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Abstract. Security is rarely single-dimensional and is in most practi-
cal instances a tradeoff between dependent, and occasionally conflicting
goals. The simplest method of multi-criteria optimization and games with
vector-valued payoffs, is transforming such games into ones with scalar
payoffs, and looking for Pareto-optimal behavior. This usually requires
an explicit weighting of security goals, whereas practice often only lets
us rank security goals in terms of importance, but hardly admits a crisp
numerical weight being assigned. Our work picks up the issue of opti-
mizing security goals in descending order of importance, coming to the
computation of an optimal solution w.r.t. lexicographic orders. This is
interesting in two ways, as it (i) is theoretically nontrivial since lexi-
cographic orders do not generally admit representations by continuous
utility functions, hence render Nash’s classical result inapplicable, and
(ii) practically relevant since it avoids ambiguities by subjective (and
perhaps unsupported) importance weight assignments. We corroborate
our results by giving numerical examples, showing a method to design
zero-sum games with a set of a-priori chosen Nash equilibria. This simple
instance of mechanism design may be of independent interest.

Keywords: Lexicographic order · multi-criteria optimization ·
Mechanism design · Security economics

1 Introduction and Motivation

Security is in many practical instances a multi-dimensional matter. Basic secu-
rity goals like confidentiality, integrity and availability (CIA) are known to be
potentially conflicting. For example, encryption serves confidentiality but can
be problematic for availability. Likewise, keeping systems or data redundant to
increase availability makes confidentiality more complex and may add to the
attack surface. Generally, the different dimensions of security can depend on
parameter settings (for example, threshold secret sharing has different resilience
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against passive or active adversaries, regarding recoverability of the secret but
also its confidentiality [16,21,26,35]), or security properties themselves (such as
is the case for sanitizable signatures [4]). The general problem reaches much
beyond basic cryptographic matters, since also risk management is by default a
multi-dimensional challenge [28] of keeping financial losses, damages to reputa-
tion, legal liabilities and many more under control.

Generally, the priority of security goals depends on the application domain,
and we can broadly distinguish two example domains with opposite priorities
regarding CIA (we spare the full spectrum of security requirements here, as it
would take us much beyond the scope of this section and work):

– data-processing enterprises will have confidentiality as their highest good,
followed by integrity, and lastly followed by availability of the personal data
in their possession.

– production-oriented enterprises, on the contrary, will not necessarily rely on
continuous processing of personal data, but rather will protect their produc-
tion lines, i.e., availability is their top priority. Likewise, production control
signals need integrity protection (as second priority goal), followed by confi-
dentiality as the least important among the three goals.

We will later illustrate our methods by showing how to apply them in an enter-
prise whose main business is processing personal data, or producing goods. It
will turn out that the results are somewhat different, yet the method of com-
puting them is the same in both cases, without the need to become explicit on
a numeric difference in terms of importance of the security goals.

1.1 Related Work

Our work addresses the problem of multi-criteria optimization and -game the-
ory, which is traditionally approached by scalarizing the vector-valued revenues
gained by each player. While the concept of a Nash equilibrium is straightfor-
ward to generalize to a Pareto-Nash equilibrium [19] or -security strategy, the
hereby involved importance weights put practitioners to the challenge of finding
a meaningful quantification of importance for the relevant goals, or more gener-
ally, prioritization of security requirements [14,24], whose importance is widely
recognized throughout security practitioners [18,25,34]. Sophisticated methods
and heuristics to do this include the Choquet integral [12], fuzzy logic [31], or
resorting to Pareto-optimality [33].

The problem of optimization over lexicographic orders itself is in fact not
new, yet has seen surprisingly little attention for security applications, despite
the fact that security goals are often in a very strict order of importance. The
theoretical toolbox is rich, and includes axiomatic studies and characterizations
[8–10,15] and questions of equilibria in lexicographically ordered vector-payoffs
[17] and min-max optimization [22,23]. The latter is most closely related to
our work, yet ours is conceptually different and uses a sequential application of
criteria. Essentially, we adapt the “lexicographic method” (also called preemtive
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approach; see [5]) used in multi-criteria optimization, to the computation of
equilibria in zero-sum games for security in a new form.

1.2 Our Contribution

The main contribution made in this work is the description of a simple method to
compute a game-theoretic optimum if several goals are involved that obey a total
order of priority without resorting to scalarization by using importance weights.
As an implied consequence, we get a method to thereby refine ambiguous equi-
libria if they are intended as defense strategies, or as pointers to neuralgic spots
in a system; the latter occurring if we interpret the optimal attack strategies in
this way.

Independently, we corroborate our results by illustrating the computation
using a method of mechanism design, allowing us to construct zero-sum games
with a set of defined, i.e., designed, equilibria for both players. We remark that
our focus on two-person zero-sum games is what makes the construction challeng-
ing, as it is conceptually not difficult to construct certain multi-player nonzero-
sum games with desired optima: in the most trivial instance, we can just let the
payoff for a player be independent of the other player’s actions, and let it attain
a maximum at the desired location(s). More generally, we may look for functions
(e.g., polynomials) that, when having their domain restricted to points where
the opponents have their optima, still have optima at desired positions. While
this is, strictly speaking, no longer a strategic interaction with conflicts, and
hence an uninteresting case for game theory or security, it nonetheless yields a
theoretically valid instance of a general game. The most extreme instance is thus
with exactly opposite goals of the players that depend on the player’s mutual
actions, i.e., a zero-sum game. This class of games is also useful in security model-
ing, since it delivers worst-case defenses without the need for accurate adversary
models or -profiling [29,30,32,36].

