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Preface

Cybersecurity is a major challenge of today’s connected world as we are becoming
increasingly connected by the recent advances in information and communication
technologies. This challenge is exacerbated by the ubiquitous digitalization which is
affecting every aspect of society, life, and work. Traditional ways to address network
security issues rely on cryptography, firewalls, and intrusion detection systems. As
attackers are becoming more and more sophisticated, these solutions are not sufficient
to guarantee the security of the network. There is an inevitable need to shift to a new
security paradigm where security solutions take into account the strategic behaviors
and the constraints on the attack-and-defense resources. We need to understand the
fundamental tradeoffs in the design of secure systems instead of hoping for a panacea
that can be effective in all security scenarios. Game theory is a mathematical science
that studies strategic interaction among rational decision-makers. It can naturally
capture the competitive and strategic behaviors between an attacker and a defender, and
a promising baseline framework for the analysis and design of system security. In the
past years, we have witnessed the success of applications of game theory to multiple
security domains, including wireless community, cloud computing, industrial control
systems, Internet of Things, and national homeland security. This year’s GameSec
conference is a continuing celebration of this success.

This volume contains the papers presented at the 11th conference on Decision and
Game Theory for Security (GameSec 2020), held virtually during October 28–30,
2020. This conference was planned to take place at College Park, Maryland, USA. Due
to COVID-19, this conference was the first virtual conference since GameSec was
inaugurated in 2010 in Berlin, Germany. The previous conferences were held in
College Park (Maryland, USA, 2011), Budapest (Hungary, 2012), Fort Worth (Texas,
USA, 2013), Los Angeles (USA, 2014), London (UK, 2015), New York (USA, 2016),
Vienna (Austria, 2017), Seattle (Washington, USA, 2018), and Stockholm (Sweden,
2019). For the past 11 years, GameSec has been widely recognized as a prominent
venue for interdisciplinary research in security and privacy.

The conference program this year included 21 full paper presentations and 2 short
papers. We have seen the applications of game theory to security issues in
cyber-physical systems, computer networks, and machine learning. One special session
of this conference is on the confluences between machine learning and game theory for
cybersecurity. The presented papers not only explore new attack mechanisms but also
aim to develop defense solutions to deter and mitigate the attacks. Another session of
this conference is on the theoretical foundations of security games. Presentations in this
session discuss new modeling frameworks, analytical methods, and algorithmic solu-
tions that bridge cognitive science, decision and control theory, data science, and
network science to solidify the foundations of security games.

An additional special feature of this year’s program for GameSec are several invited
papers and presentations. The purpose of these invited lectures is to provide to the



GameSec participants a broader and richer set of problems and challenges, where
interdisciplinary research involving security, trust, privacy, and various forms of game
theory holds great promise.

Thanks to the support of the National Science Foundation, New York University,
the University of Maryland, Springer, we were able to make this year’s conference
completely free of charge, allowing students and researchers from all over the world to
participate in the discussions of research. We sincerely hope that this conference will
continue to bridge between theory and practice, and offer useful resources for
cybersecurity practitioners and researchers.

October 2020 Quanyan Zhu
John S. Baras

Radha Poovendran
Juntao Chen

vi Preface
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Distributed Generative Adversarial
Networks for Anomaly Detection

Marc Katzef1(B) , Andrew C. Cullen2 , Tansu Alpcan1 ,
Christopher Leckie2 , and Justin Kopacz3

1 Department of Electrical and Electronic Engineering, University of Melbourne,
Melbourne, Australia

marc.katzef@student.unimelb.edu.au
2 School of Computing and Information Systems, University of Melbourne,

Melbourne, Australia
3 Northrop Grumman Corporation, Denver, USA

Abstract. Cognitive radio networks can be used to detect anomalous
and adversarial communications to achieve situational awareness on the
radio frequency spectrum. This paper proposes a distributed anomaly
detection scheme based on adversarially-trained data models. While
many anomaly detection methods typically depend on a central decision-
making server, our distributed approach makes better use of decentral-
ized resources, and decreases reliance on a single point of failure. Using
a novel combination of generative adversarial network (GAN) elements,
participating cognitive radio devices learn a representation of local net-
work activity data through a non-cooperative (strategic) game. Devia-
tions from this expected network activity are flagged as anomalies and
treated as possible network security threats, improving situational aware-
ness. Tested on a range of time series datasets, the performance of the
proposed distributed scheme matches that of state-of-the-art, centralized
anomaly detection methods.

Keywords: Anomaly detection · Distributed · Generative adversarial
networks · Cognitive radio networks

1 Introduction

Cognitive Radio (CR) is a communication architecture that strives to shift
decision-making to network-connected devices themselves [1]. Originally envi-
sioned to improve spectral efficiency (by intelligently hopping to unused frequen-
cies), the devices composing CR Networks (CRNs) are autonomous, general-
purpose computing resources. While the spectral efficiency aspect of CR has
gathered great attention, the alternative benefits of device autonomy (such as
increased situational awareness) are often overlooked.

Cognitive radio networks can be used to detect anomalous and adversarial
communications to achieve situational awareness on the radio frequency spec-
trum. One of the objectives here is to identify potentially malicious communica-
tions by identifying unusual patterns. A secondary objective, as outlined in [2,3],
c© Springer Nature Switzerland AG 2020
Q. Zhu et al. (Eds.): GameSec 2020, LNCS 12513, pp. 3–22, 2020.
https://doi.org/10.1007/978-3-030-64793-3_1
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is to defend CRNs against a range of attacks spanning multiple network layers.
These attacks include denial of service, firmware tampering, primary user emula-
tion, false sensing reports, and spectrum data poisoning, as well as the standard
wireless attacks of jamming and eavesdropping. In each of these attack scenar-
ios, individual devices can collect unique, local data that can be used to identify
unusual activity. The task of identifying these attacks has been treated as an
anomaly detection problem and approached from different fields, as Sect. 2.1
explains.

Anomaly detection is the task of identifying outlying elements in a collection.
Given a set of data samples (such as historical readings of network activity),
anomaly detection can be formulated as the task of identifying the samples x ∈
R

d that were unlikely to be drawn from the same distribution as the remaining
samples, pX(x). In a network security context, the samples being considered
are typically feature vectors containing recent network traffic statistics, such
as mean packet size, mean inter-arrival time and counts of each packet type.
While many methods exist to approximate pX(x), few methods consider the
resource constraints imposed by low-power devices in the CRN setting. With
limitations on battery life, computation power, memory and storage, a CR device
sharing all of its local observations with the entire CRN is infeasible. Shifting
to a distributed anomaly detector would reduce the workload of any individual
device and allow for arbitrary scalability.

This paper explores anomaly detection using GANs—adversarially-trained
Machine Learning (ML) models with a strong data-generating ability and a high
level of modularity—against test-time attacks. Recognizing that GANs learn the
distribution of a given dataset, anomaly detection is a natural extension by iden-
tifying if a sample lies outside of the learned distribution. Recognizing that GANs
are composed of several independent neural networks, exchanging these modules
is a comparatively low-cost method to transfer learned experiences. Using these
features, the contributions of this paper are (1) a game-theoretic evaluation and
interpretation of a novel combination of GAN components (referred to as Peer-
GAN), (2) a distributed formulation of Peer-GAN, applied to anomaly detection
and (3) a framework for testing arbitrary anomaly detection methods in a dis-
tributed setting.

2 Related Work

Existing anomaly detection methods draw on a variety of related fields, with ML
becoming the most prevalent in recent years. This section summarizes popular
methods and one ML method in particular—the GAN.

2.1 Anomaly Detection

The task of anomaly detection has been explored using the fields of informa-
tion theory, signal processing and a variety of ML methods. These methods
all make a trade-off between storage requirements, computational requirements
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and manual feature engineering. With minimal feature engineering and methods
that balance storage and computation, ML has been a popular approach. When
labelled training data is available, supervised ML methods often model anomaly
detection as a binary classification problem. Supervised model-based works like
[4] have used support vector machines to classify spectrum sensing fingerprints
during a transmission. The approach in [5] used clustering and reinforcement
learning. However, a significant performance improvement in terms of the Area
Under Receiver Operating Characteristic (AUROC) curve was found by moving
to the field of deep learning [6].

When signal class information is not known (e.g., when a network is under a
novel attack), unsupervised ML methods may be used. As shown in [7], the field
of unsupervised ML anomaly detection includes the well-established methods of
k-Nearest Neighbor (kNN), isolation forest, feature bagging, Principal Compo-
nent Analysis (PCA), auto-encoders and GANs. These methods can be divided
into categories of distance-based (including kNN, isolation forests and feature
bagging) and reconstruction-based (including PCA, auto-encoders and GANs).
Distance-based methods measure some distance from a given sample to histori-
cal samples, which may be compared with a threshold to identify anomalies. For
kNN, this distance is the norm of the difference between a sample and the k-th
nearest historical sample. While the benchmarks in [7] show these methods per-
form well (in terms of AUROC), they depend on all N historical samples—giving
O(N) storage requirements and O(log(N)) computational complexity for tree-
based sample lookup. This storage requirement makes distance-based anomaly
detection methods infeasible for use on storage-constrained devices such as CRs.
To address these constraints, works like [8] have reduced the memory footprint of
kNN by creating representative samples for each class. However, this decreased
memory comes with decreased performance resulting in single hidden layer neural
networks and support vector machines achieving higher classification accuracy.

The remaining, reconstruction-based anomaly detection methods do not
depend on the entire training dataset for each subsequent classification. Instead,
PCA and auto-encoders learn to reconstruct a given sample x to obtain x̂ to
then calculate a reconstruction error, ||x − x̂||, which may be compared with
a threshold. These methods expect unfamiliar samples to give larger recon-
struction errors. PCA (typically used as a dimensionality-reduction operation)
reconstructs a sample by projecting a sample from the sample space to a lower-
dimensional space (using a subset of the training dataset’s eigen-vectors as the
basis) and back. As these projections are two linear transformations, PCA recon-
struction offers low fitting/training complexity and low storage requirements
(only storing eigen-vectors) after training. Furthermore, [9] show that the PCA
method may be approximated in a distributed environment. However, due to
PCA’s use of linear transformations, [9] states that PCA cannot represent data
distributions with multiple data clusters.

Using deep neural networks (DNNs), auto-encoders overcome PCA’s lin-
earity constraint by performing arbitrary transformations to and from a low-
dimensional auxiliary (code) space. After training, auto-encoders can update
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their representation online (by training on additional samples) without the need
to store the dataset after training. However, to initially form this representation,
an auto-encoder must be trained on a centralized dataset, with collaboration hin-
dered by the fact the auto-encoder’s coded sample representation is arbitrary.
As the following subsection explains, the GAN follows a similar pattern but the
GAN imposes structure to the coded sample representation allowing for collab-
orative training.

2.2 GANs for Anomaly Detection

A GAN is composed of two ML models, the generator and discriminator, which
are the players of a min-max game (see Sect. 3.1 for details). The tasks for
the generator and discriminator are to, respectively, approximate pX(x) with
a parameterized distribution, pG(x) and to discriminate between samples from
pX(x) and pG(x). Existing works have applied GANs to the domain of anomaly
detection by separating the GAN into its constituent components to achieve
better performance than PCA, kNN and feature bagging on multiple datasets
[10]. GANs have been applied to anomaly detection by either using discriminator
output directly, measuring some distance between a sample x and pG(x), such as
minx̂∼pG

||x − x̂||, or a combination of the two [10,11]. One issue identified with
using pG(x) is the large computation requirement to calculate the generator’s
anomaly score for individual samples. To speed up the required projection from
sample space to the generator’s output space, the Bidirectional GAN (BiGAN)
is utilised in [12,13] to produce the Efficient AnoGAN and Fast AnoGAN. These
BiGAN-based models introduce an additional player, the encoder, in the GAN
game to learn the inverse to the generator’s mapping, avoiding the need for an
iteration-based projection to find x̂.

Recognizing that GAN training involves separate, modular components—the
players—recent research has considered collaborative configurations combining
multiple generators (as in the MO-GAAL, [14]), multiple discriminators (as in
the MD-GAN, [15]), or both. Previous studies [15–18] have shown that dis-
tributed GAN formulations learn a distribution that is closer to the real distri-
bution (as measured by Fréchet inception distance) than that of a standalone
GAN. When applied to anomaly detection in [16], a distributed GAN-based
anomaly detector (using multiple discriminators and only discriminator-based
anomaly scores) achieved a significantly higher accuracy at a given false positive
rate.

3 Game-Theoretic Model of Generative Adversarial
Networks

The GAN is a non-cooperative game between two ML models—a generator and
a discriminator—in which the generator learns to approximate the distribution
of a given dataset and the discriminator learns to distinguish between real data
samples and the generator’s synthetic output samples [19]. Through a zero-sum
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(min-max) game between adversarially-trained ML models, a GAN can map
points from an auxiliary data space to points from the same distribution as
those in the given dataset as described in the following subsections.

3.1 GAN Games

The two independent ML models—a generator and a discriminator—are the
players of the GAN engaged in a zero-sum non-cooperative (strategic) game
denoted formally by the following tuple of players, action spaces and utility
functions: M = 〈{G,D}, {ΘG, ΘD}, {uG, uD}〉 where

– G is the generator player, which uses a θG-parametrized function approxima-
tor, G(z; θG) or G(z) (for brevity) with G : Rl �→ R

d, to choose its actions,
– D is the discriminator player, which uses a θD-parametrized function approx-

imator, D(x; θD) or D(x) with D : Rd �→ R, to choose its actions,
– ΘG is the generator’s action/decision space, θG ∈ ΘG.
– ΘD is the discriminator’s action/decision space, θD ∈ ΘD,
– uG and uD are the generator and discriminator utility functions, respectively.

The typical choices for the above function approximators are DNNs, where ΘG

and ΘD are the possible values for each network’s weights. The selection of
uG and uD define the type of GAN. In all GAN formulations, the goals of
the generator and discriminator are to maximize their own utility function (or
minimize their loss, the negative of utility). For the original GAN zero-sum
game formulation and many subsequent variants, the player objective functions
are uD = −uG = u and take the form of

u(θG, θD) = E
x∼pX

[
φ(D̂(x))

]
+ E

z∼pZ

[
φ(1 − D̂(G(z)))

]
.

Here pX(x) is the distribution of the given data samples, x ∈ R
d, pZ(z) is the

distribution of the noise samples for the generator (the generator’s latent space),
z ∈ R

l, and φ is a measuring function.
In the original GAN definition (referred to as the min-max GAN), φ(x) =

log(x) and D̂(x) = σ(D(x)) using the sigmoid function σ(x) = (1 + e−x)−1 [19].
With these parameters, [19] shows that the shared utility function is equivalent
to the Jensen-Shannon (JS) divergence JS(pG||pX). In the Wasserstein GAN—
a popular alternative to the min-max GAN—φ(x) = x and D̂(x) = D(x),
which produces a shared objective function that is equivalent to the Wasser-
stein metric/earth-mover distance [20] (the significance of which is explained in
Sect. 3.2).

To avoid the (computationally-intensive) projection method used in [11,21]
the BiGAN trains an additional ML model [22]. Instead of training one neural
network (the generator) to learn pX(x), the BiGAN structure trains two neural
networks (a generator and a θE-parameterized encoder, E(x)) simultaneously
to collaboratively learn the conditional probability distributions pG(x|z) and
pE(z|x) that define the joint probability distributions pGZ(x, z) = pG(x|z)pZ(z)
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and pEX(x, z) = pE(z|x)pX(x). These distributions are learned in a ver-
sion of the min-max GAN game where a modified discriminator, D(x, z), dis-
criminates over data-noise tuples, (G(z), z) and (x,E(x)), from both adver-
saries. The standard-form game for the BiGAN is represented by the tuple
〈{G,E,D}, {ΘG, ΘE , ΘD}, {uG, uE , uD}〉 where the objective function shared
by all three neural networks is uD = −uG = −uE = u, defined as

u(θG, θE , θD) = E
x∼pX

[φ(D(x,E(x)))]

+ E
z∼pZ

[φ(1 − D(G(z), z))] .

In a BiGAN, the players have the complementary roles of generating synthetic
data or noise, (G(z), z) or (x,E(x)), and discriminating between (data, noise
vector) tuples. These players pass data as shown in Fig. 1, where the generator
receives input from an auxiliary space (the generator’s latent space), the encoder
receives data samples, x ∈ pX and the discriminator receives input from either
the generator or the encoder.

Generator

Encoder

Discriminator Loss
Function

z

x Gradients

Latent
Space

Training
Samples

(x, E(x))

(G(z), z) D(·, ·)

Fig. 1. ML model connections in the BiGAN game (with arrows labelled “Gradients”
showing the path for back-propagation when updating player actions).

3.2 GAN Training Methods and Challenges

Using the BiGAN formulation, GAN training is the search for a Nash equilib-
rium, (θ∗

G, θ∗
E , θ∗

D), at the intersection of player best responses. One such Nash
equilibrium is achieved when the generator’s and encoder’s joint probability dis-
tributions are equal, pGZ(x, z) = pEX(x, z), and the discriminator can no longer
distinguish between generator and encoder tuples. From [19], the discriminator
model’s output is

σ(D(x, z))
∣∣∣∣
x∼pX ,z∼pZ

=
pEX(x, z)

pGZ(x, z) + pEX(x, z)
=

1
2
. (1)

Due to the non-convexity of GAN utility functions and the high-dimensional
action spaces, finding a Nash equilibrium in GANs is challenging. The search
for Nash equilibrium in a GAN game is performed by updating each player’s
action iteratively through stochastic gradient-based optimization to maximize
their respective utilities. It has been shown that the use of two different learning
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rates in player updates guarantees convergence to a Nash equilibrium [23]. How-
ever, [24] shows simply that (regardless of utility function) if one equilibrium
exists, that equilibrium belongs to a family of equilibria achieved by permuting
neurons to produce equivalent neural networks. With the existence of multiple
Nash equilibria, a common problem in training GANs is convergence to sub-
optimal solutions where the generator learns a small selection of samples (a
problem termed mode collapse) or fails to learn any valid output before ∇θG

uG

decays to 0 (a problem termed vanishing gradient).
The problem of vanishing gradients was identified in [19], prompting a revi-

sion to the generator’s utility function (referred to as the non-saturating loss), in
which the log(1−σ(D(·))) term is replaced by − log(σ(D(·))). In doing so, ∇θG

uG

remains non-zero after improvements in the discriminator’s action while leaving
the equilibrium that is characterized by (1) unchanged. Another, more signifi-
cant GAN modification is made in [20], which presented the Wasserstein loss for
GANs to address mode collapse. This loss is shown to provide training gradi-
ents that vary smoothly with the difference between pX and pG, preventing the
generator from getting trapped representing only a subset of data modes. While
the Wasserstein loss-trained generators represent more modes of the training
data, generators trained with the original min-max loss (and its non-saturating
variant) generate higher fidelity samples of the modes they learn [25].

While the generator of a trained GAN can map noise samples, z ∼ pZ , to
data samples, x ∼ pG, how these elements are linked is set arbitrarily during
training. This arbitrary assignment is one additional hurdle for reconstruction
using GANs. The study in [22] shows that in the presence of a perfect discrim-
inator, the optimal generator and encoder are inverses (i.e., E(G(z)) = z and
G(E(x)) = x). Again due to the non-convexity of GAN utility functions, the
BiGAN generator and encoder are unlikely to produce exact inverses in practice
[22]. This problem is addressed by the GAN variants referred to as CycleGAN
and ALICE BiGAN which add regularization terms based upon reconstruction
error to uG and uE [26,27]. CycleGAN implements this regularization with an l1-
norm-based penalty in both directions, while ALICE BiGAN applies regulariza-
tion only to the forward direction, but by using an additional, resource-intensive
adversarially-trained model. These regularization terms ensure that player actions
are updated such that ||G(E(x)) − x|| and ||E(G(z)) − z|| remain small.

4 A Novel Distributed GAN Framework

In this section, we present a novel GAN game combining non-saturating GAN
loss for high-fidelity samples, Wasserstein loss to avoid mode collapse and ALICE
BiGAN structure for cyclically-consistent mapping, referred to as Peer-GAN. As
this section explains, this combination of existing GAN features are extended to
a distributed training environment and used for anomaly detection.
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4.1 Peer-GAN Game

Peer-GAN combines non-saturating loss, Wasserstein loss and ALICE BiGAN-
like structure for a data flow given in Fig. 2. This combination of GAN ele-
ments targets accurate data representation, data reconstruction and straight-
forward extension to a distributed environment. Like BiGAN, the strategic-
form game for a single instance, n, of Peer-GAN is represented by the tuple
Mn = 〈{Gn, En,Dn}, {ΘG, ΘE , ΘD}, {uG, uE , uD}〉. Note that unlike classical
GANs, this is a three player non-cooperative game with non-convex utility func-
tions. In a distributed Peer-GAN, each instance comprises an independent gener-
ator, encoder and discriminator. Discriminator n, for example, chooses a strategy
θD,n ∈ ΘD,n independently from Di�=n. The utility function for Dn,

uD(θG, θE , θD) = E
x∼pX

[log(σ(D(x,E(x)))) + D(x,E(x))]

+ E
z∼pZ

[log(1 − σ(D(G(z), z))) − D(G(z), z)] , (2)

is the sum of Wasserstein and non-saturating loss functions. With the remaining
players both assigned the utility function, uG = uE = u, given as

u(θG, θE , θD) = − E
x∼pX

[log(σ(D(x,E(x)))) + D(x,E(x))]

+ E
z∼pZ

[log(σ(D(G(z), z))) + D(G(z), z)] − E
x∼pX

[||G(E(x)) − x||2] (3)

which opposes uD by having maxima where uD has minima, while incorporating
non-saturating generator loss and the expected data reconstruction error.

Generator

Encoder Discriminator Loss
Function

Regularizerz

x

Gradients
Latent
Space

Training
Samples

|| G(E(x)) - x ||

uD(θG, θE, θD)(x, E(x))

(G(z), z)

(G(E(x)), x)

D(·, ·)

Fig. 2. Connections between ML models/players in the Peer-GAN game. Using BiGAN
as a base, Peer-GAN adds a reconstruction-based regularizer in the generator and
encoder loss functions to ensure G and E are inverses at game solutions.

With utility functions as above, players G, E and D seek to maximize uG,
uE and uD. Combining utility functions and regularizers in this way alters some
fixed points of the games mentioned in the previous sections. The one fixed
point that remains unchanged is that of the desired Nash equilibrium—where
pGZ(x, z) = pEX(x, z) and Ex∼pX ,z∼pZ

[σ(D(x, z))] = 1
2 . At this optimum, both

the JS divergence and Wasserstein distance between pGZ and pEX are minimal
and the discriminator can no longer discern between generator and encoder sam-
ples. However, the regularization in these utilities adds an additional objective; at
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the global optimum, the generator and encoder are required to be exact inverses
of each other on supp(pX). This property is the foundation of Peer-GAN-based
anomaly detection, allowing for an anomaly score, aG(x), to be calculated as

aG(x) = ||G(E(x)) − x||2.

After evaluating aG(x) for a collection of test samples, a threshold may be chosen
to classify future samples as anomalous. This threshold is typically chosen as n
standard deviations greater than the mean aG(x) from the test set. Instead of
defining a single threshold, our results in Sect. 5.3 capture anomaly detection
performance for all possible thresholds using the AUROC.

4.2 Peer-GAN Distributed Training and Convergence

Using the Peer-GAN game definition above, the players Gn, En and Dn of a
single Peer-GAN instance may be trained as described in Sect. 3.2. This section
extends the formulation and analysis of Peer-GAN training to a distributed
setting.

Distributed Training. Peer-GAN’s modular architecture allows for collabo-
rative training in the form of parameter exchange. The proposed distribution
strategy is to swap the discriminator player in each Peer-GAN instance with
a neighboring instance after a chosen number of training steps while the gen-
erator and encoder remain in-place. As per Algorithm 1, in the proposed dis-
tributed framework, each of N participating devices is trained locally to deter-
mine (θ∗

G,n, θ∗
E,n, θ∗

D,n) for local data, pX,n(x). For each of these obtained equilib-
ria, the discriminator is no longer able to discern between generator and encoder
output and adopts the strategy of outputting a constant

Ex∼pX,n
[σ(Dn(x,E(x)))] =

1
2

as explained in Sect. 3.2. If the training data at device n is different from that
at device n + 1, pX,n 	= pX,n+1, the discriminator at device n + 1 is expected to
label unrecognized samples in pX,n as fake, giving

Ex∼pX,n
[σ(Dn+1(x,E(x)))] ≤ 1

2
.

This discriminator output indicates that Dn+1 has not yet/recently been trained
to label supp(pX,n) as real. The pairing (θG,n, θE,n, θD,n+1) therefore gives Gn

and En an opportunity to increase their respective utilities by outputting pG(x|z)
and pE(z|x), the distributions learned by Dn+1. As performed in [16,17] for
the min-max GAN, the distributed Peer-GAN uses this pairing by swapping
all discriminators in the framework such that Mn receives Dn+1 after every T
training epochs. This cyclic swapping scheme ensures that each discriminator
is trained on all available devices, avoiding any model bias from training on a
subset of devices more than the others.
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Algorithm 1: Distributed Peer-GAN training
Result: (θG,n, θE,n, θD,n), n = 1, 2, ..., N
θG,n, θE,n, θD,n ← GlorotUniform, n = 1, 2, ..., N ;
for t = 1, 2, ..., num epochs do

for n = 1, 2, ..., N do
for minibatch in minibatches do

θG,n ← θG,n − αG∇θGuG(θG,n, θE,n, θD,n);
θE,n ← θE,n − αE∇θEuE(θG,n, θE,n, θD,n);
θD,n ← θD,n + αD∇θDuD(θG,n, θE,n, θD,n);

end

end
if (t mod T ) = 0 then

tmp ← θD,1;
for i = 1, 2, ..., N-1 do

θD,i ← θD,i+1;
end
θD,N ← tmp;

end

end

After a set number of training updates (or once training gradients drop below
a chosen threshold) an optional final step is to measure anomaly detection per-
formance on a held-out test set and broadcast the best-performing player param-
eters. In an environment where multiple Peer-GANs are being trained simulta-
neously, exchanging the current state of parameters between instances (as shown
in Fig. 3) may be seen as both a method of compressed data transfer and as an
additional form of regularization. This compressed data transfer view is from
transmitting the result of training instead of the training data itself. The reg-
ularization view is from sudden changes in paired adversaries, which requires
generalization for all models to maintain their current utility. The effect of this
compression is shown in Table 1. By exchanging parameters instead of data sam-
ples, the required communication between devices (both transmission and recep-
tion) is altered and no longer dependent on the dataset’s size. Where each device
collects a large number of samples—which is expected from CRs—this reformu-
lation keeps communication resource usage low and modifiable by changing the
underlying discriminator model’s size P and/or the exchange period T .

Training Convergence. Distributed Peer-GAN training builds on central-
ized GAN training (in Sect. 3.2) by exchanging discriminator model parame-
ters. These parameter exchanges may be seen as a compressed data transfer
and a form of regularization, preventing overfitting to local data. This section
explains the effect of these exchanges during training. Assuming each of N dis-
tributed Peer-GANs had reached an equilibrium before a parameter exchange,
generator and encoder pairs have learned conditional distributions of the joint
distribution pGZ,n(x, z) = pEX,n(x, z) and the generator and encoder conditional
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Node 1
Node 2

Data

Generator

Encoder

Discriminator

Noise

Node N

θD,1

θD,2

θD,N
Data

Generator

Encoder

Discriminator

Noise

Data

Generator

Encoder

Noise

Discriminator

Fig. 3. Distributed Peer-GAN architecture, showing a cyclic swap of discriminator
model parameters between three participating devices.

Table 1. The number of elements (e.g., floating point numbers) exchanged while train-
ing an anomaly detector using CRN-collected data where S is the dataset size, d is the
sample length, N is the number of devices, P is the number of parameters in the
model being exchanged, E is the number of training epochs, and T is the distributed
strategy’s swapping period.

Usage stat (per-device) Centralized Distributed

Transmitted data Sd
N

(�E
T

� + 1
)
P

Received data P
(�E

T
� + 1

)
P

distributions match the distribution of that device’s training data, pG,n(x|z) =
pX,n(x). After the first parameter exchange, the generator and encoder joint
distribution no longer match the distribution of discriminator’s training data,
pX,n+1(x) and the new discriminator labels generator and encoder outputs using
its previous strategy. Any samples from supp(pG,n)\supp(pX,n+1) are deter-
mined less likely to be real by Dn+1, worsening the generator’s utility. However,
any samples from supp(pX,n+1)\supp(pG,n) are opportunities for the generator
to improve its utility.

For each player to obtain their optimal utility in a steady state, Gn must
approximate the conditional probability

pG,n(x|z) =
1
N

N∑
i=1

pX,i(x)

which is the mean of data distributions of all individual devices. At the same
time, En must learn a representation of pX,n(x) that matches Gn’s mapping
from the latent space. In this state, the optimal discriminator output is

Ex∼pX ,z∼pZ
[σ(Dn(x, z))] =

1
2
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which, using (2), gives a discriminator loss (negative of utility) of

−u∗
D = −

(
log

(
1
2

)
+ 0 + log

(
1
2

)
+ 0

)
= log(4).

Considering the first and second terms in (3) independently, the loss compo-
nent contributed by Gn is

−u∗
G = − E

z∼pZ

[log(σ(Dn(Gn(z), z))) + Dn(Gn(z), z)] = log(2)

and the component contributed by En is

−u∗
E = E

x∼pX,n

[log(σ(Dn(x,En(x)))) + Dn(x,En(x))] = − log(2).

These are the ideal losses for each of the Peer-GAN players at a desired Nash
equilibrium. In the limit as the discriminator swapping frequency increases, the
distributed training scheme approaches the mini-batch training of N parallel
Peer-GANs on pX(x), where all instances learn mappings between z and x that
are compatible with other instances. Unfortunately, approaching this mini-batch
training requires more frequent transmissions of θD,n and so a balance must be
found between transmission overhead and distribution approximation accuracy.

5 Anomaly Detection and Simulation Results

To evaluate the performance of Peer-GAN as an anomaly detection system, a
Peer-GAN was trained (along with its distributed counterpart) on a range of 1D
datasets focusing on signals and compared with existing techniques. The pro-
posed Peer-GAN anomaly detector and its distributed counterpart were imple-
mented in Keras and Tensorflow using artificial neural networks for all three
players, G, E and D, with ReLU as the activation functions for the two hid-
den layers in the generator and encoder, leaky ReLU for the three hidden layers
in the discriminator, and linear activations for all model outputs. The Adam
optimizer was used for all models, with learning rates set to αG = αE = 10−4

and αD = 10−5 for two time-scale separation allowing G and E to make use of
D’s learned modes after discriminator swaps. The datasets used here to evaluate
Peer-GAN and other anomaly detectors are shown in Table 2.

To represent distributed network environments, the first two stated datasets
contain measured data from simulated and real-world communication networks
under attack. Each sample in the CRN dataset is a time-series window of received
packet sizes, inter-arrival times and transmission durations averaged over five
minute intervals in an OMNeT++ simulation (with occasional activity from
adversaries) [28]. In contrast, KDD’99 was collected from real-world network
activity—from an Ethernet testbed exposed to attacks including denial of ser-
vice and port scanning [29]. The samples in each of these datasets are vectors
of features derived from received packet metadata (such as size, protocol and
inter-arrival time) over discrete time windows. The MNIST dataset used here
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Table 2. Anomaly detection evaluation datasets.

Dataset Sample count Anomaly % Feature count

CRN 4,190 50.0 111

KDD’99 445,372 11.0 121

MNIST 7,603 9.2 100

Synthetic 60,000 8.3 111

is a pre-processed version of the MNIST handwritten digit dataset where 100
significant features are retained from the original 28× 28 images, available at
[7]. Furthermore, this pre-processed dataset contains only the digit “0” as the
typical sample, with samples from the “6” class added as anomalies. The final
dataset (listed as synthetic) is a collection of randomly-generated time series sig-
nals with step changes and additive white Gaussian noise (with a higher power
for generated anomalous samples). Each sample consists of 111 elements set at
one of two distinct levels, flipping between the two at intervals of 35–40 indices,
with additive noise with standard deviation of 10% and 50% of the difference
between the two levels for typical and anomalous signals respectively. All sample
elements were linearly shifted and scaled such that each feature in the training
set fell in [0, 1] and any categorical features were one-hot encoded before being
embedded in feature vectors. Together, these datasets represent diverse use cases
that could benefit from distributed anomaly detection.

Peer-GAN was evaluated by training two configurations; one with a single
device which can access all data (the centralized case) and one consisting of
three devices each with one third of the dataset (the distributed case). The
distributed configuration trained each Peer-GAN with a fixed swapping interval
of once per epoch. For effective anomaly detection, the desired trends during
Peer-GAN training are:

– All model losses converge to steady-state values stated in Sect. 4.2,
– All model loss gradients (as measured by l2-norm) decay to 0,
– Reconstruction error decreases for typical samples (seen as a low final value

for G and E losses),
– Reconstruction error for typical samples becomes reliably smaller than that

for anomalous samples (measured as AUROC using a dedicated test dataset).

The above training trends are addressed in the following subsections.

5.1 Peer-GAN Convergence

Throughout Peer-GAN training, each ML model’s losses (negative of utility) and
loss gradients were recorded for each parameter update step, for each device.
Using the KDD’99 dataset for demonstration, the losses and gradients for the
centralized and distributed cases (averaged over each epoch) are shown in Figs.
4a and 4b respectively. In these tests, both Peer-GAN variants initially show
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large variations in losses (a typical feature of the Wasserstein training loss) but
both converge to a relatively steady state after 30 training epochs (a state more
stable than with Wasserstein loss by itself).

While the loss values shown in Figs. 4a and 4b do not settle to constant
values, the losses each remain in narrow bands. Notably, each of these bands
match the expected losses explained in Sect. 4.2; −uD ≈ log(4), uG ≈ log(2)
and uE ≈ − log(2). The visible instability in losses is expected to result from
the use of stochastic gradient action updates for each player. Because of the
inherent randomness in these update strategies, player loss gradients remain
non-zero throughout training. However, Figs. 4a and 4b show that these loss
gradients decrease significantly after 20 training epochs, again indicating that a
Peer-GAN game solution was found. One key difference between the two tested
configurations is the height of each case’s peak gradient. With a lower peak
gradient, parameter swapping acts like regularization with training less prone to
any player over-fitting and causing instability in other players’ action updates.
This better stability early in distributed training comes at the cost of a slight
increase in variation later on—both effects of the initial model mismatch after a
discriminator swap.

(a) Centralized Peer-GAN (b) Distributed Peer-GAN

Fig. 4. Player losses, −uP , and gradients, ||∇θP ||2, when training Peer-GAN on the
KDD’99 dataset. After an initial period of instability, model losses approach the
expected values from Sect. 4.2 (overlaid as solid, horizontal lines) indicating that a
Nash equilibrium was found.

5.2 Sample Reconstruction

As Sect. 2.1 explains, the proposed Peer-GAN anomaly detector relies on sam-
ple reconstruction to identify anomalies. Reconstruction accuracy is therefore
implicitly measured in anomaly detection performance. However, only the rel-
ative reconstruction accuracy is used to distinguish between samples from dis-
tributions. This section presents example reconstructions to observe Peer-GAN
absolute reconstruction accuracy for both typical and anomalous samples.
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Using the CRN dataset, random samples (both typical and anomalous) from
the test set were passed through trained Peer-GAN models. Figures 5 and 6
show x values with G(E(x)) superimposed, where the ideal generator/encoder
pair would satisfy G(E(x)) = x,∀x ∈ supp(pX). From this small selection of
typical samples, both the centralized and distributed Peer-GANs show accu-
rate reconstruction in Fig. 5 (with neither model significantly outperforming the
other). For anomalous samples (in Fig. 6) each model reverts to outputting noise
(sometimes outside the bounds of the signal), mismatching the anomalous CRN
signals. Together, these results indicate that Peer-GAN reconstructions are suit-
able for separating typical samples from anomalies and that distributed Peer-
GANs perform similar reconstructions to centralized Peer-GANs.

(a) Centralized Peer-GAN (b) Device 1 of a distributed Peer-GAN

Fig. 5. Peer-GAN reconstruction of typical CRN samples, x ∼ pX . Dotted lines rep-
resent the typical samples, solid lines the reconstructions, G(E(x)). For both models,
the reconstruction visibly matches the given, typical samples.

5.3 Anomaly Detection Comparison

This section combines the previous section results of convergence and accu-
rate reconstruction by applying Peer-GANs to anomaly detection. For each of
the datasets in Table 2, the previously mentioned centralized Peer-GAN and
distributed Peer-GAN were trained using shuffled and evenly-divided training
datasets across participating devices. The shuffling in this dataset preparation
breaks up any clusters of time-correlated data that may be present. Both Peer-
GANs were trained using mini-batches of 500 samples for 100 epochs and (for
the distributed Peer-GAN) a swapping period set as T = 1.

Performance. Once trained, each Peer-GAN was evaluated by calculating
AUROC on the complete test dataset. The highest AUROC of all devices was
collected for three trials of both Peer-GANs. The means of these trials are pre-
sented in Table 3 along with the performance of existing methods. The competing
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(a) Centralized Peer-GAN (b) Device 1 of a distributed Peer-GAN

Fig. 6. Peer-GAN reconstruction of anomalous CRN samples. Dashed lines represent
the anomalous samples, solid lines the reconstructions, G(E(x)). Unlike the typical
samples in Fig. 5, Peer-GAN reconstructions do not match anomalous samples.

methods shown are those with low feature engineering, storage and computa-
tional requirements as discussed in Sect. 2.1, using the default parameters from
the python outlier detection library, [7] and the Efficient AnoGAN, [12].

Table 3. Anomaly detection AUROCs for the distributed Peer-GAN and competing
methods on the datasets listed in Table 2 with the highest AUROC per dataset in
bold. The competing methods are Auto-Encoders (AE), Principal Component Analysis
(PCA), MO-GAAL (MG), Efficient AnoGAN (EA), centralized Peer-GAN (C-Peer-
GAN) and, separated as the only distributed anomaly detector, the distributed Peer-
GAN (D-Peer-GAN).

Dataset AE PCA MG EA C-Peer-GAN D-Peer-GAN

CRN 1.0 1.0 0.0 0.0 1.0 1.0

KDD’99 0.97 0.97 0.37 0.71 0.99 0.99

MNIST 0.91 0.91 0.55 0.29 0.83 0.88

Synthetic 0.51 0.51 0.19 0.54 0.98 1.0

As shown in Table 3, anomaly detection performance varied from reliably
correct (an AUROC of 1.0) to reliably incorrect (an AUROC of 0.0). With an
anomaly detector that randomly assigns labels expected to achieve an AUROC
of 0.5, this performance range gives an insight into how each method handles
different types of anomalies. For the CRN dataset, low performance is the result
of the average energy in anomalous samples being lower than that of typical
samples (as seen in Figs. 5 and 6). For the CRN dataset, zero-mean, low-energy,
random sample reconstructions would achieve an AUROC close to 0. Low per-
formance on the synthetic dataset is the result of reconstructed sample noise
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exceeding the noise in typical test samples. For the remaining datasets, KDD’99
and MNIST, more sophisticated patterns must be learnt to reconstruct typical
samples.

Of the tested methods, no one anomaly detector outperformed the competi-
tion for every dataset. For the CRN dataset, all anomaly detectors were either
reliably correct or reliably incorrect for reasons explained above. For the syn-
thetic dataset, the only anomaly detectors to perform better than random selec-
tion are the Peer-GAN variants. For the remaining datasets, auto-encoders, PCA
and Peer-GAN variants achieved high performance. Compared to the remain-
ing methods, both Peer-GAN variants were the only with AUROCs consistently
above 0.51, showing a higher level of flexibility—being able to model both struc-
tural and fine-level detail in data samples—than PCA, auto-encoders and the
remaining GAN-based methods. Notably, the performance of the distributed
Peer-GAN was equal to or better than that of the centralized case. This counter-
intuitive result may be explained by each Peer-GAN better learning the features
of a small dataset—typically considered over-fitting—before sharing these results
through discriminator exchanges.

Also tested were the methods kNN, feature bagging and isolation forest.
With these methods, kNN was found to perform the best (or tied-best) across
all datasets. kNN’s high performance was followed closely by feature bagging,
isolation forest and our distributed Peer-GAN. However, as explained in Sect. 2.1,
the methods kNN, feature bagging and isolation forest have significant storage
and computation requirements in use after training, making them unsuitable for
resource-constrained devices.

Resource Usage. Compared with the centralized methods of kNN, feature bag-
ging and isolation forest, Peer-GAN does not need to load samples into memory
for anomaly detection and replaces the transmission of data samples to a central
server with transmission of model parameters. Using Table 1, the communication
resource usage (summing transmissions and receptions) for each participating
device in the distributed scheme is only 58% of a typical collaborative scheme
for our discriminator model (where P = 51, 585), the KDD’99 dataset (where
S = 445, 372 and d = 121), and three devices training for 100 epochs with a
swapping period of 1 (giving N = 3, E = 100 and T = 1).

Training Stability. As shown in Sect. 5.1, discriminator training gradients do
not consistently decay to zero with additional Peer-GAN training epochs. The
impact of these gradients was observed by evaluating each Peer-GAN’s anomaly
detection performance at the end of each training epoch. Results on the MNIST
dataset (presented in Fig. 7) show that both centralized and distributed Peer-
GAN performance remains stable in that their AUROC increases with additional
training. The distributed Peer-GAN is seen to require additional training epochs
to achieve the same performance as the centralized case. This delay is due to
each distributed Peer-GAN training on a smaller dataset, which results in fewer
parameter updates per epoch. Once identified, Peer-GAN retains its method of
separating samples (in MNIST and additional datasets) after additional training
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(a) Centralized Peer-GAN (b) Distributed Peer-GAN

Fig. 7. Peer-GAN anomaly detection AUROC during training on the MNIST dataset.
For the distributed case, AUROCs are shown using solid, dotted and dashed lines
for devices 1–3. In both cases, the Peer-GAN AUROC increases dramatically at early
training stages, before levelling out.

epochs, making Peer-GAN suitable for on-line training—updating each Peer-
GAN model as more data becomes available.

6 Conclusion

In this paper, we presented Peer-GAN—a novel GAN-based anomaly detection
scheme suitable for resource-constrained networked devices. Using a min-max
game played locally on each device and collaboration between devices, Peer-GAN
can accurately detect anomalies in 1D datasets while reducing data communica-
tion requirements for participating devices. Through theory and supporting sim-
ulation results, Peer-GAN was shown to converge to a Nash equilibrium wherein
ML models—the players—achieve high reconstruction accuracy of dataset sam-
ples and, subsequently, anomaly detection performance to rival state-of-the art
methods. In future work, we plan to investigate the effect of larger groups of
devices and different swapping schemes (such as random pairing) in a distributed
Peer-GAN as well as Peer-GAN’s robustness in the presence of device failure or
adversaries.
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Abstract. Today’s high-stakes adversarial interactions feature attack-
ers who constantly breach the ever-improving security measures. Decep-
tion mitigates the defender’s loss by misleading the attacker to make
suboptimal decisions. In order to formally reason about deception, we
introduce the feature deception problem (FDP), a domain-independent
model and present a learning and planning framework for finding the
optimal deception strategy, taking into account the adversary’s prefer-
ences which are initially unknown to the defender. We make the following
contributions. (1) We show that we can uniformly learn the adversary’s
preferences using data from a modest number of deception strategies. (2)
We propose an approximation algorithm for finding the optimal decep-
tion strategy given the learned preferences and show that the problem is
NP-hard. (3) We perform extensive experiments to validate our methods
and results. In addition, we provide a case study of the credit bureau
network to illustrate how FDP implements deception on a real-world
problem.

1 Introduction

The world today poses more challenges to security than ever before. Consider the
cyberspace or the financial world where a defender is protecting a collection of
targets, e.g. servers or accounts. Despite the ever-improving security measures,
malicious attackers work diligently and creatively to outstrip the defense [23].
Against an attacker with previously unseen exploits and abundant resources, the
attempt to protect any target is almost surely a lost cause [10]. However, the
defender could induce the attacker to attack a less harmful, or even fake, target.
This can be seen as a case of deception.

Deception has been an important tactic in military operations for mil-
lenia [14]. More recently, it has been extensively studied in cybersecurity [9,13].
At the start of an attack campaign, attackers typically perform reconnaissance
to learn the configuration of the machines in the network using tools such as
c© Springer Nature Switzerland AG 2020
Q. Zhu et al. (Eds.): GameSec 2020, LNCS 12513, pp. 23–44, 2020.
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Table 1. Example features in cybersecurity

Feature Observed value Actual value

Operating system Windows 2016 RHEL 7

Service version v1.2 v1.4

IP address 10.0.1.2 10.0.2.1

Open ports 22, 445 22, 1433

Round trip time for probes [28] 16 ms 84 ms

Nmap [16]. Security researchers have proposed many deceptive measures to
manipulate a machine’s response to these probes [2,12], which could confound
and mislead an attempt to attack. In addition, honey-X, such as honeypots,
honey users, and honey files have been developed to attract the attackers to
attack these fake targets [30]. For example, it is reported that country A once
created encrypted but fake files with names of country B’s military systems and
marked them to be shared with country A’s intelligence agency [18]. Using sensi-
tive filenames as bait, country A successfully lured country B’s hackers to these
decoy targets.

Be it commanding an army or protecting a computer network, a common
characteristic is that the attacker gathers information about the defender’s sys-
tem to make decisions, and the defender can (partly) control how her system
appears to the surveillance. We formalize this view, abstract the collected infor-
mation about the defender’s system that is relevant to attacker’s decision-making
as features, and propose the feature deception problem (FDP) to model the
strategic interaction between the defender and the attacker.

It is evident that the FDP model could be applied to many domains by
appropriately defining the relevant set of features. To be concrete, we will ground
our discussion in cybersecurity, where an attacker observes the features of each
network node when attempting to fingerprint the machines (example features
shown in the left column of Table 1) and then chooses a node to compromise.
Attackers may have different preferences over feature value combinations when
choosing targets to attack. If an intruder has an exploit for Windows machines,
a Linux server might not be attractive. If the attacker is interested in exfil-
tration, he might choose a machine running database services. If the defender
knows the attacker’s preferences, she could strategically configure important
machines appear undesirable or configure the honeypots to appear attractive
to the attacker, by changing the observed value of the features, e.g. Table 1.
However, to make an informed decision, she needs to first learn the attacker’s
preferences.

Our Contributions. Based on our proposed FDP model, we provide a learning
and planning framework and make three key contributions. First, we analyze the
sample complexity of learning attacker’s preferences. We prove that to learn a
classical subclass of preferences that is typically used in the inverse reinforcement
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learning and behavioral game theory literature, the defender needs to gather only
a polynomial number of data points on a linear number of feature configurations.
The proof leverages what we call the inverse feature difference matrix (IFD), and
shows that the complexity depends on the norm of this matrix. If the attacker
is aware of the learning, they may try to interfere with the learning process
by launching the data-poisoning attack, a typical threat model in adversarial
machine learning. Using the IFD, we demonstrate the robustness of learning
in FDP against this kind of attack. Second, we study the planning problem of
finding the optimal deception strategy against learned attacker’s preferences. We
show that it is NP-hard and propose an approximation algorithm. In addition,
we perform extensive experiments to validate our results. We also conduct a
case study to illustrate how our FDP framework implements deception on the
network of a credit bureau.

2 The Feature Deception Problem

In an FDP, a defender aims to protect a set N of n targets from an adversary.
Each target i ∈ N has a set M of m features. The adversary observes these
features and then chooses a target to attack. The defender incurs a loss ui ∈
[−1, 1] if the adversary chooses to attack target i.1 The defender’s objective is
to minimize her expected loss. Now, we introduce several key elements in FDP.
We provide further discussions on some of the assumptions in FDP in the final
section.

Features. Features are the key element of the FDP model. Each feature has an
observed value and an actual value. The actual value is given and fixed, while the
defender can manipulate the observed value. Only the observed values are visible
to the adversary. This ties into the notion of deception, where one may think
of the actual value as representing the “ground truth” whereas the observed
value is what the defender would like the attacker to see. Since deception means
manipulating the attacker’s perceived value of a target, not the actual value,
changing the observable values does not affect the defender’s loss ui at each
target.

Table 1 shows an example in cybersecurity. In practice, there are many ways
to implement deception. For example, a node running Windows (actual fea-
ture) manages to reply to reconnaissance queries in Linux style using tools like
OSfuscate. Then the attacker might think the node is running Linux (observed
feature). For IP deception, Jafarian et al. [11] and Chiang et al. [4] demonstrate
methods to present to the attacker a different IP from the actual one. In addi-
tion, when we “fake open” a port with no real vulnerable service runs on it, an
attack on the underlying service will fail. This could be done with command line
tools or existing technologies like Honeyd [24].
1 Typically, the loss ui is non-negative, but it might be negative if, for example, the

target is set up as a decoy or honeypot, and allows the defender to gain information
about the attacker.
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Feature Representation. We represent the observed feature values of target i by
a vector xi = (xik)k∈M ∈ [0, 1]m. We denote their corresponding actual values
as x̂i ∈ [0, 1]m. We allow for both continuous and discrete features. In practice,
we may have categorical features, such as the type of operating system, and they
can be represented using one-hot encoding with binary features.

Feasibility Constraints. For a feature k with actual value x̂ik, the defender can
set its observed value xik ∈ C(x̂ik) ⊆ [0, 1], where the feasible set C(x̂ik) is
determined by the actual value. For continuous features, we assume C(x̂ik) takes
the form [x̂ik−τik, x̂ik+τik]∩[0, 1] where τik ∈ [0, 1]. This captures the feasibility
constraint in setting up the observed value of a feature based on its actual value.
Take the round trip time (RTT) as an example. Shamsi et al. fingerprint the OS
using RTT of the SYN-ACK packets [28]. Typical RTTs are in the order of few
seconds (Fig. 4 [28]), while a typical TCP session is 3–5 min. Thus, perturbing
RTT within a few seconds is reasonable, but greater perturbation is dubious.

For binary features, C(x̂ik) ⊆ {0, 1}. In addition to these feasibility con-
straints for individual features, we also allow for linear constraints over multiple
features, which could encode natural constraints for categorical features with
one-hot encoding, e.g.

∑
k∈M ′ xik = 1, with M ′ ⊆ M being the subset of fea-

tures that collectively represent one categorical feature. They may also encode
the realistic considerations when setting up the observed features. For example,
xik1 + xik2 ≤ 1 could mean that a Linux machine (xik1 = 1) cannot possibly
have ActiveX available (xik2 = 1).

Budget Constraint. Deception comes at a cost. We assume the cost is additive
across targets and features: c =

∑
i∈N

∑
k∈M cik, where cik = ηik|xik − x̂ik|. For

a continuous feature k, ηik represents the cost associated with unit of change
from the actual value to the observable value. In the example of RTT deception,
defender’s cost is the packet delay which can be considered linear. If k is binary,
ηik defines the cost of switching states. The defender has a budget B to cover
these costs. We note that, though we introduce these explicit forms of feasibility
constraints and cost structure, our algorithms in the sequel are not specific to
these forms.

Defender Strategies. The defender’s strategy is an observed feature configuration
x = {xi}i∈N . The defender uses only pure strategies.

Attacker Strategies. The attacker’s pure strategy is to choose a target i ∈ N
to attack. Since human behavior is not perfectly rational and the attacker may
have preferences that are unknown to the defender a priori, we reason about the
adversary using a general class of bounded rationality models. We assume the
attacker’s utilities are characterized by a score function f : [0, 1]m → R>0 over
the observed feature values of a target. Given observed feature configuration x =
{xi}i∈N , he attacks target i with probability f(xi)∑

j∈N f(xj)
. f may take any form

and in this paper, we assume that it can be parameterized by or approximated
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with a neural network with parameter w. In some of the theoretical analyses, we
focus on a subclass of functions

fw(xi) = exp
(∑

k∈M
wkxik

)
. (1)

We omit the subscript w when there is no confusion. This functional form is
commonly used to approximate the agent’s reward or utility function in inverse
reinforcement learning and behavioral game theory, and has been empirically
shown to capture many attacker preferences in cybersecurity [1]. For example,
the tactics of advanced persistent threat group APT10 [25] are driven by: (1)
final goal: they aim at exfiltrating data from workstation machines; (2) expertise:
they employ exploits against Windows workstations; (3) services available: their
exploits operate against file sharing and remote desktop services. Thus, APT10
prefer to attack machines with Windows OS running a file-sharing service on
the default port. Each of these properties is a “feature” in FDP and a score
function f in Eq. (1) can assign a greater weight for each of these features. It
can also capture more complex preferences by using hand-crafted features based
on domain knowledge. For example, APT10 typically scan for NetBIOS services
(i.e., ports 137 and 138), and Remote Desktop Protocol services (i.e., ports 445
and 3389) to identify systems that they might get onto [25]. Instead of treating
the availability of ports as features, we may design a binary feature indicating
whether each of the service is available (representing an “OR” relationship of the
port availability features). We also show a more efficient way to approximately
handle combinatorial preferences in Sect. 5.4. In addition, this score function
also captures fully rational attackers in the limit.

The ultimate goal of the defender is to find the optimal feature configuration
against an unknown attacker. This can be decomposed into two subtasks: learning
the attacker’s behavior model from attack data and planning how to manipulate
the feature configuration to minimize her expected loss based on the learned pref-
erences. In the following sections, we first analyze the sample complexity of the
learning task and then propose algorithms for the planning task.

