic number field for some n a power of 2. Take q =
poly(n) to be prime, q ≡ 1 mod 2n. Let s, σ0, σ1 be Gaussian parameters and E
be a (3n

2 , n, ε)-strong extractor for ε = 2−n/4, with seed length l = 2n log q − 1,
which is guaranteed to exist by Theorem 1. Lastly, take the sender’s messages
m0,m1 ∈ {0, 1}n, with m0 encoded as an element of R2 and α ∈ Z a parameter
to be specified.

The protocol is described in Fig. 4 and works as follows. The sender, on input
two messages m0,m1, waits for the transmission of a matrix A ∈ R2×3

q from the
receiver. Upon receiving A, it uses this matrix to encrypt the two messages
(in two different ways), and sends the resulting ciphertexts to the sender. The
receiver, depending on the bit b, chooses the matrix A in such a way that it
can decrypt either the first or the second message. It sends the matrix A to the
sender, and when the sender returns the two ciphertexts, it uses A to decrypt
the ciphertext of its choice.

Informally (and made formal in Sect. 3.3), the sender’s privacy is preserved
because one of the two sender encodings is statistically hidden. Identifying
x + Λ⊥

q [A, I] with [A, I]x mod q for any x ∈ R
5
q gives a bijective correspon-

dence. So if the lattice Λ⊥
q [A, I] has many vectors that are short compared to

the parameter of the Gaussian from which x0 is sampled, then following the
intuition from Sect. 1.3, computing [A, I]x0 is a lossy encoding of x0. If it has
enough short vectors, it will in fact lose (almost) all information about x0, so
that the result is uniformly distributed over R2

q, hiding m0. On the other hand,
if Λq[A, I] = Λ⊥

q ([I,−At]) has many short vectors, then the same argument says
that [I,−At](x1,x2) is a lossy encoding of x1 and x2. For our settings of param-
eters, not all information about these vectors is lost, however, and so we use a
randomness extractor applied to x2 to get a random mask, hiding m1.

Simpler Statistically Sender Private Oblivious Transfer 395

Algorithm 7 Rec(1)

Input: b ∈ {0, 1}
if b = 0 then

a $← R3
q

z
$← DR,s

e $← D3
R,s

b = z · a+ e
A ← [a,b]t

return (A, z)
else

ā $← R2
q

r $← D2
R,s

R $← D2×2
R,s

A ← [ā | q−1
α

I+ ārt +R]
return (A, r)

Algorithm 8 Send
Input: A ∈ R2×3

q , m0, m1 ∈ R2

x0
$← D5

R,σ0

μ0 ← 2[A, I]x0 +
0

m0
mod q

x1
$← D3

R,σ1

x2
$← D2

R,σ1

c ← α · (x1 − Atx2) mod q
r ← {0, 1}l

μ1 ← (c, r,E(r,x2 mod q) ⊕ m1)
return (μ0, μ1)

Algorithm 9 Rec(2) Input: b ∈ {0, 1}, St, (μ0, μ1)
if b = 0 then

z ← St
m ← ([−z, 1]μ0 mod q) mod 2

else
(c, r, τ) ← μ1

r ← St
y ← −(([r, −I] · c) mod q) mod α
m ← E(r,y) ⊕ τ

return m

Fig. 4. Oblivious Transfer Protocol. In Rec(1), the receiver generates a matrix along
with auxiliary information that allows decoding of one of the sender’s two messages.
In Send, the sender encodes its first message to be decodable with high probability if
A ← Rec(1)(0), and the second message so as to be decodable with high probability if
A ← Rec(1)(1). In the last stage, Rec(2), the receiver decodes whichever of the sender’s
messages corresponds to its bit.

3.1 Correctness

In this section, we show that the OT protocol above satisfies our definition of
correctness. The proof follows a standard argument for correctness of RingLWE
cryptosystems, using concentration bounds to show that with high probability,
the noise introduced by encryption does not exceed the threshold required for
decoding.

Lemma 10. If s = 2
√

n, σ0 ≤ q/8ω(
√

(4ns2 + 1) log n) and σ1 ≤ α/2ω
(
√

log n) for α a power of 2 so that α | q − 1 and α ≤ √
q − 1/s, the proto-

col is correct.

396 D. Micciancio and J. Sorrell

Proof. Since the entries of e and z are chosen with gaussian distribution of
parameter s, with all but negligible probability, β0 = ‖[et,−z]‖2 < s

√
4n. Simi-

larly, the rows of [r,Rt] have norm bounded by β1 < s
√

3n except with negligible
probability, and we assume that both inequalities hold in the following.

We first consider the case that b = 0. In this case Rec(0, (μ0, μ1)) computes

[−z, 1]μ0 = 2[et,−z, 1]x0 + m0 (mod q)

which equals m0 modulo 2, as long as ‖[et,−z, 1]x0‖∞ < (q − 1)/4. Since the
entries of x0 are subgaussian of parameter σ0, the entries of [et,−z, 1]x0 have
subgaussian distribution of parameter

σ0

√
β2
0 + 1 < σ0

√
4ns2 + 1.

So with all but negligible probability,

‖[et,−z, 1]x0‖∞ < σ0ω(
√

(4ns2 + 1) log n) ≤ (q − 1)/4.

We now consider the case that b = 1. The receiver will successfully recover
m1 = τ ⊕E(r,x2) if y = x2. By definition, before reduction modulo α, the vector
y (mod q) equals

−(([r,−I] · c) = −α([r,−I]x1 − [r,−I]Atx2)
= −α([r,−I]x1) − [(q − 1)I + αRt]x2

= (((1 − q)x2 − α([r,−I]x1 + Rtx2))
= (x2 − α([r,−I,Rt](x1,x2))) (mod q).

So, y = ((x2 − αv) mod q) mod α for some vector

v = [r,−I,Rt](x1,x2).

We will show that, with high probability, ‖v‖∞ < (q−1)/(2α) and ‖x2‖∞ ≤ α/2.
It follows that, since v is an integer vector, we also have ‖v‖∞ ≤ (q−1)/(2α)−1,
and

‖x2 − αv‖∞ ≤ ‖x2‖∞ + α‖v‖∞ ≤ α

2
+

q − 1
2

− α <
q

2
.

So, the computation of y recovers v over the integers, and y = v mod α =
x2 mod α = x2.

Both x1 and x2 are drawn from a discrete Gaussian of parameter σ1 and so,
by an argument analogous to that of the previous case, the entries of v have
subgaussian distribution of parameter

σ1

√
β2
1 + 1 < σ1

√
3ns2 + 1.

Simpler Statistically Sender Private Oblivious Transfer 397

Then with all but negligible probability we can bound the
∞ norm of the result
by

‖v‖∞ < σ1

√
3ns2 + 1 · ω(

√
log n)

≤ α
√

3ns2 + 1
2

≤ q − 1
2α

.

We can also bound the coefficients of x2 by σ1 · ω(
√

log n) ≤ α/2 so the output
is correct except with negligible probability.

3.2 Computational Receiver Privacy

Here we show that the receiver enjoys computational privacy. This follows imme-
diately from the pseudorandomness of RingLWE.

Lemma 11. Let q = poly(n) be prime, q ≡ 1 mod 2n. Take s > 2
√

n.
Then, the distributions Rec1(0) and Rec1(1) are computationally indistinguish-
able under standard RingLWE assumptions.

Proof. We show that the distribution of matrix A computed by both Rec1(0) and
Rec1(1) is pseudorandom. For Rec1(0), At = [a, za+ e] is just the RingLWE dis-
tribution with gaussian parameter s ≥ 2

√
n. For Rec1(1), [ā, ārt +R] is also the

RingLWE distribution with secret r and noise R. So, it is indistinguishable from
the uniform distribution under standard RingLWE assumptions. Adding [0, q−1

α I]
maps the uniform distribution to itself. So, it preserves indistinguishability.

3.3 Statistical Sender Privacy

Finally, we show statistical privacy for the sender. Recall that statistical pri-
vacy requires that for all inputs A, one of the sender’s two messages must be
statistically hidden. As previously described, we wish to consider two cases: one
in which Λ⊥

q ([A, I]) has many short vectors, and one in which Λq([A, I]) does,
formalized in such a way that these cases are exhaustive and give the neces-
sary guarantees on lossiness. To that end, we actually analyze the following two
cases: one in which the smoothing parameter of Λ⊥

q ([A, I]) is small compared to
σ0 (Λ⊥

q ([A, I]) has many short vectors), and the other in which the smoothing
parameter is large (Λq([A, I]) has short vectors). In the first case, the sender’s
first message m0 must be statistically hidden, and in the second, m1 must be.

Theorem 3. Assume σ0σ1 ≥ 8q
√

5nω(
√

log n) and σ1 ≤ q/
√

n. Then there
exists an unbounded extractor Ext taking as input an element of R2×3 and out-
putting a bit b, such that for all A ∈ R2×3, letting b ← Ext(A), it holds for all
m0,m1 ∈ R2,

Send(A,m0,m1) ≈Δ Send(A,mb,mb).

398 D. Micciancio and J. Sorrell

Proof. We consider two propositions, at least one of which must be true of
Λ(A), and show that in each case, one of m0 or m1 must be statistically hidden.
It follows that we can change either m0 to m1 or m1 to m0, without affecting
the distribution by a noticeable amount.

First consider the case σ0 > ηε(Λ⊥
q ([A, I])) · ω(

√
log n). If this is the case,

[A, I]x0 is statistically close to uniform. Since q is odd, multiplying by 2 and
adding (0,m0) is a bijection, and preserves the uniform distribution. So, μ0 is
independent of m0. Clearly, μ1 is also independent of m0.

Next we consider the case ηε(Λ⊥
q ([A, I])) ≥ σ0/2ω(

√
log n). We show that x2

(mod q) must have high min-entropy H∞(x2 | c) ≥ 3n/2 even when conditioned
on c. So, the output of the seeded extractor E is (statistically close to) a uniformly
random n-bit mask, and m1 is statistically hidden. Notice that the conditional
distribution of (x1,x2) given c is precisely DC,σ1 where

C = (c/α,0) + Λ⊥
q ([I,−At]) = (c/α,0) + Λq([A, I]).

Since ηε(Λ⊥
q ([A, I])) ≥ σ0/2ω(

√
log n) by assumption, and Λ∗

q([A, I])) =
1
q Λ⊥

q ([A, I]), we have

λ1(Λq([A, I])) ≤ q
√

5n

ηε(Λ⊥
q ([A, I]))

≤ 2q
√

5n · ω(
√

log n)
σ0

.

Therefore from Corollary 1 we have that

ρσ1(Λq([A, I])) ≥
(

σ1

λ1

)n

≥
(

σ0σ1

2q
√

5n · ω(
√

log n)

)n

≥ 4n.

For any c and x∗, let X = {(x1,x2) ∈ C | x2 = x∗ (mod q)}, and notice that
X is a coset t + qR5 for some t ∈ C. Let S be the set of coset representatives
of Λq([A, I])/qR5 obtained by a “centered” reduction (so that all representative
have coefficients in the range (−q/2, q/2), recalling that q is odd). Note that S
is a symmetric set and that any point u ∈ Λq([A, I]) can be uniquely written as
the sum u = x + s, where x ∈ qR5 and s ∈ S. We may then use Lemma 9 to
conclude that

Pr{(x2 = x∗) mod q | (x1,x2) ← DC,σ1}

=
ρσ1(X)
ρσ1(C)

≤ 1
ρσ1(S)

.

A vector u sampled from a discrete gaussian over Λq([A, I]) of parameter σ1

must have ‖u‖∞ < q/2 with probability at least 1 − 2−5n, so we have that

ρσ1(S) ≥ (1 − 2−5n) · ρσ1(Λq([A, I])) ≥ (1 − 2−5n) · 4n > 22n−1.

Therefore 1
ρσ1 (S) ≤ 2−2n+1, and so H∞(x2 mod q | c) ≥ 3n/2.

Finally, we must argue that there exists an unbounded extractor Ext that,
on input A, correctly identifies which of the cases above holds with its out-
put b. We first observe that approximating the value of the smoothing param-
eter ηε(Λ⊥

q ([A, I])) to within a factor (1 + o(1)) can be done in deterministic

Simpler Statistically Sender Private Oblivious Transfer 399

2O(n)polylog(1/ε) time and 2O(n) space, as shown by Chung et al. [CDLP14].
Then the extractor that on input A, runs the algorithm of [CDLP14], outputs
0 if ηε(Λ⊥

q ([A, I])) < σ0/2ω(
√

log n), and 1 otherwise, will satisfy our definition
of statistical sender privacy.

3.4 Parameters

It remains to fix values for parameters that satisfy the competing demands of
security and correctness. These require that

σ0 ≤ q/8ω(
√

(4ns2 + 1) log n),

σ1 ≤ α/2ω(
√

log n),

α ≤
√

q − 1/s,

and
σ0σ1 ≥ 8q

√
5n · ω(

√
log n)

Letting γ(n) ∈ ω(
√

log n), a possible setting of parameters is q ∈ Θ(n4γ6(n)),
s = 2

√
n, α ∈ Θ(n1.5γ3(n)), σ0 ∈ Θ(n3γ5(n)) and σ1 ∈ Θ(n1.5γ2(n)).

3.5 Choice of Extractor

A reader already familiar with existing regularity lemmas for lattices may won-
der about the use of a generic randomness extractor for producing a uniformly
random string from x2. In the given protocol, x2 ∈ R2 is sampled from a dis-
crete Gaussian with parameter σ1, but the generic extractor cannot exploit this
additional information about its input. If we instead sampled a matrix Ā uni-
formly at random from Rk×l

q , and took A = [Ik, Ā], then with overwhelming
probability the distribution induced by Ax is statistically close to uniform over
Rk

q , for x sampled from DRk+l,σ with σ > 2nqk/(l+k)+2/n(l+k), by a theorem
of Lyubashevsky, et al. [LPR13]. This approach is arguably more natural, as it
consists solely of ring operations and makes use of the distribution from which
x2 is drawn.

However x2 comprises two elements of R, which forces l = k = 1. Correctness
and receiver security for the protocol require that σ1 <

√
q/

√
nω(

√
log n), and

so σ1 is not large enough to guarantee negligible distance from uniformity over
Rq. We may instead consider taking k = 1, l = 4, sampling A = [1, Ā] ∈ R5,
and using A(x1,x2) as the mask for plaintext message m1, however the Toeplitz
matrix construction applied directly to x2 proves to be comparably efficient,
without imposing additional constraints on parameter choices. The Toeplitz
matrix sampled by the extractor is an element of F

n×2n
q , and because this

Toeplitz matrix multiplication can be performed at least as efficiently as poly-
nomial multiplication of two degree 2n polynomials, there is no clear reason to
prefer the more “natural” approach to the use of a more generic extractor.

400 D. Micciancio and J. Sorrell

4 Comparison to Related Protocols

In this section, we provide comparisons of our protocol to existing lattice-based
SSP OT protocols. Specifically, we present the asymptotic and concrete param-
eters required by [BD18,DGI+19,GH19], and this work, as well as communi-
cation and computational complexity for all protocols. We remark that, when
transferring sufficiently long messages, in the computational setting, both the
computational and communication costs of any OT protocol can be reduced to
linear in the message length using standard techniques. Namely, one can use the
OT protocol on two random (fixed length) strings x0,x1 ∈ {0, 1}n, and then use
these random strings to encrypt the actual messages using a pseudorandom gen-
erator or stream cipher. So, for a meaningful comparison, we fix the length of the
messages to be transfered to the security parameter n. So, we give comparisons
in two representative settings which naturally arise in applications of SSP OT:
a single execution of the protocol, and O(n) parallel executions, all with sender
messages of length n.

We note that the first setting is particularly unfavorable for SSP OT construc-
tions that make use of compressible FHE. These protocols look more attractive
in applications that require poly(n) simultaneous transfers. When many parallel
OTs are required by an application, the receiver can compress fully-homomorphic
encryptions of multiple bits and send the resulting compressed ciphertext along
with a public key to the sender. The sender can then decompress the ciphertexts,
homomorphically select the message corresponding to each of the encrypted bits,
compress the resulting encryptions of its messages, and send a single compressed
ciphertext to the receiver. But in the setting of a single execution of an OT pro-
tocol with O(n)-length sender messages, these constructions cannot take full
advantage of the compressibility of the FHE scheme. In these cases, it should be
possible for the sender to use a (not necessarily homomorphic) encryption scheme
with more compact ciphertexts, by using key switching techniques. But even this
will not improve the upload rate, however, which is the dominant contribution
to the overall rate for these protocols.

The second comparison of these protocols is in a context closer to that of their
applications [BGJ+18,JKKR17,BGI+17]. In these applications, linearly many
parallel OT executions are required, and so the FHE-based OT schemes can
actually make use of their compressibility. The O(n2) bits to be transferred in
this case still fall short of allowing the amortization necessary for these protocols
to achieve constant overall rate.

When executing multiple OT instances, our protocol allows a small saving,
reducing the receiver communication complexity from 6 to 5 ring elements, but
still achieving inverse logarithmic rate 1/O(log n). So, if the number of parallel
executions is very large (e.g., transferring Ω(n3) bits), constant rate OT prot-
cols would achieve better communication complexity than ours, by a logarithmic
factor. However, this comes at a very high computational cost, as the amorti-
zation/compression only helps in reducing the communication complexity – the
time and space (memory) complexity of those amortized protocols would be
higher than ours by a much larger polynomial factor.

Simpler Statistically Sender Private Oblivious Transfer 401

In summary, in a typical application setting, our protocol achieves much bet-
ter communication and computational complexity than previous work. Commu-
nication is improved by at least a O(n log n) factor in the single execution setting,
resulting in several orders of magnitude improvement in practice. Even when n
parallel executions are considered, we sill achieve at least O(log n) improvement
in communication, and, in many cases, much more than that. When it comes to
running time, our protocol outperforms previous work by a large marging both
in theory and in practice. We remark that considering n parallel OT executions
only helps to reduce the communication complexity of previous protocols, and
their running time still scales linearly (or worse, due to the overhead of compres-
sion/decompression) with the number of executions.

In our comparison, we focus on the communication complexity, as this param-
eter can be estimated in a way that is largely independent of the computa-
tional/implementation model, and a precise comparison can be carried out with-
out the need to implement previous protocols, none of which have been imple-
mented because clearly not practical. But it should be clear from our pseudocode,
that our protocol would also be much faster than previous work, both asymp-
totically (by polynomial, typically quadratic O(n2) factors) and in practice (by
several orders of magnitude.) See the next two sections for details.

4.1 Single Execution

The following table (Fig. 5) compares asymptotic parameters, communication,
and computational complexity for a single execution of the OT protocol. Much of
the complexity of related protocols comes from the matrix multiplications that
are required by key generation (in the case of [BD18,DGI+19,BDGM19]) or by
compression (in the case of [GH19]). So, we express the asymptotic complexity
in terms of the matrix multiplication exponent ω ≤ 3. However, asymptotically
faster matrix multiplication algorithms are likely to be only of theoretical inter-
est, and for practical purposes, one should consider the value ω = 3.

Our algorithm achieves quasi-constant O(1/ log n) communication rate
already in the single execution setting, improving other protocols by a superlin-
ear O(n log n) factor. Some previous protocol [DGI+19,BDGM19] achieve sim-
ilar sender communication, but much higher communication from the receiver,
which dominates the total communication cost.

The improvement in running time is even bigger. Our protocol essentially
requires just a constant number of ring operations, which can be implemented
(both in theory and in practice) in quasi-linear time O(n log n). The previous
protocol achieving the best asymptotic complexity is that of [BD18], which has
running time O(nω) > O(n2.3). This is already a substantial Ω(n1.3) theoretical
improvement, But in practice, for ω = 3, the improvement is almost quadratic
O(n2), and with a protocol that is also arguably simpler and easier to implement.
The other protocols are slower than ours by a quadratic factor O(n2) or worse.
For typical values of the security parameter n (in the hundreds) this is easily
estimated to be a running time improvement by several orders of magnitude.

402 D. Micciancio and J. Sorrell

Scheme Modulus q
Receiver

Comm. (bits)
Sender

Comm. (bits)
Overall
Rate Operations

[BD18] Θ(n3 log2.5 n · γ(n)) Θ(n2 log2 n) Θ(n log2 n) Θ(1/n log2 n) Θ(nω)

[DGI+19] Θ(n2.5) Θ(n2 log2 n) Θ(n logn) Θ(1/n log2 n) Θ(n3 log n)

[GH19] Ω(n17.5 log10 n) Θ(n2 log2 n) Θ(n2 log n) Θ(1/n log2 n) Ω(n1+ω)

[BDGM19] Θ(n2.5 log2 n) Θ(n2 log2 n) Θ(n logn) Θ(1/n log2 n) Ω(n3 log2 n)

This work Θ(n4γ6(n)) Θ(n logn) Θ(n logn) Θ(1/ logn) Θ(n logn)

Fig. 5. Comparison of Oblivious Transfer asymptotic parameters in the sin-
gle execution setting. Compared to prior work, our protocol reduces receiver com-
munication by at least a factor O(n log n), while matching the best prior sender com-
munication. Our protocol also improves computational efficiency, requiring at least a
factor n fewer operations than prior work. The symbol ω above indicates the matrix
multiplication constant, and γ may be taken to be any function in ω(

√
log n). (The

best parameters within each column are in bold face.)

To make the comparison more tangible, we propose a concrete setting of
parameters achieving ∼ 120 bits of security for the receiver, and compare to
the statistically sender private OT protocols of [BD18,DGI+19,BDGM19], and
[GH19] with similar concrete security. (Security for the sender holds in a strong
statistical sense, and can be easily estimated without making any computational
assumption.) Following standard practice, the parameters of Fig. 6 were chosen
based on the security estimates of the LWE security estimator [APS15].

Note that both [DGI+19] and [BDGM19] have impressively low sender com-
munication, due to rounding techniques that enable the receiver to correctly
recover its chosen message given only some auxiliary information from the sender
along with a single bit per bit of message. The concrete overall rate of these (and
other prior) protocols is dominated by the receiver’s communication though,
and so the savings in download rate achievable by [DGI+19] and [BDGM19] are
lost when total communication is considered. On the other hand, our protocol’s
receiver communication is both asymptotically and concretely balanced with
the sender’s communication, giving an overall rate several orders of magnitude
higher than prior work.

4.2 O(n) Parallel Executions

Here we compare the parameters and efficiency of lattice-based SSP OT protocols
for applications requiring O(n) parallel executions of the protocol. In this setting,
the compressibility of [GH19] can be utilized to obtain the same receiver and
sender communication achieved in the single execution setting (Θ(n2 log2 n)),
as the receiver can now pack encryptions of all n of its choice bits into a single
ciphertext, and all n2 of the sender’s bits may be similarly packed.

Simpler Statistically Sender Private Oblivious Transfer 403

Scheme dim. n log q
Receiver

Comm. (KB)
Sender

Comm. (KB)
Msg. Length
|mb| (KB)

Overall
Rate

[BD18] 900 40 3.24 × 105 190 .113 1.5 × 10−7

[DGI+19] 512 23 14000 2 .064 4.6 × 10−6

[GH19] 6800 255 3.8 × 108 1.5 × 106 .85 2.2 × 10−9

[BDGM19] 640 29 20000 2 .08 4 × 10−6

This work 2048 64 100 115 .256 1.2× 10−3

Fig. 6. Concrete parameters achieving 120 bits of receiver security. Compared
to prior work, our protocol achieves the best overall rate by several orders of magnitude
for a single execution of the protocol.

The compressibility of [BDGM19] is also now reflected in the sender commu-
nication. Their FHE scheme gives packed ciphertext lengths that are asymptot-
ically max{n log q,
}, where
 is the total bit-length of the plaintext messages,
and so the length of the plaintext messages dominates the sender communica-
tion in the parallel execution setting. However, the receiver is still required to
send a large compression key comprising n log q encryptions with ciphertext size
n2 log q, and so the overall rate of the OT protocol based on [BDGM19] will be
dominated by this key.

Because we are considering n parallel but independent executions of an OT
protocol, rather than a single execution with large (poly(n)) sender messages,
the amortization required to achieve constant overall rate for the trapdoor hash
function-based protocol of [DGI+19] is not possible. Similarly, our protocol and
that of [BD18] require poly(n)-length sender messages to achieve an improved
amortized upload rate. For these protocols, the parameters and complexities
given below (Fig. 7) are simply those for running the base protocol n times in
parallel.

The last table (Fig. 8) shows the concrete parameters for n parallel executions
of each OT protocol. Again we observe that the comparatively high upload rate
of our protocol leads to a much better overall rate for applications requiring n
parallel OTs.

404 D. Micciancio and J. Sorrell

Scheme Modulus q
Receiver

Comm. (bits)
Sender

Comm. (bits)
Overall
Rate Operations

[BD18] Θ(n3 log2.5 n · γ(n)) Θ(n3 log2 n) Θ(n2 log2 n) Θ(1/n log2 n) Θ(n1+ω)

[DGI+19] Θ(n2.5) Θ(n3 log2 n) Θ(n2 log n) Θ(1/n log n) Θ(n5)

[GH19] Ω(n27.5 log15 n) Θ(n2 log2 n) Θ(n2 log n) Θ(1/ log2 n) Ω(n2+ω)

[BDGM19] Θ(n4.5 log2 n) Θ(n3 log2 n) Θ(n2) Θ(1/n log2 n) Ω(n5 log2 n)

This work Θ(n4γ6(n)) Θ(n2 logn) Θ(n2 log n) Θ(1/ logn) Θ(n2 logn)

Fig. 7. Comparison of asymptotic parameters. Compared to prior work, our pro-
tocol improves in overall rate by at least a log n factor, and reduces the computational
complexity by at least a factor n for n parallel executions of the SSP OT protocol. The
symbol ω above indicates the matrix multiplication constant, and γ may be taken to
be any function in ω(

√
log n). (The best parameters in each column are in bold face.)

Scheme dim. n log q (bits)
Receiver

Comm. (KB)
Sender

Comm. (KB)
Msg. Length
|mb| (KB)

Overall
Rate

[BD18] 900 40 2.92 × 108 190 102 1.5 × 10−7

[DGI+19] 512 23 7.17 × 106 1024 33 4.6 × 10−6

[GH19] 11000 1240 2.3 × 1010 1.8 × 107 15125 6.6 × 10−7

[BDGM19] 1300 54 8.0 × 108 220 211 2.6 × 10−7

This work 2048 64 204800 235520 525 .0012

Fig. 8. Concrete parameters achieving 120 bits of receiver security. Compared
to prior work, our protocol achieves the best overall rate by several orders of magnitude
for n parallel repetitions of the protocol.

Acknowledgements. We would like to thank Nicholas Genise and Daniel Kongsgaard
for helpful conversations, and anonymous reviewers for useful suggestions.

References

[AIR01] Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell
digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44987-6 8

[APS15] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. Cryptology ePrint Archive, Report 2015/046 (2015). http://
eprint.iacr.org/2015/046

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/3-540-44987-6_8
http://eprint.iacr.org/2015/046
http://eprint.iacr.org/2015/046

Simpler Statistically Sender Private Oblivious Transfer 405

[Ban93] Banaszczyk, W.: New bounds in some transference theorems in the geom-
etry of numbers (1993)

[BD18] Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT
from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II.
LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03810-6 14

[BDGM19] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear
decryption: rate-1 fully-homomorphic encryption and time-lock puzzles.
In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892,
pp. 407–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36033-7 16

[BGH13] Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based
homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013.
LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36362-7 1

[BGI+17] Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message
witness indistinguishability and secure computation in the plain model
from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part III. LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70700-6 10

[BGJ+17] Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round
optimal concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L.
(eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 743–775. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70500-2 25

[BGJ+18] Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai,
A.: Promise zero knowledge and its applications to round optimal MPC.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 459–487. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96881-0 16

[CDLP14] Chung, K.-M., Dadush, D., Liu, F.-H., Peikert, C.: On the lattice smooth-
ing parameter problem. In: Proceedings of the Annual IEEE Conference
on Computational Complexity (2014)

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 2

[DGH+20] Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round
oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 768–797. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 26

[DGI+19] Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.:
Trapdoor hash functions and their applications. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 1

[FP11] Fukshansky, L., Petersen, K.: On well-rounded ideal lattices (2011)
[GH19] Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In:

Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892,
pp. 438–464. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36033-7 17

https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70500-2_25
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1007/978-3-030-36033-7_17

406 D. Micciancio and J. Sorrell

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho, A
(ed.) 19th ACM STOC, New York City, NY, USA, 25–27 May 1987, pp.
218–229. ACM Press (1987)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 5

[Hay11] Hayashi, M.: Exponential decreasing rate of leaked information in universal
random privacy amplification. IEEE Trans. Inf. Theory 57(6), 3989–4001
(2011)

[HK12] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message obliv-
ious transfer. J. Cryptol. 25(1), 158–193 (2012)

[HLOV11] Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption:
constructions from general assumptions and efficient selective opening cho-
sen ciphertext security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 70–88. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 4

[ILL89] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from
one-way functions (extended abstracts). In: 21st ACM STOC, Seattle, WA,
USA, 15–17 May 1989, pp. 12–24. ACM Press (1989)

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00457-5 18

[JKKR17] Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent
simulation in two rounds and its applications. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 158–189. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 6

[Kal05] Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 5

[Kil88] Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing, STOC
1988, pp. 20–31. ACM, New York (1988)

[KKS18] Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability
(and more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 34–65. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 2

[KN08] Kol, G., Naor, M.: Cryptography and game theory: designing protocols for
exchanging information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 320–339. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 18

[KS17] Khurana, D., Sahai, A.: How to achieve non-malleability in one or two
rounds. In: Umans, C (ed.) 58th FOCS, Berkeley, CA, USA, 15–17 October
2017, pp. 564–575. IEEE Computer Society Press (2017)

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptog-
raphy. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 3

https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/11426639_5
https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-540-78524-8_18
https://doi.org/10.1007/978-3-540-78524-8_18
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3

Simpler Statistically Sender Private Oblivious Transfer 407

[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. In: 45th FOCS, Rome, Italy, 17–19 October 2004, pp.
372–381. IEEE Computer Society Press (2004)

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao
Kosaraju, S. (ed.) 12th SODA, Washington, DC, USA, 7–9 January 2001,
pp. 448–457. ACM-SIAM (2001)

[OPP14] Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Mali-
ciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 30

[PRS17] Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of
ring-LWE for any ring and modulus. In: Hatami, A., McKenzie, P., King,
V. (ed.) 49th ACM STOC, Montreal, QC, Canada, 19–23 June 2017, pp.
461–473. ACM Press (2017)

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and
composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5 31

[Rab05] Rabin, M.O.: How to exchange secrets with oblivious transfer. Har-
vard University Technical report 81 (2005). talr@watson.ibm.com 12955
Accessed 21 Jun 2005

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, Baltimore,
MA, USA, 22–24 May 2005, pp. 84–93. ACM Press (2005)

https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

Isogeny-Based Cryptography

Cryptographic Group Actions and
Applications

Navid Alamati1(B), Luca De Feo2, Hart Montgomery3, and Sikhar Patranabis4

1 University of Michigan, Ann Arbor, USA
alamati@umich.edu

2 IBM Research Zürich, Rüschlikon, Switzerland
feo@zurich.ibm.com

3 Fujitsu Laboratories of America, Sunnyvale, USA
hmontgomery@us.fujitsu.com

4 ETH Zürich, Zürich, Switzerland
sikharpatranabis@gmail.com

Abstract. Isogeny-based assumptions have emerged as a viable option
for quantum-secure cryptography. Recent works have shown how to build
efficient (public-key) primitives from isogeny-based assumptions such as
CSIDH and CSI-FiSh. However, in its present form, the landscape of
isogenies does not seem very amenable to realizing new cryptographic
applications. Isogeny-based assumptions often have unique efficiency and
security properties, which makes building new cryptographic applications
from them a potentially tedious and time-consuming task.

In this work, we propose a new framework based on group actions that
enables the easy usage of a variety of isogeny-based assumptions. Our
framework generalizes the works of Brassard and Yung (Crypto’90) and
Couveignes (Eprint’06). We provide new definitions for group actions
endowed with natural hardness assumptions that model isogeny-based
constructions amenable to group actions such as CSIDH and CSI-FiSh.

We demonstrate the utility of our new framework by leveraging it
to construct several primitives that were not previously known from
isogeny-based assumptions. These include smooth projective hashing,
dual-mode PKE, two-message statistically sender-private OT, and Naor-
Reingold style PRF. These primitives are useful building blocks for a
wide range of cryptographic applications.

We introduce a new assumption over group actions called Linear Hid-
den Shift (LHS) assumption. We then present some discussions on the
security of the LHS assumption and we show that it implies symmetric
KDM-secure encryption, which in turn enables many other primitives
that were not previously known from isogeny-based assumptions.

Keywords: Isogenies · Group actions

1 Introduction

The recent advancements in quantum computing [Aar13,AAB+19] represent one
of the most worrisome developments for cryptographers. Practical (and scalable)
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 411–439, 2020.
https://doi.org/10.1007/978-3-030-64834-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_14

412 N. Alamati et al.

quantum computers pose a threat to the security of most commonly used cryp-
tosystems today [Gro96,Sho97]. In response to this threat, there has been a surge
of interest in developing post-quantum replacements for existing cryptography
standards. Notably, NIST has started a competition to determine new standards
for post-quantum cryptosystems [CJL+16].

Many of the candidate constructions for post-quantum cryptography are based
on lattice assumptions [Reg05,LPR10], including the key exchange and signature
candidates in the NIST competition [AASA+19]. The lack of diversity in post-
quantum cryptosystems could be a potential problem in the future: what if a big
advance in lattice cryptanalysis necessitates impractically large parameters for
lattice-based cryptosystems, or, in the worst case, a quantum attack invalidates all
of lattice-based cryptography? While there are some candidate non-lattice-based
constructions, some of which are quite efficient [ELPS18,MBD+18], the landscape
of post-quantum cryptography would change dramatically if lattice-based systems
were rendered inefficient by advances in lattice cryptanalysis.

1.1 Isogeny-Based Cryptography

A promising non-lattice-based candidate for post-quantum secure cryptosys-
tems is isogeny-based cryptography. The study of isogeny-based cryptography
was initiated by Couveignes [Cou06] in 1997, but began in earnest in the late
2000s with several new ideas around collision-resistant hashing [CLG09], key
exchange [RS06,Sto10], signatures [Sto09], and key escrow [Tes06]. Isogeny-
based cryptography became much more popular after the introduction of the
SIDH key exchange scheme [JD11,DJP14], the first practical post-quantum
scheme based on isogenies, and a precursor to the NIST competition candidate
SIKE [AKC+17].

One of the most recent additions to the isogeny portfolio is CSIDH [CLM+18],
an efficient variant of the original key-exchange proposal of Couveignes, Rostovt-
sev, and Stolbunov. CSIDH spurred a fair amount of new research in isogeny-based
schemes, notably signatures [DG19,BKV19], and will be a key focus of this work.
Indeed, among all isogeny-based assumptions, CSIDH, its predecessors, and its
derivatives are the only ones that can be interpreted in the framework of group
actions.

Known Primitives from Isogeny-Based Assumptions. There exist many
primitives from isogeny-based assumptions, which can be broadly categorized
into those obtained from an isogeny-based group action, and those which are
not related to a group action.

Known constructions from isogeny-based group actions include public-
key encryption and non-interactive key exchange (both static and ephemeral)
[CLM+18], (efficient) interactive zero-knowledge protocols and signatures [DG19,
BKV19], multi-round UC-secure oblivious transfer against passive corruptions
[dOPS18], and threshold signatures [DM20].

Known constructions not related to group actions include primitives such as
public-key encryption [JD11,AKC+17], ephemeral key exchange [JD11], (effi-
cient) interactive zero-knowledge protocols and signatures [DJP14,YAJ+17,

Cryptographic Group Actions and Applications 413

GPS17], collision-resistant hash functions [CLG09], multi-round UC-secure
oblivious transfer against passive corruptions [BOB18,dOPS18,Vit19], and ver-
ifiable delay functions [DMPS19].

1.2 Cryptographic Group Actions

In order to simplify the presentation and understanding of certain isogeny-based
constructions, some prior works have chosen to use group actions as an abstrac-
tion for them, including even the first presentations [Cou06].

Informally, a group action is a mapping of the form � : G×X → X, where G
is a group and X is a set, such that for any g1, g2 ∈ G and any x ∈ X, we have

g1 � (g2 � x) = (g1g2) � x.

From a cryptographic point of view, we can endow group actions with various
hardness properties. For instance, a one-way group action [BY91] is endowed
with the following property: given randomly chosen set elements x1, x2 ∈ X, it
is hard to find a group element g ∈ G such that g � x1 = x2 (assuming such
a g exists). Similarly, one could define a weak pseudorandom group action with
following property: given a randomly chosen secret group element g ∈ G, an
adversary that sees many tuples of the form (xi, g � xi) cannot distinguish them
from tuples of the form (xi, ui) where each xi and ui are sampled uniformly
from X.1 We refer to group actions endowed with such hardness properties as
cryptographic group actions.

As an example, we note that a simple cryptographic group action is implied
by the DDH assumption. If we set X = H (where H is some group of prime
order p), and G = Z

∗
p, then the mapping z � h �→ hz where � : Z∗

p × H → H is a
weak pseudorandom group action assuming that the DDH assumption holds over
H. We note that here the “set” H is actually structured. However, there exist
candidate quantum-resistant cryptographic group actions where the set may not
be a group.

Cryptographic group actions have received substantially less attention com-
pared to traditional group-theoretic assumptions. Nonetheless, there have been
a small number of works studying various candidate cryptographic group
actions [GS10,JQSY19] and their hardness properties [BY91,GPSV18]. In terms
of public-key primitives, these works have demonstrated that cryptographic
group actions endowed with some hardness properties imply PKE and noninter-
active key exchange (NIKE).

However, this leaves open a number of questions about the cryptographic
utility of group actions. For instance, what are the capabilities of cryptographic
group actions in terms of constructing public-key primitives richer than PKE and
NIKE? Can we hope to construct from group actions (endowed with hardness
properties such as weak pseudorandomness) all (or most) of the primitives that

1 We note that sampling directly from the uniform distribution over the set X may
not be possible in certain cases. We elaborate more on this later.

414 N. Alamati et al.

we can achieve from, say, the DDH assumption [Bon98]? Or are cryptographic
group actions barely more powerful than NIKE?

In terms of cryptographic capabilities, group-theoretic assumptions have been
studied extensively over the past couple of decades. At present, we have a reason-
ably comprehensive understanding of what is (and is not) constructible from the
most commonly encountered group-theoretic assumptions such as DLOG, CDH,
and DDH (barring a few breakthrough results using novel non-black-box tech-
niques, e.g., [DG17]). The cryptographic capabilities of these assumptions have
also been explained from the point of view of their underlying algebraic struc-
ture [AMPR19]. On the other hand, our understanding of the cryptographic
capabilities of group actions is still somewhat limited.

So, in our opinion, an important question is the following: what primitives
can we build from cryptographic group actions? We believe that it is important
to understand the cryptographic capabilities of group actions given that they
capture the algebraic structure underlying some candidate post-quantum cryp-
tographic assumptions, namely isogeny-based cryptography amenable to group
actions.

1.3 Cryptographic Group Actions and Isogenies

In a nutshell, an isogeny is a morphism of elliptic curves, i.e., a map from a
curve to another curve that preserves the group structure. The central objects
of study in isogeny-based cryptography are isogeny graphs, i.e., graphs whose
vertices represent elliptic curves, and whose edges represent isogenies between
them. There is a large variety of isogeny graphs, depending on which kinds of
curves and isogenies are chosen. One such choice would be complex multiplication
graphs, which arise from so-called horizontal isogenies of complex multiplication
elliptic curves; indeed, these graphs are isomorphic to Cayley graphs of quadratic
imaginary class groups, and thus present a natural group action.

One of the key objects associated with an elliptic curve is its endomorphism
ring. In the cases that interest us here, this ring is known to be isomorphic to an
imaginary quadratic order O, i.e., a 2-dimensional Z-lattice and a subring of an
imaginary quadratic number field Q(

√
D). An elliptic curve with endomorphism

ring isomorphic to a given O is said to have complex multiplication (CM) by O.
The celebrated theory of complex multiplication establishes a correspondence

between the ideal classes of O and the isogenies between elliptic curves with CM
by O. More precisely, it defines a regular abelian group action

Cl (O) × Ek (O) → Ek (O)

of the class group Cl (O) on the set Ek (O) of elliptic curves, defined over a field
k, with CM by O. Moreover, each element of Cl (O) corresponds to a unique
class of isogenies, which can be leveraged to evaluate the group action. We refer
the reader to [De 17,Sut19] for more details.

Unfortunately, the correspondence between isogenies and the CM group
action becomes less than ideal when we start contemplating algorithmic prop-
erties. Indeed, a natural requirement for a cryptographic group action is that

Cryptographic Group Actions and Applications 415

given any group element g ∈ G and a set element x ∈ X, computing g � x can
be done efficiently. However this does not hold for the CM group action, which
can be evaluated efficiently only for a small subset of group elements.

The usual workaround adopted in isogeny-based cryptography is to represent
elements of Cl (O) as Z-linear combinations of a fixed set of “low norm” gener-
ators gi for which evaluating the group action is efficient, i.e., as a =

∏�
i=1 g

ai
i .

Then, evaluating the action is efficient as long as the exponents ai are polynomial
in the security parameter.

This trick is not devoid of consequences: group elements do not have a unique
representation, sampling uniformly in the group may not be possible in general,
and even testing equality becomes tricky. We will capture the limitations of this
framework in our definition of a Restricted Effective Group Action (REGA).

To illustrate the severe limitations of an REGA, we refer to SeaSign [DG19],
which is the Fiat-Shamir transform of an interactive authentication protocol
based on CSIDH. To prove the knowledge of a secret s ∈ G s.t. y = s � x,
the basic idea is to first commit to r � x for some random r, and then reveal
s−br depending on a bit b sent by the challenger. While it is straightforward to
prove that this protocol is zero-knowledge when the elements of G have unique
representation and are sampled uniformly, the proof breaks down for CSIDH.
To fix this issue, SeaSign uses a rejection sampling technique [Lyu09], which
considerably increases parameters and signing/verification time.

An alternative fix is to compute the group structure of Cl (O), in the form
of a relation lattice of the low norm generators. This restores the ability to
represent uniquely and to sample uniformly the elements of the group. This is
the approach taken by the isogeny-based signature CSI-FiSh [BKV19], which
precomputes the group structure of CSIDH-512.

While it is clear that the approach taken by CSI-FiSh to build a full-
fledged cryptographic group action greatly extends the capabilities of isogeny-
based cryptography, recent results [Pei20,BS20] showed quantum attacks against
CSIDH for certain choices of parameters. Unfortunately, computing the group
structure of a significantly larger class group seems out of reach today, owing to
the subexponential complexity of the classical algorithms available. This limi-
tation will go away once quantum computers become powerful enough to apply
Shor’s algorithms to this group order computation, but until then we believe that
REGAs can be a fundamental tool to construct post-quantum cryptographic
protocols based on isogenies.

Bilinear maps gained popularity in cryptography partly because works
such as [BF01,GPS08] presented them in a generic, easy-to-use manner that
abstracted out the mathematical details underlying the Weil or Tate pairings.
Similarly, an easy-to-use abstraction for isogeny-based assumptions might make
them more accessible to cryptographers.

1.4 Our Contributions

We improve the state of the art of cryptographic group actions and isogeny-based
cryptography in three main ways:

416 N. Alamati et al.

• We formally define many notions of cryptographic group actions endowed
with natural hardness properties such as one-wayness, weak unpredictabil-
ity, and weak pseudorandomness. We then show how certain isogeny-based
assumptions can be modeled using our definitions.

• We show several applications of cryptographic group actions (based on our
definitions above) which were not previously known from isogeny-based
assumptions. These include smooth projective hashing, dual-mode PKE, two-
message statistically sender-private OT, and Naor-Reingold style PRF.

• We introduce a new assumption over cryptographic group actions called linear
hidden shift (LHS) assumption. We then present some discussions on the
security of the LHS assumption and we show that it implies symmetric KDM-
secure encryption, which in conjunction with PKE implies many powerful
primitives that were not previously known from isogeny-based assumptions.

In addition, we also show that a homomorphic primitive with certain properties
implies a cryptographic group action. We expand on our contributions in more
details below.

Effective Group Action. We begin by introducing some new definitions for
group actions endowed with hardness properties. Our first new definition is that
of an effective group action (EGA). This models the standard notion of cryp-
tographic group actions. Section 2 presents the formal definitions for effective
group actions and the associated axioms of mathematical structure. While our
definitions bear some resemblance to existing works, they are more amenable
to cryptographic constructions in the post-quantum setting. Much of the early
work on cryptographic group actions [BY91,Cou06] either predates the major
advances in quantum cryptanalysis like Shor’s algorithm [Sho97] or did not focus
on post-quantum applications.

Suppose we consider a set X and a group G, with an associated group action
� : G×X → X. We informally define the following cryptographic effective group
actions endowed with natural hardness properties:

• One-way EGA: given a pair of set elements (x, g � x) where x ← X and
g ← G are sampled uniformly at random, there is no PPT adversary that can
recover g.

• Weak Unpredictable EGA: given polynomially many tuples of the form
(xi, g � xi) where g ← G and each xi ← X are sampled uniformly at ran-
dom, there is no PPT adversary that can compute g �x∗ for a given challenge
x∗ ← X.

• Weak Pseudorandom EGA: there is no PPT adversary that can distinguish
tuples of the form (xi, g � xi) from (xi, ui) where g ← G and each xi, ui ← X
are sampled uniformly at random.

We also note that CSI-FiSh [BKV19] can be modeled as an effective group
action defined above (plausibly as a weak pseudorandom effective group action).

Cryptographic Group Actions and Applications 417

Restricted Effective Group Action. Our definition of EGA does not capture
isogeny-based assumptions such as CSIDH [CLM+18], where we cannot compute
the group action operation � efficiently for all g ∈ G.

To address this, we introduce the notion of a restricted effective group action
(REGA). The basic idea is the following: in an REGA, as we mentioned before,
it is not possible to efficiently compute the group action � for all group elements
g ∈ G: instead, the group action is efficiently computable for some small subset
of G. Note that we can still “simulate” the effect of a general group action by
computing the group action on a sequence of different elements from this subset.
While restricted EGAs are considerably less efficient than EGAs with respect
to certain applications, they present an easy-to-use abstraction for CSIDH and
related assumptions. This makes REGAs useful for building cryptographic pro-
tocols from such assumptions. We note that REGAs can be endowed with the
same hardness properties as EGAs (such as one-wayness, weak unpredictability,
and weak pseudorandomness).

New Constructions. One of the main contribution of our paper is new con-
structions from our definition of (R)EGA, which can then be concretely instan-
tiated from isogeny-based assumptions. We refer to Fig. 1 for an overview of our
results. Specifically, we show the following constructions from any weak pseudo-
random (R)EGA:

• Universal and smooth projective hashing, proposed by Cramer and
Shoup [CS02], is a useful primitive with many applications, including CCA-
secure PKE in the standard model [CS02], password authenticated key-
exchange (PAKE) [GL03], privacy-preserving protocols [BPV12], and many
others. We show how to construct a universal and smooth projective hash
from any weak pseudorandom (R)EGA. To our knowledge, this is the first
smooth projective hash function from isogeny-based assumptions. In particu-
lar, this also implies the first standard-model CCA-secure encryption scheme
from isogenies. Previously known CCA-secure encryption schemes from group
action based on isogenies [CLM+18] required random oracles.

• Dual-mode PKE, which was introduced in [PVW08], has numerous applica-
tions such as UC-secure round-optimal OT protocols in the common reference
string model against actively corrupt receivers and senders. Such OT proto-
cols are in turn sufficient to construct UC-secure round-optimal multi-party
computation (MPC) protocols for general functionalities [GS18] in the same
security model. In this work, we show how to build a dual-mode PKE from
any weak pseudorandom (R)EGA. In particular, this implies the first round-
optimal OT and MPC protocols from isogeny-based assumptions. Previously
known constructions of OT from isogenies [BOB18,dOPS18,Vit19] were nei-
ther round optimal nor UC secure against active corruptions.

• We next show how to build two-message statistically sender-private OT (SSP-
OT) [NP01] in the plain model from any weak pseudorandom (R)EGA. For
this result, we rely on our construction of smooth projective hashing and
techniques from [HK12]. This primitive has many cryptographic applications

418 N. Alamati et al.

such as non-malleable commitments [KS17], two-round witness indistinguish-
able proofs with private-coin verifier [JKKR17,BGI+17,KKS18], and three-
message statistical receiver-private OT in the plain model [GJJM20]. To our
knowledge, these primitives were not previously known from isogeny-based
assumptions.

• We construct Naor-Reingold style PRFs from any weak pseudorandom
(R)EGA. Our construction, when based on EGA (and not REGA), results
in a PRF that requires a single group action operation. Our construction in
the case of REGA requires a linear number of group action operations. This
essentially follows from the efficiency restrictions inherent to our definitions
of REGA.

Weak Pseudorandom EGA

Hash Proof System

Dual-Mode PKE

SSP-OT

NR-PRF

LHS Assumption

KDM-CPA SKE

+

KDM-CCA PKE

TDF

DV-NIZK

[KM19]

[KMT19]

[LQR+19]

Fig. 1. Overview of our results and implications

Linear Hidden Shift Assumption. We introduce a new assumption over
cryptographic group actions that we call the Linear Hidden Shift (LHS) assump-
tion and we provide some discussions on its security. We describe the assumption
informally below.

For a vector of group elements g ∈ Gn and a binary vector s ∈ {0, 1}n, let
〈g, s〉 denote the subset product

∏n
i=1 gsi

i . Informally, the LHS assumption states
that for any m that is polynomial in the security parameter, the following holds:

{(xi,gi, (〈gi, s〉) � xi)}i∈[m]
c≈ {(xi,gi, ui)}i∈[m],

where gi ← Gn, s ← {0, 1}n, xi ← X and ui ← X (all sampled independently).
The LHS assumption is sufficient to realize symmetric KDM-CPA secure

encryption, and enables us to realize many cryptographic applications such as
trapdoor functions and designated-verifier NIZK, which were previously not

Cryptographic Group Actions and Applications 419

known from isogeny-based assumptions. We believe that the LHS assumption
is of independent interest and may have other cryptographic applications.

We present some discussions o the security of the LHS assumption. In par-
ticular, we first show a search to decision reduction: namely, that the decision
variant of the LHS assumption mentioned above is equivalent to its search vari-
ant, which states that no PPT adversary can recover the binary vector s. Next,
we show that in certain settings an additive variant of the LHS assumption is
equivalent to the weak pseudorandom EGA if G = Z

∗
N and the vectors gi are

sampled from a structured distribution. Based on this evidence, it appears likely
that the LHS assumption holds with respect to some of the known group-action
based isogenies.

KHwPRF and Cryptographic Group Actions. A key-homomorphic weak
PRF (KHwPRF) [NPR99,BLMR13] is a generic primitive with algebraic struc-
ture and is known to imply many cryptosystems that we know how to build from
the DDH assumption [AMPR19,AMP19]. We show that any KHwPRF with a
cyclic output group implies a weak unpredictable group action.

On EGA and Homomorphic Primitives. Recent works [AMPR19,AMP19]
have shown that generic primitives (such as weak PRFs) endowed with group
homomorphisms imply a large class of cryptographic applications. A natural
question to ask is whether such homomorphic primitives can be built in a generic
manner from EGA/REGA? This does not seem likely in light of the fact that
the authors of [AMP19] ruled out the existence of a few post-quantum secure
primitives with “exact” homomorphisms over abelian groups.

This observation seems to have implications for the class of primitives that
one can hope to build from EGA/REGA. One such primitive is collision-resistant
hash function (CRHF). In particular, the main techniques we currently know of
constructing CRHF from generic assumptions either rely on group homomor-
phism [IKO05] or one-way functions with certain properties [HL18]. This makes
it difficult to realize CRHF from EGA/REGA by leveraging known techniques.
Note that this does not apply to known constructions of CRHF from non-group-
action based isogeny assumptions (such as [CLG09]), which are not covered by
our framework.

1.5 Notation

For any positive integer n, we use [n] to denote the set {1, . . . , n}. We use λ for
the security parameter. For a finite set S, we use s ← S to sample uniformly
from the set S. For a probability distribution D on a finite set S, we use s ← D
to sample from D. We use the notations

s≈ and
c≈ to denote statistical and

computational indistinguishably, respectively. Finally, for random variables X
and Y , H∞(X|Y) denotes the min-entropy of X conditioned on Y .

420 N. Alamati et al.

1.6 Paper Outline

The rest of the paper is organized as follows. Section 2 introduces our group
action-based framework and the definitions of EGA and REGA. Section 3
describes our construction of smooth projective hashing from weak pseudoran-
dom EGA/REGA. Section 4 introduces the LHS assumption, presents some
discussion on its security and shows how to construct symmetric KDM-secure
encryption from it. Due to space constraints, the remaining material is presented
in the full version of the paper.

2 Cryptographic Group Actions

In this section we present our definitions of cryptographic group actions. As
we mentioned before, we use the definitions of Brassard and Yung [BY91] and
Couveignes [Cou06] as starting points and aim to provide solid, modern defini-
tions that allow for easy use of isogenies in cryptographic protocols. We begin
by recalling the definition of a group action.

Definition 1. (Group Action) A group G is said to act on a set X if there is
a map � : G × X → X that satisfies the following two properties:

1. Identity: If e is the identity element of G, then for any x ∈ X, we have
e � x = x.

2. Compatibility: For any g, h ∈ G and any x ∈ X, we have (gh)�x = g �(h�x).

We may use the abbreviated notation (G,X, �) to denote a group action.

Remark 1. If (G,X, �) is a group action, for any g ∈ G the map πg : x �→ g � x
defines a permutation of X.

Properties of Group Actions. We consider group actions that satisfy one or
more of the following properties:

1. Transitive: A group action (G,X, �) is said to be transitive if for every x1, x2 ∈
X, there exists a group element g ∈ G such that x2 = g � x1. For such a
transitive group action, the set X is called a homogeneous space for G.

2. Faithful: A group action (G,X, �) is said to be faithful if for each group
element g ∈ G, either g is the identity element or there exists a set element
x ∈ X such that x
= g � x.

3. Free: A group action (G,X, �) is said to be free if for each group element
g ∈ G, g is the identity element if and only if there exists some set element
x ∈ X such that x = g � x.

4. Regular: A group action (G,X, �) is said to be regular if it is both free and
transitive. For such a regular group action, the set X is called a principal
homogeneous space for the group G, or a G-torsor.

Remark 2. Typically group action-based cryptography has focused on regular
actions. If a group action is regular, then for any x ∈ X, the map fx : g �→ g � x
defines a bijection between G and X; in particular, if G (or X) is finite, then we
must have |G| = |X|.

Cryptographic Group Actions and Applications 421

2.1 Effective Group Actions

We define an effective group action (EGA) as follows.

Definition 2. (Effective Group Action) A group action (G,X, �) is effective if
the following properties are satisfied:

1. The group G is finite and there exist efficient (PPT) algorithms for:
(a) Membership testing, i.e., to decide if a given bit string represents a valid

group element in G.
(b) Equality testing, i.e., to decide if two bit strings represent the same group

element in G.
(c) Sampling, i.e., to sample an element g from a distribution DG on G. In

this paper, We consider distributions that are statistically close to uni-
form.

(d) Operation, i.e., to compute gh for any g, h ∈ G.
(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist efficient algorithms for:
(a) Membership testing, i.e., to decide if a bit string represents a valid set

element.
(b) Unique representation, i.e., given any arbitrary set element x ∈ X, com-

pute a string x̂ that canonically represents x.
3. There exists a distinguished element x0 ∈ X, called the origin, such that its

bit-string representation is known.
4. There exists an efficient algorithm that given (some bit-string representations

of) any g ∈ G and any x ∈ X, outputs g � x.

Computational Assumptions. We define certain computational assumptions
pertaining to group actions.

Definition 3. (One-Way Group Action) A group action (G,X, �) is said to be
one-way if the family of efficiently computable functions {fx : G → X}x∈X is
one-way, where fx : g �→ g � x.

Definition 4. (Weak Unpredictable Group Action) A group action (G,X, �) is
said to be weakly unpredictable if the family of (efficiently computable) permuta-
tions {πg : X → X}g∈G is weakly unpredictable, where πg : x �→ g � x.

Definition 5. (Weak Pseudorandom Group Action) A group action (G,X, �)
is said to be weakly pseudorandom if the family of (efficiently computable) per-
mutations {πg : X → X}g∈G is weakly pseudorandom, where πg : x �→ g � x.

In the full version of the paper, we provide a more formal treatment by
describing notions of one-wayness, weak unpredictability, and weak pseudoran-
domness that are additionally parameterized by distributions over the group G
and the set X. One may view the aforementioned definitions as special cases,

422 N. Alamati et al.

where both the distributions are assumed to be uniform (or statistically close to
uniform).

In what follows, we will focus on group actions where G is abelian and the
action is regular. We will characterize them by the computational assumption
and their effectivity properties, and we assume that they are abelian and regu-
lar unless stated otherwise. Therefore, an OW-EGA/wU-EGA/wPR-EGA will
be a one-way/weak unpredictable/weak pseudorandom abelian regular effective
group action. Note that Couveignes used the terminology Hard Homogeneous
Space for wU-EGA, and Very Hard Homogeneous Space for wPR-EGA [Cou06];
subsequent literature on isogeny-based cryptography has mostly followed his
conventions [DKS18,CLM+18].

Generic Attacks. All known generic attacks against cryptographic group
actions are attacks against the one-wayness. Given a pair (x, g � x), Stol-
bunov [Sto12] called the problem of finding g the Group Action Inverse Problem
(GAIP). The best known classical algorithm for GAIP is a meet-in-the-middle
graph walk technique dating back to Pohl [Poh69], with a low-memory variant
by Galbraith, Hess and Smart [GHS02], both running in time O(

√|G|).
Childs, Jao, and Soukharev [CJS14] pointed out that GAIP can be formulated

as a hidden shift problem, and thus it can be solved by Kuperberg’s quantum
algorithm and its variants [Kup05,Reg04,Kup13], provided a quantum oracle to
evaluate the group action. All these algorithms have subexponential complexity
between exp(

√
log N) and LN (1/2).

In the context of isogenies, there is a sizable literature on both classical and
quantum attacks [Gal99,GS13,BIJ18,BS20,Pei20]. Little is known in terms of
non-generic attacks: a recent result gives an attack against pseudorandomness
which applies to some isogeny-based group actions, but not to CSIDH and related
constructions [CSV20].

Alternative Axioms. In some circumstances, it is useful to strengthen or
weaken the definition of EGA by slightly modifying the set of axioms. Here we
list the most important variants.

• Uncertified EGA: Brassard and Yung [BY91] consider group actions without
the Set Membership Testing axiom. They call certified those group actions
that have Set Membership Testing, and uncertified those that do not. It is
easy to construct examples of uncertified actions, see, e.g., [BY91, §6.2]. Here,
unless otherwise stated, all actions will be certified.

• Hashable OW-EGA: In an OW-EGA, one can efficiently sample from X as
follows: first sample g ← DG using the Group Sampling axiom, then output
g � x0. However in some applications it is useful to sample from X in a way
that does not automatically reveal the group action inverse.
In a Hashable OW-EGA, the existence of the origin x0 is replaced with
a Hashing to the Set axiom, stating that there exists an efficient sampler

Cryptographic Group Actions and Applications 423

H : [N] → X (where the integer N depends on the security parameter) such
that for any adversary A

Pr[A(i, j) � H(i) = H(j)] ≤ negl(λ),

for i, j ← [N].

2.2 Restricted Effective Group Actions

An EGA is a useful abstraction, but sometimes it is too powerful in comparison
to what is achievable in practice. A Restricted Effective Group Action (REGA)
is a weakening of EGA, where we can only evaluate the action of a generating
set of small cardinality.

Definition 6. (Restricted Effective Group Action) Let (G,X, �) be a group
action and let g = (g1, . . . , gn) be a (not necessarily minimal) generating set
for G. The action is said to be g-restricted effective, if the following properties
are satisfied:

• G is finite and n = poly(log(|G|)).
• The set X is finite and there exist efficient algorithms for:

1. Membership testing, i.e., to decide if a bit string represents a valid set
element.

2. Unique representation, i.e., to compute a string x̂ that canonically repre-
sents any given set element x ∈ X.

• There exists a distinguished element x0 ∈ X, called the origin, such that its
bit-string representation is known.

• There exists an efficient algorithm that given any i ∈ [n] and any bit string
representation of x ∈ X, outputs gi � x and g−1

i � x.

Although an REGA is limited to evaluations of the form gi�x, this is actually
enough to evaluate the action of many, and potentially all elements of G without
even needing axioms on the effectivity of G.

A word on (g1, . . . , gn) is a finite sequence σ ∈ {g1, . . . , gn, g−1
1 , . . . , g−1

n }∗, to
which we canonically associate an element of G by

σ = σ1σ2 · · · σ� �→
�∏

i=1

σi.

By hypothesis, any element of G can be represented by a word on g, however this
representation may not be unique, nor equality needs to be efficiently testable.
From the definition of a g-REGA, it is clear that the action on x ∈ X of any
word of polynomial length on g can be computed in polynomial time.

When G is abelian, words on g can be rewritten as vectors in Z
n, canonically

mapped to G by

(a1, . . . , an) �→
n∏

i=1

gai
i .

424 N. Alamati et al.

It follows from the axioms of REGA that the action of a vector a ∈ Z
n can

be efficiently evaluated on any x ∈ X as long as ‖a‖ is polynomial in log(|G|),
where ‖ · ‖ is any Lp-norm.

Protocols built on REGA will need to sample elements from G that are statis-
tically close to uniform and for which the group action is efficiently computable.
Prior works suggest sampling from a distribution DG on the words on g in the
non-abelian case, or from a distribution on vectors in Z

n in the abelian case. Clas-
sic choices in the latter case are balls of fixed radius in L∞-norm [CLM+18], in
L1-norm [NOTT20], in weighted infinity norms [Sto12,MR18], or discrete Gaus-
sian distributions [DG19]. The latter is plausibly sufficient for applications that
require group elements to be sampled from distributions statistically close to
uniform [DG19].

2.3 Known-Order Effective Group Action

As a strengthening of EGA, we may assume that the group structure of G
is known. By “known order” we mean that a minimal list of generators g =
(g1, . . . , gn) together with their orders (m1, . . . ,mn) is known, which in turn is
equivalent to a decomposition

G Zm1 ⊕ · · · ⊕ Zmn
.

An important special case is when G is cyclic, i.e., G = 〈g〉 Z/mZ.
Denote by L the lattice m1Z⊕ · · · ⊕mnZ, the map φ : Zn/L → G defined as

(a1, . . . , an) �→
n∏

i=1

gai
i

is an effective isomorphism, its inverse being a generalized discrete logarithm.
If (G,X, �) is an EGA, then it is easy to verify that (Zn/L,X, �) is an EGA
through φ. We may just use Z

n/L as the standard representation for G.

Definition 7. (Known-order Effective Group Action) A known-order effective
group action (KEGA) is an EGA (Zn/L,X, �) where the lattice L is given by
the tuple (m1, . . . ,mn).

It may look like we “lose some cryptography” when we replace the group
G by its isomorphic image Z

n/L. However, we stress that the main purpose of
cryptography based on group actions is to design protocols that do not rely on
discrete log assumptions. Thus, as soon as the group structure of G is known,
KEGA is a more appropriate tool to design protocols, owing to its simplicity.
For examples of protocols that require the KEGA setting, see [DM20].

Furthermore, KEGA and abelian EGA are quantumly equivalent. Indeed,
given any abelian group G, Shor’s algorithm and its generalization [Sho97,CM01]
precisely compute an isomorphism G Zm1 ⊕ · · · ⊕Zmn

(along with a minimal
set of generators) in quantum polynomial time.

Cryptographic Group Actions and Applications 425

Remark 3. An REGA of known order is not automatically a KEGA, indeed the
list of generators g of a REGA need not be minimal. As an extreme example,
consider the case where G = 〈g1〉 is cyclic, and g = (g1, . . . , gn). Any element of
G can be uniquely represented as an integer in Zm1 , however this representation
does not lead to an efficiently computable group action. What is needed is an
efficient algorithm to convert between the “minimal” representation G Z/L,
and products of small powers of (g1, . . . , gn). In some instances, this conversion
is possible via lattice reduction techniques [BKV19].

3 Hash Proof System

In this section, we demonstrate how to construct universal and smooth projective
hashing schemes (also known as hash proof systems or projective hash functions)
from any weak pseudorandom effective group action. We begin by recalling the
definition of a universal projective hashing scheme as in [CS02].

Definition 8. (Universal Projective Hashing) Let Λ : K × Σ → Γ be an effi-
ciently computable function, and let L ⊂ Σ. In addition, let α : K → P be a
“projection” function. We say that the tuple Π = (Λ,K, P,Σ,Γ, L) is a universal
projective hash function if the following properties hold:

• Samplability: There exist efficient algorithms to sample uniformly from Σ
and from K. In addition, there exists an efficient algorithm to sample uni-
formly from L along with a witness w that proves membership in L.

• Subset Membership Problem: If σ0 ← L and σ1 ← Σ then σ0
c≈ σ1.

• Projective Evaluation: There exists an efficient algorithm ProjEval such
that for any hk ∈ K and any σ ∈ L with membership witness w, we have

ProjEval(α(hk), w) = Λ (hk, σ) .

• Universality: Π is said to be ε-universal if for any σ ∈ Σ \ L, if hk ← K it
holds that

H∞
(
Λ (hk, σ)

∣
∣(α(hk), σ)

) ≥ log(ε−1).

Universality2 and Smoothness. We also recall two stronger notions of secu-
rity for projective hash proof systems, namely universality2 and smoothness, as
described in [CS02].

• Universality2: A hash proof system Π = (Λ,K, P,Σ,Γ, L) is said to be ε-
universal2 if for any σ, σ∗ ∈ Σ such that σ ∈ Σ \ (L ∪ {σ∗}), if hk ← K it
holds that

H∞
(
Λ (hk, σ)

∣
∣(α(hk), σ, σ∗,Λ (hk, σ∗))

) ≥ log(ε−1).

• Smoothness: A hash proof system Π = (Λ,K, P,Σ,Γ, L) is said to be smooth
if for any σ ∈ Σ \ L, if hk ← K and γ ← Γ it holds that

(
α(hk), σ,Λ (hk, σ)

) ≈s

(
α(hk), σ, γ

)
.

We now show how to construct a universal hash proof system from any weak
pseudorandom EGA.

426 N. Alamati et al.

Construction. Let (G,X, �) be a weak pseudorandom EGA and let
 =
ω(log λ) be an integer. Additionally, let x̄0 ← X and x̄1 ← X be publicly
available set elements. We define the input space Σ as

Σ =
{

(x0, x1) ∈ X2 : ∃(g0, g1) ∈ G2 s.t. x0 = g0 � x̄0, x1 = g1 � x̄1

}
.

By the regularity of the group action, this is equivalent to defining Σ = X2. We
also define the subset L ⊂ Σ as

L =
{

(x0, x1) ∈ X2 : ∃g ∈ G s.t. x0 = g � x̄0, x1 = g � x̄1

}
,

where the group element g is the witness for membership in L. In addition, we
let Γ = X� and K = G�×{0, 1}�, and we define the hash function Λ : K×Σ → Γ
to be

Λ
(
(h,b), (x0, x1)

)
= (h1 � xb1 , . . . , h� � xb�

),

where h = (h1, . . . , h�) and b = (b1, . . . , b�). We set the projection space to be
P = X�, and we define the projection function α : K → P as

α(h,b) = (h1 � x̄b1 , . . . , h� � x̄b�
).

Subset Membership Problem. We state and prove the following lemma.

Lemma 1. If (G,X, �) is a weak pseudorandom EGA, we have σ0
c≈ σ1 where

σ0 ← L and σ1 ← Σ.

Proof. By the weak pseudorandomness of group action we have

(x̄0, x̄1, g � x̄0, g � x̄1)
c≈ (x̄0, x̄1, x0, x1),

where g ← G and x̄1, x0, x1 are all sampled uniformly and independently from X.
It is easy to see that the “left” tuple corresponds to a uniformly sampled member
σ0 ∈ L and the “right” tuple corresponds to a uniformly sampled element σ1 ∈ Σ
(because the action is regular), as required.

Projective Evaluation. We define ProjEval : X� × G → X� as

ProjEval
(
y, g

)
= (g � y1, . . . , g � y�),

where y = (y1, . . . , y�) and g is the witness. Let (x0, x1) = (g � x̄0, g � x̄1) be a
member of L with witness g, and let y = α(h,b) for some hash key (h,b) ∈ K.
The algorithm ProjEval satisfies the projective evaluation property by observing
that

ProjEval
(
α(h,b), g

)
= (g � y1, . . . , g � y�)
= (g � (h1 � x̄b1), . . . , g � (h� � x̄b�

))
= (h1 � (g � x̄b1), . . . , h� � (g � x̄b�

))
= (h1 � xb1 , . . . , h� � xb�

)
= Λ

(
(h,b), (x0, x1)

)
.

Cryptographic Group Actions and Applications 427

Universality. We now establish the universality property (as defined in [CS02])
via the following lemma.

Lemma 2. If (G,X, �) is a weak pseudorandom EGA, then the projective hash
function is 2−�-universal.

Proof. Let (x0, x1) ∈ Σ \ L be an arbitrary non-member, and let (h,b) ← K be
a randomly chosen hash key. We need to show that

H∞
(
Λ((h,b), (x0, x1))

∣
∣
(
x̄0, x̄1, x0, x1, α(h,b)

))
=
.

First, observe that there exists g0
= g1 such that (x0, x1) = (g0 � x̄0, g1 � x̄1)
because (x0, x1) /∈ L. In addition, let y = α(h,b), i.e., for each i ∈ [
] we have
yi = hi � x̄bi

. By the regularity of the group action, for each i ∈ [
] there exists
di,0 ∈ G and di,1 ∈ G such that

di,0 � x̄0 = di,1 � x̄1 = yi.

In other words, given the tuple (x̄0, x̄1, x0, x1, yi), the bit bi in the hash-key
component (hi, bi) has full entropy. On the other hand, we have

hi � xbi
= hi � (gbi

� x̄bi
) = gbi

� (hi � x̄bi
) = gbi

� yi.

Since g0
= g1, it follows that given the tuple (x̄0, x̄1, x0, x1, yi), the set element
hi � xbi

= gbi
� yi has one bit of entropy (even in the view of a computationally

unbounded adversary). By extending the same argument, we get

H∞
({hi � xbi

}i∈[�]

∣
∣
(
x̄0, x̄1, x0, x1, {yi}i∈[�]

))
=
,

as desired. This completes the proof of Lemma 2.

The aforementioned lemmas yield the following theorem.

Theorem 1. There exists a construction of a 2−�-universal projective hash
function for any
 > 0 from any weak pseudorandom EGA.

Remark 4. Our construction and proof work in essentially the same way from a
restricted EGA provided that we can sample group elements from a distribution
that is statistically close to uniform over the group G while retaining the ability
to efficiently compute the action. We note that this is plausibly the case with
respect to the instantiation of restricted EGA from CSIDH and other similar
isogeny-based assumptions (see [DG19] for more details).

Remark 5. In the aforementioned description of the HPS scheme, the hardness
of the language membership problem crucially relies on the fact that the group
element h such that x1 = h � x0 is computationally hidden from the adversary.
Note that most applications of HPS typically assume a trusted setup. For appli-
cations that necessarily require an untrusted setup, our proposed HPS can still
be used, albeit from a hashable EGA.

428 N. Alamati et al.

Universal2 and Smooth Projective Hashing. Based on known reductions
from Section 2.1 of [CS02], Theorem 1 implies the following corollary.

Corollary 1. Let (G,X, �) be any weak pseudorandom EGA. Assuming the
existence of an injective function f : X� → {0, 1}m for some m = ω(log λ)
and the existence of a pairwise independent hash function H : X� → {0, 1} for
some
 = ω(log λ), there exists a 2−�-universal2 projective hash function and a
smooth projective hash function, respectively.

Further Applications. Universal2 and smooth projective hashing imply
CCA-secure PKE [CS02]. In addition, smooth projective hashing additionally
implies password authenticated key-exchange [GL03], privacy-preserving proto-
cols [BPV12], and many other cryptographic primitives. Hence, our construction
allows all of these primitives to be constructed from any weak pseudorandom
(R)EGA.

4 Linear Hidden Shift (LHS) Assumption

In this section we introduce a hardness assumption called Linear Hidden Shift
(LHS) problem and describe its cryptographic applications.

Notation. Unless stated otherwise, we use + to denote the group operation, and
we assume that e denotes the identity element of the group. For a binary vector
s ∈ {0, 1}n and a group element h ∈ G, we use h · s to denote a vector of group
elements whose ith component is si · h. For a vector of group elements g ∈ Gn

and a binary vector s ∈ {0, 1}n, we use 〈g, s〉 to denote s1 ·g1+ · · ·+sn ·gn where
+ denotes the group operation (we remark that although the notation resembles
an inner product, we do not necessarily have an inner product space).

Given a group action � : G × X → X, the action naturally extends to the
direct product group Gn for any positive integer n. So if g ∈ Gn and x ∈ Xn

are two vectors of group elements and set elements respectively, we use g � x to
denote a vector of set element whose ith component is gi � xi.

Below, we formally state the search and decision versions of the assumption.
Later, we show a simple search to decision reduction for the LHS assumption.

Definition 9. (Search Linear Hidden Shift) Let � : G × X → X be a regular
group action, and let n = poly(λ) be a parameter. We say that (search) LHS
problem is hard over (G,X, �) if for any m = poly(λ) and for any PPT attacker
A, we have

Pr
[
A

({
(xi,gi, (〈gi, s〉) � xi)

}
i∈[m]

)
outputs s

]
≤ negl(λ),

where gi ← Gn, s ← {0, 1}n, xi ← X (all sampled independently), and the
probability is taken over all random coins in the experiment.

Cryptographic Group Actions and Applications 429

Definition 10. (Decision Linear Hidden Shift) Let � : G × X → X be a group
action, and let n = poly(λ) be a parameter. We say that LHS assumption holds
over (G,X, �) if for any m = poly(λ) we have

{(xi,gi, (〈gi, s〉) � xi)}i∈[m]
c≈ {(xi,gi, ui)}i∈[m],

where gi ← Gn, s ← {0, 1}n, xi ← X and ui ← X (all sampled independently).

We naturally extend the notation 〈g, s〉 to matrices, i.e., for a matrix M ∈
Gn×� and a binary vector s ∈ {0, 1}n, we use stM to denote a vector whose ith
component is 〈mi, s〉 where mi is the ith column of M.

Search to Decision Reduction. Using the notation described above the
search LHS problem can be stated as the problem of recovering s given a tuple of
the form (x,M,Ms�x) where x ← Xn and M ← Gm×n. Similarly, the decision
LHS problem states that

(x,M,Ms � x)
c≈ (x,M,u),

where u ← Xn and m � n. Now we show a simple search to decision reduc-
tion for LHS problem, which is similar to the reductions in [IN96,MM11] for
(generalized) knapsack functions.

Lemma 3. (Search to Decision) Let A be a distinguisher that distinguishes
between LHS samples of the form (x,M,Ms � x) and all-random tuple with
probability 1 − negl(λ). There exists a PPT attacker A′ that recovers s from an
instance of search LHS problem with probability 1 − negl(λ).

Proof. Given an instance of a search problem (x,M,y) where y = Ms � x for
some (unknown) vector s, the attacker A′ does the following for each i ∈ [n]: it
samples a column vector r ← Gm, and let Ri be a matrix whose ith column is
r while all other columns are identical to the corresponding columns of M (so
Ri and M only differ in the ith column). A′ runs A on the tuple (x,Ri,y). If
A outputs “LHS samples,” A′ sets si to be zero. Otherwise, A′ sets si to be 1.

Observe that if si were zero, then (x,Ri,y) is distributed as LHS samples
because Ris = Ms. On the other hand, if si = 1 then (x,Ri,y) is a random tuple
because the action is regular and hence the distribution of Ris � x is uniform
and independent of y.

Remark 6. We note that the reduction above also works if the group action is
restricted (where we can only evaluate the action of a set of small cardinality),
provided that it is possible to sample a group element from a distribution that
is statistically close to uniform.

430 N. Alamati et al.

4.1 Symmetric KDM-CPA Security from LHS

We describe a symmetric encryption scheme that satisfies KDM-CPA security
(for projection functions) based on the LHS assumption. Our construction fol-
lows the blueprint of [BHHO08]. Let � : G × X → X be a group action such
that LHS holds. We assume that all parties have access to a public fixed non-
identity group element h ∈ G. Our construction of symmetric-key bit encryption
Π = (Gen,Enc,Dec) scheme is as follows:

• Gen(1λ): To generate a secret key, sample a binary vector s ← {0, 1}n.
• Enc(s, b ∈ {0, 1}): Sample g ← Gn, x ← X, and output

ct =
(
x,g, (b · h + 〈g, s〉) � x

)
.

• Dec(s, ct = (x,g, y)): Output 0 if y = 〈g, s〉 � x, otherwise output 1.

Lemma 4. The scheme Π above is CPA secure.

Proof. We sketch a simple proof. Notice that a tuple of m = poly(λ) cipher-
texts encrypting m (arbitrary) bits {bi}i∈[m] in the scheme above has the form
{xi,gi, (bi · h) � yi}i∈[m] where {xi,gi, yi}i∈[m] are LHS samples. Therefore, by
the LHS assumption we have

{xi,gi, (bi · h) � yi}i∈[m]
c≈ {xi,gi, (bi · h) � ui}i∈[m],

where each ui is a random set element. It follows that encryptions of {bi}i∈[m]

are indistinguishable from a (truly) random tuple, as required.

Lemma 5. The scheme Π is KDM secure with respect to projection functions.

Proof. Observe that encryptions of all bits of the secret key have the form
(x,M, (Ms + h · s) � x), where x ← Xn, M ← Gn×n and the action is applied
componentwise. By a simple rearrangement we have

(
x,M, (Ms + h · s) � x

)
=

(
x,M, (M + h · I)s � x

)
.

Similarly, it is straightforward to see that encryptions of {1 − si}i∈[n] have the
form

(x′,M′, (M′s + h · (1 − s)) � x′),

where 1 is the all-one vector. By a simple rearrangement we have
(
x′,M′, (M′s + h · (1 − s)) � x′) =

(
x′,M′, [(M′ − h · I)s + h · 1] � x′).

Clearly, if M (resp., M′) is a uniform matrix, then M1 := M + h · I (resp.,
M2 := M′ − h · I) is also a uniform matrix. Given 2n samples of LHS challenges
of the form {(xj ,Mj ,yj)}j∈[2] where either {yj = Mjs � xj}j∈[2] or {yj}j∈[2]

are truly random vectors of set elements, the reduction simulates encryptions

Cryptographic Group Actions and Applications 431

of projection functions of the secret key by computing (x1,M1 − h · I,y1) and
(x2,M2 + h · I, (h · 1) � y2). By the LHS assumption it follows that

(
x,M, (M + h · I)s � x

) c≈ (x,M,u),

(x′,M′, (M′s + h · (1 − s)) � x′)
c≈ (x′,M′,u′),

where u ← Xn and u′ ← Xn are uniform vectors of set elements. Therefore,
encryptions of all projection functions of secret key are indistinguishable from
tuples of truly random elements. On the other hand, by Lemma 4 we know that
encryptions of zero are indistinguishable from truly random tuples. It follows
that

({Enc(s, si)}i∈[n], {Enc(s, 1 − si)}i∈[n]

) c≈ {Enc(s, 0)}i∈[2n],

as required. Indistinguishability of multiple encryptions of a projection function
of the secret key from random tuples follows from a standard hybrid argument,
and the proof is complete.

Instantiation from Restricted EGA. Notice that the reduction above does
not work in case of a restricted EGA because the relation lattice (i.e., the group
structure) is not known. However, it is possible to show that an alternative
version of the scheme described above is KDM-CPA secure in case of a restricted
EGA (for which the LHS assumption holds). Therefore, it is possible to realize
symmetric KDM-CPA encryption from a restricted EGA provided that we can
sample group elements from a distribution over the group G that is statistically
close to uniform while retaining the ability to compute the action efficiently.
Note that this is plausibly true for the restricted EGAs implied by CSIDH and
other similar isogeny-based assumptions [DG19].

• Gen(1λ): To generate a secret key, sample a binary vector s ← {0, 1}n.
• Enc(s, b ∈ {0, 1}): Sample g ← Gn, x ← X, and u ← X. If b = 0, output the

ciphertext ct = (x,g, 〈g, s〉 � x). Otherwise, output ct = (x,g, u).
• Dec(s, ct = (x,g, y)): Output 0 if y = 〈g, s〉 � x, otherwise output 1.

Lemma 6. If (G,X, �) is a restricted EGA that satisfies the LHS assumption,
the construction above is KDM-CPA secure.

Proof. Observe that an encryption of 0 corresponds to an LHS sample while
an encryption of 1 corresponds to a random tuple, so it is easy to see that the
construction above is CPA secure based on the LHS assumption. The argument
for KDM security is quite similar to the search to decision reduction for the LHS
assumption (Lemma 4), and hence we omit the details.

432 N. Alamati et al.

Implications. Using the general amplification of [App14], one can transform a
symmetric-key KDM-secure scheme (with respect to projection functions) to a
symmetric-key KDM-secure scheme with respect to circuits of a priori bounded
size. Therefore, one can construct a symmetric-key KDM-secure scheme (with
respect to bounded circuits) based on the LHS assumption. In a recent work,
Lombardi et al. [LQR+19] showed a construction of reusable designated-verifier
NIZK (DV-NIZK) argument for NP assuming any PKE and a symmetric-key
KDM-secure scheme. Hence, any PKE along with the LHS assumption implies
reusable DV-NIZK arguments for NP.

In the same vein, Kitagawa and Matsuda [KM19] showed a construction of
KDM-CCA PKE assuming PKE, DV-NIZK, and symmetric-key KDM security
with respect to projection functions. Therefore, any PKE along with the LHS
assumption implies KDM-CCA PKE.

Furthermore, Kitagawa et al. [KMT19] showed a construction of trapdoor
function (with adaptive one-wayness) from a randomness-recovering symmetric-
key KDM-secure scheme and a PKE scheme with pseudorandom ciphertexts. By
plugging in their result, we obtain trapdoor functions with adaptive one-wayness
based the LHS assumption and any wPR-(R)EGA.

Remark 7. We note that although our definition of the LHS assumption uses a
fresh xi per each sample, almost all of the results in this section would still be
valid if we use a fixed (but randomly chosen) x ∈ X across all LHS samples.

4.2 On the Security of LHS Assumption

In what follows we provide some insights on the security of the LHS assumption.
We consider an additive variant of the LHS assumption, which we call it LHS(+),
where G = Z

∗
N and the product term Ms is computed by a subset sum over the

columns of M. We show that in this setting the LHS assumption is equivalent
to the weak pseudorandomness for (effective) group actions provided that M is
a structured matrix. We describe an attack that breaks the search/decision LHS
assumption in certain settings, and explain how such attacks can be avoided.

LHS(+) Assumption. Let (G,X, �) be an EGA such that G = Z
∗
N and

ϕ(N)/N ≥ 1 − negl(λ). Consider the following additive variant of the LHS
assumption

(x,M,Ms � x)
c≈ (x,Ms,u),

where Ms is computed over (ZN ,+), i.e., subset sum over the columns of M
modulo N . We show that if M is a structured “rank” 1 matrix (instead of
a uniformly chosen matrix), the additive LHS assumption is equivalent to the
weak pseudorandomness of the (G,X, �).

Let M = a ⊗ b where a ← Z
m
N and b ← Z

n
N are two randomly chosen

vectors of group elements and ⊗ denotes the “tensor product” with respect to
Z

∗
N . To put it differently, the ijth entry of M is equal to ai · bj where · denotes

the multiplication modulo N . First, observe that Ms = a ⊗ b∗ where b∗ = bts.

Cryptographic Group Actions and Applications 433

In addition, if n is an integer such that n > log(N) + ω(log(λ)), then by the
leftover hash lemma b∗ is distributed uniformly and independent of others. Fur-
thermore, given any M with the aforementioned structure, one can compute two
vectors a and b such that M = a⊗b. Consider the rows of LHS(+) assumption,
which have the following form:

(x1, a1 ⊗ b, (a1 · b∗) � x1),
(x2, a2 ⊗ b, (a2 · b∗) � x2),

...
(xm, am ⊗ b, (am · b∗) � xm).

For each i ∈ [m], compute yi = ai � xi. So, given an instance of the LHS(+)
problem one can compute the following:

(y1, b∗ � y1), (y2, b∗ � y2), . . . , (ym, b∗ � ym).

Therefore, LHS(+) assumption is equivalent to the weak pseudorandomness for
EGA in the aforementioned setting (the proof for the other direction is similar).

Attacks on LHS. To analyze the quantum security of LHS assumption, it is
reasonable to assume that discrete logarithms are easy in the group G. Then,
the LHS problem becomes essentially a linear algebra one. For example, if G is
cyclic of order q, we can rewrite all elements of G as their discrete log to a fixed
basis, the subset product 〈g, s〉 becomes the standard inner product over (Zq)n,
and LHS becomes similar to LWE [Reg05], with the main difference that the
algebraic structure is hidden by the group action, rather than by noise.

It is then evident that both decision and search LHS can be solved by breaking
the one-wayness of the group action, recovering a list of tuples (ai, 〈ai, s〉), and
then using linear algebra over Zq. The same blueprint also applies to non-cyclic
groups. To the best of our knowledge, this is the most efficient generic attack on
the LHS assumption.

However, some instantiations may offer easier paths to attack LHS: isogenies
are an interesting example. The recent work of Castryck, Sotáková and Ver-
cauteren [CSV20] shows that some instantiations of group actions from isogenies
are not pseudorandom EGAs. While it is not evident how breaking pseudoran-
domness could help solve LHS, their technique is actually more powerful. Indeed,
it provides an efficient algorithm to compute some quadratic characters of the
group G, directly on its isomorphic representation on X. More precisely, for a
fixed quadratic character χ of the class group Cl (O), on input a pair (x, y) ∈ X2

such that y = g � x, their algorithm outputs χ(g) = ±1.
We can use this algorithm to solve LHS as follows. Define f : G → {0, 1} as

f = (1 − χ)/2. For any tuple (xi,gi = (g(1)i , . . . , g
(n)
i), 〈gi, s〉 � xi) we compute

the following
(
f(g(1)i), . . . , f(g(n)i), f(〈gi, s〉)

)
.

434 N. Alamati et al.

After we collect enough tuples, we obtain a linear system over Z2, which we solve
to recover s. This is analogous to the attack on the discrete logarithm equivalent
of LHS using Legendre symbols, and applies to any other group action where
the group G has low order characters which can be “read” on X.

Castryck et al.’s attack does not apply against CSIDH, because the class
group associated to it has no quadratic characters. Even for instantiations where
class groups do have quadratic characters, e.g., isogeny schemes based on ordi-
nary elliptic curves, it is easy to block the attack by restricting G to the subgroup
of squares inside Cl (O).

References

[AAB+19] Arute, F., et al.: Quantum supremacy using a programmable supercon-
ducting processor. Nature 574(7779), 505–510 (2019)

[Aar13] Aaronson, S.: Quantum Computing Since Democritus. Cambridge Uni-
versity Press, Cambridge (2013)

[AASA+19] Alagic, G., et al.: Status report on the first round of the NIST post-
quantum cryptography standardization process. US Department of Com-
merce, National Institute of Standards and Technology (2019)

[AKC+17] Azarderakhsh, R., et al.: Supersingular Isogeny Key Encapsulation,
Vladimir Soukharev (2017)

[AMP19] Alamati, N., Montgomery, H., Patranabis, S.: Symmetric primitives with
structured secrets. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part I. LNCS, vol. 11692, pp. 650–679. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 23

[AMPR19] Alamati, N., Montgomery, H., Patranabis, S., Roy, A.: Minicrypt primi-
tives with algebraic structure and applications. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 55–82. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 3

[App14] Applebaum, B.: Key-dependent message security: generic amplification
and completeness. J. Cryptol. 27(3), 429–451 (2014)

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 13

[BGI+17] Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-
message witness indistinguishability and secure computation in the plain
model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part III. LNCS, vol. 10626, pp. 275–303. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70700-6 10

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure
encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85174-5 7

[BIJ18] Biasse, J.-F., Iezzi, A., Jacobson Jr., M.J.: A note on the security of
CSIDH. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS,
vol. 11356, pp. 153–168. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-05378-9 9

https://doi.org/10.1007/978-3-030-26948-7_23
https://doi.org/10.1007/978-3-030-26948-7_23
https://doi.org/10.1007/978-3-030-17656-3_3
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-030-05378-9_9
https://doi.org/10.1007/978-3-030-05378-9_9

Cryptographic Group Actions and Applications 435

[BKV19] Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny
based signatures through class group computations. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227–
247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-
5 9

[BLMR13] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomor-
phic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40041-4 23

[BOB18] Barreto, P., Oliveira, G., Benits, W.: Supersingular isogeny oblivious
transfer. Cryptology ePrint Archive, Report 2018/459 (2018). https://
eprint.iacr.org/2018/459

[Bon98] Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.)
ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0054851

[BPV12] Blazy, O., Pointcheval, D., Vergnaud, D.: Round-optimal privacy-
preserving protocols with smooth projective hash functions. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 94–111. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28914-9 6

[BS20] Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol.
12106, pp. 493–522. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-45724-2 17

[BY91] Brassard, G., Yung, M.: One-way group actions. In: Menezes, A.J., Van-
stone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 94–107. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 7

[CJL+16] Chen, L., et al.: Report on post-quantum cryptography, vol. 12. US
Department of Commerce, National Institute of Standards and Technol-
ogy (2016)

[CJS14] Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies
in quantum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

[CLG09] Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions
from expander graphs. J. Cryptol. 22(1), 93–113 (2009)

[CLM+18] Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH:
an efficient post-quantum commutative group action. In: Peyrin, T., Gal-
braith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–
427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-
3 15

[CM01] Cheung, K.K.H., Mosca, M.: Decomposing finite abelian groups. Quantum
Inf. Comput. 1(3), 26–32 (2001)

[Cou06] Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive,
Report 2006/291 (2006). http://eprint.iacr.org/2006/291

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 4

[CSV20] Castryck, W., Sotáková, J., Vercauteren, F.: Breaking the decisional
Diffie-Hellman problem for class group actions using genus theory. In:
Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol.
12171, pp. 92–120. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-56880-1 4

https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-642-40041-4_23
https://eprint.iacr.org/2018/459
https://eprint.iacr.org/2018/459
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/978-3-642-28914-9_6
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
http://eprint.iacr.org/2006/291
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4

436 N. Alamati et al.

[De 17] De Feo, L.: Mathematics of isogeny based cryptography (2017)
[DG17] Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman

assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 18

[DG19] De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from
class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part III. LNCS, vol. 11478, pp. 759–789. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17659-4 26

[DJP14] De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–
247 (2014)

[DKS18] De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from
ordinary isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018, Part III. LNCS, vol. 11274, pp. 365–394. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3 14

[DM20] De Feo, L., Meyer, M.: Threshold schemes from isogeny assumptions. In:
Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part
II. LNCS, vol. 12111, pp. 187–212. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45388-6 7

[DMPS19] De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions
from supersingular isogenies and pairings. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 248–277. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 10

[dOPS18] de Saint Guilhem, C.D., Orsini, E., Petit, C., Smart, N.P.: Secure oblivi-
ous transfer from semi-commutative masking. Cryptology ePrint Archive,
Report 2018/648 (2018). https://eprint.iacr.org/2018/648

[ELPS18] Eaton, E., Lequesne, M., Parent, A., Sendrier, N.: QC-MDPC: a timing
attack and a CCA2 KEM. In: Lange, T., Steinwandt, R. (eds.) PQCrypto
2018. LNCS, vol. 10786, pp. 47–76. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-79063-3 3

[Gal99] Galbraith, S.D.: Constructing isogenies between elliptic curves over finite
fields. LMS J. Comput. Math. 2, 118–138 (1999)

[GHS02] Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS Weil descent
attack. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
29–44. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 3

[GJJM20] Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new obliv-
ious transfer protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020, Part III. LNCS, vol. 12107, pp. 668–699. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3 23

[GL03] Gennaro, R., Lindell, Y.: A framework for password-based authenticated
key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 524–543. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 33

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers.
Discret. Appl. Math. 156(16), 3113–3121 (2008). Applications of Algebra
to Cryptography

https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-34578-5_10
https://eprint.iacr.org/2018/648
https://doi.org/10.1007/978-3-319-79063-3_3
https://doi.org/10.1007/978-3-319-79063-3_3
https://doi.org/10.1007/3-540-46035-7_3
https://doi.org/10.1007/3-540-46035-7_3
https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/3-540-39200-9_33
https://doi.org/10.1007/3-540-39200-9_33

Cryptographic Group Actions and Applications 437

[GPS17] Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature
schemes based on supersingular isogeny problems. In: Takagi, T., Peyrin,
T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 3–33. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 1

[GPSV18] Galbraith, S., Panny, L., Smith, B., Vercauteren, F.: Quantum equivalence
of the DLP and CDHP for group actions. Cryptology ePrint Archive,
Report 2018/1199 (2018). https://eprint.iacr.org/2018/1199

[Gro96] Grover, L.K.: A fast quantum mechanical algorithm for database search.
In: 28th ACM STOC, pp. 212–219. ACM Press, May 1996

[GS10] Grigoriev, D., Shpilrain, V.: Authentication schemes from actions on
graphs, groups, or rings. Ann. Pure Appl. Logic 162(3), 194–200 (2010)

[GS13] Galbraith, S.D., Stolbunov, A.: Improved algorithm for the isogeny prob-
lem for ordinary elliptic curves. Appl. Algebra Eng. Commun. Comput.
24(2), 107–131 (2013)

[GS18] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 16

[HK12] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message obliv-
ious transfer. J. Cryptol. 25(1), 158–193 (2012)

[HL18] Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way
functions (or: one-way product functions and their applications). In: Tho-
rup, M. (ed.) 59th FOCS, pp. 850–858. IEEE Computer Society Press,
October 2018

[IKO05] Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Sufficient conditions for collision-
resistant hashing. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp.
445–456. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30576-7 24

[IN96] Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as
secure as subset sum. J. Cryptol. 9(4), 199–216 (1996)

[JD11] Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25405-5 2

[JKKR17] Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-
dependent simulation in two rounds and its applications. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 158–
189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-
0 6

[JQSY19] Ji, Z., Qiao, Y., Song, F., Yun, A.: General linear group action on tensors:
a candidate for post-quantum cryptography. In: Hofheinz, D., Rosen, A.
(eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 251–281. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36030-6 11

[KKS18] Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguisha-
bility (and more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 34–65. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 2

[KM19] Kitagawa, F., Matsuda, T.: CPA-to-CCA transformation for KDM secu-
rity. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol.
11892, pp. 118–148. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-36033-7 5

https://doi.org/10.1007/978-3-319-70694-8_1
https://eprint.iacr.org/2018/1199
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-540-30576-7_24
https://doi.org/10.1007/978-3-540-30576-7_24
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-030-36033-7_5
https://doi.org/10.1007/978-3-030-36033-7_5

438 N. Alamati et al.

[KMT19] Kitagawa, F., Matsuda, T., Tanaka, K.: CCA security and trapdoor func-
tions via key-dependent-message security. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 33–64. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 2

[KS17] Khurana, D., Sahai, A.: How to achieve non-malleability in one or two
rounds. In: Umans, C. (ed.) 58th FOCS, pp. 564–575. IEEE Computer
Society Press, October 2017

[Kup05] Kuperberg, G.: A subexponential-time quantum algorithm for the dihe-
dral hidden subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

[Kup13] Kuperberg, G.: Another subexponential-time quantum algorithm for the
dihedral hidden subgroup problem. In: Severini, S., Brandao, F. (eds.)
8th Conference on the Theory of Quantum Computation, Communica-
tion and Cryptography (TQC 2013). Leibniz International Proceedings
in Informatics (LIPIcs), Dagstuhl, Germany, vol. 22, pp. 20–34. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1

[LQR+19] Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New con-
structions of reusable designated-verifier NIZKs. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 670–700.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 22

[Lyu09] Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and
factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7 35

[MBD+18] Melchor, C.A., Blazy, O., Deneuville, J.-C., Gaborit, P., Zémor, G.: Effi-
cient encryption from random quasi-cyclic codes. IEEE Trans. Inf. Theory
64(5), 3927–3943 (2018)

[MM11] Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample com-
plexity of LWE search-to-decision reductions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22792-9 26

[MR18] Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D.,
Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9 8

[NOTT20] Nakagawa, K., Onuki, H., Takayasu, A., Takagi, T.: l1-norm ball for
CSIDH: optimal strategy for choosing the secret key space. Cryptology
ePrint Archive, Report 2020/181 (2020)

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao
Kosaraju, S. (ed.) 12th SODA, pp. 448–457. ACM-SIAM, January 2001

[NPR99] Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions
and KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 327–346. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 23

[Pei20] Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 463–492.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 16

https://doi.org/10.1007/978-3-030-26954-8_2
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/978-3-030-45724-2_16

Cryptographic Group Actions and Applications 439

[Poh69] Pohl, I.: Bidirectional and heuristic search in path problems. Techni-
cal report 104, Stanford Linear Accelerator Center, Stanford, California
(1969)

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 31

[Reg04] Regev, O.: A subexponential time algorithm for the dihedral hidden
subgroup problem with polynomial space. arXiv:quant-ph/0406151, June
2004

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp.
84–93. ACM Press, May 2005

[RS06] Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based On Isoge-
nies. Cryptology ePrint Archive, Report 2006/145 (2006). http://eprint.
iacr.org/2006/145

[Sho97] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–
1509 (1997)

[Sto09] Stolbunov, A.: Reductionist security arguments for Public-Key crypto-
graphic schemes based on group action. In: Mjølsnes, S.F. (ed.) Norsk
informasjonssikkerhetskonferanse (NISK) (2009)

[Sto10] Stolbunov, A.: Constructing public-key cryptographic schemes based on
class group action on a set of isogenous elliptic curves. Adv. Math. Com-
mun. 4(2), 215 (2010)

[Sto12] Stolbunov, A.: Cryptographic schemes based on isogenies (2012)
[Sut19] Sutherland, A.: Elliptic curves. Massachusetts Institute of Technol-

ogy: MIT OpenCourseWare (2019). https://math.mit.edu/classes/18.
783/2019/lectures.html

[Tes06] Teske, E.: An elliptic curve trapdoor system. J. Cryptol. 19(1), 115–133
(2006)

[Vit19] Vitse, V.: Simple oblivious transfer protocols compatible with super-
singular isogenies. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2019. LNCS, vol. 11627, pp. 56–78. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23696-0 4

[YAJ+17] Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-
quantum digital signature scheme based on supersingular isogenies. In:
Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70972-7 9

https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
http://arxiv.org/abs/quant-ph/0406151
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145
https://math.mit.edu/classes/18.783/2019/lectures.html
https://math.mit.edu/classes/18.783/2019/lectures.html
https://doi.org/10.1007/978-3-030-23696-0_4
https://doi.org/10.1007/978-3-319-70972-7_9

B-SIDH: Supersingular Isogeny
Diffie-Hellman Using Twisted Torsion

Craig Costello(B)

Microsoft Research, Redmond, USA
craigco@microsoft.com

Abstract. This paper explores a new way of instantiating isogeny-based
cryptography in which parties can work in both the (p + 1)-torsion of
a set of supersingular curves and in the (p − 1)-torsion corresponding
to the set of their quadratic twists. Although the isomorphism between
a given supersingular curve and its quadratic twist is not defined over
Fp2 in general, restricting operations to the x-lines of both sets of twists
allows all arithmetic to be carried out over Fp2 as usual. Furthermore,
since supersingular twists always have the same Fp2 -rational j-invariant,
the SIDH protocol remains unchanged when Alice and Bob are free to
work in both sets of twists.

This framework lifts the restrictions on the shapes of the underlying
prime fields originally imposed by Jao and De Feo, and allows a range
of new options for instantiating isogeny-based public key cryptogra-
phy. These include alternatives that exploit Mersenne and Montgomery-
friendly primes, as well as the possibility of significantly reducing the
size of the primes in the Jao-De Feo construction at no known loss of
asymptotic security. For a given target security level, the resulting pub-
lic keys are smaller than the public keys of all of the key encapsulation
schemes currently under consideration in the NIST post-quantum stan-
dardisation effort.

The best known attacks against the instantiations proposed in this
paper are the classical path finding algorithm due to Delfs and Galbraith
and its quantum adapation due to Biasse, Jao and Sankar; these run in
respective time O(p1/2) and O(p1/4), and are essentially memory-free.
The upshot is that removing the big-O’s and obtaining concrete secu-
rity estimates is a matter of costing the circuits needed to implement
the corresponding isogeny. In contrast to other post-quantum proposals,
this makes the security analysis of B-SIDH rather straightforward.

Searches for friendly parameters are used to find several primes that
range from 237 to 256 bits, which all offer a conjectured security com-
parable to the 434-bit prime used to target NIST level 1 security in the
SIKE proposal. One noteworthy example is a 247-bit prime for which
Alice’s secret isogeny is 7901-smooth and Bob’s secret isogeny is 7621-
smooth.

Keywords: Post-quantum cryptography · Supersingular isogenies ·
SIDH · SIKE · Quadratic twists

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 440–463, 2020.
https://doi.org/10.1007/978-3-030-64834-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_15

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 441

1 Introduction

The best known attacks against Jao and De Feo’s SIDH protocol [23] try to
recover either Alice’s secret 2m-isogeny φA : E0 → EA, or Bob’s secret 3n-isogeny
φB : E0 → EB , and both of these problems are instances of the supersingular
isogeny problem: given a finite field K and two supersingular elliptic curves E,E′

defined over K such that #E = #E′, compute an isogeny φ : E → E′. For the
cases of interest where K = Fp2 and p is a large prime, the best known classical
algorithm for solving the supersingular isogeny problem is the Delfs-Galbraith
algorithm [14], which requires O(p1/2) isogeny operations to find a collision (of
walks from E and E′) in the graph of size O(p). However, the special isoge-
nies computed in SIDH above give rise to appreciably easier instances of the
supersingular isogeny problem; they are of a fixed, known degree close to p1/2,
and this allows for a classical meet-in-the-middle attack that, asymptotically,
requires only O(p1/4) isogeny operations [23, §5]. Roughly speaking, the differ-
ence between the difficulty of the isogeny problems that arise in SIDH and that
of the general supersingular isogeny problem is due to the fact that Alice and
Bob only take about half as many steps as the diameters of each of their graphs.
In other words, the number of possible destination nodes for the secret walks of
Alice and Bob is close to the square root of the total number of nodes in the
graph.

Jao and De Feo chose primes of the form p = 2m3n −1 and half-length walks
so that Alice and Bob can both compute their isogenies using arithmetic in Fp2 ;
they represent each isomorphism class by a supersingular elliptic curve E/Fp2

with group order #E(Fp2) = (p + 1)2 = (2m3n)2, which facilitates a full Fp2 -
rational 2m-torsion and full Fp2 -rational 3n-torsion. When all of the subgroups of
order 2m and 3n are Fp2 -rational, so are the corresponding isogeny computations.

A first observation that sets the scene for this work is that in general there
are two choices of Fp2 -rational elliptic curve groups corresponding to every node
in the supersingular isogeny graph: those whose group orders are (p + 1)2, and
those whose group orders are (p − 1)2. Although curves from these two sets are
not isomorphic (or even isogenous!) to one another over Fp2 , they do become
isomorphic over Fp4 , and therefore share the same j-invariant in Fp2 [38, Propo-
sition III.1.4]. Indeed, for any curve whose group order is (p + 1)2, its quadratic
twist over Fp2 has group order (p − 1)2.

The main point of this paper is to exploit the fact that the SIDH protocol
does not have to restrict to working in one of the two sets of quadratic twists: it
can stay in Fp2 while working in both the (p+1)-torsion and the (p− 1)-torsion.
Moreover, Alice and Bob can work in the torsion corresponding to opposite
sets of quadratic twists with no change to the protocol. Optimised Montgomery
arithmetic [30] in the SIDH setting only needs the x-coordinates of points [23]
and the A coefficient of the curve [11], and as such is entirely twist-agnostic; in
other words, the twisting morphism (which only alters y-coordinates and the B
coefficient) leaves x-coordinates and A coefficients unchanged, so the lifting to
Fp4 described above becomes a mere theoretical technicality that is not visible
in cryptographic implementations – see Sect. 3.

442 C. Costello

The price to pay for working with both twists is that at least one of Alice or
Bob must now perform walks comprised of steps in multiple �-isogeny graphs,
i.e. switching between multiple values of �. This changes the underlying hardness
assumption for one or both parties, but (as is discussed in Sect. 4) there is no
known reason to believe that switching between many �’s makes the resulting
SIDH problems any easier, so long as the number of destination nodes remain
roughly the same size as in the Jao-De Feo instantiation.

Allowing torsion from both sets of twists unlocks a number of new options
and trade-offs for isogeny-based public key cryptography; many examples are
given in Sect. 5 to illustrate these possibilities. At a high level, these options fall
into two categories: the first is where Alice gets to computes significantly faster
2m-isogenies (than in existing SIDH/SIKE implementations) at the expense of
a heavy slowdown on Bob’s side; the second, and perhaps the more interesting,
is the possibility of halving the sizes of the underlying fields at no known loss
of asymptotic security. Furthermore, this possibility gives rise to the number of
secret walks (i.e. possible destination nodes) for both Alice and Bob being very
close to the total number of nodes in the graph.

Concrete instantiations of smaller primes are put forward in Sect. 5. For
example, B-SIDHp247 uses a 247-bit prime to achieve roughly the same con-
jectured security as the 434-bit SIKE prime to target NIST’s security category
1 [22]. The public keys for B-SIDHp247 are 186 bytes, which are a little over
half the size of the 330-byte uncompressed public keys of SIKEp434, and are still
smaller than the 196-byte keys that are obtained in SIKEp434 when compression
is enabled.

1.1 Naming

The instantiation proposed in this paper is dubbed B-SIDH1 in order to distin-
guish it from the original Jao-De Feo SIDH instantiation, and to avoid muddying
the waters in the case that future cryptanalysis weakens any variants described
herein. Although switching between multiple �-isogeny graphs during a secret
isogeny computation does not decrease security in any known way, it may turn
out that using torsion with many prime factors is a bad idea, or that decreasing
p relative to the degrees of the secret isogenies is a bad idea. Of course, it may
also turn out that the one (or both) of the converse statements is true, but in
any case it should be emphasised that the instantiations proposed in this paper
rely on different security assumptions than SIDH and SIKE – see Sect. 4.

1.2 Performance vs. SIDH

There are no performance claims made in this paper, except in the scenarios
where Alice’s performance will clearly be improved (over her performance in the

1 Pronounced “B-side”, in reference to the analogy between the set of supersingular
curves of cardinality (p − 1)2 and the less popular, sometimes forgotten ‘flip-side’ of
a record.

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 443

SIDH/SIKE setting at a comparable security level) thanks to a faster underlying
prime, but where it should be reiterated that Bob will almost always suffer a
collossal slowdown. The main takeaway of this paper is that the primes and the
public keys in the optimal scenarios of Sect. 5 are significantly smaller than the
SIDH/SIKE counterparts. Moreover, these public keys will remain smaller even
when compression techniques [2,10,31,45] are applied to the SIDH and SIKE
public keys. If the ECC+SIDH/SIKE hybrid is used as in [11], these gaps will
widen further.

In order to make the performance of the proposed approach competitive with
that of SIDH/SIKE, the main research obstacles that arise are (i) finding faster
methods of computing �-isogenies for the sizes of � that arise in Sect. 5, and (ii)
finding primes p for which both p + 1 and p − 1 have large enough factors that
are as smooth as possible.

The first preprint of this paper left both (i) and (ii) as open avenues for
future work, but in the time that has passed since that version went online,
progress has been made in both directions. In regards to (i), a leap forward
was recently made by Bernstein, De Feo, Leroux and Smith [4]: for P a point
of prime order � in E(Fq), they give an algorithm for evaluating the quotient
isogeny φ with ker(φ) = 〈P 〉 at a point Q ∈ E(Fq) using only Õ(

√
�) operations

in Fq. This is a huge improvement over the conventional algorithms for isogeny
computations that all computed Vélu’s formulas [43] using Õ(�) operations in Fq.
The authors of [4] note that their algorithm implies an asymptotic speedup for
B-SIDH as the security level increases, and give several software implementations
that illustrate the (rather large) performance improvements that can be expected
for the sizes of isogenies needed in this paper. They note, however, that their
implementations are not constant-time, and that “it is too early to guess what
the final performance of constant-time B-SIDH will be on top of our �-isogeny
algorithm” [4, §A.4].

Regarding (ii), this version of the paper puts forward much better parameters
than those in the prior version(s); this is a result of improved search techniques
and more compute time – see Sect. 5.

1.3 Related Work

A few days after a preprint of this paper went online, Matsuo sent us his non-
peer-reviewed Japanese article [28] from March 2019 that had previously pro-
posed the idea of working in both quadratic twists simultaneously. However, his
execution of the idea is very different from that in this paper. In particular,
Matsuo did not lift the restriction of Alice and Bob computing their respec-
tive 2m and 3n isogenies, and his search for primes p such that 2m | p + 1 and
3n | p − 1 (or vice versa) forces huge cofactors which produces primes that are,
for the most part, either the same size or are larger than their original SIDH
counterparts. A crucial difference in this work is allowing at least one of the two
parties to compute secret isogenies whose composite degrees have many prime
factors, which gives way to a range of new possibilities.

444 C. Costello

Comments on an earlier version of this paper revealed that De Feo should
be credited as the first to mention the idea of exploiting quadratic twists in the
realm of SIDH/SIKE. In his habilitation thesis (dated December 2018), De Feo
writes [15, p. 50]: “One particular trick in CSIDH that is completely absent in
SIDH is using the quadratic twist to perform part of the computations. I have
thought of this for a while, and I see no fundamental reason why it should not
work for SIDH, if it was not for the fact that finding suitable parameters seems
computationally unfeasible. My favorite example is p = 17, so p2 − 1 = 2532; if
it were possible to find large primes with similar properties, the gain would be
spectacular”.

Section 3 not only confirms De Feo’s intuition that there is no obstruction
to the use of quadratic twists, it shows that quadratic twists can be used out-of-
the-box inside the twist-agnostic SIDH framework. The purpose of Sect. 5 is to
start paving the way towards the types of large primes De Feo envisioned, and
while it remains to be seen whether the practical gains can be spectacular, the
work he recently coauthored [4] will almost certainly play a part of any gains
that are afforded by the instantiations explored herein.

2 Twist-Agnostic SIDH

The parameter that governs the security of Jao and De Feo’s supersingular
isogeny Diffie-Hellman (SIDH) protocol is the large prime p. As soon as p is
chosen, a set of roughly �p/12� elements is defined: these are the entire set of
supersingular j-invariants over Fp, and they are the nodes on the graphs that
Alice and Bob walk on during the protocol. Alice and Bob share this set of nodes,
but their graphs have different edges that depend on the degrees of their secret
isogenies. Following [23], for any prime � � p, there are � + 1 isogenies (counting
multiplicities, and up to isomorphism) of degree � that eminate from a given
supersingular isomorphism class. Moreover, Pizer [33,34] showed that this gives
rise to a connected (�+1)-regular multigraph that satisfies the Ramanujan prop-
erty and thus has optimal expansion properties.

2.1 Rational (p + 1)-torsion

The prime p also governs the efficiency of SIDH, where Alice and Bob both
compute isogenies whose degrees are of the form �e. In theory, Alice and Bob
could choose any value of � they like (so long as their individual choices of � are
coprime), but it is more efficient if the �e-torsion is defined over Fp2 . Observing
that the smallest primes � give rise to the most efficient �e-isogenies, Jao and
De Feo construct the prime p to guarantee this rationality condition by setting
p = f · 2m3n − 1 (allowing for a small cofactor f), and representing nodes in the
graph by elliptic curves E/Fp2 with

E(Fp2) ∼= Zp+1 × Zp+1. (1)

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 445

For any r ∈ Z with r | p + 1, the entire r-torsion E[r] ∼= Zr × Zr is then
contained in E(Fp2). With p chosen as above, it follows that the full 2m-torsion
E[2m] ∼= Z2m × Z2m , and the full 3n-torsion E[3n] ∼= Z3n × Z3n , are both Fp2 -
rational. Since every (separable) isogeny φ : E → E′ of degree d is in one-to-one
correspondence with a kernel subgroup of order d [38, Proposition III.4.12], and
each such isogeny is computed using rational functions of the input curve and the
given kernel subgroup [43], it follows that if both of these inputs are Fp2 -rational,
then so is the isogeny computation.

2.2 SIDH

With p = f · 2m3n − 1 as above, the SIDH protocol specifies the following
public parameters: a starting supersingular curve E0/Fp2 , a basis {PA, QA} for
E[2m] ∼= Z2m × Z2m , and a basis {PB , QB} for E[3n] ∼= Z3n × Z3n . To generate
her public key, Alice chooses two secret integers (αA, βA) ∈ Z2m ×Z2m such that
her secret point SA = [αA]PA + [βA]QA is of order 2m. She then composes m
2-isogenies to give her secret 2m-isogeny φA : E0 → EA, where EA = E0/〈SA〉.
Along the way, she moves the basis points PB and QB through the isogeny
computation, eventually obtaining their images under φA. Her public key is then
PKA = (EA, φA(PB), φA(QB)) . On Bob’s side, he chooses (αB , βB) ∈ Z3n ×Z3n ,
computes his secret point SB = [αB]PB + [βB]QB , and then uses it to compute
his secret 3n-isogeny φB : E0 → EB (via n consecutive 3-isogenies), such that
EB = E0/〈SB〉. His public key is PKB = (EB , φB(PA), φB(QA)) .

Upon receiving PKB , Alice uses her secret integers to compute a new secret
point S′

A = [αA]φB(PA) + [βA]φB(QA) of order 2m on EB , and then uses it to
compute the 2m-isogeny φ′

A : EB → EB/〈S′
A〉. Bob uses his secret integers and

PKA to compute the point S′
B = [αB]φA(PB) + [βA]φA(QB) of order 3n on EA,

and then uses it to compute the 3n-isogeny φ′
B : EA → EA/〈S′

B〉. Both parties
then compute the same shared secret as the j-invariant of their respective image
curves EB/〈S′

A〉 and EA/〈S′
B〉, since EB/〈S′

A〉 ∼= EA/〈S′
B〉 [23].

2.3 Twist-Agnostic Isogenies

Jao and De Feo exploited the fact that all of the arithmetic in the above com-
putations can be performed on the Kummer line of the associated curves, i.e.
in E/{±1} rather than E, and furthermore that this arithmetic is particularly
efficient if the curves are in Montgomery form [30]

E(A,B) : By2 = x3 + Ax2 + x.

Henceforth, E(A,B) or E will be used instead of E(A,B)/{±1} or E/{±1} for
simplicity, and unless explicitly stated, y-coordinates will be ignored (using ‘—’).
Furthermore, the B coefficients of Montgomery curves can also be ignored in the
SIDH framework [11]; they are merely used to specify which quadratic twist we
are working on and are not needed in optimised explicit formulas. In other words,

446 C. Costello

optimised explicit formulas for Montgomery arithmetic ignore B and y and work
irrespective of quadratic twist.

Isogenies of composite degree L =
∏k

i=1 �ei
i can be computed as the compo-

sition of e1 isogenies of degree �1, followed by e2 isogenies of degree �2, and so
on. Conventional isogeny algorithms evaluate prime degree �-isogenies in Õ(�)
field operations [9,43], whereas the recent Bernstein-De Feo-Leroux-Smith [4]
algorithm computes the same result using only Õ(

√
�) field operations; both of

these algorithms are already optimised within the twist-agnostic Montgomery
framework above. Generally speaking, it follows that for a given target security
level (i.e. for a given size of L – see Sect. 4), the most efficient L-isogenies will
correspond to the smoothest values of L.

3 Using Torsion from the Quadratic Twists

Let E/Fpn be an elliptic curve, let tn be the trace of the pn-power Frobenius
endomorphism, and recall that (i) E is supersingular if and only if tn is a multiple
of p [38, Exercise V.5.10(a)], and that (ii) #E(Fpn) = pn + 1 − tn with |tn| ≤
2
√

pn [38, Theorem V.1.1]. When n = 1, there is only one possible value of t1
that is a multiple of p such that |t1| ≤ 2

√
p, i.e. t1 = 0, and thus it follows that

E/Fp is supersingular if and only if #E(Fp) = p + 1. In other words, there is
only one possible group order for supersingular elliptic curves over Fp.

The first observation that sets the scene for this work is that there are mul-
tiple possibilities for t2 that correspond to E/Fp2 being supersingular: taking
t2 ∈ {−2p,−p, 0, p, 2p} satisfies (i) and (ii). Of particular interest in the present
context are the two possibilities t2 = −2p and t2 = 2p. All known instantiations
of SIDH and SIKE fall into the former case by default. They define a starting
supersingular curve E0/Fp and lift to work in E0(Fp2); since E0(Fp) | E0(Fp2)
and #E0(Fp) = p + 1, it must be that #E0(Fp2) = p2 + 1 + 2p = (p + 1)2 and
hence that t2 = −2p.

Upon starting on a curve with t2 = −2p, a choice has seemingly been made
among the possibilities for t2; two elliptic curves are Fp2 -isogenous if and only if
they have the same group order over Fp2 [41, Theorem 1(c)], so computing Fp2 -
rational isogeny walks means walking on curves with the same number of points
as E0/Fp2 . However, any curve with t2 = −2p corresponds to the quadratic twist
of a curve with t2 = 2p, meaning that they not only become isogenous over Fp4 ,
they become isomorphic over Fp4 . Moreover, as we saw in Sect. 2.3, optimised
isogeny arithmetic works correctly independently of the quadratic twist, so the
explicit formulas that are used on the curves with t2 = −2p can also be used to
work on the curves with t2 = 2p.

It is crucial to note that even though two quadratic twists are not isomorphic
over Fp2 , they will still have the same j-invariant in Fp2 [38, Proposition 1.4(b)].
Put another way, every node in the supersingular isogeny graph can actually be
represented by two different Fp2 -isomorphism classes: those with t2 = −2p and
the same group structure as E/Fp2 in (1), or those with t2 = 2p and with group
structure

Et(Fp2) ∼= Zp−1 × Zp−1.

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 447

Every such supersingular curve with group structure Zp−1×Zp−1 is the quadratic
twist of a supersingular curve with group structure Zp+1 ×Zp+1, and vice versa.
Moreover, in the same way that any factor r of p + 1 gave rise to a full rational
r-torsion in E(Fp2), any factor s of p − 1 gives rise to a full rational s-torsion in
Et(Fp2).

For Alice and Bob to freely work with points coming from the (p+1)-torsion
and the (p − 1)-torsion, it appears that the entire protocol must be lifted to
Fp4 . While this is technically true, the lifting will ultimately not be visible in an
optimised implementation2.

The point and isogeny formulas ignore the y-coordinates of points and the B
coefficients of Montgomery curves, and this is where all the twisting arithmetic
happens. The upshot is that while the protocol will be lifted to Fp4 , where
E(Fp4) ∼= Et(Fp4) ∼= Zp2−1×Zp2−1, Alice and Bob are still in a position
to work entirely in Fp2 as usual. They can then choose a secret kernel point whose
order divides p + 1, or whose order divides p − 1, or (more generally) whose
order divides the product p2 − 1.

To make this concrete, let B be a square in Fp2 , let γ be a non-square in Fp2 ,
take Fp4 = Fp2(δ) with δ2 = γ, and write

EA,B : By2 = x3 + Ax2 + x and Et
A,γB : γBy2 = x3 + Ax2 + x

as models 3 for E/Fp2 and Et/Fp2 . The map

σ : EA,γB(Fp4) → EA,B(Fp4), (x, y) �→ (x, δy) (2)

is a group isomorphism that leaves x-coordinates unchanged.
Write f(x) = x3+Ax2+x. For any u ∈ Fp2 , either (i) f(u) is a square in F

∗
p2 ,

in which case (u,
√

f(u)/B) is a point in EA,B(Fp2), (ii) f(u) is a non-square
in F

∗
p2 , in which case f(u)/(γB) is a square, and (u,

√
f(u)/(γB)) is a point in

EA,γB(Fp2), or (iii) f(u) = 0, in which case (u, 0) is one of the three 2-torsion
points (on both EA,B and EA,uB).

Let P1 = (u1,—) be a point corresponding to case (i), let P2 = (u2,—)
be a point corresponding to case (ii), and suppose φ1 : EA,B → EA,B/〈P1〉 and
φ2 : EA,γB → EA,γB/〈P2〉. It does not make sense to evaluate φ1 at P2 or φ2

at P1 (these points do not even lie on Fp2 -isogenous curves, let alone the same
curve), but this is fixed by lifting to Fp4 and precomposing with the twisting
morphisms. Setting φ′

1 = (φ1 ◦ σ) and φ′
2 = (φ2 ◦ σ−1) gives the isogenies φ′

1 :
EA,γB → EA,B/〈σ(P2)〉 and φ′

2 : EA,B → EA,γB/〈σ−1(P1)〉, which are well-
defined over Fp4 .

The key observation from (2) is that σ : (x,—) �→ (x,—) and σ−1 : (x,—) �→
(x,—) induce the identity map when working on the corresponding Kummer
2 This is reminiscent of Bernstein’s twist-agnostic Curve25519 construction. He also

uses a quadratic extension field in the specification of the Curve25519 function [3,
Theorem 2.1], but this extension is a technicality that is not seen in the implemen-
tation.

3 The idea works analogously for more general (i.e. short Weierstrass) elliptic curves,
but all of the instantiations discussed in this paper allow for Montgomery form.

448 C. Costello

lines, so the twisting morphisms can simply be ignored in the implementation.
Thus, Alice can take her secret points from the (p + 1)-torsion of EA,B(Fp2)
and Bob can take his secret points from the (p − 1)-torsion of EA,γB , and the
implementation of the SIDH protocol can otherwise remain unchanged.

3.1 B-SIDH in a Nutshell

Henceforth, for a given prime p, M and N will be used to denote the two coprime
degrees of Alice and Bob’s secret isogenies (e.g. in the traditional setup with
p = 2m3n − 1 described above, we have M = 2m and N = 3n). Alice’s degree
M will always be defined such that M | p + 1, and Bob’s will be N such that
N | p − 1.

Since M and N must be coprime, the even one will always be chosen according
to whichever of p + 1 and p − 1 is the multiple of 4; otherwise, the remaining
factors of p+1 and p−1 are necessarily coprime. The efficacy of the construction
in this paper is closely tied to the smoothness of M and N (see Sect. 2.3), so
obtaining B-SIDH-friendly parameters boils down to searching for primes p such
that p+1 and p− 1 both contain factors that are large enough to reach a target
security level, but smooth enough to be efficiently computable.

3.2 Handling Large �-degree Isogenies

The sizes of � that are encountered in this paper are significantly larger than
those in previous works, so it is important to look for ways that such isogenies
can be sped up in practice. As mentioned in Sect. 1, Bernstein, De Feo, Ler-
oux and Smith [4] recently gave a drastic improvement for the computation of
large prime-degree isogenies: �-isogenies now require only Õ(

√
�) field operations,

rather than Õ(�) field operations. The two possibilities below were written in an
earlier version of this paper that predates [4], but nevertheless are still worth
mentioning, since it is currently unclear how a constant-time variant of [4] per-
forms in practice, i.e., exactly how large � would need to be for such a variant to
reign supreme over prior methods or over the more obvious optimisations below.
Moreover, either or both of these techniques could be used in conjunction with
the algorithm in [4] to give even faster B-SIDH isogenies in practice.

Parallelisation. Let P be a point of order � = 2d + 1. The algorithm in [9]
requires the first d multiples {[i]P}1≤i≤d of the input point, which is what makes
�-isogeny computations become rather expensive for large �. However, this pro-
cess parallelises almost perfectly: for t processors, t/2� steps of the Montgomery
ladder are used to compute [i]P for 1 ≤ i ≤ t. The i-th processor can then com-
pute [i+jt]P as the differential sum of [i+(j −1)t]P , [t]P , and [i+(j −2)t]P for
1 ≤ j ≤ d/t�. After the initial phase that assigns the three values to each proces-
sor, no communication is required between the processors until the end, where
the subproducts (which were independently accumulated in the same manner
as [9, §5]) can all be collected and multiplied together. In the case of computing

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 449

image points, then one final squaring and one final multiplication are used to
finish the routine [9, Theorem 1]; in the case of computing image curves, then
log(�) final multiplications and squarings are required [29]. Note that this par-
allelisation can be exploited across any of the prime degree isogenies that are
large enough to make it worthwhile.

Precomputation. Assume Bob is tasked with large prime degree isogenies and
he is the one generating ephemeral public keys. The runtime of his public key
generation procedure can be improved if storage permits a significant offline pre-
computation. For example, if his largest prime-degree isogeny is an �-isogeny, he
could precompute all of the �+1 possible image curve/point triples (see Sect. 2.2),
and at runtime he could simply select the triple corresponding to his secret key.

4 Security Analysis

There are two main changes to the usual computational isogeny problems under-
lying SIDH and SIKE [16, Problems 5.1–5.4] that are implicit in this paper. The
first is that the isogeny walks now use multiple values of �; the vertex set of a
given graph stays fixed, but the edges now change between successive steps. The
second is that the walks are no longer half-length (i.e. around half the bitlength
of p); lowering the size of the primes relative to the length of the walks means
that other avenues of attack become relevant with respect to the usual meet-in-
the-middle attacks4. This section studies the implications of these changes with
respect to known attacks from the literature.

4.1 Multiple Edge Sets

Based on current knowledge, there is no reason to believe that a walk consisting
of many different prime degree isogenies makes the underlying problem apprecia-
bly easier than that of a walk in a fixed �-isogeny graph, provided the number of
possible destination nodes is around the same size. When computing L-isogenies
with L =

∏
�ei
i , the number of cyclic subgroups of order L inside any given

group E(Fp2) is
∏

(�i + 1)�ei−1
i , and so long as this is around the same size as

(�+1)�e−1, the difficulty of recovering an L-isogeny appears to be no easier than
that of recovering an �e-isogeny. The generalisation of the problems underlying
4 Comments on an earlier version of this paper illustrated some confusion over whether

or not torsion point attacks [32] become relevant in this setting. Note that these
attacks only become relevant when either (i) Alice and Bob’s isogeny degrees are
extremely unbalanced, e.g. when one is greater than the square of the other, or
(ii) when a secret isogeny degree is much larger than the size of the prime p. It is
important to stress that neither (i) or (ii) is proposed in this paper, and moreover,
that it is unclear how one could possibly achieve (i) or (ii) while working in the
proposed framework. The secret isogeny degrees M and N must both be coprime and
their product must divide p2 − 1, so their being balanced (i.e. M ≈ N) immediately
rules out one of them being much larger than p.

450 C. Costello

SIDH to isogenies of multiple degrees has already been considered in prior works
(e.g. [32], [19, §2.3], and [7]), where the same conclusion was drawn (or the same
assumption was made).

4.2 Security of Non-commutative vs. Commutative Schemes

There are currently two main umbrellas of isogeny-based public-key cryptogra-
phy under public scrutiny: those like SIDH [23] and SIKE [22] where the curves
involved have non-commutative endomorphism rings, and those like CRS [13,36]
and CSIDH [6] where the associated endomorphism rings are commutative. It
is important to note that, while there are similarities between the instantiations
herein and CSIDH (like the use of many different prime isogeny degrees in the
same secret computation), this paper falls entirely under the non-commutative
umbrella. This means B-SIDH inherits two security virtues from SIDH: the first
is that it is seemingly immune to Kuperberg’s algorithm [25], meaning that the
best known quantum algorithms are exponential (see Sect. 4.4); the second is
that it lends itself to regular algorithms and therefore more simple constant-time
implementations. On the other hand, it inherits the same drawback as SIDH of
being susceptible to active attacks [18], so requires the same transformations
that were used in the SIKE proposal – see [22].

4.3 Classical Cryptanalysis

When L =
∏

�ei
i ≈ p1/2, as in the original SIDH proposal, the meet-in-the-

middle or claw-finding algorithms [16, §5.3] stand alone as the best known
attacks against SIDH and SIKE. However, the most interesting instantiations
proposed in this paper have L � p1/2, and as L tends towards p, algorithms
other than the meet-in-the-middle attacks become relevant. In what follows it
will be assumed that L ≈ p, since this is the extreme case where the alternative
attack avenues are most relevant. The underlying problem is to find the isogeny
φ : E1 → E2 of degree L, where E1/Fp2 and E2/Fp2 are supersingular.

Claw-Finding Algorithms. Let L1 ≈ L2 ≈ p1/2 with L1L2 = L. The claw-
finding algorithm cited by Jao and De Feo [23, §5.2] uses O(L1) time to compute
a table of all of the curves L1-isogenous to E1, and stores them using O(L1)
memory. It then proceeds by trying one L2-isogeny at a time, this time emanating
from E2, until a match is found in the table and the problem is solved; this stage
requires O(L2) time and essentially no memory. It follows that the claw-finding
algorithm runs in O(p1/2) time and requires O(p1/2) memory.

Adj, Cervantes-Vázquez, Chi-Domı́nguez, Menezes and Rodŕıguez-Henŕıquez
[1] argued that the van Oorschot-Wiener (vOW) parallel collision finding algo-
rithm [42] has a lower overall cost for finding φ, and thus should be used to
assess the security of SIDH and SIKE. Their implementation confirmed that the
original vOW runtime analysis [42] is sharp in the context of finding the isogeny
φ. If w is the number of entries that can be stored in the table above, m is

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 451

the number of processors running in parallel, and t is the time taken to com-
pute L1 and L2 isogenies, then the vOW algorithm finds φ in expected runtime
T = 2.5

m ·
(

p3/4

w1/2

)
· t. Adj et al. conclude that w > 280 is infeasible, so conduct

their analysis by setting w = 280. With this choice of w, it helps to point out
that for p = 2160, the runtime of vOW (on one processor) is T = 2.5 · t · p1/2;
thus, when p � 2160, the vOW runtime is T � p1/2.

Random Walk Algorithms for Any Path. There are two styles of applicable
random walk algorithms that can be used to solve the general supersingular
isogeny problem: both Pollard rho [35] and Delfs-Galbraith [14] find some path
between E1 and E2. The former finds an isogeny between E1 and E2 by taking
two pseudo-random walks in the graph of size O(p); the number of steps required
until these two walks collide is O(p1/2) by the birthday paradox. The latter
algorithm, which is preferred in practice (see [14, §4] or [5]), uses two self-avoiding
random walks to find paths from each curve to two subfield curves, Ẽ1/Fp and
Ẽ2/Fp, and then connects these two subfield curves. Since there are O(p1/2)
subfield curves in the graph of size O(p), the first step requires O(p1/2) steps,
and since connecting the two subfield curves requires O(p1/4) steps [14], the
entire algorithm takes O(p1/2) steps to find an isogeny connecting E1 and E2.
Like vOW, the Delfs-Galbraith algorithm parallelises perfectly, but unlike vOW,
it does not have large storage requirements.

Both of these algorithms are likely to terminate with a path that is not the
secret path corresponding to φ. However, since E1 is typically a special curve
with a known endomorphism ring End(E1), it is prudent to assume that this can
be used to modify the path into the correct one via the techniques discussed at
length in [18, §4].

4.4 Quantum Cryptanalysis

The best known quantum algorithm for solving SIDH and SIKE instances is,
asymptotically, Tani’s algorithm [40]. Roughly speaking, as p → ∞, Tani’s algo-
rithm solves the claw-finding problem for secret isogenies of degree O(p1/2) in
time O(p1/6) on a quantum computer. Translating to the setting of isogenies of
degree L ≈ p, this would give an O(p1/3) quantum claw-finding algorithm; note
that recent work of Jaques and Schanck [24] shows that (even under the assump-
tion of a large amount of quantum resources) the concrete complexity of Tani’s
algorithm is much closer to the classical claw-finding complexity. Nevertheless,
when L ≈ p, Tani’s algorithm is no longer the superior algorithm for solving
the corresponding isogeny problem. In [5], Biasse, Jao and Sankar give a quan-
tum algorithm for the general supersingular isogeny problem (in characteristic
p) that runs in time O(p1/4). Their algorithm is essentially the Delfs-Galbraith
algorithm (from above) ported to the quantum setting; they use Grover’s algo-
rithm [20] to get a quadratic speedup from O(p1/2) to O(p1/4) on the phase that
finds the two supersingular subfield curves Ẽ1/Fp and Ẽ2/Fp, and then develop
a subexponential algorithm (based on the Childs-Jao-Soukharev subexponential

452 C. Costello

algorithm [8] for the ordinary case) to connect the subfield path. The memory
requirements of this algorithm are small; Biasse, Jao and Sankar define a set of
N isogenies of degree 3λ, where λ ∈ O(log(p)) is chosen large enough so that
this set contains a walk that passes through a subfield curve with probability
1/2. As long as there are enough (i.e. O(log(p))) qubits to encode such a path,
then this algorithm succeeds with probability 1/4 [5, Proposition 2].

As in the classical algorithms, since End(E1) is typically known, the path
obtained by the above process can presumably be modified into the path corre-
sponding to φ at no additional asymptotic cost.

4.5 Security Summary

When φ : E1 → E2 is an isogeny between two supersingular curves E1/Fp2 and
E2/Fp2 of degree L =

∏k
i=1 �ei

i ≈ p, the best known classical algorithm for finding
φ is the Delfs-Galbraith algorithm [14]; it runs in O(p1/2) time and (unlike claw-
finding or vOW) does not have large storage requirements. Applying Grover’s
speedup to the Delfs-Galbraith algorithm also gives the best known quantum
algorithm [5]; it requires O(log(p)) qubits, run in time O(p1/4), and does not
have large storage requirements. In the classical case, Delfs-Galbraith parallelises
perfectly, where as Grover’s algorithm is well-known to give a

√
m speedup when

parallelised across m quantum processors [44].

5 Searching for Friendly Instances

This section presents a variety of example primes for which the approach in this
paper becomes interesting in practice. Recall from Sect. 2.3 and Sect. 3.1 that
the most interesting primes are those where M | p + 1 and N | p − 1 are both
large enough to reach a requisite security level and are as smooth as possible.

At a high level, the methods of searching for these primes fall into three
categories:

– Fast, pre-existing primes. These are primes that are already popular in the
classical ECC literature, e.g. Mersenne and Ridinghood primes: here a large
power of 2 typically divides p+1, which is an upshot of p being cherry-picked
to support fast finite field arithmetic. In the present context, it also means
that Alice can compute 2m-isogenies as usual, meaning that she obtains a
speedup over typical SIDH/SIKE isogenies due solely to the faster underlying
arithmetic. On the other hand, the scarcity of these primes means that p − 1
is unlikely to be smooth, so Bob’s isogenies tend to be a lot worse than the
3n-isogenies he computes in SIDH/SIKE. Examples of these primes are given
in Sect. 5.1.

– Extended Euclidean algorithm. The first method of searching for new
primes involves taking a and b coprime, e.g. a = 2u and b = 3v, using the
extended Euclidean algorithm to find integers s and t such that st < 0 and
as+bt = 1, and then sieving over integer values of k until the (unique) integer

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 453

lying between |2a(s − kb)| and |2b(s + ka)| is prime. Alice and Bob can then
take M = a · |s − kb| and N = b · |s + ka| and have a large part (i.e., around
half in the balanced case) of their isogeny product being a small prime power.
Examples found with this technique are in Sect. 5.2.

– Primes of the form p = 2xn − 1. The second method of searching for
friendly instances involves fixing n as a very small integer (e.g. n = 6), and
searching over x ∈ Z until p = 2xn −1 is prime. Restricting x to be B-smooth
guarantees that p + 1 is B-smooth, and the factorisation of p − 1 = 2(xn − 1)
for certain values of n increases the likelihood that p − 1 is also smooth. This
method is arguably the most successful in terms of giving both Alice and Bob
fast isogenies, and it is detailed in Sect. 5.3.