2 Preliminaries

2.1 Notation

We let vectors appear as bold-printed lower-case letters, and matrices will use
uppercase bold printed letters. Sets will appear as upper case letters in nor-
mal font. Families of sets are written in calligraphic font. Let ≤lex be the
lexicographic order over Rn × Rn, defined in the usual way by setting a =
(a1, . . . , an) ≤lex (b1, . . . , bn) if and only if [a1 < b1]∨[(a1 = b1)∧(a2, . . . , an) ≤lex

(b2, . . . , bn)]. In the following, let U be a metric vector space, and let ≤ be an
ordering relation on it. Typically, U will be a space spanned over R.

For a finite set X = {x1, . . . , xn}, we let the symbol Δ(X) be the simplex
over X, i.e., the set Δ(X) := {∑n

i=1 λi · xi|λi ≥ 0 for all i, and
∑n

i=1 λi = 1}.
Games are triples (N,S,H), with N being a finite set of players, S being a
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family of finite sets, one Si ∈ S associated with each player giving its actions,
and H is a collection of functions ui : Si × S−i → R of utility functions. Herein,
the notation S−i is the cartesian product of all elements in S, excluding Si. It
expresses the joint actions taken by player i’s opponents. Throughout this work,
we will have N = {1, 2}, S = {S1 = Δ(AS1), S2 = Δ(AS2)} for finite action
spaces AS1, AS2 with n elements for player 1, and m elements for player 2. In
this special case, we can represent the whole game by an (n × m)-payoff matrix
A, and abbreviate our notation by referring to the matrix A to synonymously
mean the game that it defines.

2.2 Representability of the Lexicographic Order

Given an ordering relation ≤ on a set U × U , we say that ≤ is representable by
a function f : U → R if, [a ≤ b] ⇐⇒ [f(a) ≤ f(b)] for all a, b ∈ U that are
comparable under ≤.

It is well known that the lexicographic order, in general, does not lend itself to
a representation by any continuous function. This folklore result is made precise
as Proposition 1, whose proof we let follow in Appendix A for convenience of
the reader.

Proposition 1. On the totally ordered set ([0, 1]2,≤lex), there is no continu-
ous function f : [0, 1]2 → R with the property that (x1, x2) ≤lex (y1, y2) ⇐⇒
f(x1, x2) ≤ f(y1, y2).

Proposition 1 makes lexicographic orders generally difficult to handle in
optimization algorithms, since it lacks the minimal requirement of continuity,
assumed in many optimization methods (up to the stronger requirement of dif-
ferentiability). On the bright side, this lack of continuity only holds in the most
general setting, and special situations may still admit a continuous representa-
tion, or other means of efficient optimization, as we outline next.

3 Finding Lex-Order Optimal Strategies

Our algorithm to compute equilibria over lexicographic orders will decompose a
vector-valued game matrix into a sequence of games, in which the i-th game has
a payoff matrix composed from the respective i-th coordinates in each vector.
That is, given the vector-valued utility function u : S1 × S2 → Rd for a player,
on the discrete strategy spaces S1, S2, we define the k-th game for k = 1, 2, . . . , d
via the matrix Ak = (uk(r, c))(r,c)∈S1×S2 . Note that all game matrices have the
same n × m-shape.

Towards finding an optimum, i.e., an equilibrium, over the lex-order, we
induct over the coordinate k = 1, 2, . . . , d, and prove the existence of equilibria
along the way. The goal is finding strategies that are lex-order optimal for each
player, in light of unilateral deviation.

Induction start k = 1 : The game A1 is only about scalar payoffs, and the equi-
librium w.r.t. the ≤-order over R is also lex-order optimal, since the two relations
coincide on scalars.
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Remark 1. We emphasize that the solution for k = 1 is the only stage at which
the optima are the same as equilibria, since the lex-order and the real-valued ≤
coincide only in that case. As the idea will be seeking optima in the next stage
among the optima found for (all of the) previous games, the term “equilibrium”
will hereafter be understood conditional on the strategies constrained to be also
equilibria for previous games (namely Ak−1,Ak−2, . . .). Clearly, the solution
may not be an equilibrium for any of the games when considered in isolation
and independent of the others.

Remark 2. (Number of optima is finite). The characterization of equilibria by
linear programs (appearing in Appendix B in the context of constructing games
with desired equilibria) defines the feasible set of solutions via a finite number
of inequalities. Therefore, the overall solution set, though generally infinite (as
all convex combinations of optima are themselves also optimal; cf. Lemma 1), is
representable by a finite (though in the worst case exponentially large) number of
points, whose convex combination represents all feasible solutions, and hence also
all optima therein. This finiteness property in fact holds in a measure-theoretic
sense for almost all games [13].

Induction step k − 1 → k : For the induction until k − 1, we can assume a finite

set Ek−1 =
{

(x∗
k−1,1,y

∗
k−1,1), . . . , (x

∗
k−1,nk−1

,y∗
k−1,nk−1

)
}

of optima (cf. Remark
1). For the induction hypothesis, assume that all of them are also optima of the
(k − 1)-th game Ak−1.

Our goal for the induction step is refining the equilibria into an optimum
for the game Ak on the k-th coordinate. The basic idea is to play the game Ak

restricted only to strategies that are already optimal for Ak−1, so as to retain
optimality in the previous games, when optimizing our behavior in the next
game Ak. We materialize this plan now.

From the set Ek−1, we define an auxiliary game Bk: its strategy spaces
are Sk,1 =

{
x∗
k−1,i|i = 1, . . . , nk−1

}
and Sk,2 =

{
y∗
k−1,i|i = 1, . . . , nk−1

}
. The

implied (nk−1 × nk−1)-payoff structure is the matrix

Bk := ((x∗
k−1,i)

T · Ak · y∗
k−1,j)

nk−1
i,j=1. (1)

The so-constructed zero-sum game has its own equilibria, the entire set of which
is enumerable by known algorithms [1]. Moreover, we have convenient topological
properties, assuring that the set among which we look for optima is convex and
closed, and the strategy spaces of Bk are compact sets. This is Lemma 1.