3 Learning the Adversary’s Preferences

The defender learns the adversary’s score function f from a set of d labeled data
points each in the format of (N,x, y) where N is the set of targets and x is the
observed feature configuration of all targets in N . The label y ∈ N indicates
that the adversary attacks target y.

In practice, there are two ways to carry out the learning stage. First, the
defender can learn from historical data. Second, the defender can also actively
collect data points while manipulating the observed features of the network. This
is often done with honeynets [30], i.e. a network of honeypots.

No matter which learning mode we use, it is often the case, e.g. in cyberse-
curity, that the dataset contains multiple data points with the same x, since
changing the defender configuration frequently leads to too much overhead.
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In addition, at the learning stage, only the observed feature values x matter
because the attacker does not observe the actual feature values x̂. The feasibil-
ity constraints C(x̂ik) on each feature still apply. Yet, they are irrelevant during
learning because we use either historical data that satisfy these constraints, or
honeypots for which these constraints are vacuous.

To analyze the sample complexity of learning the adversary’s preferences,
we focus on the classical form score function f in Eq. (1). We show that, in
an FDP with m features, the defender can learn the attacker’s behavior model
correctly with high probability, using only m observed feature configurations and
a polynomial number of samples. We view this condition as very mild, because
even if the network admin’s historical dataset does not meet the requirement,
she could set up a honeynet to elicit attacks, where she can control the feature
configurations of each target [30]. It is still not free for the defender to change
configurations, but attacks on honeynet do not lead to actual loss since it runs
in parallel with the production network.

To capture the multiple features in FDP, we introduce the inverse feature
difference matrix (Ast)−1. Specifically, given observed feature configurations
x1, . . . , xm, for any two targets s, t ∈ N , let Ast be the m × m matrix whose
(i, j)-entry is ast

ij = xi
sj − xi

tj . Ast captures the matrix-level correlation among
feature configurations. We use the matrix norm of (Ast)−1 to bound the learning
error.

For feature configuration x, let Dx(t) = f(xt)∑
i∈N f(xi)

be the attack probability

on target t. We assume ρ := minx,t Dx(t) > 0. Let α = mins �=t ||(Ast)−1||,
where || · || is the matrix norm induced by the L1 vector norm, i.e. ||(Ast)−1|| =
supy �=0

|(Ast)−1y|
|y| . Our result is stated as the following theorem.

Theorem 1. Consider m observed feature configurations x1, x2, . . . , xm ∈
[0, 1]mn. With Ω(α4m4

ρε2 log nm
δ ) samples for each of the m feature configurations,

with probability 1 − δ, we can learn a score function f̂(·) with uniform multi-
plicative error ε of the true f(·), i.e., 1

1+ε ≤ f(xi)

f̂(xi)
≤ 1 + ε,∀xi.

Proof. Let D̂x(t) = f̂(xt)∑
i∈N f̂(xi)

. We leverage a known result from behavioral game

theory [8]. It cannot be directly translated to sample complexity guarantee in
FDP because of the correlation among feature configurations, but we use it to
reason about attack probabilities in proving Theorem 1.

Lemma 1. [8] Given observable features x ∈ [0, 1]mn, and Ω( 1
ρε2 log n

δ ) sam-

ples, we have 1
1+ε ≤ D̂x(t)

Dx(t) ≤ 1 + ε with probability 1 − δ, for all t ∈ N .

Fix ε, δ > 0. From Eq. (1), for each xi where i = 1, 2, . . . ,m, we have

m∑

j=1

wj(xi
sj − xi

tj) = ln
Dxi

(s)
Dxi(t)

, ∀s, t ∈ N, s �= t
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Let

bst = (ln
Dx1

(s)
Dx1(t)

, . . . , ln
Dxm

(s)
Dxm(t)

)T .

The system of equations above can be represented by Astw = bst. It is known
that ||Ast|| = max1≤j≤m

∑m
i=1 |ast

ij |. In our case, the feature values are bounded
in [0, 1] and thus |ast

ij | ≤ 1. This yields ||Ast|| ≤ m. Now, choose s, t such that
||(Ast)−1|| = α. Suppose Ast is invertible.

Let ε′ = ε
4α2m2 and δ′ = δ

m . Suppose we have Ω( 1
ρε′2 log n

δ′ ) samples. From
Lemma 1, for any node r ∈ N and any feature configuration xi where i =

1, 2, . . . ,m, 1
1+ε′ ≤ D̂xi

(r)

Dxi (r)
≤ 1 + ε′ with probability 1 − δ′. The bound holds for

all strategies simultaneously with probability at least 1 − mδ′ = 1 − δ, using a
union bound argument. In particular, for our chosen nodes s and t, we have

1
(1 + ε′)2

≤ D̂xi

(s)
D̂xi(t)

Dxi

(t)
Dxi(s)

≤ (1 + ε′)2, ∀i = 1, . . . ,m

Define b̂st similarly as bst but using empirical distribution D̂ instead of true
distribution D. Let e = b̂st − bst. Then, for each i = 1, . . . ,m, we have

−2ε′ ≤ 2 ln
1

1 + ε′ ≤ ei = ln
D̂xi

(s)Dxi

(t)
D̂xi(t)Dxi(s)

≤ 2 ln(1 + ε′) ≤ 2ε′

Therefore, we have |e| ≤ 2ε′m. Let ŵ be such that Astŵ = b̂st, i.e. ŵ − w =
(Ast)−1e. Observe that

|(Ast)−1e|/|(Ast)−1bst|
|e|/|bst| ≤ max

ẽ,b̃st �=0

|(Ast)−1ẽ|/|(Ast)−1b̃st|
|ẽ|/|b̃st|

= max
ẽ�=0

|(Ast)−1ẽ|
|ẽ| max

b̃st �=0

|b̃st|
|(Ast)−1b̃st| = max

ẽ�=0

|(Ast)−1ẽ|
|ẽ| max

y �=0

|Asty|
|y| = ||(Ast)−1|| · ||Ast||

This leads to

|(Ast)−1e| ≤ ||(Ast)−1|| · ||Ast|| · |e| · |(Ast)−1bst|
|bst|

≤ ||(Ast)−1|| · ||Ast|| · |e| · max
b̃st �=0

|(Ast)−1b̃st|
|b̃st|

= ||(Ast)−1||2 · ||Ast|| · |e| ≤ α2m(2ε′m)

For any observable feature configuration x,
∣
∣
∣
∣
∣
∣

⎛

⎝
m∑

j=1

wjxij

⎞

⎠ −
⎛

⎝
m∑

j=1

ŵjxij

⎞

⎠

∣
∣
∣
∣
∣
∣
≤

m∑

j=1

|ŵj − wj | = |(Ast)−1e| ≤ α2m(2ε′m) =
ε

2
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Therefore,

1
1 + ε

≤ f(xi)

f̂(xi)
≤ 1 + ε.

	

It is easy to see that we do not have to use the same pair of targets (s, t) for

every feature configuration. In fact, this result can be easily adapted to allow
for each feature configuration being implemented on a different system with a
different set and number of targets. Instead of defining Ast and bst, we could
define A and b, where row i of A and i-th entry of b correspond to feature
configuration xi and targets (si, ti). If feature configuration xi is implemented
on a system with ni targets, we need Ω( 1

ρε′2 log ni

δ′ ) samples from this system,
and then the argument above still holds.

The α in Theorem 1 need not be large, especially if the defender can select the
feature configurations to collect data and elicit preferences. Consider a sequence
of m feature configurations x1, . . . , xm, and focus on targets 1 and 2. For each xj ,
let the features on target 1 be identical to target 2, except for the j-th feature,
where xj

1j = 1 and xj
2j = 0. This leads to A12 = I, and α ≤ 1. This also shows

that it is not hard to set up the configurations such that Ast is nonsingular.
An adversary who is aware of the defender’s learning procedure might some-

times intentionally attack without following his true score function f , to mislead
the defender. The following theorem states that the defender can still learn an
approximately correct f even if the attacker contaminates a γ fraction of the
data.

Theorem 2. In the setting of Theorem 1, if the attacker modifies a γ ≤ ερ
4αm

fraction of the data points for each feature configuration, the function f can be
learned within multiplicative error 3ε.

Proof. Fix two nodes s, t. Recall that in Theorem 1, without data poisoning, we
learned the weights w by solving the linear equations Astw̃ = b̃st based on the

empirical distribution of attacks, where b̃st = (ln D̃x1
(s)

D̃x1 (t)
, . . . , ln D̃xm

(s)

D̃xm (t)
).2 Denote

a parallel system of equations Astŵ = b̂st which uses the poisoned data. We are
interested in bounding |ŵ − w̃| = |(Ast)−1(b̂st − b̃st)|. Consider the k-th entry in
the vector b̂st − b̃st:

|(b̂st − b̃st)k| =

∣
∣
∣
∣
∣
ln

D̂xk

(s)
D̂xk(t)

D̃xk

(t)
D̃xk(s)

∣
∣
∣
∣
∣

To simplify the notations, we denote D̃xk

(t) = γk
t and D̃xk

(s) = γk
s , and without

loss of generality, assume γk
t ≤ γk

s . To find an upper bound of RHS of the
above equation, we define function g(γ1, γ2) = γk

t (γk
s +γ1)

γk
s (γk

t −γ2)
, and define function

h(γ1, γ2) = | ln g(γ1, γ2)|. The constraint that the attacker can only change γ
fraction of the points translates into |γ1|, |γ2|, |γ1 − γ2| ≤ γ. Since g is increasing
2 Refer to the proof of Theorem 1 for the notations used.



Learning and Planning in the Feature Deception Problem 31

in γ1 and γ2, g attains maximum at (γ1, γ2) = (γ, γ) and minimum at (γ1, γ2) =
(−γ,−γ), which are the only two possible maxima of h. Observe that g(γ, γ) ≥ 1
and g(−γ,−γ) ≤ 1. It then suffices to compare g(γ, γ) with 1/g(−γ,−γ):

1/g(−γ,−γ)
g(γ, γ)

=
γs(γt + γ)
γt(γs − γ)

γs(γt − γ)
γt(γs + γ)

=
γ2

sγ2
t − γ2

sγ2

γ2
t γ2

s − γ2
t γ2

≤ 1

Therefore, h(γ1, γ2) is maximized at (γ1, γ2) = (γ, γ). From here, we obtain

|(b̂st − b̃st)k| ≤ ln
(γk

s + γ)γk
t

(γk
t − γ)γk

s

= ln
((

1 +
γ

γk
s

)(

1 +
γ

γk
t − γ

))

≤ γ

γk
s

+
γ

γk
t − γ

.

Recall that
∣
∣
∣(Ast)−1(b̂st − b̃st)

∣
∣
∣

∣
∣
∣b̂st − b̃st

∣
∣
∣

≤ sup
y �=0

∣
∣(Ast)−1y

∣
∣

|y| = ||(Ast)−1|| = α

Thus, we get

|ŵ − w̃| = |(Ast)−1(b̂st − b̃st)| ≤ α
∣
∣
∣b̂st − b̃st

∣
∣
∣ ≤ α

m∑

k=1

(
γ

γk
s

+
γ

γk
t − γ

)

Note that by Lemma 1, we have γk
t ≥ ρ

1+ε′ ≥ ρ
2 . Since we assumed that γ ≤

ερ
4αm ≤ ερ

4 , we know that γ ≤ γt/2. Thus, we get

|ŵ − w̃| ≤ α

m∑

k=1

(
γ

γk
s

+
2γ

γk
t

)

≤ 3ε(1 + ε′)
4

≤ 3
4
ε

(

1 +
1
4
ε

)

From here, using the triangle inequality, we have

|ŵ − w| ≤ |ŵ − w̃| + |w̃ − w| ≤ 3
4
ε

(

1 +
1
4
ε

)

+
ε

2
≤ 3

2
ε

Thus, in the end, we get

1
1 + 3ε

≤ f(xi)

f̂(xi)
≤ 1 + 3ε.

	

For a general score function fw, gradient-based optimizers such as RMSProp

can be applied to learn w through maximum-likelihood estimation.

w = arg max
w′

∑

j∈[d]

[
Lj

w′(N j , xj , yj)
]

Lj
w′(N j , xj , yj) = log(fw′(xj

yj )) − log(
∑

i∈Nj
fw′(xj

i ))

However, it is not guaranteed to find the optimal solution given the non-convexity
of L.
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4 Computing the Optimal Feature Configuration

We now embark on our second task: assuming the (learned) adversary’s behav-
ior model, compute the optimal observed feature configuration to minimize the
defender’s expected loss. For any score function, the problem can be formulated
as the following mathematical program (MP).

min
x

∑
i∈N f(xi)ui

∑
i∈N f(xi)

(2)

s.t.
∑

i∈N

∑

k∈M

ηik|xik − x̂ik| ≤ B (3)

Categorical feature constraints (4)
xik ∈ C(x̂ik) ∀i ∈ N, k ∈ M (5)

This MP is typically non-convex and very difficult to solve. We show that the
decision version of FDP is NP-complete. Hence, finding the optimal feature con-
figuration is NP-hard. In fact, this holds even when there is only a single binary
feature and the score function f takes the form in Eq. (1).

Theorem 3. FDP is NP-complete.

Proof. We reduce from the Knapsack problem: given v ∈ [0, 1]n, ω ∈ R
n
+, Ω, V ∈

R+, decide whether there exists y ∈ {0, 1}n such that
∑n

i=1 viyi ≥ V and∑n
i=1 ωiyi ≤ Ω.
We construct an instance of FDP. Let the set of targets be N = {1, . . . , n+1},

and let there be a single binary feature, i.e. M = {1} and xi1 ∈ {0, 1} for each
i ∈ N . Since there is only one feature, we abuse the notation by using xi = xi1.
Suppose each target’s actual value of the feature is x̂i = 0. Consider a score
function f with f(0) = 1 and f(1) = 2. For each i ∈ N , let ui = (1 − vi)/δ if
i �= n+1, and un+1 = (1+V +

∑n
i=1 vi)/δ. Choose a large enough δ ≥ 1 so that

un+1 ≤ 1. For each i ∈ N , let ηi = ωi if i �= n + 1, and ηn+1 = 0. Finally, let the
budget B = Ω.

For a solution y to a Knapsack instance, we construct a solution x to the
above FDP where xi = yi for i �= n + 1, and xn+1 = 0. We know

∑
i∈N ηi|xi −

x̂i| =
∑

i∈N ηixi ≤ B if and only if
∑n

i=1 ωiyi ≤ Ω. Since f(xi) > 0 for all xi,∑
i∈N f(xi)ui∑

i∈N f(xi)
≤ 1/δ if and only if

∑
i∈N (1 − δui)f(xi) ≥ 0. Note that

∑
i∈N (1 −

δui) =
∑n

i=1 vi(yi +1)−∑n
i=1 vi −V . Thus, y is a certificate of Knapsack if and

only if x is feasible for FDP and the defender’s expected loss is at most 1/δ. 	

Despite the negative results for the general case, we design an approximation

algorithm for the classical score function in Eq. (1) based on mixed integer
linear programming (MILP) enhanced with binary search. As shown in Sect. 5,
it can solve medium sized problems (up to 200 targets) efficiently. Given f(xi) =
exp(

∑
k∈M wkxik), scaling the score by a factor of e−W does not affect the attack

probability, where W = |w| is the L1 norm of w = (w1, . . . , wm). Thus, we treat
the score function as f(xi) = exp(

∑
k∈M wkxik − W ).
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With slight abuse of notation, we denote the score of target i as fi. Let
zi =

∑
k∈M wkxik − W ∈ [−2W, 0]. We divide the interval [−2W, 0] into 2W/ε

subintervals, each of length ε. On interval [−lε,−(l−1)ε] with l = 0, 1, . . . , 2W/ε,
we approximate the function ezi with the line segment of slope γl connecting the
points (−lε, e−lε) and (−(l−1)ε, e−(l−1)ε). We use this method to approximate fi

in the following mathematical program MP1. We represent zi = −∑
l zil, where

each variable zil indicates the quantity zi takes up on the interval [−lε,−(l−1)ε].
The constraints in Eqs. (9)–(10) ensure that zi(l+1) > 0 only if zil = ε. While
MP1 is not technically a MILP, we can linearize the objective and the constraint
involving absolute value following a standard procedure [31]. The full MILP
formulation can be found in the full arXiv version of the paper.3

(MP1) min
f,z,x,y

∑
i fiui∑
i fi

(6)

s.t. fi = e−2W +
∑

l

γl(ε − zil), ∀i ∈ N (7)

∑

k∈M

wkxik − W = −
∑

l

zil, ∀i ∈ N (8)

εyil ≤ zil, zi(l+1) ≤ εyil, ∀l,∀i ∈ N (9)
zil ∈ [0, ε], yil ∈ {0, 1}, ∀l,∀i ∈ N

Constraints (3) − (5) (10)

We can now establish the following bound.

Theorem 4. Given ε < 1, the MILP is a 2ε2-approximation to the original
problem.

Proof. To analyze the approximation bound of this MILP, we first need to ana-
lyze the tightness of the linear approximation. Consider two points s1, s2 where
s2 − s1 = ε. The line segment is t(s) = 1

ε (es2 − es1)s − 1
ε (es2 − es1)s1 + es1 . Let

Δ(s) be the ratio between the line and es on the interval [s1, s2]. Note that Δ(s)
is maximized at

s∗ = 1 + s1 − ε

eε − 1
, with Δ(s∗) =

eε−1
ε

exp{1 − ε
eε−1} .

Now, let v = eε−1
ε . It is known that v ∈ [1, 1 + ε] when ε < 1.7. Note that

δ(x∗) = v exp{ 1
v − 1} ≤ 1 + (v − 1)2/2, which holds for all v ≥ 1. Let f̂(·)

be the piecewise linear approximation. For any target i and observable feature
configuration xi, we have

f̂(xi)
f(xi)

≤ v ≤ 1 +
ε2

2
.

3 The full version of the paper is available at https://arxiv.org/abs/1905.04833.

https://arxiv.org/abs/1905.04833
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Let x∗ be the optimal observable features against the true score function f ,
and let x′ be the optimal observable features to the above MILP. Let U(·) be
the defender’s expected loss, and Û(·) be the approximate defender’s expected
loss. For any observable feature configuration x, we have

|Û(x) − U(x)| =

∣
∣
∣
∣
∣

∑
i f̂(xi)ui

∑
i f̂(xi)

−
∑

i f(xi)ui∑
i f(xi)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑
i f̂(xi)ui

∑
i f̂(xi)

−
∑

i f̂(xi)ui∑
i f(xi)

+
∑

i f̂(xi)ui∑
i f(xi)

−
∑

i f(xi)ui∑
i f(xi)

∣
∣
∣
∣
∣

≤ 2
∑

i f(xi)

∣
∣
∣
∣
∣

∑

i

f(xi) −
∑

i

f̂(xi)

∣
∣
∣
∣
∣
= 2

(∑
i f̂(xi)∑
i f(xi)

− 1

)

≤ ε2

Therefore, we obtain

U(x′) − U(x∗) = U(x′) − Û(x′) + Û(x′) − U(x∗)

≤ U(x′) − Û(x′) + Û(x∗) − U(x∗) ≤ 2ε2 	

While MP1 could be transformed into a MILP, the necessary linearization

introduces many additional variables, increasing the size of the problem. To
improve scalability, we perform binary search on the objective value δ. Specifi-
cally, the objective at each iteration of the binary search becomes

min
f,z,x,y

∑

i

fiui − δ
∑

i

fi. (11)

At each iteration, if the objective value of Eq. (11) is negative, we update the
binary search upper bound, and update the lower bound if positive. We proceed
to the next iteration until the gap between the bounds is smaller than tolerance
εbs and then we output the solution xbs when the upper bound was last updated.
The complete procedure is given as Algorithm 1. Since Eq. (11) is linear itself,
we no longer need to perform linearization on it to obtain a MILP. This leads to
significant speedup as we show later. We also preserve the approximation bound
using triangle inequalities.

Algorithm 1: Milp-bs

1 Initialize L = −1, U = 1, δ = 0, εbs
2 while U − L > εbs do
3 Solve the MILP MP1 with objective in Eq. 11.
4 if objective value < 0 then
5 Let U = δ

6 else
7 Let L = δ

8 return U , the MILP solution when U was last updated.
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Theorem 5. Given ε < 1 and tolerance εbs, binary search gives a (2ε2 + εbs)-
approximation.

Proof. Suppose binary search terminates with interval of length U −L ≤ εbs, and
observable features xbs. Both xbs and the optimal observable features x′ to the
MILP lie in this interval. This means U(xbs, f̃) − U(x′, f̃) ≤ εbs. Recall that x∗

is the optimal observable features against the true score function f . Therefore,
we have

U(xbs, f) − U(x∗, f) = U(xbs, f) − U(xbs, f̃) + U(xbs, f̃) − U(x∗, f)

≤ U(xbs, f) − U(xbs, f̃) + U(x′, f̃) + εbs − U(x∗, f)

≤ U(xbs, f) − U(xbs, f̃) + U(x∗, f̃) + εbs − U(x∗, f)

≤ 2ε2 + εbs 	

Now, we connect the learning and planning results together. Suppose we

learned an approximate score function f̂ (Theorem 1), and we find an approx-
imately optimal feature configuration (Theorem 4) assuming f̂ . The following
result shows that we can still guarantee end-to-end approximate optimality.

Theorem 6. Suppose for some ε ≤ 1/4, 1
1+ε < f̂(xi)

f(xi)
< 1 + ε for all xi. Then,

|U(x, f̂)−U(x, f)| ≤ 4ε for all x. Let x∗ = arg minx U(x, f) and x′′ be such that
U(x′′, f̂) ≤ minx U(x, f̂) + η, then U(x′′, f) − U(x∗, f) ≤ 8ε + η.

Proof. Let f̂(xi) = exp(
∑

k ŵkxik) and f(xi) = exp(
∑

k wkxik). Since

1
1 + ε

<
f̂(xi)
f(xi)

< 1 + ε,

we get

− ε ≤ − ln(1 + ε) <
∑

k

(ŵk − wk)xik = ln
f̂(xi)
f(xi)

< ln(1 + ε) ≤ ε.

That is, |∑k(ŵk − wk)xik| < ε. The proof of Theorem 3.7 in [8] now follows to
prove the first part of Theorem 6 if we redefine their ui(pi) as

∑
k∈M wkxik and

ûi(pi) as
∑

k∈M ŵkxik. For completeness, we adapt their proof below using our
notations.

As defined in Sect. 3, Dx(t) = f(xt)∑
i f(xi)

and D̂x(t) = f̂(xt)∑
i f̂(xi)

. We have
∣
∣
∣
∣
∣
ln

D̂x(t)
Dx(t)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

(
∑

k

(ŵk − wk)xtk

)

− ln
∑

i exp{∑
k ŵkxik}

∑
i exp{∑

k wkxik}

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∑

k

(ŵk − wk)xtk

∣
∣
∣
∣
∣
+

∣
∣
∣
∣ln

∑
i exp{∑

k wkxik} exp{∑
k(ŵk − wk)xik}

∑
i exp{∑

k wkxik}
∣
∣
∣
∣

< ε + max
i

∣
∣
∣
∣
∣
ln exp{

∑

k

(ŵk − wk)xik}
∣
∣
∣
∣
∣
< 2ε
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Using a few inequalities we can bound
∣
∣
∣
D̂x(t)
Dx(t) − 1

∣
∣
∣ ≤ 4ε. This leads to, for all x,

|U(x, f̂) − U(x, f)| =

∣
∣
∣
∣
∣

∑

i∈N

(D̂x(i) − Dx(i))ui

∣
∣
∣
∣
∣
≤

∑

i∈N

∣
∣
∣D̂x(i) − Dx(i)

∣
∣
∣ |ui|

=
∑

i∈N

∣
∣
∣
∣
∣

D̂x(i)
Dx(i)

− 1

∣
∣
∣
∣
∣
|ui| Dx(i) ≤ 4ε

∑

i∈N

|ui| Dx(i) ≤ 4εmax
i∈N

|ui| ≤ 4ε

Let x∗ = arg minx U(x, f) be the true optimal feature configuration, x′ =
arg minx U(x, f̂) be the optimal configuration using the learned score function
f̂ , and x′′ be an approximate optimal configuration against f̂ , i.e., U(x′′, f̂) ≤
U(x′, f̂) + η. We have

U(x′′, f) ≤ U(x′′, f̂) + 4ε ≤ U(x′, f̂) + 4ε + η ≤ U(x∗, f̂) + 4ε + η ≤ U(x∗, f) + 8ε + η.

	

In addition, we propose two exact algorithms for special cases of FDP, which

can be found in the arXiv version. When the deception cost is associated with
discrete features only, we provide an exact MILP formulation. When there is no
budget and feasibility constraints, we can find the optimal defender strategy in
O(n log n+m) time using a greedy algorithm. Inspired by this greedy algorithm,
we introduce a greedy heuristic for the general case. Greedy (Algorithm 2 in the
arXiv version) finds the feature vectors that maximize and minimize the score,
respectively, using gradient descent-based algorithm. It then greedily applies
these features to targets of extreme losses. We show its performance in the
following section as well.

5 Experiments

We present the experimental results for our learning and planning algorithms
separately, and then combine them to demonstrate the effectiveness of our learn-
ing and planning framework. All experiments are carried out on a 3.8 GHz Intel
Core i5 CPU with 32 GB RAM. We use Ipopt as our non-convex solver and
CPLEX 12.8 as the MILP solver. All results are averaged over 20 instances;
error bars represent standard deviations. Details about hyper-parameters can
be found in the arXiv version of the paper.

5.1 Learning

Classical Score Function. First, we assume the adversary uses the classical score
function in Eq. (1). The defender learns this score function using the closed-form
estimation (CF) in Theorem 1. We study how the learning accuracy changes
with the size of training sample d. We sample the parameters of the true score
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(a) Learning classical
score function in Eq. (1)

(b) Learning NN-3
score function

(c) Planning with clas-
sical score function in
Eq. (1), m = 12

(d) Planning with NN-
3 score function, m =
12

(e) Planning with NN-
3 score function, m =
12

(f) Learning + planning,
classical score function,
n = 5,m = 12

(g) Learning + Planning,
classical score function,
m = 12

(h) Learning + Plan-
ning, NN-3 score func-
tion, n = 5,m = 12

Fig. 1. Experimental results

function f uniformly at random from [−0.5, 0.5]. We then generate m feature
configurations uniformly at random. For each of them, we sample the attacked
target d/m times according to f , obtaining a training set of d samples. We
generate a test set D̃ of 5 × 105 configurations sampled uniformly at random.
We measure the learning error as the mean total variation distance between the
attack distribution from the learned f̂ and that of the true model f :

1
|D̃|

|D̃|∑

j=1

dTV

((
f(xj

i )∑
t∈N f(xj

t )

)

i∈N

,

(
f̂(xj

i )∑
t∈N f̂(xj

t )

)

i∈N

)

.

Figure 1a shows that the learning error decreases as we increase the number of
samples. Theorem 1 provides a sample complexity bound, which we annotate
in Fig. 1a as well. The experiment shows that we need much fewer samples to
learn a relatively good score function, and smaller games exhibit smaller learning
error.

3-layer NN Represented (NN-3) Score Function. We assume the adversary uses a
3-layer neural network score function, whose details are in the full version of the
paper. We use the gradient descent-based (GD) learning algorithm RMSProp as
described in Sect. 3, with learning rate 0.1. For each sample size d, we generate
d feature configurations and sample an attacked target for each of them in the
training set. Figure 1b shows GD can minimize the learning error to below 0.15.
Note that the training data are different in Figs. 1a and b, thus the two figures
are not directly comparable.
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We also measured |θ̂−θ|, the L1 error in the score function parameter θ, which
directly relates to the sample complexity bound in Theorem 1. We include the
results in the full version of the paper.

5.2 Planning

We test our algorithms on finding the optimal feature configuration against a
known attacker model. The FDP parameter distributions are included in the full
version.

Classical Score Function. Figure 1c shows that the binary search version of the
MILP based on MP1 (MILPBS) runs faster than that without binary search
on most instances. MILPBS scales up to problems with 200 targets, which is
already at the scale of many real-world problems. MILP does not scale beyond
problems with 20 targets. In the arXiv version, we show that MILPBS also scales
better in terms of the number of features. We set the MILP’s error bound at
0.005 and εbs = 1e− 4; the difference in the two algorithms’ results is negligible.

NN-3 Score Function. When the features are continuous without feasibility con-
straints, planning becomes a non-convex optimization problem. We can apply the
gradient-based optimizer or non-convex solver. Recall that U(x) is the defender’s
expected loss using feature configuration x. We measure the solution gap of alg
∈ {Ipopt, GD, Greedy} as U(xalg)−U(xGD)

U(xGD) , where xalg is the solution from the
corresponding algorithm.

Figures 1d and e show the running time and solution gap fixing m = 12. The
running time of GD and Greedy does not change much across different problem
sizes, yet Ipopt runs slower than the former two on most problem instances. GD
also has smaller solution gap than Ipopt and Greedy. In the full version we
show the number of features affect these metrics in a similar way.

5.3 Combining Learning and Planning

We integrate the learning and planning algorithms to examine our full frame-
work. The defender learns a score function f̂ using algorithm L. Then, she uses
planning algorithm P to find an optimal configuration xL,P assuming f̂ . We
measure the solution gap as U(xL,P)−U(x∗)

U(x∗) , where x∗ is the optimal feature con-
figuration against the true attacker model, computed using MILPBS or GD.

Classical Score Function. We test learning algorithm CF and planning algo-
rithms P ∈ {MILP, MILPBS}. Figure 1f shows how the solution gap changes
with the size of the training dataset. With n ≤ 20 targets, all algorithms yield
solution gaps below 0.1 (Fig. 1g). The reader might note the overlapping error
bars, which are expected since MILP and MILPBS should not differ much in
solution quality. Indeed, the difference is negligible as the smallest p-value of the
6 paired t-tests (fixing the number of targets for which they are tested) is 0.16.
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NN-3 Score Function. We test learning algorithm GD and planning algorithms
P ∈ {GD, Ipopt, Greedy}. Figure 1h shows how the solution gap changes with
the size of training dataset d. Paired t-tests suggest that GD has significantly
smaller solution gap than Greedy (p < 0.03) at each size of training dataset
except 1080. Ipopt also has significantly smaller solution gap than Greedy
(p < 0.01) when on large datasets with d ≥ 105 samples. On the largest dataset
d = 106, GD also performs significantly better than Ipopt (p = 0.04).

Compared to the case with classical score functions, more data are required
here to achieve a small solution gap. Since learning error is small for both cases
(Figs. 1a, b), this suggests planning is more sensitive to NN-3 score functions
than classical score functions.

5.4 Case Study: Credit Bureau Network

The financial sector is a major victim of cyber attacks due to its large amount
of valuable information and relatively low level of security measures. In this
case study, we ground our FDP model in a credit bureau’s network. We show
how feature deception improves the network security when the attacker follows
a domain-specific rule-based behavioral model.

We note that the purpose of this case study is not to show the scalability
of our algorithm: all previous experiments fulfill that purpose. Instead, here
we demonstrate why deception is useful, how our algorithm yields deception
strategies reasonable in the real world, and how our algorithm capably handles
an attacker which does not conform to our assumed score function.

As shown in Table 2, we consider a network of 10 nodes (i.e. targets) with
6 binary features: operating system (Windows/Linux) and the availability of
SMTP, NetBIOS, HTTP, SQL, and Samba services. Each node has a type of
server running on it, which determines the features available on that node. Some
nodes would incur a high loss if attacked, like the database servers, because for
a credit bureau the safety of users’ credit information is of utmost importance.
Others might incur a low loss, such as the mail servers and the web server. Nodes
of the same type might lead to different losses. For example, some database
servers might have access to more information than others. Each feature has
different switching cost ck. For the operating system, the cost is ck = 5. For
SQL, Samba, and HTTP services, the cost is 2. The cost is 1 for others. The
defender has a budget of 10. There is no constraint on switching each individual
feature, i.e. C(x̂ik) = {0, 1}. However, we impose that Windows + Samba and
Linux + NetBIOS cannot be present on the same node, as it is technically
impossible to do so.

We demonstrate the entire learning and planning pipeline. We use an
attacker’s behavior model common in the security analysis. The attacker cares
about a subset M ′ ⊆ M of the features, and we call each such feature k ∈ M ′ a
requirement. The attack is uniformly randomized among the targets that satisfy
the most requirements. Although this decision rule does not fit our classical score
function, we can approximate it by giving large weights wk to the requirement
features, and 0 to the rest.
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Table 2. Feature configuration of a typical credit bureau computer network.

Node type Node ID Actual features x̂i Loss ui

Mail server 0, 1 Windows, SMTP, NetBIOS 0.1

Web server 2 Windows, HTTP 0.2

App server 3, 4 Windows, SQL, NetBIOS 0.3

Database server 5,6,7 Linux, SQL, SMTP, Samba 0.4

Database server 8,9 Linux, SQL, SMTP, Samba 0.8

Table 3. Learning + planning results for 2 types of attackers.

Attacker Solution xi Attacked nodes Loss

APT Node 1: Windows → Linux 5,6,7,8,9 →1 ,5, 6, 7 0.56 → 0.325

Node 1: SQL off → on

Node 1: NetBIOS on → off

Node 8, 9: SMTP on → off

Botnet Node 3: NetBIOS on → off 0,1,3,4 →0,1 0.2 → 0.1

Node 4: NetBIOS on → off

First, we consider an APT-like attacker, who wants to exfiltrate data by
exploiting the SMTP service. They have expertise in Linux systems and want
to maintain a high degree of stealth. Thus, their decision rule is based on the
three requirement features: Linux, SMTP, and SQL. Without deception, the
attacker would randomize attack over nodes 5–9, because these nodes satisfy
3 requirements and other nodes satisfy at most 2. As shown in Table 3, the
optimal solution for the learning and planning problem leads to an expected
defender’s loss of 0.325, which is a 42% decrease from the loss with no deception.
With limited budget, the defender makes the least harmful target, node 1, very
attractive and the most harmful targets, nodes 8 and 9, less attractive.

We also consider a botnet attacker, who wants to create a bot by exploiting
the NetBIOS service. They have expertise in Windows and want to maintain a
moderate degree of stealth. Thus, their decision rule is based on two requirement
features: Windows and NetBIOS. The results in Table 3 shows that the defender
should set the NetBIOS observed value to be off for nodes 3 and 4, attracting
the attacker to the least harmful nodes. This reduces the defender’s expected
loss by 50% compared to not using deception.

6 Related Work

Deception. Deception has been studied in many domains, and of immediate
relevance is its use in cybersecurity [26]. Studies have suggested that deceptively
responding to an attacker’s scanning and probing could be a useful defensive
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measure [2,12]. Schlenker et al. [27] and Wang and Zeng [32] propose game-
theoretic models where the defender manipulates the query response to a known
attacker. Proposing a domain-independent model, we advance the state of the
art by (1) providing a unified learning and planning framework with theoretical
guarantee which can deal with unknown attackers, (2) extending the finite “type”
space in both papers, where “type” is defined by the combination of feature
values, to an infinite feature space that allows for both continuous and discrete
features, and (3) incorporating a highly expressive bounded rationality model
whereas both papers assume perfectly rational attackers.

For the more general case, Horak et al. [9] study a defender that engages an
attacker in a sequential interaction. A complementary view where the attacker
aims at deceiving the defender is provided in [6,19]. Different from them, we
assume no knowledge of the set of possible attacker types. In [6,7,19,35] decep-
tion is defined as deceptively allocating defensive resources. We study feature
deception where no effective tools can thwart an attack, which is arguably more
realistic in high-stakes interactions. When such tools exist, feature deception is
still valuable for strategic defense.

Learning in Stackelberg Games. Much work has been devoted to learning in
Stackelberg games. Our work is most directly related to that of Haghtalab et
al. [8]. They show that three defender strategies are sufficient to learn a SUQR-
like adversary behavior model in Stackelberg security games. The only decision
variable in their model, the coverage probability, may be viewed as a single
feature in FDP. FDP allows for an arbitrary number of features, and this real-
istic extension makes their key technique inapplicable for analyzing the sample
complexity. Our main learning result also removes the technical constraints on
defender strategies present in their work. Sinha et al. [29] study learning adver-
sary’s preferences in a probably approximately correct (PAC) setting. However,
their learning accuracy depends heavily on the quality of distribution from which
they sample the defender’s strategies. We provide a uniform guarantee in a
distribution-free context. Other papers [3,15,17,21] study the online learning
setting with rational attackers. As pointed out in [8], considering the more real-
istic bounded rationality scenario allows us to make use of historical data and
use our algorithm more easily in practice.

Planning with Boundedly Rational Attackers. Yang et al. [34] propose a MILP-
based solution in security games. Our planning algorithm goes beyond the cover-
age probability and determines the configuration of multiple features, and adopt
a more expressive behavior model. The subsequent papers that incorporate learn-
ing with such bounded rationality models do not provide any theoretical guar-
antee [5,33]. A recent work develops a learning and planning pipeline in security
games [22]. However, their algorithm requires the defender know a priori some
parameters in the attacker’s behavior model, and provides no global optimality
guarantee.
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7 Discussion

We conclude with a few remarks regarding the generality and limitations of our
work. First, our model allows the attacker to have knowledge of deception if the
knowledge is built into their behavior. For example, the attacker avoids attacking
a target because it is “too good to be true”. This can be captured by a score
function that assigns a low score for such a target.

Second, our model can handle sophisticated attackers who can outstrip decep-
tion. A singleton feasible set C(x̂ik) implies the defender knows the attacker can
find out the actual value of a feature. As an important next step, we will study
the change of attacker’s belief of deception over repeated interactions.

Third, typically, actual features on functional targets are environmental
parameters beyond the defender’s control, or at least have high cost of manipu-
lation. Altering them and defender’s losses ui does not align conceptually with
deception. Thus, we treat them as fixed. For a target with no fixed actual values,
e.g., a honeypot, the defender’s cost is just the cost of configuring the feature,
e.g., installing Windows. For consistency, we can set x̂ik as the feature value
with the lowest configuration cost, and ηik is the additional cost for a different
feature value.

Fourth, the attacker’s preference might shift when there is a major change
in security landscape, e.g. a new vulnerability disclosed. In such case, a proac-
tive defender will recalibrate the system: recompute the attacker’s model and
reconfigure the features. Moreover, exactly because the defender has learned the
preferences before the change using our algorithms, the defender now knows
better what qualifies as a major change. Our algorithms are fast enough for a
proactive defender to run regularly.

Fifth, when faced with a group of attackers, in FDP we learn an average
behavioral model of the population. To handle multiple attacker types, one could
refer to the literature on Bayesian Stackelberg games [20].

Finally, in FDP the defender uses only pure strategies. In many domains such
as cybersecurity, frequent system reconfiguration is often too costly. Thus, the
system appears static to the attacker. We leave to future work to explore mixed
strategies in applications where they are appropriate.
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Abstract. Adversaries are becoming more sophisticated and standard
countermeasures such as encryption are no longer enough to prevent
traffic analysis from revealing important information about a network.
Advanced encryption techniques are intended to mitigate network infor-
mation exposure, but they remain vulnerable to statistical analysis of
traffic features. An adversary can classify different applications and
protocols from the observable statistical properties, especially from
the meta-data (e.g. packet size, timing, flow directions, etc.). Several
approaches are already being developed to protect computer network
infrastructure from attacks using traffic analysis, but none of them are
fully effective. We investigate solutions based on obfuscating the patterns
in network traffic to make it more difficult to accurately use classifica-
tion to extract information such as protocols or applications in use. A
key problem of using obfuscation methods is to determine an appropriate
algorithm that introduces minimal changes but preserves the functional-
ity of the protocol. We apply Adversarial Machine Learning techniques
to find realistic small perturbations that can improve the security and
privacy of a network against traffic analysis. We introduce a novel app-
roach for generating adversarial examples that obtains state-of-the-art
performance compared to previous approaches, while considering more
realistic constraints on perturbations.

Keywords: Network data analysis · Data obfuscation · Adversarial
machine learning

1 Introduction

Heterogeneous network structure and the growing complexity of the IT envi-
ronment introduce new vulnerabilities to computer networks. One evolving
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technique is using statistical traffic analysis to perform reconnaissance. Though
advanced encryption techniques limit the information available to traffic analy-
sis, encrypted network traffic can still have observable characteristics like packet
sizes and inter-arrival times that reveal useful information to attackers that is
a potential threat for network security [4,12]. Sophisticated adversaries pos-
sess knowledge about communication types and maintain databases of well-
known traffic patterns and protocols such as UDP, TCP, VoIP, ESP, among
others. From the raw traffic, an adversary can determine likely features of the
of source/destination without needing to decrypt sensitive information. They
can also distinguish statistical characteristics used for communication by differ-
ent protocols. There are currently no perfect methods to prevent traffic analysis
completely. One approach to alleviate this issue is based on deceiving attackers
by generating and sending false network traffic along with real traffic, but this
can lead to costly overhead.

Recently Deep Packet Inspection (DPI) has become a common technique
used by the network administrators to match specific byte patterns from a known
database and to update it when unknown patterns are found. However, manu-
ally maintaining and updating a dynamic database from the immense network
flows is a very tedious task. Machine learning methodologies perform a vital
role in classifying network traffic and update the database if required. Similarly,
attackers use different network classifiers to identify various applications and
protocols. The performance of the classifier depends on the accuracy of collected
information. Network traffic obfuscation is a technique where network traffic
is manipulated (e.g. add dummy bytes with the packets in order to increase
packet size) to limit the attacker’s gathering of information by causing errors
in the classification models. This obfuscation approach is effective at reducing
the risk of passive reconnaissance where an attacker gathers traffic and uses
statistical analysis to categorize different patterns (e.g. protocols, applications,
user’s information, etc.). A major issue of this approach is to determine the opti-
mal algorithm for masking the features of the traffic effectively, but within the
constraints of feasible modifications and limited resources or network overhead.

We propose solving this problem using Adversarial Machine Learning (AML),
where a defender seeks to protect the network from an adversary by finding
realistic small perturbations that are added to the network traffic to reduce the
accuracy of machine learning traffic classifiers. Our contributions are three-fold:

– We introduce the Restricted Traffic Distribution Attack (RTDA), an algo-
rithm for realistic adversarial traffic generation that can be applied in real-
world networks.

– Our attack achieves state-of-the-art performance compared to previous
approaches.

– We calculate the average perturbation cost for a real system and provide a
comparative analysis between our proposed approach and previous work.
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2 Motivation and Related Work

There are numerous reasons why network administrators need to use traffic
obfuscation. For example, sometimes various internet resources are inaccessible
due to an unavoidable circumstance but an administrator may want to meet per-
formance benchmarks by shaping the network traffic. Encryption and mimicry
are two basic obfuscation methods but they can not remove fingerprints from
meta-data (e.g packet size, inter-arrival timing, etc.). Therefore, an adversary
can classify encrypted traffic based on statistical features including packet and
payload byte counts [6,14]. Using mimicry it is possible to shape a protocol
to look like another, but statistical fingerprints of meta-data are still preserved
[6,22]. We consider several data obfuscation methods that can be applied to net-
work traffic. Our goal is to find more robust solutions for network administrators
or defender in performing statistical obfuscation while minimizing unnecessary
overhead using Adversarial Machine Learning (AML).

Several previous articles have proposed network obfuscation systems. Encryp-
tion and adding padding in traffic features at a variety of levels such as cipher-
text formats, stateful protocol semantics, and statistical properties are effective
ways of preventing statistical traffic analysis [7,21]. Guan et al. [10] show that
sending dummy traffic with real traffic (called packet padding) can manipulate
an adversary’s observation to a particular traffic pattern and efficiently camou-
flage network traffic. However, this approach is usually inefficient and sometimes
incurs immense network overhead. Anjum et al. [1] use fake flows to invalidate
passive reconnaissance of an adversary and also propose a non-zero-sum game-
theoretic model to deploy fake flow optimally which potentially reduces network
overhead and confuses adversaries in identifying network vulnerabilities. Another
approach is to pad real packets to make them uniform size instead of creating
a dummy packet, but it can also delay packet transmission. Wright et al. [25]
proposes a convex optimization algorithm to modify real-time VoIP and WEB
traffics which is optimal in terms of padding cost and reduces the accuracy of
different classifiers. Later, Ciftcioglu et al. [4] propose a water-filling optimizing
algorithm for optimal chaff-aided trafc obfuscation where packet morphing is
performed by either chaff byte or chaff packet and show that the algorithm can
maximize obfuscation given a chaff budget.

Machine learning techniques are quite common to classify the various types
of IP traffics [16]. Bar-Yanai et al. [2] presents a classifier that is robust to the
statistical classification of real-time encrypted traffic data. Mapping network
traffic from different applications to the preselected class of services (COS) is
still a challenging task. One approach uses predetermined statistical application
signatures which are associated connections, sessions, application-layer protocols
to determine COS class for particular datagrams [5,22]. Zander et al. [26] use
unsupervised machine learning technique to classify unknown and encrypted net-
work protocols where flows are classified based on their network characteristics.
Though classification methods are effective for statistical traffic analysis, many
machine learning algorithms are vulnerable to adversarial attacks. An attacker
can generate adversarial samples by adding small perturbation to the original
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inputs intent to mislead machine learning models [8,9]. They can also train their
own model with adversarial samples and transfer the samples to victim model
in order to produces incorrect output by the victim classifier [25]. Currently,
no method is effective against adversarial examples [11,17,19]. Papernot et al.
[19] introduces adversarial sample crafting techniques that can exploit adver-
sarial sample transferability across many of the machine learning space. There
are also several mathematical and ML methods for crafting adversarial example
which can exploit the gradient of the loss function or the target of classifica-
tion [3,9,18,20,23]. Verma et al. [24] proposed several loss functions and the
“Carlini-Wagner L2” (also called CW) algorithm to craft network traffic using
a post-processing operation to the generated distributions. However, the pro-
posed approach sometimes created invalid perturbations and distributions for
each attack that does not match real-world settings. In our work, we impose
more generalized constraints in generating adversarial network traffic samples;
we generate a valid perturbation and distribution for every test sample that
results in a more robust attack compare to previous work.

3 Experimental Setup

This section describes the classification model and dataset, building on the pre-
vious work in [24]. In Sect. 5 we discuss our proposed approach in detail. Also,
the Table 1 shows the important notations used in this paper.

Table 1. Important notations

Notations Description

τ Original traffic

τθ Modified traffic

δ Perturbation amount

fθ Classification model

ρ Application class set

x Feature vector

xadv Adversarial feature vector

Lp Distance metric

3.1 Dataset

We perform experiments on the Internet Traffic Network dataset used in [15].
This dataset was generated by monitoring a research-facility host with 1000 users
connected via Gigabit Ethernet link. The objects to classify are traffic flows that
represent the flow of one or more packets between the host and client during a
complete TCP connection. Each flow was manually classified. Table 2 shows the
class information, flow types per class, and flow count. Similarly to [24], we only
include the classes with at least 2000 samples in our training set.
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Table 2. Class composition and number used in this work from the dataset.

Classification Flow Type Number

Bulk FTP 11539

Database postgres, sqlnet, oracle, ingres 2648

Mail imap, pop2/3, smtp 28567

Services X11, dns, ident, ldap, ntp 2099

P2P KaZaA, BitTorrent, GnuTella 2094

WWW www 328091

3.2 Realistic Features

Each sample is composed of 249 features that were observed during generation
time. In a real time traffic transmission, the defender only has the capability to
increase the size of the packets. Therefore, we do not use inter arrival time as
a feature. Our work shows that only using packet size is sufficient to attack a
network. We select the 0, 25, 50, 75, 100 percentiles of the IP packets sizes from
both client-to-server and server-to-client. We normalized these features to the
range (0, 1).

3.3 Classification Model

We replicate the training approach and neural network model used in the pre-
vious work [24]. The training model is a 3-layer neural network with 300, 200,
and 100 hidden units and applies a rectified linear function in every layer. We
process the data by randomly dividing it into three datasets—5000 validation
samples, 5000 test samples, and the remaining samples as training. Due to large
class imbalance, we randomly sample the training set so every class has equal
number of examples. We train the network using mini-batches of size 1000 for
300 epochs. The results are found in Table 3.

Table 3. Neural network accuracy per class.

Class Accuracy

Bulk 95%

Database 97%

Mail 95%

P2P 96%

Service 85%

WWW 91%
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4 Adversarial Settings

We now formalize the models for the defender and the attacker. We also discuss
some well-known approaches for generating adversarial examples.

4.1 Defender Model

We model the problem by considering an adversarial setting where a defender
(d) tries to protect a network from an adversary (α). The goal of α is to observe
d ’s network and classify its traffic flows (τ) by using statistical analysis, while
d disguises τ by changing features. The new modified flow τθ can potentially
lead α to misclassify τθ as relating to a different application or protocol class (σ)
rather than the true one (ρ). We consider that d knows the attacker model f and
observations O for training that implies d is capable to create a substitute model
fθ for τθ. The transferability property of AML supports that any adversarial
example that can fool a machine learning algorithm can also fool other machine
learning algorithms irrespective of the implementation [19]. Therefore, d uses
AML techniquse to find an optimal way for generating τθ by considering that
the traffic recipient has mechanisms for inverting the changes. However, in adding
perturbations d must adhere to the following constraints:

– Basic rules of a protocol must be preserved such as packet size and timing
can not be the negative, minimum or maximum range of size, etc.

– The network is be constrained by performance benchmarks meaning that the
network supports a maximum threshold of latency

– The AML model should use small input perturbations for creating τθ since
large alteration of τ can break down basic protocols and incur unnecessary
network overhead

4.2 Adversary Model

We assume that α observes a particular flow between a source and destination
where the flow is always bidirectional. It also has the required tools to analyze
meta statistical signatures (e.g. packet size) and trains its classifier fθ based on
these features — 0, 25, 50, 75, 100 percentiles of the IP packets in both directions.
The objective of α is to correctly classify the application set {ρ1, ρ2, ...., ρn}
observed in d ’s traffic τ where n is the possible number of classes. Therefore, α
determines a probability distribution over n classes by using fθ(x) where x is a
feature vector of {x1, x2, ..., xn} obtained from O.

4.3 Obfuscation Approaches

Let C(x) be the classification of x by a model and C∗(x) be the true class. Then
adversarial learning finds a perturbation δ such that when added to an input
x, C∗(x) �= C(x + δ). The value of δ should be small enough when added to
x for producing xadv = x + δ which implies that the difference between xadv
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and x should be almost imperceptible. While many approaches are common for
generating adversarial examples, Szeged et al. [23] uses the L-BFGS optimization
procedure for generating an adversarial example xadv when input x is given and
formulates the problem as:

min||x − xadv||2 + λJ(fθ(xadv), ttrue)

The first term sets the penalty for large perturbations to x and the second
one penalizes when classification deviates from the target class ttrue. The loss
function between ttrue and output of the classifier fθ(xadv) is denoted by J .
λ > 0 is the model parameter.

The Carlini-Wagner L2 attack is a robust iterative algorithm that creates
adversarial examples with minimum perturbation [3]. This attack for a target
class t is formalized as:

min||1
2
(tanh(w) + 1) − x||2 + λfθ(

1
2
(tanh(w) + 1)

such that C∗(x) �= t

where, fθ is defined by

fθ(xadv) = max(max{Z(xadv)i : i �= t} − Z(xadv)t,−k)

and δ = 1
2 (tanh(w) + 1) − x is the perturbation of the adversarial sample. Here,

λ is chosen empirically through binary search and k controls the confidence of
misclassification occurrence.

For generating untargeted adversarial perturbations Goodfellow et al. [9]
proposed a fast single-step method. This method determines an adversarial per-
turbation under L∞ norm where the perturbation is bounded by the parame-
ter ε that results in the highest increase in the linearized loss function. It can
be obtained by performing one step in the gradient sign’s direction with step-
width ε

xadv = x + ε sign(ΔxJ(fθ(xadv), ttrue))

Here, L∞ computes the maximum change to any of the coordinates:

||x − xadv||∞ = max(|x1 − xadv
1 |, |x2 − xadv

2 |, ......, |xn − xadv
n |)

In [3], Szeged et al. used L∞ distance metrics to generat CWL∞ attack where
the optimization functions is defined by following:

λ minfθ(x + δ) + ||δ||∞
and, δ = 1

2 (tanh(w) + 1) − x. This method has a lower success rate but it is
simple and computationally efficient [13].
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5 Restricted Traffic Distribution Attack

We define an attack that can be translated more readily in a real-life setting.
To ensure the perturbation yields a valid distribution, we have constrained our
attack in two ways: the attack is not allowed to reduce the packet size, and the
generated distribution should preserve the monotonic non-decreasing property.
We solve this problem by enforcing these constraints directly in the adversarial
optimization framework.

Notice that it is possible to reduce the packet size in a distribution by insert-
ing small dummy packets into the traffic, but this approach introduces a larger
overhead into the network than only appending dummy bytes.

5.1 Perturbation Constraints

Given a distribution x, a general adversarial algorithm finds a perturbation δ
that it minimizes a distance metric Lp and changes the correct classification:
C∗(x) �= C(x + δ). This perturbation has no restrictions with respect to the
direction that modifies the original distribution. Instead, we clip every value
below zero in the perturbation during learning:

minimize Lp(x, x + (δ)+)
such that C(x + (δ)+) = t

where (f)+ stands for max(f, 0) and t is not the correct label.