The most interesting examples from Sect. 5.2 and Sect. 5.3 are collected and
compared in Sect. 5.4.

5.1 Fast Primes: Accelerating Alice, Burdening Bob

Many fast primes are of the form

p = 2m · c − 1, (3)

which allow Alice to compute 2m-isogenies just like she would in SIDH. However,
unlike the primes in SIDH where c = 3n ≈ 2m, the values of c that are of inter-
est here are when c is either chosen to facilitate faster field arithmetic in Fp2 , is
much smaller than 2m so that p is smaller than usual, or both. Here Alice’s com-
putations will benefit from the faster field arithmetic, but Bob’s computations
become significantly slower due to his isogenies no longer being 3n-isogenies, but
rather (

∏
�ei
i)-isogenies. Depending on the efficacy of the methods in Sect. 3.2,

in almost all such cases the factor slowdown incurred on Bob’s side will be much
worse than the factor speedup enjoyed by Alice, meaning that the runtime of
one protocol instance will be significantly slower in general. However, there are
real-world scenarios where such a trade-off would be welcomed. One such sce-
nario is in TLS, where servers are oftentimes performing orders of magnitude
more runs of the protocol than an individual client is; here slowdowns on the
client side could be tolerated (or even unnoticed) to afford a speedup to the
server. An example of the opposite scenario, i.e. when the priority becomes the
client’s performance, is in the arena of lightweight cryptography (e.g. IoT); here
it is often the case that resource-constrained devices are communicating with a
relatively unconstrained sever.

Mersenne Primes. Putting c = 1 into (3) yields Mersenne primes, for which
only m ∈ {127, 521} are of interest in this paper. With m = 521, write the
factorisation p−1 = 2521 −2 = 2 ·3 ·52 ·11 · . . . q1 ·q2 ·q3 · . . . , where q1 = 7623851
(23 bits), q2 = 34110701 (26 bits) and q3 = 2400573761 (32 bits). Alice can use
2e-isogenies for any e ≤ m, and can subsequently scale her security up and down
over the same field (e.g. to match the security of any of the SIKE instances). On

454 C. Costello

Bob’s side, he can compute L-isogenies for any L | p−1, e.g. with L =
∏

�i≤qn
�ei
i ,

he can take n = 1 to match SIKEp434, n = 2 to match SIKEp503, and n = 3 to
match SIKEp610. Taking m = 127 is too small to offer any reasonable security
in the elliptic curve setting, however combining the security analyses in [17, §4.1]
and [12] reveals that B-SIDH construction in the genus-2 setting could achieve
good post-quantum security over this smaller Mersenne prime. The factorisation
p−1 = 2127−2 = 2 ·33 ·72 ·19 ·43 ·73 ·127 ·337 ·5419 ·92737 ·649657 ·77158673929
shows that the product of all odd primes up to 649657 (20 bits) could build a
genus-2 isogeny that is large enough to obtain 128 bits of classical security and
64 bits of quantum security.

The Ridinghoods. Putting c = 2m − 1 into (3) yields Ridinghood primes,
which offer fast Karatsuba-style arithmetic in Fp; the most famous of these
has c = 2224 and underlies Hamburg’s Goldilocks curve [21]. Here Alice can
meet the security offered by SIKEp434 by computing 2224-isogenies. If Bob is to
compute L-isogenies with L | p − 1, he would need to compute a prime isogeny
whose degree is 78 bits in length. However, allowing Bob to work on both sides
(by including factors of c) shows that he can meet the same requisite security
when L’s largest prime factor is only 24 bits. Of the other Ridinghoods with
m ∈ {161, 208, 224, 225, 240, 354}, the most striking example is with m = 225;
here the largest prime-degree isogeny needed for Bob to match the security of
SIKEp434 is � = 216 + 1. Note that both of these examples are subject to the
caveat in discussed in the paragraph below.

Bob on Both Sides. In the Ridinghood scenarios above, Bob is better off com-
puting isogenies of order N = N1N2, where N � p − 1 but where N1 | p + 1
and N2 | p − 1. In this case, general points in EA,B [N] no longer have their
x-coordinate in Fp2 , but rather in Fp4 , and performing arithmetic in Fp4 would
hamper the efficiency of the isogeny algorithms significantly. One way to app-
roach this scenario is to instead have Bob use two bases 〈P1, Q1〉 = EA,B [N1] and
〈P2, Q2〉 = EA,γB [N2], which can both be defined such that all four x-coordinates
are in Fp2 . His secret keys are then of the form (s1, s2) ∈ [0, N1) × [0, N2),
which generate the secret kernels S1 = P1 + [s1]Q1 and S2 = P2 + [s2]Q2. Bob
can compute φ1 : E0 → E0/〈S1〉 and then φ2 : E0/〈S1〉 → (E0/〈S1〉)/〈φ1(S2)〉,
which corresponds to the secret isogeny φB = (φ2 ◦ φ1); his public key is then
(EB , P ′

A, Q′
A) = (φB(E0), φB(PA), φB(QA)), which is the same size as usual. On

the other side, Alice’s public keys must include the images of all four of Bob’s
basis points under her secret isogeny, so they become between 1.6x and 1.7x
larger (if a static-ephemeral version of Diffie-Hellman à la SIKE [22] is used,
then the setup would likely be arranged to make the static key the larger key).
Computing these extra image points also incurs some additional overhead, but
this would still be faster than working with two basis points that are defined
over Fp4 .

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 455

5.2 Searching with the Extended Euclidean Algorithm

This subsection describes the first of two methods used to search for primes that
offer interesting B-SIDH instantiations. Both methods can be used to find primes
that target any security level, but for concreteness (and based on the security
analysis in Sect. 4) the remainder of this paper will focus on finding primes with
p > 2230 in order to make the classical complexity of Delfs-Galbraith [14] and
the quantum complexity of Biasse-Jao-Sankar [5] large enough to reach NIST’s
security category 1. Moreover, the respective degrees M and N of Alice and Bob’s
secret isogenies must both be larger than 2210 in order to ensure that the classical
and quantum claw-finding complexities roughly match those of SIKEp434 [22].

Let B > 2 be a given smoothness bound. The idea in this subsection is to
search over coprime a and b so that the extended Euclidean algorithm outputs
s ∈ Z and t ∈ Z such that

a · s + b · t = 1, (4)

with |s| < |b/2| and |t| < |a/2| [37, Theorem 4.3]. It follows that |a · s| and
|b · t| differ by 1 and hence are necessarily coprime. Thus, if the unique integer
lying between 2|a · s| and 2|b · t| is a prime p, and if the inputs a and b are both
B-smooth, it follows that p2 − 1 is B-smooth if and only if s · t is B-smooth.

For a fixed (a, b), there are actually an infinite number of pairs satisfying (4),
obtained by writing (sk, tk) = (s + kb, t − ka) for any k ∈ Z. It follows that the
bounds on the general solutions are

|sk| < |k + 1/2| · |b| and |tk| < |k − 1/2| · |a|.
For a given input pair (a, b), this gives a precise number of k values that can be
tried to produce a prime p below a certain bound w, namely

|k| ≤ �w/(a · b)�. (5)

The following examples illustrate how B-SIDH instances that offer interesting
trade-offs can be found in this way.

Example 1. Rather than using the 434-bit prime p = 22163137−1 as in SIKEp434,
suppose the size of the desired prime is instead bounded above by w = 2384. On
input of a = 2186 and b = 3115 (note that 2182 < b < 2183), the extended
Euclidean algorithm produces (s0, t0) with 2179 < |t0| < |s0| < 2180. (5) reveals
that |k| ≤ 54324. Of the 2 · 54324 + 1 possible values of k, 1149 of them gave
rise to a prime (as the unique integer) lying between 2|a · sk| and 2|b · tk|, and
k = −4189 gave rise to the 382-bit prime

p :=0x277AF122D68C175343851A90621232112FB72C2AAB291357

9001.

with

M = 3115 · 7 · 13 · 312 · 157 · 241 and

N = 2188 · 11 · 17 · 29 · 73 · 193,

456 C. Costello

which are such that 2213 < M < 2214 < N < 2215. With these sizes, the security
of the resulting instantiation is comparable to SIKEp434, but with a prime that
fits into six 64-bit words, rather than seven. Alice and Bob pay the price of
having to do a handful of slightly larger isogenies, but on the other hand all of
their arithmetic now takes place over a smaller field.

Example 2. Restricting a and b to be powers of primes restricts the number of
inputs to the process. The following example was found by instead letting a and
b vary over 25-smooth numbers. The coprime numbers a = 24 · 3 · 716 · 179 · 318

and b = 1118 · 19 · 2313 yield the 253-bit prime

p =0x1935BECE108DC6C0AAD0712181BB1A414E6A8AAA6B510FC29826190FE7EDA80F

with

M = 24 · 3 · 716 · 179 · 318 · 311 · 571 · 1321 · 5119 · 6011 · 14207 · 28477 · 76667 and

N = 1118 · 19 · 2313 · 47 · 79 · 83 · 89 · 151 · 3347 · 17449 · 33461 · 51193,

which are such that M > 2224 and N > 2213.

Example 3. Increasing the smoothness bound on a and b to 27 found the 255-bit
prime

p =0x76042798BBFB78AEBD02490BD2635DEC131ABFFFFFFFFFFFFFFFFFFFFFFFFFFF

with

M = 2110 · 5 · 72 · 67 · 223 · 4229 · 9787 · 13399 · 21521 · 32257 · 47353 and

N = 334 · 11 · 17 · 192 · 29 · 37 · 532 · 97 · 107 · 109 · 131 · 137 · 197 · 199
· 227 · 251 · 5519 · 9091 · 33997 · 38201,

which are such that M > 2215 and N > 2212.

Example 4. Unbalancing the inputs a and b to the extended Euclidean algo-
rithm can produce the sorts of unbalanced B-SIDH instantiations that are geared
towards the scenarios mentioned at the beginning of Sect. 5.1. On input of
a = 2216 and b = 32 ·5 ·7 ·112 ·17 ·29, the process finds the 255-bit Montgomery-
friendly prime

p :=0x6E052A4E15FF

Here Alice can take M = 2217 and Bob can take

N = 32 · 5 · 7 · 112 · 17 · 29 · 67 · 431 · 467 · 607 · 1579 · 24169 · 68947
· 345229 · 12676847 · 38334727 · 41110859 · 51040879,

which is greater than 2216. In this case Alice can expect a large speedup over
her analogous isogeny computations in SIDH/SIKE: she can still compute her

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 457

2216 isogenies exactly as before, but now she is performing arithmetic over a 255-
bit prime (instead of the 434-bit prime). Moreover, her public keys are already
smaller than the comparable compressed public keys in SIKEp434, i.e., she need
not incur the additional compression overhead, which is significant in SIKE [22].
If the above prime was used in the SIKE scenario with the long-term static
secret being an N -isogeny, the estimated speedup on the encapsulator side lies
somewhere between a factor 2.5 and a factor 3.5.

5.3 Primes of the Form p = 2xn − 1

This subsection focusses on the second method to find primes that are particu-
larly suited to the B-SIDH construction. In terms of a balanced smoothness for
both Alice and Bob, it has found the most promising examples to date.

An earlier version of this paper aimed to find primes p such that p − 1 and
p+1 are minimally smooth by way of Störmer’s theorem [39] (see also [26]). For
a given smoothness bound B, Störmer’s theorem says that are a finite number
of integers, x, such that x − 1 and x + 1 are B-smooth; moreover, it gives a way
to find this set in its entirety. If there are t primes up to B, then finding this
set of integers amounts to solving all Pell equations of the form x2 − Dy2 = 1,
where D is both squarefree and B-smooth; there are clearly 2t such D, and
therefore 2t Pell equations to be solved [26]. Unfortunately, the sizes of B for
which this task is feasible did not produce any values of x that offer meaningful
security (at least, not in the case where the primes are chosen to underly elliptic
curves). For example, with B = 47, the largest x such that x − 1 and x + 1 are
B-smooth is (the 42-bit integer) x = 2218993446251. With B = 113, the largest
such x is x = 38632316754147847668001 (76 bits), and the largest prime such
x is x = 151908300112120373249 (68 bits); this required solving 2t = 230 Pell
equations, and was the largest B exhaustively searched in this work.

Although it was infeasible to extend this method to the sizes of B required
to produce p > 2200, it did prove useful in showing factorisation patterns that
often arose for values in the larger ranges. In particular, the largest prime values
were often of the form p = 2zn − 1, with z and n both integers, and where
n > 1. Indeed, searching for primes of this form has proven to be the most
useful method to date, and the reason is best illustrated via an example. With
n = 2, we can search over B-smooth x such that p = 2x2 − 1 is prime, at
which point we are guaranteed that p + 1 is B-smooth and we are hoping that
p−1 = 2x2−2 = 2(x−1)(x+1) is also B-smooth. In other words, we are hoping
that two values in O(

√
p) are B-smooth. In contrast, a naive search (i.e. a search

with n = 1) would be hoping to find one value in O(p) that is B-smooth. Under
the heuristic assumption that x−1 and x+1 are uniformly distributed in O(

√
p),

and taking into account well-established smoothness probabilities (cf. [27]), it
becomes clear that the search with n = 2 is far superior.

This same reasoning extends to larger values of n, and it is readily seen that
(for a fixed smoothness bound B and desired size of p) the success probability
of the search becomes tied to the ratio d/n, where d is the degree of the largest
irreducible factor(s) of xn − 1 ∈ Z[x]. Larger values of n can be chosen to

458 C. Costello

minimise this ratio, however a larger n means fewer values of x to search over
(for a desired size of p = 2xn −1). Though some examples were found with n > 6
(see Sect. 5.3), the sweet spot when aiming for primes between 192 and 256 bits
proved to be n = 4 and n = 6.

Searching with n = 4. Write p(x) = 2x4 − 1, and let the smoothness bound
be B as usual. A search for primes of this form such that 2230 < p < 2256 must
look for x ∈ [257.5, 263.75). With the computing resources at hand, an exhaustive
search of this domain was out of the question. However, one can do better than
searching over smooth values of x by observing that

p(x) − 1 = 2(x − 1)(x + 1)(x2 + 1).

When inputting B-smooth values of x ≈ 264, the hope is to find x − 1, x + 1
and x2 + 1 as all being B-smooth. Again, under the heuristic assumption that
the smoothness probabilities of these values are independent of one another, this
naive search is then hoping for two 64-bit numbers (x − 1 and x + 1) and one
128-bit number (x2 + 1) to be B-smooth.

A better approach is to instead search through values of x ≈ 264 such that
x2 +1 necessarily factors into two numbers of at most 264. This can be achieved
by choosing a subset of the primes less than B, say {q1, . . . , qt}, and solving the
equation x2

i + 1 ≡ 0 mod qi for each 1 ≤ i ≤ t. These t values of xi can then be
combined using the CRT to give x such that x2 + 1 ≡ 0 mod (

∏
qi). In this case

each of the qi must be such that qi ≡ 1 mod 4, so that x2
i + 1 ≡ 0 mod qi has

a solution. The trick is to keep choosing random subsets of these primes such
that the CRT will output values of x ∈ [257.5, 263.75); this way, the search is now
hoping to stumble on three 64-bit values that are B-smooth, which is far more
likely than the naive search above.

Note that each time a subset is chosen, there are 2t combinations of solutions
(corresponding to the t choices of sign) that can be checked. Furthermore, the
qi need not be distinct; solutions to x2

i + 1 ≡ mod qz
i are computed via Hensel

lifting [37, §12.5.2]. The following example, which is perhaps the most striking
example in this paper, was found in precisely this manner.

Example 5. With the smoothness bound B = 213, the primes

(q1, . . . , q5) = (4481, 4801, 6673, 7537, 7621)

gave one of the solutions for x2 + 1 ≡ 0 mod (q1 · · · · · q5) as x =
2811207061409479600 (lifted to Z). Moreover,

x = 24 · 52 · 7 · 23 · 79 · 107 · 307 · 2129 · 7901

is also B-smooth, and yields a (247-bit) prime p = 2x4 − 1. Alice and Bob can
take

M = 217 · 58 · 74 · 234 · 794 · 1074 · 3074 · 21294 · 79012 and
N = 3 · 11 · 17 · 241 · 349 · 421 · 613 · 983 · 1327 · 1667 · 2969 · 3769

· 4481 · 4649 · 4801 · 4877 · 5527 · 6673 · 7103 · 7537 · 7621,

which are such that 2220 < M < 2221 and 2210 < N < 2211.

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 459

Searching with n = 6. In the case of p = 2x6−1, it was possible to exhaustively
search through the full set of x ranging up to 2255/6 < 243 (though analogous
methods to those described above could be applied if n = 6 was used to target
higher security levels). Interestingly, this did not produce any factorisations of
p − 1 that were as smooth as Example 5, so none of the below examples below
are as good for Bob as that one. However, some very smooth values of x (which
favour Alice) did find examples where B ≈ 216 was enough to give Bob the
requisite security. Three such examples are given below.

Example 6. The 237-bit prime p = 2 · (23 · 34 · 17 · 19 · 31 · 37 · 532)6 − 1 has

p − 1 = 2 · 7 · 13 · 43 · 73 · 103 · 269 · 439 · 881 · 883 · 1321 · 5479 · 9181
· 12541 · 15803 · 20161 · 24043 · 34843 · 48437 · 62753 · 72577 · 709153.

Example 7. The 247-bit prime p = 2 · (26 · 32 · 75 · 11 · 17 · 31 · 37)6 − 1 has

p − 1 = 2 · 13 · 192 · 29 · 43 · 79 · 83 · 107 · 643 · 661 · 733 · 1447 · 2347 · 7753
· 28879 · 29527 · 38281 · 64609 · 76651 · 86311 · 228841 · 745309897.

Example 8. The 250-bit prime p = 2 · (53 · 101 · 211 · 461 · 2287)6 − 1 has

p − 1 = 24 · 32 · 7 · 13 · 37 · 79 · 107 · 109 · 199 · 349 · 433 · 487 · 1607 · 1993 · 3067
· 5701 · 6199 · 6373 · 7883 · 8821 · 11497 · 19507 · 57037 · 78301 · 486839.

Larger n. Although setting n > 6 shrinks the search space for primes p = 2xn−1
of a certain size, interesting examples were still found in some cases. These
typically have p much larger than the degree of feasible isogenies on Bob’s side,
so fall back into the umbrella of the types of primes explored in Sect. 5.1 (here
there is typically a comfortable enough margin between p and the isogeny degrees
that claw-finding goes back to being the best classical attack). For brevity, write
� as the largest prime factor of a given N | p − 1 in each case. The 331-bit
prime p = 2 · (32 · 13)48 − 1 has N > 2213 with � < 223. The 367-bit prime p =
2·(32·127)36−1 has N > 2216 with � < 222. The 354-bit prime p = 2·(2·5·73)30−1
has N > 2201 with � < 223. The 362-bit prime p = 2 · (2 · 112 · 17)30 − 1 has
N > 2208 and the 363-bit p = 2 · (23 · 232)30 − 1 with N > 2212, both with
� < 224. The 258-bit prime p = 2 · (23 · 32 · 23)24 − 1 has N > 2229 with � < 221.
The 325-bit prime p = 2 · (2 · 3 · 5 · 13 · 29)24 − 1 has N > 2270 with � < 226

and N > 2220 with � < 221. The 250-bit prime p = 2 · (29 · 31 · 1901)12 − 1 has
N > 2211 with � < 218 and the largest factor of p − 1 is 20 bits.

5.4 Summary

For the examples from this section, Table 1 lists the bitlengths of the maximum
prime isogeny degrees required by Alice and Bob, runtime complexities of the
relevant classical and quantum attacks (written as base-2 logarithms), and the
public key sizes of both standalone B-SIDH and a B-SIDH+ECDH hybrid. Fol-
lowing Sect. 4, the runtime of the Delfs-Galbraith (DG) algorithm is taken as

460 C. Costello

Table 1. Summary of various B-SIDH-friendly primes p. Further explanation in text.

Ex. p (bits) �max
Alice (bits) �max

Bob (bits) Classical Quantum BJS PK (bytes)

DG vOW B-SIDH Hybrid

1 382 8 8 - 123 - 287* 335*

2 253 17 16 127 123 64 190 222

3 255 16 16 128 122 64 192 224

4 255 2 26 128 125 64 192 224

5 247 13 13 124 120 62 186 217

6 237 6 17 119 125 60 178 208

7 247 6 18 124 125 62 186 217

8 250 12 16 125 122 63 188 219

p1/2, the runtime of van Oorschot-Weiner (vOW) is taken as 2.5 ·L3/4/240 (with
L the degree of the respective isogeny), and the runtime of Biasse-Jao-Sankar
(BJS) is taken as p1/4; concrete runtimes in all three cases could be obtained by
multiplying these complexities with the time taken for the corresponding isogeny
computations. While the DG and BJS algorithms depend on the size of p, the
complexity of the vOW algorithm depends on the number of possible isogenies
computed by a given party (see Sect. 4.1). In the larger examples, Bob’s use of
all of the odd factors of p − 1 can be overkill, so in these instances two options
for Bob’s isogenies and the subsequent vOW runtime estimates are given. For
Example 1, the best quantum attack is not BJS (see the analysis in [22] instead),
and public keys could be compressed.

Following [11], B-SIDH public keys are three elements of Fp2 , and partnering
with an ECDH hybrid adds one additional element of Fp (the x-coordinate of
the public key corresponding to a non-supersingular Montgomery curve with a
strong ECDLP). It is worth pointing out that the asymptotic runtime of Delfs-
Galbraith against B-SIDH matches the asymptotic runtime of Pollard rho [35]
against the ECDLP, making the simplicity of the hybrid approach in [11, §8]
particularly attractive.

Acknowledgement. Special thanks to Kevin Kane for setting up a cluster of
machines that were used to search for parameters.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domı́nguez, J., Menezes, A., Rodŕıguez-
Henŕıquez, F.: On the cost of computing isogenies between supersingular ellip-
tic curves. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, vol. 11349, pp.
322–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7 15

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: AsiaPKC, pp. 1–10. Springer (2016)

https://doi.org/10.1007/978-3-030-10970-7_15

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 461

3. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

4. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. In: Fourteenth Algorithmic Number Theory Symposium,
ANTS-XIV (2020)

5. Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing isoge-
nies between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 25

6. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

7. Cervantes-Vázquez, D., Ochoa-Jiménez, E., Rodŕıguez-Henŕıquez, F.: eSIDH: the
revenge of the SIDH. Preprint (2020). https://eprint.iacr.org/2020/021

8. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

9. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 11

10. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient com-
pression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56620-7 24

11. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

12. Costello, C., Smith, B.: The supersingular isogeny problem in genus 2 and beyond.
In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 151–168.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1 9

13. Couveignes, J.M.: Hard homogeneous spaces. Preprint (2006). http://eprint.iacr.
org/2006/291

14. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Cryptogr. 78(2), 425–440 (2016). https://doi.org/10.
1007/s10623-014-0010-1

15. De Feo, L.: Exploring isogeny graphs. Habilitation thesis, December 2018. https://
defeo.lu/hdr/

16. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

17. Flynn, E.V., Ti, Y.B.: Genus two isogeny cryptography. In: Ding, J., Steinwandt,
R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 286–306. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7 16

18. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2020/021
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-030-44223-1_9
http://eprint.iacr.org/2006/291
http://eprint.iacr.org/2006/291
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://defeo.lu/hdr/
https://defeo.lu/hdr/
https://doi.org/10.1007/978-3-030-25510-7_16
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3

462 C. Costello

19. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 1

20. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC
1996, pp. 212–219. ACM (1996)

21. Hamburg, M.: Ed448-goldilocks, a new elliptic curve. IACR Cryptology ePrint
Archive 2015/625 (2015)

22. Jao, D., et al.: SIKE: supersingular isogeny key encapsulation (2017). sike.org/
23. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular

elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

24. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 2

25. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

26. Lehmer, D.H.: On a problem of Störmer. Ill. J. Math. 8(1), 57–79 (1964)
27. Lenstra, A.K.: Smoothness probability. In: van Tilborg, H.C.A. (ed.) Encyclopedia

of Cryptography and Security. Springer, Boston (2005). https://doi.org/10.1007/
0-387-23483-7 407

28. Matsuo, K.: SIDH over quadratic twists. In: Proceedings of SCIS 2019 - 2019 Sym-
posium on Cryptography and Information Security, 3B3-1, January 2019. https://
www.iwsec.org/scis/2019/

29. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 8

30. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

31. Naehrig, M., Renes, J.: Dual isogenies and their application to public-key com-
pression for isogeny-based cryptography. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11922, pp. 243–272. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34621-8 9

32. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

33. Pizer, A.K.: Ramanujan graphs and Hecke operators. Bull. Am. Math. Soc. 23(1),
127–137 (1990)

34. Pizer, A.K.: Ramanujan graphs. AMS/IP Stud. Adv. Math. 7, 159–178 (1998)
35. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-

put. 32(143), 918–924 (1978)
36. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies.

Preprint (2006). https://eprint.iacr.org/2006/145
37. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-

bridge University Press, Cambridge (2009)
38. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathe-

matics, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-
09494-6

https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-319-70694-8_1
https://sike.org/
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/0-387-23483-7_407
https://doi.org/10.1007/0-387-23483-7_407
https://www.iwsec.org/scis/2019/
https://www.iwsec.org/scis/2019/
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/978-3-030-34621-8_9
https://doi.org/10.1007/978-3-030-34621-8_9
https://doi.org/10.1007/978-3-319-70697-9_12
https://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-0-387-09494-6

B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion 463

39. Størmer, C.: Quelques théorèmes sur l’équation de Pell x2 − dy2 = ±1 et leurs
applications. Christiania Videnskabens Selskabs Skrifter, Math. Nat. Kl (2), 48
(1897)

40. Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci.
410(50), 5285–5297 (2009)

41. Tate, J.: Endomorphisms of abelian varieties over finite fields. Invent. Math. 2(2),
134–144 (1966). https://doi.org/10.1007/BF01404549

42. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

43. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB 273,
A238–A241 (1971)

44. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60(4),
2746 (1999)

45. Zanon, G., Simpĺıcio Jr., M.A., Pereira, G.C.C.F., Doliskani, J., Barreto, P.S.L.M.:
Faster key compression for isogeny-based cryptosystems. IEEE Trans. Comput.
68(5), 688–701 (2019)

https://doi.org/10.1007/BF01404549
https://doi.org/10.1007/PL00003816

Calamari and Falafl: Logarithmic
(Linkable) Ring Signatures from Isogenies

and Lattices

Ward Beullens1(B), Shuichi Katsumata2(B), and Federico Pintore3(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
ward.beullens@esat.kuleuven.be

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

shuichi.katsumata@aist.go.jp
3 Mathematical Institute, University of Oxford, Oxford, UK

federico.pintore@maths.ox.ac.uk

Abstract. We construct efficient ring signatures (RS) from isogeny and
lattice assumptions. Our ring signatures are based on a logarithmic OR
proof for group actions. We instantiate this group action by either the
CSIDH group action or an MLWE-based group action to obtain our
isogeny-based or lattice-based RS scheme, respectively. Even though the
OR proof has a binary challenge space and therefore requires a number of
repetitions which is linear in the security parameter, the sizes of our ring
signatures are small and scale better with the ring size N than previously
known post-quantum ring signatures. We also construct linkable ring
signatures (LRS) that are almost as efficient as the non-linkable variants.
The isogeny-based scheme produces signatures whose size is an order of
magnitude smaller than all previously known logarithmic post-quantum
ring signatures, but it is relatively slow (e.g. 5.5 KB signatures and 79
s signing time for rings with 8 members). In comparison, the lattice-
based construction is much faster, but has larger signatures (e.g. 30 KB
signatures and 90 ms signing time for the same ring size). For small ring
sizes our lattice-based ring signatures are slightly larger than state-of-
the-art schemes, but they are smaller for ring sizes larger than N ≈ 1024.

1 Introduction

Ring signatures (RS), introduced by Rivest, Shamir, and Tauman [27] allow a
person to sign a message on behalf of a group of people (called ring), with-
out revealing which person in the ring signed the message. A ring signature is

This work was supported by CyberSecurity Research Flanders with reference num-
ber VR20192203 and the Research Council KU Leuven grants C14/18/067 and
STG/17/019. Ward Beullens is funded by FWO SB fellowship 1S95620N. Shuichi
Katsumata was supported by JST CREST Grant Number JPMJCR19F6 and JSPS
KAKENHI Grant Number JP19H01109.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 464–492, 2020.
https://doi.org/10.1007/978-3-030-64834-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_16

Calamari and Falafl 465

required to be unforgeable, meaning that one cannot produce a signature with-
out having the secret key of at least one person in the ring, and anonymous,
meaning that it is impossible to learn which person produced the signature.
The original motivation behind ring signatures is to allow a whistleblower to
leak information without revealing their identity, while still adding credibility to
the information by proving that it was leaked by one of the people in the ring.
Linkable ring signatures (LRS) are an extension where one can publicly verify
whether two messages were signed by the same person or not. This variant has
found applications in e-voting and privacy-friendly digital currencies. In both
cases, to protect users’ privacy it is important to have at disposal a (linkable)
ring signature scheme that can efficiently support very large ring sizes.

The security of many known (linkable) ring signatures relies on the hardness
of factoring integers or computing discrete logarithms in finite cyclic groups.
Unfortunately, these problems can be solved in quantum polynomial time [28],
and hence all the schemes based on them would be no longer secure in the pres-
ence of adversaries with access to a sufficiently powerful quantum computer. To
resolve this issue it is necessary to consider hard problems that resist attacks
from quantum computers. Post-quantum ring signature schemes scaling poly-
logarithmically with the ring size have been constructed from symmetric crypto-
graphic primitives [11,19] and the hardness of lattice problems [4,15,16,22,29].

1.1 Our Contributions

In this paper, we introduce a logarithmic OR proof for group actions and we then
use it to construct concretely efficient logarithmic ring signatures and linkable
ring signatures from isogeny and lattice assumptions. Our (linkable) ring signa-
ture schemes are realized by first constructing a generic (linkable) ring signature
scheme based on a group action that satisfies certain cryptographic properties,
and then instantiating this group action by either the CSIDH group action [8] or
a MLWE-based group action. This is, to the best of our knowledge, the first con-
crete construction of (linkable) ring signatures from isogeny-assumptions with
logarithmic signature size.

An advantage of our schemes is that the signature size scales very well with
the ring size N , even compared to other post-quantum logarithmic (linkable) ring
signatures, since the only dependence on N is due to the signatures containing a
small number of paths (in the clear) in Merkle trees of depth log N . Therefore,
the term in the signature size that depends on log N is independent of the
CSIDH or lattice parameters. All previous works that relied on a hidden path in
a Merkle tree had to prove the consistency of a Merkle hash in zero-knowledge.
Therefore, the multiplicative factor of log N was much larger than ours. The
very mild dependence on log N of our schemes can be observed in Fig. 1, where
we see that for our lattice-based ring signature scheme a signature for ring size
N = 2048 is only 17% larger than a signature for ring size N = 2.

For efficiency and convenience we chose to implement our (linkable) ring
signature scheme with parameter sets from pre-existing signature schemes: for
our isogeny instantiations we consider the CSIDH-512 parameter set, used by

466 W. Beullens et al.

CSI-FiSh [6], while for our lattice instantiation we use the Dilithium II param-
eter set. This allows us to reuse large portions of code from CSIDH, CSI-FiSh,
and Dilithium implementations. The signature size and signing speed of our
implementations are shown in Fig. 1. The signature size can be estimated as
log N + 2.7 KB for the isogeny-based instantiation and as 0.5 log N + 29 KB for
the lattice-based instantiation. For ring size N = 8 our lattice-based instantia-
tion has a signing time of 90 ms, faster than our isogeny-based instantiation (79
s) by almost 3 orders of magnitude.

Table 1 lists the signature size of our ring signatures and those of some
other post-quantum ring signatures1. Not surprisingly, the signature size of our
isogeny-based (linkable) ring signature is very small compared to the other post-
quantum proposals. In particular, it is an order of magnitude smaller. However,
we should notice that it is hard to make a meaningful comparison between our
schemes and schemes which claim different security levels. For the lattice-based
instantiations, we compute the signature size for a parameter set that achieves
NIST security level II2 (see the third row in Table 1) to allow for a fair comparison
with the work of Esgin et al. [16]. We observe that for small ring sizes our lattice-
based signatures are larger than those of Esgin et al., but for ring sizes larger
than N ≈ 1024 our signatures are the smallest.

Since our isogeny scheme is compact and our lattice scheme is fast, we call our
schemes, respectively, the “Compact And Linkable Anonymous Message Authen-
tication fRom Isogenies” (Calamari) and the “Fast Authentication with Linkable
Anonymity From Lattices” (Falafl). We give the names “Faafl” and “Camari”
to the isogeny and lattice (non-linkable) ring signatures, respectively.

Fig. 1. Signing time (left) and signature size (right) of our isogeny-based and lattice-
based (linkable) ring signatures. The left and right scales in the figure of signing time
correspond to the isogeny-based and lattice-based schemes, respectively. Signing time
is measured on an Intel i5-8400H CPU core.

1 We compare only signature sizes since, to the best of our knowledge, ours is the only
post-quantum logarithmic (linkable) ring signature with an implementation.

2 We used the Dilithium III parameters, 168-bit seeds and commitment randomness,
and a challenge space of size 2168, which suffices to achieve NIST level II for low
MAXDEPTH.

Calamari and Falafl 467

Table 1. Comparison of the signature size (KB) of some concretely efficient post-
quantum ring signature schemes.

N Hardness assumption Security level

21 23 26 212 221

Calamari 3.5 5.4 8.2 14 23 CSIDH-512 ∗
Falafl 29 30 32 35 39 MSIS, MLWE NIST 1

Falafl for 2 49 50 52 55 59 MSIS, MLWE NIST 2

RAPTOR [23] ∼ 2.5 ∼ 10 81 5161 / NTRU 100 bits

EZSLL [15,16] 18 19 31 59 148 MSIS, MLWE NIST 2

KKW [19] / / 250 456 / LowMC NIST 5
∗128 bits of classical security and 60 bits of quantum security [26].

1.2 Technical Overview

Our (linkable) ring signature scheme is based on a generalisation to group actions
of the classical sigma protocol for the Graph Isomorphism Problem. Let � :
G × X → X be a group action and fix X0 ∈ X . To prove knowledge of a group
element g such that g � X0 = X, the prover uniformly samples r ∈ G, and sends
R = r � X as commitment. The verifier responds with a random challenge bit c.
If c = 0 the prover sends resp = r + g, while they send resp = r if c = 1. The
verifier checks whether resp � X0 = R when c = 0, and whether resp � X = R
when c = 1.

A key observation is that the verification algorithm is independent of X when
the challenge bit is 0. This allows us to design the following OR proof for group
actions. For some X0,X1, · · · ,XN ∈ X , the prover wants to prove knowledge
of g ∈ G such that g � X0 = XI for some I ∈ {1, · · · N}. Then they start by
simulating a commitment for each Xi with i ∈ {1, · · · , N}, so that they can
respond to the challenge c = 1, and send these commitments in a random order
to the verifier. If the verifier sends c = 1, we let the prover respond for all the
commitments (and hence I is not leaked). If the verifier sends the challenge bit
c = 0, the prover can answer the I-th challenge, but not the other challenges,
because they do not know group elements gi such that gi � X0 = Xi for i �= I.
Therefore, we let the prover respond only to the I-th challenge. This does not
reveal I, because verification is independent of XI .

More concretely, the prover sends N elements R1 = r1 � X1, · · · , RN = rN �
XN in a random order to the verifier, where the ri are chosen uniformly at
random from G. Then, after the verifier sends a challenge bit c, the prover
responds with resp = rI +g if the challenge bit c is 0, or responds with r1, · · · , rN

in case c = 1. The verifier checks whether resp�X0 ∈ {R1, · · · , RN} in case c = 0
and whether {r1 � X1, · · · , rN � XN} = {R1, · · · , RN} in case c = 1. Here, note
that the commitments are sent in a random order, so the response hides the
index I in case c = 0.

468 W. Beullens et al.

Since the prover sends N elements R1, · · · , RN as commitment and N group
elements r1, · · · , rN as response in case c = 1, it looks like the proof size is linear
in N , and that there is no improvement over the generic OR proof. However,
since the ri are chosen at random, they can be generated from a pseudorandom
number generator (PRG) instead, which reduces the communication cost to just
sending a seed as the response in case c = 1. Moreover, instead of sending all
the Ri we can commit to them using a Merkle tree and only send the root as the
commitment. To make verification possible, the prover then sends a path in the
Merkle tree to the verifier as part of the response in case c = 0. This makes the
total proof size logarithmic in N , a clear improvement over generic OR proofs.
Furthermore, since for some group actions it is more efficient to compute N
group actions r � Xi with the same element r ∈ G rather than computing N
group actions ri � Xi with distinct ri, in our protocol we set r1 = · · · = rN = r.
Given that this would break the zero-knowledge property of the Sigma protocol,
we replace each Ri by a hiding commitment Com(Ri, bitsi), and we let the prover
include bitsI in the response in case c = 0.

To enlarge the challenge space of the OR proof for group actions, we run
parallel executions of it and then we obtain a ring signature scheme by applying
the Fiat-Shamir transform to the OR proof. To avoid multi-target attacks similar
to those of Dinur and Nadler [12] we made a detailed security proof in the random
oracle model, with concrete expressions for the security loss in each step of the
proof. This led us to include a unique salt value in each signature and to carefully
separate the domain of various calls to the random oracles. We notice that in
choosing our concrete parameters, as per usual, we ignore the artificial reduction
loss incurred by the rewinding argument of Fiat-Shamir (since no attacks that
can exploit this loss are known).

We instantiate the group action � by either the CSIDH group action or the
MLWE group action defined as:

� : Rn+m
q × Rm

q : (s, e) � t �→ A � s + e + t

where Rq = Zq[X]/(Xd + 1) and A is a matrix belonging to Rm×n
q . To achieve

one-wayness it is necessary to restrict the domain to Sn+m
η × Rm

q , where Sη is
the set of elements of Rq with coefficients bounded in absolute value by η. In
this case we need to use the Fiat-Shamir with aborts technique [24] to ensure
that the signatures do not leak the secret key.

In order to obtain a linkable ring signature scheme, we expand our OR proof
to an OR proof with tag where, given two group actions � : G × X → X ,
• : G × T → T and a list of elements X0,X1, · · · ,XN ∈ X and T0, T ∈ T , the
prover proves knowledge of g ∈ G such that g�X0 = XI for some I ∈ {1, · · · , N}
and g • T0 = T . This naturally leads to a linkable signature scheme. The signer
includes the tag T = g • T0 in the signature and then proves knowledge of g.
Two signatures can be linked by checking if the tags are equal (or close with
respect to a well defined metric). We require a number of properties from � and
• to make the linkable ring signature secure (see Definition 15). For example, it
should not be possible to learn g � X0 given g • T0, because that would break

Calamari and Falafl 469

the anonymity of the linkable ring signature. We give instantiations of � and •
based on the CSIDH group action (where we put g • X := (2g) � X) or based on
the hardness of MLWE and MSIS.

Finally, we would like to point out some optimization tricks that allow to
further lower the size of the signatures. Since our base protocol (either the OR
proof or the OR proof with tag) has a binary challenge, we must execute parallel
repetitions to lower the soundness error to make it useable for (linkable) ring
signatures. A naive way to accomplish this would be to run the OR proof (with
tag) λ-times, where λ is the security parameter. However, since opening to c = 1
(which requires communicating only a single seed value) is much cheaper than
opening to c = 0, we can do much better. Specifically, we choose integers M,K
such that

(
M
K

)
≥ 2λ and do M > λ executions of the protocol of which exactly

K executions are chosen to have challenge bit 0. Setting K � λ, we get a
noticeable gain in the signature size. Moreover, since we now only need to open
to seed values in most of the parallel runs, we use a seed tree to further lower the
signature size. Informally, the seed tree generates a number of pseudorandom
values and can later disclose an arbitrary subset of them, without revealing
information on the remaining values. Further details on our optimization tricks
can be found in Sect. 3.4.

Roadmap. In Sect. 2 we provide some necessary preliminaries. In Sect. 3 we first
define an admissible group action, then we construct a base OR proof for group
actions with binary challenge space, which we then extend to a main OR proof
with exponential challenge space. Finally we apply the Fiat-Shamir transform to
obtain a ring signature scheme. Section 4 follows the same structure: we define
an admissible pair of group actions, for which we construct an OR proof with
tag, which we convert into a linkable ring signature. In Sect. 5 we instantiate
the group actions from isogeny and lattice assumptions. Finally, in Sect. 6 we
discuss our parameter choices and implementation results, and we draw some
conclusions.

2 Preliminaries

A Note on Random Oracles. Throughout the paper, we instantiate several stan-
dard cryptographic primitives such as pseudorandom number generators (PRG
in short, and denoted by Expand) and commitment schemes by hash functions
modeled as a random oracle O. We always assume the input domain of the ran-
dom oracle is appropriately separated when instantiating several cryptographic
primitives by one random oracle. With abuse of notation, we may occasion-
ally write, for example, O(Expand‖·) instead of Expand(·) to make the usage of
the random oracle explicit. Here, we identify Expand with a unique string when
inputting it to O. Moreover, we denote by AO an algorithm A that has black-box
access to O, and we may occasionally omit the superscript O when the meaning
is clear. Finally, for a precise definition of relaxed Sigma protocol in the Random
Oracle Model we refer to [5, Sec. 2.1].

470 W. Beullens et al.

2.1 Ring Signatures

In this subsection, we review the definition of ring signatures.

Definition 1 (Ring signature scheme). A ring signature scheme ΠRS con-
sists of four PPT algorithms (RS.Setup,RS.KeyGen,RS.Sign,RS.Verify) such that:

RS.Setup(1λ) → pp : On input a security parameter 1λ, it returns public param-
eters pp used by the scheme.

RS.KeyGen(pp) → (vk, sk) : On input the public parameters pp, it outputs a pair
of public and secret keys (vk, sk).

RS.Sign(sk,M,R) → σ : On input a secret key sk, a message M, and a list of
public keys, i.e., a ring, R = {vk1, . . . , vkN}, it outputs a signature σ.

RS.Verify(R,M, σ) → 1/0 : On input a ring R = {vk1, . . . , vkN}, a message M,
and a signature σ, it outputs either 1 (accept) or 0 (reject).

We require a ring signature scheme ΠRS to satisfy the following properties:
correctness, full anonymity, and unforgeability. Informally, correctness means
that verifying a correctly generated signature will always succeed. Anonymity
means it should not be possible to learn which secret key was used to produce
a signature, even for an adversary that knows the secret keys for all the pub-
lic keys in the ring. Finally, unforgeability means that it should be impossible
to forge a valid signature without knowing a secret key that corresponds to
one of the public keys in the ring. For formal security definitions we refer to
[5, Sec. 2.2].

2.2 Linkable Ring Signatures

Linkable ring signatures are a variant of ring signatures where anyone can effi-
ciently check if two messages were signed with the same secret key. Below we
review the formal definition.

Definition 2 (Linkable ring signature scheme). A linkable ring signature
scheme ΠLRS consists of the four PPT algorithms of a ring signature scheme and
one additional PPT algorithm LRS.Link such that:

LRS.Link(σ0, σ1) → 1/0 : On input two signatures σ0 and σ1, it outputs either 1
or 0, where 1 indicates that the signatures were produced with the same secret
key.

In addition to the correctness property, we require a linkable ring signa-
ture scheme ΠLRS to satisfy linkability, linkable anonymity, and non-frameability.
Informally, linkability means that, if an adversary produces more than k signa-
tures with a ring of k (potentially malformed) public keys, then the LRS.Link
algorithm will output 1 on at least one pair of signatures. Linkable-anonymity
means that an adversary cannot tell which secret key was used to produce a
signature. In contrast to the ring signature case, the adversary is not given all

Calamari and Falafl 471

the secret keys, otherwise they could use the linkability property to deanonymize
the signer. Finally, the non-frameability property says it should be impossible
for an adversary to produce a valid signature that links to a signature produced
by an honest party. For formal security definitions we refer to [5, Sec. 2.3].

Remark 3 (Unforgeability). We can also require a linkable ring signature to be
unforgeable, as defined above for a ring signature. However, it can be shown that
unforgeability is implied by linkability and non-frameability.

2.3 Isogenies and Ideal Class Group Actions

Let Fp be a prime field, with p ≥ 5, and E a supersingular elliptic curve defined
over Fp. The ring Endp(E) of all endomorphisms of E that are defined over
Fp is isomorphic to an order O of the field K = Q(

√−p) [8]. The invertible
fractional ideals of O form an abelian group whose quotient by the subgroup of
principal fractional ideals is finite, called the ideal class group of O and denoted
by C�(O). The ideal class group C�(O) acts freely and transitively on the set
E��p(O, π), which contains all supersingular elliptic curves E over Fp - modulo
isomorphisms defined over Fp - such that there exists an isomorphism between O
and Endp(E) mapping

√−p ∈ O into the Frobenius endomorphism π : (x, y) �→
(xp, yp). We denote this action by ∗. Recently, it has been used to design several
cryptographic primitives [6,8,10], whose security proofs rely on (variations of)
the Group Action Inverse Problem (GAIP), defined as follows:

Definition 4 (Group Action Inverse Problem (GAIP)). Let [E0] be a an
element in E��p(O, π), where p ≥ 5 is an odd prime. Given [E] sampled uniformly
at random from E��p(O, π), the GAIPp problem consists in finding an element
[a] ∈ C�(O) such that [a] ∗ [E0] = [E].

For the security of the isogeny-based instantiations of our (linkable) ring
signature scheme we will rely on a newly-introduced hard problem, called the
Squaring Decisional CSIDH Problem (sdCSIDH in short).

Definition 5 (Squaring Decisional CSIDH (sdCSIDH) Problem). Let [E0]
be an element in E��p(O, π), where p ≥ 5 is an odd prime. Given [a] sampled
uniformly at random from C�(O), the sdCSIDHp problem consists in distinguish-
ing the two distributions ([a] ∗ [E0], [a]2 ∗ [E0]) and ([E], [E′]), where [E], [E′] are
both sampled uniformly at random from E��p(O, π).

In analogy with the classical group-based scenario [3], we assume the above
problem is equivalent to the decisional CSIDH problem, recently used in [9,14].

2.4 Lattices

For positive integers n and q, let R and Rq denote the rings Z[X]/(Xn + 1) and
Z[X]/(q,Xn +1), respectively. Norms over R are defined through the coefficient
vectors of the polynomials, which lie over Z

n. Norms over Rq are defined in the

472 W. Beullens et al.

conventional way by uniquely representing coefficients of polynomials in Rq by
elements in the range (−q/2, q/2] when q is even and [−(q−1)/2, (q−1)/2] when
q is odd (see, for example, [13] for more details).

The hard problems that we rely on for our lattice-based schemes are the
module short integer solution (MSIS) problem and module learning with errors
(MLWE) problem, first introduced in [21].

Definition 6 (Module short integer solution Problem). Let n, q, k, �, γ
be positive integers. The advantage for the (Hermite normal form) module short
integer solution problem MSISn,q,k,�,γ for an algorithm A is defined as

AdvMSIS
n,q,k,�,γ(A) = Pr

[
0 < ‖u‖∞ ≤ γ ∧ [A | I] · u = 0

∣
∣ A ← Rk×�

q ;u ← A(A)
]
.

Definition 7 (Module learning with errors Problem). Let n, q, k, � be
positive integers and D a probability distribution over Rq. The advantage for the
decisional module learning with errors problem dMLWEn,q,k,�,D for an algorithm
A is defined as

AdvdMLWE
n,q,k,�,D(A) = |Pr[A(A,As + e) → 1] − Pr[A(A,v) → 1]| ,

where A ← Rk×�
q , s ← D�, e ← Dk and v ← Rk

q .
The advantage for the search learning with errors problem sMLWEn,q,k,�,D is

defined analogously to above as the probability that A(A,v := As + e) outputs
(s̃, ẽ) such that As̃ + ẽ = v and (s̃, ẽ) ∈ Supp(D�) × Supp(Dk).

When it is clear from the context, we omit the subscript n and q from above
for simplicity. The MLWE assumptions are believed to hold even when D is
the uniform distribution over ring elements with infinity norm at most B, say
B ≈ 5, for appropriate choices of n, q, k, � [1]. We write MLWEk,�,B when we
consider such distribution. For example, the round-2 NIST candidate signature
scheme Dilithium [13] uses such parameters. Looking ahead, we will choose our
parameters for MSIS and MLWE in accordance with [13].

2.5 Index-Hiding Merkle Trees

Merkle trees [25] allow to hash a list of elements A = (a1, · · · , aN) into one
hash value (often called root). At a later point, one can efficiently prove to a
third party that an element ai was included at a certain position in the list A.
In the following, we consider a slight modification of the standard Merkle tree
construction, such that one can prove that a single element ai was included in
the tree without revealing its position in the list. Security proofs for the binding
and index-hiding properties of our Merkle tree construction can be found in [5,
Sec. 2.6].

Formally, the index-hiding Merkle tree technique consists of three algorithms
(MerkleTree, getMerklePath, ReconstructRoot) with access to a common collision-
resistant hash function HColl : {0, 1}� → {0, 1}2λ (with λ being the security
parameter):

Calamari and Falafl 473

– MerkleTree(A) → (root, tree): On input a list of 2k elements A = (a1, · · · , a2k),
with k ∈ N, it constructs a binary tree of height k with {li = HColl(ai)}i∈[2k]

as its leaves, and where every internal node h, with children hleft and hright,
equals the hash of a concatenation of its two children. While it is standard
to consider the concatenation hleft||hright, for index-hiding Merkle trees we
consider a variation which consists in ordering the two children according to
the lexicographical order (or any other total order on binary strings). We
denote by (hleft, hright)lex this concatenation. The algorithm then outputs the
root root of the Merkle tree, as well as a description of the entire tree tree.

– getMerklePath(tree, i) → path: On input the description of a Merkle tree tree
and an index i ∈ [2k], it outputs the list path, which contains the sibling of li
(i.e. a node, different from li, that has the same parent as li), as well as the
sibling of any ancestor of li, ordered by decreasing height.

– ReconstructRoot(a, path) → root: On input an element a in the list of elements
A = (a1, · · · , a2k) and path = (n1, · · · , nk−1), it outputs a reconstructed root
root′ = hk, which is calculated by putting h0 = HColl(a) and defining hi for
i ∈ [k] recursively as hi = HColl((hi−1, ni)lex).

2.6 Seed Tree

We formalize a primitive called seed tree, whose purpose is to first generate a
number of pseudorandom values and later disclose an arbitrary subset of them,
without revealing information on the remaining values. A seed tree is a complete
binary tree3 of λ-bit seed values such that the left (resp. right) child of a seed
seedh is the left (resp. right) half of Expand(seed‖h), where Expand is a pseu-
dorandom number generator (PRG). The unique identifier h of the parent seed
is appended to separate the input domains of the different calls to the PRG. A
sender can efficiently reveal the seed values of a subset of the set of leaves by
revealing the appropriate set of internal seeds in the tree. We detail the formal
construction of a seed tree below, where Expand : {0, 1}λ+�log2(M−1)� → {0, 1}2λ

is a PRG for any λ,M ∈ N, instantiated by a random oracle O. Then, a seed
tree consists of the following four oracle-calling algorithms:

– SeedTreeO(seedroot,M) → {leafi}i∈[M] : On input a root seed seedroot ∈
{0, 1}λ and an integer M ∈ N, it constructs a complete binary tree with M
leaves by recursively expanding each seed to obtain its children seeds. Calls
are of the form O(Expand‖seed‖h), where h ∈ [M − 1] is a unique identifier
for the position of seed in the binary tree.

– ReleaseSeedsO(seedroot, c) → seedsinternal : On input a root seed seedroot ∈
{0, 1}λ, and a challenge c ∈ {0, 1}M , it outputs the list of seeds seedsinternal
that covers all the leaves with index i such that ci = 1. Here, we say that a set
of nodes F covers a set of leaves S if the union of the leaves of the subtrees
rooted at each node v ∈ F is exactly the set S.

3 A complete binary tree is a binary tree in which every level, except possibly the last,
is completely filled, and all nodes are as far left as possible.

474 W. Beullens et al.

– RecoverLeavesO(seedsinternal, c) → {leafi}i s.t. ci=1 : On input a set seedsinternal
and a challenge c ∈ {0, 1}M , it computes and outputs all the leaves of the
subtrees rooted at the seeds in seedsinternal.

– SimulateSeedsO(c) → seedsinternal : On input a challenge c ∈ {0, 1}M , it iden-
tifies the set of nodes covering the leaves with index i such that ci = 1. It
then randomly samples a seed from {0, 1}λ for each of these nodes, and finally
outputs the set of these seeds as seedsinternal.

By construction, the leaves {leafi}i s.t. ci=1 output by SeedTree(seedroot,M)
are the same as those output by RecoverLeaves(ReleaseSeeds(seedroot, c), c) for
any c ∈ {0, 1}M . The last algorithm SimulateSeeds can be used to argue that
the seeds associated with all the leaves with index i such that ci = 0 are indis-
tinguishable from uniformly random values for a recipient that is only given
seedsinternal and c. For a formal proof we refer to [5, Lemma 2.11].

3 From Group Actions to Ring Signatures

In this section, our main result consists in showing an efficient OR sigma protocol
for group actions. Unlike generic OR sigma protocols, whose proof size grows
linearly in N , the proof size of our construction will only grow logarithmically
in N . Moreover, the multiplicative overhead in log N is much smaller (i.e., only
the size of a single hash) compared to previous works. To obtain ring signatures,
we apply the Fiat-Shamir transform (with aborts) to our OR sigma protocol.

3.1 Admissible Group Actions

Definition 8 (Admissible group action). Let G be an additive group, S1, S2

two symmetric subsets of G, X a finite set, δ in [0, 1] and DX a distribution over
a set of group actions � : G×X → X . We say that AdmGA = (G,X , S1, S2,DX)
is a δ-admissible group action with respect to X0 ∈ X if the following holds:

1. One can efficiently compute g � X for all g ∈ S1 ∪ S2 and all X ∈ X , sample
uniformly from S1, S2 and DX , and represent elements of G and X uniquely.

2. The intersection of the sets S2 + g, for g ∈ S1, is sufficiently large. More
formally, let S3 =

⋂
g∈S1

S2 + g, then

|S3| = δ |S2| .

Furthermore, it is efficient to check whether an element g ∈ G belongs to S3

and to compute g � X for all g ∈ S3, X ∈ X .
3. It is difficult to output g′ ∈ S2 + S3 such that g′ � X0 = X with non-negligible

probability, given X = g �X0 for some g sampled uniformly from S1. That is,
for any efficient adversary A we have

Pr

⎡

⎢
⎢
⎣

g′ ∈ S2 + S3,
g′ � X0 = X

∣
∣
∣
∣
∣
∣
∣
∣

� ← DX
g ← S1

X ← g � X0

g′ ← A(�,X)

⎤

⎥
⎥
⎦ ≤ negl(λ).

Calamari and Falafl 475

Hereafter, when the context is clear, we omit the description of the group action �
provided to the adversary and implicitly assume the probabilities are taken over
the random choice of �.

3.2 From an Admissible Group Action to Base or Sigma Protocol
ΠRS-base

Σ

Before presenting the main OR sigma protocol used for our ring signature, we
present an intermediate base OR sigma protocol with a binary challenge space.
Looking ahead, our main OR sigma protocol will run the base OR sigma protocol
several times to amplify the soundness.

Let AdmGA = (G,X , S1, S2,DX) be an admissible group action with respect
to X0 ∈ X , and suppose that X1 = s1�X0, · · · ,XN = sN �X0 are N public keys,
where the corresponding secret keys s1, · · · , sN are drawn uniformly from S1. In
this section, we give an efficient binary-challenge OR sigma protocol ΠRS-base

Σ =
(P ′ = (P ′

1, P
′
2), V

′ = (V ′
1 , V

′
2)) proving knowledge of (sI , I) ∈ S1 × [N], such that

sI � X0 = XI .4

We sketch the description of our base OR sigma protocol ΠRS-base
Σ . First, the

prover samples an element r uniformly from S2, and computes Ri = r � Xi

for all i ∈ [N]. The prover further samples random bit strings {bitsi}i∈[N]

uniformly from {0, 1}λ, and commits to Ri with the random oracle as Ci ←
O(Com‖Ri‖bitsi). Then, the prover builds a index-hiding Merkle tree with
C1, · · · ,CN as its leaves.5 Note that this procedure can be done deterministi-
cally, by generating randomness by a pseudorandom number generator (PRG)
Expand from a short seed seed. The prover sends the root root of the Merkle tree
to the verifier, who responds with a uniformly random bit c.

If the challenge bit c is 0, then the prover computes z = r+sI . If z �∈ S3, then
the prover aborts (this happens with probability 1 − δ). Otherwise the prover
sends z, the path in the Merkle tree that connects CI to the root of the tree
and the opening bits bitsI for the commitment CI . The verifier then computes
R̃ = z � X0 and C̃ := Com(R̃, bitsI), and uses the path to reconstruct the root
r̃oot of the index-hiding Merkle tree. They finally check if z ∈ S3 and r̃oot = root.

If the challenge bit c is 1 then the prover reveals r to the verifier, as well as
the opening bits bitsi for all i ∈ [N]. This allows the verifier to recompute the
index-hiding Merkle tree and to check if its root matches the value of root that
they received earlier. Note that in this case, it suffices for the prover to just send
seed, since r and the bitsi are derived pseudorandomly from this seed.

A toy protocol is displayed in Fig. 2 and the full protocol is detailed in Fig. 3.
In the full protocol, we assume the PRG Expand and the commitment scheme
to be instantiated by a random oracle O. We further assume w.l.o.g. that the
output length of the random oracle is adjusted appropriately.

4 To be accurate, we prove knowledge of sI ∈ S2+S3, as we consider “relaxed” special
soundness.

5 For simplicity, we will assume that N is a power of 2. If this is not the case we add
additional dummy commitments to make the number of leaves a power of 2.

476 W. Beullens et al.

c = 0 c = 1

X0

R1

R2

R3

R4

X1

X2

X3

X4

C1

C2R2

C3

C4

(r + sI)
Com

Com

Merkle tree
root

Fig. 2. The base sigma protocol ΠRS-base
Σ to prove knowledge of (sI , I) such that sI �

X0 = XI (In the drawing N = 4 and I = 2). If the challenge bit c is 0, then the left
side of the picture is revealed, otherwise the right side of the picture is revealed.

3.3 Security Proof for the Base OR Sigma Protocol ΠRS-base
Σ

The following Theorems 9 and 10 provide the security of ΠRS-base
Σ . For their

proofs we refer to [5, Sec. 3.3]

Theorem 9. Let O be a random oracle. Define the relation

R = {((X1, · · · ,XN), (s, I)) | s ∈ S1,Xi ∈ X , I ∈ [N],XI = s � X0}

and the relaxed relation

R̃ =

⎧
⎪⎪⎨

⎪⎪⎩
((X1, · · · , XN), w)

∣
∣
∣
∣
∣
∣
∣
∣

Xi ∈ X and

w = (s, I) : s ∈ S2 + S3, I ∈ [N], XI = s � X0 or

w = (x, x′) : x �= x′, HColl(x) = HColl(x
′) or

O(Com||x) = O(Com||x′)

⎫
⎪⎪⎬

⎪⎪⎭
.

Then the OR sigma protocol ΠRS-base
Σ of Fig. 3 has correctness with probability

of aborting (1 − δ)/2 and relaxed special soundness for the relations (R, R̃).6

Theorem 10. The OR sigma protocol ΠRS-base
Σ of Fig. 3 is non-abort honest-

verifier zero-knowledge. More concretely, there exists a simulator Sim such that
for any (X,W) ∈ R, chall ∈ ChSet and any (computationally unbounded) adver-
sary A that makes Q queries to the random oracle O, we have

∣
∣
∣Pr[AO(P̃O(X,W, chall)) → 1] − Pr[AO(SimO(X, chall)) → 1]

∣
∣
∣ ≤ 2Q

2λ
.

6 We note that the notion of collision in O may seem non-standard at this point since
the truth table of O is typically filled in one at a time when queried so it is not
clear who is querying the O right now. However, we observe that this non-standard
notion suffices for our (linkable) ring signature application w.l.o.g.

Calamari and Falafl 477

round 1: P O
1 ((X1, · · · , XN), (sI , I))

1: seed ← {0, 1}λ The only randomness used by the Prover
2: (r,bits1, · · · , bitsN) ← O(Expand||seed) Sample r ∈ S2 and bitsi ∈ {0, 1}λ

3: for i from 1 to N do
4: Ri ← i

5: Ci ← O(Com||Ri||bitsi) Create commitment Ci ∈ {0, 1}2λ

6: (root, tree) ← MerkleTree(C1, · · · ,CN) Index-hiding Merkle tree
7: Prover sends com ← root to Verifier.

round 2: V1(com)
1: c ← {0, 1}
2: Verifier sends chall ← c to Prover.

round 3: P2((sI , I), chall)
1: c ← chall
2: if c = 0 then
3: z ← r + sI

4: if z S3 then
5: P aborts the protocol.
6: path ← getMerklePath(tree, I)
7: rsp ← (z, path, bitsI)
8: else
9: rsp ← seed

10: Prover sends rsp to Verifier

Verification: V2 (com, chall, rsp)
1: (root, c) ← (com, chall)
2: if c = 0 then
3: (z, path, bits) ← rsp

4: R ← 0

5: C ← O(Com R bits)
6: root ← ReconstructRoot(C, path)
7: Verifier outputs accept if z ∈ S3 and root = root, and otherwise outputs

reject
8: else
9: Verifier repeats the computation of round 1 with seed ← rsp

10: Verifier outputs accept if the computation results in root, and otherwise
outputs reject

Fig. 3. Construction of the base OR sigma protocol ΠRS-base
Σ = (P ′ = (P ′

1, P
′
2), V

′ =
(V ′

1 , V ′
2)), given an admissible group action AdmGA = (G, X , S1, S2, DX) with respect

to X0 ∈ X together with a random group action � ← DX . Above, the PRG Expand
and the commitment scheme Com are modeled by a random oracle O.

Here P̃ denotes a non-aborting prover P ′ = (P ′
1, P

′
2) run on (X,W) with challenge

fixed as chall. In other words, Sim simulates to A the view of an honest non-
aborting execution of the sigma protocol without using the witness.

478 W. Beullens et al.

3.4 From Base OR Sigma Protocol ΠRS-base
Σ to Main OR Sigma

Protocol ΠRS
Σ

To have an OR sigma protocol where a prover cannot cheat with more than
negligible probability, we have to enlarge the challenge space. In this section, we
show how to obtain our main OR sigma protocol ΠRS

Σ , with a large challenge
space, from our base OR sigma protocol ΠRS-base

Σ with a binary challenge space.
Below, we also incorporate three optimization techniques that lead to a much
more efficient protocol compared to simply running ΠRS-base

Σ in parallel λ-times.

Unbalanced Challenge Space CM,K . Notice that in ΠRS-base
Σ , responding to a

challenge with challenge bit c = 0 is more costly than responding to the challenge
bit c = 1 (which requires communicating only a single seed value). Therefore,
rather than λ independent executions of ΠRS-base

Σ , it is more convenient to choose
positive integers M,K such that

(
M
K

)
≥ 2λ and do M > λ executions of the

protocol, of which exactly K are chosen to have challenge bit 0. For example,
when targeting 128 bits of security, we can do M = 250 executions, out of which
K = 30 correspond to the challenge bit c = 0 (so M − K = 220 correspond
to c = 1). Assuming the cost of responding to the challenge c = 1 is negligible,
this reduces the response size by roughly a factor 2. Moreover, this optimization
makes the response size constant and reduces the probability that the prover
needs to abort and restart (which allows for better parameter choices). Below,
we denote CM,K as the set of strings in {0, 1}M such that exactly K-bits are 0.

Using Seed Tree. Using the unbalanced challenge space, we now run our base
OR sigma protocol ΠRS-base

Σ in parallel M times, and in (M − K) ≈ M of the
runs, we simply output the random seed sampled by ΠRS-base

Σ . Here, we use the
seed tree (introduced in Sect. 2.6) to optimize this step. In particular, instead of
choosing independent seeds for each of the M instances of ΠRS-base

Σ , we generate
the M seeds using a seed tree. Furthermore, instead of responding with (M −K)
seeds, the prover outputs seedsinternal ← ReleaseSeeds(seedroot, c), where c is the
challenge sampled from CM,K . The verifier can then use seedsinternal along with
c to recover the (M − K) seeds by running RecoverLeaves. This reduces the
response length.

Adding Salt. As a final tweak to the standard parallel repetition of sigma
protocols, the prover P1 of the main OR sigma protocol ΠRS

Σ picks a 2λ bit
salt and runs the i-th (i ∈ [M]) instance of ΠRS-base

Σ with the random oracle
Oi(·) := O(salt‖i‖·). The prover also salts the seed tree construction. This tweak
allows us to prove a tighter security proof for the zero-knowledge property. In
practice, this modification does not affect the efficiency of the protocol by much,
but it avoids multi-target attacks such as those by Dinur and Nadler [12].

The description of our main OR sigma protocol which incorporates all the
above optimizations is depicted in Fig. 4.

Calamari and Falafl 479

Remark 11 (Commitment recoverable). Notice that the underlying base OR
sigma protocol ΠRS-base

Σ is commitment recoverable. That is, given the statement
X, the challenge chall and the response rsp, there is an efficient deterministic algo-
rithm RecoverCom(X, chall, rsp) that recovers the unique commitment com that
leads the verifier to accept. This property allows the signer of a Fiat-Shamir type
signature to include the challenge rather than the commitment in a signature,
which shortens the signature size. Our main sigma protocol is “almost” commit-
ment recoverable, since one can recover the entire commitment except for the
random salt. We use this property in Sect. 3.6.

3.5 Security Proof for the Main OR Sigma Protocol ΠRS
Σ

The following Theorems 12 and 13 provide the security of ΠRS
Σ . Their proofs can

be found in [5, Sec. 3.5]

Theorem 12. Define the relation R and the relaxed relation R̃ as in Theorem 9.
Then the OR sigma protocol ΠRS

Σ has correctness with probability of aborting
1 − δK , high min-entropy and relaxed special soundness for the relations (R, R̃).

Theorem 13. The OR sigma protocol ΠRS
Σ is non-abort special zero-

knowledge. More concretely, there exists a simulator Sim such that, for
any (X,W) ∈ R, chall ∈ ChSet and any (computationally unbounded)
adversary A that makes Q queries of the form salt||· to the random oracle O
- where salt is the salt value included in the transcript returned by P̃ or Sim, we
have

∣
∣
∣Pr[AO(P̃O(X,W, chall)) → 1] − Pr[AO(SimO(X, chall)) → 1]

∣
∣
∣ ≤ 3Q

2λ
.

Remark 14. We notice that, for the application of (linkable) ring signatures, it
suffices to be able to simulate non-aborting transcripts, because an aborting
transcript will never be released by the signer.

3.6 From Main OR Sigma Protocol ΠRS
Σ to Ring Signature

We apply the Fiat-Shamir transform [17] to our main OR sigma protocol ΠRS
Σ

to obtain a ring signature. The resulting scheme is illustrated in Fig. 5, where
we also exploit the almost commitment recoverability of ΠRS

Σ (see Remark 11).
There, HFS is a hash function, with range CM,K , modeled as a random ora-
cle. The correctness, anonymity, and unforgeability of the ring signature are a
direct consequence of the correctness, high min-entropy, non-abort special zero-
knowledge, and (relaxed) special soundness property of the underlying OR sigma
protocol ΠRS

Σ . Since we believe the proofs are folklore (see for example [18, The-
orem 4] for some details), we do not provide them (a brief sketch of them can
be found in [5, Sec. A.1]).

480 W. Beullens et al.

round 1: P O
1 ((X1, · · · , XN), (sI , I))

1: seedroot ← {0, 1}λ

2: salt ← {0, 1}2λ

3: O (·) := O(salt||·)
4: (seed1, · · · , seedM) ← SeedTreeO (seedroot, M)
5: for i from 1 to M do
6: Oi(·) := O(salt||i||·)
7: comi ← P i

1 ((X1, · · · , XN), (sI , I); seedi) Run P1 on randomness seedi

8: Prover sends com ← (salt, com1, · · · , comM) to Verifier.

round 2: V1(com)
1: c ← CM,K

2: Verifier sends chall ← c to Prover.

round 3: P O
2 ((sI , I), chall)

1: c = (c1, · · · , cM) ← chall
2: for i s.t. ci = 0 do
3: rspi ← P2((sI , I), ci; seedi) Run P2 on randomness seedi

4: O (·) := O(salt||·)
5: seedsinternal ← ReleaseSeedsO (seedroot, c)
6: Prover sends rsp ← (seedsinternal, {rspi}i s.t. ci=0) to Verifier

Verification: V O
2 (com, chall, rsp)

1: ((salt, com1, · · · , comM), c = (c1, · · · , cM)) ← (com, chall)
2: (seedsinternal, {rspi}i s.t. ci=0) ← rsp
3: O (·) := O(salt||·)
4: {respi}i s.t. ci=1 ← RecoverLeavesO (seedsinternal, c)
5: for i from 1 to M do
6: Oi(·) := O(salt||i||·)
7: Verifier outputs reject if V i

2 (comi, ci, rspi) outputs reject

8: Verifier outputs accept

Fig. 4. Construction of the main OR sigma protocol ΠRS
Σ = (P = (P1, P2), V =

(V1, V2)) based on the base OR sigma protocol ΠRS-base
Σ = (P ′ = (P ′

1, P
′
2), V

′ =
(V ′

1 , V ′
2)). The challenge space is defined as CM,K := {c ∈ {0, 1}M | ‖c‖1 = M − K}.

The seed tree and ΠRS-base
Σ have access to the random oracle O.

4 From a Pair of Group Actions to Linkable Ring
Signatures

In this section we construct a linkable ring signature from a pair of group actions,
� : G×X → X and • : G×T → T , that satisfy certain properties. The proposed
linkable ring signature is similar to the ring signature in Sect. 3. In particular,
a secret key is a group element s ∈ S1 ⊂ G and the corresponding public key is
s � X0 ∈ X for a fixed public element X0. To achieve linkability, in this section
the signature contains also a tag T ∈ T , which is obtained as T = s • T0 for

Calamari and Falafl 481

RS.KeyGen(pp)
1: s ← S1

2: X ← 0

3: return (vk = X, sk = s)

RS.Sign(sk,M,R)
1: (vk1, · · · vkN) ← R Let vkI be associated

to sk = sI .
2: com = (salt, (comi)i∈[M]) ← P O

1 (R, (sk, I))
3: chall ← HFS(M,R, com)
4: rsp ← P O

2 ((sk, I), chall)
5: return σ = (salt, chall, rsp)

RS.Verify(R,M, σ)
1: (vk1, · · · vkN) ← R
2: (salt, chall, rsp) ← σ
3: com ← RecoverCom(R, salt, chall, rsp)
4: if accept = V O

2 (com, chall, rsp) ∧ chall = HFS(M,R, com) then
5: return
6: else
7: return ⊥

Fig. 5. Ring signature ΠRS from our main OR sigma protocol ΠRS
Σ with almost commit-

ment revocability and access to a random oracle O. The setup algorithm RS.Setup(1λ)
outputs a description of an admissible group action (G, X , S1, S2, DX) with respect
to a fixed X0 ∈ X , together with a random group action � ← DX and as the public
parameters pp.

a fixed public element T0. The signature consists of the tag T , as well as a
proof of knowledge of s such that simultaneously T = s • T0 and s � X0 is a
member of the ring of public keys. To check if two signatures are produced by
the same party we simply check whether the tags included in the two signatures
are “close”. Looking ahead, the notion of closeness depends on the underlying
algebraic structure used to instantiate the pair of group actions; in the isogeny
case, this amounts to checking whether the tags are equal while in the lattice
case, this amounts to checking whether the tags are close for the infinity norm.

We require a number of properties from the group actions to make the sig-
nature scheme secure. Informally, we need one property per security property of
linkable ring signatures (see [5, Sec. 2.3]):

– Linkability. It is hard to find secret keys s and s′ such that s′ � X0 = s � X0

but s′ • T0 �≈ s • T0. Otherwise, an adversary can use s and s′ to sign two
messages under the same public key that do not link together.

– Linkable anonymity. For a random secret key s, the distributions (s�X0, s•
T0) and (X,T) ← X ×T are indistinguishable. Otherwise, an adversary could
link the tag to one of the public keys and break anonymity.

– Non-Frameability. Given X = s � X0 and T = s • T0 it is hard to find s′

such that s′ • T0 is close to T . Otherwise, an adversary can register s′ � X0 as
a public key and frame an honest party with public key s � X0 for signing a
message.

482 W. Beullens et al.

4.1 Admissible Pairs of Group Actions

Definition 15 (Admissible pair of group actions). Let G be an additive
group, S1, S2 two symmetric subsets of G, X and T two finite sets, δ in [0, 1], and
DX and DT distributions over a set of group actions � : G×X → X and • : G×
T → T , respectively. Finally, let LinkGA : T ×T → 1/0 be an associated efficiently
computable function. We say that AdmPGA = (G,X , T , S1, S2,DX ,DT , LinkGA)
is a δ-admissible pair of group actions with respect to (X0, T0) ∈ X × T if the
following holds:

1. One can efficiently compute g �X, g •T for any g ∈ S1 ∪S2 and any (X,T) ∈
X × T , sample uniformly from S1, S2, DX and DT , and represent elements
of G,X and T uniquely.

2. For any T ∈ T , LinkGA(T, T) = 1.
3. The intersection of the sets S2+g, for g ∈ S1, is large. Let S3 =

⋂
g∈S1

S2+g,
then

|S3| = δ |S2| .
Furthermore, it is efficient to check whether an element g ∈ G belongs to S3,
and to compute g � X, g • T for all g ∈ S3,X ∈ X , T ∈ T .

4. For g sampled uniformly from S1, (g � X0, g • T0) is indistinguishable from
(X,T) sampled uniformly from X × T :

{(�, •, g � X0, g • T0) | (�, •, g) ← DX × DT × S1}
≈c {(�, •,X, T) | (�, •,X, T) ← DX × DT × X × T }.

5. It is difficult to output g, g′ ∈ S2 + S3 such that g � X0 = g′ � X0 and
LinkGA(g′ • T0, g • T0) = 0. That is, for any efficient adversary A, the fol-
lowing is negligible:

Pr

⎡

⎣
g, g′ ∈ S2 + S3

g � X0 = g′ � X0

LinkGA(g • T0, g
′ • T0) = 0

∣
∣
∣
∣
∣
∣

(�, •) ← DX × DT
(g, g′) ← A(�, •)

⎤

⎦ ≤ negl(λ)

6. It is difficult to output g′ ∈ S2 +S3 such that LinkGA(g′ •T0, T) = 1 with non-
negligible probability, given X = g � X0 and T = g • T0 for some g sampled
uniformly from S1. That is, for any efficient adversary A we have

Pr

⎡

⎢
⎢
⎣

g′ ∈ S2 + S3

LinkGA(g′ • T0, T) = 1

∣
∣
∣
∣
∣
∣
∣
∣

(�, •, g) ← DX × DT × S1

X ← g � X0

T ← g • T0

g′ ← A(�, •,X, T)

⎤

⎥
⎥
⎦ ≤ negl(λ)

Hereafter, when the context is clear, we omit the description of the group actions
� and • provided to the adversary and implicitly assume the probabilities are
taken over the random choice of the group actions.

Calamari and Falafl 483

4.2 From an Admissible Pair of Group Actions to Base or Sigma
Protocol with Tag

As in Sect. 3, we start by introducing an intermediate base OR sigma protocol
with tag that has a binary challenge space. The main OR sigma protocol with
tag used for our linkable ring signature will run parallel executions of the base
OR sigma protocol with tag to amplify the soundness error.

Let AdmPGA = (G,X , T , S1, S2,DX ,DT) be a pair of admissible group
actions with respect to (X0, T0) ∈ X × T , and suppose that X1 = s1 �
X0, · · · ,XN = sN �X0 are N public keys and T = sI •T0 a tag associated to the
I-th user, where the corresponding secret keys s1, · · · , sN are drawn uniformly
from S1. In this section, we introduce an efficient binary-challenge OR sigma
protocol with tag ΠLRS-base

Σ = (P ′ = (P ′
1, P

′
2), V

′ = (V ′
1 , V

′
2)) proving knowledge

of (sI , I) ∈ S1 × [N], such that sI � X0 = XI and sI • T0 = T .7

We outline the base OR sigma protocol with tag ΠLRS-base
Σ . First, the prover

samples an element r uniformly from S2, and computes Ri = r � Xi for all
i ∈ [N] and T ′ = r • T . The prover further samples random bit strings bitsi
uniformly from {0, 1}λ for i ∈ [N] and commits Ri as O(Com‖Ri‖bitsi) (or,
equivalently, Com(Ri, bitsi)). Then, the prover builds a index-hiding Merkle tree
with C1, . . . ,CN as its leaves and hashes the root root of the Merkle tree obtain-
ing T ′ as h = HColl(T ′, root). Here, the only reason for hashing (T ′, root) is
to lower the communication complexity and it has no impact on the security.
Moreover, we note that this whole procedure can be done deterministically, with
randomness generated from a seed seed. Finally, the prover sends the hash value
h to the verifier, who responds with a uniformly random bit c.

If the challenge bit c is 0, then the prover computes z = r + sI . If z �∈ S3,
then the prover aborts (this happens with probability 1 − δ). Otherwise, the
prover sends z, the opening bits bitsI for the commitment CI , and the path in
the index-hiding Merkle tree that connects CI to the root of the tree. The verifier
then computes R̃ = z � X0, T̃ = z • T0 and C̃ = Com(R̃, bitsI), and uses the path
to reconstruct the root r̃oot of the Merkle tree. It finally accepts if and only if h
is equal to HColl(T̃ , r̃oot). If the challenge bit c is 1 then the prover reveals r and
the bitsi, for all i ∈ [N], to the verifier. This allows the verifier to recompute the
Merkle tree and T ′ = r •T , and to check if the hash of T ′ and the obtained root
matches the value h received earlier. In this case, it suffices for the prover to
just send seed, since r and bitsi are derived pseudorandomly from it. In the full
protocol, displayed in Fig. 6, we assume the PRG Expand and the commitment
scheme Com to be instantiated by a random oracle O. We further assume w.l.o.g.
that the output length of the random oracle is adjusted appropriately.

The following Theorems 16 and 17 provide the security of ΠLRS-base
Σ . Their

proofs can be found in [5, Sec. A.2].

7 To be accurate, we prove knowledge of sI ∈ S2+S3, as we consider “relaxed” special
soundness.

484 W. Beullens et al.

round 1: P O
1 ((X1, · · · , XN , T), (sI , I))

1: seed ← {0, 1}λ The only randomness used by the Prover
2: (r,bits1, · · · , bitsN) ← O(Expand seed) Sample r ∈ S2 and bitsi ∈ {0, 1}λ.
3: T ← r • T
4: for i from 1 to N do
5: Ri ← i

6: Ci ← O(Com Ri bitsi) Create commitment Ci ∈ {0, 1}2λ

7: (root, tree) ← MerkleTree(C1, · · · ,CN) Index-hiding Merkle tree
8: h ← HColl(T , root)
9: Prover sends com ← h to Verifier.

round 2: V1(com)
1: c ← {0, 1}
2: Verifier sends chall ← c to Prover.

round 3: P2((sI , I), chall)
1: c ← chall
2: if c = 0 then
3: z ← r + sI

4: if z S3 then
5: P aborts the protocol.
6: path ← getMerklePath(I, tree)
7: rsp ← (z, path, bitsI)
8: else
9: rsp ← seed

10: Prover sends rsp to Verifier

Verification: V2 (com, chall, rsp)
1: (h, c) ← (com, chall)
2: if c = 0 then
3: (z, path, bits) ← rsp

4: R ← 0

5: C = O(Com R bits)
6: T ← z • T0

7: root ← ReconstructRoot(C, path)
8: Verifier outputs accept if z ∈ S3 and HColl(T , root) = h, and otherwise

outputs reject.
9: else

10: Verifier repeats the computation of round 1 with rsp as seed.
11: Verifier outputs accept iff the computation results in h, and otherwise out-

puts reject.

Fig. 6. Construction of the base OR sigma protocol with tag ΠLRS-base
Σ = (P ′ =

(P ′
1, P

′
2), V

′ = (V ′
1 , V ′

2)), given an admissible pair of group actions AdmPGA =
(G, X , T , S1, S2, DX , DT , LinkGA) with respect to (X0, T0) ∈ X × T , together with ran-
dom group actions (�, •) ← DX × DT . Above, the PRG Expand and the commitment
scheme Com are modeled by a random oracle O.

Calamari and Falafl 485

Theorem 16. Let O be a random oracle. Define the relation

R = {((X1, · · · , XN , T), (s, I)) | s ∈ S1, Xi ∈ X , T ∈ T , I ∈ [N], XI = s � X0, T = s • T0}

and the relaxed relation

R̃ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

((X1, · · · , XN , T), w)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Xi ∈ X , T ∈ T and w such that :
w = (s, I) : s ∈ S2 + S3, I ∈ [N], XI = s � X0, T = s • T0

or
w = (x, x′) : x �= x′, HColl(x) = HColl(x

′) or
O(Com||x) = O(Com||x′)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Then the base OR sigma protocol with tag ΠLRS-base
Σ of Fig. 6 has correctness with

probability of aborting (1 − δ)/2 and relaxed special soundness for the relations
(R, R̃).

Theorem 17. The OR sigma protocol with tag ΠLRS-base
Σ of Fig. 6 is non-

abort honest-verifier zero-knowledge. More concretely, there exists a simulator
Sim such that, for any (X,W) ∈ R, chall ∈ ChSet and any (computationally
unbounded) adversary A that makes Q queries to the random oracle O, we have

∣
∣
∣Pr[AO(P̃O(X,W, chall)) → 1] − Pr[AO(SimO(X, chall)) → 1]

∣
∣
∣ ≤ 2Q

2λ
.

4.3 From Base OR Sigma Protocol with Tag ΠLRS-base
Σ to Main OR

Sigma Protocol with Tag ΠLRS
Σ

As in Sect. 3.4, we enlarge the challenge space of our base OR sigma protocol
with tag ΠLRS-base

Σ to obtain our main OR sigma protocol with tag ΠLRS
Σ . We

also include the same optimization techniques presented in Sect. 3.4. Since the
description of our main OR sigma protocol with tag is almost identical to the one
depicted in Fig. 4, we omit the details. The only notable difference between ΠRS

Σ

from Fig. 4 and ΠLRS
Σ is that in the latter, the statement additionally includes a

tag T and runs ΠLRS-base
Σ as a subroutine instead of ΠRS-base

Σ . Otherwise, the way
we transform our base to our main OR sigma protocol is identical. We also note
that it is easy to check that our ΠLRS-base

Σ enjoys almost commitment revocability
(see Remark 11). We use this fact when constructing a linkable ring signature
in Sect. 4.4.

The following Theorems 18 and 19 provide the security of ΠLRS
Σ . We refer to

[5, Sec. A.3] for their proofs.

Theorem 18. Define the relation R and the relaxed relation R̃ as in Theo-
rem 16. Then the OR sigma protocol with tag ΠLRS

Σ has correctness with proba-
bility of aborting 1 − δK , high min-entropy and relaxed special soundness for the
relations (R, R̃).

Theorem 19. The OR sigma protocol with tag ΠLRS
Σ is non-abort special zero-

knowledge. More concretely, there exists a simulator Sim such that, for any
(X,W) ∈ R, chall ∈ ChSet and any (computationally unbounded) adversary A

486 W. Beullens et al.

that makes Q queries of the form salt||· to the random oracle O - where salt is
the salt value included in the transcript returned by P̃ or Sim, we have:

∣
∣
∣Pr[AO(P̃O(X,W, chall)) → 1] − Pr[AO(SimO(X, chall)) → 1]

∣
∣
∣ ≤ 3Q

2λ
.

4.4 From Main OR Sigma Protocol with Tag ΠLRS
Σ to Linkable Ring

Signatures

We apply the Fiat-Shamir transform [17] to our main OR sigma protocol with
tag ΠLRS

Σ to obtain a linkable ring signature ΠLRS. This is illustrated in Fig. 7,
where we also rely on the almost commitment recoverable property of ΠLRS

Σ

(see Remark 11). Here, HFS is a hash function, with range CM,K , modeled as a
random oracle. The correctness and security of ΠLRS are provided in the following
theorem, whose proof can be found in [5, Sec. A.4].

Theorem 20. Assuming that AdmPGA is an admissible pair of group actions
(Definition 15) and HFS is a collision-resistant hash function, then the linkable
ring signature scheme ΠLRS in Fig. 7 is correct, linkable, linkable anonymous
and non-frameable in the random oracle model.

LRS.KeyGen(pp)
1: s ← S1

2: X := 0

3: return (vk = X, sk = s)

LRS.Link(σ0, σ1)
1: (saltb, Tb, challb, rspb) ← σb for b ∈

{0, 1}
2: if 1 ← LinkGA(T0, T1) then
3: return
4: else
5: return ⊥

LRS.Sign(sk,M,R)
1: (vk1, · · · vkN) ← R Let vkI be

associated to sk = sI .
2: T := sI • T0

3: com = (salt, (comi)i∈[M]) ←
P O
1 ((R, T), (sk, I))

4: chall ← HFS(M, (R, T), com)
5: rsp ← P O

2 ((sk, I), chall)
6: return σ = (salt, T, chall, rsp)

LRS.Verify(R,M, σ)
1: (vk1, · · · vkN) ← R
2: (salt, T, chall, rsp) ← σ
3: com ← RecoverCom((R, T), salt, chall, rsp)
4: if accept = V O

2 (com, chall, rsp) ∧ chall =
HFS(M, (R, T), com) then

5: return
6: else
7: return ⊥

Fig. 7. Linkable ring signature ΠLRS from our main OR sigma protocol with tag ΠLRS
Σ ,

with almost commitment revocability and access to a random oracle O. The setup
algorithm LRS.Setup(1λ) outputs a description of a pair of admissible group actions
(G, X , S1, S2, DX , DT) with respect to a fixed (X0, T0) ∈ X ×T , together with random
group actions (�, •) ← DX × DT as the public parameters pp.

Calamari and Falafl 487

5 Post-quantum Admissible (pair of) Group Actions
from Isogeny and Lattice Assumptions

For concrete instantiations of our generic framework for ring signatures (Sect. 3)
and linkable ring signatures (Sect. 4), we consider three admissible (pairs of)
group actions, based on isogenies between elliptic curves and lattices.

5.1 Isogeny-Based Instantiations

The isogeny-based instantiations we propose exploit the CSIDH paradigm. For
the three sets of CSIDH parameters that have been proposed so far - CSIDH-
512, CSIDH-1024 and CSIDH-1792 [8,10] - the structure of the corresponding
ideal class group C�(O) is only known for the first set [6]. We can instantiate
our RS and LRS with any CSIDH parameter set regardless of whether the class
group is known or not, but the resulting schemes are much more efficient in the
former case. We first discuss the case when the structure of C�(O) is known.

Known Class Group. For simplicity, we assume that the ideal class group
C�(O) is cyclic with generator g of order cl. Then, the group Zcl acts freely and
transitively on E��p(O, π) via the group action � defined as a � X := ga ∗ X (see
Sect. 2.3). In practice, the action of each a ∈ Zcl can be computed efficiently
when p has a suitable form (in that case the approximate closest vector problem
can be solved efficiently in the relation lattice [6]). It can be verified (see [5,
Thm. 5.1]) that this group action satisfies all the properties of an admissible
group action assuming the hardness of the GAIPp problem. In this case we have
S1 = S2 = S3 = G, so δ = 1 and the signing algorithm will never need to abort.
Moreover, if we define �2 to be the group action of Zcl on E��p(O, π) defined by
a �2 X := (2a) � X, then (�, �2) satisfies all the properties of an admissible pair
of group actions, assuming the hardness of the GAIPp and sdCSIDHp problem
([5, Thm. 5.1]).

Unknown Class Group. When the structure of the ideal class group O is
not known, computing the action [a] ∗ [E0] of an arbitrary [a] ∈ C�(O) on some
[E0] ∈ E��p(O, π) has exponential complexity. However, the ideal class action
∗ can still be efficiently computed for a small set of class group elements [8].
In particular, considering p of the form 4�1�2 · · · �k − 1, with �1, . . . , �k small
odd primes, a special fractional ideal I�i can be associated to each prime �i. The
action of one of these ideals (and their inverses) can be computed very efficiently,
since it is determined by an isogeny whose kernel is the unique subgroup of
E0(Fp) of order �i. We can thus efficiently compute the action of elements in
C�(O) of the form

∏k
i=1[I�i]

ei when the integral exponents ei are chosen from
some small interval [−B,B].

We denote by � the group action of Zk on E��p(O, π) defined by

((e1, . . . , ek),X) �→
k∏

i=1

[I�i]
ei ∗ X .

488 W. Beullens et al.

Then it can be verified that, for the sets S1 = [−B,B]k and S2 = [−B′, B′]k

(with B′ > B) the group action � satisfies all the properties of an admissible
group action with δ = ((2(B′ − B) + 1)/(2B′ + 1))k, assuming the hardness of
the GAIPp problem (see [5, Thm. 5.4]). We note that, for a fixed value of B, the
bigger the value of B′, the bigger δ, and the smaller the aborting probability of
the ring signature scheme. However, a big B′ implies high computational costs
for the action of elements in S2 and S3. Consequently, in concrete instantiations
the value of B′ must be tuned to balance the two effects. Moreover, if we define
�2 similarly as before, then (�, �2) satisfies all the properties of an admissible pair
of group actions, assuming the hardness of the GAIPp and sdCSIDHp problem
([5, Thm. 5.4]).

Remark 21. To avoid using the sdCSIDH hardness assumption, we can formu-
late an admissible pair of group actions differently. If, considering • = �, we
can determine a uniformly random base point T0 for the tag space such that
the element g ∈ G satisfying T0 = g � X0 is unknown to any user, instead of
the sdCSIDH hardness assumption we then only require the standard dCSIDH
assumption. The drawback is that we require a trusted setup to choose such a
T0. Alternatively, we can look at this as a linkable group signature scheme where
the group manager sets T0 = t � X0 and remembers t. The group manager can
deanonymize any signature because (−t) � T is the public key of the signer.

Remark 22. Recently, a variant of CSIDH, called CSURF, has been proposed
[7]. This work considers the maximal order OK and the corresponding set of
supersingular elliptic curves E��p(OK, π). The action of C�(OK) on E��p(OK, π)
can be used in our framework instead of the CSIDH group action.

5.2 Lattice-Based Instantiation

We instantiate an admissible group action (AdmGA) and an admissible pair
of group actions (AdmPGA) based on lattices under the MSIS and MLWE
assumptions. For the AdmGA, we consider (G,X) to be (R�

q × R�
q, R

k
q) and

Sb := {(s, e) ∈ G | ‖s‖∞, ‖e‖∞ ≤ Bb} for b ∈ {1, 2}, where B1 < B2 < q
are given positive integers. Then, the group action �A, uniquely defined by a
matrix A ∈ Rk×�

q , is defined as (s, e) �A w := (As + e) + w, for any w in Rk
q .

We can similarly instantiate the AdmPGA, with the only difference that we
have to take care of the tag. To this end, we define G = R�

q × R�
q × R�

q and
extend S1, S2 accordingly, in order to be subsets of G. Then, the group actions
�A, •B (where B ∈ Rk×�

q) are defined as (s, e, ẽ) �A w := (As + e) + w and
(s, e, ẽ) �B w := (Bs + ẽ) + w, for any w in Rk

q . Finally, for two tags v,v′,
we define LinkGA(v,v′) = 1 if and only if ‖v − v′‖∞ ≤ 2 · (2B2 − B1). It is an
easy calculation checking that our instantiations satisfy the required properties
of an AdmGA and AdmPGA, assuming the MSIS and MLWE assumptions (with
appropriate parameters). For a formal treatment we refer to [5, Sec. 5.2].

Further Optimization Using Bai-Galbraith [2]. Although we can no longer
capture it by our generic construction from admissible (pair of) group actions, we

Calamari and Falafl 489

can apply the simple optimization technique of Bai-Galbraith [2], which uses the
specific algebraic structure of lattices, to our base OR sigma protocols in Figs. 3
and 6. Effectively, this allows to lower the signature size of our lattice-based
(linkable) ring signature scheme with no additional cost. The main observation is
that for MLWE, proving knowledge of a short s ∈ R�

q indirectly proves knowledge
of a short e ∈ Rk

q since e is uniquely defined as v − As. We incorporate this
idea to our base OR sigma protocol by letting the prover only send a short
vector z in R�

q rather than a short vector z in Rk
q × R�

q (for ring signatures) or
z in Rk

q × R�
q × R�

q (for linkable ring signatures) as the response. Since k ≈ �,
this shortens the response without any actual cost. We believe this optimization
is standard by now as it is used by most of the recent proposals for efficient
lattice-based signature schemes. Therefore we refer to [5, Appendix B] for the
full details. In terms of security, the only difference is that the extracted witness
from the base OR sigma protocol will be slightly larger than before. Otherwise,
all our proofs in Sects. 3 and 4 are unmodified by this optimization.

6 Parameter Selection, Implementation Results and
Conclusions

We implemented the isogeny-based instantiations with known class group and
the lattice-based instantiations of our ring signature schemes (standard and link-
able). We reuse parameter sets from the pre-existing cryptosystems CSI-FiSh and
Dilithium. This allows us to reuse large portions of code from the CSIDH/CSI-
FiSh and Dilithium implementations and to rely on earlier work to estimate the
concrete security of our parameter choices. We use 128-bit seeds and commit-
ment randomness, and we use 256-bit salts, commitments, and hash values.

Isogeny Parameters. We use the CSIDH-512 prime p, and define our first group
action g �X exactly as in CSI-FiSh. This parameter set was proposed to achieve
NIST security level 1. State of the art analysis of this parameter set suggests
that it provides 128 bits of classical security and about 60 bits of security against
quantum adversaries [26]. We set M = 247 and K = 30 such that the challenge
space consists of binary strings of length M = 247 with hamming weight M −
K = 217. The number of these strings is

(
247
30

)
≈ 2128.1.

Lattice Parameters. We use the “medium” parameter set from the NIST PQC
candidate Dilithium. More concretely we use the ring Rq = Zq[X]/(X256 + 1),
where q = 8380417. The parameters of the MLWE problem are (k, l) = (3, 4)
and the coefficients of the LWE secrets are sampled uniformly from [−6, 6]. In
our implementation we use the optimization by Bai and Galbraith [2]. We chop
off d = 20 bits of the commitment vector, in such a way that the parameters
of the MSIS problem match the parameters of the MSIS problem relevant for
the security of the Dilithium scheme. Since we work with binary challenges, the
probability that a single rejection sampling check fails is much lower compared to
Dilithium. This effect is roughly canceled out by the fact that in our protocol we

490 W. Beullens et al.

need a number of parallel checks to succeed all at the same time. The Dilithium
“medium” parameters are believed to achieve NIST security level I. Since the
lattice signatures are fast, we can afford to have a large number of iterations
with a small number of c = 0 challenges. This trades signing and verification
speed for smaller signatures. Concretely, we set M = 1749 and K = 16.

6.1 Implementation

For the isogeny-based instantiations we reuse the non-constant-time implemen-
tation of the group action CSI-FiSh, which in turn relies on the implementa-
tion of the CSIDH group action by Castryck et al. [6,8]. For the lattice-based
instantiations we reuse code of the Dilithium NIST submission for arithmetic
and packing/unpacking operations. For both instantiations we use cSHAKE to
instantiate the random oracles [20]. In the isogeny-based implementation, the
performance bottleneck is the evaluation of the CSIDH group action. In the
lattice-based implementation the bottleneck is not the lattice arithmetic, but
rather the use of symmetric primitives (i.e. hashing, commitments and expand-
ing seeds). This is especially true in the case of large ring sizes since the number
of multiplications in Rq is independent of the ring size. The signature sizes and
signing times of our implementations are displayed in Fig. 1. Our implementa-
tion is publicly available on

https://github.com/WardBeullens/Calamari-and-Falafl.

6.2 Conclusions

So far, no efficient logarithmic ring signatures have been proven secure in the
quantum random oracle model, since the usual multiple rewinding of the adver-
sary in the unforgeability proof is non-trivial in the quantum setting. It remains
an interesting open problem to provide security proofs of our schemes in the
QROM.

In terms of practical efficiency, we believe the lattice-based implementation
can be speed up significantly by using more efficient symmetric primitives and/or
by using vectorized implementations. Concerning the isogeny case, we note that,
using the larger CSIDH parameters CSIDH-1024 and CSIDH-1792 under the
hypothesis that the structure of the ideal class group was know also for them,
the signatures sizes would increase with respect to the CSIDH-512 parameters
of 0.9 KB or 2.3 KB respectively, independently of the ring size N . This shows
that the impact of the CSIDH parameters on the signature size is not dramatic,
especially for large N .

References

1. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 19

https://github.com/WardBeullens/Calamari-and-Falafl
https://doi.org/10.1007/978-3-319-98113-0_19

Calamari and Falafl 491

2. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

3. Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8 28

4. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp.
303–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1 18

5. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: Logarithmic (Link-
able) Ring Signatures from Isogenies and Lattices. In: Cryptology ePrint Archive,
Report 2020/646 (2020). https://eprint.iacr.org/2020/646

6. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

7. Castryck, W., Decru, T.: CSIDH on the surface. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 111–129. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 7

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3 15

9. Cozzo, D., Smart, N.P.: Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 169–186. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 10

10. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

11. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for
accumulators with applications to ring signatures from symmetric-key primitives.
In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 419–
440. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 20

12. Dinur, I., Nadler, N.: Multi-target attacks on the picnic signature scheme and
related protocols. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 699–727. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 24

13. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature
scheme. IACR TCHES 2018(1), 238–268 (2018). https://tches.iacr.org/index.php/
TCHES/article/view/839

14. El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: efficient signature
scheme with tight reduction to decisional CSIDH-512. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 157–186.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 6

15. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 115–146.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-540-39927-8_28
https://doi.org/10.1007/978-3-030-01950-1_18
https://eprint.iacr.org/2020/646
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-030-17659-4_24
https://doi.org/10.1007/978-3-030-17659-4_24
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/978-3-030-26948-7_5

492 W. Beullens et al.

16. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient, scal-
able and post-quantum blockchain confidential transactions protocol. In: Cavallaro,
L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 567–584. ACM Press,
November 2019

17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

18. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 9

19. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press, October 2018

20. Kelsey, J., Chang, S., Perlner, R.: SHA-3 derived functions: cSHAKE, KMAC,
TupleHash, and ParallelHash. Technical report, National Institute of Standards
and Technology (2016)

21. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-
014-9938-4

22. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 1

23. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring sig-
nature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS
2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 6

24. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

25. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

26. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 463–492. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 16

27. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

28. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press, November 1994

29. Alberto Torres, W.A., et al.: Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (lattice RingCT v1.0). In:
Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 32

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-319-93638-3_32

Radical Isogenies

Wouter Castryck, Thomas Decru, and Frederik Vercauteren(B)

Imec-COSIC, Leuven, KU, Belgium
{wouter.castryck,thomas.decru,frederik.vercauteren}@kuleuven.be

Abstract. This paper introduces a new approach to computing isoge-
nies called “radical isogenies” and a corresponding method to compute
chains of N -isogenies that is very efficient for small N . The method is
fully deterministic and completely avoids generating N -torsion points. It
is based on explicit formulae for the coordinates of an N -torsion point
P ′ on the codomain of a cyclic N -isogeny ϕ : E → E′, such that compos-
ing ϕ with E′ → E′/〈P ′〉 yields a cyclic N2-isogeny. These formulae are
simple algebraic expressions in the coefficients of E, the coordinates of a
generator P of ker ϕ, and an Nth root N

√
ρ , where the radicand ρ itself

is given by an easily computable algebraic expression in the coefficients
of E and the coordinates of P . The formulae can be iterated and are
particularly useful when computing chains of N -isogenies over a finite
field Fq with gcd(q − 1, N) = 1, where taking an Nth root is a simple
exponentiation. Compared to the state-of-the-art, our method results in
an order of magnitude speed-up for N ≤ 13; for larger N , the advan-
tage disappears due to the increasing complexity of the formulae. When
applied to CSIDH, we obtain a speed-up of about 19% over the imple-
mentation by Bernstein, De Feo, Leroux and Smith for the CSURF-512
parameters.

Keywords: Post-quantum cryptography · Isogenies · Tate pairing ·
CSIDH

1 Introduction

Isogeny-based cryptography is one of the more promising candidates for post-
quantum cryptography and although it is slower than lattice-based cryptography,
it has the advantage of smaller key and ciphertext sizes. Isogeny-based protocols
can be broadly categorized into two families: SIDH and CRS/CSIDH.

SIDH is a key agreement protocol introduced by Jao and De Feo in 2011 [16].
This protocol is based on random walks in isogeny graphs of supersingular elliptic
curves E over Fp2 , and is reminiscent of the CGL hash function due to Charles,
Goren and Lauter from 2009 [8]. The prime p is chosen such that the torsion

This work was supported in part by the Research Council KU Leuven grants
C14/18/067 and STG/17/019, by CyberSecurity Research Flanders with reference
number VR20192203, and by the Research Foundation Flanders (FWO) through the
WOG Coding Theory and Cryptography.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 493–519, 2020.
https://doi.org/10.1007/978-3-030-64834-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_17

494 W. Castryck et al.

subgroups E[2n] and E[3m] are defined over Fp2 , for large exponents n, m. The
random walks then correspond to choosing a random point P in E[2n] or E[3m]
and constructing the isogeny with kernel 〈P 〉, as a composition of isogenies of
degree 2 respectively 3.

CRS/CSIDH [7] takes a different approach and computes an action of the
ideal-class group cl(O) of some order O in an imaginary quadratic field on the
set E��p(O, t) of elliptic curves over a prime field Fp with Fp-rational endo-
morphism ring O and trace of Frobenius t. The idea of using this class group
action in cryptography was independently proposed by Couveignes [11] and
Rostovtsev-Stolbunov [22] for ordinary elliptic curves. In [7] this idea was ported
to the supersingular case, resulting in a speed-up of several orders of magnitude.
The computation of the class group action boils down to computing chains of
�-isogenies for many small primes �, e.g., for CSIDH-512, � ranges from 3 to 587.
This is in stark contrast with SIDH where only 2- and 3-isogenies are used.

In the CSIDH setting, computing an �-isogeny ϕ from an elliptic curve E/Fp

consists of two steps: first, a generator P of the kernel of ϕ is computed, i.e. an
Fp-rational point of order �, and secondly, given P , an equation for the isogenous
curve E/〈P 〉 is determined.

The most basic approach to solve the first step is to generate a random
point Q ∈ E(Fp) and to multiply this by the cofactor #E(Fp)/�. Generating
a random point is essentially a square root computation at a cost of about
1.5 log p multiplications in Fp, and the multiplication by the cofactor can be
done using the Montgomery ladder [2] and takes roughly 11 log p multiplications
in Fp. Generating a point of order � is thus a costly operation, even further
exacerbated by the fact that multiplication by the cofactor results in the point
at infinity OE with probability 1/�, which is non-negligible for small �. Note that
this also makes the algorithm non-deterministic, negatively affecting constant
time implementations. The cost of generating �-torsion points from scratch can
be mitigated somewhat by considering a chain of �i-isogenies for many different
primes �i. Instead of sampling an �i-torsion point for every �i-isogeny separately,
it is cheaper to sample an

∏k
i=1 �i-torsion point and push it through the isogeny

to create a chain of isogenies of respective degrees �1, �2, . . . , �k, multiplying this
point with a cofactor that gets smaller in each iteration.

The second step is typically carried out using some form of Vélu’s formulae
[28], which compute the coefficients of E/〈P 〉 from the coefficients of E and
the coordinates of the scalar multiples of P . Vélu’s formulae can also be used
to compute the image ϕ(Q) of any point Q under the isogeny. The original
implementation of CSIDH uses these formulae on elliptic curves in Montgomery
form [7,21], and requires O(�) arithmetic operations in Fp per �-isogeny. Since
then many optimizations to CSIDH have been proposed, such as:

– using different forms of elliptic curves, e.g. twisted Edwards curves [18,19]
and Hessian curves [12,14];

– adapting Vélu’s formulae to only require Õ(
√

�) operations in Fp [1] instead
of O(�);

– changing CSIDH into CSURF to allow the use of very efficient 2-isogenies [6],

Radical Isogenies 495

– lowering the number of �-isogenies that has to be computed for each � [9,20].

A number of alternative approaches have been considered that avoid the
generation of �-torsion points altogether, e.g. by using modular polynomials [3,
13] or division polynomials [3]. This leads to deterministic algorithms which can
outperform the above method using Vélu’s formulae for small �. Highly optimized
approaches exist for 2-isogenies [6] and 3-isogenies [12,14], where the speed-up
stems from two ingredients: firstly, an elliptic curve model is chosen that is nicely
adapted to 2-torsion (a variant of Montgomery curves) resp. 3-torsion (Hessian
curves). The second and main ingredient however is that the coefficients of E/〈P 〉
can be expressed in terms of the coefficients of E and a single radical of a simple
algebraic expression in the coefficients of E. This radical is a square root for
2-isogenies and a cube root for 3-isogenies.

Contributions

The main contribution of this paper is the generalization of the aforementioned
special cases of 2- and 3-isogenies to all isogenies of any degree N ≥ 2.

Concretely, given an elliptic curve E with a point P of order N , one can use
Vélu’s formulae to compute a defining equation for E′ = E/〈P 〉. We present
accompanying formulae which produce a point P ′ on E′ again of order N , such
that the composition

E → E′ → E′/〈P ′〉 (1)

is a cyclic isogeny of degree N2. These formulae are algebraic expressions in
the coefficients of E and the coordinates of P , and one radical (an Nth root)
of another algebraic expression in the coefficients of E and the coordinates of
P . An important implication of this construction is that the same formulae now
apply to E′ and P ′, which allows us to compute chains of N -isogenies of arbitrary
length without needing to generate an N -torsion point in every step. In practice,
we assume P = (0, 0), thereby suppressing its coordinates from the formulae.

More in detail, we proceed as follows: an elliptic curve E over a field K
together with a K-rational point P of order N ≥ 4 can be represented by the
Tate normal form

E : y2 + (1 − c)xy − by = x3 − bx2 P = (0, 0), b, c ∈ K .

We then compute the curve E′ = E/〈P 〉 using Vélu’s formulae. The point P ′ on
E′ can be constructed as a pre-image of P under the dual isogeny ϕ̂ : E′ → E,
which guarantees that the composition of ϕ with E′ → E′/〈P ′〉 is cyclic of order
N2. Our central observation is that P ′ is defined over K(b, c, N

√
ρ) for some

ρ ∈ K(b, c) and we prove that one can take ρ = tN (P,−P) where tN denotes the
Tate pairing. Indeed, since ϕ̂(P ′) = P and using the compatibility of the Tate
pairing with isogenies, we have

tN (P,−P) = tN (ϕ̂(P ′),−ϕ̂(P ′)) = tN (P ′,−P ′)deg ϕ̂ = tN (P ′,−P ′)N ,

496 W. Castryck et al.

which shows that the field of definition of P ′ must contain N
√

tN (P,−P), and
we show that this is also sufficient.

The fact that we only require one Nth root explains the name “radical iso-
genies”. By rewriting (E′, P ′) again in Tate normal form with coefficients b′ and
c′, we are ready for another iteration. The formulae we derive in fact express b′

and c′ directly as elements of K(b, c, N
√

ρ).
By specializing to finite fields Fq with gcd(q − 1, N) = 1, we immediately

obtain that the radical N
√

ρ is again defined over Fq, since Nth powering is a
field automorphism in this case. We implemented our formulae and considered
two application scenarios: firstly, we show that using our formulae, chains of N -
isogenies can be computed much faster than using the state-of-the-art methods:
for N = 3, 5, 7 the best previous approach was to use modular polynomials and
we obtain speed-ups of factors 9, 18 and 27. For N = 11, 13, the best previous
approach was to generate N -torsion points in combination with Vélu’s formulae
and our radical isogenies outperform this by factors 12 and 5 respectively. Sec-
ondly, we implemented a version of CSIDH using radical isogenies for all primes
≤13 and obtain a speedup of 19% over the state of the art implementation [1].

Paper organization

Section 2 briefly recaps the necessary background on isogenies, division polyno-
mials, the Tate normal form, the Tate pairing, simple radical extensions, and
isogeny-based protocols. Section 3 proves the existence of radical isogeny for-
mulae, while Sect. 4 works out these formulae explicitly for small values of N .
Section 5 discusses how our formulae perform when computing chains of N -
isogenies, while Sect. 6 reports on an improved implementation of CSIDH using
radical isogenies. Finally, Sect. 7 concludes the paper and lists a number of open
problems.

2 Background

Throughout this section we let K denote an arbitrary field.

2.1 Isogenies and Vélu’s Formulae

Let E and E′ be elliptic curves over K. An isogeny ϕ : E → E′ is a non-constant
morphism such that ϕ(OE) = OE′ , where OE ,OE′ denote the respective points
at infinity. The degree of ϕ is its degree as a morphism and there always exists
a dual isogeny ϕ̂ : E′ → E such that ϕ̂ ◦ ϕ = [deg(ϕ)], where as usual [·]
denotes scalar multiplication. The kernel of ϕ is a finite subgroup of E, more

Radical Isogenies 497

precisely its size is a divisor of deg(ϕ), where equality holds if and only if ϕ
is separable (which is automatic if charK � deg(ϕ)). Conversely, given a finite
subgroup C ⊂ E, there exists a unique1 separable isogeny ϕ having C as its
kernel. Concrete formulae for this isogeny were given by Vélu:

Theorem 1. Let C be a finite subgroup of the elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

over K. Fix a partition C = {OE} ∪ C2 ∪ C+ ∪ C−, where C2 are the order
2 points of C, and C+ and C− are such that for any P ∈ C+ it holds that
−P ∈ C−. Write S = C+ ∪ C2, and for Q ∈ S define

gx
Q = 3x(Q)2 + 2a2x(Q) + a4 − a1y(Q),

gy
Q = −2y(Q) − a1x(Q) − a3,

uQ = (gy
Q)2, vQ =

{
gx

Q if 2Q = OE ,

2gx
Q − a1g

y
Q else,

v =
∑

Q∈S

vQ, w =
∑

Q∈S

(uQ + x(Q)vQ),

A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5v, A6 = a6 − (a2
1 + 4a2) − 7w.

Then the separable isogeny ϕ with domain E and kernel C has codomain E′ =
E/C with Weierstrass equation

E′ : y2 + A1xy + A3y = x3 + A2x
2 + A4x + A6 (2)

over K. Furthermore, for P ∈ E we can compute the image of P as

x(ϕ(P)) = x(P) +
∑

Q∈C\{OE}
(x(P + Q) − x(Q))

y(ϕ(P)) = y(P) +
∑

Q∈C\{OE}
(y(P + Q) − y(Q)).

Proof. See [28]. �

1 Up to post-composition with an isomorphism.

498 W. Castryck et al.

2.2 Division Polynomials

Let E/K be defined by y2+a1xy+a3y = x3+a2x
2+a4x+a6, and let b2 = a2

1+4a2,
b4 = 2a4 + a1a3, b6 = a2

3 + 4a6, b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4. For all
integers N ≥ 0, the N -division polynomial is given by

ΨE,0 = 0, ΨE,1 = 1, ΨE,2 = 2y+a1x+a3, ΨE,N = t ·
∏

Q∈(E[N]\E[2])/±
(x−x(Q)),

where t = N if N is odd and t = N
2 ·ΨE,2 if N is even. By definition, we have that

for any non-trivial P ∈ E[N], ΨE,N (P) = 0. The division polynomials satisfy
the following recurrence relation which allows them to be computed efficiently:

ΨE,3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x + b8

ΨE,4

ΨE,2
= 2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x + (b4b8 − b26)

ΨE,2N+1 = ΨE,N+2Ψ
3
E,N − ΨE,N−1Ψ

3
E,N+1 if N ≥ 2

ΨE,2N =
ΨE,N

ΨE,2
(ΨE,N+2Ψ

2
E,N−1 − ΨE,N−2Ψ

2
E,N+1) if N ≥ 3.

Note that Ψ2
E,2 = 4x3 +(a2

1 +4a2)x2 +(2a1a3 +4a4)x+a2
3 +4a6, i.e. a univariate

polynomial in x.
If one is interested in points of exact order N (so not just in E[N]), then one

can use the reduced N -division polynomial ψE,N defined as

ψE,N =
ΨE,N

lcmd|N,d �=N{ΨE,d} .

For all primes �, we have that ΨE,� = ψE,�. Note that for N > 2, the reduced
N -division polynomial of an elliptic curve E is a univariate polynomial in x.

The multiplication by N -map can be expressed explicitly using division poly-
nomials as follows [23, Exercise 3.6]:

[N]P =
(

φE,N (P)
ΨE,N (P)2

,
ωE,N (P)
ΨE,N (P)3

)

, (3)

with φE,N = xΨ2
E,N −ΨE,N+1ΨE,N−1 and ωE,N = 1

2ΨE,N
(ΨE,2N −ΨE,N (a1φE,N +

a3Ψ
2
E,N)).

2.3 The Tate Normal Form

We will be interested in elliptic curves E over K with a distinguished point
P ∈ E(K) of some finite order N . By translating this point to (0, 0) and requiring
that the tangent line is horizontal, and with proper scaling, one can easily prove
the following lemma; we refer to [25, Lem. 2.1] for further details.

Radical Isogenies 499

Lemma 2. Let E be an elliptic curve over K and let P ∈ E(K) be a point of
order N ≥ 4, then (E,P) is isomorphic to a unique pair of the form

E : y2 + (1 − c)xy − by = x3 − bx2, P = (0, 0) (4)

with b, c ∈ K and

Δ(b, c) = b3(c4 − 8bc2 − 3c3 + 16b2 − 20bc + 3c2 + b − c) �= 0 .

The resulting curve-point pair is said to be in Tate normal form.
Given a Tate normal form, the first few scalar multiples of P = (0, 0) are

given by simple expressions in b and c, e.g.

2P = (b, bc), 3P = (c, b − c), −P = (0, b), −2P = (b, 0), −3P = (c, c2) .

Higher multiples can be computed using (3). Using these multiples, for each
N ≥ 4 one can write down an irreducible polynomial FN (b, c) ∈ Z[b, c] whose
vanishing, along with the non-vanishing of Δ(b, c) and of Fm(b, c) for 4 ≤ m < N ,
expresses that P has exact order N . For instance, for N = 4 we find the equation
F4(b, c) = c = 0, by imposing that 3P = −P . Similarly, for N = 5 we find
F5(b, c) = c − b = 0 and for N = 6 we find F6(b, c) = c2 + c − b = 0. Further
examples can be found in Table 1 below. Alternatively, the polynomial FN (b, c)
can be recovered as a factor of the constant term of the N -division polynomial
of the curve (4), when considered over the rational function field Q(b, c). This is
the approach taken in [25, §2], to which we refer for more details.

Remark 3. Up to birational equivalence, FN (b, c) is a defining polynomial for
the modular curve X1(N). See again [25] for more background.

2.4 The Tate Pairing

Given an elliptic curve E/K and an integer N ≥ 2, the Tate pairing is a bilinear
map

tN : E(K)[N] × E(K)/NE(K) → K∗/(K∗)N : (P1, P2) → tN (P1, P2)

which can be computed as follows. Consider a Miller function fN,P1 , i.e., a func-
tion on E with divisor N(P1) − N(OE). Let D be a K-rational divisor on E
that is linearly equivalent with (P2) − (OE) and whose support is disjoint from
{P1,OE}. Then tN (P1, P2) = fN,P1(D). If P1 �= P2 and the Miller function is
normalized, i.e., the leading coefficient of its expansion around OE with respect
to the uniformizer x/y equals 1 (we are assuming that E is in Weierstrass form),
then one can simply compute tN (P1, P2) as fN,P1(P2).

For certain instances of K, the Tate pairing is known to be non-degenerate,
meaning that for each P1 ∈ E(K)[N] \ {OE} there exists a P2 ∈ E(K)/NE(K)
such that tN (P1, P2) �= 1, and vice versa. Most notably, this is true if K = Fq

is a finite field containing a primitive Nth root of unity ζN [15], i.e., for which
N | q − 1.

500 W. Castryck et al.

Another important feature is that the Tate pairing is compatible with iso-
genies, in the following sense: if ϕ : E → E′ is an isogeny over K then the rule
tN (ϕ(P1), P ′

2) = tN (P1, ϕ̂(P ′
2)) applies. In particular we have

tN (ϕ(P1), ϕ(P2)) = tN (P1, P2)deg(ϕ)

for all P1 ∈ E(K)[N] and P2 ∈ E(K)/NE(K). For a proof of this compatibility
we refer to [4, Thm. IX.9], which assumes ζN ∈ K, but this condition can be
discarded (it is not used in the proof).

2.5 Simple Radical Extensions

Following [10], we say that a field extension K ⊂ L is simple radical of degree
N ≥ 2 if there exists an α ∈ L such that (i) L = K(α), (ii) ρ := αN ∈ K, and
(iii) xN − ρ ∈ K[x] is irreducible. Property (iii) can be verified easily using the
following theorem.

Theorem 4. Let K be a field, consider an integer N ≥ 2, and let ρ ∈ K∗.
Assume that for all primes m | N we have ρ /∈ Km. If 4 | N , assume moreover
that ρ /∈ −4K4. Then the polynomial xN − ρ ∈ K[x] is irreducible.

Proof. See [17, Thm. VI.9.1]. �

We will usually write L = K(N
√

ρ), although it should be noted that N
√

ρ
is only well-defined up to multiplication by ζi

N for some i ∈ {0, 1, . . . , N − 1}.
Apart from this subtlety, we note that the field K(N

√
ρ) does not change if we

multiply ρ with the Nth power of an element of K∗, or if we raise ρ to some
power that is coprime with N .

Remark 1. If K ⊂ L is simple radical of degree N and if charK � N , then the
Galois closure of L over K is obtained by adjoining a primitive Nth root of unity
ζN , and

Gal(L(ζN)/K) = Gal(L(ζN)/K(ζN)) � Gal(L(ζN)/L)

where the first factor is cyclic of order N . In particular, if ζN ∈ L then L is
Galois over K with cyclic Galois group. Kummer theory provides a converse
statement [24, Lem. 9.13.1].

2.6 CSIDH

We briefly review the CSIDH key agreement protocol, which is our main appli-
cation of radical isogenies. Let Fp be a large finite field with p = c�1�2 · · · �r − 1,
where the �i are small distinct primes and where c is some small cofactor. Alice
and Bob agree on an order O ⊂ Q(

√−p) containing Z[
√−p], and they con-

sider the set E��p(O) = E��p(O, 0) of elliptic curves E/Fp whose endomorphism
ring EndFp

E is isomorphic to O. Such curves are necessarily supersingular, and
without loss of generality it can be assumed that the isomorphism EndFp

E ∼= O
identifies the Frobenius endomorphism πp on E with

√−p.

Radical Isogenies 501

To any E ∈ E��p(O) and any invertible ideal a ⊂ O one can, using the above
isomorphism, associate the finite subgroup

E[a] =
⋂

α∈a

ker α ⊂ E.

It turns out that the isogenous curve E/E[a] is again contained in E��p(O) and
that it depends on the class [a] of a only; furthermore, this defines a free and
transitive action of the ideal-class group cl(O) on E��p(O). The key agreement
then works as follows: Alice and Bob agree on a starting curve E ∈ E��p(O),
then both sample a secret ideal-class [a] resp. [b], compute the isogenous curves
E/E[a] resp. E/E[b], and exchange the outcomes. Both parties can now compute
E/E[ab] by acting with their own secret ideal-class on the other party’s curve.

In order for this to be practical, Alice and Bob should sample a, b as products
of ideals of the form (�i,

√−p − 1)ei , whose action corresponds to a chain of
|ei| easy-to-compute �i-isogenies; this is also true if ei < 0, in which case one
considers the equivalent ideal (�i,

√−p+1)|ei|. The prime �i = 2 requires special
treatment: it should be skipped unless p ≡ 7 mod 8 and O is the maximal order,
in which case one considers (2, (

√−p − 1)/2) resp. (2, (
√−p + 1)/2) instead of

the principal ideals (2,
√−p − 1), (2,

√−p + 1).

3 Existence of Radical Isogeny Formulae

In this section we prove the existence of radical isogeny formulae, without deriv-
ing these formulae explicitly. The explicit derivation for small N , including the
cases N = 2, 3, is given in the next section. As such, we assume N ≥ 4 and
consider the ‘universal’ Tate normal curve

E : y2 + (1 − c)xy − by = x3 − bx2

over the field

QN (b, c) := Frac
Q[b, c]

(FN (b, c))
,

so that the base point P = (0, 0) has order N . Note that QN (b, c) is simply the
function field of X1(N) over Q. Let ϕ : E → E′ be the isogeny with kernel 〈P 〉;
for concreteness it can be assumed that the codomain curve E′ is given by Eq. (2)
provided by Vélu’s formulae, although this is not needed for what follows.

Recall that we are interested in those points P ′ ∈ E′ for which the composi-
tion

E
ϕ→ E′ → E′/〈P ′〉

is a cyclic N2-isogeny. It is easy to check that these points are characterized by
the condition

ϕ̂(P ′) = λP for some λ ∈ (Z/N)∗, (5)

with ϕ̂ : E′ → E the dual of ϕ. In particular, there are Nφ(N) such points,
generating N distinct subgroups of E′, where φ denotes Euler’s totient function.

502 W. Castryck et al.

The points corresponding to λ = 1 will be called P -distinguished; they can be
viewed as a set of canonical generators for these subgroups.

Define
ρ := fN,P (−P) (6)

where the Miller function fN,P on E is assumed to be normalized, so that ρ
is just tN (P,−P) when considered modulo Nth powers in QN (b, c)∗. The main
result of this section is:

Theorem 5. Let P ′ ∈ E′ be a point satisfying (5). Then the field extension
QN (b, c) ⊂ QN (b, c)(P ′), obtained by adjoining the coordinates of P ′, is sim-
ple radical of degree N . More precisely, QN (b, c)(P ′) = QN (b, c)(N

√
ρ) for an

appropriately chosen N th root N
√

ρ of ρ = fN,P (−P).

Proof. The fibre ϕ̂−1{λP} decomposes as a union of orbits under the action
of the absolute Galois group of QN (b, c), together containing N elements. One
of these orbits contains P ′. Its number of elements equals the degree of the
corresponding closed point, which in turn equals the degree of the extension
QN (b, c) ⊂ QN (b, c)(P ′). In particular, this extension has degree at most N . On
the other hand, by Lemma 6 below, the extension QN (b, c) ⊂ QN (b, c)(N

√
ρ) is

of degree precisely N . Therefore, it suffices to prove that QN (b, c)(P ′) contains
an Nth root of ρ.

To this end we consider α := fN,P ′(−P ′) ∈ QN (b, c)(P ′), where the Miller
function fN,P ′ is again assumed normalized, and we let μ be such that λ2μ ≡
1 mod N . Modulo Nth powers in QN (b, c)(P ′)∗ we have

(αμ)N = tN (P ′,−P ′)Nμ = tN (ϕ̂(P ′),−ϕ̂(P ′))μ

= tN (λP,−λP)μ = tN (P,−P)λ2μ = ρ,

showing that ρ is indeed the Nth power of some element of QN (b, c)(P ′). �

Lemma 6. The polynomial xN − ρ ∈ QN (b, c)[x] is irreducible.

Proof. According to Theorem 4 it suffices to prove:

(i) for all primes m | N we have ρ /∈ QN (b, c)m,
(ii) if 4 | N then ρ /∈ −4QN (b, c)4.

Let p ≡ 1 mod 2N be a prime number such that 4
√

p > N2. Then the Hasse
interval [p+1−2

√
p, p+1+2

√
p] contains the integers λN for N consecutive values

of λ. At least one of these values satisfies gcd(λ,N) = 1. By [27, Thm. 2.4.31]
there exists an elliptic curve E/Fp such that E(Fp) ∼= Z/(λN), so in particular
E(Fp)[N∞] ∼= Z/(N). Without loss of generality we can assume that E is in
Tate normal form, say with coefficients b, c ∈ Fp, and that P = (0, 0) is a point
of order N on E.

Then, in order to prove (i), assume that ρ ∈ QN (b, c)m for some prime divisor
m | N . Since Miller functions are compatible with reduction mod p and with

Radical Isogenies 503

specialization at b, c ∈ Fp (this follows, for instance, from Miller’s algorithm),
we find that

tN (P , [−N/m]P) = tN (P ,−P)N/m = 1,

in turn implying that tN (Q, [−N/m]P) = 1 for all Q ∈ E(Fp)[N]. This contra-
dicts the non-degeneracy of the Tate pairing over Fp (which contains all Nth
roots of unity by our choice of p). Indeed, [−N/m]P is a non-trivial element of
E(Fp)/NE(Fp).

As for (ii): if 4 | N then p ≡ 1 mod 8, from which it follows that −1 and
4 are 4th powers in Fp, in particular the same holds for −4. As above, if ρ ∈
−4QN (b, c)4 then we can conclude that

tN (P , [−N/4]P) = tN (P ,−P)N/4 = 1,

again contradicting the non-degeneracy of the Tate pairing. �

An immediate consequence of Theorem 5 is that for each point P ′ = (x′
0, y

′
0)

satisfying (5) there exist concrete algebraic formulae

x′
0(b, c, N

√
ρ), y′

0(b, c, N
√

ρ) (7)

for its coordinates: these are the radical isogeny formulae we are after. Note that,
in order to find these formulae explicitly, it suffices to consider the cases where P ′

is P -distinguished, i.e., where λ = 1. Indeed, all other cases are then dealt with by
feeding these formulae to the multiplication-by-λ map from (3). Experimentally,
it seems that the P -distinguished case yields the simplest formulae.

Remark 2. Our choice of radicand ρ = fN,P (−P) is somewhat arbitrary: any
representant of tN (P, μP) for any μ ∈ (Z/N)∗ would have worked equally well,
with the same proofs. This reflects the fact that scaling ρ by Nth powers, or
raising ρ to an exponent that is coprime with N , results in the same simple
radical extension.

Given the coordinates of a P -distinguished point P ′, all other P -distinguished
points are found by varying the choice of N

√
ρ :

Lemma 7. Let λ ∈ (Z/N)∗ and consider formulae of the form (7) expressing
the coordinates of a point P ′ such that ϕ̂(P ′) = λP . Then, by varying the choice
of the N th root N

√
ρ , i.e., by scaling it with ζi

N for i = 0, 1, . . . , N − 1, these
formulae compute the coordinates of all points P ′ for which ϕ̂(P ′) = λP .

Proof. From the proof of Theorem 5 it follows that ϕ̂−1{λP} consists of a single
Galois orbit, which implies our claim. �

For the applications we have in mind, we want to interpret the formulae
(7) in some concrete field K, with the indeterminates b, c replaced by concrete
elements b, c ∈ K. It follows from general principles in algebraic geometry that
these specialized formulae continue to produce the coordinates of a point P ′

defining a cyclic N2-isogeny, with the possible exception of finitely many field
characteristics p > 0 and finitely many (b, c) ∈ K2. Loosely based on good
reduction arguments from the theory of modular curves, we actually believe:

504 W. Castryck et al.

Conjecture 1. The formulae (7) are compatible with specialization to all fields
K satisfying char K � N and to all elements b, c ∈ K satisfying FN (b, c) = 0,
Δ(b, c) �= 0 and Fm(b, c) �= 0 for all 4 ≤ m < N (in other words, to all b, c for
which y2 +(1− c)xy − bx = x3 − bx2 is an elliptic curve on which P = (0, 0) has
exact order N).

It is easy to confirm this conjecture for small values of N , by explicitly
factoring the N -division polynomial of E′: this is the approach followed in the
next section, leading to explicit expressions for the formulae (7). In particular,
the above conjecture does not affect any of our conclusions in Sects. 5 and 6,
which are based on radical N -isogenies for these small values of N only. But
from a purely mathematical point of view, we leave the validity of Conjecture 1
as an interesting open question.

We conclude by recalling that by rewriting (E′, P ′) in Tate normal form, one
obtains a curve equation

y2 + (1 − c′)xy − b′x = x3 − b′x2

where now
b′(b, c, N

√
ρ), c′(b, c, N

√
ρ) (8)

are certain algebraic expressions in b, c, N
√

ρ . The formulae (8) can be applied
iteratively, effectively allowing to compute a cyclic Nk-isogeny for arbitrary k
without needing to explicitly generate points of order N in each step.

4 Explicit Radical Isogeny Formulae in Low Degree

In this section, we explain how to find concrete formulae of the forms (7) and (8)
for small values of N , by factoring the reduced N -division polynomial of E′ with
the help of Magma [5]. As a by-product, we get a confirmation of Conjecture 1
in these cases. In particular, throughout this section, we work over an arbitrary
field K with char K � N .

We first deal with the cases N = 2, 3, which require to use a different curve
model. We note however that the same principles, in particular using the Tate
pairing, also applies in these cases.

Case N = 2. Since char K �= 2, we can assume that E : y2 = x3 + a2x
2 + a4x

for a2, a4 ∈ K and P = (0, 0). A simple calculation shows that the isogenous
curve E/〈P 〉 can be given by

E′ : y2 = x3 − 2a2x
2 + (a2

2 − 4a4)x .

The dual isogeny corresponds to quotienting out (0, 0) on E′, so any other point
of order 2 on E′ is a suitable instance of P ′; note that it is automatically P -
distinguished. If we define ρ = a4 and α =

√
ρ, then these points are of the

form
P ′ = (a2 + 2α, 0) ,

Radical Isogenies 505

and by translating P ′ to (0, 0), we find the isomorphic model E′ : y2 = x3 +
a′
2x

2 + a′
4x, where

a′
2 = 6α + a2 and a′

4 = 4a2α + 8a4. (9)

We are now ready to repeat the whole process, since we can divide out by (0, 0)
again.

Remark 3. We cannot use f2,P (−P) as an instance of ρ in this case, since
P = −P . Nevertheless, the reader can check that ρ = a4 is a representant
of t2(P,−P).

Case N = 3. By requiring that the inflexion point P = (0, 0) has a horizontal
tangent line, we can assume that E : y2+a1xy+a3y = x3 for certain a1, a3 ∈ K.
Vélu’s formulae yield

E′ : y2 + a1xy + a3y = x3 − 5a1a3x − a3
1a3 − 7a2

3

as a defining equation for E/〈P 〉. The 3-division polynomial of E′ splits as

ΨE′,3(x) = 3(x + a2
1/3)(x3 − 9a1a3x − a3

1a3 − 27a2
3),

and one checks through explicit computation that the linear factor is the kernel
polynomial of the dual isogeny. Therefore, any root of the cubic factor is the
x-coordinate of a P -distinguished point P ′. Letting ρ = f3,P (−P) = −a3 and
writing α = 3

√
ρ, this cubic factor splits as

(x + a1α − 3α2)(x2 + (−a1α + 3α2)x + a2
1α

2 − 3a1a3 − 9a3α)

(note that it splits completely over K(ζ3) in view of Remark 1 and/or Lemma 7).
Thus we can take x′

0 = −a1α + 3α2 and then one checks that y′
0 = 4a3 is the y-

coordinate of the corresponding P -distinguished point P ′ = (x′
0, y

′
0). Translating

P ′ to (0, 0) yields a model

E′ : y2 + a′
1xy + a′

3y = x3,

with a′
1 = −6α + a1 and a′

3 = 3a1α
2 − a2

1α + 9a3, and we can repeat. We recall
that the simple radical nature of iterated 3-isogenies is not a new observation,
see [12,14].

Case N = 4. For N ≥ 4 we switch to the Tate normal form as in Sect. 3.
Concretely, for N = 4 we have F4(b, c) = c = 0 so we obtain the defining
equation E : y2 + xy − by = x3 − bx2. From Vélu’s formulae we find

E′ : y2 + xy − by = x3 − bx2 + (−5b2 + 5b)x + (−3b3 − 12b2 + b)

as a defining equation for E/〈P 〉, with reduced 4-division polynomial

ψE′,4(x) = 2 · (x + b + 1/2) · (x − 7b) · (x4 + 4bx3 + (6b2 + 24b)x2

+ (4b3 − 80b2 + 8b)x + b4 + 152b3 − 8b2 + b).

506 W. Castryck et al.

The first linear factor corresponds to the x-coordinate of a generator of the
dual isogeny. The second linear factor corresponds to the x-coordinate of a 4-
torsion point Q such that 2Q is in the kernel of the dual isogeny. Any root
of the quartic factor is the x-coordinate of a P -distinguished point P ′. Letting
ρ = f4,P (−P) = −b and writing α = 4

√
ρ, one can verify that

P ′ = (4α3 + 2α2 + α − b, 2α3 + α2 − 8bα − 7b)

is such a P -distinguished point. Translating P ′ to (0, 0) we find an isomorphic
model of E′ given by

E′ : y2 + xy − b′y = x3 − b′x2, (10)

with

b′ = −α(4α2 + 1)
(2α + 1)4

This formula can be applied iteratively.

Case N = 5. For N = 5 we have F5(b, c) = b− c = 0, so we obtain the defining
equation E : y2 + (1 − b)xy − by = x3 − bx2. Vélu’s formulae yield

E′ : y2 +(1−b)xy−by = x3 −bx2 −5b(b2 +2b−1)x−b(b4 +10b3 −5b2 +15b−1)

as a defining equation for the codomain of ϕ : E → E/〈P 〉. The 5-division
polynomial of E′ can be verified to split as

ΨE′,5(x) = 5 · (x2 + (b2 − b + 1)x + (b4 + 3b3 − 26b2 − 8b + 1)/5)

· (x5 + 10bx4 − 5b(b2 + b − 11)x3 − 5b(17b3 + 24b2 + 46b − 7)x2

− 5b(b5 + 62b4 + 154b3 − 65b2 + 19b − 2)x

− b(b7 − 19b6 + 777b5 − 757b4 + 755b3 + 2b2 + 17b − 1))

· (x5 − 15bx4 − 5b(11b2 − 9b − 1)x3 − 5b2(7b3 + 13b2 − 13b + 20)x2

− 5b2(2b5 + 5b4 + 6b3 + 196b2 − 99b + 1)x

− b2(b7 + 7b6 − 62b5 + 605b4 − 127b3 + 1177b2 + 14b + 1))

where the quadratic polynomial factor is the kernel polynomial of the dual
isogeny. The roots of the first quintic factor are the x-coordinates of the P -
distinguished points. Those of the second quintic factor are the x-coordinates
of the points P ′ for which ϕ̂(P ′) = 2P (i.e., the doubles of the P -distinguished
points). Concretely, letting ρ = f5,P (−P) = b and writing α = 5

√
ρ, the first

quintic factor admits the root

x′
0 = 5α4 + (b − 3)α3 + (b + 2)α2 + (2b − 1)α − 2b

Radical Isogenies 507

(with all other roots obtained by scaling α with powers of ζ5) and then one can
check that

y′
0 = 5α4 + (b − 3)α3 + (b2 − 10b + 1)α2 + (13b − b2)α − b2 − 11b

is the y-coordinate of the corresponding P -distinguished point P ′. Translating
P ′ to (0, 0), we obtain the isomorphic form

E′ : y2 + (1 − b′)xy − b′y = x3 − b′x2,

where

b′ = α
α4 + 3α3 + 4α2 + 2α + 1
α4 − 2α3 + 4α2 − 3α + 1

and again we can repeat.