Lemma 1. Let A be a matrix inducing a zero-sum game, on the strategy spaces
S1 ⊂ Δ(Rn), S2 ⊂ Δ(Rm). If ≤ is a continuous ordering1, and u : S1 × S2 → R

1 An ordering ≤ is called continuous, if all bounded sequences (an) with an ≤ b for
all n ∈ R, have a limit that also satisfies the same bound limn→∞ an ≤ b, if that
limit exists. The lexicographic order is discontinuous w.r.t. this definition, since the
sequence (1/n, 0) ≥lex (0, 1) for all n ∈ N, but limn→∞(1/n, 0) = (0, 0) ≤lex (0, 1).
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is continuous w.r.t. a norm on Rn and the order topology induced by ≤, then the
set of mixed Nash equilibria for the zero sum game A is nonempty, convex and
compact.

Combining Lemma 1 with Glicksberg’s theorem [11] yields an equilibrium
(α∗

k,β
∗
k) ∈ Rnk−1 × Rnk−1 in the game Bk, which by definition satisfies the

saddle point condition αT · Bk · β∗
k ≤ (α∗)T · Bk · β∗

k ≤ (α∗)T · Bk · β, for all
α,β.

By the same token as in Remark 2, we can assume a finite number nk of
equilibria in Bk, and let us put these as rows into two matrices Xk−1 ∈ Rnk×nk−1

and Ynk×nk−1
k−1 . These two relate to Bk via Bk = Xk−1 · Ak · YT

k−1.
Since the pure strategies in Bk are all equilibria in Ak−1, any mixed strategy

pair (α∗
k,β

∗
k) ∈ Δ(Sk,1) × Δ(Sk,2) played in Bk induces an equilibrium

x′
k := (α∗

k)
T · Xk−1, and y′

k := (β∗
k)

T · Yk−1 (2)

for the game Ak−1 by Lemma 1 (note that the payoff is continuous, since the
auxiliary game Bk is a standard matrix game and as such with continuous payoffs
over mixed strategies). Thus, the pair (x′

k,y
′
k) satisfies the saddle point condition

in Ak−1, being xT ·Ak−1 · y′
k ≤ (x′

k)
T ·Ak−1 · y′

k ≤ (x′
k)

T ·Ak−1 · y for all x,y.
Our goal is showing that the pair (x′

k,y
′
k) is also optimal in the game Ak. To

this end, we will adopt player 1’s perspective, playing some arbitrary but fixed
x �= x′

k, while player 2 sticks to y′
k.

Towards a contradiction, suppose that player 1 could improve in Ak by play-
ing x,

xT · Ak · y′
k > x′

k · Ak · y′
k. (3)

Substituting the definition of x′
k and y′

k by means of Xk−1,Yk−1 gives on the
left side of (3)

(α∗
k)

T · Xk−1 · Ak · YT
k−1

︸ ︷︷ ︸
=Bk

·β∗
k = (α∗

k)
T · Bk · β∗

k.

With the same substitution on the right side of (3), we get xT ·Ak ·YT
k−1 ·β∗

k >

α∗
k ·Bk ·β∗

k. Now, if there were some x̃ such that xT = x̃T ·Xk−1, we could rewrite
the last inequality into x̃T · Xk−1 · Ak · YT

k−1 · β∗
k = x̃T · Bk · β∗

k > α∗
k · Bk · β∗

k,
to contradict the fact that (α∗

k,β
∗
k) is an equilibrium in Bk, and thereby finally

refute (3). But such an x̃ is in fact easy to find, since the possible actions are
restricted to equilibrium strategies in Ak−1. The vector x must thus be a mix of
rows from the matrix Xk−1, putting x into the row-space of Xk−1. In that case,
the equation system xT = x̃T · Xk−1, even if over-determined, has a solution
being the sought x̃. Hence, (3) cannot hold, and x′

k is also optimal in the game
Ak, when the opponent plays y′

k. By symmetry, the argument for the second
player works analogously, and the induction step is complete, delivering the
sought simultaneous optimum (x′

k,y
′
k) as given by (2). Figure 1 summarizes the

construction as an algorithm.



428 S. Rass et al.

Remark 3. From another angle, the above procedure is viewable as starting in
the game on the first coordinate, with a possibly large set E1 of equilibria, and
then narrowing down, resp. refining, this set to those elements E2 ⊆ E1 that are
also optimal in the game A2. Repeating this procedure, we then further restrict
the set to E3 ⊆ E2, in which only those strategies are retained that are also
optimal in the game A3, etc. It is obvious that the equilibria in A1 can be disjoint
from those in A2, which means that a strategy carried over from Ek to Ek+1 may
no longer be an equilibrium in Ak+1. This brings us back to the initial remark
made at the induction step, calling the solutions “conditional optimal” rather
than equilibria. However, since we are after optimality w.r.t. a lexicographic
order, all we count is the chances of worsening the outcome upon an unilateral
deviation from the final solution. Since the final set Ed ⊆ Ed−1 ⊆ · · · ⊆ E1 = {
all equilibria in A1} contains only equilibria for the first game, deviating from
it would worsen our situation on the first coordinate, and hence irrespectively
of the other coordinates, would make the result lex-order worse. Upon equality,
the second coordinate kicks in, and so on.

Now, let us wrap up by putting the result in the context of security: like
a conventional, scalar-valued, zero-sum game, our lex-ordered optima here have
the same property of being a worst-case defense against any adversarial behavior,
as long as the defender adheres to the final optimum.