5.2 Distribution Constraints

Given a batch of adversarial distributions A, we define an operation that iden-
tifies every adversarial sample with decreasing consecutive features.

Let (Ai, Ai+1) be consecutive features in the batch A, we compute the fol-
lowing operation:

diff := (Ai − Ai+1)+

We update our distribution based on this value: Ai+1 := Ai+1 + diff . For a
valid sample the operation will result in 0, but for an invalid one it will com-
pute the difference between features, so after the update we automatically get
non-decreasing features. This operation is sequentially applied to every pair of
consecutive features in the same distribution during the optimization of the
attack.

5.3 Framework

These restrictions in an attack should generate a valid adversarial distribution
if convergence is possible. In this work we choose the Carlini-Wagner attack for
L2 and L∞ norm as our frameworks.
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Implementation Details. We re-implement the Carlini-Wagner attack for L2 and
L∞ norm. For the initial c we select 10−3 and 10−1, respectively, and search for
5 steps with 1000 as the maximum number of iterations. In our algorithm, we
clip the perturbation before adding to the batch, and then apply the series of
operations to correct the distribution. We also replicate the method reported
in [24] by applying a post-processing operation to the generated distributions
from CW L2 attack.

Table 4. Percentage of valid adversarial samples.

Valid perturbation Valid distribution

RTDA CW L2 100% 100%

Post-processing CW L2 0% 100%

CW L2 0% 20%

RTDA CW L∞ 100% 100%

CW L∞ 0% 22%

6 Results

We test our two RTDA frameworks against previous adversarial approaches.

Fig. 1. A comparison of every L2 adversarial example generated from the same dis-
tribution. Notice the negative packet size generated by CW L2 and the reduction of
0th and 100th percentile by post-processing CW L2. In contrast, RTDA generates an
adversarial by only increasing the 50th percentile.
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We compare the attacks by evaluating how realistic the generated distribu-
tions are, and the success rate for fooling the neural network. To evaluate how
realistic an attack is we compare the ratios of valid perturbations and valid dis-
tributions for each attack. The results are shown in Table 4 for realistic attacks
and Table 5 for success rate per class (Fig. 1).

Table 5. Success rate per class (Fraction of instances for which an adversarial was
found).

Database Bulk Mail P2P Services WWW

RTDA CW L2 100% 100% 95% 93% 100% 95%

Post-processing CW L2 75% 33% 29% 50% 53% 84%

CW L2 100% 100% 100% 100% 100% 100%

RTDA CW L∞ 100% 100% 74% 72% 67% 100%

CW L∞ 100% 100% 100% 100% 100% 100%

Prior work did not consider the limitations of a perturbation in real-world
settings. Our algorithm is significantly more realistic than previous attacks. Both
of our frameworks generate a valid perturbation and distribution for every test
sample. Post-processing has the disadvantage that resultant distributions may
no longer be adversarial examples. Our approach directly finds attacks in the
valid space allowing to optimize towards the best attacks. Therefore, RTDA
outperforms significantly the success rate of the previous post-processing CW
L2 attack in every class. Even with the additional constraints our attack L2 and
L∞ are just 2% and 14% apart respectively from their unrestricted versions.

Both attacks have a larger norm in comparison to previous approaches. Sur-
prisingly, RTDA L2 has a smaller perturbation than the post-processed app-
roach. On average, our attack can be applied to a system by increasing each
packet by 14.5 bytes. Table 6 compares the corresponding norm and average
perturbation for each approach.

Table 6. Average norm and perturbation.

Lp δ mean (Bytes)

RTDA CW L2 0.015 14.5

Post-processing CW L2 0.012 15.4

CW L2 0.011 12.9

RTDA CW L∞ 0.033 19.41

CW L∞ 0.026 15.74
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7 Conclusions and Future Work

Network traffic is vulnerable to statistical analysis in which an adversary can
classify various types of applications and protocols by observing unencrypted
meta signature of network packets. Adversarial machine learning techniques are
very effective for obfuscating network traffic while introducing minimal network
overhead. We proposed a novel network traffic obfuscating approach that is
robust against network traffic attackers where we leverage adversarial attacks as
a mechanism to obfuscate network traffic. Our algorithm outperforms previous
approaches achieving state-of-the-art results and reduces the network overhead
produced by the perturbation.

We plan to extend this work by testing our approach in a real world net-
work and/or network traffic simulators. In addition, we are working on gener-
ating adversarial examples by using game-theoretic models where the defender
adds various perturbation to the original features of different classes by pay-
ing variable cost to confuse the attacker in decision making. This game model
seeks to simulate the AML approach’s settings by initially imposing two general
constraints—a positive perturbation and total perturbation bounded by a cost
budget. We expect that similar approaches would also be effective in introducing
other realistic constraints into the model, allowing simple but robust perturba-
tions to limit traffic classification accuracy and reconnaissance value.

Acknowledgment. This work was supported by the Army Research Office under
award W911NF-17-1-0370.
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Abstract. Moving target defense (MTD) is a proactive defense approach
that aims to thwart attacks by continuously changing the attack surface of
a system (e.g., changing host or network configurations), thereby increas-
ing the adversary’s uncertainty and attack cost. To maximize the impact
of MTD, a defender must strategically choose when and what changes to
make, taking into account both the characteristics of its system as well
as the adversary’s observed activities. Finding an optimal strategy for
MTD presents a significant challenge, especially when facing a resource-
ful and determined adversary who may respond to the defender’s actions.
In this paper, we propose a multi-agent partially-observable Markov Deci-
sion Process model of MTD and formulate a two-player general-sum game
between the adversary and the defender. To solve this game, we propose
a multi-agent reinforcement learning framework based on the double ora-
cle algorithm. Finally, we provide experimental results to demonstrate the
effectiveness of our framework in finding optimal policies.

1 Introduction

Traditional approaches for security focus on preventing intrusions (e.g., harden-
ing systems to decrease the occurrence and impact of vulnerabilities) or on detect-
ing and responding to intrusions (e.g., restoring the configuration of compromised
servers). While these passive and reactive approaches are useful, they cannot pro-
vide perfect security in practice. Further, these approaches let adversaries perform
reconnaissance and planning unhindered, giving them a significant advantage in
information and initiative. As adversaries are becoming more sophisticated and
resourceful, it is imperative for defenders to augment traditional approaches with
more proactive ones, which can give defenders the upper hand.

Moving Target Defense (MTD) is a proactive approach that changes the rules
of the game in favor of the defenders. MTD techniques enable defenders to thwart
cyber-attacks by continuously and randomly changing the configuration of their
assets (i.e., networks, hosts, etc.). These changes increase the uncertainty and
complexity of attacks, making them computationally expensive for the adversary
[32] or putting the adversary in an infinite loop of exploration [28].

Currently, system administrators typically have to manually select MTD con-
figurations to be deployed on their networked systems based on their previous
c© Springer Nature Switzerland AG 2020
Q. Zhu et al. (Eds.): GameSec 2020, LNCS 12513, pp. 58–79, 2020.
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experiences [9]. This approach has two main limitations. First, it can be very time
consuming since (1) there are constraints on data locations, so that the system
administrator must make sure that constraints are met before deploying MTD,
(2) physical connectivity of servers cannot be easily changed, and (3) resources
are limited. Second, it is difficult to capture the trade-off between security and
efficiency since the most secure configuration is total randomization, but this
has high performance overhead [5].

In light of this, it is crucial to provide automated approaches for deploying
MTD, which maximize security benefits for the protected assets while preserves
the efficiency of the system. The key ingredient to automation of MTD deploy-
ment is finding a design model that reflects multiple aspects of the MTD environ-
ment [2,13,22,32]. Further, we need a decision making algorithm for the model
to select when to deploy an MTD technique and where to deploy it [28]. Finding
optimal strategies for the deployment of MTD is computationally challenging
since there can be huge number of applicable MTD deployment combinations
even with trivial number of MTD configurations or in-control assets. Further,
the adversary might adapt to these strategies.

One of the main approaches for finding decision making policies is Inde-
pendent Reinforcement Learning (InRL). Recently, many research efforts have
applied InRL to find the optimal action policies in fully or partially observ-
able environments in various domains. These domains include: cybersecurity,
hardware design, robotics, finance, and etc. In InRL, an agent learns to make
optimal decisions by continuously interacting with its environment. In general,
traditional reinforcement learning techniques use tabular approaches to store
estimated rewards (e.g., Q-Learning) [10]. To address challenges of reinforce-
ment learning such as exploding state-action space, Artificial Neural Networks
(ANN) have replaced table based approaches in many domains, thereby decreas-
ing the training time and memory requirements. This led to the emergence of
deep reinforcement learning (DRL) algorithms such as DQL [18].

Contributions. We formulate a multi-agent partially-observable Markov decision
process for MTD, and based on this model, we propose a two-player general-sum
game between the adversary and the defender. Then, we present a multi-agent
deep reinforcement learning approach to solve this game. Our main contributions
are as follows:

– We propose a multi-agent partially-observable Markov decision process for
MTD.

– We propose a two-player general-sum game between the adversary and the
defender based on this model.

– We formulate the problem of finding adaptive MTD policies as finding the
mixed-strategy Nash equilibrium (MSNE) of this game.

– We propose a compact memory representation for the defender and adver-
sary agents, which helps them to better operate in the partially-observable
environment.

– We propose a computational approach for finding the optimal MTD policy
using Deep Q-Learning and the Double Oracle algorithm.
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– We evaluate our approach numerically while exploring various game param-
eters.

– We show that our approach is viable in terms of computational cost.

Organization. The rest of the paper is organized as follows. In Sect. 2, we describe
preliminaries, including InRL (Sect. 2.1) and one specific InRL algorithm, Deep
Q Learning (Sect. 2.2). In Sect. 3, we introduce a multi-agent partially-observable
Markov decision process for MTD, which is used as the basis of the MARL. In
Sect. 4, we formulate a two-player general-sum game between the adversary and
the defender, and formulate the problem of finding adaptive MTD policies as
finding the MSNE of the game. In Sect. 5, we propose our solution to solving
the MTD game. In Sect. 6, we provide a thorough numerical analysis of our
approach. In Sect. 7, we discuss the related work. Finally, in Sect. 8, we provide
concluding remarks.

2 Preliminaries

In this section, we describe a family of reinforcement learning algorithms
(Sect. 2.1), and one particular algorithm in this family, namely Deep Q-Learning
(Sect. 2.2). Readers who are familiar with these concepts may skip this section
and continue to Sect. 3.

2.1 Independent Reinforcement Learning

One of the primary approaches for finding a decision-making policy is Indepen-
dent Reinforcement Learning (InRL), which focuses on interactions of a single
agent and its environment to maximize the agent’s gain (represented as rewards
or utilities) from the environment. Figure 1 shows the interactions between dif-
ferent components of InRL. A basic InRL environment is a Partially-Observable
Markov Decision Process (POMDP), which can be represented as a tuple:

POMDP = 〈S,A,T,R,O〉. (1)

where S is the set of all possible states of the environment, A is the set of all
possible actions by the agent, T is the set of stochastic transition rules and, R is
the immediate reward of a state transition, and O is the set of observation rules
of the agent. For more detailed information on POMDP, please refer to [23].

The objective of InRL is to find a policy π, which is a mapping from obser-
vation space to action space, such that:

π(oτ ) �→ aτ (2)

which maximizes U∗
τ = E

[ ∞∑
t=0

γt · rt+τ

∣∣∣∣ π

]
(3)

where oτ is the observation received in time step τ , aτ+1 is the action taken after
that observation, and rτ is the reward received in time step τ after a state tran-
sition due to action aτ . Also, the discount factor γ ∈ [0, 1) prioritizes rewards
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received in the current time step over future rewards. When γ = 0, the agent
cares only about the current reward; and when γ = 1, the agent cares about
all future rewards equally. Note that in a partially-observable environment, the
agent should consider its history of observations. However, considering the com-
plete history of observations may be computationally challenging, so practical
approaches limit the observation history (e.g., limited number of recent observa-
tions [18], agent memory [21]). We propose a compact representation of history
in Sect. 5.2, but for ease of presentation, we will treat policies as mappings from
most recent observations until then.

Agent

Environment

A
ct
io
n

N
ew

st
at
e U

tility

Fig. 1. Independent reinforcement
learning.

The training is done in iterations called
steps. In each step, the agent decides on an
action to take which updates the state of the
environment based on transition rules, and
the agent receives the new observation from
the environment and immediate reward of
transition. To make sure that the majority
of action/observation space is explored and
the learning agent is not stuck in a locally
optimal state, after an arbitrary number of
steps, the environment state is reset to an arbitrary/random initial state and
the agent receives the observation of the initial state. In the terms of RL,
steps between one reset and the next one are called an epoch of training.

Algorithm 1: Deep-Q Learning
Result: policy σ
Q ← random;
for Ne episodes do

O ← reset game();
ετ ← 1;
for τ ∈ {0, . . . , Tepoch} do

if random[0, 1] ≤ ετ then
a ← random action;

else
a ← argmaxa′ Q(S, a′);

end
(S′, r) ← step game(a);
add e = 〈S, S′, a, r〉 to E;
sample X from E;
update DQN based on X;
S ← S′;
decay ετ ;

end
end
σ ← 〈S �→ argmaxa Q(S, a)〉;

Algorithm 2: Adaptive Solver
Result: set of pure policies Πa and

Πd

Πa ← attacker heuristics;
Πd ← defener heuristics;
while Up(σp, σp̄) not converged do

σa, σd ← solve MSNE(Πa,Πd);
θ ← random;
πa
+ ← train(T · Ne, enva[σd], θ);

Πa ← Πa ∪ πa
+;

assess πa
+;

σa, σd ← solve MSNE(Πa,Πd);
θ ← random;
πd
+ ← train(T · Ne, envd[σa], θ);

Πd ← Πd ∪ πd
+;

assess πd
+;

end
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Each step to the environment updates the state of the system based on the
agent’s action (a) and the current state of the environment (s), and returns a
new observation (o), immediate utility given to agent (r), and whether the envi-
ronment is finished or not. This new information and the previous observation of
the agent forms an experience. Specifically, an experience is defined as a tuple of:

e = 〈oτ , aτ , oτ+1, rτ 〉 (4)

where oτ and aτ are the agent’s observation and action at time step τ ; and oτ+1

and rτ are the agent’s observation and immediate utility received at the next
time step τ + 1. The set of recent experiences is used to update the policy.

Reinforcement learning aims to maximize the received utility of the agent
(U∗) by trial and error: interacting with the environment (randomly, following
heuristics, or based on the experiences that the agent has seen so far). Generally,
during the training, there are two ways to find actions to be taken at each step:
(1) Exploitation: we use the currently trained policy to choose actions, which
helps the agent to more accurately find U∗ values of states. (2) Exploration:
to find actions that lead to higher utility by selecting actions at random and
exploring the action/observation space. One of approaches for choosing between
exploration or exploitation is the ε-greedy approach, where in each step the agent
explores with probability ε, or takes the current optimal action with probability
1 − ε.

2.2 Deep-Q-Network Learning

The Deep-Q-Network Learning algorithm is described in Algorithm1. Q-learning
uses a Q function to estimate the expected future utilities of an action in an
observation state (Eq. (3)):

Q(oτ , aτ ) = U∗
τ |π←argmaxa′ Q(oτ ,a′) (5)

With a tabular approach of storing the Q value for each observation/action,
we can find the value of the Q function by applying the Bellman optimization
equation:

Q(oτ , aτ ) = (1 − αq) · Q(oτ , aτ ) + αq · (rτ + γ · max
a′

Q(oτ+1, a
′)︸ ︷︷ ︸

TD Target

) (6)

where αq is the learning rate of the Q function. The idea for updating the Q
function is that the Q function should minimize the temporal difference (TD)
error, i.e., the difference between the predicted Q value, and the actual expected
utility (U∗ while following π ← argmaxa′ Q(Oτ , a′)).

When we are dealing with environments with highly dimensional
action/observation spaces, tabular based Q-learning is infeasible since: (1) the
table for storing Q-values might not fit into memory, and (2) the action and
observation spaces need to be enumerated many times for the algorithm to learn
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an optimal policy. To address these challenges, Mnih et al. [18] suggests to use
multi layer perceptrons (MLP) as approximators for the Q function. Using MLP
as Q-value approximator makes the deep Q-learning approach feasible for such
environments since (1) at most thousands parameters are stored, and (2) MLP
models can generalize the relation between observations and actions; as a result,
learning agents need less time for exploring the observation/action space.

To optimize the parameters of MLP (θ), we can use gradient descent to
minimize the TD error of the network. With the same TD target as Eq. (6), and
taking optimal action as argmaxa′ Q(oτ , a′|θ), the TD target will be:

qτ = rτ + γ · Q(oτ+1, argmaxa′ Q(oτ , a′|θ))|θ) (7)

Suppose we have a batch of experiences X for updating the MLP parameters,
then we can define a mean squared error (MSE) loss function and apply gradient
descent with learning rate αθ to optimise the MLP parameters:

Lθ =
1

|X|
X∑
i

(qτ − Q(oτ , aτ |θ))2 (8)

3 Model

To model adaptive Moving Target Defense, we build a Multi-Agent Partially-
Observable Markov Decision Process (MAPOMDP) based on the model of
Prakash and Wellman [22]. A Multi-Agent POMDP is a generalization of
POMDP to consider multiple agents influencing the environment simultaneously.
Formally:

MAPOMDP = 〈S, {Ai},T, {Ri}, {Oi}〉 (9)

where Ai is the action space, Oi is the observation set of observation rules, and
Ri is the immediate reward of a state transition for player i. In the following
subsections (Sects. 3.1 through 3.5), we describe these sets in terms of an MTD
model.

In this adversarial model, there are two players, a defender and an adversary
(p = a and p = d, resp.), who compete for control over a set of servers. At the
beginning of the game, all servers are under the control of the defender. To take
control of a server, the adversary can launch a “probe” against the server at any
time, which either compromises the server or increases the success probability
of subsequent probes. To keep the servers safe, the defender can “reimage” a
server at any time, which takes the server offline for some time, but cancels the
adversary’s progress and control. The goal of the defender is to keep servers
uncompromised (i.e., under the defender’s control) and available (i.e., online).
The goal of the adversary is to compromise the servers or make them unavailable.
For a list of symbols used in this paper, see Table 1.
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Table 1. List of symbols and experimental values

Symbol Description Baseline value

Environment, Agents, Actions

M Number of servers 10

Δ Number of time steps for which a server is
unavailable after reimaging

7

ν Probability of the defender not observing a probe 0

αθ Knowledge gain of each probe 0.05

CA Attack (probe) cost 0.20

θp
sl Slope of reward function for player p 5

θp
th Steep point threshold of reward function for player p 0.2

wp Weighting of reward for having servers up and in
control for player p

0/1

rp
τ Reward of player p in time step τ

Heuristic strategies

PD Period for defender’s periodic strategies 4

PA Period for adversary’s periodic strategies 1

π Threshold of number of probes on a server for PCP
defender

7

τ Threshold for adversary’s/defender’s
Control-Threshold strategy

0.5/0.8

Reinforcement learning

T Length of the game (number of time steps) 1000

γ Temporal discount factor 0.99

εp Exploration fraction 0.2

εf Final exploration value 0.02

αt Learning rate 0.0005

|E| Experience replay buffer size 5000

|X| Training batch size 32

Ne Number of training episodes 500

3.1 Environment and Players

There are M servers and two players, a defender and an adversary. The servers
are independent of each other in the sense that they are independently attacked,
defended, and controlled. The game environment is explained in detail in the
following subsections.
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3.2 State

Time is discrete, and in a given time step τ , the state of each server i is defined
by tuple sτ

i = 〈ρ, χ, υ〉 where
– ρ ∈ N0 represents the number of probes lunched against server i since the

last reimage,
– χ ∈ {adv, def} represents the player controlling the server, and
– υ ∈ {up}∪N0 represents if the server is online (i.e., up) or if it is offline (i.e.,

down) with the identifier of the time step in which the server was reimaged.

3.3 Actions

In each time step, a player may take either a single action or no action at all. The
adversary’s action is to select a server and probe it. Probing a server takes control
of it with probability 1−e−α·(ρ+1) where ρ is the number of previous probes and
α is a constant that determines how fast the probability of compromise grows
with each additional probe, which captures how much information (or progress)
the adversary gains from each probe. Also, by probing a server, the adversary
learns whether it is up or down.

The defender’s action is to select a server and reimage it. Reimaging a server
takes the server offline for a fixed number Δ of time steps, after which the server
goes online under the control of the defender and with the adversary’s progress
(i.e., number of previous probes ρ) against that server erased (i.e., reset to zero).

3.4 Rewards

Prakash and Wellman [22] define a family of utility functions. The exact utility
function can be chosen by setting the values of preference parameters, which
specify the goal of each player. The value of player p’s utility function up at a
particular, as described by Eqs. (10) and (11), depends on the number of servers
in control of player p and the number of servers offline. Note that the exact
relation depends on the scenario (e.g., whether the primary goal is confidentiality
or integrity), but in general, a higher number of controlled servers yields a higher
utility.

up(np
c , nd) = wp · f

(
np

c

M
, θp

)
+ (1 − wp) · f

(
np

c + nd

M
, θp

)
(10)

where np
c is the number of servers which are up and in control of player p, nd

is the number of unavailable (down) servers, and f is a sigmoid function with
parameters θp ← (θp

sl, θ
p
th):

f(x, θp) =
1

e−θp
sl·(x−θp

th)
(11)

where θsl and θth control the slope and position of the sigmoid’s inflection point,
respectively. Please note that, the value of variables used for computation of
utility function (np

c , nd), and therefore, the utility function depends on the time
step. However, in the writing time step is removed explicitly from the formula-
tion, since the time step can be understood from the context.



66 T. Eghtesad et al.

Table 2. Utility environments

Utility environment wa wd

0 Control/availability 1 1

1 Control/confidentiality 1 0

2 Disrupt/availability 0 1

3 Disrupt/confidentiality 0 0

Reward weight (wp) specifies the goal of
each player. As described by Prakash and Well-
man [22], there can be four extreme com-
binations of this parameter, which are sum-
marized in Table 2. For example, in con-
trol/availability, both players gain reward by
having the servers up and in their control. Or in
disrupt/availability, which is the most interest-
ing case, the defender gains reward by having the servers up and in its control,
while the adversary gains reward by bringing the servers down or having them
in its control.

The defender’s cost of action is implicitly defined by the utility function. In
other words, the cost of reimaging a server comes from not receiving reward for
the time steps when the server is “down.” In contrast, the adversary’s reward
accounts for the cost of probing (CA), which is a fixed costs that can be avoided
by not taking any action.

The reward given to the adversary (ra
τ ) and defender (rd

τ ) at time τ is defined
by:

rd
τ = ud, ra

τ =

{
ua(na

c , nd) − CA adversary probed a server at τ

ua(na
c , nd) adversary did nothing at τ

(12)

3.5 Observations

A key aspect of the model is the players’ uncertainty regarding the state of the
servers. The defender does not know which servers have been compromised by the
adversary. Further, the defender observes a probe only with a fixed probability
1 − ν (with probability ν, the probe is undetected). Consequently, the defender
can only estimate the number of probes against a server and whether a server is
compromised. However, the defender knows the status of all servers (i.e., whether
the server is up or down; and if it is down, how many time steps it requires to
be back up again).

The adversary always observes when the defender reimages a compromised
server, but cannot observe reimaging an uncompromised server without probing
it. Consequently, the adversary knows with certainty only which servers are
compromised.

Observation of a player p is represented as a vector of tuples op
i , where op

i

corresponds to player p’s observation of server i:

op = 〈op
0, o

p
1, · · · , op

M−1〉 (13)

The adversary knows which servers are compromised and knows how many
probes it has initiated on each server. The adversary’s observation of server i is
defined as a tuple oa

i :

∀0≤i<M : oa
i = 〈ρ̃a, χ, ṽa〉 (14)
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where ρ̃a is the number of probes launched by the adversary since the last
observed reimaging, χ is the player controlling of the server (always known by
the adversary), and ṽa ∈ {up, down} is the observed state of the server.

Unlike the adversary, the defender does not know who controls the servers.
Further, if ν is greater than 0, the defender can only estimate the number of
probes. The observation state of the defender of each server i can be modeled
with a tuple od

i :

∀0≤i<M : od
i = 〈ρ̃d, v〉 (15)

where ρ̃d is the number of probes observed since the last reimaging, and v ∈
{up} ∪ N0 is the state of the server (always known by the defender).

4 Problem Formulation

In Sect. 3, we built an MTD model using a MAPOMDP. In this section, based
on this model, we design an adversarial game between the adversary and the
defender. In this setting, we assume that each player chooses a strategy to play,
where a strategy is a policy function that maps an observation of the environ-
ment to an action to be taken. Since we assume that each strategy is a policy
function, in the remainder of this paper, we use the terms strategy and policy
interchangeably.

4.1 Pure Strategy

A pure strategy πp for player p is a deterministic policy function πp(op) �→ ap,
which given player p’s current observation of the system op produces an action
ap to be taken by the player. We let Πp denote the set of all pure strategies
(i.e., policies) of player p.

When the players are following pure policies πa ∈ Πa and πd ∈ Πd, their
expected cumulative utility can be expressed as the sum of discounted future
rewards with discount factor γ. Formally, we can express player p’s expected
cumulative utility where p̄ denotes player p’s opponent as:

Up(πp, πp̄) = E

[ ∞∑
t=0

γτ · rp
τ

∣∣∣∣ πp, πp̄

]
(16)

4.2 Mixed Strategy

One way to express stochastic policies is to use probability distributions over
pure policies. A mixed strategy of player p is a probability distribution σp =
{σp(πp)}πp∈Πp over the player’s pure strategies Πp, where σp(πp) is the proba-
bility that player p chooses policy πp.
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We let Σp denote player p’s mixed strategy space. The expected utility of the
adversary and the defender when they are following mixed strategies σa ∈ Σa

and σd ∈ Σd, respectively, can be calculated as:

∀p∈{a,d} : Up(σp, σp̄) =
∑

πp∈Πp

∑
πp̄∈Πp̄

σp(πp) · σp̄(πp̄) · Up(πp, πp̄) (17)

Note that we overloaded the notation for the players’ pure-strategy utility to
also denote their mixed-strategy utility since the distinction will always be clear
from the context and function arguments.

4.3 Solution Concept

The aim of both players is to maximize their utility. As we are considering a
rational adversary and defender, we can assume that they always pick a strategy
that maximizes their own utility. A best response mixed strategy σp

∗(σp̄) provides
maximum utility for player p given that its opponent p̄ is using mixed strategy
σp̄. Formally, if the opponent p̄ is using a mixed strategy σp̄, then player p’s best
response σp

∗ is

σp
∗(σp̄) = argmaxσp Up(σp, σp̄). (18)

We optimize each player’s strategy assuming that its opponent will always
use a best-response strategy. This formulation is in fact equivalent to finding a
mixed-strategy Nash equilibrium (MSNE) of the players’ policy spaces Πa and
Πd. Formally, a profile of mixed strategies (σa

∗ , σd
∗) is a MSNE iff

∀p∈{a,d}∀σp∈Σp : Up(σp
∗ , σp̄

∗) ≥ Up(σp, σp̄
∗) (19)

That is, neither player can increase its expected utility by unilaterally chang-
ing its strategy. In the next section, we propose an approach for finding the
MSNE of the MTD game, where Πa and Πd are the policy space of the players.

5 Framework

In Sect. 4, we proposed a general-sum game based on the MAPOMDP model
described in Sect. 3. We concluded that finding an optimal action policy for the
adversary and the defender in the MTD setting is equivalent to finding an MSNE
of the game. In this section, we propose a computational approach and build a
framework atop the double oracle (Sect. 5.1) and DQL (Sect. 2.2) algorithms to
find optimal action policies for the adversary and the defender.

5.1 Solution Overview

The iterative Double Oracle (DO) algorithm [17] finds an MSNE of a game given
an arbitrary initial subset Πp

0 of each player p’s strategy set (Πp
0 ⊂ Πp). The
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DO algorithm extends these subsets iteratively by alternating between 1) finding
MSNE of the game spanned by these subsets and 2) extending the subsets with
best-response strategies against the latest MSNE.

We let Πp
t denote player p’s explored subset of strategies in iteration t of the

DO algorithm. In each iteration, for each player, the DO algorithm refers to a
best response oracle, an algorithm which finds a pure-strategy best response, to
compute a best-response strategy against the opponent’s MSNE strategy. Then,
it adds this best response to the player’s strategy set. Formally, in each iteration:

∀p∈{a,d} : Πp
t+1 ← Πp

t ∪ {
πp

∗
(
σp̄

∗,t

)}
(20)

where σp
∗,t is the MSNE of the player p given the strategy sets Πp

t . The DO
algorithm guarantees [17] the convergence of the MSNE of these strategy sets
to an MSNE of the game as long as the strategy sets are finite for both players.
However, as the players’ strategy sets are vast (even though they are finite) in
our game model, enumeration of the strategy sets in search of the best response
is infeasible.

For each player, we can use an InRL algorithm, such as Q-Learning [30], as
a best-response oracle to find a best-response pure strategy against the oppo-
nent’s MSNE strategy. Since the opponent’s strategy is fixed, the player can use
reinforcement learning by treating the opponent’s actions as part of its localized
environment.

5.2 Challenges

Solving the MAPOMDP model of Sect. 3 with the DO algorithm is not straight-
forward. In the following paragraphs, we discuss the issues faced while solving
the MAPOMDP model and propose approaches for resolving these issues.

Partial Observability. For both players, state is only partially observable. This
can pose a significant challenge for the defender, who does not even know whether
a server is compromised or not. Consider, for example, the defender observing
that a particular server has been probed only a few times: this may mean that
the server is safe since it has not been probed enough times; but it may also mean
that the adversary is not probing it because the server is already compromised.
We can try to address this limitation by allowing the defender’s policy to con-
sider a long history of preceding observations; however, this poses computational
challenges since the size of the policy’s effective state space explodes.

Since partial observability poses a challenge for the defender, we let the
defender’s policy use information from preceding observations. To avoid state-
space explosion, we feed this information into the policy in a compact form. In
particular, we extend the observed state of each server (i.e., number of observed
probes and whether the server is online) with (a) the amount of time since the
last reimaging r (always known by the defender) and (b) the amount of time since
the last observed probe p̃d. So, the actual state representation of the defender
will be:
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∀0≤i<M : od
i = 〈ρ̃d, v, p̃d, r〉 (21)

where p̃d is the time since the last observed probe of the server, and r is the time
since the last reimage of the server.

Further, the adversary needs to make sure that the progress of the probes on
the servers is not reset. Therefore, it is important that the adversary knows the
amount of time since the last probe p of servers when deciding which server to
probe. Hence, the observation state of the adversary becomes:

∀0≤i<M : oa
i = 〈ρ̃a, χ, ṽa, p〉 (22)

Complexity of MSNE Computation. In zero-sum games, computation of
MSNE can be done in polynomial time (e.g., linear programming). However, in
general-sum games, the problem of finding the MSNE of given strategy sets of
players is PPAD-complete [27], which makes computation of true MSNE infea-
sible for a game of non-trivial size. Therefore, we use an ε-equilibrium solver,
which produces an approximate correct result. One such solver is the Global
Newton solver [6].

Equilibrium Selection. Typically, the DO algorithm is used with zero-sum
games, where all equilibria of a game yield the same expected payoffs. However,
in general-sum games, there may exist multiple equilibria with significantly dif-
ferent payoffs. The DO algorithm in general-sum games converges to only one
of these equilibria. The exact equilibrium to which the DO algorithm converges
depends on the players’ initial strategy sets and the output of the best-response
oracle. However, in our experiments (Sect. 6.3), we show that in our game, this
problem is not significant in practice, i.e., all equilibria yield almost the same
expected payoffs (Fig. 3) regardless of the initial strategy sets.

Model Complexity. Due to the complexity of our MAPOMDP model, com-
putation of best response using tabular InRL approaches (e.g., Q-Learning) is
computationally infeasible. For example, the size of state space for the defender
is (2T 3)M since each of ρ̂d, p̂d, and r can take any value between 0 and T , and
v can only take two values. Although we expect that the values of ρ̂d, p̂d, and r
be much smaller than T due to the dynamics of the game, it is still infeasible
to explore each state even once or store a tabular policy in memory for a game
of non-trivial size on a conventional computer. To address this challenge, we use
computationally feasible approximate best-response oracles to find approximate
best-response strategies instead of best responses. Lanctot et al. [11] show that
deep reinforcement learning can be used as an approximate best-response ora-
cle. However, when approximate best responses are used instead of true best
responses, convergence guarantees are lost. In our experiments, we show that
this algorithm does converge in only a few iterations (see Fig. 2b).

Short-Term Losses vs. Long-Term Rewards. For both players, taking an
action has a negative short-term impact: for the defender, reimaging a server
results in lower rewards while the server is offline; for the adversary, probing
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incurs a cost. While these actions can have positive long-term impact, benefits
may not be experienced until much later: for the defender, a reimaged server
remains offline for a long period of time; for the attacker, many probes may be
needed until a server is finally compromised.

As a result, with typical temporal discount factors (e.g., γ = 0.9), it may
be an optimal policy for a player to never take any action since the short-term
negative impact outweighs the long-term benefit. In light of this, we use higher
temporal discount factors (e.g., γ = 0.99). However, such high values can pose
challenges for deep reinforcement learning since convergence will be much slower
and less stable.

5.3 Solution Approach

Prakash and Wellman [22] proposed a set of heuristic strategies for each player
(described in Sect. 6.1). However, as these strategies are only a subset of the
agents’ strategy sets, their MSNE is not necessarily an MSNE of the complete
game. In Sect. 5.1, we showed how we can find the MSNE of the game, given a
subset of strategy sets for each agent. In this section, based on our approach for
resolving challenges of solving our MTD game with the DO algorithm (Sect. 5.2),
we propose our framework to find the MSNE of the MTD game and therefore, the
optimal decision making policy for the adversary and the defender. Algorithm2
shows a pseudo-code of our framework.

We start by initializing the adversary’s and defender’s strategy sets Πa
0 and

Πd
0 with heuristic policies (Sect. 6.1). From this stage, we proceed in iterations.

In each iteration, first, we compute an MSNE (σa, σd) of the game restricted to
the current strategy sets Πa and Πd, take the adversary’s equilibrium mixed
strategy σa and train an approximate best-response policy (πd

+(σa)) for the
defender assuming that the adversary uses σa. Next, we add this new policy to
the defender’s set of policies (Πd ← Πd ∪ {πd

+}).
Then, we do the same for the adversary. First, find the MSNE strategy of

the defender (σd), and train an approximate best-response policy (πa
+(σd)) for

the adversary assuming that the defender uses σd. Then, we add this new policy
to the adversary’s set of policies (Πa ← Πa ∪ {πa

+}).
In both cases, when computing an approximate best response (π+(σ∗)) for a

player against its opponent’s MSNE strategy σ∗, the opponent’s strategy σ∗ is
fixed, so we may consider it to be part of the player’s environment. As a result,
we can cast the problem of finding an approximate best response as Independent
Reinforcement Learning (InRL). Each invocation of InRL, denoted as train()
in Algorithm 2, receives the limit on the number of training steps T of training
and initial parameters θ. Moreover, we let envp[σp̄] denote the InRL environment
for player p when its opponent plays a mixed strategy σp̄.

As we are dealing with discrete action and observation spaces in the MTD
model, DQL [18] is a suitable InRL algorithm for finding an approximate best
response. In each time step of the InRL, both players need to decide on an
action. The learning agent either chooses an action randomly (i.e., exploration),
or follows its current policy. The opponent, whose strategy is a fixed mixed
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strategy σp̄, refers to a pure strategy πp̄ ∈ Π p̄ with probability distribution σp̄

and follows that policy.
The MSNE payoff evolves over the iterations of the DO algorithm: whenever

we add a new policy for an agent, which is trained against its opponent’s best
mixed strategy so far, the MSNE changes in favor of the agent. We continue these
iterations until the MSNE payoff of the defender and the adversary (Up(σp

∗ , σp̄
∗))

converges. Formally, we say that the MSNE is converged for both players iff

∀p∈{a,d} : Up(πp
+, σp̄) ≤ Up(σp, σp̄) (23)

where σp is player p’s current MSNE strategy and πp
+ is the approximate best

response found for player p against its opponent’s current MSNE strategy. Con-
vergence of the algorithm means that neither the adversary nor defender could
perform better by introducing a new policy.

6 Evaluation

In this section, we first describe the heuristic strategies of the MTD game
(Sect. 6.1) proposed by Prakash and Wellman [22]. Next, we discuss our imple-
mentation of the framework (Sect. 6.2). Finally, we present the numerical results
(Sect. 6.3).

6.1 Baseline Heuristic Strategies

Prakash and Wellman [22] proposed a set of heuristic strategies for both the
adversary and the defender. Earlier, we used these strategies as our initial policy
space for the DO algorithm. In this section, we describe these heuristics.

Adversary’s Heuristic Strategies

– Uniform-Uncompromised: Adversary launches a probe every PA time steps,
always selecting the target server uniformly at random from the servers under
the defender’s control.

– MaxProbe-Uncompromised: Adversary launches a probe every PA time steps,
always targeting the server under the defender’s control that has been probed
the most since the last reimage (breaking ties uniformly at random).

– Control-Threshold: Adversary launches a probe if the adversary controls less
than a threshold τ fraction of the servers, always targeting the server under
the defender’s control that has been probed the most since the last reimage
(breaking ties uniformly at random).

– No-Op: Adversary never launches a probe.

Defender’s Heuristic Strategies

– Uniform: Defender reimages a server every PD time steps, always selecting a
server that is up uniformly at random.
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Table 3. Payoff table for heuristic and reinforcement learning based strategies

– MaxProbe: Defender reimages a server every PD time steps, always selecting
the server that has been probed the most (as observed by the defender) since
the last reimage (breaking ties uniformly at random).

– Probe-Count-or-Period (PCP): Defender reimages a server which has not
been probed in the last P time steps or has been probed more than π times
(selecting uniformly at random if there are multiple such servers).

– Control-Threshold: Defender assumes that all of the observed probes on a
server except the last one were unsuccessful. Then, it calculates the probabil-
ity of a server being compromised by the last probe as 1 − e−α·(ρ+1). Finally,
if the expected number of servers in its control is below τ · M and it has
not reimaged any servers in PD, then it reimages the server with the highest
probability of being compromised (breaking ties uniformly at random). In
other words, it reimages a server iff the last reimage was at least PD time
steps ago and E[nd

c ] ≤ M · τ .
– No-Op: Defender never reimages any servers.

6.2 Implementation

We implemented the MAPOMDP of Sect. 3 as an Open AI Gym [4] environment.
We used Stable-Baselines’ DQN [8] as the implementation of the DQL. Stable-
Baselines internally uses TensorFlow [1] as the neural network framework. For the
artificial neural network as our Q approximator, we used a feed forward network
with two hidden layers of size 32, and tanh as our activation function. The rest
of parameters are described in Table 1. We implemented the remainder of our
framework in Python, including the double oracle algorithm. For computation
of the mixed-strategy ε-equilibrium of a general-sum game, we used the Gambit-
Project’s Global Newton implementation [16].

We run the experiments on a computer cluster, where each node has two 14-
core 2.4 GHz Intel Xeon CPUs and two NVIDIA P100 GPUs. Each node is capable
of running ≈85 steps of DQL per second, which results in about 1.5 h of running
time per each invocation of the best-response oracle (i.e., DQL training for the
adversary or defender). Note that the DQL algorithm is not distributed, so we use
only one core of the CPU, and one GPU. It is important to note that in practice,
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Fig. 2. (a) shows the learning curve of the players. In (b), iteration 0 shows the MSNE
payoff of the heuristics while each DQN training for adversary and defender happens
at odd and even iterations, respectively.

optimal policies can be pre-computed, and then executed to mitigate attacks when
needed. When policies are executed, inference takes only milliseconds.

6.3 Numerical Results

For acquiring the following results, our MTD model is always instantiated using
baseline parameters from Table 1, unless explicitly specified otherwise.

DQL Convergence and Stability. Figure 2a shows the learning curve of the
agents for their first iteration of the DO algorithm (Iteration 1 and 2). On
average, the DQL algorithm converges in 3.88 · 105 steps (49.11 min) for the
adversary, and 1.10 · 105 steps (18.13 min) for the defender. We can see that
over the iterations of the DO algorithm, the speed of the training decreases. For
example, in the first iteration of adversary training, DQL’s speed is 131.67 steps
per second, while for the first iteration of defender training, DQL’s speed reduces
to 101.12 steps per second. Further, in the fourth training of the adversary,
training speed is decreased furthermore to 52.34 iterations per second.

Since over the iterations of the DO algorithm, the fraction of DQL strate-
gies in both players MSNE increase (0% vs 51% for the first trainings), and
inference from a DQL policy, which requires matrix multiplications, is slower
than inference from a heuristic strategy, which requires only a few operations,
we can conclude that DQL policies will be more dominant over the iterations.
This means that DQL policies are performing better than heuristics over the
iterations.

To measure the stability of the DQL algorithm, we extracted the first DQL
trainings for both players. The DQL algorithm converges to almost the same
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expected cumulative reward with mean and standard deviation of 0.672 and
0.021 for the adversary and 0.878 and 0.011 for the defender. Table 3, which we
will discuss in detail later, shows that these policies are significantly better than
the heuristics.
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Fig. 3. Comparison of stability for differ-
ent configurations. The blue and red boxes
show the adversary’s and defender’s payoff,
respectively. Each box shows the result of
eight runs. (Color figure online)

DO Convergence and Stability.
Figure 2b shows the evolution of
MSNE payoff over the iterations of the
DO algorithm over three experiments
with baseline values of Table 1. In this
figure, each training for the adversary
and defender happens at odd and even
iterations, respectively, while iteration
0 is the equilibrium of heuristic poli-
cies. The figure shows that the DO
algorithm indeed converges with ≈4
trainings for each player, i.e., 6 h of
training in total. Comparing multi-
ple runs with the same configuration
shows that the DO algorithm with
multiple approximations (e.g., approx-
imation with deep networks, approxi-
mation on equilibrium computation) is
stable since the average and standard
deviation of the MSNE payoff is 47.81 and 1.77 for the adversary and 88.92 and
1.04 for the defender. For different configurations, the difference between final
expected payoffs of eight DO runs is described in Fig. 3.

Equilibrium Selection. To analyze the impact of equilibrium selection on
the MSNE payoff of the game, we executed Algorithm 2, but without heuristics
as initial strategy sets. Instead, the initial strategy sets are set to only NoOP
adversary and NoOP defender. As we can see in Fig. 3, regardless of the initial
strategy sets, the resulting policies always converge to an MSNE with the same
payoffs for both players. As a result, equilibrium selection is not an issue in
practice since we always end with approximately the same equilibrium.

Heuristic Strategies. Table 3 shows the utilities for all combinations of heuris-
tic defender and adversary strategies with baselines parameters. The optimal
strategy given only heuristics as players’ strategy sets are PCP for the defender,
and control threshold for the adversary. This table also compares these heuristic
strategies to mixed-strategy policies computed using DO and DQL. We can see
that it is optimal for both players to commit to the mixed strategy DQL, since
no player can receive more utility by committing to another policy, while the
opponent still commits to the DQL policy.

Resiliency to Under/Over Estimation. One interesting observation of the
DQL policies is their resiliency to under/over estimation of the opponent. As a
showcase for when the defender underestimates the adversary, assume a defender
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who has trained with CA = 0.2 plays with an adversary who is trained with
CA = 0.05. They receive 88.18 and 61.93 utility, respectively. For the defender,
this utility is the same as when it correctly predicts the cost of attack (Fig. 3).

7 Related Work

In this work, we used multi-agent reinforcement learning to find optimal poli-
cies for the adversary and the defender in an MTD game model. In prior work,
researchers have investigated both the application of reinforcement learning in
cyber-security (Sect. 7.2) and game-theoretic models for MTD (Sect. 7.1). Per-
haps the most closely related work on integration of reinforcement learning and
moving target defense is the work of Sengupta and Kambhampati [24]. They
propose a Bayesian Stackelberg game model to MTD and solve (i.e., find the
optimal action policy for the defender) it using Q-Learning. One main difference
between our model and their model is that they assumed that the adversary is
aware of the defender’s policy, while in our model, not only both players are
unaware of the opponent’s strategy, they might not even observe the opponent’s
actions. One key advantage of our model is that we consider multiple target sys-
tems while they consider a single target system with four possible states. This
makes a tabular approach (Q-Learning) feasible. However, tabular approaches
scale poorly to more complex systems.

7.1 Moving Target Defense

One of the main research areas in moving target defense is to model interactions
between the adversaries and the defenders. In the area of game-theoretic models
for moving target defense, the most closely related work is from Prakash et
al. [22], which introduces the model that our work uses. This model can also be
used for defense against DDoS attacks [31], and defense for web applications [25].
Further, in this area, researchers have proposed MTD game models based on
Stackelberg games [13], Markov Games [12,28], Markov Decision Process [32],
and FlipIt game [20].

For solving a game model (i.e., finding the optimal playing strategies), numer-
ous approaches such as solving a min-max problem [13], non-linear program-
ming [12], Bellman equation [28,32], Bayesian belief networks [2], and reinforce-
ment learning [9,20] has been suggested.

7.2 Reinforcement Learning for Cybersecurity

Application of machine learning—especially deep reinforcement learning
(DRL)—for cybersecurity has gained attention recently. Nguyen et al. [19]
surveyed current literature on applications of DRL on cybersecurity. These
applications include: DRL-based security methods for cyber-physical systems,
autonomous intrusion detection techniques [10], and multi-agent DRL-based
game-theoretic simulations for defense strategies against cyber attacks.
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For example, Malialis [14,15] applied multi-agent deep reinforcement learning
on network routers to throttle the processing rate in order to prevent distributed
denial of service (DDoS) attacks. Bhosale et al. [3] proposed a cooperative multi-
agent reinforcement learning for intelligent systems [7] to enable quick responses.
Another example for multi-agent reinforcement learning is the fuzzy Q-Learning
approach for detecting and preventing intrusions in wireless sensor networks
(WSN) [26]. Furthermore, Tong et al. [29] proposed a multi-agent reinforcement
learning framework for alert correlation based on double oracles.

8 Conclusion

Moving target defense tries to increase adversary’s uncertainty and attack cost
by dynamically changing host and network configurations. In this paper, we have
proposed a multi-agent reinforcement learning approach for finding MTD strate-
gies based on an adaptive MTD model. To improve the agents’ performance in
partially-observable environments, we proposed a compact memory presentation
for the agents. Further, we showed that the double oracle algorithm with DQL
as best-response oracle is a feasible and promising solution for finding optimal
policies in general-sum adversarial games as it is stable and converges rapidly.
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Abstract. Prior work has explored the use of defensive cyber decep-
tion to manipulate the information available to attackers and to proac-
tively lie on behalf of both real and decoy systems. Such approaches can
provide advantages to defenders by delaying attacker forward progress
and thereby decreasing or eliminating attacker payoffs. In this work,
we expand previous work by incorporating new parameters relating to
attacker costs and choices. The extended model includes attacker costs
for probing a system to learn its declared type (“real” or “fake”) and
allows an attacker to proactively choose to leave the game early by walk-
ing away. While these additional parameters represent extensions to our
prior model, they are key to understanding attacker behavior when con-
fronted with deceptive cyber defenses. We first present the extended
model and an analysis of the expected rewards for rational players. We
then present the behavior of an adaptive attacker in a Markov Decision
Process (MDP) simulation. Lastly, we relate our analytic and empirical
findings to cognitive bias effects and speculate on how the manipulation
of game parameters may be used in future work to both estimate and
trigger bias effects during defender-attacker interactions.

1 Introduction

There is a growing body of research exploring the defensive use of cyber deception
through the direct manipulation of defender-controlled cyber environments [14].
In particular, cyber deception seeks to reverse traditional asymmetries present
in the management and protection of computing systems and networks. While
the theory guiding the proper application of cyber deception is still maturing,
recent experimental results indicate that these techniques are not only effec-
tive, but that their impacts extend beyond their direct technical effects, leading
to potentially lasting effects on the decision making of cyber attackers [8,9].
The implication of these findings is that the theories guiding the use of cyber
deception should not be limited to the mechanical or procedural interactions
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of competing entities, but should seek to encompass and exploit principles of
human decision making under conditions of uncertainty and risk that have been
revealed in the intersection of Cognitive Psychology and Behavioral Economics.

It is well-known that attackers will follow predetermined “rules of thumb”
which may be implicit within known Tactics, Techniques, and Procedures
(TTPs) or explicit and even mandated to ensure stealth or success of a par-
ticular cyber operation. Cataloguing and modeling the action spaces of various
TTPs has been a widespread focus of cyber defense research to date [23]. While a
comprehensive understanding of TTPs is necessary, the models do not currently
extend to the behavioral or cognitive aspects of decision making. We believe
it is these cognitive aspects which can have the most impact on the success
of an attack. While traditional defenses are laser focused on defending against
attacks, a human behavioral approach would defend against the human decision
makers behind the attacks – bringing to bear not only the technical defenses
already in play but tools designed to induce cognitive biases and cyber deter-
rence [20]. Recent research suggests that defenses which make use of cognitive
bias effects can have immediate and lasting impacts against the human driving
the attack [12,13].

As part of this ongoing effort, in this work we aim to further develop and
analyze a cyber deception model whose framework is capable of incorporating
cognitive and behavioral aspects of decision making. In [2], we introduced a sim-
ple masking game which abstracts away the mechanism of attacks and deceptive
defenses and focuses on fundamental choices made by an attacker and a defender.
In this game there are only two systems, one real and one fake. Each round the
attacker may either probe or attack. When probed, a defended system sends a
signal of questionable veracity indicating that it is either “real” or “fake.” If
a system’s true type is masked by a false answer, then this is a deception. An
attacker might even believe an honest response to be a deception. This inter-
action continues over many rounds until the attacker chooses to end the game
by attacking, or the round limit is reached. The full parameters of this game
are discussed in Sect. 3.1, as are the extensions – cost for probing and attacker
action of walking away, allowing the defender to “lie another day.”

Our initial work focused on the defender, resulting in a careful analysis of the
optimal defender responses. A key assumption of the model was that the defender
is unable to preemptively exit or end the game. This parallels the unfortunate
scenario played out in many cyber attacks in which ejecting the attacker only
informs the attacker of the observability of a particular technique, but does not
prevent them from regaining access. A patient attacker might simply play suf-
ficiently many repeated games to learn the defender’s strategy. Indeed, in our
initial study of the simplest forms of this game, an attacker has no incentive to
attack prior to achieving sufficient confidence in the estimated defender charac-
teristics. To reflect the “urgency” of an attacker in the face of opportunity costs
for long enough games, we introduced an exponentially decaying multiplicative
factor in the value of a system. Even with this rudimentary defensive model, the
results of our preliminary work suggest both significant challenges for analysis as
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well as interesting and exploitable player behaviors. Our aim in this work is to
consider a worst-case scenario from the point of view of the defender where the
defender is heavily constrained in terms of their actions and where the attacker is
aware of the costs associated with the defender’s actions. Despite this advantage,
we show that in many cases the attacker’s best course of action is not always
straightforward to determine.

Let τR, τF denote the probability the real and fake machines (respectively)
tell the truth within our cyber deception model. In our initial work [2], we
derived expressions for the optimal choices of τR, τF under the assumption that
the defender pays a penalty for lying. The optimal choices were deterministic,
i.e. for a reward maximizing defender, τR, τF ∈ {0, 1}. The natural question then
is how should an attacker/defender behave if the defender is playing the game
sub-optimally (and hence non-deterministically). This work aims to answer this
question. Our main analytic result, which appears as Theorem1, shows that the
optimal number of rounds an attacker should play is at most sublinear with
respect to the value V of the game. We then simulate the performance of a
reinforcement learning (RL) agent operating within our game environment and
show that in many cases the behavior of the agent aligns with our analysis.

The main contributions of this work are the following: (i) we generalize our
previous game setup by incorporating a cost cp to the attacker for probing; (ii)
we allow the attacker to determine the round at which to attack; (iii) we derive
an asymptotic result which shows that an attacker who seeks to maximize their
expected reward should play the game for at most N rounds where N is sublinear
in V ; and (iv) we augment our framework by allowing the attacker the ability
to exit the game early without attacking. This feature establishes a framework
for investigating the role of human cognitive bias in our game of deception [12];
a topic which is discussed further in Sect. 4.4.

This paper is organized as follows. Section 2 discusses background work, high-
lighting where our model differs from existing art. Section 3 presents our analytic
results on optimal attacker behavior. Section 4 simulates the interactions of an
attacker and defender using a RL agent. Finally, Sect. 5 concludes the paper and
proposes future work.

2 Related Work

Game theory is one of the methods that can be used to model cyber deception
and the changes that deception drives for both the attacker and defender [1,7,
27]. This can lead to practical solutions that inform automatically adapting AI
systems and advance the application of cyber deception techniques. One well-
studied area related to cyber deception is the problem of deploying honeypots
in a distributed environment. Under this setup, there are usually two players:
(1) a defender and (2) an attacker. The defender, which is monitoring some
collection of network resources, is able to deploy a certain number of honeypots,
usually at some predetermined cost. The goal of the attacker then is to identify
the locations of these honeypots, and to use this knowledge to expose system
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vulnerabilities. Typically these problems are modeled as two person, zero-sum
games and such games have been studied extensively in the past [3,5,11].