Case N = 6. For N = 6 we have F6(b, c) = c2 + c − b = 0, so we work with
E : y2 + (1 − c)xy − (c2 + c)y = x3 − (c2 + c)x2. Vélu’s formulae yield

y2 + (1 − c)xy − (c2 + c)y = x3 − (c2 + c)x2

− (15c4 + 20c3 + 5c2 − 5c)x − (19c6 + 33c5 + 18c4 + 22c3 + 14c2 − c)

as a model for E′ = E/〈P 〉. Its reduced 6-division polynomial ψE′,6(x) behaves
much like in the degree 4 case: there is a unique interesting factor

x6 + 6c(2c+ 3)x5 + 3c(20c3 + 33c2 + 55c+ 37)x4

+ 4c(40c5 + 18c4 − 237c3 − 301c2 − 63c+ 28)x3

+ 3c(80c7 − 168c6 − 1029c5 − 1028c4 − 333c3 − 202c2 − 93c+ 18)x2

+ 6c(32c9 − 192c8 + 718c7 + 3131c6 + 3186c5 + 847c4 − 196c3 − 69c2 − 22c+ 2)x

+ c(64c11 − 720c10 + 10740c9 + 38500c8 + 46773c7 + 31142c6

+ 17983c5 + 7506c4 + 901c3 + 13c2 − 18c+ 1)

whose roots are the x-coordinates of the P -distinguished points P ′ ∈ E′. Letting
ρ = f6,P (−P) = −b2/c = −c(c + 1)2 and writing α = 6

√
ρ, one checks that

x′
0 =

6
c + 1

α5 +
4

c + 1
α4 + 3α3 + 2α2 − (3c − 1)α − 2c2 − 3c

is such a root; all other roots are found by scaling α with some power of ζ6. One
then verifies that

y′
0 =

3c + 9
c + 1

α5+
2c + 6
c + 1

α4−(12c−3)α3−(17c−1)α2−(15c2+19c)α−c3−18c2−16c

is the y-coordinate of the corresponding P -distinguished point P ′. When writing
(E′, P ′) in Tate normal form, we find

E′ : y2 + (1 − c′)xy − (c′2 + c′)y = x3 − (c′2 + c′)x2

508 W. Castryck et al.

with

c′ =
1

(c + 1)(9c + 1)3
(
(729c3 + 243c2 + 243c − 39)α5 − (108c2 + 216c − 20)α4

− (729c4 + 729c3 + 81c2 − 165c + 10)α3 + (108c3 − 36c2 − 140c + 4)α2

+ (729c5 + 1215c4 + 486c3 + 114c2 + 113c − 1)α − 108c4 − 36c3 − 4c2 − 76c
)
.

Once again, this formula can be applied iteratively.

Radical Isogenies of Degree N ≥ 7. A similar reasoning can be made for
N ≥ 7, but a direct factorization of the reduced N -division polynomial of E′

over QN (b, c)(N
√

ρ) quickly becomes unwieldy, for several reasons: the coefficients
of E′ become more involved, the degree of ψE′,N grows quadratically, and both
ρ and the base field QN (b, c) become increasingly complicated, see Table 1. For
instance, from N = 7 onwards it is no longer possible to eliminate one of the
variables b, c using the relation FN (b, c) = 0. As long as the modular curve X1(N)
has genus 0, it is possible to get around this by using a different parametrization,
see Table 2, but for N = 11 and N ≥ 13 this is no longer the case.

An approach that already works much better is to use number fields, i.e.
assign a large enough integer value to b, construct the number field defined by
FN (b, c) = 0 and the degree N extension by adjoining N

√
ρ . The root of ψE′,N (x)

is an expression in c and N
√

ρ with rational coefficients. We know that each such
coefficient is a rational function in b, so if b is large enough, this function can
be found using lattice reduction. The most effective method is similar to the
previous method, but uses p-adic fields instead of number fields. Again we need
to choose a “large enough” value for b and a large enough precision with which
we represent the p-adic field, to be able to reconstruct the rational function in
b. We followed this approach for N = 13, since Magma struggles to find the
formulae using direct root finding. All formulae for N = 2, . . . , 13 can be found
online at https://github.com/KULeuven-COSIC/Radical-Isogenies.

5 Isogeny Chains over Finite Fields

In this section we use our iterable radical isogeny formulae of the form (8) to
compute chains of N -isogenies between elliptic curves over finite fields Fq with
char Fq � N ; the application to CSIDH is given in Sect. 6. Here we just concen-
trate on the computation of long chains of N -isogenies for some fixed N ≥ 2,
and address the following two issues. Firstly, the radicand ρ might not admit an
Nth root over Fq: in the worst case, this could mean that at every iteration we
need to replace the base field with a degree N extension. Secondly, over Fq there
are N choices for N

√
ρ , hence the question arises which root to take if we want

to navigate the N -isogeny graph in a controlled way. We discuss three special
cases given by gcd(q − 1, N) = 1, gcd(q − 1, N) = N and gcd(q − 1, N) = 2.

https://github.com/KULeuven-COSIC/Radical-Isogenies

Radical Isogenies 509

Table 1. Relations FN (b, c) = 0 and radicands ρ for small N ≥ 4

N Polynomial relation FN (b, c) = 0 Radicand ρ = fN,P (−P)

4 c = 0 −b

5 c − b = 0 b

6 c2 + c − b = 0 −b2/c

7 c3 + cb − b2 = 0 b3/c2

8 c2b − c2 + 3cb − 2b2 = 0 −b3/(b − c)

9 c5 + c4 − c3b + c3 − 3c2b + 3cb2 − b3 = 0 b3c2/(b − c)2

10 c5 + c4b + 3c3b − 3c2b2 + c2b − 2cb2 + b3 = 0 −b3c/(c2 + c − b)

11 c7b + 3c6b − c6 − 3c5b2 + 6c5b − 9c4b2

+ 4c3b3 + c3b2 − 3c2b3 + 3cb4 − b5 = 0
b3(b − c)2/(c2 + c − b)2

12 c6 + c4b + c4 − 5c3b − c2b3

+ 10c2b2 − 9cb3 + 3b4 = 0
−b4(b − c)/(b2 − bc − c3)

13 c10 − c9b2 − 6c8b2 + 6c8b + 5c7b3 − 21c7b2

+ 3c7b + 24c6b3 − 13c6b2 + c6b − 9c5b4 +
21c5b3 − 6c5b2 − 15c4b4 + 15c4b3 + 4c3b5 −
20c3b4 + 15c2b5 − 6cb6 + b7 = 0

b5(c2 + c − b)2/(b2 − bc − c3)2

Table 2. Modular equations and radicands for low degree isogenies. The parameters r
and s are optimised representations of curves with a prescribed N -torsion point from
[26]. The transformations b = rs(r−1) and c = s(r−1) can be used to obtain the Tate
normal form E : y2 + (1 − c)xy − by = x3 − bx2, where P = (0, 0) is a point of order
N expressed by the modular equation.

N r s Modular equation Radicand ρ

6 A 1 – −r2(A − 1)

7 A A – r4(A − 1)

8 1
2−A

A – −(r2s)2(A − 1)

9 A2 − A + 1 A – r3s4(A − 1)

10 −A2

A2−3A+1
A – −r5s9(A − 1)(2A − 1)2

11 AB + 1 1 − A B2 +(A2 +1)B +A = 0 A(rsB)3

12 2A2−2A+1
A

3A2−3A+1
A2 – r4s3A11(A − 1)(2A − 1)2

13 1 − AB 1 − AB
B+1

B2 + (A3 + A2 + 1)B
−A2 − A = 0

−r5B(sA)3

510 W. Castryck et al.

5.1 The Case gcd(q − 1, N) = 1

The most straightforward case is gcd(q−1, N) = 1, where there is a very natural
choice for N

√
ρ . Indeed, in this case the map Fq → Fq : a → aN is a bijection,

so if the starting curve E : y2 + (1 − c)xy − by = x3 − bx2 is defined over Fq,
then so is ρ(b, c) and it admits a unique Nth root which is again defined over
Fq. Choosing this instance of N

√
ρ results in new coefficients b′, c′ ∈ Fq and the

argument repeats. Moreover, the Nth root can be computed as ρμ where μ is
such that μN ≡ 1 mod (q −1). Thus, the condition gcd(q −1, N) naturally pulls
out a chain of N -isogenies whose cost, at least for small N , is dominated by a
single Fq-exponentiation at each step.

Lemma 8. Assume that char Fq � N and gcd(q − 1, N) = 1, then EndFq
E is

an imaginary quadratic order which is locally maximal at all primes dividing N ,
and our chain of N -isogenies corresponds to the repeated action of the ideal class
[(N,πq − 1)].

Proof. Observe that

ker([N]) ∩ ker(πq − 1) = E(Fq)[N] = 〈P 〉 ,

where the last equality follows from gcd(q − 1, N) = 1 along with the fact that
P = (0, 0) is an Fq-rational point of order N . These properties also imply that

gcd(t2 − 4q,N) = gcd((q + 1 − |E(Fq)|)2 − 4q,N) = gcd((q − 1)2, N) = 1

with t the trace of Frobenius, showing that EndFq
E is indeed an imaginary

quadratic order which is locally maximal at all primes dividing N ; see [29, §4].
Thus the isogeny E → E′ = E/〈P 〉 is the horizontal isogeny corresponding to
the invertible ideal (N,πq − 1) ⊂ EndFq

E. Since such isogenies do not change
the structure of E(Fq), and since choosing the unique Fq-rational Nth root of ρ
clearly produces an Fq-rational point of order N , the reasoning can be repeated
and the lemma follows. �

Estimating the rough cost of an exponentiation as 1.5 log q multiplications in
Fq, our method should be compared with:

(i) generating an Fq-rational N -torsion point and applying (some form of)
Vélu’s formulae; the main cost in this approach is the generation of the
N -torsion point, which consists of generating a random point and multiply-
ing by the cofactor #E(Fq)/N , taking roughly 11 log q multiplications in Fq;
furthermore this procedure has to be repeated with probability 1/N , which
is non-negligible for small N ,

(ii) finding an Fq-rational root of ΦN (x, j(E)), with ΦN the classical modular
polynomial of level N ; this roughly amounts to computing xq modulo the
polynomial ΦN (x, j(E)), whose degree is at least N +1, so we estimate this
cost as 1.5(N + 1)2 log q multiplications in Fq.

However, for growing N it becomes unfair to measure the cost of a radical
isogeny by merely an exponentiation in Fq: the algebraic expressions for b′ and c′

Radical Isogenies 511

Table 3. The computational cost of radical N -isogenies over a finite field Fq. The
letters E,M,A and I denote exponentiation, multiplication, addition and inversion
respectively. The last column expresses the cost of the multiplications, additions and
inversions, relative to the total cost. The percentages are computed from the evaluation
of a chain of 10 000 horizontal N -isogenies over Fp, where p is the CSURF-512 prime
from [6].

Computational cost Relative cost of formulae evaluation

3-isogeny E + 6M + 3A 2.2 %

4-isogeny E + 4M + 3A + I 3.9 %

5-isogeny E + 7M + 6A + I 4.8%

7-isogeny E + 24M + 20A + I 10.1%

9-isogeny E + 69M + 58A + I 20.5%

11-isogeny E + 599M + 610A + I 67.7%

13-isogeny E + 783M + 776A + I 71.9%

in terms of b, c, N
√

ρ become increasingly complicated, and the cost of evaluating
these expressions quickly overtakes the cost of the exponentiation as shown in
Table 3. We also remark that the majority of the multiplications are with small
constants coming from the explicit formulae as illustrated in Sect. 4. The size of
these constants also grows with N , e.g. for N = 13 the constants have a size of
up to 14 bits.

A similar overhead is present in approach (ii) using modular polynomials
(where moreover one is left with the task of determining the correct twist),
which seems consistently outperformed by our radical isogeny formulae. As for
the basic approach (i) using Vélu’s formulae, it is shown in Table 4 that for
small N , radical isogenies are up to 50 times faster, the main reason being that
radical isogenies can be chained without explicitly generating a new N -torsion
point on each curve. From N ≈ 15 onwards, the overhead becomes so large that
radical isogenies become less efficient.

5.2 The Case gcd(q − 1, N) = N

At the other extreme, if N | q −1 then Fq contains a primitive Nth root of unity
ζN . As a consequence, if ρ ∈ F

∗
q admits an Nth root N

√
ρ ∈ Fq, then all Nth

roots are defined over Fq. But the probability that a random ρ ∈ F
∗
q admits an

Nth root in Fq is 1/N only, so one would expect that the base field needs to be
extended at most steps of the iteration.

The situation is much better in the following special case: let q = p2 for some
prime p ≡ −1 mod N , so that indeed N | q − 1, and let E/Fq be a supersingular
elliptic curve, say with |E(Fq)| = (p + 1)2. Such curves are used in the CGL
hash function and in SIDH, but since these rely exclusively on 2 and 3 isogenies
which are already heavily optimized, we do not expect any real improvement for
these applications. On these curves we have πq = [−p], from which it follows
that E[N] ⊂ E(Fq). Let P ∈ E be any point of order N , then we claim that
ρ = fN,P (−P) ∈ F

∗
q is an Nth power, i.e. tN (P,−P) = 1.

512 W. Castryck et al.

Table 4. Clock cycles (using Magma v2.32-2 on an Intel(R) Xeon(R) CPU E5-2630
v2 @ 2.60GHz with 128 GB memory) for an individual step in a horizontal N -isogeny
chain, basic Vélu approach vs. (unique) root of the modular polynomial vs. radical
isogenies averaged over a chain of 10 000 N -isogenies over the finite field Fp, where p
is the CSURF-512 prime from [6]. The probability of failure to sample an N -torsion
point for composite N is larger than 1/N , and the degree of the modular polynomial
scales faster for composite numbers, which explain the results for N = 4, 9 for the first
two methods. � The clock cycles for 4-isogenies for the first two methods are obtained
from random 4-isogenies instead of exclusively horizontal ones. Every curve has three
4-isogenous elliptic curves and identifying the correct one would require an additional
square-check (see Sect. 5.3).

Sampling N-torsion Isogenous curve Vélu Image of a pointModular polynomial Radical isogeny

3-isogeny 50,449,710 38,513 18,860 9,939,840 1,071,612

4-isogeny� 63,693,051 45,093 45,004 29,628,400 1,101,677

5-isogeny 41,519,930 140,968 33,453 19,943,602 1,086,011

7-isogeny 39,049,435 247,526 47,734 34,049,452 1,192,454

9-isogeny 47,994,892 319,695 70,899 76,299,055 1,304,341

11-isogeny 36,755,529 448,043 75,995 76,435,364 3,161,470

13-isogeny 36,252,253 548,833 90,168 147,552,105 3,626,544

To see this, note that the codomain of ϕ : E → E′ = E/〈P 〉 again sat-
isfies |E′(Fq)| = (p + 1)2 and therefore E′[N] ⊂ E′(Fq). In particular, any
P -distinguished point P ′ takes coordinates in Fq and we conclude

tN (P,−P) = tN (ϕ̂(P ′),−ϕ̂(P ′)) = tN (P ′,−P ′)N = 1 .

The argument of course repeats, so in this case one can keep applying our radical
isogeny formulae, choosing an Nth root of ρ at each iteration, without ever
leaving Fq. A performance comparison with the modular polynomial method (ii)
from the previous section can be found in Table 5.

5.3 The Case gcd(q − 1, N) = 2

An interesting intermediate case is gcd(q − 1, N) = 2, where an element ρ ∈ F
∗
q

is an Nth power if and only if it is a square. If it is, then it has exactly two
Nth roots ±N

√
ρ . If q ≡ 3 mod 4 then one of these Nth roots is a square and

one of them is not; they can be computed as ρμ resp. −ρμ, where μ is such that
μN ≡ 1 mod (q − 1)/2.

For N = 2, it was observed in [6] that this distinction allows for a controlled
navigation of the 2-isogeny graph of supersingular elliptic curves E over a finite
prime field Fp with p ≡ 7 mod 8. Concretely, such curves come in two types:
curves on ‘the floor’ have endomorphism ring Z[

√−p] and admit a unique Fp-
rational point of order 2, while curves on ‘the surface’ have endomorphism ring
Z[(1 +

√−p)/2] and have three distinguished Fp-rational points of order 2:

– P−, whose halves have x-coordinates that are not defined over Fp,
– P+

1 , whose halves are not defined over Fp, but their x-coordinates are,
– P+

2 , whose halves are defined over Fp

Radical Isogenies 513

Table 5. Clock cycles (using Magma v2.32-2 on an Intel(R) Xeon(R) CPU E5-2630 v2
@ 2.60 GHz with 128 GB memory) for an individual step in an N -isogeny chain, roots of
the modular polynomial vs. radical isogenies averaged over a chain of 1 000 N -isogenies
over finite fields Fp2 . The prime p = 2512 + ε was chosen per N -isogeny such that
p ≡ −1 mod N and such that p ≡ 3 mod 4, so that we could start from E : y2 = x3+x;
concretely, for N = 3, 4, 5, 7, 9, 11, 13 we took ε = 727, 75, 2743, 7471, 1147, 29607, 1147
respectively.

Modular polynomial Radical isogeny

3-isogeny 397,463,526 7,376,366

4-isogeny 705,256,757 29,128,205

5-isogeny 1,020,128,985 8,988,513

7-isogeny 1,889,168,090 8,973,325

9-isogeny 2,795,301,745 24,966,750

11-isogeny 3,827,699,588 12,707,001

13-isogeny 5,533,476,662 14,563,945

(see Fig. 1). Quotienting out P− takes us from the surface to the floor, while
quotienting out P+

1 and P+
2 amounts to traveling along the surface, using the

horizontal isogenies corresponding to the respective ideals (2, (
√−p + 1)/2),

(2, (
√−p − 1)/2) of Z[(1 +

√−p)/2], see [6, Lem. 5].

Lemma 9. If the curve point pair (E,P+
1) resp. (E,P+

2) is in the form (E,P)
with

E : y2 = x3 + a2x
2 + a4x, P = (0, 0), a2, a4 ∈ Fq

as in Sect. 4, then ρ = a4 is a square. Applying the iterative formulae (9) cor-
responds to the repeated action of [(2, (

√−p + 1)/2)] resp. [(2, (
√−p − 1)/2)] if

one consistently computes
√

ρ as −ρμ resp. ρμ.

Proof. The fact that ρ = a4 is a square follows from the proof of [6, Lem. 3].
From [6, Lem. 4] it follows that selecting −ρμ resp. ρμ corresponds to selecting
P ′+
1 resp. P ′+

2 on E′, which implies the lemma. Note that the other square root
of ρ corresponds to P ′− in both cases, taking us to the floor. �

The first observation, namely that ρ is a square, generalizes to all N satisfying
gcd(p − 1, N) = 2, where we continue to work over Fp with p ≡ 7 mod 8. More
precisely, consider a curve E on the surface, let us say in Tate normal form with
P = (0, 0) a point of order N ≥ 4. The cyclic N -isogeny ϕ : E → E′ = E/〈P 〉 is
the composition of a horizontal N/2-isogeny, i.e. to another curve on the surface,
and either (i) a horizontal 2-isogeny or (ii) a vertical 2-isogeny. Then we claim
that we are in case (i) if and only if ρ is a square. To see this, note that we are in
case (i) if and only if there exists a point P ′ ∈ E(Fp) such that the composition
of ϕ with E′ → E′/〈P ′〉 is cyclic of degree N2. If ρ is a square then the existence
of such a point simply follows from our radical isogeny formulae (7). Conversely,

514 W. Castryck et al.

E E′
P+

2P+
1

P−

P ′+
2P ′+

1

P ′−

Z

[
1+

√−p
2

]

Z[
√−p]

Fig. 1. A connected component of the 2-isogeny graph of supersingular elliptic curves
over Fp with p ≡ 7 mod 8, highlighting two elliptic curves on the surface together with
their three distinguished 2-torsion points and the corresponding 2-isogenies.

if there exists such a point P ′ then we necessarily have P = λϕ̂(P ′) for some
λ ∈ (Z/N)∗, and it follows from

tN (P,−P) = tN (λϕ̂(P ′),−λϕ̂(P ′)) = tN (P ′,−P ′)Nλ2

that ρ is a square.
Unfortunately, it seems harder to generalize the second observation, but

based on experiments we conjecture the following statement for N = 4, in which
case we can take μ = (p + 1)/8:

Conjecture 2. Assume that N = 4 and that (E,P) is in Tate normal form

y2 + xy − by = x3 − bx2, P = (0, 0), b ∈ Fp

as above. If the isogeny E → E/〈P 〉 is horizontal then ρ = −b is a square.
Moreover, applying the iterative formula (10) corresponds to the repeated action
of [(2, (

√−p − 1)/2)]2 if one consistently computes α = 4
√

ρ as −ρμ resp. ρμ,
depending on whether p ≡ 7 mod 16 resp. p ≡ 15 mod 16.

Note that we have just come to argue why ρ = −b is indeed a square. Also,
since P = (0, 0) ∈ E(Fp), we necessarily have that 2P equals P+

2 , the unique
point of order 2 whose halves are Fp-rational. As a result, since the isogeny
ϕ : E → E′ = E/〈P 〉 is cyclic and horizontal, it necessarily corresponds to the
action of [(2, (

√−p − 1)/2)]2. Therefore, the main open problem in proving the
conjecture is the last claim. So far, we did not succeed in giving a proof, nor did
we manage to generalize its statement to larger values of N .

6 Speeding up CSIDH

The core operation in CSIDH [7] is computing a composition of many horizontal
isogenies of small prime degree �i for i = 1, . . . , n, where the �i are typically
consecutive small primes starting from 2 or 3. The exact composition that needs
to be computed can be specified as an exponent vector [e1, . . . , en], where each

Radical Isogenies 515

ei ∈ [−Bi, Bi] indicates how many horizontal isogenies of degree �i have to be
computed. In practice often Bi = B for all i, where B is some fixed small value
such that (2B + 1)n > 22λ, with λ the (classical) security parameter. In the
previous section, we considered this problem for a single �i and showed that
generating a new �i-torsion point in every step is expensive.

In CSIDH this problem is (partly) remedied by chaining isogenies of distinct
degrees, i.e. computing a horizontal isogeny of degree N =

∏n
i=1 �δi

i where δi = 1
if |ei| > 1 and zero otherwise. Without loss of generality we will assume that
all δi = 1. Instead of generating an �i-torsion point in every step, one first
generates a point Q of order (possibly dividing) N and then pushes Q through
the isogeny chain. Denote with Qk = ϕk(Q) with ϕk the isogeny of degree
Nk =

∏k
i=1 �i, then if Q had order N at the start, Qk will have order Mk = N/Nk.

To generate a point of order �k+1 it therefore suffices to compute [Mk/�k+1]Qk,
which is much cheaper than a full scalar multiplication, certainly for larger k.
Note that in practice the original point P does not necessarily have order N , so
this procedure might skip a few �i. This method therefore amortizes the cost of
one full scalar multiplication (to generate the initial Q) over the different primes
�i, and only requires a multiplication by [Mk/�k+1] in step k. Table 4 shows that
pushing a point through an isogeny is a rather cheap operation, and the main
costs are still the generation of the initial Q’s and the scalar multiplications by
[Mk/�k+1]. Table 4 also shows that excluding the computation of an N -torsion
point, computing a radical isogeny of degree N is slower than a simple application
of Vélu’s formulae.

For the above approach, it is clear that the number of initial Q’s that need to
be generated is (at least) maxi Bi, so it typically does not make sense to sample
the exponent vectors from a very skew box, i.e. to take B1 � Bn, even though
computing an isogeny of degree �1 is much cheaper than computing an isogeny
of degree �n. However, using radical isogenies it does make sense to really skew
the box since for every prime �i one only needs to generate one Q.

Implementation

To illustrate this approach, we implemented a variant of CSIDH that also uses
radical isogenies to compute the class group action. Our implementation uses
Magma v.2.25-2 [5] and is available at https://github.com/KULeuven-COSIC/
Radical-Isogenies and builds upon the code from [1]. Concretely, for 128 bits of
classical security, consider the field Fp, with p the CSURF-512 prime from [6],
i.e.

p = 23 · 3 · (3 · . . . · 389)
︸ ︷︷ ︸

74 consecutive primes,
skip 347 and 359

− 1 ≈ 2512.

In the implementation of [1], the authors used Bi = 5 for all i, however using
radical isogenies we propose the skew box

I = [−202; 202] × [−170; 170] × [−95; 95] × [−91; 91] × [−33; 33]

×[−29; 29] × [−6; 6]20 × [−5; 5]14 × [−4; 4]10 × [−3; 3]10 × [−2; 2]8 × [−1; 1]7.

https://github.com/KULeuven-COSIC/Radical-Isogenies
https://github.com/KULeuven-COSIC/Radical-Isogenies

516 W. Castryck et al.

These vectors represent the action of classes of ideals of the form
(

2,

√−p − 1
2

)e1

(3,
√−p − 1)e2(5,

√−p − 1)e3 · · · (389,
√−p − 1)e75

on elements from the set of public keys S−
p = {A ∈ Fp | y2 = x3 + Ax2 −

x is a supersingular elliptic curve}. The set S−
p is in 1-to-1 correspondence with

Fp-isomorphism classes of supersingular elliptic curves, which allows for a slightly
easier key validation than using Montgomery curves. The set I contains approxi-
mately 2256 integer vectors, and just as in [7], we heuristically assume that these
vectors represent the elements in the class group quasi-uniformly.

The first step in computing the class group action is finding a 4-torsion point
P , such that if we compute the isogeny ϕ : E → E/〈2P 〉, it holds that ϕ(P)
has halves defined over Fp. In accordance with Conjecture 2 and the discussion
following it, this implies that the isogeny with kernel 〈P 〉 will then correspond

to the action of
(
2,

√−p−1
2

)2

. In order to iteratively compute this horizontal

4	e1/2
-isogeny, we first swap to the Tate normal form by translating P to (0, 0).
After iterating the 4-isogeny formula �e1/2� times, we perform a vertical isogeny
to a Montgomery representation of an elliptic curve on the floor. If e1 is odd, we
do a single horizontal 2-isogeny on the Montgomery curve, as explained in [1].

The rest of the computation is done on Montgomery curves on the floor for
two reasons. The first is that arithmetic on Montgomery curves is slightly more
efficient than arithmetic on curves represented by elements of S−

p . The second
reason is that, in order to compute 3-, 5-, 7-, 11- and 13-isogenies, we will need
to swap between elliptic curves in Tate normal form and Montgomery curves.
Computing the Montgomery representation of an elliptic curve is essentially
finding a two-torsion point, which in practice means finding a solution to a
cubic equation. If a cubic equation has three solutions, the explicit formulae to
compute any single one of them require going through a quadratic field extension,
even if all solutions are defined over the ground field.2 An elliptic curve on the
floor however, only has one nontrivial two-torsion point. In this case, the cubic
equation has exactly one solution over Fp, and the formula to find it does not
require field extensions.

We then compute a horizontal 3e2 -isogeny as follows. We first sample a 9-
torsion point and swap to the Tate normal form by translating this point to
(0, 0). Next, we calculate a 9	e2/2
−1-isogeny iteratively. We perform one last
9-isogeny using Vélu’s formulae on the Tate normal form with kernel generator
(0, 0), before swapping back to the Montgomery form of this curve. The reason
for this choice is that one more iteration of the formulae would be more expensive,
since we already know the final 9-torsion point and hence can simply use Vélu’s
formulae. If e2 is odd, we will compute this final 3-isogeny together with the
�-isogenies for � ≥ 17.

2 This is known as the casus irreducibilis, proven by Pierre Wantzel in the first half of
the 19th century.

Radical Isogenies 517

The �ei-isogenies for �ei = 5e3 , 7e4 , 11e5 , 13e6 are then iteratively computed
in a similar manner. We first compute an �-torsion point on a Montgomery curve
to swap to the Tate normal form. Next, we iterate the formulae for �-isogenies
ei −1 times, and the final �-isogeny is computed using Vélu’s formulae, at which
point we go back to the Montgomery representation of the curve. The only
noteworthy exception is that if |ei| = 1, we use the original computation of the
CSIDH class group action. The reason for this is that swapping to a Tate normal
form requires sampling an �-torsion point, which means it is more efficient to
perform this action together with the �-isogenies for � ≥ 17.

The rest of the �-isogenies for � ≥ 17 are performed as in [7], where opti-
mizations such as those of [1] can be applied. At the end, we perform one final
vertical isogeny to the surface to obtain a public key in S−

p .
We set the bound to swap to the new formulae of [1] at � > 113, since this is

the threshold where they start outperforming the formulae of [21] in Magma. The
box I from which the exponent vectors are sampled was obtained heuristically
over a large sample and is near optimal. Over a sample size of 100 000 class
group actions each, our variant of CSIDH results in a speed-up of 19% over the
one from [1]. We do note that this comparison is with respect to the CSIDH-512
parameter version, since the Magma code from [1] based on the CSURF-512
parameters did not seem to work. Since the CSIDH-512 parameters do not allow
horizontal 2-isogenies, a small part of our speed-up can be ascribed to the work
of [6].

7 Conclusion and Open Problems

Starting from a curve E with an N -torsion point P we have proved the existence
of explicit formulae for the isogenous curve E′ = E/〈P 〉 and the coordinates of a
point P ′ on E′ of order N , such that the composition of E → E′ = E/〈P 〉 with
E′ → E′/〈P ′〉 is cyclic of degree N2. This property implies that the formulae
can be used repeatedly to compute chains of N -isogenies without generating
N -torsion points in each step of the chain. Furthermore, the formulae, which we
have described explicitly for N ≤ 13, only involve basic arithmetic operations,
except for the extraction of an Nth root. We have implemented these formulae
and used them in two main applications: computing a chain consisting solely of
N -isogenies, where we obtained a speed-up ranging from a factor 29 for N = 7
to a factor 5 for N = 13, and an improved implementation of CSIDH which is
19% faster than the state of the art implementation.

Open Problems. The following problems remain open and are interesting
future work:

– Prove Conjecture 1, stating that our formulae have good reduction wherever
there is no obvious obstruction.

– Devise a more efficient method for explicitly finding the radical isogeny for-
mulae to avoid our current approach of factoring N -division polynomials as
in Sect. 4, which is a major bottleneck.

518 W. Castryck et al.

– Optimize our formulae, e.g. is it indeed true that the P -distinguished case
yields the most compact expressions? Using the relations αN = ρ(b, c) and
FN (b, c) = 0, using different instances of ρ, or using different parametrizations
of X1(N) as in Table 2 or [26], can we rewrite our formulae such that they
become more efficient?

– Prove Conjecture 2 on radical isogenies of degree N = 4 between supersingu-
lar elliptic curves over Fp with p ≡ 7 mod 8, and generalize it to larger even
values of N .

– Measure the impact of our work on constant-time implementations of CSIDH
and on the quantum circuits discussed in [3].

Acknowledgments. We are very grateful to Karl Rubin and Alice Silverberg who
provided insights on how an earlier approach to proving Theorem 5 using the theory
of modular curves was related to known results. We are also very much indebted to
Shahed Sharif whose remarks pointed us in the direction of the more direct approach
using Tate pairings presented above. We also thank several other attendants of the
online “Workshop on the Mathematics of Post-Quantum Crypto”, held during June
6–8, 2020, for further helpful feedback.

References

1. Bernstein, D., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. In: ANTS-XIV. Mathematical Sciences Publishers (2020)

2. Bernstein, D. J., Lange, T.: Montgomery curves and the Montgomery ladder. In:
IACR Cryptology ePrint Archive, p. 293 (2017) https://ia.cr/2017/293

3. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 409–441. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3 15

4. Blake, I.F., Seroussi, G., Smart, N.P. (eds.): Advances in elliptic curve cryptog-
raphy. London Mathematical Society Lecture Note Series, vol. 317. Cambridge
University Press, Cambridge (2005)

5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user
language. Journal of Symbolic Computation 24(3–4), 235–265 (1997)

6. Castryck, W., Decru, T.: CSIDH on the surface. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 111–129. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 7

7. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIA-
CRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03332-3 15

8. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. Journal of Cryptology 22(1), 93–113 (2007). https://doi.org/
10.1007/s00145-007-9002-x

9. Chi-Domı́nguez, J.-J., Rodŕıguez-Henŕıquez, F.: Optimal strategies for CSIDH.
Adv. Math. Commun. (2019)

10. Conrad, K.: Simple radical extensions. Expository paper. https://kconrad.math.
uconn.edu/blurbs/galoistheory/simpleradical.pdf

https://ia.cr/2017/293
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://kconrad.math.uconn.edu/blurbs/galoistheory/simpleradical.pdf
https://kconrad.math.uconn.edu/blurbs/galoistheory/simpleradical.pdf

Radical Isogenies 519

11. Couveignes, J.M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive, p.
291 (2006) https://ia.cr/2006/291

12. Dang, T., Moody, D.: Twisted Hessian isogenies. IACR Cryptology ePrint Archive,
2019, p. 1003 (2019) https://ia.cr/2019/1003

13. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11274, pp. 365–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03332-3 14

14. Lontouo, P.B.F., Fouotsa, E.: Analogue of Vélu’s formulas for computing isogenies
over Hessian model of elliptic curves. IACR Cryptology ePrint Archive, 2019, p.
1480 (2019) https://ia.cr/2019/1480

15. Hess, F.: A note on the Tate pairing of curves over finite fields. Archiv der Math-
ematik 82, 28–32 (2004)

16. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

17. Lang, S.: Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag,
New York, third ed. (2002) https://doi.org/10.1007/978-1-4613-0041-0

18. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 8

19. Moriya, T., Onuki, H., Takagi, T.: How to construct CSIDH on edwards curves. In:
Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 512–537. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40186-3 22

20. Nakagawa, K., Onuki, H., Takayasu, A., Takagi, T.: l1-norm ball for CSIDH: opti-
mal strategy for choosing the secret key space. IACR Cryptology ePrint Archive,
2020, p. 181 (2020) https://ia.cr/2020/181

21. Renes, J.: Computing isogenies between montgomery curves using the action of
(0, 0). In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp.
229–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 11

22. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive, 2006, p. 145 (2006) https://ia.cr/2006/145.pdf

23. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New
York (2009). https://doi.org/10.1007/978-0-387-09494-6

24. The Stacks project authors. The stacks project (2020) https://stacks.math.
columbia.edu

25. Streng., M.: Generators of the group of modular units for Γ1(N) over the rationals.
Cornell University arXiv:1503.08127v2 (2019)

26. Sutherland, A.: Constructing elliptic curves over finite fields with prescribed tor-
sion. Mathematics of Computation 81(278), 1131–1147 (2012)

27. Tsfasman, M.A., Vlǎduţ, S.G.: Algebraic-geometric codes, volume 58 of Mathe-
matics and its Applications (Soviet Series). Kluwer Academic Publishers Group,
Dordrecht, Translated from the Russian by the authors (1991)

28. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie des
Sciences, Série I(273), 238–241 (1971)

29. Waterhouse, W.C.: Abelian varieties over finite fields. Annales scientifiques de
l’École Normale Supérieure 2, 521–560 (1969)

https://ia.cr/2006/291
https://ia.cr/2019/1003
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://ia.cr/2019/1480
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/978-3-030-40186-3_22
https://ia.cr/2020/181
https://doi.org/10.1007/978-3-319-79063-3_11
https://ia.cr/2006/145.pdf
https://doi.org/10.1007/978-0-387-09494-6
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
http://arxiv.org/abs/1503.08127v2

Oblivious Pseudorandom Functions
from Isogenies

Dan Boneh1, Dmitry Kogan1(B), and Katharine Woo1,2

1 Stanford University, Stanford, CA, USA
{dabo,dkogan}@cs.stanford.edu

2 Princeton University, Princeton, NJ, USA
khwoo@princeton.edu

Abstract. An oblivious PRF, or OPRF, is a protocol between a client
and a server, where the server has a key k for a secure pseudorandom
function F , and the client has an input x for the function. At the end of
the protocol the client learns F (k, x), and nothing else, and the server
learns nothing. An OPRF is verifiable if the client is convinced that the
server has evaluated the PRF correctly with respect to a prior commit-
ment to k. OPRFs and verifiable OPRFs have numerous applications,
such as private-set-intersection protocols, password-based key-exchange
protocols, and defense against denial-of-service attacks. Existing OPRF
constructions use RSA-, Diffie-Hellman-, and lattice-type assumptions.
The first two are not post-quantum secure.

In this paper we construct OPRFs and verifiable OPRFs from iso-
genies. Our main construction uses isogenies of supersingular elliptic
curves over Fp2 and tries to adapt the Diffie-Hellman OPRF to that
setting. However, a recent attack on supersingular-isogeny systems due
to Galbraith et al. [ASIACRYPT 2016] makes this approach difficult to
secure. To overcome this attack, and to validate the server’s response,
we develop two new zero-knowledge protocols that convince each party
that its peer has sent valid messages. With these protocols in place, we
obtain an OPRF in the SIDH setting and prove its security in the UC
framework.

Our second construction is an adaptation of the Naor-Reingold PRF
to commutative group actions. Combining it with recent constructions
of oblivious transfer from isogenies, we obtain an OPRF in the CSIDH
setting.

1 Introduction

Let F : K×X → Y be a secure pseudorandom function (PRF) [30]. An oblivious
PRF, or OPRF, is a protocol between a client who has an input x ∈ X , and a
server who has a key k ∈ K. At the end of the protocol the client learns F (k, x)
and nothing else, and the server learns nothing at all [24,54]. Intuitively, an
OPRF needs to be secure against a malicious client who is trying to learn more
information about the server’s key k, and a malicious server who is trying to
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 520–550, 2020.
https://doi.org/10.1007/978-3-030-64834-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_18

Oblivious Pseudorandom Functions from Isogenies 521

learn more information about the client’s input x. Earlier works [24,41] defined
an OPRF as the secure computation of the above two-party functionality, and
Jarecki et al. [36,37] later gave strong but flexible security definitions for an
OPRF in the UC framework [13].

An OPRF is said to be verifiable if the server commits to its key k by publish-
ing some public parameters derived from k. At the end of the OPRF protocol,
the client should be convinced that the obtained value y ∈ Y satisfies y = F (k, x)
with respect to the server’s committed key k. One benefit of verifiability is that
it allows a group of clients to verify that the values they each obtain are all
consistent with the same PRF key. Without verifiability, in applications where
a client later reveals the obtained value to the server, a malicious server can link
values with previous evaluations by using a different key for each evaluation.

Oblivious PRFs have many real-world applications. They are used in private-
set-intersection protocols [41,46,47,58–60], in password-management systems
[23,37], in adaptive oblivious transfer [41], in de-duplication systems [44], in
password-authenticated key exchange [40], and are deployed at Cloudflare to
defend against Denial of Service attacks [21]. As a result, there is an ongoing
effort to standardize OPRFs at the Crypto Forum Research Group [20].

An OPRF can be built from general secure two-party computation. A much
simpler and widely used OPRF, called DH-OPRF, is built from a PRF whose
security is based on the Decisional Diffie-Hellman (DDH) assumption in the
random-oracle model. Let G be a cyclic group of prime order q, and let H :
X → G be a hash function. For k ∈ Zq and x ∈ X , the PRF is defined as
F (k, x) = H(x)k. This PRF is secure, assuming DDH holds in G and H is a
random oracle [53]. This PRF then supports the following OPRF protocol: a
client computes H(x), blinds it as u ← H(x)r for a random r ←R

Zq, and sends
u to the server. The server responds with v ← uk. The client then computes the
unblinded PRF value y ← v1/r = H(x)k. Appropriate modifications can make
this OPRF verifiable. Security of the resulting OPRF relies on the one-more
discrete-log assumption [7]. Jarecki et al. [36,37] showed this OPRF is secure in
the Universally Composable framework [13].

Another simple verifiable OPRF in the random-oracle model, called RSA-
OPRF, is derived directly from RSA blind signatures [7,17]. Since there are
quantum-polynomial-time algorithms for the DDH and RSA problems, neither
of these OPRFs is post-quantum secure.

Building an efficient post-quantum secure OPRF is more challenging. One
solution is to use a generic post-quantum secure two-party-computation proto-
col to evaluate a PRF. For example, instantiating Yao’s garbled-circuits protocol
with a post-quantum-secure oblivious transfer results in a post-quantum-secure
two-party computation protocol [11] that can then be used to obliviously eval-
uate an AES circuit. The downside is that the communication in generic proto-
cols is proportional to the circuit size, which motivates the search for efficient
special-purpose OPRF protocols from post-quantum primitives. Albrecht et al.
[3] recently proposed an OPRF based on the ring learning-with-errors problem
and the short-integer-solution problem in one dimension.

522 D. Boneh et al.

Our Contributions. In this paper we give another path towards a simple post-
quantum secure OPRF by constructing several OPRFs from hard problems on
isogenies of elliptic curves, in the random-oracle model.

Our first set of constructions operates on supersingular elliptic-curve isogenies
over a field Fp2 . Starting with a simple idea for an OPRF in the honest-but-
curious setting, based on the SIDH key-exchange protocol of De Feo, Jao, and
Plût [22], we then show how to elevate this OPRF to the setting of a malicious
client and malicious server, and to make the OPRF verifiable. Our security proofs
are set in the UC framework [13] in the random-oracle model. We describe our
construction using an abstraction we call an augmentable commitment, defined in
Sect. 2. These commitments abstract away many of the complexities of working
with supersingular-curves isogenies, and they may be of independent interest.

To ensure that our OPRF is secure against a malicious client, we construct a
zero-knowledge proof of knowledge for proving that the first message the client
sends to the server is well formed. Here, a well formed message should contain
an elliptic curve, obtained by correctly applying an isogeny to some base curve,
together with points on that curve, obtained by applying that same isogeny to
predetermined points on the base curve. To secure against a malicious server and
obtain a verifiable OPRF, we construct an additional zero-knowledge proof of
knowledge for proving that four elliptic curves (E,Ea, Eb, Eab) form an isogeny
DDH tuple, where the prover only knows the isogenies φa:E → Ea and φ′

a:Eb →
Eab, whereas the isogeny φa:E → Ea is private to the client. Our complete
protocol requires up to 2MB of communication for 128-bit security, with the main
bottleneck being the cut-and-choose repetitions in our zero-knowledge proofs
of knowledge. We describe this protocol, using the language of augmentable
commitments, in Sect. 6.

Our second class of OPRF protocols, presented in Sect. 8, builds an OPRF
from a commutative group action, such as the one obtained from isogenies of
ordinary elliptic curves [19,61] or from isogenies of supersingular curves over Fp

as in CSIDH [14]. Commutative group actions give rise to a generalized Diffie-
Hellman problem, yet a construction similar to the DH-OPRF is not currently
possible. The reason is that there is no known way to construct a hash function
that maps its inputs to uniformly sampled elements in an isogeny class, with-
out learning additional information about the output elements. This additional
information would allow the client to evaluate the PRF at any point of its choice
from just a single response from the server, breaking the security requirement.
Therefore, an OPRF from commutative group actions requires a very different
approach.

Our construction makes use of two observations. First, we adapt the Naor-
Reingold PRF [54] to the setting of a commutative group action. This requires
a new proof of security because the original proof of security in [54] relies on the
DDH assumption and its random self-reduction. The difficulty is that the DDH
problem for a commutative group action does not have the required random
self-reduction. We nevertheless prove PRF security based on the DDH assump-
tion for such group actions; however the security reduction is not as efficient as

Oblivious Pseudorandom Functions from Isogenies 523

for DDH over groups. Second, we observe that, similarly to the original PRF
construction [54], this group-action variant admits an oblivious evaluation. The
resulting OPRF scheme makes use of a 1-out-of-2 oblivious-transfer protocol,
but such protocols are already known from isogeny problems [6,51,63,69]. We
thus obtain an OPRF from a commutative group action.

Between the two constructions, the supersingular construction is asymptot-
ically more efficient, in the sense that it requires asymptotically less commu-
nication between the client and the server. The reason is a sub-exponential
quantum algorithm for the discrete-log problem for a commutative group action
due to Kuperberg [48,49]. Kuperberg’s attack applies to commutative group
actions, which underpin our second construction, yet it does not apply to the non-
commutative structure of supersingular isogenies over Fp2 , which underpin our
first construction. As a result, the first construction allows using smaller fields,
which results in less communication asymptotically (in the security parameter).
Its exponential security also makes it more robust to improvements in attacks.
However, the second construction has better (i.e., smaller) constants, and as a
result, the second construction is more efficient concretely: 424KB of communi-
cation vs. 2MB for the first construction.

1.1 Background and Notation

Let E be a supersingular elliptic curve over Fp2 . Recall that every separable
degree-d isogeny φ:E → E′ has a kernel G = ker(φ) which is a subgroup of
order d of E(F̄p). In the special case when G is a cyclic subgroup of E(Fp2), we
can succinctly represent G by specifying a generator K ∈ E(Fp2), where K is
an element of the d-torsion of E(Fp2).

We follow de Saint Guilhem, Orsini, Petit, and Smart [63] and use the fol-
lowing notation to represent degree-d isogenies. Recall that the projective line
Pd is the set of all equivalence classes [x: y], where x, y ∈ Z/dZ, and the ideal
generated by x and y is all of Z/dZ. We specify an isogeny of degree d using an
element k ∈ Pd. For k = [kp: kq] ∈ Pd, and generators Pd, Qd of the d-torsion
E[d], the notation 〈k · (Pd, Qd)〉 refers to the order-d cyclic group generated by
kpPd + kqQd ∈ E[d].

1.2 Overview of Our Techniques

Our main result is an OPRF from isogenies on supersingular elliptic curves. We
briefly summarize the main technical ideas, and refer to Sect. 2–7 for the details.

Let E/Fp2 be a fixed supersingular elliptic curve, and let NK, NM, NR be
positive integers such that E[NK × NM × NR] is contained in E(Fp2), where
p,NK, NM, NR are pairwise relatively prime. Let us derive a PRF F : K×X → Y
from the SIDH key-exchange protocol of [22]. The PRF makes use of two hash
functions H1 : X → PNM

and H2 : X × Fp2 → Y, and works as follows:

– The domain is X . For each x ∈ X we obtain m = H1(x) ∈ PNM
, for which

there is a corresponding degree-NM isogeny φm : E → Em;

524 D. Boneh et al.

– The key space is K = PNK
. For each k ∈ PNK

there is a corresponding degree-
NK isogeny φk : E → Ek;

– Let φ : E → Em,k be an isogeny with kernel ker(φm) × ker(φk).
Define F (k, x) = H2(x, j(Em,k)).

When H1 and H2 are modeled as random oracles, and assuming NK is sufficiently
large (i.e., superpolynomial in the security parameter), this function F is a secure
PRF.

To make this PRF into an oblivious PRF between a client and a server,
it is tempting to try the following blinding approach (also used in [62,65] in an
attempt to construct a blinded version of an earlier undeniable-signature scheme
[35]):

– The client has x ∈ X . It computes m = H1(x) ∈ PNM
which defines the degree-

NM isogeny φm:E → Em above. The client chooses a random r ∈ PNR
, and

computes the corresponding degree-NR isogeny φr : E → Er. Next, the client
constructs an isogeny φr,m : E → Er,m whose kernel is ker(φr) × ker(φm).
It sends Er,m to the server, along with four additional points on Er,m, as
specified in Sect. 3. Two of these four points are computed as P ′

K = φr,m(PK)
and Q′

K = φr,m(QK), where PK, QK ∈ E are some fixed generators of E[NK].
– The server has the secret key k ∈ PNK

, and the corresponding isogeny φk :
E → Ek. It uses P ′

K, Q′
K to construct the curve Er,m,k, which is the target of

an isogeny acting on E and whose kernel is ker(φr) × ker(φm) × ker(φk). It
sends Er,m,k back to the client, along with two additional points in E[NR].

– The client uses its knowledge of φr to recover the required Em,k using an
appropriate dual isogeny φ̂′ : Er,m,k → Em,k. Once the client has Em,k, it
can obtain the required PRF value F (k, x) since F (k, x) = H2(x, j(Em,k)).

While this is a natural construction for an OPRF, it is unfortunately com-
pletely insecure. It is vulnerable to a clever active attack due to Galbraith et al.
[27], which was originally used to attack SIDH key exchange where one of the
parties uses a static key. In our setting, the attack lets a malicious client send
carefully crafted points P ′

K, Q′
K ∈ Er,m that are not the images of the fixed

points PK, QK ∈ E under the isogeny φr,m:E → Er,m. The client can then learn
information about the PRF key k from the server’s response. With enough such
queries, the client can extract k from the server, thus fully breaking the OPRF.

In the SIDH key-exchange setting, there are several countermeasures against
this active attack. Kirkwood et al. [45] suggest an approach, based on the
Fujisaki-Okamoto [25] transformation, where the client sends encrypted infor-
mation to the server. The server decrypts and uses the information from the
client to validate the request. However, this approach cannot be used in an
OPRF protocol because the information sent from the client reveals m to the
server, which violates the OPRF privacy requirement.

Our solution is to have the client prove to the server that the points P ′
K

and Q′
K are generated correctly without leaking any information about m or r

to the server. To do so, we present in Sect. 5 a special-purpose zero-knowledge
protocol that allows the client to prove the correctness of the points it sends.

Oblivious Pseudorandom Functions from Isogenies 525

Our protocol develops an idea sketc.hed by Galbraith [26, Section 7.2], and builds
on the isogeny-based identification protocol of De Feo et al. [22].

We obtain an OPRF that is secure against a malicious client. To further
secure the OPRF against a malicious server, the server needs to somehow prove
to the client that its response Er,m,k is consistent with its commitment Ek

to the secret key k ∈ PNK
. In other words, the server needs to prove that

(E,Er,m, Ek, Er,m,k) form an isogeny DDH tuple, where the server only knows
φk : E → Ek and φ′

k : Er,m → Er,m,k. A similar protocol is needed in the con-
structions of [35,62,65] for the purpose of online signature confirmation. How-
ever, we cannot use their protocol because they assume the server knows both φk

and φr,m : E → Er,m. For us, this would break the OPRF privacy requirement
because ker(φr,m) reveals information about m ∈ PNM

.
To address this, we develop in Sect. 6 a zero-knowledge proof of equality that

lets the server prove the consistency of its response to the client. A key challenge
is to ensure security of the OPRF, meaning that we must prevent the client from
abusing the consistency check for extracting information about the key k. The
result is a new private-coin protocol, that jointly meets the security requirements
of both parties, and is quite different from the [22]-style public-coin protocol.

Our complete verifiable OPRF appears in Protocol 15.

Security Assumptions. Our OPRF construction is based on the hardness of
isogeny problems on supersingular curves over a field Fp2 for a prime p of the
form p = f ·N1 · . . . ·Nn −1, for relatively prime Ni. Specifically, for our verifiable
OPRF, we use n = 5 prime powers.

The privacy of the client in our protocol relies on the hardness the Decisional
SIDH Isogeny Problem [22,29] adjusted from the standard SIDH setting of n = 2
prime powers to our setting of n = 5 (similarly to [35,63,65]). The security of the
server in our protocol relies on a one-more Diffie-Hellman-type assumption in the
SIDH setting. Recently, Merz, Minko, and Petit [52] presented a polynomial-time
attack on certain “one-more” SIDH assumptions, introduced in [35,65]. In Sect. 3,
we present a new type of one-more SIDH assumption and discuss why it is not
susceptible to this attack. Finally, our zero-knowledge proof, designed to prevent
the active attack of [27], relies on the hardness of a variant of the Decisional
Supersingular Product problem [22]. We discuss the security assumptions in
more detail in Sect. 3 and 5.

1.3 Additional Related Work

OPRF from Oblivious-Transfer Extension. An efficient oblivious PRF can
be constructed from oblivious-transfer extension [33]. The first works to do so
[47,59,60] constructed a one-time OPRF, namely one where the client can only
issue a single query to the server. Subsequent work [58] constructs a many-time
OPRF from oblivious-transfer extension, but the client must choose all the query
points before the OPRF key is generated. These non-adaptive OPRF schemes
are sufficient for protocols for private set intersection, and can be post-quantum

526 D. Boneh et al.

secure if the underlying 1-out-of-2 oblivious transfer is post-quantum secure.
The constructions in this paper give an OPRF which allows the client to select
the query points adaptively, at any time after the OPRF key is generated, and
supports an exponential size domain.

Blind Signatures. Verifiable OPRFs share resemblance with blind signatures
[17]. Both primitives allow a server holding a secret key to provide the client
with a “certified” value on blinded input. However, unlike an OPRF, a blind
signature does not have to be deterministic, yet it has to be publicly verifiable.
Indeed, Jarecki and Liu [41] observed that earlier constructions [12] of oblivious-
transfer protocols from unique blind signatures [7,8,17] and, similarly, from blind
IBE schemes [31], give rise to OPRFs. None of these constructions are post-
quantum secure. Recent works [62,65] constructed variants of blind signatures
from supersingular isogenies. As discussed above, the online verification protocols
in these schemes require unblinding the message.

2 Augmentable Commitments

In this section we introduce a primitive, called augmentable commitments, that
makes it easier to describe the OPRF construction and prove its security. This
abstraction makes it possible to describe the scheme without cluttering the
description with many elliptic curve points.

An augmentable commitment is a commitment scheme where one can commit
to a value x1 ∈ X1 to obtain a commitment com. Later, someone else can append
x2 ∈ X2 to the commitment com to obtain a new commitment com′ to (x1, x2).
One can also obtain com′ by committing in the reverse order, by first committing
to x2 ∈ X2, and then appending x1 ∈ X1. We will refer to com′ as �x1, x2�.
Regular values are append-only, in the sense that, given �x1, x2�, it should be
computationally unfeasible to compute �x2� or �x′

1, x2�. Looking ahead, this
“non-malleability” property will provide privacy for the server in our OPRF
protocol. It prevents the client from learning the value of the OPRF at one
point given its evaluation at another.

To hide the contents of the commitment, its creator may include in it a special
type of value r ∈ R, called a blind. Such a blinded commitment �r, x1, x2� can
later be unblinded to obtain �x1, x2�, which is a binding commitment to x1 and
x2, but may not be hiding. The blinding property will provide privacy for the
client in our OPRF protocol, as it will prevent the server from learning the point
where the OPRF is being evaluated.

We next define augmentable commitments more precisely and more generally.
In the next sections we show how to use augmentable commitments to construct
an OPRF scheme and how to construct them from supersingular isogenies.

Definition 1 (Augmentable Commitment Scheme). An augmentable
commitment scheme G with an input space X = X1 × · · · × Xn−1, a blinding
space R := Xn, a commitment space C, and a space of representatives J , con-
sists of five algorithms

Oblivious Pseudorandom Functions from Isogenies 527

– Setup(1λ) → com0 ∈ C. The algorithm takes as input the security parameter
and outputs the “empty” commitment com0.

– Blind(com0 ∈ C, r ∈ R) → com ∈ C. The algorithm takes as input the empty
commitment and a blind value r, and creates an initial blinded commitment.

– Append (com ∈ C, i ∈ [n − 1], x ∈ Xi) → com′ ∈ C. The algorithm takes as
input a commitment com, an index of an input space, and an input from that
space, and outputs a new commitment. The input commitment com can be
the empty commitment com0, a blinded commitment output by Blind, or a
commitment obtained from a previous call to Append.

– Unblind (com ∈ C, r ∈ R) → com′ ∈ C. The algorithm takes as input a com-
mitment previously blinded with r together with the same blind value r used
for blinding, and outputs an unblinded commitment.

– Invariant (com ∈ C) → j ∈ J returns the invariant of a commitment.

For simplicity, we avoid including explicit public parameters in the syntax of the
scheme. If the scheme requires the Setup algorithm to set some public parameters,
we assume without the loss of generality that they are included in the empty
commitment com0 and in all subsequent commitments.

Note that the Blind step is the only time when an element r ∈ R of the
blinding space may be committed to.

For brevity, we use the notation �x1, . . . , xt� to refer to a commitment to
a sequence of elements x1 ∈ Xi1 , . . . , xt ∈ Xit . Specifically, if none of the
distinct indices i1, . . . , it ∈ [n − 1] is the blinding index, we define comj ←
Append(comj−1, ij , xj), and set �x1, . . . , xt� := comt. Similarly, if i1 = n is the
index of the blinding space R = Xn, we define com1 ← Blind(com0, x1), and for
j ∈ [2, t] we define comj ← Append(comj−1, xj), and set �x1, . . . , xt� := comt.

For two commitments c, c′ ∈ C, we write c ∼ c′ if and only if Invariant(c) =
Invariant(c′).

The commitment scheme must satisfy the following correctness property,
which states that (i) commitments to the same set of elements in a different
order are equivalent; and (ii) unblinding results in an a commitment to the
remaining elements.

Correctness. For every t ∈ [n−1], every set of distinct indices i1, . . . , it ∈ [n−1],
every set of values xj ∈ Xij , and every r ∈ R, we require the following.

1. Invariant(�x1, . . . , xt�) is independent of the ordering of x1, . . . , xt. Similarly,
Invariant(�r, x1, . . . , xt�) is independent of the ordering of x1, . . . , xt.

2. Unblind(�r, x1, . . . , xt�, r) ∼ �x1, . . . , xt�.

An augmentable commitment must satisfy the following three security
requirements: hiding, weak binding, and one-more unpredictability. We give for-
mal game-based definitions of those properties in the full version of this work

Hiding. The hiding property requires that a random committed element, be it
an input or a blind, computationally hides all other committed elements. More
specifically, an adversary should not be able to distinguish between a commit-
ment to a set of random values and a commitment to a set of values of his choice,

528 D. Boneh et al.

provided that the commitment includes at least one additional random element,
that the adversary does not know. This additional element can either be an input
element or a blind, i.e., the hiding property holds with respect to both inputs
and blinds, with the only difference being that blinds can also be unblinded.

Weak Binding. The binding requirement asks that no efficient adversary can
produce a collision between two commitments. We actually only need a weak
form of binding, in the sense that the adversary needs to produce a pair of distinct
elements that create a collision with noticeable probability over a random choice
of a sequence of appended elements.

One-More Unpredictability. In an augmentable commitment scheme, the
result of augmenting a secret value to one randomly chosen value should not
reveal the result of augmenting that same secret value to other random val-
ues. Specifically, consider a game between a challenger and adversary. The chal-
lenger chooses a secret input value k and gives the adversary t + 1 challenges
m1, . . . ,mt+1, each of which is a random input value to the commitment. The
solution to the ith challenge is the Invariant(�mi, k�) of a commitment to both the
challenge value and the challenger’s secret value. Finally, the adversary may issue
queries to the challenger. Each query consists of an input value m of the adver-
sary’s choice, to which the challenger responds with Invariant(�m, k�), where k
is the challenger’s secret value. The one-more unpredictability property requires
that after issuing at most t queries the adversary should not be able to produce
the solution to all t + 1 challenges.

Remark 2. de Saint Guilhem et al. [63] introduced an abstraction called semi-
commutative masking structure that captures both commutative group actions
and isogenies on supersingular elliptic curves. Our abstraction of augmentable
commitments draws inspiration from theirs and shares some technical similarities
with it. One difference is that our abstraction separates regular values, that are
append-only, from blinds, that can be removed.

3 Augmentable Commitments from Supersingular
Isogenies

In this section we show how to construct an augmentable commitment scheme
from supersingular isogenies. We refer to this scheme as Gsi. We begin by defining
a parameterization algorithm, which we use throughout our construction and our
security assumptions.

Definition 3 (Parameterization p(λ, n)). We define the following determin-
istic algorithm. On input a security parameter λ ∈ N and an integer n ∈ N,
compute the first n primes �1, . . . , �n and choose e1, . . . , en to be positive inte-
gers such that for all i ∈ [n], Ni := �ei

i ≈ 22λ. Choose f ∈ N to be a cofactor
such that p = f · N1 · . . . · Nn − 1 is a prime. Output p(λ, n) := p.

Oblivious Pseudorandom Functions from Isogenies 529

For λ ∈ N, and p(λ, n + 1) = f · N1 · . . . · Nn+1 − 1, the input space of the
commitment are the projective lines PNi

for i ∈ [n − 1], and the blinding space
is the projective line PNn

. For now, we do not explicitly use the Nn+1 torsion,
and in particular, PNn+1 is not part of the commitment input/blinding spaces.
In Sect. 5, we will use this extra torsion to construct zero knowledge proofs on
our commitment scheme.

Setup. The input to the setup routine is a security parameter λ ∈ N. It computes
p = p(λ, n+1) = f ·N1·. . . Nn+1−1, then chooses E0 to be a random supersingular
elliptic curve over Fp2 such that E0(Fp2) ∼= Z

2
N1

× . . . × Z
2
Nn+1

× Z
2
f . Finally,

for i ∈ [n], the setup routine chooses P 0
i , Q0

i generators of E0[Ni] ∼= Z
2
Ni

and
outputs the empty commitment that consists of the curve E0 and the generators
(P 0

i , Q0
i)i∈[n−1].

Our augmentable commitments take the form (E, (Pi, Qi)i∈I), where I ⊆ [n],
representing the curve E by its j-invariant j(E) ∈ Fp2 using 2 log p bits. (All log-
arithms in this work have base two.) This defines the curve up to isomorphism,
and a canonical curve in that isomorphism class can be efficiently computed.
Therefore, before outputting a commitment, each of the algorithms in our con-
struction first computes an isomorphism from the curve it has computed to the
canonical curve of the same isomorphism class. It also computes the images of
the points in the commitment under this isomorphism [5,28,63]. Thus, any pub-
lished points are always on the canonical curve. Similarly to SIDH public-key
compression [5,18,34], each basis can be represented using 3 log Ni bits. Overall,
the size of the commitment is at most 5 log p bits.

Blinding. The Blind algorithm blinds the empty commitment with a blind r ∈
PNn

as follows. First, compute a degree Nn isogeny φr:E0 → Er where Er =
E0/〈r · (P 0

n , Q0
n)〉 and P 0

n , Q0
n is a canonical basis for E0[Nn]. Then compute a

canonical basis Pn, Qn for Er[Nn]. This basis, together with the knowledge of the
kernel of the dual isogeny ˆphir is what enables to later unblind the commitment.
Finally output the commitment

�r� :=
(
Er, (φr(P 0

j), φr(Q0
j))j∈[n−1], Pn, Qn

)
.

Appending. To append a value xt ∈ PNj
to a commitment �r, x1, . . . , xt−1� =

(E, (Pi, Qi)i∈I) for some j ∈ I ∩ [n − 1], the algorithm Append computes the
isogeny φ′:E → E′ with kernel 〈xt · (Pj , Qj)〉. The new commitment is then

�r, x1, . . . , xt� =
(
E′, (φ′(Pi), φ′(Qi))i∈I\{j}

)
.

As values are added to the commitment, the Append algorithm drops the bases
of the corresponding torsion groups from the commitment. However, the com-
mitment tracks the basis for the blinding space throughout, and the Unblind
algorithm uses them to remove the blind r.

Unblinding. Algorithm Unblind removes r ∈ PNn
from a blinded commitment

�r, x1, . . . , xt� = (E′, (P ′
i , Q

′
i)i∈I) by first computing the isogeny φr:E0 → Er for

530 D. Boneh et al.

Er = E0/〈r · (P 0
n , Q0

n)〉 together with the canonical basis Pn, Qn ∈ Er[Nn] as
in the Blind algorithm above. It then computes a representative r̂ ∈ PNn

of the
kernel 〈r̂ · (Pn, Qn)〉 for the dual isogeny ˆphir:Er→E0

. Finally, it computes the
unblinding isogeny φ:E′ → E where E = E′/〈r̂ · (P ′

n, Q′
n)〉, and outputs (E)—a

curve isomorphic to the curve of �x1, . . . , xt�.
The Invariant of a commitment (E, (Pi, Qi)i∈I) is the j-invariant j(E) ∈ Fp2 .
The full specification of our augmentable-commitment construction Gsi

appears in the full version of this work We also prove there that Gsi meets the
correctness requirement of Definition 1. We now turn to discussing its security.

Hiding. The hiding property of our construction relies on the following variant
of the Decisional Supersingular Isogeny problem.

Problem 4 (Decisional SIDH Isogeny problem). Let p = p(λ, n) = f · N1 ·
N2 · . . . · Nn − 1 be as in Definition 3 and i ∈ [n]. The Decisional SIDH Isogeny
problem is to distinguish between the following two distributions:

1. (E, Eφ, P, Q, φ(P), φ(Q)) where E is a randomly chosen supersingular curve
over Fp2 , the points P, Q ∈ E[(p+1)/Ni] are a random basis for the (p+1)/Ni-
torsion of E(Fp2), φ is a random degree-Ni isogeny from E and Eφ is the
codomain of φ.

2. (E, E′, P, Q, P ′, Q′) where E, P , and Q are as above, E′ is another randomly
chosen supersingular curve over Fp2 , and the points P, Q ∈ E[(p+1)/Ni] are a
basis for the (p+1)/Ni-torsion of E(Fp2) chosen uniformly at random subject
to the constraint that e(P, Q)Ni = e(P ′, Q′), where e(·, ·) denotes the Weil
pairing.

The Decisional SIDH Isogeny assumption is that for every constant n and
every i ∈ [n], no efficient algorithm can distinguish between the above two distri-
butions with probability non-negligible in λ.

The DSSI problem was originally introduced by De Feo et al. [22]. In its
original form, it is the problem of deciding whether two supersingular curves
over Fp2 , for p = �e1

1 · �e2
2 · f ± 1 are �e1

1 -isogenous to one another. Galbraith and
Vercauteren [29, Definition 3] introduced the above variant, in which the distin-
guisher is also given extra points on each curve. This problem is also discussed in
[68,69, Problem 3.4]. Our construction requires using more than 2 large torsions,
and in particular we assume the problem to be hard for n = 5. A three-prime
variant is considered in [35], a four-prime variant in [65], and an n-prime variant
appears in [4,63].

Remark 5. Petit [57] showed an attack on “unbalanced” SIDH variants that
reveal the action of a secret degree-A isogeny on the B-torsion of the base curve
for B � A. Petit’s attack, as well as its recent improvement by Kutas et al. [50],
further require that A · B > p. Even though our augmentable commitment has
a similar imbalance (with A = Ni and B = Πj �=iNj), their second condition

Oblivious Pseudorandom Functions from Isogenies 531

A · B > p does not hold in our case. Therefore, these attacks do not currently
apply to our construction.

Remark 6. The requirement that e(P,Q)Ni = e(P ′, Q′) is needed to prevent a
simple distinguishing attack based on the Weil pairing. Let em:E[m] × E[m] →
μm be the Weil pairing on the m-torsion. Then it holds that [64, Proposition
III.8.2]: em(φ(P), φ(Q)) = em(P,Q)deg(φ), where the first pairing is computed
over E′. The requirement e(P,Q)Ni = e(P ′, Q′) prevents distinguishing via this
relation, by making sure it holds in both cases.

In the full version of this worke prove the augmentable commitment scheme
Gsi is hiding under the Decisional SIDH Isogeny assumption.

Weak Binding. The binding requirement builds on the conjectured difficulty
of efficiently finding a pair of distinct isogenies of the same prime-power degree
with the same target curve. The following problem underpins the security of
Charles, Lauter, and Goren [16] hash function.

Problem 7 (Supersingular Isogeny Collision problem). Let p = p(λ, n) be
a prime as in Definition 3, and let � be a different prime. Given a randomly chosen
supersingular elliptic curve E/Fp2 , find a positive integer k, a supersingular curve

E′/Fp2 , and two distinct isogenies of degree �k from E to E′.
The Supersingular Isogeny Collision Assumption states that for every con-
stant n, no efficient adversary solves the above problem with probability non-
negligible in λ.

In the full version of this worke prove the our protocol meets the weak-binding
requirement under the supersingular-isogeny collision assumption.

One-More Unpredictability. Intuitively, we require that when a secret K ←R

E[NK] is chosen at random, then the value E/〈M1,K〉, for a given randomly cho-
sen M1 ←R E[NM], should not reveal the value E/〈M2,K〉, for another randomly
chosen M2 ←R E[NM].

This kind of assumption appears in the group setting. For example, consider
a cyclic group G of prime order q, and let α ←R

Zq be some secret. The One-More
Diffie-Hellman problem [7] requires an adversary to compute the value vα for t+1
randomly chosen values v ←R G while allowing the adversary to make at most t
queries to a CDH oracle for α (i.e., an oracle that replies with uα on a query
u ∈ G). The One-More Diffie-Hellman assumption states that no adversary can
solve this problem for any polynomial t with non-negligible probability.

Our starting point is a candidate of the One-More Diffie-Hellman assumption
in the SIDH setting, introduced by Srinath and Chandrasekaran [65], called the
One-More SSCDH assumption. Their candidate assumption stated that given t
queries to a SIDH oracle (i.e., an oracle that responds to a query M ∈ E[NM]
with E′/〈M,K〉 for a secret K ∈ E[NK]), it is computationally infeasible to
produce t + 1 pairs of curves (E/〈M〉, E/〈M, K〉) for t + 1 distinct M ∈ E[NM].

532 D. Boneh et al.

However, this starting point is insecure. First, Merz, Minko, and Petit [52],
recently showed a polynomial-time attacks on this assumption. Moreover, this
assumption is also vulnerable to the active key-recovery attack on SIDH with
static keys [27]. Finally, our security proof requires giving the adversary access
to a decision oracle, which opens up the possibility of computation-to-decision
reductions for isogeny problems [26,29,67]. We now explain each of these attacks
and describe how our proposed one-more problem avoids them.

Recent Attacks on One-More SIDH Problems. The attack of Merz, Minko, and
Petit [52] exploits a key difference between the One-More DH assumption in
the group setting and the OMSSCDH assumption [65]. In the group setting, the
adversary needs to produce valid DH tuples for random challenges. In contrast,
the assumption of Srinath and Chandrasekaran [65] relaxes this requirement and
allows the challenges to be adversarially chosen. In the group setting, relaxing
the random-challenges requirement breaks the one-more hardness: given a single
DH tuple (v, vα), it is easy to produce any number of random-looking DH tuples
simply by choosing β ←R

Zq and computing the DH tuple (vβ , (vα)β).
Even though the simple rerandomization that works in the group setting

does not extend to the SIDH setting (due to the requirement that the challenges
are all of the form E/〈M〉 for M ∈ E[NM]), Merz et al. devise a polynomial-
time attack on the above OMSSCDH assumption by computing short isogenies
from a given SIDH tuple. They point out that their polynomial-time attack on
OMSSCDH does not translate to a polynomial-time attack on the signature
scheme of Srinath and Chandrasekaran [65] nor on the signature scheme of Jao
and Soukharev [35] because the challenges in these schemes are outputs of a
hash function, modeled as a random oracle. This is consistent with the group
setting, where the one-more assumption is only hard for random challenges.

Therefore, to avoid this attack, we provide the adversary in our one-more
problem with random challenges, rather than allowing it to choose the challenge
curves adversarially.

Active Attacks. The aforementioned modification prevents the specialized attack
of [52]. However, the resulting problem is still vulnerable to a general active
attack on SIDH with static keys due to Galbraith et al. [28]. As discussed in the
introduction, by sending a sequence of queries, each of which consists of a curve
E′ together with a maliciously crafted basis PK, QK ∈ E′[NK], an adversary can
recover the secret key K. We therefore require the adversary to submit kernels
M as its solve queries, rather than arbitrary curves with (possibly malicious)
torsion points. This requirement is enforced in the actual protocol using a zero-
knowledge proof of knowledge, described in the Sect. 5.

Search-to-Decision Reductions. The security proof of our OPRF requires a
stronger variant of a one-more assumption, in which the adversary is given addi-
tional access to a decision oracle that allows it to check the validity of solutions
throughout its execution. In the group setting, the Gap One-More Diffie-Hellman
assumption [36,42] states that the one-more problem is hard even in the presence
of such a decision oracle.

Oblivious Pseudorandom Functions from Isogenies 533

The exact same type of assumption is unsound in the SIDH setting. The
issue, as shown by Galbraith and Vercauteren [29], and independently by Thor-
marker [67], is that the search variant of the isogeny problem can be reduced
to its decisional variant. Moreover, as pointed out by Galbraith [26], a similar
search-to-decision reduction applies also for the SIDH problem. (We describe
this reduction for completeness in the full version of this work) The One-More
SIDH problem is thus easy if the adversary is given a full-fledged decision oracle
for the SIDH problem. Therefore, we need to formulate a weaker assumption, in
which the adversary is given oracle access to a more restrictive decision oracle.
Intuitively, we only allow the adversary to check SIDH solutions to the challenges
given to it (with respect to the secret key K), rather than make arbitrary SIDH
decision queries. This is a much weaker assumption, and in particular, unlike a
general SIDH decision oracle, the challenger answering this more restricted form
of queries can be efficiently implemented.

Attack Game 8 (Auxiliary One-More SIDH). Let p = p(λ, n) = f · N1 · . . . ·
Nn − 1 be as in Definition 3 and let M,K ∈ [n] be distinct indices. Consider the
following game, played between a challenger and an adversary:

– The challenger chooses a random supersingular curve E0/Fp2 and a random
basis P, Q of E0[(p+1)/(NM·NK)]. It then chooses a random point K ∈ E0(Fp2)
of order NK, computes the isogeny φ: E0 → E0/〈K〉, and sends E0, P, Q, and
E0/〈K〉 to the adversary.

– The adversary makes a sequence of queries to the challenger, each of which
can be one of the following two types:

• Challenge query: the challenger chooses M ←R E0[NM] and sends it to the
adversary.

• Solve query: the adversary submits V ∈ E0[(p + 1)/NK] to the challenger,
who computes the isogeny φ: E0 → E′ with ker(φ) = 〈V, K〉, and sends
j(E′) ∈ Fp2 , together with φ(P), φ(Q) to the adversary.

• Decision query: the adversary submits a pair (i, j) to the challenger, where
i is a positive integer bounded by the number of challenge queries the
adversary has made so far, and j ∈ Fp2 . The challenger responds true
if j = j(E0/〈M, K〉), where M is the challenger’s response to the ith
challenge query, and false otherwise.

– At the end, the adversary outputs a list of distinct pairs, each of the form
(i, j) where i is a positive integer bounded by the number of challenge queries,
and j ∈ Fp2 .

We call an output-pair (i, j) correct if j is the j-invariant of the curve E′ =
E/〈M, K〉 where M is the challenger’s response to the ith challenge query. We
say that the adversary wins the game if the number of correct pairs exceeds the
number of Solve queries.
The Auxiliary One-More SIDH assumption states that for every constant n
and every distinct M,K ∈ [n], every efficient adversary wins the above game with
probability negligible in λ.

534 D. Boneh et al.

Remark 9. We allow the adversary to learn the action of the secret isogeny on an
auxiliary torsion group E0[(p + 1)/(NM · NK)]. (The construction of Srinath and
Chandrasekaran [65, Sec. 4.4] implicitly has this type of leakage, yet their security
proof seems to overlook this when reducing to their version of the OMSSCDH
assumption.)

It is important that the solve query provides the adversary with the action of
the secret isogeny only on this torsion. Disclosing the action of the secret isogeny
on E[NK] would leak the secret. Disclosing the action of the secret isogeny on
E[NM] would allow the adversary to break the one-more assumption, since the
adversary would eventually learn the action of φ on E[NM].

In the full version of this work we show that Gsi is one-more unpredictable
under the Auxiliary One-More SIDH assumption.

4 Oblivious PRF from Augmentable Commitments

We begin by giving an overview of our construction of an oblivious PRF from
augmentable commitments. We do not yet give a formal security definition, so for
now, we can think of an OPRF as a two party functionality (x, k) �→ (F (k, x),⊥)
where F is a pseudorandom function. Intuitively, each execution should allow the
user to evaluate the PRF at a single point, while providing privacy for the user’s
input.

Our basic protocol consists of two-rounds and is somewhat reminiscent of the
DH-OPRF protocol in the group setting. Recall that in the group setting, the
user, given input x, sends to the server the group element com ← H(x)r, which
we can view as a commitment to x. The server then computes com ← comk and
sends it back to the user, who computes comout ← com1/r. Generalizing this
protocol to the language of augmentable commitments, we obtain the protocol
in Fig. 1.

Handling malicious clients. However, this basic construction has a critical
problem. Our augmentable commitment scheme provides a weaker form of “one-
more unpredictability”, as compared to the One-More Diffie-Hellman assumption
in the group setting. Specifically, the one-more-unpredictability adversary needs
to submit values, rather than commitments, as its solve queries. In contrast,
the group-based one-more DH assumption is stronger, in that it considers more
powerful adversaries that can query the one-more challenger on group elements
rather than on scalars. (The underlying reason for this security definition is to
prevent the active attacks on our isogeny-based instantiation of augmentable
commitments, as discussed in the introduction and in Sect. 3). Therefore, our
construction requires the user to attach, as part of its message, a zero-knowledge
proof of the committed values. We present this proof system in Sect. 5. This
protocol is specific for the isogeny-based construction.

Handling malicious servers. In this simple OPRF, the user cannot detect
malicious servers that use a different key on each response, or even send arbitrary
responses that do not correspond to a well-defined key.

Oblivious Pseudorandom Functions from Isogenies 535

Fig. 1. The basic OPRF protocol from augmentable commitments. Note that, as pre-
sented, this basic version is not secure against malicious parties.

A verifiable OPRF provides the user with the following guarantee. On each
evaluation of the OPRF, the user obtains, in addition to the output value y =
F (k, x), a function descriptor pk. If on two inputs x1 and x2 the user obtains
two outputs y1, pk and y2, pk with a matching function descriptor, there must
exist a key k such that y1 = F (k, x1) and y2 = F (k, x2). The function descriptor
therefore commits the server to a particular function for all inputs.

In our verifiable-OPRF construction, the function descriptor is the output yε

of the OPRF on some fixed point ε. (We think of ε as being outside the “official”
domain of the OPRF.) After obliviously evaluating the OPRF on a point x and
obtaining output yx, the user runs λ additional evaluations of the OPRF, each
time setting the input at random as either x or ε. At the end of the λ evaluations,
the user checks that the output of each of the λ evaluations matches either yε or
yx (consistently with its random choice for that evaluation). If all λ checks pass,
the user accepts the output yx with respect to descriptor yε.

An issue with the above protocol is that a malicious user may abuse the
λ evaluations to evaluate the OPRF on λ additional points, rather than for
verification. Learning the value of the OPRF on more than one point from a
single instance of the protocol would violate the server’s security requirement
of the OPRF. To prevent this, we add an additional phase to our protocol: the
server first commits to the outputs of the OPRF on the λ verification instances.
The user then proves to the server that each of the λ verification inputs is either
x or ε. (Doing this without revealing x to the server requires an extra layer of
blinding.) This provides the server with the assurance that the user would not
learn any “extra” values of the OPRF from the verification instances. The server
then opens the commitment to the verification outputs, which the client verifies
as above. We present this protocol in Sect. 6.

In Sect. 7 we give the full specification (Protocol 15) of our final construction.

536 D. Boneh et al.

5 Zero-Knowledge Proof for Point Verification

A critical part of the OPRF construction is a zero-knowledge proof of knowl-
edge (ZKPK) that lets the client prove to the server that its PRF query is well
formed. Using the abstraction of augmentable commitments, what is needed is
a ZKPK for the contents of an augmentable commitment, or more generally to
the relation:

Rcom =

{
((com0, comt), (x1, . . . , xt)) :

com1 = Blind(com0, x1)

comi = Append(comi−1, xi) ∀i ∈ [2, t]

}
.

The ZKPK we construct is specific to the instantiation of augmentable com-
mitment from Sect. 3, and uses some of the algebraic properties of isogenies.
Specifically, we design a custom ZKPK for the following relation Riso. (In the
full version of this work we show how the relation Riso enables expressing state-
ments about the language Rcom for the augmentable commitment scheme Gsi.)

Let p = p(λ, n + 1) = f · N1 · . . . · Nn+1 − 1 be a prime as in Defintion 3. For
clarity, we denote NS := Nn+1. Let E be a supersingular elliptic curve defined
over Fp2 . Define the relation:

Riso :=
{(

j(E), PK, QK, j(E′), P ′
K, Q′

K, d
)
, V

}
, (1)

where the statement
(
j(E), PK, QK, j(E′), P ′

K, Q′
K, d

)
contains:

– a j-invariant j(E) ∈ Fp2 of a supersingular elliptic curve E/Fp2 ,
– points PK, QK ∈ E[NK] for some NK relatively prime to NS,
– a j-invariant j(E′) ∈ Fp2 of a supersingular elliptic curve E′/Fp2 ,
– points P ′

K, Q′
K ∈ E′[NK], and

– a positive integer d relatively prime to NS and NK,

The witness V is a point of order d in E(Fp2) such that E′ = E/〈V 〉 and the
isogeny φ:E → E′ satisfies P ′

K = φ(PK) and Q′
K = φ(QK). Note that by definition,

NK, d, and NS all divide (p + 1) and are relatively prime.

The Protocol. We design a ZKPK for the relation Riso where the verifier
(server) has the statement

(
j(E), PK, QK, j(E′), P ′

K, Q′
K, d

)
and the veri-

fier (client) proves knowledge of the witness V . We first describe a protocol that
has perfect completeness, constant soundness error, and honest-verifier compu-
tational zero knowledge. Repeating the protocol in parallel λ times makes the
soundness error negligible. Indeed, the repetitions required in this protocol (as
well as in the one in the next section) are responsible for the bulk of the com-
munication in our OPRF construction.

The protocol is based on the idea sketc.hed by Galbraith [26, Sec 7.2], which
builds on the isogeny-based identification protocol of De Feo et al. [22].

Remark 10. In the following, when we refer to the prover “committing” to one
or more elements, we refer to a standard commitment scheme (as opposed to our
augmentable commitment scheme) such as a standard hash-based commitment
in the random-oracle model.

Oblivious Pseudorandom Functions from Isogenies 537

First, the prover chooses a random point S of order NS. The prover then com-
putes an isogeny σ with domain E and kernel 〈S〉 and an isogeny σ′ with domain
E′ and kernel 〈φ(S)〉. Let Ẽ and Ẽ′ be the target curves of the isogenies σ and σ′

respectively. For consistency of notation, we denote points on the curve Ẽ as P̃ , Q̃
etc. Similarly, we denote points on the curve Ẽ′ as P̃ ′, Q̃′ etc. The prover can also
calculate the isogeny φ̃: Ẽ → Ẽ′ using the image of the generator V of φ under σ.

The prover chooses a random basis P̃S, Q̃S of the NS-torsion subgroup of Ẽ.
The prover then computes the kernel of the dual isogeny σ̂ and expresses its
generator as s · (P̃S, ·Q̃S) for some s ∈ PNS

. (Note that the kernel of σ̂′ is then
generated by s · (φ̃(P̃S), φ̃(Q̃S)).)

The prover commits separately to (1) the curve Ẽ together with the points
P̃S, Q̃S, (2) the curve Ẽ′ together with the points P̃ ′

S = φ̃(P̃S), Q̃′
S = φ̃(Q̃S), (3)

the scalar s, (4) a random generator Ṽ of ker(φ̃), and (5–8) the images of PK, QK

under σ and of P ′
K, Q′

K under σ′. (Committing to all those elements makes the pro-
tocol online-extractable without rewinding, which is necessary for UC security.)

Each execution of the protocol will verify the validity of only one of the two
points P ′

K and Q′
K according to a random choice made by the verifier. Addition-

ally, according to another random three-way choice of the verifier, the prover
will reveal one of three isogenies (i.e., either σ, σ′, or φ̃) along with some points.
The following diagram illustrates the commitments opened in each of the three
cases where the verifier chooses to verify the validity of the point P ′

K:

PK ∈ E P ′
K ∈ E′

P̃K, P̃S, Q̃S, Ṽ ∈ Ẽ P̃ ′
K, P̃ ′

S, Q̃
′
S ∈ Ẽ′s̃ ∈ PNS

φ

σ̂

φ̃

σ̂′

– In the red case, the prover reveals the curve Ẽ, the random generators P̃S,
Q̃S of Ẽ[NS], the element s̃ ∈ PNS

, and the point P̃K = σ(PK) ∈ Ẽ[NK].
The verifier computes the isogeny σ̂: Ẽ → Ẽ/〈s̃ · (P̃S, sqQ̃S)〉, and checks that
σ̂(P̃K) = [N2

S]PK, where [N2
S] is the multiplication by N2

S map.
– Similarly, in the green case, the prover reveals the curve Ẽ′, the random

generators P̃ ′
S = φ̃(P̃S), Q̃′

S = φ̃(Q̃S) of Ẽ′[NS], the element s̃ ∈ PNS
, and

the point P̃ ′
K = σ′(P ′

K). The verifier computes the isogeny σ̂′: Ẽ′ → Ẽ′/〈s̃ ·
(P̃ ′

S, Q̃
′
S)〉, and checks that σ̂′(P̃ ′

K) = [NS]P ′
K, where [NS] is the multiplication

by NS map.
– Finally, in the blue case, the prover reveals the curves Ẽ and Ẽ′, a random

generator Ṽ of ker(φ̃), and the points P̃S, Q̃S ∈ Ẽ[NS], P̃K ∈ Ẽ[NK], P̃ ′
K ∈

Ẽ′[NK], and P̃ ′
S, Q̃

′
S ∈ Ẽ′[NS]. The verifier computes the isogeny φ̃: Ẽ →

Ẽ/〈Ṽ 〉 and checks that φ̃(P̃K) = P̃ ′
K, φ̃(P̃S) = P̃ ′

S and φ̃(Q̃S) = Q̃′
S.

538 D. Boneh et al.

Remark 11. In our protocol, as well as in the security game for the underlying
assumption, we specifically choose to reveal the image of only a single generator
of the NK-torsion under the secret random isogeny σ. The reason for this choice
is to prevent a distinguishing attack using the Weil pairing. Had we revealed
both images P̃K = σ(PK), Q̃K = σ(QK), then the verifier would have obtained
the two relations e(P̃K, Ṽ) = e(PK, V)v·deg(σ) and e(Q̃K, Ṽ) = e(QK, V)v·deg(σ),
which would allow to verifier to distinguish V from random. By revealing only
one out of the two points P̃K, Q̃K, and by revealing a random generator v · σ(V)
instead of σ(V), the protocol prevents tis pairing attack.

The zero-knowledge property of our protocol is based on the hardness of a vari-
ant of the Decisional Supersingular Product problem (DSSP), introduced by De
Feo et al. [22]. As our protocol also needs to verify the action of the secret isogeny
on the NK-torsion, we need to slightly strengthen the assumption by giving the
adversary additional points. More specifically, we consider the following:

Attack Game 12 (Auxiliary Decisional Supersingular Product). Let p =
p(λ, n + 1) = f · N1 · . . . · Nn+1 be as in Definition 3. Let E0 be a supersingular
elliptic curve over Fp2 as above. Consider the following game, played between a
challenger and an adversary:

– The adversary chooses and sends to the challenger V0 ∈ E(Fp2) of order
exactly d relatively prime to NS, and a point PK ∈ E(Fp2) of order relatively
prime to NS and d.

– The challenger executes the following steps:
• choose c ←R {0, 1}, v ←R

Z
∗
d, and a random point V1 ∈ E(Fp2) of order d

• compute a random degree-NS isogeny σ: E0 → E′

• send j(E′) ∈ Fp2 and the points v·σ(Vc), σ(PK) ∈ E′(Fp2) to the adversary
– The adversary outputs a bit c′.

We say that the adversary wins if c′ = c.
The Auxiliary Decisional Supersingular Product Assumption is that for
every constant n, the winning probability of every efficient adversary in the above
game is negligible.

In the full version of this work we formally define sigma protocols, give the full
details of the above protocol, and prove that it is special computational honest-
verifier zero knowledge, under the Auxiliary Decisional Supersingular Product
assumption. We also discuss how to transform this sigma protocol into a non-
interactive zero-knowledge proof of knowledge (NIZKPK) in the random-oracle
model using standard techniques.

Concrete Efficiency. We estimate the size of the resulting NIZKPK. In a single
execution of the above protocol, the prover sends 8 hash-based commitments in
its first message. Of the three possible openings, the “blue” one, that consists

Oblivious Pseudorandom Functions from Isogenies 539

of 2 j-invariants and 7 points, is the largest one. The opening also includes 5
random nonces used for the hash-based commitments, each of which is λ-bits
long. The size of a j-invariant in Fp2 is 2 log p bits. A naive representation of each
point over Fp2 would have also been 2 log p bits (x-coordinate and a sign bit).
However, Azarderakhsh et al. [5] observed that a point in an Ni-torsion can be
represented using only 2 log Ni bits. Since in our construction log Ni ≤ log p/4,
the prover can send all 7 points in less than 4 log p bits, and together with the
j-invariant, the size of the prover’s last message is less than 6 log p bits. (In the
non-interactive proof, the verifier’s only message is a random challenge, which is
derived from a random oracle and thus does not increase the size of the proof.)
Since each execution of the protocol has soundness error 5/6, we must repeat
the protocol λ/log(6/5) = 3.8λ times. Overall, we estimate the size of the proof
as 3.8λ · (13λ + 6 log p).

6 Zero-Knowledge Proof of Equality of Isogenies

Recall that to make our OPRF verifiable, the server must convince the verifier
that it has evaluated the OPRF consistently with its evaluation on some fixed
point. This boils down to proving the commitments satisfy the following relation

Req =

⎧
⎪⎪⎨
⎪⎪⎩

((com0, com1, com0, com1), k)

∣∣∣∣∣∣∣∣

com0, com1, com0, com1 ∈ C
k ∈ K

com0 = Append(com0, k)
com1 = Append(com1, k)

⎫
⎪⎪⎬
⎪⎪⎭

Moreover, the proof must be zero-knowledge, and in particular, the user
should not learn any additional information about the key beyond what it already
knows from com0 and com1.

The idea behind Protocol 13 below is as follows. The user (verifier) sends to
the server λ augmentable commitments, each of which is obtained by appending
a random value vi to either com1 or com2, chosen at random. The user saves the
values vi and the random choices bi ∈ {0, 1}.

Next, the server (prover) appends its secret value k to each of the λ commit-
ments, and sends to the user a hash-based commitment h = H(j1, . . . , jλ, sout)
to their invariants, where sout ←R {0, 1}λ.

The user then reveals to the server the random values v1, . . . , vλ, and the
server uses them to check that each of the λ commitments received in the first
round has indeed been obtained by appending vi to one of com1 or com2. This
protects the server against a malicious user that tries to learn additional infor-
mation about k by sending commitments that are not com1 or com2.

Once this check passes, the server sends to the user the opening sout to
the hash-based commitment. Finally, the user computes the expected values of
the invariants j′

1, . . . , j
′
λ as j′

i = Invariant(Append(combi , vi)) and checks that
h = H(j′

1, . . . , j
′
λ, sout).

This protocol is generic for augmentable commitments, but we think that its
instantiation with the isogeny-based construction of augmentable commitments
may be of independent interest.

540 D. Boneh et al.

Protocol 13 (Equality of Appended Values). Let G be an augmentable com-
mitment scheme with input space M × K × V × R, and commitment space C. Let
NIZKPK be a simulation-sound online-extractable proof for the relation Rcom. Let
H3: {0, 1}∗ → {0, 1}λ be a hash function, modeled as random oracle.
Inputs:

– The verifier’s inputs are: commitments com0, com1, com0, com1 ∈ C.
– The prover’s inputs are: commitments com0, com1, com0, com1 ∈ C; a value

k ∈ K such that Append(com0, k) = com0 and Append(com1, k) = com1.

Evaluation:

– The prover computes and sends to the verifier proofs π0, π1, such that for
b = 0, 1 it holds πb ← NIZKPK[(k):Append(comb, k) = comb].

– The verifier checks the proofs and aborts if either check fails. Else, for i =
1, . . . , λ, the verifier samples vi ←R V and bi ←R {0, 1}, computes com(i) ←
Append(combi , vi), and sends (com(1), . . . , com(λ)) to the prover.

– The prover uses k to compute, for i = 1, . . . , λ, the commitment com(i) ←
Append(com(i), k) and the invariant ji ← Invariant(com(i)). It then chooses
sout ←R {0, 1}λ, and sends h ← H3(j1, . . . , jλ, sout) to the verifier.

– The verifier sends (b1, v1, . . . , bλ, vλ) to the prover.
– The prover, for i = 1, . . . , λ, checks that Invariant(Append(combi , vi)) =

Invariant(com(i)). If one of the checks fail, the server aborts. Otherwise, it
sends sout to the user.

– The verifier computes the invariants j′
i = Invariant(Append(combi , vi)) and

accepts if h = H3(j
′
1, . . . , j

′
λ, sout).

In the full version of this worke prove the following lemma, which shows the
soundness of this protocol, and we prove the zero-knowledge property of this
protocol as part of security proof of the full protocol.

Lemma 14. Suppose that G is a secure augmentable commitment scheme, and
let com0 = �r0,m0� and com1 = �r1,m1� be two commitments. Then for every
efficient prover P ∗, the probability that the honest verifier of Protocol 13 accepts
on input (com0, com1, com0, com1) /∈ Leq when interacting with prover P ∗ is
negligible. Here Leq is the corresponding language of Req.

Concrete Efficiency. We estimate the communication complexity of the pro-
tocol. The communication is dominated by the verifier having to send λ aug-
mentable commitments and λ values vi ∈ V. The size of each supersingular-
isogeny-based augmentable commitment is at most 5 log p bits. Moreover, a com-
mitment that includes vi ∈ V as one of its values does not include a basis for the
NV-torsion, which cancels out having to send the vi values in the next message.
Therefore, we can bound the overall communication complexity by 5λ log p plus
the size of the proofs of knowledge π0 and π1.

Oblivious Pseudorandom Functions from Isogenies 541

7 Putting It All Together

We now combine the basic protocol from Sect. 4 with the two protocols from
Sect. 5 and 6 to obtain a maliciously secure verifiable OPRF.

Protocol 15 implements the OPRF ideal functionality FVOPRF as defined in
the full version of this work (That definition is based on [36] with some of the
later modifications from [38,40].)

In the full version of this worke prove the following theorem.

Theorem 16. Suppose that G is a secure augmentable commitment scheme.
Then Protocol 15 realizes ideal functionality FVOPRF in the random-oracle model.

The main ideas of the proof are as follows. The privacy of the user’s input
easily follows from the hiding property of the underlying augmentable commit-
ment scheme. The main challenge is to simulate the honest server. To this end,
the simulator in the ideal world chooses a random secret key for the honest
server, and uses it to simulate the interaction of the real-world adversary with
that server. Specifically, each time the environment activates the honest server,
the simulator responds to an adversary’s message by appending its secret key to
the commitment sent by the adversary.

The only way the environment can distinguish this from the real world is to
find an inconsistency between the value of the OPRF computed via an honest-
user honest-server interaction, and the value of the OPRF computed by the
adversary directly as H2(x, Invariant(�m, k�)) for m = H1(x). To prevent this
inconsistency, whenever the adversary makes this type of query to the random
oracle H2, the simulator evaluates the ideal-world OPRF at point x and programs
the random oracle H2 to the output value of the PRF. However, the ticketing
mechanism of the OPRF ideal functionality limits the number of times the sim-
ulator can evaluate the ideal-world OPRF by the number of activations of the
honest server. The simulation would therefore fail if the adversary correctly pre-
dicts the value Invariant(�m, k�) on a number of points greater than the number
of server activations. However, this would violate the one-more unpredictability
property of the underlying augmentable commitment scheme.

The full proof appears in the full version of this work

Concrete Efficiency and Parameter Estimation

The communication complexity of the complete OPRF protocol is dominated by
the communication complexity of the zero-knowledge proofs. More specifically,
the protocol includes 3 NIZKPKs for the relation Rcom, the size of each of which
we have estimated in Sect. 5 to be 3.8λ ·(13λ+6 log p). In addition, the complete
protocol executes the proof-of-equality sub-protocol once. In Sect. 6 we estimated
the communication complexity of that sub-protocol as 5λ log p. Therefore, we can
bound the communication complexity of the complete protocol as 73λ log p +
148λ2.

We set p(λ) based on the best known attacks on our assumptions. For stan-
dard SIDH problems (including the Decisional SIDH problem and the Decisional

542 D. Boneh et al.

Protocol 15 (Augmentable-Commitment Verifiable OPRF). The protocol
involves a user U and a server S. The protocol uses:

– An augmentable commitment scheme G with m = 3 values, n = 1 blinds,
input space M × K × V × R, and commitment space C.

– A simulation-sound online-extractable NIZKPK for the relation Rcom.
– Hash functions, modeled as random oracles:

• H1: {0, 1}∗ ∪ {ε} → M (where ε is a special symbol), used to hash PRF
inputs to the input space M of the commitment scheme,

• H2: {0, 1}∗ → {0, 1}�, used to hash to the PRF output space,
• H3: {0, 1}∗ → {0, 1}λ, used in Protocol 13 for proving equality of

appended values.

Initialization. On input Init from the environment, server S:
– chooses k ←R K and stores it,
– computes mε ← H1(ε), rε ←R R, and comε ← �rε, mε�.
– computes comε ← �rε, mε, k� and a proof of knowledge of a committed

value πk ← NIZKPK[(k) : Append(comε, k) = comε],
– stores pk = (rε, comε, πk) and outputs (Init, pk).

Evaluation
– On input (Eval, S, x), user U proceeds as follows:

• m ← H1(x), rm ←R R, comm ← �rm, m�
• compute proof πm ← NIZKPK[(m, rm): comm = �rm, m�]
• send message (comm, πm) to the server
• store (comm, rm)

– On input ServerComplete from the environment and message
(comm, πm) from the user, server S verifies the proof πm, computes
comm ← Append(comm, k) and πm ← NIZKPK[(k) : Append(comm, k) =
comm], and sends the descriptor pk = (rε, comε, πk) and comm, πm to the
user.

– On message (pk = (rε, comε, πk), comm, πm) from the server, user U veri-
fies the proofs πk, πm.

– The user and server run Protocol 13, in which the sender proves to the user
that there exists a k such that �rε, mε, k� = comε and �rm, m, k� = comm.

– At the end of the equality protocol, the user, provided it accepts, com-
putes j ← Invariant(Unblind(comm, rm)) and y ← H2(x, pk, j) and outputs
(Eval, pk, y).

Supersingular Product problem), the best known attacks are meet-in-the-middle
attacks that run in time O(

√
Ni) [55]. Although quantum collision-finding algo-

rithms [66] have a better asymptotic running time of O(3
√

Ni), recent work [1,34]
suggests that the classical algorithm outperform the quantum ones when attack-
ing SIDH, due to the large memory requirement of the quantum algorithms. One
caveat is that our one-more assumption admits a better attack than SIDH: Merz
et al. [52] showed an attack on the schemes of [35,65] that runs in time N

2/5
i .

This exponential-time attack, unlike the aforementioned polynomial-time attack

Oblivious Pseudorandom Functions from Isogenies 543

from the same paper [52], also applies to our one-more assumption. We therefore
set Ni ≈ 25λ/2 for λ-bit security. (The torsion used for the zero-knowledge proof
does not need to be increased as it is used only within a non-interactive proof.)
Overall, for n = 5 prime powers, the prime p is 12λ-bits long.

Plugging in log p = 12λ into the expression for the communication complexity
we have calculated above, we obtain that the total communication complexity is
bounded by 1024λ2 bits. For λ = 128, the communication complexity is under
2MB.

8 Naor-Reingold OPRF from an Abelian Group Action

We now turn to constructing an OPRF from an abelian group action, such as
the action obtained from isogenies of ordinary elliptic curves or from isogenies
of supersingular curves over Fp as in CSIDH [14].

First, we show that the Naor-Reingold PRF [54] can be adapted to work with
an abelian group action that satisfies a DDH-like assumption. Second, we show
that the technique used to build an OPRF from the Naor-Reingold PRF carries
over to the setting of an abelian group action.

A technical difficulty is that the proof of security of the Naor-Reingold PRF
in [54] makes use of the random self reduction of the DDH problem in a prime
order group. The DDH problem for an arbitrary abelian group action does not
have the required random self reduction. We therefore need to give a new security
proof for the Naor-Reingold PRF. We are able to prove security based on the
DDH assumption for a group action; however the security reduction is not as
efficient as the proof of Naor-Reingold in a prime order group.

Recall that an action of a group G on a set X is a map G × X → X such
that (gh) · x = g · (h · x) for every g, h ∈ G and x ∈ X, and e · x = x for every
x ∈ X, where e ∈ G is the identity element of G.

Let G be an abelian finite group acting on S transitively and faithfully (we
recall the definitions of these properties in the full version of this work, and let
s0 ∈ S be some fixed element. We define the Naor-Reingold PRF, with key space
K = Gn+1 and input space X = {0, 1}n, as follows:

FNR

(
(k0, ..., kn), (x1, ..., xn)

)
= (k0kx1

1 kx2
2 . . . kxn

n) · s0. (2)

The security of this PRF requires the following group-action variant of the
DDH assumption to hold in G:

Definition 17 (Group-Action DDH [19,61]). Let G be an abelian group
acting on a set S transitively and faithfully, and let s ∈ S. We say that the
Group-Action DDH assumption holds in (G, s) if the two distributions

{(a · s, b · s, (ab) · s) : a, b ←R G} and {(a · s, b · s, c · s) : a, b, c ←R G}

are computationally indistinguishable.

544 D. Boneh et al.

Theorem 18. Suppose that the Group-Action DDH assumption holds in (G, s0).
Then the Naor-Reingold PRF FNR is a secure pseudorandom function.

Proof sketch. Boneh et al. [9, Sec. 4.1] show that the Naor-Reingold PRF is a
special case of the augmented cascade. Therefore, to prove that (2) is a secure
PRF, it suffices to show that for every polynomially bounded Q, the function

P (g, s1, . . . , sQ) = (s1, g · s1, . . . , sQ, g · sQ)

is a secure pseudorandom generator (PRG), where g ∈ G and s1, . . . , sQ ∈ S.
This can be done by a simple sequence of (Q + 1) hybrid distributions, where at
hybrid i, for i = 1, . . . , Q, the quantity g ·si is replaced by random element ti in S.
A distinguisher for any pair of consecutive hybrid distributions gives an attack
on the Group-Action DDH assumption for (G, s0). Overall, the reduction incurs
a factor of Q loss between an attacker on the PRG and the derived attacker on
the Group-Action DDH assumption. The proof of the theorem now follows by
[9, Thm. 3].

Next, we observe that because the group G is abelian, we can evaluate FNR

obliviously with the following protocol, first described in [24] in a group of prime
order.

Protocol 19. A client that holds input (x1, . . . , xn) ∈ {0, 1}n and a server that
holds input (k0, k1, . . . , kn) ∈ Gn+1 proceed as follows:

1. For each i = 1, . . . , n, the server chooses a random ri in G.
2. For each i = 1, . . . , n, the client and server engage in a 1-out-of-2 oblivious-

transfer protocol that gives to the client ri if xi = 0, and kiri if xi = 1. The
client stores the output as bi ∈ G.

3. The server sends s′ = (k0
∏n

i=1 r−1
i) · s0 to the client.

4. The client evaluates (
∏n

i=1 bi) · s′ to obtain FNR evaluated at (x1, . . . , xn).

The same security argument from [24, Sec. 5] also applies to this OPRF.

Instantiation from Isogenies. We can now instantiate the above construction
using isogenies. Couveignes [19], Rostovtsev and Stolbunov [61] first proposed
using a group action on the set of ordinary elliptic curves. More recently, Castryck
et al. [14] proposed CSIDH, a construction that uses the set of supersingular
elliptic curves defined over a prime field Fp. Whereas the full endomorphism
ring of such curves is non-commutative (and therefore does not give rise to a
commutative group action), the subring of Fp-rational endomorphisms is an
order in an imaginary quadratic field, which gives rise to a commutative group
action as in the ordinary case. The main advantage of using the CSIDH group
action, over using the group action of ordinary curves, is that it is much more
efficient.

More specifically, let Ellp(O) be the set of supersingular elliptic curves over Fp

whose Fp-rational endomorphism ring O is an order in an imaginary quadratic
field. The class group Cl(O), which is an abelian group, acts transitively and

Oblivious Pseudorandom Functions from Isogenies 545

faithfully on Ellp(O). (See the full version of this workor additional background.)
For [a0], . . . , [an] ∈ Cl(O) and E0 ∈ Ellp(O), let

FNR(([a0], [a1], . . . , [an], E0), (x1, . . . , xn)) = j([an]xn . . . [a1]x1 [a0] · E0) .

Assuming the hardness of Group-Action DDH problem in the class group, Theo-
rem 18 then implies that FNR is a PRF. Moreover, instantiating Protocol 19 with
the isogeny-based oblivious-transfer protocol of Lai, Galbraith, and de Saint Guil-
helm [51], which is secure against malicious adversaries, gives an OPRF protocol
from a commutative group action on elliptic curves.

Remark 20. Recently, Castryck, Sotáková, and Vercauteren [15] showed that
the DDH problem is easy in ideal-class-group actions when the class number
is even. Such groups are therefore unsuited for the above construction. As a
countermeasure to their attack, they suggest working with supersingular elliptic
curves over Fp for p ≡ 3 (mod 4), which is already the case for CSIDH [14]. In
that setting, the Group-Action DDH problem is conjectured to be hard.

Remark 21. Our construction targets the case of commutative group actions.
We mention a recent work by Ji et al. [43], that studies the case of non-
commutative group actions. The above reduction does not seem to carry over to
the non-commutative case, which might explain why Ji et al. require a different
assumption.

Efficiency. To compute the communication complexity of this instantiation, first
assume without loss of generality that n = λ (since otherwise we can compose
the PRF with a λ-bit hash function). The protocol requires n = λ executions of
the OT protocol [51]. Each such execution communicates 3 elliptic curves over
Fp, 4 encryptions of class-group elements, and an additional λ-bit string. Overall,
this adds up to λ · (3 log p + 4 · log p/2 + λ) = 5λ log p + λ2 bits.

Kuperberg’s algorithm [48,49] for solving the commutative-group-action
discrete-log problem, runs in time exp(

√
log(p)), which requires setting p =

Ω(λ2). As a result, the overall communication complexity of this protocol is
asymptotically Ω(λ3), compared to O(λ2) communication in the protocol from
the previous sections. While the initial CSIDH paper [14] suggested that using
a 512-bit prime might be sufficient, recent analysis [10,56] recommends using
primes as large as 5280-bits long. This leads to Protocol 19 having communica-
tion complexity of 424KB.

9 Conclusions and Open Problems

We constructed two OPRFs from isogenies on elliptic curves. Our main con-
struction of a verifiable OPRF from isogenies on supersingular elliptic curves
is based on a new one-more SIDH assumption. Our construction achieves mali-
cious security by virtue of two new zero-knowledge proofs, and introduces a
new abstraction called Augmentable Commitments, which may help simplify

546 D. Boneh et al.

the exposition of future SIDH-based constructions. We also presented a second
construction from commutative group actions.

Future Work. It would be interesting to extend our OPRF to support thresh-
old PRF evaluation, where the PRF key is distributed across multiple servers.
Threshold OPRFs [38] have applications to management of passwords and keys
[2,32,39]. It would also be good to reduce the communication cost of our zero-
knowledge proofs, as that would improve the overall efficiency of the OPRF.

Acknowledgements. We would like to thank David Wu for helpful conversations. We
thank Henry Corrigan-Gibbs, Michel Dellepere, and Steven Galbraith for giving helpful
suggestions that improved this article. Finally, we would like to thank the anonymous
Asiacrypt reviewers for their constructive comments. This work was supported in part
by DARPA, NSF, ONR, and the Simons Foundation.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Dominguez, J.J., Menezes, A., Rodriguez-
Henriquez F. (2019) On the Cost of Computing Isogenies Between Supersingular
Elliptic Curves. In: Cid, C., Jacobson, Jr. M. (eds.) Selected Areas in Cryptography
– SAC 2018. SAC 2018. Lecture Notes in Computer Science, vol 11349. Springer,
Cham (2019) https://doi.org/10.1007/978-3-030-10970-7 15

2. Agrawal, S., Miao, P., Mohassel, P., Mukherjee, P.: PASTA: password-based thresh-
old authentication. In: Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 2042–2059 (2018)

3. Albrecht, M.R., Davidson, A., Deo, A., Smart, N.P.: Round-optimal verifiable
oblivious pseudorandom functions from ideal lattices. Cryptology ePrint Archive,
Report 2019/1271 (2019)

4. Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: Practical supersingular
isogeny group key agreement. Cryptology ePrint Archive, Report 2019/330 (2019)

5. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography, pp. 1–10 (2016)

6. Barreto, P., Oliveira, G., Benits, W.: Supersingular isogeny oblivious transfer.
arXiv preprint arXiv:1805.06589 (2018)

7. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

9. Boneh, D., Montogomery, H., Raghunathan, A.: Algebraic pseudorandom functions
with improved efficiency from the augmented cascade. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, pp. 131–140 (2010)

10. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

https://doi.org/10.1007/978-3-030-10970-7_15
http://arxiv.org/abs/1805.06589
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-030-45724-2_17

Oblivious Pseudorandom Functions from Isogenies 547

11. Büscher, N., et al.: Secure two-party computation in a quantum world. ACNS
(2020)

12. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72540-4 33

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136–145. IEEE (2001)

14. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

15. Castryck, W., Sotáková, J., Vercauteren, F.: Breaking the decisional diffie-hellman
problem for class group actions using genus theory. CRYPTO (2020)

16. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

17. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L.,
Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston, MA
(1983). https://doi.org/10.1007/978-1-4757-0602-4 18

18. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
compression of SIDH public keys. In: Coron, Jean-Sébastien, Nielsen, Jesper Buus
(eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7 24

19. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006)

20. Davidson, A., Sullivan, N., Wood, C.: Oblivious pseudorandom functions (OPRFs)
using prime-order groups. Internet-Draft draft-irtf-cfrg-voprf01 (2019)

21. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy
pass: bypassing internet challenges anonymously. Proc. Priv. Enhancing Technol.
2018(3), 164–180 (2018)

22. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

23. Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., Ristenpart, T.: The Pythia
PRF service. In: 24th USENIX Security Symposium (USENIX Security 15), pp.
547–562 (2015)

24. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

25. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

26. Galbraith, S.D.: Authenticated key exchange for SIDH. IACR Cryptol. ePrint
Archive, Report 2018/266 (2018)

27. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

28. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. J. Cryptol. 33(1), 130–175 (2020)

29. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic
curve isogenies. Quantum Inf. Process. 17(10), 265 (2018)

https://doi.org/10.1007/978-3-540-72540-4_33
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3

548 D. Boneh et al.

30. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

31. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–
282. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 16

32. Harchol, Y., Abraham, I., Pinkas, B.: Distributed SSH key management with proac-
tive RSA threshold signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 22–43. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-93387-0 2

33. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extendingoblivious transfers efficiently.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

34. Jao, D., et al.: SIKE: supersingular isogeny key encapsulation (2017)
35. Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In:

Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11659-4 10

36. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 13

37. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: How to protect your bitcoin wallet online).
In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 276–
291. IEEE (2016)

38. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In: Gollmann, D., Miyaji, A.,
Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 39–58. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61204-1 3

39. Jarecki, S., Krawczyk, H., Resch, J.K.: Updatable oblivious key management for
storage systems. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 379–393 (2019)

40. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol
secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 15

41. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-00457-5 34

42. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 26

43. Ji, Z., Qiao, Y., Song, F., Yun, A.: General linear group action on tensors: a
candidate for post-quantum cryptography. In: Hofheinz, D., Rosen, A. (eds.) TCC
2019. LNCS, vol. 11891, pp. 251–281. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-36030-6 11

44. Keelveedhi, S., Bellare, M., Ristenpart, T.: Dupless: Server-aided encryption for
deduplicated storage. In: 22nd USENIX Security Symposium (USENIX Security
13), pp. 179–194 (2013)

https://doi.org/10.1007/978-3-540-76900-2_16
https://doi.org/10.1007/978-3-319-93387-0_2
https://doi.org/10.1007/978-3-319-93387-0_2
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-319-11659-4_10
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-030-36030-6_11

Oblivious Pseudorandom Functions from Isogenies 549

45. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Fail-
ure is not an option: standardization issues for post-quantum key agreement. In:
Workshop on Cybersecurity in a Post-Quantum World, p. 21 (2015)

46. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for
unequal set sizes with mobile applications. Proc. Priv. Enhancing Technol. 2017(4),
177–197 (2017)

47. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 818–
829 (2016)

48. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

49. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. arXiv preprint arXiv:1112.3333 (2013)

50. Kutas, P., Martindale, C., Panny, L., Petit, C., Stange, K.E.: Weak instances of
SIDH variants under improved torsion-point attacks. In: Cryptology ePrint Archive,
Report 2020/633 (2020)

51. Lai, Y.F., Galbraith, S.D., de Saint Guilhem, C.D.: Compact, efficient and UC-
secure isogeny-based oblivious transfer. In: Cryptology ePrint Archive, Report
2020/1012 (2020)

52. Merz, S.-P., Minko, R., Petit, C.: Another look at some isogeny hardness assump-
tions. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 496–511. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-40186-3 21

53. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 23

54. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM (JACM) 51(2), 231–262 (1997)

55. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999)

56. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 16

57. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

58. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 13

59. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on
OT extension. In: 23rd USENIX Security Symposium (USENIX Security 14), pp.
797–812 (2014)

60. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur. 21(2), 7:1–7:35 (2018)

61. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. In:
Cryptology ePrint Archive, Report 2006/145 (2006)

62. Sahu, R.A., Gini, A., Pal, A.: Supersingular isogeny-based designated verifier blind
signature. In: Cryptology ePrint Archive, Report 2019/1498 (2019)

http://arxiv.org/abs/1112.3333
https://doi.org/10.1007/978-3-030-40186-3_21
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13

550 D. Boneh et al.

63. de Saint Guilhem, C.D., Orsini, E., Petit, C., Smart, N.P.: Secure oblivious transfer
from semi-commutative masking. In: Cryptology ePrint Archive, Report 2018/648
(2018)

64. Silverman, J.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics,
Springer, New York (2009)

65. Srinath, M.S., Chandrasekaran, V.: Isogeny-based quantum-resistant undeniable
blind signature scheme. I. J. Netw. Secur. 20(1), 9–18 (2018)

66. Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci.
410(50), 5285–5297 (2009)

67. Thormarker, E.: Post-quantum cryptography: supersingular isogeny Diffie-Hellman
key exchange. Ph.D. thesis, Thesis, Stockholm University (2017)

68. Urbanik, D., Jao, D.: Sok: the problem landscape of SIDH. In: Proceedings of the
5th ACM on ASIA Public-Key Cryptography Workshop, pp. 53–60 (2018)

69. Vitse, V.: Simple oblivious transfer protocols compatible with supersingular isoge-
nies. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS,
vol. 11627, pp. 56–78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23696-0 4

https://doi.org/10.1007/978-3-030-23696-0_4
https://doi.org/10.1007/978-3-030-23696-0_4

SiGamal: A Supersingular Isogeny-Based
PKE and Its Application to a PRF

Tomoki Moriya(B), Hiroshi Onuki, and Tsuyoshi Takagi

Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan
{tomoki moriya,onuki,takagi}@mist.i.u-tokyo.ac.jp

Abstract. We propose two new supersingular isogeny-based public key
encryptions: SiGamal and C-SiGamal. They were developed by giving an
additional point of the order 2r to CSIDH. SiGamal is similar to ElGa-
mal encryption, while C-SiGamal is a compressed version of SiGamal. We
prove that SiGamal and C-SiGamal are IND-CPA secure without using
hash functions under a new assumption: the P-CSSDDH assumption.
This assumption comes from the expectation that no efficient algorithm
can distinguish between a random point and a point that is the image
of a public point under a hidden isogeny.

Next, we propose a Naor-Reingold type pseudo random function
(PRF) based on SiGamal. If the P-CSSDDH assumption and the
CSSDDH∗ assumption, which guarantees the security of CSIDH that uses
a prime p in the setting of SiGamal, hold, then our proposed function
is a pseudo random function. Moreover, we estimate that the computa-
tional costs of group actions to compute our proposed PRF are about√

8T
3π

times that of the group actions in CSIDH, where T is the Hamming

weight of the input of the PRF.
Finally, we experimented with group actions in SiGamal and

C-SiGamal. The computational costs of group actions in SiGamal-512
with a 256-bit plaintext message space were about 2.62 times that of a
group action in CSIDH-512.

Keywords: Isogeny-based cryptography · Isogenies · CSIDH · Public
key encryption

1 Introduction

Public key cryptosystems are important technologies for guaranteeing the secu-
rity of communication. Currently, RSA [24] and ECC [11,16] are widely used
public key cryptosystems. Shor showed, however, that both of them can be bro-
ken by using a quantum computer in polynomial time [25]. Thus, we need to
develop new cryptosystems that cannot be broken even by using quantum com-
puters (i.e., post-quantum cryptosystems), before actual quantum computers
that can break RSA and ECC are developed.

Isogeny-based cryptosystems depend on the computational complexity of the
isogeny problem. Because the isogeny problem is considered hard to solve even
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 551–580, 2020.
https://doi.org/10.1007/978-3-030-64834-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_19

552 T. Moriya et al.

Table 1. Comparison of isogeny-based encryption schemes

Schemes SIKE SIDH CSIDH SÉTA SiGamal

Hash Used Not used Used Not used Used Not used Not used

Security IND-CCA OW-CPA IND-CPA OW-CPA IND-CPA OW-CPA IND-CPA

Assumption SSCDH SSDDH SSCDH CSSDDH CSSCDH RCSSI P-CSSDDH

by using quantum computers, isogeny-based cryptosystems are considered to be
one potential type of post-quantum cryptosystem. In fact, Supersingular Isogeny
Key Encapsulation (SIKE) [1] remained a candidate for the standardization of
post-quantum cryptography in the NIST second-round competition [19].

There are some isogeny-based key encryption schemes. In 2011, Jao and
De Feo proposed an isogeny-based key exchange scheme: Supersingular Isogeny
Diffie-Hellman (SIDH) [10]. In 2018, Castryck, Lange, Martindale, Panny, and
Renes proposed another isogeny-based key exchange scheme: Commutative
Supersingular Isogeny Diffie-Hellman (CSIDH) [3]. Finally, in 2019, de Saint
Guilhem, Kutas, Petit, and Javier proposed a public key encryption scheme:
Supersingular Encryption from Torsion Attacks (SÉTA) [6]. As far as we know,
these key encryptions require hash functions for IND-CPA security.

1.1 Our Results

One of our motivations in this paper is to construct secure schemes under a
minimum assumption. Without using hash functions, we propose two new public
key encryption schemes based on CSIDH: SiGamal and C-SiGamal. SiGamal is
very similar to ElGamal encryption [8], while C-SiGamal is a compressed version
of SiGamal. The bit length of a ciphertext in SiGamal is four times the bit length
of the prime p in the setting, while the bit length of a ciphertext in C-SiGamal
is twice the bit length of the prime p in the setting.

We define two new assumptions: the P-CSSCDH assumption (the Point-
Commutative Supersingular Computational Diffie-Hellman assumption) and
the P-CSSDDH assumption (the Point-Commutative Supersingular Decisional
Diffie-Hellman assumption). These two assumptions come from the idea that
it is hard to compute the image point of a given point under a hidden isogeny.
The P-CSSCDH assumption is a computational assumption, and the P-CSSDDH
assumption is a decisional assumption. We prove that, if the P-CSSCDH assump-
tion holds, then SiGamal and C-SiGamal are OW-CPA secure; furthermore, if
the P-CSSDDH assumption holds, then SiGamal and C-SiGamal are IND-CPA
secure.

We summarize a comparison of isogeny-based public key encryption schemes
in Table 1. Here, we regard SIDH and CSIDH as encryption schemes that use
the simple XOR cipher. As shown in this table, only our proposed schemes can
achieve IND-CPA security without using hash functions.

Next, we construct a new Naor-Reingold type pseudo random function (PRF)
from SiGamal. This PRF is a post-quantum PRF. We prove that the pseudo

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 553

randomness of this function is guaranteed from the P-CSSDDH and CSSDDH∗

assumptions. The CSSDDH∗ assumption guarantees the security of CSIDH that
uses a prime p in the setting of SiGamal. This PRF needs to compute group
actions many times. We estimate, by using approximations, that the compu-

tational costs of our proposed PRF are
√

8T
3π times that of a group action in

SiGamal, where T is the Hamming weight of the input of the PRF.
Finally, to evaluate the proposed key encryption schemes, we implemented

group actions in SiGamal and C-SiGamal and measured their computational
costs. In our experiment, the computational costs of group actions in SiGamal
and C-SiGamal that send 256-bit plaintexts were about 2.62 times that of a
group action in CSIDH-512. Furthermore, we implemented t times group actions
to evaluate the proposed PRF. Our approximation was roughly correct.

Organization. We explain important mathematical concepts and algorithms
in Sect. 2.1 to 2.4. We explain public key encryption in Sect. 2.5. In Sect. 2.6,
we explain the PRF. Then, we propose SiGamal in Sect. 3 and C-SiGamal in
Sect. 4. In Sect. 5, we propose a new isogeny-based PRF. In Sect. 6, we show
our experimentation results, and in Sect. 7, we conclude this paper.

2 Preliminaries

2.1 Basic Mathematical Concepts

Here, we explain the basic mathematical concepts behind isogeny-based cryp-
tography.

Elliptic Curves. Let L be a field, and let L′ be an algebraic extension field of L.
First, an elliptic curve E defined over L is a nonsingular algebraic curve that is
defined over L and has genus one. Denote by E(L′) the L

′-rational points of the
elliptic curve E. Here, E(L′) is an abelian group [27, III. 2]. Next, a supersingular
elliptic curve E over a finite field L of characteristic p is defined as an elliptic
curve that satisfies #E(L) ≡ 1 (mod p), where #E(L) is the cardinality of E(L).
Furthermore, let L be a field whose characteristic is odd. Then, an elliptic curve
E defined by the following equation is called a Montgomery curve:

E : bY 2Z = X3 + aX2Z + XZ2 (a, b ∈ L and b(a2 − 4) �= 0).

Let E and E′ be elliptic curves defined over L. Define an isogeny φ : E → E′

over L
′ as a rational map over L

′ that is a non-zero group homomorphism from
E(L) to E′(L), where L is the algebraic closure of L. A separable isogeny satis-
fying #ker φ = � is called an �-isogeny. Denote by EndL′(E) the endomorphism
ring of E over L′, and represent it as Endp(E) when L

′ is a prime field Fp. Note
also that an isogeny φ : E → E′ defined over L

′ is called an isomorphism over
L

′ if it has the inverse isogeny over L
′.

554 T. Moriya et al.

If G is a finite subgroup of E(L), then there exists an isogeny φ : E → E′ such
that its kernel is G and E′ is unique up to an L-isomorphism [27, Proposition
III.4.12]. This isogeny can be efficiently calculated by using Vélu formulas [29].
We denote a representative of E′ by E/G.

Next, we define the j-invariant of a Montgomery curve E : bY 2Z = X3 +
aX2Z + XZ2 (a, b ∈ L and b(a2 − 4) �= 0) by the following equation:

j(E) :=
256(a2 − 3)3

a2 − 4
.

It is known that the j-invariants of two elliptic curves are the same if and only
if the elliptic curves are L-isomorphic.

Finally, we define E[k] (k ∈ Z>0) as the k-torsion subgroup of E(L). For an
endomorphism φ of E, we sometimes denote ker φ by E[φ].

Ideal Class Groups. Let L be a number field, and O be an order in L. A
fractional ideal a of O is a non-zero O-submodule of L that satisfies αa ⊂ O for
some α ∈ O \ {0}. Moreover, an invertible fractional ideal a of O is defined as a
fractional ideal of O that satisfies ab = O for some fractional ideal b of O. The
fractional ideal b can be represented as a−1. If a fractional ideal a is contained
in O, then it is called an integral ideal of O. Let J(O) be a set of integral ideals
of O.

Next, let I(O) specifically be a set of invertible fractional ideals of O. I(O)
is then an abelian group derived from the multiplication of ideals with the
identity O. Let P (O) be a subgroup of I(O) defined by P (O) = {a | a =
αO (for some α ∈ L

×)}. We call the abelian group cl(O) defined by I(O)/P (O)
the ideal class group of O. Denote by [a] an element of cl(O) that is an equiva-
lence class of a.

Notation. The Fp-endomorphism ring Endp(E) of a supersingular elliptic curve
E defined over Fp is isomorphic to an order in an imaginary quadratic field [7].
Denote by E��p(O) the set of Fp-isomorphism classes of any elliptic curve E whose
Fp-endomorphism ring Endp(E) is isomorphic to O.

2.2 Group Action of Ideal Class Group

In this subsection, we explain an important group action that is a main part of
our proposed encryption system. First, Waterhouse gave the following theorem.

Theorem 1 ([30, Theorem 4.5]). Let O be an order of an imaginary quadratic
field and E be an elliptic curve defined over Fp. If E��p(O) contains the Fp-
isomorphism class of supersingular elliptic curves, then the action of the ideal
class group cl(O) on E��p(O),

cl(O) × E��p(O) −→ E��p(O)
([a], E) �−→ E/E[a],

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 555

is free and transitive, where a is an integral ideal of O, and E[a] is the intersec-
tion of the kernels of elements in a.

In general, we cannot efficiently compute the group action in Theorem 1. Cas-
tryck, Lange, Martindale, Panny, and Renes, however, proposed a method for
computing this group action efficiently in a special case [3]. They focused on the
action of cl(Z[πp]) on E��p(Z[πp]), where πp is the p-Frobenius map over elliptic
curves. In [3], they proved the following theorem.

Theorem 2 ([3, Proposition 8]). Let p be a prime satisfying p ≡ 3 (mod 8).
Let E be a supersingular elliptic curve defined over Fp. Then, Endp(E) ∼= Z[πp]
holds if and only if there exists a ∈ Fp such that E is Fp-isomorphic to a Mont-
gomery curve Y 2Z = X3 + aX2Z + XZ2, where πp is the p-Frobenius map.
Moreover, if such an a exists, then it is unique.

In other words, a Montgomery curve that belongs to an Fp-isomorphism class
E/E[a] is unique. Denote this Montgomery curve by [a]E.

Let the prime p be 4 · �1 · · · �n − 1, where the �1, . . . , �n are small distinct
odd primes. Let integral ideals li (i = 1, . . . , n) in Z[πp] be (�i, πp − 1) and
integral ideals li (i = 1, . . . , n) in Z[πp] be (�i, πp + 1). Because π2

p + p = 0 over
supersingular elliptic curves defined over Fp, it is easy to verify that [li]−1 = [li]
over such elliptic curves. The actions of [li] and [li] are efficiently computed by
Theorem 1 and Vélu formulas on Montgomery curves [15]. Therefore, an action
of [l1]e1 · · · [ln]en ∈ cl(Z[πp]) can be efficiently computed, where e1, . . . , en are
integers whose absolute values are small. According to the discussion in [3],
from some heuristic assumptions, it holds that

#cl(Z[πp]) ≈ #{[l1]e1 · · · [ln]en | e1, . . . , en ∈ {−m, . . . ,m}},
where m is the smallest number that satisfies 2m+1 ≥ 2n

√
p, and we call m a key

bound. Therefore, it suffices to consider the action of [l1]e1 · · · [ln]en , instead of
the action of a random element of cl(Z[πp]). Algorithm 1 specifies this sequence
of group actions.

In this paper, we extend this computational method for our proposed scheme.
In our scheme, we use a prime p that satisfies p = 2r · �1 · · · �n − 1, where r ≥ 3
and the �1, . . . , �n are small distinct odd primes. Therefore, we need the following
theorem.

Theorem 3 ([2, Proposition 3]). Let p > 3 be a prime that satisfies p ≡
3 (mod 4), and let E be a supersingular elliptic curve defined over Fp. If
Endp(E) ∼= Z[πp] holds, then there exists a ∈ Fp such that E is Fp-isomorphic
to Y 2Z = X3 + aX2Z + X2Z. Moreover, if such an a exists, then it is unique.

From Theorem 3, even if we use a prime p = 2r ·�1 · · · �n −1, we can compute
the action of cl(Z[πp]) in the same way as that proposed in [3] (i.e., Algorithm 1).

Moreover, we consider mapping points in E to [a]E by an isogeny whose
kernel is E[a]. Because we use isogenies to compute [a]E, it is easy to map a
point P ∈ E to [a]E. In general, however, the image of P is not unique since

556 T. Moriya et al.

Algorithm 1. Evaluation of a class group action [3]
Input: a ∈ Fp such that E : Y 2Z = X3 + aX2Z + XZ2 is supersingular, and a list of

integers (e1, . . . , en)
Output: A Montgomery coefficient of [le11 · · · lenn]E
1: while some ei �= 0 do
2: Sample a random x ∈ Fp

3: x(P) ← x
4: Set s ← +1 if x3 + ax2 + x is a square in Fp, else s ← −1
5: Let S = {i | sign(ei) = s}
6: if S = ∅ then
7: Go to line 2
8: end if
9: k ← ∏

i∈S �i, x(P) ← x(((p + 1)/k)P)
10: for all i ∈ S do
11: x(Q) ← x((k/�i)P)
12: if Q �= (0 : 1 : 0) then
13: Compute an �i-isogeny φ : Ea → Ea′ with ker φ = 〈Q〉
14: a ← a′, x(P) ← x(φ(P)), k ← k/�i, ei ← ei − s
15: end if
16: end for
17: end while
18: return a

there are various isogenies E → [a]E whose kernels are E[a]. In particular, in
general, the image of P over the isogeny E → [a]E → [a][b]E and that of P over
the isogeny E → [b]E → [a][b]E are not same. The following theorem guarantees
that the image of P is unique up to {±1}.

Theorem 4. Let E be a supersingular elliptic curve defined over Fp. Let Φ[a],(F)

denote an isogeny φ : F → [a]F such that ker φ = F [a]. If the following isogenies
are defined over Fp, then they satisfy the following equations:

Φ[b],([a]E) ◦ Φ[a],(E) = [±1] ◦ Φ[a],([b]E) ◦ Φ[b],(E).

To prove Theorem 4, we need the following lemma.

Lemma 1. Let E1 and E2 be supersingular elliptic curves defined over Fp. Let G
be a finite subgroup of E1(Fp) defined over Fp (i.e., πp(G) = G). Let φ : E1 → E2

and ψ : E1 → E2 be separable isogenies defined over Fp. If ker φ = ker ψ = G,
then φ = ψ, or φ = [−1] ◦ ψ.

Proof. From [9, Theorem 9.6.18], there are unique isogenies λ1 : E2 → E2 and
λ2 : E2 → E2 defined over Fp such that ψ = λ1 ◦φ and φ = λ2 ◦ψ. Furthermore,
from the uniqueness of isogenies in [9, Theorem 9.6.18], it holds that λ1 = λ−1

2 .
Therefore, λ2 is an automorphism of E2 defined over Fp.

Next, from [27, Theorem III.10.1], if j(E2) �= 0 and j(E2) �= 1728, then there
are no automorphisms other than [±1]. Therefore, we have λ2(x, y) = (x,±y) =

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 557

[±1](x, y). Since E2 is supersingular, if j(E2) = 0, then p ≡ 2 (mod 3), and if
j(E2) = 1728, then p ≡ 3 (mod 4). Therefore, from [27, Theorem III.10.1], even
if j(E2) = 0 or j(E2) = 1728, there are no automorphisms defined over Fp other
than [±1], and we have λ2(x, y) = (x,±y) = [±1](x, y). �
Now, we can prove Theorem 4.

Proof of Theorem 4. From Lemma 1, it suffices to show that

ker (Φ[b],([a]E) ◦ Φ[a],(E)) = ker (Φ[a],([b]E) ◦ Φ[b],(E)).

Indeed, this holds from [30, Proposition 3.12]. �
As shown above, the image of P ∈ E under the isogeny defined by the integral

ideal a in End(E) is unique up to [±1]. We denote this equivalence class of two
points by aP . Note that, even if [a] = [a′], it does not always hold that aP = a′P .
In fact, when [a][a] = [1], we have aaP = N(a)P , where N(a) is the norm of a.

All elements of J(Z[πp]) appearing in this paper are defined by (α)le1
1 · · · len

n ,
where α is an integer. An equivalence class (α)le1

1 · · · len
n P is a class of images of

αP under the isogeny defined by le1
1 · · · len

n .

2.3 CSIDH

CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) is a Diffie-
Hellman-type key exchange scheme [3]. It is based on actions of the ideal class
group cl(Z[πp]) on E��p(Z[πp]).

The exact scheme is as follows. Suppose that Alice and Bob want to share a
shared key denoted by SKshared.

Setup. Let p be a prime that satisfies p = 4 · �1 · · · �n − 1, where �1, . . . , �n are
small distinct odd primes. Then, let p and E0 : Y 2Z = X3 + XZ2 be public
parameters.

Key generation. Randomly choose an integer vector (e1, . . . , en) from
{−m, . . . ,m}n. Define [a] = [le1

1 · · · len
n] ∈ cl(Z[πp]). Then, calculate the action

of [a] on E0 and the Montgomery coefficient a ∈ Fp of [a]E0 : Y 2Z = X3 +
aX2Z + XZ2. The integer vector (e1, . . . , en) is the secret key, and a ∈ Fp is
the public key.

Key exchange. Alice and Bob have pairs of keys, ([a], a) and ([b], b), respec-
tively. Alice calculates the action [a][b]E0. Bob calculates the action [b][a]E0.
Denote the Montgomery coefficient of [a][b]E0 by SKAlice and that of [b][a]E0

by SKBob.

From the commutativity of cl(Z[πp]) and Theorem 2, SKAlice = SKBob holds.
This value is the shared key SKshared.

CSIDH is secure under the following assumption.

Definition 1 (Commutative Supersingular Decisional Diffie-Hellman
assumption (CSSDDH assumption)). Let p be a prime that satisfies p =
4·�1 · · · �n−1, where �1, . . . �n are small distinct odd primes. Let E0 be the elliptic

558 T. Moriya et al.

curve Y 2Z = X3 + XZ2 and [a], [b], and [c] be random elements of cl(Z[πp]).
Set λ as the bit length of p.

The CSSDDH assumption holds if, for any efficient algorithm (e.g., any prob-
abilistic polynomial time (PPT) algorithm) A,

∣∣∣∣∣∣∣
Pr

⎡
⎢⎣ b = b∗

∣∣∣∣∣∣∣

[a], [b], [c] ← cl(Z[πp]), b
$←− {0, 1},

F0 := [a][b]E0, F1 := [c]E0,

b∗ ← A(E0, [a]E0, [b]E0, Fb)

⎤
⎥⎦ − 1

2

∣∣∣∣∣∣∣
< negl(λ).

Remark 1. In the above definition, we sample elements of cl(Z[πp]) by taking
(e1, . . . , en) uniformly from {−m, . . . , m}n that represents [le1

1 · · · len
n] ∈ cl(Z[πp]).

This is not a uniform sampling method from cl(Z[πp]). For instance, refer to [21].

2.4 Pohlig-Hellman Algorithm [23]

Pohlig and Hellman proposed an algorithm in 1978 to solve the discrete log-
arithm problem [23]. The Pohlig-Hellman algorithm indicates that, if a cyclic
group G has smooth order, then the discrete logarithm problem over G can
be efficiently solved. In this subsection, we explain this algorithm to solve the
discrete logarithm problem over Z/2r

Z.
Let μ be an element of Z/2r

Z, and P be a generator of Z/2r
Z. Let

μ0, . . . , μr−1 be numbers in {0, 1} that satisfy μ =
∑r−1

j=0 μj2j . For given P
and μP , we want to compute μ efficiently.

Step 0: First, we compute 2r−1 · μP . If μ0 = 0, then 2r−1 · μP = 0, while if
μ0 = 1, then 2r−1 · μP �= 0. Therefore, we can obtain the value of μ0 by
computing 2r−1 · μP .

Step i (1 ≤ i ≤ r − 1): Define μ(i) = μ − ∑i−1
j=0 μj2j . From the definition

of μ0, . . . , μr−1, it is clearly true that μ(i) =
∑r−1

j=i μj2j . We thus compute
μ(i)P = μP −∑i−1

j=0 μj2jP . Furthermore, we compute 2r−i−1 ·μ(i)P . If μi = 0,
then 2r−i−1 · μ(i)P = 0, while if μi = 1, then 2r−i−1 · μ(i)P �= 0. Therefore,
we can obtain the value of μi by computing 2r−i−1 · μ(i)P .

As a result, from the r − 1 steps above, we obtain the value of μ.
Algorithm 2 is the Pohlig-Hellman algorithm for points in Montgomery

curves.