Input: A set of payoff matrices A1, . . . ,Ad ∈ n×m,
Output: A lex-order optimal strategy x∗,y∗ with the properties told by Prop.2
Procedure:

1. Compute all equilibria in the game A1 (e.g., using the algorithm from [1]),
and collect the optima for player 1 in the set S1,1 and the optima for player
2 in the set S1,2.

2. Put k ← 1
3. if k = d, then return any (x∗,y∗) ∈ Sk,1 × Sk,2 as the final result and

terminate.
4. Otherwise (if k < d), update k ← k + 1
5. Arrange the elements of Sk−1,1 as rows of a matrix X and arrange the elements

of Sk−1,2 as rows of a matrix Y, and compute the matrix Bk = X · Ak · YT .
6. Compute all equilibria in the matrix game Bk and collect them in a set

Ek :=
{
(α∗

1,β
∗
1), . . . , (α∗

nk
,β∗

nk
)
}
.

7. Iterate over i = 1, 2, . . . , nk pairs (αi,βi) ∈ Ek and for each pair, compute
x′
i = (αi)

T · X,y′
i = (βi)

T · Y. Put all the resulting x′
i into the set Sk,1 and

the resulting y′
i into the set Sk,2.

8. go back to step 3.

Fig. 1. Computation of lexicographically optimal multi-goal security strategies
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More formally, we have:

Proposition 2. Let A1, . . . ,Ad be a series of game-matrices, all of (n × m)-
shape, describing a security game between a defender as player 1, and an attacker
as player 2, whose unknown payoffs may be U1, . . . ,Ud, in the same game.

Let the defending player 1 substitute Uk := −Ak for all k = 1, 2, . . . , d, in
lack of better knowledge, and let x∗ = x′

d,y
∗ = y′

d be the output computed by the
lexicographic method as described in Fig. 1.

Then, conditional on the attacker acting within its own action space (i.e., not
playing any strategy whose payoff is not captured by the columns in the Ak’s),
we have the actual payoff in the k-th game for k = 1, 2, . . . , d for the defender
satisfy

x∗ · Ak · y∗ ≤ x∗ · Ak · y,

for any true behavior y of the attacker.

The proof is a simple consequence of the equilibrium property that we have
shown to hold for each Ak: it means that each x′

d,y
′
d is a saddle point

x · Ak · y′
d ≤ x′

d · Ak · y′
d ≤ x′

d · Ak · y,

for all k = 1, 2, . . . , d, since each x′
k,y

′
k is a convex combination of saddle points.

If player 2 has a different incentive than engaging in a zero-sum competition, then
the saddle point property will ensure that player 1’s revenue can only increase
by the unilateral deviation of player 2. The worst case is attained for exactly
opposite intentions, i.e., a zero-sum regime.

4 Applications and Examples

4.1 Refining Ambiguous Attack or Defense Strategies

One appeal of using game theory to analyze attacker/defender scenarios is its
simultaneous account for the natural opposition of interests. Thereby, it deliv-
ers optimal defenses and optimal attacks, but their practical value depends on
matters of plausibility (e.g., for attacks), or feasibility (e.g., for defenses).

Implausible equilibria arise in models that neglect certain interests of the
attacker, or under oversimplifying assumptions on the attack models. Likewise,
infeasible defenses can result from models missing on certain cost or efforts
imposed on the defender if it were to implement the game-theoretically opti-
mal choice. The existence of ambiguities in Nash equilibria is well documented,
and we can state the following explicit result for security games as zero-sum
competitions:

Lemma 2. Pick any set of vectors E1 =
{
x∗
1, . . . ,x

∗
k1

} ⊂ Rn and E2 = {y∗
1,

. . ., y∗
k2

} ⊂ Rm, where k1 < n and k2 < m. Then, there is a finite two-person
zero-sum game whose equilibria are exactly the set Δ(E1) × Δ(E2).
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Lemma 2 is proven in Appendix B. It essentially tells that any desired equilibrium
for both, the defender and the attacker can be “enforced” by a proper mechanism
designed, which is not per se surprising, but this mechanism can take the form
of a simple security game. Conversely, this means that we may expect either a
unique or an infinitude of equilibria in even the simplest instances of security
games, making a method of refining them necessary. The usual way of resorting
to more advanced concepts of equilibria is not necessarily also a practical way
to go, since it still can leave practically relevant aspects untouched, see some
examples following below.

The lexicographic method of computing equilibria does not require a priori
knowledge of all relevant dimensions, and can refine ambiguous or implausible
results “as needed” by bringing in further utility values. For example, several
ways of defending a system by randomization of actions can be judged upon the
following additional criteria:

Cost of Changing from Between Strategies: Randomization itself causes
friction losses, and this is in conflict with the common practice of “never touch a
running system”. Thus, changing configurations requires efforts (e.g., people can
be reluctant to change their password) and proper modeling [6] that can lead to
further utility values for the lexicographic optimization.

Predictability of a Defense for the Attacker: Since a randomized action
is essentially describing a random variable, we can – as an additional “utility”
– ask for the uncertainty that our defense has against a guessing adversary.
To measure this, we could define the randomized choice rule’s min-entropy as
another utility of interest (not Shannon-entropy, since this is in general not a
good measure of unpredictability against guessing).

Cost or Times to Exploit: For the attacker, even if there is a vulnerability
to exploit, it is typically a complex choice to pick the “easiest” one. Methods
like the Common Vulnerability Scoring (CVSS) associate several scores with a
vulnerability, such as required background knowledge, necessary form and dura-
tion of access, etc. All these lend themselves to defining their own utility values
for the attacker, and can be brought into a lexicographic optimization for the
defender to narrow down the set of optimal defenses in such multiple dimensions.