Although the topic of deploying and configuring honeypots has received sig-
nificant attention, there have been notably fewer works on the strategic use of
honeypots and other forms of deception from a game-theoretic perspective. In
[21], a model was proposed that included the interactions between the attacker
and defender. This communication was then used by the attacker to determine
whether a particular machine is a honeypot or not. In [6], and similar to [11], the
interaction between the attacker and defender was modeled as a signaling game
to mitigate denial of service attacks. Under this model, a defender can observe
the attacker actions and subsequently improve their defenses.

Unlike previous work, our work does not allow the defender to change
the underlying system configuration, but rather focuses on responses to the
attacker’s probes of the system. Our goal was to construct as simple a model as
possible to capture the essence of deception. Similar to [22,28], we introduce a
game with two repeated stages, where in the first stage the attacker probes the
machines.

Due to the simplicity of our model and unlike [16,22], we were able to derive
closed form expressions that represent optimal strategies for both the attacker
and defender in [2]. In this work, we build upon this result and analyze the opti-
mal behavior for the attacker provided that the defender is not playing the game
optimally. In addition to the mathematical analysis, we simulate the interaction
between players by using an RL agent as the attacker. Although our model does
not allow direct manipulation of the cost signals for the RL agent as in [15], our
model does provide insight into beneficial heuristics for the setup where an RL
agent is operating in a deceptive environment. In addition, we discuss extensions
to the existing model that incorporate possible cognitive bias.

3 Analysis of Optimal Attacker Strategies

In this section, we consider an attacker that wishes to maximize their expected
reward. We begin by first describing our game before proceeding to the analysis.

3.1 Game Model

In this work, we study a generalization of the game model originally introduced
in our preliminary work [2]. Our game model involves two players: an attacker
and a defender. There are two machines, which we subsequently refer to as
machine 1 and machine 2. One of these machines is real, and the other one is a
decoy (fake). The identities of the machines are known to the defender, but not
to the attacker, and the goal of the attacker is to attack the real machine.

The game is iterative and it proceeds in rounds where at every round, the
attacker probes one of the two machines asking about its identity, or attacks. If
the attacker probes a specific machine, then that machine–which is controlled
by the defender–either responds truthfully about its identity or it lies. If the
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attacker chooses to attack, then the decision about which machine to target is
resolved according to a hypothesis test which is described in Sect. 3.2. If the
attacker ended up targeting the real machine, then he receives a reward of V ,
and otherwise he receives a reward of −V , where V is some positive number
representing the value of the game. Each round of probing costs the attacker
cp. So if in round i + 1 the attacker attacks the real machine, they would get a
reward of V − icp.

As in our previous work, we assume the attacker has accurate cost estimates
of each defender action, but does not know the value of the real system. In a
sense, our goal here was to consider the worst case scenario where, not only is the
game itself simple so that the defender has limited options but also the attacker
knows the costs to the defender for lying. We let the defender know the attacker’s
probing cost cp. Similar to our earlier work, we also use the simplification that
the real system’s valuation, V , is the same for both attacker and defender. The
parameters are summarized in Table 1.

Table 1. Summary of game parameters

MR Real machine cR Defender cost of lying for real machine

MF Fake machine cF Defender cost of lying for fake machine

N Number of rounds τR Probability that real machine is truthful

V Value of a real machine τF Probability that fake machine is truthful

cp Attacker cost of probing

3.2 Cost Hypothesis

Next, we describe the hypothesis test [2] which will be used by the attacker to
determine which of the two machines to attack. We assume a worst case scenario
for the defender where the attacker knows the cost of lying on the fake machine
and the cost of lying on the real machine – cF and cR, respectively.

Given that the attacker has knowledge of the defender costs, the attacker
uses this knowledge to make its decision regarding which machine to attack. In
particular, if the attacker wants to attack, they first compute the cost C1 to the
defender of lying under the hypothesis that machine 1 is the real machine:

C1 = cR(N1 − R1) + cF R2,

where N1 and N2 are the number of times the attacker queries machine 1 and
2 respectively; and R1 and R2 are the number of times that machine 1 and 2
respectively say it is the real machine. By symmetry, the calculation is analogous
for the hypothesis where machine 1 is fake and 2 is real, giving the quantity C2:

C2 = cF R1 + cR(N2 − R2)

When we refer to attacking according to the hypothesis test, we mean an attacker
will attack machine 1 if C2 > C1 and attack machine 2 otherwise.
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3.3 Analysis

In order to attack M1 when it is real, the attacker needs C1 < C2. This implies:

cR(N1 − N2) + (cF + cR)(R2 − R1) < 0.

Letting cR

cF
= β, we can re-order terms to get

β(N1 − N2) + (1 + β)(R2 − R1) < 0. (1)

If R1 represents the sum of N1 Bernoulli random variables each with param-
eter τR and R2 represents the sum of N2 Bernoulli random variables each with
parameter 1 − τF , then the probability that (1) holds is

N2∑

k2=0

N1∑

k1=
β

1+β (N1−N2)+k2+1

(
N2

k2

)(
N1

k1

)
(1 − τF )k2τN2−k2

F τk1
R (1 − τR)N1−k1 ,

where we assume that β
1+β (N1 − N2) is an integer.

Since we assume the attacker has no initial preference regarding the identities
of the machines, we will focus on the setup where N1 = N2 so that N is even.
For shorthand, let γ(τR, τF ) denote the probability that the attacker successfully
attacks the correct machine so that according to our previous discussion,

γ =
N/2∑

k2=0

N/2∑

k1=k2+1

(
N/2
k2

)(
N/2
k1

)
(1 − τF )k2τ

N/2−k2
F τk1

R (1 − τR)N/2−k1 . (2)

When clear from context, we will simply refer to γ(τR, τF ) as γ. Since N1 = N2,
the lower limit of the inner summation simplifies with γ independent of β.

Fig. 1. Probability the attacker targets the real machine

Figure 1 plots γ versus N , for 2 ≤ N ≤ 30 and for particular values of
(τR, τF ). First, note that all probabilities approach unity as N increases. This
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reflects that more probing can only help the attacker. Second, notice that the
curves for (τR, τF ) = (0.8, 0.6) and (τR, τF ) = (0.6, 0.8) coincide. We will prove
in Lemma 1 that this property holds in general, and a bound on the probability
the attacker chooses the correct machine depends on the difference between τR

and (1 − τF ). Thus, from the attacker’s point of view, it does not matter which
machine is being untruthful. If there are different costs associated with lying for
the defender, then it is more beneficial for the defender to lie more frequently at
the less costly (with the same effect on the hypothesis test).

We now analyze the attacker’s expected reward. Suppose that the penalty
for probing at each round is cp. Then, if the game proceeds for N rounds, it
follows that the expected value (reward) of the game is:

R(N) = γ(V − Ncp) + (1 − γ)(−V − Ncp) = V (2γ − 1) − Ncp. (3)

It will be informative to plot the expected reward as a fraction of V . This
has the effect of expressing the dependency of Eq. (3) on the parameters V and
cp in terms of the dimensionless ratio V/cp. In Fig. 2 we plot the quantity

R(N)
V

= 2γ − 1 − N

V/cp
(4)

for the setup where V ∈ 10, 20, 100, cp = 1, and N ∈ 20, 40, 50.

Fig. 2. Expected rewards for increasing ratios V/cp.

There are a few patterns which can be observed in these plots. Whenever
there is deception present, the expected reward starts increasing, then decreases
as N gets large. This is due to the interplay between γ increasing with N , and
the costs of continuing to probe also increasing. The effect is most pronounced
the less truthful the machines are, and the larger V is relative to cp. The location
of the peak increases as the ratio V/cp increases and τR, τF decrease.

This motivates the question of determining the relationship between the
parameters V , N , τR, τF , and cp. In particular, for fixed V , τR, τF , and cp,
let N∗ = argmaxN (R(N)) denote the optimal number of rounds the attacker
should play. Without loss of generality, we may assume cp = 1. Certainly, the
attacker has no reason to probe more than V times, since then the largest reward
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they could get is negative – worse than just attacking immediately. Can they do
better? Figure 3 plots the value of N∗ as a function of V for different pairs of
(τR, τF ). For low levels of deception, the growth of N∗ appears logarithmic in
V . For high levels, growth is larger. We next turn to computing this value.

Fig. 3. Growth of N∗ as a function of V

Due to the convolution, computing (2) for a large number of rounds N quickly
becomes intractable; so we turn to analyzing the effects of increasing V on the
expression (2) in this regime using probabilistic bounds. Our goal is to study
the relationship between N and V as both parameters become large. The main
result, which is presented in Theorem 1, shows that in the asymptotic regime
(N,V large), the optimal number of rounds that should be played by the attacker
is at most sublinear with respect to V . We begin by bounding the value of γ
from (2), which is the probability the attacker attacks the correct machine.

Lemma 1. Suppose that τF , τR > 1
2 . Then, the probability that the hypothesis

test fails is at most

1 − γ ≤ exp
(

−N

4
(1 − τF − τR)2

)
,

and the probability the hypothesis test succeeds is at most

γ ≤ 1 −
(

N/2
N/4

)2(
τRτF (1 − τR)(1 − τF )

)N/4
.

Furthermore, γ(τR, τF ) = γ(τF , τR).

Proof. From (2),

1 − γ =
N/2∑

k2=0

k2∑

k1=0

(
N/2
k2

)(
N/2
k1

)
(1 − τF )k2τ

N/2−k2
F τk1

R (1 − τR)N/2−k1 .
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Let Y1 and Y2 be binomial random variables with parameters (N/2, τR) and
(N/2, 1 − τF ) respectively. Then the previous expression is equivalent to

Pr(Y2 ≥ Y1).

Let X1,X2, . . . , XN
2

denote a set of independent and identically distributed
random variables where for i ∈ N

2 , we have

Xi =

⎧
⎨

⎩

1, with probability (1 − τR)(1 − τF ),
0, with probability τR(1 − τF ) + (1 − τR)τF ,
−1, with probability τRτF

⎫
⎬

⎭ .

Note that

1 − γ(τR, τF ) = Pr (Y2 ≥ Y1) = Pr

⎛

⎝ 1
N/2

N/2∑

i=1

Xi ≥ 0

⎞

⎠ (5)

= Pr

⎛

⎝ 1
N/2

N/2∑

i=1

Xi − [(1 − τF ) − τR] ≥ [τR − (1 − τF )]

⎞

⎠ .

Note that since τR, τF > 1
2 by assumption, τR − (1 − τF ) > 0. Since

E
[

1
N/2

∑N/2
i=1 Xi

]
= (1 − τF ) − τR, we can apply a generalization of Hoeffding’s

inequality where Xi are strictly bound by the intervals [−1, 1] to get

Pr (Y2 ≥ Y1) ≤ exp

(
−2(N/2)2(1 − τR − τF )2

∑N/2
i=1 [1 − −1]2

)
≤ exp

(
−N

4
(1 − τF − τR)2

)
,

which implies the first statement in the lemma.
Next, we upper bound the probability the quantity that the hypothesis test

succeeds, which is equal to Pr(Y1 > Y2). For this quantity, we note that it is at
least as large as the largest individual term in the expression

Pr(Y2 ≥ Y1) >

(
N/2
N/4

)
(1 − τF )N/4τ

N/4
F

(
N/2
N/4

)
(τR)N/4τ

N/4
R ,

which implies the following and gives the second statement of the lemma:

γ(τR, τF ) = Pr (Y1 > Y2) ≤ 1 −
(

N/2
N/4

)2(
τRτF (1 − τR)(1 − τF )

)N/4
.

To prove the last statement, note that by switching τR, τF in (5), we get

1 − γ(τF , τR) = Pr

⎛

⎝ 1
N/2

N/2∑

i=1

X̂i

⎞

⎠ ≥ 0,
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where

X̂i =

⎧
⎨

⎩

1, with probability (1 − τF )(1 − τR),
0, with probability τF (1 − τR) + (1 − τF )τR,
−1, with probability τF τR

⎫
⎬

⎭ .

Since X̂i = Xi, it follows that γ(τF , τR) = γ(τR, τF ), and the result follows.

An immediate consequence of the previous lemma is provided in the following
corollary, which follows by substituting the upper/lower bounds on γ into (3).

Corollary 1. The expected reward R̂(N) of a game with N rounds is at most

V

(
1 − 2

(
N/2
N/4

)2

ζ−N/4

)
− Ncp,

where ζ = 1
τRτF (1−τR)(1−τF ) , and at least

V

(
1 − 2 exp

(
−N

4
(1 − τF − τR)2

))
− Ncp.

As a result of the previous corollary, we can determine the relationship
between N and V . This is made precise in the following theorem, which repre-
sents the main contribution of this section. Recall that we assume N1 = N2 = N

2 .

Theorem 1. Assuming ζ is a constant with respect to V and 1
2 < τR, τF < 1,

the expected reward of the game is maximized when the number of rounds played
by the attacker is at most proportional to

√
V .

Proof. The proof is organized as follows. We bound the expected reward R̂(N)
between lower bound RLB(N) and upper bound RUB(N). We show that RUB

is non-increasing after at most O(log V ) rounds. Then, we consider the value of
our upper and lower bound at two different values of N . We show that when
NU = C

√
V and NL =

√
V , RLB(NL) > RUB(NU ) for an appropriate choice of

constant C > 1. Since RUB is decreasing after round NU , the attacker cannot
increase their reward if they play more than NU rounds, giving the desired result.

From Corollary 1, we have that the expected reward of the game is at most
V

(
1 − 2

(
N/2
N/4

)2
ζ−N/4

) − Ncp. Using the fact that
(
n
k

) ≥ (
n
k

)k, this implies that
the expected reward of the game is bounded above by

RUB(N) = V
(
1 − 2 · 2N/2ζ−N/4

)
− Ncp = V

(
1 − 2

(
ζ/4

)−N/4
)

− Ncp. (6)

Taking the derivative of RUB(N) with respect to N , we get

−cp + 2V
(
ζ/4

)−N/4 log
(
ζ/4

) · 1/4. (7)

Setting the previous expression equal to zero and solving for N , gives

N∗ =
4

log(ζ/4)
log

(
V log(ζ/4)

2cp

)
. (8)
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From (7), it is easy to verify that the second derivative of RUB(N) is nega-
tive, implying that RUB(N) is concave. Thus, our upper bound on the expected
reward of the game reaches its maximum at N∗ and is decreasing for N > N∗.
Since ζ is assumed to be a constant with respect to V , we have N∗ = O(log V ).

From Corollary 1, the expected reward of the game after N rounds is at least

RLB(N) = V

(
1 − 2 exp

(
−N

4
(1 − τF − τR)2

))
− Ncp.

In the following, we want to get a lower bound on the quantity RLB(N). To do
this, we bound the term (1 − τR − τF )2 from below. Let δ = min{1 − τR, 1 −
τF , τR, τF }. Note that either δ = 1 − τR or δ = 1 − τF since τR, τF > 1

2 by
assumption. Without loss of generality, assume that δ = 1 − τR. Then (1 − τR −
τF )2 = (δ − τF )2, from simple substitution. Now since δ < 1

2 and τF > 1
2 ,

(1 − τR − τF )2 = (δ − τF )2 ≥ (
δ − 1

2

)2
,

which implies

RLB(N) ≥ V

(
1 − 2 exp

(
−N

4
(
δ − 1

2

)2)
)

− Ncp. (9)

It is straightforward to verify that

16 < ζ ≤ 1
δ4

,

where ζ is as defined in Corollary 1. Then, since ζ ≤ 1
δ4 , we have

RUB(N) ≤ V

(
1 − 2

(
1

4δ4

)−N/4)
− Ncp. (10)

Substituting N =
√

V into (9) and N = C
√

V into (10), where C > 1 is a
constant, we get that RLB

(√
V

) − RUB

(
C

√
V

) ≥

cp(C − 1)
√

V + 2V
(

exp
(
C

√
V

log 2
2

+ C
√

V log δ
) − exp

(− 1
4 (δ − 1

2 )2
√

V
))

.

Clearly, if cp(C − 1) ≥ 3 and exp
(− 1

4 (δ − 1
2 )2

√
V

) ≤ V − 1
2 , then RLB

(√
V

) −
RUB

(
C

√
V

) ≥ 0, which would complete the proof. Note that exp
(− 1

4 (δ −
1
2 )2

√
V

) ≤ V − 1
2 , if

√
V · exp

(− 1
4 (δ − 1

2 )2
√

V
) ≤ 1,

which (by a change of logs) holds when exp
(
1
2 log V − 1

4 (δ − 1
2 )2

√
V

) ≤ 1 or

1
2 log V − 1

4 (δ − 1
2 )2

√
V ≤ 0,

which holds for V large enough, and this completes the proof.

In the next section, we consider the performance of an RL agent under a
similar setup. It will be shown that although in many cases the agent behaves in
a manner which reflects the analysis discussed here, there are some circumstances
under which the agent will behave sub-optimally.
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4 Simulation

In this work we extend our simulation results from [2]. In certain scenarios, we
previously found that the attacker would choose to continually probe and never
attack, indirectly signaling a desire to not play the game. In the following, we
consider the setup where the attacker is able to leave the game prematurely
which we refer to as the action “walk away”. Under this setup, we investigate
how the value V of the game influences the length of the game and compare it
to the results from Sect. 3. In studying this setup, we identify certain interesting
behaviors from the RL agent, and lay the ground work for considering both
human and algorithmic biases that could potentially be exploited by a defender.

4.1 Simulation Model

The game model, which is a generalization of the model described in Sect. 3,
largely borrows from our earlier prototype established in [2]. The game is a
turn based Stackelberg Game, in which the attacker plays first and the defender
responds. There are two machines M1 and M2, one real and the other fake. The
game proceeds in rounds where the attacker probes a machine and the defender
responds real or fake – potentially untruthfully. At the beginning of every round,
the attacker has four actions, to probe one of the two machines, attack, or walk
away. The game ends after at most N rounds. The game proceeds as follows:

1. The game begins at round i = 1 with the game initially in state s = [0, 0, 0, 0].
2. Each round begins with the attacker choosing an action from the set:

{
P1, P2, A,W

}
.

If the attacker chooses W , they walk away with 0 reward for the round and
the game ends. If the attacker chooses A, then they attack a machine and
the game ends. The attacker’s choice of which machine to attack is based on
the hypothesis test described in Sect. 3.2. If the attacker chooses Pj , then the
attacker probes Mj and the game continues.

3. If the attacker probes Mj , then the defender responds with one of the following
actions:

{
Rj , Fj

}
.

For example, if M1 is probed, it can respond with the signal R1 indicating
to the attacker that it is a real machine. Otherwise, the response F1 would
indicate to the attacker that it is a fake machine.

4. We update the game state vector s according to the response by incrementing
the corresponding entry in the state vector s = [R1, F1, R2, F2]. For example,
if in the first round the response was R2, s would be [0, 0, 1, 0]. Next, the
round number i is incremented. If i < N , then another turn is played so that
steps 2–4 are repeated. Otherwise the game terminates.
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The reward function for the attacker is as follows, where cp is the cost for
probing each round:

R =

⎧
⎪⎨

⎪⎩

−(i − 1)cp, if the attacker walks away or i = N + 1
V − (i − 1)cp, for attacking the real machine, and
−V − (i − 1)cp, for attacking the fake machine.

There are three notable differences in this version compared with the model
in [2]. First, in each round the attacker now has the additional action W of
walking away. This new W action can be enabled or disabled in a particular
run of the simulation. The second is the introduction of a cost of cp for probing
each round. The third addresses state space explosion by changing how the
state vector s is defined. Specifically in Step 4, we no longer append an element
from the set {R1, F1, R2, F2} to the state vector and instead just increment the
corresponding counter. In essence, this ignores order and significantly collapses
the state space. This updated implementation gives results consistent with those
from [2], with cp = 0 and W disabled.

4.2 Parameters

The number of rounds and episodes were chosen together to empirically demon-
strate convergence. Recall that at the start of each episode, the simulation
chooses which of the machines is real, uniformly at random. Unless otherwise
specified, the parameters in simulation are:

Max number of rounds: N = 10, Value of the real machine: V = 10

Defender cost when real lies: cR = 2 Defender cost when fake lies: cF = 1

Discount of value per round: β = 1 Cost of probing per round: cp = 1

Similar to before, the attacker pays a cost of −V if they attack the fake
machine. The defender’s strategy was fixed by choosing parameters (τF , τR)
which determine the probability of telling the truth on the fake and real machines
respectively. The attacker is a RL agent trained using tabular q-learning with
an epsilon greedy approach in a novel environment using the Open AI Gym
framework [4], using the parameters for 100, 000 episodes:

Discount factor: γ = 1, Learning Rate: α = 0.1

Defender cost when real lies: cR = 2 Defender cost when fake lies: cF = 1

Exploration Parameter: ε = 1 Epsilon Decay Rate = 0.9999

Let w be an indicator for whether W is enabled (1) or disabled (0) in
the simulation. The simulation was run for values of (τF , τR, w) in the set
{(1, 1, 1), (0, 0, 0), (0, 0, 1), (0.9, 0.9, 1), (0.7, 0.7, 1), (0.7, 0.7, 0)}.
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The choice of fixed learning rate, while not standard, is intentional. Slower
decay rates mean an agent is slower to accept the information they are gathering
from the environment. To us, that is of particular interest since adversaries have
been shown to be more cautious in exploring systems where they believe there
is deception present [10]. A constant learning rate reflects an adversary that
remains skeptical throughout.

4.3 Results

First, in Fig. 4, we consider the cases where both machines always tell the truth
or always lie. Our initial work [2] found these to be optimal strategies for the
defender depending on the relationship between V and cR, cF and they serve as
good first examples to consider in the simulation. When both machines always
tell the truth (τR, τF ) = (1, 1), adding walk away does not have much of an
effect as seen in Fig. 4a. However, in the case where they always lie (τR, τF ) =
(0, 0), walk away has a dramatic impact as seen comparing Figs. 4b and c. Since
the machines always lie, a human adversary can intuit which is real. But as
lying is costlier on the real machine, the cost hypothesis forces attacks on the
fake machine in this setup. Without walk away, the adversary learns to avoid
attacking, eventually exceeding the max number of rounds and never attacking.
Given the option to walk away, the adversary chooses to walk away from the

Fig. 4. Average rewards, rounds, and walk away fraction (grouped by 100 episodes)
evolved over 100, 000 episodes for (τF , τR, w) = (1, 1, 1), (0, 0, 1), (0, 0, 0)
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Fig. 5. Average rewards, rounds, and walk away fraction (grouped by 100 episodes)
evolved over 100, 000 episodes for (τF , τR, w) = (0.9, 0.9, 1), (0.7, 0.7, 1), (0.7, 0.7, 0)

game immediately. This suggests that simulation using the cost hypothesis is
only applicable where τ > 1

2 – hence we focus our attention there.
Consider next the case where (τR, τF ) = (0.9, 0.9) as seen in Fig. 5a. The

behavior is very similar to (τR, τF ) = (1, 1) and the only notable difference from
Fig. 4a is that the number of rounds gradually increases to 2.5 then 3 instead of
2. Intuitively a second probe provides corroboration – the first could have been
untruthful. The reward converges to nearly the best possible of 8 and slightly
lower than in the fully truthful case. The attacker learns to not walk away.

Consider next the case where (τR, τF ) = (0.7, 0.7) as seen in Fig. 5b. In this
case, the truthfulness of both machines has dropped more significantly. One
might expect similar but more pronounced changes as from the (τR, τF ) = (1, 1)
to (0.9, 0.9) case. However, that is not the case as seen in Fig. 5b. Instead the
reward increases steadily to about 4 then suddenly drops to 0. In these plots,
the number of rounds steadily increases and then suddenly drops to 1. Notably,
the fraction of walk away gradually drops to near 0 until it suddenly spikes to 1.
There is a near asymptotic change in the behavior as the attacker converges from
a strategy that has a positive reward to purely walking away with no reward.

Analyzing the same scenario, but with walk away disabled provides some
insight. In Fig. 5c, the fraction that walks away naturally remains 0. However,
reward climbs to 4, and number of rounds climbs then oscillates in a narrow
range around 5. This is a natural progression of decreased truthfulness on both
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machines and what we would have expected. However, the attacker learns to walk
away when presented with the option by the defender, achieving cyber deterrence
[20]! The q-tables reveal that after sufficiently many episodes of evolution, states
with positive expected rewards for attacking have only negative values. Walk
away, with value of 0, dominates. We refer to this type of scenario as a trap.

In a given state s, once the Attack action is chosen, the target machine is cho-
sen based on the cost hypothesis. However, even if all probing agrees the machine
is real, there is always a chance that the machine is actually fake and has been
deceptive the entire time. This event, albeit unlikely, has nonzero probability and
will eventually occur, giving a large negative reward. The resulting update to the
q-table turns the value of attacking negative while walk away always maintains
a q-table value of 0. Whenever an action’s value dips below 0, it will never be
revisited during on-policy play. Given enough episodes of evolution, eventually
all actions other than walk away are no longer viable.

Further, the RL agent seems to be able to fall into this kind of trap even
in different learning schemes. Consider for example the scenario as in Fig. 5b,
except where α initially is 1 and has a decay rate, which is a more standard
RL setup. With α decay = 0.999953, the RL usually does not abruptly change
behavior and fall into the trap. But if you run it repeatedly, it happens about
1/10 of the time. Alternately if you slow the decay rate to 0.999965, the trap
becomes far more common, about 9/10 of the time. Since we are interested in
studying this behavior and there is a risk of missing it with different decays, that
motivated our choice to consider a constant learning rate of α = 0.1.

Given that RL agents can fall into these kinds of traps, knowing the optimal
behavior is helpful in identifying such scenarios. So we turn to identifying the
optimal strategy for an attacker given a fixed defender profile. To estimate this,
we modified our simulation to force the agent to probe a certain number of
rounds before being forced to attack. For a given fixed number of rounds, we
ran the simulation 100, 000 times and calculated the expected reward according
to (3) in Sect. 3. Figure 6 plots the expected rewards for different fixed numbers
of rounds with fixed defender profile (τR, τF ) = (0.7, 0.7). Each of the plots
corresponds to a different value of V . These plots show that there clearly is a
maximum number of rounds and further that the maximum tends to shift to
the right as the value of V increases. For V = 101, 102, 104 they are about 2,

Fig. 6. Attacker is forced to play max number of rounds. Plots of average reward over
100, 000 episodes against rounds for different V = 101, 102, 104. (τR, τF ) = (0.7, 0.7).
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18, 80 respectively – while the analytically derived maximums are not far off,
respectively: 4, 20, 60. Intuitively this makes sense as cp remains fixed at 1 per
round. So, as the value of the game increases, gaining additional certainty about
the outcome from another round of probing is relatively inexpensive.

We now turn our attention towards overcoming the trap as the attacker.
The fundamental issue is that due to a string of bad luck, an otherwise “good”
action gets a q-table value that makes it never get revisited during on-policy
play. Recall we saw this in Fig. 5b where anything worse than walk away’s 0
reward would never get played. Intuitively, the most natural counter would be
to introduce randomness back into the attacker’s profile. Specifically this only
affects on-policy play, so if there is still some amount of exploration that takes
place, the attacker agent should be resilient.

To this end, we modify the simulation to force a minimum amount of explo-
ration. Specifically, ε decays as normal until exploration hits that threshold T
and then never drops below that point. To highlight the impact of this random
play, in the last 10% of episodes, we revert back to strictly on-policy play. We
recreate both scenarios that resulted in the RL agent falling into the trap, but
with T > 0. In Fig. 7a, we have the first scenario with T = 0.2 and no longer
see a sudden change in strategy (until the end when we revert to on-policy
play). Figure 7b and c are the second scenario with T = 0.2 and 0.5 respectively.
Figure 7b, still suffers from the trap but Fig. 7c does not. While maintaining
random exploration does seem to confer some resilience to the trap, the required
amount to be effective can also be costly to the attacker.

Fig. 7. Average rewards (grouped by 100 episodes) evolved over 100,000 episodes for
(τR, τF ) = (0.7, 0.7), w = 1. a. V = 10, α = 0.1, T = 0.2. b. V = 104, α = 0.8, T = 0.2.
c. V = 104, α = 0.8, T = 0.5

4.4 Demonstrating Cognitive Bias

The behavior of the current RL algorithm when falling into the previously
described trap appears behaviorally consistent with the “law of small numbers”
– a human cognitive bias to believe that the outcome from a small sample will be
representative of the statistical distribution of the larger population [25]. This
belief leads to a tendency to over-generalize the interpretation of initial findings
and is indicative that people are not aware that small sample sizes may exhibit
greater variability. In the first instance of the trap, the agent uses the nega-
tive reward of a single outcome and learns to always walk away. In this sense



Lie Another Day 97

it is blind to the variability that is inherent in any single outcome. The algo-
rithm is learning a statistical prior but is mistakenly predisposed to treating each
new observation disproportionately. Based on prior efforts in studying cognitive
biases, humans are likely to be similarly susceptible to the law of small num-
bers when presented with such choices. Exploration of game parameters seeks to
associate the outcome of algorithms to that of human decision-making biases.

Demonstrating such behaviors in a RL algorithm has also led us to speculate
on whether other decision making bias might be explored by our current model.
For our RL agent, the disproportionate importance given to a small number of
bad outcomes seems to lead to loss aversion – an irrational tendency to judge
losses as having greater weight than gains [19]. Once the algorithm selects walk-
ing away with zero reward as preferred, the algorithm becomes rigidly averse
to“bad” outcomes (the trap as we call it). As a corollary, it may be possible to
arrange the game parameters and operation to trigger risk seeking in the form
of gambler’s fallacy [24] – belief that a particular outcome is more or less likely
based on earlier events even though they are independent. While we have not yet
pursued this line of reasoning in earnest, this might be achieved by extending our
model to allow the defender to randomly vary the final round, allowing “easy”
wins but penalizing “hard” losses – forcing the attacker to use small sample sizes
in estimating the likelihood of win conditions and prevent learning from games
of significant length. This would exacerbate the law of small numbers effects and
may also lead to additional biases that could be exploited by a defender.

In a similar line of reasoning, changes in the implementation of walk away
may present another way [17] to explore sunk cost fallacy effects – the tendency
for individuals to persist in a venture as a result of previous investments even
though cutting their losses and walking away would be optimal. In the current
game, attacker costs incurred are proportional to the number of probes. This may
be viewed as creating a deficit in the internal mental ledger that the attacker
keeps while playing the game. Tversky and Kahneman [26] have argued that
decision-making is contingent on the framing of outcomes, which are perceived as
positive or negative relative to some neutral reference point that is set, or framed,
by the decision maker. It bears to reason that if our model imposed a cost for
walk away and made this cost dependent on the number of rounds played that an
attacker’s tendency to continue the game rather than attack or walk away might
be disproportionately affected. An increasing cost for walk away should result
in an increasing reluctance to leave the game early. An attacker may therefore
choose to attack when they would have otherwise fled. If however, (τR, τF ) are
low, the attacker may not have sufficient evidence for making a correct prediction
and may still have a positive estimate of the outcome in continuing play even
though the rational solution should be to accept the loss of walk away.

In general, cognitive biases relating to decisions involving gains result in
risk averse behaviors whereas decisions involving losses result in risk seeking
behaviors [19]. From this perspective, sunk cost can be viewed as relationship
between risk tolerance and the negative or positive balance in the decisions
maker’s ledger. In order to break even, a risk-seeking decision maker may be
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willing to engage in further play even when not the rational strategy. While we
have not yet assessed the feasibility of adjusting the game model to this end, our
present results suggest ample room for exploration. If we can incentivize longer
games in spite of increasing cumulative attacker costs, this would represent a
radical departure of the learning attacker’s behavior from our results to date.
Researchers have begun to investigate which cognitive biases are most relevant to
cyber operations [18] and as that research matures, AI models that help examine
them will be critical.

5 Conclusion

In Sect. 3, we derived expressions and bounds relating the value of the machine
with the number of rounds played. The central result, Theorem1, shows there
is a sublinear relationship between value and optimal rounds played. In Sect. 4,
we corroborated our analytic results, analyzed a potential trap for algorithmic
opponents, and laid groundwork for analysis of human cognitive biases.

Adding the walk away action and a cost to probing uncovered a very sim-
ple but effective trap against some types of algorithmic attackers. The trap in
particular presents both the attacker and defender with interesting design deci-
sions. For the attacker, maintaining randomness builds resilience against the
trap. However, any amount of randomness potentially leads to suboptimal play
compared to the ideal strategy. The amount of randomness needed depends on
the environment itself and might be a challenge to guess or learn correctly.

From the defender’s perspective, they have two or three mechanisms to pos-
sibly trigger this trap. First, the less honest the defender, the more likely an
individual game ends poorly for the attacker. Second, if there are alternative
actions available to the attacker, the more valuable those alternatives are, the
more likely it is that the attacker will never revisit a given action. In the example
of walking away, an attacker technically always has the option of not playing the
game, but may be too focused on the game itself to realize it. Third, the cost of
probing matters relative to the value of the machine. While this likely plays a
minor role, the smaller the cost of probing is, the smaller the gap is going to be
between the worst possible result in probing versus attacking.
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Abstract. Recent works have growingly shown that Cyber deception can
effectively impede the reconnaissance efforts of intelligent cyber attack-
ers. Recently proposed models to optimize a deceptive defense based
on camouflaging network and system attributes, have shown effective
numerical results on simulated data. However, these models possess a
fundamental drawback due to the assumption that an attempted attack
is always successful—as a direct consequence of the deceptive strategies
being deployed, the attacker runs a significant risk that the attack fails.
Further, this risk or uncertainty in the rewards magnifies the boundedly
rational behavior in humans which the previous models do not han-
dle. To that end, we present Risk-based Cyber Camouflage Games—a
general-sum game model that captures the uncertainty in the attack’s
success. In case of the rational attackers, we show that optimal defender
strategy computation is NP-hard even in the zero-sum case. We pro-
vide an MILP formulation for the general problem with constraints on
cost and feasibility, along with a pseudo-polynomial time algorithm for
the special unconstrained setting. Second, for risk-averse attackers, we
present a solution based on Prospect theoretic modeling along with a
robust variant that minimizes regret. Third, we propose a solution that
does not rely on the attacker behavior model or past data, and effective
for the broad setting of strictly competitive games where previous solu-
tions against bounded rationality prove ineffective. Finally, we provide
numerical results that our solutions effectively lower the defender loss.

Keywords: Game theory · Cyber deception · Rationality

1 Introduction

Rapidly growing cybercrime [13,15,24], has elicited effective defense against
adept attackers. Many recent works have proposed Cyber deception techniques to
thwart the reconnaissance – typically a crucial phase prior to attacking [17,21].
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One deception approach is to camouflage the network by attribute obfusca-
tion [7,10,35] to render an attacker’s information incomplete or incorrect, creat-
ing indecision over their infiltration plan [4,10,12,28]. Optimizing such a decep-
tive strategy is challenging due to many practical constraints on feasibility and
costs of deploying, as well as critically dependent on the attacker’s decision-
making governed by his behavioral profile, and attacking motives and capabili-
ties. Game theory offers an effective framework for tackling both these aspects
and has been successfully adopted in security problems [2,20,29,31].

Attacking a machine amounts to launching an exploit for a particular system
configuration – information that is concealed or distorted due to the deceptive
defense, thus, an attempted attack may not succeed. Recent game theoretic mod-
els for deception via attribute obfuscation [30,34] have a major shortcoming in
ignoring this risk of attack failure as they assume that an attempted attack is
guaranteed to provide utility to the attacker. Further, results from recent human
subject studies [1] suggest that this risk may unveil risk-aversion in human
attackers rather than a perfectly rational behavior of maximizing expected util-
ity that the models assume. Apart from risk-aversion, other behavioral models,
e.g., the Quantal response theory [22], also assert that humans exhibit bounded
rationality. This can severely affect the performance of a deployed strategy, which
has not been considered by the previous works.

As our first main contribution, we present Risk-based Cyber Camouflage
Games (RCCG)—a crucial refinement over previous models via redefined strat-
egy space and rewards to explicitly capture the uncertainty in attack success.
As foundation, we first consider rational attackers and show analytical results
including NP-hardness of optimal strategy computation and its MILP formu-
lation which, while akin to previous models, largely require independent rea-
soning. Further, we consider risk-averse attackers modeled using Prospect the-
ory [36] and present a solution (PT ) that estimates model parameters from data
to compute optimal defense. To circumvent the limitations of parametrization
and learning errors, we also present a robust solution (MMR) that minimizes
worst-case regret for a general prospect theoretic attacker. Finally, we propose a
solution (GEBRA) free of behavioral modeling assumptions and avoiding reliance
on data altogether, that can exploit arbitrary deviations from rationality. Our
numerical results show the efficacy of our solutions summarized at the end.

1.1 Related Work

Cyber Deception Games [30], and Cyber Camouflage Games (CCG) [34] are
game-theoretic models for Cyber deception via attribute obfuscation. In these,
the defender can mask the true configuration of a machine, creating an uncer-
tainty in the associated reward the attacker receives for attacking the machine.
These have a fundamental limitation, namely, the assumption that the attacked
machine is guaranteed to provide utility to the attacker. Further, they do not
consider that human agents tend to deviate from rationality, particularly when
making decisions under risk. Our refined model handles both these crucial issues.
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A model using Prospect theory is proposed in [38] for boundedly rational
attackers in Stackelberg security games (SSG) [33]. However, it relies on using
model parameters from previous literature, discounting the fact that they can
largely vary for the specific experimental setups. We provide a solution that
learns the parameters from data, as well as a robust solution to deal with uncer-
tainty in the degree of risk-aversion and broadly the parametrization hypothesis.
A robust solution for unknown risk-averse attackers has been proposed for SSGs
in [27], however, it aims to minimize the worst-case utility, whereas, we take
the less conservative approach of minimizing worst-case regret. Previous works
on uncertainty in security games consider Bayesian [18], interval-based [19], and
regret-based approaches [23], however, these do not directly apply due to funda-
mental differences between RCCGs and SSGs as explained in [34].

Another approach in [38] is based on the Quantal Response model [22].
However, the attack probabilities therein involve terms that are exponential
in rewards, which in turn are non-linear functions of integer variables in our
model, leading to an intractable formulation. However, we show effectiveness of
our model-free solution for this behavior model as well.

Machine learning models such as Decision Tree and Neural Networks have
been used for estimating human behavior [8]. However, the predictive power
of such models typically comes with an indispensable complexity (non-linear
kernels, functions and deep hidden layers of neural nets, sizeable depth and
branching factor of decision trees etc.). This does not allow the predicted human
response to be written as a simple closed-form expression of the instance features,
viz, the strategy decision variables, preventing a concise optimization problem
formulation. This is particularly problematic since the alternative of searching
for an optimal solution via strategy enumeration is also non-viable—due to the
compact input representation via a polytopal strategy space [16] in our model.

MATCH [25] and COBRA [26] aim to tackle human attackers in SSGs that
avoid the complex task of modeling human decision-making and provide robust-
ness against deviations from rationality. However, their applicability is limited—
in Strictly Competitive games where deviation from rationality always benefits
the defender, they reduce to the standard minimax solution. Our model-free
solution GEBRA on the other hand, achieves better computational results than
minimax, and MATCH can be seen as its conservative derivative.

2 Risk-Based Cyber Camouflage Games (RCCG) Model

Here, we describe the components of the RCCG model, explicitly highlighting
the key differences with respect to the CCG model [34].

Network Configurations. The network is a set of k machines K := {1, . . . , k}.
Each machine has a true configuration (TC), which is simply an exhaustive tuple
of attributes so that machines having the same TC are identical. S := {1, . . . , s}
is the set of all TCs. The true state of the network (TSN) is a vector n = (ni)i∈S
with ni denoting the number of machines with TC i. Note that

∑
i∈S ni = k.
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The defender can disguise the TCs using deception techniques. Each machine
is “masked” with an observed configuration (OC). The set of OCs is denoted by
T . Similar to a TC, an OC corresponds to an attribute tuple that fully comprises
the attacker view, so that machines with the same OC are indistinguishable.

Deception Strategies. We represent the defender strategy as an integer matrix
Φ, where Φij is the no. of machines with TC i, masked with OC j. The observed
state of the network (OSN) is a function of Φ, denoted as m(Φ) := (mj(Φ))j∈T ,
where mj(Φ) =

∑
i Φij denotes the no. of machines under OC j for strategy Φ.

Deception Feasibility and Costs. Achieving deception is often costly and not
arbitrarily feasible. We have feasibility constraints given by a (0,1)-matrix Π,
where Πij = 1 if a machine with TC i can be masked with OC j. Next, we assume
that masking a TC i with an OC j (if so feasible), has a cost of cij incurred
by the defender, denoting the aggregated cost from deployment, maintenance,
degraded functionality, etc. We assume the total cost is to be bounded by a
budget B.

These translate to linear constraints to define the valid defender strategy set:

F =

{

Φ

∣
∣
∣
∣

Φij ∈ Z≥0, Φij ≤ Πijni ∀(i, j) ∈ S × T ,∑

j∈T
Φij = ni ∀i ∈ S,

∑

i∈S

∑

j∈T
Φij cij ≤ B

}

The first and the third constraints follow from the definitions of Φ and n. The
second imposes the feasibility constraints, and the fourth, the budget constraint.

Remark 1. The budget constraint can encode feasibility constraints as a special
case by setting a cost higher than the budget for an infeasible masking. The latter
are still stated explicitly for the useful interpretation and practical significance.

Defender and Attacker Valuations. A machine with TC i gets successfully
attacked if the attacker uncovers the disguised OC and uses the correct exploit
corresponding to TC i. In such a case, the attacker gets a utility vi—his valua-
tion of TC i. Collectively, these are represented as a vector v. Analogously, we
define valuations u representing the defender’s loss.

Remark 2. For ease of interpretation, we assign a 0 utility to the players when
the attack is unsuccessful, which sets a constant reference point. Hence, unlike
CCGs, valuations cannot be freely shifted. Further, a successful attack typically
is undesirable for the defender (except, e.g., honeypots), and to let the valuations
be typically positive values, they represent the defender’s loss; its minimization
is the defender objective unlike maximization in CCGs.

Attacker Strategies. As the attacker cannot distinguish between machines with
the same OC, he chooses an OC from which to attack a random machine. Attack-
ing a machine requires choosing an exploit to launch for a particular TC. Thus,
the attack can be described as a pair of decisions (i, j) ∈ S × T . This significant
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difference in attack strategy space definition and the imminent player utility
definitions as a consequence, cause the fundamental distinction in the practical
scope as well as the technical solutions of the RCCG model.

We model the interaction as a Stackelberg game to capture the order of
player decisions. The defender is the leader who knows the TSN n and can
deploy a deception strategy Φ, and the attacker chooses a pair (i, j) ∈ S × T .
The defender can only play a pure strategy since it is typically not possible to
change the network frequently, making the attacker’s view of the network static.
As in Schlenker et al. [30], Thakoor et al. [34], we assume the attacker can use the
defender’s strategy Φ to perfectly compute the utilities from different attacks,
which is justified via insider information leakage or other means of surveillance.

Suppose the defender plays a strategy Φ, and the attacker attacks using an
exploit for TC i on a machine masked with OC j. Among mj(Φ) machines
masked by OC j, Φij are of TC i. Hence, the attack is successful with a proba-
bility Φij

mj(Φ) . Consequently, the player utilities are given by

Ua(Φ, i, j) =
Φij

mj(Φ)
vi , Ud(Φ, i, j) =

Φij

mj(Φ)
ui. (1)

Note that these expressions imply that if the player valuations (v or u) are
simultaneously scaled by a positive constant (for normalization etc.), it preserves
the relative order of player utilities, and in particular, the best responses to any
strategies, thus keeping the problem equivalent.

Next, we show analytical results on optimal strategy computation for a ratio-
nal attacker, which lay the foundation for further tackling bounded rationality.

3 Rational Attackers

The attacker having to choose a TC-OC pair as an attack here rather than just an
OC as in the CCG model [34], requires entirely new techniques for our analytical
results, despite close resemblance in the optimization problem as below.

Optimization Problem. Previous work on general-sum Stackelberg games has
typically used Strong Stackelberg equilibria (SSE). This assumes that in case of
multiple best responses, the follower breaks ties in favor of the leader (i.e., min-
imizing defender loss). The leader can induce this with mixed strategies, which
is not possible in RCCGs as the defender is restricted to pure strategies [14].

Hence, we consider the worst-case assumption that the attacker breaks ties
against the defender, leading to Weak Stackelberg Equilibria (WSE) [6]. WSE
may not always exist [37], but it does when the leader can only play a finite set
of pure strategies as in CCG. Hence, we assume that the attacker chooses a best
response to the defender strategy Φ, maximizing the defender loss in case of a
ti.e. This defender utility is denoted as Uwse(Φ), defined as the optimal value of
the inner Optimization Problem (OP) in the following, while the defender aims
to compute a strategy to minimize Uwse(Φ) as given by the outer objective.
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argminΦ max
i,j

Ud(Φ, i, j)

s.t. Ua(Φ, i, j) ≥ Ua(Φ, i′, j′) ∀i′ ∈ S, ∀j′ ∈ T . (2)

Next, we show results on optimal strategy computation shown for the impor-
tant special cases—the zero-sum and unconstrained settings. While similar
results have been shown for CCG, independent proof techniques are needed
herein due to a distinctive model structure (see Appendix for omitted proofs).

3.1 Zero-Sum RCCG

In the zero-sum setting, the defender loss equals the attacker reward, i.e. v = u.

Theorem 1. Zero-sum RCCG is NP-hard.

Proof Sketc.h. We reduce from the problem “Exact Cover by 3-Sets” (ExC3 for
brevity) which is known to be NP-complete. Given an instance of ExC3, we
construct an instance of RCCG for which the minimum defender loss is precisely
equal to a certain value if and only if the given ExC3 instance is YES. ��

For the special unconstrained setting1 (i.e. with no feasibility or budget con-
straints), we show the following.

Proposition 1. Unconstrained zero-sum RCCG always has an optimal strategy
that uses just one OC, thus computable in O(1) time.

Thus, both these results hold for RCCG, same as for CCG (albeit, they do
not follow from the latter, requiring independent derivation).

3.2 Unconstrained General-Sum RCCG

Proposition 2. Unconstrained RCCG always has an optimal strategy that uses
just two OCs.

This result is crucial for an efficient algorithm to compute an optimal strat-
egy (Algorithm 1), named Strategy Optimization by Best Response Enumera-
tion (SOBRE). SOBRE constructs an optimal strategy with two OCs, due to
Proposition 2, with attacker best response being (say) OC 1 (Note: this is with-
out loss of generality in the unconstrained setting). It classifies the candidate
strategies by triplets (i, n,m) (Line 2) where the attacker best response is (i, 1),
and OC 1 masks n machines of TC i, and m machines in total. It uses a sub-
routine DPBRF (Dynamic Programming for Best Response Feasibility) to con-
struct a strategy yieldsing the desired best response (Line 6) if it exists, and
then compares the defender utility from all such feasible candidates, to compute
the optimal (Lines 7,8). For details on DPBRF and runtime analysis, refer to
the Appendix.
1 The unconstrained setting accents the inherent challenge of strategic deception even

when sophisticated techniques can arbitrarily mask TCs with any OCs at low cost.
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Algorithm 1: SOBRE
1 Initialize minUtil ← ∞
2 for i = 1, . . . , s; n = 0, . . . ni; m = n, . . . , k do
3 if (n/m < (ni − n)/(|K| − m)) continue
4 util ← (n/m)ui

5 if (util ≥ minUtil) continue
6 if DPBRF (i, n, m)
7 Update minUtil ← util
8 Return minUtil

Theorem 2. The optimal strategy in an unconstrained RCCG can be computed
in time O(k)4.

Remark 3. Note that the input can be expressed in O(st) bits, which makes this
algorithm pseudo-polynomial. However, it becomes a poly-time algorithm under
the practical assumption of constant-bounded no. of machines per TC, (so that,
k = O(s), or more generally, if k in terms of s is polynomially bounded). In
contrast, unconstrained CCG is NP-hard even under this restriction. This dis-
tinction arises since in RCCG, the best response utility given the attack strategy
and the no. of machines masked by the corresponding OC, depends on only the
count of attacked TC as opposed to all the TCs in CCG.

3.3 Constrained General-Sum RCCG

For this general setting of RCCG, Uwse(Φ) is given by OP (2), and thus, comput-
ing its minimum is a bilevel OP. Reducing to a single-level Mixed Integer Linear
Program (MILP) is typically hard [32]. (in particular, computing an SSE allows
such a reduction due to attacker’s tiebreaking favoring the defender’s objective
therein, however, the worst-case tiebreaking of WSE does not). Notwithstanding
the redefined attack strategies, a single-level OP can be formulated analogous to
CCGs by assuming an ε-rational attacker instead of fully rational (as it can be
shown that for sufficiently small ε, it gives the optimal solution for rationality):

min
Φ,q ,γ,α

γ (3)

s.t. α, γ ∈ R, Φ ∈ F , q ∈ {0, 1}|I|×|J |

q11 + . . . + qst ≥ 1 (3a)
ε(1 − qij) ≤ α − Ua(Φ, j, i) ∀i ∈ S ∀j ∈ T (3b)
M(1 − qij) ≥ α − Ua(Φ, j, i) ∀i ∈ S ∀j ∈ T (3c)

Ud(Φ, j, i) ≤ γ + M(1 − qij) ∀i ∈ S ∀j ∈ T (3d)
qij ≤ Φij ∀i ∈ S ∀j ∈ T . (3e)
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The defender aims to minimize the objective γ which captures the defender’s
optimal utility. The binary variables qij indicate if attacking (i, j) is an optimal
attacker strategy, and as specified by (3a), there must be at least one. As per
(3b) and (3c), α is the optimal attacker utility, and this enforces qij = 1 for
all the ε-optimal attacker strategies (using a big-M constant). (3e) ensures that
only the OCs which actually mask a machine are considered as valid attacker
responses. Finally, (3d) captures the worst-case tie-breaking by requiring that γ
is the highest defender loss from a possible ε-optimal attacker response. Using
an alternate strategy representation with binary decision variables enables lin-
earization to an MILP, that can be sped up with symmetry-breaking cuts [34].

Next, we consider human attackers who typically exhibit bounded rationality.

4 A Model-Driven Approach with Prospect Theory

A well-studied model for the risk-behavior of humans is Prospect theory [36].
As per this, humans under risk make decisions to maximize the prospect, which
differs from the utilitarian approach in that the reward value and the proba-
bility of any event are transformed as follows. We have a value transformation
function R that is monotone increasing and concave, s.t., the outcome reward
v (value of the machine attacked), gets perceived as R(v) by the attacker. A
parameterization of the form Rλ(v) = c(v/c)λ is commonly considered in the
literature, with λ < 1 capturing the risk-aversion of the attacker2, and we use
c = maxi vi so that the perceived values are normalized to the same range as
true values. Prospect theory also proposes a probability weighting function Π,
such that the probability p of an event is perceived as Π(p). A function of the
form Πδ(p) = pδ/(pδ + (1 − p)δ)1/δ has been previously proposed in literature,
parametrized by δ. In our problem, the attack success probability p is a non-
linear non-convex function of the decision variables Φij and applying a function
as above loses tractability. For simplicity, we omit the probability weighting from
our solution which shows effective results regardless. Future work could explore
the benefits of incorporating this additional complexity.

Thus, each of the attacker’s strategies (i, j) has a prospect

fλ(Φ, i, j) =
Φij

mΦ(j)
Rλ(vi) (4)

as a function of the player strategies, parametrized by λ. This value transforma-
tion makes the problem inherently harder (even in the simpler zero-sum setting).

Learning the parameter λ is a key challenge. Once λ is estimated, the defender
computes an optimal strategy for the prospect theoretic attacker, by simply mod-
ifying (3), replacing the valuations vi with the transformed values Rλ(vi). More
generally, with this replacement, all results from Sect. 3 for rational attackers
apply here too.

2 The conventional usage of the symbol λ in prospect theoretic models is different.
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4.1 Learning Model Parameters from Data

Suppose we have data consisting of a set of instances N from a study such
as [1]. A particular instance n ∈ N corresponds to a particular human subject
that plays against a particular defense strategy Φn, and decides to attack (in, jn)
having the maximum prospect. The instances come from different subjects who
may have a different parameter λ, however, at the time of deployment, the
defender cannot estimate the risk-averseness of an individual in advance and play
a different strategy accordingly. Hence, we aim to compute a strategy against a
particular λ that works well for the whole population3. Due to different subjects,
different instances may have different attack responses for the same defender
strategy, and requiring a strict prospect-maximization may not yield any feasible
λ. Hence, we define the likelihood of an instance, by considering a soft-max
function instead, so that the probability of attacking (in, jn) is4

Pn(λ) =
exp(fλ(Φn, in, jn))

∑
i,j exp(fλ(Φn, i, j))

.

Using the Maximum Likelihood Estimation approach, we choose λ which maxi-
mizes the likelihood

∏
n Pn(λ), or, log likelihood

∑
n log Pn(λ). (Note: Manually

eliminating anomalous instances from data which indicate complete irrationality
can help avoid over-fitting). Finding such a solution via the standard approach of
Gradient Descent does not have the convergence guarantee due to the likelihood
being non-convex and we resort to Grid Search instead.