2.5 Public Key Encryption

In this subsection, we introduce the definition and security of public key encryp-
tion.

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 559

Algorithm 2. The Pohlig-Hellman algorithm for Montgomery curves
Input: a ∈ Fp such that E : Y 2Z = X3 + aX2Z + XZ2 is supersingular, and x-

coordinates of points P, Q ∈ E that have order 2r and satisfy Q ∈ 〈P 〉
Output: μ or 2r − μ such that P = μQ
1: x(P0) ← x(P)
2: x(Q0) ← x(Q)
3: for all i ∈ {1, . . . , r − 2} do
4: x(Pi) ← x(2Pi−1)
5: x(Qi) ← x(2Qi−1)
6: end for
7: M ← 1
8: for all i ∈ {2, . . . , r − 1} do
9: x(R) ← x(MQr−i)

10: if x(Pr−i) �= x(R) then
11: M ← M + 2i

12: end if
13: end for
14: return M

Definition of Public Key Encryption

Definition 2 (Public key encryption (PKE)). An algorithm P(λ) is called
a public key encryption scheme (i.e., a PKE scheme) if it consists of the
following algorithms that can be computed efficiently (e.g., PPT algorithms):
KeyGen,Enc,Dec.

KeyGen: Given a security parameter λ as input, output public keys pk, secret
keys sk, and a plaintext message space M.

Enc: Given a plaintext μ ∈ M and pk, output a ciphertext c.
Dec: Given c and sk, output a plaintext μ̃.

Definition 3 (Correctness). If a public key encryption scheme P(λ) holds for
any plaintexts μ, i.e.,

Dec(Enc(μ,pk), sk) = μ,

then P(λ) is correct.

Security of Public Key Encryption. Here, we introduce some security def-
initions.

Definition 4 (OW-CPA security). Let P be a public key encryption with
a plaintext message space M. We say that P is OW-CPA secure if, for any
efficient adversary A,

Pr

[
μ = μ∗

∣∣∣∣∣
(pk, sk) ← KeyGen(λ), μ

$←− M,

c ← Enc(pk, μ), μ∗ ← A(pk, c)

]
< negl(λ),

where μ
$←− M means that μ is uniformly and randomly sampled from M.

560 T. Moriya et al.

Definition 5 (IND-CPA security). Let P be a public key encryption with
a plaintext message space M. We say that P is IND-CPA secure if, for any
efficient adversary A,
∣∣∣∣∣∣∣

Pr

⎡
⎢⎣ b = b∗

∣∣∣∣∣∣∣

(pk, sk) ← KeyGen(λ), μ0, μ1 ← A(pk),

b
$←− {0, 1}, c ← Enc(pk, μb),

b∗ ← A(pk, c)

⎤
⎥⎦ − 1

2

∣∣∣∣∣∣∣
< negl(λ).

Definition 6 (IND-CCA security). Let P be a public key encryption with
a plaintext message space M. We say that P is IND-CCA secure if, for any
efficient adversary A,
∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎣ b = b∗

∣∣∣∣∣∣∣∣

(pk, sk) ← KeyGen(λ), μ0, μ1 ← AO(·)(pk),

b
$←− {0, 1}, c ← Enc(pk, μb),

b∗ ← AO(·)(pk, c)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
< negl(λ),

where O(·) is a decryption oracle that outputs Dec(sk, c∗) for all c∗ �= c.

Natural ElGamal-Like PKE Based on CSIDH. We explain a natural way
of constructing a PKE based on CSIDH without using hash functions.

KeyGen: Let p be a prime that satisfies p = 4 · �1 · · · �n − 1, where �1, . . . , �n are
small distinct odd primes. Let E0 be an elliptic curve Y 2Z = X3 + XZ2.
Alice takes random integers e1, ..., en, defines [a] = [le1

1 · · · len
n] ∈ cl(Z[πp]),

and then computes E1 := [a]E0. Alice publishes (E0, E1) as public keys and
keeps (e1, . . . , en) as a secret key. Let {0, 1}log2 p be a plaintext message space
M.

Enc: Let μ be a plaintext in M. Bob takes random integers e′
1, . . . , e

′
n, defines

[b] = [le
′
1

1 · · · le′
n

n] in cl(Z[πp]), and computes a point E3 := [b]E0, E4 := [b]E1.
Let the Montgomery coefficient of E4 be S. Then, Bob computes c := μ ⊕ S
and sends (E3, c) to Alice as a ciphertext.

Dec: Alice computes [a]E3 and gets the Montgomery coefficient of [a]E3, which
is S. Alice then computes c ⊕ S as a plaintext.

It is trivial that c ⊕ S = μ, and this key encryption scheme is thus correct.

Theorem 5. This key exchange scheme is not IND-CPA secure.

Proof. Let (E3, c) be a ciphertext of a plaintext μb, where b = 0, 1. An adversary
A computes μ0 ⊕ c and μ1 ⊕ c. Note that the probability that a random elliptic
curve defined over Fp becomes supersingular is exponentially small. If μb′ ⊕ c
represents a supersingular elliptic curve, then b = b′ holds with high probability.
Therefore, A can guess b, and the scheme is not IND-CPA secure. �

By using an entropy-smoothing hash function H, however, we can construct
an IND-CPA secure scheme under the CSSDDH assumption (Definition 1). In
this scheme, the ciphertext is (E3, μ⊕H(S)) instead of (E3, μ⊕S). Refer to [26,
§3.4] for the details.

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 561

2.6 Pseudo Random Function

In this subsection, we explain the pseudo random function (PRF).

Definition of PRF. Below is the definition of the basic PRF.

Definition 7 (Pseudo random functions). Let f (s) : {0, 1}t → {0, 1}t′
be a

function indexed by s ∈ SKey, where SKey is a set of keys. A family of functions
F = {f (s) | s ∈ SKey} is called a pseudo random function family if it satisfies
two properties:

1. There is an efficient algorithm to compute fs(x) from given s and x.
2. For any efficient adversary A that makes poly(λ) queries to the oracle,

∣∣∣∣∣∣
Pr

⎡
⎣ b = b∗

∣∣∣∣∣∣
b

$←− {0, 1}, pk $←− SPubKey,

f0
$←− F , f1

$←− R, b∗ ← Afb(·)(pk)

⎤
⎦ − 1

2

∣∣∣∣∣∣
< negl(λ),

where R is a set of functions mapping from {0, 1}t to {0, 1}t′
, λ is a bit length

of p, and SPubKey is a set of public keys.

Naor-Reingold PRF. Naor and Reingold proposed an efficient PRF under
the Decisional Diffie-Hellman assumption (DDH assumption) [18].

Definition 8 (Naor-Reingold PRF). Let p be a prime, let q be a prime divi-
sor of p − 1 that satisfies p ≈ q, and let g be an element of (Fp)× whose order
is q. The set {p, q, g} is a public key. Take a0, . . . , at from (Fq)× as secret keys.
Define a function f{a0,...,at} : {0, 1}t → 〈g〉:

f{a0,...,at}((x1, . . . , xt)) := ga0
∏t

i=1 a
xi
i .

If the DDH assumption holds, this function is a PRF [18, Theorem 4.1], and it
is called the Naor-Reingold PRF.

3 SiGamal

In this section, we explain the first proposed scheme: SiGamal.

3.1 Overview

The main idea of this scheme is to send plaintexts by using isogenies. Alice
publishes (E0, P0), where E0 is an elliptic curve, and P0 is a point of E0. Bob
computes an isogeny φ : E0 → E′

0 and a point μφ(P0), where μ is a plaintext.
If Alice can learn φ(P0) in some way, then she gets μ by solving the discrete
logarithm problem.

562 T. Moriya et al.

Algorithm 3. Evaluation of a class group action with a point P0

Input: a ∈ Fp such that E : Y 2Z = X3 + aX2Z + XZ2 is supersingular, the x-
coordinate of a point P0 of E, and a list of integers (α, e1, . . . , en)

Output: A Montgomery coefficient of [le11 · · · lenn]E, and the x-coordinate of
(α)le11 · · · lenn P0

1: P0 ← αP0

2: while some ei �= 0 do
3: Sample a random x ∈ Fp

4: x(P) ← x
5: Set s ← +1 if x3 + ax2 + x is a square in Fp, else s ← −1
6: Let S = {i | sign(ei) = s}
7: if S = ∅ then
8: Go to line 2
9: end if

10: k ← ∏
i∈S �i, x(P) ← x(((p + 1)/k)P)

11: for all i ∈ S do
12: x(Q) ← x((k/�i)P)
13: if Q �= (0 : 1 : 0) then
14: Compute an �i-isogeny φ : Ea → Ea′ with ker φ = 〈Q〉
15: a ← a′, x(P) ← x(φ(P)), k ← k/�i, x(P0) ← x(φ(P0)), ei ← ei − s
16: end if
17: end for
18: end while
19: return a, x(P0)

SiGamal achieves this in a similar way to ElGamal encryption [8]. The main
diagram of SiGamal is as follows.

(E0, P0)
a ��

b

��

([a]E0, aP0)

[μ]◦b
��

([b]E0, bP0)

a ��

([a][b]E0,µabP0)

([a][b]E0, abP0)

3.2 Encryption Scheme of SiGamal

In this subsection, we explain the scheme of SiGamal in precise detail.

KeyGen: Let p be a prime that satisfies p = 2r · �1 · · · �n − 1, where �1, . . . , �n are
small distinct odd primes. Let E0 be the elliptic curve Y 2Z = X3 + XZ2,
and P0 be a random point in E0(Fp) of order 2r. Alice takes random integers
α, e1, . . . , en, defines a = (α)le1

1 · · · len
n ∈ J(Z[πp]), and computes E1 := [a]E0

and P1 := aP0, where α is a uniformly random element of (Z/2r
Z)×.

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 563

Alice then publishes (E0, P0) and (E1, P1) as public keys, and she keeps
(α, e1, . . . , en) as a secret key. Let {0, 1}r−2 be a plaintext message space.

Enc: Let μ ∈ {0, 1}r−2 be a plaintext. Bob embeds μ in (Z/2r
Z)× via μ �→

2μ + 1 ∈ (Z/2r
Z)×. Bob takes random integers β, e′

1, . . . , e
′
n and defines b =

(β)le
′
1

1 · · · le′
n

n ∈ J(Z[πp]), where β is a uniformly random element of (Z/2r
Z)×.

Next, Bob computes (2μ + 1)P1, E3 := [b]E0, P3 := bP0, E4 := [b]E1, and
P4 := b((2μ+1)P1). Bob then sends (E3, P3, E4, P4) to Alice as a ciphertext.

Dec: Alice computes aP3 and solves the discrete logarithm problem over Z/2r
Z

for aP3 and P4 by using the Pohlig-Hellman algorithm. Let M be the solution
of this computation. If the most significant bit of M is 1, then Alice changes
M to 2r − M . Finally, Alice computes (M − 1)/2 as a plaintext μ̃.

Remark 2. In the above scheme, any point is described by its x-coordinate. For
instance, to be precise, Bob sends (E3, x(P3), E4, x(P4)) to Alice.

Remark 3. For computing a group action, we use Algorithm 3.

Remark 4. In this paper, we construct SiGamal based on CSIDH key exchange
[3]. Similarly, we can construct SiGamal based on SIDH key exchange [10] accord-
ing to [13]. In that case, we take a prime p satisfying p = 2r3eA5eB − 1, where
3eA ≈ 5eB .

Moreover, we can construct SiGamal based on CSURF [2]. In the CSURF
algorithm, we need to compute 2-isogenies. Therefore, we embed a plaintext μ
in a subgroup of order �r, where � is an odd prime.

Theorem 6. SiGamal is correct.

Proof. By Theorem 4, aP3 is bP1 or −bP1. Therefore, Alice gets 2μ + 1 or
2r − (2μ + 1). Since the bit length of μ is less than r − 2, the most significant
bit of 2μ + 1 is always 0. Thus, if the most significant bit of M is 1, then
M = 2r − (2μ + 1). Therefore, after adjusting this, Alice gets 2μ + 1 as M .
Hence, μ̃ = μ, and SiGamal is correct. �

3.3 Security of SiGamal

In this subsection, we prove the security of SiGamal.
First, we define new assumptions: the P-CSSCDH assumption and the P-

CSSDDH assumption. These assumptions are based on the idea that it is hard to
compute the image of a fixed point under a hidden isogeny. In [6,28], problems of
computing images over isogenies in SIDH settings are considered hard to solve.
Petit provided a method for computing an isogeny between two given elliptic
curves in an SIDH setting by using image points of sufficiently large degree under
the isogeny [22]. Because the isogeny problem is hard, the problem of computing
image points in the SIDH setting is considered hard. When we translate these
problems into those in the CSIDH setting, the P-CSSCDH assumption and the P-
CSSDDH assumption are one of natural constructions of assumptions. Therefore,
we consider these new assumptions below to be correct.

564 T. Moriya et al.

Definition 9 (Points-Commutative Supersingular Isogeny Computa-
tional Diffie-Hellman assumption (P-CSSCDH assumption)). Let p be
a prime that satisfies p = 2r · �1 · · · �n − 1, where �1, . . . �n are small distinct odd
primes. Let E0 be the elliptic curve Y 2Z = X3+XZ2, P0 be a uniformly random
point in E0(Fp) of order 2r, and a and b be random elements of J(Z[πp]). Set λ
as the bit length of p.

The P-CSSCDH assumption holds if, for any efficient algorithm A,

Pr

[
abP0 = P ∗

∣∣∣∣∣
P0

$←− E0(Fp)order 2r , a, b ← J(Z[πp]),
P ∗ ← A(E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0)

]
< negl(λ).

Definition 10 (Points-Commutative Supersingular Isogeny Decisional
Diffie-Hellman assumption (P-CSSDDH assumption)). Let p be a prime
that satisfies p = 2r · �1 · · · �n − 1, where �1, . . . �n are small distinct odd primes.
Let E0 be the elliptic curve Y 2Z = X3 + XZ2, P0 be a uniformly random point
in E0(Fp) of order 2r, and a and b be random elements of J(Z[πp]) whose
norms are odd. Furthermore, let Q be a uniformly random point of order 2r

in ([a][b]E0)(Fp). Set λ as the bit length of p.
The P-CSSDDH assumption holds if, for any efficient algorithm A,
∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎣ b = b∗

∣∣∣∣∣∣∣∣

P0
$←− E0(Fp)order 2r , a, b ← J(Z[πp]), b

$←− {0, 1},

Q
$←− ([a][b]E0)(Fp)order 2r , R0 := abP0, R1 := Q,

b∗ ← A(E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0, Rb)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
< negl(λ).

Remark 5. An equivalence class abP0 is uniquely determined from

E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0.

Now, we prove this fact.
Let a, a′, b, and b′ be elements of J(Z[πp]) such that [a] = [a′], [b] = [b′],

aP0 = a′P0, bP0 = b′P0, and the norms of a, a′, b, and b′ are coprime to the
order of P0. Now, we prove that abP0 = a′b′P0. From the definition of an ideal
class group, there exist α, β ∈ Q(πp)× such that a = a′α and b = b′β. Then,
α(P0) = ±P0 holds because the norms of a and a′ are coprime to the order of P0,
and aP0 = a′P0. Similarly, β(P0) = ±P0. Therefore, abP0 = a′b′αβP0 = a′b′P0.

Remark 6. In the above definitions, we sample elements of J(Z[πp]) by tak-
ing (α, e1, . . . , en) uniformly from (Z/2r

Z)× × {−m, . . . ,m}n that represents
αle1

1 · · · len
n ∈ J(Z[πp]).

Next, we prove the security of SiGamal under the above assumptions.

Theorem 7. If the P-CSSCDH assumption holds, then SiGamal is OW-CPA
secure.

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 565

Proof. Assume that SiGamal is not OW-CPA secure. In that case, there exists an
efficient algorithm (adversary) A′ that, with high probability, outputs a hidden
plaintext μ from

(E0, P0, [a]E0, aP0), ([b]E0, bP0, [a][b]E0, (2μ + 1)abP0).

Now, we construct a new algorithm A that outputs abP0 from

(E0, P0), ([a]E0, aP0), ([b]E0, bP0), [a][b]E0

with high probability (i.e., ω
(

1
poly(λ)

)
). Taking a random point Q of order 2r

from [a][b]E0, we compute

μ := A′((E0, P0, [a]E0, aP0), ([b]E0, bP0, [a][b]E0, Q)).

Here, Q = (2μ + 1)abP0 holds with high probability. Note that 2μ + 1 belongs
to (Z/2r

Z)×. From Q and μ, we compute 1
2μ+1Q. That is, algorithm A outputs

1
2μ+1Q, which is abP0 with high probability.

It is clear that A is an efficient algorithm. Therefore, the P-CSSCDH assump-
tion does not hold. �
Theorem 8. If the P-CSSDDH assumption holds, then SiGamal is IND-CPA
secure.

Proof. Assume that SiGamal is not IND-CPA secure. In that case, there exists
an efficient algorithm (adversary) A′ judging whether a given ciphertext was
encrypted from μ0 or μ1. Denote the advantage of A′ (i.e., the left side of the
inequality in Definition 5) by AdvA′(λ). Note that AdvA′(λ) = ω

(
1

poly(λ)

)
.

Now, we construct a new algorithm A that outputs b, with a probability of
ω

(
1

poly(λ)

)
+ 1

2 , from

E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0, Rb,

where R0 = abP0, and R1 = Q. Taking b̃ ∈ {0, 1} uniformly at random, we
compute (2μb̃ + 1)Rb. Let

b∗ := A′((E0, P0, [a]E0, aP0), ([b]E0, bP0, [a][b]E0, (2μb̃ + 1)Rb)).

If b̃ = b∗, then A outputs 0, while if b̃ �= b∗, A outputs 1.
Next, we discuss the probability that A outputs the correct b. If b = 0, then

b∗ = b̃ with a probability of AdvA′(λ) + 1
2 or −AdvA′(λ) + 1

2 . If b = 1, then
the adversary A′ cannot get any information about μb̃ since (2μb̃ + 1)Rb is a
uniformly random point. Therefore, if b = 1, b∗ �= b̃ with a probability of 1

2 .
Consequently, the probability that A outputs the correct b is

1
2

(
±AdvA′(λ) +

1
2

+
1
2

)
= ±1

2
AdvA′(λ) +

1
2

= ω

(
1

poly(λ)

)
+

1
2
.

Therefore, as algorithm A is an efficient algorithm, the P-CSSDDH assump-
tion does not hold. �

566 T. Moriya et al.

Note that SiGamal is not IND-CCA secure, because anyone can easily com-
pute a ciphertext of a plaintext 3μ+1: ([b]E0, bP0, [b]E1, 3(2μ+1)bP1) from the
ciphertext of a plaintext μ: ([b]E0, bP0, [b]E1, (2μ + 1)bP1).

Remark 7. In the SiGamal scheme, Bob can omit sending [a][b]E0 in the
ciphertext ([b]E0, bP0, [a][b]E0, (2μ + 1)abP0). Note that Bob sends only the x-
coordinate of (2μ+1)abP0. When Bob omits sending [a][b]E0, it is hard to com-
pute the ciphertext of a plaintext 3μ + 1 from that of a plaintext μ, because the
elliptic curve [a][b]E0 is hidden. The question of whether SiGamal with hidden
[a][b]E0 is IND-CCA secure is an open problem.

Remark 8. SiGamal is attacked by computing a group element [a] from E0 and
[a]E0. This method of attack is the same as that for CSIDH. Therefore, the
security level of SiGamal is the same as that of CSIDH for the same security
parameter.

4 C-SiGamal (Compressed-SiGamal)

In this section, we explain the second proposed scheme: C-SiGamal, which is a
compressed version of SiGamal. The bit length of a ciphertext in C-SiGamal is
half that of a ciphertext in SiGamal, but the scheme of C-SiGamal is a little bit
more complicated than that of SiGamal.

4.1 Encryption Scheme of C-SiGamal

In this subsection, we explain the scheme of C-SiGamal in precise detail.
Let E be a supersingular elliptic curve Y 2Z = X3 + aX2Z + XZ2. Let PE

be a point in E such that PE = �1 · · · �nP̃E , where P̃E is the point in E(Fp) that
has the largest x-coordinate in {−2,−3, . . . ,−p+1} among points whose orders
are divisible by 2r. We use this point to construct C-SiGamal. The reason why
we define P̃E as above is explained in Appendix A.

The scheme of C-SiGamal is as follows.

KeyGen: Let p be a prime that satisfies p = 2r · �1 · · · �n − 1, where �1, . . . , �n are
small distinct odd primes. Let E0 be the elliptic curve Y 2Z = X3 + XZ2,
and P0 be a random point in E0(Fp) of order 2r. Alice takes random integers
α, e1, . . . , en, defines a = (α)le1

1 · · · len
n ∈ J(Z[πp]), and computes E1 := [a]E0

and P1 := aP0. Alice then publishes (E0, P0) and (E1, P1) as public keys,
and keeps (α, e1, . . . , en) as a secret key. Let {0, 1}r−2 be a plaintext message
space.

Enc: Let μ be a plaintext. Bob takes random integers β, e′
1, . . . , e

′
n, defines b =

(β)le
′
1

1 · · · le′
n

n in J(Z[πp]), and computes E3 := [b]E0, P3 := bP0, E4 := [b]E1,
and P4 := bP1. Bob computes (2μ+1)PE4 and gets μ∗ satisfying (2μ+1)PE4 =
μ∗P4 by using the Pohlig-Hellman algorithm. Bob then computes P ′

3 := μ∗P3

and sends (E3, P
′
3) to Alice as a ciphertext.

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 567

Dec: Alice computes E4 = [a]E3 and aP ′
3. Alice then solves the discrete logarithm

problem over Z/2r
Z for aP ′

3 and PE4 by using the Pohlig-Hellman algorithm.
Let M be the solution of this computation. If the most significant bit of M
is 1, then Alice changes M to 2r − M . Finally, Alice computes (M − 1)/2 as
a plaintext μ̃.

The main diagram of C-SiGamal is as follows.

(E0, P0)
a ��

b

��

([a]E0, aP0)

b

��
([b]E0, bP0)

[µ∗]
��

([a][b]E0, abP0)

([b]E0, μ
∗bP0)

a ��

([a][b]E0, (2μ + 1)P[a][b]E0)

([a][b]E0, μ
∗abP0)

Theorem 9. C-SiGamal is correct.

Proof. The proof of this theorem is similar to that of Theorem 6. �

4.2 Security of C-SiGamal

In this subsection, we prove the security of C-SiGamal.

Theorem 10. If the P-CSSCDH assumption holds, then C-SiGamal is OW-
CPA secure.

Proof. Assume that C-SiGamal is not OW-CPA secure. In that case, there is an
efficient algorithm (adversary) A′ that, with high probability, outputs a hidden
plaintext μ from

(E0, P0, [a]E0, aP0), ([b]E0, μ
∗bP0).

Now, we construct a new algorithm A that outputs abP0 from

(E0, P0), ([a]E0, aP0), ([b]E0, bP0), [a][b]E0

with high probability (i.e., ω
(

1
poly(λ)

)
). Taking a random element ν in (Z/2r

Z)×

and the point P[a][b]E0 in [a][b]E0, we compute

μ := A′((E0, P0, [a]E0, aP0), ([b]E0, νbP0)).

Here, (2μ + 1)P[a][b]E0 = νabP0 holds with high probability. Then, we compute
2μ+1

ν P[a][b]E0 . That is, algorithm A outputs 2μ+1
ν P[a][b]E0 , which is abP0 with

high probability.
It is clear that A is an efficient algorithm. Therefore, the P-CSSCDH assump-

tion does not hold. �

568 T. Moriya et al.

Theorem 11. If the P-CSSDDH assumption holds, then C-SiGamal is IND-
CPA secure.

Proof. Assume that C-SiGamal is not IND-CPA secure. In that, there exists
an efficient algorithm (adversary) A′ judging whether a given ciphertext was
encrypted from μ0 or μ1. Denote the advantage of A′ (i.e., the left side of the
inequality in Definition 5) by AdvA′(λ). Note that AdvA′(λ) = ω

(
1

poly(λ)

)
.

Now, we construct a new algorithm A that outputs b, with a probability of
ω

(
1

poly(λ)

)
+ 1

2 , from

E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0, Rb,

where R0 = abP0, and R1 = Q. Taking the point P[a][b]E0 in [a][b]E0 and b̃ ∈
{0, 1} uniformly at random, we compute a point (2μb̃ + 1)Rb and a value μ∗

b̃
∈

(Z/2r
Z)× such that μ∗

b̃
P[a][b]E0 = (2μb̃ + 1)Rb. Then, let

b∗ := A′((E0, P0, [a]E0, aP0), ([b]E0, μ
∗
b̃
bP0)).

If b̃ = b∗, then A outputs 0, while if b̃ �= b∗, A outputs 1.
Next, we discuss the probability that A outputs the correct b. If b = 0, then

b∗ = b̃ with a probability of AdvA′(λ) + 1
2 or −AdvA′(λ) + 1

2 . If b = 1, then
the adversary A′ cannot get any information about μb̃ because (2μb̃ + 1)Rb is
a uniformly random point and μ∗

b̃
is a uniformly random value. Therefore, if

b = 1, then b∗ �= b̃ with a probability of 1
2 . Consequently, the probability that A

outputs the correct b is

1
2

(
±AdvA′(λ) +

1
2

+
1
2

)
= ±1

2
AdvA′(λ) +

1
2

= ω

(
1

poly(λ)

)
+

1
2
.

As algorithm A is an efficient algorithm, the P-CSSDDH assumption does
not hold. �

Finally, note that C-SiGamal is not IND-CCA secure for the same reason
that SiGamal is not.

4.3 Comparing Key Size of Each Scheme

In this subsection, we compare the key sizes of CSIDH, SiGamal, and C-SiGamal.
The result of comparison is shown in Table 2, where p is a prime in the setting
of each scheme, and r is an exponent of a prime factor 2 of p + 1.

From this table, the bit length of a ciphertext in SiGamal is twice that of a
ciphertext in CSIDH; however, that of a ciphertext in C-SiGamal is the same as
that of a ciphertext in CSIDH. Therefore, though C-SiGamal is more complicated
than SiGamal, the cost of sending ciphertexts in C-SiGamal is as small as that
in CSIDH.

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 569

Table 2. Comparison of key sizes of CSIDH, SiGamal, and C-SiGamal

CSIDH SiGamal C-SiGamal

Sizes of plaintexts (2r‖(p + 1)) − r − 2 r − 2

Alice’s public key 2 log2 p 4 log2 p 4 log2 p

Bob’s public key (ciphertext) 2 log2 p 4 log2 p 2 log2 p

5 Naor-Reingold Type PRF Based on SiGamal

In this section, we propose a new Naor-Reingold type pseudo random function
based on SiGamal. This type of PRF can be realized by using CSIDH in a
similar way to [18, Construction 4.2]. In this construction, we need a family
of pairwise independent hash functions because the output of this function is
a supersingular elliptic curve. However, by using SiGamal, we can construct a
Naor-Reingold type PRF without using hash functions.

5.1 Definition of Our Proposed PRF

Definition 11. Let a prime p satisfy p = 2r�1 · · · �n − 1, where �1, . . . , �n are
small distinct odd primes. Let E0 be the supersingular elliptic curve Y 2Z =
X3 + XZ2, and P0 be a point of order 2r in E0(Fp). Let a0, . . . , at be random
integral ideals of Z[πp] whose norms are odd. Denote by A the set (a0, . . . , at).

We define the function fp,E0,P0,A : {0, 1}t → {0, 1}r−2 = {0, . . . , 2r−2 − 1} as
follows. From x = (x1, . . . , xt) ∈ {0, 1}t, fp,E0,P0,A outputs νx, where νx is the
value in {0, 1}r−2 satisfying

a0

t∏
i=1

axi
i P0 = (2νx + 1)P[a0]

∏t
i=1[ai]xiE0

.

The function defined in Definition 11 is a pseudo random function over the
P-CSSDDH assumption and the CSSDDH∗ assumption. First, we define the
CSSDDH∗ assumption. This assumption is essentially the same as the CSSDDH
assumption (Definition 1). The difference between the CSSDDH assumption and
the CSSDDH∗ assumption is the setting of the prime p.

Definition 12 (CSSDDH∗ assumption). Let p be a prime that satisfies p =
2r · �1 · · · �n − 1, where �1, . . . �n are small distinct odd primes. Let E0 be the
elliptic curve Y 2Z = X3 + XZ2, and [a], [b], and [c] be random elements of
cl(Z[πp]). Set λ as the bit length of p.

The CSSDDH∗ assumption holds if, for any efficient algorithm A,
∣∣∣∣∣∣∣

Pr

⎡
⎢⎣ b = b∗

∣∣∣∣∣∣∣

[a], [b], [c] ← cl(Z[πp]), b
$←− {0, 1},

F0 := [a][b]E0, F1 := [c]E0,

b∗ ← A(E0, [a]E0, [b]E0, Fb)

⎤
⎥⎦ − 1

2

∣∣∣∣∣∣∣
< negl(λ).

570 T. Moriya et al.

Next, we prove that the function defined in Definition 11 is a pseudo random
function.

Theorem 12. If the P-CSSDDH assumption and the CSSDDH∗ assumption
hold, the function defined in Definition 11 is a pseudo random function.

Before proving Theorem 12, we prove the following lemmas.

Lemma 2. Let a prime p satisfy p = 2r�1 · · · �n − 1, where �1, . . . , �n are small
distinct odd primes, and let λ be the bit length of p. If the P-CSSDDH assumption
and the CSSDDH∗ assumption hold, for any efficient adversary A,

∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎣

b = b∗

∣∣∣∣∣∣∣∣∣∣∣

P0
$←− E0(Fp)order 2r , a, b, c ← J(Z[πp]),

b
$←− {0, 1}, F0 := [a][b]E0, R0 := abP0,

F1 := [c]E0, R1 := cP0,

b∗ ← A(E0, P0, [a]E0, aP0, [b]E0, bP0, Fb, Rb)

⎤
⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣

< negl(λ).

Proof. For simplicity, let Sp := {E0, P0, [a]E0, aP0, [b]E0, bP0}. From the P-
CSSDDH assumption,
∣∣∣Pr [A(Sp, [a][b]E0, abP0) = 1] − Pr

[
A(Sp, [a][b]E0, kabP0) = 1

∣∣∣k $←− (Z/2r
Z)×

]∣∣∣ < negl(λ).

Note that aP0, bP0, and cP0 are uniformly random points in ([a]E0)(Fp)order 2r ,
([b]E0)(Fp)order 2r , and ([c]E0)(Fp)order 2r , respectively. From the CSSDDH∗

assumption,
∣∣∣Pr

[
A(Ap, [a][b]E0, kabP0) = 1

∣∣∣k $←− (Z/2r
Z)×

]
− Pr [A(Sp, [c]E0, cP0) = 1]

∣∣∣ < negl(λ).

Therefore,

|Pr [A(S, [a][b]E0, abP0) = 1] − Pr [A(S, [c]E0, cP0) = 1]| < 2 · negl(λ).

This inequality is equivalent to what we want to prove. �
Lemma 3. Let a prime p satisfy p = 2r�1 · · · �n − 1, where �1, . . . , �n are small
distinct odd primes, let λ be the bit length of p, and let v be a small integer such
that v = poly(λ). If the P-CSSDDH assumption and the CSSDDH∗ assumption
hold, for any efficient adversary A,
∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎣

b = b∗

∣∣∣∣∣∣∣∣∣∣∣

P0
$←− E0(Fp)order 2r , b

$←− {0, 1},

a, b1, . . . , bv, c1, . . . , cv ← J(Z[πp]), F
(i)
0 := [a][bi]E0,

R
(i)
0 := abiP0, F

(i)
1 := [ci]E0, R

(i)
1 := ciP0,

b∗ ← A(E0, P0, [a]E0, aP0, {[bi]E0, biP0, F
(i)
b , R

(i)
b }i=1,...,v})

⎤
⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣

< negl(λ).

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 571

Proof. For simplicity, let Sp := {E0, P0, [a]E0, aP0}. From Lemma 2, for any
efficient adversary A′,

|Pr[A′(Sp, [b]E0, bP0, [a][b]E0, abP0) = 1] − Pr[A′(Sp, [b]E0, bP0, [c]E0, cP0) = 1]| < negl(λ).

Therefore, for any j ∈ {1, . . . , v},

|Pr[A(Sp,DHj , Rj) = 1] − Pr[A(Sp,DHj−1, Rj−1) = 1]| < negl(λ),

where DHj is the set {[bi]E0, biP0, [a][bi]E0, abiP0 | i = 1, . . . , j}, and Rj is the
set {[bi]E0, biP0, [ci]E0, ciP0 | i = j + 1, . . . , v}. We have

|Pr[A(Sp,DHv, Rv) = 1] − Pr[A(Sp,DH0, R0) = 1]|

≤
v∑

j=1

|Pr[A(Sp,DHj , Rj) = 1] − Pr[A(Sp,DHj−1, Rj−1) = 1]|

<v · negl(λ).

This inequality is equivalent to what we want to prove. �
Now, we prove Theorem 12.

Proof of Theorem 12. This proof is similar to that of [18, Theorem 4.1].
Let A be an efficient adversary. Let a prime p satisfy p = 2r�1 · · · �n−1, where

�1, . . . , �n are small distinct odd primes. Let E0 be the supersingular elliptic curve
Y 2Z = X3 + XZ2. Now, we prove

∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣ b = b∗

∣∣∣∣∣∣∣∣

P0
$←− E0(Fp)order 2r , b

$←− {0, 1},

A ← J(Z[πp])t+1, f0 := fp,E0,P0,A,

f1
$←− R, b∗ ← Afb(·)(p,E0, P0)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
< negl(λ),

where R is a set of functions mapping from {0, 1}t to {0, 1}r−2, and λ is a bit
length of p.

Let a, b1, . . . , bv, c1, . . . , cv be random elements of J(Z[πp]) whose norms are
odd. Let F

(j)
0 := [a][bj]E0, R

(j)
0 := abjP0, F

(j)
1 := [cj]E0, and R

(j)
1 := cjP0. Let

the queries asked by A be x(1), . . . , x(u). We define an efficient adversary A′ as
follows.

1. Receive Sp,b := (p,E0, P0, [a]E0, aP0, {[bj]E0, bjP0, F
(j)
b , R

(j)
b }j=1,...,u), where

b is 0 or 1.
2. Take a random element J from {1, . . . , t}.
3. Take random elements aJ+1, . . . , at from J(Z[πp]) whose norms are odd.
4. Give (p,E0, P0) to A.
5. For the query x(u′), reply with⎛

⎝ ∏
i=J+1,...,t

[ai]x
(u′)
i F

(j)
b ,

∏
i=J+1,...,t

a
x
(u′)
i

i R
(j)
b

⎞
⎠ (if x

(u′)
J = 1),

⎛
⎝ ∏

i=J+1,...,t

[ai]x
(u′)
i [bj]E0,

∏
i=J+1,...,t

a
x
(u′)
i

i bjP0

⎞
⎠ (if x

(u′)
J = 0),

572 T. Moriya et al.

where u′ = 1, . . . , u, and

j = j(u′) = min {u′′ | (x(u′′)
1 , . . . , x

(u′′)
J−1) = (x(u′)

1 , . . . , x
(u′)
J−1)}.

6. Output whatever A outputs.

From Lemma 3, it holds that, for any i = 1, . . . , t,

|Pr[A′(Sp,0) = 1 | J = i] − Pr[A′(Sp,1) = 1 | J = i]| < negl(λ).

By the definition of A′,

Pr[A′(Sp,1) = 1 | J = i] = Pr[A′(Sp,0) = 1 | J = i + 1],

Pr[A′(Sp,0) = 1 | J = 1] = Pr[Af0(·)(p,E0, P0) = 1],

Pr[A′(Sp,1) = 1 | J = v] = Pr[Af1(·)(p,E0, P0) = 1].

Therefore,
∣∣∣Pr[Af0(·)(p,E0, P0) = 1] − Pr[Af1(·)(p,E0, P0) = 1]

∣∣∣
= |Pr[A′(Sp,0) = 1 | J = 1] − Pr[A′(Sp,1) = 1 | J = t]|

≤
t∑

J=1

|Pr[A′(Sp,0) = 1 | J = i] − Pr[A′(Sp,1) = 1 | J = i]|

<t · negl(λ).

This inequality is equivalent to what we want to prove. �

5.2 Evaluating Cost of Computing Our Proposed PRF

In this subsection, we discuss the cost of computing our proposed PRF.
It seems that the main cost of computing our proposed PRF is the cost of

computing group actions T times, where T is the Hamming weight of an input
(i.e., the number of 1s contained in the bit string of input is T). However, the cost
of the calculations can be reduced by adding integer vectors before computing

group actions. We show that the cost of group actions for the PRF is about
√

8T
3π

times that of an original group action under some approximations.
From [12], the cost of group actions are evaluated approximately by the L1-

norm of an integer vector (e1, . . . , en). Therefore, if we compute these actions
straightforwardly, the cost is about

T∑
k=1

n∑
j=1

E
[
|i|

∣∣∣ i
$←− {−m, . . . ,m}

]
= Tn · 1

2m + 1

m∑
i=−m

|i| =
Tnm(m + 1)

2m + 1
,

where E[X] is the expected value of a random value X. However, if we consider
that liliP = �iP , we can reduce the number of computations of isogenies. How
much it costs to compute group actions T times is not trivial.

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 573

The expected value of the L1-norm of the integer vector of T times group
actions is

n∑
j=1

E

[∣∣∣∣∣
T∑

i=1

mi

∣∣∣∣∣

∣∣∣∣∣ m1, . . . ,mT
$←− {−m, . . . , m}

]
.

From the Central Limit Theorem, when T → ∞,

Pr

[
T∑

i=1

mi = s

∣∣∣∣∣ m1, . . . ,mT
$←− {−m, . . . ,m}

]
≈ 1√

2πTσ2
exp

(
− s2

2Tσ2

)
,

where σ2 = E[i2 | i
$←− {−m, . . . ,m}] = m(m+1)

3 . Based on this equation, we
approximate as follows.

E

[∣∣∣∣∣
T∑

i=1

mi

∣∣∣∣∣

∣∣∣∣∣ m1, . . . ,mT
$←− {−m, . . . , m}

]
≈

∞∑
s=−∞

|s|√
2πTσ2

exp
(

− s2

2Tσ2

)
,

≈
∫ ∞

−∞

|s|√
2πTσ2

exp
(

− s2

2Tσ2

)
ds,

=

√
2Tm(m + 1)

3π
.

The expected value we want is about n
√

2Tm(m+1)
3π . Note that the expected

value of the L1-norm of an integer vector of one group action is nm(m+1)
2m+1 . In

conclusion, the cost of our proposed PRF when the Hamming weight of input is
T is about √

2Tm(m + 1)
3π

· 2m + 1
m(m + 1)

≈
√

8T

3π

times that of a group action in SiGamal.
This result was confirmed in our experiment in Subsect. 6.3.

Remark 9. Our discussion in this subsection focuses on a non-constant time algo-
rithm of group actions. When we use a constant time algorithm (e.g., algorithms
proposed in [4,14,20]), this discussion does not hold.

6 Experimentation

In this section, we show the results of our experimentation to estimate the com-
putational costs of our proposed schemes. We fixed the security levels of all
schemes to the security level of CSIDH-512. In other words, we chose primes
that satisfied the condition that their bit lengths were about 512 in all exper-
iments. Our source codes of MAGMA are published on http://tomoriya.work/
code.html.

http://tomoriya.work/code.html
http://tomoriya.work/code.html

574 T. Moriya et al.

6.1 Parameters

In this subsection, we propose two parameters for SiGamal and C-SiGamal:
(p128, P128) for the case when the plaintext message space is {0, 1}128 and
(p256, P256) for the case when the plaintext message space is {0, 1}256. Let the
bit lengths of p128 and p256 be about 512 to adapt the security level of SiGamal
and C-SiGamal to that of CSIDH-512.

(p128, P128). Let p128 be a prime 2130 · �1 · · · �60 − 1, where �1 through �59 are
the smallest distinct odd primes, and �60 is 569. The bit length of p128 is 522.
Set a key bound m128 over p128 as 10. Finally, let a point P128 of order 2130 in
E0(Fp128) be �1 · · · �60P̃128, where P̃128 is a point whose x-coordinate is 331.

(p256, P256). Let p256 be a prime 2258 · �1 · · · �43 − 1, where �1 through �42 are
the smallest distinct odd primes, and �43 is 307. The bit length of p256 is 515.
Set a key bound m258 over p258 as 32. Finally, let a point P256 of order 2258 in
E0(Fp256) be �1 · · · �43P̃256, where P̃256 is a point whose x-coordinate is 199.

Table 3. Computational costs of group actions

Parameters (p128, P128) (p256, P256) CSIDH-512

Bit lengths of primes 522 515 512

M 511,531 866,000 328,301

S 158,849 302,400 116,953

a 480,134 838,330 332,933

Total 662,617 1,149,836 438,510

6.2 Computational Costs of SiGamal and C-SiGamal

In this subsection, we show the results of our experiment on SiGamal and C-
SiGamal. The schemes of SiGamal and C-SiGamal consist of group actions, scalar
multiplications, and the Pohlig-Hellman algorithm. The computational complex-
ity of scalar multiplications is O(r), and that of the Pohlig-Hellman algorithm is
O(r2). Their computational costs have a little effect on all computational costs
of SiGamal and C-SiGamal.

We implemented group actions of cl(Z[πp]) over p128, p256, and, as a reference
value, p0. Here, p0 is a prime proposed in the original CSIDH paper [3]: a prime
4�1 · · · �74 − 1 such that �1 . . . �73 are the smallest distinct odd primes and �74 =
587, and the key bound m0 is 5. We implemented Algorithm 3 over p128 and
p256 and Algorithm 1 over p0 according to [15]. Then, for each case, we measured
the average computational cost over 50,000 trials. Refer to [17, Appendix A.1]
for the computational costs of each formula for the Montgomery curves. The
results are listed in Table 3, in which we denote field multiplication by M, field
squaring by S, and field addition, subtraction, or doubling by a. The quantity
“total” means the total number of M, where 1S = 0.8M, and 1a = 0.05M.

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 575

Remark 10. There are techniques for improving the efficiency of group actions in
CSIDH, such as SIMBA [14], optimal addition chains for scalar multiplications
[4], and key space optimization [12]. These techniques can be adapted to SiGamal
and C-SiGamal.

Next, we implemented the schemes of SiGamal and C-SiGamal. We used
Algorithm 2 for the Pohlig-Hellman algorithm in our experiments. The result
is shown in Table 4. The computational costs of the encryption algorithms of
C-SiGamal over p128 were about 108% higher than that of two group actions,
and those over p256 were about 117% higher than that of two group actions.
Moreover, that of the decryption algorithms of SiGamal and C-SiGamal over
p128 were about 116% higher than that of one group action, and those over p256
were about 134% higher than that of one group action.

Table 4. Computational costs of SiGamal and C-SiGamal (numbers of M)

Parameters (p128, P128) (p256, P256)

A bit length of plaintexts 128 256

Schemes SiGamal C-SiGamal SiGamal C-SiGamal

Key generation 663,411 1,154,035

Encryption 1,327,899 1,434,944 2,306,317 2,703,339

Decryption 761,058 768,602 1,538,498 1,545,253

From Table 3, the computational cost of a group action over (p256, P256) was
about 2.62 times that of a group action of CSIDH-512. Therefore, SiGamal and
C-SiGamal need more computation than CSIDH. However, when we use CSIDH
for secure communication, we need to use hash functions since a shared key in
CSIDH is a supersingular elliptic curve. If these hash functions are attacked, the
communication is less secure, even if CSIDH is not broken. In fact, the ElGamal
like encryption based on CSIDH in Subsect. 2.5 is not IND-CPA secure with-
out using hash functions. In comparison, when we use SiGamal or C-SiGamal,
the security of communication is guaranteed by the security of SiGamal or C-
SiGamal. Moreover, bit lengths of shared keys in CSIDH are determined by
the security parameter (i.e., the bit length of the prime p) and hash functions,
while bit lengths of plaintexts in SiGamal and C-SiGamal are determined by r.
Because the only condition that r satisfies is r < log2 p, bit lengths of plain-
texts in SiGamal and C-SiGamal are determined relatively freely. In summary,
SiGamal and C-SiGamal are less efficient than CSIDH; however, SiGamal and
C-SiGamal are superior to CSIDH in terms of security and functionality.

6.3 Computational Costs of Our Proposed PRF

In this subsection, we show the result of our experiment with our proposed
PRF. We measured the computational costs of T = 128 and 256 times group

576 T. Moriya et al.

Table 5. Computational costs of T times group actions over (p128, P128)

T = 128 T = 256 T = 1

Computational costs 7,196,112 10,184,430 662,617

(Costs of T times)/(Costs of one time) 10.860 15.370 1√
8T

3π
(in Subsect. 5.2) 10.424 14.741 −

actions over (p128, P0,(128)). These costs are close to the computational costs of
our proposed PRF, where T is the Hamming weight of an input. Moreover, we
computed the value of the computational costs of T times group actions divided
by that of one time group action, and we compared them with the approximation√

8T
3π in Subsect. 5.2.
All of the results are shown in Table 5. As can be seen, the approximation√

8T
3π has some precision.

7 Conclusion

We proposed new isogeny-based public key encryptions: SiGamal and C-
SiGamal. We developed SiGamal by giving CSIDH additional points of order
2r, where r − 2 is the bit length of a plaintext. The scheme of SiGamal is simi-
lar to that of ElGamal encryption, while C-SiGamal is a compressed version of
SiGamal. These schemes do not use hash functions.

In addition, we proved that, if the new P-CSSCDH assumption holds, then
SiGamal and C-SiGamal are OW-CPA secure, and if the new P-CSSDDH
assumption holds, then SiGamal and C-SiGamal are IND-CPA secure.

Next, we constructed an isogeny-based Naor-Reingold type PRF from SiGa-
mal. We showed that if the P-CSSDDH assumption and the CSSDDH∗ assump-
tion hold, then our proposed function is a PRF. Furthermore, we estimated the
computational cost of the PRF when the Hamming weight of an input is T .

In our discussion, the computational cost is about
√

8T
3π times that of a group

action in SiGamal.
Finally, we experimented with group actions in SiGamal and C-SiGamal and

measured their computational costs. The costs of these group actions in SiGamal
and C-SiGamal with r = 258 were about 2.62 times that of a group action in
CSIDH-512. Moreover, we experimented with T times group actions, and we

confirmed the approximated value
√

8T
3π .

7.1 Future Work

CSIDH also has an algorithm that uses Edwards curves [17]; however, it is not
obvious how to implement SiGamal and C-SiGamal on Edwards curves because,

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 577

in [17], p ≡ 3 (mod 8) is crucial. It will be a future work for us to realize SiGamal
and C-SiGamal with Edwards curves.

Another important direction for future work will be developing high-level
schemes (e.g., homomorphic encryptions, an oblivious PRF) based on SiGamal
and C-SiGamal.

Acknowlegements. This work was supported by JST CREST Grant Number
JPMJCR14D6, Japan.

Appendix A Generating Points of order 2r

In this section, we explain the properties of points in Montgomery curves. These
properties give us an efficient method for generating points of order 2r for C-
SiGamal.

Definition 13. Let E be a Montgomery curve defined over a field K and P =
(X : Y : Z) be a point in E(K) \ {(0 : 1 : 0)}. Define the function x : E → K as
x(P) := X/Z, and define the function y : E → K as y(P) := Y/Z.

Proposition 1. Let p be a prime satisfying p ≡ 3 (mod 4) and E be a supersin-
gular Montgomery curve defined over Fp satisfying Endp(E) ∼= Z[πp]. If a point
P ∈ E belongs to E[πp − 1] \ E[2], then

x(P) ∈ (F×
p)2 ⇐⇒ P ∈ 2E[πp − 1].

If a point P ∈ E belongs to E[πp + 1] \ E[2], then

x(P) �∈ (F×
p)2 ⇐⇒ P ∈ 2E[πp + 1].

Proof. We prove the case that P ∈ E[πp−1]\E[2]. The other case can be proven
in a similar way.

Assume that P ∈ 2E[πp−1]. Let Q be a point in E[πp−1] such that P = 2Q.
From doubling formulas of Montgomery curves,

x(P) =
(x(Q)2 − 1)2

4y(Q)2
.

Since x(Q), y(Q) ∈ Fp, x(P) belongs to (Fp)2. Note that (0 : 0 : 1) is a point of
order 2. We have x(P) ∈ (F×

p)2.
Conversely, assume that P �∈ 2E[πp − 1]. First, we assume E = E0 (i.e.,

E : Y 2Z = X3 + XZ2). Take x′ ∈ F
×
p such that x′2 + 1 �∈ (F×

p)2. Note that
x′ exists since, if it does not exist, all elements in F

×
p belong to (F×

p)2. Define
a point Q = (x1, y1) ∈ E as Q := (x′,

√
x′(x′2 + 1)). If Q does not belong to

E[πp − 1], we retake −x′ as x′. Now, x1 �∈ (F×
p)2 holds because x2

1 + 1 �∈ (F×
p)2

and x3
1 + x1 ∈ (F×

p)2. Therefore, by the previous paragraph, Q �∈ 2E[πp − 1].
Define a point R = (x2, y2) ∈ E as R := P − Q. By considering the order of R,

578 T. Moriya et al.

we have R ∈ 2E[πp − 1]. Since x2 and y2
2 = x3

2 + x2 belong to (F×
p)2, it holds

that x2
2 + 1 ∈ (F×

p)2. From the addition formulas of Montgomery curves,

x(P) =
(

y2 − y1
x2 − x1

)2

− x1 − x2 =

(√
x1(x2

2 + 1) −
√

x2(x2
1 + 1)

)2

(x2 − x1)2
.

Since x1, x
2
1 + 1 �∈ (F×

p)2 and x2, x
2
2 + 1 ∈ (F×

p)2, it holds that x1(x2
2 + 1) and

x2(x2
1 + 1) are not in (F×

p)2. For any d /∈ F
2
p, we can write Fp2 = Fp(

√
d).

Therefore, there exists α ∈ Fp such that
√

x1(x2
2 + 1) −

√
x2(x2

1 + 1) = α
√

d.

Then, we have α �= 0 since an easy calculation shows that α = 0 if and only if
x1x2 = 1 or x1 = x2. Therefore, it holds that x(P) �∈ (F×

p)2.
Next, we prove the general case. By Theorem 1, there exists an ideal class [a] ∈

cl(Z[πp]) such that E = E0/E0[a]. We can take a representative a as an integral
ideal prime to πp − 1. This means that there is an isogeny ϕ : E0 → E defined
over Fp whose degree is prime to p + 1. Then, the isogeny ϕ induces a bijection
from E0[πp − 1] to E[πp − 1], and maps 2E0[πp − 1] onto 2E[π − 1]. Furthermore,
by a formula of isogenies with odd degree between Montgomery curves (e.g., see
Theorem 1 in [5]), we have x(P) ∈ (F×

p)2 if and only if x(ϕ(P)) ∈ (F×
p)2 for

P ∈ E0[π − 1]. Therefore, the general case follows from the case of E0. �
Define p = 2r�1 · · · �n −1, where �1, . . . , �n are small distinct odd primes, and

r ≥ 3. From the law of quadratic reciprocity, 2, �1, . . . , �n are all square in Fp.
Therefore, according to Proposition 1, points in E(Fp) whose x-coordinates are
products of these primes belong to 2E[πp − 1]. Therefore, we need to exclude
these points to generate a point of order 2r in E(Fp). Conversely, points in
E(Fp) whose x-coordinates are −1 times products of 2, �1, . . . , �n do not belong
to 2E[πp −1]. Therefore, to generate points of order 2r in E(Fp), it is convenient
to take x-coordinates of points from −2 to −p + 1.

References

1. Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation. Submission to
the NIST Post-Quantum Standardization Project (2017)

2. Castryck, W., Decru, T.: CSIDH on the surface. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 111–129. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 7

3. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

4. Cervantes-Vázquez, D., Chenu, M., Chi-Domı́nguez, J.-J., De Feo, L., Rodŕıguez-
Henŕıquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH.
In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp.
173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7 9

https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-30530-7_9

SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 579

5. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 11

6. de Saint Guilhem, C.D., Kutas, P., Petit, C., Silva, J.: SÉTA: supersingular encryp-
tion from torsion attacks. IACR Cryptology ePrint Archive, 2019:1291 (2019).
https://ia.cr/2019/1291

7. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Designs, Codes and Cryptography, pp. 425–440 (2016)

8. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

9. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

10. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

11. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
12. Kohei, N., Hiroshi, O., Atsushi, T., Tsuyoshi, T.: L1-norm ball for CSIDH: opti-

mal strategy for choosing the secret key space. IACR Cryptology ePrint Archive,
2020:181 (2020). https://ia.cr/2020/181

13. Leonardi, C.: A note on the ending elliptic curve in SIDH. IACR Cryptology ePrint
Archive, 2020:262 (2020). https://ia.cr/2020/262

14. Meyer, M., Campos, F., Reith, S.: On lions and elligators: an efficient constant-
time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7 17

15. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 8

16. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

17. Moriya, T., Onuki, H., Takagi, T.: How to construct CSIDH on Edwards curves.
In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 512–537. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40186-3 22

18. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM (JACM) 51(2), 231–262 (2004)

19. National Institute of Standards and Technology. Post-quantum cryptography
standardization, December 2016. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization

20. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: A faster constant-time algorithm
of CSIDH keeping two points (short paper). In: Attrapadung, N., Yagi, T. (eds.)
IWSEC 2019. LNCS, vol. 11689, pp. 23–33. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26834-3 2

21. Onuki, H., Takagi, T.: On collisions related to an ideal class of order 3 in CSIDH.
In: Aoki, K., Kanaoka, A. (eds.) IWSEC 2020. LNCS, vol. 12231, pp. 131–148.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58208-1 8

22. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://ia.cr/2019/1291
https://doi.org/10.1007/978-3-642-25405-5_2
https://ia.cr/2020/181
https://ia.cr/2020/262
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/978-3-030-40186-3_22
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-58208-1_8
https://doi.org/10.1007/978-3-319-70697-9_12

580 T. Moriya et al.

23. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance. IEEE Trans. Inf. Theory 24(1), 106–110
(1978)

24. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

25. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

26. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive, 2004:332 (2004). https://ia.cr/2004/332

27. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New
York (2009). https://doi.org/10.1007/978-0-387-09494-6

28. Taraskin, O., Soukharev, V., Jao, D., LeGrow, J.: An isogeny-based password-
authenticated key establishment protocol. IACR Cryptology ePrint Archive,
2018:886 (2018). https://ia.cr/2018/886

29. Vélu, J.: Isogénies entre courbes elliptiques, pp. 305–347. CR Acad. Sci. Paris,
Séries A (1971)

30. Waterhouse, W.C.: Abelian varieties over finite fields. In: Annales scientifiques de
l’École Normale Supérieure, pp. 521–560 (1969)

https://ia.cr/2004/332
https://doi.org/10.1007/978-0-387-09494-6
https://ia.cr/2018/886

Quantum Algorithms

Estimating Quantum
Speedups for Lattice Sieves

Martin R. Albrecht1, Vlad Gheorghiu2, Eamonn W. Postlethwaite1(B),
and John M. Schanck2(B)

1 Information Security Group, Royal Holloway, University of London, Egham, UK
eamonn.postlethwaite.2016@rhul.ac.uk

2 Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
jschanck@uwaterloo.ca

Abstract. Quantum variants of lattice sieve algorithms are routinely
used to assess the security of lattice based cryptographic constructions.
In this work we provide a heuristic, non-asymptotic, analysis of the cost of
several algorithms for near neighbour search on high dimensional spheres.
These algorithms are key components of lattice sieves. We design quan-
tum circuits for near neighbour search algorithms and provide software
that numerically optimises algorithm parameters according to various
cost metrics. Using this software we estimate the cost of classical and
quantum near neighbour search on spheres. For the most performant
near neighbour search algorithm that we analyse we find a small quantum
speedup in dimensions of cryptanalytic interest. Achieving this speedup
requires several optimistic physical and algorithmic assumptions.

1 Introduction

Sieving algorithms for the shortest vector problem (SVP) in a lattice have
received a great deal of attention recently [1,2,8,17,33,40]. The attention mostly
stems from lattice based cryptography, as many attacks on lattice based crypto-
graphic constructions involve finding short lattice vectors [3,36,39].

Lattice based cryptography is thought to be secure against quantum adver-
saries. None of the known algorithms to solve SVP (to a small approximation
factor) do so in subexponential time, but this is not to say that there is no gain
to be had given a large quantum computer. Lattice sieve algorithms use near
neighbour search (NNS) as a subroutine; near neighbour search algorithms use

The full version can be found at https://eprint.iacr.org/2019/1161. The research of
MA was supported by EPSRC grants EP/S020330/1, EP/S02087X/1, by the European
Union Horizon 2020 Research and Innovation Program Grant 780701 and Innovate UK
grant AQuaSec; the research of EP was supported by the EPSRC and the UK govern-
ment as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway,
University of London (EP/P009301/1). VG and JS were supported by NSERC and
CIFAR. IQC is supported in part by the Government of Canada and the Province of
Ontario.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 583–613, 2020.
https://doi.org/10.1007/978-3-030-64834-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_20&domain=pdf
https://eprint.iacr.org/2019/1161
https://doi.org/10.1007/978-3-030-64834-3_20

584 M. R. Albrecht et al.

black box search as a subroutine; and Grover’s quantum search algorithm [25]
gives a square root improvement to the query complexity of black box search.
A black box search that is expected to take Θ(N) queries on classical hardware
will take Θ(

√
N) queries on quantum hardware using Grover’s algorithm.

Previous work has analysed the effect of quantum search on the query com-
plexity of lattice sieves [34,35]. Of course, one must implement the queries effi-
ciently in order to realise the improvement in practice. Recent work has given
concrete quantum resource estimates for the black box search problems involved
in key recovery attacks on AES [23,28] and preimage attacks on SHA-2 and
SHA-3 [4]. In this work, we give explicit quantum circuits that implement the
black box search subroutines of several quantum lattice sieves. Our quantum
circuits are efficient enough to yield a cost improvement in dimensions of crypt-
analytic interest. However, for the most performant sieve that we analyse the
cost improvement is small and several barriers stand in the way of achieving it.

Outline and Contributions. We start with some preliminaries in Sect. 2. In
particular, we discuss the “XOR and Population Count” operation (henceforth
popcount), which is our primary optimisation target. The popcount operation
is used to identify pairs of vectors that are likely to lie at a small angle to each
other. It is typically less expensive than a full inner product computation.

In Sect. 3 we introduce and analyse a filtered quantum search procedure. We
present our quantum circuit for popcount in Sect. 4. In Sect. 5 we provide a
heuristic analysis of the probability that popcount successfully identifies pairs
of vectors that are close to each other. This analysis may be of independent
interest; previous work [2,17] has relied largely on experimental data for choosing
popcount parameters.

In Sect. 6, we rederive the overall cost of the NNS subroutines of three lattice
sieves. Our cost analysis exposes the impact of the popcount parameters so that
we can numerically optimise these in parallel with the sieve parameters. We
have chosen to profile the Nguyen–Vidick sieve [40], the bgj1 specialisation [2]
of the Becker–Gama–Joux sieve [9], and the Becker–Ducas–Gama–Laarhoven
sieve [8]. We have chosen these three sieves as they are, respectively, the earliest
and most conceptually simple, the most performant yet implemented, and the
fastest known asymptotically.

Finally, we optimise the cost of classical and quantum search under various
cost metrics to produce Fig. 2 of Sect. 7. We conclude by discussing barriers to
obtaining the reported quantum advantages in NNS, the relationship between
SVP and NNS, and future work. Both the data produced, and the source code
used to compute it, are available at https://github.com/jschanck/eprint-2019-
1161. We consider our software a contribution in its own right; it is documented,
easily extensible and allows for the inclusion of new nearest neighbour search
strategies and cost models.

Interpretation. Quantum computation seems to be more difficult than classical
computation. As such, there will likely be some minimal dimension, a crossover
point, below which classical sieves outperform quantum ones. Our estimates give

https://github.com/jschanck/eprint-2019-1161
https://github.com/jschanck/eprint-2019-1161

Estimating Quantum Speedups for Lattice Sieves 585

non-trivial crossover points for the sieves we consider. Yet, our results do not
rule out the relevance of quantum sieves to lattice cryptanalysis. The crossover
points that we estimate are well below the dimensions commonly thought to
achieve 128 bits of security against quantum adversaries. However, our initial
logical circuit level analysis (Fig. 2, q: depth-width) is optimistic. It ignores the
costs of quantum random access memory and quantum error correction.

To illustrate the potential impact of error correction, we apply a cost model
developed by Gidney and Eker̊a to our quantum circuits. The Gidney–Eker̊a model
was developed as part of a recent analysis of Shor’s algorithm [20]. In the Gidney–
Eker̊a model, the crossover point for the NNS algorithm underlying the Becker–
Ducas–Gama–Laarhoven sieve [8] is dimension 312. In this dimension, the classical
and quantum variants both perform 2119.0 operations and need at least 278.3 bits of
(quantumaccessible) randomaccessmemory.A large cost improvement is obtained
asymptotically, but for cryptanalytically relevant dimensions the improvement is
tenuous. Between dimensions 352 and 824 our estimate for the quantum cost grows
from appoximately 2128 to approximately 2256. In dimension 352 this is an improve-
ment of a factor of 21.8 over our estimate for the classical cost. In dimension 824
the improvement is by a factor of 214.4.

We caution that a memory constraint would significantly reduce the range of
cryptanalytically relevant dimensions. For instance, an adversary with no more
than 2128 bits of quantum accessible classical memory is limited to dimension
544 and below. In these dimensions we estimate a cost improvement of no more
than a factor of 213.6 at the logical circuit level and no more than 27.1 in the
Gidney–Eker̊a metric.

A depth constraint would also reduce the range of cryptanalytically relevant
dimensions. The quantum algorithms that we consider would be more severely
affected by a depth constraint than their classical counterparts, due to the poor
parallisability of Grover’s algorithm.

2 Preliminaries

2.1 Models of Computation

We describe quantum algorithms as circuits using the Clifford+T gate set, but
we augment this gate set with a table lookup operation (qRAM). We describe
classical algorithms as programs for RAM machines (random access memory
machines).

Clifford+T+qRAM Quantum Circuits. Quantum circuits can be described at
the logical layer, wherein an array of n qubits encodes a unit vector in (C2)⊗n,
or at the physical layer, wherein the state space may be much larger. Ignoring
qubit initialisation and measurement, a circuit is a sequence of unitary opera-
tions, one per unit time. Each unitary in the sequence is constructed by parallel
composition of gates. At most one gate can be applied to each qubit per time

586 M. R. Albrecht et al.

step. The Clifford+T gate set

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ , T =

(
1 0
0 eiπ/4

)
,

is commonly used to describe circuits at the logical layer due to its relationship
with some quantum error correcting codes. This gate set is universal for quantum
computation when combined with qubit initialisation (of |0〉 and |1〉 states) and
measurement in the computational basis.

In addition to Clifford+T gates, we allow unit cost table lookups in the form
of qRAM (quantum access to classical RAM). The difference between RAM and
qRAM is that qRAM can construct arbitrary superpositions of table entries.
Suppose that (R0, . . . , R2n−1) are registers of a classical RAM and that each
register encodes an � bit binary string. We allow our Clifford+T circuits access
to these registers in the form of an (n + �) qubit qRAM gate that enacts

2n−1∑
j=0

αj |j〉 |x〉 qRAM−→
2n−1∑
j=0

αj |j〉 |x ⊕ Rj〉 . (1)

Here
∑

j αj |j〉 is a superposition of addresses and x is an arbitrary � bit string.
Quantum access to classical RAM is a powerful resource, and the algorithms

we describe below fail to achieve an advantage over their classical counterparts
when qRAM is not available. We discuss qRAM at greater length in Sect. 7.

RAM Machines. We describe classical algorithms in terms of random access
memory machines. For comparability with the Clifford+T gate set, we will work
with a limited instruction set, e.g. {NOT, AND, OR, XOR, LOAD, STORE}.
For comparability with qRAM, LOAD and STORE act on � bit registers.

Cost. The cost of a RAM program is the number of instructions that it performs.
One can similarly define the gate cost of a quantum circuit to be the number of
gates that it performs. Both metrics are reasonable in isolation, but it is not clear
how one should compare the two. Jaques and Schanck recommend that quantum
circuits be assigned a cost in the unit of RAM instructions to account for the
role that classical computers play in dispatching gates to quantum memories [29].
They also recommend that the identity gate be assigned unit cost to account for
error correction. The depth-width cost of a quantum circuit is the total number
of gate operations that it performs when one includes identity gates in the count.

2.2 Black Box Search

A predicate on {0, 1, . . . , N − 1} is a function f : {0, 1, . . . , N − 1} → {0, 1}. The
kernel, or set of roots, of f is Ker(f) = {x : f(x) = 0}. We write |f | for |Ker(f)|.
A black box search algorithm finds a root of a predicate without exploiting any

Estimating Quantum Speedups for Lattice Sieves 587

structure present in the description of the predicate itself. Of course, black box
search algorithms can be applied when structure is known, and we will often use
structure such as “f has M roots” or “f is expected to have no more than M
roots” in our analyses. We will also use the fact that the set of predicates on
any given finite set can be viewed as a Boolean algebra. We write f ∪ g for the
predicate with kernel Ker(f) ∪ Ker(g) and f ∩ g for the predicate with kernel
Ker(f) ∩ Ker(g).

Exhaustive Search. An exhaustive search evaluates f(0), f(1), f(2), and so on
until a root of f is found. The order does not matter so long as each element of the
search space is queried at most once. If f is a uniformly random predicate with
M roots, then this process has probability 1 − (

N−M
j

)
/
(
N
j

) ≥ 1 − (1 − M/N)j

of finding a root during j evaluations of f . This is true even if M is not known.

Filtered Search. If f is expensive to evaluate, we may try to decrease the cost of
exhaustive search by applying a search filter. We say that a predicate g is a filter
for f if f 	= g and |f ∩ g| ≥ 1. We say that g recognises f with a false positive
rate of

ρf (g) = 1 − |f ∩ g|
|g| ,

and a false negative rate of

ηf (g) = 1 − |f ∩ g|
|f | .

A filtered search evaluates g(0), f(0), g(1), f(1), g(2), f(2), and so on until a
root of f ∩ g is found. The evaluation of f(i) can be skipped when i is not a
root of g, which may reduce the cost of filtered search below that of exhaustive
search.

Quantum Search. Grover’s quantum search algorithm is a black box search algo-
rithm that provides a quadratic advantage over exhaustive search in terms of
query complexity. Suppose that f is a predicate with M roots. Let D be any
unitary transformation that maps |0〉 to 1√

N

∑
i |i〉, let R0 = IN − 2|0〉〈0| and

let Rf be the unitary |x〉 �→ (−1)f(x)|x〉. Measuring D|0〉 yields a root of f with
probability M/N . Grover’s quantum search algorithm amplifies this to probabil-
ity ≈ 1 by repeatedly applying the unitary G(f) = DR0D−1Rf [25]. Suppose
that j repetitions are applied. The analysis in [25] shows that measuring the
state G(f)jD|0〉 yields a root of f with probability sin2((2j + 1) · θ) where
sin2(θ) = M/N . Assuming M N , the probability of success is maximised at
j ≈ π

4

√
N/M iterations. Boyer, Brassard, Høyer, and Tapp (BBHT) show that

a constant success probability can be obtained after O(
√

N/M) iterations.
The same complexity can be obtained when M is not known. One simply

runs the algorithm repeatedly with j chosen uniformly from successively larger
intervals. The following lemma contains the core observation.

588 M. R. Albrecht et al.

Lemma 1 (Lemma 2 of [12]). Suppose that measuring D|0〉 would yield a root
of f with probability sin2(θ). Fix a positive integer m. Let j be chosen uniformly
from {0, . . . , m − 1}. The expected probability that measuring G(f)jD|0〉 yields
a root of f is 1

m

∑m−1
j=0 sin2((2j + 1) · θ) = 1

2 − sin(4mθ)
4m sin(2θ) . If m > 1/ sin(2θ) then

this quantity is at least 1/4.

The complete strategy is made precise by [12, Theorem 3].

Amplitude Amplification. Brassard, Høyer, Mosca, and Tapp observed that the
D subroutine of Grover’s algorithm can be replaced with any algorithm that
finds a root of f with positive probability [13]. This generalisation of Grover’s
algorithm is called amplitude amplification. Let A be a quantum algorithm
that makes no measurements and let p be the probability that measuring A|0〉
yields a root of f . Let G(A, f) = AR0A−1Rf , where R0 and Rf are as in
Grover’s algorithm. Let θ be such that sin2(θ) = p. Suppose that j iterations of
G(A, f) are applied to A|0〉. The analysis in [13] shows that measuring the state
G(A, f)jA|0〉 yields a root of f with probability sin2((2j + 1) · θ). The BBHT
strategy for handling an unknown number of roots generalises to an unknown p.

2.3 Lattice Sieving and Near Neighbour Search on the Sphere

A Euclidean lattice of rank m and dimension d is an abelian group generated by
integer sums of m ≤ d linearly independent vectors in R

d. In this paper we only
consider full rank lattices, i.e. m = d. The shortest vector problem in a lattice Λ
is the problem of finding a non-zero v ∈ Λ of minimal Euclidean norm. Norms
in this work are Euclidean and denoted ‖ · ‖. The angular distance of u, v ∈ R

d

is denoted θ(u, v) = arccos (〈u, v〉/‖u‖‖v‖), arccos(x) ∈ [0, π].
A lattice sieve takes as input a list of lattice points, L ⊂ Λ, and searches for

integer combinations of these points that are short. If the initial list is sufficiently
large, SVP can be solved by performing this process recursively. Each point in
the initial list can be sampled at a cost polynomial in d [31]. Hence the initial
list can be sampled at a cost of |L|1+o(1).

Sieves that combine k points at a time are called k-sieves. The sieves that we
consider in this paper are 2-sieves. They take integer combinations of the form
u ± v with u, v ∈ L and u 	= ±v. If ‖u ± v‖ ≥ max{‖u‖, ‖v‖} then we say that
(u, v) is a reduced pair, else it is a reducible pair.

We analyse 2-sieves under the heuristic that the points in L are independent
and identically distributed (i.i.d.) uniformly in a thin spherical shell. This heuris-
tic was introduced by Nguyen and Vidick in [40]. As a further simplification, we
assume that the shell is very thin and normalise such that L ⊂ Sd−1, the unit
sphere in R

d. As such, (u, v) are reducible if and only if θ(u, v) < π/3. The
popcount filter, introduced in Sect. 2.4, acts as a first approximation to θ(· , ·).

When we model L as a subset of Sd−1, we can translate some lattice sieves
into the language of (angular) near neighbour search on the sphere. For example,

Estimating Quantum Speedups for Lattice Sieves 589

the Nguyen–Vidick sieve [40], which checks all pairs in L for reducibility,
becomes1 Algorithm 1 with θ = π/3.

Algorithm 1. AllPairSearch
Input: A list L = (v1, v2, . . . vN) ⊂ Sd−1 of N points. Parameter θ ∈ (0, π/2).
Output: A list of pairs (u, v) ∈ L × L with θ(u, v) ≤ θ.

1: function AllPairSearch(L; θ)
2: L′ ← ∅
3: for 1 ≤ i < N do
4: Li ← (vi+1, . . . , vN)
5: Search Li for any number of u that satisfy θ(u, vi) ≤ θ.
6: For each such u found, add (u, vi) to L′.
7: If |L′| ≥ N , return L′.

8: return L′

2.4 The popcount Filter

Charikar’s locality sensitive hashing (LSH) scheme [15] is a family of hash func-
tions H, defined on Sd−1, for which

Pr
h←H

[h(u) = h(v)] = 1 − θ(u, v)
π

. (2)

The hash function family is defined by

H =
{
u �→ sgn(〈r, u〉) : r ∈ Sd−1

}
,

where sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0. Equation 2 follows from
the fact that θ(u, v)/π is the probability that uniformly random u and v lie in
opposite hemispheres.

Charikar observed that one can estimate θ(u, v)/π by choosing a random hash
function h = (h1, . . . , hn) ∈ Hn and measuring the Hamming distance between
h(u) = (h1(u), . . . , hn(u)) and h(v) = (h1(v), . . . , hn(v)). Each bit hi(u) ⊕ hi(v)
is Bernoulli distributed with parameter p = θ(u, v)/π. In the limit of large
n, the normalised Hamming weight wt(h(u) ⊕ h(v))/n converges to a normal
distribution with mean p and standard deviation

√
p(1 − p)/n.

In the sieving literature, the process of filtering a θ(·, ·) test using a threshold
on the value of wt(h(u) ⊕ h(v)) is known as the “XOR and population count

1 This is slightly imprecise. The analogy with the Nguyen–Vidick sieve is completed
only when Algorithm 1 is wrapped in a procedure that takes each (u, v) ∈ L′ and
maps it to (u ± v)/ ‖u ± v‖, and then recurses.

590 M. R. Albrecht et al.

trick” [2,17,18]. Functions in Hn are also used in Laarhoven’s HashSieve [33].
We write popcountk,n(u, v;h) for a search filter of this type

popcountk,n(u, v;h) =

{
0 if

∑n
i=1 hi(u) ⊕ hi(v) ≤ k,

1 otherwise.

When the n hash functions are fixed we write popcountk,n(u, v). The thresh-
old, k, is chosen based on the desired false positive and false negative rates.
Heuristically, if one’s goal is to detect points at angle at most θ, one should take
k/n ≈ θ/π. If k/n θ/π then the false negative rate will be large, and many
neighbouring pairs will be missed. An important consequence of missing poten-
tial reductions is that the N required to iterate Algorithms 1, 3, 4 increases. In
Sect. 6 this increase is captured in the quantity �(k, n). If k/n � θ/π then the
false positive rate will be large, and the full inner product test will be applied
often. We calculate these false positive and negative rates in Sect. 5. These
calculations and the fact that popcount is significantly cheaper than an inner
product makes popcount a good candidate for use as a filter under the techniques
of Sect. 2.2. Furthermore it is the filter used in the most performant sieves to
date [2,17].

2.5 Geometric Figures on the Sphere

Our analysis of the popcount filter requires some basic facts about the size of
some geometric figures on the sphere. We measure the volume of subsets of
Sd−1 = {v ∈ R

d : ‖v‖ = 1} using the (d − 1) dimensional spherical probability
measure2 μd−1. The spherical cap of angle θ about u ∈ Sd−1 is Cd−1(u, θ) =
{v ∈ Sd−1 : θ(u, v) ≤ θ}. The measure of a spherical cap is

Cd(u, θ) := μd−1(Cd−1(u, θ)) =
1√
π

Γ(d
2)

Γ(d−1
2)

∫ θ

0

sind−2(t) dt.

We will often interpret Cd(u, θ) as the probability that v drawn uniformly from
Sd−1 satisfies θ(u, v) ≤ θ. We denote the density of the event θ(u, v) = θ by

Ad(u, θ) :=
∂

∂θ
Cd(u, θ) =

1√
π

Γ(d
2)

Γ(d−1
2)

sind−2(θ).

Note that Cd(u, θ) does not depend on u, so we may write Cd(θ) and Ad(θ)
without ambiguity. The wedge formed by the intersection of two caps is
Wd−1(u, θu, v, θv) = Cd−1(u, θu) ∩ Cd−1(v, θv). The measure of a wedge only
depends on θ = θ(u, v), θu, and θv, so we denote it

Wd(θ, θu, θv) = μd−1(Wd−1(u, θu, v, θv)).

We will often interpret Wd(θ, θu, θv) as the probability that w drawn uni-
formly from Sd−1 satisfies θ(u,w) ≤ θu and θ(v, w) ≤ θv. Note that θ ≥
θu + θv ⇒ Wd(θ, θu, θv) = 0. An integral representation of Wd(θ, θu, θv) is given
in Appendix A of the full version.
2 By “probability measure” we mean that μd−1(Sd−1) = 1.

Estimating Quantum Speedups for Lattice Sieves 591

3 Filtered Quantum Search

A filter can reduce the cost of a search because a classical computer can branch
to avoid evaluating an expensive predicate. A quantum circuit cannot branch
inside a Grover search in this way. Nevertheless, a filter can be used to reduce
the cost of a quantum search.

The idea is to apply amplitude amplification to a Grover search. The inner
Grover search prepares the uniform superposition over roots of the filter, g. The
outer amplitude amplification searches for a root of f among the roots of g. We
present pseudocode for this strategy in Algorithm 2.

If |g| and |f ∩ g| are known, then we can choose the number of iterations of
the inner Grover search and the outer amplitude amplification optimally. When
these quantities are not known, we can attempt to guess them as in the BBHT
algorithm. In our applications, we have some information about |g| and |f ∩ g|,
which we can use to fine-tune a BBHT-like strategy.

Proposition 1 gives the cost of Algorithm 2 when we know 1. a lower bound,
Q, on the size of |f ∩ g|, and 2. the value of |g| up to relative error γ. In essence,
when a filter with a low false positive rate is used to search a space with few
true positives, Algorithm 2 can be tuned such that it finds a root of f with
probability at least 1/14 and at a cost of roughly γ

2

√
N/Q iterations of G(g).

Algorithm 2. FilteredQuantumSearch
Input: A predicate f and a filter g defined on {0, . . . , N − 1}. Integer parameters m1

and m2.
Output: A root of f or ⊥.
1: function FilteredQuantumSearch(f, g; m1, m2)
2: Sample integers j and k with 0 ≤ j < m1 and 0 ≤ k < m2 uniformly at random.
3: Let Aj = G(g)jD.
4: Let Bk = G(Aj , f ∩ g)k.
5: Prepare the state |ψ〉 = BkAj |0〉.
6: Let r be the result of measuring |ψ〉 in the computational basis.
7: if f(r) = 0 then
8: return r
9: return ⊥

If we know that the the inner Grover search succeeds with probability x < 1,
we can compensate with a factor of

√
1/x more iterations of the outer amplitude

amplification. We do not know x. However, in our applications, we do know that
the value of θ for which sin2(θ) = |g| /N will be fairly small, e.g. θ < 1/10.
The following technical lemma shows that, when θ is small, we may assume that
x = 1/5 with little impact on the overall cost of the search.

Let j and Aj be as in Algorithm 2. Let pθ(j) be the probability that measur-
ing Aj |0〉 would yield a root of g. For any x ∈ (0, 1), there is some probability
qx(m1) that the choice of j is insufficient, i.e. that pθ(j) < x. We expect to
repeat Algorithm 2 a total of (1 − qx(m1))

−1 times to avoid this type of failure.

592 M. R. Albrecht et al.

Lemma 2. Fix θ ∈ [0, π/2] and x ∈ [0, 1). Let pθ, qx : R → R be defined by
pθ(j) = sin2((2j + 1) · θ) and qx(m) = 1

m |{j ∈ Z : 0 ≤ j < m, pθ(j) < x}|. If
m > π

4θ , then

qx(m) <
3 arcsin(

√
x)

π − arcsin(
√

x)
+

6θ

π
.

Proof. Observe that pθ(j) < x when |(2j + 1)θ mod π| < arcsin(
√

x). Let I0 be
the interval [0, arcsin(

√
x)). For integers t ≥ 1 let It = (tπ − arcsin(

√
x), tπ +

arcsin(
√

x)). Let c = c(m) be the largest integer for which [0, (2m − 1) · θ) inter-
sects Ic. The quantity mqx(m) counts the number of non-negative integers i < m
for which (2i+1) · θ lies in I0 ∪ I1 ∪ · · · ∪ Ic. This is no more than (c+1)+ �(2c+
1) arcsin(

√
x)/(2θ)�. It follows that qx(m) < (c+1)/m+(2c+1) arcsin(

√
x)/2mθ.

Note that 2mθ > (2m − 1)θ > cπ − arcsin(
√

x) and (c + 1)/m < 2θ/π + 1/m.
Hence qx(m) < (2c + 1) arcsin(

√
x)/(cπ − arcsin(

√
x)) + 2θ/π + 1/m. Moreover,

qx(m) > qx(m−1) when (2m−1) ·θ lies in Ic, and qx(m) < qx(m−1) otherwise.
The upper bound on qx(m) that we have derived is decreasing as a function of
c. Hence the claim holds when c ≥ 1. Finally, when m = π

4θ and c = 0 we have
qx(m) < 2 arcsin(

√
x)/π + 4θ/π and qx(m) is decreasing until c = 1. ��

There are situations inwhichfiltering is not effective, e.g.when the false positive
rate of g is very high, when evaluting g is not much less expensive than evaluating
f , or when f has a very large number of roots. In these cases, other algorithms will
outperform Algorithm 2. We remark on these below. Proposition 1 optimises the
choice of m1 and m2 in Algorithm 2 for a large class of filters that are typical of our
applications.

Proposition 1. Suppose that f and g are predicates on a domain of size N and
that g is a filter for f . Let Q ∈ R be such that 1 ≤ Q ≤ |f ∩ g|. Let P and γ
be real numbers such that P/γ ≤ |g| ≤ γP . If γP/N < 1/100 and γQ/P < 1/4,
then there are parameters m1 and m2 for Algorithm 2 such that Algorithm 2
finds a root of f with probability at least 1/14 and has a cost that is dominated
by ≈ γ

2

√
N/Q times the cost of G(g) or by ≈ 2

3

√
γP/Q times the cost of Rf∩g.

Proof. Fix x ∈ (0, 1). We will analyse Algorithm 2 with respect to the parameters
m1 =

⌈
π
4

√
γN/P

⌉
and m2 =

⌈√
γP/3xQ

⌉
. Let θg be such that sin2(θg) =

|g| /N . Let j and k be chosen as in Algorithm 2. Let p = pθg
(j) and q = qx(m1)

be defined as in Lemma 2. Note that since |g| /N < γP/N < 1/100 we can
use 6θg/π < 1/5 in applying Lemma 2. Let θh(j) be such that sin2 (θh(j)) =
p · |f ∩ g| / |g|. With probability at least 1 − q we have p ≥ x, which implies
that sin(θh(j)) >

√
xQ/γP . Since γQ/P < 1/4 ⇒ sin2(θh(j)) < 1/4, then

cos(θh(j)) >
√

3/4. Thus 1/ sin(2θh(j)) <
√

γP
3xQ ≤ m2. By Lemma 1 measuring

G(Aj , f ∩ g)kAj |0〉 yields a root of f ∩g with probability at least 1/4. It follows
that Algorithm 2 succeeds with probability at least (1 − q)/4.

The algorithm evaluates G(g) exactly k · j + 1 times and evaluates G(g)−1

exactly k · j times. The expected value of 2kj + 1 is c1(x) · γ · √
N/Q where

Estimating Quantum Speedups for Lattice Sieves 593

c1(x) ≈ (π/8)/
√

3x. Likewise the algorithm evaluates Rf∩g exactly k times,
which is c2(x) · √

γP/Q in expectation where c2(x) ≈ (1/2)/
√

3x. Taking x =
1/5, and applying the upper bound on qx(m1) from Lemma 2, we have (1 −
qx(m1))/4 ≥ 1/14, c1(x) ≈ 1/2 and c2(x) ≈ 2/3. ��
Remark 1. When γP/N ≥ 1/100 or γQ/P ≥ 1/4 there are better algorithms. If
both inequalities hold then classical search finds a root of f quickly. If γQ/P ≥
1/4 then finding a root of f is not much harder than finding a root of g, so one
can search on g directly. If γP/N ≥ 1/100 then the filter has little effect and
one can search on f directly.

Remark 2. It is helpful to understand when we can ignore the cost of Rf∩g in
Proposition 1. Roughly speaking, if evaluating f is c times more expensive than
evaluating g, then the cost of calls to G(g) will dominate when N > c2 |g|. In a
classical filtered search the cost of evaluating g dominates when N > c |g|.

4 Circuits for popcount

Consider a program for popcountk,n(u, v). This program loads u and v from
specified memory addresses, computes h(u) and h(v), computes the Hamming
weight of h(u) ⊕ h(v), and checks whether it is less than or equal to k. Recall
h(u) is defined by n inner products. If the popcount procedure is executed many
times for each u, then it may be reasonable to compute h(u) once and store it
in memory. Moreover, if u is fixed for many sequential calls to the procedure,
then it may be reasonable to cache h(u) between calls. The algorithms that we
consider in Sect. 6 use both of these optimisations.

In this section we describe RAM programs and quantum circuits that com-
pute popcountk,n(u, ·) for a fixed u. These circuits have the value of h(u) hard-
coded. They load h(v) from memory, compute the Hamming weight of h(u)⊕h(v),
and check whether the Hamming weight is less than or equal to k. We ignore
the initial, one time, cost of computing h(u) and h(v).

4.1 Quantum Circuit for popcount

Loading h(v) costs a single qRAM gate. Computing h(u) ⊕ h(v) can then be
done in-place using a sequence of X gates that encode h(u). The bulk of the
effort is in computing the Hamming weight. For that we use a tree of in-place
adders. The final comparison is also computed with an adder, although only one
bit of the output is needed. See Fig. 1 for a full description of the circuit.

We use the Cuccaro–Draper–Kutin–Petrie adder [16], with “incoming carry”
inputs, to compute the Hamming weight. We argue in favour of this choice of
adder in Appendix C of the full version. We use the Häner–Roetteler–Svore [26]
carry bit circuit for implementing the comparison.

We will later use popcount within filtered quantum searches by defining
predicates of the form g(i) = popcountk,n(u, vi), i ∈ {1, . . . , N}. To simplify

594 M. R. Albrecht et al.

that later discussion, we cost the entire Grover iteration G(g) = DR0D−1Rg

here. In Appendix B of the full version we introduce the (possibly multiply
controlled) Toffoli gate and discuss the Toffoli count for G(g), which in turn
gives the T count for G(g).

The Cost of Rg. The Rg subroutine is computed by running the popcount circuit
in Fig. 1 and then uncomputing the addition tree and X gates. The circuit uses
in-place i bit adders3 for i ∈ {1, . . . , � − 1}. The width of the circuit is given in
Appendix B of the full version. The depth of the circuit is

depth = 2 + d(CARRY) +
�−1∑
i=1

2 · d(ADDi), (3)

where d(·) denotes the depth of its argument. The factor of 2 accounts for uncom-
putation of the ADDi circuits. The CARRY circuit is only cost once as the carry
bit is computed directly into the |−〉 state during the CARRY circuit itself. The
summand 2 accounts for the X gates used to compute, and later uncompute,
h(u) ⊕ h(v).

The Cost of DR0D−1. Recall that D can be any circuit that maps |0〉 to the
uniform distribution on the domain of the search predicate. While there is no
serious difficulty in sampling from the uniform distribution on {0, . . . , N −1} for
any integer N , when costing the circuit we assume that N is a power of two. In
this case D is simply log2 N parallel H gates. The reflection R0 is implemented
as a multiply controlled Toffoli gate that targets an ancilla initialised in the
|−〉 state. We use Maslov’s multiply controlled Toffoli from [37]. The depth and
width of DR0D−1 are both O(log N); our software calculates the exact value.

4.2 RAM Program for popcount

Recall that we use a RAM instruction set that consists of simple bit operations
and table lookups. A Boolean circuit for popcount is schematically similar to
Fig. 1. Let � = �log2 n�. Loading h(v) has cost 1. Computing h(v) ⊕ h(w) takes
n XOR instructions and has depth 1. Following [41, Table. II], with cFA = 5
the number of instructions in a full adder, (n − � − 1)cFA + � lower bounds the
instruction cost of computing the Hamming weight and comparing it with a fixed
k. This has depth (� − 1)(δsum + δcarry) + 1. We assume δsum = δcarry = 1. Thus,
the overall instruction count is 6n − 4� − 5 and the overall depth is 2�.

4.3 Cost of Inner Products

The optimal popcount parameters will depend on the cost of a computing an
inner product in dimension d. The cost of one inner product is amortised over
3 An in-place i bit quantum adder takes two i bit inputs, initialises an ancilla qubit

in the |0〉 state, and returns the addition result in an i + 1 bit register that includes
the new ancilla and overlaps with i bits of the input.

Estimating Quantum Speedups for Lattice Sieves 595

Fig. 1. A quantum circuit for popcount. This circuit computes h(u) ⊕ h(v) for a fixed
n bit h(u), computes the Hamming weight of h(u) ⊕ h(v), and checks whether the
Hamming weight is less than or equal to k. Here n = 2� − 1 = 31. The input qubits are
represented as lines ending with a black diamond. The dashed lines represent incoming
carry inputs, and the dotted lines represent carry outputs. Not all of the output wires
are drawn. For space efficiency, some of the input qubits are fed into the incoming
carry qubits of the adders (dashed lines). The Xi mean that gate X is applied to input
qubit i if bit i of h(u) is 1. The circuit uses a depth � − 1 binary tree of full bit adders
from [16], where ADDi denotes an i bit full adder. The output wt(h(u) ⊕ h(v)) from
the tree of adders together with the binary representation of the number n − k are
finally fed into the input of the CARRY circuit from [26], which computes the carry
bit of n − k + wt(h(u) ⊕ h(v)) (the carry bit will be 0 if wt(h(u) ⊕ h(v)) ≤ k, and
1 otherwise). The final CNOT is for illustration only. In actuality, the carry bit is
computed directly into an ancilla that is initialised in the |−〉 = (|0〉−|1〉)/√

2 state, so
we can obtain the needed phase kickback. The tree of adders and the initial X gates,
but not the CARRY circuit, are run in reverse to clean up scratch space and return
the inputs to their initial state. The uncomputation step is not depicted here.

596 M. R. Albrecht et al.

many popcounts, and a small change in the popcount parameters will quickly
suppress the ratio of inner products to popcounts (see Remark 2). Hence we
only need a rough estimate for the cost of an inner product. We assume 32 bits
of precision are sufficient. We then assume schoolbook multiplication is used
for scalar products, which costs approximately 322 AND instructions. We then
assume the cost of a full inner product is approximately 322 d, i.e. we ignore the
cost of the final summation, assuming it is dwarfed by the ANDs.4

5 The Accuracy of popcount

Here we give an analysis of the popcount technique based on some standard
simplifying assumptions. We are particularly interested in the probability that
a popcount filter identifies a random pair of points as potential neighbours.
We are also interested in the probability that a pair of actual neighbours are
not identified as potential neighbours, i.e. the false negative rate. Our software
computes all of the quantities in this section to high precision.

Let Pk,n(u, v) be the probability that popcountk,n(u, v;h) = 0 for a uniformly
random h (recall popcountk,n(u, v;h) = 0 if u, v pass the filter). In other words,
let h = (h1, . . . , hn) be a collection of independent random variables that are
distributed uniformly on the sphere, and define

Pk,n(u, v) = 1 − E
[
popcountk,n(u, v;h)

]
.

The hyperplane defined by hi separates u and v with probability θ(u, v)/π, and
popcountk,n(u, v;h) = 0 if no more than k of the hyperplanes separate u and v.
Hence,

Pk,n(u, v) =
k∑

i=0

(
n

i

)
·
(

θ(u, v)
π

)i

·
(

1 − θ(u, v)
π

)n−i

.

Note that Pk,n(u, v) depends only on the angle between u and v, so it makes sense
to define Pk,n(θ). The main heuristic in our analysis of popcount is that Pk,n(u, v)
is a good approximation to the probability that popcountk,n(u, v;h) = 0 for fixed
h and varying u and v. Under this assumption, all of the quantities in question
can be determined by integrating Pk,n(u, v) over different regions of the sphere.

Let P̂k,n denote the event that popcountk,n(u, v;h) = 0 for uniformly random
u, v, and h. Let R̂θ be the event that θ(u, v) ≤ θ. Recall that Pr[R̂θ] = Cd(θ),
and observe that Pr[R̂θ] is a cumulative distribution with associated density

4 We also tested the effect of assuming 8-bit inner products are sufficient. As expected,
this reduces all costs by a factor of two to four and thus does not substantially alter
our relative results.

Estimating Quantum Speedups for Lattice Sieves 597

Ad(θ) = ∂
∂θ Cd(θ). We find, letting S = Sd−1 for some implicit d,

Pr[P̂k,n] =
∫

S

∫
S

Pk,n(u, v) dμ(v) dμ(u)

=
∫

S

(∫ π

0

Pk,n(θ) · Ad(θ) dθ

)
dμ(u)

=
∫ π

0

Pk,n(θ) · Ad(θ) dθ. (4)

Let u, v such that θ(u, v) ≤ ϕ be neighbours. The false negative rate is 1 −
Pr[P̂k,n | R̂ϕ]. The quantity Pr[P̂k,n ∧ R̂ϕ] can be calculated by changing the
upper limit of integration in Eq. 4. It follows that

1 − Pr[P̂k,n | R̂ϕ] = 1 − 1
Cd(ϕ)

∫ ϕ

0

Pk,n(θ) · Ad(θ) dθ. (5)

In Sect. 6 we consider u and v that are uniformly distributed in a cap of
angle β < π/2, rather than the uniformly distributed on the sphere. Let B̂w,β

be the event that u and v are uniformly distributed in a cap of angle β about w.
We have

Pr[B̂w,β] =
∫

S

∫
S
1

{
w ∈ Wd−1(u, β, v, β)

}
dμ(v) dμ(u)

=
∫ 2β

0

Wd(θ, β, β) · Ad(θ) dθ. (6)

In the second line we have used the fact that β < π/2 and W (θ, θ1, θ2) is zero
when θ ≥ θ1 + θ2. The quantity Pr[B̂w,β ∧ R̂ϕ] can be computed by changing
the upper limit of integration in Eq. 6 from 2β to min{2β, ϕ}. We note that
B̂w,β has no dependence on w and therefore may also be written B̂β . The con-
ditional probability that popcountk,n(u, v;h) = 0, given that u, v are uniformly
distributed in a cap Bβ , Pr[P̂k,n | B̂β], can be computed using Eq. 6 and

Pr[P̂k,n ∧ B̂β] =
∫ 2β

0

Pk,n(θ) · Wd(θ, β, β) · Ad(θ) dθ. (7)

The quantity Pr[P̂k,n ∧B̂β ∧R̂ϕ] can be computed by changing the upper limit of
integration in Eq. 7 from 2β to min{2β, ϕ}. The false negative rate for popcount
when restricted to a cap is 1 − Pr[P̂k,n | B̂w,β ∧ R̂ϕ].

6 Tuning popcount for NNS

We now use the circuit sizes from Sect. 4 and the probabilities from Sect. 5
to optimise popcount for use in NNS algorithms. Our analysis is with respect
to points sampled independently from the uniform distribution on the sphere.

598 M. R. Albrecht et al.

We further restrict our attention to list-size preserving parameterisations, which
take an input list of size N and return an output list of (expected) size N .

We use the notation for events introduced in Sect. 5. In particular, we write
R̂θ for the event that a uniformly random pair of vectors are neighbours, i.e. that
they lie at angle less than or equal to θ of one another; P̂k,n for the event that
popcount identifies a uniformly random pair of vectors as potential neighbours;
B̂β for the event that a uniformly random pair of vectors lie in a uniformly
random cap of angle β; and B̂w,β for the same event except we highlight the cap
is centred on w. Throughout this section we use popcountk,n(u, ·), for various
fixed u, as a filter for the search predicate θ(u, ·) ≤ θ. We write η(k, n) for the
false negative rate of popcount. We assume that θ(u, v) ≤ θ is computed using an
inner product test. Throughout this section, c1 represents the instruction cost of
the inner product test from Sect. 4.3, c2(k, n) the instruction cost of popcount
from Sect. 4.2, q1 the quantum cost of the reflection Rf∩g, and q2(k, n) the
quantum cost of G(g) from Sect. 4.1. We note that c1, q1 have a dependence on
d that we suppress. We write q0(m) for the number of G(g) iterations that are
applied during a quantum search on a set of size m.

Our goal is to minimise the cost of list-size preserving NNS algorithms as
a function of the input list size, the popcount parameters k and n, and the
other NNS parameters. In a list of N points there are

(
N
2

)
ordered pairs. We

expect
(
N
2

) · Pr[R̂θ] =
(
N
2

) · Cd(θ) of these to be neighbours, and we expect a
1−η(k, n) fraction of neighbours to be detected by popcount. List-size preserving
parmaterisations that use a popcount filter must therefore take an input list of
size at least

�(k, n) =
2

1 − η(k, n)
· 1
Cd(θ)

. (8)

The optimised costs reported in Fig. 2 typically use popcount parameters for
which �(k, n) ∈ (2/Cd(π/3), 4/Cd(π/3)). Here we assume that list-size preserv-
ing parameterisations take N = �(k, n). Note that η(k, n) = 1 − Pr[P̂k,n | R̂θ]
when the search is over a set of points uniformly distributed on the sphere, and
η(k, n) = 1−Pr[P̂k,n | R̂θ ∧ B̂β] when the search is over a set of points uniformly
distributed in a cap of angle β (left implicit).

In each of the quantum analyses, we apply Proposition 1 with γ = 1, P =
|g| and Q = 1 to estimate q0(m). We assume that filtered quantum search
succeeds with probability 1 instead of probability at least 1/14, as guaranteed
by Proposition 1. In practice, one will not know |g| and one will therefore take
γ > 1. Our use of γ = 1 is a systematic underestimate of the true cost of the
search. There may be searches where our lower bound of Q = 1 on |f ∩ g| is
too pessimistic. However, the probability of success in filtered quantum search
decreases quadratically with Q/ |f ∩ g| if Q > |f ∩ g|. In Sects. 6.1 and 6.3 we
expect |f ∩ g| ≈ 2 so the effect of taking Q = 1 is negligible. In Sect. 6.2, where
Q may be larger, an optimistic analysis using the expected value of Q makes
negligible savings in dimension 512 and small savings in dimension 1024. This
analysis does not decrement Q when a neighbour is found in, then removed from,
a search space and ignores the quadratic decrease in success probability.

Estimating Quantum Speedups for Lattice Sieves 599

6.1 AllPairSearch

As a warmup, we optimise AllPairSearch. Asymptotically its complexity is
2(0.415...+o(1))d classically and 2(0.311...+o(1))d quantumly. We describe implemen-
tations of Line 5 of Algorithm 1 based on filtered search and filtered quantum
search, and optimise popcount relative to these implementations.

Filtered Search. Suppose that Line 5 applies popcountk,n(vi, ·) to each of
vi+1 through vN and then applies an inner product test to each vector that
passes. With an input list of size N = �(k, n), we expect this implementation to
test all

(
N
2

)
pairs before finding N neighbouring pairs. Moreover, we expect the

popcount filter to identify
(
N
2

) · Pr[P̂k,n] potential neighbours, and to perform
an equal number of inner product tests. The optimal parameters are obtained
by minimising (

c1 · Pr[P̂k,n] + c2(k, n)
)

·
(

�(k, n)
2

)
. (9)

Filtered Quantum Search. Suppose that Line 5 is implemented using the
search routine Algorithm 2. Specifically, we take the predicate f to be θ(vi, ·) ≤
θ with domain Li. We take the filter g to be popcountk,n(vi, ·). Each call to
the search routine returns at most one neighbour of vi. To find all detectable
neighbours of vi in Li we must repeat the search |f ∩ g| times. This is expected
to be |Li|·Pr[P̂k,n∧R̂θ]. Known neighbours of vi can be removed from Li to avoid
a coupon collector scenario. We consider an implementation in which searches
are repeated until a search fails to find a neighbour of vi.

We expect to call the search subroutine |Li| · Pr[P̂k,n ∧ R̂θ] + 1 times in
iteration i. Proposition 1 with P = |Li| · Pr[P̂k,n], Q = 1, and γ = 1 gives
q0 (|Li|) = 1

2

√|Li| iterations of G(g). As i ranges from 1 to N − 1 the quantity
|Li| takes each value in {1, . . . , N − 1}. Our proposed implementation therefore
performs an expected

N−1∑
j=1

1
2

√
j
(
j · Pr[P̂k,n ∧ R̂θ] + 1

)

= Pr[P̂k,n ∧ R̂θ]
(

1
5
N5/2 +

1
4
N3/2

)
+

1
3
N3/2 + O(

√
N) (10)

applications of G(g); the expansion is obtained by the Euler–Maclaurin formula.
When N = �(k, n) we expect N · Pr[P̂k,n ∧ R̂θ] = 2 + O(1/N). The right hand
side of Eq. 10 is then 11

15N3/2 + O(
√

N).
Proposition 1 also provides an estimate for the rate at which reflections about

the true positives, Rf∩g are performed. With P and Q as above, we find that

Rf∩g is performed at roughly p(k, n) =
√

Pr[P̂k,n] the rate of calls to G(g).

The optimal popcount parameters (up to some small error due to the O(
√

N)

600 M. R. Albrecht et al.

term in Eq. 10) are obtained by minimising the total cost

11
15

(q1p(k, n) + q2(k, n)) · �(k, n)3/2
. (11)

6.2 RandomBucketSearch

One can improve AllPairSearch by bucketing the search space such that vectors
in the same bucket are more likely to be neighbours [33]. For example, one could
pick a hemisphere H and divide the list into L1 = L ∩ H and L2 = L\L1. These
lists would be approximately half the size of the original and the combined cost
of AllPairSearch within L1 and then within L2 would be half the cost of an
AllPairSearch within L. However, this strategy would fail to detect the expected
θ/π fraction of neighbours that lie in opposite hemispheres.

Becker, Gama, and Joux [9] present a very efficient generalisation of this
strategy. They propose bucketing the input list into subsets of the form {v ∈ L :
popcountk,n(0, v;h) = 0} with varying choices of h. This bucketing strategy is
applied recursively until the buckets are of a minimum size. Neighbouring pairs
are then found by an AllPairSearch.

A variant of the Becker–Gama–Joux algorithm that uses buckets of the
form L ∩ Cd−1(f, θ1), with randomly chosen f and fixed θ1, was proposed
and implemented in [2]. This variant is sometimes called bgj1. Here we call it
RandomBucketSearch. This algorithm has asymptotic complexity 2(0.349...+o(1))d

classically [2] and 2(0.301...+o(1))d quantumly.5 This is worse than the Becker–
Gama–Joux algorithm, but RandomBucketSearch is conceptually simple and
still provides an enormous improvement over AllPairSearch. Pseudocode is pre-
sented in Algorithm 3.

Description of Algorithm 3. The algorithm takes as input a list of N points
uniformly distributed on the sphere. A random bucket centre f is drawn uni-
formly from Sd−1 in each of the t iterations of the outer loop. The choice of
f defines a bucket in Line 5, Lf = L ∩ Cd−1(f, θ1), which is of expected size
N · Cd(θ1). For each vj ∈ Lf , the inner loop searches a set Lf,j ⊂ Lf for
neighbours of vj . The quantity |Lf,j | takes each value in {1, . . . , |Lf | − 1} as vj

ranges over Lf . The inner loop is identical to the loop in AllPairSearch apart
from indexing and the fact that elements of Lf are known to be in the cap
Cd−1(f, θ1).

A bucket Lf is expected to contain
(
N
2

) · Pr[R̂θ ∧ B̂f,θ1] neighbouring pairs.
Only a 1−η(k, n) fraction of these are expected to be identified by the popcount
filter. When θ1 > θ it is reasonable to assume that Pr[R̂θ ∧ B̂f,θ1] ≈ Cd(θ) ·
Wd(θ, θ1, θ1). We use this approximation. The expected number of neighbouring

5 The asymptotic quantum complexity is calculated, similarly to the classical complex-
ity [2], using the asymptotic value of Wd(θ, θ1, θ1) given in [8]. Let N = 1/Cd(π/3)
and t(θ1) = 1/Wd(π/3, θ1, θ1). The exponent 0.3013 . . . is obtained by minimising

t(θ1)
(
N + (NCd(θ1))

3/2
)

with respect to θ1.

Estimating Quantum Speedups for Lattice Sieves 601

Algorithm 3. RandomBucketSearch
Input: A list L = (v1, v2, . . . vN) ⊂ Sd−1 of N points. Parameters θ, θ1 ∈ (0, π/2) and

t ∈ Z+.
Output: A list of pairs (u, v) ∈ L × L with θ(u, v) ≤ θ.

1: function RandomBucketSearch(L; θ, θ1, t)
2: L′ ← ∅
3: for 1 ≤ i ≤ t do
4: Sample f uniformly on Sd−1

5: Lf ← L ∩ Cd−1(f, θ1)
6: for j such that vj ∈ Lf do
7: Lf,j ← {vk ∈ Lf : j < k ≤ N}
8: Search Lf,j for any number of u that satisfy θ(vj , u) ≤ θ
9: For each such u found, add (vj , u) to L′.

10: If |L′| ≥ N , return L′.

11: return L′

pairs in Lf that are detected by the popcount filter is therefore approximately(
N
2

) ·(1−η(k, n)) ·Cd(θ) ·Wd(θ, θ1, θ1). When N = �(k, n) this is N ·Wd(θ, θ1, θ1).
If all detectable neighbours are found by the search routine then the algorithm
is list-size preserving when N = �(k, n) and t = 1/Wd(θ, θ1, θ1).

We can now derive optimal popcount parameters for various implementations
of Line 8.

Filtered Search. Suppose that Line 8 of Algorithm 3 applies popcountk,n(vj , ·)
to each element of Lf,j and then applies an inner product test to each vector
that passes. This implementation applies popcount tests to all

(|Lf |
2

) ≈ (
N ·Cd(θ1)

2

)
pairs of elements in Lf and finds all of the neighbouring pairs that pass. In the
process it applies inner product tests to a p(θ1, k, n) = Pr[P̂k,n | B̂f,θ1] fraction
of pairs. The cost of populating buckets in one iteration of Line 5 is c1 · �(k, n).
The cost of all searches on Line 8 is (c1 · p(θ1, k, n) + c2(k, n)) · (

NCd(θ1)
2

)
. With

the list-size preserving parameters N and t given above, the optimal θ1, k, and
n can be obtained by minimising the total cost

c1 · �(k, n) + (c1 · p(θ1, k, n) + c2(k, n)) · (�(k,n)·Cd(θ1)
2

)
Wd(θ, θ1, θ1)

. (12)

Filtered Quantum Search. Suppose that Line 8 is implemented using the
search routine Algorithm 2. We take the predicate f to be θ(vj , ·) ≤ θ with
domain Lf,j . We take the filter g to be popcountk,n(vj , ·). Each call to the search
routine returns at most one neighbour of vj . To find all detectable neighbours of
vj in Lf,j we must repeat the search several times. Known neighbours of vj can
be removed from Lf,j to avoid a coupon collector scenario. Proposition 1 with
P = |Lf,j | · Pr[P̂k,n | B̂f,θ1], Q = 1, and γ = 1 gives us that the number of G(g)
iterations in a search on a set of size |Lf,j | is q0 (|Lf,j |) = 1

2

√|Lf,j |.

602 M. R. Albrecht et al.

We consider an implementation of Line 8 in which searches are repeated
until a search fails to find a neighbour of vj . With N = �(k, n), the set Lf is
of expected size �(k, n) · Cd(θ1) and contains an expected �(k, n) · Wd(θ, θ1, θ1)
neighbouring pairs detectable by popcount. The set Lf,j is expected to contain
a proportional fraction of these pairs. As such, we expect to call the search
subroutine |Lf,j | · r(θ1, k, n) + 1 times in iteration j where

r(θ1, k, n) =
N · Wd(θ, θ1, θ1)(|Lf |

2

) ≈ 2Wd(θ, θ1, θ1)
�(k, n) · Cd(θ1)

2 .

The inner loop makes an expected

|Lf |−1∑
j=1

1
2

√
j (j · r(θ1, k, n) + 1)

applications of G(g). This admits an asymptotic expansion similar to that of
Eq. 10. If we assume that |Lf | takes its expected value of �(k, n) · Cd(θ1), then
the inner loop makes

q3(θ1, k, n) · (�(k, n) · Cd(θ1))
3/2

applications of G(g), where

q3(θ1, k, n) =
2Wd(θ, θ1, θ1)

5Cd(θ1)
+

1
3
.

Proposition 1 also provides an estimate for the rate at which reflections about
the true positives, Rf∩g are performed. With P and Q as above, we find that

Rf∩g is applied at roughly p(θ1, k, n) =
√

Pr[P̂k,n | B̂f,θ1] the rate of G(g) iter-
ations. The total cost of searching for neighbouring pairs in Lf is therefore

s(θ1, k, n) = (q1 · p(θ1, k, n) + q2(k, n)) · q3(θ1, k, n) · (�(k, n) · Cd(θ1)
)3/2

. (13)

Populating Lf has a cost of c1 · �(k, n). With the list-size preserving t given
above, the optimal parameters θ1, k, and n can be obtained by minimising the
total cost

c1 · �(k, n) + s(θ1, k, n)
Wd(θ, θ1, θ1)

. (14)

6.3 ListDecodingSearch

The optimal choice of θ1 in RandomBucketSearch balances the cost of N · t cap
membership tests against the cost of all calls to the search subroutine. It can be
seen that reducing the cost of populating the buckets would allow us to choose
a smaller θ1, which would reduce the cost of searching within each bucket.

Estimating Quantum Speedups for Lattice Sieves 603

Algorithm 4, ListDecodingSearch, is due to Becker, Ducas, Gama, and Laar-
hoven [8]. Its complexity is 2(0.292...+o(1))d classically and 2(0.265...+o(1))d quan-
tumly [34,35]. Like RandomBucketSearch, it computes a large number of list-cap
intersections. However, these list-cap intersections involve a structured list—the
list-cap intersections in RandomBucketSearch involve the inherently unstruc-
tured input list.

Algorithm 4. ListDecodingSearch
Input: A list L = (v1, v2, . . . vN) ⊂ Sd−1 of N . Parameters θ, θ1, θ2 ∈ (0, π/2) and

t ∈ Z+.
Output: A list of pairs (u, v) ∈ L × L with θ(u, v) ≤ θ.

1: function ListDecodingSearch(L; θ, θ1, θ2, t)
2: Sample a random product code F of size t
3: Initialise an empty list Lf for each f ∈ F
4: for 1 ≤ i ≤ N do
5: Fi ← F ∩ Cd−1(vi, θ2)
6: Add vi to Lf for each f in Fi

7: for 1 ≤ j < N do
8: Fj ← F ∩ Cd−1(vj , θ1)
9: for f ∈ Fj do

10: Lf,j ← {vk ∈ Lf : j < k ≤ N}
11: LF,j ← ∐

f∈Fj
Lf,j (disjoint union)

12: Search LF,j for any number of u that satisfy θ(vj , u) ≤ θ
13: For each such u found, add (vj , u) to L′.
14: If |L′| ≥ N , return L′.

15: return L′

Description of Algorithm 4. The algorithm first samples a t point random
product code F . See [8] for background on random product codes. In our analysis,
we treat F as a list of uniformly random points on Sd−1. A formal statement is
given as [8, Theorem 5.1], showing that such a heuristic is essentially true, up to
a subexponential loss on the probability of finding the intend pairs.

The first loop populates t buckets that have as centres the points f of F .
Bucket Lf stores elements of L that lie in the cap of angle θ2 about f . Each
bucket is of expected size N · Cd(θ2).

The second loop iterates over vj ∈ L and searches for neighbours of vj in
the disjoint union of buckets with centres within an angle θ1 of vj . The set
Fj constructed on Line 8 contains an expected t · Cd(θ1) bucket centres. The
disjoint union of certain elements from the corresponding buckets, denoted LF,j ,
is of expected size (N − j) · Cd(θ2) · t · Cd(θ1). We note that by simplifying and
assuming the expected size of LF,j is N · Cd(θ2) · t · Cd(θ1) the costs given below
are never wrong by more than a factor of two.

604 M. R. Albrecht et al.

Suppose that w is a neighbour of vj , so θ(vj , w) ≤ θ. The measure of the
wedge formed by a cap of angle θ1 about vj and a cap of angle θ2 about w is
at least Wd(θ, θ1, θ2). Assuming that the points of a random product code are
indistinguishable from points sampled uniformly on the sphere, the probability
that some f ∈ Fj contains w is at least t · Wd(θ, θ1, θ2).

The second loop is executed N times. Iteration j searches LF,j for neighbours
of vj . With N = �(k, n) there are expected to be N detectable neighbouring pairs
in L. With t = 1/Wd(θ, θ1, θ2) we expect that each neighbouring pair is of the
form (vj , w) with w ∈ LF,j .

The angles θ1, θ2 relate to the spherical cap parameters α, β respectively
in [8], and are such that θ1 ≥ θ2. Optimal time complexity is achieved when
θ1 = θ2.

We have omitted the list decoding mechanism by which list-cap intersections
are computed. In our analysis we assume that the cost of a list-cap intersection
such as Fi = F ∩ Cd−1(vi, θ2) is proportional to |Fi|, but independent of |F |,
i.e. we are in the “efficient list-decodability regime” of [8, Section 5.1] and may
take their parameter m = log d. In particular, we assume that in the cost of
O(log(d)·|Fi|) inner products and |F |O(1/ log(d)) other operations, as stated in [8,
Lemma 5.1], the first cost dominates. In [8] these costs relate to O(m ·M · Cn(α))
and O(nB + mB log B) respectively. We therefore assume the cost of forming
Fi = F ∩ Cd−1(vi, θ2) is log(d) · |Fi| inner product tests.

Filtered Search. Suppose that the implementation of Line 12 of Algorithm 4
applies popcountk,n(vj , ·) to each element of LF,j and then applies an inner
product test to each vector that passes. This implementation applies popcount
tests to all N · Cd(θ2) · t · Cd(θ1) elements of LF,j and finds all of the neighbours
of vj that pass. Note that w ∈ LF,j implies that there exists some f ∈ F such
that both vj and w lie in a cap of angle θ1 around f . Inner product tests are
applied to a p(θ1, k, n) ≥ Pr[P̂k,n | B̂f,θ1] fraction of all pairs.6

The cost of preparing all t buckets in the first loop is c1 · N · t · Cd(θ2). The
cost of constructing the search spaces in the second loop is c1 ·N · t ·Cd(θ1). Each
search has a cost of |LF,j | popcount tests and |LF,j | · p(θ1, k, n) inner product
tests. With the list-size preserving parameterisation given above, the optimal θ1,
θ2, k, and n can be obtained by minimising the total cost

�(k, n)
Wd(θ, θ1, θ2)

(
c1 · Cd(θ1) + c1 · Cd(θ2)

+
(
c1 · p(θ1, k, n) + c2(k, n)

) · �(k, n) · Cd(θ1) · Cd(θ2)
)
. (15)

Filtered Quantum Search. Suppose that Line 12 is implemented using Algo-
rithm 2. We take the predicate f to be θ(vj , ·) ≤ θ with domain LF,j . We take
the filter g to be popcountk,n(vj , ·). Each call to the search routine returns at

6 The inequality is because vj and w may be contained in multiple buckets, Lf,j .

Estimating Quantum Speedups for Lattice Sieves 605

most one neighbour of vj . Known neighbours of vj can be removed from LF,j to
avoid a coupon collector scenario. Proposition 1 with P = |LF,j | ·Pr[P̂k,n | B̂f,θ2],
Q = 1, and γ = 1 gives us that the number of G(g) iterations in a search on a
set of size |LF,j | is q0 (|LF,j |) ≈ 1

2

√|LF,j |.
Assuming that computing Fj = F ∩ C(vj , θ1) has a cost of c1 |Fj |, the N

iterations of Lines 5 and 8 have a total cost of

c1 · N · t · (Cd(θ1) + Cd(θ2)) (16)

Each search applies an expected

q0 (|LF,j |) ≈ 1
2

√
N · Cd(θ1) · t · Cd(θ2)

applications of G(g). Reflections about the true positives, Rf∩g, are performed at

roughly p(θ1, k, n) =
√

Pr[P̂k,n | Bf,θ1] the rate of G(g) iterations. We consider
an implementation of Line 8 in which searches are repeated until a search fails
to find a neighbour of vj . With the list-size preserving parameters given above,
we expect to perform two filtered quantum searches per iteration of the second
loop. The optimal parameters can be obtained by minimising the total cost

�(k, n)

(
c1

Cd(θ1) + Cd(θ2)
Wd(θ, θ1, θ2)

+ (q1p(θ1, k, n) + q2(k, n))

√
�(k, n)Cd(θ1)Cd(θ2)

Wd(θ, θ1, θ2)

)
.

7 Cost Estimates

Our software numerically optimises the cost functions in Sects. 6.1, 6.2 and 6.3
with respect to several classical and quantum cost metrics. The classical cost
metrics that we consider are: c (unit cost), which assigns unit cost to popcount;
c (RAM), which uses the classical circuits of Sect. 4. The quantum cost metrics
that we consider are: q (unit cost), which assigns unit cost to a Grover iteration;
q (depth-width), which assigns unit cost to every gate (including the identity) in
the quantum circuits of Sect. 4; q (gates), which assigns unit cost only to the
non-identity gates; q (T count), which assigns unit cost only to T gates; and q
(GE19), which is described in Sect. 7.1.

We stress that our software, and Fig. 2, give estimates for the cost of each
algorithm. These estimates are neither upper bounds nor lower bounds. As we
mention above, we have systematically omitted and underestimated some costs.
For instance, we have omitted the list decoding mechanism in our costing of
Algorithm 4. We have approximated other costs. For instance, the cost that we
assign to an inner product in Sect. 4.3. We have also not explored the entire
optimisation space. We only consider values of the popcount parameter n that
are one less than a power of two. Moreover, following the discussion in Sect. 2.4,
we set k = �n/3�.

While we have omitted and approximated some costs, we have tried to ensure
that these omissions and approximations will ultimately lead our software to

606 M. R. Albrecht et al.

underestimate of the total cost of the algorithm. For instance, if our inner product
cost is accurate, our optimisation procedure ensures that we satisfy Remark 2
and can ignore costs relating to Rf∩g.

Our results are presented in Fig. 2. We also plot the leading term of the
asymptotic complexity of the respective algorithms as these are routinely referred
to in the literature. The source code, and raw data for all considered cost metrics,
is available at https://github.com/jschanck/eprint-2019-1161.

7.1 Barriers to a Quantum Advantage

As expected, our results in Fig. 2 indicate that quantum search provides a sub-
stantial savings over classical search asymptotically. Our plots fully contain the
range of costs from 2128 to 2256 that are commonly thought to be cryptanalyti-
cally interesting. Modest cost improvements are attained in this range.

The range of parameters in which a sieve could conceivably be run, however,
is much narrower. If one assumes a memory density of one petabyte per gram
(253 bits per gram), a 2140 bit memory would have a mass comparable with that
of the Moon. Supposing that a 2-sieve stores 1/Cd(π/3) vectors, and that each
vector is log2(d) bits, an adversary with a 2140 bit memory could only run a
sieve in dimension 608 or lower. The potential cost improvement in dimension
608 is smaller than the potential cost improvement in, say, dimension 1000. The
potential cost improvement that can be actualised is likely smaller still.

We expect that our cost estimates are underestimates. However, the quantum
advantage could grow, shrink, or even be eliminated if our underestimates do not
affect quantum and classical costs equally. In this section, we list several reasons
to think that the advantage might shrink or disappear.

Error Correction Overhead. By using the depth-width metric for quantum
circuits, we assume that dispatching a logical gate to a logical qubit costs one
RAM instruction. In practice, however, the cost depends on the error correcting
code that is used for logical qubits. This cost may be significant.

Gidney and Eker̊a have estimated the resources required to factor a 2048
bit RSA modulus using Shor’s algorithm on a surface code based quantum com-
puter [20]. Under a plausible assumption on the physical qubit error rate, they
calculate that a factoring circuit with 212.6 logical qubits and depth 231 requires
a distance δ = 27 surface code. Each logical qubit is encoded in 2 δ2 = 1458
physical qubits, and the error tracking routine applies at least δ2 = 729 bit
instructions, per logical qubit per layer of logical circuit depth, to read its input.

In general, a circuit of depth D and width W requires a distance δ =
Θ(log(DW)) surface code. To perform a single logical gate, classical control
hardware dispatches several instructions to each of the Θ(log2(DW)) physical
qubits. The classical control hardware also performs a non-trivial error tracking
routine between logical gates, which takes measurement results from half of the

https://github.com/jschanck/eprint-2019-1161

Estimating Quantum Speedups for Lattice Sieves 607

100 200 300 400 500 600 700 800 900 1,000
0

64

128

192

256

320

384

d

lo
g 2
(#

op
s)

RandomBucket (c: RAM)
0.3494 d
RandomBucket (q: depth-width)
0.3013 d

RandomBucketSearch. Comparing c: (RAM) with q: (depth-width), and the leading
terms of the asymptotic complexities.

100 200 300 400 500 600 700 800 900 1,000
0

64

128

192

256

320

d

lo
g 2
(#

op
s)

ListDecoding (c: RAM)
0.2924 d
ListDecoding (q: depth-width)
0.2652 d

ListDecodingSearch. Comparing c: (RAM) with q: (depth-width), and the leading terms
of the asymptotic complexities.

100 200 300 400 500 600 700 800 900 1,000
0

64

128

192

256

320

d

lo
g 2
(#

op
s)

ListDecoding (c: RAM)
0.2924 d
ListDecoding (q: GE19)
0.2652 d

ListDecodingSearch. Comparing c: (RAM) with q: (GE19), and the leading terms of
the asymptotic complexities.

Fig. 2. Quantum (“q”) and classical (“c”) resource estimates for NNS search.

608 M. R. Albrecht et al.

physical qubits as input.7 Consequently, the cost of surface code computation
grows like Ω(DW log2(DW)).

We have adapted scripts provided by Gidney and Eker̊a to estimate δ for
our circuits. The last plot of Fig. 2 shows the cost of ListDecodingSearch
when every logical gate (including the identity) is assigned a cost of δ2. For
ListDecodingSearch the cost in the Gidney–Eker̊a metric grows from 2128 to
2256 between dimensions 352 and 824, and we calculate a 2128 bit memory is suf-
ficient to run in dimension 544. We find that the advantage of quantum search
over classical search is a factor of 21.8 in dimension 352, a factor of 27.1 in dimen-
sion 544, and a factor of 214.4 in dimension 824. Compare this with the näıve
estimate for the advantage, 20.292d−0.265d, which is a factor of 29.5 in dimension
352, a factor of 214.7 in dimension 544, and a factor of 222.5 in dimension 824.

One should also note that error correction for the surface code sets a natural
clock speed, which Gidney and Eker̊a estimate at one cycle per microsecond.
Gidney and Eker̊a estimate that their factoring circuit, the cost of which is
dominated by a single modular exponentiation, would take 7.44 hours to run.
This additional overhead in terms of time is not refelected in the instruction
count.

On the positive side, the cost estimate used in Fig. 2 is specific to the surface
code architecture. Significant improvements may be possible. Gottesman has
shown that an overhead of Θ(1) physical qubits per logical qubit is theoretically
possible [22]. Whether this technique offers lower overhead than the surface code
in practice is yet to be seen.

Dependence on qRAM. Quantum accessible classical memories are used in
many quantum algorithms. For example, they are used in black box search algo-
rithms [25], in collision finding algorithms [14], and in some algorithms for the
the dihedral hidden subgroup problem [32]. The use of qRAM is not without
controversy [11,24]. Previous work on quantum lattice sieve algorithms [34,35]
has noted that constructing practical qRAM seems challenging.

Morally, looking up an � bit value in a table with 2n entries should have a
cost that grows at least with n+ �. Recent results [5,6,38] indicate that realistic
implementations of qRAM have costs that grow much more quickly than this.
When ancillary qubits are kept to a minimum, the best known Clifford+T imple-
mentation of a qRAM has a T count of 4 · (2n − 1) [6]. While it is conceivable
that a qRAM could be constructed at lower cost on a different architecture, as
has been suggested in [21], a unit cost qRAM gate should be seen as a powerful,
and potentially unrealistic, resource.

One can argue that classical RAMs also have a large cost. This is not to
say that classical and quantum RAMs have the same cost. A qRAM can be
used to construct an arbitrary superposition over the elements of a memory.
This process relies on quantum interference and necessarily takes as long as a
worst case memory access time. This is in contrast with classical RAM, where
7 For a thorough introduction to how logical gates are performed on the surface code

see [19], and for more advanced techniques see e.g. [27].

Estimating Quantum Speedups for Lattice Sieves 609

careful programming and attention to a computer’s caches can mask the fact
that accessing an N bit memory laid out in a 3-dimensional space necessarily
takes Ω(N1/3) time.

If the cost of a qRAM gate is equivalent to Θ(N1/3) Clifford+T gates, then
the asymptotic cost of quantum AllPair search is 2(0.380...+o(1))d, the asymptotic
cost of quantum RandomBucket search is 2(0.336...+o(1))d, and the asymptotic
cost of quantum ListDecoding search is 2(0.284...+o(1))d. If memory is constrained
to two dimensions, and qRAM costs Θ(N1/2) Clifford+T gates, the quantum
asymptotics match the classical RAM asymptotics.

Quantum Sampling Routines. We have assumed that D in Sect. 4.1 (the
uniform sampling subroutine in Grover’s algorithm) is implemented using paral-
lel H gates. This is the smallest possible circuit that might implement D, and
may be a significant underestimate. In Line 12 of Algorithm 4 we must construct
a superposition (ideally uniform) over {k : vk ∈ LF,j}. The set LF,j is presented
as a disjoint union of smaller sets. Copying the elements of these smaller sets to
a flat array would be more expensive than our estimate for the cost of search.
While we do not expect the cost of sampling near uniformly from LF,j to be
large, it could easily exceed the cost of popcount.

7.2 Relevance to SVP

The NNS algorithms that we have analysed are closely related to lattice sieves
for SVP. While the asymptotic cost of NNS algorithms are often used as a proxy
for the asymptotic cost of solving SVP, we caution the reader against making
this comparison in a non-asymptotic setting. On the one hand, our estimates
might lead one to underestimate the cost of solving SVP:

– the costs given in Fig. 2 represent one iteration of NNS within a sieve, while
sieve algorithms make poly(d) iterations;

– the costs given in Fig. 2 do not account for all of the subroutines within each
NNS algorithm.

On the other hand, our estimates might lead one to overestimate the cost of
solving SVP:

– it is a mistake to conflate the cost of NNS in dimension d with the cost of
SVP in dimension d. The “dimensions for free” technique of [17] can be used
to solve SVP in dimension d by calling an NNS routine polynomially many
times in dimension d′ < d. Our analysis seamlessly applies to dimension d′;

– there are heuristics that exploit structure present in applications to SVP not
captured in our general setting, e.g. the vector space structure allowing both
±u to be tested for the cost of u, and keeping the vectors sorted by length.

610 M. R. Albrecht et al.

7.3 Future Work

The sieving techniques considered here are not exhaustive. While it would be
relatively easy to adapt our software to other 2-sieves, like the cross polytope
sieve [10], future work might consider k-sieves such as [7,30].

Future work might also address the barriers to a quantum advantage dis-
cussed in Sect. 7.1. Two additional barriers are worth mentioning here. First, as
Grover search does not parallelise well, one might consider depth restrictions for
classical and quantum circuits. Second, our estimates might be refined by includ-
ing some of the classical subroutines, present in both the classical and quantum
variants of the same sieve, that we have ignored, e.g. the cost of sampling lattice
vectors or the cost of list-decoding in Algorithm 4. Any cost increase will reduce
the range of cryptanalytically relevant dimensions, giving fewer dimensions to
overcome quantum overheads.

Finally, our estimates should be checked against experiments. Our analysis
of Algorithm 3 recommends a database of size N(d) ≈ 2/Cd(π/3), while the
largest sieving experiments to date [2] runs Algorithm 3 with a database of size
N ′(d) = 3.2 ·20.2075d up to dimension d = 127. There is a factor of 8 gap between
N ′(127) and N(127). A factor of two can be explained by the fact that [2] treats
each database entry u as ±u. It is possible that the remaining factor of four can
be explained by the other heuristics used in [2]. As d increases, N(d) and N ′(d)
continue to diverge, so future work could attempt to determine more accurately
the required list size.

Acknowledgements. We thank Léo Ducas for helpful discussions regarding
ListDecodingSearch.

References

1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: 33rd ACM STOC, pp. 601–610. ACM Press, July 2001

2. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp.
717–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343.
USENIX Association, August 2016

4. Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.: Esti-
mating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. In:
Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 317–337. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 18

5. Arunachalam, S., Gheorghiu, V., Jochym-O’Connor, T., Mosca, M., Srinivasan,
P.V.: On the robustness of bucket brigade quantum ram. New J. Phys. 17(12),
123010 (2015). http://stacks.iop.org/1367-2630/17/i=12/a=123010

https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-319-69453-5_18
http://stacks.iop.org/1367-2630/17/i=12/a=123010

Estimating Quantum Speedups for Lattice Sieves 611

6. Babbush, R., et al.: Encoding electronic spectra in quantum circuits with linear
T complexity. Phys. Rev. X 8, 041015 (2018). https://link.aps.org/doi/10.1103/
PhysRevX.8.041015

7. Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. LMS J. Comput. Math.
19(A), 146–162 (2016)

8. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th
SODA, pp. 10–24. ACM-SIAM, January 2016

9. Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without increasing the
memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive,
Report 2015/522 (2015). http://eprint.iacr.org/2015/522

10. Becker, A., Laarhoven, T.: Efficient (ideal) lattice sieving using cross-polytope LSH.
In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol.
9646, pp. 3–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-
1 1

11. Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make
sharcs obsolete? In: Workshop Record of SHARCS 2009: Special-purpose Hard-
ware for Attacking Cryptographic Systems (2009). http://cr.yp.to/papers.html#
collisioncost

12. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik 46(4–5), 493–505 (1998). https://onlinelibrary.wiley.com/
doi/abs/10.1002/

13. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002). https://arxiv.org/abs/quant-
ph/0005055

14. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. SIGACT News 28(2), 14–19 (1997). http://doi.acm.org/10.1145/261342.
261346

15. Charikar, M.: Similarity estimation techniques from rounding algorithms. In: 34th
ACM STOC, pp. 380–388. ACM Press, May 2002

16. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-
carry addition circuit (2004). arXiv:quant-ph/0410184

17. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–
145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 5

18. Fitzpatrick, R., et al.: Tuning GaussSieve for speed. In: Aranha, D.F., Menezes, A.
(eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 288–305. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16295-9 16

19. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes:
towards practical large-scale quantum computation. Phys. Rev. A 86, 032324
(2012). https://link.aps.org/doi/10.1103/PhysRevA.86.032324

20. Gidney, C., Eker̊a, M.: How to factor 2048 bit RSA integers in 8 hours using 20
million noisy qubits (2019). https://arxiv.org/abs/1905.09749

21. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys.
Rev. Lett. 100, 160501 (2008). http://link.aps.org/doi/10.1103/PhysRevLett.100.
160501

22. Gottesman, D.: Fault-tolerant quantum computation with constant overhead
(2013). https://arxiv.org/abs/1310.2984

https://link.aps.org/doi/10.1103/PhysRevX.8.041015
https://link.aps.org/doi/10.1103/PhysRevX.8.041015
http://eprint.iacr.org/2015/522
https://doi.org/10.1007/978-3-319-31517-1_1
https://doi.org/10.1007/978-3-319-31517-1_1
http://cr.yp.to/papers.html#collisioncost
http://cr.yp.to/papers.html#collisioncost
https://onlinelibrary.wiley.com/doi/abs/10.1002/
https://onlinelibrary.wiley.com/doi/abs/10.1002/
https://arxiv.org/abs/quant-ph/0005055
https://arxiv.org/abs/quant-ph/0005055
http://doi.acm.org/10.1145/261342.261346
http://doi.acm.org/10.1145/261342.261346
http://arxiv.org/abs/quant-ph/0410184
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-16295-9_16
https://link.aps.org/doi/10.1103/PhysRevA.86.032324
https://arxiv.org/abs/1905.09749
http://link.aps.org/doi/10.1103/PhysRevLett.100.160501
http://link.aps.org/doi/10.1103/PhysRevLett.100.160501
https://arxiv.org/abs/1310.2984

612 M. R. Albrecht et al.

23. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

24. Grover, L., Rudolph, T.: How significant are the known collision and element dis-
tinctness quantum algorithms. Quantum Info. Comput. 4, 201–206 (2004)

25. Grover, L.K.: Quantum mechanics helps in searching for a needle in a
haystack. Phys. Rev. Lett. 79, 325–328 (1997). http://link.aps.org/doi/10.1103/
PhysRevLett.79.325

26. Häner, T., Roetteler, M., Svore, K.M.: Factoring using 2n + 2 qubits with toffoli
based modular multiplication. Quantum Info. Comput. 17(7–8), 673–684 (2017).
http://dl.acm.org/citation.cfm?id=3179553.3179560

27. Horsman, C., Fowler, A.G., Devitt, S., Meter, R.V.: Surface code quantum com-
puting by lattice surgery. New J. Phys. 14(12), 123011 (2012). http://stacks.iop.
org/1367-2630/14/i=12/a=123011

28. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles
for quantum key search on AES and LowMC. Cryptology ePrint Archive, Report
2019/1146 (2019). https://eprint.iacr.org/2019/1146

29. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 2

30. Kirshanova, E., Mårtensson, E., Postlethwaite, E.W., Moulik, S.R.: Quantum algo-
rithms for the approximate k -list problem and their application to lattice sieving.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp.
521–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 19

31. Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: Shmoys,
D.B. (ed.) 11th SODA, pp. 937–941. ACM-SIAM, January 2000

32. Kuperberg, G.: Another subexponential-time quantum algorithm for the Dihedral
Hidden Subgroup Problem. In: Theory of Quantum Computation, Communication
and Cryptography - TQC 2013, pp. 20–34. LIPIcs 22 (2013). http://drops.dagstuhl.
de/opus/volltexte/2013/4321

33. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 1

34. Laarhoven, T.: Search problems in cryptography: from fingerprinting to lattice siev-
ing. Ph.D. thesis, Department of Mathematics and Computer Science, proefschrift,
February 2016

35. Laarhoven, T., Mosca, M., van de Pol, J.: Solving the shortest vector problem in
lattices faster using quantum search. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS,
vol. 7932, pp. 83–101. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38616-9 6

36. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

37. Maslov, D.: Advantages of using relative-phase Toffoli gates with an application to
multiple control Toffoli optimization. Phys. Rev. A 93(2), 022311 (2016)

38. Matteo, O.D., Gheorghiu, V., Mosca, M.: Fault tolerant resource estimation of
quantum random-access memories (2019). arXiv:1902.01329v1

https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
http://link.aps.org/doi/10.1103/PhysRevLett.79.325
http://link.aps.org/doi/10.1103/PhysRevLett.79.325
http://dl.acm.org/citation.cfm?id=3179553.3179560
http://stacks.iop.org/1367-2630/14/i=12/a=123011
http://stacks.iop.org/1367-2630/14/i=12/a=123011
https://eprint.iacr.org/2019/1146
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-34578-5_19
http://drops.dagstuhl.de/opus/volltexte/2013/4321
http://drops.dagstuhl.de/opus/volltexte/2013/4321
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-642-38616-9_6
https://doi.org/10.1007/978-3-642-38616-9_6
https://doi.org/10.1007/978-3-642-19074-2_21
http://arxiv.org/abs/1902.01329v1

Estimating Quantum Speedups for Lattice Sieves 613

39. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 5

40. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. Math. Cryptol. 2(2), 181–207 (2008)

41. Parhami, B.: Efficient hamming weight comparators for binary vectors based on
accumulative and up/down parallel counters. IEEE Trans. Circ. Syst. 56-II(2),
167–171 (2009). https://doi.org/10.1109/TCSII.2008.2010176

https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1109/TCSII.2008.2010176

A Combinatorial Approach to Quantum
Random Functions

Nico Döttling1(B), Giulio Malavolta2(B), and Sihang Pu1(B)

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{doettling,sihang.pu}@cispa.saarland

2 Max Planck Institute for Security and Privacy, Bochum, Germany
giulio.malavolta@hotmail.it

Abstract. Quantum pseudorandom functions (QPRFs) extend the clas-
sical security of a PRF by allowing the adversary to issue queries on
input superpositions. Zhandry [Zhandry, FOCS 2012] showed a sepa-
ration between the two notions and proved that common construction
paradigms are also quantum secure, albeit with a new ad-hoc analysis.
In this work we revisit the question of constructing QPRFs and propose
a new method starting from small-domain (classical) PRFs: At the heart
of our approach is a new domain-extension technique based on bipartite
expanders. Interestingly, our analysis is almost entirely classical.