4.2 Example 1: The Pure Algorithm (Numerical Illustration)

Let us now give a numerical example of the computational method from Sect. 3
on a game with two payoffs per player. We start with a constructed matrix A1

(obtained by application of the techniques to prove Lemma 2; see Appendix B),

A1 =

⎛
⎜⎜⎜⎜⎝

0.955986 −0.272557 0.316327 −0.405844 0.102397 −0.662056
0.0454297 −0.0580642 −0.178636 −0.187195 0.130912 0.204854
−0.298982 0.05127 −0.17908 0.0170827 0.0593234 0.292065
−0.436331 0.223209 −0.113101 0.453724 −0.301461 0.340507
−0.558309 0.0324137 0.0676309 −0.0335246 0.251095 −0.076376

⎞
⎟⎟⎟⎟⎠

, (4)
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known to have three equilibria x∗
1, . . . ,x

∗
3 for player 1, and 2 optimal strategies y∗

1 ,y∗
2

for player 2 (given explicitly in Appendix B as (5) and (6)), and another matrix

A2 =

⎛
⎜⎜⎜⎜⎝

5 4 5 3 3 2
5 5 3 2 5 1
3 3 1 1 2 4
2 2 5 5 2 3
2 3 2 4 3 2

⎞
⎟⎟⎟⎟⎠

chosen purely at random, but with the same shape as A1. A systematic construction
of A2 would be possible (e.g., using a selection of the vectors used above to construct
A1), but the optimization does not hinge on such constructed input(s).

Now, the auxiliary game matrix B2 arises from computing the equilibria of the
scalar-valued matrix game A1, which we know to be given by any combination of
{x∗

1,x
∗
2,x

∗
3} × {y∗

1 ,y
∗
2} =

{
(x∗

1,i,y
∗
1,i)

}n1=6

i=1
. The matrix has as many rows as player 1

has equilibria, and as many columns as player 2 has equilibria, being

B2 =

(
3.27905 3.35008 3.31098
3.0755 3.1093 3.00523

)
.

In this game, an equilibrium is computable by linear programming, explicitly stated as
primal (P ) and dual problem (D) in Appendix B, using the GNU linear programming
kit [20]. An equilibrium is found as

α∗
2 = (1, 0), and β∗

2 = (1, 0, 0),

so that the final optimum for both players is obtained by evaluating (2), giving

x′
2,1 = (0.236624, 0.259513, 0.011683, 0.330247, 0.161933) (= x∗

1)

and

y′
2,1 = (0.11090, 0.13516, 0.22033, 0.12635, 0.23811, 0.16914) (= y∗

1).

From here onwards, the process would continue likewise by enumerating all equilib-
ria that exist in the game B2, to make up a list of strategies x′

2,1, . . . ,x
′
2,n2 and

y′
2,1, . . . ,y

′
2,n2 to define the game B3 and so on. Since the process is repetitive, we

let our example stop here, with a unique solution obtained for the second coordinate
already. Once we are left with a single solution, the iteration may safely stop, since
considering further payoff matrices for higher coordinates cannot further narrow down
the set of equilibria; it would remain the same optimum over all coordinates > k, once
the solution is unique at stage k.

4.3 Example 2: Data Download

Let us recap the two distinct settings of a company processing personal data or run-
ning a production line. In both cases, we assume that data is being downloaded from
redundant servers, some of which may be compromised by an adversary. The settings
are different for the two companies in the following way:

– for the production-oriented enterprise, Alice will download software or control
scripts, neither of which has a particular demand for confidentiality, but must
be available and integrity protected, in this order of importance for the two. The
overall goals are thus



432 S. Rass et al.

“Availability” > “Integrity” > “Confidentiality”.
– for the personal data processing enterprise, it may not matter too much if the data

of a particular person is not instantly accessible, but it must remain confidential
in all cases, and needs protection from manipulation. The priorities are thus

“Confidentiality” > “Integrity” > “Availability”.

M1

M3

M2

admin

1. download

2. hash verification

3. use data

user

Fig. 2. Example scenario for data download

Towards a specific example, suppose that an administrator has three servers to
potentially retrieve data from (where “data” can be a software or personal data), and
that the policy prescribes to do a majority vote verification. That is, data retrieved
from one server Mi needs to be checked against another redundant server Mj

2; if the
results are consistent, we have a 2-out-of-3 majority pointing to the downloaded data
as correct, since the data is apparently the same as if it were when downloaded from
the verification server Mj and checked against the other server Mi. If the verification
fails, the data could be checked for consistency with a third server.

Let the situation be as depicted in Fig. 2, and consider the following likelihoods
for a man-made hacker attack (probabilities p1, p2, p3) or a natural outage of a server.
Natural failures are hereby considered individually different, e.g., due to varying traffic

2 This is indeed the standard idea behind putting cryptographic hash fingerprints
on download sites for open-source software, addressing the possibility of a forged
installation bundle. The package’s fingerprint as put on the website next to the
download is for verification against independent other mirrors that offer the same
download.
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loads, distinct hard- and software configurations, different administrative procedures
applying to a server and its mirror, or similar, leading to different probabilities q1, q2
and q3 assumed here:

mirror M1 M2 M3

probability of being hacked p1 = 0.1 p2 = 0.05 p3 = 0.01

probability of failure (reliability) q1 = 0.1 q2 = 0.2 q3 = 0.15

With this, we can set up a payoff structure with the strategies {M1, M2}, {M2, M3}
and {M1, M3}, meaning that both servers are used by the players; for player 1, using
{Mi, Mj} means download from Mi and verify against Mj . The same strategy for the
attacker means that exactly Mi and Mj are being attacked, with success chances as
given in the table above.