4.2 Robust Solution with Prospect Theory

The learning error can be sizeable if the subject population has a high vari-
ance of λ or if limited data is available (for sensitivity analysis, see Appendix).
Further, the parameterization hypothesis may not fit well, degrading solution
quality. To circumvent both these issues, we propose a solution offering robust-
ness when the attacker behavior cannot be predicted with certainty. We assume
a prospect-theoretic attacker, but with no assumption of a parametrized model
or data availability. Thus, the defender knowledge of value transformations has
uncertainty, which we handle with the minimax regret framework [5,9], seen to
be less conservative in contrast with a purely maximin approach that focuses on
the worst cases of uncertainty.

Value transformation and Uncertainty modelling. We assume the attacker
has the transformed values w. Defender does not precisely know w which can be
anything from a set W ⊆ R

s which we call the uncertainty set [3]. W is obtained
by requiring that the transformation from v to w is a monotone increasing and
3 This avoids learning a complex distribution of λ from limited data, and the subse-

quent need for a Bayesian game formulation with attackers coming from a continuous
distribution which is not expressible as an MILP.

4 When considering a continuous range of λ for payoff transformations, the degenerate
cases of tie-breaking between strategies are zero-probability events and thus ignored.
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concave function with w normalized to the same range as valuations v. WLOG,
let v be sorted increasingly in the index. Then, W is defined by the constraints

W =
{

w

∣
∣
∣
∣
0 ≤ w1 ≤ w2 . . . ws = vs
w1
v1

≥ w2
v2

≥ . . . ≥ ws

vs
= 1

}

The first constraints ensure monotonicity, and the second ones convexity. An
equivalent formulation can also be obtained by adapting constraints used in [27].

Minmax Regret Formulation. Let Ua(Φ, i, j,w) denote the attacker’s
prospect in terms of w and the player strategies. Similarly, let the defender’s wse
utility in terms of w be denoted by Uwse(Φ,w) defined analogous to Uwse(Φ) in
(2):

max
i,j

Ud(Φ, i, j) | Ua(Φ, i, j,w) ≥ Ua(Φ, i′, j′,w) ∀i′ ∈ S ∀j′ ∈ T . (5)

Then, the max regret (MR) of Φ is the worst-case value over all w ∈ W of the
decrements in defender loss that the optimal Φ̂ achieves over Φ for valuations w:

MR(Φ) = max
w∈W

max
Φ̂∈F

[
Uwse(Φ,w) − Uwse(Φ̂,w)

]
. (6)

The minmax regret (MMR) approach looks to compute the Φ that minimizes
MR(Φ), i.e., solving the following OP:

min
Φ∈F,β

β | β ≥ Uwse(Φ,w) − Uwse(Φ̂,w) ∀(w, Φ̂) ∈ W × F . (7)

OP (7) has a constraint for each (w, Φ̂) ∈ W × F making it a semi-infinite pro-
gram as W is infinite, and difficult to solve also due to F being large. Hence, we
adopt the well-studied approach of using constraint sampling [9] with constraint
generation [5], to devise Algorithm 2. It iteratively computes successively tighter
upper and lower bounds on MMR until they converge to the objective value. For
the lower bound, we compute a relaxed version of OP (7), i.e., relaxed MMR by
computing its objective subject to constraints corresponding to a sampled sub-
set S = {(w(n), Φ̂(n))}n instead of W × F directly, giving an interim solution Φ
(line 4). Since only partial constraints were considered, the regret thus computed
must be a lower bound on the true MMR. Next, if this interim solution is not
optimal, there must be a constraint of OP (7) not satisfied by Φ. In particular,
such a violated constraint can be found by computing the max regret (MR) of
the interim solution Φ (as per OP (6)) and by definition of max regret, must be
an upper bound on the overall MMR (line 5). We use the new sample (w, Φ̂) thus
computed and add to S (line 6) and repeat. We get successively tighter lower
bounds as S grows and finally meets the tightest upper bound so far, which
marks the convergence of the algorithm (line 3).



Exploiting Bounded Rationality in Risk-Based Cyber Camouflage Games 113

Algorithm 2: minmax regret computation
1 Initialize u ← ∞, l ← 0

2 Randomly generate samples S = {(w(n), Φ̂(n))}n

3 while u > l do
4 l ← relaxed MMR w.r.t S; giving interim solution Φ.

5 u ← MR for Φ; giving a new sample s = (w, Φ̂).
6 Update S = S ∪ {s}
7 Return incumbent solution as the true solution.

Next, we look at the two main subroutines of the algorithm.

(i) Relaxed MMR Computation. OP (7) has constraints for each (w, Φ̂) ∈
W ×F . Instead, considering a small subset of samples {(Φ̂(n),w(n))}n ⊆ W ×F
to generate a subset of constraints in (7) yields

min
β∈R,Φ∈F

β | β ≥ Uwse(Φ,w(n)) − Uwse(Φ̂(n),w(n)) ∀n. (8)

This yields a lower bound on MMR since we consider fewer constraints. For
sample n, let γn = Uwse(Φ,w(n)). Then, minimizing β translates to minimiz-
ing γn and this can be achieved by adding constraints analogous to (3a)–(3e)
corresponding to each n, to obtain the following OP:

min
Φ,β

β

s.t. β ∈ R, Φ ∈ F
qn ∈ {0, 1}s×t, αn, γn ∈ R

β ≥ γn − Uwse(Φ̂(n),w(n))∑
i,j qnij ≥ 1

⎫
⎬

⎭
∀n

ε(1 − qnij) ≤ αn − Ua(Φ, i, j,w(n))
M(1 − qnij) ≥ αn − Ua(Φ, i, j,w(n))
Ud(Φ, i, j) ≤ γn + (1 − qnij)M
qnij ≤ mj(Φ).

⎫
⎪⎪⎬

⎪⎪⎭

∀i ∈ S ∀j ∈ T ∀n

(ii) Max Regret Computation. Here, we consider a candidate solution Φ,
and compute a sample (Φ′,w) which yields MR(Φ) as per (6), giving an upper
bound on MMR by definition. Since Uwse(Φ,w) is defined via an optimization
problem itself (given by (5)), (6) becomes a bilevel problem. To reduce it to
single-level problems, we let (i′, j′), (i′′, j′′) be the attacked targets at WSE for
the two defender strategies Φ′ and Φ (the candidate solution) resp. Introducing
these allows us to write the required defender utility expressions simply as:

Uwse(Φ′,w) = Ud(Φ′, i′, j′) and Uwse(Φ,w) = Ud(Φ, i′′, j′′).

We then iterate over all tuples (i′, j′, i′′, j′′) (O(s2t2) many of them) to com-
pute the max regret corresponding to each pair (via OP described momentarily),
and the tuple leading to maximum objective gives the solution to (6).
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Previous works using a similar approach, such as, [23] assume mixed strate-
gies and compute the SSE. In our model, however, computing WSE presents the
challenge of capturing the worst-case tiebreaking, requiring an entirely different
formulation. For given pair of targets (i′, j′), (i′′, j′′) as described above and for
input strategy Φ, we compute the regret maximizing sample (Φ′,w) as follows:

max
Φ′,w ,β

β

s.t. Φ′ ∈ F , w ∈ W, β ∈ R, q ∈ {0, 1}s×t

β ≤ Ud(Φ, i′′, j′′) − Ud(Φ′, i′, j′)
Mqij ≥ Ud(Φ′, i, j) − Ud(Φ′, i′, j′)
Ua(Φ′, i′, j′,w) ≥ Ua(Φ′, i, j,w) + εqij

Ua(Φ, i′′, j′′,w) ≥ Ua(Φ, i, j,w).

⎫
⎬

⎭
∀ i ∈ S, j ∈ T

The objective β is the the regret to be maximized, while the remaining con-
straints ensure that (i′, j′), (i′′, j′′) are indeed the respective attacked targets, as
follows. The fourth constraint requires (i′′, j′′) to be the attacker best-response
against Φ, and the worst-case tiebreaking is ensured by the first constraint since
maximizing objective β requires maximizing Ud(Φ, i′′, j′′). For (i′, j′) on the
other hand, the third constraint ensures that it is a best response to Φ′. More-
over, ε is a small positive constant used there which sets qij = 0 for each ε-optimal
OC j. As explained previously for computing (3), choosing a small enough ε sets
qij = 0 for precisely every optimal attack j. Consequently, the defender loss for
every such (i, j) is more than for (i′, j′) (by the second constraint, where M is a
large positive constant), thus capturing the worst-case tiebreaking.

5 GEBRA: Exploiting Bounded Rationality Model-Free

Here, we aim to tackle bounded rationality without any assumptions on the
attacker model. One simple approach is to use (3) (where ε was set very small for
full rationality), and set an appropriate ε to reflect the extent of sub-optimality—
akin to the COBRA algorithm [26] for SSGs. Another previous approach for
SSGs is MATCH [25] which bounds the defender’s loss due to attacker’s deviation
from rationality, by a (pre-set) constant β times the attacker’s utility reduction.
Thus, it guarantees that if the attacker is close to rationality, the defender is
close to optimal utility. We adapt this principle to propose our solution GEBRA
(Guaranteed Exploitation against Boundedly Rational Attackers).

Strictly Competitive Games. In the security domain, having attack choices
favorable to both the attacker and the defender is rather unlikely. A very practi-
cal class of games here is the Strictly competitive games [11], where all outcomes
are pareto optimal. In particular, if the attacker deviates to lower utility, the
defender gets a smaller loss, thus, the attacker playing rationally is the worst
case for the defender. Hence, the previous approaches COBRA and MATCH
merely reduce to the conservative Minimax solution, rendering them unavail-
ing as the desired robustness is intrinsically present. Hence, we aim to exploit
bounded rationality in this setting, by requiring that the defender loss must
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improve by at least (a factor of) the reduction in the attacker utility, as explained
momentarily.

Note that, checking if a game is strictly competitive is challenging due to the
compact representation via polytopal strategy spaces in our game. We show an
MILP formulation to determine if a game is strictly competitive (see Appendix).

Optimization problem for GEBRA: In the strictly competitive setting, if
the attacker deviates from his optimal utility, the defender is guaranteed to get
a smaller loss. To have guaranteed exploitation, we require that the decrement
in defender’s loss, is lower-bounded by β times the decrement in attacker utility,
where β is a positive constant. Then, this can be computed by modifying (3) as:

Similar to (3a)–(3e), constraints (9a)–(9g) enforce α, γ as wse utilities. Here,
we have binary variables hij for any attack (i, j) the attacker can deviate to
instead of the best response. Constraint (9i) ensures hij = 1 iff Φij is nonzero,
i.e., (i, j) is a valid attack (for a deviation). The gist of GEBRA is captured by
(9h). For any deviation (i, j), the attacker’s utility decreases by α − Ua(Φ, j, i)
relative to optimal. The corresponding decrease in defender loss is γ −Ud(Φ, j, i)
which we require to be at least β-fold (whenever hij = 1, i.e. for every valid
deviation). The constant β represents the magnitude of exploitation guarantee.

Remark 4. Setting β = 0 makes the key constraint of GEBRA always true, and
the last constraint is redundant (since h is not tied to any other variables).
Hence, GEBRA reduces to computing WSE which always exists in this case.

Note that for strictly competitive games (by definition), (9) is guaranteed
to have a feasible solution for some β strictly positive. Importantly, however,
the converse is not true, and in fact, in our numerical results, we use a class
of games that generalizes strictly competitive games, and GEBRA still always
finds a feasible solution. Further, setting β < 0 in (9), we can rearrange and
reinterpret it as to require that the increase in defender loss is at most |β| times
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the attacker’s utility decrement—same robustness guarantee as MATCH, which
we resort to in games where attacker suboptimality can severely increase defender
loss.

6 Numerical Results

Setup We keep the game parameters small5 for numerical analysis and it suffices
to clearly highlight their efficacy. We use 5 TCs, OCs each and 15 machines. A
game instance is created by randomly creating constraints, player valuations for
TCs and the assignment of machines to TCs. To compute aggregates or averages
across games or attacker populations, we keep the sample size 50 in each case.

Fig. 1. Distributions Beta(α, β) Fig. 2. Two-piecewise Linear (in
green) Vs Polynomial (in red) trans-
formations (normalized to be from
[0, 1] to [0, 1]) (Color figure online)

Parametrized Prospect Theoretic Model. Here, we compare our Prospect
theory based solution (PT) against WSE (i.e., the solution assuming a rational
attacker with worst-case tiebreaking). We consider a population of risk-averse
attackers governed by a parameter λ drawn from a distribution Beta(α, β) (den-
sity functions as shown in Fig. 1). PT estimates λ by computing the MLE and
best-responds to it. We vary the parameters α, β so as to cover a spectrum of the
average degree of risk-aversion (captured by distribution mean α

α+β ), and the
homogeneity (captured by distribution variance ≈ αβ

(α+β)3 ) of the population.
As shown in Table 1, PT does significantly better for populations with low

variance, as compared to high variance. Intuitively, this is because the learned
parameter λ can represent the population better when there is more homogeneity
(i.e., low variance). Within each of the Sub-Tables 1c, 1b, 1a, when the degree of
risk-aversion is high (i.e., low mean λ; left column), the improvement of WSE
over PT is higher, than when the population mean is high (i.e., smaller overall
risk-aversion; right column), as expected. At the extreme with small risk-aversion

5 Essential for quickly solving many instances (to get averaged numbers). Bigger
parameters can be handled when solving a specific instance for real-world deploy-
ment.
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Table 1. Average Defender loss of WSE and PT

Distribution
(32,80) (80,80) (80,32)

WSE 2.712 2.827 2.941
PT 2.178 2.432 2.580

(a) Low variance

Distribution
(8,20) (20,20) (20,8)
2.724 2.832 2.919
2.272 2.662 2.739

(b) Medium variance

Distribution
(2,5) (5,5) (5,2)
2.710 2.829 2.892
2.396 2.749 3.093

(c) High variance

(a) Comparing Average Defender Loss (b) Comparing Worst-case Regret

Fig. 3. Comparing PT, MMR, GEBRA and WSE for prospect theoretic attackers

on average and low homogeneity, PT does worse than WSE (Table 1c - column
3). For such cases, and others where the parametrization hypothesis may not be
accurate, we show that the model-free algorithms are valuable as shown next.

Prospect-Theoretic Attackers with Arbitrary Transformations: PT
relies on the assumption of polynomial transformations and homogeneous pop-
ulations, which may not hold. Here, we consider a family of Two-piecewise lin-
ear (2PL) payoff transformations shown in Fig. 2 in contrast with the polyno-
mial transformations that PT hypothesizes for parametrization. We compare the
average defender loss of PT, MMR and GEBRA (with overall best parameters
β = 0.05 among positive, and β = −0.5 among negative), against attacker pop-
ulations with 2PL transformations, and polynomial transformations with high
variance.

Figure 3a shows that against Beta(5, 2) and 2PL, PT has a much higher loss
than WSE which is greatly mitigated with MMR and GEBRA. For Beta(2, 5)
and Beta(5, 5), PT has a smaller loss than WSE as seen before, and so do
MMR and GEBRA(−0.5), even though the reduction margin is lower, while
GEBRA(0.05) does not show much difference. In conclusion, in populations with
high risk-aversion and parametrized populations, PT has an edge, however, in
other cases where PT suffers, MMR and GEBRA perform much better. To com-
pare the robustness quality, we compare the worst-case regret. Figure 3b shows
that the worst-case regret is reduced with MMR compared to WSE and PT in all
4 cases, by up to 40%, 30% respectively, while GEBRA has a worst-case regret
a little lower for Beta(2, 5) and not much different than WSE in other cases.
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Exploiting Bounded Rationality with GEBRA: We want to consider the
aforementioned class of strictly competitive games, however, checking this prop-
erty is non-trivial (requiring to solve an MILP for each game, rather than defined
via closed-form constraints). Hence, we consider a slightly more general class of
games with strictly conflicting valuations - for TCs i and j, ui ≥ uj ⇐⇒ vi ≥ vj ,
i.e. if the attacker gets a higher reward from a TC than the other, the defender
suffers a higher loss and vice versa. Unsurprisingly, even for this class, MATCH
(i.e., GEBRA with β < 0) and COBRA achieve an output that differs little from
that of WSE. Hence, we only compare GEBRA (with β > 0) against WSE here.

Having studied risk-averse attackers, we consider a different form of bounded
rationality as given by the Quantal Response (QR) model—an attacker with a
QR parameter ε chooses an attack having utility u, with a probability ∝ exp(εu).
Thus, ε → ∞ for a perfectly rational attacker, while ε = 0 for a fully random
attacker. We consider populations of attackers with varying distributions of ε,
namely LN(−2, 1), LN(−1, 1), LN(0, 1) where LN(α, β) denotes a LogNormal
Distribution with parameters (α, β). These three distributions have an increasing
order of means and thus, increasing average degree of rationality.

Fig. 4. Average Defender Loss comparison between GEBRA and WSE

Figure 4 shows the performance of GEBRA for various settings of β (for illus-
tration, we only show a range for β with sizeable loss reduction). For LN(−2, 1)
with least average rationality, GEBRA reduces the absolute loss by about 10%.
However, the loss gets higher by 10% than WSE for attackers nearly rational.

Fig. 5. Fraction of games where GEBRA does at least as good as WSE

We also measure the fraction of games in which GEBRA surpasses WSE,
shown in Fig. 5. With β = 0.05, it does at least as good as WSE in 75% games
for attackers nearly random and over 60% for the ones more rational. As degree
of rationality rises, however, this percentage drops in other two populations.
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7 Summary

In this paper, we present Risk-based Cyber Camouflage Games (RCCG) to cap-
ture the crucial uncertainty in the attack success. First, for rational attackers, we
show NP-hardness of equilibrium computation, a pseudo-polynomial time algo-
rithm for the special unconstrained setting, and an MILP formulation for the
general constrained problem. Further, to tackle risk-averse attackers, we propose
a Prospect theory based approach (PT) that estimates the attacker behavior
from data and a variant that is robust against arbitrary payoff transformations
based on Min-Max Regret (MMR). Finally, we also propose a model-free app-
roach (GEBRA) that can exploit arbitrary deviations from rationality.

Our numerical results show that PT shows significant improvement for homo-
geneous populations and for a high risk-aversion, however, for heterogeneous
populations, MMR moderately improves the defender loss while also achieving
much lower regret. Finally, GEBRA is valuable in the Strictly Competitive [11]
setting where previous model-free approaches for handling bounded rationality
prove ineffective, particularly for attackers with a high deviation from rationality.

Acknowledgements. This work is sponsored by the Army Research Office (grant
W911NF-17-1-0370).

A RCCG for Rational Attackers

Lemma 1. Under a given defender strategy Φ, let j1, j2 be OCs which are mask-
ing subsets of machines K1 and K2 respectively. Let Φ′ be constructed from Φ
by merging the machines in K1 and K2 and masking with a single OC, say j′.
Then, Ua(Φ′, i, j′) ≤ max(Ua(Φ, i, j1), Ua(Φ, i, j2)) ∀ i ∈ S.

Proof. For an arbitrary TC i, for brevity, let’s denote a = Φi,j1 , b = Φi,j2 .
WLOG, let a/|K1| ≤ b/|K2| (these are the probabilities that the attacks on
(i, j1), (i, j2) are successful, resp.). Then,

Ua(Φ′, i, j′) =
(a + b)

|K1| + |K2|
vi ≤ b

|K2|
vi = Ua(Φ, i, j2).

��

This shows that merging the machines in any two OCs under one, cannot
increase the attacker utility for any target, which prompts the following results.

Proposition 1. Unconstrained zero-sum RCCG always has an optimal strategy
that uses just one OCs.

Proof. Consider an optimal strategy Φ that uses two or more OCs, with i∗, j∗

being the attacker best response. In the unconstrained setting, OCs can be freely
merged. Say we merge machines from OC ĵ to j∗ to obtain Φ′. By Lemma 1,
the attacker utility from any (i, j∗) under Φ′ is at most the utility from (i, j∗) or
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(i, ĵ) under Φ, and thus, at most the best response attacker utility against Φ. As
the remaining attack options have an unchanged utility, it follows that the best
response attacker utility against Φ′ is at most that against Φ. Since the game is
zero-sum, the same applies for the defender loss, making Φ′ also optimal while
it uses fewer OCs. It follows via inductive reasoning that there exists an optimal
strategy which uses a single OC to mask all the machines. ��

Theorem 1. Zero-sum RCCG is NP-hard.

Proof. We reduce from the problem “Exact Cover by 3-Sets” (ExC3 for brevity)
which is NP-complete. In this problem, we are given a set X, with |X| = 3q (so,
the size of X is a multiple of 3), and a collection C of 3-element subsets of X.
The decision problem is whether ∃C ′ ⊂ C where every element of X occurs in
exactly one member of C ′. Given such an instance, construct an RCCG instance
as follows. Construct TCs 1, . . . , 3q corresponding to elements of X. Let the value
of each TC be 0 and let there be exactly one machine of each. Let there be TC
3q + 1 of value V > 0 and q machines of it. Let there be |C| OCs corresponding
the subsets in C. Suppose OC corresponding to any S ∈ C can mask exactly the
3 TCs in S & TC 3q + 1. Let al.l costs be 0. This is a poly-time reduction by
construction. We claim that an ExC3 instance is YES iff the minimum defender
loss in the constructed RCCG is exactly V/4.

Consider a strategy Φ. Let J ′ ⊆ J be the OCs which mask at least one
machine of some TC i ∈ {1, . . . , 3q}. By construction, J ′ must have q OCs.
Further, machines of TC 3q + 1 must be masked by OCs in j′ to minimize the
defender loss since otherwise the defender loss is V . Now, for an OC j that masks
a machine of TC 3q+1, it must mask only one to minimize the defender loss. For
each such OC j, if it masks xj(≤ 3) machines from TCs 1, . . . , 3q, we can write
Ud(Φ, 3q+1, j) = 1

1+xj
V ≥ V/4 which attains the minimum of V/4 when xj = 3.

Since the attacker chooses to attack (i, j) which maximizes it , the defender loss
is lower bounded by v/4. Now, if the given instance of ExC3 is a YES instance,
it is possible to find q OCs which cover all the TCs, and use them to mask the 3
machines of the corresponding TCs along with one machine of TC 3q + 1 each,
thus achieving the minimum loss of V/4. Conversely, if the minimum defender
loss is V/4, the defender loss when attacked at any OC and TC 3q + 1 (if so
valid) must be at most V/4, which implies that it must contain only 1 machine
of 3q+1, and thus i) there should be q such OCs used, and ii) each of them must
have at least 3 machines of TCs 1, . . . , 3q. So, there must be exactly q such OCs
each with exactly 3 machines. Hence, the subsets corresponding to these OCs
form the exact cover of the given ExC3 making it a YES instance. ��

Proposition 2. Unconstrained RCCG always has an optimal strategy that uses
just two OCs.

Proof. Consider an optimal strategy Φ that uses three or more OCs, with i∗, j∗

being the attacker best response. In the unconstrained setting, OCs can be freely
merged. Say we merge machines from OC j1 to j2 (with j1, j2 �= j∗) to obtain
Φ′. By Lemma 1, the attacker utility of any (i, j2) under Φ′ is at most the utility
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of (i, j1) or (i, j2) under Φ, and thus, i∗, j∗ must still be the best response for
the attacker against Φ. In particular, this also ensures that it remains the worst-
case for the defender in case of tie-breaks. It follows via inductive reasoning that
given an optimal strategy with two or more OCs, another using fewer OCs can
be constructed. Thus, there exists an optimal strategy which uses a single OC.

��

SOBRE Algorithm

SOBRE uses the subroutine DPBRF (Dynamic Programming for Best Response
Feasibility) which given the input (i, n∗,m∗), computes if the machines can be
masked so that OC 1 has m∗ total machines with n∗ of TC i∗, and (i∗, 1) is
the attacker best response. Function f(i,m), (memoized: Line 2), computes if
such a strategy exists with additional property that TCs 1, . . . , i in total have m
machines in OC1. To compute f(i,m), we consider n out of ni machines of TC
i(�= i∗) to be put in OC 1 (Line 7). If doing so keeps (i∗, 1) at a higher utility
than (i, 1), (i, 2) (Line 8), and similarly recursively for all smaller-indexed TCs
(Line 9), f(i,m) is true. Lines 5,6 mark the base cases. DPBRF returns true if
f(s,m∗) is true (Line 3) by definition.

f(i,m) is computable in O(ni) (Line 7), hence, DPBRF takes O(km∗) using∑s
i=1 ni = k. Summing over the loops of SOBRE gives its runtime as O(k4).

Algorithm 3: DPBRF(i∗, n∗,m∗)
1 for i = 1, . . . , s; m = 0, . . . , m∗

2 A[i, m] ← f(i, m)
3 Return A[s, m∗]

4 Function f(i, m)
5 if (i = 0) Return m = 0
6 if (i = i∗) Return A[i − 1, m − n∗]
7 for n = 0, . . . , ni

8 if (max{ n
m∗ vi,

ni−n
k−m∗ vi} < n∗

m∗ vi∗) // ‘<=’ if lower defender loss

9 if (A[i − 1, m − n]) Return true
10 Return false

B Sensitivity to Learning Error

Suppose the estimated parameter is λ∗ and the computed optimal solution is
Φ, yielding a defender utility u∗. We want to provide an error interval around
λ∗ s.t. the defender loss does not increase (at all, or beyond a desired margin
ε), if the true λ is within this interval. Equivalently, we compute the least per-
turbation needed s.t. the defender loss increases. We consider all pairs (i, j) s.t.
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Ud(Φ, i, j) > u∗+ε. Thus, if the attacker best response is any such (i, j), then the
defender loss increases beyond the desired threshold. We compute the minimum
deviation (of true λ from estimated λ∗) that causes this (if it exists) by solving

min
λ

|λ − λ∗| s.t. log fλ(i, j) ≥ log fλ(i′, j′) ∀ i′ ∈ S ∀ j′ ∈ T (10)

The constraint here ensures that (i, j) is indeed the prospect-maximizing
response, where we use log on both sides to get an LP, for efficient computation.
Then, solving (10) for all (i, j) pairs for which Ud(Φ, i, j) > u∗ + ε, and taking
the minimum of all the perturbations, gives us the required tolerance.

C Computing Strict Competitiveness

We formulate an MILP that is feasible iff for a strategy Φ, deviating from some
(i, j) to (i′, j′) is beneficial to both players—game is not strictly competitive.

M(1 − qij) + Ua(Φ, i, j) > α, M(1 − rij) + α > Ua(Φ, i, j)
M(1 − rij) + Ud(Φ, i, j) > β, M(1 − qij) + β > Ud(Φ, i, j)

rij ≤ Φij ≤ Mrij , qij ≤ Φij ≤ Mqij

⎫
⎬

⎭
∀ i∈S, j ∈T

Φ ∈ F , q, r ∈ {0, 1}s×t, q11 + . . . + qst = 1, r11 + . . . + rst = 1

Here, binary variables q, r capture (i, j) and (i′, j′) respectively which define
the aforementioned attacker deviation. Line 4 ensures they are unique and Line
3 ensures they are valid attacks. Attacker and defender both prefer (i, j) over
(i′, j′) as per Lines 1,2 respectively.
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Abstract. Lateral movement of advanced persistent threats has posed
a severe security challenge. Due to the stealthy and persistent nature of
the lateral movement, defenders need to consider time and spatial loca-
tions holistically to discover latent attack paths across a large time-scale
and achieve long-term security for the target assets. In this work, we
propose a time-expanded random network to model the stochastic ser-
vice links in the user-host enterprise network and the adversarial lateral
movement. We design cognitive honeypots at idle production nodes and
disguise honey links as service links to detect and deter the adversarial
lateral movement. The location of the honeypot changes randomly at dif-
ferent times and increases the honeypots’ stealthiness. Since the defender
does not know whether, when, and where the initial intrusion and the
lateral movement occur, the honeypot policy aims to reduce the tar-
get assets’ Long-Term Vulnerability (LTV) for proactive and persistent
protection. We further characterize three tradeoffs, i.e., the probability
of interference, the stealthiness level, and the roaming cost. To counter
the curse of multiple attack paths, we propose an iterative algorithm
and approximate the LTV with the union bound for computationally
efficient deployment of cognitive honeypots. The results of the vulnera-
bility analysis illustrate the bounds, trends, and a residue of LTV when
the adversarial lateral movement has infinite duration. Besides honeypot
policies, we obtain a critical threshold of compromisability to guide the
design and modification of the current system parameters for a higher
level of long-term security. We show that the target node can achieve zero
vulnerability under infinite stages of lateral movement if the probability
of movement deterrence is not less than the threshold.
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1 Introduction

Advanced Persistent Threats (APTs) have recently emerged as a critical security
challenge to enterprise networks. Their stealthy, persistent, and sophisticated
nature has made it difficult to prevent, detect, and deter them. The life cycle
of APT attacks consists of multiple stages and phases [1,2]. After the initial
intrusion by phishing emails, social engineering, or an infected USB, an attacker
can enter the enterprise network from an external network domain. Then, the
attacker establishes a foothold, escalates privileges, and moves laterally in the
enterprise network to search for valuable assets as his final target. The targeted
assets can be either a database with confidential information or a controller in an
industrial plant as shown in the instance of APT27 [3] and Stuxnet, respectively.
Valuable assets are usually segregated and cannot be compromised by an attacker
directly from the external domain in the initial intrusion phase. Therefore, it is
indispensable for the attacker to exploit the internal network flows of legitimate
service links between hosts and users to move laterally from the location of the
initial intrusion to the final target of valuable assets.

Early detection of the adversarial lateral movement is challenging. First, an
APT attacker is persistent. The long duration between the initial intrusion and
the final target compromise makes it difficult for the defender to relate alarms
over a time scale of years and piece together shreds of evidence to identify the
attack path. Second, an APT attack is stealthy. Each time the attacker has
compromised a new network entity, such as a host, and obtained its root priv-
ilege, he does not take any subversive actions on the compromised entity and
remains “under the radar”. These entities are only used as the attacker’s step-
ping stones toward the final target. Third, the high volume of network traffic
during regular operation generates a considerable number of false alarms, and
thus significantly delays and reduces the accuracy of adversary detection. With-
out an accurate and timely detection of adversarial lateral movement, defensive
methods, such as patching and frequent resetting of suspicious entities, become
cost-prohibitive and significantly reduce operational efficiency as those entities
become unavailable for the incoming service links.

Honeypot is a promising active defense method of deception. A honeypot is
a monitored and regulated trap that is disguised to be a valuable asset for the
attacker to compromise. Since legitimate users do not have the motivation to
access a honeypot, any inbound network traffic directly reveals the attack with
negligible false alarms. The off-the-shelf honeypots are applied at fixed loca-
tions and on isolated machines that are not involved in the regular operation.
Honeypots at fixed locations are easy to implement. Isolating the honeypot com-
pletely from the production system can reduce the risk that an attacker uses the
honeypot as a pivot node to penetrate the production system [4]. Despite the
advantages, honeypots at fixed and isolated locations can be easily identified by
sophisticated attackers [5] and become ineffective. Motivated by the concept of
cognitive radio [6] and roaming honeypots [7], we develop the concept of cogni-
tive honeypots to mitigate the Long-Term Vulnerability (LTV) of a target asset
during the adversarial lateral movement. Contrary to the off-the-shelf honey-
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pots, the cognitive honeypots aim to leverage idle machines of the production
system and configure them into honeypots to make the deception indecipherable
and unpredictable for the attacker. Since the defender reconfigures part of the
production systems into honeypots, she needs to guarantee that the honeypot
configuration does not interfere with service links. Also, the defender needs to
balance the utility of security with the cost of reconfiguration. We manage to
consider the above three factors, i.e., the level of stealthiness/indecipherability,
the probability of interference, and the cost of roaming, in determining the opti-
mal honeypot policy that minimizes the target asset’s LTV.

In this work, we model the adversarial lateral movement in the enterprise
network as a time-expanded network [8], where the additional temporal links
connect the isolated spatial service links across a long time to reveal persistent
attack paths explicitly. We consider the scenario where service links occur ran-
domly at each stage and the attacker can exploit these service links for lateral
movement with a success probability. Due to the curse of multiple attack paths,
the computation complexity increases dramatically with the network size and
the number of stages. To efficiently compute the optimal policy for the cognitive
honeypot, we propose an iterative algorithm and approximate the LTV by its
upper and lower bounds, which result in the optimal conservative and risky hon-
eypot policies, respectively. The results of the vulnerability analysis illustrate
the limit and the bounds of LTV when the duration of lateral movement goes to
infinity under direct and indirect policies, respectively. Without proper mitiga-
tion strategies, vulnerability never decreases over stages and the target node is
doom to be compromised. Under the improved honeypot strategies, a vulnera-
bility residue exists and LTV cannot be reduced to 0. Besides honeypot policies,
we further investigate the possibility of changing the frequency of service links
and the probability of successful compromise for long-term security. We man-
age to character a critical threshold for the Probability of Movement Deterrence
(PoMD) and prove that the target node can achieve zero vulnerability even
when the adversarial lateral movement last for infinite stages if POMD is not
less than the threshold.

1.1 Related Works

Lateral Movement Detection and Mitigation. Various methods have been
proposed for lateral movement detection [9–11]. However, most of them rely on
accurate and timely identification of the initial intrusion, which may be challeng-
ing to achieve. Mitigation methods of network topology change have also been
proposed to delay lateral movement [12] and reduce its adversarial impact [13].
Authors in [14,15] have proposed a proactive defense-in-depth model against
the multi-stage multi-phase attacks. Previous works have also analyzed security
metrics, such as reachability [13], enforceability [16], and survivability [17], to
reduce risk and loss under lateral movement attacks. Compared to these works,
our work applies honeypots and honey links to detect and mitigate lateral move-
ment. Moreover, we enable the analysis of the target’s LTV under an undetected
initial intrusion and an arbitrary duration of lateral movement.
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Cognitive Honeypots. Honeypots as a defensive deception method have been
widely studied in the literature. The authors in [18–20] have investigated the
optimal timing and actions to attract and engage attackers in the honeypot.
The authors in [21] have investigated the optimal honeypot configuration and
the signaling mechanism to simultaneously incentivize attackers and disincen-
tivize legitimate users to access a honeypot. All these honeypots are assumed
to be placed at fixed and segregated locations. In this work, we consider cogni-
tive honeypots that use the idle machines of the production system to increase
the stealthiness of honeypots. The terminology of “cognitive honeypots” has
appeared in [22] but refers to a cognition of the suspicion level. The authors
in [23] have investigated the optimal honeypot locations during the adversarial
lateral movement to prevent the attacker from compromising the target node.
Their honeypot policy requires a partial observation of the state, which may not
be available as a result of the attacker’s stealthiness. Our work assumes that the
defender does not know whether, when, or where the initial intrusion and the
lateral movement occur in the network. Without real-time feedback information
such as alerts of node compromise, the cognitive honeypot provides proactive
and persistent protection of the valuable asset.

Time-Expanded Network. Time-expanded networks have been applied
in transportation [24], satellite communications [25], and network security
[26]. Since the transportation planning and satellite communications follow a
timetable, the time-expanded networks in these applications usually have time-
varying links that are deterministic and known at all stages. In enterprise net-
works, the defender does not know which service links will be used in the ensu-
ing stages. Thus, we consider a time-expanded network with random topology.
Compared to attack graphs (e.g., [27]), which focus on capturing the paths of an
attack, the time-expanded network explicitly portrays the timing of the attacks
and captures the temporal information of the legitimate network flows and the
adversarial lateral movement.

1.2 Notation and Organization of the Paper

Throughout this paper, we use the pronoun ‘he’ for the attacker and ‘she’ for
the defender. The superscript represents the time index. The calligraphic letter
V represents a set and V \VI means the set of elements in V but not in VI . We
summarize important notations in Table 1 for readers’ convenience.

The rest of the paper is organized as follows. Section 2 introduces the time-
expanded network to model the random arrival of the service links, the adversar-
ial lateral movement, and the implementation of cognitive honeypots. In Sect. 3,
we compute the optimal honeypot policy dependent on the level of stealthiness,
the probability of interference, and the cost of roaming. The LTV of the target
node is then analyzed. Section 4 concludes the paper.
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Table 1. Summary of notations.

Variable Meaning

V = {VU ,VH} Node set of users and hosts

N = |V | Number of user and host nodes

VI ⊆ V Demilitarized Zone (DMZ), i.e., the node-set of potential initial intrusion

VD ⊆ V The node-set that can be reconfigured as honeypots

VS The set of all the subsets of V

nj0 ∈ V \ VI The target node that contains valuable assets

Δk ∈ Z
+
0 The length of the adversarial lateral movement

ρi The probability that the initial intrusion occurs at node ni ∈ VI

β The probability/frequency of service links

λ The probability of a successful compromise

γ The probability of honey links

qi,j The probability that the attacker identifies the honey link from ni to nj

2 Chronological Enterprise Network Model

We model the normal operation of an enterprise network over a continuous period
as a sequence of user-host networks in chronological order. As shown in Fig. 1,
nodes U1 and U2 represent the two users’ client computers. Nodes H1, H2, and
H3 represent three hosts in the network. In particular, host H3 stores confidential
information or controls a critical actuator, thus the defender needs to protect H3
from attacks. Define V := {VU ,VH} as the node set where VU ,VH are the sets
of the user nodes and hosts, respectively. The solid arrows represent two types of
service links, i.e., the user-host connections and the host-host communications
through an application such as HTTP [28]. Users such as U1 and U2 can access
non-confidential hosts, such as H1 and H2, through their client computers for
upload and/or download. However, to prevent data theft and physical damages,
host H3 is inaccessible to users; e.g., there are no service links from U1 or U2 to
H3 at any stage k. Since the normal operation requires data exchanges among
hosts, directed network flows exist among hosts at different stages; e.g., H3 has
an outbound connection to H2 at stage k = k0 and an inbound connection
from H2 at stage k = k0 + 3. We assume that both types of service links occur
randomly and last for a random but finite duration. Whenever there is a change
of network topology, i.e., adding or deleting the user-host and host-host links,
we define it as a new stage. We can characterize the chronological network as a
series of user-host networks at discrete stages k = k0, k0 +1, · · · , k0 +Δk, where
the initial stage k0 ∈ Z

+ and Δk ∈ Z
+
0 . Since APTs are stealthy, the defender

may not know the value of k0, i.e., when the initial intrusion happens or has
already happened. The lack of accurate and timely identification of the initial
intrusion brings a significant challenge to detect and deter the lateral movement.
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Fig. 1. A sequence of user-host networks with service links in chronological order under
discrete stage-index k. The initial stage k0 is the stage of the attacker’s initial intrusion
yet the defender does not know the value of k0. The solid arrows show the direction
of the user-host and host-host network flows. By incorporating part of temporal links
denoted by the dashed arrows, we reveal the attack path over a long period explicitly.

2.1 Time-Expanded Network and Random Service Links

We abstract the discrete series of networks in Fig. 1 from k ∈ {k0, · · · , k0 + Δk}
as a time-expanded network G = (V ,E ,Δk) in Fig. 2. In the time-expanded
network, we distinguish the same user or host node by the stage k and define
nk

i ∈ V as the i-th node in set V at stage k ∈ {k0, · · · , k0 + Δk}. We drop
the superscript k if we refer to the node rather than the node at stage k or
the time does not matter. We can assume without loss of generality that the
number of nodes N := |V | does not change with time as we can let V contain
all the potential users and hosts in the enterprise network over Δk stages. The
link set E := {E k0 , · · · ,E k0+Δk} ∪ {E k0

C , · · · ,E k0+Δk−1
C } consists of two parts.

On the one hand, the user-host and host-host connections at each stage k ∈
{k0, · · · , k0 + Δk} are represented by the set E k = {e(nk

i , nk
j ) ∈ {0, 1}|nk

i , nk
j ∈

V , i �= j,∀i, j ∈ {1, · · · , N}}. On the other hand, set E k
C := {e(nk

i , nk+1
i ) =

1|nk
i , nk+1

i ∈ V ,∀i ∈ {1, · · · , N}} contains the virtual temporal links from stage
k to k+1. A link exists if e(·, ·) = 1 and does not if e(·, ·) = 0. The time-expanded
network G is a directed graph due to the temporal causality represented by the
set E k

C , k ∈ {k0, · · · , k0 + Δk − 1}.
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Fig. 2. Time-expanded network G = {V , E , Δk} for the adversarial lateral movement
and the cognitive honeypot configuration. The solid, dashed, double-lined arrows rep-
resent the service links, the temporal connections, and the honey links to honeypots,
respectively. The shadowed nodes reveal the attack path from U1 to H3 explicitly over
Δk = 3 stages.

Since the user-host and the host-host connections happen randomly at each
stage, we assume that a service link from node nk

i ∈ V to node nk
j ∈ V \

{nk
i } exists with probability βi,j ∈ [0, 1] for any stage k ∈ {k0, · · · , k0 + Δk}.

If a connection from node nk
i to nk

j is prohibitive; e.g., U1 cannot access H3
in Fig. 1, then βi,j = 0. We can define β := {βi,j}, i, j ∈ {1, · · · , N}, as the
service-link generating matrix without loss of generality by letting βi,i = 0,∀i ∈
{1, · · · , N}. In this work, we consider a time-invariant β whose value can be
estimated empirically from long-term historical data1. The service links at each
stage may only involve a small number of nodes and leave other nodes idle.

Definition 1. A node nk
i ∈ V is said to be idle at stage k if it is neither

the source nor the sink node of any service link at stage k, i.e., e(nk
i , nk

j ) =
0, e(nk

j , nk
i ) = 0,∀nk

j ∈ V .

2.2 Attack Model of Lateral Movement over a Long Duration

We assume that the initial intrusion can only happen at a subset of N nodes
VI ⊆ V due to the network segregation. We can refer to VI as the Demilitarized
Zone (DMZ). Take Fig. 1 as an example, if all hosts in the enterprise network are

1 For example, we can use the user-computer authentication dataset from the Los
Alamos National Laboratory enterprise network [29] to estimate the probability of
user-host service links over a long period. The dataset is available at https://csr.
lanl.gov/data/auth/.

https://csr.lanl.gov/data/auth/
https://csr.lanl.gov/data/auth/
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segregated from the Internet, the initial intrusion can only happen to the client
computer of U1 or U2 through phishing emails or social engineering. Although
network segregation narrows down the potential location of initial intrusion from
V to the subset VI that may contain only one node, it is still challenging for
the defender to prevent the nodes in VI from an initial intrusion as the defender
cannot determine when the initial intrusion happens; i.e., the value of k0 is
unknown. In this work, we assume that the initial intrusion only happens to
one node in set VI at a time; i.e., no concurrent intrusions happen. Once the
attacker has entered the enterprise network via the initial intrusion from an
external network domain, he does not launch new intrusions from the external
domain to compromise more nodes in VI . Instead, the attacker can exploit the
internal service links to move laterally over time, which is much stealthier than
intrusions from external network domains. For example, after the attacker has
controlled U1’s computer by phishing emails, he would not send phishing emails
to other users from the external network domain, which increases his probability
of being detected. We define ρi ∈ [0, 1] as the probability that the initial intrusion
happens at node nk0

i ∈ VI ,∀k0 ∈ Z
+. The probability satisfies

∑
i∈VI

ρi = 1 and
is assumed to be independent of the stage k0. This probability of initial intrusion
can be estimated based on the node’s vulnerability assessed by historical data,
red team exercises, and the Common Vulnerability Scoring System (CVSS) [30].

After the initial intrusion, the attacker can exploit service links at different
stages by various techniques to move laterally, such as Pass the Hash (PtH), taint
shared content, and remote service session hijacking [1]. Take PtH as an example,
when a user enters the password and logs into host H1 from a compromised client
computer U1 at stage k0 as shown in Fig. 1, the attacker at U1 can capture
the valid password hashes for accessing host H1 by credential access technique.
Then, the attacker can use the captured hashes to access the host H1 for all
the future stage k > k0. The attacker can also compromise a user node from a
compromised host by tainting the shared content, i.e., adding malicious scripts
to valid files in the host. Then, the malicious code can be executed when user
U2 downloads those files from H1 at stage k0 + 1. PtH (resp. tainting shared
content) enables an adversarial lateral movement from a user node (resp. host
node) to a host node (resp. user node). The attacker can also use remote service
session hijacking, such as Secure Shell (SSH) hijacking and Remote Desktop
Protocol (RDP) hijacking, to move laterally between hosts by hijacking the
inbound or outbound network flows. In this work, we assume that once the
attacker compromises a node, he retains the control of the node for the given
length of time window Δk determined by the defender. For example, the defender
can require users to update their password every Δk days to invalidate the
PtH attack. During the time window, i.e., from the initial intrusion k = k0
to k = k0 + Δk, the attacker can launch simultaneous attacks from all the
compromised nodes to move laterally whenever there are outbound service links
from them. If there are multiple service links from one compromised node, the
attacker can also compromise all the sink nodes of these service links within
the stage. Note that the only objective of the attacker is to search for valuable
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nodes (e.g., H3), compromise it, and then launch subversive attacks for data
theft and physical damages. Thus, we assume that the attack does not launch
any subversive attacks in all the compromised nodes except at the target node
to remain stealthy. That is, even though the attacker retains the control of the
compromised nodes, he only uses them as stepping stones to reach the target
node.

The persistent lateral movement over a long time period enables the attacker
to reach and compromise segregated nodes that are not in the DMZ VI . In both
Fig. 1 and Fig. 2, although the network has no direct service links, represented
by solid arrows, from U1 to H3 at each stage, the cascade of static security in
all stages does not result in long-term security over Δk = 3 stages. After we
add the temporal links represented by the dashed arrows and consider stages
and spatial locations holistically, we can see the attack path from the initial
intrusion node U1 to the target node H3 over Δk = 3 stages as highlighted
by the shadows in Fig. 2. The temporal order of the service links affects the
likelihood that the attacker can compromise the target node. For example, if
we exchange the services links that happen at stage k0 + 1 and stage k0 + 2,
then the attacker from node U1 cannot reach H3 in Δk = 3 stages. Since the
attacker can launch simultaneous attacks from multiple compromised nodes to
move laterally, there can exist multiple attack paths from an initial intrusion
node to the target node.

The adversarial exploitation of service links is not always successful due to
the defender’s mitigation technologies against lateral movement techniques [1].
For example, the firewall rules to block RDP traffic between hosts can invalidate
RDP hijacking. If the attacker has compromised nodes nk′

i ∈ V before stage
k > k′ and a service link from nk

i to nk
j ∈ V \ {nk

i } exists at stage k, i.e.,
e(nk

i , nk
j ) = 1, we can define λi,j ∈ [0, 1] as the probability that the attacker at

node nk
i successfully compromises node nk

j , which is assumed to be independent
of stage k.

2.3 Cognitive Honeypot

The lateral movement of persistent and stealthy attacks makes the enterprise
network insecure in the long run. The high rates of false alarms and the miss
detection of both the initial external intrusion and the following internal compro-
mise make it challenging for the defender to identify the set of nodes that have
been compromised. Thus, the defender needs to patch and reset all suspicious
nodes at all stages to deter the attacks, which can be cost-prohibitive.

Honeypots are a promising active defense method to detect and deter these
persistent and stealthy attacks by deception [31]. In this paper, the connection
from a service node to a honeypot is referred to as a honey link. The defender
disguises a honey link as a service link to attract attackers. For example, the
defender can start a session with remote services from a host to a honeypot.
The attacker who has compromised the host will be detected once he hijacks the
remote service session and carries out actions in the honeypots. Since regular
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honeypots are implemented at fixed locations and on machines that are never
involved in the regular operation, advanced attacks like APTs can identify the
honeypots and avoid accessing them. Motivated by the roaming honeypot [7]
and the fact that the service links at each stage only involve a small number of
nodes, we develop the following cognitive honeypot configuration that utilizes
and reconfigures different idle nodes at different stages as honeypots. Let VD ⊆
V be the subset of nodes that can be reconfigured as honeypots when idle.
At each stage k, the defender randomly selects a node nk

w ∈ VD to be the
potential honeypot and creates a random honey link from other nodes to nk

w.
Since disguising a honeypot as a normal node requires emulating massive services
and the continuous monitoring of all inbound network flows are costly, we assume
that the defender sets up at most one honeypot and monitors one honey link at
each stage.

As shown in Fig. 2, U1, H2, and H3 are idle at stage k0 + 1 and U1 is recon-
figured as the honeypot. The link from H3 to U1 is the honey link which is
monitored by the defender. At stage k0, U2 is the only idle node and is recon-
figured as the honeypot with a honey link from U1 to U2. As stated in Sect. 2.2,
the attacker who has compromised U1 at stage k0 remains stealthy and does
not sabotage any normal operations. Thus, the defender can reconfigure U1 as
a honeypot at stage k0 + 1. However, the honeypot of U1 at stage k0 + 1 can-
not identify the attacker by monitoring all the inbound traffic as he has already
compromised U1. On the contrary, the honeypots at stage k0 and k0 + 2 can
trap the attackers who have compromised U1 and mistaken the honey links as
service links2. Theoretically, the honeypot can achieve zero false alarms as the
legitimate network flows should occur only at the service links. For example,
although the existence of the honey link at stage k0 enables legitimate users at
U1 to access another user’s computer U2, a legitimate user aiming to finish the
service link from U1 to H1 should not access any irrelevant nodes other than
host H1. On the other hand, an attacker at U1 cannot tell whether the links
from U1 to H1 and U2 are service links or honey links. Thus, only an attacker
at U1 can access the honeypot U2 at stage k0.

Random Honeypot Configuration and Detection Since the defender
can neither predict future service links nor determine the set of compromised
nodes at the current stage, she needs to develop a time-independent policy
γ := {γl,w},∀nk

l , nk
w ∈ V , to determine the honeypot location and the honey

link at each stage k to minimize the risk that an attacker from the node of the
initial intrusion can compromise the target node after Δk stages. Each policy
element γl,w is the probability that the honeypot is node nk

w and the honey link
is from node nk

l to nk
w at stage k ∈ {k0, · · · , k0+Δk}. Note that γi,i = 0,∀i ∈ V ,

and we can let nl, nw belong to the entire node set V without loss of generality

2 The defender would avoid configuring honey links from the target node to the hon-
eypot. If the attacker has not compromised the target node H3 as shown in stage
k0 + 1, the honeypot cannot capture the attacker. If the attacker has compromised
the target node as shown in stage k0 + 3, then the late detection cannot reduce the
loss that has already been made.
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because if a node nw /∈ VD is not reconfigurable, then we can let the proba-
bility γl,w be zero. Define nj0 ∈ V \ VI as the target node to protect for all
stages and the target node is segregated from the set of potential initial intru-
sion. Then, defender should avoid honey links from node nj0 for all stages, i.e.,
γj0,w = 0,∀nw ∈ V . If a honey link from nl to nw, e.g., the link from U1 to H3,
is not available for all stages due to segregation, then γl,w = 0. Since at most
one link is allowed, we have the constraint

∑
nl,nw∈V γl,w = 1. In this work,

we assume that the honeypot policy γ is not affected by the realization of the
service links at each stage and thus can interfere with the service links that are
not idle as defined in Definition 1. If the honeypot nk

w selected by the policy
γ is interfering, i.e., not idle, then the defender neither monitors nor filters the
inbound network flows to avoid any interference with the normal operation.

Although we increase the difficulty for the attacker to identify the honeypot
by applying it to idle nodes in the network and change its location at every
stage, we cannot eliminate the possibility of advanced attackers identifying the
honeypot [5]. If the attacker has compromised node ni before stage k and there
is a honey link from node nk

i to nk
j at stage k, then we assume that the attacker

has probability qi,j ∈ [0, 1] to identify the honey link and choose not to access
the honeypot. If the honeypot is not identified, then the attacker accesses the
honeypot and he is detected by the defender. We assume the defender can deter
the lateral movement completely after a detection from any single honeypot by
patching or resetting all nodes at that stage. As stated in Sect. 2.2, the attacker
can move simultaneously from all the compromised nodes to multiple nodes
through service links that connect them. For example, the attacker at stage k0+2
can compromise H2 and H1 through the two service links and may also reach
the honeypot if the attacker attempts to compromise H3 from U1. However, we
assume that the attacker at a compromised node does not move consecutively
through multiple service links (or honey links defined in Sect. 2.3 as the attacker
cannot distinguish honey links from service ones) in a single stage to remain
stealthy. Contrary to the persistent lateral movement over a long time period,
consecutive attack moves within one stage make it easier for the defender to
connect all the indicators of compromise (IoCs) and attribute the attacker. Take
Fig. 2 as an example. Suppose that there are two links, e.g., H1 to U2 and U2
to H2 at a stage k, where each link can be either a service link or a honey link.
If the attacker has only compromised H1 among these three nodes, then he only
attempts to compromise node U2 rather than both U2 and H2 during stage k.

Interference, Stealthiness, and Cost of Roaming In this section, we define
three critical security metrics for a cognitive honeypot to achieve low interfer-
ence, low cost, and high stealthiness. Define VS as the set of all the subsets of V .
Define a series of binary random variables xk

v,w,v′ ∈ {0, 1}, v, v′ ∈ VS , nk
w ∈ V ,

where xk
v,w,v′ = 1 means that there are no direct service links from any node

nk
l ∈ v to node nk

w and from nk
w to nk

l ∈ v′ at stage k. Thus, Pr(xk
v,w,v′ = 1) =∏

nk
l ∈v(1 − βl,w)

∏
nk

l′ ∈v′(1 − βw,l′) represents the probability that the honeypot

at nk
w does not interfere with any service link whose source node is in set v and

sink node is in v′. Then, we can define HPoI(γ) as the probability of interference
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in Definition 2. Since the defender can only apply cognitive honeypots to idle
nodes, a low probability of interfering can increase efficiency. To reduce HPoI(γ),
the defender can design γ based on the value of β, i.e., the frequency/probability
of all potential service links.