As a corollary of our main theorem, we obtain the first (approximate)
key-homomorphic quantum PRF based on the quantum intractability of
the learning with errors problem.

1 Introduction

Pseudorandom functions (PRFs) are one of the fundamental building blocks of
modern cryptography. PRFs were introduced in the seminal work of Goldreich,
Goldwasser and Micali [13] answering the question of how to build a function that
is indistinguishable from a random function. Loosely speaking, a PRF guarantees
that no efficient algorithm, with oracle access to such a function, can distinguish
it from a truly random function. PRFs have been shown to be an invaluable
tool in the design of cryptographic primitives (such as block ciphers and mes-
sage authentication codes) and are by now a well-understood object: After the
tree-based construction of [13], PRFs have been build from pseudorandom syn-
thesizers [19] and directly from many hard problems [2,7,11,18,20–22].

However, when considering the more delicate quantum settings, the study of
the hardness of PRFs is still at its infancy. Before delving into the details of this
primitive, some clarification is needed as one can define the quantum security of
a PRFs in two ways:

1. The PRF is secure against a quantum machine that can only issue classi-
cal queries to the function (although the internal state of the adversary is
quantum).

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 614–632, 2020.
https://doi.org/10.1007/978-3-030-64834-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_21

A Combinatorial Approach to Quantum Random Functions 615

2. The PRF is secure against a quantum machine that is allowed to query it on
input superposition states and is given as a response the superposition of the
corresponding outputs, i.e., it can issue quantum queries. This setting is the
focus of our work and we refer to it as quantum security.

The first setting is commonly referred to as post-quantum security and it involves
the use of hard problems that are conjectured to be intractable even for quantum
computers, but this aspect typically does not further affect the analysis of known
construction paradigms. On the other hand, the latter setting has been shown
to require a fundamentally different approach: In his pioneer work, Zhandry [27]
gave a separation between the two models, i.e., he constructed a PRF that is
post-quantum secure but provably not quantum secure. On the positive side, he
showed that the generic constructions of [13] and [19] are also quantum secure,
albeit with a completely different analysis. He also provided a quantum analysis
of the PRFs of [2], which assumes the post-quantum hardness of the learning
with errors problem [24].

Beyond the theoretical interest, quantum security gives a more conservative
model to analyze the hardness of PRFs in a world with quantum machines.
As an example, if PRF is used as a message authentication code (MAC) by
some quantum computer, then it is reasonable to assume that an adversary
might be able to obtain the function output when evaluated on some input
superposition. In this case, MACs based on post-quantum secure PRFs might
not be secure anymore. Boneh and Zhandry in their work[8] studied this problem
and constructed the first message authentication codes against quantum chosen
message attack. They also showed that a quantum secure PRF is sufficient for
constructing a quantum secure MAC. Unfortunately, the current landscape of
quantum PRFs is rather unsatisfactory: Current techniques to analyze hardness
of PRFs in the quantum settings are geared towards specific constructions. As
a result, only a handful of quantum-secure schemes are known.

1.1 What Makes QPRFs Challenging?

At the heart of Zhandry’s separation result [27] is the observation that quantum
algorithms can detect hidden linear structures. This problem is also present when
we extend the domain of truly random functions. Assume that f : {0, 1}λ →
{0, 1}λ is a uniformly random function and H : {0, 1}2λ → {0, 1}λ is a ran-
dom linear function and therefore a universal hash function [9]. The function
x �→ f(H(x)) can easily be shown to be statistically indistinguishable from a
truly random function for any classical distinguisher with oracle access to this
function. However, using the algorithm of Boneh and Lipton [6] one can effi-
ciently find elements in the kernel of H via superposition queries to f(H(·)).
Given an element z in the kernel of H, f(H(x)) can be distinguished from a
truly random function g : {0, 1}2λ → {0, 1}λ by two classical queries, as it holds
for any x ∈ {0, 1}2λ that f(H(x + z)) = f(H(x)). Such a collision, however,
happens only with exponentially small probability for a random g.

What this shows is that the advantage of superposition adversaries over clas-
sical adversaries goes far beyond their computational advantage. Superposition

616 N. Döttling et al.

adversaries can learn strictly more about the structure of a function it is given
oracle access to than a classical (even unbounded) adversary ever could.

1.2 Our Results

In this work we explore a different route and we propose a new approach to
construct QPRFs. Our construction is based on the framework of Döttling and
Schröder [12], which in turn builds on earlier ideas of PRF domain extension [4,
16] and constructions of adaptively secure PRFs from non-adaptively secure
ones [3].

At the heart of our approach is a domain extension technique based on bipar-
tite expander graphs, which crucially allows us to reduce the quantum hardness
of our PRF to the classical (post-quantum) hardness of a small-domain PRF.
Specifically, we will prove the following theorem.

Theorem 1 (Informal). For any q let PRFq : K×Y → Z be a (post-quantum)
classically secure PRF with (small) domain Yq and let Γ (x, j) be a suitable
expander mapping from a vertex x to its j-th degree neighbor, where the expander
Γ has degree Di. Then

F (K,x) =
ω(log λ)⊕

i=1

⊕

j∈[Di]

PRF2i(K2i , Γ (x, j)),

where K = (K21 , . . . , K2i , . . . , K2ω(log λ))1, is a quantum PRF.

This gives an alternative and (arguably) conceptually simpler approach to
constructing QPRFs. An interesting aspect of our result is that our analysis con-
cerns almost exclusively the classical settings and quantum security is achieved
by a simple observation: The crux of our analysis will consist in reducing the
classical hardness of the PRF to that of a small domain PRF, which is also triv-
ially quantum secure since the attacker can query the full domain. This result
can be seen as a compiler which converts any post-quantum secure PRF into a
QPRF at a moderate overhead and without having to go through the (expensive)
GGM construction of [27].

As an additional result, we obtain a new implication: Assuming the quantum-
intractability of the learning with errors problem, then there exists a quantum
(almost) key-homomorphic PRF.

Quantum Key-Homomorphic PRF. Key-homomorphic PRFs were intro-
duced by Boneh et al. [5] and have applications in the context of proxy-re-
encryption and related key security. In a nutshell, for key-homomorphic PRFs

1 Note that we could XOR them from log λ to ω(log λ), but for simplicity, we still use
the range from 1 to ω(log λ).

A Combinatorial Approach to Quantum Random Functions 617

the key-space is a group and it holds for all x that PRF (K1 + K2, x) =
PRF (K1, x) + PRF (K2, x). Key-homomorphic PRFs give rise to a very nat-
ural protocol for a distributed PRF. Boneh et al. showed that the function

PRFKH(k, x) =

⌈
�∏

i=1

Axi
· k

⌋

p

,

where A0 and A1 are two random public matrices in Z
m×m
q , is additively key-

homomorphic (ignoring a small error) over the vector space Z
m
q . The function is

pseudorandom under the learning with errors assumption, which is conjectured
to be intractable also for quantum computers. Then a simple application of our
compiler shows us that

F (K,x) =
ω(log λ)∑

i=1

∑

j∈[Di]

PRFKH(K2i , Γ (x, j)) mod p

is a quantum key-homomorphic PRF.

1.3 Technical Overview

We start by providing a technical outline of our results. As mentioned above,
we use the framework of [12] to construct our QPRFs. This framework has two
steps, a domain extension step and a combiner step. The domain extension step
takes a small domain PRF with domain size poly(q) and constructs from it a
q-bounded PRF on a large domain, e.g. {0, 1}λ. A PRF is called q-bounded
if security is only guaranteed for adversaries which make at most q queries. An
important aspect about this step is that the small domain PRF can be evaluated
in time (essentially) independent of q.

The second step, or combiner step, combines a small number of bounded
PRFs which have the same domain. The key idea here is to set the bounds in
an exponentially increasing way. More specifically, if PRFq(Kq, x) are q-bounded
PRFs, we combine them into a function F via

F (K,x) =
t⊕

i=1

PRF2i(K2i , x)

where K = (K1, . . . , K2t). We will choose the parameter t to be slightly super-
logarithmic in the security parameter λ. We claim that if PRFq(Kq, x) is a q-
bounded QPRF as long as q is polynomial, then F (K,x) is an (unbounded)
QPRF. We will briefly argue how this can be established. Fix a BQP distin-
guisher A against the QPRF security of F . Since this distinguisher is efficient,
there is a polynomial upper bound q on the number of superposition queries
A will make. Given such a distinguisher we will, choose i∗ = �log(q)� � t and
construct a BQP distinguisher A′ against the 2i∗

-bounded security of PRF2i∗ .
Notice that since 2i∗ � 2q and q is polynomial it holds that 2i∗

is also poly-
nomial. The distinguisher A′ gets q-bounded superposition access to an oracle

618 N. Döttling et al.

O which computes either PRF2i∗ or a uniformly random function f . Given a
superposition query

∑ |x〉 by A, A′ submits this query to its oracle O obtaining
a superposition state

∑ |x〉|O(x)〉. Now, A′ can convert this state into
∑

|x〉|O(x) ⊕
⊕

i�=i∗
PRF2i(K2i , x)〉

via a local quantum computation and forwards this state to A. In the end, A′

outputs whatever A outputs. Now notice that if O(·) computes PRF2i∗ (K2i∗ , ·),
then A′ perfectly simulated superposition access to F (K, ·) to A. On the other
hand, if O(·) computes a truly random function, then O(x)⊕⊕

i�=i∗ PRF2i(K2i , x)
is also a truly random function. Consequently, A′ distinguishes PRF2i∗ from
uniform with the same advantage that A distinguishes F from uniform.

The more challenging aspect of our approach is the construction of a q-
bounded QPRF from a small domain PRF. As outlined in Sect. 1.1, even domain
extension techniques that are statistically secure against classical adversaries
might be completely insecure against a superposition adversary. We circumnav-
igate this problem by adopting a perfectly secure domain extension technique.
We can then use a Lemma by Zhandry [27] which states that any classical 2q-
uniform function is identically distributed to a uniform function from the view
of a q-bounded superposition adversary.

It turns out that we can realize perfectly secure domain extension using
highly unbalanced expander graphs via constructions that have previously been
used to construct space-efficient k-independent functions [10]. In a nutshell, a
highly unbalanced expander is a bipartite graph Γ where the set of left vertices
[N] can be made super-polynomially large, the set of right vertices [L] is only
polynomially large, and the degree D is poly-logarithmic. Moreover, such graphs
have a unique neighbor expansion property in the sense that it holds for any
subset S ⊂ [N] of left-vertices not larger than a (polynomial) bound Q that
there exists a vertex v in Γ (S) ⊂ [L] (the neighborhood of S) which has a
unique neighbor in S. A construction of such graphs was provided by Guruswami,
Umans and Vadhan [14].

Equipped with such a graph Γ , we can now extend a random function f
defined on the small domain [L] to a Q-bounded random function g defined on
the large domain [N] as via a simple tabulation function. For a left vertex x ∈ [N]
and an index j ∈ [D], let Γ (x, j) ∈ [L] be the j-th neighbor of x. Define the
function g by

g(x) =
⊕

j∈[D]

f(Γ (x, j)).

We claim that if f is a uniformly random function, then g is a Q-uniform function,
i.e. it holds for any pairwise distinct x1, . . . , xQ ∈ [N] that g(x1), . . . , g(xQ) are
independent and uniformly random. To see this note that by the unique neighbor
expansion property of Γ , as the set S = {x1, . . . , xQ} is of size Q there exists a
vertex v ∈ Γ (S) which has a unique neighbor xi∗ in S. In other words, there is

A Combinatorial Approach to Quantum Random Functions 619

an index j∗ ∈ [D] such that the term f(Γ (xi∗ , j∗)) only appears in

g(xi∗) =
⊕

j∈[D]

f(Γ (xi∗ , j)),

but not in any other g(xi) for i
= i∗. Since f(Γ (xi∗ , j∗)) is uniformly random
and independent of all the g(xi), it follows that g(xi∗) is uniformly random and
independent of all the g(xi). We can repeat this argument recursively arguing
that the g(x1), . . . , g(xQ) are uniformly random and independent. Now assume
that Q = 2q. We claim that if PRF is a post-quantum PRF with (polynomially-
sized) domain [L], then it holds that

F (K,x) =
⊕

j∈[D]

PRF(K,Γ (x, j))

is a q-bounded QPRF on the large domain [N]. To argue security, assume that
A is a q-bounded BQP distinguisher which distinguishes F from a truly ran-
dom function. We will first replace PRF with a truly random function f and
argue security via the post-quantum security of PRF. Specifically, if A could
distinguish these two cases we can construct a post-quantum distinguisher A′

against the PRF security of PRF. A′ is given access to an oracle O and pro-
ceeds as follows. It first queries O on every possible input obtaining the entire
function table of O. This can be performed efficiently as the domain of O is
of size L, which is polynomial. Now, A′ can give A superposition access to
the function O′(x) =

⊕
j∈[D] O(Γ (x, j)) via a local quantum computation,

since it knows the entire function table of O. Consequently, if A distinguishes
F (K,x) from a function F ′(x) =

⊕
j∈[D] f(Γ (x, j)) where f is a truly random

function, then A′ distiguishes PRF from a truly random function. Finally, as
F ′(x) =

⊕
j∈[D] f(Γ (x, j)) is a 2q-uniform function, we can argue that since A

is q-bounded it is identically distributed to a uniformly random function from
the view of A via a Lemma by Zhandry [27]. This concludes the overview.

From a conceptual perspective, the main reason why our proof is simpler
than, e.g., Zhandry’s proof for QPRF security of the GGM construction [27],
stems from the fact that the above reduction A′ can query the entire function
table of the small domain PRF PRF and simulate a quantum oracle for A locally.

2 Applications

In this section we discuss the possible applications of quantum secure PRFs.

2.1 Quantum Secure MACs

Classically, any pseudorandom function can be used to implement message
authentication codes (MAC). Moreover, for quantum adversaries, we can use
post-quantum secure PRFs to protect classical messages. However, what if the

620 N. Döttling et al.

quantum adversary has the ability to query superpositions of messages? In this
situation, the entire chosen message game would be held in the quantum envi-
ronment which needs stronger version of security. For instance, considering a
random oracle H, if the adversary can only issue classical queries, after learning
q queries she does not learn any additional information at other inputs; but if
she can issue quantum queries, then she might get information on all inputs
simultaneously, even with just a single query.

Boneh and Zhandry [8] defined a quantum chosen message attack game to
model the security of any MAC scheme in the quantum setting. First, quan-
tum queries need to be explicitly modeled as the adversary could be entangled
with the queries. We denote the adversary’s state just prior to issuing a sign-
ing query by Σm,x,yψm,x,y|m,x, y〉 and the signing oracle performs the following
transformation,

Σm,x,yψm,x,y|m,x, y〉 → Σm,x,yψm,x,y|m,x ⊕ S(k,m; r), y〉,
where r is a random string and S(k,m; r) is the signing algorithm of a MAC
scheme. Then we say that the adversary wins this game if she can generate q +1
valid classical message-tag pairs after issuing q quantum chosen message queries.
The formal definition of quantum secure MACs is given as follows 2.

Definition 1. A MAC system is existentially unforgeable under a quantum cho-
sen message attack (EUF-qCMA) if no adversary can win the quantum MAC
game with non-negligible advantage in λ.

Boneh and Zhandry [8] also showed that a quantum secure pseudorandom
function gives rise to the quantum-secure MAC, namely S(k,m) = PRF(k,m).

Theorem 2 ([8]). If PRF : K × X → Y is a quantum-secure pseudorandom
function and 1/|Y| is negligible, then S(k,m) = PRF(k,m) is a EUF-qCMA-
secure MAC.

Therefore, the Theorem 2 implies that a quantum secure PRF is sufficient to
give us a quantum secure MAC.

2.2 Pseudorandom Quantum States

Pseudorandom states (or pseudorandom quantum states, denoted as PRS), are a
set of random states {|φk〉} that is indistinguishable from Haar random quantum
states. In [17], Ji et al. generalizes the definition of pseudorandomness in the
classical case to the quantum setting:

Definition 2 (Pseudorandom states). Let κ be the security parameter. Let
H be a Hilbert space and K the key space, both parameterized by κ. A keyed
family of quantum states {|φk〉 ∈ S(Hk∈K)} is pseudorandom, if the following
two conditions hold:
2 Recently, blind-unforgeable, a stronger security notion for qMAC is defined in [1]. It

implies EUF-qCMA notion and can also be satisfied by quantum secure PRF.

A Combinatorial Approach to Quantum Random Functions 621

1. Efficient generation. There is a polynomial-time quantum algorithm G that
generates state |φk〉 on input k. That is, for all k ∈ K, G(k) = |φk〉.

2. Pseudorandomness. Any polynomially many copies of |φk〉 with the same ran-
dom k ∈ K is computationally indistinguishable from the same number of
copies of a Haar random state. More precisely, for any efficient quantum
algorithm A and any m ∈ poly(κ),

| Pr
k←K

[A(|φk〉⊗m) = 1] − Pr
|ψ〉←μ

[A(|ψ〉⊗m) = 1]| = negl(κ)

where μ is the Haar measure on S(H).

Moreover, they also show that any quantum secure PRF could be used to
construct PRS as follows.

Theorem 3 ([17]). For any QPRF PRF : K × X → X , the family of states
{|φk〉}k∈K,

|φk〉 =
1√
N

∑

x∈X
ω
PRFk(x)
N |x〉,

is a PRS.

Finally, PRS can be immediately used to construct a private-key quantum
money scheme [17].

3 Preliminaries

We denote by λ ∈ N the security parameter, by poly(λ) any function that is
bounded by a polynomial in λ, and by negl(λ) any function that is negligible
in the security parameter. We abbreviate computational indistinguishability of
two distributions by ≈c. The set of N elements is always written as [N]. We also
denote as DO a distinguisher D access to an oracle O via classical queries and
A|O〉 via quantum queries.

3.1 Quantum Computing

We recall some basic facts about quantum computing.

Fact 1 ([23]). Any classical efficiently computable function f can be imple-
mented efficiently by a quantum computer. Furthermore, any function that has
an efficient classical algorithm computing it can be implemented efficiently as a
quantum-accessible oracle.

Fact 2 ([28]). For any sets X and Y, we can efficiently ‘construct’ a random
oracle from X to Y capable of handling q quantum queries, where q is a polyno-
mial. More specifically, the behavior of any quantum algorithm making at most
q queries to a 2q-wise independent function is identical to its behavior when the
queries are made to a random function.

622 N. Döttling et al.

A more formal statement of Fact 2 is given in the following.

Theorem 4 ([28]). Let A be a quantum algorithm making q quantum queries
to an oracle H : X → Y. If we draw H from some weight assignment D3, then
for every z, the quantity PrH ←$D[AH(·) = z] is a linear combination of the
quantities PrH ←$D[H(xi) = ri,∀i ∈ {1, . . . , 2q}] for all possible settings of the
xi and ri.

This is proved in [28] and immediately implies that, if two weight assignments on
oracles, D1 and D2, are 2q-wise equivalent, then any q query quantum algorithm
behaves the same under both weight assignments, since for all 2q pairs (xi, ri)
it holds that

Pr
H ←$D1

[H(xi) = ri,∀i ∈ {1, . . . , 2q}] = Pr
H ←$D2

[H(xi) = ri,∀i ∈ {1, . . . , 2q}].

3.2 Pseudorandom Functions

We recall definition of classical pseudorandom functions [13].

Definition 3 (Pseudorandom Functions). Let Xλ and Yλ be two finite sets
depending on λ. We say that an efficiently computable keyed function PRF :
Kλ ×Xλ → Yλ with key-space Kλ is a pseudorandom function (PRF), if it holds
for every PPT oracle adversary A that

|Pr[APRF(K,·)(1λ) = 1] − Pr[AR(1λ) = 1]| � negl(λ),

where K ←$Kλ and R : Xλ → Yλ is a randomly chosen function. Moreover, if
|X | � poly(λ), then we say that PRF is a small-domain PRF, otherwise we call
PRF a large-domain PRF.

If A is a quantum machine, then we say that the PRF is post-quantum secure.
Note that A is restricted to issue only classical queries, but its computation can
be quantum. We now recall the notion of q-bounded PRF [12]. The difference
between q-bounded PRF and PRF is just the former can only send at most q
distinct queries. As in [12], our only restriction is that the runtime of the function
depends polynomially on λ and log(q).

Definition 4 (Bounded Pseudorandom Functions). Let Xλ and Yλ be
finite sets. A keyed function Fq : Kq × Xλ → Yλ parameterized by a parameter
q is a q-bounded pseudorandom function (bPRF), if Fq is computable in time
poly(λ, log(q)) and if it holds for all efficiently computable q∗ = q(λ) � poly(λ)
and all q∗-query distinguishers D (i.e. send at most q∗ distinct queries) that

|Pr[DFq(K,·)(1λ) = 1] − Pr[DR(1λ) = 1]| � negl(λ),

where K ←$Kq and R : Xλ → Yλ is a randomly chosen function.
3 A weight assignment on a set X is a function D : X → R such that

∑
x D(x) = 1.

As an example, and the way we use it in our work, it could model a probability
distribution.

A Combinatorial Approach to Quantum Random Functions 623

Quantum Pseudorandom Functions. We define quantum PRFs in the fol-
lowing. Roughly speaking, we say a pseudorandom function PRF is quantum-
secure if no efficient quantum adversary A making quantum queries can distin-
guish between a random function R and the function PRF. By quantum query we
mean that the adversary A can send a quantum superposition to the oracle and
receive a the corresponding quantum superposition of the function evaluation in
return.

Definition 5 (Quantum-secure Pseudorandom Functions). A pseudoran-
dom function PRF : Kλ × Xλ → Yλ is quantum-secure if no efficient quantum
adversary A making quantum queries can distinguish between a truly random
function R and the function PRF(K, ·) for a random K ←$Kλ. Specifically, for
keyed function PRF : Kλ × Xλ → Yλ with key-space Kλ, we say it is a quantum-
secure pseudorandom function (QPRF) if it holds for every efficient quantum
adversary A that

|Pr[A|PRF(K,·)〉(1λ) = 1] − Pr[A|R〉(1λ) = 1]| � negl(λ),

where K ←$Kλ and R : Xλ → Yλ is a randomly chosen function.

We also define the notion of q-bounded quantum PRFs in a similar spirit as
above.

Definition 6 (Bounded Quantum-secure Pseudorandom Functions).
Let Xλ and Yλ be finite sets. A keyed function Fq : Kq × Xλ → Yλ parame-
terized by a parameter q is a q-bounded quantum-secure pseudorandom function
(bQPRF), if Fq is computable in time poly(λ, log(q)) and if it holds for all effi-
ciently computable q∗ = q(λ) � poly(λ) and all q∗-query quantum adversary A
(i.e. send at most q∗ distinct quantum queries) that

|Pr[A|Fq(K,·)〉(1λ) = 1] − Pr[A|R〉(1λ) = 1]| � negl(λ),

where K ←$Kq and R : Xλ → Yλ is a randomly chosen function.

4 Bipartite Expanders

Expanders are highly connected sparse graphs, which are significantly useful
in computer science, and there is a rich body of work on constructions and
properties of expanders (see, e.g., [15] and references therein). We recall the
definitions of bipartite graphs and expanders in the following.

Definition 7 (Bipartite Graph). A bipartite graph with N left-vertices, L
right-vertices, and D left-degrees is specified by a function Γ : [N] × [D] → [L],
where Γ (x, j) denotes the j-th neighbor of x. For a set S ⊆ [N], we denote as
Γ (S) its set of neighbors {Γ (x, j) : x ∈ S, j ∈ [D]}.
Definition 8 (Bipartite Expander). A bipartite graph Γ : [N] × [D] → [L]
is a (� Q,A) expander if for all S ⊆ [N] with |S| � Q, it has: |Γ (S)| � A · |S|,
where A is expansion factor.

624 N. Döttling et al.

We are only interested in highly unbalanced expanders with N � L. An explicit
construction (i.e., where Γ (·, ·) is computable in polynomial time) of such an
expander has been shown in [14]. We recall here the theorem.

Theorem 5 ([14]). For all constants α > 0 : for every N ∈ N, Q � N , and
ξ > 0, there is an explicit (� Q, (1 − ξ)D) expander Γ : [N] × [D] → [L] with
degree D = O

(
((log N)(log Q)/ξ)1+1/α

)
and L � D2 · Q1+α. Moreover, D and

L are powers of 2.

4.1 Q-unique Expanders

In our construction, we need a (� Q, (1 − ξ)D) expander to be Q-unique, which
means in every subset of left-vertices with size not greater than Q, there must
exist a vertex with a unique neighbor (i.e., this unique neighbor is connected
to only one vertex). This property is defined in [10] as constructing functions
where every subset S of inputs of size at most Q contains an input that has
many unique neighbors. It is formalized as:

Definition 9 (Q-unique Expander). A (� Q, (1 − ξ)D) expander Γ : [N] ×
[D] → [L] is Q-unique if for all S ⊆ [N], |S| � Q, there exists a x ∈ S such that
|Γ ({x})\Γ (S\{x})| > l � 0 holds.

Note l in Definition 9 is a way to measure uniqueness of a expander: The greater
the l is, the more unique neighbors an input can have. In our construction, we
only need l = 0 which means (at least) one unique neighbor would be sufficient
for us. Moreover, there is also a concept of Q-wise-independence:

Definition 10 (Q-wise-independence). Let Q be a positive integer and let F
be a family of functions from Y to Z. We say that F is a Q-wise-independent
family of functions if, for every choice of l � Q distinct keys y1, . . . , yl and
arbitrary values z1, . . . , zl, then, for f selected uniformly at random from F we
have that

Pr[f(y1) = z1, . . . , f(yl) = zl] = |Z|−l.

The existence of such Q-unique expanders is showed as follows.

Theorem 6. Given any (� Q, (1 − ξ)D) expander Γ : [N] × [D] → [L] from
Definition 8, if ξ < 1/2, then expander Γ is Q-unique for l = 0.

Proof. First we want to show that there must exist a vertex in Γ (S) with degree
at most one, when ξ < 1/2. Assume towards contradiction that every vertex in
Γ (S) has degree at least 2 when ξ < 1/2. Then the number of edges between S
and Γ (S) is at least two times as |Γ (S)|. By Definition 7, we have that

D · |S| � 2 · |Γ (S)|.

A Combinatorial Approach to Quantum Random Functions 625

Next, by Definition 8, we have |Γ (S)| � (1 − ξ)D · |S| (in which (1 − ξ)D is
expansion factor), therefore

D · |S| � 2(1 − ξ)D · |S|
1 � 2(1 − ξ)
ξ � 1/2,

which is a contradiction since there is ξ < 1/2. It follows that if ξ < 1/2, then
there exists one vertex in Γ (S) with degree less than or equal to 1. However,
we already know that the degree cannot be zero since it’s in the neighbors set.
Therefore it must be 1. This completes the proof. ��

Now we will state a useful lemma here. In his seminal paper [25], Siegel
showed how a Q-unique expander can be combined with a small domain random
function to obtain a Q-wise-independent function. We use a light variation of
Siegel’s technique here. It is also used by works [26] and [10].

Lemma 1. Let Γ : [N]×[D] → [L] be a Q-unique expander, let f : [L] → {0, 1}λ

be a uniformly random function and let h : [N] → {0, 1}λ be defined by

h(x) =
⊕

j∈[D]

f(Γ (x, j)).

Then h is a Q-wise-independent function.

4.2 Parameters

Typically, goals in constructing an unbalanced bipartite expander are to maxi-
mize the expansion factor A, minimize the degree D, and minimize the size L
of the right-hand side (L � N). Although we do not care about the concrete
expansion factor A in this work, we still expect a small L (to highly extend
domains of PRFs) and small D (to reduce computational overheads). By The-
orem 5 we can fix a domain size N = 2λ and a bound Q = poly(λ) and get
an explicit expander Γ : [N] × [D] → [L] where D = poly(log(N), log(Q)) and
L = poly(D,Q). Consequently, the degree D is essentially independent of Q and
L is of size at most polynomial in Q.

5 Our Quantum Pseudorandom Function

In this section, we present our construction for a quantum PRF from bipartite
expanders. First we show how to construct a perfectly secure (or loseless) domain
extender which takes as input a small-domain classical (post-quantum) PRF
and outputs a q-bounded quantum PRF with large domain. Second we show
a combiner that turns a family of q-bounded quantum PRFs into a standard
quantum PRF. Note that our proof of security is tight: If a quantum adversary A
can distinguish a quantum PRF F from truly random function R with advantage
ε, then there exists an adversary A′ which can distinguish a small-domain PRF
from a truly random function (issuing only classical queries) with the same
advantage ε.

626 N. Döttling et al.

5.1 Domain Extension

In the following we present a new domain extension technique based on bipartite
expanders. Our compiler is shown below.

Construction 1. Let PRF : Kq ×Y → Z be a keyed function with key space Kq.
Let Γ : {0, 1}λ × [D] → {0, 1}l be a (� 2q, (1 − ξ)D) expander with ξ ∈ (0, 1/2).
We define the keyed function Fq : Kq × X → Z with key space Kq by

Fq(K,x) =
⊕

j∈[D]

PRF(K,Γ (x, j)),

where K ←$Kq, D = poly(λ), l = O(log(λ)), and X : {0, 1}λ,Y : {0, 1}l,Z :
{0, 1}m.

The following theorem states that the function Fq is a q-bounded quantum PRF.

Theorem 7. Let PRF and Fq be as in Construction 1. If PRF is a post-quantum
(classically secure) PRF, then Fq is a q-bounded quantum PRF. More specifi-
cally, if there exists a q∗ � poly(λ) and a q∗-query quantum adversary A that
distinguishes Fq∗ from a truly random function R : X → Z with advantage ε,
then there exists an efficient quantum adversary A′ with essentially the same
runtime as A that distinguish PRF from a truly random function R′ : Y → Z
with advantage at least ε.

Before delving into the proof of the main theorem, we state the following useful
lemma. Loosely speaking, we show that if a small-domain PRF is post-quantum
secure4 (where the adversary is allowed to issue only classical queries), then such
a PRF is also quantum secure. Intuitively, this holds because an adversary can
query classically the full domain of the PRF in polynomial time. We stress that
the counterexample of [27] does not apply in these settings, since we consider
only PRFs with small (poly-sized) domain.

Lemma 2. Let PRF be a small-domain and post-quantum secure PRF as defined
in Definition 3, then PRF is also quantum-secure as defined in Definition 5.
Specifically, if there exists an efficient quantum adversary A which can make
quantum queries to distinguish PRF : K × Y → Z from truly random function
R : Y → Z with advantage ε,where |Y| � poly(λ), then there exists an efficient
quantum adversary A′ (with essentially the same runtime as A) that can only
make classical queries to distinguish from PRF and R with advantage ε.

Proof. Assume that there exists an efficient (i.e., running in polynomial time)
quantum adversary A who is able to distinguish PRF from a random function
R : Y → Z with advantage ε (given quantum oracle access to PRF). We can con-
struct a quantum adversary A′ who only sends classical queries and breaks the

4 Any small domain PRF built from symmetric primitives is post-quantum secure as
long as underling symmetric assumptions are post-quantum secure.

A Combinatorial Approach to Quantum Random Functions 627

security of PRF with the same advantage. From Fact 1, any classical efficiently
computable function f can be efficiently implemented by quantum computer,
thus we are able to efficiently implement a quantum circuit which computes
transformation Uf on quantum computers. Specifically, given input states |x, y〉,
where x corresponds to ‘data’ register and y corresponds to ‘target’ register, the
quantum circuit corresponding to Uf would transform it into |x, y ⊕ f(x)〉, i.e.,
Uf |x, y〉 = |x, y ⊕ f(x)〉. For notational convenience, we also use Uf |x〉 to denote
the state of “target” register after passing through the circuit corresponding to
Uf .

Quantum AdversaryA′(1λ):
Obtain function table of T (x) by query-
ing O′ classically;
Construct the quantum circuit corre-
sponding to UT ;
b′ ← A|O(|y〉)〉;
Output b′.
Classical Oracle O′(x):
Return T (x).
Quantum Oracle O(|y〉):
Return UT |y〉.

Recall that given the description of T , then UT is efficiently computable. Furhter-
more, A′ issues only polynomially-many queries, since PRF has a small domain.
We can conclude that A′ is efficient. Consider the case where T (x) = PRF(K,x),
for uniformly chosen K ←$K, then O is identically distributed to PRF. On the
other hand, if T (x) = R(x) then O is identically distributed to a truly random
function. Thus it holds that

|Pr[A′PRF(K,·)(1λ) = 1]− Pr[A′R(1λ) = 1]| = |Pr[A|PRF(K,·)〉(1λ) = 1]− Pr[A|R〉(1λ) = 1]|
= ε,

which completes the proof. ��
We are now in the position of proving the main theorem of this section.

Proof (of Theorem 7). Let A be a q-query quantum adversary with advantage ε
against Fq. We are going to construct an adversary A′ with the same advantage
against PRF. Consider the following sequence of hybrids.

– Hybrid0: This is defined exactly as the real experiment where A has oracle
access to a function

F0(x) =
⊕

j∈[D]

PRF(K,Γ (x, j)),

where K is uniformly sampled from K, x ∈ X and Γ : X × [D] → Y is a
(� 2q, (1−ξ)D) expander as in Construction 1. A can send at most q distinct
quantum queries.

628 N. Döttling et al.

– Hybrid1: This experiment is defined as Hybrid0 except that we replace PRF
with a truly random function R : Y → Z. That is, the adversary A has oracle
access to a function

F1(x) =
⊕

j∈[D]

R(Γ (x, j)),

where Rj is a function uniformly sampled from Y to Z.
– Hybrid2: This is the ideal experiment where A has oracle access to a truly

random function
F2(x) = R(x)

which is uniformly sampled from X to Z.

Since F0 and F2 are in real and ideal experiment, respectively, it holds that

|Pr[A|F0〉(1λ) = 1] − Pr[A|F2〉(1λ) = 1]| = ε.

Similarly, we can define two other advantages as:

|Pr[A|F0〉(1λ) = 1] − Pr[A|F1〉(1λ) = 1]| = ε0,

|Pr[A|F1〉(1λ) = 1] − Pr[A|F2〉(1λ) = 1]| = ε1.

We first show that ε1 = 0. By Construction 1 we have ξ ∈ (0, 1/2), thus we
know the expander Γ : {0, 1}λ × [D] → {0, 1}l is 2q-unique by Theorem 6.
By Lemma 1, we know that for all distinct (x1, . . . , x2q) ∈ X 2q, the outputs
F1(x1), . . . , F1(x2q) are distributed independently and uniformly at random, that
is, Pr[F1(x1) = r1, . . . , F1(x2q) = r2q] equals to 2−2qm.

Then by Theorem 4, we have

Pr[A|F1〉(1λ) = 1] = Pr[A|F2〉(1λ) = 1],

since for all 2q pairs (xi, ri), it holds that

Pr[F1(xi) = ri,∀i ∈ {1, . . . , 2q}] = 2−2qm

= Pr[F2(xi) = ri,∀i ∈ {1, . . . , 2q}].

This means that ε1 = 0. By triangle inequality we have

ε0 = | Pr[A|F0〉(1λ) = 1] − Pr[A|F1〉(1λ) = 1]|
� | Pr[A|F0〉(1λ) = 1] − Pr[A|F2〉(1λ) = 1]| − | Pr[A|F1〉(1λ) = 1] − Pr[A|F2〉(1λ) = 1]|
= ε − ε1

= ε.

We are left with constructing an adversary that can distinguish a small-domain
PRF from a truly random function with advantage ε0. First we allow such an
adversary to issue quantum oracle queries. Since we could use Toffoli gates to
simulate any classical circuits in quantum settings, without losing generality, let
U⊕ be a quantum circuit to compute U⊕|x1, . . . , xD, y〉 → |x1, . . . , xD, y + (x1 ⊕
· · · ⊕ xD)〉 and UΓj

be another one to compute UΓj
|x, y〉 → |x, y + Γ (x, j)〉. The

adversary A′′ is defined in the following.

A Combinatorial Approach to Quantum Random Functions 629

Quantum Adversary A′′(1λ):
For each j ∈ [D] construct the circuit
UΓj

;
b′ ← A|O(|x〉)〉;
Output b′.
Quantum Oracle O′′(|x〉):
Return UT |x〉.
Quantum Oracle O(|x〉):
Return U⊕|O′′(UΓ1 |x〉), . . . ,O′′(UΓD

|x〉)〉.
Note that A makes at most q distinct quantum queries (q � poly(λ)), thus
A′′ is an efficient quantum adversary running in polynomial time. First assume
that T (x) = PRF(K,x) for K ←$Kq, then the oracle O in A′′’s simulation is
identically distributed to F0(x). On the other hand, if T (x) = R(x) is a uniformly
random function, O computes

⊕D
j=1 R(Γ (x, j)) which is F1. Therefore we have

|Pr[A′′|PRF(K,·)〉
(1λ) = 1]− Pr[A′′|R(·)〉

(1λ) = 1]| = |Pr[A|F0〉(1λ) = 1]− Pr[A|F1〉(1λ) = 1]|
= ε0

� ε.

By Lemma 2 we know that there exists an adversary A′ with the same advantage
ε, which issues only classical queries, since the PRF has a small (poly-sized)
domain. This completes the proof. ��

5.2 Unbounded Queries

Finally, we show that the combiner of [12] allows us to remove the restriction on
the query bound of our quantum PRF. The innovation of our paper is that we
lift the analysis to the quantum settings.

Construction 2. Let ω(log(λ)) be a slightly super-logarithmic upperbound. For
a given parameter q, let Fq : Kq × X → Z be a keyed function with corre-
sponding key space Kq. Define the function F : K × X → Z with key space
K =

∏ω(log(λ))
i=1 K2i by

F (K,x) =
ω(log(λ))⊕

i=1

F2i(K2i , x),

where K2i ←$K2i for i = 1, . . . , ω(log(λ)) and K = (K2i)i=1,...,ω(log(λ)).

Theorem 8. Let Fq and F be as in Construction 2. If Fq is a q-bounded quan-
tum PRF, then F is a quantum PRF. Specifically, if A is an efficient quan-
tum adversary against F with advantage ε that makes at most q′ = poly(λ)
distinct quantum queries, then there exists an q∗-query quantum adversary A′

(with essentially the same runtime as A) with advantage ε against Fq∗ , where
q∗ = 2�log(q′)� � 2q′ = poly(λ).

630 N. Döttling et al.

Proof. Let A be an efficient quantum adversary which can send quantum super-
positions to distinguish F from a truly random function R with advantage ε,
then we can construct an efficient q∗-query quantum adversary A′ to distinguish
Fq from R for some q. Since q′ = poly(λ), we have log(q′) � ω(log(λ)) thus
21 � q∗ = 2�log(q′)� � poly(λ) < 2ω(log(λ)) for sufficient large λ.

Bounded Quantum Adversary A′(1λ):
Set i∗ as �log(q′)�;
Generate K2i for i ∈ {1, . . . , ω(log(λ))}\i∗;
b′ ← A|O(|x〉)〉;
Output b′.
Quantum oracle O′(|x〉):
Return UT |x〉.
Quantum oracle O(|x〉):
Return U⊕|F21 , . . . O′(|x〉), . . . F2ω(log(λ))〉.

Where O′(|x〉) is the i∗-th element in {1, . . . , ω(log(λ))} and we write F2i(Ki, x)
as F2i to simplify the notation. Observe that q′ � 2�log(q′)� = q∗ � poly(λ) thus
A′ is able to run A as a black box and q′ queries can be handled by A′. Then
we consider distributions of different T (x). If T (x) = F2i∗ (K,x) for uniformly
randomized K ←$K2i∗ , then oracle O is identically distributed to F (K,x) for
K ←$K. Otherwise, if T (x) = R(x), then the distribution of oracle O should
be uniform since O′ and other F2i are independent, thus it will be identically
distributed to R(x). Therefore it holds that

| Pr[A′|F
2i∗ 〉(1λ) = 1] − Pr[A′|R〉(1λ) = 1]| = | Pr[A|F 〉(1λ) = 1] − Pr[A|R〉(1λ) = 1]|

= ε.

which completes the proof. ��

References

1. Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message
authentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part III. LNCS, vol. 12107, pp. 788–817. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3 27

2. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

3. Berman, I., Haitner, I.: From non-adaptive to adaptive pseudorandom functions.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 357–368. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28914-9 20

4. Berman, I., Haitner, I., Komargodski, I., Naor, M.: Hardness preserving reductions
via cuckoo hashing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 40–59.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 3

https://doi.org/10.1007/978-3-030-45727-3_27
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-28914-9_20
https://doi.org/10.1007/978-3-642-36594-2_3

A Combinatorial Approach to Quantum Random Functions 631

5. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part
I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 23

6. Boneh, D., Lipton, R.J.: Quantum cryptanalysis of hidden linear functions. In:
Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 424–437. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 34

7. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: Al-Shaer, E.,
Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010: 17th Conference on Com-
puter and Communications Security, Chicago, Illinois, USA, 4–8 October 2010, pp.
131–140. ACM Press (2010). https://doi.org/10.1145/1866307.1866323

8. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 35

9. Carter, L., Wegman, M.N.: Universal classes of hash functions (extended abstract).
In: STOC, pp. 106–112. ACM (1977)

10. Christiani, T., Pagh, R., Thorup, M.: From independence to expansion and back
again. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual ACM Symposium on
Theory of Computing, Portland, OR, USA, 14–17 June 2015, pp. 813–820. ACM
Press (2015). https://doi.org/10.1145/2746539.2746620

11. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

12. Döttling, N., Schröder, D.: Efficient pseudorandom functions via on-the-fly adap-
tation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol.
9215, pp. 329–350. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 16

13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th Annual Symposium on Foundations of Computer
Science, Singer Island, Florida, 24–26 October 1984, pp. 464–479. IEEE Computer
Society Press (1984). https://doi.org/10.1109/SFCS.1984.715949

14. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. J. ACM (JACM) 56(4), 20 (2009)

15. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Am. Math. Soc. 43(4), 439–561 (2006)

16. Jain, A., Pietrzak, K., Tentes, A.: Hardness preserving constructions of pseudo-
random functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 369–382.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 21

17. Ji, Z., Liu, Y.-K., Song, F.: Pseudorandom quantum states. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 126–152.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 5

18. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional
linear assumption and weaker variants. In: Al-Shaer, E., Jha, S., Keromytis, A.D.
(eds.) ACM CCS 2009: 16th Conference on Computer and Communications Secu-
rity, Chicago, Illinois, USA, 9–13 November 2009, pp. 112–120. ACM Press (2009).
https://doi.org/10.1145/1653662.1653677

https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/3-540-44750-4_34
https://doi.org/10.1145/1866307.1866323
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1145/2746539.2746620
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-662-47989-6_16
https://doi.org/10.1007/978-3-662-47989-6_16
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1007/978-3-642-28914-9_21
https://doi.org/10.1007/978-3-319-96878-0_5
https://doi.org/10.1145/1653662.1653677

632 N. Döttling et al.

19. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. In: 36th Annual Symposium on Foundations of
Computer Science, Milwaukee, Wisconsin, 23–25 October 1995, pp. 170–181. IEEE
Computer Society Press (1995). https://doi.org/10.1109/SFCS.1995.492474

20. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th Annual Symposium on Foundations of Computer Science, Miami
Beach, Florida, 19–22 October 1997, pp. 458–467. IEEE Computer Society Press
(1997). https://doi.org/10.1109/SFCS.1997.646134

21. Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited (extended abstract). In: 29th Annual ACM Symposium
on Theory of Computing, El Paso, TX, USA, 4–6 May 1997, pp. 189–199. ACM
Press (1997). https://doi.org/10.1145/258533.258581

22. Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring
(extended abstract). In: 32nd Annual ACM Symposium on Theory of Comput-
ing, Portland, OR, USA, 21–23 May 2000, pp. 11–20. ACM Press (2000). https://
doi.org/10.1145/335305.335307

23. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory of
Computing, Baltimore, MA, USA, 22–24 May 2005, pp. 84–93. ACM Press (2005).
https://doi.org/10.1145/1060590.1060603

25. Siegel, A.: On universal classes of extremely random constant-time hash functions.
SIAM J. Comput. 33(3), 505–543 (2004)

26. Thorup, M.: Simple tabulation, fast expanders, double tabulation, and high inde-
pendence. In: 54th Annual Symposium on Foundations of Computer Science,
Berkeley, CA, USA, 26–29 October 2013, pp. 90–99. IEEE Computer Society Press
(2013). https://doi.org/10.1109/FOCS.2013.18

27. Zhandry, M.: How to construct quantum random functions. In: 53rd Annual Sym-
posium on Foundations of Computer Science, New Brunswick, NJ, USA, 20–23
October 2012, pp. 679–687. IEEE Computer Society Press (2012). https://doi.
org/10.1109/FOCS.2012.37

28. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

https://doi.org/10.1109/SFCS.1995.492474
https://doi.org/10.1109/SFCS.1997.646134
https://doi.org/10.1145/258533.258581
https://doi.org/10.1145/335305.335307
https://doi.org/10.1145/335305.335307
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1109/FOCS.2013.18
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

Improved Classical and Quantum
Algorithms for Subset-Sum

Xavier Bonnetain1, Rémi Bricout2,3, André Schrottenloher3(B),
and Yixin Shen4

1 Institute for Quantum Computing, Department of Combinatorics
and Optimization, University of Waterloo, Waterloo, ON, Canada

2 Sorbonne Université, Collège Doctoral, 75005 Paris, France
3 Inria, Paris, France

andre.schrottenloher@inria.fr
4 Université de Paris, IRIF, CNRS, 75006 Paris, France

Abstract. We present new classical and quantum algorithms for solv-
ing random subset-sum instances. First, we improve over the Becker-
Coron-Joux algorithm (EUROCRYPT 2011) from ˜O (

20.291n
)

down to
˜O (

20.283n
)

, usingmore general representationswith values in {−1, 0, 1, 2}.
Next, we improve the state of the art of quantum algorithms for this prob-
lem in several directions. By combining the Howgrave-Graham-Joux algo-
rithm (EUROCRYPT 2010) and quantum search, we devise an algorithm

with asymptotic running time ˜O (

20.236n
)

, lower than the cost of the quan-
tum walk based on the same classical algorithm proposed by Bernstein,
Jeffery, Lange and Meurer (PQCRYPTO 2013). This algorithm has the
advantage of using classical memory with quantum random access, while
the previously known algorithms used the quantum walk framework, and
required quantum memory with quantum random access.

We also propose new quantum walks for subset-sum, performing bet-
ter than the previous best time complexity of ˜O (

20.226n
)

given by Helm
and May (TQC 2018). We combine our new techniques to reach a time
˜O (

20.216n
)

. This time is dependent on a heuristic on quantum walk
updates, formalized by Helm and May, that is also required by the pre-
vious algorithms. We show how to partially overcome this heuristic, and
we obtain an algorithm with quantum time ˜O (

20.218n
)

requiring only
the standard classical subset-sum heuristics.

Keywords: Subset-sum · Representation technique · Quantum
search · Quantum walk · List merging

1 Introduction

We study the subset-sum problem, also known as knapsack problem: given n inte-
gers a = (a1, . . . an), and a target integer S, find an n-bit vector e = (e1, . . . en) ∈
{0, 1}n such that e · a =

∑
i eiai = S. The density of the knapsack instance is

defined as d = n/(log2 maxi ai), and for a random instance a, it is related to the
number of solutions that one can expect.
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 633–666, 2020.
https://doi.org/10.1007/978-3-030-64834-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_22

634 X. Bonnetain et al.

The decision version of the knapsack problem is NP-complete [16]. Although
certain densities admit efficient algorithms, related to lattice reduction [27,28],
the best algorithms known for the knapsack problem when the density is close to
1 are exponential-time, which is why we name these instances “hard” knapsacks.
This problem underlies some cryptographic schemes aiming at post-quantum
security (see e.g. [29]), and is used as a building block in some quantum hidden
shift algorithms [7], which have some applications in quantum cryptanalysis of
isogeny-based [11] and symmetric cryptographic schemes [9].

In this paper, we focus on the case where d = 1, where expectedly a sin-
gle solution exists. Instead of naively looking for the solution e via exhaustive
search, in time 2n, Horowitz and Sahni [20] proposed to use a meet-in-the-middle
approach in 2n/2 time and memory. The idea is to find a collision between two
lists of 2n/2 subknapsacks, i.e. to merge these two lists for a single solution.
Schroeppel and Shamir [37] later improved this to a 4-list merge, in which the
memory complexity can be reduced down to 2n/4.

The Representation Technique. At EUROCRYPT 2010, Howgrave-Graham and
Joux [21] (HGJ) proposed a heuristic algorithm solving random subset-sum
instances in time Õ (

20.337n
)
, thereby breaking the 2n/2 bound. Their key idea

was to represent the knapsack solution ambiguously as a sum of vectors in
{0, 1}n. This representation technique increases the search space size, allowing
to merge more lists, with new arbitrary constraints, thereby allowing for a more
time-efficient algorithm. The time complexity exponent is obtained by numeri-
cal optimization of the list sizes and constraints, assuming that the individual
elements obtained in the merging steps are well-distributed. This is the standard
heuristic of classical and quantum subset-sum algorithms. Later, Becker, Coron
and Joux [3] (BCJ) improved the asymptotic runtime down to Õ (

20.291n
)

by
allowing even more representations, with vectors in {−1, 0, 1}n.

The BCJ representation technique is not only a tool for subset-sums, as
it has been used to speed up generic decoding algorithms, classically [4,31,32]
and quantumly [22]. Therefore, the subset-sum problem serves as the simplest
application of representations, and improving our understanding of the classical
and quantum algorithms may have consequences on these other generic problems.

Quantum Algorithms for the Subset-Sum Problem. Cryptosystems based on
hard subset-sums are natural candidates for post-quantum cryptography, but to
understand precisely their security, we have to study the best generic algorithms
for solving subset-sums. The first quantum time speedup for this problem was
obtained in [6], with a quantum time Õ (

20.241n
)
. The algorithm was based on

the HGJ algorithm. Later on, [18] devised an algorithm based on BCJ, running in
time Õ (

20.226n
)
. Both algorithms use the corresponding classical merging struc-

ture, wrapped in a quantum walk on a Johnson graph, in the MNRS quantum
walk framework [30]. However, they suffer from two limitations.

First, both use the model of quantum memory with quantum random-access
(QRAQM), which is stronger than the standard quantum circuit model, as
it allows unit-time lookups in superposition of all the qubits in the circuit.

Improved Classical and Quantum Algorithms for Subset-Sum 635

The QRAQM model is used in most quantum walk algorithms to date, but
its practical realizations are still unclear. With a more restrictive model, i.e.,
classical memory with quantum random-access (QRACM), no quantum time
speedup over BCJ was previously known. This is not the case for some other
hard problems in post-quantum cryptography, e.g. heuristic lattice sieving for
the Shortest Vector Problem, where the best quantum algorithms to date require
only QRACM [25].

Second, both use a conjecture (implicit in [6], made explicit in [18]) about
quantum walk updates. In short, the quantum walk maintains a data structure,
that contains a merging tree similar to HGJ (resp. BCJ), with lists of smaller size.
A quantum walk step is made of updates that changes an element in the lowest-
level lists, and requires to modify the upper levels accordingly, i.e., to track the
partial collisions that must be removed or added. In order to be efficient, the
update needs to run in polynomial time. Moreover, the resulting data structure
shall be a function of the lowest-level list, and not depend on the path taken in the
walk. The conjecture states that it should be possible to guarantee sound updates
without impacting the time complexity exponent. However, it does not seem an
easy task and the current literature on subset-sums lacks further justification or
workarounds.

Contributions. In this paper, we improve classical and quantum subset-sum
algorithms based on representations. We write these algorithms as sequences of
“merge-and-filter” operations, where lists of subknapsacks are first merged with
respect to an arbitrary constraint, then filtered to remove the subknapsacks that
cannot be part of a solution.

First, we propose a more time-efficient classical subset-sum algorithm based
on representations. We have two classical improvements: we revisit the previous
algorithms and show that some of the constraints they enforced were not needed,
and we use more general distributions by allowing “2”s in the representations.
Overall, we obtain a better time complexity exponent of 0.283.

Most of our contributions concern quantum algorithms. As a generic tool, we
introduce quantum filtering, which speeds up the filtering of representations with
a quantum search. We use this improvement in all our new quantum algorithms.

We give an improved quantum walk based on quantum filtering and our
extended {−1, 0, 1, 2} representations. Our best runtime exponent is 0.216, under
the quantum walk update heuristic of [18]. Next, we show how to overcome this
heuristic, by designing a new data structure for the vertices in the quantum walk,
and a new update procedure with guaranteed time. We remove this heuristic
from the previous algorithms [6,18] with no additional cost. However, we find
that removing it from our quantum walk increases its cost to 0.218.

In a different direction, we devise a new quantum subset-sum algorithm based
on HGJ, with time Õ (

20.236n
)
. It is the first quantum time speedup on subset-

sums that is not based on a quantum walk. The algorithm performs instead a
depth-first traversal of the HGJ tree, using quantum search as its only building
block. Hence, by construction, it does not require the additional heuristic of [18]
and it only uses classical memory with quantum random-access, giving also the
first quantum time speedup for subset-sum in this memory model.

636 X. Bonnetain et al.

A summary of our contributions is given in Table 11. All these complex-
ity exponents are obtained by numerical optimization. Our code is available at
https://github.com/xbonnetain/optimization-subset-sum.

Table 1. Previous and new algorithms for subset-sum, classical and quantum, with
time and memory exponents rounded upwards. We note that the removal of Heuristic 2
in [6,18] comes from our new analysis in Sect. 6.4. QW: Quantum Walk. QS: Quantum
Search. CF: Constraint filtering (not studied in this paper). QF: Quantum filtering.

Time exp. Memory exp. Representations Memory model Techniques Requires Heur. 2 Reference

Classical

0.3370 0.3113 {0, 1} RAM [21]

0.2909 0.2909 {−1, 0, 1} RAM [3]

0.287 {−1, 0, 1} RAM CF [36]

0.2830 0.2830 {−1, 0, 1, 2} RAM Sect. 2.5

Quantum

0.241 0.241 {0, 1} QRAQM QW No [6] + Sect. 6.4

0.226 0.226 {−1, 0, 1} QRAQM QW No [18] + Sect. 6.4

0.2356 0.2356 {0, 1} QRACM QS + QF No Sect. 4.3

0.2156 0.2110 {−1, 0, 1, 2} QRAQM QW + QF Yes Sect. 5.3

0.2182 0.2182 {−1, 0, 1, 2} QRAQM QW + QF No Sect. 6.4

Outline. In Sect. 2, we study classical algorithms. We review the representation
technique, the HGJ algorithm and introduce our new {−1, 0, 1, 2} representa-
tions to improve over [3]. In Sect. 3, we move to the quantum setting, intro-
duce some preliminaries and the previous quantum algorithms for subset-sum.
In Sect. 4, we present and study our new quantum algorithm based on HGJ
and quantum search. We give different optimizations and time-memory trade-
offs. In Sect. 5, we present our new quantum algorithm based on a quantum
walk. Finally, in Sect. 6 we show how to overcome the quantum walk update
conjecture, up to a potential increase in the update cost. We conclude, and give
a summary of our new results in Sect. 7.

2 List Merging and Classical Subset-Sum Algorithms

In this section, we remain in the classical realm. We introduce the standard
subset-sum notations and heuristics and give a new presentation of the HGJ
algorithm, putting an emphasis on the merge-and-filter operation. We introduce
our extended {−1, 0, 1, 2} representations and detail our improvements over BCJ.

1 After this work, Alexander May has informed us that the thesis [14] contains unpub-
lished results using more symbols, with the best exponent of 0.2871 obtained with
the symbol set {−2, −1, 0, 1, 2}.

https://github.com/xbonnetain/optimization-subset-sum

Improved Classical and Quantum Algorithms for Subset-Sum 637

2.1 Notations and Conventions

Hereafter and in the rest of the paper, all time and memory complexities, classical
and quantum, are exponential in n. We use the soft-O notation Õ which removes
polynomial factors in n, and focus on the asymptotic exponent, relative to n. We
use negl(n) for any function that vanishes inverse-exponentially in n. We often
replace asymptotic exponential time and memory complexities (e.g. Õ (2αn)) by
their exponents (e.g. α). We use capital letters (e.g. L) and corresponding letters
(e.g. �) to denote the same value, in log2 and relatively to n: � = log2(L)/n.

Definition 1 (Entropies and multinomial functions). We define the fol-
lowing functions:
Hamming Entropy: h(x) = −x log2 x − (1 − x) log2(1 − x)

Binomial: bin (ω, α) = h(α/ω)ω
2-way Entropy: g(x, y) = −x log2 x− y log2 y − (1−x− y) log2(1−x− y)

Trinomial: trin (ω, α, β) = g(α/ω, β/ω)ω
3-way Entropy: f(x, y, z) = −x log2 x − y log2 y − z log2 z−

(1 − x − y − z) log2(1 − x − y − z)
Quadrinomial: quadrin (ω, α, β, γ) = f(α/ω, β/ω, γ/ω)ω

Property 1 (Standard approximations). We have the following approximations,
asymptotically in n:

bin (ω, α) � 1
n log2

(
ωn
αn

)
; trin (ω, α, β) � 1

n log2
(

ωn
αn,βn

)

quadrin (ω, α, β, γ) � 1
n log2

(
ωn

αn,βn,γn

)

Definition 2 (Distributions of knapsacks). A knapsack or subknapsack is
a vector e ∈ {−1, 0, 1, 2}n. The set of e with αn “−1”, (α + β − 2γ)n “1”, γn
“2” and (1− 2α−β + γ)n “0” is denoted Dn[α, β, γ]. If γ = 0, we may omit the
third parameter. This coincides with the notation Dn[α, β] from [18].

Note that we always add vectors over the integers, and thus, the sum of two
vectors of Dn[∗, ∗, ∗] may contain unwanted symbols −2, 3 or 4.

Property 2 (Size of knapsack sets). We have:

1
n log2 |Dn[0, β, 0]| � h(β) ; 1

n log2 |Dn[α, β, 0]| � g(α, α + β)
1
n log2 |Dn[α, β, γ]| � f(α, α + β − 2γ, γ) .

Subset-sum. The problem we will solve is defined as follows:

Definition 3 (Random subset-sum instance of weight n/2). Let a be cho-
sen uniformly at random from (ZN)n, where N � 2n. Let e be chosen uniformly
at random from Dn[0, 1/2, 0]. Let t = a · e (mod N). Then (a, t) is a random
subset-sum instance. A solution is a vector e′ such that a · e′ = t (mod N).

638 X. Bonnetain et al.

Sampling. Throughout this paper, we assume that we can classically sample uni-
formly at random from Dn[α, β, γ] in time poly(n). (Since αn, βn and γn will
in general not be integer, we suppose to have them rounded to the nearest inte-
ger.) This comes from an efficient bijection between representations and integers
(see Appendix A in the full version of the paper [8]). In addition, we can effi-
ciently produce the uniform superposition of vectors of Dn[α, β, γ], using poly(n)
quantum gates, and we can perform a quantum search among representations.

2.2 Merging and Filtering

In all subset-sum algorithms studied in this paper, we repeatedly sample
vectors with certain distributions Dn[∗, ∗, ∗], then combine them. Let D1 =
Dn[α1, β1, γ1], D2 = Dn[α2, β2, γ2] be two input distributions and D =
Dn[α, β, γ] be a target. Given two lists L1 ∈ D

|L1|
1 and L2 ∈ D

|L2|
2 , we define:

• the merged list L = L1 ��c L2 containing all vectors e = e1 + e2 such that:
e1 ∈ L1, e2 ∈ L2, (e1+e2) ·a = s mod M , s ≤ M is an arbitrary integer and
M ≈ 2cn (we write L1 ��c L2 because s is an arbitrary value, whose choice is
without incidence on the algorithm)

• the filtered list Lf = (L ∩ D) ⊆ L, containing the vectors with the target
distribution of 1,−1, 2 (the target D will always be clear from context).

In general, L is exponentially bigger than Lf and does not need to be written
down, as vectors can be filtered on the fly. The algorithms then repeat the
merge-and-filter operation on multiple levels, moving towards the distribution
Dn[0, 1/2] while increasing the bit-length of the modular constraint, until we
satisfy e · a = t mod 2n and obtain a solution. Note that this merging-and-
filtering view that we adopt, where the merged list is repeatedly sampled before
an element passes the filter, has some similarities with the ideas developed in
the withdrawn article [15].

The standard subset-sum heuristic assumes that vectors in Lf are drawn
independently, uniformly at random from D. It simplifies the complexity analysis
of both classical and quantum algorithms studied in this paper. Note that this
heuristic, which is backed by experiments, actually leads to provable probabilistic
algorithms in the classical setting (see [3, Theorem 2]). We adopt the version
of [18].

Heuristic 1. If input vectors are uniformly distributed in D1 × D2, then the
filtered pairs are uniformly distributed in D (more precisely, among the subset
of vectors in D satisfying the modular condition).

Filtering Representations. We note � = (1/n) log2 |L|, and so on for �1, �2, �
f .

By Heuristic 1, the average sizes of L1, L2, L and Lf are related by:

• � = �1 + �2 − c
• �f = �+pf, where pf is negative and 2pfn is the probability that a pair (e1, e2),

drawn uniformly at random from D1 × D2, has (e1 + e2) ∈ D.

Improved Classical and Quantum Algorithms for Subset-Sum 639

In particular, the occurrence of collisions in Lf is a negligible phenomenon, unless
�f approaches (log2 |D|/n) − c, which is the maximum number of vectors in D
with constraint c. For a given random knapsack problem, with high probability,
the size of any list built by sampling, merging and filtering remains very close
to its average (by a Chernoff bound and a union bound on all lists).

Here, pf depends only on D1,D2 and D. Working with this filtering proba-
bility is especially useful for writing down our algorithm in Sect. 4. We give its
formula for {0, 1} representations below. Two similar results for {−1, 0, 1} and
{−1, 0, 1, 2} can be found in the full version of the paper [8].

Lemma 1. (Filtering HGJ-style representations). Let e1 ∈ Dn[0, α] and
e2 ∈ Dn[0, β] be drawn uniformly at random. The probability that e1 + e2 ∈
Dn[0, α + β] is 0 if α + β > 1, and 2pf1(α,β)n otherwise, with

pf1 (α, β) = bin (1 − α, β) − h(β) = bin (1 − β, α) − h(α) .

Proof. The probability that a e1 + e2 survives the filtering is:
(

n − αn

βn

)

/

(
n

βn

)

=
(

n − βn

αn

)

/

(
n

αn

)

.

Indeed, given a choice of αn bit positions among n, the other βn bit positions
must be compatible, hence chosen among the (1 − α)n remaining positions. By
taking the log2, we obtain the formula for the filtering probability. 	

Time Complexity of Merging. Classically, the time complexity of the merge-and-
filter operation is related to the size of the merged list.

Lemma 2 (Classical merging with filtering). Let L1 and L2 be two sorted
lists stored in classical memory with random access. In log2, relatively to n,
and discarding logarithmic factors, merging and filtering L1 and L2 costs a time
max(min(�1, �2), �1 + �2 − c) and memory max(�1, �2, �f), assuming that we must
store the filtered output list.

Proof. Assuming sorted lists, there are two symmetric ways to produce a stream
of elements of L1 ��c L2: we can go through the elements of L1, and for each one,
find the matching elements in L2 by dichotomy search (time �1 +max(0, �2 − c))
or we can exchange the role of L1 and L2. Although we do not need to store
L1 ��c L2, we need to examine all its elements in order to filter them. 	

2.3 Correctness of the Algorithms

While the operation of merging and filtering is the same as in previous works,
our complexity analysis differs [3,6,18,21]. We enforce the constraint that the
final list contains a single solution, hence if it is of size 2n�0 , we constrain �0 = 0.
Next, we limit the sizes of the lists so that they do not contain duplicate vectors:
these are saturation constraints. A list of size 2n�, of vectors sampled from a

640 X. Bonnetain et al.

distribution D, with a constraint of cn bits, has the constraint: � ≤ 1
n log2 |D|−c.

This says that there are not more than |D|/2cn vectors e such that e · a = r
(mod 2cn) for the (randomly chosen) arbitrary constraint r.

Previous works focus on the solution vector e and compute the number of
representations of e, that is, the number of ways it can be decomposed as a
sum: e = e1 + . . . + et of vectors satisfying the constraints on the distributions.
Then, they compare this with the probability that a given representation passes
the arbitrary constraints imposed by the algorithm. As their lists contains all
the subknapsacks that fulfill the constraint, this really reflects the number of
duplicates, and it suffices to enforce that the number of representations is equal
to the inverse probability that a representation fulfills the constraint. If the two
lists we merge are not of maximal size, the size of the merged list is the number
of elements that fulfill the corresponding distribution times the probability that
such an element is effectively the sum of two elements in the initial lists.

The two approaches are strictly equivalent, as the probability that the sum
of two subknapsacks is valid is exactly the number of representations of the sum,
divided by the number of pairs of subknapsacks.

2.4 The HGJ Algorithm

We start our study of classical subset-sum by recalling the algorithm of
Howgrave-Graham and Joux [21], with the corrected time complexity of [3].
The algorithm builds a merging tree of lists of subknapsacks, with four levels,
numbered 3 down to 0. Level j contains 2j lists. In total, 8 lists are merged
together into one.

Level 3. We build 8 lists denoted L3
0 . . . L3

7. They contain all subknapsacks of
weight n

16 on n
2 bits, either left or right:

{
L3
2i = Dn/2[0, 1/8] × {0n/2}

L3
2i+1 = {0n/2} × Dn/2[0, 1/8]

From Property 2, these level-3 lists have size �3 = h(1/8)/2. As the positions
set to 1 cannot interfere, these is no filtering when merging L3

2i and L3
2i+1.

Level 2. We merge the lists pairwise with a (random) constraint on c2n bits,
and obtain 4 filtered lists. The size of the filtered lists plays a role in the
memory complexity of the algorithm, but the time complexity depends on
the size of the unfiltered lists.
In practice, when we say “with a constraint on cjn bits”, we assume that
given the subset-sum objective t modulo 2n, random values rj

i such that
∑

i rj
i = t mod 2cjn are selected at level j, and the rj

i have cjn bits only.
Hence, at this step, we have selected 4 integers on c2n bits r10, r

1
1, r

1
2, r

1
3 such

that r10 + r11 + r12 + r13 = t mod 2c2n. The 4 level-2 lists L2
0, L

2
1, L

2
2, L

2
3 have

size �2 = (h(1/8) − c2), they contain subknapsacks of weight n
8 on n bits.

Remark 1. The precise values of these ri are irrelevant, since they cancel out each
other in the end. They are selected at random during a run of the algorithm,

Improved Classical and Quantum Algorithms for Subset-Sum 641

and although there could be “bad” values of them that affect significantly the
computation, this is not expected to happen.

Level 1. We merge the lists pairwise with (c1 − c2)n new bits of constraint,
ensuring that the constraint is compatible with the previous ones. We obtain
two filtered lists L1

0, L
1
1, containing subknapsacks of weight n/4. They have

size:
�1 = 2�2 − (c1 − c2) + pf1 (1/8, 1/8)

where pf1 (1/8, 1/8) is given by Lemma 1.
Level 0. We find a solution to the subset-sum problem with the complete con-

straint on n bits. This means that the list L0 must have expected length
�0 = 0. Note that there remains (1 − c1)n bits of constraint to satisfy, and
the filtering term is similar as before, so:

�0 = 2�1 − (1 − c1) + pf1 (1/4, 1/4) .

L0, 1
Dn[0, 1

2]

. . .L1
0, c1

Dn[0, 1
4]

. . .L2
0, c2

Dn[0, 1
8]

L3
0

Dn/2[0, 1/8]× {0n/2}
L3
1

{0n/2} × Dn/2[0, 1/8]

Fig. 1. The HGJ algorithm (duplicate lists are omitted)

By Lemma 2, the time complexity of this algorithm is determined by the
sizes of the unfiltered lists: max (�3, 2�3 − c2, 2�2 − (c1 − c2), 2�1 − (1 − c1)). The
memory complexity depends of the sizes of the filtered lists: max (�3, �2, �1). By
a numerical optimization, one obtains a time exponent of 0.337n.

2.5 The BCJ Algorithm and Our Improvements

The HGJ algorithm uses representations to increase artificially the search space.
The algorithm of Becker, Coron and Joux [3] improves the runtime exponent
down to 0.291 by allowing even more freedom in the representations, which can
now contain “−1”s. The “−1”s have to cancel out progressively, to ensure the
validity of the final knapsack solution.

We improve over this algorithm in two different ways. First, we relax the con-
straints �j + cj = g(αj , 1/2j+1) enforced in [3], as only the inequalities �j + cj �
g(αj , 1/2j+1) are necessary: they make sure the lists are not larger than the number
of distinct elements they can contain. This idea was also implicitly used in [13], in
the context of syndrome decoding. When optimizing the parameters under these
new constraints, we bring the asymptotic time exponent down to 0.289n.

642 X. Bonnetain et al.

L0, 1
Dn[0, 1

2 , 0]

. . .L1
0 , c1

Dn[α1,
1
4 , γ1]

. . .L2
0, c2

Dn[α2,
1
8 , γ2]

. . .L3
0, c3

Dn[α3,
1
16 , γ3]

L4
0

Dn/2[α3, 1/16, γ3]× {0n/2}
L4
1

{0n/2} × Dn/2[α3, 1/16, γ3]

Fig. 2. Our improved algorithm (duplicate lists are omitted).

{−1, 0, 1, 2} representations. Next, we allow the value “2” in the subknapsacks.
This allows us to have more representations for the final solution from the same
initial distributions. Indeed, in BCJ, if on a bit the solution is the sum of a “−1”
and two “1”s, then it can only pass the merging steps if we first have the “−1”
that cancels a “1”, and then the addition of the second “1”. When allowing “2”s,
we can have the sum of the two “1’s and then at a later step the addition of a
“−1”. The algorithm builds a merging tree with five levels, numbered 4 down to
0. Level j contains 2j lists. In total, 16 lists are merged together into one.

Level 4. We build 16 lists L4
0 . . . L4

15. They contain complete distributions on n
2

bits, either left or right, with n
32 + α3n

2 − γ3n “1”, α3n
2 “−1” and γ3n

2 “2”:
{

L4
2i = Dn/2[α3, 1/16, γ3] × {0n/2}

L4
2i+1 = {0n/2} × Dn/2[α3, 1/16, γ3]

As before, this avoids filtering at the first level. These lists have size: �4 =
f(α3, 1/16 + α3 − 2γ3, γ3)/2.

Level 3. We merge into 8 lists L3
0 . . . L3

7, with a constraint on c3 bits. As there
is no filtering, these lists have size: �3 = f(α3, 1/16 + α3 − 2γ3, γ3) − c3.

Level 2. We now merge and filter. We force a target distribution Dn[α2, 1/8, γ2],
with α2 and γ2 to be optimized later. There is a first filtering probability p2.
We have �2 = 2�3 − (c2 − c3) + p2.

Level 1. Similarly, we have: �1 = 2�2 − (c1 − c2) + p1.
Level 0. We have �0 = 2�1 − (1 − c1) + p0 = 0, since the goal is to obtain one

solution in the list L0.

With these constraints, we find a time Õ (
20.2830n

)
(rounded upwards) with

the following parameters:

α1 = 0.0340, α2 = 0.0311, α3 = 0.0202, γ1 = 0.0041, γ2 = 0.0006, γ3 = 0.0001
c1 = 0.8067, c2 = 0.5509, c3 = 0.2680, p0 = −0.2829, p1 = −0.0447, p2 = −0.0135
�1 = 0.2382, �2 = 0.2694, �3 = 0.2829, �4 = 0.2755

Improved Classical and Quantum Algorithms for Subset-Sum 643

Remark 2 (On numeric optimizations). All algorithms since HGJ, including
quantum ones, rely on (nonlinear) numeric optimizations. Their correctness is
easy to check, since the obtained parameters satisfy the constraints, but there
is no formal proof that the parameters are indeed optimal for a given constraint
set. The same goes for all algorithms studied in this paper. In order to gain
confidence in our results, we tried many different starting points and several
equivalent rewriting of the constraints.

Remark 3 (Adding more symbols). In general, adding more symbols (“−2”s,
“3”s, etc.) can only increase the parameter search space and improve the opti-
mal time complexity. However, we expect that the improvements from adding
more symbols will become smaller and smaller, while the obtained constraints
will become more difficult to write down and the parameters harder to optimize.
Note that adding “−1”s decreases the time complexity exponent by 0.048, while
adding “2”s decreases it only by 0.006.

Remark 4 (On the number of levels). Algorithms based on merging-and-filtering,
classical and quantum, have a number of levels (say, 4 or 5) which must be
selected before writing down the constraints. The time complexity is a decreas-
ing function of the number of levels, which quickly reaches a minimum. In all
algorithms studied in this paper, adding one more level does not change the cost
of the upper levels, which will remain the most expensive.

3 Quantum Preliminaries and Previous Work

In this section, we recall some preliminaries of quantum computation (quantum
search and quantum walks) that will be useful throughout the rest of this paper.
We also recall previous quantum algorithms for subset-sum. As we consider all
our algorithms from the point of view of asymptotic complexities, and neglect
polynomial factors in n, a high-level overview is often enough, and we will use
quantum building blocks as black boxes. The interested reader may find more
details in [35].

3.1 Quantum Preliminaries

All the quantum algorithms considered in this paper run in the quantum circuit
model, with quantum random-access memory, often denoted as qRAM. “Base-
line” quantum circuits are simply built using a universal gate set. Many quantum
algorithms use qRAM access, and require the circuit model to be augmented
with the so-called “qRAM gate”. This includes subset-sum, lattice sieving and
generic decoding algorithms that obtain time speedups with respect to their
classical counterparts. Given an input register 1 ≤ i ≤ r, which represents the
index of a memory cell, and many quantum registers |x1, . . . xr〉, which represent
stored data, the qRAM gate fetches the data from register xi:

|i〉 |x1, . . . xr〉 |y〉 �→ |i〉 |x1, . . . xr〉 |y ⊕ xi〉 .

We will use the terminology of [24] for the qRAM gate:

644 X. Bonnetain et al.

• If the input i is classical, then this is the plain quantum circuit model (with
classical RAM);

• If the xj are classical, we have quantum-accessible classical memory
(QRACM)

• In general, we have quantum-accessible quantum memory (QRAQM)

All known quantum algorithms for subset-sum with a quantum time speedup
over the best classical one require QRAQM. For comparison, speedups on heuris-
tic lattice sieving algorithms exist in the QRACM model [23,26], including the
best one to date [25]. While no physical architecture for quantum random access
has been proposed that would indeed produce a constant or negligible overhead
in time, some authors [24] consider the separation meaningful. If we assign a cost
O (N) to a QRACM query of N cells, then we can replace it by classical memory.
Subset-sum algorithms were studied in this setting by Helm and May [19].

Quantum Search. One of the most well-known quantum algorithms is Grover’s
unstructured search algorithm [17]. We present here its generalization, amplitude
amplification [12].

Lemma 3 (Amplitude amplification, from [12]). Let A be a reversible
quantum circuit, f a computable boolean function over the output of A, Of its
implementation as a quantum circuit, and a be the initial success probability of
A, that is, the probability that OfA |0〉 outputs “true”. There exists a quantum

reversible algorithm that calls O
(√

1/a
)

times A, A† and Of , uses as many
qubits as A and Of , and produces an output that passes the test f with probabil-
ity greater than max(a, 1 − a).

This is known to be optimal when the functions are black-box oracles [5].
As we will use quantum search as a subprocedure, we make some remarks

similar to [33, Appendix A.2] and [10, Sect. 5.2] to justify that, up to additional
polynomial factors in time, we can consider it runs with no errors and allows to
return all the solutions efficiently.

Remark 5 (Error in a sequence of quantum searches). Throughout this paper,
we will assume that a quantum search in a search space of size S with T solutions
runs in exact time

√
S/T . In practice, there is a constant overhead, but since S

and T are always exponential in n, the difference is negligible. Furthermore, this
is a probabilistic procedure, and it will return a wrong result with a probability
of the order

√
T/S. As we can test if an error occurs, we can make it negligible

by redoing the quantum search polynomially many times.

Remark 6 (Finding all solutions). Quantum search returns a solution among
the T possibilities, selected uniformly at random. Finding all solutions is then
an instance of the coupon collector problem with T coupons [34]; all coupons are
collected after on average O (T log(T)) trials. However, in the QRACM model,
which is assumed in this paper, this logarithmic factor disappears. We can run
the search of Lemma 3 with a new test function that returns 0 if the output of
A is incorrect, or if it is correct but has already been found. The change to the
runtime is negligible, and thus, we collect all solutions with only O (T) searches.

Improved Classical and Quantum Algorithms for Subset-Sum 645

Quantum Walks. Quantum walks can be seen as a generalization of quan-
tum search. They allow to obtain polynomial speedups on many unstructured
problems, with sometimes optimal results (e.g. Ambainis’ algorithm for element
distinctness [1]). In this paper, we consider walks in the MNRS framework [30].

Let G = (V,E) be an undirected, connected, regular graph, such that some
vertices of G are “marked”. Let ε be the fraction of marked vertices, that is, a
random vertex has a probability ε of being marked. Let δ be the spectral gap of
G, which is defined as the difference between its two largest eigenvalues.

In a classical random walk on G, we can start from any vertex and reach
the stationary distribution in approximately 1

δ random walk steps. Then, such a
random vertex is marked with probability ε. Assume that we have a procedure
Setup that samples a random vertex to start with in time S, Check that verifies if
a vertex is marked or not in time C and Update that performs a walk step in time
U, then we will have found a marked vertex in expected time: S + 1

ε

(
1
δU + C

)
.

Quantum walks reproduce the same process, except that their internal state is
not a vertex of G, but a superposition of vertices. The walk starts in the uniform
superposition

∑
v∈V |v〉, which must be generated by the Setup procedure. It

repeats
√

1/ε iterations that, similarly to amplitude amplification, move the
amplitude towards the marked vertices. An update produces, from a vertex, the
superposition of its neighbors. Each iteration does not need to repeat 1

δ vertex
updates and, instead, takes a time equivalent to

√
1/δ updates to achieve a good

mixing. Thanks to the following theorem , we will only need to specify the setup,
checking and update unitaries.

Theorem 1 (Quantum walk on a graph (adapted from [30])). Let G =
(V,E) be a regular graph with spectral gap δ > 0. Let ε > 0 be a lower bound
on the probability that a vertex chosen randomly of G is marked. For a random
walk on G, let S,U,C be the setup, update and checking cost. Then there exists
a quantum algorithm that with high probability finds a marked vertex in time

O
(

S +
1√
ε

(
1√
δ
U + C

))

.

3.2 Solving Subset-Sum with Quantum Walks

In 2013, Bernstein, Jeffery, Lange and Meurer [6] constructed quantum subset
sum algorithms inspired by Schroeppel-Shamir [37] and HGJ [21]. We briefly
explain the idea of their quantum walk for HGJ. The graph G that they consider
is a product Johnson graph. We recall formal definitions from [22].

Definition 4 (Johnson graph). A Johnson graph J(N,R) is an undirected
graph whose vertices are the subsets of R elements among a set of size N , and
there is an edge between two vertices S and S′ iff |S ∩ S′| = R − 1, in other
words, if S′ can be obtained from S by replacing an element. Its spectral gap is
given by δ = N

R(N−R) .

646 X. Bonnetain et al.

Theorem 2 (Cartesian product of Johnson graphs [22]). Let Jm(N,R)
be defined as the cartesian product of m Johnson graphs J(N,R), i.e., a vertex
in Jm(N,R) is a tuple of m subsets S1, . . . Sm and there is an edge between
S1, . . . Sm and S′

1, . . . S
′
m iff all subsets are equal at all indices except one index

i, which satisfies |Si ∩ S′
i| = R − 1. Then it has

(
N
R

)m
vertices and its spectral

gap is greater than 1
m

N
R(N−R) .

In [6], a vertex contains a product of 8 sublists L′3
0 ⊂ L3

0, . . . , L
′3
7 ⊂ L3

7 of a
smaller size than the classical lists: � < �3. There is an edge between two vertices
if we can transform one into the other by replacing only one element in one of
the sublists. The spectral gap of such a graph is (in log2, relative to n) −�.

In addition, each vertex has an internal data structure which reproduces the
HGJ merging tree, from level 3 to level 0. Since the initial lists are smaller, the
list L0 is now of expected size 8(� − �3) (in log2, relative to n), i.e., the walk
needs to run for 4(�3 − �) steps. Each step requires �/2 updates.

In the Setup procedure, we simply start from all choices for the sublists
and build the tree by merging and filtering. Assuming that the merged lists have
decreasing sizes, the setup time is �. The vertex is marked if it contains a solution
at level 0. Hence, checking if a vertex is marked takes time C = 1, but the update
procedure needs to ensure the consistency of the data structure. Indeed, when
updating, we remove an element e from one of the lists L′3

i and replace it by a
e′ from L3

i . We then have to track all subknapsacks in the upper levels where e
intervened, to remove them, and to add the new collisions where e′ intervenes.

Assuming that the update can run in poly(n), an optimization with the new
parameter � yields an exponent 0.241. In [6], the parameters are such that on
average, a subknapsack intervenes only in a single sum at the next level. The
authors propose to simply limit the number of elements to be updated at each
level, in order to guarantee a constant update time.

Quantum Walk Based on BCJ. In [18], Helm and May quantize, in the same
way, the BCJ algorithm. They add “−1” symbols and a new level in the merging
tree data structure, reaching a time exponent of 0.226. But they remark that
this result depends on a conjecture, or a heuristic, that was implicit in [6].

Heuristic 2 (Helm-May). In these quantum walk subset-sum algorithms, an
update with expected constant time U can be replaced by an update with exact
time U without affecting the runtime of the algorithm, up to a polynomial factor.

Indeed, it is easy to construct “bad” vertices and edges for which an exact
update, i.e. the complete reconstruction of the merging tree, will take exponential
time: by adding a single new subknapsack e, we find an exponential number of
pairs e + e′ to include at the next level. So we would like to update only a few
elements among them. But in the MNRS framework, the data structure of a
vertex must depend solely on the vertex itself (i.e. on the lowest-level lists in
the merging tree). And if we do as proposed in [6], we add a dependency on the
path that lead to the vertex, and lose the consistency of the walk.

Improved Classical and Quantum Algorithms for Subset-Sum 647

In a related context, the problem of “quantum search with variable times”
was studied by Ambainis [2]. In a quantum search for some x such that f(x) = 1,
in a set of size N , if the time to evaluate f on x is always 1, then the search
requires time O

(√
N

)
. Ambainis showed that if the elements have different

evaluation times t1, . . . tN , then the search now requires Õ(
√

t21 + . . . + t2N), the
geometric mean of t1, . . . tN . As quantum search can be seen as a particular
type of quantum walk, this shows that Heuristic 2 is wrong in general, as we
can artificially create a gap between the geometric mean and expectation of the
update time U; but also, that it may be difficult to actually overcome. In this
paper, we will obtain different heuristic and non-heuristic times.

4 Quantum Asymmetric HGJ

In this section, we give the first quantum algorithm for the subset-sum problem,
in the QRACM model, with an asymptotic complexity smaller than BCJ.

4.1 Quantum Match-and-Filter

We open this section with some technical lemmas that replace the classical
merge-and-filter Lemma 2. In this section, we will consider a merging tree as
in the HGJ algorithm, but this tree will be built using quantum search. The
following lemmas bound the expected time of merge-and-filter and match-and-
filter operations performed quantumly, in the QRACM model. This will have
consequences both in this section and in the next one.

First, we remark that we can use a much more simple data structure than
the ones in [1,6]. In this data structure, we store pairs e, e · a indexed by e · a
mod M for some M � 2m.

Definition 5 (Unique modulus list). A unique modulus list is a qRAM data
structure L(M) that stores at most M entries (e, e ·a), indexed by e ·a mod M ,
and supports the following operations:

• Insertion: inserts the entry (e, e · a) if the modulus is not already occupied;
• Deletion: deletes (e, e · a) (not necessary in this section)
• Query in superposition: returns the superposition of all entries (e, e · a) with

some modular condition on e · a, e.g. e · a = t mod M ′ for some t and some
modulus M ′.

Note that all of these operations, including the query in superposition of all
the entries with a given modulus, cost O (1) qRAM gates only. For the latter,
we need only some Hadamard gates to prepare the adequate superposition of
indices. Furthermore, the list remains sorted by design.

Next, we write a lemma for quantum matching with filtering, in which one of
the lists is not written down. We start from a unitary that produces the uniform
superposition of the elements of a list L1, and we wrap it into an amplitude
amplification, in order to obtain a unitary that produces the uniform superpo-
sition of the elements of the merged-and-filtered list.

648 X. Bonnetain et al.

Lemma 4 (Quantum matching with filtering). Let L2 be a list stored
in QRACM (with the unique modulus list data structure of Definition 5).
Assume given a unitary U that produces in time tL1 the uniform superposition
of L1 = x0, . . . x2m−1 where xi = (ei, ei ·a). We merge L1 and L2 with a modular
condition of cn bits and a filtering probability p. Let L be the merged list and Lf

the filtered list. Assume |Lf | ≥ 1. Then there exists a unitary U ′ producing the
uniform superposition of Lf in time: O

(
tL1√

p max(
√

2cn/|L2|, 1)
)
.

Notice that this is also the time complexity to produce a single random
element of Lf . If we want to produce and store the whole list Lf , it suffices to
multiply this complexity by the number of elements in Lf (i.e. p|L1||L2|/2cn).

We would obtain: O
(

tL1

√
p max

(

|L1|
√

|L2|
2cn , |L1||L2|

2cn

))

.

Proof. Since L2 is stored in a unique modulus list, all its elements have dis-
tinct moduli. Note that the expected sizes of L and Lf follow from Heuristic 1.
Although the number of iterations of quantum search should depend on the real
sizes of these lists, the concentration around the average is so high (given by
Chernoff bounds) that the error remains negligible if we run the search with the
expected number of iterations. We separate three cases.

• If |L2| < 2cn, then we have no choice but to make a quantum search on
elements of L1 that match the modular constraint and pass the filtering step,
in time: O

(
tL1

√
2cn

L2p

)
.

• If |L2| > 2cn but |L2| < 2cn/p, an element of L1 will always pass the modular
constraint, with more than one candidate, but in general all these candidates
will be filtered out. Given an element of L1, producing the superposition
of these candidates is done in time 1, so finding the one that passes the
filter, if there is one, takes time

√|L2|/2cn. Next, we wrap this in a quantum
search to find the “good” elements of L1 (passing the two conditions), with
O

(√
2cn/pL2

)
iterations. The total time is:

O
(√

2cn

L2p
×

(√
|L2|/2cn × tL1

)
=

tL1√
p

)

.

• If |L2| > 2cn/p, an element of L1 yields on average more than one filtered
candidate. Producing the superposition of the modular candidates is done in
time O (1) thanks to the data structure, then finding the superposition of
filtered candidates requires 1/

√
p iterations. The total time is: O (

tL1/
√

p
)
.

The total time in all cases is: O
(

tL1√
p max(

√
2cn/|L2|, 1)

)
. Note that classically,

the coupon collector problem would have added a polynomial factor, but this is
not the case here thanks to QRACM (Remark 6). 	

In the QRACM model, we have the following corollary for merging and fil-
tering two lists of equal size. This result will be helpful in Sect. 4.3 and 5.

Improved Classical and Quantum Algorithms for Subset-Sum 649

Corollary 1. Consider two lists L1, L2 of size |L1| = |L2| = |L| exponential in
n. We merge L1 and L2 with a modular condition of cn bits, and filter with a
probability p. Assume that 2cn < |L|. Then Lf can be written down in quantum
time: O

(√
p |L|2

2cn

)
.

Proof. We do a quantum search to find each element of Lf . We have tL1 = O (1)
since it is a mere QRACM query, and we use Lemma 4. 	

4.2 Revisiting HGJ

We now introduce our new algorithm for subset-sum in the QRACM model.
Our starting point is the HGJ algorithm. Similarly to [33], we use a merging

tree in which the lists at a given level may have different sizes. Classically, this
does not improve the time complexity. However, quantumly, we will use quantum
filtering. Since our algorithm does not require to write data in superposition,
only to read from classical registers with quantum random access, we require
only QRACM instead of QRAQM.

In the following, we consider that all lists, except L3
0, L

2
0, L

1
0, L

0, are built with
classical merges. The final list L0, containing (expectedly) a single element, and a
branch leading to it, are part of a nested quantum search. Each list L3

0, L
2
0, L

1
0, L

0

corresponds either to a search space, the solutions of a search, or both. We
represent this situation on Fig. 3. Our procedure runs as follows:

1. (Classical step): build the intermediate lists L3
1, L

2
1, L

1
1 and store them using

a unique modulus list data structure (Definition 5).
2. (Quantum step): do a quantum search on L3

0. To test a vector e ∈ L3
0:

• Find e3 ∈ L3
1 such that e + e3 passes the c20n-bit modular constraint

(assume that there is at most one such solution). There is no filtering
here.

• Find e2 ∈ L2
1 such that (e + e3) + e2 passes the additional (c1 − c20)n-bit

constraint.
• If it also passes the filtering step, find e1 ∈ L1

1 such that (e+e3 +e2)+e1
is a solution to the knapsack problem (and passes the filter).

Structural constraints are imposed on the tree, in order to guarantee that
there exists a knapsack solution. The only difference between the quantum and
classical settings is in the optimization goal: the final time complexity.

Structural Constraints. We now introduce the variables and the structural con-
straints that determine the shape of the tree in Fig. 3. The asymmetry happens
both in the weights at level 0 and at the constraints at level 1 and 2. We write
�j
i = (log2 |Lj

i |)/n. With the lists built classically, we expect a symmetry to be
respected, so we have: �32 = �33, �34 = �35 = �36 = �37, �22 = �23. We also tweak the
left-right split at level 0: lists from L3

2 to L3
7 have a standard balanced left-right

split; however, we introduce a parameter r that determines the proportion of

650 X. Bonnetain et al.

L0

L1
1 with

constraint c1

L2
3 with

constraint c21

L3
7

a/2, n/2
L3
6

a/2, n/2

L2
2 with

constraint c21

L3
5

a/2, n/2
L3
4

a/2, n/2

L1
0 with

constraint c1

L2
1 with

constraint c20

L3
3

b/2, n/2
L3
2

b/2, n/2

L2
0 with

constraint c20

L3
1

cr,
nr

L3
0

c(1− r),
n(1− r)

Fig. 3. Quantum HGJ algorithm. Dotted lists are search spaces (they are not stored).
Bold lists are stored in QRACM. In Sect. 4.3, L2

2 and L2
3 are also stored in QRACM.

positions set to zero in list L3
0: in L3

0, the vectors weigh cn(1 − r) on a sup-
port of size n(1 − r), instead of cn/2 on a support of size n/2. In total we have
c + b + 2a = 1

2 , as the weight of the solution is supposed to be exactly n/2.
Then we note that:

• The lists at level 3 have a maximal size depending on the corresponding
weight of their vectors:

�30 ≤ h(c)(1 − r), �31 ≤ h(c)r, �32 = �33 ≤ h(b)/2, �34 ≤ h(a)/2

• The lists at level 2 cannot contain more representations than the filtered list
of all subknapsacks of corresponding weight:

�20 ≤ h(c) − c20, �21 ≤ h(b) − c20, �22 = �23 ≤ h(a) − c21

• Same at levels 1 and 0: �10 ≤ h(c + b) − c1, �11 ≤ h(2a) − c1

• The merging at level 2 is exact (there is no filtering):

�20 = �30 + �31 − c20, �21 = �32 + �33 − c20, �22 = �34 + �35 − c21, �23 = �36 + �37 − c21,

• At level 1, with a constraint c1 ≥ c20, c
2
1 that subsumes the previous ones:

�10 = �20 + �21 − c1 + c20 + pf1 (b, c) , �11 = �22 + �23 − c1 + c21 + pf1 (a, a)

• And finally at level 0: �0 = 0 = �10 + �11 − (1 − c1) + pf1 (b + c, 2a)

Classical Optimization. All the previous constraints depend on the problem,
not on the computation model. Now we can get to the time complexity in the
classical setting, that we want to minimize:

max
(

�34, �
3
2, �

3
1, �

3
2 + �33 − c20, �

3
4 + �35 − c21, �

2
2 + �23 − c1 + c21,

�30 + max(�31 − c20, 0) + max(�21 − c1 + c20, 0) + max(pf1 (b, c) + �11 − (1 − c1), 0)
)

.

Improved Classical and Quantum Algorithms for Subset-Sum 651

The last term corresponds to the exhaustive search on �30. In order to keep the
same freedom as before, it is possible that an element of L3

0 matches against sev-
eral elements of L3

1, all of which yield a potential solution that has to be matched
against L2

1, etc. Hence for each element of L3
0, we find the expected max(�31−c20, 0)

candidates matching the constraint c10. For each of these candidates, we find the
expected max(�21 − c1 + c20, 0) candidates matching the constraint c1. For each
of these candidates, if it passes the filter, we search for a collision in L1

1; this
explains the max(pf1 (b, c) + �11 − (1 − c1), 0) term. In the end, we check if the
final candidates pass the filter on the last level.

We verified that optimizing the classical time under our constraints gives the
time complexity of HGJ.

Quantum Optimization. The time complexity for producing the intermediate
lists is unchanged. The only difference is the way we find the element in L3

0 that
will lead to a solution, which is a nested sequence of quantum searches.

• We can produce the superposition of all elements in L2
0 in time

t2 =
1
2

max(c20 − �31, 0)

• By Lemma 4, we can produce the superposition of all elements in L1
0 in time

t2 − 1
2
pf1 (b, c) +

1
2

max
(
c1 − c20 − �21, 0

)

• Finally, we expect that there are
(
�20 + �21 − c1 + c20 + pf1 (b, c)

)
elements in

L1
0, which gives the number of iterations of the quantum search.

The time of this search is:

1
2

(
�10 + max(c20 − �31, 0) − pf1 (b, c) + max

(
c1 − c20 − �21, 0

))

and the total time complexity is:

max
(
�34, �

3
2, �

3
1, �

3
2 + �33 − c20, �

3
4 + �35 − c21, �

2
2 + �23 − c1 + c21,

1
2

(
�10 + max(c20 − �31, 0) − pf1 (b, c) + max

(
c1 − c20 − �21, 0

)))

We obtain a quantum time complexity exponent of 0.2374 with this method
(the detailed parameters are given in Table 2).

4.3 Improvement via Quantum Filtering

Let us keep the tree structure of Fig. 3 and its structural constraints. The final
quantum search step is already made efficient with respect to the filtering of
representations, as we only pay half of the filtering term pf1 (b, c). However,

652 X. Bonnetain et al.

we can look towards the intermediate lists in the tree, i.e., L3
1, L

2
1, L

1
1. The merg-

ing at the first level is exact: due to the left-right split, there is no filtering of
representations, hence the complexity is determined by the size of the output
list. However, the construction of L1

1 contains a filtering step. Thus, we can use
Corollary 1 to produce the elements of L1

1 faster and reduce the time complexity
from: �22 + �23 − c1 + c21 to: �22 + �23 − c1 + c21 + 1

2pf1 (a, a). By optimizing with this
time complexity, we obtain a time exponent 0.2356 (the detailed parameters are
given in Table 2). The corresponding memory is 0.2356 (given by the list L3

1).

Table 2. Optimization results for the quantum asymmetric HGJ algorithm (in log2

and relative to n), rounded to four digits. The time complexity is an upper bound.

Variant Time a b c �30 �31 �32 �34 �20 �10

Classical 0.3370 0.1249 0.11 0.1401 0.3026 0.2267 0.25 0.2598 0.3369 0.3114

Section 4.2 0.2374 0.0951 0.0951 0.2146 0.4621 0.2367 0.2267 0.2267 0.4746 0.4395

Section 4.3 0.2356 0.0969 0.0952 0.2110 0.4691 0.2356 0.2267 0.2296 0.4695 0.4368

Remark 7 (More improvements). We have tried increasing the tree depth or
changing the tree structure, but it does not seem to bring any improvement. In
theory, we could allow for more general representations involving “−1” and “2”.
However, computing the filtering probability, when merging two lists of subknap-
sacks in Dn[α, β, γ] with different distributions becomes much more technical.
We managed to compute it for Dn[α, β], but the number of parameters was too
high for our numerical optimizer, which failed to converge.

4.4 Quantum Time-Memory Tradeoff

In the original HGJ algorithm, the lists at level 3 contain full distributions
Dn/2[0, 1/8]. By reducing their sizes to a smaller exponential, one can still run
the merging steps, but the final list L0 is of expected size exponentially small
in n. Hence, one must redo the tree many times. This general time-memory
tradeoff is outlined in [21] and is also reminiscent of Schroeppel and Shamir’s
algorithm [37], which can actually be seen as repeating 2n/4 times a merge of
lists of size 2n/4, that yields 2−n/4 solutions on average.

Asymmetric Tradeoff. The tradeoff that we propose is adapted to the QRACM
model. It consists in increasing the asymmetry of the tree: we reduce the sizes of
the intermediate lists L3

1, L
2
1, L

1
1 in order to use less memory; this in turn increases

the size of L3
0, L

2
0 and L1

0 in order to ensure that a solution exists. We find that
this tradeoff is close to the time-memory product curve TM = 2n/2, and actually
slightly better (the optimal point when m = 0.2356 has TM = 20.4712n). This
is shown on Fig. 4. At m = 0, we start at 2n/2, where L3

0 contains all vectors of
Hamming weight n/2.

Improved Classical and Quantum Algorithms for Subset-Sum 653

Fact 1. For any memory constraint m ≤ 0.2356 (in log2 and proportion of
n), the optimal time complexity in the quantum asymmetric HGJ algorithm of
Sect. 4.3 is lower than Õ (

2n/2−m
)
.

0 0.1 0.2 0.3
0.2

0.3

0.4

0.5

Memory constraint m (M = 2mn)

T
im

e
t
(T

=
Õ
(2

tn
)) Optimization

of Sec. 4.3
t + m = 1

2

Fig. 4. Quantum time-memory tradeoff of the asymmetric HGJ algorithm

Improving the QRACM Usage. In trying to reduce the quantum or quantum-
accessible hardware used by our algorithm, it makes sense to draw a line between
QRACM and classical RAM, i.e., between the part of the memory that is actually
accessed quantumly, and the memory that is used only classically. We now try
to enforce the constraint only on the QRACM, using possibly more RAM. In
this context, we cannot produce the list L1

1 via quantum filtering. The memory
constraint on lists L3

1, L
2
1, L

1
1 still holds; however, we can increase the size of lists

L3
4, L

3
5, L

3
6, L

3
7, L

2
2, L

2
3.

Fact 2. For any QRACM constraint m ≤ 0.2356, the optimal time complexity
obtained by using more RAM is always smaller than the best optimization of
Sect. 4.3.

The difference remains only marginal, as can be seen in Table 3, but it shows
a tradeoff between quantum and classical resources.

5 New Algorithms Based on Quantum Walks

In this section, we improve the algorithm by Helm and May [18] based on BCJ
and the MNRS quantum walk framework. Our algorithm is a quantum walk on
a product Johnson graph, as in Sect. 3.2. There are two new ideas involved.

654 X. Bonnetain et al.

Table 3. Time-memory tradeoffs (QRACM) for three variants of our asymmetric HGJ
algorithm, obtained by numerical optimization, and rounded upwards. The last variant
uses more classical RAM than the QRACM constraint.

QRACM Section 4.2 Section 4.3 With more RAM
bound Time Memory Time Memory Time Memory

0.0500 0.4433 0.0501 0.4433 0.0501 0.4412 0.0650
0.1000 0.3896 0.1000 0.3896 0.1000 0.3860 0.1259
0.1500 0.3348 0.1501 0.3348 0.1501 0.3301 0.1894
0.3000 0.2374 0.2373 0.2356 0.2356 0.2373 0.2373

5.1 Asymmetric 5th Level

In our new algorithm, we can afford one more level than BCJ. We then have a
6-level merging tree, with levels numbered 5 down to 0. Lists at level i all have
the same size �i, except at level 5. Recall that the merging tree, and all its lists,
is the additional data structure attached to a node in the Johnson graph. In the
original algorithm of [18], there are 5 levels, and a node is a collection of 16 lists,
each list being a subset of size �4 among the g(1/16 + α3, α3)/2 vectors having
the right distribution.

In our new algorithm, at level 5, we separate the lists into “left” lists
of size �l

5 and “right” lists of size �r
5. The quantum walk will only be per-

formed on the left lists, while the right ones are full enumerations. Each list
at level 4 is obtained by merging a “left” and a “right” list. The left-right-
split at level 5 is then asymmetric: vectors in one of the left lists Ll

5 are
sampled from Dηn[α4, 1/32, γ4] × {0(1−η)n} and the right lists Lr

5 contain all
the vectors from {0ηn} × D(1−η)n[α4, 1/32, γ4]. This yields a new constraint:
�r
5 = f(1/32 + α4 − 2γ4, α4, γ4)(1 − η).

While this asymmetry does not bring any advantage classically, it helps in
reducing the update time. We enforce the constraint �r

5 = c4, so that for each
element of Ll

5, there is on average one matching element in Lr
5. So updating the

list L4 at level 4 is done on average time 1. Then we also have �4 = �l
5.

With this construction, �r
5 and �l

5 are actually unneeded parameters. We
only need the constraints c4(= �r

5) = f(1/32 + α4 − 2γ4, α4, γ4)(1 − η) and
�4(= �l

5) ≤ f(1/32 + α4 − 2γ, α4, γ4)η. The total setup time is now:

S = max
(

c4, �4︸ ︷︷ ︸
Lv. 5 and 4

, 2�4 − (c3 − c4)
︸ ︷︷ ︸

Level 3

, 2�3 − (c2 − c3)
︸ ︷︷ ︸

Level 2

, 2�2 − (c1 − c2)
︸ ︷︷ ︸

Level 1

,

�1 + max(�1 − (1 − c1), 0)
︸ ︷︷ ︸

Level 0

)

and the expected update time for level 5 (inserting a new element in a list Ll
5

at the bottom of the tree) and at level 4 (inserting a new element in L4) is 1.

Improved Classical and Quantum Algorithms for Subset-Sum 655

The spectral gap of the graph is δ = −�l
5 and the proportion of marked vertices

is ε = −�0.

Saturation Constraints. In the quantum walk, we have �0 < 0, since we expect
only some proportion of the nodes to be marked (to contain a solution). This
proportion is hence �0. The saturation constraints are modified as follows:

�l
5 ≤ �0

16
+ f(1

32
+ α4 − 2γ4, α4, γ4)η, �4 ≤ �0

16
+ f(1

32
+ α4 − 2γ4, α4, γ4) − c4

�3 ≤ �0
8

+ f(1
16

+ α3 − 2γ3, α3, γ3) − c3, �2 ≤ �0
4

+ f(1
8

+ α2 − 2γ2, α2, γ2) − c2
�1 ≤ �0

2
+ f(1/4 + α1 − 2γ1, α1, γ1) − c1

Indeed, the classical walk will go through a total of −�0 trees before finding
a solution. Hence, it needs to go through −�0/16 different lists at level 5 (and 4),
which is why we need to introduce �0 in the saturation constraint: there must be
enough elements, not only in Ll

5, but in the whole search space that will be spanned
by the walk. These constraints ensure the existence of marked vertices in the walk.

5.2 Better Setup and Updates Using Quantum Search

Along the lines of Lemma 4 and Corollary 1, we now show how to use a quantum
search to speed up the Setup and Update steps in the quantum walk. As the struc-
ture of the graph is unchanged, we still have ε = −�0 and a spectral gap δ = −�l

5.

Setup. Let pi, (1 ≤ i ≤ 3) be the filtering probabilities at level i, i.e., the (log-
arithms of the) probabilities that an element that satisfies the modulo condition
resp. at level i also has the desired distribution of 0s, 1s, −1s and 2s, and appears in
list Li. Notice that pi ≤ 0. Due to the left-right split, there is no filtering at level 4.

We use quantum filtering (Corollary 1) to speed up the computation of lists
at levels 3, 2 and 1 in the setup, reducing in general a time 2�−c to 2�−c+pf/2.
It does not apply for level 0, since L0 has a negative expected size. At this level,
we will simply perform a quantum search over L1. If there is too much constraint,
i.e., (1 − c1) > �1, then for a given element in L1, there is on average less than
one modular candidate. If (1 − c1) < �1, there is on average more than one
(although less than one with the filter) and we have to do another quantum
search on them all. This is why the setup time at level 0, in full generality,
becomes (�1 +max(�1 − (1−c1), 0))/2. The setup time can thus be improved to:

S = max
(

c4, �4︸ ︷︷ ︸
Lv. 5 and 4

, 2�4 − (c3 − c4) + p3/2
︸ ︷︷ ︸

Level 3

, 2�3 − (c2 − c3) + p2/2
︸ ︷︷ ︸

Level 2

,

2�2 − (c1 − c2) + p1/2
︸ ︷︷ ︸

Level 1

, (�1 + max(�1 − (1 − c1), 0))/2
︸ ︷︷ ︸

Level 0

)

.

Update. Our update will also use a quantum search. First of all, recall that the
updates of levels 5 and 4 are performed in (expected) time 1. Having added
an element in L4, we need to update the upper level. There are on average

656 X. Bonnetain et al.

�4 − (c3 − c4) candidates satisfying the modular condition. To avoid a blowup in
the time complexity, we forbid to have more than one element inserted in L3 on
average, which means: �4 − (c3 − c4) + p3 ≤ 0 ⇐⇒ �3 ≤ �4. We then find this
element, if it exists, with a quantum search among the �4 − (c3 − c4) candidates.

Similarly, as at most one element is updated in L3, we can move on to the
upper levels 2, 1 and 0 and use the same argument. We forbid to have more than
one element inserted in L2 on average: �3 − (c2 − c3)+ p2 ≤ 0 ⇐⇒ �2 ≤ �3, and
in L1: �1 ≤ �2. At level 0, a quantum search may not be needed, hence a time
max(�1 − (1 − c1), 0)/2. The expected update time becomes:

U = max
(

0, (�4 − (c3 − c4))/2
︸ ︷︷ ︸

Level 3

, (�3 − (c2 − c3))/2
︸ ︷︷ ︸

Level 2

,

(�2 − (c1 − c2))/2
︸ ︷︷ ︸

Level 1

, (�1 − (1 − c1))/2
︸ ︷︷ ︸

Level 0

)

.

5.3 Parameters

Using the following parameters, we found an algorithm that runs in time
Õ (

20.2156n
)
:

�0 = −0.1916, �1 = 0.1996, �2 = 0.2030, �3 = 0.2110, �4(= �l
5) = 0.2110

c1 = 0.6190, c2 = 0.4445, c3 = 0.2506, c4(= �r
5) = 0.0487

α1 = 0.0176, α2 = 0.0153, α3 = 0.0131, α4 = 0.0087
γ1 = 0.0019, γ2 = γ3 = γ4 = 0, η = 0.8448

There are many different parameters that achieve the same time. The above
set achieves the lowest memory that we found, at Õ (

20.2110n
)
. Note that time

and memory complexities are different in this quantum walk, contrary to previ-
ous works, since the update procedure has now a (small) exponential cost.

Remark 8. (Time-memory tradeoffs). Quantum walks have a natural time-
memory tradeoff which consists in reducing the vertex size. Smaller vertices
have a smaller chance of being marked, and the walk goes on for a longer time.
This is also applicable to our algorithms, but requires a re-optimization with a
memory constraint.

6 Mitigating Quantum Walk Heuristics for Subset-Sum

In this section, we provide a modified quantum walk NEW-QW for any quantum
walk subset-sum algorithm QW, including [6,18] and ours, that will no longer
rely on Heuristic 2. In NEW-QW, the Johnson graph is the same, but the vertex
data structure and the update procedure are different (Sect. 6.2). It allows us
to guarantee the update time, at the expense of losing some marked vertices. In
Sect. 6.3, we will show that most marked vertices in QW remain marked.

Improved Classical and Quantum Algorithms for Subset-Sum 657

6.1 New Data Structure for Storing Lists

The main requirement of the vertex data structure is to store lists of subknap-
sacks with modular constraints in QRAQM. For each list, we will use two data
structures. The first one is the combination of a hash table and a skip list given
in [1] (abbreviated skip list below) and the second one is a Bucket-modulus list
data structure, adapted from Definition 5, that we define below.

Hash Table and Skip List. We use the data structure of [1] to store lists of entries
(e, e · a), sorted by knapsack value e · a. The data structure for M entries, that
we denote SL(M), uses Õ (M) qRAM memory cells and supports the following
operations: inserting an entry in the list, deleting an entry from the list and
producing the uniform superposition of entries in the list. All these operations
require time polylog(M).

We resort to this data structure because the proposal of “radix trees” in [6]
is less detailed. It is defined relatively to a choice of polylog(M) = poly(n) hash
functions selected from a family of independent hash functions of the entries (we
refer to [1] for more details). For a given choice of hash functions, the insertion or
deletion operations can fail. Thus, the data structure is equipped with a super-
position of such choices. Instead of storing SL(M), we store:

∑
h |h〉 |SLh(M)〉

where SLh is the data structure flavored with the choice of hash functions h.
Insertions and deletions are performed depending on h. This allows for a globally
negligible error: if sufficiently many hash functions are used, the insertion and
deletion of any element add a global error vector of amplitude o(2−n) regardless
of the current state of the data. The standard “hybrid argument” from [5] and [1,
Lemma 5] can then be used in the context of an MNRS quantum walk.

Proposition 1. ([1], Lemma 5, adapted). Consider an MNRS quantum walk
with a “perfect” (theoretical) update unitary U , managing data structures, and
an “imperfect” update unitary U ′ such that, for any basis state |x〉:

U ′ |x〉 = U |x〉 + |δx〉

where |δx〉 is an error vector of amplitude bounded by o(2−n) for any x. Then
running the walk with U ′ instead of U , after T steps, the final “imperfect” state
|ψ′〉 deviates from the “perfect” state |ψ〉 by: ‖ |ψ′〉 − |ψ〉 ‖ ≤ o(2−nT).

This holds as a general principle: in the update unitary, any perfect procedure
can be replaced by an imperfect one as long as its error is negligible (with respect
to the total number of updates) and data-independent. In contrast, the problem
with Heuristic 2 is that a generic constant-time update induces data-dependent
errors (bad cases) that do not seem easy to overcome.

Bucket-modulus List. Let B = poly(n) be a “bucket size” that will be cho-
sen later. The bucket-modulus list is a tool for making our update time data-
independent: it limits the number of vectors that can have a given modulus
(where moduli are of the same order as the list size).

658 X. Bonnetain et al.

Definition 6. (Bucket-modulus list). A Bucket-modulus list BL(B,M) is a
qRAM data structure that stores at most B × M entries (e, e · a), with at most
B entries sharing the same modulus e · a mod M . Thus, BL(B,M) contains
M “buckets”. Buckets are indexed by moduli, and kept sorted. It supports the
following operations:

• Insertion: insert (e, e · a). If the bucket at index e · a mod M contains B
elements, empty the bucket. Otherwise, sort it using a simple sorting circuit.

• Deletion: remove an entry from the corresponding bucket.
• Query in superposition: similar as in Definition 5.

In our new quantum walks, each list will be stored in a skip list SL(M)
associated with a bucket-modulus BL(B,M). Each time we insert or delete an
element from SL(M), we update the bucket-modulus list accordingly, according
to the following rules.

Upon deletion of an element e in SL(M), let e · a = T mod M , there are
three cases for BL(B,M):

• If |{e′ ∈ SL(M), e′ · a = T}| > B + 1, then bucket number T in BL(B,M)
stays empty;

• If |{e′ ∈ SL(M), e′ · a = T}| = B + 1, then removing e makes the number of
elements reach the bound B, so we add them all in the bucket at index T ;

• If |{e′ ∈ SL(M), e′ · a = T}| ≤ B, then we remove e from its bucket.

Upon insertion of an element e in SL(M), there are also three cases for
BL(B,M):

• If |{e′ ∈ SL(M), e′ · a = T}| = B, then we empty the bucket at index T ;
• If |{e′ ∈ SL(M), e′ · a = T}| < B, then we add e to the bucket at index T in

BL(B,M);
• If |{e′ ∈ SL(M), e′ · a = T}| > B, then the bucket is empty and remains

empty.

In all cases, there are at most B insertions or deletions in a single bucket. Note
that BL(B,M) ⊆ SL(M) but that some elements of SL(M) will be dropped.

Remark 9. The mapping from a skip list of size M (considered as perfect), which
does not “forget” any of its elements, to a corresponding bucket-modulus list
with M buckets, which forgets some of the previous elements, is deterministic.
Given a skip list L, a corresponding bucket modulus list L′ can be obtained by
inserting all elements of L into an empty bucket modulus list.

6.2 New Data Structure for Vertices

The algorithms that we consider use multiple levels of merging. However, we will
focus only on a single level. Our arguments can be generalized to any constant
number of merges (with an increase in the polynomial factors involved). Recall
that the product Johnson graph on which we run the quantum walk is unchanged,
only the data structure is adapted.

Improved Classical and Quantum Algorithms for Subset-Sum 659

In the following, we will consider the merging of two lists Ll and Lr of
subknapsacks of respective sizes �l and �r, with a modular constraint c and a
filtering probability pf. The merged list is denoted Lc = Ll ��c Lr and the
filtered list is denoted Lf . We assume that pairs (e1, e2) in Lc must satisfy
(e1 + e2) · a = 0 mod 2cn (the generalization to any value modulo any moduli
is straightforward).

On the positive side, our new data structure can be updated, by design, with
a fixed time that is data-independent. On the negative side, we will not build
the complete list Lf , and miss some of the solutions. As we drop a fraction
of the vectors, some nodes that were previously marked will potentially appear
unmarked, but this fraction is polynomial at most. We defer a formal proof of
this fact to Sect. 6.3 and focus on the runtime.

We will focus on the case where �l = �r and either Ll or Lr are updated,
which happens at all levels in our quantum walk, except the first level. Because
there is no filtering at the first level, it is actually much simpler to study with
the same arguments. In previous quantum walks, we had �c = 2� − c ≤ �, i.e.
� ≤ c; now we will have 2� − c ≥ � and 2� − c + pf ≤ �.

Recall that our heuristic time complexity analysis assumes an update time
(�−c)/2. Indeed, the update of an element in Ll or Lr modifies on average (�−c)
elements in Ll ��c Lr, among which we expect at most one filtered pair (e1, e2)
(by the inequality 2�− c+ pf ≤ �). We find this solution with a quantum search.
In the following, we modify the data structure of vertices in order to guarantee
the best update time possible, up to additional polynomial factors. We will see
however that it does not reach (� − c)/2. We now define our intermediate lists
and sublists, before giving the update procedure and its time complexity.

Definitions. Both lists Ll, Lr are of size M � 2�n. We store them in skip lists. In
both Lr and Ll, for each T ≤ M , we expect on average only one element e such
that e · a = T mod M . We introduce two Bucket-modulus lists (Definition 6)
L′

l(B,M) and L′
r(B,M) that we will write as L′

l and L′
r for simplicity, indexed

by e · a mod M , with an arbitrary bound B = poly(n) for the bucket sizes.
They are attached to Ll and Lr as detailed in Sect. 6.1. When an element in Ll

or Lr is modified, they are modified accordingly.
In L′

l and L′
r, we consider the sublists of subknapsacks having the same

modulo C mod 2cn, and we denote by L′
l,C and L′

r,C these sublists. They can
be easily considered separately since the vectors are sorted by knapsack weight.
By design of the bucket-modulus lists, L′

l,C and L′
r,C both have size at most

B2(�−c)n. We have:

L′
l ��c L′

r =
⋃

0≤C≤2cn−1

L′
l,C × L′

r,C .

Next, we have a case disjunction to make. The most complicated case is when
2�−2c+pf > 0, that is, each product L′

l,C ×L′
r,C for a given C yields more than

one filtered pair on average. In that case, we define sublists L′
l,C,i of L′

l,C and
sublists L′

r,C,j of L′
r,C using a new arbitrary modular constraint, so that each of

660 X. Bonnetain et al.

these sublists is of size −pf/2 (at most). There are �−c+pf/2 sublists (exactly).
The rationale of this cut is that a product L′

l,C,i × L′
r,C,j for a given i, j now

yields on average a single filtered pair (or less). When 2�− 2c+ pf ≤ 0, we don’t
perform this last cut and consider the product L′

l,C × L′
r,C immediately. By a

slight abuse of notation, we denote: (L′
l,C,i × L′

r,C,j)
f the set of filtered pairs

from L′
l,C,i × L′

r,C,j , and we have:

Lf =
⋃

0≤C≤2cn−1

⋃

i,j

(L′
l,C,i × L′

r,C,j)
f .

Algorithm 1. Update algorithm: given Ll, Lr of size �, we insert or delete an
element in Ll and update the filtered list Lf accordingly. We focus here on the
case 2� − 2c + pf > 0.

Data: skip lists for Ll, Lr, L
f , bucket-modulus lists L′

l, L
′
r

1: � The bucket-modulus list for Lf will be updated later
Input: an insertion/deletion instruction for Ll

Output: updates Ll, L
′
l, L

f accordingly
2: Insert or delete in Ll � only one element to update
3: Update the bucket-modulus structure L′

l � at most B elements to update
4: for each element e to insert/delete in L′

l do � B = poly(n) iterations
5: Select its corresponding sublist L′

l,C,i

6: Let L′′
l,C,i = L′

l,C,i ∪ {e} or L′
l,C,i\{e}

7: for each sublist L′
r,C,j do � � − c + pf/2 iterations

8: Estimate s = |(L′
l,C,i × L′

r,C,j)
f | � time Õ (

B × 2−pfn/2
)

9: Estimate s′ = |(L′′
l,C,i × L′

r,C,j)
f | � time Õ (

B × 2−pfn/2
)

� In the case of an insertion, s′ ≥ s and s′ ≤ s for a deletion
10: if s > B and s′ ≤ B

� The removal of e makes the number of filtered pairs acceptable
11: then Lf ← Lf ∪ (L′′

l,C,i × L′
r,C,j)

f

12: if s > B and s′ > B
13: then do nothing
14: if s ≤ B and s′ > B

� The insertion of e overflows the filtered pairs
15: then remove all (L′

l,C,i × L′
r,C,j)

f from Lf

16: if s ≤ B and s′ ≤ B
17: then update Lf with the (at most) B new or removed pairs
18: end for
19: end for

Algorithm and Complexity. Algorithm 1 details our update procedure. We now
compute its time complexity and explain why it remains data-independent.

Improved Classical and Quantum Algorithms for Subset-Sum 661

Recall that we want to avoid the “bad cases” where an update goes on for too
long: this is the case where an update in Ll (or Lr) creates too many updates
in Lf . In Algorithm 1, we avoid this by deliberately limiting the number of
elements that can be updated. We can see that Lf will be smaller than the
“perfect” one for two reasons: • the bucket-modulus data structure loses some
vectors, since the buckets are dropped when they overflow. • filtered pairs are
lost. Indeed, the algorithm ensures that in Lf , at most B solutions el + er come
from a cross-product L′

l,C,i × L′
r,C,j .

This makes the update procedure history-independent and its time complex-
ity data-independent. Indeed:

Lemma 5. The state of the data structures Ll, Lr, L
f after Algorithm 1 depends

only on Ll, Lr, L
f before and on the element that was inserted/deleted.

We omit a formal proof, as it follows from our definition of the bucket-
modulus list and of Algorithm 1.

Lemma 6. With a good choice of B, Algorithm 1 runs with a data-independent
error in o(2n). The time complexity of Algorithm 1 is Õ (

2(�−c)n
)

and an update
modifies Õ (

2max(�−c+pf/2,0)n
)

elements in the filtered list Lf at the next level
(respectively � − c and max(� − c + pf/2, 0) in log scale).

Proof. We check step by step the time complexity of Algorithm 1:

• Insertion and deletion from the skip list for Ll is done in poly(n), with a
global error that can be omitted.

• The bucket-modulus list L′
l is updated in time O (B) = poly(n) without

errors. At most B elements must be inserted or removed.
• For each insertion or removal in L′

l, we select the corresponding sublist L′
l,C,i

(or simply L′
l,C if 2� − 2c + pf ≤ 0). We look at the sublists L′

r,C,j and
we estimate the number of filtered pairs in the products L′

l,C,i × L′
r,C,j (of

size −pf), checking whether it is smaller or bigger than B. We explain in [8,
Appendix C] how to do that reversibly in time Õ (

B × 2−pfn/2
)

(−pf/2 in log
scale). There are � − c + pf/2 classical iterations, thus the total time is � − c.

• Depending whether we have found more or less than B filtered pairs, we will
have to remove or to add all of them in Lf . This means that B × 2(�−c+pf/2)n

insertion or deletion instructions will be passed over to Lf .

There are two sources of data-independent errors: first, the skip list data
structure (see Sect. 6.1). Second, the procedure of [8, Appendix C]. Both can be
made exponentially small at the price of a polynomial overhead. Note that B
will be set in order to get a sufficiently small probability of error (see the next
section), and can be a global O (n). However, the polynomial overhead of our
update unitary grows with the number of levels. 	

662 X. Bonnetain et al.

6.3 Fraction of Marked Vertices

Now that we have computed the update time of NEW-QW, it remains to
compute its fraction εnew of marked vertices. We will show that εnew =
ε
(
1 − 1

poly(n)

)
with overwhelming probability on the random subset-sum

instance, where ε is the previous fraction in QW.
Consider a marked vertex in QW. There is a path in the data structure

leading to the solution, hence a constant number of subknapsacks e1, . . . , et such
that the vertex will remain marked if and only if none of them is “accidentally”
discarded by our new data structure. Thus, if G is the graph of the walk, we
want to upper bound:

Pr
v∈G

(
v is marked in QW and

not marked in NEW-QW

)

≤
∑

ei,1≤i≤t

Pr
v∈G

(
ei ∈ v in QW

ei /∈ v in NEW-QW

)

.

We focus on some level in the tree, on a list L of average size 2�n, and on
a single vector e0 that must appear in L. Subknapsacks in L are taken from
B ⊆ Dn[α, β, γ]. We study the event that e0 is accidentally discarded from L.
This can happen for two reasons:

• we have |{e ∈ L, e · a = e0 · a mod 2�n}| > B: the vector is dropped at the
bucket-modulus level;

• at the next level, there are more than B pairs from some product of lists
L′

l,C,i × L′
r,C,j to which the vector e0 belongs, that will pass the filter.

We remark the following to make our computations easier.

Fact 3. We can replace the L from our new data structure NEW-QW by a list
of exact size 2�n, which is a sublist from the list L in QW.

At successive levels, our new data structure discards more and more vectors.
Hence, the actual lists are smaller than in QW. However, removing a vector e
from a list, if it does not unmark the vertex, does not increase the probability of
unmarking it at the next level, since e does not belong to the unique solution.

Fact 4. When a vertex in NEW-QW is sampled uniformly at random, given a
list L at some merging level, we can assume that the elements of L are sampled
uniformly at random from their distribution B (with a modular constraint).

This fact translates Heuristic 1 as a global property of the Johnson graph.
At the first level, nodes contain lists of exponential size which are sampled with-
out replacement. However, when sampling with replacement, the probability of
collisions is exponentially low. Thus, we can replace Prv∈G by Prv∈G′ where G′

is a “completed” graph containing all lists sampled uniformly at random with
replacement. This adds only a negligible number of vertices and does not impact
the probability of being discarded.

Improved Classical and Quantum Algorithms for Subset-Sum 663

Number of Vectors Having the Same Modulus. Let N � 2n and M be a divisor
of N . Given a particular e0 ∈ B and a vector a ∈ Z

n
N ,

For e ∈ B, define Xe(a) =

{
1 if e · a = e0 · a (mod M)
0 otherwise

We prove the following Lemma in the full version of the paper [8].

Lemma 7. If |B| � M � |L|, then for a 1 − negl(n) proportion of a ∈ Z
n
N , and

with an appropriate B = O (n):

Pr
e1,··· ,e|L|∼Unif(B)

⎡

⎣
|L|∑

i=1

Xei
(a) < B − 1

⎤

⎦ > 1 − 1
poly(n)

(1)

For the number of filtered pairs, we use the fact that the vectors at each level
are sampled uniformly at random from their distribution. If this is the case, then
a Chernoff bound (similar to the proof of Lemma 7) limits the deviation of the
number of filtered pairs in L′

l,C,i × L′
r,C,j from its expectation (which is 1 by

construction): the probability that there are more than B + 1 pairs is smaller
than e−(B+1)/3. By taking a sufficiently big B = O (n), we can take a union
bound over all products of lists L′

l,C,i × L′
r,C,j in which e0 intervenes. We also

take a union bound over the intermediate subknapsacks that we are considering.
The loss of vertices remains inverse polynomial.

6.4 Time Complexities Without Heuristic 2

Previous quantum subset-sum algorithms [6,18] have the same time complex-
ities without Heuristic 2, as they fall in parameter ranges where the bucket-
modulus data structure is enough. However, this is not the case of our new
quantum walk. We keep the same set of constraints and optimize with a new
update time. Although using the extended {−1, 0, 1, 2} representations brings
an improvement, neither do the fifth level, nor the left-right split. This simplifies
our constraints. Let m̂ax(·) = max(·, 0). The guaranteed update time becomes:

U = m̂ax

(

�3 − (c2 − c3)
︸ ︷︷ ︸

Level 2

, m̂ax(�3 − (c2 − c3) +
p2

2
)

︸ ︷︷ ︸

Number of elements
to update at level 1

+ m̂ax(�2 − (c1 − c2)),

1

2

(

m̂ax
(

�3−(c2−c3)+
p2

2

)

+ m̂ax
(

�2−(c1 − c2) +
p1

2

)

+ m̂ax(�1 − (1 − c1))
)

︸ ︷︷ ︸

Final quantum search among all updated elements

)

We obtain the time exponent 0.2182 (rounded upwards) with the following
parameters (rounded). The memory exponent is 0.2182 as well.

�0 = −0.2021, �1 = 0.1883, �2 = 0.2102, �3 = 0.2182, �4 = 0.2182
c3 = 0.2182, c2 = 0.4283, c1 = 0.6305, p0 = −0.2093, p1 = −0.0298, p2 = −0.0160

α1 = 0.0172, α2 = 0.0145, α3 = 0.0107, γ1 = 0.0020

664 X. Bonnetain et al.

7 Conclusion

In this paper, we proposed improved classical and quantum heuristic algorithms
for subset-sum, building upon several new ideas. First, we used extended rep-
resentations ({−1, 0, 1, 2}) to improve the current best classical and quantum
algorithms. In the quantum setting, we showed how to use a quantum search to
speed up the process of filtering representations, leading to an overall improve-
ment on existing work. We built an “asymmetric HGJ” algorithm that uses a
nested quantum search, leading to the first quantum speedup on subset-sum in
the model of classical memory with quantum random access. By combining all
our ideas, we obtained the best quantum walk algorithm for subset-sum in the
MNRS framework. Although its complexity still relies on Heuristic 2, we showed
how to partially overcome it and obtained the first quantum walk that requires
only the classical subset-sum heuristic, and the best to date for this problem.

Open Questions. We leave as open the possibility to use representations with
“−1”s (or even “2”s) in a quantum asymmetric merging tree, as in Sect. 4.3.
Another question is how to bridge the gap between heuristic and non-heuristic
quantum walk complexities. In our work, the use of an improved vertex data
structure seems to encounter a limitation, and we may need a more generic
result on quantum walks, similar to [2]. Finally, it would be of interest to study
representations with a larger set of integers.

Acknowledgments. The authors want to thank André Chailloux, Stacey Jeffery,
Antoine Joux, Frédéric Magniez, Alexander May, Amaury Pouly, Nicolas Sendrier
for helpful discussions and comments. Thanks to Zhenzhen Bao and the anonymous
CRYPTO and ASIACRYPT referees for their detailed comments. This project has
received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement no. 714294
- acronym QUASYModo). Research also supported in part by the ERA-NET Cofund in
Quantum Technologies project QuantAlgo and the French ANR Blanc project RDAM.

References

1. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput.
37(1), 210–239 (2007)

2. Ambainis, A.: Quantum search with variable times. Theory Comput. Syst. 47(3),
786–807 (2010)

3. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 21

4. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 31

5. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weak-
nesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-642-29011-4_31

Improved Classical and Quantum Algorithms for Subset-Sum 665

6. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp.
16–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9 2

7. Bonnetain, X.: Improved low-qubit hidden shift algorithms. CoRR (2019)
8. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and

quantum algorithms for subset-sum. IACR Cryptol. ePrint Arch., vol. 168 (2020).
https://eprint.iacr.org/2020/168

9. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and impli-
cations. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272,
pp. 560–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-
2 19

10. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol. 2019(2), 55–93 (2019)

11. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

12. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

13. Bricout, R., Chailloux, A., Debris-Alazard, T., Lequesne, M.: Ternary syndrome
decoding with large weight. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS,
vol. 11959, pp. 437–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-38471-5 18

14. Böhme, E.: Verbesserte Subset-Sum Algorithmen. Master’s thesis, Ruhr Univer-
sität Bochum (2011)

15. Esser, A., May, A.: Better sample - random subset sum in 20.255n and its impact
on decoding random linear codes. CoRR abs/1907.04295 (2019), withdrawn

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, W.H. (1979)

17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting 1996, pp. 212–219. ACM (1996)

18. Helm, A., May, A.: Subset sum quantumly in 1.17n. In: TQC. LIPIcs, vol. 111, pp.
5:1–5:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

19. Helm, A., May, A.: The power of few qubits and collisions – subset sum below
Grover’s bound. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol.
12100, pp. 445–460. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
44223-1 24

20. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack
problem. J. ACM 21(2), 277–292 (1974)

21. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 12

22. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 5

23. Kirshanova, E., Mårtensson, E., Postlethwaite, E.W., Moulik, S.R.: Quantum algo-
rithms for the approximate k -list problem and their application to lattice sieving.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp.
521–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 19

https://doi.org/10.1007/978-3-642-38616-9_2
https://eprint.iacr.org/2020/168
https://doi.org/10.1007/978-3-030-03326-2_19
https://doi.org/10.1007/978-3-030-03326-2_19
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-38471-5_18
https://doi.org/10.1007/978-3-030-38471-5_18
https://doi.org/10.1007/978-3-030-44223-1_24
https://doi.org/10.1007/978-3-030-44223-1_24
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-030-34578-5_19

666 X. Bonnetain et al.

24. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: TQC. LIPIcs, vol. 22, pp. 20–34. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2013)

25. Laarhoven, T.: Search problems in cryptography. Ph.D. thesis, PhD thesis, Eind-
hoven University of Technology (2015)

26. Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster
using quantum search. Des. Codes Cryptogr. 77(2–3), 375–400 (2015)

27. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. In: FOCS,
pp. 1–10. IEEE Computer Society (1983)

28. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS, vol. 3624, pp. 378–
389. Springer, Heidelberg (2005). https://doi.org/10.1007/11538462 32

29. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives
provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 382–400. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 23

30. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM
J. Comput. 40(1), 142–164 (2011)

31. May, A., Meurer, A., Thomae, E.: Decoding Random Linear Codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 6

32. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 9

33. Naya-Plasencia, M., Schrottenloher, A.: Optimal merging in quantum k-xor and
k-sum algorithms. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12106, pp. 311–340. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45724-2 11

34. Newman, D.J., Shepp, L.: The double dixie cup problem. Am. Math. Mon. 67(1),
58–61 (1960)

35. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
36. Ozerov, I.: Combinatorial Algorithms for Subset Sum Problems. Ph.D. thesis, Ruhr

Universität Bochum (2016)
37. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain

NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

https://doi.org/10.1007/11538462_32
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-030-45724-2_11
https://doi.org/10.1007/978-3-030-45724-2_11

Security Limitations of Classical-Client
Delegated Quantum Computing

Christian Badertscher1 , Alexandru Cojocaru2 , Léo Colisson3(B) ,
Elham Kashefi2,3, Dominik Leichtle3 , Atul Mantri4, and Petros Wallden2

1 IOHK, Zurich, Switzerland
christian.badertscher@iohk.io

2 School of Informatics, University of Edinburgh,
10 Crichton Street, Edinburgh EH8 9AB, UK

a.d.cojocaru@sms.ed.ac.uk, ekashefi@inf.ed.ac.uk, petros.wallden@ed.ac.uk
3 Laboratoire d’Informatique de Paris 6 (LIP6), Sorbonne Université,

4 Place Jussieu, 75252 Paris CEDEX 05, France
{leo.colisson,dominik.leichtle}@lip6.fr

4 Joint Center for Quantum Information and Computer Science (QuICS),
University of Maryland, College Park, USA

amantri@umd.edu

Abstract. Secure delegated quantum computing allows a computation-
ally weak client to outsource an arbitrary quantum computation to an
untrusted quantum server in a privacy-preserving manner. One of the
promising candidates to achieve classical delegation of quantum compu-
tation is classical-client remote state preparation (RSPCC), where a client
remotely prepares a quantum state using a classical channel. However,
the privacy loss incurred by employing RSPCC as a sub-module is unclear.
In this work, we investigate this question using the Constructive Cryp-
tography framework by Maurer and Renner [MR11]. We first identify
the goal of RSPCC as the construction of ideal RSP resources from clas-
sical channels and then reveal the security limitations of using RSPCC.
First, we uncover a fundamental relationship between constructing ideal
RSP resources (from classical channels) and the task of cloning quan-
tum states. Any classically constructed ideal RSP resource must leak to
the server the full classical description (possibly in an encoded form) of
the generated quantum state, even if we target computational security
only. As a consequence, we find that the realization of common RSP
resources, without weakening their guarantees drastically, is impossible
due to the no-cloning theorem. Second, the above result does not rule
out that a specific RSPCC protocol can replace the quantum channel at
least in some contexts, such as the Universal Blind Quantum Comput-
ing (UBQC) protocol of Broadbent et al. [BFK09]. However, we show
that the resulting UBQC protocol cannot maintain its proven compos-
able security as soon as RSPCC is used as a subroutine. Third, we show
that replacing the quantum channel of the above UBQC protocol by the
RSPCC protocol QFactory of Cojocaru et al. [CCKW19] preserves the
weaker, game-based, security of UBQC.

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 667–696, 2020.
https://doi.org/10.1007/978-3-030-64834-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_23&domain=pdf
http://orcid.org/0000-0002-1353-1922
http://orcid.org/0000-0003-2710-1170
http://orcid.org/0000-0001-8963-4656
http://orcid.org/0000-0002-4882-889X
http://orcid.org/0000-0002-0255-6542
https://doi.org/10.1007/978-3-030-64834-3_23

668 C. Badertscher et al.

Keywords: Remote state preparation · Blind quantum computing

1 Introduction

The expected rapid advances in quantum technologies in the decades to come are
likely to further disrupt the field of computing. To fully realize the technological
potential, remote access, and manipulation of data must offer strong privacy
and integrity guarantees and currently available quantum cloud platform designs
have still a lot of room for improvement.

There is a large body of research that exploits the client-server setting
defined in [Chi05] to offer different functionalities, including secure delegated
quantum computation [BFK09,MF13,DFPR14,Bro15a,Mah18a,Fit17], verifi-
able delegated quantum computation [ABOE08,RUV12,FK17,HM15,Bro15b,
FHM18,TMM+18,Mah18b,GKK19,Vid20], secure multiparty quantum com-
putation [KP17,KMW17,KW17], and quantum fully homomorphic encryption
[BJ15,DSS16]. It turns out that one of the central building blocks for most of
these protocols is secure remote state preparation (RSP) that was first defined
in [DKL12]. At a high level, RSP resources enable a client to remotely pre-
pare a quantum state on the server side and are, therefore, the natural can-
didate to replace quantum channel resources in a modular fashion. These
resources further appear to enable a large ecosystem of composable proto-
cols [DKL12,DFPR14], including in particular the Universal Blind Quantum
Computation (UBQC) [BFK09] protocol used to delegate a computation to a
remote quantum server who has no knowledge of the ongoing computation.