Assuming stochastic independence, we get the following generic payoff structure,
where �i is a likelihood later to be substituted by either pi or qi,

{M1, M2} {M1, M3} {M2, M3}
{M1, M2} (1 − �1)(1 − �2) 1 − �1 1 − �2
{M1, M3} 1 − �1 (1 − �1)(1 − �3) 1 − �3
{M2, M3} 1 − �2 1 − �3 (1 − �2)(1 − �3)

which, upon substituting the values �i = pi or �i = qi values, gives the confidentiality
game Aconf and availability game Aavail

Aconf :=

⎛
⎝

0.855 0.9 0.95
0.9 0.891 0.99
0.95 0.99 0.9405

⎞
⎠ , and Aavail =

⎛
⎝

0.72 0.9 0.8
0.9 0.765 0.85
0.8 0.85 0.68

⎞
⎠ .

Now, the optimization is either w.r.t. the goal priorities “Confidentiality” > “Avail-
ability”, coming to the payoff vector (xT ·Aconf ·y,xT ·Aavail ·y), or with the reversed
goal priorities “Availability” > “Confidentiality”, giving the (reversed) payoff vector
(xT · Aavail · y,xT · Aconf · y).

Let us compute the results in both cases separately:

1. For confidentiality as the highest goal, we find only a single equilibrium being

x∗
1 = (0, 0.09548, 0.90452), and y∗

1 = (0.49749, 0, 0.50251)

with the saddle point value v1 = 0.94523, i.e., an ≈ 94% chance of the data being
not compromised (w.r.t. confidentiality).
Since this equilibrium is unique, it carries through to the second coordinate without
any further change, giving the 1× 1-payoff structure B2 = (0.7526). This is, at the
same time, the best achievable payoff regarding availability, so we have the lex-
order optimum being (Pr(Confidentiality), Pr(Availability)) = (0.94523, 0.7526).

2. If availability is the highest-priority goal, we first look for a saddle point on Aavail,
giving

x∗
2 = y∗

2 = (0.40564, 0.55531, 0.03905),
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with the availability likelihood being the saddle point value v2 = 0.82308, i.e., an
≈ 82% chance for the data to be downloadable.
As before, this equilibrium is unique, and hence no change upon proceeding
to further coordinates will happen. The game B2 is again 1 × 1 and rewards
the (constant) value 0.89537. The lex-order optimum is thus (Pr(Availability),
Pr(Confidentiality)) = (0.82308, 0.89537).

Generally, the procedure will make the goal with highest priority matter most, with
the multi-criteria optimization subsequently refining the set of equilibria existing for
the first goal. This is in contrast to other instances of multi-goal treatment, where the
goals may play equally important roles. From the complexity perspective, the enumer-
ation of equilibria per goal can take worst-case exponential time (in the number of
strategies), but practically, there may not be a need to compute all equilibria in all
cases; the method will never shrink the set towards emptiness, since once the set is
singleton at stage k, it will remain unchanged for k + 1, k + 2, . . . , d. Thus, as long
as equilibria remain plausible in the context at hand, the computational burden may
be kept in feasible bounds. Nonetheless, this may still call for other refinements like
perfect equilibria or others. Imposing such additional constraints on the equilibria per
stage is a straightforward matter.

5 Conclusion

We described a simple method to do multi-criteria optimization with goal priorities as
optimization over lexicographic orders. As a natural side-effect, our algorithm narrows
down a potentially large set of ambiguous Nash equilibria to fewer ones, and therefore
is a natural refinement of the general Nash equilibrium in case of multiple criteria. It
is, however, fair to admit that this process is in general not guaranteed to establish
ultimate uniqueness of the equilibrium. In general, the so-found optimum depends on
the specific goal prioritization, reflecting the fact that security strategies are expectedly
different depending on the application domain. The method is algorithmically simple,
and implemented as open source and freely available (see [2] for a software to enumerate
equilibria, and [27] for the source code behind the examples given in this work).

While our method to construct games with desired ambiguous equilibria (see
Appendix B) is here used only for the sake of illustrating, it may be of independent
interest, e.g., for teaching general game theory to construct examples.

Acknowledgement. The authors would like to thank the anonymous reviewers for
valuable and constructive feedback on this work.

A Proof of Proposition 1

Towards a contradiction, suppose there were such a function f then, it obviously cannot
be constant, for otherwise, it were meaningless. Thus, there must be some value x for
which f(x, 0) �= f(x, 1), and the interval I(x) := [f(x, 0), f(x, 1)] has nonzero width.

Furthermore, any two such intervals I(x), I(y) are disjoint: if there were x, y such
that the intervals overlap, then we would have f(x, 0) < f(y, 0) < f(x, 1) < f(y, 1),
which, since f represents the ordering, entails (x, 0) <lex (y, 0) <lex (x, 1) <lex (y, 1),
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in which the first <lex implies x < y and the second implies y < x, which is not possible
at the same time.

Let us pick some particular (arbitrary) x for which f(x, 0) �= f(x, 1) in the following.
Since f is continuous, so is the function f(h) := f(x + h, 0) − f(x + h, 1). Our choice
of x makes f(0) > 0, and this relation holds in an entire compact neighborhood f of
0. The compactness of f implies that f attains a minimum ε > 0 on f .

Each h ∈ f gives rise to a set I(x + h), whose length is by construction ≥ ε.
Furthermore, all these uncountably many sets are pairwise disjoint, so that adding up
their lengths would add up to infinity.

This is, however, impossible given the fact that this all happens within the unit
interval [0, 1], whose length is 1. This final contradiction refutes the initial assumption
on the existence of a continuous function f to represent the lexicographic order.