Definition 2. The probability of interference (PoI) for any honeypot policy
γ is

HPoI(γ) :=
∑

nh∈V

∑

nw∈V \{nh}
γh,w(1 − Pr(xk

V \{nw},w,V \{nw} = 1))

=
∑

nw∈V

(1 − Pr(xk
V \{nw},w,V \{nw} = 1))

∑

nh∈V \{nw}
γh,w.

(1)

Since the attacker can learn the honeypot policy γ, the defender prefers the
policy to be as random as possible to increase the stealthiness of the honeypot.
A fully random policy that assigns equal probability to all possible honey links
provides forward and backward security; i.e., even if an attacker identifies the
honeypot at stage k, he cannot use that information to deduce the location of
the honeypots in the following and previous stages. We use HSL(γ), the entropy
of γ in Definition 3 as a measure for the stealthiness level of the honeypot policy
where we define 0 · log 0 = 0.

Definition 3. The stealthiness level (SL) for any γ is HSL(γ) :=∑
nh,nw∈V γh,w log(γh,w).

A tradeoff of roaming honeypots hinges on the cost to reconfigure the idle
nodes when the defender changes the location of the honeypot and the honey
link. Define the term C(γh1,w1 , γh2,w2),∀nh1 , nh2 , nw1 , nw2 ∈ V , as the cost of
changing a (nh1 − nw1) honey link to a (nh2 − nw2) honey link. Note that this
cost captures the cost of changing the honeypot location from w1 to w2. If only
the location change of honeypots incurs a cost, we can let C(γh1,w, γh2,w) =
0,∀h1 �= h2,∀nw ∈ V , without loss of generality. We define the cost of roaming
in Definition 4.

Definition 4. The cost of roaming (CoR) for any honeypot policy γ is

HCoR(γ) :=
∑

nh1∈V

∑

nw1∈V \{nh1}
γh1,w1(1 − Pr(xk

V \{nw1},w1,V \{nw1} = 1))

·
∑

nh2∈V

∑

nw2∈V \{h2}
γh2,w2(1 − Pr(xk

V \{nw2},w2,V \{nw2} = 1)) · C(γh1,w1 , γh2,w2)

(2)

3 Farsighted Vulnerability Mitigation for Long-Term
Security

Throughout the entire operation of the enterprise network, the defender does
not know whether, when, and where the initial intrusion has happened. The
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defender also cannot know attack paths until a honeypot detects the lateral
movement attack. Therefore, instead of reactive policies to mitigate attacks that
have happened at known stages, we aim at proactive and persistent policies that
prepare for the initial intrusion at any stage k0 over a time window of length Δk.
That means that the honeypot should roam persistently at all stages according
to the policy γ to reduce LTV, i.e., the probability that an initial intrusion can
reach and compromise the target node within Δk stages.

Given the target node nj0 ∈ V \ VI , a subset v ∈ VS , and the defender’s
honeypot policy γ, we define gj0(v, γ,Δk) as the probability that an attacker
who has compromised the set of nodes v can compromise the target node nj0

within Δk stages. Since the initial intrusion happens to a single node ni ∈ VI

with probability ρi as argued in Sect. 2.2, the Δk-stage vulnerability of the target
node nj0 defined in Definition 5 equals ḡΔk

j0,VI
(γ) :=

∑
ni∈VI

ρigj0({ni}, γ,Δk).
In this paper, we refer to Δk-stage vulnerability as LTV when Δk > 1.

Definition 5. (Long-Term Vulnerability) The Δk-stage vulnerability of the
target node nj0 is the probability that an attacker in the DMZ VI can compromise
the target node nj0 within a time window of Δk stages.

The length of the time window represents the attack’s time-effectiveness
which is determined by the system setting and the defender’s detection effi-
ciency. For example, Δk can be the time-to-live (typically on the order of days
[13]) for re-authentication to invalidate the PtH attack. For another example,
suppose that the defender can detect and deter the attacker after the initial
intrusion yet with a delay due to the high rate of false alarms. If the delay can
be contained within Δk0 stages, then the defender should choose the honey-
pot policy to minimize the Δk0-stage vulnerability. Consider a given threshold
T0 ∈ [0, 1], we define the concept of level-T0 stage-Δk security for node nj0 and
honeypot policy γ in Definition 6.

Definition 6. (Long-Term Security) Policy γ achieves level-T0 stage-Δk
security for node nj0 if the Δk-stage vulnerability is less than the threshold,
i.e., ḡΔk

j0,VI
(γ) ≤ T0.

Finally, we define the defender’s decision problem of a cognitive honeypot
that can minimize the LTV for the target node with a low PoI, a high SL, and
a low CoR in (3). The coefficients αPoI , αSL, αCoR represent the tradeoffs of
Δk-stage vulnerabilities with PoI, SL, and CoR, respectively.

min
γ

ḡΔk
j0,VI

(γ) + αPoIHPoI(γ) − αSLHSL(γ) + αCoRHCoR(γ)

s.t.
∑

nh,nw∈V

γh,w = 1,

γh,w = 0,∀nh ∈ V , nw ∈ V \ VD.

(3)

3.1 Imminent Vulnerability

We first compute the probability that an initial intrusion at node ni ∈ VI can
compromise the target node nj0 ∈ V \ VI within Δk = 0 stages. The term
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γi,w(1− qi,w) is the Probability of Immediate Capture (PoIC ), i.e., the attacker
with initial intrusion at node ni is directly trapped by the honeypot nw. Since
the attacker does not take consecutive movements in one stage to remain stealthy
as stated in Sect. 2.2, gj0({ni}, γ, 0) equals the product of the probability that
attacker exploits the service link from ni to nj0 successfully and the probability
that the attacker is not trapped by the honeypot, i.e., ∀ni ∈ VI ,

gj0({ni}, γ, 0) = βi,j0λi,j0(1 −
∑

w �=i,j0

γi,w(1 − qi,w) Pr(xk
V \{nw},w,V \{nw} = 1)).

(4)

3.2 Δk-stage Vulnerability

Define Vi,j0 ⊆ VS as the set of all the subsets of V \ {ni, nj0}. For each
v ∈ Vi,j0 , define V v

i,j0
as the set of all the subsets of V \ {ni, nj0 , v}.

Define the shorthand notation fv,u(β, λ) :=
∏

nh1∈v βi,h1λi,h1

∏
nh2∈u βi,h2(1 −

λi,h2)
∏

nh3∈V \{ni,nj0 ,v,u}(1−βi,h3) as the probability of partial compromise, i.e.,
the attacker with initial intrusion at node ni has compromised the service links
from ni to all nodes in set v ∈ Vi,j0 , yet fails to compromise the remaining ser-
vice links from ni to all nodes in set u ∈ V v

i,j0
. We can compute gj0({ni}, γ,Δk)

based on the following induction, i.e.,

gj0 ({ni}, γ, Δk) = gj0 ({ni}, γ, 0) + (1 − βi,j0λi,j0 )
∑

v∈V i,j0

∑

u∈V v
i,j0

fv,u(β, λ)(1−

∑

nw∈V \{ni,v,u}
γi,w(1 − qi,w) Pr(xk

V \{ni,nw},w,V \{nw} = 1))gj0 ({ni} ∪ v, γ, Δk − 1).
(5)

3.3 Curse of Multiple Attack Paths and Two Sub-Optimal
Honeypot Policies

For a given γ, we can write out the explicit form of gj0({ni} ∪ v, γ,Δk − 1) for
all Δk ∈ Z

+ as in (4) and (5). However, the complexity increases dramatically
with the cardinality of set v due to the curse of multiple attack paths; i.e., the
event that the attacker can compromise target node nj0 within Δk stages from
node ni is not independent of the event that the attacker can achieve the same
compromise from node nh �= ni. Thus, we use the union bound

gj0({ni} ∪ v, γ,Δk) ≥ max
nj∈{ni}∪v

gj0({nj}, γ,Δk),

gj0({ni} ∪ v, γ,Δk) ≤ min(1,
∑

nj∈{ni}∪v

gj0({nj}, γ,Δk)),

to simplify the computation and provide an upper bound and a lower bound for
gj0({ni} ∪ v, γ,Δk), v �= ∅,∀Δk ∈ Z

+, in (6) and (7), respectively.



Farsighted Risk Mitigation of Lateral Movement 139

g
lower
j0

({ni}, γ, Δk) = gj0 ({ni}, γ, 0) + (1 − βi,j0λi,j0 )
∑

v∈V i,j0

∑

u∈V v
i,j0

fv,u(β, λ)(1−

∑

nw∈V \{ni,v,u}
γi,w(1 − qi,w) Pr(x

k
V \{ni,nw},w,V \{nw} = 1)) max

nj∈{ni}∪v
g

lower
j0

({nj}, γ, Δk − 1).

(6)
g

upper
j0

({ni}, γ, Δk) =gj0 ({ni}, γ, 0) + (1 − βi,j0λi,j0 )
∑

v∈V i,j0

∑

u∈V v
i,j0

fv,u(β, λ)

· (1 −
∑

nw∈V \{ni,v,u}
γi,w(1 − qi,w) Pr(x

k
V \{ni,nw},w,V \{nw} = 1))

· min(1,
∑

nj∈{ni}∪v

g
upper
j0

({nj}, γ, Δk − 1)).

(7)

The initial condition at Δk = 0 is glower
j0

({nj}, γ, 0) = gupper
j0

({nj}, γ, 0) =
gj0({nj}, γ, 0),∀nj ∈ {ni} ∪ v. Define ḡΔk,lower

j0,VI
(γ) :=

∑
ni∈VI

ρig
lower
j0

({ni}, γ,

Δk) and ḡΔk,upper
j0,VI

(γ) :=
∑

ni∈VI
ρig

upper
j0

({ni}, γ,Δk) as the lower and upper
bounds of the Δk-stage vulnerability of the target node nj0 under any given
policy γ, respectively. Then, replacing ḡΔk

j0,VI
(γ) in (3) with ḡΔk,lower

j0,VI
(γ) and

ḡΔk,upper
j0,VI

(γ), we obtain the optimal risky and conservative honeypot policy
γ∗,risky and γ∗,cons, respectively. Both sub-optimal honeypot policies approx-
imate the optimal policy that is hard to compute explicitly. A risky defender
can choose γ∗,risky to minimize the lower bound of LTV while a conservative
defender can choose γ∗,cons to minimize the upper bound.

We propose the following iterative algorithm to compute these two hon-
eypot policies. We use γ∗,risky as an example and γ∗,cons can be com-
puted in the same fashion. At iteration t ∈ Z

+
0 , we consider any feasi-

ble honeypot policy γt and compute glower
j0

({ni}, γt,Δk′),∀ni ∈ VI ,∀Δk′ ∈
{1, · · · ,Δk}, via (6). Then, we solve (3) by replacing ḡΔk

j0,VI
(γt) with

ḡΔk,lower
j0,VI

(γt) and plugging in glower
j0

({ni}, γt,Δk),∀ni ∈ VI , as constants. Since
ḡΔk,lower

j0,VI
(γt),HPoI(γt),HCoR(γt) are all linear with respect to γt, the objective

function of the constrained optimization in (3) is a linear function of γt plus the
entropy regularization HSL(γt). Then, we can solve the constrained optimiza-
tion in closed form and update the honeypot policy from γt to γt+1. Given a
small error threshold ε > 0, the above iteration process can be repeated until
there exists a T1 ∈ Z

+
0 such that a proper matrix norm is less than the error

threshold, i.e., ||γT1+1 − γT1 || ≤ ε. Then, we can output γT1+1 as the optimal
risky honeypot policy γ∗,risky.

3.4 LTV Analysis Under Two Heuristic Policies

In this section, we consider the scenario where the initial intrusion set VI = {ni}
contains only one node ni, i.e., the attacker cannot compromise other nodes
directly from the external network at stage k0. Then, a reasonable heuristic
policy is to set up the honeypot at a fixed node nw0 ∈ V \ {ni, nj0} whenever
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Algorithm 1: Optimal Risky (and Conservative) Honeypot Policy
1 Initialization VI , nj0 ∈ V \ VI , Δk ∈ Z

+, ε > 0, γ0,t = 0;
2 while ||γt+1 − γt|| > ε do
3 for Δk′ = 1, · · · , Δk do
4 for i ∈ VI do

5 Compute glower
j0 ({ni}, γt, Δk′) via (6);

6 end

7 end

8 Replace ḡΔk
j0,V I

(γt) with ḡΔk,lower
j0,V I

(γt) and plug in

glower
j0 ({ni}, γt, Δk), ∀ni ∈ VI ;

9 Obtain γt+1 as the solution of (3);
10 if ||γt+1 − γt|| ≤ ε then
11 T1 = t;
12 Terminate

13 t := t + 1;

14 end

15 Output γ∗,risky = γT1+1.

the node is idle and also a direct honey link from ni to nw0 . We refer to these
deterministic policies with γi,w0 = 1 as the direct policies in Sect. 3.4.

In the second scenario, the defender further segregates node ni from the
external network to form a air gap so that she chooses to apply no direct honey
links from ni to any honeypot at all stages, i.e.,γi,w = 0,∀nw ∈ V . However,
advanced attacks, such as Stuxnet, can cross the air gap by an infected USB
flash drive to accomplish the initial intrusion to the air-gap node ni and then
move laterally to the entire network V . Although the defender mistakenly sets
up no honey links from ni to the honeypot at all stages, other indirect honey
links with source nodes other than ni may also detect the lateral movement in
Δk stages. Unlike the deterministic direct policies, we refer to these stochastic
policies with γi,w = 0,∀nw ∈ V , as the indirect policies in Sect. 3.4.

Since the defender may adopt these heuristic policies in the listed scenarios,
this section aims to analyze the LTV under the direct and indirect policies to
answer the following security questions. How effective is the lateral movement for
a different length of duration time under heuristic policies? What are the limit
and the bounds of the vulnerability when the window length goes to infinity?
How much additional vulnerability is introduced by adopting improper indirect
policies rather than the direct policies? How to change the value of parameters,
such as β and λ, to reduce LTV if they are designable?

Indirect Honeypot Policies Since the defender overestimates the effectiveness
of air gap and chooses the improper honeypot policies that γi,w = 0,∀nw ∈ V ,
the vulnerability of any target node nj0 is non-decreasing with the length of the
time window as shown in Proposition 1.
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Proposition 1. (Non-Decreasing Vulnerability over Stages) If the PoIC
is zero, i.e., γi,w(1−qi,w) = 0,∀nw ∈ V , then the vulnerability gj0({ni}, γ,Δk) ∈
[0, 1] is an non-decreasing function regarding Δk for all target node nj0 ∈
V \ VI , ni ∈ VI . The value of gj0({ni}, γ,Δk) does not increase to 1 as Δk
increases to infinity if and only if βi,j0λi,j0 = 0 and gj0({ni} ∪ v, γ,Δk − 1) =
gj0({ni}, γ,Δk − 1),∀v ∈ VS ,∀Δk ∈ Z

+.

Proof. If γi,w(1 − qi,w) = 0,∀nw ∈ V , we can use the facts that gj0({ni} ∪
v, γ,Δk − 1) ≥ gj0({ni}, γ,Δk − 1),∀γ, nj0 ∈ V , ni ∈ VI ,Δk ≥ 0,∀v ∈ VS , and∑

v∈Vi,j0

∑
u∈V v

i,j0
fv,u(β, λ) ≡ 1,∀β, λ, to obtain gj0({ni}, γ,Δk) as

βi,j0λi,j0 + (1 − βi,j0λi,j0)
∑

v∈Vi,j0

∑

u∈V v
i,j0

fv,u(β, λ)gj0({ni} ∪ v, γ,Δk − 1)

≥ βi,j0λi,j0 + (1 − βi,j0λi,j0)gj0({ni}, γ,Δk − 1) ≥ gj0({ni}, γ,Δk − 1),

(8)

for all Δk ∈ Z
+. The inequality is an equality if and only if βi,j0λi,j0 = 0 and

gj0({ni} ∪ v, γ,Δk − 1) = gj0({ni}, γ,Δk − 1),∀v ∈ VS ,∀Δk ∈ Z
+. ��

The equation gj0({ni}∪v, γ,Δk−1) = gj0({ni}, γ,Δk−1),∀v ∈ VS ,∀Δk ∈ Z
+,

holds only under very unlikely conditions such as there is only one node
in the network, i.e., N = 1 or service links occur only from node ni, i.e.,
λi′,j = 0,∀i′ �= i,∀nj ∈ V . Thus, except for these rare special cases, the vulnera-
bility gj0({ni}, γ,Δk) always increases to the maximum value of 1 under indirect
policies.

Remark 1. Proposition 1 shows that without a proper mitigation strategy, e.g.,
no direct honey link from the initial intrusion node to the honeypot, the vulner-
ability of a target node never decreases over stages. Moreover, except from rare
special cases, the target node will be compromised with probability 1 as time
goes to infinity.

Proposition 1 demonstrates the disadvantaged position of the defender
against persistent lateral movement without proper honeypot policies. Under
these disadvantageous situations, the defender may need alternative security
measures to mitigate the LTV. For example, the defender may reduce the arrival
frequency of the service link from nj1 to nj2 , i.e., βj1,j2 , to delay lateral move-
ment at the expenses of operational efficiency. Also, the defender may attempt
to reduce the probability of a successful compromise from node nj1 to nj2 , i.e.,
λj1,j2 , by filtering the service link from nj1 to nj2 with more stringent rules or
demotivate the attacker to initiate the link compromise by disguising the service
link as a honey link. In the rest of this subsection, we briefly investigate the
influence of β and λ on the Δk-stage vulnerability under indirect policies.

The probability of no direct link from the initial intrusion node ni to tar-
get nj0 , i.e., 1 − βi,j0λi,j0 , and the probability that the attacker at node ni

is demotivated to or fails to compromise the service links from node ni, i.e.,∑
u∈V ∅

i,j0
f∅,u(β, λ), defines the Probability of Movement Deterrence (PoMD)
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r := (1 − βi,j0λi,j0)
∑

u∈V ∅
i,j0

f∅,u(β, λ). In (8) where the PoIC is 0, i.e.,

γi,w(1−qi,w) = 0,∀nw ∈ V , we can upper bound the term gj0({ni}∪v, γ,Δk−1)
by 1 for all v �= ∅, which leads to

gj0({ni}, γ,Δk) = (1 − r) · gj0({ni} ∪ v, γ,Δk − 1) + r · gj0({ni}, γ,Δk − 1)
≤ (1 − r) + r · gj0({ni}, γ,Δk − 1)

= 1 − rΔk + rΔkgj0({ni}, γ, 0) = 1 − rΔk(1 − βi,j0λi,j0),
(9)

where the final line results from solving the first-order linear difference equation
iteratively by Δk − 1 times.

Equation (9) shows that the upper bound of LTV increases exponentially
concerning the duration of lateral movement Δk yet decreases in a polynomial
growth rate as PoMD increases. Note that letting PoMD be 1 can completely
deter lateral movement and achieve zero LTV for any Δk ∈ Z

+. However, it
is challenging to attain it as it requires the attacker do not succeed from ni to
any node nj with probability 1, i.e., λi,j = 0,∀nj ∈ V . Since increasing PoMD
incurs a higher cost (e.g., reducing the compromise rate λ) and lower operational
efficiency (e.g., reducing the frequency of service links β), we aim to find the
minimum PoMD to mitigate LTV even when the duration of lateral movement
Δk goes to infinity. In Proposition 2, we characterize the critical Threshold of
Compromisability (ToC ) TToC

m := 1−m/Δk for a positive m  Δk to guarantee
a level-(βi,j0λi,j0), stage-∞ security defined in Definition 6. The proof follows
directly from a limit analysis based on (9).

Proposition 2. (ToC) Consider the scenario where γi,w(1 − qi,w) = 0,∀nw ∈
V , and r as a function of Δk has the form r = 1 − mΔk−n, where n,m ∈ R

+

and m  Δk.

(1). If (1 − r)/m is of the same order with 1/Δk, i.e., n = 1, then the limit of
the upper bound limΔk→∞ 1 − rΔk(1 − βi,j0λi,j0) is a constant 1 − e−m(1 −
βi,j0λi,j0).

(2). If (1 − r)/m is of higher order, i.e., n > 1, then the limit of the upper
bound is gj0({ni}, γ, 0) = βi,j0λi,j0 . If βi,j0λi,j0 = 0, zero LTV is achieved
gj0({ni}, γ,∞) = 0.

(3). If (1− r)/m is of lower order, i.e., n < 1, then the limit of the upper bound
is 1.

Based on the fact that 1 − e−m(1 − βi,j0λi,j0) ≥ βi,j0λi,j0 where the equality
holds if and only if βi,j0λi,j0 = 1, we can conclude that if r ≥ TToC

m for a
positive m  Δk, then the ∞-stage vulnerability of target node nj0 is upper
bounded by βi,j0λi,j0 and thus achieves the level-(βi,j0λi,j0), stage-∞ security as
defined in Definition 6. Note that if the target node is segregated from nodes in
DMZ VI for the sake of security, then there is no direct service link from node
ni to the target node nj0 and βi,j0λi,j0 = 0. In that case, the target node nj0

can achieve a zero vulnerability for an infinite duration of lateral movement,
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i.e., gj0({ni}, γ,∞) = 0, because the upper bound is 0 and LTV is always non-
negative.

Direct Honeypot Policies For the direct policies γi,w0 = 1, nw0 ∈ V \{ni, nj0},
we obtain the corresponding Δk-stage vulnerability and an explicit lower
bound in (10) based on (5) by using the inequality gj0({ni} ∪ v, γ,Δk − 1) ≥
gj0({ni}, γ,Δk − 1). Define shorthand notations k1 :=

∏
l �=w0

(1 − βl,w0)(1 −
βw0,l)(1 − qi,w0) ∈ [0, 1] and k2 :=

∑
v∈Vi,j0\{nw0}

∑
u∈V v

i,j0
\{w0} fv,u(β, λ) ≤

∑
v∈Vi,j0

∑
u∈V v

i,j0
fv,u(β, λ) = 1. Note that k1 = 0 is a very restrictive condition

as it requires that the honeypot nw0 is not interfering, i.e., node nw0 is idle and
the attacker never identify the honey link from ni to nw0 , i.e., qi,w0 = 0.

gj0 ({ni}, γ, Δk) = βi,j0λi,j0 [1 −
∏

l �=w0

(1 − βl,w0 )(1 − βw0,l)(1 − qi,w0 )]+

(1 − βi,j0λi,j0 )[
∑

v∈V i,j0

∑

u∈V v
i,j0

fv,u(β, λ)gj0 ({ni} ∪ v, γ, Δk − 1) −
∑

v∈V i,j0
\{nw0}

∑

u∈V v
i,j0

\{nw0}

fv,u(β, λ) ·
∏

l �=i,w0

(1 − βl,w0 )
∏

l′ �=w0

(1 − βw0,l′ )(1 − qi,w0 )gj0 ({ni} ∪ v, γ, Δk − 1)]

≥ βi,j0λi,j0 (1 − k1) + (1 − βi,j0λi,j0 )[1 − k1k2(1 − βi,w0 )]gj0 ({ni}, γ, Δk − 1).

(10)
Define a shorthand notation r2 := (1 − βi,j0λi,j0)[1 − k1k2(1 − βi,w0)], we can
solve the linear difference equation in the final step of (10) to obtain an lower
bound, i.e., gj0({ni}, γ,Δk) ≥ T lower,1

2 := βi,j0λi,j0(1 − k1)
1−(r2)

Δk+1

1−r2
for all

Δk ∈ Z
+. According to the first equality in (10), we also obtain an upper bound

Tupper
2 for gj0({ni}, γ,Δk),∀Δk ∈ Z

+, in Lemma 1 by using the inequality
gj0({ni} ∪ v, γ,Δk) ≤ 1,∀v ∈ Vi,j0

3. The bound Tupper
2 < 1 is non-trivial if

βi,j0λi,j0 �= 0, βi,j0λi,j0 �= 1, and k1k2(1 − βi,w0) �= 0.

Lemma 1. If γi,w0 = 1, w0 �= i, j0, then gj0({ni}, γ,Δk) is lower and upper
bounded by T lower,1

2 and Tupper
2 := 1−βi,j0λi,j0k1−(1−βi,j0λi,j0)k1k2(1−βi,w0) ∈

[0, 1] for all Δk ∈ Z
+, respectively.

Lemma 1 shows that if the defender applies a direct honeypot from ni in a
deterministic fashion, then the Δk-stage vulnerability is always upper bounded.
However, these direct policies cannot reduce the ∞-stage vulnerability to zero
as shown in Proposition 3.

Proposition 3. (Vulnerability Residue) If βi,j0λi,j0 �= 0 and γi,w0 =
1, w0 �= i, j0, then

(1). The term T lower,2
2 := βi,j0λi,j0 (1−k1)

(1−βi,j0λi,j0 )k1k2(1−βi,w0 )+βi,j0λi,j0
∈ [0, 1) is strictly

less than 1.
(2). If gj0({ni}, γ,Δk −1) < T lower,2

2 , then gj0({ni}, γ,Δk) > gj0({ni}, γ,Δk −
1).

3 Since we can compute gj0({ni}∪v, γ, Δk−1) explicitly when v is empty, we can obtain
a tighter upper bound by using the inequality gj0({ni}∪v, γ, Δk) ≤ 1, ∀v ∈ Vi,j0 \∅.



144 L. Huang and Q. Zhu

(3). The term limΔk→∞ gj0({ni}, γ,Δk) is lower bounded by max(T lower,1
2 ,

T lower,2
2 ).

Proof. Based on the inequality in (10), we obtain that if gj0({ni}, γ,Δk − 1) <

T lower,2
2 , then gj0({ni}, γ,Δk) > gj0({ni}, γ,Δk − 1). Since the above is true for

all Δk ∈ Z
+, we know that the Δk-stage vulnerability increases with Δk strictly

until it has reach T lower,2
2 . If βi,j0λi,j0 �= 0 and k1 �= 1, then T lower,2

2 > 0 is a
non-trivial lower bound. The other lower bound T lower,1

2 comes from Lemma 1.
��

Remark 2. Proposition 3 defines a vulnerability residue TV R := max(T lower,1
2 ,

T lower,2
2 ) under direct honeypot policies. A nonzero TV R characterizes the limi-

tation of security policies against lateral movement attacks, i.e., LTV cannot be
reduced to 0 as Δk → ∞.

4 Conclusion

The stealthy and persistent lateral movement of APTs poses a severe security
challenge to enterprise networks. Since APT attackers can remain undetected
in compromised nodes for a long time, a network that is secure at any separate
time may become insecure if the times and the spatial locations are considered
holistically. Therefore, the defender needs to reduce the LTV of valuable assets.
Honeypots, as a promising deceptive defense method, can detect lateral move-
ment attacks at their early stages. Since advanced attackers, such as APTs, can
identify the honeypots located at fixed machines that are segregated from the
production system, we propose a cognitive honeypot mechanism which reconfig-
ures idle production nodes as honeypot at different stages based on the prob-
ability of service links and successful compromise. The time-expanded network
is used to model the time of the random service occurrence and the adversarial
compromise explicitly. Besides the main objective of reducing the target node’s
LTV, we also consider the level of stealthiness, the probability of interference,
and the cost of roaming as three tradeoffs. To reduce the computation complexity
caused by the curse of multiple attack paths, we propose an iterative algorithm
and approximate the vulnerability with the union bound. The analysis of the
LTV under two heuristic honeypot policies illustrates that without proper miti-
gation strategies, vulnerability never decreases over stages and the target node is
doom to be compromised given sufficient stages of adversarial lateral movement.
Moreover, even under the improved honeypot strategies, a vulnerability residue
exists. Thus, LTV cannot be reduced to 0 and perfect security does not exist.
Besides honeypot policies, we investigate the influence of the frequency of service
links and the probability of successful compromise on LTV and characterize a
critical threshold to achieve long-term security. The target node can achieve zero
vulnerability under infinite stages of lateral movement by a modification of the
parameters β, λ to make PoMD not less than the ToC.
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honeypots for mitigating service-level denial-of-service attacks. In: Proceedings of
the 24th International Conference on Distributed Computing Systems 2004, pp.
328–337. IEEE (2004)

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012)

9. Liu, Q., Stokes, J.W., Mead, R., Burrell, T., Hellen, I., Lambert, J., Marochko, A.,
Cui, W.: Latte: Large-scale lateral movement detection. In: MILCOM 2018–2018
IEEE Military Communications Conference (MILCOM), pp. 1–6. IEEE (2018)

10. Tian, Z., Shi, W., Wang, Y., Zhu, C., Du, X., Su, S., Sun, Y., Guizani, N.: Real-
time lateral movement detection based on evidence reasoning network for edge
computing environment. IEEE Trans. Indust. Inform. 15(7), 4285–4294 (2019)

11. Lah, A.A.A., Dziyauddin, R.A., Azmi, M.H.: Proposed framework for network
lateral movement detection based on user risk scoring in siem. In: 2018 2nd Inter-
national Conference on Telematics and Future Generation Networks (TAFGEN),
pp. 149–154. IEEE (2018)

12. Noureddine, M.A., Fawaz, A., Sanders, W.H., Başar, T.: A game-theoretic app-
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Abstract. We study the use of deception in attack graph-based Stack-
elberg security games. In our setting, in addition to allocating defen-
sive resources to protect important targets from attackers, the defender
can strategically manipulate the attack graph through three main types
of deceptive actions. We show that finding the optimal deception and
defense strategy is at least NP-hard. We provide two techniques for effi-
ciently solving this problem: a mixed-integer linear program for layered
directed acyclic graphs (DAGs) and neural architecture search for gen-
eral DAGs. We empirically demonstrate that using deception on attack
graphs gives the defender a significant advantage, and the algorithms we
develop scale gracefully to medium-sized problems.

Keywords: Deception · Attack graph · Security game

1 Introduction

Security is a serious worldwide issue, involving defending important infrastruc-
ture [62], protecting endangered wildlife species [14,25], securing computer net-
works [30,41,60], and more. Most security scenarios involve a defender who allo-
cates limited security resources to protect targets from adversaries. To model and
tackle these challenges, researchers have proposed game-theoretic approaches—
especially those based on the Stackelberg security game (SSG) model. Many of
these techniques have been successfully deployed in the real world [8,50,58,59].

Attack graphs [1,18,31,45,53] are a commonly-used, versatile modeling tool
for security challenges in different domains. They can model the abstract state
dependency and transition relations of any vulnerable system [7,19,35,44,46,
49,65], including a city’s road system [33] and the topological structure of a
company’s computer network. Most existing work on attack graph-based SSGs
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assumes the attack graph is given and unchangeable. Another widely-used secu-
rity technique is defensive deception [5,48,66], where the defender can alter the
appearance of targets or dynamically shift the attack surface. Commonly-used
defensive deception mechanisms include honeypots [2,6,9,16,27,37] and hon-
eytokens [12] in cybersecurity, as well as camouflaging [63] and moving target
defense [34]. Existing work on deception in security does not consider attack
graphs or ignores the defender’s ability to strategically allocate security resources
to mitigate attacks. Despite its significance, the use of deception alongside the
allocation of security resources on attack graph-based SSGs has not been studied.

To address this gap, we propose a variant of the SSG, an Attack Graph
Deception Game, in which the defender can take deceptive and protective actions
on an attack graph. In our novel game model, the defender uses deception to
modify the graph structure; a less capable attacker may observe the modified
graph structure during reconnaissance. The attacker then attacks targets by
moving between nodes on the graph, while the defender attempts to thwart the
attacker by protecting edges with her limited security resources. To model dif-
ferent attackers’ skill levels, we consider the Bayesian setting, where the attacker
has a type representing his ability to perceive the true graph structure.

We focus on directed acyclic attack graphs (DAGs) and are particularly inter-
ested in layered DAGs, which are commonly used to model networks [29,38]. To
solve layered DAGs, we propose a novel mixed-integer linear program (MILP)-
based algorithm that builds upon the standard LP-based algorithm for solv-
ing Stackelberg games [17] and incorporates heuristic algorithms to significantly
speed up computation. Our algorithm quickly finds the exact optimal solution for
a special class of layered DAGs: bipartite DAGs. For general DAGs, we propose
a neural architecture search (NAS)-based [23] algorithm, which uses a genetic
algorithm to search for the modified attack graph and neural network optimiza-
tion tools to find the remaining defense strategy. To our knowledge, this is the
first use of NAS in SSGs. We conduct extensive experiments showing the scal-
ability of our algorithms, and that using our algorithms and deception lead to
significant increases in the defender’s utility compared to baselines.

2 Game Model

An Attack Graph Deception Game is a two-player game on an attack graph.
The defender chooses her strategy first; the attacker selects his strategy after
surveillance. The attacker has a type θ ∈ Θ drawn from a prior probability dis-
tribution. The defender knows the distribution, not the exact type. This type
θ captures different skills and knowledge possessed by different attackers. For
example, in cybersecurity, an attacker with superior reconnaissance skills has a
greater chance of noticing honeypots and camouflage. In this section, we describe
the attack graph, the players’ strategy space, the players’ payoff, and the solu-
tion concept. The notation that we use to describe our model is summarized in
Table 1. We discuss the relaxation of some of our assumptions in Sect. 8.
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Attack Graph. Attack graphs succinctly represent an attacker’s possible attack
paths. Of the many attack graph variants in the literature, we use a state-based
Bayesian attack graph [21,39,55] G = (N,E). The nodes N represent states
in which attackers can be. The edges E represent actions that attackers can
take to transition between states. In the urban security, each node can represent
an intersection of a road network. In cybersecurity, a node can represent the
attacker’s intrusion status, including the compromised computers and accessed
databases. Following the common monotonicity assumption [7] that attackers
will not relinquish previously attained capabilities, we assume the graph is a
DAG. Furthermore, we assume that the players share knowledge of potential
attacker actions.

We assume that at most one edge connects two nodes. For an attacker type
θ and an edge e = (n, n′) ∈ E, qθ(e) is the intrinsic success probability for a
type-θ attacker to reach state n′ from state n through edge e. When an attacker
reaches n, he receives reward r(n) ≥ 0. Targets are the set of nodes T ⊂ S where
r(n) > 0. Entry points are the set of nodes with no incoming edges and r(n) = 0.
We create auxiliary nodes as entry points for problems without natural ones.

Layered DAGs are a special case of DAGs where nodes are partitioned into
l layers. Let nj

i be the j-th node in layer i and Li = {nj
i | ∀j} be the set of all

nodes in layer i. In a layered DAG, E only contains edges that connect nodes in
Li to nodes in Li+1,∀1 ≤ i ≤ l − 1. Bipartite DAGs are special layered DAGs
with l = 2. We are particularly interested in attack graphs that are layered
DAGs because they are well-suited to model networks [29,38], and we can take
advantage of their structure to design efficient algorithms. For layered attack
DAGs, we assume all nodes except those in the first layer may be targets.

Defender Strategy. In our model, the defender’s action space consists of two
action types: deceptive and protective actions. Deceptive actions aim to make
attackers plan their attack with a misunderstanding of the game structure. Using
her deception budget Bd, the defender can take three classes of deceptive actions:
(i) hiding a real edge with a cost ch(e), (ii) adding a fake edge in a given set Ed

with a cost ca(e), and (iii) modifying the perceived reward of a non-entry-point
node with a cost cδ(n) per unit of change. We assume the deceptive actions only
change an attacker’s perception of the attack graph (called the induced attack
graph) and do not modify the true attack graph. Thus, a hidden edge is not
truly removed; it is simply hidden from some attackers. An added fake edge is
virtual : attackers cannot successfully move along that edge.

Each edge in the set Ed has perceived success probabilities qθ(e) for each
attacker type. These values are given as input. For the last action class, we
assume a type-θ attacker’s perceived reward of a node n is rθ(n) = r(n)+βθΔ(n),
where βθ is the probability of observing the associated (perceived) change to
the node reward Δ(n). The defender chooses the value of Δ(n) with a cost of
cδ(n)|Δ(n)|. In cybersecurity, a defender can hide edges by masking connections
between physical machines or modifying the perceived routing table, add edges
by faking network traffic or vulnerabilities, and change perceived rewards by
manipulating outgoing traffic [3,4] to make machines look like something else
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Table 1. Notation table.

Notation Definition

θ ∈ Θ Attacker type from the set of attacker types

G = (N, E) Attack graph, with set of a set of states N and set of edges E

e = (n, n′) ∈ E An edge in the set of edges

qθ(e) Probability of type-θ attacker reaching n′ from n using e

r(n) Attacker reward for reaching n

T ⊂ N Set of targets where r(n) > 0

Bd Defender’s deception budget

Ba Defender’s effort budget

ch(e) Cost of hiding edge

ca(e) Cost of adding fake edge

cδ(n) Cost per change to node reward

Ed Set of fake edges that can be added

Δ(n) Perceived change to node reward

rθ(n) = r(n) + βθΔ(n) Type-θ attacker’s perceived reward of n

βθ Probability of observing Δ(n)

x(e) Interruption probability

C Attacker’s penalty if interrupted by defender

sd Defender’s strategy

Ud Defender’s expected utility

BRΘ Best response(s) of the attacker type(s)

(e.g., an unimportant relay device). In physical security, she can hide and add
edges by spreading misinformation about road closures or traffic [15], and change
perceived rewards by signaling to attackers—either by spreading misinformation
or transforming targets to make them look like something else (e.g., through
“uglification” [32]).

To deploy protective measures, the defender allocates effort x(e) to edges
with an effort budget Ba, increasing the chance of interrupting an attack. This
effort can have different, domain-dependent meaning. x(e) may represent the
marginal probability of setting up a checkpoint on edge e [33] in urban security,
or the time spent monitoring edge e in cybersecurity. We assume the probability
that the defender will interrupt the attacker’s movement on e is proportional to
her allocated effort. Without loss of generality, we assume the coefficient to be 1.
Thus, the interruption probability is x(e). A defender’s strategy includes a set of
deceptive actions and a protective strategy x. We consider a deterministic decep-
tion strategy because the attacker observes the induced graph before choosing
his strategy, so randomized deception does not benefit the defender [52].

Attacker Strategy. After observing the graph induced by the defender’s decep-
tion strategy and the defender’s protective strategy x, an attacker chooses a
pure strategy. Following the literature [51], this strategy is an attack path on his
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Fig. 1. Influence of defender strategy on attackers’ best responses (blue for weak
attacker, red for powerful attacker) on a bipartite DAG. The dashed line represents
an added edge; the dotted line represents a hidden edge. The numbers next to a node
show the true reward and the modified reward (parenthesized). (Color figure online)

perceived attack graph. It is either null (the attacker chooses not to attack) or
consists of a sequence of nodes or edges on the graph, starting from an entry
point. To execute this strategy, the attacker starts from the entry point and
moves along the edges as planned until he fails or successfully reaches the last
node in the path. The attacker can fail to move along an edge for three reasons:
(i) he fails due to the intrinsic possibility of failure (with probability 1 − qθ(e)),
(ii) the defender interrupts his movement (with probability qθ(e)(1−x(e))), (iii)
the edge is fake (e ∈ Ed). The game ends when the attacker’s movement fails
or he reaches the last node along the planned path. We assume the attacker is
best responding based on his available information, including qθ(e) and rθ(n),
and chooses a path that maximizes his total expected utility.

Player’s Utility. When the attacker executes his attack strategy, he receives
reward (or penalty) at each step. His total utility is the accumulated undis-
counted reward (or penalty). Since the perceived reward and perceived success
probability governs the attacker’s response, we only discuss the attacker’s per-
ceived (expected) utility. If the attacker arrives at node n, he receives reward
rθ(n). If the defender interrupts the attack in one step of movement, the attacker
pays a penalty C in that step, and the game ends. If the defender interrupts an
attack before the attacker reaches any target, she gets 0. If the attacker success-
fully reaches a set of target nodes T ′ ⊂ T , the defender’s utility is −∑

n∈T ′ r(n).

Solution Concept. We want to find the optimal defender strategy assum-
ing that attackers best respond based on their induced attack graphs: s∗

d =
arg maxsd

{Ud(sd, BRΘ(sd)}, where sd is the defender’s strategy containing both
deceptive and protective actions, Ud is the defender’s expected utility, and BRΘ

denotes the best response(s) of the attacker type(s) with defender-favoring tie-
breaking. Our game model can be viewed as a two-stage problem: in stage one,
the defender takes deceptive actions and stage two is a Bayesian Stackelberg
game. We want to optimize the choice of deceptive actions in stage one and find
a Strong Bayesian Stackelberg equilibrium in stage two.
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Fig. 2. Non-submodularity example. The edge labels show the success probabilities;
the node labels show the rewards. ε is a sufficiently small positive number. Adding
either edge e or e′ will not affect the attacker’s choice of the lower path; adding both
will make the attacker choose the upper path.

For expository purpose, we consider two extreme attacker types: attackers
who believe all and no deceptive actions, referred to as weak attackers W (w. p.
γ) and powerful attackers P (w. p. 1 − γ), respectively. A type-P attacker will
not be deceived, i.e., qP(e) = 0, ∀e ∈ Ed and βP = 0. Our theoretical results and
algorithms can be applied to the multiple attacker type setting.

Example Game Instance. To further elucidate our game model, we illustrate
an example game instance on a bipartite DAG (Fig. 1) and show how the defender
can use both deceptive and protective actions to improve her utility. We set the
costs and deception budget so that the defender can at most take the following
deceptive actions: adding edge e5 from n4

1 to n3
2, hiding edge e4, and changing

the weak attacker’s perceived reward of n2
2 from 2 to 1. We set the effort budget

Ba to 1 and the success probabilities to satisfy qθ(e2) < qθ(e4) < qθ(e3) < 1 and
qθ(e) = 1 for other edges. Here γ = 0.5, i.e., the defender encounters the two
attacker types with equal probability.

Figure 1a shows the best responses of both attackers BRΘ on the graph with
no defender actions taken. The defender’s expected utility Ud is −7. Figure 1b
shows BRΘ after the defender allocates all protective effort to e1. Here Ud =∑

θ −qθ(e3). Figure 1c shows BRΘ when the defender takes all possible deceptive
actions and protects e1. Here Ud = −qP(e3), as the weak attacker will fail due
to the fake edge. This example shows that deception can benefit the defender.

3 Theoretical Analysis

In this section, we show that the defender’s optimal utility as a function of
added or hidden edges is not submodular and the problem of finding the optimal
defender strategy is NP-hard.

Non-submodularity Results. Let f(D), where D ⊂ Ed, denote the defender’s
optimal expected utility when she adds a set of fake edges D. f(D) is submodular
if ∀D ⊂ D′, e ∈ Ed \ D′, f(D ∪ {e}) − f(D) ≥ f(D′ ∪ {e}) − f(D′). Submod-
ular functions enjoy desirable properties and often have efficient approximation
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algorithms [26]. However, as shown by the example in Fig. 2, f(D) in our game
model is not submodular1.

In Fig. 2, the original graph contains all nodes and solid edges. Node n1
1 is

the entry point. We set Bd = 7, cδ(n) = ca(e) = 1,∀e, n, and ch(e) > 7,∀e,
so the defender cannot hide any edges. We set Ba = 0 and γ = 1. Let D = ∅
and D′ = {e′}. If the defender does not add an edge (the set of added edges
is D) or adds only one dashed line (D′ or D ∪ {e}), then no matter how she
changes the node rewards, the attacker’s best response is path (n1

1, n
2
2, n

2
3, n

2
4),

resulting in Ud = −24.39. If the defender adds both edges e′ and e, then she can
change the reward of n1

3 to 15 with the remaining budget 5. The attacker then
chooses path (n1

1, n
1
2, n

1
3) as he believes that it yields a higher utility (25) than

the lower path. Here Ud = 0, as the fake edges will cause the attacker to fail.
Thus, f(D ∪ {e}) − f(D) = 0 and f(D′ ∪ {e}) − f(D′) = 24.39, contradicting
the definition of submodularity. The non-submodularity indicates that it may
be hard to find efficient approximation algorithms for our problem.

Hardness Results. Our main result is that the problem is NP-hard when the
defender can perform both protective and deceptive actions, even when restricted
to layered DAGs.

Theorem 1. The problem of finding the optimal deceptive actions is NP-hard
even in layered DAGs.

Proof. We prove the theorem by providing a polynomial time reduction from
the knapsack problem (KP). In a typical KP, there are k items. Each item i
is associated with a weight wi and a value zi. We want to find a subset of the
items, such that

∑
i zi is maximized and

∑
i wi ≤ W , where W is given. Here

we only consider cases where wi ∈ Z,∀i, which are still NP-hard problems.
Given any KP instance with parameters w, z, W , we construct a problem

instance with a layered DAG as follows. First, create a source node n0 and
k other milestone nodes n1, n2, . . . , nk+1. Second, for each 1 ≤ i ≤ k, create
two sets of nodes {uj

i}wi
j=1 and {lji }W+1

j=1 , respectively called upper and lower
nodes. Third, for each upper node uj

i , add edges (ni−1, u
j
i ) and (uj

i , ni). For each
lower node lji , add (ni−1, l

j
i ) and (lji , ni). Fourth, add nodes {lj}W+1

j=1 and edges
(nk, lj), (lj , nk+1), ∀j. Last, set r(uj

i ) = zi for each upper node, r(nk+1) = M ,
where M is sufficiently large: M >

∑k
i=1 zi. For all other nodes n, set r(n) = 0.

Constructing this layered DAG with the above construction takes polynomial
time. We consider the case where γ = 1 and qW(e) = 1,∀e. We set Bd = W and
Ba = 0. Let ch(e) = 1,∀e, ca(e) > W,∀e, and cδ(n),∀n be sufficiently large,
such that the defender can only hide edges. Since there are more than W ways
go from one milestone node to the next, there is always a path from n0 to nk+1.
Because the attacker selects the highest-valued path, the attacker will choose to
go through an upper node to reach ni from ni−1, if able.

Let xi be the binary variable indicating if the attacker’s path from ni−1

to ni contains an upper node. The attacker’s utility is M +
∑k

i=1 zixi, so the

1 For space, we omit the full proof for hiding edges. We follow a similar construction.
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defender’s goal is to hide edges to minimize M +
∑k

i=1 zixi. If the defender
wants to prevent the attacker from reaching the upper nodes, she must hide
at least wi edges at a cost of wi. Let yi indicate whether the defender hides
these wi edges. Since xi = 1 − yi, we can rewrite the defender’s problem as an
integer program that minimizes M +

∑k
i=1 zi(1 − yi), subject to

∑k
i=1 wiyi ≤

W and yi ∈ {0, 1}, which is equivalent to maximizing
∑k

i=1 ziyi, subject to
∑k

i=1 wiyi ≤ W and yi ∈ {0, 1}. 	


4 The MILP Approach for Layered DAGs

Here we provide an MILP-based algorithm for layered DAGs. We first describe
our approach for bipartite DAGs and then extend it to general layered DAGs.

4.1 Bipartite DAG

We describe our MILP-based approach for bipartite DAGs. We begin with the
following important observation.

Observation 1. In the defender’s optimal strategy, any edge added by the
defender must be in the optimal path chosen by the weak attackers.

Proof. Because the powerful attackers know that the edges are fake, only weak
attackers will choose them. The statement trivially follows; otherwise, adding
these edges would cause the attackers’ optimal path to stay the same, and the
defender would obtain the same expected utility. 	


Here any attacker’s action contains a single edge. According to Observation 1,
the defender will add at most one edge in her optimal strategy: that edge must
be the weak attacker’s best response. Thus, we have Ed = {(n1, n2) �∈ E | n1 ∈
L1, n2 ∈ L2}. Denote by e0 the choice to not attack. Let eW ∈ E ∪ Ed ∪ {e0} and
eP ∈ E ∪{e0} be the choices of the weak and powerful attacker, respectively. Let
xm(e) ∈ {0, 1} indicate if e ∈ E∪Ed is in the perceived graph. Denote by nend(e)
the endpoint of edge e. As with prior work [17], we must enumerate all possible
action profiles (eW, eP) and for each profile solve a mathematical program:

Maximize UW
d + UP

d

Subject to UW
d = −γ1[eW ∈ E]qW(eW)(1 − x(eW))r(nend(eW)),

UP
d = −(1 − γ)1[eP ∈ E]qP(eP)(1 − x(eP))r(nend(eP)),

UW
a(e) = qW(e)[(1 − x(e))rW(nend(e)) − x(e)C],∀e ∈ E ∪ Ed,

UW
a(e0) = 0,

UW
a(eW) ≥ max{UW

a(e) − (1 − xm(e))M, 0},∀e ∈ E ∪ Ed, (1)

UP
a(e) = qP(e)[(1 − x(e))rP(nend(e)) − x(e)C],∀e ∈ E,

UP
a(e0) = 0,
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UP
a(eP) ≥ max{UP

a(e), 0},∀e ∈ E, (2)
∑

e∈E∪Ed

xm(e)x(e) ≤ r, (3)

∑

n∈L2

cδ(n)|r(n) − rW(n)| +
∑

e∈E

ch(e) [1 − xm(e)]

+ ca(eW)(1 − 1[eW ∈ E]) ≤ Bd,

0 ≤ x(e) ≤ 1,∀e ∈ E ∪ Ed,

xm(eW) = 1, if eW �= e0,

xm(e) = 0,∀e ∈ Ed \ {eW},

xm(e) ∈ {0, 1},∀e ∈ E,

l+k (n), l−k (n) ∈ {0, 1},∀n ∈ L2,

0 ≤ m+
k (e) ≤ l+k (nend(e)),∀e ∈ E ∪ Ed,

x(e) − [1 − l+k (nend(e))] ≤ m+
k (e) ≤ x(e),∀e ∈ E ∪ Ed,

0 ≤ m−
k (e) ≤ l−k (nend(e)),∀e ∈ E ∪ Ed,

x(e) − [1 − l−k (nend(e))] ≤ m−
k (e) ≤ x(e),∀e ∈ E ∪ Ed, (4)

where UW
a and UP

a are the utilities of the weak and powerful attacker, UW
d and

UP
d are the defender’s utilities from the weak and powerful attacker, and M is a

sufficiently large positive number.
We safely remove xm(e) from constraint (3). To handle the absolute terms in

constraint (4), we introduce two variables for each target n ∈ L2: r+(n) =
max{rW(n) − r(n), 0} and r−(n) = max{r(n) − rW(n), 0}. Thus, we have:
rW(n) − r(n) = r+(n) − r−(n) and |rW(n) − r(n)| = r+(n) + r−(n). For the
quadratic term in constraints (1), we use similar techniques from previous
work [57] to find approximate solutions. We first focus on solutions where
rW(n) − r(n) is a multiple of a basic step r0 and use binary representations
for r+(n) and r−(n). We introduce binary variables l+k (n) and l−k (n) and let
r+(n) = r0

∑
k 2kl+k (n) and r−(n) = r0

∑
k 2kl−k (n). We introduce two new

variables m+
k (e) = x(e)l+k (nend(e)) and m−

k (e) = x(e)l−k (nend(e)) to replace all
possible quadratic terms:

0 ≤ m+
k (e) ≤ l+k (nend(e)) and x(e) − [1 − l+k (nend(e))] ≤ m+

k (e) ≤ x(e),

0 ≤ m−
k (e) ≤ l−k (nend(e)) and x(e) − [1 − l−k (nend(e))] ≤ m−

k (e) ≤ x(e).

We improve the algorithm’s scalability in two ways. First, we track the best
solution U∗ so far and add a constraint to each MILP: UW

d + UP
d ≥ U∗. In addi-

tion to not affecting the final solution, this constraint speeds up the algorithm
by rendering many MILPs infeasible. We can efficiently decide a MILP’s feasi-
bility. Second, we build a two-layer search tree: the first layer corresponds to the
powerful attacker’s choice; the second layer corresponds to the weak attacker’s
choice. We compute each node’s upper and lower bounds and prune a branch
if its upper bound is less than the lower bound of other branches. To compute
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the lower bound, we set Bd = 0, so the perceived graph of all attacker types is
the same as the true attack graph. Because all attacker types choose the same
attack, we view them as a single attacker.

We use two methods to compute the upper bound. In the first method, we
set Bd = ∞ in the original game, so the defender can hide all edges. The weak
attacker will not attack; thus, we need only consider the powerful attacker. In the
second method, we relax the original MILP to yield a tighter bound. We remove
the binary constraints, transforming the MILP into a linear program (LP). We
relax the LP by randomly adding a fraction of the constraints described in
Eqs. (1) and (2). Solving the new relaxed LP is much faster. Initially, we compute
both global lower (Bd = 0) and upper (Bd = ∞) bounds. For each leaf node,
we compute a new upper bound using the second method described above, and
update the lower bounds and upper bounds for other related nodes.

4.2 Layered DAG

Now we consider general layered DAGs, where an attacker’s pure strategy is to
choose a state from each layer to form a path. The number of possible pure
strategies is

∏l
i=1 |Li|, which can be exponential in the number of states. Using

the multiple-LP method [17], we would need to solve exponentially many MILPs.
Instead, we provide a different formulation by simulating backward induction.