However, in most of the above-mentioned works, the users and providers do
have access to quantum resources to achieve their goals, in particular to quantum
channels in addition to classical communication channels. This might prove to be
challenging for some quantum devices, e.g. those with superconducting qubits,
and in general, it also restricts the use of these quantum cloud services to users
with suitable quantum technology.

Motivated by these practical constraints, [CCKW18] introduced a protocol
mimicking this remote state preparation resource over a purely classical channel
(under the assumption that the learning-with-error (LWE) problem is compu-
tationally hard for quantum servers). This is a cryptographic primitive between
a fully classical client and a server (with a quantum computer). By the end of
the interactive protocol the client has “prepared” remotely on the server’s lab, a
quantum state (typically a single qubit |+θ〉 := 1√

2
(|0〉 + eiθ |1〉)). This protocol

further enjoys some important privacy guarantees concerning the prepared state.
The important role of such a classical RSP primitive as part of larger protocols
– most notably in their role in replacing quantum channels between client and
server – stems from their ability to make the aforementioned protocols available
to classical users, in particular clients without quantum-capable infrastructure
on their end. It is therefore of utmost importance to develop an understanding of
this primitive, notably its security guarantees when composed in larger contexts
such as in [GV19].

Security Limitations of Classical-Client Delegated Quantum Computing 669

Fig. 1. Ideal resource SZ
π
2

In this paper, we initiate the study of analyzing classical remote state-
preparation from first principles. We thereby follow the Constructive Cryp-
tography (CC) framework [MR11,Mau11] to provide a clean treatment of the
RSP primitive from a composable perspective. (Note that the framework is also
referred to as Abstract Cryptography (AC) in earlier works.) Armed with such a
definition, we then investigate the limitations and possibilities of using classical
RSP both in general and in more specific contexts.

1.1 Overview of Our Contributions

In this work, we cover the security of RSPCC, the class of remote state preparation
protocols which only use a classical channel, and the use-case that corresponds
to its arguably most important application: Universal Blind Quantum Comput-
ing (UBQC) protocols with a completely classical client. The UBQC protocol
can be divided in two stages: first, the client needs to send random |+θ〉 (with
θ ∈ {0, π

4 , . . . , 7π
4 }) to the server, and after this initial quantum interaction,

the communication is purely classical. In this work, we analyze the security of
UBQCCC, the family of protocols where a protocol in RSPCC is used to replace the
initial quantum interaction from the original quantum-client UBQC protocol. An
example of an RSP resource is the SZ

π
2

resource where Zπ/2 = {0, π/2, π, 3π/2}
depicted in Fig. 1 outputting the quantum state |+θ〉 on its right interface, and
the classical description of this state, θ, on its left interface.

In Sect. 3, we show a wide-ranging limitation to the universally composable
guarantees that any protocol in the family RSPCC can achieve. The limitation fol-
lows just from the relation between (i) the notion of classical realization and (ii)
a property we call describability – which roughly speaking measures how leaky
an RSP resource is, i.e. what amount of information about the classical descrip-
tion of the final state can be extracted by an unbounded malicious server. We
emphasize that even if this specific property is an information-theoretic notion,
our final impossibility result also targets computational security. The limitation
directly affects the amount of additional leakage on the classical description of
the quantum state. In this way, it rules out a wide set of desirable resources,
even against computationally bounded distinguishers.

Theorem 1 (Security Limitations of RSPCC). Any RSP resource, realizable by
an RSPCC protocol with security against quantum polynomial-time distinguish-
ers, must leak an encoded, but complete description of the generated quantum
state to the server.

The importance of Theorem 1 lies in the fact that it is drawing a connec-
tion between the composability of an RSPCC protocol – a computational notion

670 C. Badertscher et al.

Fig. 2. Idea of the proof of impossibility of composable RSPCC, exemplified by the SZ
π
2

primitive from Fig. 1. π̃B runs the same computations as πB by emulating it. In this
way, the classical description of the quantum state can be extracted.

– with the statistical leakage of the ideal functionality it is constructing – an
information-theoretic notion. This allows us to use fundamental physical princi-
ples such as no-cloning or no-signaling in the security analysis of computationally
secure RSPCC protocols. As one direct application of this powerful tool, we show
that secure implementations of the ideal resource in Fig. 1 give rise to the con-
struction of a quantum cloner, and are hence impossible.

Proof Sketch. While Theorem 1 applies to much more general RSP resources hav-
ing arbitrary behavior at its interfaces and targeting any output quantum state,
for simplicity we exemplify the main ideas of our proof for the ideal resource
SZ

π
2
. The composable security of a protocol realizing SZ

π
2

implies, by definition,
the existence of a simulator σ which turns the right interface of the ideal resource
into a completely classical interface as depicted in Fig. 2. Running the protocol of
the honest server with access to this classical interface allows the distinguisher
to reconstruct the quantum state |+θ〉 the simulator received from the ideal
resource. Since the distinguisher also has access to θ via the left interface of the
ideal resource, it can perform a simple measurement to verify the consistency of
the state obtained after interacting with the simulator. By the correctness of the
protocol, the obtained quantum state |+θ〉 must therefore indeed comply with
θ. We emphasize that this consistency check can be performed efficiently, i.e. by
polynomially-bounded quantum distinguishers.

Since the quantum state, |+θ〉, is transmitted from σ to the distinguisher over
a classical channel, the ensemble of exchanged classical messages must contain a
complete encoding of the description of the state, θ. A (possibly computationally
unbounded) algorithm can hence extract the actual description of the state using
a classical emulation of the honest server. This property of the ideal resource is
central to our proof technique, we call it describability. ��

Having a full description of the quantum state produced by SZ
π
2

would allow
us to clone it, a procedure prohibited by the no-cloning theorem. We conclude
that the resource SZ

π
2

cannot be constructed from a classical channel only.
One could attempt to modify the ideal resource, to incorporate such an exten-

sive leakage, which is necessary as the above proof implies. However, this yields

Security Limitations of Classical-Client Delegated Quantum Computing 671

an ideal resource that is not a useful idealization or abstraction of the real
world (because it is fully leaky, i.e. reveals to a malicious server the full clas-
sical description of the state) which puts in question whether they are at all
useful in a composable analysis. Indeed, ideal resources are typically described
in a way that it is obvious that they are secure (i.e. in a perfect, ideal sense),
and we can then claim that a protocol is secure because it is (for any com-
putationally bounded distinguisher) indistinguishable from the perfectly secure
resource. Consider for example constructions of composite protocols that utilize
a (non-leaky) ideal resource as a sub-module, say that leaks only the size of an
encrypted message. These constructions require a fresh security analysis if the
sub-module is replaced by any leaky version of it (like a resource leaking a spe-
cific encrypted form of the real message), but since the modified resource is very
specific and not trivially secure, it appears that this replacement does not give
any benefit compared to directly using the implementation as a subroutine and
then examining the composable security of the combined protocol as a whole.
This latter way is therefore examined next.

More precisely, we might still be able to use RSPCC protocols as a subroutine
in other, specific protocols, and expect the overall protocol to still construct a
useful ideal functionality. The protocol family UBQCCC is such an application.
Unfortunately, as we show in Sect. 4, UBQCCC fails to provide the expected
composable security guarantees once classical remote state preparation is used
to replace the quantum channel from client to server (where composable secu-
rity for UBQC refers to the goal of achieving the established ideal functionality
of [DFPR14] which we recall in Sect. 4). This holds even if the distinguisher is
computationally bounded.

Theorem 3 (Impossibility of UBQCCC). No RSPCC protocol can replace the quan-
tum channel in the UBQC protocol while preserving composable security.

Proof Sketch. To prove the impossibility of UBQCCC protocol we show that there
does not exist any simulator that can be attached to the ideal UBQC function-
ality to emulate the behavior of concrete UBQCCC protocol. This UBQCCC uses
any RSPCC protocol as a subroutine in the UBQC protocol of [BFK09] to enable
the delegation of quantum computation with a completely classical-client. The
proof proceeds in three steps. Firstly, we realize that the possibility of a com-
posable UBQCCC protocol, which delegates arbitrary quantum computation, can
be reduced to the possibility of any composable UBQCCC protocol that delegates
single-qubit quantum computation. The latter protocol is much simpler to ana-
lyze. Next, we present a connection between the single-qubit UBQCCC and the
RSP functionality. This step allows us to employ the toolbox we developed for
our previous result (Theorem 1). Finally, we show that the existence of a sim-
ulator for such an RSP functionality (that leaks the classical description, even
in the form of an encoded message) would violate the no-signaling principle.
Therefore, via this series of reduction, we show that the UBQC functionality,
as defined in [DFPR14], cannot be realized with only a classical channel by any
UBQCCC protocol of this kind (the one which uses RSP functionality to replace
quantum channel in UBQC protocol). ��

672 C. Badertscher et al.

In Sect. 5, we show that the protocol family RSPCC contains protocols with
reasonably restricted leakage that can be used as subroutines in specific applica-
tions resulting in combined protocols that offer a decent level of security. Specifi-
cally, we prove the blindness property of QF-UBQC, a concrete UBQCCC protocol
that consists of the universal blind quantum computation (UBQC) protocol of
[BFK09] and the specific LWE-based remote state preparation (RSPCC) proto-
col from [CCKW19]. This yields the first provably secure UBQCCC protocol from
standard assumptions with a classical RSP protocol as a subroutine.

Theorem 4 (Game-Based Security of QF-UBQC). The universal blind quantum
computation protocol with a classical client UBQCCC that combines the RSPCC

protocol of [CCKW19] and the UBQC protocol of [BFK09] is blind in the game-
based setting. We call this protocol QF-UBQC.

The statement of Theorem 4 can be summarized as follows: No malicious (but
computationally bounded) server in the QF-UBQC protocol could distinguish
between two runs of the protocol performing different computations. This holds
even when it is the adversary that chooses the two computations that it will be
asked to distinguish. The security is achieved in the plain model, i.e., without
relying on additional setup such as a measurement buffer. The protocol itself is
a combination of UBQC with the QFactory protocol. For every qubit that the
client would transmit to the server in the original UBQC protocol, QFactory is
invoked as a subprocedure to the end of remotely preparing the respective qubit
state on the server over a classical channel.

Proof Sketch. By a series of games, we show that the real protocol on a single
qubit is indistinguishable from a game where the adversary guesses the outcome
of a hidden coin flip. We generalize this special case to the full protocol on arbi-
trary quantum computation with a polynomial number of qubits by induction
over the size of the computation. ��

1.2 Related Work

While RSPCC was first introduced in [CCKW18] (under a different terminology),
(game-based) security was only proven against weak (honest-but-curious) adver-
saries. Security against malicious adversaries was proven for a modified protocol
in [CCKW19], where a verifiable version of RSPCC was also given, but security
was not proven in full generality. This protocol, called QFactory, is the basis of
the positive results in this work. It is important to note that [CCKW19] only
shows the (game-based) security of QFactory whereas, in this work, we prove the
(game-based) security of a classical-client delegated quantum computing proto-
col that uses QFactory as a subroutine. QFactory was also used as a sub-module
by [Zha20] to design a blind quantum computing scheme with a succinct quantum
client. In parallel [GV19] gave another protocol that offers a stronger notion of
verifiable RSPCC and proved the security of their primitive in the CC framework.

Security Limitations of Classical-Client Delegated Quantum Computing 673

The security analysis, however, requires the assumption of a measurement buffer
resource in addition to the classical channel to construct a verifiable RSPCC. The
ideal functionality of the measurement buffer takes from Alice a classical message
x and from Bob a classical message ξ corresponding to the measurement opera-
tion along with a quantum state ρ, respectively, and outputs the measurement
outcome ξ(x, ρ) to both Alice and Bob. Bob also receives the post-measurement
quantum state. Our result confirms that this measurement buffer resource is a
strictly non-classical assumption.

In the information-theoretic setting with perfect security (leaking at most
the input size), the question of secure delegation of quantum computation with
a completely classical client was first considered in [MK14]. The authors showed
a negative result by presenting a scheme-dependent impossibility proof. This
was further studied in [DK16,ACGK19] which showed that such a classical
delegation would have implications in computational complexity theory. To be
precise, [ACGK19] conjecture that such a result is unlikely by presenting an
oracle separation between BQP and the class of problems that can be classi-
cally delegated with perfect security (which is equivalent to the complexity class
NP/poly∩coNP/poly as proven by [AFK87]). On the other hand, a different
approach to secure delegated quantum computation with a completely classical
client, without going via the route of RSPCC, was also developed in [MDMF17]
where the server is computationally unbounded and in [Mah18a,Bra18] with
the computationally bounded server. The security was analyzed for the overall
protocol (rather than using a module to replace quantum communication). It
is worth noting that [MDMF17] is known to be not composable secure in the
Constructive Cryptography framework [Man19].

2 Preliminaries

We assume basic familiarity with quantum computing, for a detailed introduc-
tion, see [NC00] (in this paper we only deal with finite dimensional Hilbert
spaces).

2.1 The Constructive Cryptography Framework

There exists a few frameworks [BOM04,Unr04,Unr10,MR11] for general com-
posability in the quantum world. We chose to use the Constructive Cryptography
(CC) framework mostly because its abstraction levels allow having a result that
is independent of any universal quantum computation model. Also, using CC
is a common approach to analyze both classical as well as quantum primitives,
and their composable security guarantees in general and in related works includ-
ing [DFPR14,MK13,DK16,GV19]. However, our results should be easy to port
to other general composable frameworks.

The Constructive Cryptography (CC) framework (also sometimes referred
to as the Abstract Cryptography (AC) framework) introduced by Maurer and

674 C. Badertscher et al.

Renner [MR11] is a top-down and axiomatic approach, where the desired func-
tionality is described as an (ideal) resource S with a certain input-output behav-
ior independent of any particular implementation scheme. A resource has some
interfaces I corresponding to the different parties that could use the resource. In
our case, we will have only two interfaces corresponding to Alice (the client) and
Bob (the server), therefore I = {A,B}. Resources are not just used to describe
the desired functionality (such as a perfect state preparation resource), but also
to model the assumed resources of a protocol (e.g., a communication channel).
The second important notion is the converter which, for example, is used to
define a protocol. Converters always have two interfaces, an inner and an outer
one, and the inner interface can be connected to the interface of a resource.
When we denote by πARπB we refer to connecting the inner interfaces of πA

and πB to the interfaces A and B of the resource R.
To characterize the distance between two resources (and therefore the secu-

rity), we use the so-called distinguishers. We then say that two resources S1

and S2 are indistinguishable (within ε), and denote it as S1 ≈ε S2, if no dis-
tinguisher can distinguish between S1 and S2 with an advantage greater than
ε. In the following, we will mostly focus on quantum polynomial-time (QPT)
distinguishers.

Central to Constructive Cryptography is the notion of a secure construction
of an (ideal) resource S from an assumed resource R by a protocol (specified
as a pair of converters). We directly state the definition for the special case we
are interested in, namely in two-party protocols between a client A and a server
B, where A is always considered to be honest. The definition can therefore be
simplified as follows:

Definition 1 (See [Mau11,MR11]). Let I = {A,B} be a set of two interfaces
(A being the left interface and B the right one), and let R,S be two resources.
Then, we say that for the two converters πA, πB, the protocol π := (πA, πB)
(securely) constructs S from R within ε, or that R realizes S within ε if the
following two conditions are satisfied:

1. Availability (i.e. correctness):

πARπB ≈ε S � (1)

(where � represents a filter, i.e. a trivial converter that enforces honest/correct
behavior, and A ≈ε B means that no quantum polynomial-time (QPT) dis-
tinguisher can distinguish between A and B (given black-box access to A or
B) with an advantage better than ε)

2. Security: there exists σ ∈ Σ (called a simulator) such that:

πAR ≈ε Sσ (2)

We also extend this definition when ε is a function ε : N → R: we say that S is
ε-classically-realizable if for any n ∈ N, S is ε(n)-realizable.

Security Limitations of Classical-Client Delegated Quantum Computing 675

In our work, we instantiate a general model of computation to capture general
quantum computations within converters which ensures that they follow the laws
of quantum physics (e.g., excluding that the input-output behavior is signaling).
Indeed, without such a restriction, we could not base our statements on results
from quantum physics, because an arbitrary physical reality may not respect
them, such as cloning of quantum states, signaling, and more. More specifically,
in this work, we assume that any converter that interacts classically on its inner
interface and outputs a single quantum message on its outer interface can be
represented as a sequence of quantum instruments (which is a generalization of
CPTP maps taking into account both quantum and classical outputs, see [DL70])
and constitutes the most general expression of allowed quantum operations. More
precisely, this model takes into account interactive converters (and models the
computation in sequential dependent stages). This is similar to if one would in
the classical world instantiate the converter by a sequence of classical Turing
machines (passing state to each other) [Gol01].

2.2 Notation

We denote by Z
π
2 the set of the 4 angles {0, π

2 , π, 3π
2 }, and Z

π
4 = {0, π

4 , ..., 7π
4 } the

similar set of 8 angles. If ρ is a quantum state, [ρ] is the classical representation
(as a density matrix) of this state. We also denote the quantum state |+θ〉 :=
1√
2
(|0〉 + eiθ |1〉), where θ ∈ Z

π
4 , and for any angle θ, [θ] will denote [|+θ〉〈+θ|],

i.e. the classical description of the density matrix corresponding to |+θ〉. For a
protocol P = (P1, P2) with two interacting algorithms P1 and P2 denoting the
two participating parties, let 〈P1, P2〉 denote the execution of the two algorithms,
exchanging messages. We use the notation C to denote the classical channel
resource, that just forwards classical messages between the two parties.

3 Impossibility of Composable Classical RSP

In this section, we first define what RSP tries to achieve in terms of resources
and subsequently quantify the amount of information that an ideal RSP resource
must leak to the server. One would expect that, against a computationally
bounded distinguisher, the resource can express clear privacy guarantees (i.e.
a small amount of leakage), but we prove that it cannot be the case.

The reason is as follows: assuming that there exists a simulator making the
ideal resource indistinguishable from the real protocol, we can exploit this fact
to construct an algorithm that can classically describe the quantum state given
by the ideal resource. It is not difficult to verify that there could exist an inef-
ficient algorithm (i.e. with exponential run-time) that achieves such a task. We
show that even a computationally bounded distinguisher can distinguish the real
protocol from the ideal protocol whenever a simulator’s strategy is independent
of the classical description of the quantum state. This would mean that for an
RSP protocol to be composable there must exist a simulator that possesses at
least a classical transcript encoding the description of a quantum state. This fact

676 C. Badertscher et al.

coupled with the quantum no-cloning theorem implies that the most meaningful
and natural RSP resources cannot be realized from a classical channel alone. We
finally conclude the section by looking at the class of imperfect (describable)
RSP resources which avoid the no-go result at the price of being “fully-leaky”,
not standard, and having an unfortunately unclear composable security.

3.1 Remote State Preparation and Describable Resources

We first introduce, based on the standard definition in the Constructive Cryptog-
raphy framework, the notion of correctness and security of a two-party protocol
which constructs (realizes) a resource from a classical channel C.

Definition 2 (Classically-Realizable Resource). An ideal resource S is
said to be ε-classically-realizable if it is realizable from a classical channel in
the sense of Definition 1.

A simple ideal prototype that captures the goal of a RSP protocol could be
phrased as follows: the resource outputs a quantum state (chosen from a set of
states) on one interface and a classical description of that state on the other
interface to the client. For our purposes, this view is too narrow and we want to
generalize this notion. For instance, a resource could accept some inputs from
the client or interact with the server, and it may still be possible to use this
resource to come up with a quantum state and its description. More precisely,
if there is an efficient way to convert the client and server interfaces to comply
with the basic prototype above, then such a resource can be understood as RSP
resource, too. To make this idea formal, we need to introduce some converters
that witness this:

1. A converter A will output, after interacting with the ideal resource, a classical
description [ρ] which is one of the following:
(a) A density matrix (positive and with trace 1) corresponding to a quantum

state ρ.
(b) The null matrix, which is useful to denote the fact that we detected some

deviation that should not happen in an honest run.
2. A converter Q, whose goal is to output a quantum state ρ′ as close as possible

to the state ρ output by A.
3. A converter P, whose goal is to output a classical description [ρ′] of a quantum

state ρ′ which is close to ρ (cf. Definition 3).

An RSP must meet two central criteria:

1. Accuracy of the classical description of the obtained quantum state: We
require that the quantum state ρ described by A’s output is close to Q’s
output ρ′. This is to be understood in terms of the trace distance.

2. Purity of the obtained quantum state: Since the RSP resource aims to replace
a noise-free quantum channel, it is desirable that the quantum state output
by Q admit a high degree of purity, i.e. more formally, that Tr

(
ρ′2) be close

to one. Since ρ′ is required to be close to ρ, this implies a high purity of ρ as
well.

Security Limitations of Classical-Client Delegated Quantum Computing 677

It turns out that these two conditions can be unified and equivalently captured
requiring that the quantity Tr(ρρ′) is close to one. A rigorous formulation of this
claim and its proof is provided in the full version of this work [BCC+20].

An RSP resource (together with A and Q) can also be seen as a resource
whose accuracy can be easily tested. For example, if such a resource outputs a
state ρ′, instead of |φ〉 (i.e. [ρ] = [|φ〉〈φ|]), then one way to verify this behavior
would be to measure ρ′ by doing a projection on |φ〉. This test would pass with
probability ps := 〈φ|ρ′|φ〉, and therefore if the resource outputs correct state
(i.e. if ρ′ = |φ〉〈φ|), the test will always succeed. However, when ρ′ is far from
|φ〉〈φ|, this test is unlikely to pass, and we will have ps < 1. We can then gener-
alize this same idea for arbitrary (eventually not pure) states by remarking that
ps = 〈φ|ρ′|φ〉 = Tr(|φ〉〈φ|ρ′) = Tr(ρρ′). Indeed, this last expression corresponds
exactly to the probability of outputting E0 when measuring the state ρ′ accord-
ing to the POVM {E0 := ρ,E1 := I − ρ}, and since the classical description of ρ
is known, it is possible to perform this POVM and test the (average) accuracy
of the resource. When ρ is pure, the expression is equal to the (squared) fidelity
between ρ and ρ′. This motivates the following definition, which characterizes
the set of RSP resources.

Definition 3 (RSP resources). A resource S is said to be ε-remote state prepa-
ration resource (or equivalently, a remote state preparation resource within ε
with respect to converters A and Q) if the following three conditions hold: (1)
both converters output a single message at the outer interface, where the out-
put [ρ] of A is classical and is either a density matrix or the null matrix, and
the output ρ′ of Q can be any quantum state of same dimension as ρ; (2) the
equation:

E
([ρ],ρ′)←AS�Q

[Tr(ρρ′)] ≥ 1 − ε (3)

is satisfied, where the probability is taken over the randomness of A, S and Q,
and finally, (3) for all the possible outputs [ρ] of ([ρ], ρ′) ← AS � Q, if we define
E0 = ρ, E1 = I − ρ, then the POVM {E0, E1} must be efficiently implementable
by any distinguisher.

Describable Resources. So far, we have specified that a resource qualifies as an
RSP resource if, when all parties follow the protocol, we know how to compute a
quantum state on the right interface and classical description of a “close” state
on the other interface. A security-related question now is, if it is also possible
to extract (possibly inefficiently) from the right interface a classical description
of a quantum state that is close to the state described by the client. If we find
a converter P doing this, we would call the (RSP) resource describable. The
following definition captures this.

Definition 4 (Describable Resource). Let S be a resource and A a converter
outputting a single classical message [ρ] on its outer interface (either equal to a
density matrix or the null matrix). Then we say that (S,A) is ε-describable (or,
equivalently, that S is describable within ε with respect to A) if there exists a

678 C. Badertscher et al.

(possibly unbounded) converter P (outputting a single classical message [ρ′] on
its outer interface representing a density matrix) such that:

E
([ρ],[ρ′])←ASP

[Tr(ρρ′)] ≥ 1 − ε (4)

(the expectation is taken over the randomness of S, A and P).

Reproducible Converters. In the proof of our first result, we will encounter a
crucial decoding step. Roughly speaking, the core of this decoding step is the
ability to convert the classical interaction with a client, which can be seen as an
arbitrary encoding of a quantum state, back into an explicit representation of
the state prepared by the server. The ability of such a conversion can be phrased
by the following definition.

Definition 5 (Reproducible Converter). A converter π is said to be repro-
ducible if there exists a converter π̃ such that the following holds

Cπ ≈Du

0 Cπ̃T , (5)

where π̃, possibly inefficient converter, outputs only a classical message [ρ′] at its
right interface, and T takes as input on its inner interface a classical description,
[ρ′], of a quantum state ρ′ and reproduces the exact same quantum state ρ′. The
indistinguishability requirement is with respect to any unbounded distinguisher
D ∈ Du and the subscript “0” refers to perfect indistinguishability. Since C
represents classical channel and is a neutral resource, the above condition can be
equivalently written as π ≈Du

0 π̃T . This is pictorially represented in Fig. 3.

Fig. 3. Reproducible converter.

Classical Communication and Reproducibility. We see that in general, being
reproducible is a property that stands in conflict with the quantum no-cloning
theorem. More precisely, the ability to reproduce implies that there is a way to
extract knowledge of a state sufficient to clone it. However, whenever communi-
cation is classical, quite the opposite is true. This is formalized in the following
lemma. Intuitively, it says that in principle it is always possible to compute
the exact description of the state from the classical transcript and the quan-
tum instruments (circuit) used to implement the action of the converter. The
following statement is proven in the full version of this work [BCC+20].

Security Limitations of Classical-Client Delegated Quantum Computing 679

Lemma 1. Let π = (πi)i be a converter, where πi are quantum instruments
corresponding to the successive rounds of the protocol π. Then π is reproducible
if (i) it receives and transmits only classical messages from the inner interfaces,
and (ii) it outputs at the end a quantum state on the outer interface.

3.2 Classically-Realizable RSP are Describable

In this section we show our main result about remote state preparation resources,
which interestingly links a constructive notion (composability) concerning a com-
putational notion with an information-theoretic property (describability). As a
consequence, we obtain the impossibility of non-describable RSPCC composable
protocols (secure against computationally bounded distinguishers). While this
connection does not rule out all the possible RSP resources, it shows that most
useful RSP resources are impossible. Indeed, the describable property is usually
not desirable, as it implies an unbounded adversary could learn the description
of the state it received from an ideal resource. To illustrate this theorem, we will
see in the Sect. 3.3 some examples showing how this result can be used to prove
the impossibility of classical protocols implementing some specific resources, and
in Sect. 3.4 we give a brief outline how “imperfect” resources could escape the
impossibility result.

Theorem 1 (Classically-Realizable RSP are Describable). If an ideal
resource S is both an ε1-remote state preparation with respect to some A and
Q and ε2-classically-realizable (including against only polynomially bounded dis-
tinguishers), then it is (ε1 + 2ε2)-describable with respect to A. In particular, if
ε1 = negl(n) and ε2 = negl(n), then S is describable within a negligible error
ε1 + 2ε2 = negl(n).

Proof. Let S be an ε1-remote state preparation resource with respect to (A,Q)
which is ε2-classically-realizable. Then there exist πA, πB , σ, such that:

E
([ρ],ρ′)←AS�Q

[Tr(ρρ′)] ≥ 1 − ε1 (6)

πACπB ≈ε2 S � (7)

and
πAC ≈ε2 Sσ (8)

Now, using (7), we get:
AπACπBQ ≈ε2 AS � Q (9)

So it means that we can’t distinguish between AS � Q and AπACπBQ with
an advantage better than ε2 (i.e. with probability better than 1

2 (1 + ε2)). But,
if we construct the following distinguisher, that runs ([ρ], ρ′) ← AS � Q, and
then measures ρ′ using the POVM {E0, E1} (possible because this POVM is
assumed to be efficiently implementable by distinguishers in D), with E0 = [ρ]
and E1 = I − [ρ] (which is possible because we know the classical description of
ρ, which is positive and smaller than I, even when [ρ] = 0), we will measure E0

680 C. Badertscher et al.

with probability 1 − ε1. So it means that by replacing AS � Q with AπACπBQ,
the overall probability of measuring E0 needs to be close to 1−ε1. More precisely,
we need to have:

E
([ρ],ρ′)←AπACπBQ

[Tr(ρρ′)] ≥ 1 − ε1 − ε2 (10)

Indeed, if the above probability is smaller than 1−ε1−ε2, then we can define
a distinguisher that outputs 0 if it measures E0, and 1 if it measures E1, and his
probability of distinguishing the two distributions would be equal to:

1
2

E
([ρ],ρ′)←AS�Q

[Tr(ρρ′)] +
1
2

E
([ρ],ρ′)←AπACπBQ

[Tr((I − ρ)ρ′)] (11)

>
1
2

((1 − ε1) + 1 − (1 − ε1 − ε2)) =
1
2
(1 + ε2) (12)

So this distinguisher would have an advantage greater than ε2, which is in
contradiction with Eq. (9).

Using a similar argument and Eq. (7), we have:

E
([ρ],ρ′)←ASσπBQ

[Tr(ρρ′)] ≥ 1 − ε1 − 2ε2 (13)

We will now use πBQ to construct a B that can describe the state given by
the ideal resource. To do that, because πBQ interacts only classically with the
inner interface and outputs a single quantum state on the outer interface, then
according to Lemma 1, πBQ is reproducible, i.e. there exists a B such that
πBQ ≈0 BT . Note that here B is not efficient anymore. Of course, the proof
does apply when the distinguisher is polynomially bounded. Therefore, we have:

E
([ρ],ρ′)←ASσBT

[Tr(ρρ′)] ≥ 1 − ε1 − 2ε2 (14)

T could be omitted as it only converts the classical description [ρ′] into ρ′. After
defining P = σB, we have that S is (ε1 + 2ε2)-describable. ��

3.3 RSP Resources Impossible to Realize Classically

In the last section, we proved that if an RSP functionality is classically-
realizable (secure against polynomial quantum distinguishers), then this resource
is describable by an unbounded adversary having access to the right interface of
that resource.

Our main result in the previous section directly implies that as long as there
exists no unbounded adversary that, given access to the right interface, can find
the classical description given on the left interface, then the RSP resource is
impossible to classically realize (against QPT distinguishers). Very importantly,
this no-go result shows that the only type of RSP resources that can be classically
realized are the ones that leak on the right interface enough information to allow
a (possibly unbounded) adversary to determine the classical description given

Security Limitations of Classical-Client Delegated Quantum Computing 681

on the left interface. From a security point of view, this property is highly non-
desirable, as the resource must leak the secret description of the state at least in
some representation. In this section, we present some of these RSP resources that
are impossible to realize classically. The proofs of all results from this section
can be found in the full version of this work [BCC+20].

Definition 6 (Ideal Resource SZ
π
2
). SZ

π
2

is the verifiable RSP resource (RSP
which does not allow any deviation from the server), that receives no input, that
internally picks a random θ ← Z

π
2 , and that sends θ on the left interface, and

|+θ〉 on the right interface as shown in Fig. 1.

Lemma 2. There exists a universal constant η > 0, such that for all 0 ≤ ε < η
the resource SZ

π
2

is not ε-classically-realizable.

Next, we describe a verifiable remote state preparation RSPV , a variant of
SZ

π
2
, introduced in [GV19]. Unlike SZ

π
2
, in RSPV , the dishonest server can make

the resource abort and the client can partially choose the basis of the output
state. However, similar to the SZ

π
2
, we prove that classically-realizable RSPV is

also not possible.

Definition 7 (Ideal Resource RSPV, See [GV19]). The ideal verifiable
remote state preparation resource, RSPV, takes an input W ∈ {X,Z} on the
left interface, but no honest input on the right interface. The right interface has
a filtered functionality that corresponds to a bit c ∈ {0, 1}. When c = 1, RSPV

outputs error message ERR on both the interfaces, otherwise:

1. if W = Z the resource picks a random bit b and outputs b ∈ Z2 to the left
interface and a computational basis state |b〉 〈b| to the right interface;

2. if W = X the resource picks a random angle θ ∈ Z
π
4 and outputs θ to the left

interface and a quantum state |+θ〉 〈+θ| to the right interface.

Corollary 1. There exists a universal constant η > 0, such that for all 0 ≤ ε <
η the resource RSPV is not ε-classically-realizable.

Remark 1. Note that our impossibility of classically-realizing RSPV does not con-
tradict the result of [GV19]. Specifically, in their work they make use of an addi-
tional assumption of the so-called measurement buffer, see section Sect. 1.2. How-
ever, we show that it is impossible to realize this measurement buffer resource
with a protocol interacting purely classically, therefore the measurement buffer
recreates a quantum channel. Additionally, this method has a second drawback:
the server can put a known state as the input of the measurement buffer, and if
the dishonest server passes the test (an event that occurs with probability 1

n),
then he can check that the state has not been changed, leading to polynomial
security (a polynomially bounded distinguisher can distinguish between the ideal
and the real world). As in CC, the security of the whole protocol is the sum of
the security of the inner protocols, any protocol using this RSP as a sub-module
will not be asymptotically secure (against QPT distinguisher).

682 C. Badertscher et al.

3.4 Accepting the Limitations: Fully Leaky RSP Resources

As explained in the previous section, Theorem 1 rules out all resources that are
impossible to be describable with unbounded power, and that the only type of
classically-realizable RSP resources would be the one leaking the full classical
description of the output quantum state to an unbounded adversary, which we
will refer to as being fully-leaky RSP. Fully-leaky RSP resources can be separated
into two categories:

1. If the RSP is describable in quantum polynomial time, then the adversary
can get the full description in polynomial time. This is not an interesting
case as the useful properties that we know from quantum computations (such
as UBQC) cannot be preserved if such a resource is employed to prepare the
quantum states.

2. If the RSP is only describable using unbounded power, then these fully-leaky
RSP resources are not trivially insecure, but their universally composable
security remains unclear. Indeed, it defeats the purpose of aiming at a nice
ideal resource where the provided security should be clear “by definition”
and it becomes hard to quantify the impact of this additional leakage when
composed with other protocols. A possible remedy would be to show restricted
composition following [JM17] which we discuss in the full version of this
work [BCC+20], where we also present a concrete resource that falls into this
second category, i.e., one that leaks an encoding of the classical description
of the final state that is not trivially decodable.

4 Impossibility of Composable Classical-Client UBQC

In the previous section, we showed that it was impossible to get a (useful) com-
posable RSPCC protocol. A (weaker) RSP protocol, however, could still be used
internally in other protocols, hoping for the overall protocol to be composably
secure. To this end, we analyze the composable security of a well-known delegated
quantum computing protocol, universal blind quantum computation (UBQC),
proposed in [BFK09]. The UBQC protocol allows a semi-quantum client, Alice,
to delegate an arbitrary quantum computation to a (universal) quantum server
Bob, in such a way that her input, the quantum computation, and the output
of the computation are information-theoretically hidden from Bob. The protocol
requires Alice to be able to prepare single qubits of the form |+θ〉, where θ ∈ Z

π
4

and send these states to Bob at the beginning of the protocol, the rest of the
communication between the two parties being classical. We define the family of
protocols RSP8−states

CC as the RSP protocols that classically delegate the prepara-
tion of an output state |+θ〉, where θ ∈ Z

π
4 . That is, without loss of generality,

we assume a pair of converters PA, PB such that the resource R := PACPB has
the behavior of the prototype RSP resource except with negligible probability.
Put differently, we assume we have an (except with negligible error) correct RSP
protocol, but we make no assumption about the security of this protocol. There-
fore, one can directly instantiate the quantum interaction with the RSP8−states

CC

Security Limitations of Classical-Client Delegated Quantum Computing 683

at the first step as shown in Protocol 1. While UBQC allows for both quantum
and classical outputs and inputs, given that we want to remove the quantum
interaction in favor of a completely classical interaction, we only focus on the
classical input and classical output functionality of UBQC in the remaining of
the paper.

Protocol 1. UBQC with RSP8−states
CC (See [BFK09])

– Client’s classical input: An n-qubit unitary U that is represented as set of
angles {φ}i,j of a one-way quantum computation over a brickwork state/cluster
state [MDF17], of the size n × m, along with the dependencies X and Z obtained
via flow construction [DK06].

– Client’s classical output: The measurement outcome s̄ corresponding to the
n-qubit quantum state, where s̄ = 〈0| U |0〉.

1. Client and Server runs n×m different instances of RSP8−states
CC (in parallel) to obtain

θi,j on client’s side and |+θi,j 〉 on server’s side, where θi,j ← Z
π
4
, i ∈ {1, · · · , n},

j ∈ {1, · · · , m}
2. Server entangles all the qubits, n × (m − 1) received from RSP8−states

CC , by applying
controlled-Z gates between them in order to create a graph state Gn×m

3. For j ∈ [1, m] and i ∈ [1, n]
(a) Client computes δi,j = φ′

i,j + θi,j + ri,jπ, ri,j ← {0, 1}, where φ′
i,j =

(−1)sX
i,j φi,j + sZ

i,jπ and sX
i,j and sZ

i,j are computed using the previous mea-
surement outcomes and the X and Z dependency sets. Client then sends the
measurement angle δi,j to the Server.

(b) Server measures the qubit |+θi,j 〉 in the basis {|+δi,j 〉 , |−δi,j 〉} and obtains a
measurement outcome si,j ∈ {0, 1}. Server sends the measurement result to
the client.

(c) Client computes s̄i,j = si,j ⊕ ri,j .
4. The measurement outcome corresponding to the last layer of the graph state (j =

m) is the outcome of the computation.

Note that Protocol 1 is based on measurement-based model of quantum com-
puting (MBQC). This model is known to be equivalent to the quantum circuit
model (up to polynomial overhead in resources) and does not require one to
perform quantum gates on their side to realize arbitrary quantum computation.
Instead, the computation is performed by an (adaptive) sequence of single-qubit
projective measurements that steer the information flow across a highly entan-
gled resource state. Intuitively, UBQC can be seen as a distributed MBQC where
the measurements are performed by the server whereas the classical update of
measurement bases is performed by the client. Since the projective measure-
ments in quantum physics, in general, are probabilistic in nature and therefore,
the client needs to update the measurement bases (and classically inform the
server about the update) based on the outcomes of the earlier measurements to
ensure the correctness of the computation. Roughly speaking, this information
flow is captured by the X and Z dependencies. For more details, we refer the
reader to [RB01,Nie06].

684 C. Badertscher et al.

Next, we show that the Universal Blind Quantum Computing proto-
col [BFK09], which is proven to be secure in the Constructive Cryptography
framework [DFPR14], cannot be proven composably secure (for the same ideal
resource) when the quantum interaction is replaced with RSPCC (this class of
protocol is denoted as UBQCCC). We also give an outlook that the impossibility
proof also rules out weaker ideal resources.

4.1 Impossibility of Composable UBQCCC on 1 Qubit

To prove that there exists no UBQCCC protocol, we will first focus on the simpler
case when the computation is described by a single measurement angle. The
resource that performs a blind quantum computation on one qubit (SUBQC1) is
defined as below:

Definition 8 (Ideal resource of single-qubit UBQC (See [DFPR14])). The
definition of the ideal resource SUBQC1, depicted in Fig. 4, achieves blind quan-
tum computation specified by a single angle φ. The input (ξ, ρ) is filtered when
c = 0. The ξ can be any deviation (specified for example using the classical
description of a CPTP map) that outputs a classical bit, and which can depend
on the computation angle φ and some arbitrary quantum state ρ.

Fig. 4. Ideal resource SUBQC1 for UBQC with one angle, with a filtered (dashed) input.
In the case of honest server the output s̄ ∈ {0, 1} is computed by measuring the qubits
|+〉 in the {|+φ〉 , |−φ〉} basis. On the other hand if c = 1 any malicious behavior of
server can be captured by (ξ, ρ), i.e. the output s̄ is computed by applying the CPTP
map ξ on the input φ and on another auxiliary state ρ chosen by the server.

Theorem 2 (No-go composable classical-client single-qubit UBQC). Let
(PA, PB) be a protocol interacting only through a classical channel C, such that
(θ, ρB) ← (PACPB) with θ ∈ Z

π
4 , and such that (by correctness) the trace dis-

tance between ρB and |+θ〉 〈+θ| is negligible with overwhelming probability. Then,
if we define πA and πB as the UBQC protocol on one qubit that makes use of
(PA, PB) as a sub-protocol to replace the quantum channel (as pictured in Fig. 5),
(πA, πB) is not composable, i.e. there exists no simulator σ such that:

πACπB ≈ε SUBQC1 �c=0, πAC ≈ε SUBQC1σ (15)

for some negligible ε = negl(n).

Security Limitations of Classical-Client Delegated Quantum Computing 685

Fig. 5. UBQC with one qubit when both Alice and Bob follows the protocol honestly
(see Protocol 1)

Proof. In order to prove this theorem, we will proceed by contradiction. Let us
assume that there exists (PA, PB), and a simulator σ having the above prop-
erties. Then, for the same resource SUBQC1 we consider a different protocol
π′ = (π′

A, π′
B) that realizes it, but using a different filter �σ and a different

simulator σ′:

π′
ACπ′

B ≈ε SUBQC1 �σ (16)
π′

AC ≈ε SUBQC1σ
′ (17)

More specifically, the new filter �σ
UBQC1 will depend on σ defined in Eq. (15).

Then our main proof can be described in the following steps:

1. We first show in Lemma 3 that SUBQC1 is also ε-classically-realizable by
(π′

A, π′
B) with the filter �σ.

2. We then prove in Lemma 4 that the resource SUBQC1 is an RSP within
negl(n), with respect to some well chosen converters A and Q (see Fig. 6)
and this new filter �σ.

3. Then, we use the main result about RSP (Theorem 1) to show that SUBQC1

is describable within negl(n) with respect to A (Corollary 2).
4. Finally, in Lemma 6 we prove that if SUBQC1 is describable then we could

achieve superluminal signaling, a contradiction.

The above sequence of statements concludes the proof. ��

In the following, we give a brief overview of the above-mentioned statements
needed to conclude Theorem 2. The proofs of these statements are given in the
full version of this work [BCC+20].

Definition 9. Let π′ = (π′
A, π′

B) the protocol realizing SUBQC1 described in the
following way (as pictured Fig. 6):

686 C. Badertscher et al.

– π′
A = πA (Fig. 5)

– π′
B: runs PB, obtains a state ρB, then uses the angle δ received from its

inner interface to compute ρ̃ := RZ(−δ)ρB, and finally outputs ρ̃ on its outer
interface and s := 0 on its inner interface.

Then we define �σ= σπ′
B depicted in Fig. 7 (with σ being the simulator from Eq.

(15) above). We further let the converters A and Q be as described in Fig. 6.

Fig. 6. Definition of A, π′
A, π′

B and Q.

Lemma 3. If SUBQC1 is ε-classically-realizable by (πA, πB) with the filter �c=0

then SUBQC1 is also ε-classically-realizable by (π′
A, π′

B) with the filter �σ.

Lemma 4. If SUBQC1 is negl(n)-classically-realizable with �c=0 then SUBQC1

is an negl(n)-remote state preparation resource with respect the converters A
and Q and filter �σ defined in Fig. 6.

Now, using our main Theorem 1 we obtain directly that if SUBQC1 is
classically-realizable and RSP with respect to filter �σ, then it is also describable:

Corollary 2. If SUBQC1 is negl(n)-classically-realizable with respect to filter
�c=0 then SUBQC1 is negl(n)-describable with respect to the converter A described
above.

We further need a technical observation:

Fig. 7. Description of �σ

Security Limitations of Classical-Client Delegated Quantum Computing 687

Lemma 5. Let Ω = {[ρi]} be a set of (classical descriptions of) density matri-
ces, such that ∀i �= j, Tr(ρiρj) ≤ 1−η. Then let ([ρ], [ρ̃]) be two random variables
(representing classical description of density matrices), such that [ρ] ∈ Ω and
E

([ρ],[ρ̃])
[Tr(ρρ̃)] ≥ 1 − ε, with η > 6

√
ε. Then, if we define the following “round-

ing” operation that rounds ρ̃ to the closest ρ̃r ∈ Ω:

[ρ̃r] := RoundΩ([ρ̃]) := arg max
[ρ̃r]∈Ω

Tr(ρ̃rρ̃) (18)

Then we have:
Pr

([ρ],[ρ̃])
[RoundΩ([ρ̃]) = [ρ]] ≥ 1 −

√
ε (19)

In particular, if ε = negl(n), and η �= 0 is a constant, Pr[RoundΩ([ρ̃]) = [ρ]] ≥
1 − negl(n).

We state the last step of this sequence for which we give the proof here.

Lemma 6. SUBQC1 cannot be negl(n)-describable with respect to converter A.

Proof. If we assume that SUBQC1 is negl(n)-describable, then there exists a
converter P (outputting [ρ̃]) such that:

E
([ρ],[ρ̃])←ASUBQC1P

[Tr(ρρ̃)] ≥ 1 − negl(n) (20)

We define the set Ω := {[|+θ′〉〈+θ′ |] | θ′ ∈ {0, π/4, ..., 7π/4}}. For simplicity, we
will denote in the following [θ] = [|+θ〉〈+θ|].

In the remaining of the proof, we are going to use the converters A and P
together with the ideal resource SUBQC1, to construct a 2-party setting that
would achieve signaling, which would end our contradiction proof. More specif-
ically, we will define a converter D running on the right interface of SUBQC1

which will manage to recover the φ0 chosen randomly by A.
As shown in Fig. 8, if we define C as C := ASUBQC1 and D the converter

described above, then the setting can be seen equivalently as: C chooses as
random φ0 and D needs to output φ0 mod π. This is however impossible, as
no message is sent from SUBQC1 to its right interface (as seen in Fig. 8) (and
thus no message from C to D), and therefore guessing φ0 is forbidden by the
no-signaling principle [GRW80].

Fig. 8. Illustration of the no-signaling argument

688 C. Badertscher et al.

We define P ′ as the converter that, given [ρ̃] from the outer interface of P
computes [φ̃] = RoundΩ([ρ̃]) and outputs φ̃π = φ̃ mod π (as depicted in Fig. 8).
We will now prove that φ̃π = φ0 mod π with overwhelming probability.

All elements in Ω are different pure states, and in finite number, so there
exist a constant η > 0 respecting the first condition of Lemma 5. Moreover from
Eq. (20) we have that SUBQC1 is ε-describable with ε = negl(n), so we also have
(for large enough n), η > 6

√
ε. Therefore, from Lemma 5, we have that:

Pr
([ρ],[ρ̃])←ASUBQC1P

[RoundΩ([ρ̃]) = [ρ]] ≥ 1 − negl(n) (21)

But using the definition of converter A, we have: [ρ] = [φ′], where φ′ = φ0 + s̄π,
and hence φ′ mod π = φ0 mod π. Then, using the definition of P ′, Eq. (21) is
equivalent to:

Pr
([φ′],φ̃π)←ASUBQC1PP′

[φ̃π = φ0 mod π] ≥ 1 − negl(n) (22)

However, as pictured in Fig. 8, this can be seen as a game between C =
ASUBQC1 and D = PP ′, where, as explained before, C picks a φ0 ∈ Z

π
2 ran-

domly, and D needs to output φ0 mod π. From Eq. (22) D wins with overwhelm-
ing probability, however, we know that since there is no information transfer from
C to D, the probability of winning this game better than 1/2 (guessing the bit
at random) would imply signaling. ��

4.2 Impossibility of Composable UBQCCC on Any Number of Qubits

We saw in Theorem 2 that it is not possible to implement a composable classical-
client UBQC protocol performing a computation on a single qubit. In this section,
we prove that this result generalizes to the impossibility of UBQCCC on compu-
tations using an arbitrary number of qubits. The proof which can be found in
the full version of this work [BCC+20] works by reducing the general case to the
single-qubit case from the previous section.

Theorem 3 (No-go Composable Classical-Client UBQC). Let (PA, PB)
be a protocol interacting only through a classical channel C, such that
(θ, ρB) ← (PACPB) with θ ∈ Z

π
4 , and such that the trace distance between ρB and

|+θ〉 〈+θ| is negligible with overwhelming probability. Then, if we define (πG
A , πG

B)
as the UBQC protocol on any fixed graph G (with at least one output qubit, that
uses (PA, PB) as a sub-protocol to replace the quantum channel, (πG

A , πG
B) is not

composable, i.e. there exists no simulator σ such that:

πG
ACπG

B ≈ε SUBQC �c=0, πG
AC ≈ε SUBQCσ (23)

for some negligible ε = negl(n), where SUBQC is a trivial generalization of
SUBQC1 to multiple qubits (defined in [DFPR14] under the notation Sblind) for
which an additional leakage lψA is send to the server, which is (at least in our
case) equal to the size of the graph state.

Security Limitations of Classical-Client Delegated Quantum Computing 689

5 Game-Based Security of QF-UBQC

While we know from Theorem 3 that classical-client UBQC (UBQCCC) cannot
be proven secure in a fully composable setting, there is hope that it remains
possible with a weaker definition of security. And indeed, in this section we show
that UBQCCC is possible in the game-based setting by implementing it using
a combination of the known quantum-client UBQC Protocol 1 [BFK09] and
8-states QFactory Protocol [CCKW19]. We start with giving a formal definition
of the game-based security of UBQCCC.

Definition 10 (Blindness of UBQCCC). A UBQCCC protocol P = (PC , PS)
is said to be (computationally) blind if no (computationally bounded) malicious
server can distinguish between runs of the protocol with adversarially chosen
measurement patterns on the same MBQC graph.

In formal terms, P is said to be (computationally) blind if and only if for
any quantum-polynomial-time adversary A it holds that

Pr
[
c′ = c

∣
∣
∣ (φ(1), φ(2)) ← A, c ←$ {0, 1},

〈
PC(φ(c)), A

〉
, c′ ← A

]
≤ 1

2
+ negl(λ),

where λ is the security parameter, and
〈
PC(φ(c)), A

〉
denotes the interaction of

the two algorithms PC(φ(c)) and A.

Remark 2. Although, Definition 10 is written using the terminology of
measurement-based model. It doesn’t compromise the generality, as the model
is universal and can be easily translated into a circuit model, because the mea-
surement pattern and unitary operators are in a one-to-one mapping.

5.1 Implementing Classical-Client UBQC with QFactory

The UBQC protocol from [BFK09], where the quantum interaction is replaced
by a RSP8−states

CC protocol, is shown in Protocol 1. In this section, we replace the
RSP8−states

CC protocol with a concrete protocol proposed in [CCKW19]. This pro-
tocol, known by the name of 8-states QFactory (we consider the case where abort
occurs with negligible probability) exactly emulates the capability of RSP8−states

CC .
The resulting protocol contains a QFactory instance for each qubit that would
have been generated on the client’s side. The keys to all QFactory instances are
generated entirely independently by the client.

Unfortunately, considering the results from Sect. 4 there is no hope that the
composable security of any UBQCCC may be achieved. Nonetheless, letting go of
composability, we can prove the game-based security for this specific combination
of protocols. This leads us to the main theorem of this section.

Theorem 4 (Game-based Blindness of QF-UBQC). The protocol resulting
from combining the quantum-client UBQC protocol with QFactory is a (compu-
tationally) blind implementation of UBQCCC in the game-based model according
to Definition 10. We call this protocol QF-UBQC.

690 C. Badertscher et al.

The proof of Theorem 4 which will be given in the remainder of this section
and follows two main ideas:

1. Every angle used in the UBQC protocol has only eight possible values, and can,
therefore, be described by three bits. In the protocol, the first bit is the one
for which QFactory cannot guarantee blindness. Fortunately, the additional
one-time padding in UBQC allows analyzing the blindness of the protocol
independently of the blindness of exactly this first bit. Therefore, it suffices
to rely on the blindness of the last two bits which is conveniently guaranteed
by QFactory and the hardness of LWE.

2. To analyze the leakage about the last two bits during a QFactory run, it is
sufficient to notice that the leakage is equal to a ciphertext under an LWE-
based encryption scheme. The semantic security of this encryption scheme and
the hardness assumption for LWE guarantee that this leakage is negligible and
can be omitted.

In more detail, the 8-states QFactory protocol which is used here consists
of two combined runs of 4-states QFactory, each contributing with a single bit
(hidden from the server) to the three-bit encoding of the angles used in the
UBQC protocol. The formulae for how these angles from the 4-states protocol
are combined in the 8-states protocol can be found in [CCKW19]. If the basis
bit B1 is the hidden bit of the first 4-states QFactory instance and basis B′

1 the
hidden bit of the second instance, then we obtain:

L1 = B′
2 ⊕ B2 ⊕ [B1 · (s1 ⊕ s2)], L2 = B′

1 ⊕ [(B2 ⊕ s2) · B1], L3 = B1, (24)

where L = L1L2L3 ∈ {0, 1}3 is the description of the output state
∣
∣+L π

4

〉
, s1, s2

are computed by the server, and

B2 = f(sk, B1, y, b), B′
2 = f(sk′, B′

1, y
′, b′) (25)

for some function f , QFactory secret keys sk, sk′, and server-chosen values
y, b, y′, b′.

The two 4-states QFactory instances now leak the ciphertext of B1 and
B′

1, respectively. Given the semantic security of the encryption, after a run of
8-states QFactory, L2 and L3 remain hidden, while the blindness of L1 cannot
be guaranteed by QFactory. This fact is going to be crucial. Due to space con-
straints, we give here the security proof for the single-qubit case. By induction,
the security proof can be extended to apply to UBQC for MBQC computations
on a polynomial number of qubits. The proof is given in the full version of this
work [BCC+20].

Lemma 7 (Blindness in the single-qubit case). The protocol resulting
from combining the quantum-client UBQC protocol with (8-states) QFactory is
a (computationally) blind implementation of UBQCCC in the game-based model
for MBQC computations on a single qubit.

Security Limitations of Classical-Client Delegated Quantum Computing 691

Proof. We start with the real protocol, describing the adaptive blindness of
QFactory combined with single-qubit UBQC. In the following, we denote the set
of possible angles by M = {jπ/4, j = 0, . . . , 7}. The encryption scheme that
appears in Game 1 is the semantically secure public-key encryption scheme from
[Reg09]. The two key pairs are generated independently on the challenger’s side.

In the following, instead of repeating the redundant parts of subsequent
games, we only present incremental modifications to Game 1. Any line that
is not explicitly written is assumed to be identical to the previous game.

Since s is never used by the challenger, we can remove it from the protocol
without distorting the success probability of the adversary. Next, we remove L1

from the protocol and from the calculation of δ. L1 is only used in the calculation
of δ, which can be expressed as δ = φ(c) + L3π/4 + L2π/2 + (L1 + r)π. Since
r is a uniform binary random variable with unique use in this line, (L1 + r) is
still uniform over {0, 1} and hence removing L1 leaves the distribution of the
protocol outcome unchanged.

The next step introduces a (negligible) distortion to the success probability
of the adversary. By the semantic security of the employed encryption scheme,

692 C. Badertscher et al.

no quantum-polynomial-time adversary can notice if the plaintext is replaced by
pure randomness except with negligible probability, even if information about the
original plaintext is leaked on the side. Therefore, replacing B′

1 in the encryption
by independent randomness cannot lead to a significant change in the adversary’s
success probability. Further, since ciphertexts of independent randomness can
be equally generated by the adversary herself (having the public key), we can
remove the encryption of B′

1 from the protocol altogether.

Next, note that B′
1 perfectly one-time pads the value of L2. This breaks the

dependency of L2 on B2, s2 and B1. It does not change the distribution of L2,
if L2 is instead directly sampled uniformly from {0, 1}. Since B2 is unused, we
remove it in the following game, and y, b, y′, b′, s1, s2 can be ignored.

By the same argument as for the transition from Game 2 to Game 3, we remove
the encryption of B1 from the following game. This introduces at most a negli-
gible change in the success probability of the adversary.

Finally, since the encryption scheme is not in use anymore, we can also remove
the key generation and the message containing the public key without affecting
the adversary’s success probability.

We now see that δ is a uniformly random number, L2, L3, and r being i.i.d.
uniform bits. Therefore, the calculation and the message containing δ can be
removed from the protocol without affecting the adversary.

Security Limitations of Classical-Client Delegated Quantum Computing 693

In Game 6, the inputs of the adversary are ignored by the challenger. There-
fore, the computation angles φ(1), φ(2) can equally be removed from the protocol:

Game 7 exactly describes the adversary’s uninformed guess of the outcome of
an independent bit flip. Therefore, by a simple information-theoretic argument,
any strategy for the adversary will lead to a success probability of exactly 1/2.
The proof is concluded by a standard hybrid argument [BCC+20]. ��

Acknowledgments. The authors thank Céline Chevalier, Omar Fawzi, Daniel Jost,
and Luka Music for very useful discussions and the anonymous reviewers of ASI-
ACRYPT 2020 for their comments and suggestions that greatly improved this work. LC
also thanks M.T. This work has been supported in part by grant FA9550-17-1-0055, by
the European Union’s H2020 Programme under grant agreement number ERC-669891,
and by the French ANR Project ANR-18-CE39-0015 (CryptiQ). EK acknowledges sup-
port from the EPSRC Verification of Quantum Technology grant (EP/N003829/1),
the EPSRC Hub in Quantum Computing and Simulation (EP/T001062/1), and the
UK Quantum Technology Hub: NQIT grant (EP/M013243/1). LC and DL gratefully
acknowledge support from the French ANR project ANR-18-CE47-0010 (QUDATA).
LC, EK, and DL acknowledge funding from the EU Flagship Quantum Internet Alliance
(QIA) project. AM gratefully acknowledges funding from the AFOSR MURI project
“Scalable Certification of Quantum Computing Devices and Networks”. This work was
partly done while AM was at the University of Edinburgh, UK supported by EPSRC
Verification of Quantum Technology grant (EP/N003829/1).

References

[ABOE08] Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum com-
putations. arXiv preprint arXiv:0810.5375 (2008)

http://arxiv.org/abs/0810.5375

694 C. Badertscher et al.

[ACGK19] Aaronson, S., Cojocaru, A., Gheorghiu, A., Kashefi, E.: Complexity-
theoretic limitations on blind delegated quantum computation. In: 46th
International Colloquium on Automata, Languages, and Programming
(ICALP 2019) (2019)

[AFK87] Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an
oracle. In: Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, pp. 195–203. ACM (1987)

[BCC+20] Badertscher, C., et al.: Security limitations of classical-client delegated
quantum computing. Cryptology ePrint Archive, Report 2020/818 (2020).
https://eprint.iacr.org/2020/818 (full version)

[BFK09] Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum com-
putation. In: 50th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2009, pp. 517–526. IEEE (2009)

[BJ15] Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits
of low T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9216, pp. 609–629. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48000-7 30

[BOM04] Ben-Or, M., Mayers, D.: General security definition and composability for
quantum & classical protocols. arXiv preprint quant-ph/0409062 (2004)

[Bra18] Brakerski, Z.: Quantum FHE (almost) as secure as classical. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 67–95.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 3

[Bro15a] Broadbent, A.: Delegating private quantum computations. Can. J. Phys.
93(9), 941–946 (2015)

[Bro15b] Broadbent, A.: How to verify a quantum computation. arXiv preprint
arXiv:1509.09180 (2015)

[CCKW18] Cojocaru, A., Colisson, L., Kashefi, E., Wallden, P.: On the possibility of
classical client blind quantum computing. arXiv preprint arXiv:1802.08759
(2018)

[CCKW19] Cojocaru, A., Colisson, L., Kashefi, E., Wallden, P.: QFactory: classically-
instructed remote secret qubits preparation. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 615–645. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34578-5 22

[Chi05] Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Com-
put. 5(6), 456–466 (2005)

[DFPR14] Dunjko, V., Fitzsimons, J.F., Portmann, C., Renner, R.: Composable secu-
rity of delegated quantum computation. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 406–425. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45608-8 22

[DK06] Danos, V., Kashefi, E.: Determinism in the one-way model. Phys. Rev. A
74(5), 052310 (2006)

[DK16] Dunjko, V., Kashefi, E.: Blind quantum computing with two almost iden-
tical states. arXiv preprint arXiv:1604.01586 (2016)

[DKL12] Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with
weak coherent pulses. Phys. Rev. Lett. 108(20), 200502 (2012)

[DL70] Davies, E.B., Lewis, J.T.: An operational approach to quantum probabil-
ity. Commun. Math. Phys. 17(3), 239–260 (1970)

[DSS16] Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption
for polynomial-sized circuits. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 3–32. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53015-3 1

https://eprint.iacr.org/2020/818
https://doi.org/10.1007/978-3-662-48000-7_30
https://doi.org/10.1007/978-3-662-48000-7_30
https://doi.org/10.1007/978-3-319-96878-0_3
http://arxiv.org/abs/1509.09180
http://arxiv.org/abs/1802.08759
https://doi.org/10.1007/978-3-030-34578-5_22
https://doi.org/10.1007/978-3-662-45608-8_22
http://arxiv.org/abs/1604.01586
https://doi.org/10.1007/978-3-662-53015-3_1
https://doi.org/10.1007/978-3-662-53015-3_1

Security Limitations of Classical-Client Delegated Quantum Computing 695

[FHM18] Fitzsimons, J.F., Hajdušek, M., Morimae, T.: Post hoc verification of quan-
tum computation. Phys. Rev. Lett. 120(4), 040501 (2018)

[Fit17] Fitzsimons, J.F.: Private quantum computation: an introduction to blind
quantum computing and related protocols. NPJ Quantum Inf. 3(1), 23
(2017)

[FK17] Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind quantum
computation. Phys. Rev. A 96(1), 012303 (2017)

[GKK19] Gheorghiu, A., Kapourniotis, T., Kashefi, E.: Verification of quantum com-
putation: an overview of existing approaches. Theory Comput. Syst. 63(4),
715–808 (2019)

[Gol01] Goldreich, O.: Foundations of Cryptography. Cambridge University Press,
Cambridge (2001)

[GRW80] Ghirardi, G.C., Rimini, A., Weber, T.: A general argument against super-
luminal transmission through the quantum mechanical measurement pro-
cess. Lettere al Nuovo Cimento (1971–1985) 27, 293–298 (1980)

[GV19] Gheorghiu, A., Vidick, T.: Computationally-secure and composable remote
state preparation. In: 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 1024–1033 (2019)

[HM15] Hayashi, M., Morimae, T.: Verifiable measurement-only blind quantum
computing with stabilizer testing. Phys. Rev. Lett. 115(22), 220502 (2015)

[JM17] Jost, D., Maurer, U.: Context-restricted indifferentiability: generalizing
UCE and implications on the soundness of hash-function constructions.
IACR Cryptology ePrint Archive 2017:461 (2017)

[KMW17] Kashefi, E., Music, L., Wallden, P.: The quantum cut-and-choose technique
and quantum two-party computation. arXiv preprint arXiv:1703.03754
(2017)

[KP17] Kashefi, E., Pappa, A.: Multiparty delegated quantum computing. Cryp-
tography 1(2), 12 (2017)

[KW17] Kashefi, E., Wallden, P.: Garbled quantum computation. Cryptography
1(1), 6 (2017)

[Mah18a] Mahadev, U.: Classical homomorphic encryption for quantum circuits. In:
Thorup, M. (ed.) 59th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2018, Paris, France, 7–9 October 2018, pp. 332–338.
IEEE Computer Society (2018)

[Mah18b] Mahadev, U.: Classical verification of quantum computations. In: Thorup,
M. (ed.) 59th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2018, Paris, France, 7–9 October 2018, pp. 259–267. IEEE
Computer Society (2018)

[Man19] Mantri, A.: Secure delegated quantum computing, Ph.d. thesis (2019)
[Mau11] Maurer, U.: Constructive cryptography – a new paradigm for security def-

initions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA
2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27375-9 3

[MDF17] Mantri, A., Demarie, T.F., Fitzsimons, J.F.: Universality of quantum com-
putation with cluster states and (X, Y)-plane measurements. Sci. Rep. 7,
42861 (2017)

[MDMF17] Mantri, A., Demarie, T.F., Menicucci, N.C., Fitzsimons, J.F.: Flow ambi-
guity: a path towards classically driven blind quantum computation. Phys.
Rev. X 7(3), 031004 (2017)

[MF13] Morimae, T., Fujii, K.: Blind quantum computation protocol in which alice
only makes measurements. Phys. Rev. A 87(5), 050301 (2013)

http://arxiv.org/abs/1703.03754
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3

696 C. Badertscher et al.

[MK13] Morimae, T., Koshiba, T.: Composable security of measuring-alice blind
quantum computation. arXiv preprint arXiv:1306.2113 (2013)

[MK14] Morimae, T., Koshiba, T.: Impossibility of perfectly-secure delegated
quantum computing for classical client. arXiv preprint arXiv:1407.1636
(2014)

[MR11] Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Com-
puter Science. Citeseer (2011)

[NC00] Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Informa-
tion. Cambridge University Press, Cambridge (2000)

[Nie06] Nielsen, M.A.: Cluster-state quantum computation. Rep. Math. Phys.
57(1), 147–161 (2006)

[RB01] Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev.
Lett. 86(22), 5188 (2001)

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM (JACM) 56(6), 34 (2009)

[RUV12] Reichardt, B.W., Unger, F., Vazirani, U.: A classical leash for a quantum
system: command of quantum systems via rigidity of CHSH games. arXiv
preprint arXiv:1209.0448 (2012)

[TMM+18] Takeuchi, Y., Mantri, A., Morimae, T., Mizutani, A., Fitzsimons, J.F.:
Resource-efficient verification of quantum computing using Serfling’s
bound. arXiv preprint arXiv:1806.09138 (2018)

[Unr04] Unruh, D.: Simulatable security for quantum protocols. arXiv preprint
quant-ph/0409125 (2004)

[Unr10] Unruh, D.: Universally composable quantum multi-party computation.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-
5 25

[Vid20] Vidick, T.: Verifying quantum computations at scale: a cryptographic leash
on quantum devices. Bull. Am. Math. Soc. 57(1), 39–76 (2020)

[Zha20] Zhang, J.: Succinct blind quantum computation using a random oracle.
arXiv, abs/2004.12621 (2020)

http://arxiv.org/abs/1306.2113
http://arxiv.org/abs/1407.1636
http://arxiv.org/abs/1209.0448
http://arxiv.org/abs/1806.09138
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-13190-5_25

Quantum Circuit Implementations
of AES with Fewer Qubits

Jian Zou1,2, Zihao Wei3,4, Siwei Sun3,4(B), Ximeng Liu1,2, and Wenling Wu5

1 Mathematics and Computer Science of Fuzhou University,
Fuzhou, Fujian Province, China

fzuzoujian15@163.com, snbnix@gmail.com
2 Key Lab of Information Security of Network Systems (Fuzhou University),

Fujian Province, China
3 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
weizihao@iie.ac.cn, siweisun.isaac@gmail.com

4 School of Cyber Security,
University of Chinese Academy of Sciences, Beijing, China

5 Institute of Software, Chinese Academy of Sciences, Beijing, China
wwl@tca.iscas.ac.cn

Abstract. We propose some quantum circuit implementations of AES
with the following improvements. Firstly, we propose some quantum cir-
cuits of the AES S-box and S-box−1, which require fewer qubits than
prior work. Secondly, we reduce the number of qubits in the zig-zag
method by introducing the S-box−1 operation in our quantum circuits of
AES. Thirdly, we present a method to reduce the number of qubits in the
key schedule of AES. While the previous quantum circuits of AES-128,
AES-192, and AES-256 need at least 864, 896, and 1232 qubits respec-
tively, our quantum circuit implementations of AES-128, AES-192, and
AES-256 only require 512, 640, and 768 qubits respectively, where the
number of qubits is reduced by more than 30%.

Keywords: AES · S-box · S-box−1 · Quantum circuit · Circuit
complexity

1 Introduction

In the post-quantum era, we need to study the security of cryptographic sys-
tems against quantum attackers. In fact, many cryptographic schemes turn out
to be less secure against attacks based on quantum computing. Some asymmet-
ric cryptographic primitives face devastating attacks due to Shor’s algorithm
[24]. In contrast, the impact of quantum computing on secret-key cryptography
seems to be less severe. Most of the existing works are based on Grover’s algo-
rithm [12] and Simon’s algorithm [25]. Grover’s algorithm can solve the search
problem with quadratic speed-up, while Simon’s algorithm can find the hidden
period with polynomially many quantum queries. In such attacks, the corre-
sponding quantum oracle of the target cipher has to be implemented. Due to
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 697–726, 2020.
https://doi.org/10.1007/978-3-030-64834-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_24

698 J. Zou et al.

the importance of AES, it is one of the most studied ciphers [3,11,15,17,18] in
the context of efficient synthesis of quantum circuits. These implementations can
be potentially used in some quantum attacks against symmetric-key primitives
involving AES [4,9,13,16]. In this paper, we construct some quantum circuits of
AES with fewer qubits, and the techniques involved may provide more flexible
qubit and circuit depth trade-offs for the quantum circuits of AES.

A quantum oracle for any classical vectorial Boolean function can be con-
structed with the Clifford + T gate set, which consists of the Hadamard gate (H),
Phase gate (S), controlled-NOT gate (CNOT), and non-clifford T gate. There
are some works on synthesizing optimal reversible circuits, such as reversible
Boolean functions. Shende et al. [22] considered the synthesis of 3-bit reversible
logic circuits using NOT gate, CNOT gate, and Toffoli gate. Golubitsky et al. [10]
proposed an optimal 4-bit reversible circuits composed with NOT gate, CNOT
gate, Toffoli gate, and the 4-bit Toffoli gate. The goal of synthesizing the opti-
mal quantum circuit implementation is to reduce the circuit depth and number
of qubits [3,11,17,18]. According to our current understanding of fault-tolerant
quantum computing, the metric of T -depth is probably the most important.
However, before practical quantum computers are built, the method for reduc-
ing the cost with respect to the number of qubits is also very meaningful, and
it may provides more flexible qubit and depth trade-offs.

Recently, the construction of efficient quantum circuits of AES has attracted
much attention. In [8], Datta et al. presented a reversible implementation of AES.
In [15], Jaques et al. proposed a method to minimize the depth-times-width cost
metric for quantum circuits of AES. In [11], Grassl et al. proposed a quantum
circuit of AES aiming at the lowest possible number of qubits. In [17], Kim et al.
showed some time-memory trade-offs for key search on AES. In [3], Almazrooie
et al. presented a new quantum circuit of AES-128. By utilizing the classical
algebraic structure of the S-box [5], Langenberg et al. in [18] showed a new way
to construct the quantum circuit of AES’s S-box, based on which Langenberg et
al. proposed an efficient quantum circuit of AES-128. Compared to Almazrooie
et al.’s and Grassl et al.’s estimates, the circuit proposed by Langenberg et al.
could reduce the number of qubits and Toffoli gates simultaneously. Langenberg
et al.’s work shows that we can construct an improved quantum circuit of AES
by constructing a more efficient classical circuit of AES.

There are several works on how to reduce the gate number of AES in the
classical setting [1,7,14,19,28]. In [14], Itoh and Tsujii proposed the tower field
architecture for calculating multiplicative inverse in F2, which was a powerful
technique for designing compact hardware implementation of S-box. By using
the tower field technique, Canright in [7] showed an efficient method for comput-
ing the multiplicative inverse of the input. In [6], Boyar and Peralta proposed a
depth 16 circuit for the S-box in AES by using the tower field implementation.

Contribution. Firstly, we propose an improved quantum circuit for the
S-box−1 of AES based on the improved classical circuit of the inverse of
the AES S-box [28,29]. Also, by exploiting some useful linear relationship,

Quantum Circuit Implementations of AES with Fewer Qubits 699

we propose some improved qubit-depth trade-offs for the quantum circuits of
S-box/S-box−1 of AES. The improvements of the S-box and its inverse lead to
corresponding improvements of the quantum circuits of the round function and
the key-schedule algorithm of AES. Taking AES-128 as an example, we can gen-
erate W4i by XORing SubWord(RotWord(W4i−1)), Rcon(i/s), W4i−1, W4i−5,
W44i−9 to W4i−13 (for 4 ≤ i ≤ 10). In other words, we can obtain W4i without
introducing new qubits or cleaning up W4i−13 (for 4 ≤ i ≤ 10). That is, our
quantum circuit for the key schedules of AES-128/-192/-256 need 128/192/256
qubit, and 6 ancillas qubits, which require fewer qubits than the previous works
[3,11,15,18].

Secondly, we propose an improved zig-zag method with fewer qubits. To
compute the output of the AES round function, we need 256 qubits to store
the 128 qubits input and the 128 qubits output of the round function. In other
words, we need at least 256 qubits in the zig-zag method. By using our quantum
circuits of AES’s S-box and S-box−1, we propose an improved zigzag method for
AES-128/-192/-256 with 256 qubits, which matches the minimum values. That
is, our improved zig-zag method require 256/256/256 qubits for AES-128/-192/-
256, while the prior work needed at least 528/656/656 qubits for AES-128/-192/-
256, respectively.

We summarize the quantum resources to implement AES in Table 1. The
Toffoli/CNOT/NOT means the number of Toffoli gates, CNOT gates, and
NOT gates, and # qubits means the number of qubits. We will adopt the same
notations in the following tables. As shown in Table 1, our quantum circuit
implementations of AES require fewer qubits than the prior works. Also, our
quantum circuits of AES-128/-256 can obtain the best trade-off of T ·M , where
T is the Toffoli depth and M is the number of qubits.

Table 1. Summary of the quantum resources to implement AES

Algorithm # qubits Toffoli depth # Toffoli # CNOT # NOT T ·M Source

AES-128 984 12672 151552 166548 1456 12469248 [11]

976 not reported 150528 192832 1370 not reported [3]

864 1880 16940 107960 1570 1624320 [18]

512 2016 19788 128517 4528 1032192 Sect. 6.1

AES-192 1112 11088 172032 189432 1608 12329856 [11]

896 1640 19580 125580 1692 1469440 [18]

640 2022 22380 152378 5128 1294080 Sect. 6.2

AES-256 1336 14976 215040 233836 1943 20007936 [11]

1232 2160 23760 151011 1992 2661120 [18]

768 2292 26774 177645 6103 1760256 Sect. 6.2

Remark. In this work, the Toffoli-count and Toffoli-depth are involved in our
metric. A more fine-grained and accurate approach is to implement the entire

700 J. Zou et al.

circuit with the Clifford+T set, count the number of T gate, and measure the
T -depth as was done in [15]. In [15], the quantum circuit was implemented with
Q# [26] and the cost of the quantum circuit was estimated by the resource esti-
mator of Q#. However, it seems that there are some issues with the resource
estimator (see https://github.com/microsoft/qsharp-runtime/issues/192). So we
do not use it here.

Outline. In Sect. 2, we present the definitions of some quantum gates. Sect. 3 not
only makes a brief introduction to AES, but also shows the algebraic structures
of AES’s S-box/S-box−1. In Sect. 4, we propose our improved quantum circuits
of AES’s S-box and S-box−1. Section 5 shows our improved ideas for the zig-zag
method and the key schedule of AES. In Sect. 6, we show our improved quantum
circuit implementations of AES. We conclude this paper in Sect. 7.

2 Notations

The classical circuits allow wires to be joined together, such as a = a ⊕ b and
a = a∧b. Obviously these operations are not reversible and not unitary. Different
from the classical circuits, quantum circuits shall be reversible and unitary, which
can be constructed by replacing classical gates with quantum gates. For example,
we shall simulate AND gates with the Toffoli gate, while a XOR gate can be
simulated with the CNOT gate.

Some prior works [2] showed that the quantum circuit consisting only of
Clifford gates were not advantageous over classical computing. In other words,
we shall adopt some non-Clifford gates (i.e. Toffoli gate) to obtain the quantum
benefit. Also, some works [23,27] showed the Toffoli gate and Clifford gates were
universal. That is, we can implement any quantum computation by these gates.
As shown in [20], the Clifford groups are much cheaper than the Toffoli gate (or
T -gate). As a result, [11,17,18] defined the Toffoli depth as the time cost of the
algorithm, while the memory cost is the total number of logical qubits required
to perform the quantum algorithm. Similar to [11,17,18], we define the time and
memory cost of our quantum circuit implementation of AES as follows.

Definition 1. A unit of quantum computational time cost is defined as the time
for running a nonparallelizable logical Toffoli gate.

Definition 2. The space cost of the quantum circuit is defined as the number
of logical qubits for the entire quantum computational.

Apart from the two definitions, we also clarify three kinds of qubits to avoid
the confusions.

1. Data qubits are written as the input message, such as the round key or the
input plaintext.

2. Ancilla qubits (or called garbage qubits) are initialized qubits those assist
certain operation, which get written unwanted information after a certain
operation. Note that we shall clean up the ancilla qubits at the end of the
quantum circuit.

https://github.com/microsoft/qsharp-runtime/issues/192

Quantum Circuit Implementations of AES with Fewer Qubits 701

3. Output qubits contain the output information of a certain operation. Note
that we do not need to clean up the output qubits.

Based on the definitions of three types of qubits, we adopt the following two
strategies to reduce the number of qubits. First, we shall avoid applying the
Toffoli gate to ancilla qubits, because these wires shall be cleaned up. However,
we do not need to clean up the output qubits. As a result, we shall apply the
Toffoli gates to output qubits to avoid involving them in the cleanup process.
Second, some ancilla qubits remained idle until the end of the quantum cir-
cuit. By uncomputing these wires, we can reuse these ancilla qubits instead of
introducing new ancilla qubits, which can reduce the number of qubits.

3 The AES Block Cipher

AES [21] is a family of iterative block ciphers based on the SPN structure. Its
members with 128-bit, 192-bit, and 256-bit keys are denoted as AES-128 (10-
round), AES-192 (12-round), and AES-256 (14-round), respectively. We will
show the round function and key schedule of AES in the following. We refer
the reader to [21] for the full description of AES.

3.1 Specification of AES

The AES round function consists the following four operations: AddRound-
Key ◦ MixColumns ◦ ShiftRows ◦ SubBytes, where

• AddRoundKey exclusive-ors each round key to the state;
• SubBytes is the only non-linear transformation in AES, which applies an

8-bit S-box to the 16 bytes of the state in parallel. The algebraic structure of
S-box is shown in Sect. 3.2.

• ShiftRows cyclically rotates the cells of the i-th row to the left by i-byte
(for 0 ≤ i ≤ 3).

• MixColumns does a linear transformation on each column of the state with
the MDS matrix

M =
[
0 × 02 0 × 03 0 × 01 0 × 01
0 × 01 0 × 02 0 × 03 0 × 01
0 × 01 0 × 01 0 × 02 0 × 03
0 × 03 0 × 01 0 × 01 0 × 01

]
.

Similar to the encryption procession of AES, the decryption process of AES
also consists of four operations AddRoundKey ◦ InvMC ◦ InvShiftRows ◦
InvSubBytes, where

• AddRoundKey exclusive-ors the round key to the state;
• InvSubBytes is the inverse operation of SubBytes;
• InvShiftRows cyclically rotates the cells of the i-th row to the right by
i-byte (for 0 ≤ i ≤ 3).

702 J. Zou et al.

• InvMC does a linear transformation on each column with the MDS matrix

M−1 =
[
0 × 0E 0 × 0B 0 × 0D 0 × 09
0 × 09 0 × 0E 0 × 0B 0 × 0D
0 × 0D 0 × 09 0 × 0E 0 × 0B
0 × 0B 0 × 0D 0 × 09 0 × 0E

]
.

The key schedules of AES-128/-192/-256 are described in Algorithm 1 and
Algorithm 2. The parameters s and t used in the key schedules of AES-128 are
s = 4, t = 43, while AES-192 adopts s = 6, t = 51.

Algorithm 1. The key schedules of AES-128 and AES-192
For i = s till i = t do
If i ≡ 0 mod s, then

Wi = Wi−s ⊕ SubWord(RotWord(Wi−1)) ⊕ Rcon(i/s);
else Wi = Wi−s ⊕ Wi−1.

Algorithm 2. The key schedules of AES-256
For i = 8 till i = 59 do

If i ≡ 0 mod 8, then
Wi = Wi−8 ⊕ SubWord(RotWord(Wi−1)) ⊕ Rcon(i/8);

If i ≡ 4 mod 8, then
Wi = Wi−8 ⊕ SubWord(Wi−1);

else Wi = Wi−8 ⊕ Wi−1.

The operations RotWord, Rcon and SubWord used in Algorithm 1 and
Algorithm 2 are explained as follows.

• RotWord cyclically rotates the four bytes to the left by 1-byte;
• Rcon exclusive-ors the constant to each byte of the word;
• SubWord applies an S-box operation to each byte of the word.

3.2 The Algebraic Structures of the S-Box of AES

There are several ways to implement the S-box of AES. In [5], Boyar and Per-
alta showed an efficient way to compute AES’s S-box by using the tower field
architecture. Since we do not find a circuit with fewer AND gate than the clas-
sical circuit proposed by Boyar and Peralta [5], we adopt their classical circuit
to construct our quantum circuit of AES’s S-box in the Sect. 4. Their circuit
represents AES’s S-box as S(x) = BS · FS(US · x), where the matrix US takes
x0, x1, · · · , x7 as input and outputs x7, y1, · · · , y21.

y14 = x3 ⊕ x5, y13 = x0 ⊕ x6, y9 = x0 ⊕ x3, y8 = x0 ⊕ x5,
t0 = x1 ⊕ x2, y1 = t0 ⊕ x7, y4 = y1 ⊕ x3, y12 = y13 ⊕ y14,
y2 = y1 ⊕ x0, y5 = y1 ⊕ x6, y3 = y5 ⊕ y8, t1 = x4 ⊕ y12,
y15 = t1 ⊕ x5, y20 = t1 ⊕ x1, y6 = y15 ⊕ x7, y10 = y15 ⊕ t0,
y11 = y20 ⊕ y9, y7 = x7 ⊕ y11, y17 = y10 ⊕ y11, y19 = y10 ⊕ y8,
y16 = t0 ⊕ y11, y21 = y13 ⊕ y16, y18 = x0 ⊕ y16.

Quantum Circuit Implementations of AES with Fewer Qubits 703

The function FS : F
22
2 → F

18
2 takes x7, y1, · · · , y21 as input and outputs

z0, z1, · · · , z17.
t2 = y12 · y15, t3 = y3 · y6, t4 = t3 ⊕ t2, t5 = y4 · x7,
t6 = t5 ⊕ t2, t7 = y13 · y16, t8 = y5 · y1, t9 = t8 ⊕ t7,
t10 = y2 · y7, t11 = t10 ⊕ t7, t12 = y9 · y11, t13 = y14 · y17,
t14 = t13 ⊕ t12, t15 = y8 · y10, t16 = t15 ⊕ t12, t17 = t4 ⊕ y20,
t18 = t6 ⊕ t16, t19 = t9 ⊕ t14, t20 = t11 ⊕ t16, t21 = t17 ⊕ t14,
t22 = t18 ⊕ y19, t23 = t19 ⊕ y21, t24 = t20 ⊕ y18,
t25 = t21 ⊕ t22, t26 = t21 · t23, t27 = t24 ⊕ t26, t28 = t25 · t27,
t29 = t28 ⊕ t22, t30 = t23 ⊕ t24, t31 = t22 ⊕ t26, t32 = t31 · t30,
t33 = t32 ⊕ t24, t34 = t23 ⊕ t33, t35 = t27 ⊕ t33, t36 = t24 · t35,
t37 = t36 ⊕ t34, t38 = t27 ⊕ t36, t39 = t29 · t38, t40 = t25 ⊕ t39,
t41 = t40 ⊕ t37, t42 = t29 ⊕ t33, t43 = t29 ⊕ t40, t44 = t33 ⊕ t37,
t45 = t42 ⊕ t41, z0 = t44 · y15, z1 = t37 · y6, z2 = t33 · x7,
z3 = t43 · y16, z4 = t40 · y1, z5 = t29 · y7, z6 = t42 · y11,
z7 = t45 · y17, z8 = t41 · y10, z9 = t44 · y12, z10 = t37 · y3,
z11 = t33 · y4, z12 = t43 · y13, z13 = t40 · y5, z14 = t29 · y2,
z15 = t42 · y9, z16 = t45 · y14, z17 = t41 · y8.

The matrix BS takes z0, z1, · · · , z17 as input and outputs s0, s1, · · · , s7.
t46 = z15 ⊕ z16, t47 = z10 ⊕ z11, t48 = z5 ⊕ z13, t49 = z9 ⊕ z10,
t50 = z2 ⊕ z12, t51 = z2 ⊕ z5, t52 = z7 ⊕ z8, t53 = z0 ⊕ z3,
t54 = z6 ⊕ z7, t55 = z16 ⊕ z17, t56 = z12 ⊕ t48, t57 = t50 ⊕ t53,
t58 = z4 ⊕ t46, t59 = z3 ⊕ t54, t60 = t46 ⊕ t57, t61 = z14 ⊕ t57,
t62 = t52 ⊕ t58, t63 = t49 ⊕ t58, t64 = z4 ⊕ t59, t65 = t61 ⊕ t62,
t66 = z1 ⊕ t63, s0 = t59 ⊕ t63, s6 = t56 ⊕ t62, s7 = t48 ⊕ t60,
t67 = t64 ⊕ t65, s3 = t53 ⊕ t66, s4 = t51 ⊕ t66, s5 = t47 ⊕ t65,
s1 = t64 ⊕ s3, s2 = t55 ⊕ t67.

3.3 Our Improved Classical Circuit of the S-Box−1 of AES

By using the tower technique, we propose an improved implementation of the
S-box−1 (see in Table 2), which can be used to construct our quantum circuit of
AES’s S-box−1. We can express AES’s S-box−1 as S−1(x) = B′ ·F ′(U ′ ·x), where
the matrix U ′ ∈ F 8×22

2 takes x0, x1, · · · , x7 as input and outputs y0, y1, · · · , y21,
where Ui = xi (for 0 ≤ i ≤ 7).

y5 = U1, y4 = U5 ⊕ U0, y13 = U2 ⊕ y5, y6 = y4 ⊕ y13,
y9 = y5 ⊕ y4, y20 = U4 ⊕ y4, y18 = U6, y2 = y6 ⊕ y18,
t0 = U1 ⊕ U0, y7 = U4 ⊕ t0, y17 = y6 ⊕ y7, y16 = U7 ⊕ t0,
y3 = y2 ⊕ y16, y15 = y5 ⊕ y7, y11 = y9 ⊕ y17, y19 = y17 ⊕ y16,
t1 = U3 ⊕ t0, y1 = y20 ⊕ t1, y14 = y3 ⊕ y1, y12 = U2 ⊕ t1,
y0 = y2 ⊕ y12, y10 = y14 ⊕ y12, y8 = y1 ⊕ y0, y21 = U7 ⊕ y12.

The non-linear function F ′ : F22
2 → F

18
2 takes y0, y1, · · · , y21 as input and outputs

z0, z1, · · · , z17.

704 J. Zou et al.

t2 = y7 · y3, t3 = y17 · y16, t4 = y6 · y2, t5 = y15 · y14,
t6 = y13 · y12, t7 = y11 · y10, t8 = y5 · y1, t9 = y9 · y8,
t10 = y4 · y0, t11 = t2 ⊕ t3, t12 = t4 ⊕ t3, t13 = t5 ⊕ t6,
t14 = t5 ⊕ t7, t15 = t8 ⊕ t9, t16 = t10 ⊕ t9, t17 = t11 ⊕ t13,
t18 = t17 ⊕ y21, t19 = t12 ⊕ t14, t20 = t19 ⊕ y20, t21 = t15 ⊕ t13,
t22 = t21 ⊕ y19, t23 = t16 ⊕ t14, t24 = t23 ⊕ y18,
t25 = t18 ⊕ t20, t26 = t20 · t24, t27 = t22 ⊕ t26, t28 = t25 · t27,
t29 = t18 ⊕ t28, t30 = t22 ⊕ t24, t31 = t18 ⊕ t26, t32 = t30 · t31,
t33 = t22 ⊕ t32, t34 = t24 ⊕ t33, t35 = t27 ⊕ t33, t36 = t22 · t35,
t37 = t36 ⊕ t34, t38 = t27 ⊕ t36, t39 = t29 · t38, t40 = t39 ⊕ t25,
t41 = t33 ⊕ t37, t42 = t33 ⊕ t29, t43 = t37 ⊕ t40, t44 = t42 ⊕ t43,
t45 = t29 ⊕ t40, z17 = y3 · t33, z16 = y16 · t41, z15 = y2 · t37,
z14 = y12 · t43, z13 = y14 · t42, z12 = y10 · t44, z11 = y1 · t29,
z10 = y8 · t45, z9 = y0 · t40, z8 = y7 · t33, z7 = y17 · t41,
z6 = y6 · t37, z5 = y13 · t43, z4 = y15 · t42, z3 = y11 · t44,
z2 = y5 · t29, z1 = y9 · t45, z0 = y4 · t40.

The matrix B′ takes z0, z1, · · · , z17 as input and outputs s0, s1, · · · , s7.
t46 = z5 ⊕ z3, t47 = z6 ⊕ t46, t48 = z8 ⊕ t47, t49 = z17 ⊕ z11,
t50 = t48 ⊕ t49, t51 = z16 ⊕ z10, s5 = t50 ⊕ t51, t52 = z15 ⊕ z12,
t53 = z15 ⊕ z9, s2 = t50 ⊕ t53, t54 = z16 ⊕ z13, t55 = t52 ⊕ t54,
s7 = t48 ⊕ t55, t56 = z2 ⊕ z1, t57 = z2 ⊕ z0, s0 = t46 ⊕ t57,
t58 = s2 ⊕ t56, t59 = z5 ⊕ z4, t60 = z8 ⊕ z7, s3 = t58 ⊕ t60,
t61 = z14 ⊕ z11, t62 = t51 ⊕ t52, s4 = t61 ⊕ t62, t63 = s5 ⊕ t59,
t64 = t55 ⊕ s0, t65 = t58 ⊕ t63, s6 = t64 ⊕ t65, t66 = s2 ⊕ s7,
t67 = s4 ⊕ t65, s1 = t66 ⊕ t67.

Table 2. Summary of the resources to implement AES’s S-box−1

Algorithm # XOR/XNOR XOR3 # NAND # AND # NOR # NOT Source

S-box 96 0 0 36 0 0 [19]

80 0 34 0 6 0 [7]

83 0 0 32 0 0 [5]

81 0 0 32 0 0 [1]

69 0 33 0 8 0 [28]

51 9 33 0 8 0 [28]

S-box−1 87 0 0 34 0 0 [1]

81 0 34 0 0 6 [7]

82 0 0 32 0 4 Sect. 3.3

Quantum Circuit Implementations of AES with Fewer Qubits 705

4 The Quantum Circuits for the Basic AES Operations

4.1 Quantum Circuits for Three Linear Transformations of AES

As pointed out in [11], the three linear transformations of AES can be imple-
mented with the CNOT gates as follows. We just adopt their quantum circuit
of three linear transformations in our quantum circuits of AES.

1. AddRoundKey: The AddRoundKey transformation xors 128-bit roundkey
to the state, which can be executed with 128 CNOT gates in parallel.

2. ShiftRows: Since the ShiftRows transformation just permutes the order of
the sixteen bytes of AES, we do not need any quantum gates to execute these
operations.

3. MixColumns: The MixColumns transformation operates a column (32 bits)
at a time, which can be specified with a 32× 32 matrix. The resultant circuit
of MixColumns has 277 CNOT gates with a total depth of 39, which can be
estimated by an LUP-decomposition [11].

In the following, we present our improved quantum circuit implementations of
AES’s S-box and S-box−1. The details of our implementation of AES S-box and
S-box−1 are available at https://github.com/Asiacrypt2020submission370/aes/.

4.2 Improved Quantum Circuit Implementations of AES’s S-Box

In this subsection, we propose some improved quantum circuit implementations
of AES’s S-box. Our quantum circuit of AES’s S-box considers the following
two cases: |x〉|0a〉−→|x〉|S(x)〉|0a−8〉 and |x〉|b〉|0a−8〉−→|x〉|S(x)⊕b〉|0a−8〉. Note
that the prior works [11,18] only considered |x〉|0a〉−→|x〉|S(x)〉|0a−8〉.

Firstly, we improve the quantum circuit sending |x〉|08〉 to |x〉|S(x)〉. In this
part, we propose an improved quantum circuit of AES’s S-box, which requires
fewer qubits than the prior work. In detail, our quantum circuit of AES’s S-box
requires only 6 ancilla qubits, which maps |x〉|014〉 to |x〉|S(x)〉|06〉. The prior
work needed at least 16 ancilla qubits to compute the Sbox, which maps |x〉|024〉
to |x〉|S(x)〉|016〉. Our improved quantum circuits of AES’s S-box adopt the fol-
lowing two new observations, which are based on the algebraic structures of the
S-box (see Sect. 3.2).

Observation 1. As shown in Sect. 3.2, the 18 values of z0, · · · , z17 can be
obtained with the knowledge of t29, t33, t37, t40, t41, t42, t43, t44, t45 and
x7, y0, · · · , y17, where y0, · · · , y17 are the linear combination of x0, x1, · · · , x7.
Besides, t41, t42, t43, t44, t45 can be obtained by the linear combination of
t29, t33, t37, t40. In other words, we can obtain z0, · · · , z17 only with the knowledge
of t29, t33, t37, t40 and x0, x1, · · · , x7.

https://github.com/Asiacrypt2020submission370/aes/

706 J. Zou et al.

Observation 2. The s0, s1, · · · , s7 can be obtained by a linear combination of
z0, · · · , z17 as follows, where s̄ applies the NOT operation on s.

s0 = z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z9 ⊕ z10 ⊕ z15 ⊕ z16,

s1 = z0 ⊕ z1 ⊕ z6 ⊕ z7 ⊕ z9 ⊕ z10 ⊕ z15 ⊕ z16,

s2 = z0 ⊕ z2 ⊕ z6 ⊕ z8 ⊕ z12 ⊕ z14 ⊕ z15 ⊕ z17,

s3 = z0 ⊕ z1 ⊕ z3 ⊕ z4 ⊕ z9 ⊕ z10 ⊕ z15 ⊕ z16,

s4 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z9 ⊕ z10 ⊕ z15 ⊕ z16,

s5 = z0 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z7 ⊕ z8 ⊕ z10 ⊕ z11 ⊕ z12 ⊕ z14 ⊕ z15 ⊕ z16,

s6 = z4 ⊕ z5 ⊕ z7 ⊕ z8 ⊕ z12 ⊕ z13 ⊕ z15 ⊕ z16,

s7 = z0 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z12 ⊕ z13 ⊕ z15 ⊕ z16.

The above two observations explore the linear relationship between differ-
ent parameters in the algebraic structure of AES’s S-box. According to Obser-
vation 1, we can obtain z0, · · · , z17 with the knowledge of t29, t33, t37, t40 and
x0, x1, · · · , x7. Obviously, we can obtain t29, t33, t37, t40 by storing all ti (for
2 ≤ i ≤ 40), which requires 39 ancilla qubits (see in Sect. 3.2). Algorithm 3 can
output t29, t33, t37, t40 with 6 ancilla qubits by reusing some ancilla qubits.

As shown in our Algorithm 3 can be constructed with 6 ancilla qubit, 17 Tofoli
gates, and 93 CNOT gates, while our previous Algorithm 3 required 6 ancilla
qubits, 21 Toffoli gates, and 109 CNOT gates to calculate the same values. There
are several ti can be computed in parallel as follows. First, we can compute t7
and t9 in parallel. Second, we can compute t2 and t18 in parallel. Third, t29 and
t37 can also computed in parallel. To sum up, the Toffoli depth of Algorithm 3
is 14.

Since Algorithm 3 need to recompute t36 and t2, we can obtain a new depth-
qubit tradeoff of Algorithm 3 as follows. First, we observe that our new Algorithm
3 shall compute t36 three times. If we introduce a new ancilla qubit to store t36,
we do not need to recompute t36. That is, we can save two Toffoli gates and two
Toffoli depth by storing t36 in a new ancilla qubit. Second, our new Algorithm 3
need to compute t2 twice. If we introduce a new ancilla qubit to store t2, we can
save one Toffoli gates and one Toffoli depth. That is, we can obtain a new depth-
qubit tradeoff i of our new Algorithm 3 with 14 − i Toffoli depth, 6 + i ancilla
qubits, 17 − (i + 1) Toffoli gates, and 93 + (i + 1) CNOT gates (for 1 ≤ i ≤ 2).

Algorithm 3. Output t29, t33, t37, t40 of S-box with 6 ancilla qubits

Input, U [i] = x[i]; (for 0 ≤ i ≤ 7);
Input T [j] = 0; (for 0 ≤ j ≤ 5);

1: U [0] = U [0] ⊕ U [6];
2: U [6] = U [6] ⊕ U [2] ⊕ U [4] ⊕ U [5];
3: T [0] = (U [0] · U [6]) ⊕ T [0];
4: T [1] = T [1] ⊕ T [0];
5: U [1] = U [1] ⊕ U [2] ⊕ U [7];
6: U [2] = U [2] ⊕ U [1] ⊕ U [4] ⊕ U [5] ⊕ U [6];
7: T [1] = (U [1] · U [2]) ⊕ T [1];
8: U [0] = U [0] ⊕ U [1] ⊕ U [2] ⊕ U [3];

9: U [6] = U [6] ⊕ U [1] ⊕ U [7];
10: T [2] = (U [0] · U [6]) ⊕ T [2];
11: T [3] = T [3] ⊕ T [2];
12: U [5] = U [5] ⊕ U [3];
13: U [0] = U [0] ⊕ U [2] ⊕ U [4] ⊕ U [6] ⊕ U [7];
14: T [3] = (U [5] · U [0]) ⊕ T [3];
15: T [1] = T [1] ⊕ T [3];
16: U [0] = U [0] ⊕ U [3] ⊕ U [4];
17: T [1] = T [1] ⊕ U [0];
18: U [0] = U [0] ⊕ U [1] ⊕ U [2] ⊕ U [6] ⊕ U [7];

Quantum Circuit Implementations of AES with Fewer Qubits 707

19: U [6] = U [6] ⊕ U [7];
20: T [0] = (U [0] · U [6]) ⊕ T [0];
21: U [0] = U [0] ⊕ U [2] ⊕ U [5];
22: U [5] = U [5] ⊕ U [0] ⊕ U [3] ⊕ U [4];
23: T [4] = (U [0] · U [5]) ⊕ T [4];
24: T [3] = T [3] ⊕ T [4];
25: U [0] = U [0] ⊕ U [1] ⊕ U [3];
26: U [5] = U [5] ⊕ U [7];
27: T [3] = (U [0] · U [5]) ⊕ T [3];
28: U [1] = U [1] ⊕ U [2] ⊕ U [4] ⊕ U [5] ⊕ U [6];
29: T [3] = T [3] ⊕ U [1];
30: U [1] = U [1] ⊕ U [2] ⊕ U [4] ⊕ U [6];
31: U [0] = U [0] ⊕ U [2];
32: T [2] = (U [1] · U [0]) ⊕ T [2];
33: T [0] = T [0] ⊕ T [2];
34: T [2] = T [2] ⊕ T [4];
35: U [0] = U [0] ⊕ U [1] ⊕ U [2] ⊕ U [3] ⊕ U [5];
36: U [5] = U [5] ⊕ U [7];
37: T [4] = (U [0] · U [5]) ⊕ T [4];
38: U [2] = U [2] ⊕ U [3] ⊕ U [4] ⊕ U [5] ⊕ U [6];
39: T [0] = T [0] ⊕ U [2];
40: U [1] = U [1] ⊕ U [3] ⊕ U [5] ⊕ U [7];
41: T [2] = (U [1] · U [7]) ⊕ T [2];
42: U [0] = U [0] ⊕ U [2] ⊕ U [4] ⊕ U [6] ⊕ U [7];
43: T [2] = T [2] ⊕ U [0];

44: T [4] = (T [1] · T [3]) ⊕ T [4];
45: T [1] = T [1] ⊕ T [0];
46: T [4] = T [4] ⊕ T [2];
47: T [5] = (T [1] · T [4]) ⊕ T [5];
48: T [5] = T [5] ⊕ T [0];
49: T [1] = T [1] ⊕ T [0] ⊕ T [5];
50: T [4] = T [4] ⊕ T [2] ⊕ T [0];
51: T [5] = T [5] ⊕ T [4];
52: T [1] = (T [0] · T [5]) ⊕ T [1];
53: T [3] = T [3] ⊕ T [2];
54: T [2] = (T [3] · T [4]) ⊕ T [2];
55: T [4] = (T [0] · T [5]) ⊕ T [4];
56: T [3] = (T [2] · T [4]) ⊕ T [3];
57: T [4] = (T [0] · T [5]) ⊕ T [4];
58: T [5] = T [5] ⊕ T [4];
59: U [3] = U [3] ⊕ U [2] ⊕ U [4] ⊕ U [5] ⊕ U [6];
60: U [4] = U [4] ⊕ U [0] ⊕ U [3] ⊕ U [7];
61: U [2] = U [2] ⊕ U [6];
62: U [5] = U [5] ⊕ U [7];
63: U [6] = U [6]⊕U [0]⊕U [1]⊕U [3]⊕U [4]⊕U [5];
64: Output U [0] = y19, U [1] = y4, U [2] = y2,

U [3] = y5, U [4] = y14, U [5] = y6, U [6] =
y21, U [7] = x7 and T [0] = t24, T [1] = t37,
T [2] = t29, T [3] = t40, T [4] = t27, T [5] =
t33.

Note that Langenberg et al. in [18] also utilized the linear relationship
between zi and sj (for 0 ≤ i ≤ 17 and 0 ≤ j ≤ 7) to reduce the number of
Toffoli gates. However, they did not explore the whole linear relationship like
Observation 2. As a result, they needed to introduce a new ancilla qubit Z in
their work. According to Observation 2, we can construct Algorithm 4 for AES’s
S-box with the output of Algorithm 3.

Algorithm 4. Compute AES’s S-box, when the output qubits are zero.

Input T [0] = t29, T [1] = t37, T [2] = t40,
T [3] = t33, T [4] = t24, T [5] = t27;
Input U [0] = y5, U [1] = y19, U [2] = y14,
U [3] = y2, U [4] = y6, U [5] = y21, U [6] = y4,
U [7] = x7;

1: U [1] = U [1] ⊕ U [0] ⊕ U [4] ⊕ U [2];
2: T [3] = T [3] ⊕ T [1];
3: S[5] = (T [3] · U [1]) ⊕ S[5];
4: S[6] = S[6] ⊕ S[5];
5: U [1] = U [1] ⊕ U [0] ⊕ U [4] ⊕ U [2];
6: T [3] = T [3] ⊕ T [1];
7: S[2] = (T [2] · U [2]) ⊕ S[2];
8: S[5] = S[2] ⊕ S[5];
9: S[2] = S[2] ⊕ S[6];
10: S[4] = (T [1] · U [5]) ⊕ S[4];
11: S[1] = S[1] ⊕ S[4];
12: S[3] = S[3] ⊕ S[4];
13: U [5] = U [5] ⊕ U [7];
14: T [1] = T [1] ⊕ T [5];
15: S[7] = (T [1] · U [5]) ⊕ S[7];
16: S[1] = S[1] ⊕ S[7];
17: S[3] = S[3] ⊕ S[7];
18: S[4] = S[4] ⊕ S[7];
19: U [5] = U [5] ⊕ U [7];
20: T [1] = T [1] ⊕ T [5];
21: S[7] = (T [5] · U [7]) ⊕ S[7];

22: S[2] = S[2] ⊕ S[7];
23: S[5] = S[5] ⊕ S[7];
24: S[6] = S[6] ⊕ S[7];
25: U [1] = U [1]⊕U [3]⊕U [0]⊕U [4]⊕U [5]⊕U [6];

26: S[7] = (T [2] · U [1]) ⊕ S[7];
27: S[2] = S[2] ⊕ S[7];
28: S[4] = S[4] ⊕ S[7];
29: S[5] = S[5] ⊕ S[7];
30: U [1] = U [1]⊕U [3]⊕U [0]⊕U [4]⊕U [5]⊕U [6];

31: U [2] = U [2] ⊕ U [3];
32: T [3] = T [3] ⊕ T [2];
33: S[7] = (T [3] · U [2]) ⊕ S[7];
34: S[2] = S[2] ⊕ S[7];
35: S[5] = S[5] ⊕ S[7];
36: U [2] = U [2] ⊕ U [3];
37: T [3] = T [3] ⊕ T [2];
38: S[7] = (T [3] · U [3]) ⊕ S[7];
39: S[6] = S[6] ⊕ S[7];
40: U [6] = U [6] ⊕ U [3] ⊕ U [2];
41: T [2] = T [3] ⊕ T [2];
42: S[0] = (T [2] · U [6]) ⊕ S[0];
43: S[4] = S[4] ⊕ S[0];
44: S[6] = S[6] ⊕ S[0];
45: S[7] = S[7] ⊕ S[0];

708 J. Zou et al.

46: U [6] = U [6] ⊕ U [3] ⊕ U [2];
47: T [2] = T [3] ⊕ T [2];
48: U [1] = U [1] ⊕ U [0] ⊕ U [4] ⊕ U [2] ⊕ U [5];
49: S[0] = (T [3] · U [1]) ⊕ S[0];
50: S[1] = S[1] ⊕ S[0];
51: S[2] = S[2] ⊕ S[0];
52: S[3] = S[3] ⊕ S[0];
53: S[4] = S[4] ⊕ S[0];
54: S[5] = S[5] ⊕ S[0];
55: S[6] = S[6] ⊕ S[0];
56: U [1] = U [1] ⊕ U [0] ⊕ U [4] ⊕ U [2] ⊕ U [5];
57: U [3] = U [7] ⊕ U [3] ⊕ U [0] ⊕ U [4] ⊕ U [5] ⊕

U [6] ⊕ U [1];
58: T [5] = T [5] ⊕ T [2];
59: S[0] = (T [5] · U [3]) ⊕ S[0];
60: S[2] = S[2] ⊕ S[0];
61: S[5] = S[5] ⊕ S[0];
62: S[6] = S[6] ⊕ S[0];
63: U [3] = U [7] ⊕ U [3] ⊕ U [0] ⊕ U [4] ⊕ U [5] ⊕

U [6] ⊕ U [1];
64: T [5] = T [5] ⊕ T [2];
65: U [3] = U [7] ⊕ U [3] ⊕ U [2] ⊕ U [5] ⊕ U [6];
66: T [5] = T [5] ⊕ T [2] ⊕ T [1] ⊕ T [3];
67: S[0] = (T [5] · U [3]) ⊕ S[0];
68: S[3] = S[3] ⊕ S[0];
69: S[4] = S[4] ⊕ S[0];
70: S[5] = S[5] ⊕ S[0];
71: S[6] = S[6] ⊕ S[0];
72: U [3] = U [7] ⊕ U [3] ⊕ U [2] ⊕ U [5] ⊕ U [6];
73: T [5] = T [5] ⊕ T [2] ⊕ T [1] ⊕ T [3];
74: U [2] = U [2] ⊕ U [3] ⊕ U [4];
75: T [5] = T [5] ⊕ T [1];
76: S[0] = (T [5] · U [2]) ⊕ S[0];
77: S[5] = S[5] ⊕ S[0];

78: U [2] = U [2] ⊕ U [3] ⊕ U [4];
79: T [5] = T [5] ⊕ T [1];
80: U [1] = U [1] ⊕ U [3] ⊕ U [4] ⊕ U [2];
81: S[0] = (T [1] · U [1]) ⊕ S[0];
82: S[2] = S[2] ⊕ S[0];
83: S[6] = S[6] ⊕ S[0];
84: S[7] = S[7] ⊕ S[0];
85: U [1] = U [1] ⊕ U [3] ⊕ U [4] ⊕ U [2];
86: U [1] = U [1] ⊕ U [2];
87: T [5] = T [5] ⊕ T [2];
88: S[0] = (T [5] · U [1]) ⊕ S[0];
89: S[2] = S[2] ⊕ S[0];
90: U [1] = U [1] ⊕ U [2];
91: T [5] = T [5] ⊕ T [2];
92: T [5] = T [5] ⊕ T [2] ⊕ T [1] ⊕ T [3];
93: S[0] = (T [5] · U [4]) ⊕ S[0];
94: S[1] = S[1] ⊕ S[0];
95: S[3] = S[3] ⊕ S[0];
96: S[4] = S[4] ⊕ S[0];
97: S[5] = S[5] ⊕ S[0];
98: S[6] = S[6] ⊕ S[0];
99: S[7] = S[7] ⊕ S[0];
100: T [5] = T [5] ⊕ T [2] ⊕ T [1] ⊕ T [3];
101: U [1] = U [1] ⊕ U [4] ⊕ U [2];
102: T [3] = T [3] ⊕ T [1];
103: S[2] = (T [3] · U [1]) ⊕ S[2];
104: U [1] = U [1] ⊕ U [4] ⊕ U [2];
105: T [3] = T [3] ⊕ T [1];
106: S[5] = (T [5] · U [1]) ⊕ S[5];

107: Compute S[1]; S[2]; S[6]; S[7];
108: Adopt Algorithm 3 to set T [i] = 0 (for

0 ≤ i ≤ 5) and U [j] = xj (for 0 ≤ j ≤ 7);
109: Output S[0], S[1], S[2], S[3], S[4], S[5],

S[6], S[7].

We can obtain the time and memory cost of Algorithm 4 as follows.

1. It needs 18 Toffoli gates and 140 CNOT gates to obtain zi for 1 ≤ i ≤ 17.
2. Since Algorithm 4 adopt Algorithm 3 twice to clean up the ancilla qubits, we

can obtain a new depth-qubit trade-off i of Algorithm 4 as follows.

a. When i = 0, Algorithm 4 can compute the output of S-box with 6 ancilla
qubits, 52 Toffoli gates, 326 CNOT gates, and 4 NOT gates. The Toffoli
depth of Algorithm 4 in this case is 2 × 14 + 13 = 41.

b. When 1 ≤ i ≤ 2, Algorithm 4 can compute the output of S-box with 6 + i
ancilla qubits, 52 − 2(i+ 1) Toffoli gates, 326 + 2(i+ 1) CNOT gates, 4 NOT
gates. The Toffoli depth of Algorithm 4 in this case is 41 − 2i.

Next, we improve the quantum circuit sending |x〉|b〉 to |x〉|S(x) ⊕ b〉. In this
part, we propose a new quantum circuit of AES’s S-box, which maps |x〉|b〉|07〉
to |x〉|S(x) ⊕ b〉|07〉 with the output of Algorithm 3. Since the qubits encoding
b are not necessarily zero, we cannot adopt Algorithm 4 directly. According to
Observation 2, this problem can be solved by introducing a new ancilla qubit Z,
which can be used to store each zi. After filling Z with zi, we just XOR Z to sj
according to linear relationship in Observation 2. Note that we shall clean up Z
each time so as to store new zi.

Since this Algorithm 5 is similar to Algorithm 4, we just give a brief descrip-
tion of Algorithm 5 in the following pseudo code.

Quantum Circuit Implementations of AES with Fewer Qubits 709

Algorithm 5. Compute AES’s S-box, when output qubits are not zero.

Input: the output of Algorithm 3;
1: Z = Toffoli(t41, y10, Z);
2: S[2] = CNOT (S[2], Z);
3: S[5] = CNOT (S[5], Z);
4: S[6] = CNOT (S[6], Z);
5: Z = Toffoli(t41, y10, Z);
6: Z = Toffoli(t29, y2, Z);
7: S[2] = CNOT (S[2], Z);
8: S[5] = CNOT (S[5], Z);
9: Z = Toffoli(t29, y2, Z);
10: Z = Toffoli(t37, y6, Z);
11: S[1] = CNOT (S[1], Z);
12: S[3] = CNOT (S[3], Z);
13: S[4] = CNOT (S[4], Z);
14: Z = Toffoli(t37, y6, Z);
15: Z = Toffoli(t44, y15, Z);
16: S[1] = CNOT (S[1], Z);
17: S[2] = CNOT (S[2], Z);
18: S[3] = CNOT (S[3], Z);
19: S[5] = CNOT (S[5], Z);
20: S[7] = CNOT (S[7], Z);
21: Z = Toffoli(t44, y15, Z);
22: Z = Toffoli(t33, x7, Z);
23: S[2] = CNOT (S[2], Z);
24: S[4] = CNOT (S[4], Z);
25: S[5] = CNOT (S[5], Z);
26: S[7] = CNOT (S[7], Z);
27: Z = Toffoli(t33, x7, Z);
28: Z = Toffoli(t29, y7, Z);
29: S[4] = CNOT (S[4], Z);
30: S[6] = CNOT (S[6], Z);
31: S[7] = CNOT (S[7], Z);
32: Z = Toffoli(t29, y7, Z);
33: Z = Toffoli(t43, y13, Z);
34: S[2] = CNOT (S[2], Z);
35: S[5] = CNOT (S[5], Z);
36: S[6] = CNOT (S[6], Z);
37: S[7] = CNOT (S[7], Z);
38: Z = Toffoli(t43, y13, Z);
39: Z = Toffoli(t40, y5, Z);
40: S[6] = CNOT (S[6], Z);
41: S[7] = CNOT (S[7], Z);
42: Z = Toffoli(t40, y5, Z);
43: Z = Toffoli(t43, y16, Z);
44: S[0] = CNOT (S[0], Z);
45: S[3] = CNOT (S[3], Z);
46: S[5] = CNOT (S[5], Z);
47: S[7] = CNOT (S[7], Z);
48: Z = Toffoli(t43, y16, Z);
49: Z = Toffoli(t40, y1, Z);
50: S[0] = CNOT (S[0], Z);
51: S[3] = CNOT (S[3], Z);
52: S[4] = CNOT (S[4], Z);

53: S[5] = CNOT (S[5], Z);
54: S[6] = CNOT (S[6], Z);
55: Z = Toffoli(t40, y1, Z);
56: Z = Toffoli(t42, y11, Z);
57: S[0] = CNOT (S[0], Z);
58: S[1] = CNOT (S[1], Z);
59: S[2] = CNOT (S[2], Z);
60: Z = Toffoli(t42, y11, Z);
61: Z = Toffoli(t45, y17, Z);
62: S[0] = CNOT (S[0], Z);
63: S[1] = CNOT (S[1], Z);
64: S[5] = CNOT (S[5], Z);
65: S[6] = CNOT (S[6], Z);
66: Z = Toffoli(t45, y17, Z);
67: Z = Toffoli(t44, y12, Z);
68: S[0] = CNOT (S[0], Z);
69: S[1] = CNOT (S[1], Z);
70: S[3] = CNOT (S[3], Z);
71: S[4] = CNOT (S[4], Z);
72: Z = Toffoli(t44, y12, Z);
73: Z = Toffoli(t37, y3, Z);
74: S[0] = CNOT (S[0], Z);
75: S[1] = CNOT (S[1], Z);
76: S[3] = CNOT (S[3], Z);
77: S[4] = CNOT (S[4], Z);
78: S[5] = CNOT (S[5], Z);
79: Z = Toffoli(t37, y3, Z);
80: Z = Toffoli(t42, y9, Z);
81: S[0] = CNOT (S[0], Z);
82: S[1] = CNOT (S[1], Z);
83: S[2] = CNOT (S[2], Z);
84: S[3] = CNOT (S[3], Z);
85: S[4] = CNOT (S[4], Z);
86: S[5] = CNOT (S[5], Z);
87: S[6] = CNOT (S[6], Z);
88: S[7] = CNOT (S[7], Z);
89: Z = Toffoli(t42, y9, Z);
90: Z = Toffoli(t45, y14, Z);
91: S[0] = CNOT (S[0], Z);
92: S[1] = CNOT (S[1], Z);
93: S[3] = CNOT (S[3], Z);
94: S[4] = CNOT (S[4], Z);
95: S[5] = CNOT (S[5], Z);
96: S[6] = CNOT (S[6], Z);
97: S[7] = CNOT (S[7], Z);
98: Z = Toffoli(t45, y14, Z);
99: S[5] = Toffoli(t33, y4, S[5]);
100: S[2] = Toffoli(t41, y8, S[2]);

101: Compute S[1]; S[2]; S[6]; S[7];
102: Adopt Algorithm 3 to set T [i] = 0 (for

0 ≤ i ≤ 5) and U [j] = xj (for 0 ≤ j ≤ 7);
103: Output S[0], S[1], S[2], S[3], S[4], S[5],

S[6], S[7].

Similar to Algorithm 4, we can obtain the time and memory cost of Algorithm
5 as follows

1. Algorithm 5 calculates each zi (for 0 ≤ i ≤ 17) in the same order as Algorithm
4. That is, Algorithm 5 needs the same cost to compute each ti and yj as
Algorithm 4.

710 J. Zou et al.

2. Since z11 (or z17) only appears in S5 (or S2) (see in Observation 2), we can
store z11 (or z17) in S5 (or S2) without affecting the other output qubits. In
other words, we can compute z11 and z17 in parallel with other zi. Because
we do not need to store z11 and z17 in Z, we just need to clean up Z sixteen
times so as to store new zi. That is, Algorithm 5 needs 34 Toffoli gates to
calculate each zi (for 0 ≤ i ≤ 17).

3. Algorithm 5 shall adopt Algorithm 3 twice to compute S-box and clean up
these ancilla qubits.

Similar to Algorithm 4, We can obtain a new depth-qubit trade-off i of
Algorithm 5 as follows.

1. When i = 0, Algorithm 5 can compute the output of S-box with 7 ancilla
qubits, 68 Toffoli gates, 352 CNOT gates, 4 NOT gates, and 60 Toffoli depth.

2. When 1 ≤ i ≤ 2, we can compute S-box with 7+ i ancilla qubits, 68−2(i+1)
Toffoli gates, 352 + 2(i + 1) CNOT gates, 4 NOT gates, and 60 − 2i Toffoli
depth.

4.3 Improved Quantum Circuit Implementation of the S-Box−1

Here we propose an new quantum circuit of AES’s S-box−1 with 7 ancilla qubits,
which maps |x〉|S(x)〉|07〉 to |x⊕S−1(S(x))〉|S(x)〉|07〉 = |08〉|S(x)〉|07〉. We can
adopt our quantum circuit of S-box−1 to remove some state values. We will use
this property to improve the zig-zag method. Our quantum circuit of AES’s
S-box−1 benefits from the following observations, which are based on our
improved classical circuit of AES’s S-box−1.

Observation 3. The 18-bit z0, · · · , z17 for computing S-box−1 can be obtained
with the knowledge of t29, t33, t37, t40, t41, t42, t43, t44, t45 and y0, · · · , y21. Note
that y0, · · · , y21 are the linear combination of x0, · · · , x7. Besides, t41, t42, t43,
t44, t45 can be obtained by the linear combination of t29, t33, t37, t40. That is,
we can obtain z0, · · · , z17 with the knowledge of t29, t33, t37, t40 and x0, · · · , x7.

Observation 4. The 8-bit output of S-box−1 s0, · · · , s7 can be seen as a linear
combination of the 18-bit z0, · · · , z17 as follows.

s0 = z0 ⊕ z2 ⊕ z3 ⊕ z5

s1 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z13 ⊕ z14 ⊕ z16 ⊕ z17

s2 = z3 ⊕ z5 ⊕ z6 ⊕ z8 ⊕ z9 ⊕ z11 ⊕ z15 ⊕ z17

s3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7 ⊕ z9 ⊕ z11 ⊕ z15 ⊕ z17

s4 = z10 ⊕ z11 ⊕ z12 ⊕ z14 ⊕ z15 ⊕ z16

s5 = z3 ⊕ z5 ⊕ z6 ⊕ z8 ⊕ z10 ⊕ z11 ⊕ z16 ⊕ z17

s6 = z0 ⊕ z1 ⊕ z3 ⊕ z4 ⊕ z9 ⊕ z10 ⊕ z12 ⊕ z13

s7 = z3 ⊕ z5 ⊕ z6 ⊕ z8 ⊕ z12 ⊕ z13 ⊕ z15 ⊕ z16

Quantum Circuit Implementations of AES with Fewer Qubits 711

According to Observation 3, we can obtain z0, · · · , z17 by t29, t33, t37, t40 and
x0, · · · , x7. We propose Algorithm 6 to compute the t29, t33, t37, t40. As shown
in Algorithm 6, we can compute the z0, · · · , z17 of the S-box−1 with 6 ancilla
qubits, 17 Toffoli gates, 110 CNOT gates and 12 NOT gates.

Algorithm 6. Compute t29, t33, t37, t40 of S-box−1 with 6 ancilla qubits

Input U[0] = x7, U[1] = x6, U[2] = x5, U[3] = x4,
U[4] = x3, U[5] = x2, U[6] = x1 U[7] = x0;
Input T [j] = 0; (for 0 ≤ j ≤ 5);

1: U[7] = U[7] ⊕ U[3];
2: U[6] = U[6] ⊕ U[5] ⊕ U[4] ⊕ U[3] ⊕ U[1] ⊕ U[0];
3: T [0] = (U[6] · U[7]) ⊕ T [0];
4: T [2] = T [2] ⊕ T [0];
5: U[5] = U[5] ⊕ U[3] ⊕ U[2];
6: U[7] = U[7]⊕U[6]⊕U[5]⊕U[4]⊕U[3]⊕U[2]⊕U[1];

7: T [0] = (U[5] · U[7]) ⊕ T [0];
8: T [1] = T [1] ⊕ T [0];
9: U[7] = U[7] ⊕ U[2] ⊕ U[0];
10: U[6] = U[6] ⊕ U[5] ⊕ U[4] ⊕ U[3] ⊕ U[2] ⊕ U[0];
11: U[6] = U[6];
12: T [2] = (U[6] · U[7]) ⊕ T [2];
13: T [3] = T [3] ⊕ T [2];
14: U[5] = U[5] ⊕ U[6] ⊕ U[2] ⊕ U[1];
15: U[7] = U[7]⊕U[6]⊕U[5]⊕U[4]⊕U[3]⊕U[2]⊕U[1];

16: T [0] = (U[5] · U[7]) ⊕ T [0];
17: T [2] = (U[5] · U[7]) ⊕ T [2];
18: U[7] = U[7] ⊕ U[3] ⊕ U[4];
19: U[5] = U[5] ⊕ U[7] ⊕ U[1] ⊕ U[0];
20: T [1] = (U[5] · U[7]) ⊕ T [1];
21: T [3] = (U[5] · U[7]) ⊕ T [3];
22: U[5] = U[5] ⊕ U[6] ⊕ U[3] ⊕ U[0];
23: U[7] = U[7] ⊕ U[5] ⊕ U[2] ⊕ U[1] ⊕ U[0];
24: T [0] = (U[5] · U[7]) ⊕ T [0];
25: U[7] = U[7] ⊕ U[5] ⊕ U[3] ⊕ U[1] ⊕ U[0];
26: U[1] = U[1] ⊕ U[7];
27: T [1] = (U[7] · U[1]) ⊕ T [1];
28: U[1] = U[1] ⊕ U[7] ⊕ U[6] ⊕ U[3];
29: U[4] = U[4] ⊕ U[3] ⊕ U[2] ⊕ U[1];
30: T [2] = (U[1] · U[4]) ⊕ T [2];
31: U[5] = U[5] ⊕ U[3] ⊕ U[2] ⊕ U[1];
32: U[6] = U[6] ⊕ U[4];
33: T [3] = (U[6] · U[5]) ⊕ T [3];

34: U[7] = U[7] ⊕ U[3] ⊕ U[4] ⊕ U[1] ⊕ U[0];
35: T [0] = T [0] ⊕ U[7];
36: U[5] = U[5] ⊕ U[3];
37: T [1] = T [1] ⊕ U[5];
38: U[7] = U[7] ⊕ U[4] ⊕ U[1];
39: T [2] = T [2] ⊕ U[7];
40: U[6] = U[6] ⊕ U[3] ⊕ U[4] ⊕ U[1];
41: T [3] = T [3] ⊕ U[6];
42: T [4] = (T [1] · T [3]) ⊕ T [4];
43: T [3] = T [3] ⊕ T [2];
44: T [4] = T [4] ⊕ T [0];
45: T [5] = T [5] ⊕ T [2];
46: T [5] = (T [3] · T [4]) ⊕ T [5];
47: T [4] = T [4] ⊕ T [0];
48: T [4] = T [4] ⊕ T [2];
49: T [3] = T [3] ⊕ T [2];
50: T [5] = T [5] ⊕ T [4];
51: T [4] = (T [5] · T [2]) ⊕ T [4];
52: T [2] = (T [1] · T [3]) ⊕ T [2];
53: T [1] = T [0] ⊕ T [1];
54: T [0] = (T [1] · T [2]) ⊕ T [0];
55: T [1] = (T [0] · T [4]) ⊕ T [1];
56: T [4] = T [4] ⊕ T [2];
57: T [2] = T [2] ⊕ T [5];
58: T [3] = T [3] ⊕ T [2];
59: T [4] = T [4] ⊕ T [3];
60: U[7] = U[7] ⊕ U[6] ⊕ U[5] ⊕ U[2] ⊕ U[1];
61: U[5] = U[5] ⊕ U[7] ⊕ U[3] ⊕ U[2] ⊕ U[1] ⊕ U[0];
62: U[5] = U[5];
63: U[6] = U[6] ⊕ U[3] ⊕ U[4] ⊕ U[1];
64: U[0] = U[0] ⊕ U[5] ⊕ U[3] ⊕ U[7];
65: U[3] = U[6] ⊕ U[5] ⊕ U[3] ⊕ U[4] ⊕ U[1];
66: U[2] = U[6] ⊕ U[5] ⊕ U[3] ⊕ U[4] ⊕ U[2] ⊕ U[0];
67: Output U[0] = y7, U[1] = y5, U[2] = y4, U[3] =

y6, U[4] = y1, U[5] = y2, U[6] = y0, U[7] = y3;
and T [0] = t29, T [1] = t40, T [2] = t33, T [3] = t34,
T [4] = t37, T [5] = t35.

As shown in the above, we can obtain the 14 outputs of Algorithm 6 with 7
ancilla qubits, 17 Toffoli gates, 110 CNOT gates and 12 NOT gates. The Toffoli
depth of Algorithm 6 is 14, because we can compute some ti in parallel as follows.
First, we can compute the two t6 in parallel. Second, we can compute the two
t7 in parallel. Third, we can compute the t8 and t10 in parallel.

Similar to Algorithm 3, we can obtain a new depth-qubit trade-off of Algo-
rithm 6 by introducing more ancilla qubits. Note that Algorithm 6 need to
compute t6, t7, t26 twice. If we introduce 3 more ancilla qubits to store these
values, we do not need to recompute t6, t7, t26 again. That is, we can obtain a
new depth-qubit trade-off of Algorithm 6, which needs 7+ i ancilla qubits, 17− i
Toffoli gates, 110+ i CNOT gates and 12 NOT gates (for 0 ≤ i ≤ 3). The Toffoli
depth of this new trade-off Algorithm 6 is 13 (for 1 ≤ i ≤ 3).

712 J. Zou et al.

After obtaining the 14-bit output of Algorithm 6, we can construct Algorithm
7 by using Observation 4. Since our algorithm for S-box−1 can not make sure
the output bits are zero, we shall introduce a new ancilla qubit Z to store each
zi in this algorithm.

Algorithm 7. Compute the 8-bit output of the S-box−1 of AES

Input T [0] = t29, T [1] = t40, T [2] = t33,
T [3] = t34, T [4] = t37, T [5] = t35;
Input U [0] = y7, U [1] = y5, U [2] = y4,
U [3] = y6, U [4] = y1, U [5] = y2, U [6] = y0,
U [7] = y3.

1: Z = (T [1] · U [2]) ⊕ Z;
2: S[0] = S[0] ⊕ Z;
3: S[6] = S[6] ⊕ Z;
4: Z = (T [1] · U [2]) ⊕ Z;
5: T [0] = T [0] ⊕ T [1];
6: U [2] = U [2] ⊕ U [1];
7: Z = (T [0] · U [2]) ⊕ Z;
8: S[1] = S[1] ⊕ Z;
9: S[3] = S[3] ⊕ Z;
10: S[6] = S[6] ⊕ Z;
11: Z = (T [0] · U [2]) ⊕ Z;
12: T [0] = T [0] ⊕ T [1];
13: U [2] = U [2] ⊕ U [1];
14: Z = (T [0] · U [1]) ⊕ Z;
15: S[0] = S[0] ⊕ Z;
16: S[1] = S[1] ⊕ Z;
17: S[3] = S[3] ⊕ Z;
18: Z = (T [0] · U [1]) ⊕ Z;
19: T [4] = T [4] ⊕ T [1] ⊕ T [0] ⊕ T [2];
20: U [2] = U [2] ⊕ U [3] ⊕ U [1] ⊕ U [0];
21: Z = (T [4] · U [2]) ⊕ Z;
22: S[0] = S[0] ⊕ Z;
23: S[2] = S[2] ⊕ Z;
24: S[3] = S[3] ⊕ Z;
25: S[5] = S[5] ⊕ Z;
26: S[6] = S[6] ⊕ Z;
27: S[7] = S[7] ⊕ Z;
28: Z = (T [4] · U [2]) ⊕ Z;
29: T [4] = T [4] ⊕ T [1] ⊕ T [0] ⊕ T [2];
30: U [2] = U [2] ⊕ U [3] ⊕ U [1] ⊕ U [0];
31: T [0] = T [0] ⊕ T [2];
32: U [1] = U [1] ⊕ U [0];
33: Z = (T [0] · U [1]) ⊕ Z;
34: S[1] = S[1] ⊕ Z;
35: S[6] = S[6] ⊕ Z;
36: Z = (T [0] · U [1]) ⊕ Z;
37: T [0] = T [0] ⊕ T [2];
38: U [1] = U [1] ⊕ U [0];
39: T [4] = T [4] ⊕ T [1];
40: U [3] = U [3] ⊕ U [2];
41: Z = (T [4] · U [3]) ⊕ Z;
42: S[0] = S[0] ⊕ Z;
43: S[1] = S[1] ⊕ Z;
44: S[2] = S[2] ⊕ Z;
45: S[3] = S[3] ⊕ Z;
46: S[5] = S[5] ⊕ Z;
47: S[7] = S[7] ⊕ Z;
48: Z = (T [4] · U [3]) ⊕ Z;
49: T [4] = T [4] ⊕ T [1];
50: U [3] = U [3] ⊕ U [2];
51: Z = (T [4] · U [3]) ⊕ Z;
52: S[2] = S[2] ⊕ Z;

53: S[3] = S[3] ⊕ Z;
54: S[5] = S[5] ⊕ Z;
55: S[7] = S[7] ⊕ Z;
56: Z = (T [4] · U [3]) ⊕ Z;
57: Z = (T [2] · U [0]) ⊕ Z;
58: S[2] = S[2] ⊕ Z;
59: S[5] = S[5] ⊕ Z;
60: S[7] = S[7] ⊕ Z;
61: Z = (T [2] · U [0]) ⊕ Z;
62: Z = (T [1] · U [6]) ⊕ Z;
63: S[2] = S[2] ⊕ Z;
64: S[3] = S[3] ⊕ Z;
65: S[6] = S[6] ⊕ Z;
66: Z = (T [1] · U [6]) ⊕ Z;
67: T [1] = T [1] ⊕ T [0];
68: U [6] = U [6] ⊕ U [4];
69: Z = (T [1] · U [6]) ⊕ Z;
70: S[4] = S[4] ⊕ Z;
71: S[5] = S[5] ⊕ Z;
72: S[6] = S[6] ⊕ Z;
73: Z = (T [1] · U [6]) ⊕ Z;
74: T [1] = T [1] ⊕ T [0];
75: U [6] = U [6] ⊕ U [4];
76: Z = (T [0] · U [4]) ⊕ Z;
77: S[2] = S[2] ⊕ Z;
78: S[3] = S[3] ⊕ Z;
79: S[4] = S[4] ⊕ Z;
80: S[5] = S[5] ⊕ Z;
81: Z = (T [0] · U [4]) ⊕ Z;
82: T [4] = T [4] ⊕ T [1] ⊕ T [0] ⊕ T [2];
83: U [7] = U [7] ⊕ U [6] ⊕ U [5] ⊕ U [4];
84: Z = (T [4] · U [7]) ⊕ Z;
85: S[4] = S[4] ⊕ Z;
86: S[6] = S[6] ⊕ Z;
87: S[7] = S[7] ⊕ Z;
88: Z = (T [4] · U [7]) ⊕ Z;
89: T [4] = T [4] ⊕ T [1] ⊕ T [0] ⊕ T [2];
90: U [7] = U [7] ⊕ U [6] ⊕ U [5] ⊕ U [4];
91: T [0] = T [0] ⊕ T [2];
92: U [7] = U [7] ⊕ U [4];
93: Z = (T [0] · U [7]) ⊕ Z;
94: S[1] = S[1] ⊕ Z;
95: S[6] = S[6] ⊕ Z;
96: S[7] = S[7] ⊕ Z;
97: Z = (T [0] · U [7]) ⊕ Z;
98: T [0] = T [0] ⊕ T [2];
99: U [7] = U [7] ⊕ U [4];
100: T [1] = T [1] ⊕ T [4];
101: U [6] = U [6] ⊕ U [5];
102: Z = (T [1] · U [6]) ⊕ Z;
103: S[1] = S[1] ⊕ Z;
104: S[4] = S[4] ⊕ Z;
105: Z = (T [1] · U [6]) ⊕ Z;
106: T [1] = T [1] ⊕ T [4];
107: U [6] = U [6] ⊕ U [5];
108: Z = (T [4] · U [5]) ⊕ Z;
109: S[2] = S[2] ⊕ Z;

Quantum Circuit Implementations of AES with Fewer Qubits 713

110: S[3] = S[3] ⊕ Z;
111: S[4] = S[4] ⊕ Z;
112: S[7] = S[7] ⊕ Z;
113: Z = (T [4] · U [5]) ⊕ Z;
114: T [4] = T [4] ⊕ T [2];
115: U [7] = U [7] ⊕ U [5];
116: Z = (T [4] · U [7]) ⊕ Z;
117: S[1] = S[1] ⊕ Z;
118: S[4] = S[4] ⊕ Z;
119: S[5] = S[5] ⊕ Z;
120: S[7] = S[7] ⊕ Z;
121: Z = (T [4] · U [7]) ⊕ Z;
122: T [4] = T [4] ⊕ T [2];
123: U [7] = U [7] ⊕ U [5];
124: Z = (T [2] · U [7]) ⊕ Z;

125: S[1] = S[1] ⊕ Z;
126: S[2] = S[2] ⊕ Z;
127: S[3] = S[3] ⊕ Z;
128: S[5] = S[5] ⊕ Z;
129: Z = (T [2] · U [7]) ⊕ Z;
130: T [4] = T [4] ⊕ T [2];
131: U [0] = U [0] ⊕ U [3];
132: S[3] = (T [4] · U [0]) ⊕ S[3];
133: T [4] = T [4] ⊕ T [2];
134: U [0] = U [0] ⊕ U [3];
135: Adopt the Algorithm 6 to set T [i] = 0 (for

0 ≤ i ≤ 5) and U [j] = xj (for 0 ≤ j ≤ 7);
136: Output S[0], S[1], S[2], S[3], S[4], S[5],

S[6], S[7].

The time and space cost of Algorithm 7 can be computed as follows. First,
Algorithm 7 needs 35 Toffoli gates and 115 CNOT gates to compute each zi for
0 ≤ i ≤ 17. Second, Algorithm 7 needs to adopt Algorithm 6 twice to compute
S-box−1 and clean up the ancilla qubits, which set T [i] = 0 and U [j] = xj for
0 ≤ i ≤ 5 and 0 ≤ j ≤ 7. To sum up, Algorithm 7 can output S-box−1 with
7 ancilla qubits, 69 Toffoli gates, 335 CNOT and 24 NOT gates. The depth of
Algorithm 7 is 62. Given more ancilla qubits, we can also propose a new depth-
qubit trade-off of Algorithm 7, which needs 7 + i ancilla qubits, 69 − 2i Toffoli
gates, 335 + 2i CNOT, and 24 NOT gates (for 0 ≤ i ≤ 3). The Toffoli depth of
the above algorithm is 60 (for 1 ≤ i ≤ 3).