B Proof of Lemma 2

Suppose that we have picked a set of vectors 0 ≤ x∗
1, . . . ,x

∗
k1 ∈ Rn for k1 < n, to be

equilibrium strategies for player 1, and likewise, let 0 ≤ y∗
1 , . . . ,y

∗
k2 ∈ Rm with k2 < m

be a set of chosen equilibria for player 2 in our zero-sum game to be constructed.
Let the matrix X be such that all x∗

i ∈ N(X), when N(X) denotes the null-space
of the matrix X. This matrix is directly constructible by taking the singular value
decomposition of the matrix whose rows are exactly the desired x∗

i . In defining X in
this way, each (mixed) strategy x∗

i makes the other player indifferent in its response,
since X · x∗

i = 0.
Analogously, we can construct a matrix Y whose null-space is spanned by{

y∗
1 , . . . ,y

∗
k2

}
, thus achieving (y∗

i )
T · YT = 0 for all i = 1, 2, . . . , k2.

Finally, pick any random matrix Z with a conformable shape to have the matrix
product A = XT · Z · Y ∈ RnA×mA well-defined3. By associativity, A retains the
properties of X and Y, so that we still have (x∗

i )
T · A = 0 and A · y∗

j = 0 for all i, j.
Now, take A as the (nA × mA)-payoff matrix in the game. It is well known that we
can obtain an equilibrium for a maximizing player by solving the linear program

(P ) min

=:cT︷ ︸︸ ︷(
0
1

)T

·

=:x︷ ︸︸ ︷(
v
μ

)
s.t.

=:B︷ ︸︸ ︷(−AT 1

1 0

)
·
(

μ
v

) ≥
=

=:b︷ ︸︸ ︷(
0
1

)

and μi ≥ 0 for all i = 1, . . . , nA

in which the conditions given here in matrix notation evaluate to the minimization
of the saddle-point value v, upper-bounding the payoff obtained from the matrix A by
playing the i-th row with probability μi, i.e., μT ·A ·ei ≤ v for all i when ei is the i-th
unit vector. The lower block in the product B · μ = 1 is then just the condition that
the sum of all μi should equal 1.

Now, look at the dual program for the other player being

3 Here, nA and mA are new variables to describe the shape; their values depend on
how many equilibria we want to enforce, and whether these are linearly dependent.
This determines the dimension of the nullspaces, which sets the values for nA, mA.
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(D) maxbT ·

=:y︷ ︸︸ ︷(
ν
v

)
, s.t. yT ·

(−A 1

1 0

) ≤
=

=cT︷ ︸︸ ︷(
0
1

)T

and νi ≥ 0 for all i = 1, . . . , mA.

The point of our construction is that in the matrix products B · x and yT · B, the
following happens:

– in (P ), we get the expression −A · μ = 0 for every μ ∈ {
x∗
1, . . . ,x

∗
k1

}
or linear

combinations thereof. Thus, the constraint ≥ 0 on this row is satisfied with equality
if v = 0.

– Likewise, evaluating the constraints in (D) creates the inner term −νTA = 0
for all ν ∈ {

y∗
1 , . . . ,y

∗
k2

}
(and any linear combinations thereof). Thus, the dual

constraint ≤ 0 is also satisfied with equality.

Now, an equilibrium (μ, ν) in the zero-sum game A is characterized by μ being an
optimum in (P ) and ν being an optimum in (D), and by strong duality, this happens
if both are feasible for the respective constraints, and the respective optima are equal.
Putting these conditions together, we find (μ, ν) to be an equilibrium if and only if
the following conditions are all satisfied:

1. B · x ≥ b, i.e., feasibility for (P ): this holds by construction, even with equality in
all rows.

2. yT · B ≤ cT , i.e., feasibility for (D): this also holds by construction with equality.
3. cT ·x ≤ yT ·b, which can only hold if the two values are equal. But we constructed

all equilibria to create the value v = μT · A = A · ν = 0, so equality holds here
too.

Thus, all pairs (x∗
i ,y

∗
j ) are equilibria of our matrix game A.

Remark 4. Switching the players’s directions between minimization and maximization,
as well as changing the saddle-point value from v = 0 into some chosen v′ �= 0 is easy
by a proper affine transformation A′ �→ ±A + v′.

It is easy to see that the so-constructed game has the designed equilibria, but also
many others, since not only the convex-combination, but any linear combination of the
chosen vectors will be in the nullspace. Let us take a short break here to numerically
illustrate the intermediate construction.

B.1 Example

We implemented the algorithm in GNU Octave [7], with sources are available from
[27]: for the example, let us fix the strategy spaces for player 1 and 2 to have five, resp.
six, actions. Furthermore, let us pick two equilibria for player 1, and three equilibria
(all mixed for both players) at random, sampling uniformly random values from [0, 1],
and normalizing the vector to unit sum. For a random instance, these equilibria were

strategy 1 2 3 4 5
x∗
1 = (0.236624, 0.259513, 0.0116831, 0.330247, 0.161933)

x∗
2 = (0.26241, 0.117688, 0.21289, 0.284324, 0.122688)

(5)
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and

strategy 1 2 3 4 5 6
y∗
1 = (0.110901, 0.13516, 0.220331, 0.126352, 0.238114, 0.169142)

y∗
2 = (0.1328, 0.45488, 0.0802542, 0.040265, 0.236992, 0.0548095)

y∗
3 = (0.148226, 0.0651162, 0.0286501, 0.31977, 0.375297, 0.0629404)

(6)

With these values, the matrices X1 and Y1 from the previous section are easily found
using the null function in Octave (that internally computes a singular value decom-
position), to find