For simplicity, we describe our formulation for weak attackers; handling pow-
erful attackers is simpler. Let xm(e) indicate if e is in the weak attacker’s per-
ceived graph. For each node, we introduce variables V W(nj

i ) and V P(nj
i ), one for

each attacker type, to represent the expected utilities of starting from nj
i :

V W(nj
i ) = rW(nj

i ) + max
e:xm(e)=1,nstart(e)=nj

i

qW(e)[(1 − x(e))V W(nend(e)) + x(e)C],

where nstart(e) is the start state of edge e. To handle the quadratic terms, we
use their binary representations [57]. To handle the max operator, we introduce
a binary variable aW(e) indicating the attacker’s choice if he starts from nstart(e).
We guarantee that only existing edges are chosen and, among all edges start-
ing from the same state, at most one of them is selected: aW(e) ≤ xm(e) and∑

xm(e)=1,nstart(e)=nj
i
aW(e) ≤ 1.

With aW(e) = 1, the defender’s expected utility UW
d(nj

i ) from weak attackers
starting from nj

i is:

UW
d(nstart(e)) = −r(nstart(e)) + qW(e)[(1 − x(e))UW

d(nend(e)) + x(e)C].

We apply similar techniques to obtain the defender’s utility for powerful attack-
ers. The defender’s overall objective is γ

∑
j UW

d(nj
1)+(1−γ)

∑
j UP

d(nj
1). We omit

the complete MILPs for layered DAGs, as they can be obtained by modifying
the MILPs for bipartite graphs using the above steps.
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5 The NAS Approach for General DAGs

In this section, we present our neural architecture search (NAS) algorithm for
general DAGs. We first describe how we find the attacker’s best response. The
rest of this section is devoted to solving the defender’s problem.

Given the defender’s strategy, let V θ(n) be a type θ attacker’s highest
expected utility starting from node n, and Eθ be the set of edges in the perceived
graph for that attacker type. From the definition of best response, we have:

V θ(n) = max
n′:(n,n′)∈Eθ

{
rθ(n) + qθ(n, n′)[(1 − x(n, n′))V θ(n′) + x(n, n′)C]

}
.

We can equivalently view V θ as a Bellman equation, so it can be solved with
dynamic programming or, because we focus on DAGs, backward induction on
the reversed topological order.
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Fig. 3. The neural architecture search algorithm. The left figure is the DAG, where the
dashed line is the added edge. The right figure is the corresponding neural network,
where Ud is the defender’s total utility: the sum of utilities from both types of attackers.
The two dashed boxes correspond to the networks for the weak (top) and powerful
(bottom) attackers.

We now describe our NAS approach for solving the defender’s problem. We
leverage the insight that the defender’s actions can be divided into two cate-
gories: actions that change the attack graph structure (e.g., adding and hiding
edges) and actions that change the parameter values of the graph (e.g., chang-
ing node values and protecting edges). Because the attack graph is a DAG, it
naturally can be viewed as a feedforward neural network (NN). Thus, we rede-
fine the problem as a NAS problem [23], in which we first use a search strategy
to find a NN structure, then use machine learning techniques to optimize the
parameter values. We use a genetic algorithm to propose architectures and a
modified gradient-based technique to optimize the parameter values and evalu-
ate the quality of each architecture.

We cast the defender’s utility as the objective function in the optimization
problem of training a NN. To optimize the parameter values, we use the forward
pass to simulate the attacker’s decision-making process (backward induction).
Thus, we reverse the DAG and start from the end nodes. We build a network
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for each attacker type based on their perceived graphs and obtain the defender’s
expected utility by aggregating the utilities obtained from different attacker
types.

However, we still need to address the following issues. First, the rational
attacker chooses a single, deterministic path from the set of possible paths. Thus,
small changes in a state’s value may not change the attacker’s decision, and, by
extension, the defender’s utility. Therefore, the gradients of the defender’s utility
with respect to these variables are 0. Second, the defender has budgets Bd and
Ba. To solve these problems, we borrow techniques from prior work [54]. For the
first problem, we slightly relax the assumption of rational attackers and use the
quantal response model [40]. Thus, the probability of choosing an edge (n, n′) is:

Prθ{n′|n} =

⎧
⎨

⎩

eλV θ(n,n′)
∑

m:(n,m)∈Eθ eλV θ(n,m)
if (n, n′) ∈ Eθ;

0 otherwise,

where Eθ is the set of edges in the perceived graph for a type θ attacker, and λ is
a parameter that controls the rationality of the attackers. The term V θ(n, n′) is
defined as the expected utility of a type θ attacker moving through edge (n, n′):
V θ(n, n′) = rθ(n) + qθ(n, n′)[(1 − x(n, n′))V θ(n′) − x(n, n′)C], where

V θ(n) =

{
rθ(n) if n has no outgoing edges;
∑

m:(n,m)∈Eθ Prθ{m|n}V θ(n,m) otherwise.

Thus, Uθ
d (n) =

∑
m:(n,m)∈E Prθ{m|n}Uθ

d (m) captures the defender’s utility from
a type θ attacker. Instead of a regularization term, which cannot guarantee
that the budget constraints are strictly satisfied, we use another method that
“distributes” the budgets to different nodes and edges. We introduce a variable
z(e) for each edge e ∈ E and two variables y(n) and d(n) for each target. Define:

x(e) = min
{

1.0,
Bd

r ez(e)

∑
e′∈E ez(e′)

}

and rW(n) − r(n) =
Baey(n)

cδ(n)
∑

n ey(n)

ed(n) − 1
ed(n) + 1

,

where Bd
r is the remaining deceptive budget after adding and hiding edges. The

feasibility 0 ≤ x(e) ≤ 1 and budget constraints are always satisfied for all possible
combinations of z(e), y(n), and d(n). The quantities Prθ{n′|n}, x(e), and rW(n)
can be represented in all major deep learning packages using the sigmoid and
softmax functions.

6 Experiments

We conduct experiments on both bipartite and general DAGs. We generate the
graphs using the random Erdös-Renyi method [24]. To ensure the DAG property
for general graphs, each node has a unique number; only edges (s, t) s.t. s < t
can be added. Edge density ρ denotes the probability that an edge is added to



Harnessing the Power of Deception in Attack Graph-Based Security Games 159

the original graph when constructed. We sample the edge success probabilities
and the attacker’s penalty C uniformly at random from the interval (0, 1] for
all experiments. We set Ba = 1. As hiding or adding an edge is more difficult
in reality than changing node rewards, we set the costs of deceptive actions
to ch(e) = ca(e) = 1,∀e and cδ(n) = 0.1,∀n (unless otherwise noted). We
generate the target rewards by sampling uniformly at random from the interval
[5,10]. We generate 20 instances for each point in all plots. Because differential
evolution [61], a population-based evolutionary algorithm (EA), works well on
many problems, we use a modified DE/rand/1/bin variant [42] as a baseline (see
Appendix for details). The EA uses differential evolution from the scipy
package [64]. We use Gurobi [28] to solve the MILPs and PyTorch [47] for NAS.
We run all experiments on a machine with a Core i7 CPU at 4.2GHz.

With our experiments, we seek to answer the following questions: 1) What
is the effect of different deception budgets on the defender’s utility?, 2) What is
the solution quality obtained by our algorithms?, 3) How well do our algorithms
scale?, and 4) How do our algorithms allocate the deceptive budget?

(a) Defender utility vs. number of nodes (b) Defender utility vs. edge density

Fig. 4. Change in defender’s utility versus graph size. The utility decreases as the
deceptive budget decreases and as the graph size increases.

6.1 Bipartite DAGs

Effect of Different Deception Budgets. We investigate how different decep-
tive budgets and graph sizes affect the defender’s utility Ud in a bipartite DAG
setting with the following experiments. In the first experiment, we fix the edge
density ρ to 0.5, vary the number of nodes N from 4 to 32 (from 2 to 16 on each
side), and solve each game with a different Bd. In the second experiment, we fix
N = 16, vary D in increments of 0.1, and solve each game with a different Bd.
We only use the MILP algorithm for both experiments.

Figure 4 shows that Ud decreases as the graph size increases and as Bd

decreases. Figure 4a depicts the first experiment’s results. When Bd = 1, the
defender achieves nearly the same Ud as Bd = ∞. Because the cost of adding or
hiding an edge is 1, the defender can afford to manipulate the graph structure
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instead of only changing the perceived node rewards. This result shows that, in
the bipartite DAG case, adding one edge can typically yield the best solution.
Figure 4b depicts the second experiment’s results. When Bd < 1, there is a small
utility improvement from an increased Bd; in contrast, Ud sharply increases when
Bd = 1. When ρ increases, the performance when Bd = 1 quickly decreases.
When ρ is large, few edges are available to add, so the effect of adding edges
quickly diminishes.

Algorithm Performance. In our first experiment, we show the scalability of
our improved MILP algorithm (we omit NAS since it is not guaranteed to pro-
duce the optimal solution). In the second experiment, we compare the solution
quality of our MILP and NAS algorithms with the EA baseline. For the first
experiment, we vary N from 4 to 80 in increments of 4. For the second experi-
ment, we vary N from 10 to 60 in increments of 10. We set the maximum running
time for the EA and NAS to 5 minutes, as the MILP algorithm terminates within
5 min for all instances. We set the population size to 60 for the EA and NAS’s
genetic algorithm part. We set the EA’s recombination and mutation parameters
to the scipy package’s default values. For NAS, we set λ = 5 and use the Adam
optimizer [36] with a learning rate of 0.2. We fix ρ = 0.5 for both experiments.

(a) Running time of MILP algorithm (b) Solution quality of all algorithms

Fig. 5. Scalability and performance on bipartite graphs

Figure 5a depicts the results of the first experiment: our MILP algorithm
scales well. The average running time for solving an instance with 80 nodes
is less than 4 min; the longest individual running time is about 13 min. The
standard multiple-MILP [17] algorithm would need to solve about (40 × 40 ×
0.5)× (40×40) = 1, 280, 000 MILPs. With our heuristic algorithm, we only need
to solve 4.6 MILPs on average.

Figure 5b shows the results of the second experiment. To examine the effect
of the various algorithms on the defender’s utility Ud, we conduct a one-way
repeated measures ANOVA on all graph sizes. The results show that the algo-
rithm used leads to a statistically significant difference in Ud (F (3, 177) =
189.18, p = 5.66 × 10−55, α = .05). We conduct pairwise paired t-tests with
the Bonferroni correction to determine which algorithms result in significant
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increases in Ud. We find that all algorithm pairs have a significant differ-
ence in Ud. In fact, NAS (M = −3.0151, SD = 7.1396), the MILP algorithm
with no deception (M = −6.8458, SD = 1.7518), and the MILP algorithm
with deception (M = −2.2892, SD = 2.8603) significantly outperform the EA
(M = −7.1396, SD = 3.3582), p = 7.8 × 10−20, .0012, 1.6 × 10−24, respectively.

Budget Expenditure of the MILP Algorithm. We show how the MILP
allocates Bd. In this experiment, each graph has N = 16 and ρ = 0.5. For
each instance, we increase Bd from 0 to 2 and track how each budget is spent.
Figure 6a shows the results. The defender never hides an edge in any of the
optimal solutions, suggesting that adding edges may be more useful than hiding
edges. This suggestion is further strengthened when Bd = 1: we see a sudden
increase in spending on adding edges. We also see that changing the node rewards
may not be as useful as other deceptive actions: the unused budget generally
occupies a large area. However, when Bd > 1, changing the node rewards is
more frequently used than when Bd ≤ 1. This result suggests that changing the
node rewards is more useful when combined with adding edges, as it makes the
fake path appear more valuable (and, thus, more attractive) to a weak attacker.

(a) Spending on bipartite DAGs (b) Spending on general DAGs

Fig. 6. Deceptive budget expenditure of the MILP (left), and EA and NAS (right)

6.2 General DAGs

Algorithm Performance
We compare the performance of NAS and three baselines on general DAGs.
We omit the MILP algorithm: it is not applicable. For the baselines, we use
a random strategy (RAND), and a no-action strategy (NA), and EA. We fix
ρ = 0.5 and vary N from 10 to 50 in increments of 10. We set Bd = 3 and sample
ca(e) and ch(e) from the interval [0.5, 1.5], such that ca(ei) = ca(ej),∀ei, ej and
ch(ei) = ch(ej),∀ei, ej . EA and NAS use the same parameters as before, but the
maximum running time is 1.5 × N minutes.

NAS leads to significantly higher defender utility Ud than all other algo-
rithms (Fig. 7a). We perform a one-way repeated measures ANOVA on all graph
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sizes to examine different algorithms’ effect on Ud. We find that the choice
of algorithm produces statistically significant differences in Ud (F (3, 357) =
1286.9, p = 1.7 × 10−106, α = .05). We conduct pairwise paired t-tests with
the Bonferroni correction to determine which algorithms result in these signifi-
cant increases. We find that all algorithm pairs have significant differences in Ud.
Importantly, NAS (M = −3.3453, SD = 6.3247) leads to a significant increase
in Ud compared to all algorithms: RAND (M = −10.067, SD = 12.369), NA
(M = −10.435, SD = 12.246), and the EA (M = −8.5974, SD = 15.220),
p = 6.77 × 10−47, 7.83 × 10−48, 6.56 × 10−38, respectively.

We are interested in how quickly NAS reaches solutions with high Ud.
Figure 7b shows how the NAS and EA solutions evolve. On average, NAS quickly
(< 20 min) finds high-quality solutions and successfully refines the solution qual-
ity; in contrast, the EA struggles to improve the utility from its initial solution.

(a) Average defender utility achieved
vs. the size of the graph

(b) Performance over time. The graph’s
number of nodes is parenthesized.

Fig. 7. Performance of different algorithms on general graphs

Budget Expenditure of Different Algorithms. We show how the EA and
NAS allocate Bd. This experiment uses the same graphs as in Sect. 6.2. Figure 6b
shows how the EA and NAS spend Bd. On average, NAS allocates more of Bd to
adding edges and changing the node rewards, indicating that the EA struggles
to find solutions that involve adding edges and to determine the appropriate
changes in the node rewards. We believe this is due to how the EA performs
recombination and mutation.

7 Related Work

In addition to the related literature mentioned throughout the paper, we intro-
duce and discuss some additional related works. Some SSG variants enable the
defender to manipulate the game’s payoff structure [13,52,57] or alter a sys-
tem’s observable features to influence the attacker’s attack choice [43,56]). How-
ever, these works do not capture the graphical structure of security problems.
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In contrast, in our work, the defender manipulates the attacker’s perceived payoff
structure, allocates defensive resources, and manipulates the attacker’s perceived
graphical structure of the game (including the actions that the attacker believes
that he can take). Previous work that combines defensive deception and attack
graph games typically only focuses on deploying honeypots or fake vulnerabil-
ities in a network [10,11,19,20,22,51]. Our model is more general in the sense
that it can model these deception techniques by allowing the defender to manip-
ulate the edges and perceived reward of targets. In addition, we consider the
protective actions the defender may take to interrupt an attack. Another related
work [29] uses a model of defensive deception to manipulate the attacker’s belief;
however, it abstracts away specific deceptive actions, and does not account for
non-deterministic transitions between states, which are considered in our model.

8 Discussion and Conclusion

Our techniques can be applied to more general settings. For example, when the
attacker’s reward depends on the edge, not the node, we can replace the term
r(send(e)) with r(e) in the MILP and NAS algorithms. We can also easily relax
the assumption that the probability of catching an attacker at edge e is qθ(e)x(e).
Our MILP algorithm works if all constraints are linear in the defender’s protec-
tion effort; the NAS algorithm works for any differentiable function.

We introduced a novel variant of Stackelberg attack graph games, in which
the defender can alter the perceived structure of the attack graph and the per-
ceived reward of the nodes in the graph, as well as allocate protective effort
along the graph’s edges. We proved the hardness of this problem and proposed
two algorithms to solve special but important subcases of this game: a MILP
algorithm with novel heuristics and a NAS algorithm in which the attack graph
structure is the neural network architecture. We performed extensive experi-
ments that show the effectiveness of deception and of our algorithms.
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Appendix

We modify the DE [61] variant DE/rand/1/bin [42]. To initialize the population,
we randomly choose the sequence of deceptive actions to consider. For each type,
we determine the maximum number of components that can be altered (e.g.,
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edges to add) for this individual. If allowed, we then modify the graph with
randomly-selected modifications of that type. We also add a new termination
condition based on the known optimal utility (0) for the defender if the defender
has infinite protective and deceptive budgets. If any solution yields this utility,
then we stop early and select it as the final solution. We also use a more compact
solution representation: the full solution takes space me(2|N | + 1) + |N | + 2|E|,
where me indicates the maximum number of edges that can be added to the
graph given Bd. Each edge to be added takes space 2|N |. To indicate that an
edge is to be added, we take the arg max over the effort allocated in the first N
and last N slots. The resulting indices i, j indicate the endpoints of the edge.
If the summed effort at i, j is greater than a threshold, the edge is added. We
further compact the representation when the defender cannot add or hide any
edges without violating constraints by removing these parts of the solution, so
each strategy uses space |E| + |N |.
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Abstract. We study a class of games, in which the adversary (attacker)
is to satisfy a complex mission specified in linear temporal logic, and the
defender is to prevent the adversary from achieving its goal. A deceptive
defender can allocate decoys, in addition to defense actions, to create
disinformation for the attacker. Thus, we focus on the problem of jointly
synthesizing a decoy placement strategy and a deceptive defense strategy
that maximally exploits the incomplete information the attacker about
the decoy locations. We introduce a model of hypergames on graphs with
temporal logic objectives to capture such adversarial interactions with
asymmetric information. Using the hypergame model, we analyze the
effectiveness of a given decoy placement, quantified by the set of deceptive
winning states where the defender can prevent the attacker from satis-
fying the attack objective given its incomplete information about decoy
locations. Then, we investigate how to place decoys to maximize the
defender’s deceptive winning region. Considering the large search space
for all possible decoy allocation strategies, we incorporate the idea of
compositional synthesis from formal methods and show that the objective
function in the class of decoy allocation problem is monotone and non-
decreasing. We derive the sufficient conditions under which the objective
function for the decoy allocation problem is submodular, or supermod-
ular, respectively. We show a sub-optimal allocation can be efficiently
computed by iteratively composing the solutions of hypergames with a
subset of decoys and the solution of a hypergame given a single decoy.
We use a running example to illustrate the proposed method.

Keywords: Games on graphs · Hypergames · Deception · Temporal
logic

1 Introduction

In security and defense applications, deception plays a key role to mitigate the
information and strategic disadvantages of the defender against adversaries. In
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of games on graphs, also known as ω-regular games [7,8,11]. A game in this
class captures the attack-defend sequential interaction in which the attacker is
to complete an attack mission specified in temporal logic [19] and the defender is
to mitigate attacks by selecting counter-actions and allocating decoys to create
a disinformation to the attacker. We are interested in the following question:
How to design the decoy allocation strategy so that the defender can influence
the attacker into taking (or not taking) certain actions that minimize the set
of attacker’s winning region? The winning region is defined as the set of game
states from which the attacker has a strategy to successfully complete its attack
mission irrespective of the defender’s counter-strategy.

Games on graphs with temporal logic objectives have been studied exten-
sively in the synthesis of reactive programs [7]. In a reactive program, the sys-
tem (player 1) is to synthesize a program (a finite-memory strategy) to provably
satisfy a desired behavior specification, no matter which actions are taken by the
uncontrollable environment (player 2). In these games, players’ payoffs are tem-
poral goals and constraints, described using linear temporal logic formulas and
a labeling function. A player receives a payoff equal to one if the labeling over
the outcome (state-sequence) of the game satisfies its temporal logic formula. In
our recent work [17], we have shown that a class of decoy-based deception can be
captured by assuming that the defender has the true labels of game states but
the attacker has incorrect labels. For example, a state labeled “unsafe” by the
defender may be mislabeled as “safe” for the attacker. By modeling the inter-
actions between the defender and the attacker as a hypergame, we developed
the solutions of subjective rationalizable strategies for both players in this class
of hypergames. The defender’s subjective rationalizable strategy is by nature
deceptive, as it ensures the security temporal logic specification to be satisfied
by exploiting the attacker’s misperception and mistakes in the attacker’s subjec-
tive rationalizable strategy. We introduced deceptive winning region as the set
of states (or finite game histories) from which the defender can ensure to satisfy
a security specification in this hypergame.

However, an important problem remains: How to control the attacker’s mis-
information in the labeling function so as to maximize the deceptive winning
region? To restrict the freedom in crafting the disinformation, we formulate a
class of decoy-based deception game: In this game, the defender can allocate a
subset of states as hidden decoys or “traps”, unknown to the attacker. Dur-
ing these interactions, the defender is to strategically select actions to lure the
attacker into the traps, whereas the attacker plays rationally to satisfy her tem-
poral logic objective given her subjective view of the interaction. In addition, the
defender strategy should be stealthy, in the sense that the attacker cannot realize
a misperception exists before getting caught by one of the traps. To determine
the decoy allocation, we employ the aforementioned solutions of hypergames
[17] to calculate the defender’s deceptive sure-winning region given each individ-
ual decoys. The selection of decoy locations is based on compositional synthesis
[10,18], which answers, given the two deceptive sure-winning regions for decoys
allocated at two different states s and s′, what is the deceptive sure-winning
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region when both states are allocated as decoys simultaneously? We derive the
sufficient conditions when the objective function for the decoy allocation problem
is submodular, or supermodular, respectively. Based on this, we can construct
an under-approximation of the deceptive sure-winning regions incrementally (in
polynomial time), instead of having to solve a combinatorially large number of
hypergames for all possible decoy configurations.

Related Work. Decoy allocation, also called honeypot allocation and camouflage,
has been studied in recent years with applications to cyber- and physical security
problems. In [16,22], the authors propose a game-theoretic method to place hon-
eypots in a network so as to maximize the probability that the attacker attacks a
honeypot and not a real system. In their game formulation, the defender decides
where to insert honeypots in a network, and the attacker chooses one server
to attack and receives different payoffs when attacking a real system (positive
reward) or a honeypot (zero reward). The game is imperfect information as the
real systems and honeypots are indistinguishable for the attacker. By the solu-
tion of imperfect information games, the defender’s honeypot placement strategy
is solved to minimize the attacker’s rewards.

Security games [15,24] are another class of important models for resource
allocation in adversarial environments. In [25], the authors formulate a security
game (Stackelberg game) to allocate limited decoy resources in a cybernetwork
to mask network configurations from the attacker. This class of deception manip-
ulates the adversary’s perception of the payoffs and thus causes the adversary to
take (or not to take) certain actions that aid the objective of the defender. In [9],
the authors formulate an Markov decision process to assess the effectiveness of a
fixed honeypot allocation in an attack graph, which captures multi-stage lateral
movement attacks in a cybernetwork and dependencies between vulnerabilities
[13,21]. In [2], the authors analyze the honeypot allocation problem for attack
graphs using normal-form games, where the defender allocates honeypots that
changes the payoffs matrix of players. The optimal allocation strategy is deter-
mined using the minimax theorem. The attack graph is closely related to our
game on graph model, which generalizes the attack graph to attack-defend game
graphs [3,14] by incorporating the defender counter-actions in active defense.

There are several key distinctions between our work and the prior work.
First, our work focuses on a qualitative approach to decoy allocation instead of
a quantitative one, which often requires solving an optimization problem over a
well-defined reward/cost function. In the qualitative approach, we represent the
attacker’s goal using a linear temporal logic formula, which captures rich, qual-
itative behavioral objectives such as reachability, safety, recurrence, persistence
or a combination of these. Second, we show how to incorporate the attacker’s
misinformation about decoy locations into a ω-regular hypergame model by rep-
resenting it as labeling misperception. Hypergames [6,23,27] are a class of games
with asymmetric (one-sided incomplete) information in which different players
might play according to different perceptual games that capture the informa-
tion and higher-order information known to that player. While the underly-
ing idea behind our game model is similar to “indistinguishable honeypots”
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discussed in [22], we are able to leverage the solution approaches for hypergames
to address decoy allocation problem. Third, we solve for a stealthy strategy for
the defender, which ensures that defender’s actions will not inform the attacker
that deceptive tactics are being used. Lastly, we borrow the idea of composi-
tional reasoning from formal methods to find approximately optimal solutions
for the decoy allocation problem for this class of hypergames.

The paper is structured as follows. In Sect. 2, we discuss the preliminaries
of attack-defend game on graph model and define the problem statement. In
Sect. 3, we present the main results of this paper including an algorithm for
the decoy allocation based on the ideas of deceptive synthesis and compositional
synthesis. We employ a running example to provide intuition and illustrate the
correctness as well as (near-)optimality of the proposed algorithm. Section 4
concludes the paper and discusses the future directions.

2 Problem Formulation

2.1 Attack-Defend Games on Graph

In a zero-sum two-player game on graph, player 1 (P1, pronoun ‘he’) plays against
player 2 (P2, pronoun ‘she’) to satisfy a given temporal logic formula. Formally, a
game on graph consists of a tuple G = 〈G,ϕ〉, where G is a game arena modeling
the dynamics of the interaction between P1 and P2, and ϕ is the temporal logic
specification of P1. As the game is zero-sum, the temporal logic specification of
P2 is ¬ϕ, that is, the negation of P1’s specification.

Definition 1 (Game Arena). A two-player turn-based, deterministic game
arena between P1 and P2 is a tuple

G = 〈S,Act, T,AP,L〉,

where

– S = S1 ∪ S2 is a finite set of states partitioned into two sets S1 and S2. At a
state in S1, P1 chooses an action. At a state in S2, P2 selects an action;

– Act = Act1∪Act2 is the set of actions. Act1 (resp., Act2) is the set of actions
for P1 (resp., P2);

– T : (S1 × Act1) ∪ (S2 × Act2) → S is a deterministic transition function that
maps a state-action pair to a next state;

– AP is a set of atomic propositions;
– L : S → 2AP is the labeling function that maps each state s ∈ S to a set

L(s) ⊆ AP of atomic propositions that evaluate to true at that state.

A run in G is a (finite/infinite) ordered sequence of states ρ = (s0, s1, . . .)
such that for any i > 0, si = T (si−1, a) for some a ∈ Act. Given the labeling
function L, every run ρ in G can be mapped to a word over an alphabet Σ = 2AP

as w = L(ρ) = L(s0)L(s1) . . ..
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In this paper, we use Linear Temporal Logic (LTL) [19] to define the objec-
tives of P1 and P2. Formally, an LTL formula is defined as

ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ©ϕ | ϕU ϕ | ϕWϕ

where p ∈ AP is an atomic proposition, ¬ (negation), ∧ (and), and ∨ (or)
are Boolean operators, and © (next), U (strong until) and W (weak until) are
temporal operators. Formula ©ϕ means that the formula ϕ will be true in the
next state. Formula ϕ1Uϕ2 means that ϕ2 will be true in some future time
step, and before that ϕ1 holds true for every time step. Formula ϕ1Wϕ2 means
that ϕ1 holds true until ϕ2 is true, but does not require that ϕ2 becomes true.
We define two additional temporal operators: ♦ (eventually) and � (always) as
follows: ♦ϕ = �Uϕ and �ϕ = ¬♦¬ϕ.

Given a word w ∈ Σω, let w[i] be the i-th element in the word and w[i . . .]
be the subsequence of w starting from the i-th element. For example, for a word
w = abc, w[0] = a and w[1 . . .] = bc. We write w |= ϕ if the word w satisfies the
temporal logic formula ϕ. The semantics of LTL are defined as follows.

– w |= p if p ∈ w[0];
– w |= ¬ϕ if w �|= ϕ;
– w |= ϕ1 ∧ ϕ2 if w |= ϕ1 and w |= ϕ2;
– w |= ©ϕ if w[1 . . .] |= ϕ;
– w |= ϕUψ if ∃i ≥ 0, w[i . . .] |= ψ and ∀0 ≤ j < i, w[j . . .] |= ϕ.
– w |= ϕWψ if either w |= ϕUψ or ∀0 ≤ j, w[j . . .] |= ϕ.

A subclass of LTL formula, called syntactically cosafe LTL (scLTL), does
not include the weak until operator W and allows the negation operator ¬ to
only occur before an atomic proposition. An scLTL formula can be equivalently
represented by a finite-state deterministic automaton with regular acceptance
conditions, defined as follows.

Definition 2 (Specification DFA). Given an scLTL formula ϕ, its corre-
sponding specification Deterministic Finite Automaton (DFA) is a tuple

A = 〈Q,Σ, δ, ι, QF 〉,
which includes a finite set Q of states, a finite set Σ = 2AP of symbols, a deter-
ministic transition function δ : Q × Σ → Q, a unique initial state ι ∈ Q, and a
set QF ⊆ Q of final states.

The transition function is recursively extended as δ(q, aw) = δ(δ(q, a), w) for
given a ∈ Σ and w ∈ Σ∗, where Σ∗ is the set of all finite words (also known
as the Kleene closure of Σ). A word w is accepted by the DFA if and only if
δ(q, u) ∈ QF and u is a prefix of w, i.e., w = uv for u ∈ Σ∗ and v ∈ Σω, where
Σω is the set of all infinite words defined over Σ. A word is accepted by the
specification DFA A if and only if it satisfies the LTL formula ϕ.

Putting together the game arena G and the scLTL objective ϕ of P1, we can
formally define a graphical model for the zero-sum game G.
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Definition 3 (Product game). Let G = 〈S,Act, T,AP,L〉 be a game arena
and let A = 〈Q,Σ, δ, ι, QF 〉 be the specification DFA given the LTL formula ϕ.
Then, the product game G = G ⊗ A is the tuple,

G = 〈S × Q,Act,Δ, F 〉,

where

– S × Q is a set of states partitioned into P1’s states S1 × Q and P2’s states
S2 × Q.

– Δ : (S1 × Q × Act1) ∪ (S2 × Q × Act2) → S × Q is a deterministic transition
function that maps a game state (s, q) ∈ S × Q and an action a ∈ Act to a
next state (s′, q′) ∈ S × Q such that s′ = T (s, a) and q′ = δ(q, L(s′));

– F = S × QF is the set of final states in G.
It is noted that we did not include an initial state in the definition of the game
arena. This is because any state in S can be selected to be the initial state. Let
s0 ∈ S be the initial state of the game arena, the corresponding initial state in the
product game is q0 = δ(ι, L(s0)). By construction, for each run ρ = (s0, s1, . . .)
in G, there is a unique run ρ̂ = (s0, q0), (s1, q1), . . . in the product game, where
q0 = δ(ι, L(s0)) for i = 0 and qi = δ(qi−1, L(si)) for i ≥ 1. The run ρ satisfies the
scLTL formula ϕ if and only if L(ρ) |= ϕ and as a result of construction, there
exists (si, qi) ∈ ρ̂ for some i ≥ 0 such that (si, qi) ∈ F . Thus, P1’s objective of
satisfying an scLTL specification over the game arena G is reduced to that of
reaching one of the final states F in product game G. In the zero-sum game, P2’s
objective of satisfying ¬ϕ is reduced to preventing P1 from reaching any final
states in F .

A memoryless, randomized strategy for i-th player, for i ∈ {1, 2}, is a function
πi : Si × Q → D(Acti), where D(Acti) is the set of discrete probability distri-
butions over Acti. It is noted that a memoryless strategy in a product game is
a finite-memory strategy in game arena. A strategy is deterministic if πi(ρ) is
a Dirac delta function. We say that player i commits to (or follows) a strategy
πi if and only if for a given state (s, q), if πi(s, q) is defined, then an action is
sampled from the distribution πi(s, q), otherwise, player i selects an action at
random. Let Πi be the set of memoryless strategies of player i in the product
game.

A strategy π1 ∈ Π1 is said to be sure-winning for P1 if, for every P2’s strategy
π2 ∈ Π2, P1 can ensure to reach F in finitely many steps. A strategy π2 ∈ Π2 is
sure-winning for P2 if for every P1’s strategy π1 ∈ Π1, P2 can ensure the game
to stay in (S × Q) \ F for infinitely many steps. The product game is known to
be determined [11,20]. That is, at any state (s, q), only one of the players has a
winning strategy and the winning strategy is memoryless.

The set of states in the product game G from which P1 (resp. P2) has a sure-
winning strategy are called the sure-winning region for P1 (resp. P2), denoted
as Win1 (resp. Win2). Players’ sure-winning regions can be computed by using
the Algorithm 1 by letting Si ×Q to be Vi, Acti to be Ai, the transition function



174 A. N. Kulkarni et al.

Algorithm 1: Sure-Win: Compute Player’s Sure-Winning Regions of
Zero-Sum Product Games with Reachability Objective [11,20].
Input: A reachability game 〈V = V1 ∪ V2, A1 ∪ A2,Δ, F 〉 where Vi are states

where player i takes an action, Ai are player i’s actions,
Δ : V × A → V and P1’s goal is to reach the set F and P2’s goal is to
stay within V \ F .

Output: The winning regions Win1 and Win2 for P1 and P2.
Z0 ← F , Z1 ← ∅, k ← 0;
while Zk+1 �= Zk do

Pre1(Zk) ← {v ∈ V1 | ∃a ∈ A1 s.t. Δ(v, a) ∈ Zk};
Pre2(Zk) ← {v ∈ V2 | ∀b ∈ A2 s.t. Δ(v, b) ∈ Zk};
Zk+1 ← Zk ∪ Pre1(Zk) ∪ Pre2(Zk);
k ← k + 1;

end
Win1 ← Zk, Win2 ← (V1 ∪ V2) \ Win1;
return Win1,Win2.

Δ and F are the same components in G. The interested readers are referred to
Chap 2 of [11] for more details.

The sure-winning strategy is defined for P1 as follows: Let Z1, Z2, . . . Zk be
the sequence of sets generated by Algorithm 1, for a state v ∈ (Zi \ Zi−1) ∩ V1,
let a be the action that Δ(v, a) ∈ Zi−1, then π1(v) = a (by construction, such an
action a exists). P2’s sure-winning strategy is constructed as: For each v ∈ Win2,
π2(v) = a such that Δ(v, a) ∈ Win2. Clearly, there may exist more than one sure-
winning strategies for each player.

2.2 Formulating the Decoy Allocation Problem

We consider an interaction between the defender (P1, pronoun ‘he’) and the
attacker (P2, pronoun ‘she’) in which the defender can use decoys to introduce
incorrect information to the attacker about the game. Our goal is to investigate
how to create the attacker’s misinformation by allocating the decoys so as to
minimize the size of the sure-winning region of the attacker.

We now formalize the problem of decoy allocation using the game arena
(Definition 1). Let decoy be an atomic proposition that evaluates to true at a
state if the state is equipped with a decoy.

Assumption 1. In P2’s knowledge of the game arena, no state is labeled as
decoy, i.e., decoy /∈ L(s) for all s ∈ S.

Assumption 1 captures one important function of decoys—concealing fictions
[12]. The idea behind concealing fictions is that P1 simulates the decoy states to
function like a real system. As a result, P1 and P2 play with different subjective
views of their interaction. With this in mind, we formalize the notion of perceptual
game arena of the players to characterize these subjective views.
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Perceptual Game Arena. Given that P2 does not know about the decoys, we
distinguish between her view of the game arena from P1’s view by introducing a
different labeling function for P2. Let P1’s perceptual game arena be G1 = G =
〈S,Act, T,AP,L〉. That is, P1 knows the ground truth. And, let P2’s perceptual
game arena be G2 = 〈S,Act, T,AP,L2〉 such that for any s ∈ S, we have L2(s) =
L(s) \ {decoy}. In other words, if a state is not a decoy, then P1 and P2 share
the same label for that state. If it is a decoy, then P1 knows that the proposition
decoy evaluates to true at that state, but P2 does not.

The Attacker and Defender Temporal Logic Objectives. Over the perceptual
game arenas G and G2, P1 and P2 aim to satisfy their LTL objectives. We con-
sider that P2’s objective is specified by an scLTL formula ϕ2, whose specification
DFA is A2 = 〈Q,Σ, δ2, ι, QF 〉.

Given P2’s perceptual game arena G2 and the specification DFA A2, we can
construct a perceptual product game of P2 as G2 = G2⊗A2. P1’s objective is an
LTL formula ¬ϕ2W decoy. That is, P1 satisfies the goal by preventing P2 from
satisfying ϕ2 before reaching a decoy. However, reaching a decoy is not necessary
due to the semantics of the “weak until” operator.

Example 2 (Part 1). Consider a game arena as shown in Fig. 1a consisting of
15 states. At a circle state, P1 takes an action, and at a square state, P2 takes
an action. As the actions are deterministic, we use edges to indicate players’
actions. For example, (c, f), (c, g), (c, h) are possible actions for P2 at the state
c. Over this game arena, P2 wants to satisfy an scLTL specification ϕ2 = ♦ (n ∨
o) ∧ (f =⇒ ♦n) ∧ (g =⇒ ♦ o), which, in words, means that P2 must reach
either the state n or o with the condition that whenever she visits the state f ,
she must visit n and whenever she visits g, she must visit o. If she does not
visit either f or g, then she can visit either n or o to successfully complete her
objective. The DFA equivalent to ϕ2 is shown in Fig. 2a.

Suppose that P1 allocates the states D = {h, k} as decoys. The perceptual
game arenas of P1 and P2 under decoy allocation D are now different. P1’s per-
ceptual game arena in Fig. 1b has the same underlying graph as the perceptual
game arena of P2 shown in Fig. 1a but P1 has the knowledge of where the decoys
are placed. We have decoy ∈ L(h) and decoy ∈ L(k) but decoy /∈ L(s) for any
state s except s = h, k. Figure 2b shows the perceptual product games of P2. A
transition (c, 0) → (f, 1) is based on the transition c → f and δ2(0, L(f)) = 1
in the DFA A2 (shown in Fig. 2a). We omit all nodes that do not have a path
leading to (n, 3) or (o, 3).

We now formalize our problem statement.

Problem 1. Given a set of k decoys and a set D ⊆ S of states at which decoys can
be placed, identify the decoy locations D ⊆ D with |D| ≤ k such that by letting
decoy ∈ L(s) for each s ∈ D, the number of states in the product game G1 from
which P1 has a strategy to satisfy the security specification ϕ1 is maximized,
given that P2 may choose any counter-strategy that she considers rational in
her perceptual game, G2.
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Fig. 1. Perceptual Game Arenas of P1 and P2 in Example 2.

The objective of P1 is intuitively understood as to maximize the set of system
states protected by the defense strategy.

3 Main Result

Our proposed solution to Problem 1 is based upon two key ideas from formal
methods and hypergame theory, namely (a) deceptive synthesis, and (b) com-
positional synthesis. In Sect. 3.1, we introduce deceptive synthesis to construct
a strategy for P1 to deceive P2 into reaching a pre-defined decoy set in finitely
many steps by exploiting the incomplete information of P2. The strategy is
called deceptive sure-winning strategy and depends on the chosen set of decoys.
Then, in Sect. 3.2, we introduce a compositional synthesis approach to identify
an approximately optimal allocation of decoys.

3.1 Deceptive Synthesis: Hypergames on Graphs

Consider a set D ⊆ S of states are allocated with decoys, unknown to P2. In such
an interaction, as seen in Sect. 2.2, the players have different perceptual game
arenas that share the same set of states, actions, and transitions but different
labeling functions. We introduce a model of hypergame on graph to integrate
the games G1 of P1 and G2 of P2 into a single graphical model.

Definition 4 (Hypergame on Graph (modified from [17]1). Given the
perceptual game arenas G = 〈S,Act, T,AP,L〉 and G2 = 〈S,Act, T,AP,L2〉,
and P2’s specification DFA A2 = 〈Q, 2AP , δ2, ι, QF 〉, let D � S be a set of states

1 Definition 4 is a simplified version of [17, Def. 6], which considers the general case
when P1 and P2’s objectives are both general scLTL formulas, not necessarily in the
current form.
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(b) Perceptual Product Game of P2

Fig. 2. P2’s specification DFA and the perceptual product game in Example 2.

such that decoy ∈ L(s). The hypergame on graph given the players’ objectives
¬ϕ2W decoy for P1 and ϕ2 for P2 is a transition system

HD = 〈S × Q,Act,Δ, FD, F2〉,
where

– S × Q is the set of states;
– Δ : (S1 × Q × Act1) ∪ (S2 × Q × Act2) → S × Q is a deterministic transition

function such that Δ((s, q), a) = (s′, q′) if and only if s′ = T (s, a) and q′ =
δ2(q, L2(s′));

– FD = {(s, q) | decoy ∈ L(s)} is the set of states which P1 must reach in order
to satisfy ¬ϕ2W decoy;

– F2 = {(s, q) | q ∈ QF } is the set of final states which P2 must reach in order
to satisfy ϕ2.

It is noted that the sets of states, actions, transitions, and P2’s final states
F2 in HD are defined exactly as these components in P2’s perceptual product
game G2 (see Definition 3). The additional set FD is introduced to represent P1’s
objective.

Let us denote the sure-winning region of player i in player j’s perceptual game
Gj by Winj

i . The attacker’s perceptual winning regions can be solved with the
attacker’s reachability game using Algorithm 1 by letting V1 := S2×Q,V2 :=S1×
Q,A1 :=Act2, A2 := Act1,Δ is the same as in HD, and F := F2. The following
observations are noted:

– For every state (s, q) ∈ Win21 (P1’s sure-winning region perceived by P2), P1
can ensure to satisfy ¬ϕ2 no matter which strategy P2 uses. Decoys are not
needed for states within Win21.

– For every state (s, q) ∈ Win22 (P2’s sure-winning region perceived by P2), P2
can ensure satisfying ϕ2 when no decoy is used. However, when decoys are
introduced, P1 can exploit P2’s lack of knowledge about the decoys and lure
P2 into reaching decoys before P2 is able to satisfy ϕ2.
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It is known [5] that we can rewrite ¬ϕ2W decoy using the temporal operators:
U (until) and � (always), as (¬ϕ2U decoy)∨�¬ϕ2, where �ϕ = ¬♦¬ϕ. When
the game state is within P2’s perceptual winning region Win22, then P1 does
not have a strategy to ensure �¬ϕ2 (reads “always ϕ2 is false”) and can only
satisfy his specification by enforcing P2 to visit a decoy. The following Lemma
formalizes this statement.

Lemma 1. For any state (s, q) ∈ Win22, any strategy π1 of P1 that satisfies
¬ϕ2W decoy also satisfies ¬ϕ2U decoy.

We omit the proof noting that it follows from the definition of weak until and
the property of winning region.

Thus, when we focus our attention on the region Win22, P1’s objective is
equivalently ¬ϕ2U decoy. Before addressing the decoy allocation problem, we
must answer: From which states in Win22, P1 can ensure to satisfy ¬ϕ2U decoy
by exploiting P2’s lack of knowledge about the decoy states, i.e., FD?

To answer this question, we formulate a deceptive game for P1. We first
restrict P1’s actions to those considered rational for P2 in her perceptual game.
At the same time, P2’s irrational actions are removed as P1 knows a rational P2
will not use these actions. As the rational actions are based on P2’s subjective
view of the game, we formalize this notion of rationality using the concept of
subjective rationalizability from game theory (we refer the interested readers to
[17] for rigorous treatment).

Definition 5. (Subjectively Rationalizable Actions in G2). Given P2’s
perceptual product game G2 = 〈S × Q,Act,Δ, F2〉, a player i’s action a ∈ Acti
is said to be subjectively rationalizable at his/her winning state (s, q) ∈ Win2i in
G2 if and only if Δ((s, q), a) ∈ Win2i . At player i’s losing state (s, q) /∈ Win2i , any
action of player i is assumed to be subjectively rationalizable for player i.

Based on Definition 5, we define the set of subjectively rationalizable actions
of player i at a state (s, q) ∈ S × Q as follows:

SRActs2i (s, q) ={a ∈ Acti | (s, q) ∈ Win2i and Δ((s, q), a) ∈ Win2i } ∪
{a ∈ Acti | (s, q) /∈ Win2i and Δ((s, q), a) is defined} (1)

Assumption 2. Subjective rationalizability is a common knowledge between P1
and P2.

Assumption 2 means that both players know that their opponent is sub-
jectively rational and that the opponent is aware of this fact. Thus, P2 would
become aware of her misperception in the game arena, when P1 uses an action
which is not subjectively rationalizable in P2’s perceptual game, G2. We can
refine the hypergame on graph HD to eliminate: 1) states that do not require
decoys: This is the set Win21 from which P1 has a sure-winning strategy for ¬ϕ2;
2) actions that contradict P2’s perception. After this elimination, we obtain a
deceptive reachability game for P1, for synthesizing P1’s deceptive strategy.
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Definition 6 (P1’s deceptive reachability game). Given the hypergame
on graph HD = 〈S × Q,Act,Δ, FD, F2〉, P1’s deceptive reachability game is

̂HD = 〈Win22, Act, ̂Δ, FD〉,

where

– Win22 is a set of P2’s perceptual winning states, and game state space for P1’s
deceptive reachability game.

– ̂Δ : S × Q × Act → S × Q is a deterministic transition function such that
• if (s, q) /∈ F2 then ̂Δ((s, q), a) = Δ((s, q), a) whenever s ∈ Si and a ∈

SRActs2i (s, q) for i = 1, 2. Otherwise, ̂Δ((s, q), a) is undefined.
• if (s, q) ∈ F2, then for any action a ∈ Act, ̂Δ((s, q), a) = (s, q). That is,
the set F2 are modified into sink states.

– FD is the set of states that P1 aims to reach.

Lemma 2. For a given state (s, q), if P1 has a sure-winning strategy in ̂HD

starting from (s, q), then P1 can ensure to satisfy ¬ϕ2U decoy by following this
sure-winning strategy in ̂HD.

Proof. A path satisfies ¬ϕ2U decoy if it reaches FD and before reaching FD, it
does not visit any state in F2. By construction of ̂HD, if any path reaches FD,
it must not have visited F2 because if F2 is reached prior to FD, then the game
stays in the sink state and will never reach FD. Thus, P1’s sure-winning strategy
that ensures a path to reach FD alone satisfies ¬ϕ2U decoy. ��

Formally, P1’s sure-winning strategy π1 in the deceptive reachability game
is said to be deceptively sure winning. A state from which P1 has a deceptive
sure-winning strategy is called a deceptively sure-winning state. The set of all
deceptively sure-winning states of P1 in ̂HD is called P1’s deceptive sure-winning
region. The deceptive sure-winning region for P1 can be computed by using
Algorithm 1 with ̂HD by letting V1 := (S1 × Q) ∩ Win22, V2 := (S2 × Q) ∩ Win22,
Δ := ̂Δ, and F :=FD (see the description of terms in Algorithm 1). We denote
the deceptive sure-winning region for P1 as DSWinD.

It is noted that the deception is induced by the set FD which is hidden from
P2, and the fact that during the interaction, P1 does not choose any action
that contradicts P2’s misperception. Additionally, we note that deceptive sure-
winning region is not defined for P2, as she is unaware of her lack of information
until a decoy is reached.

We now continue with the running example to illustrate the hypergame and
P1’s deceptive reachability game.

Example 2 (Part 3). From Definition 4, we note that the hypergame on graph
HD shares the same underlying graph as P2’s perceptual game, G2. That is,
in our example, HD would have the same graph as Fig. 2b but has the states
(h, 0), (k, 1) and (k, 2) labeled as the sink states (shown in red). Now, let us
understand the construction of ̂HD from HD. We start by computing Win22 using
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Algorithm 1 over the model G2 by letting V1 :=S2 ×Q,V2 := S1 ×Q,Δ := Δ and
F :=F2. This results in Win22 to include all states except (a, 0), (b, 0). Intuitively,
at the state (b, 0), P1 can always choose the transition b → a to reach (a, 0) and
keep the game state within {(a, 0), (b, 0)}. Consequently, any action that leads
to (a, 0), (b, 0) is not subjectively rationalizable for P2 and thereby removed.
Additionally, the states (a, 0) and (b, 0) are also removed from HD to get ̂HD,
which is shown in Fig. 3.

(c, 0) (d, 0) (e, 0)

(f, 1) (g, 2) (h, 0) (i, 0)

(j, 1)

(k, 1) (k, 2) (l, 0) (m, 0)

(n, 3) (o, 3)

Fig. 3. P1’s deceptive reachability game.

3.2 Compositional Synthesis for Decoy Allocation

Given a subset D ⊆ S of states that can be allocated as decoys, for every different
choice of decoy allocation D ⊆ D we have a different hypergame, ̂HD. In this
context, solving Problem 1 is equivalent to identifying one hypergame that has
the largest deceptive sure-winning region |DSWinD| for P1. A näıve approach
to solve this problem would be to compute DSWinD for each D ⊆ D and then
select a set D for which |DSWinD| is the largest. However, this approach is
not scalable because the number of subsets increases combinatorially with the
size of game. To address this issue, we introduce a compositional approach to
decoy allocation in which we show that when certain conditions hold, the decoy
allocation problem can be formulated as a sub or supermodular optimization
problem. We propose an algorithm to approximate the optimal decoy allocation.

Proposition 1. Let DSWin{s1} and DSWin{s2} be P1’s deceptive sure-winning
regions in the hypergames ̂H{s1} and ̂H{s2} respectively. Then, P1’s deceptive
sure-winning region DSWin{s1,s2} in the reachability game ̂H{s1,s2} is equal to
the sure-winning region for P1 in the following zero-sum, reachability game:

̂H{s1,s2} = 〈Win22, Act, ̂Δ,DSWin{s1} ∪ DSWin{s2}〉,
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where P1’s goal is to reach the target set DSWin{s1} ∪ DSWin{s2} and P2’s goal
is to prevent P1 from reaching the target set.

Proof. First, it is noted that all the three deceptive reachability games: ̂H{s1},
̂H{s2} and ̂H{s1,s2}, share the same underlying graphs but different reachability
objectives for P1: F{s1}, F{s2}, and F{s1,s2}. In addition, F{s1} ∪F{s2} = F{s1,s2}.
By definition of sure-winning regions, from every state (s, q) ∈ DSWin{si} for i =
1, 2, there exists a deceptive sure-winning strategy π∗

{si} for P1 to ensure F{si}
is reached in finitely many steps, for any subjectively rationalizable counter-
strategy of P2.

In ̂H{s1,s2}, let W ∗ ⊆ Win22 be the sure-winning region for P1 and π∗ be the
sure-winning strategy of P1. From a state (s, q) in W ∗, P1 can ensure to reach
a state, say (s′, q′) ∈ DSWin{s1} ∪ DSWin{s2} by following π∗. Upon reaching a
state (s′, q′), P1 can ensure to reach a state in either F{s1} or F{s2}—that is,
P1 can ensure to reach a state in F{s1,s2}. Hence, a sure-winning state (s, q)
in the above reachability game is deceptive sure-winning in ̂H{s1,s2} in which
F{s1,s2} is P1’s reachability objective. The deceptive sure-winning strategy is
sequentially composed of strategies π∗, π∗

{s1}, and π∗
{s1} as follows: From a state

(s, q) ∈ W ∗, P1 uses π∗ until a state in DSWin{s1} ∪ DSWin{s2} is reached. If
DSWin{s1} \ DSWin{s2} is reached, P1 uses the sure-winning strategy π∗

{s1}; If
DSWin{s2} \ DSWin{s1} is reached, P1 uses the sure-winning strategy π∗

{s2}; if
DSWin{s1} ∩ DSWin{s2}, P1 selects one of π∗

{s1} and π∗
{s2} arbitrarily. ��

Proposition 1 provides us a way for composing the deceptive sure-winning
regions of two deceptive reachability games ̂Hs1 and ̂Hs2 to compute the decep-
tive sure-winning region in the deceptive reachability game ̂H{s1,s2} where both
s1 and s2 are allocated as decoys. A more general result can be obtained by
applying Proposition 1 repeatedly.

Corollary 1. Given DSWinD and DSWin{s} as P1’s deceptive sure-winning
regions in hypergames ̂HD and ̂H{s} respectively, P1’s deceptive sure-winning
region DSWinD∪{s} in the deceptive reachability game ̂HD∪{s} equals the sure-
winning region for P1 in the following zero-sum, reachability game:

〈Win22, Act, ̂Δ,DSWinD ∪ DSWin{s}〉
where P1’s goal is to reach the target set DSWinD ∪ DSWin{s} and P2’s goal is
to prevent P1 from reaching the target set.

Corollary 2. Given a set D ⊆ D and a state s ∈ D, we have

DSWinD ∪ DSWin{s} ⊆ DSWinD∪{s}

Corollary 2 follows immediately from Proposition 1 and Algorithm 1. To see
this, consider a P1 state s ∈ D which is neither in DSWinD nor in DSWin{s}
but has exactly two transitions: one leading to s and another leading to a state
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in DSWinD. Clearly, the new state will be added to DSWinD∪{s}. Thus, if we
consider the size of DSWinD to be a measure of effectiveness of allocating the
states in D ⊆ D as decoys, then Corollary 2 states that the effectiveness of
adding a new state to a set of decoys is greater than or equal to the sum of their
individual effectiveness.

Example 2 (Part 4). Given the underlying graph of P1’s reachability game ̂HD

from Fig. 3, let us observe the effect of choosing different D on P1’s deceptive
sure-winning region, DSWinD. Letting k = 2, Fig. 4 shows the DSWinD for
D = {h, k} (Fig. 4a) and D = {l,m} (Fig. 4b). In the figure, the colored states
represent P1’s deceptive sure-winning region, DSWinD. The states in FD are
colored red and the states from which P1 has deceptive sure-winning strategy to
reach a state in FD are colored blue. For instance, for D = {h, k}, a P1 state (f, 1)
is included in F{h,k} because there exists an action for P1 that leads to (k, 1),
which is in F{h,k}. Similarly, a P2 state (d, 0) is included in DSWin{h,k} because
both the outgoing transitions from (d, 0) lead to a deceptively sure-winning state.
We also notice that the states (c, 0) and (d, 0) from DSWin{h,k} are not included
in either DSWin{h} = {(h, 0)} or DSWin{k} = {(k, 1), (k, 2), (f, 1), (g, 2)} because
both the states have at least one transition that does not lead to deceptive sure-
winning state. For instance, the transition (d, 0) → (g, 2) prevents the state (d, 0)
to be added to DSWinh.