5 Our Strategies for the Zig-Zag Method and the Key
Schedule of AES

5.1 Zig-Zag Method with Improved Depth-Qubit Trade-Offs

The prior quantum circuit of AES [3,11,18] adopted the zig-zag method to reduce
the number of qubits. As shown in Fig. 1, the prior zig-zag method needed 512
qubits by reusing some qubits. However, they could not remove the Round 4,
Round 7 and Round 9, unless the entire process was reversed. The reason for
this drawback is that the prior work only considered the encryption algorithm
in their zig-zag method. That is, they should know Round i− 1 so as to remove
Round i. In this subsection, we propose an improved zig-zag method (see in
Fig. 2), which just needs 256 qubits. We can achieve this goal by applying our
quantum circuit of S-box−1 in our zig-zag method.

Denote the j-th output of the 16 S-box in Round i as sij (for 0 ≤ j ≤ 15),
while the j-th byte of Round i − 1 is denoted as ri−1

j (for 0 ≤ j ≤ 15). Given
|ri−1〉|0128〉, we can explain how to obtain Round i and remove Round i − 1
within these 256 qubits.

1. Given |ri−1〉, we can compute the first r bytes of si0, s
i
1, · · · , sir−1 with our

Algorithm 4. We can store si0, s
i
1, · · · , sir−1 in the first 8 · r qubits of |0128〉,

while the left |0128−8·r〉 qubits can be used for ancilla qubits. We can choose
r to obtain a improved depth-qubits trade-off for our quantum circuit.

714 J. Zou et al.

Fig. 1. Comparison between the pipeline architecture and the zig-zag method. The
round i is indicated by Ri, while R−1

i means to remove the round i.

2. After computing si0, · · · , sir−1, we can remove the first r bytes in Round i− 1

by using our Algorithm 7. That is, we can compute |sij〉|ri−1
j 〉|07〉 Algorithm 7−→

|sij〉|ri−1
j ⊕ Sbox−1(sij)〉|07〉 for 0 ≤ j ≤ r − 1). Note that we can still use

the left |0128−8·r〉 qubits as ancilla qubits. Since ri−1
j = Sbox−1(sij), we have

|sij〉|ri−1
j ⊕ Sbox−1(sij)〉|07〉 = |sij〉|08〉|07〉

3. These re-zero |08·r〉 in Round i−1 can be used as ancilla qubits for obtaining
sir, s

i
r+1, · · · , si15 and removing the left 16 − r bytes in Round i − 1.

4. After computing the 16 bytes of si0, s
i
1, · · · , si15, we can compute the 16 bytes

of Round i by computing AK ◦MC ◦SR(Si), where Si is the 16 bytes output
of the S-box in Round i, and AK, MC and SR are the abbreviations for
AddRoundKey, MixColumns and ShiftRows.

After generating Round i, we can compute Round i + 1 and remove Round
i in a similar way. We can assign the newly calculated Round i + 1 to these
128 re-initialized zero qubits of Round i − 1. We can compute the ciphertext of
AES-128 by repeating the above operation 10 times. Obviously, we can construct
the zig-zag method for AES-192/-256 with 256 qubits in a similar way, where
the prior zig-zag method needs 656 qubits for AES-192/-256 both.

Quantum Circuit Implementations of AES with Fewer Qubits 715

Fig. 2. Our method for improving the zig-zag method. The round i is indicated by Ri,
while R−1

i means to remove the round i.

5.2 Improved Quantum Circuits for the Key Schedule of AES

In this subsection, we propose some improved quantum circuit implementations
for the key schedule of AES-128/-192/-256.

Our Strategy for the Key Schedule of AES-128. Our quantum circuit
for the key-schedule of AES-128 only requires 128 qubits, while the prior works
needed at least 224 qubits. We can achieve this improvement by combining
our quantum circuit of S-box (Algorithm 5) with the property proposed by
Langenberg et al. [18] (see Table 3).

We take W16 as an example to explain Table 3, where W16 : W15,W11,W7,
W3. It means W16 can be computed with the knowledge of W15,W11,W7, and
W3. According to Algorithm 1, we can rewrite W16 as W16 = W15 ⊕ W11W7 ⊕
W3 ⊕ SubWord(RotWord(W15)) ⊕ Rcon(4). We can obtain the other Wi in
Table 3 similarly.

According to Table 3, we can compute all Wj (for 4 ≤ i ≤ 43) with these
ten 32-bit W4i+3 (for 1 ≤ i ≤ 10). In [11], Grassl et al. just stored these ten
32-bit W4i+3 (for 1 ≤ i ≤ 10) with 32 × 10 = 320 qubits to generate each
roundkey of AES-128. In [18], Langenberg et al. showed that they could generate
all round keys of AES-128 with 224 qubits by reusing some qubits as follows.
After computing seven 32-qubit words W7, W11, W15, W19, W23, W27, W31, they
just cleaned up W7 so as to assign W32 to these 32 re-zero qubits. Then they
could compute W33, W34 and W35 one by one with the knowledge of W19, W23,
W27, W31. Obviously, they could compute the left round-keys similarly.

When the output qubits were not zero, Langenberg et al. could not apply
their quantum circuit of S-box to compute AES’s S-box. As a result, they should
remove W7 to generate W32. Based on Algorithm 5, our improved quantum
circuit for the key schedule of AES-128 can be explained as follows.

1 As shown in Sect. 6, we can generate four 32-qubit words W7, W11, W15, W19

in the 128 zero qubits.
2 Since we have no zero qubits left, we shall remove W7, W11, W15, W19 to

generate new W4i+3 (for 5 ≤ i ≤ 10). In detail, we can compute W20 by
XORing SubWord(RotWord(W19)), Rcon(5), W19,W11, W15 to W7. We shall
adopt Algorithm 5 to compute SubWord, because the output qubits are not
zero. As a result, we can assign the newly calculated W20 to W7 without
introducing new qubits.

716 J. Zou et al.

3 After generating W20, we can compute W21, W22 and W23 one by one with
W11, W15, W19 (see Table 3). Since we only store W23 in the memory, we can
assign the newly calculated W20+j to W20+j−1 (for 1 ≤ j ≤ 3).

4 The left round keys Wi (for 24 ≤ i ≤ 43) can be generated in a similar
way. After generating W4i−1, W4i−5, W4i−9, and W4i−13, we can assign the
newly calculated W4i to W4i−13 (for 5 ≤ i ≤ 10) without introducing new
qubits. After computing W4i, we can generate W4i+1, W4i+2, W4i+3 as follows:
W4i+1 = W4i ⊕ W4i−1 ⊕ W4i−9, W4i+2 = W4i+1 ⊕ W4i−1 ⊕ W4i−5, W4i+3 =
W4i+2 ⊕ W4i−1. We can assign the newly calculated W4i+j to W4i+j−1 (for
1 ≤ j ≤ 3).

Our Strategy for the Key Schedule of AES-192 and AES-256. Similar
to AES-128, we can obtain a property for AES-192 (or AES-256) in Table 4 (or
Table 5).

The quantum circuit for the key schedule of AES-192 is similar to AES-
128. After generating W11, W17, W23, W29, W35 and W41 in the 192 qubits, we
can compute W42 by xoring SubWord(RotWord(W41)), Rcon(7), W35, W17 to
W11. Then we can compute the round-key W42+j (for 1 ≤ j ≤ 5) one by one
with the knowledge of W42+j−1, W17, W23, W29, W35 and W41. Obviously, we
can compute left round keys for AES-192 in a similar way. To sum up, we can
compute the 12 round-key of AES-192 with 192 qubits.

The quantum circuit for the key schedule of AES-256 can be constructed as
follows. After generating the eight round-keys W11, W15, W19, W23, W27, W31,
W35 and W39 in the quantum memory, we can compute W40 for AES-256 by
XORing SubWord(RotWord(W39)), Rcon(5), W35, W27, W19 to W11. Then we
can compute the round-key W40+j (1 ≤ j ≤ 3) for Round 10 one by one with
the knowledge of W39, W35, W27, W19. Similar to W40, we can obtain the left
round key W44, W48, W52, and W56 without introducing new qubits. To sum up,
we can compute the 14 round-key of AES-256 with 256 qubits.

Table 3. The keys required to construct each round-key of AES-128.

W4 : W3,W0 W5 : W4,W1 W6 : W5,W2 W7 : W6,W3

W8 : W7,W3,W2,W1 W9 : W8,W7,W3,W2 W10 : W7,W3 W11 : W10,W7

W12 : W11,W7,W2 W13 : W12,W11,W3 W14 : W13,W11,W7 W15 : W14,W11

W16 : W15,W11,W7,W3 W17 : W16,W15,W7 W18 : W17,W15,W11 W19 : W18,W15

W20 : W19,W15,W11,W7 W21 : W20,W19,W11 W22 : W21,W19,W15 W23 : W22,W19

W24 : W23,W19,W15,W11 W25 : W24,W23,W15 W26 : W25,W23,W19 W27 : W26,W23

W28 : W27,W23,W19,W15 W29 : W28,W27,W19 W30 : W29,W27,W23 W31 : W30,W27

W32 : W31,W27,W23,W19 W33 : W32,W31,W23 W34 : W33,W31,W27 W35 : W34,W31

W36 : W35,W31,W27,W23 W37 : W36,W35,W27 W38 : W37,W35,W31 W39 : W38,W35

W40 : W39,W35,W31,W27 W41 : W40,W39,W31 W42 : W41,W39,W35 W43 : W42,W39

Quantum Circuit Implementations of AES with Fewer Qubits 717

Table 4. The keys required to construct round-key of AES-192.

W6 : W5,W0 W7 : W6,W1 W8 : W7,W2

W9 : W8,W3 W10 : W9,W4 W11 : W10,W5

W12 : W11,W1,W2,W3,W4,W5 W13 : W12,W11,W2,W3,W4,W5 W14 : W13,W11,W3,W4,W5

W15 : W14,W11,W4,W5 W16 : W15,W11,W5 W17 : W16,W11

W18 : W17,W11,W2,W4 W19 : W18,W17,W3,W5 W20 : W19,W17,W11,W4

W21 : W20,W17,W5 W22 : W21,W17,W11 W23 : W22,W17

W24 : W23,W17,W3,W4 W25 : W24,W23,W4,W5 W26 : W25,W23,W17,W11,W5

W27 : W26,W23,W11 W28 : W27,W23,W17 W29 : W28,W23

W30 : W29,W23,W4 W31 : W30,W29,W5 W32 : W31,W29,W23,W17,W11

W33 : W32,W29,W17 W34 : W33,W29,W23 W35 : W34,W29

W36 : W35,W29,W11,W5 W37 : W36,W35,W11 W38 : W37,W35,W29,W23,W17

W39 : W38,W35,W29 W40 : W39,W35,W29 W41 : W40,W35

W42 : W41,W35,W17,W11 W43 : W42,W41,W17 W44 : W43,W41,W35,W29,W23

W45 : W44,W41,W35 W46 : W45,W41,W35 W47 : W46,W41

W48 : W47,W41,W23,W17 W49 : W48,W47,W23 W50 : W49,W47,W41,W35,W29

W51 : W50,W47,W41

Table 5. The keys required to construct round-key of AES-256.

W8 : W7,W0 W9 : W8,W1 W10 : W9,W2 W11 : W10,W3

W12 : W11,W4 W13 : W12,W5 W14 : W13,W6 W15 : W14,W7

W16 : W15,W11,W3,W2,W1 W17 : W16,W11,W3,W2 W18 : W17,W11,W3 W19 : W18,W11

W20 : W19,W15,W7,W6,W5 W21 : W20,W15,W7,W6 W22 : W21,W15,W7 W23 : W22,W15

W24 : W23,W19,W11,W2 W25 : W24,W19,W3 W26 : W25,W19,W11 W27 : W26,W19

W28 : W27,W23,W15,W6 W29 : W28,W23,W7 W30 : W29,W23,W15 W31 : W30,W23

W32 : W31,W27,W19,W11,W3 W33 : W32,W31,W11 W34 : W33,W27,W19 W35 : W34,W27

W36 : W35,W31,W23,W15,W7 W37 : W36,W35,W15 W38 : W37,W31,W23 W39 : W38,W31

W40 : W39,W35,W27,W19,W11 W41 : W40,W39,W19 W42 : W41,W35,W27 W43 : W42,W35

W44 : W43,W39,W31,W23,W15 W45 : W44,W43,W23 W46 : W45,W39,W31 W47 : W46,W39

W48 : W47,W43,W35,W27,W19 W49 : W48,W47,W27 W50 : W49,W43,W35 W51 : W50,W43

W52 : W51,W47,W39,W31,W23 W53 : W52,W51,W31 W54 : W53,W47,W39 W55 : W54,W47

W56 : W55,W51,W43,W35,W27 W57 : W56,W55,W35 W58 : W57,W51,W43 W59 : W58,W51

6 Improved Quantum Circuit Implementations of AES

6.1 Our Improved Quantum Circuit of AES-128

As shown in Fig. 2, we can divide our quantum circuit of AES-128 into three
parts. Part 1 only contains Round 1, which does not need the S-box−1 operation.
Part 2 contains Round 2, Round 3 and Round 4. Part 3 contains the left 6 rounds,
which shall use Algorithm 5 to compute the round-keys.

After denoting rji and sj+1
i as the i-th byte of Round j and the S-box opera-

tions in Round j + 1 (for 0 ≤ j ≤ 9 and 0 ≤ i ≤ 15), the time and memory cost
of each parts can be computed as follows.

The Time and Space Cost of Part 1. We just compute Round 1 and remove
Round 0 in Part 1 (see in Fig. 3).

1. We can obtain Round 0 by implementing at most 128 Pauli-X gates (or called
NOT gate) on the input keys W0, W1, W2, W3.

718 J. Zou et al.

Fig. 3. Our method for computing Round 1.

2. We can adopt Algorithm 4 in parallel to compute s1i (for 0 ≤ i ≤ 15), because
we have 384 zero qubits (from the 128 to 511 qubits in initial state in Fig. 3).
Since we need 128 qubits to store these 16 bytes s1i (for 0 ≤ i ≤ 15), we
have 384 − 128 = 256 qubits left for ancilla qubits. In other words, we can
obtain a depth-qubit trade-off i = 2 for these 16 S-box operations. That is, we
can implement these 16 S-box operations with 128 ancilla qubits, 736 Toffoli
gates and 5,312 CNOT gates. The Toffoli depth of these 16 S-box operations
is 41 − 4 = 37, because we can implement the 16 S-box in parallel.

3. After obtaining s1i (for 0 ≤ i ≤ 15), we can apply at most 128 NOT gates to
Round 0 so as to obtain W0, W1, W2, W3 again. Then we can compute the
round-key W4, W5, W6, W7 for Round 1 with the knowledge of W0, W1, W2,
W3. Similar to step 2, we can obtain a depth-qubit trade-off i = 2 for these
4 S-box operations for W4, because we have 224 ancilla qubits left. That is,
we need 184 Toffoli gates and 1328 CNOT gates to implement these 4 S-box
operations. The Toffoli depth of this operation is 37.

Quantum Circuit Implementations of AES with Fewer Qubits 719

4. We not only require 3×32 = 96 CNOT gates and 1 NOT gate to produce W4,
W5, W6, W7, but also need 128 CNOT gates to implement the AddRoundKey
operation. In addition, we still need 277×4 = 1108 CNOT gates to implement
4 times MixColumns operations.

To sum up, we can implement Part 1 with 920 Toffoli gates, 7,972 CNOT
gates, and 337 NOT gates. Since the 16 S-box in Round 1 and W4 cannot be
implemented in parallel, the Toffoli depth of the above operation is 74.

The Time and Space Cost of Part 2. Part 2 contains three similar rounds
from Round 2 to Round 4.

In the following, we show the time and memory cost of computing Round 4
and removing Round 3, which can be divided into 5 phases (see in Fig. 4).

1. We can compute s40, · · · , s47 in Round 4 and the first two bytes S-box opera-
tions of W16, which requires 80 qubits to store these 10 bytes output of S-box.
Since we have 160 zero qubits (the 224–255 and 384–511 qubits in state0 in
Fig. 4), we have 160 − 80 = 80 qubits left for ancilla qubits. As a result, we
can obtain a depth-qubit trade-off i = 2 for these 10 S-box operations. That
is, we can implement these 10 S-box operations with 80 ancilla qubits, 460
Toffoli gates, 3320 CNOT gates and 40 NOT gates. The Toffoli depth of these
10 S-box operations is 37.

2. We can remove r30, · · · , r37 in Round 3 by adopting Algorithm 7. Since we
have 80 zero qubits (the 240–255 and 448–511 qubits in state1 in Fig. 4), we
can obtain a depth-qubit trade-off i = 3 for these 8 S-box−1 operations. That
is, we can implement these 8 S-box−1 operations with 80 ancilla qubits, 504
Toffoli gates, 2728 CNOT gates and 192 NOT gates. The Toffoli depth of the
8 S-box−1 operations is 60.

3. We can compute s48 · · · , s415 in Round 4 and the last two bytes of W16, which
requires 80 qubits to store these 10 bytes output of S-box. Since we have 144
zero qubits (the 240–319 and 448–511 qubits in state2 in Fig. 4), we have
144 − 80 = 64 qubits left for ancilla qubits. In other words, we can obtain
the depth-qubit trade-off i = 1 (and i = 0) for the first 4 S-box (the left
6 S-box) operations. That is, we can implement the first 4 S-box operations
with 4 ∗ 7 = 28 ancilla qubits, 192 Toffoli gates, 1320 CNOT gates and 16
NOT gates, while the left 6 S-box operations can be implemented with 36
ancilla qubits, 312 Toffoli gates, 1956 CNOT gates and 24 NOT gates. To
sum up, we can implement these 10 S-box operations with 64 ancilla qubits,
504 Toffoli gates, 3276 CNOT gates and 40 NOT gates. The Toffoli depth of
these 10 S-box operations is 41.

4. We can remove the r38, · · · , r315 in Round 3 by adopting Algorithm 7. Since
we have 64 zero qubits here (the 256–319 qubits in state3 in Fig. 4), we can
obtain a depth-qubit trade-off i = 1 for these 8 S-box−1 operations. That
is, we can implement these 8 S-box−1 operations with 64 ancilla qubits, 544
Toffoli gates, 2688 CNOT gates and 192 NOT gates. The Toffoli depth of the
8 S-box−1 operations is 61.

720 J. Zou et al.

Fig. 4. Our method for computing Round 4 and removing Round 3 of AES-128.

5. We shall implement the MixColumns and AddRoundKey operations so as
to obtain Round 4. The MixColumns operation for 128-bit state requires
277 × 4 = 1108 CNOT operations. According to the round-key algorithm of
AES-128, after the SubWord operation, we still need 32 × 8 = 256 CNOT
gates and 1 NOT gate to compute W16, W17, W18, W19. As a result, we can
implement the AddRoundKey operation with 256+128 = 384 CNOT gates
and 1 NOT gate.

To sum up, we need 2012 Toffoli gates, 13504 CNOT gates and 465 NOT
gates to obtain Round 4 and remove Round 3. The Toffoli depth of the above
five steps is 199. Since the time and memory cost of the left two rounds in Part

Quantum Circuit Implementations of AES with Fewer Qubits 721

2 is similar to the above operation, we just provide some results and ignore
the details. First, we require 1928 Toffoli gates, 13556 CNOT gates and 465
NOT gates to obtain Round 3 and remove Round 2. The Toffoli depth of this
transformation is 194. Second, we require 1968 Toffoli gates, 13548 CNOT gates
and 465 NOT gates to obtain Round 2 and remove Round 1, while the Toffoli
depth is 157.

The Time and Space Cost of Part 3. Part 3 contains 6 similar rounds
operations. In the following, we will show the time and memory cost of obtaining
Round 5 and removing Round 4.

Fig. 5. Our method for computing Round 5 and removing Round 4 of AES-128.

722 J. Zou et al.

Then we can compute the time and memory cost of the other rounds in Part
3 in a similar way. As shown in Fig. 5, we can divide the above transformation
into 5 phases.

1. We can compute the s50, · · · , s57 in Round 5 and the first two S-box operations
of W20. Since we have 128 zero bits (from the 256 to 383 qubits in state0 in
Fig. 5), we have 128−64 = 64 qubits left for ancilla qubits, because we need
|0〉⊗64 qubits to store s50, · · · , s57. Since Algorithm 4 and Algorithm 5 require
6 and 7 ancilla qubits respectively, we need 6 × 8 + 2 × 7 = 62 qubits to
run Algorithm 4 eight times and Algorithm 5 twice in parallel. Then we have
64−48−14 = 2 ancilla qubits left, which can introduce one more ancilla qubit
for the first 2 S-box of W20. That is, we can implement the first 2 S-box of W20

with 16 ancilla qubits, 128 Toffoli gates, 706 CNOT gates and 8 NOT gates,
while the 8 S-box of Round 5 can be implemented with 48 ancilla qubits,
416 Toffoli gates, 2608 CNOT gates and 32 NOT gates. To sum up, we can
implement these 10 S-box operations with 64 ancilla qubits, 544 Toffoli gates,
3314 CNOT gates and 40 NOT gates. The Toffoli depth of these 10 S-box
operations is 56, which is determined by Algorithm 5.

2. We can remove the r40, · · · , r47 in Round 4 by computing eight times S-box−1

operations with Algorithm 7. Since we have 64 qubits left for ancilla qubits
(see in state1 in Fig. 5), we can obtain a depth-qubit trade-off i = 1 for these
8 S-box−1 operations. That is, we can implement these 8 S-box−1 operations
with 64 ancilla qubits, 536 Toffoli gates, 2696 CNOT gates and 192 NOT
gates. The Toffoli depth of these 8 S-box−1 operations is 60, because we can
implement these 8 S-box−1 in parallel.

3. We can compute the s58, · · · , s515 in Round 5 and the last two bytes of W20.
Similar to Step 1, we also have 2 ancilla qubits left, which can obtain a
depth-qubit trade-off i = 1 for the last 2 S-box operations in W20. Similar to
step 1, we can implement these 10 S-box operations with 64 ancilla qubits,
544 Toffoli gates, 3264 CNOT gates and 40 NOT gates. The Toffoli depth of
these 10 S-box operations is 56.

4. We shall remove the r48, · · · , r415 of Round 4 in state3 by implementing eight
times S-box−1 operations with Algorithm 7. Since we have 64 ancilla qubits
here, we can implement these 8 S-box−1 operations with 64 ancilla qubits,
536 Toffoli gates, 2696 CNOT gates and 192 NOT gates. The Toffoli depth
of the 8 S-box−1 operation is 60.

5. We shall implement the MixColumns and AddRoundKey operations so as to
obtain Round 5. The 4 times MixColumns operation requires 277 × 4 = 1108
CNOT operations. According to the key algorithm of AES-128, after the
SubWord operation, we still need 32 × 8 = 256 CNOT gates and 1 NOT
gate to compute W20, W21, W22, W23. As a result, we can implement the
AddRoundKey operation with 256 + 128 = 384 CNOT gates and 1 NOT
gate.

Quantum Circuit Implementations of AES with Fewer Qubits 723

Table 6. The quantum resource for AES-128 AES-192 and AES-256.

Algorithm Operation Toffoli depth # Toffoli # CNOT # NOT

AES-128 Obtain Round 1 and Remove Round 0 74 920 7972 337

Obtain Round 2 and Remove Round 1 157 1968 13548 465

Obtain Round 3 and Remove Round 2 194 1928 13529 465

Obtain Round 4 and Remove Round 3 199 2012 13504 465

Obtain Round 5 and Remove Round 4 232 2160 13512 465

Obtain Round 6 and Remove Round 5 232 2160 13512 465

Obtain Round 7 and Remove Round 6 232 2160 13512 465

Obtain Round 8 and Remove Round 7 232 2160 13512 465

Obtain Round 9 and Remove Round 8 232 2160 13512 468

Obtain Round 10 and Remove Round 9 232 2160 12404 468

Sum of 10 rounds 2016 19788 128517 4528

AES-192 Obtain Round 1 and Remove Round 0 74 920 7940 81

Obtain Round 2 and Remove Round 1 97 1744 12132 448

Obtain Round 3 and Remove Round 2 97 2080 13908 465

Obtain Round 4 and Remove Round 3 157 1928 13620 465

Obtain Round 5 and Remove Round 4 157 1744 12260 448

Obtain Round 6 and Remove Round 5 157 1968 13676 465

Obtain Round 7 and Remove Round 6 194 1928 13529 465

Obtain Round 8 and Remove Round 7 194 1928 13573 448

Obtain Round 9 and Remove Round 8 199 2012 13472 465

Obtain Round 10 and Remove Round 9 232 2160 13284 465

Obtain Round 11 and Remove Round 10 232 1808 12228 448

Obtain Round 12 and Remove Round 11 232 2160 12756 465

Sum of 12 rounds 2022 22380 152378 5128

AES-256 Obtain Round 1 and Remove Round 0 37 736 6568 64

Obtain Round 2 and Remove Round 1 97 1774 12152 465

Obtain Round 3 and Remove Round 2 97 1774 12152 464

Obtain Round 4 and Remove Round 3 97 1774 12344 465

Obtain Round 5 and Remove Round 4 97 2080 13684 464

Obtain Round 6 and Remove Round 5 157 1928 13588 465

Obtain Round 7 and Remove Round 6 157 1968 13548 464

Obtain Round 8 and Remove Round 7 194 1928 13461 465

Obtain Round 9 and Remove Round 8 199 2012 13536 464

Obtain Round 10 and Remove Round 9 232 2160 13544 465

Obtain Round 11 and Remove Round 10 232 2160 13544 464

Obtain Round 12 and Remove Round 11 232 2160 13544 465

Obtain Round 13 and Remove Round 12 232 2160 13544 464

Obtain Round 14 and Remove Round 13 232 2160 12436 465

Sum of 14 rounds 2292 26774 177645 6103

That is, we need 2160 Toffoli gates, 13512 CNOT gates, 465 NOT gates to
obtain Round 5 and remove Round 4, while the Toffoli depth is 232. We can
compute the time and space cost of the left 5 rounds in Part 3 in a similar way.
However, different rounds of AES-128 require different cost in the AddRoundKey
operation. According to the key schedule of AES-128, we need 256 × 3 = 768
CNOT gates and 1 × 3 = 3 NOT gate to generate the 3 round-keys of Round 6,
Round 7 and Round 8, while the round-key of Round 9 and Round 10 require
256 × 2 = 512 CNOT gates and 4 × 2 = 8 NOT gates.

724 J. Zou et al.

The time and memory cost of our quantum circuit of AES-128 can be
obtained by summing Part 1, Part 2 and Part 3. All in all, our quantum circuit
of AES-128 needs 512 qubits, 19788 Toffoli gates, 128517 CNOT gates and 4528
NOT gates. The Toffoli depth of our quantum circuit of AES-128 is 2016 (see in
Table 6).

6.2 Quantum Circuit Implementations of AES-192 and AES-256

Since our quantum circuit implementation of AES-192 and AES-256 are similar
to AES-128, we just show the conclusions and omit the details (see in Table 6).
Our quantum circuit of AES-192 requires 640 qubits, 22380 Toffoli gates, 152378
CNOT gates and 5128 NOT gates. The Toffoli depth of our quantum circuit
implementation of AES-192 is 2022. Our quantum circuit of AES-256 requires
768 qubits, 26774 Toffoli gates, 177645 CNOT gates and 6103 NOT gates. The
Toffoli depth of our quantum circuit implementation of AES-256 is 2292.

7 Conclusion

In this paper, we propose some improved quantum circuit implementations of
AES. In the future, there are still several research directions. First, we can
explore some possible time-space trade-offs for our quantum circuit of AES by
using Kim et al.’s work. Second, we can explore some improved quantum circuits
for the other construction, such as the Feistel-SPN. Third, we can explore some
improved quantum circuits of the S-box of the other block cipher, such as SM4
and Camellia.

Acknowledgments. We would like to thank anonymous referees for their helpful com-
ments and suggestions. Jian Zou is supported by the National Natural Science Founda-
tion of China (No. 61902073). Zihao Wei and Siwei Sun are supported by the National
Key Research and Development Program of China (Grant No. 2018YFA0704704), the
Chinese Major Program of National Cryptography Development Foundation (Grant
No. MMJJ20180102), the National Natural Science Foundation of China (61772519,
61802400), and the Youth Innovation Promotion Association of Chinese Academy of
Sciences. Wenling Wu is supported by the National Natural Science Foundation of
China (No. 61672509).

References

1. Circuit minimization team (CMT). http://www.cs.yale.edu/homes/peralta/
CircuitStuff/CMT.html

2. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. CoRR
quant-ph/0406196 (2004)

3. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quantum Inf. Process. 17(5), 1–30 (2018). https://doi.org/10.
1007/s11128-018-1864-3

http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
https://doi.org/10.1007/s11128-018-1864-3
https://doi.org/10.1007/s11128-018-1864-3

Quantum Circuit Implementations of AES with Fewer Qubits 725

4. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol. 2019(2), 55–93 (2019)

5. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 178–
189. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13193-6 16

6. Boyar, J., Peralta, R.: A small depth-16 circuit for the AES s-box. In: Gritzalis,
D., Furnell, S., Theoharidou, M. (eds.) Information Security and Privacy Research-
27th IFIP TC 11 Information Security and Privacy Conference, SEC 2012, Her-
aklion, Crete, Greece, June 4–6, 2012. Proceedings. IFIP Advances in Information
and Communication Technology, vol. 376, pp. 287–298. Springer (2012). https://
doi.org/10.1007/978-3-642-30436-1 24

7. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). https://doi.org/
10.1007/11545262 32

8. Datta, K., Shrivastav, V., Sengupta, I., Rahaman, H.: Reversible logic implemen-
tation of AES algorithm. In: Proceedings of the 8th International Conference on
Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2013, March
26–28, Abu Dhabi, UAE, pp. 140–144. IEEE (2013)

9. Dong, X., Sun, S., Shi, D., Gao, F., Wang, X., Hu, L.: Quantum collision attacks
on AES-like hashing with low quantum random access memories. In: Advances in
Cryptology-ASIACRYPT 2020-the 26th Annual International Conference on the
Theory and Application of Cryptology and Information Security (2020)

10. Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits and
their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)

11. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

12. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22–24, pp. 212–219.
ACM (1996)

13. Hosoyamada, A., Sasaki, Yu.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 249–279. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 9

14. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in gf(2m̂)
using normal bases. Inf. Comput. 78(3), 171–177 (1988)

15. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for
quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45724-2 10

16. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

17. Kim, P., Han, D., Jeong, K.C.: Time-space complexity of quantum search algo-
rithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Inf.
Process. 17(12), 339 (2018)

18. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing
AES as a quantum circuit. IACR Cryptol. ePrint Arch. 2019, 854 (2019)

https://doi.org/10.1007/978-3-642-13193-6_16
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-030-45724-2_9
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10

726 J. Zou et al.

19. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A systematic evaluation of
compact hardware implementations for the Rijndael S-Box. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 323–333. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30574-3 22

20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press, Cambridge (2016)

21. NIST: Specification for the advanced encryption standard (AES), federal informa-
tion processing standards publication, vol. 197 (2001)

22. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. IEEE Trans. CAD Integr. Circuits Syst. 22(6), 710–722 (2003)

23. Shi, Y.: Both Toffoli and controlled-not need little help to do universal quantum
computing. Quantum Inf. Comput. 3(1), 84–92 (2003)

24. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

25. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

26. Svore, K.M., et al.: Q#: Enabling scalable quantum computing and development
with a high-level DSL. In: Proceedings of the Real World Domain Specific Lan-
guages Workshop, RWDSL@CGO 2018, Vienna, Austria, February 24, pp. 7:1–7:10
(2018)

27. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). https://doi.org/10.
1007/3-540-10003-2 104

28. Wei, Z., Sun, S., Hu, L., Wei, M., Boyar, J., Peralta, R.: Scrutinizing the tower
field implementation of the F28 inverter - with applications to AES, camellia, and
SM4. IACR Cryptol. ePrint Arch. 2019, 738 (2019)

29. Wei, Z., Sun, S., Hu, L., Wei, M., Peralta, R.: Searching the space of tower field
implementations of the F28 inverter-with applications to AES, Camellia, and SM4.
Int. J. Inf. Comput. Secur. (IJICS) (2020)

https://doi.org/10.1007/978-3-540-30574-3_22
https://doi.org/10.1007/978-3-540-30574-3_22
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104

Quantum Collision Attacks on AES-Like
Hashing with Low Quantum Random

Access Memories

Xiaoyang Dong1, Siwei Sun2,3(B), Danping Shi2,3, Fei Gao4, Xiaoyun Wang1,5,
and Lei Hu2,3

1 Institute for Advanced Study, Beijing National Research Center for Information
Science and Technology, Tsinghua University, Beijing, China

{xiaoyangdong,xiaoyunwang}@tsinghua.edu.cn
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
siweisun.isaac@gmail.com

3 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

{shidanping,hulei}@iie.ac.cn
4 State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

gaof@bupt.edu.cn
5 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan, China

Abstract. At EUROCRYPT 2020, Hosoyamada and Sasaki proposed
the first dedicated quantum attack on hash functions—a quantum ver-
sion of the rebound attack exploiting differentials whose probabilities are
too low to be useful in the classical setting. This work opens up a new per-
spective toward the security of hash functions against quantum attacks.
In particular, it tells us that the search for differentials should not stop
at the classical birthday bound. Despite these interesting and promising
implications, the concrete attacks described by Hosoyamada and Sasaki
make use of large quantum random access memories (qRAMs), a resource
whose availability in the foreseeable future is controversial even in the
quantum computation community. Without large qRAMs, these attacks
incur significant increases in time complexities. In this work, we reduce or
even avoid the use of qRAMs by performing a quantum rebound attack
based on differentials with non-full-active super S-boxes. Along the way,
an MILP-based method is proposed to systematically explore the search
space of useful truncated differentials with respect to rebound attacks. As
a result, we obtain improved attacks on AES-MMO, AES-MP, and the first
classical collision attacks on 4- and 5-round Grøstl-512. Interestingly,
the use of non-full-active super S-box differentials in the analysis of AES-
MMO gives rise to new difficulties in collecting enough starting points. To
overcome this issue, we consider attacks involving two message blocks to
gain more degrees of freedom, and we successfully compress the qRAM
demand of the collision attacks on AES-MMO and AES-MP (EUROCRYPT

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 727–757, 2020.
https://doi.org/10.1007/978-3-030-64834-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_25

728 X. Dong et al.

2020) from 248 to a range from 216 to 0, while still maintaining a com-
parable time complexity. To the best of our knowledge, these are the
first dedicated quantum attacks on hash functions that slightly outper-
form Chailloux, Naya-Plasencia, and Schrottenloher’s generic quantum
collision attack (ASIACRYPT 2017) in a model where large qRAMs are
not available. This work demonstrates again how a clever combination
of classical cryptanalytic technique and quantum computation leads to
improved attacks, and shows that the direction pointed out by Hosoya-
mada and Sasaki deserves further investigation.

Keywords: Quantum computation · qRAM · Collision attacks ·
Rebound attacks · AES-like hashing · MILP

1 Introduction

Shor’s seminal work [44] showed that a sufficiently large quantum computer
allows to factor numbers and compute discrete logarithms in polynomial time,
which can be devastating to many public-key schemes in use today. To prepare for
the future, the public-key cryptography community and standardization bodies
have put substantial effort in the research of post-quantum public-key cryptog-
raphy. In particular, NIST has initiated a process to solicit, evaluate, and stan-
dardize one or more quantum-resistant public-key cryptographic algorithms [41].
In contrast, the research on how quantum computation would change the land-
scape of the security of symmetric-key cryptography seems to be less active. For
almost twenty years, it was generally believed that the quadratic speedup in
an exhaustive search attack due to Grover’s algorithm [16] is the only advan-
tage an attacker equipped with a quantum computer would have when attacking
symmetric-key ciphers, and thus doubling the key length addresses the concern.

This naive view started to change with the initial work of Kuwakado and
Morii, who showed that the classically provable secure Even-Mansour cipher and
the three-round Feistel network can be broken in polynomial time with the help
of a quantum computer [28,29]. Several years later, more generic constructions
were broken [25,32]. Almost all these attacks enjoying exponential speedups rely
on Simon’s algorithm [45] to find a key-dependent hidden period, where accesses
to the quantum superposition oracle of the keyed primitives are necessary. This is
a quite strong requirement, and sometimes its practical relevance is questioned.
Therefore, attacks with higher complexities are still meaningful if they do not
need to make online queries to superposition oracles of keyed primitives [2,18].

When we apply quantum algorithms to keyless primitives, online queries are
not needed since all computations are public and can be done offline. Classical
algorithms find collisions of an n-bit ideal hash function with time complex-
ity O(2n/2). In the quantum setting, BHT algorithm [6] finds collisions with a
query complexity of O(2n/3) if an O(2n/3)-qubit quantum random access mem-
ory (qRAM) is available [6]. However, it is generally admitted that the difficulty
of fabricating large qRAMs is enormous [13,14], and thus quantum algorithms
(even with relatively higher time complexities) using less or no qRAMs are prefer-
able. Chailloux, Naya-Plasencia, and Schrottenloher first overcome the O(2n/2)

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 729

classical bound without using large qRAMs [7]. This algorithm has a time com-
plexity of O(22n/5), with quantum memory of O(n) and a classical memory of
O(2n/5). Also, quantum algorithms for the generalized birthday problem (or
the k-XOR problem) in settings with or without large qRAMs can be found
in [15,39].

The above mentioned attacks on hash functions are generic in the sense that
they do not exploit any internal characteristics of the targets. In fact, before
year 2020, no dedicated quantum attack is seen in the open literature, in stark
contrast to the line of cryptanalytic research targeting keyed primitives in the
quantum setting, where attempts to escalate dedicated attacks are plentiful (e.g.,
differential and linear attacks [26], impossible differential attacks [47], meet-in-
the-middle attacks [4,19], slide attacks [3,10], etc.). The first dedicated quantum
attack on hash functions was presented at EUROCRYPT 2020 by Hosoyamada
and Sasaki [20], showing that differentials whose probability is too low to be
useful in the classical setting may be exploited in quantum attacks. They applied
a quantum version of the rebound attack on AES-MMO and Whirlpool, and gave
the first quantum collision attack on AES-MMO.

Our Contribution. Motivated by the fact that the availability of large qRAMs
is controversial [1,13,14], we try to lower the qRAM requirements of Hosoyamada
and Sasaki’s attacks [20]. With the application of non-full-active super S-box
techniques [42], we can significantly reduce (or even avoid) the use of qRAMs.
Along the way, we propose an MILP-based method to systematically explore the
search space of useful differential trails with respect to rebound attacks, which
is of independent interest. With the help of this method, we find differentials
leading to improved attacks in both the classical and quantum settings. For
example, we present the first classical collision attacks on 4-round and 5-round
Grøstl-512, where the complexity of the 4-round attack is significantly better
than previously known best attacks on 3-round Grøstl-512. Also, we obtain
improved semi-free-start collision attacks on Grøstl-256.

In the analysis of AES-MMO and AES-MP, the differentials we find leading to non-
full-active super S-boxes for the inbound phase cannot generate enough starting
points to produce a collision due to the probabilistic nature of the outbound
phase of the attack. To overcome this difficulty, we consider two blocks of mes-
sages, execute rebound attacks on the second message block, and borrow degrees
of freedom from the first one. As a result, we successfully compress the qRAM
demand from 248 to a range from 216 to 0, while still maintaining a comparable
time complexity. Hosoyamada and Sasaki’s work [20] tells us that certain worth-
less truncated differential trails in the classical setting are exploitable in the
quantum setting. Our work further enlarges the space of quantumly exploitable
truncated differential trails by considering collisions produced by two-block mes-
sages, where trails unable to generate enough starting points during the inbound
phase of a single-block rebound collision attack are included. We believe this
observation will inspire new attacks on hash functions in the quantum setting.
Moreover, in a model without large qRAMs, Hosoyamada and Sasaki’s attacks

730 X. Dong et al.

are inferior to the generic attack by Chailloux, Naya-Plasencia, and Schrotten-
loher [7]:

“However, in the setting that a small quantum computer of polynomial size
and exponential large classical memory is available, our rebound attack is
lower than the best attack by Chailloux et al. (see [20, Sect. 1.1, Page 6])”

To the best of our knowledge, our work is the first dedicated quantum attack on
hash functions that slightly surpasses the generic quantum collision attack [7]
in a model where large qRAMs are not available. In the quantum time-space
scenario, our attacks also gain improvements. For example, the attack without
qRAM on 7-round AES-MMO needs a time complexity of 245.8. If we have S
quantum computers in parallel, we will find the collision with time 245.8/

√
S.

In the same setting, Hosoyamada and Sasaki [20]’s attack needs about 259.5/
√

S
time complexity. A summary of our attacks on AES-MMO, AES-MP, and Grøstl is
given in Table 1.

Table 1. Classical and quantum collision attacks on AES-MMO, AES-MP, Grøstl. Q-
Model I and II are quantum settings with qRAM and without qRAM, respectively.

Settings Attack Rounds Time c-Memory qRAM Source

Collision attacks on AES-MMO and AES-MP

Classic Dedicated 5 256 24 0 [33]

Dedicated 6 256 232 0 [12,30]

Q-Model I Dedicated 7 242.50 0 248 [20]

Dedicated 7 245.4 0 216 Section 4

Generic all 256 0 216 [6]

Generic all 242.66 0 242.66 [6]

Q-Model II Dedicated 7 259.5 0 0 [20]

Dedicated 7 245.8 0 0 Section 5

Generic all 251.2 225.6 0 [7]

Collision attacks on Grøstl-512

Classic Dedicated 3 2192 264 0 [43]

Dedicated 4 2128 264 0 Section 6

Dedicated 5 2240 264 0 Section 6

Q-Model I Dedicated 4 288.4 0 216 Section 6

Dedicated 5 2200.4 0 216 Section 6

Generic all 2248 0 216 [6]

Generic all 2170.7 0 2170.7 [6]

Q-Model II Dedicated 4 289.3 0 0 Section 6

Dedicated 5 2201.3 0 0 Section 6

Generic all 2205 2102.4 0 [7]

Semi-free-start collision attacks on Grøstl-256

Classic Dedicated 6 2120 264 0 [43]

Dedicated 6 2112 264 0 Section 6

Q-Model II Dedicated 6 292.8 0 0 Section 7

Generic 6 2102.4 251.2 0 [7]

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 731

Organization. Section 2 gives a brief introduction of AES-like hashing, quan-
tum computation, and qRAMs. We describe the classical technique for collision
attacks on hash functions with the rebound technique, and show how to search
for useful truncated differential trails with non-full-active super S-boxes by MILP
with multiple objectives in Sect. 3. This is followed by Sect. 4, to Sect. 7, which
present our improved attacks on AES-MMO, AES-MP, and Grøstl. Section 8 con-
cludes the paper.

2 Preliminaries

In this section, we give a brief introduction of AES-like hashing and quantum
computation, and familiarize the readers with the functionalities of quantum
random access memories (qRAMs).

2.1 AES-Like Hashing

To be concrete, we first recall the round function of AES-128 [8]. It operates on
a 16-byte state arranged into a rectangular shape and contains four major trans-
formations as illustrated in Fig. 1: SubBytes (SB), ShiftRows (SR), MixColumns
(MC), and AddRoundKey (AK). The parameters like the numbers of rows and
columns, the sizes of the cells, the order of the transformations, and the roles
played by the rows and columns can be altered by making compatible changes to
the operations involved to produce new designs, which are loosely called as AES-
like round functions. In this paper, we assume the MixColumns is to multiply an
MDS matrix to each column of the state.

SB

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

SR MC
AK

Fig. 1. The round function of AES

By using (keyed) permutations with AES-like round functions in certain
hashing modes, compression functions (denoted as CF) can be constructed. For
example, the MD, MMO, and MP hashing modes [35, Section 9.4] are illustrated in
Fig. 2. Plugging such compression functions into the Merkle-Damg̊ard construc-
tion [9,36], one arrives at AES-like hashings. Concrete designs include AES-MMO,
AES-MP, and Grøstl [11], which are the main targets of this work.

2.2 Quantum Computation and Quantum RAM

The states of an n-qubit quantum system can be described as unit vectors in
C

2n under the orthonormal basis {|0 · · · 00〉 , |0 · · · 01〉 , · · · , |1 · · · 11〉}, alterna-
tively written as {|i〉 : 0 ≤ i < 2n}. Quantum algorithms are typically realized

732 X. Dong et al.

hi−1 EK hi

mi−1

(DM) Davies-Meyer

mi−1 EK hi

hi−1

(MMO) Matyas-Meyer-Oseas

mi−1 EK hi

hi−1

(MP) Miyaguchi-Preneel

Fig. 2. Common Hashing Modes

by manipulating the state of an n-qubit system through a series of unitary
transformations and measurements, where all unitary transformations can be
implemented as a sequence of single-qubit and two-qubit transformations, which
are called quantum gates in the standard quantum circuit model [40]. The effi-
ciency of a quantum algorithm is quantified in terms of the amount of quantum
gates used.

Superposition Oracles for Classical Circuit. Given a Boolean function f :
F

n
2 → F2. The superposition oracle of f is the unitary transformation Uf acting

on an (n+1)-qubit system sending a standard basis vector |x, y〉 to |x, y ⊕ f(x)〉,
where x ∈ F

n
2 and y ∈ F2. As a linear operator, Uf acts on superposition states

as

Uf

⎛
⎝ ∑

x∈F
n
2

ai |x〉 |0〉
⎞
⎠ =

∑
x∈F

n
2

ai |x〉 |f(x)〉 . (1)

Note that Uf can be implemented efficiently in the quantum circuit model as long
as there is an efficient classical circuit that computes f . To build the quantum
circuit of Uf , we first construct an efficient reversible circuit of f and substitute
quantum gates for each of the reversible gates involved.

Grover’s Algorithm. Given a search space of 2n elements, say {x : x ∈ F
n
2},

and a Boolean function or predicate f : Fn
2 → F2, the best classical algorithm

with a black-box access to f requires about 2n evaluations of the black-box oracle
to identify x such that f(x) = 1 with probability one (For the sake of simplicity,
we assume that there is only one such x). In the quantum setting, Grover’s
algorithm solves the same problem with about O(

√
2n) calls to a quantum oracle

Uf that outputs
∑

x ax |x〉 |y ⊕ f(x)〉 upon input of
∑

x ax |x〉 |y〉. Starting with
a uniform superposition

|ψ〉 =
1√
2n

∑
x∈F

n
2

|x〉 ,

by applying the Hadamard transformation H⊗n to |0〉⊗n. Then Grover’s algo-
rithm iteratively apply the unitary transformation (2 |ψ〉 〈ψ| − I)Uf to |ψ〉 such
that the amplitudes of those values x with f(x) = 1 are amplified. Then a final
measurement gives a value x of interest with an overwhelming probability [16].

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 733

One caveat here: complexity can be hidden in the complexity of constructing
the oracle circuit employed by Grover’s algorithm. The speedup of the search
would be illusory unless the oracle circuit can be implemented efficiently. There-
fore, it is important to have a clear view on what resources it takes to implement
the oracle. For example, a large qRAM is necessary if it requires a large qRAM
to implement the oracle efficiently.

Quantum Amplitude Amplification. Let P = |j0〉 〈j0| + · · · + |js−1〉 〈js−1|
be a projector with {|j0〉 , · · · , |js−1〉} ⊆ {|0〉 , · · · , |2n − 1〉}, and A be a unitary
operator such that A |0〉 = α |φP 〉+β |φ⊥

P 〉, where P |φP〉 = |φP〉 and P |φ⊥
P〉 = 0.

Then there exists a quantum algorithm that requires exclusively
 π
4θ − 1

2� calls
to UP , U†

P , A, and A†, after a final measurement, to produce a quantum state
close to |ψP〉, where sin(θ) = |α|, and the effect of the unitary operator UP
on base vectors satisfying UP |x〉 |y〉 = |x〉 |y ⊕ 1〉 if |x〉 ∈ {|j0〉 , · · · , |js−1〉} and
UP |x〉 |y〉 = |x〉 |y〉 otherwise [5].

The quantum amplitude amplification can be regarded as a generalization of
Grover’s algorithm in which A is restricted to produce an equal superposition
of all basis vectors. Similarly, when analyzing the complexity of the quantum
amplitude amplification, we should take into account the complexities for imple-
menting UP and A.

Quantum Random Access Memories (qRAM). A quantum random access
memory (qRAM) is a quantum analogue of a classical random access memory
(RAM), which uses n-qubit to address any quantum superposition of 2n memory
cells. Given a list of classical data L = {x0, · · · , x2n−1} with xi ∈ F

m
2 , the qRAM

for L is modeled as an unitary transformation UL
qRAM such that

UL
qRAM : |i〉Addr ⊗ |y〉Out → |i〉Addr ⊗ |y ⊕ xi〉Out , (2)

where i ∈ F
n
2 , y ∈ F

m
2 , and |·〉Addr and |·〉Out may be regarded as the address and

output registers respectively. Therefore, we can access any quantum superposi-
tion of the data cells by using the corresponding superposition of addresses:

UL
qRAM

(∑
i

ai |i〉 ⊗ |y〉
)

=
∑

i

ai |i〉 ⊗ |y ⊕ xi〉 . (3)

For the time being, it is unknown how a working qRAM (at least for
large qRAMs) can be built. Nevertheless, this disappointing fact does not stop
researchers from working in a model where large qRAMs are available, in the
same spirit that people started to work on classical and quantum algorithms
long before a classical or quantum computer had been built. From another per-
spective, the absence of large qRAMs and the fact that a qRAM of size O(n)
can be simulated with a quantum circuit of size O(n) makes it quite meaningful
to conduct research in an attempt to reduce or even avoid the use of qRAM in
quantum algorithms.

734 X. Dong et al.

3 MILP Models for the Rebound Attack

For the sake of concreteness, we restrict our discussion to collision attacks on AES-
MMO, which is standardized by Zigbee and used by many multi-party computation
protocols [17,27] due to its efficiency. Assume that there is a differential trail for
EK with probability p whose input and output differences share a common value
Δ. Given around 1/p pairs of input messages with difference Δ, we expect one
pair (m,m ⊕ Δ) follows this differential trail: EK(m) ⊕ EK(m ⊕ Δ) = Δ. If this
is the case, the differences of the outputs of the MMO construction is

(m ⊕ EK(m)) ⊕ (m ⊕ Δ ⊕ EK(m ⊕ Δ)) = Δ ⊕ Δ = 0, (4)

that is, a collision. Since K is known in hash functions, it is possible to gen-
erate many data pairs which confirm to one particular segment (typically the
most difficult part) of the desired trail. Then these pairs are tested to find one
fulfilling the remaining part of the trail. This is the basic strategy employed
by the so-called rebound attack proposed by Mendel, Rechberger, Schläffer and
Thomsen [31,33].

In a rebound attack, the target primitive and thus the differential trail cover-
ing it is split into three parts. An inbound part is placed at the middle surrounded
by two outbound parts. By utilizing the degrees of freedom of the inbound part,
many data pairs conforming to the differential of the inbound part (named as
inbound differential) can be constructed deterministically or with a very high
probability. Then these data pairs, named as starting points, are propagated
through the outbound parts to find pairs respecting the outbound differential by
chance. Among many improvements and extensions of the rebound attacks [22–
24,38], the super S-box technique [12,30] and the non-full-active super S-box
technique [42] are most relevant to our work.

3.1 The Full-Active and Non-Full-Active Super S-Box Techniques

In the context of rebound attacks on AES-MMO, the super S-box technique enlarges
the inbound part by one more round than previous analysis by identifying four
non-interfering F

32
2 → F

32
2 permutations across two consecutive AES rounds and

regarding them as four super S-boxes. Initially, when using the super S-box tech-
nique for the inbound phase, researchers only considered differentials activating
all cells of the super S-boxes, and we refer the reader to Fig. 3 for an example,
where one of the four super S-boxes involved in the inbound phase (surround by
the dashed line) is highlighted. To generate starting points under this configura-
tion (full-active super S-box) with complexity one on average, one has to store a
table LΔin

whose entry LΔin
[Δout] at index Δout contains the pairs respecting

the differential (Δin,Δout) of the super S-box [12,30]. Since the memory of LΔin

is released after the analysis for one particular input difference Δin is done, we
only need the memory to store one copy of LΔin

.
In [42], Sasaki, Wang, Sakiyama, and Ohta found that by using differentials

with non-full active super S-boxes, the memory complexity of the inbound phase

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 735

X1

SB

Y1

SR

Z1

MC

W1

AK

X2

SB

Y2

SR

Z2

MC

W2

AK

X3

SB

Y3

SR

Z3

MC

W3

AK

X4

SB

Y4

SR

Z4

MC

W4

AK

X5

SB

Y5

SR

Z5

MC

W5

AK

X6

SB

Y6

SR

Z6

MC

W6

AK

X7

SB

Y7

SR

W7

AK

Fig. 3. The differential trail used in Hosoyamada and Sasaki’s quantum collision attack
on 7-round AES-MMO [20] with its inbound part and one of the super S-boxes highlighted

can be significantly reduced. This is because typically data pairs compatible with
a given differential with a non-full-active super S-box can be built up progres-
sively by working on 8-bit values. We refer the reader to [42] for more details.
In what follows, we describe how to generate data pairs respecting a given dif-
ferential with a non-full-active super S-box through a concrete example shown
in Fig. 4. This is also a differential we actually used in our improved attacks on
AES-MMO.

First, we precompute the differential distribution table DDT of the small S-box
in table T using Algorithm 1 and load it into random access memories. As shown
in Fig. 4, given the truncated differential of the super S-box SSB = SB◦MC◦SB, we
can generate data pairs conforming to a given differential (ΔA,ΔD) for SSB by
enumerating (A[0], β) ∈ F

11
2 with Algorithm 2. We remember an easy property

for MC when understanding Algorithm2.

Property 1. MC · (X[0],X[1],X[2],X[3])T = (Y [0], Y [1], Y [2], Y [3])T can be used
to fully determine the remaining unknowns if any four of X[0], · · · , X[3], Y [0],
· · · , Y [3] are known.

736 X. Dong et al.

A

SB

B C

MC

D

SB

Fig. 4. A differential with non-full-active super S-box

Note that in Algorithm 2, there are 3 DDT accesses to determine a combination
of (A[2], C[1], C[2]), hence, we have 2× 2× 2 = 8 choices. Following the strategy
of Hosoyamada and Sasaki’s attack [20], we introduce an auxiliary 3-bit variable
β to specify which combination to choose among the 8 choices. The complexity
of Algorithm 2 includes 2+2 = 4 small S-boxes evaluations (Step 1 and Step 19)
and 3 DDT accesses (Step 6–8). Suppose the differential distribution of the S-box
is similar to that of the S-box of AES, i.e., 4-uniform. Therefore, it returns a pair
when accessing T with (δin, δout) ∈ F

8
2 × F

8
2 with probability of about 1

2 , and
returns empty also with probability of about 1

2 . Hence, Step 6–8 of Algorithm 2
act as a filter of 2−3. In addition, we have a filter of 2−8 in Step 19. Therefore,
by traversing the 11-bit (A[0], β), it is expected to return (28 ×23 ×2−3 ×2−8=)
1 pair which conforms the given input-output differences (ΔA,ΔD) of SSB. The
total complexity is 211 · 4 S-box evaluations and 211 · 3 DDT accesses.

Algorithm 1. The differential distribution table of S with data pairs
1 Let T be an empty dictionary

2 for δIN ∈ F
8
2 do

3 for x ∈ F
8
2 do

4 x′ ← x ⊕ δin, y ← S(x), y′ ← S(x′), δout ← y ⊕ y′

5 if x ≤ x′ then
6 Insert (x, x′, y, y′) into T[(δin, δout)]
7 end

8 end

9 end

10 return T

We consider a more general scenario: a column state A with d c-bit cells is
mapped to D = SB ◦ MC ◦ SB(A), where SB is a parallel application of d c × c
small S-boxes and MC : Fd

2c → F
d
2c is a linear transformation with branch number

d + 1. Assume that a differential of the super S-box SSB = SB ◦ MC ◦ SB leads
to s non-active c × c S-boxes, and thus we have 2d − s small active S-boxes. To
generate a pair respecting a given differential (ΔA,ΔD) for the SSB, we perform
the following steps:

1. Guess d− s cells of (A,D) (the guessed positions must be selected within the
active cells of (A,D)).

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 737

Algorithm 2. Generating data pairs for non-full-active super S-box
Input: The differential (ΔA, ΔD), A[0], and a 3-bit index β = (β0, β1, β2)
Output: Data A such that SSB(A) ⊕ SSB(A ⊕ ΔA) = ΔD

1 B[0] = S(A[0]), B′[0] = S(A[0] ⊕ ΔA[0]), ΔB[0] = B[0] ⊕ B′[0]
2 /* Together with 3 non-active bytes in (ΔB, ΔC), 4 bytes of

differences are known in total. */

3 According to Property 1, we get ΔB[2] and ΔC[1, 2, 3]

4 /* Determine the pairs through accessing DDT */

5 /* We obtain values with probability of 2−3 */

6 (A[2], A′[2], B[2], B′[2]) ← T[(ΔA[2], ΔB[2])]
7 (C[1], C′[1], D[1], D′[1]) ← T[(ΔC[1], ΔD[1])]
8 (C[2], C′[2], D[2], D′[2]) ← T[(ΔC[2], ΔD[2])]

9 /* Pick combinations of (A[2], C[1], C[2]) by β: β0 · ΔA[2] = 0 if β0 = 0
and β0 · ΔA[2] = ΔA[2] if β0 = 1 */

10 A[2] = A[2] ⊕ β0 · ΔA[2], A′[2] = A[2] ⊕ ΔA[2];
11 B[2] = B[2] ⊕ β0 · ΔB[2], B′[2] = B[2] ⊕ ΔB[2];
12 C[1] = C[1] ⊕ β1 · ΔC[1], C′[1] = C[1] ⊕ ΔC[1];
13 D[1] = D[1] ⊕ β1 · ΔD[1], D′[1] = D[1] ⊕ ΔD[1];
14 C[2] = C[2] ⊕ β2 · ΔC[2], C′[2] = C[2] ⊕ ΔC[2];
15 D[2] = D[2] ⊕ β2 · ΔD[2], D′[2] = D[2] ⊕ ΔD[2].

16 /* B[0], B[2], C[1], and C[2] are known */

17 With Property 1, all the values of B and C are known

18 /* Among the 5 active S-boxes, only the S-box with (ΔC[3], ΔD[3]) is

not considered, which acts as a filter. */

19 if S(C[3]) ⊕ S(C[3] ⊕ ΔC[3]) = ΔD[3] /* probability of 2−8 */

20 then
21 return A ← SB−1(B) together with A ⊕ ΔA
22 end

2. Compute the values of d − s cells of (B,C) from the guessed d − s cells of
(A,D). Compute the differences of d − s active cells of (ΔB,ΔC).

3. Combining with the s non-active cells of (ΔB,ΔC), we get (d − s) + s = d
cells with known differences among the input-output differences of MC. By
Property 1, we know all the differences in the truncated differential.

4. Since d − s cells of (B,C) have been determined, we need an additional s
cells to determine all other cells of (B,C) through MC. Therefore, we compute
another s cells through s DDT accesses. Here, similar to Algorithm 2, an s-bit
auxiliary variable β is needed to specify which combination to choose among
the 2s choices. In Algorithm 2, (s =)3-bit β is needed.

5. Combining with the d − s cells of (B,C) in Step 2 and s cells by accessing
DDT, we know d cells of (B,C). By Property 1, we derive the remaining d cells.

738 X. Dong et al.

6. Now, there are

(2d − s)︸ ︷︷ ︸
All active S-boxes

− (d − s)︸ ︷︷ ︸
Guessed

− s︸︷︷︸
Fixed by DDT

= d − s

unused active Sboxes, which are used as a 2−(d−s)c-bit filter. In Algorithm2,
it is a filter of 2−(d−s)c = 2−(4−3)×8 = 2−8. Once it passes the filter, we obtain
the full (A,D) and (A′,D′) conform to the differential of the SSB.

The complexity of the whole procedure is s DDT accesses and 4(d−s) S-boxes
evaluations (2(d − s) in step 2 and 2(d − s) in step 6). We have to repeat for
2(d−s)c × 2s times to traverse the initial guesses and s-bit auxiliary variable β
to find one pair on average, which need about 2(d−s)c+s · s DDT accesses and
2(d−s)c+s ·4(d−s) small S-box evaluations. Suppose one DDT access is equivalent
to one S-box evaluation, hence the total time complexity is in classical setting:

2(d−s)c+s · (s + 4(d − s)) S-box evaluations. (5)

In quantum setting, we use Grover’s algorithm to accelerate the procedures with
time complexity (including uncomputing):

2 · π

4
·
√

2(d−s)c+s · (s + 4(d − s)) S-box evaluations, (6)

with 216 qRAM to store the DDT. We refer the readers to Sect. 4 and 5 to find the
detailed definitions and implementations of quantum oracles for the application
of Grover’s algorithm. From the Eq. (5) and (6), we see that the dominating part
is 2(d−s)c (in this paper, c = 8), hence, we will maximize s by our MILP model
in order to reduce the complexity to compute the non-full-active super S-box.

3.2 Searching for Exploitable Differentials in Classical and Quantum
Attacks with MILP

Following recent MILP based approach for automatic cryptanalysis [37,46], we
propose an MILP model with multiple optimization objectives whose solution
space captures the set of exploitable differentials with respect to rebound attacks
in both the classical and quantum settings. Let us now clarify the variables,
constraints, and objective functions.

Variables and Constraints. For an R-round primitive, we first introduce an
integral variable l, which determines the inbound part from round l+1 to round
l + 2, and the outbound part with a backward chunk from round l to round 0
and a forward chunk from round l + 3 to round R − 1.

Then, we introduce a set of 0–1 variables xj for all cells of the states involved,
where xj = 1 if and only if the corresponding cell is differentially active. These
variables model the truncated differential trails of the target, and the constraints
imposed on them are the same as [37].

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 739

To capture the probability of the trails, we also introduce a set of 0–1 variables
ωj for each cell of the states right before (in the backward chunk) or after
(in the forward chunk) the MC operations. Concretely, in the backward chunk,
given MC with differentially active input-output cells, ωj = 1 if and only if the
corresponding input cell of the MC is differentially inactive. Similarly, in the
forward chunk, given MC with differentially active input-output cells, ωj = 1
if and only if the corresponding output cell of the MC is differentially inactive.
Therefore, the probability of the truncated differential trail for the outbound
phase can be calculated as 2−c·∑ ωj , where c is the cell size in bits and the sum
of ωj is taken over the scope of the outbound part.

The Objective Functions. To minimize the time complexity of the outbound
phase (including the cancellation introduced by Eq. (4)), our first priority objec-
tive function is to minimize

∑
Outbound

wj +
∑

Round 0

xj .

According to the discussion of Sect. 3.1, the complexity for analyzing one
super S-box is minimized when the number of inactive small S-boxes is maxi-
mized. Assuming we have h super S-boxes, let si (0 ≤ i < h) denote the number
of inactive small S-boxes in the corresponding super S-box. We set our second
priority objective function to maximize the minimal of {s0, s1, ..., sh−1}, i.e., the
objective function is

maximize : min {s0, s1, ..., sh−1}.

Note that this type of objective can be realized in MILP by maximizing λ with
the constraints λ ≤ sj for 0 ≤ j < h − 1.

Remark. Since in all of our attacks we have enough degrees of freedom potentially
borrowed from other message blocks, we do not care about the degrees of freedom
provided by the inbound differential.

4 Quantum Collision Attacks on 7-Round AES-MMO
and AES-MP with Low qRAM

Before we dive into the details of the attack with low qRAM, we would like to
give some high-level remarks on the difference between our attack and Hosoya-
mada and Sasaki’s attack [20]. The differentials used in [20] and our attack are
presented in Fig. 3 and Fig. 5, respectively. We can see that both differentials
cover seven rounds of AES, and the probabilities of the segments of the differen-
tials covering the outbound phases are both 2−801. The main difference appears
1 In Fig. 5, the differential transition from Z5 to W5 needs a two-byte condition, whose

probability is about 2−16. Eight-byte differences in ΔX1 and ΔW7 have to be equal,
which holds with probability 2−64.

740 X. Dong et al.

in the inbound phases: The differential employed by Hosoyamada and Sasaki
(see Fig. 3) activates all cells of the super S-boxes involved in the inbound phase
while the differential we used gives rise to non-full-active super S-boxes. This
discrepancy is the core reason for the reduction of the qRAM usage and brings
some technical difficulties preventing us from applying Hosoyamada and Sasaki’s
attack directly.

X1

SB

Y1

SR

Z1

MC

W1

AK

X2

SB

Y2

SR

Z2

MC

W2

AK

X3

SB

Y3

SR

Z3

MC

W3

AK

X4

SB

Y4

SR

Z4

MC

W4

AK

X5

SB

Y5

SR

Z5

MC

W5

AK

X6

SB

Y6

SR

Z6

MC

W6

AK

X7

SB

Y7

SR

W7

AK

Fig. 5. The differential trail used in our quantum collision attack on 7-round AES-MMO

Since the differential probability of the outbound phase is 2−80, we have to
generate about 280 starting points to find a collision. If we follow Hosoyamada
and Sasaki’s strategy and try to produce a collision for h = CF(m, IV) with one
message block by a rebound attack based on the differential given in Fig. 5, we
are doomed to fail due to an inherent shortage of enough starting points. Let
us look at the differential trail (see Fig. 5) for the inbound part. There are 28×4

possibilities for ΔZ2 and 28×3 possibilities for ΔW4. Therefore, we expect to
have totally 28×4 × 28×3 = 256 < 280 starting points when the subkeys are fixed
by the IV . In contrast, Hosoyamada and Sasaki’s trail (see Fig. 3) can create
as many as 28×8 × 28×3 = 288 > 280 starting points that conforming with the
inbound differential.

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 741

m0 EK

IV h1

m1 EK h2

Fig. 6. The framework of the collision attacks with two message blocks

To address this issue, we consider collisions produced by a pair of two-block
messages (m0,m1) and (m0,m

′
1) whose hash values are computed according

to Fig. 6. The rebound attack happens at the second message block, and the
degrees of freedom for generating starting points is replenished by varying the
first message block m0. To be more specific, we can generate about 224×256 = 280

starting points after go through 224 different m0’s, among which we expect to
find one starting point fulfilling the outbound differential and thus leading to a
collision.

4.1 A Low-qRAM Quantum Collision Attack on 7-Round AES-MMO

Similar to [20], at the core of our attack is the application of Grover’s algorithm
to a search space where the interested elements are marked by an efficiently
computable Boolean function F . Now, let us proceed to define our F .

For the convenience of discussion, we call the instantiated input-output dif-
ference pair (Δin,Δout) ∈ F

32
2 × F

24
2 for (ΔX3,ΔY4) with regard to Fig. 5 the

inbound differential. The goal of the inbound phase of a rebound attack is to
generate data pairs respecting the inbound differential. We define

F : F24
2 × F

32
2 × F

24
2 × F

3
2 → F2 (7)

in a way such that F (m0,Δin,Δout, α) = 1 if and only if the starting point
computed with (m0,Δin,Δout) and indexed by α = (α0, α1, α2) ∈ F

3
2 fulfills

the outbound differential.2 Note that we can set the search space of m0 to
be the most significant 24 bits, with its remaining bits set to 0. Therefore, if
F (m0,Δin,Δout, α) = 1, we can produce two messages m1 and m′

1 with the
help of Algorithm 2 such that

CF(m1, CF(m0, IV)) = CF(m′
1, CF(m0, IV)),

where m1 and m′
1 are obtained from the starting point indexed by α. Given

(m0,Δin,Δout, α), F (m0,Δin,Δout, α) can be computed in the classical world
by the following approach:

2 Note that given (m0, Δin, Δout), we can derive the input-output differences for the
four SSB. If there exists one input-output pair for each SSB, there will be (2·2·2·2)/2 =
8 choices for starting points. Therefore, Hosoyamada and Sasaki [20] introduced a
3-bit α to specify which starting point to choose. We also adopt this strategy in our
definition of F .

742 X. Dong et al.

1. Compute h1 = CF(m0, IV), which is treated as the master key for the second
block encryption.

2. Compute the differential (ΔX
(i)
3 ,ΔY

(i)
4) for each super S-box SSB(i) (0 ≤

i < 4) from the inbound differential (Δin,Δout). Note that the differential
trail for SSB(0) with input difference ΔX

(0)
3 and output difference ΔY

(0)
4 is

highlighted in Fig. 5.
3. Solve the non-full active super S-box SSB(0) to obtain X

(0)
3 such that

SSB(0)(X(0)
3 ⊕ ΔX

(0)
3) ⊕ SSB(0)(X(0)

3) = ΔY
(0)
4 .

If α0 = 0, pick min{X
(0)
3 ,X

(0)
3 ⊕ ΔX

(0)
3 } as the new value for X

(0)
3 . Else,

pick max{X
(0)
3 ,X

(0)
3 ⊕ΔX

(0)
3 } as the new value for X

(0)
3 . Similarly, we obtain

X
(1)
3 , X

(2)
3 . For the pair (X(3)

3 ,X
(3)
3 ⊕ ΔX

(3)
3), we always pick the bigger one

as X
(3)
3 . We can build the starting point

X3 = (X(0)
3 ,X

(1)
3 ,X

(2)
3 ,X

(3)
3)

according to the index α.
4. If the starting point (X3,X3⊕ΔX3) obtained in step 3 respects the outbound

differential, F (m0,Δin,Δout, α) returns 1, otherwise it returns 0.

Therefore, by applying Grover’s search with the quantum oracle UF which
maps |m0,Δin,Δout, α〉 |y〉 to |m0,Δin,Δout, α〉 |y ⊕ F (m0,Δin,Δout, α)〉, we
can find a collision with around π

4 ·
√

283 queries. To estimate the overall com-
plexity, we need to be clear on the complexity incurred by UF .

4.2 Implementation of the Quantum Oracle UF

Similar to [20], we need some additional functions to implement UF . First, we
define G(i), which marks the values of one byte of X

(i)
3 and a 3-bit index β leading

to solutions (compatible data pairs) for the given differential (ΔX
(i)
3 ,ΔY

(i)
4)

of the super S-box SSB(i) and an initial message block m0 when Algorithm 2
or its variants are applied. For example, G(0)(m0,ΔX

(0)
3 ,ΔY

(0)
4 ,X

(0)
3 [0], β) =

1 if and only if we pass the check in Step 19 of Algorithm2 upon input of
(m0,ΔX

(0)
3 ,ΔY

(0)
4 ,X

(0)
3 [0], β). Note that, since G(0) is just to mark the correct

11-bit (X(i)
3 [0], β) for a given (m0,ΔX

(0)
3 ,ΔY

(0)
4), we can return G(0) = 1 once

it passes the check in Step 19 of Algorithm 2.
Since the computation of G(i) in the classical setting uses the table T com-

puted by Algorithm1, implementing a quantum oracle of G(i) requires qRAMs.
The implementation of the quantum oracle UG(0) of G(0) is presented in Algo-
rithm3.

For 0 ≤ i < 3, we use the function D(i) to compute the actual input-output
data pair respecting the differential of the super S-box SSB(i) with the knowledge
of one byte of X

(i)
3 [0] and β obtained by executing Grover search on G(i). D(i) is

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 743

Algorithm 3. Implementation of UG(0)

Input: |m0, ΔX
(0)
3 , ΔY

(0)
4 ; X

(0)
3 [0], β〉 |y〉 with β = (β0, β1, β2) ∈ F

3
2

Output: |m0, ΔX
(0)
3 , ΔY

(0)
4 ; X

(0)
3 [0], β〉 |y ⊕ G(0)(m0, ΔX

(0)
3 , ΔY

(0)
4 ; X

(0)
3 [0], β)〉

1 Compute h1 = CF(m0, IV)

2 Apply the quantum circuit of Step 1-19 Algorithm 2 with input; /* Requires

216 qRAMSs */

3 if It passes the check in Step 19 of Algorithm 2 then

4 return |m0, ΔX
(0)
3 , ΔY

(0)
4 ; X

(0)
3 [0], β〉 |y ⊕ 1〉

5 else

6 return |m0, ΔX
(0)
3 , ΔY

(0)
4 ; X

(0)
3 [0], β〉 |y〉

7 end

just to replay a full version of Algorithm2 and outputs min{X
(i)
3 ,X

(i)
3 ⊕ ΔX

(i)
3 }

upon input
(m0,ΔX

(i)
3 ,ΔY

(i)
4 ,X

(i)
3 [0], β;αi = 0),

and outputs max{X
(i)
3 ,X

(i)
3 ⊕ ΔX

(i)
3 } upon input

(m0,ΔX
(i)
3 ,ΔY

(i)
4 ,X

(i)
3 [0], β;αi = 1),

such that SSB(i)(X(i)
3) ⊕ SSB(i)(X(i)

3 ⊕ ΔX
(i)
3) = ΔY

(i)
4 . In addition, D(3) is

defined differently. It always returns the smaller one of X
(3)
3 and X

(3)
3 ⊕ ΔX

(3)
3

upon the input (m0,ΔX
(i)
3 ,ΔY

(i)
4 ,X

(i)
3 [0], β), such that

SSB(3)(X(3)
3) ⊕ SSB(3)(X(3)

3 ⊕ ΔX
(3)
3) = ΔY

(3)
4 .

Finally, the oracle UF can be constructed by using UG(i) and the quantum circuits
of D(i) which is presented in Algorithm 4.

Complexity Analysis. To produce fair and comparable results, the assump-
tions made by Hosoyamada and Sasaki [20] are inherited in our complexity anal-
ysis:

• The complexity of the computation of 7-round AES is approximated by 16×7
+ 4 × 7 = 140 S-box computations.

• The complexity of one access to the qRAM storing a table is equivalent to
one S-box computation.

• The complexity of the resolution of the linear equation involving MC with four
knowns and four unknowns is equivalent to one MC operation and is ignored.

• One inverse Sbox is about two Sboxes [21].
• Uncomputing is taken into account.

First of all, in our attack, the differential distribution table with 216 classical
data for the S-box is precomputed (see Algorithm1) and loaded into a qRAM
in advance, which is accessed by the quantum circuits for G(i) and D(i).

744 X. Dong et al.

Algorithm 4. Implementation of UF .
Input: |m0, Δin, Δout; α〉 |y〉, with α = (α0, α1, α2) ∈ F

3
2

Output: |m0, Δin, Δout; α〉 |y ⊕ F (m0, Δin, Δout; α)〉
1 Compute h1 = CF(m0, IV).

2 for i ∈ {0, 1, 2} do

3 Compute the corresponding differential ΔX
(i)
3 → ΔY

(i)
4 for SSB(i) from

(Δin, Δout).

4 Run Grover search on the function G(i)(m0, ΔX
(i)
3 , ΔY

(i)
4 ; ·) : F11

2 → F2. Let

X
(i)
3 [0] ∈ F

8
2 and β(i) ∈ F

3
2 be the output.

5 Run D(i)(m0, ΔX
(i)
3 , ΔY

(i)
4 , X

(i)
3 [0], β(i), αi). Let X

(i)
3 be the output.

6 end

7 Compute the corresponding differential ΔX
(3)
3 → ΔY

(3)
4 for SSB(3) from

(Δin, Δout).

8 Run Grover search on the function G(3)(m0, ΔX
(0)
3 , ΔY

(3)
4 ; ·) : F11

2 → F2. Let

X
(3)
3 [0] ∈ F

8
2 and β(3) ∈ F

3
2 be the output.

9 Run D(3)(m0, ΔX
(3)
3 , ΔY

(3)
4 , X

(3)
3 [0], β(3)). Let X

(3)
3 be the output.

10 /* Create starting points derived from (m0, Δin, Δout; α) */

11 X ← (X
(0)
3 , · · · X(3)

3)

12 X ′ ← (X
(0)
3 ⊕ ΔX

(0)
3 , · · · , X

(3)
3 ⊕ ΔX

(3)
3)

13 if (X, X ′) fulfills the outbound differential then
14 return |m0, Δin, Δout, α〉 |y ⊕ 1〉
15 else
16 return |m0, Δin, Δout, α〉 |y〉
17 end

Complexity of the Grover Search on G(i). Applying Grover algorithm to G(i)

given (m0,ΔX
(i)
3 ,ΔY

(i)
4) to find a 11-bit value (X(i)

3 [0], β(i)) requires π
4

√
28+3 ≈

25.15 queries to the oracle UG(i)
3. According to the analysis of Algorithm 2, one

query to UG(i) takes about s = 3 qRAM accesses and 4(d−s) = 4(4−3) = 4 S-box
evaluations, the overall complexity can be estimated as 2×25.15×(3+4)× 1

140 ≈
21.83 7-round AES computations.

Complexity of D(i). D(i) is just to replay a full version of Algorithm2. In Step
1–19 of Algorithm 2, it needs s+4(d−s) = 3+4(4−3) =7 S-boxes evaluations. In
Step 21, since all the 5 active bytes are known before, we just compute the last 3
inactive Sboxes (see Fig. 4) to determine a conforming pair for the SSB(i). Hence,
totally 7 + 3 = 10 Sboxes evaluations are needed, which is about 2 × 10

140 ≈ 2−2.8

7-round AES computations.

3 Supplementary Material C of the full version of the paper at https://eprint.iacr.org/
2020/1030 discusses the Grover search on small space.

https://eprint.iacr.org/2020/1030
https://eprint.iacr.org/2020/1030

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 745

Complexity of UF . In Algorithm 4, Step 1 needs one 7-round AES computation;
Step 2–9 need 4 × (21.83 + 2−2.8) ≈ 23.88 7-round AES computations. In Step 13,
according to Fig. 5, we need to compute backward for 2 rounds and forward for 3
rounds from the starting point (X,X ′). Therefore, 2×2×16 = 64 inverse Sboxes
and 2 × 3 × 16 = 96 Sboxes are needed, which are equal to 2 × 64×2+96

140 = 3.2
7-round AES computations. Totally, the complexity of UF is 1+23.88+3.2 ≈ 24.24

7-round AES computations. Supplementary Material D of the full version of the
paper at https://eprint.iacr.org/2020/1030 discusses the success probability of
UF .

Complexity to Find a Collision. To identify an 83-bit value (m0,Δin,Δout, α) ∈
F
24
2 ×F

32
2 ×F

24
2 ×F

3
2 with Grover search such that F (m0,Δin,Δout, α) = 1 requires

about π
4 ×

√
283 queries to UF . Therefore, the complexity to find a collision is

π
4 ×

√
283 × 24.24 = 245.4 7-round AES computations.

5 Quantum Attacks on 7-Round AES-MMO Without qRAM

The qRAM dependence of the previous attack comes from the qRAM dependence
of UG(i) and D(i). To get rid of the qRAMs, we re-implement UG(i) and D(i)

without using the DDT stored in qRAMs, while keep their functional behavior
unchanged. In this section, we introduce two method to reduced qRAMs to zero.

Method 1. The idea is simple: given a differential of an 8× 8 S-box, data pairs
are generated by on-line search instead of table lookups. Since the methods
for re-implementing UG(i) and D(i) are similar, we only give the details of the
implementation of UG(0) in Algorithm 5. The complexity analysis of this new
attack is given in the following.

Complexity of the Grover Search on G(i). Applying Grover’s algorithm to G(i)

given (m0,ΔX
(i)
3 ,ΔY

(i)
4) to find a 11-bit value (X(i)

3 [0], β(i)) requires π
4

√
28+3 ≈

25.15 queries to the oracle UG(i) . According to Algorithm5, the complexity of one
query to UG(i) is dominated by Step 6–8, which is about 3· π

4 ·
√

28 ·(1
140) = 2−1.89

7-round AES. Hence, the total complexity of the Grover search on G(i) is about
2 × 25.15 × 2−1.89 = 24.27 7-round AES.

Complexity of D(i). With (X(i)
3 [0], β(i)), D(i) outputs the pair respecting the

differential of the super S-box on-line. The implementation of D(i) is similar to
G(i), with Step 12–14 of Algorithm5 replaced by outputting Xi

3 according to
αi (please refer the definitions of D(i) in Sect. 4.2 for details). The complexity
of D(i) is also bounded by Step 6–8 of Algorithm5. The complexity is about
2 × 2−1.89 = 20.89 7-round AES.

Complexity of UF . The implementation of UF without qRAM is obtained by
replacing G(i) and D(i)’s with their no-qRAM versions (Algorithm 4). The com-
plexity of one query to UF is about 4× (24.27 +2−0.89)+1+3.2 ≈ 26.384 7-round
AES computations.

https://eprint.iacr.org/2020/1030

746 X. Dong et al.

Algorithm 5. Implementation of UG(0) without using qRAMs

Input: |m0, ΔX
(0)
3 , ΔY

(0)
4 ; X

(0)
3 [0], β〉 |y〉 with β = (β0, β1, β2) ∈ F

3
2

Output: |m0, ΔX
(0)
3 , ΔY

(i)
4 ; X

(0)
3 [0], β〉 |y ⊕ G(0)(m0, ΔX

(0)
3 , ΔY

(i)
4 ; X

(0)
8 [0], β)〉

1 /* Please look back to Figure 5 */

2 Z
(0)
3 [0] ← S(X

(0)
3 [0])

3 ΔZ
(0)
3 [0] ← S(X

(0)
3 [0] ⊕ ΔX

(0)
3 [0]) ⊕ S(X

(0)
3 [0])

4 Solving the system of equations MC(ΔZ
(0)
3) = ΔW

(0)
3 with the knowledge of

ΔZ
(0)
3 [0] and ΔZ

(0)
3 [1] = ΔZ

(0)
3 [3] = ΔW

(0)
3 [0] = 0

5 Let gj : F8
2 × F

8
2 × F2 × F

8
2 → F2 be a Boolean function such that

gj(δin, δout, βj = 0, x) = 1 if and only if S(x) ⊕ S(x ⊕ δin) = δout and
x ≤ x ⊕ δin, and gj(δin, δout, βj = 1, x) = 1 if and only if
S(x) ⊕ S(x ⊕ δin) = δout, and x > x ⊕ δin.

6 Run the Grover search on the function g0(ΔX
(0)
3 [2], ΔY

(0)
3 [2], β0; ·) : F8

2 → F2.

Let X
(0)
3 [2] be the output.

7 Run the Grover search on the function g1(ΔX
(0)
4 [1], ΔY

(0)
4 [1], β1; ·) : F8

2 → F2.

Let X
(0)
4 [1] be the output.

8 Run the Grover search on the function g2(ΔX
(0)
4 [2], ΔY

(0)
4 [2], β2; ·) : F8

2 → F2.

Let X
(0)
4 [2] be the output.

9 Compute Z
(0)
3 [2], W

(0)
3 [2] and W

(0)
3 [3] ; /* Z

(0)
3 [0] is known */

10 Solve the equation MC(Z
(0)
3) = W

(0)
3 for W

(0)
3 [3] and compute X

(0)
4 [3]

11 if S(X
(0)
4 [3] ⊕ ΔW

(0)
3 [3]) ⊕ S(X

(0)
4 [3]) = ΔY

(0)
4 [3] then

12 return |m0, Δin, Δout, α〉 |y ⊕ 1〉
13 else
14 return |m0, Δin, Δout, α〉 |y〉
15 end

Complexity to Find a Collision. To identify an 83-bit value (m0,Δin,Δout, α) ∈
F
24
2 ×F

32
2 ×F

24
2 ×F

3
2 with Grover search such that F (m0,Δin,Δout, α) = 1 requires

about π
4 ×

√
283 queries to UF . Therefore, the complexity to find a collision is

π
4 ×

√
283 × 26.384 = 247.584 7-round AES computations.

Method 2. At FSE 2020, Bonnetain, Naya-Plasencia and Schrottenloher [4]
introduced a quantum circuit that fulfilled the functionality of DDT. The cost is
equivalent to 2 Sboxes computations and 22 ancilla qubits. In this section, we
use this idea to implement UF without qRAMs. The complexity is quit similar
to Algorithm 4, since when one DDT access is needed, we just replace it by 2 Sbox
evaluations. The updated complexity of G(i) is 2s + 4(d − s) = 6 + 4 = 10 Sbox
evaluations. Therefore, applying Grover’s algorithm to G(i) costs 2×25.15 ×10×
1

140 ≈ 22.34 7-round AES. The complexity of D(i) is about 2× 13
140 ≈ 2−2.43 7-round

AES. Hence, the complexity of UF becomes 1 + 4 × (22.34 + 2−2.43) + 3.2 ≈ 24.66

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 747

7-round AES. Totally, we need π
4 ×√

83×24.66 ≈ 245.8 7-round AES computations
with 22 ancilla qubits.

6 Collision Attacks on Grøstl-512

Grøstl is a SHA3 finalist hash function. It comes with two versions: Grøstl-256
and Grøstl-512, with the trailing digits signifying the sizes of the outputs in
bits. The structure of Grøstl-n

2 with two message blocks is depicted in Fig. 7,
where P and Q are two n-bit AES-like permutations. Before it outputs the hash
value, an output transformation based on P and a truncation Ω : Fn

2 → F
n/2
2

are applied to h2. We refer the reader to [11] for more details of the design.

m0

h0 = IV

Q

P

m1

h1

Q

P
h2

P Trunc

Fig. 7. Grøstl-n
2

with two message blocks

The best known collision attack on Grøstl-512 reaches 3 rounds [43]. Based
on differentials found by MILP technique, we present the first classical and ded-
icated quantum collision attacks on 4-round and 5-round Grøstl-512. To facili-
tate our discussion, we use the alternative but equivalent description of Grøstl
introduced by [34], which is illustrated in Fig. 8. Let P− and Q− be the AES-
like permutations with their last MB operations removed. We have the following
equivalent description of Grøstl. For 1 ≤ i ≤ t, we set

v0 = MB−1(IV),

vi = P−(MB(vi−1) ⊕ mi−1) ⊕ Q−(mi−1) ⊕ vi−1,

h = Ω(MB(vt)).

m0

v0 = MB−1(IV)

Q−

P−MB

m1

v1

Q−

P−MB
v2

Fig. 8. An alternative description of Grøstl-n
2

with two message blocks

748 X. Dong et al.

6.1 Exploitable Differential Trails of Grøstl-512

The differential trails we used in our collision attacks on Grøstl-512 are inspired
by Mendel, Rijmen and Schläffer’s collision attack on 4-round Grøstl-256 [34].
In [34], a random difference is injected through m0 to create a fully differentially
active chaining value v1. Then a sequence of local rebound attacks is performed
to cancel the differences in the chaining values “column” by “column”, which
eventually leads to a full collision. The differential trails employed to trigger
such cancellations are shown in Fig. 11 in the Supplementary Material A of the
full version of the paper at https://eprint.iacr.org/2020/1030.

However, if we adopt a series of similar differential trails in the attack on
4-round Grøstl-512, we end up with impossible differentials (see Fig. 12 in the
Supplementary Material A of the full version of the paper for examples) such that
the cancellation of the last “column” never happens. To overcome this difficulty,
we have to cancel multiple “columns” at once during the rebound attack over
the final message block, which increases the time complexity significantly. To
minimize the complexity penalty due to the multiple-column cancellation, we
apply the MILP model to the last two steps to find two truncated differential
trails to cancel the differences in the last two chaining values before the collision.
The identified trails are depicted in Fig. 13 in the full version of the paper, where
in the last step we attempt to cancel 16 active bytes at once, and the numbers of
inactive S-boxes for the 16 super S-boxes SSB of the inbound phase (see Fig. 9)
are given as (s0, s1, · · · , s15) = (7, 7, 6, 7, 7, 7, 5, 3, 4, 4, 4, 4, 4, 4, 5, 7).

6.2 Classical and Quantum Collision Attacks on 4-Round Grøstl-512

Based on the differential trails given in Fig. 13 in Supplementary Material A of the
full version of the paper, a classical collision attack on 4-round Grøstl-512 can
be constructed. The strategy of the attack generally follows the strategy of [34]
with a critical difference at the initial difference injection. The attack of [34]
starts with an arbitrary fully active chaining value v1. In our attack, we impose
additional conditions on the fully active chaining value v1. We now clarify these
conditions.

From Fig. 13 of the full version of the paper we can see that for a fixed
initial pair of message blocks (m0,m

′
0), the difference of the cells of the chaining

states vi keeps unchanged throughout the entire attack unless they are canceled.
Therefore, to force the chaining values following the specified differential trails
for the last two-column cancellation, we can pretest some cells of Δv1, which are
marked by blue cells in Fig. 13, and the required differential transformation is
depicted in Fig. 9.

Specifically, we introduce some conditions on some active bytes (marked by
blue) within some columns in the chaining values. For example, in vi−1 of Fig. 13,
there are 10 blue bytes. In the first column of vi−1, the two active blue bytes
have to meet the condition for the differential propagation:

(0, ∗, 0, ∗, 0, 0, 0, 0, 0)T MB−→ (∗, ∗, ∗, ∗, 0, ∗, ∗, ∗)T .

https://eprint.iacr.org/2020/1030

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 749

MB

mi−1vi−1

AC
SH

SB MB
AC
SB SH

7 7 6 7 7 7 5 3 4 4 4 4 4 4 5 7

MB

Fig. 9. The inbound phase of the last step of the collision attack on Grøstl-512. The
gray and blue bytes are active, but there are conditions on blue bytes. The green bytes
are inactive due to the conditions imposed on the blue cells. (Color figure online)

Similar conditions for other blue bytes in the other 4 columns are also needed. For
randomly selected pair (m0,m

′
0), the output difference Δv1 meets the conditions

in the blue bytes with probability 2−8×5 = 2−40. Hence, with 240 (m0,m
′
0) pairs,

we are expected to find one correct pair.
In summary, this attack starts with a fully differentially active v1 fulfilling

the required conditions by injecting a random difference at m0, repeats local
rebound-like attacks over the subsequent message blocks to cancel the differences
column by column until there are only two differentially active columns, and a
final rebound attack is employed to cancel the last two active columns as a
whole. The colliding pair is of the form: M = (m0,m1, · · · ,mt) and M ′ =
(m′

0,m1, · · · ,mt), that is, only the starting message block m0 has a difference.
The procedure of the attack is outlined in the following.

1. Choose arbitrary 240 message blocks m0, m′
0 and compute the difference

Δv1 = v1 ⊕ v′
1 with conditions on five columns satisfied in the blue bytes.

Since the probability is 2−40 for a random pair (m0, m′
0), we are expected to

find one right pair.
2. Perform rebound attacks over the message block m1. Note that the input

difference Δin of the inbound phase is fixed due to Δv1, and the output
difference Δout of the inbound phase has 8 active cells as shown in Fig. 13.
Using the full-active-super S-box technique4, we can generate 20 × 264 =
264 messages m1 (starting points) such that the pair (m1 ⊕ MB(v1),m1 ⊕
MB(v′

1)) respect the given inbound differential. With regards to the outbound
differential, the truncated differential (8 → 8 → 8) given in Fig. 13 holds with

4 There are at least one full-active super S-box among the 16 ones, which bounds the
memory complexity in this step in classical setting. Hence, we do not need the non-
full-active super S-box technique here. The non-full-active super S-box technique is
only used in the quantum attack versions.

750 X. Dong et al.

probability 1, and the 8-bytes cancellation due to the feed-forward exclusive-
or happens with probability 2−64. Therefore, we expect one of 264 starting
points to fulfill the one-column local collision, and the time complexity of this
step is about 264.

3. Repeat step 2 with the corresponding differential trails to inactivate the differ-
ences of the chaining values column by column until only two active columns
remain.

4. Eliminate the last two active columns with the same strategy of step 2. Since
there are 16 active bytes in the output difference of the inbound differential,
we can obtain 216×8 = 2128 starting points with time complexity 2128 by
using the super S-box technique. With regard to the outbound differential,
the truncated differential 16 → 16 → 16 holds with probability 1, and the
two-column cancellation happens with probability 2−128. Therefore, we can
obtain the desired collision with 2128 starting points.

The time complexity of the attack is dominated by Step 4 of the above
procedure, which is about 2128. The storage of the super-Sbox leads to a memory
complexity of 264. Finally, we find a collision for the 4-round Grøstl-512 with
about 16 message blocks. A quantum version of the same attack on 4-round
Grøstl-512 with or without qRAMs can be constructed based on the same
method given in Sect. 4 and Sect. 5, and we refer the reader to Supplementary
Material B of the full version of the paper at https://eprint.iacr.org/2020/1030
for the details.

6.3 Classical and Quantum Collision Attacks on 5-Round Grøstl-512

The 4-round collision attack can be extended to a 5-round collision attack shown
in Fig. 14 in Supplementary Material A of the full version of the paper, where the
probabilities of the outbound phases of the rebound attacks are 2−56 and 2−112

(the last step). When a local rebound attack fails to produce the local collision
on a column, we will perform the same attack on the next message block until
the desire difference cancellations occur. Therefore, how many message blocks
are used in the attack is unknown before we reach a full collision. We briefly
summarize the attack on 5-round Grøstl-512 below:

1. Choose arbitrary message blocks m0, m′
0 and compute the difference Δv1 =

v1 ⊕ v′
1 until the required conditions on the blue cells are satisfied. We are

expected to find one correct pair after 240 repetitions.
2. Perform rebound attacks over the message block m1. Note that the input

difference Δin of the inbound phase is fixed due to Δv1, and the output
difference Δout of the inbound phase has 8 active cells. Using the full-active
super S-box technique, we can generate 20 × 264 = 264 messages m1 (starting
points). With regards to the outbound differential, the truncated differential
(128 → 64 → 8 → 1 → 8 → 8) holds with probability 2−56, and the 8-bytes
cancellation due to the feed-forward exclusive-or happens with probability
2−64. Therefore, we can obtain the desired difference for the chaining value

https://eprint.iacr.org/2020/1030

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 751

with probability 264 ×2−56 ×2−64 = 2−56 with 264 time complexity. If we are
failed to get the desired difference, we perform the same attack over the next
message block with the chaining values produced previously. We will succeed
in canceling the 8-byte difference after about 256 additional message blocks
are processed.

3. Repeat step 2 with the corresponding differential trails to inactivate the differ-
ences of the chaining values column by column until only two active columns
remain.

4. Eliminate the last two active columns with the same strategy of step 2. The
success probability of the local rebound attack performed in this step is dif-
ferent from others. Since there are 16 active bytes in the output difference
of the inbound differential, we can obtain 216×8 = 2128 starting points with
time complexity 2128 by using the super S-box technique. With regard to
the outbound differential, the truncated differential trail 88 → 96 → 16 →
2 → 16 → 16 holds with probability 2−112, and the two-column cancellation
happens with probability 2−128. Therefore, we can obtain the desired colli-
sion with probability 2128 × 2−112 × 2−128 = 2−112 with 2128 time complexity
(within this step). If we fail to get the collision, repeating Step 4 with about
2112 additional message blocks will achieve the collision.

The time complexity of the attack is dominated by step 4, which can be
estimated as 2112 × 2128 = 2240. The storage of the super S-box leads to a
memory complexity of 264. Finally, we find a collision with about 2112 message
blocks. A quantum version of the same attack can be constructed, which is
quite similar to the attack given in Supplementary Material B of the full version
of the paper. We repeat a quantum version of Step 4 for 2112 times to find
a collision. The time complexity of the quantum attack with 216 qRAMs is
288.37 × 2112 = 2200.4, and the time complexity of the quantum attack without
qRAMs is 289.3 × 2112 = 2201.3.

7 Semi-Free-Start Collision Attacks on Grøstl-256

So far, the best collision attack on 6-round Grøstl-256 is a semi-free-start col-
lision attack with time complexity 2120 and memory complexity 264. Based on
the truncated differential trail covering 6-round Grøstl-256 found by the MILP
technique, which is depicted in Fig. 10, we can improve this attack in both the
classical and quantum settings.

The Classical Attack. Two rebound attacks are applied to P and Q separately.
The inbound phase of the rebound attack on P begins at P2 and ends at P4.
There are 256 × 256 = 2112 input-output differences in total, and we expect to
find 2112 starting points with 2112 time complexity based on the super S-box
technique. In the outbound phase, the probability for fulfilling the outbound
truncated differential trail is 2−48 × 2−48 = 2−96. Therefore, we can produce
2112 × 2−96 = 216 pairs respecting the 6-round truncated differential covering

752 X. Dong et al.

mi−1

hi−1 hi

Q0

AC
SB
SH
MC

Q1

AC
SB
SH
MC

Q2

AC
SB
SH
MC

Q3

AC
SB
SH
MC

Q4

AC
SB
SH
MC

Q5

AC
SB
SH
MC

Q6

P0

AC
SB
SH
MC

P1

AC
SB
SH
MC

P2

AC
SB
SH
MC

P3

AC
SB
SH
MC

P4

AC
SB
SH
MC

P5

AC
SB
SH
MC

P6

Fig. 10. Differential trail of the compression function of 6-round Grøstl-256

P with time complexity 2112. Similarly, performing a rebound attack with time
complexity 2112 over Q generates 216 pairs respecting the truncated differential
trail covering Q. Combining the results of the two rebound attacks, we obtain
216 × 216 = 232 quartets ((P0, P

′
0), (Q0, Q

′
0)), among which we expect to identify

232 × 2−16 × 2−16 = 1 quartet such that ΔQ0 = ΔP0 and ΔP6 = ΔQ6. This
leads to a semi-free-start collision with mi−1 = Q0, m′

i−1 = Q′
0, and hi−1 =

Q0 ⊕ P0 = Q′
0 ⊕ P ′

0. The time complexity of the attack about 2112, and we need
264 memory to apply the super S-box technique.

The Quantum Attack Without qRAMs. The quantum attack is also
based on the differential trails shown in Fig. 10. Given an inbound differen-
tial (ΔP

in,ΔP
out) ∈ F

56
2 × F

56
2 for the permutation P . If there is a starting point

respecting the given inbound differential, then one can generate 27 different start-
ing points, which are indexed by αP ∈ F

7
2. We define FP : F56

2 × F
56
2 × F

7
2 → F2

such that FP (ΔP
in,ΔP

out, αP) = 1 if and only if there is a starting point respect-
ing the inbound differential (ΔP

in,ΔP
out) and the particular starting point indexed

by αP also conforming with the outbound differential of P . The probability of
the outbound phase is 2−48−48 = 2−96. Therefore, given (ΔP

in,ΔP
out, αP), FP (·)

return 1 with probability of 2−96−7 = 2−103.
Applying Grover algorithm with certainty to the quantum oracle UFP

which
is constructed without qRAM with similar techniques shown in previous sections,
we can obtain a superposition

|ρ〉 =
1√

{x ∈ F119
2 : FP (x) = 1}

∑
FP (x)=1

|x〉 , (8)

where
√

{x ∈ F119
2 : FP (x) = 1} ≈ √

256 × 256 × 27 × 2−103 ≈
√

216.
As shown in the generalized version of Algorithm2, given parameters (d =

8, c = 8, s), where s is the sum of the non-active bytes of the input-output
differential of the non-full-active super S-box, we have to traverse 2(d−s)c+s to
find the conforming pair of super S-box (an s-bit auxiliary variable to specify
which value to choose within the pair obtained by accessing s DDT). To find a
conforming pair for the super S-box, we also define a similar G(i) as defined in

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 753

Algorithm 5. According to the Eq. (6), the time complexity to implement G(i)

is about 4(d − s) + s, with s DDT accesses and 4(d − s) small Sbox evaluations.
Here, we only considering the attack without storing DDT in qRAM. Hence, s DDT
accesses become s implementations of Grover algorithm to find a conforming pair
for the s S-boxes. Hence, the time complexity to search on UG(i) using Grover
algorithm is about

2 · π

4
·
√

2(d−s)c+s · (4(d − s) + s · (
π

4
·
√

2c)), S-box evaluations. (9)

Considering the non-full-active super S-boxes in Fig. 10, the sum of non-
active Sboxes in each SSB is s = 2. Hence, to find a conforming pair with given
input and output differences of SSB, the time complexity is about 231.27 S-box
evaluations according to Eq. (9), which is about 231.27/768 = 221.68 6-round
Grøstl-256 without qRAM.

When applying Grover algorithm to setup FP , we need about π
4 ·

√
296+7 · 8 ·

221.68 ≈ 275.8 6-round Grøstl-256 without qRAM to get the desired superposi-
tion in Eq. (8).

Similarly, applying Grover search to FQ, where FP (ΔQ
in,ΔQ

out, αQ) = 1 if and
only if there is a starting point respecting the inbound differential (ΔQ

in,ΔQ
out)

and the particular starting point indexed by αQ also conforming with the out-
bound differential of Q. With the same complexity of the first Grover search, we
obtain a superposition

|�〉 =
1√{x ∈ F119

2 : FQ(x) = 1}
∑

FQ(x)=1

|x〉 , (10)

where
√{x ∈ F119

2 : FQ(x) = 1} ≈ √
256 × 256 × 27 × 2−103 ≈

√
216.

Now, we are ready to perform the amplitude amplification with A being the
unitary operator sending |0〉 to |ρ〉 ⊗ |�〉 and projector

∑
x∈C

|x〉 〈x|, where C is
the set of all (ΔQ

in,ΔQ
out, αQ;ΔP

in,ΔP
out, αP) ∈ F

238
2 such that the starting points

due to (ΔQ
in,ΔQ

out, αQ) and (ΔP
in,ΔP

out, αP) produce a semi-free-start collision.
As shown in Fig. 10, the probability that ΔQ0 = ΔP0 and ΔQ6 = ΔP6, which
lead a collision, is about 2−16 × 2−16 = 2−32. The complexity to find a collision
without qRAM is

√
232 · 2 · 275.8 ≈ 292.8 6-round Grøstl-256.

8 Conclusion

In this work, we show that the amount of qRAMs required by the quantum
attacks on AES-MMO and AES-MP proposed by Hosoyamada and Sasaki can be
significantly reduced with only a slight increase in the time complexity. This is
achieved by performing a quantum version of the rebound attack based on the
non-full-active super S-box technique. Along the way, we find that the non-full-
active super S-box analysis can be partially automated with the MILP approach,
which is of independent interest, leading to improved attacks on Grøstl in both
the classical and quantum settings. To the best our knowledge, our attacks are

754 X. Dong et al.

the first dedicated quantum collision attack on hash functions that slightly out-
perform Chailloux, Naya-Plasencia, and Schrottenloher’s generic attack (ASI-
ACRYPT 2017) in a model where large qRAMs are not available.

Acknowledgments. We thank the anonymous reviewers for their helpful and detailed
comments. This work is supported by the National Key Research and Development
Program of China (Grant No. 2018YFA0704701, 2018YFA0704704), the Major Pro-
gram of Guangdong Basic and Applied Research (Grant No. 2019B030302008), Major
Scientific and Techological Innovation Project of Shandong Province, China (Grant
No. 2019JZZY010133), the Chinese Major Program of National Cryptography Devel-
opment Foundation (No. MMJJ20180101, MMJJ20180102), and the National Natural
Science Foundation of China (No. 61902207, 61772519, 61802400).

References

1. Arunachalam, S., Gheorghiu, V., Jochym-O’Connor, T., Mosca, M., Srinivasan,
P.V.: On the robustness of bucket brigade quantum RAM. In: TQC 2015, Brussels,
Belgium, 20–22 May 2015, pp. 226–244 (2015)

2. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: the offline Simon’s algorithm.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921,
pp. 552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-
5 20

3. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 492–519.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5 20

4. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol. 2019(2), 55–93 (2019)

5. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

6. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

7. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 211–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 8

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

9. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

10. Dong, X., Dong, B., Wang, X.: Quantum attacks on some Feistel block ciphers.
Des. Codes Cryptogr. 88(6), 1179–1203 (2020)

11. Gauravaram, P., et al.: Grøstl - a SHA-3 candidate. In: Symmetric Cryptography,
11–16 January 2009 (2009)

12. Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4 21

https://doi.org/10.1007/978-3-030-34578-5_20
https://doi.org/10.1007/978-3-030-34578-5_20
https://doi.org/10.1007/978-3-030-38471-5_20
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-642-13858-4_21

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 755

13. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access
memory. Phys. Rev. A 78(5), 052310 (2008)

14. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys.
Rev. Lett. 100(16), 160501 (2008)

15. Grassi, L., Naya-Plasencia, M., Schrottenloher, A.: Quantum algorithms for the k-
xor problem. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS,
vol. 11272, pp. 527–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03326-2 18

16. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 212–219 (1996)

17. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. IACR Cryptology ePrint Archive 2019, 74 (2019)

18. Hosoyamada, A., Sasaki, Y.: Cryptanalysis against symmetric-key schemes with
online classical queries and offline quantum computations. In: Smart, N.P. (ed.)
CT-RSA 2018. LNCS, vol. 10808, pp. 198–218. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76953-0 11

19. Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks:
applications to 6-round generic Feistel constructions. In: Catalano, D., De Prisco,
R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98113-0 21

20. Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 249–279.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 9

21. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for
quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45724-2 10

22. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist
Grøstl. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 110–126. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 7

23. Jean, J., Naya-Plasencia, M., Peyrin, T.: Multiple limited-birthday distinguishers
and applications. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 533–550. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43414-7 27

24. Jean, J., Naya-Plasencia, M., Schläffer, M.: Improved analysis of ECHO-256. In:
Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 19–36. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0 2

25. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

26. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

27. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, 24–28
October 2016, pp. 830–842 (2016)

https://doi.org/10.1007/978-3-030-03326-2_18
https://doi.org/10.1007/978-3-030-03326-2_18
https://doi.org/10.1007/978-3-319-76953-0_11
https://doi.org/10.1007/978-3-319-76953-0_11
https://doi.org/10.1007/978-3-319-98113-0_21
https://doi.org/10.1007/978-3-030-45724-2_9
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-642-34047-5_7
https://doi.org/10.1007/978-3-662-43414-7_27
https://doi.org/10.1007/978-3-662-43414-7_27
https://doi.org/10.1007/978-3-642-28496-0_2
https://doi.org/10.1007/978-3-662-53008-5_8

756 X. Dong et al.

28. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In: Proceedings of the ISIT 2010, Austin,
Texas, USA, 13–18 June 2010, pp. 2682–2685 (2010)

29. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In:
ISITA 2012, Honolulu, HI, USA, 28–31 October 2012, pp. 312–316 (2012)

30. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: results on the full whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10366-7 8

31. Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The rebound
attack and subspace distinguishers: application to whirlpool. J. Cryptol. 28(2),
257–296 (2015)

32. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-
construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS,
vol. 10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70697-9 6

33. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced whirlpool and. In: Dunkelman, O. (ed.) FSE 2009. LNCS,
vol. 5665, pp. 260–276. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03317-9 16

34. Mendel, F., Rijmen, V., Schläffer, M.: Collision attack on 5 rounds of Grøstl. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 509–521. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0 26

35. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

36. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

37. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

38. Naya-Plasencia, M.: How to improve rebound attacks. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 11

39. Naya-Plasencia, M., Schrottenloher, A.: Optimal merging in quantum k-xor and k-
sum algorithms. IACR Cryptology ePrint Archive 2019, 501 (2019). https://eprint.
iacr.org/2019/501

40. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information,
10th Anniversary edn. Cambridge University Press (2016)

41. NIST: The post quantum project. https://csrc.nist.gov/projects/post-quantum-
cryptography

42. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active super-sbox
analysis: applications to ECHO and Grøstl. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 38–55. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-17373-8 3

43. Schläffer, M.: Updated differential analysis of grøstl. Grøstl website, January 2011
(2011)

44. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20–22 November 1994, pp. 124–134 (1994)

https://doi.org/10.1007/978-3-642-10366-7_8
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-642-03317-9_16
https://doi.org/10.1007/978-3-642-03317-9_16
https://doi.org/10.1007/978-3-662-46706-0_26
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-22792-9_11
https://eprint.iacr.org/2019/501
https://eprint.iacr.org/2019/501
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-642-17373-8_3
https://doi.org/10.1007/978-3-642-17373-8_3

Quantum Collision Attacks on AES-Like Hashing with Low qRAM 757

45. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

46. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

47. Xie, H., Yang, L.: Quantum impossible differential and truncated differential crypt-
analysis. CoRR abs/1712.06997 (2017). http://arxiv.org/abs/1712.06997

https://doi.org/10.1007/978-3-662-45611-8_9
http://arxiv.org/abs/1712.06997

Authenticated Key Exchange

Fuzzy Asymmetric
Password-Authenticated Key Exchange

Andreas Erwig1, Julia Hesse2, Maximilian Orlt1, and Siavash Riahi1(B)

1 Technische Universität Darmstadt, Darmstadt, Germany
{andreas.erwig,maximilian.orlt,siavash.riahi}@tu-darmstadt.de

2 IBM Research, Zurich, Switzerland
jhs@zurich.ibm.com

Abstract. Password-Authenticated Key Exchange (PAKE) lets users
with passwords exchange a cryptographic key. There have been two vari-
ants of PAKE which make it more applicable to real-world scenarios:

– Asymmetric PAKE (aPAKE), which aims at protecting a client’s
password even if the authentication server is untrusted, and

– Fuzzy PAKE (fPAKE), which enables key agreement even if pass-
words of users are noisy, but “close enough”.

Supporting fuzzy password matches eases the use of higher entropy pass-
words and enables using biometrics and environmental readings (both of
which are naturally noisy).

Until now, both variants of PAKE have been considered only in sepa-
ration. In this paper, we consider both of them simultaneously. We intro-
duce the notion of Fuzzy Asymmetric PAKE (fuzzy aPAKE), which pro-
tects against untrusted servers and supports noisy passwords. We formu-
late our new notion in the Universal Composability framework of Canetti
(FOCS’01), which is the preferred model for password-based primitives.
We then show that fuzzy aPAKE can be obtained from oblivious trans-
fer and some variant of robust secret sharing (Cramer et al, EC’15).
We achieve security against malicious parties while avoiding expensive
tools such as non-interactive zero-knowledge proofs. Our construction is
round-optimal, with message and password file sizes that are independent
of the schemes error tolerance.

1 Introduction

In a world of watches interacting with smartphones and our water kettle negoti-
ating with the blinds in our house, communicating devices are ubiquitous. Devel-
opments in user-centric technology are rapid, and they call for authentication
methods that conveniently work with, e.g., biometric scans, human-memorable
passwords or fingerprints derived from environmental readings.

Password-authenticated Key Exchange (PAKE) protocols [BM92,BPR00,
BMP00,KOY01,GL03,KV11,CDVW12,BBC+13,CHK+05] are the crypto-
graphic answer to this need. They solve the problem of establishing a secure
communication channel between two users who share nothing but a low-entropy
c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 761–784, 2020.
https://doi.org/10.1007/978-3-030-64834-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_26

762 A. Erwig et al.

string, often simply called password. Two interesting variants of PAKE proto-
cols that are known from the literature are asymmetric PAKE [BM93,GMR06,
JKX18,BJX19] which aims at protecting the user’s password even if his pass-
word file at some server is stolen, and fuzzy PAKE [DHP+18] which can tolerate
some errors in the password. The former is useful in settings where authentication
servers store thousands of user accounts and the server cannot be fully trusted.
The latter introduces a usability aspect to PAKE protocols used by humans try-
ing to remember passwords exactly. Furthermore, fuzzy PAKE broadens appli-
cability of PAKE to the fuzzy setting and thereby allows using environmental
readings or biometrics as passwords.

This work is the first to consider a combination of both PAKE variants.
Namely, we introduce the notion of fuzzy asymmetric PAKE (fuzzy aPAKE).
This new primitive allows a client and an untrusted server to authenticate to
each other using a password, and both parties are guaranteed to derive the same
cryptographic key as long as their passwords are within some predefined distance
(in some predefined metric). Consider a client authenticating to a server using
his fingerprint scan. In this setting, asymmetric PAKE protocols would not work
since subsequent scans do not match exactly. Fuzzy PAKE, on the other hand,
would require the server to store the fingerprint (or at least some template
of it that uniquely identifies the person) in the clear, which is unacceptable
for sensitive and ephemeral personal data that is biometrics. Fuzzy asymmetric
PAKE, as introduced in this paper, is the only known cryptographic solution
that applies to this setting: it works with fuzzy authentication data and does
not reveal this authentication data to the server.

Why is This Hard? Given that there is a lot of literature about both asymmetric
PAKE and fuzzy cryptography, one could ask whether existing techniques could
be used to obtain fuzzy aPAKE. As explained already in [DHP+18], techniques
from fuzzy cryptography such as information reconciliation [BBR88] or fuzzy
extractors [DRS04] cannot be used with passwords of low entropy. Essentially,
these techniques lose several bits of their inputs, which is acceptable when inputs
have high entropy, but devastating in case of passwords.

Looking at techniques for asymmetric PAKE, all of them require some kind
of password hardening such as hashing [GMR06,HL19,PW17], applying a PRF
[JKX18] or a hash proof system [BJX19]. Unfortunately, such functions destroy
all notions of closeness of their inputs by design. Further, it is unclear how to
define a fuzzy version of, e.g., an oblivious PRF as used in [JKX18] that is
not simply a constant function. While such definitions exist for “fuzzy” crypto-
graphic hashing (e.g., robust property-preserving hashing [BLV19]), these func-
tions either do not provide useful error correction or already their description
leaks too much information about the password of the client. Overall, there seems
to be no candidate asymmetric PAKE which can be made fuzzy.

Regarding more naive approaches, it is tempting to try to apply generic
techniques for multi-party computation to obtain a fuzzy PAKE such as gar-
bled circuits [Yao86]. The circuit would be created w.r.t some function of the
password h ← H(pw). The user’s input would be pw′. Now the circuit finds
all passwords close enough to pw′ and outputs the shared key if one of these

Fuzzy Asymmetric Password-Authenticated Key Exchange 763

passwords yield h. Despite the inefficiency of this approach, it is unclear how to
actually write down the circuit. As shown in [Hes19], h needs to be the output
of some idealized assumption such as a programmable random oracle, and thus
has no representation as a circuit.

Our Contributions. In this paper, we give the first formal definition of fuzzy
asymmetric PAKE. Our definition is in the Universal Composability frame-
work of Canetti [Can01], which is the preferred model for PAKE protocols (cf.,
e.g., [JKX18] for reasons). Essentially, we take the aPAKE functionality from
[GMR06] (in a revised version due to [Hes19]) and equip it with fuzzy password
matching (taken from the fuzzy PAKE functionality FfPAKE from [DHP+18]).
Our resulting functionality FfaPAKE is flexible in two ways: it can be optionally
equipped with a mutual key confirmation (often called explicit authentication),
and, just as FfPAKE, FfaPAKE can be parametrized with arbitrary metrics for dis-
tance, arbitrary thresholds and arbitrary adversarial leakage. Thus, our model
is suitable to analyze protocols for a wide range of applications, from tolerat-
ing only few language-specific typos in passwords [CWP+17] to usage of noisy
biometric scans of few thousand bits length.

We then give two constructions for fuzzy asymmetric PAKE. Our first con-
struction ΠfaPAKE uses error-correcting codes (ECC)1 and oblivious transfer (OT)
as efficient building blocks. ΠfaPAKE works for Hamming distance and can correct
O(log(n)) errors in n-bit passwords. Let us now give more details on ΠfaPAKE.

The idea of our protocol is to first encode a cryptographic key and store
it at the server, in a file together with random values to hide the codeword.
The exact position of the codeword in the file is dictated by the password.
A client holding a close enough password is thus able to retrieve almost the
whole codeword correctly and can thus decode the session key given the error
correction capabilities of the encoding. An attacker stealing the password file,
however, cannot simply decode since the file contains too much randomness. To
remove this randomness, he is bound to decode subsets of the file until he finds
two subsets which decode to the same session key. Since decoding can be assumed
to be as expensive as hashing, the effort of an off-line dictionary attack on the
password file follows from a purely combinatorial argument on the parameters
of the scheme (i.e., password size and error correction threshold).

To bound the client to one password guess per run of the protocol (which is
the common security requirement for PAKE), we employ an n-times 1-out-of-2
OT scheme. Each OT lets the client choose either the true or the random part of
the codeword for each of the n password bits (here we assume that the codeword
is from F

n for some large field F). Further, we apply randomization techniques
to keep a client from collecting parts of the password file over several runs of the
protocol.

1 More precisely, we use a variant of Robust Secret Sharing, which can be instantiated
with some class of error-correcting codes. However, since most readers are presum-
ably more familiar with the latter, we describe our constructions in terms of codes.

764 A. Erwig et al.

A plus of our protocol is that it elegantly circumvents usage of expensive tech-
niques such as non-interactive zero-knowledge proofs to ensure security against
a malicious server. Indeed, a malicious server could make the client reconstruct
the session key regardless of her password by entering only the true codeword in
the OT. Such attacks would be devastating in applications where the client uses
the session key to encrypt her secrets and sends them to the bogus server. Thus,
the client needs a means to check correct behavior of the server. We achieve this
by letting the server send his transcript of the current protocol run (e.g., the
full password file) to the client, symmetrically encrypted with the session key.
The client decrypts and checks whether the server executed the protocol with a
password close enough to his own. Crucially, a corrupted client can only decrypt
(and thus learn the server’s secrets) if he holds a close enough password, since
otherwise he will not know the encryption key.

Our proof of security is in the UC model and thus our protocol features com-
posability guarantees and security even in the presence of adversarially-chosen
passwords. As shown in [Hes19], strong idealized assumptions are necessary in
order to achieve security in the UC model in case of asymmetric PAKE proto-
cols. The reason lies in the adaptive nature of a server compromise attack (an
adversary stealing the password file), against which our fuzzy version of asym-
metric PAKE should also provide some protection. And indeed, our proof is in
the generic group model and additionally requires encryption to be modeled as
an ideal cipher. Both assumptions provide our simulator with the power to mon-
itor off-line password guesses (observability) of the environment as well as to
adjust a password file to contain a specific password even after having revealed
the file (programmability)2. As a technicality, usage of the generic group model
requires the client to perform decoding in the exponent. We give an example of
a code that is decodable in the exponent.

Our second construction Πtransf is a “naive” approach of building fuzzy
aPAKE from aPAKE. Namely, for a given pw, a server could simply store a
list of, say, k hashes H(pw′) for all pw′ close enough to pw. Then, client and
server execute k times an aPAKE protocol, with the client entering the same
password every time and the server entering all hashes one by one. The fully
secure protocol would need to protect against malicious behavior, e.g., by hav-
ing both parties prove correct behavior. Unfortunately, this approach has two
drawbacks. First, it does not scale asymptotically and has huge password files
and communication overhead depending not only on the fuzziness threshold but
also on the size of the password. Second, we show that Πtransf cannot be consid-
ered a secure fuzzy aPAKE, but has slightly weaker security guarantees.

On the plus side, Πtransf is already practical (and sufficiently secure) for appli-
cations where only few passwords should let the client pass. Facebook’s authen-
tication protocol, for example, is reported to correct capitalization of the first

2 We mention that already the fuzzy PAKE construction for Hamming distance from
[DHP+18] relies on both the ideal cipher and random oracle model. Usage of the
generic group model (together with a random oracle) has been recently shown useful
in constructing strongly secure aPAKEs [BJX19].

Fuzzy Asymmetric Password-Authenticated Key Exchange 765

letter [Ale15], resulting in only two hashes to be stored in the password file. As
analyzed in [CAA+16,CWP+17], correcting few common typographical mis-
takes as, e.g., accidental caps lock, increases usability significantly more than it
decreases security. For such applications, our protocol Πtransf is a good choice.

1.1 Roadmap

In Sect. 2 we give a definition of our main building blocks, error-correcting codes
which are decodable in the exponent. In Sect. 3, we provide the formal definition
of fuzzy aPAKE and discuss the design of our functionality. Our fuzzy aPAKE
protocol can be found in Sect. 4. Our naive approach of building faPAKE from
aPAKE can be found in Sect. 5. Efficiency is considered in Sect. 6.

2 Preliminaries

2.1 Robust Secret Sharing in the Exponent

An l-out-of-n secret sharing scheme allows to share a secret value s into n shares
(s1, · · · , sn) in such a way that given at least l of these shares, the secret can be
reconstructed. Simultaneously, any tuple of shares smaller than l is distributed
independently of s. Robust secret sharing (RSS) [CDD+15] improves upon secret
sharing schemes in the presence of malicious shares. Intuitively, an (n, l − 1, r)q-
RSS is an l-out-of-n secret sharing scheme which allows the presence of up to
n − r corrupted shares. In detail the reconstruction of the secret is reliable for
an n-tuple input (ŝ1, · · · , ŝn) of r different secret shares si and n − r random
values ai even if the positions of the correct shares are unknown.

We recall the definition of RSS as stated in [DHP+18]. For a vector c ∈ F
n
q

and a set A ⊆ [n], we denote with cA the projection F
n
q → F

|A|
q , i.e., the sub-

vector (ci)i∈A.

Definition 1. Let λ ∈ N, q a λ-bit prime, Fq a finite field and n, l, r ∈ N with
l < r ≤ n. An (n, l, r)q robust secret sharing scheme (RSS) consists of two
probabilistic algorithms Share : Fq → F

n
q and Rec : Fn

q → Fq with the following
properties:

– l-privacy: for any s, s′ ∈ Fq, A ⊂ [n] with |A| ≤ l, the projections cA of
c

$← Share(s) and c′
A of c′ $← Share(s′) are identically distributed.

– r-robustness: for any s ∈ Fq, A ⊂ [n] with |A| ≥ r, any c output by Share(s),
and any c̃ such that cA = c̃A, it holds that Rec(c̃) = s.

We now introduce a variant of RSS which produces shares that are hidden
in the exponent of some group G, and which features a reconstruction algorithm
that can handle shares in the exponent. At the same time we sacrifice absolute
correctness of Rec and allow for a negligible error in the definition of robustness.

766 A. Erwig et al.

Definition 2 (Robust Secret Sharing in the Exponent). Let λ ∈ N, q
a λ-bit prime, Fq a finite field and n, l, r ∈ N with l < r ≤ n. Let RSS =
(Share′,Rec′) be a (n, l, r)q robust secret sharing scheme and let G = 〈g〉 be a
cyclic group of prime order q. An (n, l, r)q robust secret sharing scheme in the
exponent (RSSExp) with respect to G consists of two probabilistic algorithms
Share : Fq → Gn and Rec : Gn → G which are defined as follows:

– Share(s) : On input a secret value s ← Fq, obtain secret shares (s1, · · · , sn) ←
Share′(s) and output (gs1 , · · · , gsn).

– Rec(gŝ1 , · · · , gŝn) : On input n group elements, this algorithm outputs gŝ,
where ŝ ← Rec′(ŝ1, · · · , ŝn).

Further, an (n, l, r)-RSSExp scheme fulfills the following properties:

– l-privacy: as in Definition 1.
– r-robustness: for any s ∈ Fq, A ⊂ [n] with |A| ≥ r, any c output by Share(s),

and any c̃ such that cA = c̃A, it holds that Rec(c̃) = gs with overwhelming
probability in n.

Note that any (n, l, r)-RSSExp scheme trivially fulfills the l-privacy property.
In the next part of this section we show how to achieve r-robustness.

Instantiations of RSSExp. In [DHP+18], it is shown how to construct an RSS
scheme from any maximum distance separable (MDS) code. An (n+1, k)q MDS
code is a linear q-ary code of length n and rank k, which can correct up to
�(n − k + 1)/2� errors. We refer to [Rot06] for a more in depth introduction to
linear codes.

Concretely, [DHP+18] propose to use Reed-Solomon codes, which are closely
related to Shamir’s secret sharing scheme [MS81]. In general, we are not aware
of any RSS scheme that is not also an MDS code. For this reason, we focus now
on decoding algorithms of linear codes.

Which Decoding Alorithm Works Also in the Exponent? In the following Lemma
we show that it is possible to build an (n, l − 1, l + t, g)-RSSExp scheme from an
l-out-of-(l + 2t) Shamir’s secret sharing scheme.

Lemma 1. Let n, l ∈ N and (Share′,Rec′) be an l-out-of-n Shamir’s secret shar-
ing scheme with n = l + 2t for some t and t · l = O(n log n), G = 〈g〉 a cyclic
group of order q. Further let Share be the algorithm that outputs gShare

′(s) on
input s ∈ Fq. Then there exists an algorithm Rec using poly(n) · O(log q) group
operations such that (Share,Rec) is an (n, l−1, l+t)-RSSExp scheme with respect
to G.

Proof. (l − 1)-privacy of l-out-of-n Shamir’s secret sharing scheme is shown in
[DHP+18], Lemma 5, and can be directly applied to the case where shares are
lifted to the exponent of some group. Let Rec be the “unique decoding by ran-
domized enumeration” algorithm defined by Canetti and Goldwasser [CG99]

Fuzzy Asymmetric Password-Authenticated Key Exchange 767

(essentially, the algorithm decodes random subsets of shares until it finds redun-
dancy), but applied to shares in the exponent using, e.g., Lagrange interpolation.
Peikert [Pei06] shows in his Proposition 2.1 that, if t < (n+1−l)/2 (i.e., the num-
ber of errors allows for unique decoding) and t · l = O(n log n), then Rec succeeds
with overwhelming probability in n and requires poly(n) · O(log q) group opera-
tions. Since n = l+2t, it holds that t < (n+1− l)/2 and hence (l+ t)-robustness
is achieved.

3 Security Model

We now present our security definition for asymmetric fuzzy password authen-
ticated key exchange (ΠfaPAKE). Our functionality combines the fuzzy PAKE
functionality FfPAKE from [DHP+18] with the asymmetric PAKE functionality
FapwKE [GMR06] (with revisions due to [Hes19]). In order to capture the notion
of fuzziness in our model, we say that a key exchange using passwords pw and
pw′ is successful if d(pw, pw′) ≤ δ, where d is an arbitrary distance function and
δ a fixed threshold. FfPAKE can be parametrized with arbitrary functions hdist()
such as Hamming distance or edit distance.

Roles: In this work we consider an asymmetric setting, namely a client PC and a
server PS . Each party executes different code. In this setting PC uses a password
pw while PS has access to some value denoted by file, which is generated from a
password pw′ but does not immediately reveal pw′. The goal of PC is convincing
PS that d(pw, pw′) ≤ δ, while PS only has access to file (and does not have
access to pw′).

Modeling Adversarial Capabilities: The standard security requirement for PAKE
is that an attacker is bound to one password guessing attempt per run of the pro-
tocol. This resistance to off-line dictionary attacks is also featured by our func-
tionality FfaPAKE via the TestPwd interface that can be called by the adversary
only once per session. Since we are in the setting of asymmetric PAKE, however,
the adversary can also gain access to the password file file by compromising
the server. Such a compromise is essentially a corruption query with the effect
that a part of the internal state of the server is leaked to the adversary. How-
ever, opposed to standard corruption, the adversary is not allowed to control
the party or modify its internal state. FfaPAKE provides an interface for server
compromise named StealPwdFile. As a consequence of such a query (which,
as natural for corruption queries, can only be asked by the adversary upon
getting instructions from the environment), a dictionary attack becomes possi-
ble. Such an attack is reflected in FfaPAKE by the OfflineTestPwd interface,
which allows an unbounded number of password guesses. Accounting for proto-
cols that allow precomputation of, e.g., hash tables of the form H(pw), FfaPAKE

accepts OfflineTestPwd queries already before StealPwdFile was issued.
FfaPAKE silently stores these guesses in the form of (offline, pw) records. Upon
StealPwdFile, FfaPAKE sends the client’s pwC to the adversary in case a record

768 A. Erwig et al.

(offline, pwC) exists. This models the fact that the adversary learns the client’s
password from his precomputated values only upon learning the password file,
i.e., compromising the server3. Besides offline password guesses, the adversary
can use file of the compromised server to run a key exchange session with the
user. This is captured within the Impersonate interface.

All these interfaces were already present in aPAKE functionalities in the lit-
erature. The key difference of FfaPAKE is now that all these interfaces apply
fuzzy matching when it comes to comparing passwords. Namely, FfaPAKE is
parametrized with two thresholds δ and γ. δ is the “success threshold”, for
which it is guaranteed that passwords within distance δ enable a successful key
exchange. On the other hand, γ can be seen as the “security threshold”, with
γ ≥ δ. Guessing a password within range γ does not enable the adversary to
successfully exchange a key, but it might provide him with more information
than just “wrong guess”. Following [DHP+18], we enable weakenings of FfaPAKE

in terms of leakage from adversarial interfaces (cf. Fig. 2). Here, the adversary,
in addition to learning whether or not his password guess was close enough, is
provided with the output of different leakage functions Lc, Lm and Lf . Essen-
tially, he learns Lc(pw, pw′) if his guess was within range δ of the other password,
Lm if it was within range γ > δ and Lf if it was further away than γ. FfaPAKE

can be instantiated with any thresholds γ, δ and arbitrary functions Lc, Lm, Lf .
Looking ahead, the additional threshold γ enables us to prove security of con-
structions using building blocks such as error-correcting codes, which come with
a “gray zone” where reliable error correction is not possible, but also the encoded
secret is not information-theoretically hidden. While guessing a password in this
gray zone does not enable an attacker to reliably compute the same password as
the client, security is still considered to be compromised since some information
about the honest party’s password (and thus her key) might be leaked. To keep
the notion flexible, we allow describing the amount of leakage with Lm(·, ·) and
mark the record compromised to model partial leakage of the key.

Naturally, one would aim for δ and γ to be close, where δ = γ offers optimal
security guarantees in terms of no special adversarial leakage if passwords are
only δ + 1 apart (an equivalent formulation would be to set Lm = Lf). FfaPAKE

is strongest if Lf = Lm = Lc = ⊥. Below we provide examples of nontrivial
leakage functions, verbatim taken from [DHP+18].

Since in a fuzzy aPAKE protocol the password file stored at the server needs
to allow for fuzzy matching, files are required to store the password in a struc-
tured or algebraic form. An adversary stealing the file could now attempt to alter
the file to contain a different (still unknown) password. This kind of attack does
not seem to constitute a real threat, since the attacker basically just destroyed
the file and cannot use it anymore to impersonate the server towards the corre-
sponding client. To allow for efficient protocols, we therefore choose to incorpo-

3 Recent PAKE protocols [JKX18,BJX19] have offered resistance against so-called
precomputation attacks, where an attacker should not be able to pre-compute any
values that can be used in the dictionary attack. Our protocols do not offer such
guarantees.

Fuzzy Asymmetric Password-Authenticated Key Exchange 769

rate malleability of password files into our functionality FfaPAKE by allowing the
adversary to present a function f within an Impersonate query. The imper-
sonation attack is then carried out with f(pw) instead of pw, where pw denotes
the server’s password.

Figure 1 depicts FfaPAKE with the set of leakage functions from the second
example below, namely leaking whether the password is close enough to derive
a common cryptographic key.

Examples of Leakage Functions.

1. No leakage. The strongest option is to provide no feedback at all to the
adversary. We define FN

faPAKE to be the functionality described in Fig. 1, except
that TestPwd, Impersonate, OfflineTestPwd and StealPwdFile use
the check depicted in Fig. 2 with

LN
c (pw, pw′) = LN

m(pw, pw′) = LN
f (pw, pw′) = ⊥.

2. Correctness of guess. The basic functionality FfaPAKE, described in Fig. 1, leaks
the correctness of the adversary’s guess. That is, in the language of Fig. 2,

Lc(pw, pw′) = “correct guess”,

and Lm(pw, pw′) = Lf (pw, pw′) = “wrong guess”.

3. Matching positions (“mask”). Assume the two passwords are strings of length
n over some finite alphabet, with the jth character of the string pw denoted
by pw[j]. We define FM

faPAKE to be the functionality described in Fig. 1, except
that TestPwd, Impersonate, OfflineTestPwd and StealPwdFile use
the check depicted in Fig. 2, with Lc and Lm that leak the indices at which the
guessed password differs from the actual one when the guess is close enough
(we will call this leakage the mask of the passwords). That is,

LM
c (pw, pw′) = ({j s.t. pw[j] = pw′[j]}, “correct guess”),

LM
m (pw, pw′) = ({j s.t. pw[j] = pw′[j]}, “wrong guess”)

and LM
f (pw, pw′) = “wrong guess”.

4. Full password. The weakest definition—or the strongest leakage—reveals the
entire actual password to the adversary if the password guess is close enough.
We define FP

faPAKE to be the functionality described in Fig. 1, except that
TestPwd, Impersonate, OfflineTestPwd and StealPwdFile use the
check depicted in Fig. 2, with

LP
c (pw, pw′) = LP

m(pw, pw′) = pw and LP
f (pw, pw′) = “wrong guess”.

4 Fuzzy aPAKE from Secret Sharing

We now describe our protocol for fuzzy aPAKE with Hamming distance as metric
for closeness of passwords. The very basic structure of our protocol is as follows:

770 A. Erwig et al.

Fig. 1. Ideal functionality FfaPAKE. Framed queries can only be asked upon getting
instructions from Z.

Fuzzy Asymmetric Password-Authenticated Key Exchange 771

Fig. 2. Modified distance checks to allow for different leakage to be used in TestPwd,
OfflineTestPwd, Impersonate and StealPwdFile. In StealPwdFile, record
marking is skipped.

we let the server encode a cryptographic key K using an error-correcting code4.
The resulting codeword (different parts of codeword are depicted as white circles
in the illustration below) is then transmitted to the client, who decodes to obtain
the key.

Client Server

K

K

ECC.Encode

ECC.Decode

To make the retrieval of the cryptographic key password-dependent, the
server stores the codeword together with randomness (depicted as grey circles
below) in a password file. The position of the true codeword values in the file
are dictated by the password bits. For example, in the illustration below, the
server uses the password 01110. For this, we require the encoding algorithm to
output codewords whose dimension matches the number of password bits. Now
instead of getting the full password file, the client can choose to see only one
value per column (either a part of the codeword or a random value). Techni-
cally, this is realized by employing a n-time 1-out-of-2 oblivious transfer (OT)
protocol5, where n = 5 is the password size of our toy example. The oblivious
part is crucial to keep the server from learning the client’s password. With this
approach, passwords within the error correction threshold of the password used
by the server are sufficient to let the client decode the cryptographic key. In
the illustration below, the client uses password 11110, letting him obtain 4/5

4 Formally, we will define our scheme using the more general concept of robust secret
sharing. However, for this overview it will be convenient to use the terminology of
error-correcting codes.

5 The protocol is not restricted by 1-out-of-2 OT, but can use 1-out-of-n OT for any
n ∈ N. In this work we consider n = 2, but in practice n > 2 might be useful to
reduce the number of wrong shares (e.g. n = 27 in case of ASCII encoding).

772 A. Erwig et al.

of the codeword correctly. Furthermore, an adversary stealing the password file
is now faced with the computationally expensive task of finding the codeword
within the file. Generalized to an (n − 2t)-out-of-n RSS, the naive approach of
finding n − 2t shares of the codeword by taking random subsets succeeds with
probability 1/2n−2t (as there are

(
n
2t

)
“good” choices containing shares only, and(

n
2t

) · 2n−2t choices overall). Here, n is the password size and t the number of
errors that the fuzzy aPAKE protocol allows in passwords.

Client Server

K

K

ECC.Encode
+ random shares

5x 1-out-of-2-OT

ECC.Decode

The above protocol can only be used to derive a single cryptographic key.
Further, it is prone to a malicious client who could send pw and pw ⊕ 1n in two
subsequent runs and obtain the full password file. The solution is randomization
of the password file in each run of the protocol. This is straightforward for linear
secret sharing.

Client Server

K

K ′

ECC.Encode
+ random shares

5x 1-out-of-2-OT

ECC.Decode

rerandomize shares
to encode K ′

Unfortunately, the above protocol cannot be proven UC secure. As already
mentioned before, UC-secure asymmetric PAKE protocols require an idealized
assumption to reveal password guesses against the file to the adversary [Hes19].

Fuzzy Asymmetric Password-Authenticated Key Exchange 773

Furthermore, we need to require that a password file does not fix the password
that is contained in it, in order to prove security in the presence of adaptive
server compromise attacks. To remedy the situation, we let the server store the
password file in the exponent of a publicly known large group and prove security
of our construction in the generic group model [Sho97]. As a consequence, the
client now needs to perform decoding in the exponent. We summarize in Sect. 2
which known decoding techniqes work also in the exponent, and detail in Sect. 6
how this affects the parameter choices of our scheme.