X =

⎛
⎝

−0.490976 0.689481 0.497453 −0.183545 −0.0490909
−0.617055 −0.273987 0.0243345 0.724245 −0.138025
−0.263877 −0.192006 0.0534469 −0.120881 0.935967

⎞
⎠

and

Y =

⎛
⎝

−0.554165 0.271458 0.237081 0.640731 −0.372757 −0.116278
−0.72375 −0.0592711 0.0703592 −0.314963 0.585821 −0.159171

−0.278293 0.0898957 −0.51704 0.0385987 −0.0337394 0.802816

⎞
⎠

and with a randomly chosen matrix Z, we find the payoff structure

A =

⎛
⎜⎜⎜⎜⎝

0.955986 −0.272557 0.316327 −0.405844 0.102397 −0.662056
0.0454297 −0.0580642 −0.178636 −0.187195 0.130912 0.204854
−0.298982 0.05127 −0.17908 0.0170827 0.0593234 0.292065
−0.436331 0.223209 −0.113101 0.453724 −0.301461 0.340507
−0.558309 0.0324137 0.0676309 −0.0335246 0.251095 −0.076376

⎞
⎟⎟⎟⎟⎠

which is exactly the matrix (4) used in Sect. 4.2.
Solving the linear programs (P ) and (D), we find the following mixed equilibrium

for the game A:

x∗ = (0.28381, 0, 0.37985, 0.24622, 0.09012),
and y∗ = (0.06237, 0, 0.48687, 0, 0.11092, 0.33984)

which is not among the equilibria listed in (5) or (6). However, it is a simple matter to
put the vectors x∗,y∗ into span {x∗

1,x
∗
2} and span {y∗

1 ,y∗
2 ,y

∗
3} via

x∗ = −0.8298 · x∗
1 + 1.8298 · x∗

2 and

y∗ = 2.55931 · y∗
1 − 0.62699 · y∗

2 − 0.93232 · y∗
3 .

B.2 Restricting the Equilibria to the Desired Set

Now, to complete the proof of Lemma 2, it remains to modify the game so that no
solution outside the convex hull of our chosen equilibrium points is possible.

The simplest method of to exclude equilibria outside the desired set is adding a
penalty term to the goal function that vanishes on the desired set of optima. An obvious
choice is letting δ be a distance measure, such as

δ(M,y) := inf {‖x − y‖ : x ∈ M} ,

for a set M ⊂ Rn and a point x ∈ Rn, using any norm ‖·‖ on Rn. Put E1 as the set
of desired equilibria of player 1, and let E2 be the set of desired equilibria for player 2.
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Then, any action outside E1 shall decrease the revenue for player 1, while any deviation
to the exterior of E2 shall increase the payoff for player 1, so that there is an incentive
for player 1 to stay within the desired set of equilibria, and another incentive for player
2 to do the same (zero-sum game). Thus, we change the expected payoff function from
u(x,y) = xT · A · y into

u(x,y) = xT · A · y + δ(y, Δ(E2)) − δ(x, Δ(E1)). (7)

This function is no longer linear, and hence the optimization problems (P ) and (D)
no longer apply as such. But strong duality still holds, since Slater’s condition [3] is
satisfied: note that the change in the payoff functional manifests itself in the primal
problem (P ) as the inequality u(x, ei) ≤ v for ei being the i-th unit vector run-
ning over all strategies of the second player (the likewise converse inequality would
arise in the dual problem (D)). This is due to the fact that we still do a min-
max optimization maxx miny u(x,y), where the inner optimization is easy because
we have only a finite number of choices (or any convex combination of them), making
miny u(x,y) = mini=1,...,m u(x, ei).

More formally, let Bo :=
{
(x,y) : ‖x‖1 < 1, ‖y‖1 < 1

}
be the interior of the unit

balls defining the feasible set of probability distributions, i.e., mixed strategies for both
players. Moreover, let E be the convex hull of all equilibria that are admissible by
design. For Slater’s condition, we look for an inner point that satisfies the constraints
with strict inequality. Note that the affine hull aff(E) is unbounded, and therefore
extends over the bounded convex set E. Moreover, by construction of the penalized
utility (7), we have nonzero contributions of the distance terms outside E. Now, dis-
tinguish two cases:

Case 1: If Bo \ E = ∅, then all probability distributions are admissible equilibria by
design, and there is nothing to restrict (the penalty terms never become active, and
always add zero to the overall utility).
Case 2: Otherwise, the affine hull aff(E) must contain a point (x0,y0) ∈ (Bo∩ aff(E))\E
outside the admissible set E but in the interior of the unit ball. Look at the terms that
sum up to the penalized utility:

xT · A · y = 0, because (x0,y0) are still in the nullspace of A;

δ(x0, Δ(E1)) > 0, because we are outside Δ(E1) ⊂ E;

δ(y0, Δ(E2)) > 0, because we are outside Δ(E2) ⊂ E.

So, whenever δ(x, Δ(E1)) �= δ(y, Δ(E2)), we are done since we have a nonzero utility
for the respective player and hence a Slater point (for one of the players, i.e., either the
primal or the dual problem). Otherwise, if δ(x, Δ(E1)) = δ(y, Δ(E2)), we can slightly
move x farer away from E, since Bo is an open set. This move from x0 to x′

0 with
δ(x0, Δ(E1)) �= δ(x′

0, Δ(E1)) again makes the penalty term overall negative, and we
have (x′

0,y0) as the sought Slater point. The existence of a Slater point certifies strong
duality to hold for the optimization problems. The design of the respective utilities
(having opposite signs since we are playing a zero-sum regime) then assures that all
feasible solutions must be inside the set Δ(E1)×Δ(E2). By strong duality, no solution
outside this region is possible, and Lemma 2 is proven.
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