To complete our high-level protocol description, we now consider malicious
behavior of client and server in the above protocol. Firstly, we observe that the
client cannot cheat apart from using a different password in the OT (which does
not constitute an attack) or outputting a wrong cryptographic key (which also
does not constitute an attack). Things look differently when we consider a mali-
cious server. The server could, e.g., deviate from the protocol by entering only
correct codeword parts in the OT, making the key exchange succeed regardless
of the password the client is using. To prevent such attacks, we let the server
prove correct behavior by encrypting his view of the protocol run under the sym-
metric key K ′. The view consists of the randomized password file as well as gpw.
A client being able to derive K ′ can now check whether the server indeed holds
a password pw close enough to his own, and whether the transmitted password
file parts match the password file created with pw. The formal description of our
protocol can be found in Fig. 3.

It is worth noting the similarity of our protocol to the fuzzy PAKE from
RSS/ECC of [DHP+18]. Namely, the overall idea is the same (server choos-
ing and encoding K, sending it to the client who can decode if and only if his
password is close enough). Essentially, both protocols transmit the codeword
encrypted with the password, using a symmetric cipher that tolerates errors in
the password - let us call this a fuzzy symmetric cipher. [DHP+18] uses the
following fuzzy symmetric cipher: XOR the codeword (the message) with cryp-
tographic keys derived from the individual password bits. These cryptographic
keys are exchanged using PAKE on individual password bits. Unfortunately, this
approach does not work in the asymmetric setting, since the server would have to
store the password in the clear to access its individual bits. For the asymmetric
case, one has to come up with a fuzzy cipher that works with a key that is some
function of the password. This function needs to have two properties: hide the
password sufficiently, and still allow to evaluate distance of its input.

4.1 Security

Theorem 1. Let n, l, t ∈ N with n = l+2t and (Share,Rec) be an (n, l−1, l+t)-
RSSExp scheme with respect to a generic group G. Then the protocol depicted
in Fig. 3 UC-emulates FP

faPAKE in the FIC,Fn
OT-hybrid model, with γ = 2t, δ =

t, Hamming distance d() and with respect to static byzantine corruptions and
adaptive server compromise.

We now provide a proof sketch for Theorem1. The detailed proof can be
found in the full version of this paper [EHOR20].

774 A. Erwig et al.

Fig. 3. Protocol ΠfaPAKE for asymmetric fuzzy PAKE using an n times 1-out-of-2 Obliv-
ious Transfer.

Proof Sketch: The overall proof strategy is to give a simulated transcript and
output of the protocol that is indistinguishable from a real protocol execution
and runs independently of the parties’ passwords. The simulator is allowed to
make one password guess per execution (in case of compromised server the sim-
ulator can run several offline password guesses). In the following, we describe
the different cases of corruption that have to be considered.

– Honest session: Apart from the interaction between client and server
through the UC-secure OT, the only message that needs to be simulated
is one ideal cipher output which is sent from the server to the client and
serves as a commitment to the servers values. Since the ideal cipher generates

Fuzzy Asymmetric Password-Authenticated Key Exchange 775

a uniformly random ciphertext from the ciphertext space, the simulator can
replace the FIC output by a random value as long as the key is unknown.
Hence, the simulator runs independently from the passwords of the parties.

– Corrupted client: In case of corrupted client, it is crucial to bind the client
to submitting all n password bits at once such that the client is not able
to adaptively change the password bits based on previous OT outputs. We
achieve this by using non-adaptive n times 1-out-of-2 OT executions. Hence,
S is able to query TestPwd on the submitted password bits before it needs
to simulate the OT outputs for the client. In case TestPwd returns the
server’s password, S can simulate valid OT outputs. Otherwise, S chooses
random outputs which is indistinguishable from the real execution due to the
privacy property of the RSSExp scheme.

– Corrupted server: Whenever the corrupted server sends the ciphertext that
contains the OT inputs and gpw, S reconstructs pw from the inputs to the
ideal cipher and the generic group operations requestes by the environment. S
then checks whether pw is close to the client’s password using the TestPwd
interface. If so the simulator gets the client’s password and can simulate the
client. Otherwise the client’s behavior is independent of its password. Hence,
S can simulate the client with an arbitrary password that is not close to the
server’s.

– Server compromise: (1) Simulating the password file. S assembles a table
with random group element handles as password file, and a random handle
corresponding to gk. As soon as Z starts decoding with some subset of these
elements by querying the GGM, S learns these queries. As soon as this subset
of elements corresponds to a password, the simulator submits this password
to OfflineTestPwd. If the answer includes the server’s password, then S
programs the GGM such that the decoding results in the handle of gk.
(2) Impersonation attacks. The environment could use a file (e.g., the one
obtained from S or a randomized variant of it) to impersonate the server. For
this, the environment has to modify the ciphertext c to encrypt the file. Upon
the environment sending an encryption query to FIC including an element P
at the end of the message to be encrypted, the simulator checks if the GGM
contains a tuple (pw, P). If so, S runs a TestPwd query on pw and learns
the client’s password p̃w in case pw and p̃w are close6. If there is no tuple
(pw, P) in the GGM, S checks whether P was computed from the file (A′, P ′)
by the environment sending f(P ′) to the GGM (and the simulator replying
with P). If such a query happened, S issues an Impersonate query using
the same function f .

– MITM attack on honest session: Apart from the interaction between
client and server through the UC-secure OT, the only message that is sent
is one ideal cipher output from the server to the client. Any attempt by
Z to tamper with this message can be detected and hence S can simulate
accordingly.

6 We could alternatively let S issue an Impersonate query, but since the password is
known issueing TestPwd works just as well.

776 A. Erwig et al.

Password Salting. In the UC modeling each protocol session has access to a
fresh instantiation of the ideal functionalities. Consequently each protocol session
invokes a fresh instantiation of RO or GGM, which return different values when
queried on the same input in different sessions. Therefore the password files
generated for two users with the same password are different. In practice however
the passwords must be salted, i.e. instead of storing the gpw, the server stores
g(sid||pw) where sid is the respective session identifier. By applying this standard
technique of salting in practice, the password files for two clients who use the
same password would be different.

Use Cases for Hamming Distance Metric. Although hamming distance is not the
most optimal way to measure the distance of two passwords, it is quite suitable
for biometric applications. As an example, a server can derive the password file
from a client’s iris scan or fingerprint such that the client can use this biometric
data for authentication. Another example would be wearable or IoT devices. Such
devices can measure unique characteristics of the user or environment, such as
heart beat patterns and use these measurements for authentication. Our next
construction is more suitable for password matching applications where users
authenticate themselves with a human memorable password, but might input
some characters of the password incorrectly.

5 Fuzzy aPAKE from Standard aPAKE

We now show how to construct a fuzzy aPAKE from asymmetric PAKE. Essen-
tially, the idea is to let the server run an aPAKE protocol with the client multiple
times, entering all the passwords that are close to the password he originally reg-
istered. For formally defining the protocol, it will be convenient to assume a (pos-
sibly probabilistic) function close(pw) := {pwi|d(pw, pwi) < δ} that produces a
set of all authenticating passwords. For example, for d(), δ accepting passwords
where the first letter’s case should be ignored, we would get close(holy–moly!) =
{Holy–moly!, holy–moly!}. When asking to register a password file containing
pw, the server stores file := {H(pwi)|pwi ∈ close(pw) ∀i = 1, ..., |close(pw)|}
as arbitrarily ordered list of hash values of all authenticating passwords. Let
k := |file| be the number of such passwords. Now client and server execute the
aPAKE protocol k times, where the client always enters his password, and the
server enters all values from the password file (in an order determined by a ran-
dom permutation τ). Then, similar to our protocol ΠfaPAKE, the server proves
honest behavior by encrypting the (permuted) password file under all k keys
generated by the aPAKE protocol. The client decrypts and looks for a password
file that was generated from a password that is close to his own password. If
he finds such a file, he uses the corresponding decryption key (generated from
aPAKE) to perform an explicit authentication step with the server. Note that
this extra round of explicit authentication cannot be skipped, since otherwise
the server would not know which key to output. While the computation on the
client side sounds heavy at first sight, if both parties follow the protocol, all but

Fuzzy Asymmetric Password-Authenticated Key Exchange 777

one decryption attempts on the client side will fail. The client can efficiently
recognized a failed decryption attempt by searching the decrypted message for
the hash of his own password. The protocol is depicted in Fig. 4.

Πtransf does not scale asymptotically, neither in the size of the password nor
the number of errors. As an example, for correcting only one arbitrary error in
an n-bit password, the password file size is already k = n + 1. For correcting
up to t errors, we get k := 1 +

∑t
i=1

(
n
i

)
. Note that k determines not only the

size of the password file but also the number of aPAKE executions. On the plus
side, the construction works with arbitrary metric and distances, does not have
a “security gap” between δ and γ and has reasonable computational complexity
on both the client and server side.

Unfortunately Πtransf cannot be proven secure given the original ideal func-
tionality FfaPAKE, or rather its variant with explicit authentication (see the full
version of this paper [EHOR20] for more details). In a nutshell, an attacker tam-
pering with the single aPAKE executions can issue k password guesses using arbi-
trary passwords from the dictionary. A fuzzy aPAKE as defined within FfaPAKE,
however, needs to bound the attacker to use k close passwords. To remedy the
situation we modify the TestPwd interface of our FfaPAKE functionality such
that it allows n single password guesses. By single guess we mean that, instead of
comparing a guess to all passwords within some threshold of the password of the
attacked party (as it is done by FfaPAKE), it is compared to just one password. In
case the client is attacked, the functionality compares with the client’s password
(and allows k such comparisons). In case the server is attacked, comparison is
against a randomly chosen password close to the server’s password7. Overall, the
amount of information that the attacker obtains from both TestPwd interfaces
is comparable: they both allow the attacker to exclude k passwords from being
“close enough” to authenticate towards an honest party. Stated differently, to go
through the whole dictionary D of passwords, with both TestPwd interfaces
an attacker would need to tamper with |D|/k key exchange sessions. We refer
the reader to the full version of this paper [EHOR20] for more details regarding
the modified functionalities.

We let F ′
faPAKE denote the ideal functionality FP

faPAKE with interfaces
TestPwd and NewKey.

Theorem 2. Protocol Πtransf UC-emulates F ′
faPAKE with arbitrary distance func-

tion d() and arbitrary threshold δ = γ in the (FaPAKE,FRO,FIC)-hybrid model
w.r.t static corruptions and adaptive server compromise and H() denoting calls
to FRO.

We now provide a proof sketch for Theorem2. The detailed proof can be
found in the full version of this paper [EHOR20].

Proof Sketch. We need to consider the following attack scenarios:

7 Programming this randomized behavior into the functionality greatly simplifies prov-
ing security of Πtransf and does not seem to weaken the functionality compared to
one using non-randomized equality checks.

778 A. Erwig et al.

– Passive attacks : The environment Z tries to distinguish uncorrupted real and
ideal execution by merely observing transcript and outputs of the protocol,
while providing the inputs of both honest parties. Since the outputs of the
protocol are random oracle outputs and the transcript consists of a random
ciphertext vector −→e output by the ideal cipher, Z cannot distinguish real
outputs from simulated random values unless it queries either the ideal cipher
functionality FIC or the random oracle FRO with the corresponding inputs.
This can be excluded with overwhelming probability since these inputs are
uniformly random values of high entropy chosen by honest parties.

– Active message tampering : We consider Z injecting a message into a pro-
tocol execution between two honest parties. The only messages being sent
in unauthenticated channels are the encryption vector −→e and the explicit
authentication message h. Replacing the message h would simply result in
two different keys as output for the parties, simulatable by sending ⊥ via
NewKey. Tampering with −→e is a bit more tricky. Namely, we have to con-
sider Z modifying only single components of −→e . Tampering with each element
of the vector −→e lowers the probability for the parties to output the same key.
Hence, the simulator needs to adjust the probability for the parties to output
the same key by forcing the functionality to only output the same session key
with this exact probability, i.e., the simulator sends ⊥ via NewKey with the
inverse probability.

– (Static) Byzantine corruption: We consider the case where Z corrupts one of
the parties.

• In case of corrupted server, given an adversarially computed −→e , the sim-
ulator extracts all k passwords used by Z from the server’s inputs to FIC

and FRO and submits them as password guess to F ′
faPAKE (via TestPwd).

S then uses the answers (either “wrong guess” or the client’s true pass-
word) to continue the simulation faithfully. In case the corrupted server
deviates from the protocol (e.g., −→e does not encrypt a set of passwords
generated by close(), or sends garbage to the FaPAKE instance in which the
server uses the client’s password), the simulator sends ⊥ via the NewKey
interface to simulate failure of the key exchange.

• The case of a corrupted client is handled similarly using the freedom of
k individual TestPwd queries.

– Server compromise: The password file is simulated without knowledge of
the password by sampling random hash values. The simulator now exploits
observability and programmability of the random oracle (that models the
hash function) as follows: as soon as Z wants to compute H(pw), S submits
pw to its OfflineTestPwd interface. Upon learning the server’s true pass-
word, S programs the random oracle such that the password file contains
hash values of all passwords close to pw.

– Attacking FaPAKE: While using FaPAKE as hybrid functionality helps the par-
ties to exchange the key, it gives us a hard time when simulating. Essentially,
the simulator has to simulate answers to all adversarial interfaces of each
instance of FaPAKE since Z is allowed to query them. And FaPAKE has a lot of
them: StealPwdFile, TestPwd, OfflineTestPwd and Impersonate.

Fuzzy Asymmetric Password-Authenticated Key Exchange 779

In a nutshell, OfflineTestPwd queries can be answered by querying the
corresponding interface at F ′

faPAKE. The same holds for StealPwdFile and
Impersonate, only that they can be queried only once in F ′

faPAKE. Our proof
thus needs to argue that the one answer provided by FfaPAKE includes already
enough information to simulate answers to all k. The most annoying interface,
namely TestPwd is handled by forwarding each individual TestPwd guess
to F ′

faPAKE. This explains why F ′
faPAKE needs to allow k individual password

guesses instead of one fuzzy one (as provided by FfaPAKE).

6 Efficiency

Efficiency of ΠfaPAKE. When instantiated with the statically secure OT from
[BDD+17], ΠfaPAKE is round-optimal and requires each party to send only one
message. While 2 consecutive messages are in any case required for the OT,
we can conveniently merge the ciphertext sent by the server with his message
sent within the OT. In order to compute the total message size, let us first
give more details on the OT instantiations that are compatible with ΠfaPAKE

and their communication complexity. ΠfaPAKE can use any UC-secure protocol
for 1-out-of-2 OT with the slight modification that the sender only continues
the protocol after having received n input-dependent messages of the client (in
UC-secure protocol, the client is usually committed to his input when sending
his first message). E.g., one could modify the round-efficient statically secure
OT protocol from [BDD+17], Fig. 3, to let the sender Alice wait for receiver
Bob to complete the first step of the protocol n times. The protocol requires
one round of communication. In total, 3 strings, 1 public key and 2 ciphertexts
are send around per 1-out-of-2 OT. For sender inputs from F

2
q and security

parameter λ with q = 2λ, the communication complexity of the n-fold 1-out-
of-2 OT is then 8λn bits. This results in a total message size of 8λn + |c| =
8λn+(2n+1)λ ≈ 10λn bits. For each login attempt of a client, the server needs
to perform 2n + 1 group exponentiations in order to refresh the values in the
password file, as well as an encryption of 2n + 1 group elements. Finally, the
server has to perform one PRG execution. Note that the server has to do some
additional computations during the initial setup phase of the protocol, however
since this phase is only run once, we do not consider its complexity in this section.
The client’s computation is where our protocol lacks efficiency. Namely, with the
naive decoding technique from [CG99], client’s computation is only polynomial
in |pw| if the error correction capability δ is not larger than log |pw|. And still
for such δ, going beyond password sizes of, say, 40 bits does not seem feasible.

Efficiency of Πtransf. In order to achieve the fuzzy password matching in Πtransf,
the server is required to store one hash value for each password that lies within
distance δ of the original password. As a consequence, the password file size
is highly dependent on these threshold parameters. If we consider Hamming
distance as done in our first construction, for δ = 1 the password file is of size
O(n). However for δ = 2 it grows to O(n2) and for δ = 3 to O(n3). Hence,

780 A. Erwig et al.

Fig. 4. Protocol Πtransf for fuzzy asymmetric PAKE. The parties participate in k exe-
cutions of the aPAKE protocol. Afterwards they verify if at least one of the produced
k keys match and agree on it. We denote Πn := perm(1, ..., k) the set of permutations
[k] → [k]. close(pw) is a function outputting a list of all authenticating passwords (see
text for a formal description).

such error tolerance can only be achieved in Πtransf at the cost of huge password
files. The same correlation to the error tolerance holds for the amount of aPAKE
executions in Πtransf.

In order to determine the computational complexity of Πtransf in terms of
required group operations, we chose an instantiation of an aPAKE protocol,

Fuzzy Asymmetric Password-Authenticated Key Exchange 781

OPAQUE [JKX18], that requires a constant number of group exponentiations.
As previously discussed, Πtransf requires k aPAKE executions with k being the
size of the password file.

Despite its shortcomings when used with Hamming distance, Πtransf serves
as a good illustration for how to construct a general purpose faPAKE protocol
that already has practical relevance. Instantiated with distance and threshold
suitable to correct, e.g., capitalization of first letters or transposition of certain
digits, we obtain an efficient “almost secure” fuzzy aPAKE scheme.

We present a comparison of the two schemes in Table 1. Πtransf is listed twice.
First it is compared to ΠfaPAKE when using Hamming distance. The last row
indicates its efficiency for parameters resulting in k authenticating passwords,
where k can be as small as 2.

Table 1. Comparison of ΠfaPAKE and Πtransf. We assume n-bit passwords in case of
Hamming distance. File size and communication complexity are in bits. The Client
and Server column indicate the number of group operations.

File size Message size Thresholds Metric Client Server Assumption

ΠfaPAKE (2n + 2)λ 10λn 2δ = γ Hamming poly(n) · O(log q) O(n log q) IC, GGM

Πtransf O(nδ) O(nδ) δ = γ Hamming O(nδ log q) O(nδ log q) IC, ROM

Πtransf λk O(k) δ = γ arbitrary O(k) O(k) IC, ROM

7 Conclusion

In this paper, we initiated the study of fuzzy asymmetric PAKE. Our security
notion in the UC framework results from a natural combination of existing func-
tionalities. Protocols fulfilling our definition enjoy strong security guarantees
common to all UC-secure PAKE protocols such as protection against off-line
attacks and simulatability even when run with adversarially-chosen passwords.

We demonstrate that UC-secure fuzzy aPAKE can be build from OT and
Error-Correcting Codes, where fuzziness of passwords is measured in terms of
their Hamming distance. Our protocol is inspired by the ideas of [DHP+18]
for building a fuzzy symmetric PAKE. We also show how to build a (mildly
less secure) fuzzy aPAKE from (non-fuzzy) aPAKE. Our construction allows for
arbitrary notions of fuzziness and yields efficient, strongly secure and practical
protocols for use cases such as, e.g., correction of typical orthographic errors in
typed passwords.

Our two constructions nicely show the trade-offs that one can have for fuzzy
aPAKE. The “naive” construction from aPAKE has large password file size when
used with Hamming distance, but also works for arbitrary closeness notions
possibly leading to small password files and practical efficiency. The construction
using Error-Correcting Codes is restricted to Hamming distance and log(|pw|)
error correction threshold. I comes with a computational overhead on the client

782 A. Erwig et al.

side, but has only little communication and small password file size. It is worth
noting that, for this construction, all efficiency drawbacks could be remedied
by finding a more efficient decoding method that works in the exponent. We
leave this as well as finding more fuzzy aPAKE constructions as future work.
Specifically, no fuzzy aPAKE scheme with strong compromise security (as defined
in [JKX18]) is known.

Acknowledgments. This work was partly supported by the German Research Foun-
dation (DFG) Emmy Noether Program FA 1320/1-1, by the DFG CRC 1119 CROSS-
ING (project S7), by the German Federal Ministry of Education and Research (BMBF)
iBlockchain project (grant nr. 16KIS0902), by the German Federal Ministry of Edu-
cation and Research and the Hessen State Ministry for Higher Education, Research
and the Arts within their joint support of the National Research Center for Applied
Cybersecurity ATHENE, by the VeriSec project 16KIS0634 from the Federal Ministry of
Education and Research (BMBF), and by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 786725 – OLYMPUS.

We would like to thank Sophia Yakoubov for helpful discussions on earlier versions
of this work.

References

[Ale15] Muffet, A.: Facebook: password hashing & authentication, presentation at
real world crypto (2015)

[BBC+13] Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.:
New techniques for SPHFs and efficient one-round PAKE protocols. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 449–475. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40041-4 25

[BBR88] Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public
discussion. SIAM J. Comput. 17(2), 210–229 (1988)

[BDD+17] Barreto, P.S.L.M., David, B., Dowsley, R., Morozov, K., Nascimento,
A.C.A.: A framework for efficient adaptively secure composable oblivious
transfer in the ROM. CoRR, abs/1710.08256 (2017)

[BJX19] Bradley, T., Jarecki, S., Xu, J.: Strong asymmetric PAKE based on trap-
door CKEM. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part
III. LNCS, vol. 11694, pp. 798–825. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26954-8 26

[BLV19] Boyle, E., LaVigne, R., Vaikuntanathan, V.: Adversarially robust property-
preserving hash functions. In: Blum, A. (ed.) ITCS 2019, vol. 124, pp.
16:1–16:20. LIPIcs, January 2019

[BM92] Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based pro-
tocols secure against dictionary attacks. In: 1992 IEEE Symposium on
Security and Privacy, pp. 72–84. IEEE Computer Society Press, May 1992

[BM93] Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a
password-based protocol secure against dictionary attacks and password
file compromise. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S.,
Ashby, V. (eds.) ACM CCS 1993, pp. 244–250. ACM Press, November
1993

https://doi.org/10.1007/978-3-642-40041-4_25
https://doi.org/10.1007/978-3-642-40041-4_25
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26

Fuzzy Asymmetric Password-Authenticated Key Exchange 783

[BMP00] Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-
authenticated key exchange using Diffie-Hellman. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45539-6 12

[BPR00] Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange
secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.
org/10.1007/3-540-45539-6 11

[CAA+16] Chatterjee, R., Athayle, A., Akhawe, D., Juels, A., Ristenpart, T.: pASS-
WORD tYPOS and how to correct them securely. In: 2016 IEEE Sympo-
sium on Security and Privacy, pp. 799–818. IEEE Computer Society Press,
May 2016

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

[CDD+15] Cramer, R., Damg̊ard, I.B., Döttling, N., Fehr, S., Spini, G.: Linear secret
sharing schemes from error correcting codes and universal hash functions.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol.
9057, pp. 313–336. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46803-6 11

[CDVW12] Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient
password authenticated key exchange via oblivious transfer. In: Fischlin,
M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
449–466. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30057-8 27

[CG99] Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem
secure against adaptive chosen ciphertext attack (extended abstract). In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 7

[CHK+05] Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally
composable password-based key exchange. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 24

[CWP+17] Chatterjee, R., Woodage, J., Pnueli, Y., Chowdhury, A., Ristenpart, T.:
The TypTop system: personalized typo-tolerant password checking. In:
Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 329–346. ACM Press, October/November 2017

[DHP+18] Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy
password-authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 393–424. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 13

[DRS04] Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong
keys from biometrics and other noisy data. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 31

[EHOR20] Erwig, A., Hesse, J., Orlt, M., Riahi, S.: Fuzzy asymmetric password-
authenticated key exchange. Cryptology ePrint Archive, Report 2020/987
(2020). https://eprint.iacr.org/2020/987

https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-662-46803-6_11
https://doi.org/10.1007/978-3-662-46803-6_11
https://doi.org/10.1007/978-3-642-30057-8_27
https://doi.org/10.1007/978-3-642-30057-8_27
https://doi.org/10.1007/3-540-48910-X_7
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-540-24676-3_31
https://eprint.iacr.org/2020/987

784 A. Erwig et al.

[GL03] Gennaro, R., Lindell, Y.: A framework for password-based authenticated
key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 524–543. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 33

[GMR06] Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-
based key exchange resilient to server compromise. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 9

[Hes19] Hesse, J.: Separating standard and asymmetric password-authenticated
key exchange. Cryptology ePrint Archive, Report 2019/1064 (2019).
https://eprint.iacr.org/2019/1064

[HL19] Haase, B., Labrique, B.: Aucpace: efficient verifier-based PAKE protocol
tailored for the iiot. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2),
1–48 (2019)

[JKX18] Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE pro-
tocol secure against pre-computation attacks. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 456–486.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 15

[KOY01] Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key
exchange using human-memorable passwords. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44987-6 29

[KV11] Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenti-
cated key exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
293–310. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19571-6 18

[MS81] McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon
codes. Commun. ACM 24(9), 583–584 (1981)

[Pei06] Peikert, C.: On error correction in the exponent. In: Halevi, S., Rabin,
T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 167–183. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 9

[PW17] Pointcheval, D., Wang, G.: VTBPEKE: verifier-based two-basis password
exponential key exchange. In: Karri, R., Sinanoglu, O., Sadeghi, A.-R., Yi,
X. (eds.) ASIACCS 2017, pp. 301–312. ACM Press, April 2017

[Rot06] Roth, R.: Introduction to Coding Theory. Cambridge University Press,
New York (2006)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/3-540-39200-9_33
https://doi.org/10.1007/3-540-39200-9_33
https://doi.org/10.1007/11818175_9
https://eprint.iacr.org/2019/1064
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/11681878_9
https://doi.org/10.1007/3-540-69053-0_18

Two-Pass Authenticated Key Exchange
with Explicit Authentication and Tight

Security

Xiangyu Liu1,2, Shengli Liu1,2,3(B), Dawu Gu1, and Jian Weng4

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

{xiangyu liu,slliu,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China
4 College of Cyber Security, Jinan University, Guangzhou 510632, China

cryptjweng@gmail.com

Abstract. We propose a generic construction of 2-pass authenticated
key exchange (AKE) scheme with explicit authentication from key encap-
sulation mechanism (KEM) and signature (SIG) schemes. We improve
the security model due to Gjøsteen and Jager [Crypto2018] to a stronger
one. In the strong model, if a replayed message is accepted by some user,
the authentication of AKE is broken. We define a new security notion
named “IND-mCPA with adaptive reveals” for KEM. When the under-
lying KEM has such a security and SIG has unforgeability with adap-
tive corruptions, our construction of AKE equipped with counters as
states is secure in the strong model, and stateless AKE without counter
is secure in the traditional model. We also present a KEM possessing
tight “IND-mCPA security with adaptive reveals” from the Computation
Diffie-Hellman assumption in the random oracle model. When the generic
construction of AKE is instantiated with the KEM and the available SIG
by Gjøsteen and Jager [Crypto2018], we obtain the first practical 2-pass
AKE with tight security and explicit authentication. In addition, the
integration of the tightly IND-mCCA secure KEM (derived from PKE
by Han et al. [Crypto2019]) and the tightly secure SIG by Bader et al.
[TCC2015] results in the first tightly secure 2-pass AKE with explicit
authentication in the standard model.

Keywords: Authenticated key exchange · Tight security · Explicit
authentication · Two-pass protocol

1 Introduction

Among the primitives, algorithms and protocols in public key cryptography,
authenticated key exchange (AKE) [1,4,6–8,11,15,20,22] is by far the most
widely deployed one in the real world. For example, TLS [21] implements AKE to

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12492, pp. 785–814, 2020.
https://doi.org/10.1007/978-3-030-64834-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_27

786 X. Liu et al.

compute shared session keys for peer communication parties. There are several
billions of active users in Facebook, Instagram, Wechat, etc., which lead to more
than 230 TLS handshakes daily [11]. AKE allows two communication parties to
share a session key, which is then used to provide security for the later commu-
nications of the two parties. The wide deployment of AKE pushes its security to
paramount importance. The security of AKE consists of two aspects. One aspect
considers passive adversaries, and it requires the pseudorandomness of the shared
session key. The other considers authentication to detect active adversaries. The
authentication functionality of AKE guarantees the identification of the parties
and the integrity of the messages transmitted during AKE, by detecting mes-
sage modification, discard, insertion, etc., from adversaries. There are two types
of authentication, explicit authentication [1,4,7,11,20] and implicit authenti-
cation [6,8,15,16,22]. Implicit authentication detects active attacks in the later
communication (after the completion of key exchange), while explicit authentica-
tion detects active attacks during the execution of AKE. Explicit authentication
enjoys its own advantages. Once the authentication fails, the protocol execu-
tion stops and no subsequent messages follow any more, avoiding unnecessary
computation and communication.

The security of AKE (also other cryptographic primitives) is achieved by a
security reduction under proper security model. Security reduction transforms
the ability of a successful adversary A to an algorithm B solving a well-known
hard problem. If A wins with probability ε, then B solves the problem with
probability ε/L. The parameter L is called the security loss factor. If L is a
constant (or O(λ) with λ security parameter), the security reduction is tight
(almost tight). The loose factor L is generally a polynomial of μ, the number of
users, and �, the number of executions per user. Given a loose security reduction,
the deployment of AKE has to choose a larger security parameter to compensate
the loss factor L, resulting in larger elements and slower computations in the
execution of AKE. Taking μ ≈ 230 into account, this will lead to a great efficiency
loss of AKE. Therefore, pursuing tight security of AKE is not only of theoretical
value but also of practical significance.

1.1 Tightly Secure Authenticated Key Exchange

AKE is generally implemented in the multi-user setting, and it is quite pos-
sible for an adversary A to adaptively obtain session keys of some protocol
instances and/or long-term secret keys of corrupted users. This is formalized by
the reveal and corruption queries of A in the security model. The security of
AKE asks authentication and indistinguishability. Roughly speaking, authenti-
cation requires that if a party Pi uses received messages to compute a session
key and accepts it, then the messages must be sent from another (unique) party
Pj , instead of A. Indistinguishability characterizes the pseudorandomness of the
session key, which is successfully generated and accepted by two parties.

A good choice for AKE is the 2-pass signed Diffie-Hellman protocol [7]. It uses
a signature (SIG) scheme to provide authentication and a DH-like key encapsu-
lation mechanism (KEM) to provide indistinguishability, where Pi contributes

Two-Pass Authenticated Key Exchange 787

pk = ga, Pj contributes C = gb and the session key is K = gab. However, as
shown by Gjøsteen and Jager [11], it is hard to achieve tight security due to
the following “commitment problem”: in the reduction, if the DDH challenge
(gx, gy, gz) is embedded in the challenge session, then it can not be revealed,
and vice verse. Hence, the reduction algorithm has to guess the challenge session
(from μ� sessions) and embed the DDH problem into it. That is reason why many
protocols [7,16,18] have a loose factor L = μ� (or quadratic factor L = μ2�2).

To deal with the “commitment problem”, Gjøsteen and Jager [11] suggested
to add an extra hash commitment G(ga) as the first message, resulting in a
3-pass signed DH protocol with tight security.

Up to now, there are only two constructions of AKE [1,11] with tight security
and explicit authentication, and both need three passes. One is the 3-pass signed
DH protocol in the random oracle model [11], as mentioned above. The other is a
3-pass AKE in the standard model by Bader et al. [1]. This AKE is constructed
from a SIG scheme secure against adaptive corruptions (MU-EUF-CMAcorr secu-
rity), a strongly secure one-time SIG and a KEM scheme secure against adaptive
corruptions (MU-IND-CPAcorr security). The KEM is constructed from two pub-
lic key encryption schemes, where the ciphertext is two encryptions of the same
random encapsulated key. Note that such a KEM is not a good choice for AKE,
since the session key is completely determined by the responder.

Over these years, reducing the round complexity and pursuing low-latency
key exchange have become a major design criteria [10,13,17,21] by both
researchers and practitioners. Compared with 3-pass protocols, 2-pass proto-
cols are clearly more efficient, especially when the transmission time is high.
Furthermore, in a 2-pass AKE, any modification of the last (2nd) message can
be detected immediately, and no payloads from the initiator follow, which saves
computation and communication resources. Hence, a natural question is:

Is it possible to construct 2-pass AKE with explicit authentication and tight
security?

1.2 Our Approach

We answer the above question in the affirmative.

Achieving Tight Security. Our generic construction of AKE consists of two
building blocks, KEM and SIG. KEM is used to generate the session key, where
initiator Pi contributes pk and responder Pj contributes ciphertext C under pk.
We rely on KEM’s security to guarantee the pseudorandomness of the session
key. Meanwhile, every party has a signing key as its long-term secret key, and
every transmitted message is signed by SIG, which provides authentication to
resist active attacks. See Fig. 1 (a) for the construction.

We solve the “commitment problem” with a tightly IND-mCPAreveal secure
KEM. The IND-mCPAreveal security is a new notion, which allows the adversary
to reveal the encapsulated keys from the challenge ciphertexts. With such a KEM,
the reduction algorithm B can embed challenge ciphertexts to every session of
AKE, while keeping the ability of answering reveal queries from A. We also ask

788 X. Liu et al.

KEM to have diverse property (Subsect. 2.3) to make sure that both initiator
and responder contribute to the session key. Meanwhile, SIG is required to have
tight MU-EUF-CMAcorr security, where the adversary can corrupt some users to
get their signing keys.

Currently, tight MU-EUF-CMAcorr secure SIGs are available [1,11]. To
achieve tight security for AKE, the difficulty is constructing KEM with tight
IND-mCPAreveal security. As discussed above, it is hard for the traditional DH-
like KEM to achieve tight IND-mCPAreveal security, due to the “commitment
problem” in the security reduction.

In this paper, we present two KEM schemes that achieve tight IND-
mCPAreveal security. Our first proposal is pk = (gx1 , gx2), C = gy,K =
H(gx1y, gx2y) in the random oracle model1, which is derived from twin ElGa-
mal PKE [5], and based on the strong twin Diffie-Hellman (st2DH) assumption
(which in turn on CDH). Here we explain why tight IND-mCPAreveal security
can be achieved in the single user setting. It can be easily extended to the
multi-user setting, since B can embed the 2DH problem into multiple (pk,C)
pairs with the help of the random self-reducibility of DDH [9]. In the reduc-
tion, given a 2DH challenge tuple (gx1 , gx2 , gy), B sets pk = (gx1 , gx2), gener-
ates a randomization b and computes the challenge ciphertext as C = gy+b.
The “commitment problem” is circumvented by B’s simulation of random ora-
cle H(·) and the decision oracle 2DH, which checks whether the inputs are two
DDH tuples. If A has not asked H(Cx1 , Cx2) before, then the encapsulated
key is random to A, and B just samples a random key k and implicitly set
H(Cx1 , Cx2) = k. If A has asked H(Cx1 , Cx2), then B must have stored item
(Cx1 , Cx2 , k = H(Cx1 , Cx2)) in the hash list. Hence B can always resort to the
decision oracle 2DH(gx1 , gx2 , C, Cx1 , Cx2) = 1 to locate this item, and return the
corresponding k to A. In this way, B can answer reveal queries from A correctly,
and tight IND-mCPAreveal security follows.

Our second proposal of KEM is derived from the tightly IND-mCCA secure
PKE scheme in [14], which has tight IND-mCCA security in the standard model.
We prove that IND-mCCA security implies IND-mCPAreveal security with a tight
reduction. Note that the two notions are defined in different styles, e.g., the
decapsulation oracle in IND-mCCA security cannot decapsulate the challenge
ciphertext, while IND-mCPAreveal security allows the challenge encapsulated key
to be revealed. Hence, the tight security proof of implication is non-trivial (see
Subsect. 2.2 for details).

Perfect Forward Security and KCI Resistance. Our generic construction
provides perfect forward security (PFS, a.k.a. perfect forward secrecy [12,16])
and KCI resistance (security against key-compromise impersonation attacks
[16]). PFS means that once a party has been corrupted at some moment, then the
exchanged session keys completed before the corruption remain hidden from A.
KCI resistance assures that sessions, which are established by honest Pi but not
controlled by A, remain secure after corruption. In our construction, the long-
term secret key is used to sign messages and provide authentication. Hence, the
1 To simplify the description, the hash input does not include pk and C.

Two-Pass Authenticated Key Exchange 789

exposure of long-term secret key does not give A any advantages to break the
pseudorandomness of the session key. The same analysis applies to KCI resis-
tance.

Dealing with Replay Attacks. Compared with multi-pass AKE, 2-pass AKE
inherently open to replay attacks [13]. In a 2-pass AKE protocol, when Pi sends
a message msg to Pj , there are only two choices for Pj : compute a session key
& accept or reject. If Pj accepts, the message msg can always be replayed to
Pj by an adversary (see Fig. 1 (b)). This replay attack contradicts neither the
explicit authentication defined by [11], nor the implicit authentication, since msg
does originate from Pi and the session key keeps pseudorandom to the adversary.
However, it does exhaust the computing & memory resources of Pj and waste
bandwidth of the network.

The essence of explicit authentication is to detect active attacks in real time.
In this paper, we formalize a stronger security of AKE, by including replay
attacks in the active attacks. Meanwhile, we choose an efficient and practical
way to prevent replay attacks, by adding counters to identify the freshness of
messages, as advised in [13]. Roughly speaking, each party maintains a local
counter ctr. Initiator Pi increases its counter ctri before it sends (msg, ctri) to
Pj . Responder Pj recognizes the freshness of (msg, ctri) by checking whether
ctri > ctrj . To respond fresh msg, Pj will synchronize its counter ctrj := ctri
and send (msg′, ctrj) to Pi. The freshness of (msg′, ctrj) is recognized by Pi’s
checking of the synchronization ctri = ctrj . In this way, any replayed message
contradicts either ctri > ctrj or ctri = ctrj , and replay attacks can be detected
immediately in our 2-pass AKE (see Fig. 1 (c)).

Fig. 1. (a) KEM+SIG construction, (b) replay attacks, and (c) counter measure.

1.3 Our Contribution

We present a security model which is stronger than that in [11]. In our strong
model, the adversary breaks authentication as long as a party accepts a replayed
message. To detect replay attacks, we introduce counters for each party as its
state. The counter will increase after execution of AKE, thus a replayed message
will be rejected due to its old counter.

We propose a generic construction of 2-pass AKE from KEM and SIG
schemes. We formalize a new security notion, named IND-mCPAreveal, for KEM

790 X. Liu et al.

and show that IND-mCCA security of KEM implies IND-mCPAreveal security.
The strong security of our 2-pass AKE (equipped with counter) can be tightly
reduced to the IND-mCPAreveal security of KEM and the MU-EUF-CMAcorr secu-
rity of SIG. Taking off counters from AKE results in a stateless AKE, which is
tightly secure in the original model of [11].

We give two instantiations of tightly secure 2-pass AKE.

– We present an instantiation of KEM and proved its tight IND-mCPAreveal

security based on the CDH assumption in the random oracle model. Together
with the signature scheme in [11], we obtain the first practical 2-pass AKE
scheme with strong and tight security (and a 2-pass stateless AKE scheme
with tight security) from the DDH assumption in the random oracle model.

– When instantiating KEM with the tightly IND-mCCA secure KEM derived
from [14] and SIG with the signature scheme in [1], we obtain the first 2-
pass AKE scheme with strong and tight security (also a 2-pass stateless AKE
scheme with tight security) based on the Matrix-DDH assumption in the
standard model.

The comparison of our AKE schemes with other tightly secure AKE schemes
with explicit authentication2 is shown in Table 1.

Table 1. Comparison among tightly secure AKE schemes with explicit authentication.
Here “Comp.” denotes computation complexity in terms of exponentiations or pairing
operations, “Comm.” denotes communication complexity in terms of the number of
group elements/exponents (identities of users excluded). “I” denotes the initiator, “R”
the responder, “Sec. Loss” the security loss factor, “�Pass.” the number of passes
in AKE, “RO” the random oracle model, and “Std” the standard model. Note: in
[BHJ+15]’s AKE, the session key is determined only by the responder.

AKE Scheme Comp. (I) Comp. (R) Comm. (I+R) Assumption Sec. Loss �Pass. Model

[GJ18][11] 17 17 12+11 DDH O(1) 3 RO

Ours: AKEDDH 19 18 12+11 DDH O(1) 2 RO

[BHJ+15][1]
22

O(k2)
23

O(k2)
11+9

(2k2 + 4k + 5)+(4k + 7)
1-LIN = SXDH

Dk-MDDH
O(λ) 3 Std

Ours: AKEMDDH
37

O(k3)
22

O(k3)
7+8

(k2 + 5k + 1)+(4k + 4)
1-LIN = SXDH

Dk-MDDH
O(λ) 2 Std

2 Preliminaries

Let λ ∈ N denote the security parameter. For μ ∈ N, define [μ] := {1, 2, ..., μ}.

Denote by x := y the operation of assigning y to x. Denote by x
$←− X the

2 Some AKE protocols, like [6] and [22], consider tight security and implicit authen-
tication. In the security model of implicit authentication, A’s advantage is defined
by the ability of breaking indistinguishability (with no authentication requirement).
Most AKE protocols with implicit authentication are 2-pass. They can be extended
to provide explicit authentication via the key confirmation method [16], but with
the price of an extra pass and the addition computation of MAC.

Two-Pass Authenticated Key Exchange 791

operation of sampling x uniformly at random from a set X . For a distribution D,
denote by x ← D the operation of sampling x according to D. For an algorithm
A, denote by y ← A(x; r), or simply y ← A(x), the operation of running A with
input x and randomness r and assigning the output to y. “PPT” is short for
probabilistic polynomial-time, and ∅ an empty string.

2.1 Digital Signature with Adaptive Corruptions

Definition 1 (SIG). A signature (SIG) scheme SIG= (Setup,Gen,Sign,Ver)
consists of four algorithms.

– Setup(1λ): The setup algorithm takes as input the security parameter 1λ and
outputs the public parameter ppSIG, which determines the message space M,
the signature space Σ, and the key space VK × SK.

– Gen(ppSIG): The key generation algorithm takes as input ppSIG and outputs a
pair of keys (vk, sk) ∈ VK × SK.

– Sign(sk,m): The signing algorithm takes as input a signing key sk and a
message m ∈ M, and outputs a signature σ ∈ Σ.

– Ver(vk,m, σ): The verification algorithm takes as input a verification key vk,
a message m and a signature σ, and outputs a binary bit 0/1, indicating
whether (m,σ) is valid or not.

Correctness of SIG. For all ppSIG ← Setup(1λ), (vk, sk) ← Gen(ppSIG), σ ←
Sign(sk,m), it holds that Ver(vk,m, σ) = 1.

We recall the security notion existential unforgeability with adaptive corrup-
tions (MU-EUF-CMAcorr) by Bader et al. in [1].

Definition 2. A signature scheme SIG is MU-EUF-CMAcorr secure if for all
PPT adversary A, Advm-corr

SIG,μ,A(λ) := Pr[Expm-corr
SIG,μ,A(λ) ⇒ 1] is negligible (Fig. 2).

Fig. 2. The MU-EUF-CMAcorr security experiment Expm-corr
SIG,μ,A(λ) of SIG.

792 X. Liu et al.

2.2 KEM and Its Security in the Multi-user Setting

We review the syntax of KEM and its multi-challenge CCA (IND-mCCA) secu-
rity. We also define a new security notion, namely IND-mCPAreveal, which will
serve our generic construction of AKE. Then we show that IND-mCCA security
of KEM implies IND-mCPAreveal security.

Definition 3 (KEM). A key encapsulation mechanism (KEM) scheme KEM
= (Setup, Gen, Encap, Decap) consists of four algorithms:

– Setup(1λ): The set up algorithm takes as input 1λ and outputs the public
parameter ppKEM, which determines the encapsulation key space K, the key
space PK × SK, and the ciphertext space CT .

– Gen(ppKEM): The key generation algorithm takes as input ppKEM and outputs
a pair of keys (pk, sk) ∈ PK × SK.

– Encap(pk): The encapsulation algorithm takes as input pk and outputs an
encapsulated key K ∈ K along with a ciphertext C ∈ CT .

– Decap(sk, C): The decapsulation algorithm takes as input sk and a ciphertext
C, and outputs K ′ with K ′ ∈ K ∪ {⊥}.

Correctness of KEM. For all ppKEM ← Setup(1λ), (pk, sk) ← Gen(ppKEM),
(K,C) ← Encap(pk), it holds that Decap(sk, C) = K.

Definition 4 (IND-mCCA security). A KEM scheme KEM is IND-mCCA
secure if for all PPT adversary A, Advm-cca

KEM,θ,A(λ) :=
∣
∣Pr[Expm-cca

KEM,θ,A(λ) ⇒ 1]
− 1

2

∣
∣ is negligible (Fig. 3).

IND-mCPAreveal Security. The IND-mCPA security of KEM considers the
pseudorandomness of multiple encapsulated keys {K | (K,C) ← Encap(pki)},
where {(pki, C)} are the corresponding public keys and challenge ciphertexts.
Now consider a stronger attack which allows the adversary to choose any (pki, C),
even if (pki, C) is one of the challenges, and see the (revealed) key K decapsulated
from C and ski. This defines a stronger security notion IND-mCPAreveal, which
asks the pseudorandomness of unrevealed keys. KEM with this security notion
fits our AKE protocol.

Definition 5. A KEM scheme KEM is IND-mCPAreveal secure if for all
PPT adversary A, Advr-m-cpa

KEM,θ,A(λ) :=
∣
∣
∣Pr[Expr-m-cpa

KEM,θ,A(λ) ⇒ 1] − 1
2

∣
∣
∣ is negligible

(Fig. 4).

Note that in Expr-m-cpa
KEM,θ,A(λ), the encapsulation oracle generates tuples

{(pki, C)} as challenges. However, keys decapsulated from {(pki, C)} can also be
revealed. Upon revealed, {(pki, C)} cannot serve as challenges any more. Mean-
while, each challenge (pki, C) will be associated with an independently chosen
random bit β. Therefore, IND-mCPAreveal is different from IND-mCCA.

IND-mCCA Implies IND-mCPAreveal. We prove that IND-mCCA security
implies IND-mCPAreveal security with a tight reduction.

Two-Pass Authenticated Key Exchange 793

Fig. 3. The IND-mCCA security experiment Expm-cca
KEM,θ,A(λ) of KEM.

Fig. 4. The IND-mCPAreveal security experiment Expr-m-cpa
KEM,θ,A(λ) of KEM.

Theorem 1. If a KEM KEM is IND-mCCA secure, it is also IND-mCPAreveal

secure. More precisely, for any PPT adversary A of advantage Advr-m-cpa
KEM,θ,A(λ)

in Expr-m-cpa
KEM,θ,A(λ), there exists a PPT algorithm B which has advantage

Advm-cca
KEM,θ,B(λ) in Expm-cca

KEM,θ,B(λ) such that Advr-m-cpa
KEM,θ,A(λ) ≤ 2Advm-cca

KEM,θ,B(λ).

Proof. Given a PPT A in Expr-m-cpa
KEM,θ,A(λ), we construct a PPT algorithm B in

Expm-cca
KEM,θ,B(λ). Let C be B’s challenger. Then C provides two oracles, Oβ

Enc(·) and
ODec(·, ·) to B. B simulates Expr-m-cpa

KEM,θ,A(λ) for A as follows.

1. First B gets ppKEM and a set of public keys {pki}i∈[θ] from its own challenger
C. Then it sends ppKEM and PKList := {pki}i∈[θ] to A. B also prepares two
lists CList := ∅ and RList := ∅.

2. There are two kinds of oracle queries from A, and B answers them as follows.
OEncap(i): B asks its own oracle Oβ

Enc(i) and obtains (K,C) ← Oβ
Enc(i).

Then it sets k0 := K, samples k1 ← K, throws a coin b
$←− {0, 1}, appends

(pki, C,K, b) into CList and returns (kb, C) to A.
OReveal(i, C ′): B checks whether (pki, C

′, ·, ·) ∈ CList. If yes, B parses the
tuple as (pki, C

′,K, b) and returns K to A. Otherwise, B asks its own
oracle ODec(i, C ′). Let K ′ ← ODec(i, C ′), then B updates RList :=
RList ∪ {(pki, C

′)} and returns K ′ to A.
3. If A aborts, B outputs a random bit. Otherwise, A outputs (pki∗ , C∗, b′). If

∃(pki∗ , C∗, ·, b) ∈ CList s.t. (pki∗ , C∗) /∈ RList ∧ b′ = b, B outputs β′ = 0.
Otherwise, it outputs 1.

794 X. Liu et al.

Let β be the random bit generated by B’s challenger C, then B wins in
Expm-cca

KEM,θ,B(λ) if β′ = β. Recall that Oβ
Enc(·) will always return real keys if β = 0

and random keys if β = 1.

Case 1: β = 0. In this case, the output (K,C) of O0
Enc(i) is a real encap-

sulation pair. B simulates OEncap(i) by outputting (kb, C), where kb is
either a real or a random key with 1/2 probability. Furthermore, for each
(pki, C

′,K, b) ∈ CList, it holds that Decap(ski, C
′) = K. For simulation of

OReveal(i, C ′), if there exists (pki, C
′,K, b) ∈ CList, B returns K; otherwise

B asks its own oracle ODec(i, C ′) and returns the output of ODec(i, C ′) to A.
Thus, B perfectly simulates Expr-m-cpa

KEM,θ,A(λ) for A.
Case 2: β = 1. In this case, the output (K,C) of O1

Enc(i) contains a random
key K, which is independent of C. In B’s answer (kb, C) to OEncap(i), kb is
a random key, independent from b. Moreover, B ’s answer to OReveal(i, C ′)
does not use b at all. Hence A learns nothing about b from OEncap(i) and
OReveal(i, C ′). Thus, Pr[b′ = b] = 1/2 and Pr[β′ = β] = 1/2.

Advm-cca
KEM,θ,B(λ) = | Pr[β′ = β] − 1/2|

= | Pr[β′ = β|β = 0] Pr[β = 0] + Pr[β′ = β|β = 1] Pr[β = 1] − 1/2|
= |1

2
(
1

2
+ Advr-m-cpa

KEM,θ,A(λ)) +
1

2
· 1

2
− 1

2
| =

1

2
Advr-m-cpa

KEM,θ,A(λ). ��

2.3 Diverse Property of KEM

We define a property called diverse property for KEM, which is useful in the
security proof of our AKE.

Definition 6 (Diverse Property). A KEM scheme KEM = (Setup,Gen,
Encap, Decap) has diverse property if for all ppKEM ← Setup(1λ), it holds that:

Pr

[
r̃

$←− R̃; r, r̄
$←− R; (pk, sk) ← Gen(ppKEM; r̃);

(K, C) ← Encap(pk; r); (K̄, C̄) ← Encap(pk; r̄)
: K = K̄

]
= 2−Ω(λ),

Pr

⎡
⎣ r̃, r̃′ $←− R̃; r

$←− R;
(pk, sk) ← Gen(ppKEM; r̃); (pk′, sk′) ← Gen(ppKEM; r̃′);

(K, C) ← Encap(pk; r); (K′, C′) ← Encap(pk′; r)
: K = K′

⎤
⎦ = 2−Ω(λ),

where R̃, R are the randomness spaces in Gen and Encap respectively.

2.4 The Strong Twin Diffie-Hellman Assumption

Let GGen be a group generation algorithm such that G := (G, q, g) ← GGen(1λ),
where G is a cyclic group of prime order q with generator g.

Definition 7. For any adversary A, the advantage of A in solving the Compu-
tational Diffie-Hellman (CDH) problem is defined as

AdvCDH
G,A (λ) := Pr[(G, q, g) ← GGen(1λ);x, y

$←− Zq : A(G, q, g, gx, gy) = gxy].

Two-Pass Authenticated Key Exchange 795

Definition 8. For any adversary A, the advantage of A in solving the Deci-
sional Diffie-Hellman (DDH) problem is defined as

AdvDDH
G,A (λ) := | Pr[(G, q, g) ← GGen(1λ); x, y

$←− Zq : A(G, q, g, gx, gy, gxy) = 1]−
Pr[(G, q, g) ← GGen(1λ); x, y, z

$←− Zq : A(G, q, g, gx, gy, gz) = 1]|.
In [5], Cash et al. proposed the Strong Twin Diffie-Hellman (strong 2DH or

st2DH) problem, and proved that it is as hard as the CDH problem.
Definition 9. [5] For any adversary A, its advantage in solving the strong twin
Diffie-Hellman problem is defined as Advst2DH

G,A (λ) :=

Pr[G ← GGen(1λ);x1, x2, y
$←− Zq : A2DH(gx1 ,gx2 ,·,·,·)(G, q, g, gx1 , gx2 , gy) = (gx1y , gx2y)],

where the decision oracle 2DH(gx1 , gx2 , ·, ·, ·) takes as input (gy, gz1 , gz2) and
outputs 1 if (x1y = z1) ∧ (x2y = z2) and 0 otherwise.

Theorem 2. [5] For any PPT adversary A against the strong 2DH prob-
lem, there exists a PPT algorithm B against the CDH problem such that
Advst2DH

G,A (λ) ≤ AdvCDH
G,B (λ) + Q/q, where Q is the maximum number of decision

oracle queries.

3 Authenticated Key Exchange Scheme

3.1 Definition of Authenticated Key Exchange

We consider a generic AKE scheme, in which each party maintains a state sti.
If sti =⊥, the AKE scheme is stateless.

Definition 10 (AKE). An authenticated key exchange (AKE) scheme AKE =
(AKE.Setup, AKE.Gen,AKE.Protocol) consists of two probabilistic algorithms and
an interactive protocol.

– AKE.Setup(1λ): The setup algorithm takes as input the security parameter 1λ,
and outputs the public parameter ppAKE.

– AKE.Gen(ppAKE, Pi): The generation algorithm takes as input ppAKE and a
party Pi, and outputs a key pair (pki, ski) and an initial state sti.

– AKE.Protocol(Pi(resi) � Pj(resj)): The protocol involves two parties Pi and
Pj, who have access to their own resources, resi := (ski, sti, ppAKE, {pku}u∈[μ])
and resj := (skj , stj , ppAKE, {pku}u∈[μ]), respectively. Here μ is the total num-
ber of users. After execution, Pi outputs a flag Ψi ∈ {∅,accept, reject}, and
a session key ki (ki might be empty string ∅), and Pj outputs (Ψj , kj) simi-
larly. Note that every execution of protocol may lead to update of sti, stj.

Correctness of AKE. For any distinct and honest parties Pi and Pj , they share
the same session key after the execution AKE.Protocol(Pi(resi) � Pj(resj)), i.e.,
Ψi = Ψj = accept, ki = kj �= ∅.

Definition 11 (Stateless AKE). In Definition 10, if sti is set to ⊥ (i.e., no
state involved) for each party Pi, then the AKE becomes a stateless AKE.

796 X. Liu et al.

3.2 Security Model of AKE

We will adapt the security model formalized by [1,11,19], which in turn followed
the model proposed by Bellare and Rogaway [2]. We also include replay attacks
in the security model, leading to a stronger model than those in [1,2,11].

First we will define oracles and their static variables in the model. Then we
describe the security experiment and the corresponding security notions.

Oracles. Suppose there are at most μ users P1, P2, ..., Pμ, and each user will
involve at most � instances. Pi is formalized by a series of oracles, π1

i , π2
i , ..., π�

i .
Oracle πs

i formalizes Pi’s execution of the s-th protocol instance. Since we con-
sider stateful Pi, we have two requirements.

(1) The very first queries to oracles π1
i , π2

i , ..., π�
i by the adversary A must be

in chronological order 1, 2, ..., �. That is, for 1 ≤ s < �, πs+1
i is inaccessible

to A before πs
i is invoked. However, we stress that it does not eliminate the

possibility that A queries πs
i , then πs+1

i , and back to πs
i , π

s−1
i , ... again.

(2) There is a state sti shared and maintained by π1
i , π2

i , ..., π�
i .

Each oracle πs
i has access to Pi’s resource resi := (ski, sti, ppAKE,PKList :=

{pku}u∈[μ]), where sti is the state of the time being. πs
i also has its own variables

varsi := (Pids
i , k

s
i , Ψ

s
i).

– Pids
i : The intended communication peer’s identity.

– ks
i ∈ K: The session key computed by πs

i . Here K is the session key space. We
assume that ∅ ∈ K.

– Ψs
i ∈ {∅,accept, reject}: Ψs

i indicates whether πs
i has completed the protocol

execution and accepted ks
i .

At the beginning, (Pids
i , k

s
i , Ψ

s
i) are initialized to (∅, ∅, ∅). We declare that

ks
i �= ∅ if and only if Ψs

i = accept.

Security Experiment. To define the security notion of AKE, we first formalize
the security experiment ExpAKEμ,�,A(λ) with the help of the oracles defined above.
ExpAKEμ,�,A(λ) is a game played between an AKE challenger C and an adversary A.
C will simulate the executions of the � protocol instances for each of the μ users
with oracles πs

i . See Fig. 5 for the formal description of ExpAKEμ,�,A(λ).
Adversary A may copy, delay, erase, replay, and interpolate the messages

transmitted in the network. This is formalized by the query Send to oracle πs
i .

With Send, A could send arbitrary message to any oracle πs
i . Then πs

i will execute
the AKE protocol according to the protocol specification for Pi.

We also allow the adversary to observe session keys of its choices. This can
be reflected by the Reveal query to oracle πs

i .
Corrupt query allows A to corrupt a party Pi and get its long-term secret key

ski. With RegisterCorrupt query, A can register a new party without public key
certification. The public key is then known to all other users.

We introduce Test query to formalize the pseudorandomness of ks
i . For a Test

query to πs
i , the oracle will return ⊥ if the session key ks

i is not generated yet.

Two-Pass Authenticated Key Exchange 797

Fig. 5. The strong security experiment ExpstrongAKE,μ,�,A(λ) and the security experiment

ExpAKE,μ,�,A(λ) of AKE, with framed part · · · only in ExpstrongAKE,μ,�,A(λ).

Otherwise, πs
i will return ks

i or a truly random key with half probability. The
task of A is to tell whether the key is the true session key or a random key.

Formally, the queries by A are described as follows.

– Send(i, s, j,msg): If msg = , it means that A asks oracle πs
i to send the first

protocol message to Pj . Otherwise, A impersonates Pj to send message msg
to πs

i . Then πs
i executes the AKE protocol with msg as Pi does, outputs a

message msg′, and updates the state sti and its own variables varsi . In formula,
(msg′, st′i,Pid

s
i , k

s
i , Ψ

s
i) ← πs

i (msg, resi, var
s
i). Only the output message msg′ is

returned to A.
If Send(i, s, j,msg) is the τ -th query asked by A and πs

i changes Ψs
i to accept

after that, then we say that πs
i is τ -accepted.

– Corrupt(i): C reveals to A party Pi’s long-term secret key ski. After corruption,
π1

i , ..., π�
i will stop answering any query from A.

If Corrupt(i) is the τ -th query asked by A, we say that Pi is τ -corrupted.

798 X. Liu et al.

If A has never asked Corrupt(i), we say that Pi is ∞-corrupted.
– RegisterCorrupt(i, pki): It means that A registers a new party Pi (i > μ). C

distributes (Pi, pki) to all users. In this case, we say that Pi is 0-corrupted.
– Reveal(i, s): The query means that A asks C to reveal πs

i ’s session key. If
Ψs

i �= accept, C returns ⊥. Otherwise, C returns the session key ks
i of πs

i .
If Reveal(i, s) is the τ -th query asked by A, we say that πs

i is τ -revealed.
If A has never asked Reveal(i, s), we say that πs

i is ∞-revealed.
– Test(i, s): If Ψs

i �= accept, C returns ⊥. Otherwise, C throws a coin bs
i

$←−
{0, 1}, sets k0 = ks

i , samples k1
$←− K, and returns kbs

i
to A. We require that

A could ask Test(i, s) to each oracle πs
i only once.

If Test(i, s) is the τ -th query asked by A and Ψs
i = accept, we say that πs

i is
τ -tested.
If A has never asked Test(i, s), we say that πs

i is ∞-tested.

Informally, the pseudorandomness of ks
i asks that any PPT adversary A,

access to Test(i, s), could guess bs
i with probability no better than 1/2 + negl.

Yet, we have to exclude some trivial attacks: (1) A asks Reveal(i, s); (2) A asked
Corrupt(j) before Ψs

i = accept; (3) A asks Reveal(j, t); (4) A asks Test(j, t),
given that πs

i and πt
j have a successful protocol execution with each other.

Definition 12 (Original Key [19]). For two oracles πs
i and πt

j, the original
key, denoted as K(πs

i , π
t
j), is the session key computed by the two peers of the

protocol under a passive adversary only, where πs
i is the initiator.

Remark 1. We note that K(πs
i , π

t
j) is determined by the identities of Pi and Pj ,

the internal randomness and the states stsi and sttj , where stsi and sttj denote the
states when πs

i and πt
j are invoked respectively.

Definition 13 (Partner [19]). Let K(·, ·) denote the original key function. We
say that an oracle πs

i is partnered to πt
j, denoted as Partner(πs

i ← πt
j)

3, if one of
the following requirements holds:

– πs
i is the initiator and ks

i = K(πs
i , π

t
j) �= ∅, or

– πs
i is the responder and ks

i = K(πt
j , π

s
i) �= ∅.

For 2-pass AKE, the security model of [11] cannot cover replay attacks. Given
Partner(πs′

i′ ← πt
j), a successful replay attack means that A resends to πs

i the
messages, which were sent from πt

j to πs′
i′ , and πs

i is fooled to compute a session
key, i.e., Partner(πs

i ← πt
j). Now, we add the formalization of replay attacks (see

(3.3) in Fig. 5) in the security model of [11] and define a stronger security notion.

Definition 14 (Strong Security of AKE). Let μ be the number of users
and � the maximum number of protocol executions per user. The strong security
experiment ExpstrongAKE,μ,�,A(λ) (see Fig. 5) is played between the challenger C and
the adversary A.
3 The arrow notion πs

i ← πt
j means πs

i (not necessarily πt
j) has computed and accepted

the original key.

Two-Pass Authenticated Key Exchange 799

1. C runs AKE.Setup(1λ) to get AKE public parameter ppAKE.
2. For each party Pi, C runs AKE.Gen(ppAKE, Pi) to get the long-term key pair

(pki, ski) and Pi’s initial state sti. Then it provides A with the public param-
eter ppAKE and public key list PKList := {pki}i∈[μ].

3. A asks C Send, Corrupt, RegisterCorrupt, Reveal, and Test queries adaptively.
4. At the end of the experiment, A terminates with an output (i∗, s∗, b∗), where

b∗ is a guess for bs∗
i∗ of oracle πs∗

i∗ .

Strong Authentication. Let WinAuth denote the event that A breaks authen-
tication in the security experiment. WinAuth happens iff ∃(i, s) ∈ [μ] × [�] s.t.

(1) πs
i is τ -accepted.

(2) Pj is τ̂ -corrupted with j := Pids
i and τ̂ > τ .

(3) Either (3.1) or (3.2) or (3.3) happens. Let j := Pids
i .

(3.1) There is no oracle πt
j that πs

i is partnered to.
(3.2) There exist two distinct oracles πt

j and πt′
j′ , to which πs

i is partnered.
(3.3) There exist two oracles πs′

i′ and πt
j with (i′, s′) �= (i, s), such that both

πs
i and πs′

i′ are partnered to πt
j.

Remark 2. Given (1)∧(2), (3.1) indicates a successful impersonation of Pj , (3.2)
suggests one instance of Pi has multiple partners, and (3.3) corresponds to a
successful replay attack.

Indistinguishability. Let WinInd denote the event that A breaks indistinguisha-
bility in ExpstrongAKE,μ,�,A(λ) above. For simplicity, let (i, s, b∗) := (i∗, s∗, b∗) be A’s
output. WinInd happens iff b∗ = bs

i , and the following conditions are satisfied.

(1′) πs
i is τ -tested andPids

i is τ̃ -corrupt with τ̃ > τ .
(2′) πs

i is ∞-revealed.
(3′) If πs

i is partnered to πt
j (j = Pids

i), then πt
j is ∞-revealed and ∞-tested.

Note that ExpstrongAKE,μ,�,A(λ) ⇒ 1 iff WinInd happens. Hence, the advantage of A is
defined as

AdvstrongAKE,μ,�,A(λ) : = max{Pr[WinAuth], |Pr[WinInd] − 1/2|}
= max{Pr[WinAuth], |Pr[ExpstrongAKE,μ,�,A(λ) ⇒ 1] − 1/2|}.

An AKE scheme AKE has strong security if for any PPT adversary A, it holds
that AdvstrongAKE,μ,�,A(λ) is negligible.

Remark 3. Indisitinguishability asks the pseudorandomness of the session key
shared between Pi and Pj , excluding trivial attacks such like Pj is corrupted, or
the session key is tested in Pj , or it is revealed.

800 X. Liu et al.

Definition 15 (Security of AKE). The security experiment ExpAKE,μ,�,A(λ)
(see Fig. 5) is defined like ExpstrongAKE,μ,�,A(λ) except that (3.3) is eliminated from
WinAuth. Similarly, an AKE scheme AKE has security if for any PPT adversary
A, the following advantage is negligible:

AdvAKE,μ,�,A(λ) := max{Pr[WinAuth], |Pr[ExpAKE,μ,�,A(λ) ⇒ 1] − 1/2|}.

Remark 4 (Perfect Forward Security and KCI Resistance). The security model
of AKE supports (perfect) forward security (a.k.a. forward secrecy [12]) (charac-
terized by “πs

i is τ -tested and Pids
i is τ̃ -corrupt with τ̃ > τ” in WinInd). That is,

if Pi or its partner Pj has been corrupted at some moment, then the exchanged
session keys completed before the corruption remain hidden from the adversary.
Meanwhile, πs

i may be corrupted before Test(i, s), which provides resistance to
key-compromise impersonation (KCI) attacks [16].

4 Generic Construction of AKE and Its Security Proof

4.1 Construction

There are two building blocks in our AKE scheme, namely a MU-EUF-CMAcorr

secure signature scheme SIG = (SIG.Setup,SIG.Gen,SIG.Sign,SIG.Ver) and an
IND-mCPAreveal secure KEM scheme KEM = (KEM.Setup,KEM.Gen,KEM.
Encap, KEM.Decap) with diverse property. Our AKE scheme is shown in Fig. 6.

In our AKE scheme AKE, every party Pi will keep two arrays of static coun-
ters as its state, i.e., sti = {sctri,0[j], sctri,1[j]}j∈[μ]. Static counters sctri,b[j] are
initialized to 0s and will record the serial number of protocol instances. Counter
sctri,0[j] implies that Pi is the initiator and Pj is the responder, while sctri,1[j]
implies Pj the initiator and Pi the responder. For example, sctri,0[j] = 3 denotes
that Pi has initialized 3 protocol instances with Pj , while sctrj,1[i] = 5 denotes
that Pj , as a responder, has 5 protocol instances with Pi.

AKE.Setup(1λ). ppSIG ← SIG.Setup(1λ), ppKEM ← KEM.Setup(1λ). Return
ppAKE := (ppSIG, ppKEM).

AKE.Gen(ppAKE, Pi). (vki, ski) ← SIG.Gen(ppSIG), sctri,0[u] := 0; sctri,1[u] := 0
for u ∈ [μ], sti := {sctri,0[u], sctri,1[u]}u∈[μ]. Return ((vki, ski), sti).

AKE.Protocol(Pi � Pj). Pi has access to resi = (ski, sti, ppAKE,PKList =
{vku}u∈[μ]) and Pj has access to resj = (skj , stj , ppAKE,PKList = {vku}u∈[μ]).
As an initiator, Pi invokes (pkKEM, skKEM) ← KEM.Gen(ppKEM), increases its
counter with sctri,0[j] := sctri,0[j] + 1, and uses ski to sign a signature σ1 of
message m1 := (Pi, Pj , sctri,0[j], pkKEM). Then Pi sends (m1, σ1) to Pj .

After Pj obtains (m1, σ1), it will verify σ1 with vki and check whether its
own counter sctrj,1[i] is less than ctr contained in m1 = (Pi, Pj , ctr, pkKEM).
If everything goes well, then Pj takes m1 as a valid message; otherwise Pj

Two-Pass Authenticated Key Exchange 801

returns (reject, ∅). If m1 is valid, Pj stores (m1, σ1), encapsulates a key K
via (K,C) ← KEM.Encap(pkKEM) and synchronizes sctrj,1[i] := ctr. Then Pj

signs m1||m2 with m2 := (Pi, Pj , sctrj,1[i], C) via σ2 ← SIG.Sign(skj ,m1||m2)
and sends (m2, σ2) to Pi. Pj will accept K as the session key with Pi by
returning (accept,K).

After Pi obtains (m2, σ2), it will verify whether (m1||m2, σ2) is a valid
message-signature pair w.r.t. vkj . It also checks synchronization of its own
counter sctri,0[j] and the counter ctr′ in m2 = (Pi, Pj , ctr

′, C), i.e., whether
sctri,0[j] = ctr′. If everything goes well, Pi will take m2 as a valid message and
decapsulate the ciphertext C in m2 to obtain K ′ ← KEM.Decap(skKEM, C).
Pi will accept K ′ as the session key with Pj by returning (accept,K ′). If m2

is invalid, Pi returns (reject, ∅).

Correctness. The correctness of AKE follows from the correctness of SIG &
KEM and the fact of sctri,0[j] ≥ sctrj,1[i]. The increasing mode of counters in
our AKE is as follows: the initiator Pi always increases the counter sctri,0[j],
while the responder Pj synchronizes its counter sctrj,1[i] := sctri,0[j] only if
the received message m1 is valid. If m1 is invalid, sctrj,1[i] stays the same, so
sctri,0[j] > sctrj,1[i]. Consequently, sctri,0[j] ≥ sctrj,1[i] holds in either case.

We can also construct a stateless AKE scheme AKEstateless, where all states
are removed from the AKE scheme. See Fig. 6.

Remark 5 (Synchronization). A failed execution of AKE does not lead to desyn-
chronization. If m1 or m2 is lost (due to the network) or modified by active
attacks, then the underlying session fails (i.e., Pi does not accept). In this sce-
nario, it keeps that sctri,0[j] ≥ sctrj,1[i], and Pi can launch a new session as the
initiator latter and correctness (synchronization) still holds.

Remark 6 (PKI Setting). Our security model simply assumes that each party
has access to the public key list. In practice, the users’ public keys are regis-
tered via certificates from PKI. In some real-world protocols (like TLS [21]),
public keys and certificates are also exchanged through the protocol (by send-
ing (m1, vki, certi, σ1) and (m2, vkj , certj , σ2)). In this case, σ1 is a signature
of (m1, vki, certi), and so is σ2. (Identities are suggested to be included in the
signature to prevent unknown key-share (UKS) attacks [3].)

4.2 Security Proof

Before the proof, we define two sets Sentsi and Recvs
i for πs

i and event (4) for
each (i, s) ∈ [μ] × [�] in ExpstrongAKE,μ,�,A(λ).

– Sentsi : The set collecting messages sent by πs
i .

– Recvs
i : The set collecting valid messages received and stored by πs

i . We stress
that invalid messages will be discarded and do not appear in Recvs

i .

802 X. Liu et al.

Fig. 6. Generic construction of AKE and AKEstateless from KEM and SIG, with
gray parts only in AKE.

Message Consistency. πs
i is message-consistent with πt

j as a responder, if
πs

i is a responder with Recvs
i = {(m1, ·)} �= ∅ and πt

j is an initiator with
Senttj = {(m1, ·)} �= ∅. πs

i is message-consistent with πt
j as an initiator, if πs

i

is an initiator with Sentsi = {(m1, ·)} �= ∅, Recvs
i = {(m2, ·)} �= ∅ and πt

j is a
responder with Recvt

j = {(m1, ·)} �= ∅, Senttj = {(m2, ·)} �= ∅.

Define Event (4) for (i, s): Let j := Pids
i . If πs

i is responder, then �t ∈ [�] such
that πs

i is message-consistent with πt
j as a responder; if πs

i is an initiator, then
�t ∈ [�] such that πs

i is message-consistent with πt
j as an initiator.

Two-Pass Authenticated Key Exchange 803

Claim 1. For a specific pair (i, s) with j := Pids
i , if ¬(4) happens, there exists

t ∈ [�] such that πs
i is not only message-consistent with πt

j either as a responder
or as an initiator, but also Partner(πs

i ← πt
j).

Proof of Claim 1. If ¬(4) happens, then πs
i must be message-consistent with

some πt
j . Hence πs

i and πt
j are executing the protocol following the specification

of AKE, and πs
i must be accepted with ks

i (�= ∅). According to the correctness
of AKE, ks

i must be the original key, so Partner(πs
i ← πt

j).

Claim 2. For a specific pair (i, s), if (1) πs
i is accepted; (2) Pj with j = Pids

i

is uncorrupted; and (4) happens, then πs
i can always collect a valid message-

signature pair (m,σ) from Sentsi and Recvs
i , such that SIG.Ver(vkj ,m, σ) = 1

with j := Pids
i . Meanwhile, m must be different from any message m′ signed by

πt
j for all t ∈ [�].

Proof of Claim 2. (1) means πs
i is accepted, so Recvs

i �= ∅ and Sentsi �= ∅. (2)
says Pj is not corrupted yet, so πt

j is accessible.

Case 1: Responder πs
i . Let Recvs

i = {(m1, σ1)}, we have SIG.Ver(vkj ,m1, σ1) =
1 since m1 is valid. And for any πt

j with Senttj = {(m′
1, σ

′
1)} �= ∅, we know

that σ′
1 is a signature of m′

1 signed with skj . Meanwhile, (4) implies m1 �= m′
1.

Case 2: Initiator πs
i . Let Sentsi = {(m1, σ1)} and Recvs

i = {(m2, σ2)}, we have
SIG.Ver(vkj ,m1||m2, σ2) = 1 since m2 is valid. And for any πt

j with Recvt
j �= ∅

and Senttj �= ∅, let Recvt
j = {(m′

1, σ
′
1)} and Senttj = {(m′

2, σ
′
2)}, then σ′

2 is a
signature of m′

1||m′
2 signed with skj . Similarly, m1||m2 �= m′

1||m′
2 by (4).

We analyse WinAuth first in the proof of AKE’s strong security.

Theorem 3. Suppose that SIG is MU-EUF-CMAcorr secure, KEM is IND-
mCPAreveal secure and has diverse property, then AKE has strong authentica-
tion. More precisely, for any PPT adversary A against AKE, there exists a PPT
adversary BSIG such that Pr[WinAuth] ≤ 2Advm-corr

SIG,μ,BSIG
(λ) + 2−Ω(λ).

Proof. In ExpstrongAKE,μ,�,A(λ), A is allowed to ask Send, Corrupt, RegisterCorrupt,
Reveal, and Test queries adaptively. According to the definition, WinAuth happens
iff ∃(i, s) such that (1) ∧ (2) ∧ ((3.1) ∨ (3.2) ∨ (3.3)) holds, where

(1) πs
i is τ -accepted;

(2) Pj is τ̂ -corrupted with j := Pids
i and τ̂ > τ ;

(3.1) �t ∈ [�] s.t. Partner(πs
i ← πt

j), where j := Pids
i ;

(3.2) ∃ t ∈ [�], (j′, t′) ∈ [μ] × [�] with (j, t) �= (j′, t′) s.t. Partner(πs
i ← πt

j) ∧
Partner(πs

i ← πt′
j′), where j := Pids

i ;
(3.3) ∃ t ∈ [�], (i′, s′) ∈ [μ] × [�] with (i, s) �= (i′, s′) s.t. Partner(πs

i ← πt
j) ∧

Partner(πs′
i′ ← πt

j), where j := Pids
i ;

804 X. Liu et al.

Pr[WinAuth] = Pr
∃(i,s)

[(1) ∧ (2) ∧ ((3.1) ∨ (3.2) ∨ (3.3))]

≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.3)]. (1)

Lemma 1. There exists a PPT algorithm BSIG such that

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] ≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (4)] ≤ Advm-corr
SIG,μ,BSIG

(λ).

Proof of Lemma 1. First we prove Pr∃(i,s)[(1)∧(2)∧(3.1)] ≤ Pr∃(i,s)[(1)∧(2)∧(4)].
This can be done by a proof of Pr∃(i,s)[(1)∧(2)∧¬(3.1)] ≥ Pr∃(i,s)[(1)∧(2)∧¬(4)].
For a specific pair (i, s), if (1) ∧ (2) ∧ ¬(4) happens, according to Claim 1, there
exists t ∈ [�] such that Partner(πs

i ← πt
j), hence (1) ∧ (2) ∧ ¬(3.1) must happen.

Next we prove that Pr∃(i,s)[(1) ∧ (2) ∧ (4)] ≤ Advm-corr
SIG,μ,BSIG

(λ).
To this end, we construct a PPT algorithm BSIG against the MU-EUF-

CMAcorr security of SIG. Let CSIG be the challenger of BSIG in Expm-corr
SIG,μ,BSIG

(λ).
BSIG gets a list of verification keys {vki}i∈[μ] from CSIG. CSIG also provides BSIG

with ppSIG, oracles OSign(·, ·) and OCorr(·), where OSign(i,m) returns a signature
with σ ← SIG.Sign(ski,m), and OCorr(i) returns the signing key ski.

BSIG simulates the strong security experiment of AKE for A. First BSIG

invokes ppKEM ← KEM.Setup(1λ), sets ppAKE := (ppSIG, ppKEM), and sends ppAKE
and PKList := {vki}i∈[μ] to A. Then BSIG answers the queries of A as follows.

– Send(i, s, j,msg): BSIG answers just like the challenger in ExpstrongAKE,μ,�,A(λ).
Whenever there is a message m to be signed with ski, BSIG asks its own oracle
OSign(i,m) to get the corresponding signature. In this way, BSIG answers the
Send query perfectly.

– Corrupt(i): Given i, BSIG asks its own oracle OCorr(i) to get ski. Then it
returns ski to A.

– RegisterCorrupt(u, vku): BSIG registers a new party Pu (0-corrupted) and adds
vku to PKList. Then BSIG returns PKList.

– Reveal(i, s): BSIG answers just like the challenger in the experiment.
– Test(i, s): BSIG answers just like the challenger in the experiment.

In the simulation, BSIG checks whether ∃(i, s) such that (1) ∧ (2) ∧ (4) hap-
pens. If yes, there exists a τ -accepted oracle πs

i with j := Pids
i . Claim 2 tells

us that a valid message-signature pair (m,σ) can be derived from Sentsi ∪
Recvs

i = {(m1, σ1), (m2, σ2)}, such that SIG.Ver(vkj ,m, σ) = 1. BSIG then out-
puts (j,m, σ) as its forgery.

Now BSIG simulates the experiment perfectly. Event (2) implies that Pj is
not corrupted yet, so BSIG never queries OCorr(j). And by Claim 2, m must be
different from any message signed by πt

j for all t ∈ [�]. Therefore, BSIG never
queries OSign(j,m) and m is a fresh message. So if (1) ∧ (2) ∧ (4) happens, BSIG

wins in Expm-corr
SIG,μ,BSIG

(λ), thus Pr[(1) ∧ (2) ∧ (4)] ≤ Advm-corr
SIG,μ,BSIG

(λ).

Lemma 2. Pr∃(i,s)[(1) ∧ (2) ∧ (3.2)] = 2−Ω(λ).

Two-Pass Authenticated Key Exchange 805

Proof of Lemma 2. For a specific pair (i, s), if event (1) ∧ (2) ∧ (3.2) happens,
then there exist at least two oracles to which πs

i is partnered. Suppose πs
i is

partnered to two distinct oracles πt
j and πt′

j′ .

Case 1: Responder πs
i . Let pkKEM, pk′

KEM be the public keys of KEM

determined by the internal randomness of πt
j and πt′

j′ . On the one hand,
Partner(πs

i ← πt
j) means ks

i = K, and the original key K is derived from
(K,C) ← KEM.Encap(pkKEM; r); on the other hand, Partner(πs

i ← πt′
j′) means

ks
i = K ′ and K ′ is derived from (K ′, C ′) ← KEM.Encap(pk′

KEM; r). Here r is
the internal randomness chosen by πs

i . This suggests K = K ′. According to
the diverse property of KEM, this occurs with probability 2−Ω(λ).

Case 2: Initiator πs
i . Let pkKEM be the public key of KEM determined by

the internal randomness of πs
i , and r, r′ be the randomness chosen by πt

j

and πt′
j′ , respectively. Let (K,C) ← KEM.Encap(pkKEM; r) and (K ′, C ′) ←

KEM.Encap(pkKEM; r′). Since Partner(πs
i ← πt

j) and πs
i is the initiator, we

have ks
i = KEM.Decap(skKEM, C). Similarly Partner(πs

i ← πt′
j′) implies ks

i =
KEM.Decap(skKEM, C ′). By the correctness of KEM, we have K = ks

i = K ′,
which occurs with probability 2−Ω(λ) by the diverse property of KEM.

There are μ� choices for (i, s) and C2
μ� choices for (j, t) and (j′, t′). By a union

bound, Pr∃(i,s)[(1) ∧ (2) ∧ (3.2)] = μ� · C2
μ� · 2−Ω(λ) = 2−Ω(λ).

Lemma 3. If there exists an accepted πs
i with j := Pids

i , and Pj is uncorrupted
when πs

i accepts, then there exists a unique πt
j, which πs

i is partnered to and
message-consistent with, except with probability Advm-corr

SIG,μ,BSIG
(λ) + 2−Ω(λ), i.e.,

Pr∃(i,s)[(1) ∧ (2)] − Pr∃(i,s)[(1) ∧ (2) ∧ ¬(4) ∧ ¬(3.2)] ≤ Advm-corr
SIG,μ,BSIG

(λ) + 2−Ω(λ).

Proof of Lemma 3. This is done by the total probability rule, Lemmas 1 and 2.

Pr
∃(i,s)

[(1) ∧ (2)]

= Pr
∃(i,s)

[(1) ∧ (2) ∧ (4)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ ¬(4) ∧ (3.2)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ ¬(4) ∧ ¬(3.2)]

≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (4)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ ¬(4) ∧ ¬(3.2)]

≤ Advm-corr
SIG,μ,BSIG

(λ) + 2−Ω(λ) + Pr
∃(i,s)

[(1) ∧ (2) ∧ ¬(4) ∧ ¬(3.2)]

Lemma 4. Pr∃(i,s)[(1) ∧ (2) ∧ (3.3)] ≤ Advm-corr
SIG,μ,BSIG

(λ) + 2−Ω(λ).

Proof of Lemma 4. Suppose that there exists (i, s) such that (1) ∧ (2) ∧ (3.3)
holds. That is to say, ∃ (i, s), (i′, s′), t with (i, s) �= (i′, s′) and j := Pids

i , such
that Pj is uncorrupted, Partner(πs

i ← πt
j) and Partner(πs′

i′ ← πt
j).

According to Lemma 3, except with probability Advm-corr
SIG,μ,BSIG

(λ) + 2−Ω(λ),
both πs

i and πs′
i′ must be uniquely partnered to and message-consistent with πt

j .
In this case, Pids

i = Pids′
i′ = j. Meanwhile, the message sent by πt

j contains a
unique identity indicating its peer, so i = i′.

Given i = i′, we have the following fact. Suppose s′ < s.

806 X. Liu et al.

Fact 1. Let stsi = {sctrsi,0[u], sctrsi,1[u]}u∈[μ] and sts
′

i = {sctrs′
i,0[u], sctrs

′
i,1[u]}u∈[μ]

be the current states when πs
i and πs′

i′ are invoked. If Ψs′
i = accept and Pids′

i =
j, then sctrs

′
i,0[j] < sctrsi,0[j] and sctrs

′
i,1[j] ≤ sctrsi,1[j].

We then show that the counters in states will make (1) ∧ (2) ∧ (3.3) impossible.

Case 1: Responder πs
i . Suppose that ((m2, σ2), st

s′
i , ...) ← πs′

i ((m1, σ1), ...),
where st

s′
i = {sctrs

′
i,0[u], sctrs

′
i,1[u]}u∈[μ]. Let ctr be the counter contained in

m1, then sctrs
′

i,1[j] < ctr = sctr
s′
i,1[j]. By Fact 1 we have sctr

s′
i,1[j] ≤ sctrsi,1[j].

Consequently ctr ≤ sctrsi,1[j], which means Ψs
i = reject. This contradicts to

Ψs
i = accept.

Case 2: Initiator πs
i . Let (m2, σ2) be the message sent by πt

j . Message m2

contains a counter ctr and defines a unique partner. Ψs′
i = Ψs

i = accept
means sctrs

′
i,0[j] + 1 = sctrsi,0[j] + 1 = ctr. By Fact 1 we have sctrs

′
i,0[j] <

sctrsi,0[j], and this leads to a contradiction.

Theorem 3 follows from Eq. (1), Lemmas 1, 2 and 4. ��

Theorem 4. Suppose that SIG is MU-EUF-CMAcorr secure, KEM is IND-
mCPAreveal secure and has diverse property, then AKE is strongly secure.
More precisely, for any PPT adversary A against AKE, there exist PPT
adversaries BSIG and BKEM such that AdvstrongAKE,μ,�,A(λ) ≤ 2Advm-corr

SIG,μ,BSIG
(λ) +

Advr-m-cpa
KEM,μ�,BKEM

(λ) + 2−Ω(λ).

Proof. We prove it by three games, Game 0, Game 1 and Game 2.

Game 0. Game 0 is the original game. Thus

Pr[ExpstrongAKE,μ,�,A(λ) ⇒ 1] = Pr[Game 0 ⇒ 1]. (2)

Game 1. Game 1 is the same as Game 0 except that the experiment will abort
if bad happens, where bad := ∃(i, s) ((1) ∧ (2) ∧ (4)). In words, bad means there
exists an accepted πs

i such that πs
i is not message-consistent with any oracle πt

j .
If bad does not happen, Game 0 is identical to Game 1. By the difference lemma
and Lemma 1, we have

|Pr[Game 1 ⇒ 1] − Pr[Game 0 ⇒ 1]| ≤ Pr[bad] ≤ Advm-corr
SIG,μ,BSIG

(λ). (3)

Game 2. Game 2 is the same as Game 1 except that D-Partner(πs
i , π

t
j) in the

experiment is changed to a new one, where D-Partner(πs
i , π

t
j) is the algorithm to

check whether πs
i is partnered to πt

j .

Two-Pass Authenticated Key Exchange 807

D-Partner(πs
i , πt

j) in Game 1 D-Partner(πs
i , πt

j) in Game 2

Initiator πs
i :

If ks
i = K(πs

i , πt
j) �= ∅: Return 1

Responder πs
i :

If ks
i = K(πt

j , π
s
i) �= ∅: Return 1

Else: Return 0

If Ψs
i �= accept: Return 0

If πs
i is message-consistent with πt

j

as a responder: Return 1
If πs

i is message-consistent with πt
j

as an initiator: Return 1
Else: Return 0

In Game 2, deciding Partner(πs
i ← πt

j) is implemented by simply checking the
message consistency between πs

i and πt
j . It gets rid of computation of original

keys as in Game 1, and this is a preparation for the proof of Lemma 5.
We then prove that the new algorithm D-Partner(πs

i , π
t
j) has the same func-

tionality as the old one except with probability 2−Ω(λ).
Note that D-Partner(πs

i , π
t
j) is only invoked in testing (1′) ∧ (2′) ∧ (3′). (1′)

implies the existence of an accepted πs
i with j := Pids

i and Pj uncorrupted. If
bad does not happens, according to Claim 1, there exists t ∈ [�] s.t. Partner(πs

i ←
πt

j) and πs
i is message-consistent with πt

j . So, if πs
i is uniquely partnered, then

Partner(πs
i ← πt

j) if and only if πs
i is message-consistent with πt

j . Hence, Game
1 and Game 2 are the same unless πs

i is partnered to multiple oracles, which
happens with probability no more than 2−Ω(λ) by Lemma 2. Thus,

|Pr[Game2 ⇒ 1] − Pr[Game1 ⇒ 1]| ≤ 2−Ω(λ). (4)

Lemma 5. There exists a PPT algorithm BKEM such that

|Pr[Game2 ⇒ 1] − 1/2| ≤ Advr-m-cpa
KEM,μ�,BKEM

(λ). (5)

Proof of Lemma 5. Let (i∗, s∗, b∗) be the output of A. For simplicity, define
(i, s, b∗) := (i∗, s∗, b∗) and j := Pids

i . Recall that ExpstrongAKE,μ,�,A(λ) outputs 1 iff
b∗ = bs

i under the following conditions.

(1′) πs
i is τ -tested and Pids

i is τ̃ -corrupt with τ̃ > τ .
(2′) πs

i is ∞-revealed.
(3′) If ∃t ∈ [�] s.t. πs

i is partnered to πt
j , then πt

j is ∞-revealed and ∞-tested.

Now we construct a PPT algorithm BKEM to break KEM’s IND-mCPAreveal

security (Definition 5) by simulating Game 2 for A. BKEM first obtains from its
challenger CKEM the public parameter ppKEM of KEM and a list of μ� public keys
PKListKEM := {pk1, pk2, ..., pkμ�}. Meanwhile, BKEM has access to two oracles
OEncap(·) and OReveal(·, ·). See Fig. 7 for BKEM’s simulation of Game 2.

In the simulation, to send the first message (m1, σ1) for πs
i , BKEM can

always use public key pk(i−1)μ+s ∈ PKListKEM as pkKEM in m1 and sign m1

with ski. Hence BKEM’s simulation of (m1, σ1) is perfect. After receiving a mes-
sage (m1, σ1), to generate (m2, σ2) for πt

j , BKEM invokes its oracle OEncap(·) to
generate (K,C) if pkKEM ∈ PKListKEM (pkKEM is in m1). In this case, BKEM

stores (pkKEM,K,C) into CList, but BKEM cannot determine the session key
kt

j , since K might be random with half probability. So BKEM sets kt
j := ∗. If

808 X. Liu et al.

Fig. 7. BKEM’s simulation of Game 2.

pkKEM /∈ PKListKEM, then m1 must be forged by A. In this case, BKEM can
invoke (K,C) ← KEM.Encap(pkKEM) and set kt

j := K. Thus in either case,
BKEM’s simulation of (m2, σ2) for πt

j is perfect, just like Game 2 does.
After receiving the last message (m2, σ2) for πs

i , BKEM retrieves pkKEM from
m1 and C from m2 (pkKEM ∈ PKListKEM since m1 is generated by BKEM). If
(pkKEM, C,K) ∈ CList for some K, then BKEM has asked OEncap(·) to generate
(K,C) w.r.t pkKEM, so BKEM sets ks

i := ∗. Otherwise, C is forged by A. In
this case, BKEM uses its oracle OReveal(·, ·) to reveal the real key K ′, and sets
ks

i := K ′. At last, BKEM returns ∅ to A as Game 2 does.
BKEM’s simulation makes sure that if Ψs

i = accept and ks
i �= ∗, then ks

i must
be the real session key. Hence, upon a Reveal(i, s) query, BKEM will return ks

i if
ks

i �= ∗. Otherwise, it will ask OReveal(·, ·) to get the real key and return it to A.
Therefore, BKEM’s answers to Reveal queries are perfect.

Two-Pass Authenticated Key Exchange 809

Upon a Test(i, s) query, if ks
i �= ∗, then ks

i is the real session key. If ks
i = ∗

and A has asked Test(j, t), where Partner(πs
i ← πt

j), then BKEM asks OReveal(·, ·)
to get the real session key. In either case, BKEM can answer Test queries with
the help of the real session key, exactly like Game 2 does. We stress that BKEM

checks partnership with message consistency, instead of computing the original
key. If ks

i = ∗ and there is no such a partner which has been tested, BKEM

retrieves CList[i, s] = (pkKEM, C,K) associated with πs
i , and returns K to A.

This simulation is also perfect, since K is either a real key or a random key with
half probability.

Given A’s outputs (i∗, s∗, b∗), let (i, s, b∗) := (i∗, s∗, b∗) and j := Pids
i . Con-

dition (1′) implies that Pj is uncorrupted when πs
i is tested (hence accepted).

Thus there exists a unique πt
j to which πs

i is partnered, and this implies the
existence of CList[i, s] = (pkKEM, C,K). Conditions (2′) ∧ (3′) said that πs

i , πt
j

are ∞-revealed, and πt
j is ∞-tested. Hence BKEM has never asked OReveal(·, ·)

for (pkKEM, C). Consequently, BKEM implicitly sets bs
i = β where β is the ran-

dom coin chosen by CKEM. Thus BKEM wins as long as b∗ = bs
i , and Lemma 5

follows.
By Eqs. (2), (3), (4), (5), we have

|Pr[ExpstrongAKE,μ,�,A(λ) ⇒ 1] − 1/2| ≤ Advm-corr
SIG,μ,BSIG

(λ) +Advr-m-cpa
KEM,μ�,BKEM

(λ) + 2−Ω(λ).

AdvstrongAKE,μ,�,A(λ) := max{Pr[WinAuth], |Pr[ExpstrongAKE,μ,�,A(λ) ⇒ 1] − 1/2|}
≤ 2Advm-corr

SIG,μ,BSIG
(λ) + Advr-m-cpa

KEM,μ�,BKEM
(λ) + 2−Ω(λ). ��

Note that in the strong security of AKE, only the proof of Pr[(1)∧(2)∧(3.3)] ≤
Advm-corr

SIG,μ,BSIG
(λ) + 2−Ω(λ) in Lemma 4 makes use of the non-decreasing property

of counters in states. For our stateless AKE scheme AKEstateless, the normal (not
strong) security requirement (see Fig. 5) does not need (1)∧(2)∧(3.3). Therefore,
AKEstateless can be proved to be secure, and the security proof almost verbatim
follows that of Theorems 3 and 4. Hence we have the following corollary.

Corollary 1. Suppose that SIG is MU-EUF-CMAcorr secure, KEM is IND-
mCPAreveal secure and has diverse property, then our stateless AKE scheme
AKEstateless is secure. More precisely, for any PPT adversary A against
AKEstateless, there exist PPT adversaries BSIG and BKEM such that

Adv stateless

AKE,μ,�,A(λ) ≤ Advm-corr
SIG,μ,BSIG

(λ) + Advr-m-cpa
KEM,μ�,BKEM

(λ) + 2−Ω(λ).

5 Instantiations of AKE with Tight Security

In this section, we present specific constructions of AKE by instantiating the two
building blocks KEM and SIG, where KEM has tight IND-mCPAreveal security
and diverse property, and SIG has tight MU-EUF-CMAcorr security.

810 X. Liu et al.

5.1 Instantiations of KEM with Tight IND-mCPAreveal Security

We present two KEM schemes. The first one is derived from the twin ElGamal
encryption [5] based on the CDH assumption in the RO model. The other is
derived from [14] and based on the MDDH assumption in the standard model.

KEMst2DH from the st2DH Assumption in the RO Model. Now we
present KEMst2DH, and prove that its IND-mCPAreveal security can be tightly
reduced to the st2DH assumption [5], which is in turn to the CDH assumption
by Theorem 2, in the random oracle model. See Fig. 8

Fig. 8. KEMst2DH from the strong twin DH assumption.

Correctness. Correctness is due to ((gx1)y, (gx2)y) = ((gy)x1 , (gy)x2).

Theorem 5. The KEM scheme KEMst2DH is IND-mCPAreveal secure in the ran-
dom oracle model. More precisely, for any PPT adversary A against the IND-
mCPAreveal security, there exists a PPT adversary B solving the st2DH problem
such that Advr-m-cpa

KEMst2DH,θ,A(λ) ≤ Advst2DH
G,B (λ) ≤ AdvCDH

G
(λ) + 2−Ω(λ).

Proof Sketch. We construct a PPT algorithm B that simulates Expr-m-cpa
KEMst2DH,θ,A(λ)

to the KEM adversary A, and uses A’s ability to solve the st2DH problem. Due
to the space limitation, we sketch the high-level idea of the proof in the single
user setting. The formal proof can be found in our full version in ePrint.

Let (gx1 , gx2 , gy) be the tuple needed to be solved. Intuitively B will
embed (gx1 , gx2) to the public key, and embed gy to the challenge cipher-
text C = gy+b. If A never asked H(gx1 , gx2 , C, Cx1 , Cx2), then k =
H(gx1 , gx2 , C, Cx1 , Cx2) is truly random and A has no advantage at all. If A
ever asked H(gx1 , gx2 , C, Cx1 , Cx2), then B can find the answer (Cx1/gb, Cx2/gb)
to the st2DH problem. The difficult part of B’s simulation is the reveal of
encapsulated key k = H(gx1 , gx2 , C, Cx1 , Cx2) to A, when the secret key
(x1, x2) and logg C are unknown. This difficulty is circumvented by B’s sim-
ulation of random oracle H(·) and the decision oracle 2DH. If A has not asked
H(gx1 , gx2 , C, Cx1 , Cx2) before, B samples a random key k and implicitly set

Two-Pass Authenticated Key Exchange 811

H(gx1 , gx2 , C, Cx1 , Cx2) = k. If A has asked H(gx1 , gx2 , C, Cx1 , Cx2), B must
have stored item ((gx1 , gx2 , C, Cx1 , Cx2), k) in the hash list. Then B can resort
to the decision oracle 2DH(gx1 , gx2 , C, Cx1 , Cx2) = 1 to locate this item, and
return k to A. In this way, B successfully simulates the reveal oracle to A.

The diverse property of KEMst2DH is proved in our full version.

KEMMDDH from the MDDH Assumption in the Standard Model. In
[14], Han et al. proposed a public key encryption (PKE) scheme based on the
MDDH assumption over bilinear groups. The PKE scheme has almost tight IND-
mCCA security. In the encryption, the plaintext is masked by K, which can be
regarded as an encapsulated key. As a result, from the PKE we can derive an
IND-mCCA secure KEM KEMMDDH. The definition of the MDDH assumption
and the scheme KEMMDDH appear in the full version (see ePrint).

Theorem 6 (IND-mCCA Security of KEMMDDH). Let �′ ≥ 2k + 1. If (i)
the D�′,k-MDDH assumption holds over both G1 and G2, (ii) H is a collision-
resistant function family, then KEMMDDH is IND-mCCA secure. More precisely,
for any PPT adversary A who makes at most Qe times of Enc queries and Qd

times of Dec queries, there exist PPT adversaries B1, B2 and B3, such that

Advm-cca
KEMMDDH,θ,A(λ) ≤ (4
log Qe� + �′ − k + 2) · (

AdvMDDH
D�′,k,G1,B1(λ) + AdvMDDH

D�′,k,G2,B2(λ)
)

+ Advcr
H,B3(λ) + 2−Ω(λ).

The diverse property of KEMMDDH can also be easily tested.

5.2 Instantiations of SIG with Tight MU-EUF-CMAcorr Security

We review two signature schemes. The first one SIGDDH was proposed by Gjøsteen
and Jager [11] and its MU-EUF-CMAcorr security was based on the DDH assump-
tion in the random oracle model. The other one SIGMDDH was proposed by Bader
et al. [1] and its MU-EUF-CMAcorr security was based one the MDDH assump-
tion over bilinear group but in the standard model.

SIGDDH from the DDH Assumption in the RO Model. The DDH-based
signature scheme SIGDDH in [11] is shown in our full version, and its MU-EUF-
CMAcorr security can be tightly reduced to the DDH & CDH assumptions in the
random oracle model. See Theorem 7.

Theorem 7. [11] For any PPT adversary A against SIGDDH, there exist PPT
adversaries BDDH and BCDH against the DDH and CDH problems such that

Advm-corr
SIGDDH,μ,A(λ) ≤ AdvDDH

G,BDDH
(λ) + 2AdvCDH

G,BCDH
(λ) + 2−Ω(λ).

SIGMDDH from the MDDH Assumption in the Standard Model. The
MDDH-based signature scheme SIGMDDH in [1] is shown in our full version, and
its MU-EUF-CMAcorr security can be tightly reduced to the MDDH assumption.
See Theorem 8.

812 X. Liu et al.

Theorem 8. [1] For any PPT adversary A against SIGMDDH, there exist PPT
adversaries B1 and B2 against Dk-MDDH in G1 and G2 such that

Advm-corr
SIGMDDH,μ,A(λ) ≤ AdvMDDH

Dk,G1,B1
(λ) + 2λ · AdvMDDH

Dk,G2,B2
(λ) + 2/q.

5.3 Instantiations of AKE

Following the generic construction of AKE in Fig. 6, if we instantiate the KEM
and SIG schemes with KEMst2DH and SIGDDH, then we obtain a practical 2-pass
AKE scheme AKEDDH (AKEstateless

DDH) with tight security in the random oracle
model.

By Theorems 2, 4, 5, 7, we have the following corollary.

Corollary 2. AKEDDH is strongly secure (AKEstateless
DDH is secure) in the ran-

dom oracle model. More precisely, for any PPT adversary A against AKEDDH

(AKEstateless
DDH), there exist PPT adversaries BDDH and BCDH against the DDH and

CDH problems such that

AdvAKEstateless
DDH

,μ,�,A(λ) ≤ AdvstrongAKEDDH,μ,�,A(λ) ≤ 2AdvDDH
G,BDDH

(λ) + 5AdvCDH
G,BCDH

(λ) + 2−Ω(λ).

Similarly, if we instantiate the KEM and SIG schemes with KEMMDDH and
SIGMDDH, then we obtain another 2-pass AKE scheme AKEMDDH (AKEstateless

MDDH)
with tight security in the standard model.

We refer the reader to our full version for the AKEDDH and AKEMDDH schemes.
By Theorems 1, 4, 6, 8, we have the following corollary.

Corollary 3. AKEMDDH is strongly secure (AKEstateless
MDDH is secure) in the stan-

dard model. More precisely, for any PPT adversary A against AKEMDDH

(AKEstateless
MDDH), there exist PPT adversaries B1, B2, B′

1, B′
2 and B3 such that

Adv
AKEstateless

MDDH
,μ,�,A(λ) ≤ AdvstrongAKEMDDH,μ,�,A(λ) ≤ 2

−Ω(λ)
+ 2AdvMDDH

Dk,G1,B1
(λ) + 4λ · AdvMDDH

Dk,G2,B2
(λ)

+ 2Advcr
H,B3

(λ) + (8�log Qe	 + 2�′ − 2k + 4) · (
AdvMDDH

D
�′,k

,G1,B′
1
(λ) + AdvMDDH

D
�′,k

,G2,B′
2
(λ)

)
.

Acknowledgments. This work is supported by National Natural Science Foundation
of China (61925207, 61672346, 61932014, 61825203, U1736203, 61732021), Guangdong
Major Project of Basic and Applied Basic Research (2019B030302008), and the Guang-
dong Provincal Science and Technology Project (2017B010111005).

References

1. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 26

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/3-540-48329-2_21

Two-Pass Authenticated Key Exchange 813

3. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (STS) protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-
7 12

4. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange
protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 10

5. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

6. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 25

7. Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 42

8. Ding, J., Branco, P., Schmitt, K.: Key exchange and authenticated key exchange
with reusable keys based on RLWE assumption. IACR Cryptology ePrint Archive
2019, 665 (2019)

9. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

10. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: the case of the
TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017, Paris, France, 26–28 April 2017, pp. 60–75 (2017)

11. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 4

12. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

13. Halevi, S., Krawczyk, H.: One-pass HMQV and asymmetric key-wrapping. In:
Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 317–334. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19379-8 20

14. Han, S., Liu, S., Lyu, L., Gu, D.: Tight leakage-resilient CCA-security from quasi-
adaptive hash proof system. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019, Part II. LNCS, vol. 11693, pp. 417–447. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26951-7 15

15. Jin, Z., Zhao, Y.: Generic and practical key establishment from lattice. In: Deng,
R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol.
11464, pp. 302–322. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21568-2 15

16. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/3-540-45708-9_10
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/978-3-642-19379-8_20
https://doi.org/10.1007/978-3-642-19379-8_20
https://doi.org/10.1007/978-3-030-26951-7_15
https://doi.org/10.1007/978-3-030-26951-7_15
https://doi.org/10.1007/978-3-030-21568-2_15
https://doi.org/10.1007/978-3-030-21568-2_15
https://doi.org/10.1007/11535218_33

814 X. Liu et al.

17. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: IEEE European
Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, 21–24
March 2016, pp. 81–96 (2016)

18. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

19. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, 30 October–03 November 2017, pp. 1343–1360 (2017)

20. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

21. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446,
pp. 1–160 (2018)

22. Xiao, Y., Zhang, R., Ma, H.: Tightly secure two-pass authenticated key exchange
protocol in the CK model. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006,
pp. 171–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3 9

https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-030-40186-3_9

Author Index

Abdalla, Michel III-467
Abe, Masayuki III-749
Abspoel, Mark III-151
Agrawal, Shashank III-839
Agrawal, Shweta III-653
Alamati, Navid II-411
Albrecht, Martin R. II-583
Alpirez Bock, Estuardo I-221
Ambrona, Miguel III-749
Ananth, Prabhanjan III-181
Aref, Mohammad Reza I-385
Attrapadung, Nuttapong III-405
Au, Man Ho I-191
Azimi, Seyyed Arash I-385

Badertscher, Christian II-667
Badrinarayanan, Saikrishna III-120
Baldimtsi, Foteini III-717
Balli, Fatih III-621
Bardet, Magali I-507
Bernard, Olivier II-349
Beullens, Ward II-464
Beyne, Tim I-817
Bkakria, Anis II-191
Blazy, Olivier I-97
Bogdanov, Andrej III-749
Boneh, Dan II-520, III-559
Bonnetain, Xavier II-633
Boudgoust, Katharina II-289
Boyle, Elette III-244
Bricout, Rémi II-633
Bros, Maxime I-507
Brzuska, Chris I-221

Cabarcas, Daniel I-507
Campanelli, Matteo II-3
Canetti, Ran III-277
Cao, Zhenfu I-662
Cascudo, Ignacio III-311
Cassiers, Gaëtan I-851
Castryck, Wouter II-493
Catalano, Dario III-467
Chase, Melissa III-342
Chen, Hao III-31

Chen, Long III-590
Chen, Rongmao II-98
Cheon, Jung Hee II-221
Choi, Wonseok I-697
Choudhuri, Arka Rai III-181
Chow, Sherman S. M. II-160
Cini, Valerio I-159
Cogliati, Benoît I-754
Cojocaru, Alexandru II-667
Colisson, Léo II-667
Costello, Craig II-440
Cramer, Ronald III-151
Cuppens, Frédéric II-191
Cuppens, Nora II-191

Dalskov, Anders III-213
Damgård, Ivan III-151
David, Bernardo III-311
De Feo, Luca I-64, II-411
Decru, Thomas II-493
Deng, Yi III-805
Deo, Amit II-318
Dhooghe, Siemen I-817
Dong, Xiaolei I-662
Dong, Xiaoyang II-727
Döttling, Nico II-614
Duong, Thai III-870
Dutta, Avijit I-601

Eichlseder, Maria I-477
Erwig, Andreas II-761
Escudero, Daniel III-151
Esgin, Muhammed F. II-259
Eskandarian, Saba III-559

Fech, Katharina II-160
Fiore, Dario II-3
Fischlin, Marc I-221
Flórez Gutiérrez, Antonio I-33

Gaborit, Philippe I-507
Gao, Fei II-727
Gay, Romain III-467

Gheorghiu, Vlad II-583
Ghosh, Esha III-342
Gilboa, Niv III-244
Goel, Aarushi III-181
Grassi, Lorenzo I-477
Greco, Nicola II-3
Groß, Thomas III-498
Gu, Dawu II-785
Guo, Chun I-567, I-851
Guo, Jian I-567
Guo, Qian I-353

Heath, David III-3
Hebborn, Phil I-537
Hesse, Julia II-761
Hosoyamada, Akinori I-3
Hu, Kai I-446
Hu, Lei II-727
Hu, Xichao I-415
Huang, Xinyi II-98
Huang, Zhengan I-191

Ishai, Yuval III-244, III-653

Jain, Aayush III-120
Jain, Abhishek III-181
Janson, Christian I-221
Jeudy, Corentin II-289
Jha, Ashwin I-754
Jiang, Yao III-529
Jiao, Lin I-415
Johansson, Thomas I-353

Kashefi, Elham II-667
Katsumata, Shuichi I-289, II-464, III-375
Kiayias, Aggelos III-717
Kim, Dongwoo II-221
Kim, Duhyeong II-221
Kim, Miran III-31
Kim, Sam II-66, III-559
Kitagawa, Fuyuki I-253, II-36
Knichel, David I-787
Kogan, Dmitry II-520
Kohel, David I-64
Kolesnikov, Vladimir III-3
Kolonelos, Dimitris II-3
Kushilevitz, Eyal III-653
Kwiatkowski, Kris I-289

Lahr, Norman I-881
Lai, Junzuo I-191
Lai, Russell W. F. II-160
Lambin, Baptiste I-537
Langrehr, Roman II-129
Leander, Gregor I-537
Lee, Byeonghak I-697
Lee, Eysa III-213
Lee, Jooyoung I-697
Lee, Yeongmin I-697
Leichtle, Dominik II-667
Leroux, Antonin I-64
Leurent, Gaëtan I-33
Li, Yanan III-590
Li, Yongqiang I-415
Libert, Benoît I-128, II-318
Lin, Huijia III-437
Lipmaa, Helger III-686
List, Eik I-567
Liu, Shengli II-785
Liu, Xiangyu II-785
Liu, Ximeng II-697
Liu-Zhang, Chen-Da III-92
Loss, Julian III-92
Lüftenegger, Reinhard I-477
Luo, Ji III-437

Malavolta, Giulio II-160, II-614
Manohar, Nathan III-120
Mantri, Atul II-667
Matsuda, Takahiro I-253
Maurer, Ueli III-92
Mennink, Bart I-630
Micciancio, Daniele II-381
Michiels, Wil I-221
Mohajeri, Javad I-385
Montgomery, Hart II-411
Moradi, Amir I-787
Moran, Tal III-92
Morgan, Andrew I-724
Moriya, Tomoki II-551

Nandi, Mridul I-754
Narayanan, Varun III-653
Naya-Plasencia, María I-33
Nguyen, Khoa I-128, II-318
Nguyen, Ngoc Khanh II-259
Niederhagen, Ruben I-881
Nishimaki, Ryo III-375

816 Author Index

Nizzardo, Luca II-3
Nof, Ariel III-244

Ohkubo, Miyako III-749
Onuki, Hiroshi II-551
Orlt, Maximilian II-761
Øygarden, Morten I-477

Pan, Jiaxin II-129
Pass, Rafael I-724
Passelègue, Alain I-128
Patra, Arpita III-60
Patranabis, Sikhar II-411
Pavlyk, Kateryna III-686
Peceny, Stanislav III-3
Perlner, Ray I-507
Perrin, Léo I-33
Petit, Christophe I-64
Petri, Richard I-881
Phan, Duong Hieu III-870
Pintore, Federico I-289, II-464
Poburinnaya, Oxana III-342
Postlethwaite, Eamonn W. II-583
Prabhakaran, Manoj III-653
Prabhakaran, Vinod III-653
Prest, Thomas I-289
Pu, Sihang II-614

Raghuraman, Srinivasan III-839
Ramacher, Sebastian I-159
Rambaud, Matthieu III-151
Ranea, Adrián I-385
Ravi, Divya III-60
Razenshteyn, Ilya III-31
Rechberger, Christian I-477
Riahi, Siavash II-761
Rijmen, Vincent I-385
Rosen, Alon III-653, III-749
Rösler, Paul III-621
Rotaru, Dragos III-31
Roux-Langlois, Adeline II-289, II-349

Sahai, Amit III-120
Salmasizadeh, Mahmoud I-385
Samardjiska, Simona I-881
Sanders, Olivier II-318
Sarkar, Pratik III-277
Sasdrich, Pascal I-787
Schanck, John M. II-583

Schofnegger, Markus I-477
Schrottenloher, André I-33, II-633
Seiler, Gregor II-259
Shen, Yixin II-633
Shi, Danping II-727
Shi, Elaine I-724
Shih, Maurice III-559
Sibleyras, Ferdinand I-33
Singla, Swati III-60
Slamanig, Daniel I-159
Smith-Tone, Daniel I-507
Song, Ling I-567
Song, Yongsoo III-31
Soria-Vazquez, Eduardo III-213
Sorrell, Jessica II-381
Standaert, François-Xavier I-851
Striecks, Christoph I-159
Sun, Siwei I-446, II-697, II-727
Susilo, Willy I-191

Takagi, Tsuyoshi II-551
Tan, Syh-Yuan III-498
Tanaka, Keisuke II-36
Tang, Qiang III-590
Tian, Shizhu I-415
Tillich, Jean-Pierre I-507
Titiu, Radu I-128
Todo, Yosuke I-537
Tomida, Junichi III-405
Towa, Patrick I-97, III-774
Trieu, Ni III-870
Tschudi, Daniel III-92

Unruh, Dominique I-321
Ursu, Bogdan III-467

Vaudenay, Serge III-621
Verbel, Javier I-507
Vercauteren, Frederik II-493
Vergnaud, Damien I-97, III-774

Wagh, Sameer III-31
Wallden, Petros II-667
Wang, Meiqin I-446
Wang, Mingsheng I-415
Wang, Qingju I-446, I-477
Wang, Weijia I-851
Wang, Xiao III-277
Wang, Xiaoyun II-727

Author Index 817

Wei, Zihao II-697
Wen, Weiqiang II-289
Weng, Jian II-785
Wesolowski, Benjamin I-64
Woo, Katharine II-520
Wu, David J. II-66
Wu, Wenling II-697
Wu, Yusai I-662

Xagawa, Keita II-36
Xing, Chaoping III-151
Xu, Qiuliang I-191

Yamada, Shota III-375
Yamakawa, Takashi I-3, III-375
Yang, Rupeng I-191
Yoshida, Yusuke II-36
Yu, Liqing I-662
Yu, Yu I-851
Yuan, Chen III-151
Yung, Moti II-98

Zacharias, Thomas III-717
Zhang, Bingsheng III-717
Zhang, Zhenda I-817
Zou, Jian II-697

818 Author Index

	Preface
	Organization
	Contents – Part II
	Public Key Cryptography
	Incrementally Aggregatable Vector Commitments and Applications to Verifiable Decentralized Storage
	1 Introduction
	1.1 A New Notion for SVCs: Incremental Aggregation
	1.2 Verifiable Decentralized Storage (VDS)
	1.3 Concurrent Work
	1.4 Preliminaries

	2 Vector Commitments with Incremental Aggregation
	2.1 Vector Commitments with Subvector Openings
	2.2 Incrementally Aggregatable Subvector Openings

	3 Applications of Incremental Aggregation
	3.1 Divide-and-Conquer Extensions of Aggregation and Disaggregation
	3.2 Committing and Opening with Precomputation

	4 Our Realizations of Incrementally Aggregatable SVCs
	4.1 Our First SVC Construction
	4.2 Our Second SVC Construction
	4.3 Comparison with Related Work
	4.4 Experimental Evaluation

	5 Verifiable Decentralized Storage
	5.1 Syntax
	5.2 Correctness and Efficiency of VDS
	5.3 Security of VDS
	5.4 Realizing VDS

	References

	Non-committing Encryption with Constant Ciphertext Expansion from Standard Assumptions
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Overview
	1.4 Related Works on Amplification for Public-Key Encryption

	2 Preliminaries
	3 (Weak) Non-committing Encryption
	4 Amplification for Non-committing Encryption
	4.1 Wiretap Codes
	4.2 Instantiation of Wiretap Codes
	4.3 Full-Fledged NCE from Weak NCE

	5 Construction of Weak NCE
	5.1 Obliviously Sampleable Chameleon Encryption
	5.2 Construction

	6 Obliviously Sampleable Chameleon Encryption from Lattices
	6.1 Preliminaries on Lattices
	6.2 Construction

	7 Conclusion
	References

	Collusion Resistant Trace-and-Revoke for Arbitrary Identities from Standard Assumptions
	1 Introduction
	1.1 Construction Overview
	1.2 Related Work

	2 Preliminaries
	2.1 Functional Encryption

	3 Revocable Predicate Encryption
	3.1 Constructing Secret-Key Revocable Predicate Encryption with Broadcast
	3.2 Instantiating Secret-Key Revocable Predicate Encryption with Broadcast

	4 Identity-Based Trace-and-Revoke
	4.1 Constructing an Identity-Based Trace-and-Revoke Scheme
	4.2 Instantiating the Trace-and-Revoke Scheme

	References

	Subvert KEM to Break DEM: Practical Algorithm-Substitution Attacks on Public-Key Encryption
	1 Introduction
	1.1 Algorithm-Substitution Attacks
	1.2 Our Results

	2 Preliminaries
	2.1 Entropy Smoothing Hash Functions
	2.2 Key Encapsulation Mechanism (KEM)

	3 Asymmetric ASA Model for KEMs
	3.1 Asymmetric ASA on KEMs
	3.2 Session Key Recovery
	3.3 Undetectability

	4 Mounting ASAs on KEMs
	4.1 A Module-Level Syntax of KEM
	4.2 Our Non-Black-Box ASA on KEMs
	4.3 Formal Analysis

	5 Instantiations
	5.1 KEMs from Hash Proof Systems
	5.2 Concrete KEMs

	6 Discussions on Countermeasures
	6.1 Abandoning Randomized Algorithms
	6.2 Permitting Randomized Algorithms with Further Assumptions

	A Omitted Definitions and Proof
	A.1 Hash Proof System
	A.2 Proof of Theorem 4

	References

	Unbounded HIBE with Tight Security
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution
	1.3 Technical Overview
	1.4 More Discussion on Related Work

	2 Preliminaries
	2.1 Pairing Groups and Matrix Diffie-Hellman Assumptions

	3 Unbounded Affine MAC
	3.1 Core Lemmata
	3.2 An Unbounded Affine MAC

	4 Transformation to Unbounded HIBE
	References

	Multi-client Oblivious RAM with Poly-logarithmic Communication
	1 Introduction
	2 Technical Overview
	2.1 MCORAM with Poly-log Communication: Initial Attempts
	2.2 FHE-Based Construction
	2.3 DPF-Based Multi-server Construction

	3 Related Work
	4 Preliminaries
	4.1 Constrained Pseudorandom Functions
	4.2 Fully Homomorphic Encryption
	4.3 Distributed Point Functions
	4.4 Homomorphic Secret Sharing

	5 Multi-client ORAM and Its Simulation-Based Security
	5.1 Syntax
	5.2 Correctness and Integrity
	5.3 Obliviousness

	6 FHE-based Single-Server Construction
	6.1 Formal Description
	6.2 Security
	6.3 Access Rights Revocation

	7 DPF-based Multi-server Construction
	7.1 Our Distributed Point Function
	7.2 Multi-client ORAM from Distributed Point Functions

	8 Concluding Remarks
	References

	Privacy-Preserving Pattern Matching on Encrypted Data
	1 Introduction
	2 Related Work
	3 Security Assumption
	4 The Intuition
	5 Sbold0mu mumu 442005/06/28 ver: 1.3 subfig package4444E Construction
	5.1 Usage Scenario
	5.2 Architecture
	5.3 Security Requirements and Hypothesis
	5.4 Definition of Sbold0mu mumu 442005/06/28 ver: 1.3 subfig package4444E
	5.5 Sbold0mu mumu 442005/06/28 ver: 1.3 subfig package4444E's Security Requirements
	5.6 A Trivial Protocol
	5.7 The Sbold0mu mumu 442005/06/28 ver: 1.3 subfig package4444E's Protocol
	5.8 Sbold0mu mumu 442005/06/28 ver: 1.3 subfig package4444E's Security Results

	6 ASbold0mu mumu 332005/06/28 ver: 1.3 subfig package3333E Construction
	6.1 Architecture
	6.2 Security Requirements and Hypothesis
	6.3 Definition of ASbold0mu mumu 332005/06/28 ver: 1.3 subfig package3333E
	6.4 Security Model
	6.5 The Protocol
	6.6 ASbold0mu mumu 332005/06/28 ver: 1.3 subfig package3333E Security Results

	7 The Complexity
	8 Empirical Evaluation
	9 Conclusion
	References

	Efficient Homomorphic Comparison Methods with Optimal Complexity
	1 Introduction
	1.1 Our Idea and Technical Overview
	1.2 Our Results
	1.3 Related Works

	2 Preliminaries
	2.1 Notations
	2.2 Minimax Polynomial Approximation Method
	2.3 Homomorphic Encryption

	3 Our New Comparison Method
	3.1 Composite Polynomial Approximation of Sign Function
	3.2 Analysis on the Convergence of fn(d)
	3.3 New Comparison Algorithm NewComp
	3.4 Computational Complexity of NewComp and Its Asymptotic Optimality
	3.5 Heuristic Methodology of Convergence Acceleration

	4 Application to Min/Max
	5 Experimental Results
	5.1 Approximate HE Scheme HEAAN
	5.2 Parameter Selection
	5.3 Performance of NewComp and NewCompG
	5.4 Performance of NewMax and NewMaxG

	A Derivation of fn from Core Properties
	B Convergence of 0, S and gn,
	C Heuristic Properties on gn
	D Convergence of fn(d) in Erroneous Case
	E Script for Security Estimation
	References

	Lattice-Based Cryptography
	Practical Exact Proofs from Lattices: New Techniques to Exploit Fully-Splitting Rings
	1 Introduction
	1.1 Our Approach

	2 Preliminaries
	2.1 Notation
	2.2 Prime Splitting and Galois Automorphisms
	2.3 The Number Theoretic Transform
	2.4 Challenge Space
	2.5 Module-SIS and Module-LWE Problems
	2.6 Error Distribution, Discrete Gaussians and Rejection Sampling
	2.7 Commitment Scheme
	2.8 Opening and Product Proof

	3 Proving Unstructured Linear Relations over Zqn
	3.1 Basic Protocol
	3.2 Boosting Soundness by Mapping Down
	3.3 General Case

	4 Main Protocol
	4.1 Security Analysis
	4.2 Proof Size

	References

	Towards Classical Hardness of Module-LWE: The Linear Rank Case
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Number Theory
	2.2 Lattices
	2.3 Probabilities
	2.4 The Module Learning with Errors Problem

	3 Hardness of Binary M-LWE
	4 Classical Hardness for Linear Rank Modules
	4.1 Modulus Switching
	4.2 Classical Reduction for M-LWE
	4.3 Adapting the Error Distribution

	References

	Lattice-Based E-Cash, Revisited
	1 Introduction
	2 Preliminaries
	2.1 Lattice Preliminaries
	2.2 Lossy Trapdoor Functions
	2.3 Witness Extraction and Forking Lemma
	2.4 E-Cash Security Definitions

	3 Intuition
	4 Construction
	5 Zero-Knowledge Arguments with Soundness Error 1/poly() in Standard Lattices
	5.1 Zero-Knowledge Arguments for the BLMR PRF
	5.2 Zero-Knowledge Arguments for the Spend Protocol

	6 Security Proofs
	7 A More Efficient GGM-based Construction
	7.1 Parameters

	References

	Twisted-PHS: Using the Product Formula to Solve Approx-SVP in Ideal Lattices
	1 Introduction
	2 Preliminaries
	2.1 Number Fields, Ideals and Class Groups
	2.2 The Product Formula
	2.3 Unit Groups
	2.4 Algorithmic Number Theory
	2.5 Lattices Geometry and Hard Problems

	3 The PHS Algorithm
	3.1 Preprocessing of the Number Field
	3.2 Query Phase: Solving id-Svp Using the Preprocessing
	3.3 Optimizing PHS Parameters

	4 Twisted-PHS Algorithm
	4.1 Preprocessing of the Number Field
	4.2 Query Phase

	5 Experimental Data
	5.1 Geometric Characteristics
	5.2 Plotting Gram-Schmidt Log Norms
	5.3 Approximation Factors

	References

	Simpler Statistically Sender Private Oblivious Transfer from Ideals of Cyclotomic Integers
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Techniques

	2 Preliminaries
	2.1 Oblivious Transfer
	2.2 Entropy and Extractors
	2.3 Lattices and Gaussian Measures
	2.4 Ring-LWE

	3 Oblivious Transfer Protocol
	3.1 Correctness
	3.2 Computational Receiver Privacy
	3.3 Statistical Sender Privacy
	3.4 Parameters
	3.5 Choice of Extractor

	4 Comparison to Related Protocols
	4.1 Single Execution
	4.2 O(n) Parallel Executions

	References

	Isogeny-Based Cryptography
	Cryptographic Group Actions and Applications
	1 Introduction
	1.1 Isogeny-Based Cryptography
	1.2 Cryptographic Group Actions
	1.3 Cryptographic Group Actions and Isogenies
	1.4 Our Contributions
	1.5 Notation
	1.6 Paper Outline

	2 Cryptographic Group Actions
	2.1 Effective Group Actions
	2.2 Restricted Effective Group Actions
	2.3 Known-Order Effective Group Action

	3 Hash Proof System
	4 Linear Hidden Shift (LHS) Assumption
	4.1 Symmetric KDM-CPA Security from LHS
	4.2 On the Security of LHS Assumption

	References

	B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion
	1 Introduction
	1.1 Naming
	1.2 Performance vs. SIDH
	1.3 Related Work

	2 Twist-Agnostic SIDH
	2.1 Rational (p+1)-torsion
	2.2 SIDH
	2.3 Twist-Agnostic Isogenies

	3 Using Torsion from the Quadratic Twists
	3.1 B-SIDH in a Nutshell
	3.2 Handling Large -degree Isogenies

	4 Security Analysis
	4.1 Multiple Edge Sets
	4.2 Security of Non-commutative vs. Commutative Schemes
	4.3 Classical Cryptanalysis
	4.4 Quantum Cryptanalysis
	4.5 Security Summary

	5 Searching for Friendly Instances
	5.1 Fast Primes: Accelerating Alice, Burdening Bob
	5.2 Searching with the Extended Euclidean Algorithm
	5.3 Primes of the Form p=2xn-1
	5.4 Summary

	References

	Calamari and Falafl: Logarithmic (Linkable) Ring Signatures from Isogenies and Lattices
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Ring Signatures
	2.2 Linkable Ring Signatures
	2.3 Isogenies and Ideal Class Group Actions
	2.4 Lattices
	2.5 Index-Hiding Merkle Trees
	2.6 Seed Tree

	3 From Group Actions to Ring Signatures
	3.1 Admissible Group Actions
	3.2 From an Admissible Group Action to Base or Sigma Protocol RS-base
	3.3 Security Proof for the Base OR Sigma Protocol RS-base
	3.4 From Base OR Sigma Protocol RS-base to Main OR Sigma Protocol RS
	3.5 Security Proof for the Main OR Sigma Protocol RS
	3.6 From Main OR Sigma Protocol RS to Ring Signature

	4 From a Pair of Group Actions to Linkable Ring Signatures
	4.1 Admissible Pairs of Group Actions
	4.2 From an Admissible Pair of Group Actions to Base or Sigma Protocol with Tag
	4.3 From Base OR Sigma Protocol with Tag LRS-base to Main OR Sigma Protocol with Tag LRS
	4.4 From Main OR Sigma Protocol with Tag LRS to Linkable Ring Signatures

	5 Post-quantum Admissible (pair of) Group Actions from Isogeny and Lattice Assumptions
	5.1 Isogeny-Based Instantiations
	5.2 Lattice-Based Instantiation

	6 Parameter Selection, Implementation Results and Conclusions
	6.1 Implementation
	6.2 Conclusions

	References

	Radical Isogenies
	1 Introduction
	2 Background
	2.1 Isogenies and Vélu's Formulae
	2.2 Division Polynomials
	2.3 The Tate Normal Form
	2.4 The Tate Pairing
	2.5 Simple Radical Extensions
	2.6 CSIDH

	3 Existence of Radical Isogeny Formulae
	4 Explicit Radical Isogeny Formulae in Low Degree
	5 Isogeny Chains over Finite Fields
	5.1 The Case gcd(q - 1, N) = 1
	5.2 The Case gcd(q-1, N) = N
	5.3 The Case gcd(q-1, N) = 2

	6 Speeding up CSIDH
	7 Conclusion and Open Problems
	References

	Oblivious Pseudorandom Functions from Isogenies
	1 Introduction
	1.1 Background and Notation
	1.2 Overview of Our Techniques
	1.3 Additional Related Work

	2 Augmentable Commitments
	3 Augmentable Commitments from Supersingular Isogenies
	4 Oblivious PRF from Augmentable Commitments
	5 Zero-Knowledge Proof for Point Verification
	6 Zero-Knowledge Proof of Equality of Isogenies
	7 Putting It All Together
	8 Naor-Reingold OPRF from an Abelian Group Action
	9 Conclusions and Open Problems
	References

	SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Basic Mathematical Concepts
	2.2 Group Action of Ideal Class Group
	2.3 CSIDH
	2.4 Pohlig-Hellman Algorithm ch19PohligspsHellman
	2.5 Public Key Encryption
	2.6 Pseudo Random Function

	3 SiGamal
	3.1 Overview
	3.2 Encryption Scheme of SiGamal
	3.3 Security of SiGamal

	4 C-SiGamal (Compressed-SiGamal)
	4.1 Encryption Scheme of C-SiGamal
	4.2 Security of C-SiGamal
	4.3 Comparing Key Size of Each Scheme

	5 Naor-Reingold Type PRF Based on SiGamal
	5.1 Definition of Our Proposed PRF
	5.2 Evaluating Cost of Computing Our Proposed PRF

	6 Experimentation
	6.1 Parameters
	6.2 Computational Costs of SiGamal and C-SiGamal
	6.3 Computational Costs of Our Proposed PRF

	7 Conclusion
	7.1 Future Work

	A Generating Points of order 2r
	References

	Quantum Algorithms
	Estimating Quantum Speedups for Lattice Sieves
	1 Introduction
	2 Preliminaries
	2.1 Models of Computation
	2.2 Black Box Search
	2.3 Lattice Sieving and Near Neighbour Search on the Sphere
	2.4 The popcount Filter
	2.5 Geometric Figures on the Sphere

	3 Filtered Quantum Search
	4 Circuits for popcount
	4.1 Quantum Circuit for popcount
	4.2 RAM Program for popcount
	4.3 Cost of Inner Products

	5 The Accuracy of popcount
	6 Tuning popcount for NNS
	6.1 AllPairSearch
	6.2 RandomBucketSearch
	6.3 ListDecodingSearch

	7 Cost Estimates
	7.1 Barriers to a Quantum Advantage
	7.2 Relevance to SVP
	7.3 Future Work

	References

	A Combinatorial Approach to Quantum Random Functions
	1 Introduction
	1.1 What Makes QPRFs Challenging?
	1.2 Our Results
	1.3 Technical Overview

	2 Applications
	2.1 Quantum Secure MACs
	2.2 Pseudorandom Quantum States

	3 Preliminaries
	3.1 Quantum Computing
	3.2 Pseudorandom Functions

	4 Bipartite Expanders
	4.1 Q-unique Expanders
	4.2 Parameters

	5 Our Quantum Pseudorandom Function
	5.1 Domain Extension
	5.2 Unbounded Queries

	References

	Improved Classical and Quantum Algorithms for Subset-Sum
	1 Introduction
	2 List Merging and Classical Subset-Sum Algorithms
	2.1 Notations and Conventions
	2.2 Merging and Filtering
	2.3 Correctness of the Algorithms
	2.4 The HGJ Algorithm
	2.5 The BCJ Algorithm and Our Improvements

	3 Quantum Preliminaries and Previous Work
	3.1 Quantum Preliminaries
	3.2 Solving Subset-Sum with Quantum Walks

	4 Quantum Asymmetric HGJ
	4.1 Quantum Match-and-Filter
	4.2 Revisiting HGJ
	4.3 Improvement via Quantum Filtering
	4.4 Quantum Time-Memory Tradeoff

	5 New Algorithms Based on Quantum Walks
	5.1 Asymmetric 5th Level
	5.2 Better Setup and Updates Using Quantum Search
	5.3 Parameters

	6 Mitigating Quantum Walk Heuristics for Subset-Sum
	6.1 New Data Structure for Storing Lists
	6.2 New Data Structure for Vertices
	6.3 Fraction of Marked Vertices
	6.4 Time Complexities Without Heuristic 2

	7 Conclusion
	References

	Security Limitations of Classical-Client Delegated Quantum Computing
	1 Introduction
	1.1 Overview of Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 The Constructive Cryptography Framework
	2.2 Notation

	3 Impossibility of Composable Classical RSP
	3.1 Remote State Preparation and Describable Resources
	3.2 Classically-Realizable RSP are Describable
	3.3 RSP Resources Impossible to Realize Classically
	3.4 Accepting the Limitations: Fully Leaky RSP Resources

	4 Impossibility of Composable Classical-Client UBQC
	4.1 Impossibility of Composable UBQCcc on 1 Qubit
	4.2 Impossibility of Composable UBQCcc on Any Number of Qubits

	5 Game-Based Security of QF-UBQC
	5.1 Implementing Classical-Client UBQC with QFactory

	References

	Quantum Circuit Implementations of AES with Fewer Qubits
	1 Introduction
	2 Notations
	3 The AES Block Cipher
	3.1 Specification of AES
	3.2 The Algebraic Structures of the S-Box of AES
	3.3 Our Improved Classical Circuit of the S-Box-1 of AES

	4 The Quantum Circuits for the Basic AES Operations
	4.1 Quantum Circuits for Three Linear Transformations of AES
	4.2 Improved Quantum Circuit Implementations of AES's S-Box
	4.3 Improved Quantum Circuit Implementation of the S-Box-1

	5 Our Strategies for the Zig-Zag Method and the Key Schedule of AES
	5.1 Zig-Zag Method with Improved Depth-Qubit Trade-Offs
	5.2 Improved Quantum Circuits for the Key Schedule of AES
	Our Strategy for the Key Schedule of AES-128.
	Our Strategy for the Key Schedule of AES-192 and AES-256.

	6 Improved Quantum Circuit Implementations of AES
	6.1 Our Improved Quantum Circuit of AES-128
	The Time and Space Cost of Part 1.
	The Time and Space Cost of Part 2.
	The Time and Space Cost of Part 3.

	6.2 Quantum Circuit Implementations of AES-192 and AES-256

	7 Conclusion
	References

	Quantum Collision Attacks on AES-Like Hashing with Low Quantum Random Access Memories
	1 Introduction
	2 Preliminaries
	2.1 AES-Like Hashing
	2.2 Quantum Computation and Quantum RAM

	3 MILP Models for the Rebound Attack
	3.1 The Full-Active and Non-Full-Active Super S-Box Techniques
	3.2 Searching for Exploitable Differentials in Classical and Quantum Attacks with MILP

	4 Quantum Collision Attacks on 7-Round AES-MMO and AES-MP with Low qRAM
	4.1 A Low-qRAM Quantum Collision Attack on 7-Round AES-MMO
	4.2 Implementation of the Quantum Oracle UF

	5 Quantum Attacks on 7-Round AES-MMO Without qRAM
	6 Collision Attacks on Grøstl-512
	6.1 Exploitable Differential Trails of Grøstl-512
	6.2 Classical and Quantum Collision Attacks on 4-Round Grøstl-512
	6.3 Classical and Quantum Collision Attacks on 5-Round Grøstl-512

	7 Semi-Free-Start Collision Attacks on Grøstl-256
	8 Conclusion
	References

	Authenticated Key Exchange
	Fuzzy Asymmetric Password-Authenticated Key Exchange
	1 Introduction
	1.1 Roadmap

	2 Preliminaries
	2.1 Robust Secret Sharing in the Exponent

	3 Security Model
	4 Fuzzy aPAKE from Secret Sharing
	4.1 Security

	5 Fuzzy aPAKE from Standard aPAKE
	6 Efficiency
	7 Conclusion
	References

	Two-Pass Authenticated Key Exchange with Explicit Authentication and Tight Security
	1 Introduction
	1.1 Tightly Secure Authenticated Key Exchange
	1.2 Our Approach
	1.3 Our Contribution

	2 Preliminaries
	2.1 Digital Signature with Adaptive Corruptions
	2.2 KEM and Its Security in the Multi-user Setting
	2.3 Diverse Property of KEM
	2.4 The Strong Twin Diffie-Hellman Assumption

	3 Authenticated Key Exchange Scheme
	3.1 Definition of Authenticated Key Exchange
	3.2 Security Model of AKE

	4 Generic Construction of AKE and Its Security Proof
	4.1 Construction
	4.2 Security Proof

	5 Instantiations of AKE with Tight Security
	5.1 Instantiations of KEM with Tight IND-mCPAreveal Security
	5.2 Instantiations of SIG with Tight MU-EUF-CMAcorr Security
	5.3 Instantiations of AKE

	References

	Author Index