(c, 0) (d, 0) (e, 0)

(f, 1) (g, 2) (h, 0) (i, 0)

(j, 1)

(k, 1) (k, 2) (l, 0) (m, 0)

(n, 3) (o, 3)

(a) Deceptive sure-winning region of P1
when D = {h, k}

(c, 0) (d, 0) (e, 0)

(f, 1) (g, 2) (h, 0) (i, 0)

(j, 1)

(k, 1) (k, 2) (l, 0) (m, 0)

(n, 3) (o, 3)

(b) Deceptive sure-winning region of P1
when D = {l, m}

Fig. 4. Deceptive sure-winning region of P1 under different choice of D.

We now define a composition operator
⊎

over deceptive sure-winning regions
which represent the true effect of adding a new state to a given set of decoys.
That is, given D ⊆ D and s ∈ D, let

⊎

be an operator such that

DSWinD

⊎

DSWin{s} = DSWinD∪{s}.
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That is, the composition operator returns the deceptive sure-winning region in
the reachability game 〈Win22, Act, ̂Δ,DSWinD ∪ DSWin{s}〉, which equals P1’s
deceptive sure-winning region when the set D ∪ {s} are selected to be decoys.

With this notation, Problem 1 becomes equivalent to identifying a set D∗ ⊆ D
such that

D∗ = arg max
D⊆D

∣

∣

∣

∣

∣

⊎

s∈D

DSWin{s}

∣

∣

∣

∣

∣

subject to: |D| ≤ k. (2)

It is noted that if we replace the composition operator
⊎

with the union
operator ∪ in (2), then the problem becomes

max
D⊆D

∣

∣

∣

∣

∣

⋃

s∈D

DSWin{s}

∣

∣

∣

∣

∣

subject to: |D| ≤ k. (3)

which is a maximum set-cover problem. The maximum set-cover problem is well-
known submodular optimization problem and can be solved using a greedy algo-
rithm: Given the current choice Di of decoys at iteration i, the greedy algorithm
selects a new decoy s ∈ D \ Di that covers the greatest number of uncovered
states in Win22. This selection iterates until k decoys are selected. It is also known
that the greedy algorithm is (1−1/e)-approximate. The reader is referred to [26]
for more details.

Let f∪(D) =
∣

∣

∣

∣

⋃

s∈D

DSWin{s}

∣

∣

∣

∣

and f�(D) =
∣

∣

∣

∣

⊎

s∈D

DSWin{s}

∣

∣

∣

∣

. It follows from

Corollary 2 that f∪(D) ≤ f�(D) for all D ⊆ D. In other words, f∪(D) under-
approximates the effectiveness of allocating the states in D as decoys, which is
captured by f�(D).

While the function f∪ is submodular, a similar sub/supermodularity con-
dition does not necessarily hold for the function f�. In the sequel, we provide
sufficient conditions on when f� is submodular and when it is supermodular.

Theorem 1. The following statements about f�(D) =
∣

∣

∣

∣

⊎

s∈D

DSWin{s}

∣

∣

∣

∣

are true.

(a) f� is monotone and non-decreasing.
(b) f� is submodular if DSWinD∪{s} = DSWinD ∪ DSWin{s} for all D ⊆ D and

s ∈ D.
(c) f� is supermodular if DSWinD = DSWinD∪{s1}∩DSWinD∪{s2} for all D ⊆ D

and all s1, s2,∈ D.

Proof. (a). Based on Corollary 2, for any set D ⊆ D and a state s ∈ D \ D,
f�(D) = |DSWinD| and f�(D ∪ {s}) = |DSWinD∪{s}|, because DSWinD ⊆
DSWinD∪{s}, f�(D) ≤ f�(D ∪ {s}).
(b). When DSWinD∪{s} = DSWinD ∪ DSWin{s}, we can write f�(D) =
∣

∣

∣

∣

⊎

s∈D

DSWin{s}

∣

∣

∣

∣

=
∣

∣

∣

∣

⋃

s∈D

DSWin{s}

∣

∣

∣

∣

= f∪(D), which is submodular.
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(c). We will show that

LHS := f�(D ∪ {s1}) + f�(D ∪ {s2}) − f�(D) ≤ f�(D ∪ {s1, s2}) :=RHS

for all D ⊆ D and all s1, s2 ∈ D. Given that DSWinD = DSWinD∪{s1} ∩
DSWinD∪{s2} holds for any D ⊆ D and any s1, s2 ∈ D, we have that
f�(D ∪ {s1}) + f�(D ∪ {s2}) − f�(D) counts every state in DSWinD∪{s1} ∪
DSWinD∪{s2} exactly once. On the other hand, we have f�(D ∪ {s1, s2}) =
|DSWinD∪{s1,s2}| and DSWinD∪{s1,s2} ⊇ DSWinD∪{s1} ∪ DSWinD∪{s2}, by
Corollary 2. Thus, there may exist a state in DSWinD∪{s1,s2} which is not
included in either DSWinD∪{s1} or DSWinD∪{s2}. In other words, RHS may
be greater than or equal to LHS and the statement follows. ��

Based on Theorem 1, we now propose a greedy algorithm described in Algo-
rithm 2. This greedy algorithm is an extension of the GreedyMax algorithm for
maximizing monotone submodular-supermodular functions in [4]. It starts with
an empty set of states labeled with decoy and incrementally adds new decoys
in the game arena. At each step, given the deceptive winning region of the cho-
sen decoys, a new decoy is selected such that by adding the new decoy into the
chosen decoys, P1’s deceptive sure-winning region covers the largest number of
states in Win22. The algorithm iterates until k decoys are added, where k is the
upper bound on the number of decoys.

Algorithm 2: GreedyMax Algorithm for Decoy Allocation

Input: P1’s deceptive reachability game 〈Win22, Act, ̂Δ, FD = ∅〉, the set D ⊆ S,
the bound k on the number of decoys.

Output: An approximate solution D for the optimization problem in Eq. 2.
D ← ∅;
DSWinD ← ∅;

while
∣

∣D
∣

∣ < k do

for s ∈ D \ D do

Gs ← 〈Win22, Act, ̂Δ,DSWin{s} ∪ DSWinD〉;
DSWin{s}∪D ← Sure-Win(Gs); ... by Alg. 1;

end

s∗ ← arg maxs∈D\D
∣

∣

∣DSWin{s}∪D

∣

∣

∣;

D ← s∗ ∪ D;

end

return D

Complexity Analysis. The complexity of Algorithm 2 is O(k|D|N) where N is
the number of state-action pairs in P1’s deceptive reachability game. This is
because to add (i + 1)-th state to D, we update deceptive sure-winning regions
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of |D| − i states. The complexity of solving a reachability game is linear in the
size N of the game, measured by the number of state-action pairs.

Example 2 (Part 5). We maximize |DSWinD|, under the constraint that a
maximal two decoys to be placed within the set D = {j, k, l,m}. Following
the compositional approach, we compute the following deceptive sure-winning
regions: DSWin{j} = {(j, 1), (f, 1)}, DSWin{k} = {(k, 1), (k, 2), (f, 1), (g, 2)},
DSWin{l} = {(l, 0), (h, 0)} and DSWin{m} = {(m, 0), (i, 0), (e, 0)}.

First, we use the greedy algorithm for maximum set-cover to solve for D ⊆ D
that maximizes f∪(D) under the constraint |D| ≤ 2. In the first iteration, the
greedy algorithm selects the largest the state corresponding to |DSWin{s}|, which
is s = k. In the second iteration, it selects the set that has the largest number of
states not already included in DSWin{k}. Thus, it selects m as the second state
to place the decoy. In conclusion, it selects D = {k,m} as solution to decoy
allocation problem, for which |DSWin{k,m}| = 7.

Second, we use Algorithm 2 to solve for D ⊆ D that maximizes f�(D)
under the constraint |D| ≤ 2. In the first iteration, s∗ is selected to be k
because |DSWin{k}| is the largest. In the second iteration, s∗ is selected to be
l because DSWin{l}∪D = {(l, 0), (h, 0), (k, 1), (k, 2), (f, 1), (g, 2), (c, 0), (d, 0)}. In
conclusion, it selects D = {k, l} as solution to decoy allocation problem, for
which |DSWin{k,l}| = 8, which coincidentally in this example is also the globally
optimal solution for the problem. We note the improvement in the solution is
attributed to incremental computation of DSWinD∪{s} in Algorithm 2.

Due to space limitation, we omit other examples with larger game arena.
But the interested readers can find more examples in which the decoy allocation
problems are solved with both the greedy algorithm for submodular optimization
and Algorithm 2 in https://github.com/abhibp1993/decoy-allocation-problem.

4 Conclusion

In this paper, we investigated the optimal decoy allocation problems in a class
of games where players’ objectives are specified in temporal logic and players
have asymmetric information. The contributions of the paper are twofold: First,
we develop a hypergame on graph model to capture the deceivee (the adver-
sary)’s incomplete and incorrect information due to the decoys and the deceiver
(the defender)’s information about the deceivee’s information. Using decoy-based
deception, we designed algorithms to compute a deceptive sure-winning strat-
egy with which the defender can take actions deceptively and lure the adver-
sary into decoys, from a state where the adversary perceives herself a winner
(i.e., has a strategy to achieve the attack objective). Second, to compute the
optimal choice of decoy locations, we employed compositional synthesis from for-
mal methods and proved that the optimal decoy allocation problem is monotone,
and non-decreasing. However, the problem can be submodular or supermodular
or neither in different games. We design two greedy algorithms, one is based
on maximizing an under-approximation of the deceptive winning regions given

https://github.com/abhibp1993/decoy-allocation-problem
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the effectiveness of individual decoys using maximum set cover, another is to
use submodular-supermodular optimization to find approximate solutions of the
optimal decoy placement.

Future work include the study of decoy allocation with other types of decoy-
induced misperception. In this scope, the decoys are set up as “traps” for the
adversary. But it is possible to use decoys as “fake targets” for distracting the
adversary. We intend to explore a mixture of types of decoys given their function-
alities in cyber-physical defense and the respective deceptive synthesis problems
and decoy-allocation problems. Also, we are interested in deceptive planning for
other class of games, for example, concurrent (i.e., simultaneous-move) reacha-
bility games [1]. We intend to implement a toolbox for the proposed algorithm
and apply the methods to practical network security problems.
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Abstract. Adversarial attacks on image classification aim to make visu-
ally imperceptible changes to induce misclassification. Popular computa-
tional definitions of imperceptibility are largely based on mathematical
convenience such as pixel p-norms. We perform a behavioral study that
allows us to quantitatively demonstrate the mismatch between human
perception and popular imperceptibility measures such as pixel p-norms,
earth mover’s distance, structural similarity index, and deep net embed-
ding. Our results call for a reassessment of current adversarial attack
formulation.

Keywords: Adversarial machine learning · Imperceptibility · Just
noticeable difference

1 Introduction

Recent visual adversarial attack research frequently uses the following formula-
tion [10,17]. Let x0 be an image in an appropriate vector space, y be its true
class label, θ a trained classifier, and � the learner’s loss function. The attacker
seeks a perturbed image x to make the true label y seem unlikely (by maximizing
the loss):

max
x

�(x, y, θ)

s.t. d(x,x0) ≤ ε. (1)

The feasible set is defined by a distance function d() and a threshold ε. A com-
mon choice for d() is the infinite norm in the pixel space: d(x,x0) := ‖x−x0‖∞,
although other p-norms (especially for p = 1, 2) and several other measures
(defined in the next section) are popular, too. An alternative formulation mini-
mizes the distance function d(x,x0) subject to wrong label prediction.

Implicit in such formulations is the assumption that the feasible set
defined by d(x,x0) ≤ ε coincides with imperceptible perturbations as
c© Springer Nature Switzerland AG 2020
Q. Zhu et al. (Eds.): GameSec 2020, LNCS 12513, pp. 188–199, 2020.
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observed by human inspectors [3,7,15,20,26,27]. Then perhaps the attacker
can wreck havoc against the classifier without being noticed by humans. This
assumption has been criticized for its over-simplification of the threat model
[6,21]. Indeed, many adversarial learning researchers readily admit that popular
choices of d() are more of a mathematical convenience, and may not correspond
well with human perception. Disconcertingly, a large number of papers keep mak-
ing this assumption without verifying how good or bad the assumption really
is: Out of 32 recent papers we surveyed, 27 papers (each with over 100 cita-
tions) used pixel p-norms for d(). Among these 27, 20% assumed p-norms are a
good match to human perception without providing evidence; 50% used them
because other papers did; and the rest used them without justification. Given
the recent prominence of visual adversarial learning research, there is a need to
quantitatively study this assumption to refine the threat model.

type I

type II

human JND

d(x,x0) ≤ ε

Fig. 1. Mismatches between human perception and distance function d

What is the harm if d() and human perception differ? Consider the image
space around image x0 in Fig. 1. The feasible set {x : d(x,x0) ≤ ε} is the region
within the gray contour, while the human imperceptibility region is within the
green contour: intuitively, any image in this region looks like x0 to an average
human (precise definition below).

– The yellow region is type I error: humans perceive images there, e.g. x1, the
same as x0 but the feasible set by definition thinks otherwise. Type I errors
are dangerous because it lets the machine’s guard down: the machine does
not even consider x1 to be a valid attack (while x1 may in fact change the
label prediction), and human inspection will not notice the attack.
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– The blue region is type II error: humans perceive images there, e.g. z2, as
noticeably different from x0 but the feasible set thinks they cannot be distin-
guished. Type II errors waste the machine’s resources by defending against
fictitious threats.

Both types of error have occurred in practice, as shown in Fig. 2. In both exam-
ples we used d(x,x0) = ‖x − x0‖∞ and ε = 8 (out of pixel value 0–255), as is
commonly used in adversarial machine learning [1,31].

Our main contribution is a new human experiment design that allows us
to quantitatively gauge the mismatch between human perception and popular
imperceptibility measures d(), specifically pixel p-norms, EMD, 1-SSIM, and
DNN representation p-norms. Our results call for a reassessment of the adver-
sarial attack formulation (1) vis-à-vis real threats.

1

0 358 aco
nfi

de
nc
e

Human
starts to
notice

Allowed
attack

cat lynx

Defender will miss attack

(a) type I error (b) type II error

Fig. 2. (a) x0=cat photo, v=M RGB Box (see Sect. 3), x = x0 + av. d(x,x0) = ‖x −
x0‖∞ and ε = 8 as in the literature [1,31]; this corresponds to a = 8. On the other hand,
our experiments showed that human JND is not until a = 35. The images produced by
a ∈ (8, 35) are type I errors: a machine defender will not consider them, and humans
cannot tell them apart from x0. Critically, Inception V3 classifier [25] will classify
a ≥ 20 as lynx, meaning images in a ∈ [20, 35) are dangerous attacks. (b) x0=panda
photo, v=FGSM [7] attack direction. Again d is the infinite norm, and ε = 8. Along
this direction humans are good at detecting changes: our experiments showed that
human JND happens at ‖x − x0‖∞ = 4 already. An attack produced by FGSM with
‖x − x0‖∞ ∈ {4, 5, . . . , 8} will get caught. Therefore, the specific FGSM attack will
likely be detected by humans. The issue on the surface may look like an inappropriate
ε threshold used by FGSM, but keep in mind that along different directions v the
human JND threshold can vary, and there may not be a correct global ε. The root
cause is an inappropriate d() used by adversarial attacks.

2 Study Overview

Our study is designed to facilitate human experiments. Given a natural image x0,
consider an arbitrary direction v as shown in Fig. 1. The ray centered at x0 in the
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direction v is parametrized as {x := x0 + av | a ≥ 0} with a scalar parameter a.
Larger a leads to more changes to x0. We expect to find a threshold value av for
direction v, above which an average human inspector will notice the difference
between x0 and x0 +avv. These are images x1,x2 in Fig. 1 for directions v1,v2,
respectively.

Now, an adversarial attack feasible set in (1) is defined by distance measure
d() and threshold ε. Our primary interest is the appropriateness of d() com-
pared to human perception. ε is a nuisance parameter; fortunately, we do not
need to know its value. The key insight is that, if d() correctly models human
perception, then under this measure the distance

d(x0 + avv,x0) (2)

is a constant for all directions v. In other words, the “just noticeably different”
images by humans form a sphere around x0 under the correct d(). Conversely, we
may summarize how far off some d() is from human perception by the condition
number

κ(d) :=
maxv d(x0 + avv,x0)
minv d(x0 + avv,x0)

. (3)

The larger κ(d) is, the worse d() is. The smallest possible value of κ(d) is 1. It
is analogous to the ratio of major vs. minor axes for an ellipsoid. Note κ(d) is
center-image x0 dependent.

We will empirically estimate κ(d) for popular d()’s. Because this involves
human experiments, practically we can only consider a finite, small number of
center images x0. Furthermore, for each x0 we can only consider a small number
of directions V = {v1, . . . ,vk}. From these, we obtain an empirical estimate of
condition number

κ̂(d) :=
maxv∈V d(x0 + avv,x0)
minv∈V d(x0 + avv,x0)

, (4)

where max and min only go over the directions in V . Clearly, this is an under-
estimate: κ̂(d) ≤ κ(d). If our measured κ̂(d) is large (and thus κ(d) potentially
even larger), we conclude that d() is inappropriate.

2.1 Human Just Noticeable Difference (JND)

We define the just noticeable difference (JND) [5,32] with respect to a center
image x0 and direction v as the image x0+avv where an average human observer
starts to perceive a difference. Equivalently, human JND is characterized by the
scalar av. We discuss how to empirically measure human JND in Sect. 3.

2.2 Popular Imperceptibility Measures d()

Pixel p-Norm. For any p ∈ [0,∞] it measures the amount of perturbation by

‖x − x0‖p:=
(∑d

i=1 |xi − x0,i|p
)1/p

. We define the 0-norm to be the number of
nonzero elements.
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Earth Mover’s Distance (EMD). Also known as Wasserstein distance, it is a
distance function defined between two probability distributions on a given metric
space. The metric computes the minimum cost of converting one distribution to
the other one. EMD has been used as a distance metric in the image space also,
e.g. for image retrieval [19]. Given two images x0 and x, EMD is calculated as
EMD(x0,x) = infγ∈Γ (x0,x)

∫
R×R

|a − b|dγ(a, b). Here, Γ (x0,x) is the set of joint
distributions whose marginals are x0 and x (treated as histograms), respectively.

Structural Similarity (SSIM). This measure is intended to be a perceptual
similarity measure that quantifies image quality loss due to compression [29],
and used as a signal fidelity measure with respect to humans in multiple research
works [22,28]. SSIM has three elements: luminance, contrast and similarity of
local structure. Given two images x0 and x, SSIM is defined by SSIM(x0,x) =(

2μx0μx+C1

μ2
x0

+μ2
x+C1

) (
2σx0σx+C2

σ2
x0

+σ2
x+C2

) (
σx0x+C3

σx0σx+C3

)
. μx0 and μx are the sample means; σx0 ,

σx and σx0x are the standard deviation and sample cross correlation of x0 and
x (after subtracting the mean) respectively. To compute SSIM we use window
size 7 without Gaussian weights. Since SSIM is a similarity score, we define
d(x,x0) = 1 − SSIM(x,x0).

Deep Neural Network (DNN) Representation. Even though DNNs are
designed with engineering goals in mind, studies comparing their internal repre-
sentations to primate brains have found similarities [11]. Let ξ(x) ∈ R

D denote
the last hidden layer representation of input image x in a DNN. We define
d(x,x0) = ‖ξ(x) − ξ(x0)‖p as a potential distance metric for our purpose. We
use Inception V3 [25] representations with D = 2048.

3 Human JND Experiments

Center Images x0 and Perturbation Directions v: We chose three natu-
ral images (from the Imagenet dataset [4]) popular in adversarial research: a
panda [7], a macaw [16] and a cat [1] as x0 in our experiments. We resized the
images to 299 × 299 to match the input dimension of the Inception V3 image
classification network [25].

As indicated in Fig. 1, we consider x generated along the ray defined by a
perturbation direction v ∈ R

d with a perturbation scale a > 0. To render the
image for display, we project it to the image space: x = Π (x0 + av), namely,
clipping pixel values to [0, 255] and rounding to integers.

For each natural image x0 we considered 10 perturbation directions v, see
Fig. 3. Eight are specially crafted ±1-perturbation (i.e., v has elements -1, 0, 1)
directions varying in three attributes (Table 1). Specifically, the nonzero elements
vi depend on the value of the corresponding element x0,i in x0: vi = 1 if x0,i <
128, and -1 otherwise. For ±1-perturbations v and integer a ∈ {1, . . . , 128} it is
easy to see that the projection Π is not needed: x = Π (x0 + av) = x0 + av.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3. All 10 perturbation directions v with severe perturbation scale a = 128.
(a) S Red Box: the red channel of the center pixel. (b) S Red Dot: a randomly selected
red channel. (c) M Red Dot: 288 randomly selected red channels. (d) M RGB Dot: all
three color channels of 96 randomly selected pixels (s = 3×96 = 288). (e) M Red Eye:
288 red channels around the eyes of the animals. (f) M RGB Box: all colors of a cen-
tered 8×12 rectangle. (g) L RGB Box: all colors of a centered 101×101 rectangle. (h)
X RGB Box: all dimensions. (i) FGSM. (j) PGD.

The remaining two perturbation directions are adversarial directions. We
used Fast Gradient Sign Method (FGSM) [7] and Projected Gradient Descent
(PGD) [14] to generate two adversarial images xFGSM ,xPGD for each x0, with
Inception V3 as the victim network. All attack parameters are set as suggested
in the methods’ respective papers. PGD is a directed attack and requires a
target label; we choose gibbon (on panda) and guacamole (on cat) following
the papers, and cleaver (on macaw) arbitrarily. We then define the adversarial
perturbation directions by vFGSM = 127.5(xFGSM − x0)/‖xFGSM − x0‖2 and
vPGD = 127.5(xPGD − x0)/‖xPGD − x0‖2. We use the factor 127.5 based on a
pilot study to ensure that changes between consecutive images in the adversarial
perturbation directions are not too small or too big.



194 A. Sen et al.

Table 1. Naming convention for perturbation directions v

# Dimensions changed S = 1, M = 288

L = 30603, X = 268203

(mnemonic: garment size)

Color channels affected Red = only the red channel of a pixel

RGB = all three channels of a pixel

Box = a centered rectangle

Shape of perturbed pixels Dot = scattered random dots

Eye = on the eye of the animal

Fig. 4. Experiment procedure. The green, red and blue cells denote ±1-perturbation,
adversarial, and guard trials, respectively.The letters P, M and C denote the panda,
macaw and cat x0, respectively. (Color figure online)

Experimental Procedure : See Fig. 4. Each participant was first presented
with instructions and then completed a sequence of 34 trials, of which 30 were
±1-perturbation or adversarial trials, and 4 were guard trials. The order of these
trials was randomized then fixed (see figure). During each trial the participants
were presented with an image x0. They were instructed to increase (decrease)
perturbations to this image by using right/left arrow keys or buttons. Moving
right (left) incremented (decremented) a by 1, and the subject was then presented
with the new perturbed image x = Π (x0 + av). We did not divulge the nature
of the perturbations v beforehand, nor the current perturbation scale a the
participant had added to x0 at any step of the trial. The participants were
instructed to submit the perturbed image x when they think it became
just noticeably different from the original image x0. The participants had
to hold x0 in memory, though they could also go all the way left back to see x0

again. We hosted the experiment using the NEXT platform [9,23].
In a ±1-perturbation trial, the perturbation direction v is one of the eight

±1-perturbations. We allowed the participants to vary a within {0, 1, . . . , 128}
to avoid value cropping. If a participant was not able to detect any change even
after a = 128, then they were encouraged to “give up”.
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In an adversarial trial, the perturbation direction is vFGSM or vPGD. We
allowed the participants to increment a indefinitely, though no one went beyond
a = 80.

The guard trials were designed to filter out participates who clicked through
the experiment without performing the task. In a guard trial, we showed a novel
fixed natural image (not panda, macaw or cat) for a < 20. Then for a ≥ 20, a
highly noisy version of that image is displayed. An attentive participant should
readily notice this sudden change at a = 20 and submit it. We disregarded guard
trials in our analysis.

Participants and Data Inclusion Criterion : We enrolled 68 participants
using Amazon Mechanical Turk [2] master workers. A master worker is a person
who has consistently displayed a high degree of success in performing a wide
range of tasks. All participants used a desktop, laptop or a tablet device; none
used a mobile device where the screen would be too small. On average the par-
ticipants took 33 minutes to finish the experiment. Each participant was paid
$5. As mentioned before, we use guard trials to identify inattentive participants.
While the change happens at exactly a = 20 in a guard trial, our data indicates a
natural spread in participant submissions around 20 with sharp decays. We spec-
ulate that the spread was due to keyboard/mouse auto repeat. We set a range
for an acceptable guard trial if a participant submitted a ∈ {18, 19, 20, 21, 22}. A
participant is deemed inattentive if any one of the four guard trials was outside
the acceptable range. Only n = 42 out of 68 participants survived this stringent
inclusion condition. All our analyses below are on these 42 participants.

4 Results

For each center image x0 and perturbation direction v, the jth participant (j =
1 . . . n) gave us their individual JND threshold scale parameter a

(j)
v . That is, the

image x(j) = Π(x0 + a
(j)
v v) is the one participant j thinks has just-noticeable-

difference to x0 along direction v.
Because our participants can sometimes choose to “give up” if they did not

notice a change, we have right censored data on av. All we know from a given-up
trial is that a ≥ 129, but not what larger a value will cause the participant to
noticed a difference. For example, many participants failed to notice a difference
along the S Red Box and S Red Dot perturbation directions, thus many av’s in
those directions (50.8% and 51.6% respectively) were censored. A total of 13.2%
av’s were censored along all directions.

4.1 Qualitative Assessment

Recall if a distance measure d() is a good match to human perception, then
by (2) along any direction v the human JND image x = x0 + avv has the same
d(x,x0). We present box plots to qualitatively assess the different d()’s in Figs. 5
and 6. We selectively show only one center image x0 for each of the measures for
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panda 1-norm macaw 2-norm cat 3-norm panda ∞-norm

Fig. 5. Participant JND x’s pixel norm ‖x − x0‖p. Within a plot, each vertical box is
for a perturbation direction v. The box plot depicts the median, quartiles, and outliers.

1-SSIM, x0 = panda DNN, x0 = macaw EMD, x0 = cat

Fig. 6. Box plots of different measures ρ on human JND images.

the interest of space. We will show all plots in an extended version of this paper.
The perturbation directions v are indicated on the x-axis. The y-axis shows the
median, quartiles, and outliers of the participants’ JND images, measured in the
specific d() indicated in the plots. The main qualitative observation is that
none of the popular distance measure d() has a flat median across the directions
we tested. For example, for pixel 2-norm on x0=macaw, the median is 1049
and 4402 along the PGD and X RGB Box directions respectively. Similarly for
DNN 2-norm on x0=macaw, the median is 1.8 and 13.6 respectively along the
M Red Dot and PGD directions respectively. This indicates that none of these
measures is a good fit to human JND.

4.2 Quantitative Assessment

Now we report the empirical estimate of condition number κ̂ for each distance
measure d() and center image x0. Recall that κ̂(d) must be close to 1 for a
distance measure d() to have the possibility to be a good fit to human perception.
Due to the large number of censored data along some directions, we estimate
κ̂(d) in two ways.

– Non-censored median: We discarded all “given up” data. We then estimated
the human JND distance using the median value along a direction v. This is
shown in Table 2.

– First quartile: In the second procedure, we do not discard the “given up”
values but consider those distances to be infinity. Then we estimate the human
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Table 2. Estimated κ̂(d) using non-censored median.

Center Image 1-norm 2-norm 3-norm ∞-norm EMD 1 - SSIM DNN DNN DNN

1-norm 2-norm ∞-norm

panda 73853 142.6 17.8 14 68457 27913 476 512 575

macaw 499559 95.7 11.9 14.3 48210 56933 854 683 627

Cat 46460 89.7 11.2 14 42919 11786 389 381 355

Table 3. Estimated κ̂(d) using the first quartile.

Center Image 1-norm 2-norm 3-norm ∞-norm EMD 1 - SSIM DNN DNN DNN

1-norm 2-norm ∞-norm

panda 84379 163 20.3 17.1 79777 16353 577 704 496

macaw 23752 45.9 5.7 21.6 23300 255502 442 355 341

Cat 31787 61.4 7.6 24.2 30031 68609 341 329 297

JND along a direction by the first quartile. The median would have fallen in
censored values for some directions. The first quartile is a biased estimate of
human JND d(x,x0), but has the benefit of not hitting any censored values.
This is shown in Table 3.

We highlight the smallest estimated condition number κ̂ in each table. All
of these values are much larger than 1. This quantitatively shows that popu-
lar imperceptibility measures in visual adversarial attacks are far from human
perception.

5 Discussions and Conclusion

We quantitatively show that pixel p-norms, EMD, 1 - SSIM, and DNN represen-
tation p-norms are not good matches to human perception. This paper thus calls
for a rethinking of adversarial attack formulation. The closest work to ours is [21],
which also conducted human experiments on adversarial attacks and human per-
ception. That study was limited in design: they only tested pixel 0-, 2-, ∞-norms
but not other p-norms or measures. Their test also relies on the knowledge of the
feasible set radius ε, and depended on humans (mis)-categorizing a low resolu-
tion thumbnail (MNIST [13], CIFAR10 [12]). Instead, humans may notice small
changes in a normal-sized image well before their categorization of the image
changes. The present paper addresses these issues.

We also mention some limitations of our own work: (1) We used only three
center images x0 in our human experiments. This is due to the fact that running
human experiments is time consuming and expensive. (2) We still cannot answer
“what is the correct measure d()”, noting that computationally modeling human
visual perception is still an open question in psychology [8,18,24,30]. (3) We used
a “show x0 then perturb” experiment paradigm, while in real applications the
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human inspector may not have access to x0. (4) We limited ourselves to the
visual domain. Addressing these limitations remain future work.
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Abstract. In this paper, we propose a framework for strategic interac-
tion among a large population of agents. The agents are linear stochastic
control systems having a communication channel between the sensor and
the controller for each agent. The strategic interaction is modeled as a
Secure Linear-Quadratic Mean-Field Game (SLQ-MFG), within a con-
sensus framework, where the communication channel is noiseless, but, is
susceptible to eavesdropping by adversaries. For the purposes of secu-
rity, the sensor shares only a sketch of the states using a private key. The
controller for each agent has the knowledge of the private key, and has
fast access to the sketches of states from the sensor. We propose a secure
communication mechanism between the sensor and controller, and a state
reconstruction procedure using multi-rate sensor output sampling at the
controller. We establish that the state reconstruction is noisy, and hence
the Mean-Field Equilibrium (MFE) of the SLQ-MFG does not exist in
the class of linear controllers. We introduce the notion of an approximate
MFE (ε-MFE) and prove that the MFE of the standard (non-secure) LQ-
MFG is an ε-MFE of the SLQ-MFG. Also, we show that ε → 0 as the
estimation error in state reconstruction approaches 0. Furthermore, we
show that the MFE of LQ-MFG is also an (ε + ε)-Nash equilibrium for
the finite population version of the SLQ-MFG; and (ε + ε) → 0 as the
estimation error approaches 0 and the number of agents n → ∞. We
empirically investigate the performance sensitivity of the (ε + ε)-Nash
equilibrium to perturbations in sampling rate, model parameters, and
private keys.

1 Introduction

In this paper, we study large scale multi-agent interaction, where a large number
of sensing systems (a.k.a agents) interact with each other, to solve a consensus
problem in a decentralized manner. The individual agents in such a multi-agent
system comprise of a sensor and a controller with a communication channel
between them. The communication channel is noiseless, but, is susceptible to
eavesdropping by adversaries; so a secure communication mechanism is desired.
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The eavesdropping adversary is not a strategic player, and hence there is no
game being played against the adversary, as in robust MFGs [1]. The sensors
collect and/or generate various sensory data over time and the controllers analyze
the data streams to discover new information, derive future insights, and take
sequential control decisions.

Mean-Field Games (MFGs) are a framework for analyzing large scale strate-
gic interaction between rational agents optimizing their accumulated returns over
time. Estimating the solution of finite population games with a large number of
agents is prohibitive in most cases, being exponential in the number of agents
[2,3]. Mean-field games was proposed to address this scalability issue in the sem-
inal works of [4] and [5]. In the mean-field setting, a generic agent interacts with
a mass of infinitely many agents, modeled as an exogenous signal, also called the
mean-field trajectory. The solution concept analogous to the Nash equilibrium in
MFGs is that of the mean-field equilibrium, where the generic agent reacts opti-
mally to the mean-field trajectory and the mean-field trajectory in turn models
the average behavior of the agent.

Linear Quadratic MFGs (LQ-MFGs) [6–8] are a significant benchmark in
the area of MFGs which inherit much of the advantages of the MFG formalism,
while allowing analytical expressions for MFE. While there have been several
works on the continuous time formulation of LQ-MFGs [6–8], the discrete-time
setting has recently gained momentum due to its application to digital systems
[9] and reinforcement learning [10–12]. Following this line of work, we adopt a
discrete-time LQ framework to study the secure multi-agent interaction.

1.1 Agent Model and Objective

Fig. 1. Schematic representation of an agent in the multi-agent system. The sensor
measures the state and provides a multi-rate access to the controller over the noiseless
communication channel. The channel is susceptible to eavesdropping by adversaries.
Hence, the sensor and controller employ a secure communication mechanism (sketching
and multi-rate sampling) for decision making.

Figure 1 shows the schematic representation of an agent in the multi-agent sys-
tem under consideration. The agents aim to solve a consensus problem in a decen-
tralized manner. Namely, the cost function of each agent penalizes (i) deviation
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of the agent’s state from the aggregate behavior, and (ii) high control effort.
For each agent, the communication link between the sensor and the controller
is assumed to be noiseless, but susceptible to eavesdropping by adversaries. The
sensor collects information on the underlying high-dimensional stochastic pro-
cess, modelled as a state, and the controller takes actions to affect the evolution
of the stochastic process. However, for the purposes of security and fast commu-
nication, the sensor shares only a sketch of the high-dimensional states. Sketches
obfuscate the original data using a transformation (called the private key) and
thus have the flexibility to reduce the dimensionality of the shared data while
providing privacy features [13,14]. The controller reconstructs the states, using
the private key and multi-rate sensor output sampling, for decision making. We
assume that there is a finite set of private keys that the agents in the multi-agent
system can choose from. Each agent chooses a key from the set randomly for the
purposes of secure sketching and state reconstruction.

In this paper, we model the agents as linear control systems perturbed by a
noise process, which is not necessarily Gaussian. For ease of implementation, we
restrict the controllers of the secure LQ game to the class of linear controllers.
There is a communication channel between the sensor and the controller; a model
similar to [15]. However, unlike [15], the channel is noiseless but susceptible to
eavesdropping by adversaries, and the sensor provides the controller with multi-
rate (fast with respect to the rate of control input) access to the linear sketch
of the underlying states. The controller reconstructs the state, which is noisy
owing to finite-sampling rates, and decides the course of action guided by a
decentralized feedback control law. In a multi-agent system made up of agents
as in Fig. 1, we consider the following problem: How do rational agents solve a
consensus problem in a decentralized manner, when they have security concerns?

1.2 A Motivating Application

Internet of Battlefield Things (IoBT) is a paradigm that is becoming increasingly
important, partly due to the advantages it can offer in battlefield scenarios and
largely due to the success of Internet of Things. Entities (“things”) are more
useful and effective when they are smarter, and even more so when they can
interact with each other [16].

Multi-agent systems can model the interaction of entities and their capa-
bilities including controlled sensing and processing of information, undertaking
coordinated defensive actions against adversaries, and effecting offensive mea-
sures to achieve desired objectives. This is achieved by coordinating, jointly
planning and executing the decisions of the agents that constitute the Inter-
net of Battlefield Things. Successful leverage of large scale multi-agent systems
to build battlefield solutions requires learning optimal policies in a secure and
decentralized manner; which increases reliability, decreases computational over-
head, and facilitates interaction of heterogeneous agents.



206 M. A. uz Zaman et al.

1.3 Main Results and Organization

The paper is organized as follows:

1. In Sect. 2, we propose a Secure Linear Quadratic Mean-Field Game (SLQ-
MFG), for studying the multi-agent interaction with possibly infinitely many
agents solving a consensus problem. We also derive insights in the secure
(finite) n−agent dynamic game using this analysis.

2. In Sect. 3, we discuss a secure communication mechanism for information
transfer between the sensor and the controller for each agent; see Fig. 1. This
(noisy) reconstructed state, obtained using multi-rate sensor output sampling,
is used by the controller for decentralized decision making.

3. In Sect. 4, we establish that Mean-Field Equilibrium (MFE), a notion that
formalizes the notion of consensus in multi-agent systems, does not exist in
SLQ-MFGs in the class of linear controllers. Hence, we introduce the notion of
ε-MFE and (ε+ε)-Nash equilibrium to characterize consensus in secure multi-
agent interactions. We prove that MFE of (standard) LQ-MFG, in which the
controller has perfect state information, corresponds to ε-MFE of the SLQ-
MFG, and an (ε+ε)-Nash equilibrium for the secure n−agent dynamic game.

4. In Sect. 5 we empirically investigate the performance of (ε + ε)-Nash equi-
librium (deduced in Sect. 4) and its sensitivity to perturbations in sampling
rate, model parameters and private keys.

2 Secure LQ-MFG: Model and Objective

In this section, we discuss the model and objective for dynamic games considered
in this paper for analyzing the multi-agent interaction. Section 2.1 discusses the
model and objective of Secure n-agent LQ game and Sect. 2.2 discusses the model
and objective of Secure LQ-MFG.

2.1 Secure n-agent Linear Quadratic (LQ) Game

We formulate the secure n-agent LQ game by defining the state dynamics and
objectives of the agents, where the agents are coupled by a consensus-like term
in their objectives.

Consider the following secure n−agent discrete-time Linear Quadratic (LQ)
game [17]. Each agent i, i ∈ {1, 2, · · · , n} in the game has the following
dynamics:

xi(kτ + (j + 1)Δ) = Axi(kτ + jΔ) + Bui(kτ) + w̃i(kτ + jΔ),
yi(kτ + jΔ) = SKETCH(xi(kτ + jΔ)) = Cixi(kτ + jΔ), (1)

where j ∈ {0, 1, . . . , N −1} is the index of the fast time scale and k ∈ {0, 1, 2, . . .}
is the index of the slow time scale. We denote by xi ∈ R

m the state of agent
i, by ui ∈ R

p the control action and by yi ∈ R
q the garbled state (a sketch

a.k.a. observation) which is revealed to the agent. The initial state xi(0) has
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mean ν0 and covariance matrix Ξ0. A and B are state transition and control
matrices of appropriate dimensions, and w̃i are i.i.d random vectors generated
by distribution with mean zero and covariance Σ̃, denoted by D(0, Σ̃). Note that
since we are restricting our attention to linear controllers we don’t require the
noise to be necessarily Gaussian. At time kτ each agent has access to knowledge
Ii(kτ), which corresponds to observations and actions of the agent i and the
observations of all other agents upto time kτ . Here SKETCH(·) is any function
that obfuscates the data. In this paper, we choose a random linear sketch [13] as
a private key to transmit the state from the sensor to the controller. Sketching
has been used for dimensionality reduction by using random projections [13] and
providing privacy features [14]. In this paper, sketching is employed to obfuscate
the data by making it hard for any adversary to guess/reconstruct the states.

Let the set of private keys available for each agent be denoted by:

C = {C(i)|i ∈ {1, 2, . . . ,M},M < ∞, C(i) ∈ R
q×m}, (2)

We assume that the each agent chooses a private key C(i) from C, uniformly at
random. In Sect. 4.4 we discuss how careful construction of C positively impacts
the performance of the proposed control strategies.

Multi-rate Setup: It is assumed that the sensor and hence the controller has
multi-rate (fast) 1/Δ access to the states, while the system is controlled at a
slower rate 1/τ , such that τ = NΔ for an integer N > 0. The motivation for this
two time-scaled approach is that the obfuscated state received by the controller
is not readily amenable for decision making as the private key Ci is not invertible.
So using ideas as in [17], we use multi-rate sensor output sampling approach to
reconstruct the state. Note that this approach is different from using filtering
[13] which is not applicable in this context as there is no observation noise due
to the channel being noiseless. In [17], it is shown that for the controller to be
able to reconstruct the state using the observations, N should be greater than
the observability index of the system (A,Ci).

The cost of agent i is a consensus like cost which couples the agent with the
other agents by penalizing deviation from the aggregate behavior of the other
agents while minimizing control effort. This is the standard objective function
for the original LQ-MFGs problem [6] and has been used as a framework in
many follow-up studies, such as [1]. The cost of agent i in the n-agent game
under policy πi ∈ Πi, where Πi is the set of all policies πi : Ii → R

p, while other
agents are following the set of policies π−i ∈ Π−i,Π−i := {Πj}j �=i is given by,

Jn
i (πi, π−i) = lim sup

T→∞
1
T
Eπ

{ T−1∑
k=0

||xi(kτ) − x̄n
i (kτ)||2Q + ||ui(kτ)||2R

}
, (3)

where

x̄n
i (kτ) =

1
n − 1

∑
j �=i

xj(kτ), (4)
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and Q ≥ 0 and R > 0 are symmetric matrices of appropriate dimensions and Ii

is the information set of agent i. The expectation Eπ is with respect to the joint
control law π = (πi, π−i). The quantity x̄n

i captures the aggregate behavior of
agents other than i and is also called the empirical mean-field trajectory.

2.2 Secure Linear Quadratic Mean-Field Game (SLQ-MFG)

Owing to the difficulty of finding ε-Nash equilibria in n–agent games, we now
introduce a limiting case of infinite population game, called the mean-field game
[4,5]. Specifically, we formulate SLQ-MFG by describing the state dynamics and
objective of the generic agent interacting with the mass of infinitely many agents,
referred to as the mean-field trajectory [6].

The dynamics of a generic agent are

x(kτ + (j + 1)Δ) = Ax(kτ + jΔ) + Bu(kτ) + w̃(kτ + jΔ),
y(kτ + jΔ) = Cx(kτ + jΔ) (5)

where x ∈ R
m denotes the state, u ∈ R

p the control action and y ∈ R
q the

observation of the generic agent. As in the finite population game (Sect. 2.1),
j is the index of the fast time scale and k is the index of the slow time scale.
Matrices A and B denote the state transition and control matrices of appropriate
dimensions and C belongs to the finite set C as defined in (2). As the generic
agent in the SLQ-MFG has the same structure as the agent shown in Fig. 1, it
is susceptible to surveillance and hence it is necessary to sketch the state of the
agent. As a result, the multi-rate setup is required to reconstruct the sketched
state. The initial condition x(0) has mean ν0 and covariance matrix Ξ0. The
noise process w̃ is generated i.i.d. with distribution D(0, Σ̃). The generic agent’s
controller μ at time t depends on the observations and actions of the agent upto
time kτ and the mean-field trajectory. The set of all such controllers is denoted
by M. The generic agent’s cost under controller μ and mean-field trajectory
x̄ = (x̄(0), x̄(τ), x̄(2τ) . . .) is

J(μ, x̄) = lim sup
T→∞

1
T
Eμ

{ T−1∑
k=0

||x(kτ) − x̄(kτ)||2Q + ||u(kτ)||2R
}

, (6)

The mean-field trajectory is assumed to belong to the set of bounded sequences
�∞. In the context of MFGs, the appropriate solution concept is that of Mean-
Field Equilibrium (MFE), which is the infinite population analog of Nash
equilibrium. To define the mean-field equilibirium (MFE) we use an operator
Λ : M → �∞ (as defined in [18]) which maps a controller μ to a mean-field
trajectory x̄. If x̄ = Λ(μ), x̄ is also referred to as being generated by controller
μ. Now we state the definition of MFE.

Definition 1. The tuple (μ∗, x̄∗) ∈ M × �∞ is an MFE if x̄∗ = Λ(μ∗) and

J(μ∗, x̄∗) ≤ J(μ, x̄∗), ∀μ ∈ M
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MFE is the infinite population analog to the Nash equilibrium where any agent
(represented by the generic agent) has no incentive to deviate from the MFE
given all other agents are following the same policy.

3 State Reconstruction Using Multi-rate Sensor Output
Sampling

Since the multi-rate setup plays a crucial role in state reconstruction, we describe
the reconstruction mechanism (inspired by [17]) employed by the controller
to reconstruct the state of the agent. The method in [17] is for deterministic
dynamic systems, and we extend it to the case where the agent dynamics are
stochastic. This reconstruction is shown to reproduce the state of the agent with
some estimation error.

In the multi-rate setup, the observation rate is faster than the control rate.
We suppress subscripts for clarity in this subsection. As a consequence of (5),

x(kτ + jΔ) = Ajx(kτ) +
j−1∑
i=0

AiBu(kτ) +
j−1∑
i=0

Aiw̃(kτ + (j − 1 − i)Δ)

and since x((k + 1)τ) = x(kτ + NΔ) we can deduce the dynamics of the state
at the slower input rate 1/τ ,

x((k + 1)τ) = ANx(kτ) +
N−1∑
i=0

AiBu(kτ) +
N−1∑
i=0

Aiw̃(kτ + (N − 1 − i)Δ)

= A0x(kτ) + B0u(kτ) + w0(kτ) (7)

where A0 = AN , B0 =
∑N−1

i=0 AiB and w0(kτ) is an i.i.d. random vec-
tors such that w0(kτ) = σw[k] where σ = [AN−1, AN−2, . . . , I] and w[k] =
[w̃T (kτ), w̃T (kτ+Δ), . . . , w̃T (kτ+(N−1)Δ)]T . The vectors w0(kτ) and w[k] have
distributions w[k] ∼ D(0, I ⊗ Σ̃) and w0 ∼ D(0, Σ0) where Σ0 = σ(I ⊗ Σ̃)σT .
Let us define y[k] such that y[k] := [yT ((k − 1)τ), yT ((k − 1)τ + Δ), . . . , yT ((k −
1)τ + (N − 1)Δ)]T . The vector y[k+1] can be written down as,

y[k+1] = C0x(kτ) + D0u(kτ) + Cdw[k] (8)

where

C0 =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAN−1

⎤
⎥⎥⎥⎥⎥⎦

,D0 =

⎡
⎢⎢⎢⎢⎢⎣

0
CB

C(AB + B)
...

C
∑N−2

i=0 AiB

⎤
⎥⎥⎥⎥⎥⎦

, Cd =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
C 0 0 . . . 0

CA C 0 . . . 0
...

...
...

. . .
...

CAN−2 CAN−3 CAN−4 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

Multiplying CT
0 on both sides of (8) we get,

CT
0 y[k+1] = CT

0 (C0x(kτ) + D0u(kτ) + Cdw[k])
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As N is greater than the observability index of the system, CT
0 C0 is invertible.

Hence,

x(kτ) = (CT
0 C0)−1CT

0

[
y[k+1] − D0u(kτ) − Cdw[k]

]
(9)

Using (7) and (9) we get,

x((k + 1)τ) = A0(CT
0 C0)−1CT

0

[
y[k+1] − D0u(kτ)

]
+ B0u(kτ) + ECw[k]

where EC = σ − A0(CT
0 C0)−1CT

0 Cd. Thus the state x(kτ) can be expressed as,

x(kτ) = Lyy[k] + Luu((k − 1)τ) + w(kτ)

where Ly = A0(CT
0 C0)−1CT

0 , Lu = B0 − LyD0 and w(kτ) = ECw[k−1] is a zero
mean random vector with covariance matrix

ΣC = EC(I ⊗ Σ̃)ET
C . (10)

As the controller has access to y[k] and u((k − 1)τ) at time (kτ)− it can recon-
struct the state as,

x̂(kτ) = Lyy[k] + Luu((k − 1)τ)

Hence the estimation error x̂(kτ)−x(kτ) = −w(kτ) is a zero mean random vector
with covariance matrix ΣC . Note that since ΣC depends on the key C, it belongs
to a finite set. We denote this set by EC , which has one-to-one correspondence
with C and hence has cardinality M .

4 Equilibria of Secure LQ Games

In this section, we establish the equilibrium notions and derive the (approxi-
mately) optimal policies for the agents in the multi-agent system. Section 4.1
shows that the optimal control problem (which is a part of the MFE) is a non-
standard optimal control problem. Due to this non-standard problem, the SLQ-
MFG does not permit an MFE in the class of linear controllers. Section 4.2
introduces the concept of ε-MFE and establishes that the MFE of the LQ-MFG
is an ε-MFE for the SLQ-MFG. The variable ε depends on the estimation error
in the state reconstruction. Section 4.3 shows that MFE for LQ-MFG is also an
(ε + ε)-Nash equilibrium for the secure n-agent LQ game, where ε and ε depend
on the estimation error and the number of agents n.

4.1 MFE of the SLQ-MFG

We will show that the MFE of the SLQ-MFG does not exist in the class of
linear controllers. As is common in the stochastic LQ setting [18], we restrict the
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controllers to the class of linear feedback controllers μK . The controller has the
form

u(kτ) = K1x̂(kτ) + K2x̄(kτ)

where x̂(kτ) is the reconstructed state of the agent and x̄(kτ) is the mean-field
trajectory.

The choice of the controller is similar to [18], where the MFE of the LQ-
MFG was derived. See in Appendix (Sect. 7.1) for a brief overview of the results.
These controllers generate mean-field trajectories which follow linear dynamics
[18], formally if x̄ = Λ(μK) where K = [KT

1 ,KT
2 ]T ∈ R

p×2m, then x̄((k +
1)τ) = F x̄(kτ) where F = A0 − B0(K1 + K2). So for this paper we focus our
attention on linear feedback controllers and mean-field trajectories with linear
dynamics. Moreover, with some slight abuse of notation J(μ, x̄) will be referred
to by J(K,F ) and x̄ = Λ(μK) ⇐⇒ F = Λ(K), since a linear feedback controller
μK is completely characterized by K and a linear mean-field trajectory x̄ by F .

Let us define an augmented state by z(kτ) = [xT (kτ), x̄T (kτ)]T where x̄T (kτ)
is the mean-field trajectory. Assuming that the mean-field trajectory has linear
dynamics given by state matrix F , using (7) the augmented system can be
written down as,

z((k + 1)τ) = Āz(kτ) + B̄u(kτ) + w̄(kτ)

where,

Ā =
[
A0 0
0 F

]
, B̄ =

[
B0

0

]
, w̄(kτ) =

[
w0(kτ)

0

]
(11)

The random variable w̄(kτ) has distribution D(0, Σ̄) where Σ̄ =
[
Σ0 0
0 0

]
. Simi-

larly using (6) the cost function of the generic agent can be expressed as,

J(K, F ) = lim sup
T→∞

1

T
EK

{ T−1∑
k=0

‖z(kτ)‖2
Q̄

+ ‖u(kτ)‖2R
}

,where Q̄ =

[
Q −Q

−Q Q

]
≥ 0 (12)

Now we investigate the MFE of the SLQ-MFG (Definition 1). As per the defini-
tion, one part of finding the MFE corresponds to finding the K which minimizes
cost (12) for a given F .

In what follows we show that such a K does not exist. For stabilizing linear
feedback controllers u(kτ) = −Kẑ(kτ) = −K(z(kτ) − ŵ(kτ)) where ŵ(kτ) =
[wT (kτ), 0]T , the closed-loop dynamics of a system z(kτ) are

z((k + 1)τ) = Āz(kτ) + B̄u(kτ) + w̄(kτ) = (Ā − B̄K)z(kτ) + B̄Kŵ(kτ) + w̄(kτ) (13)

where ŵ(kτ) ∼ D(0, Σ̂C), with

Σ̂C =
[
ΣC 0
0 0

]
(14)
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As ΣC (as given in Eq. (10)) belongs to the finite set EC , Σ̂C also belongs to
the finite set ÊC which has the same cardinality M and has one-to-one cor-
respondence with EC . Using the definitions of ŵ(kτ) and w̄(kτ), the random
vector (BKŵ(kτ) + w̄(kτ)) ∼ D(0, ΨK), where ΨK = Σ̄ + BKΣ̂C(BK)T . The
stationary distribution of the closed-loop system (13) is D(0, ΣK), where ΣK

satisfies

ΣK = ΨK + (Ā − B̄K)ΣK(Ā − B̄K)T

and is guaranteed to be positive semi-definite and unique for any stabilizing K.
Using techniques similar to [19] the cost of controller K is

J(K,F ) = Ez(kτ)∼D(0,ΣK)[zT (kτ)(Q̄ + KT RK)z(kτ)] + Tr (KΣ̂CKT R),

= Tr ((Q̄ + KT RK)ΣK) + Tr (KΣ̂CKT R)
= Tr ((Q̄ + KT RK)T T

K (ΨK)) + Tr (KΣ̂CKT R),
= Tr (TK(Q̄ + KT RK)ΨK) + Tr (KΣ̂CKT R),
= Tr (PKΣ̄) + Tr ((BT PKB + R)KΣ̂CKT ) (15)

where the operators TK(M) and T T
K (M) are defined as

TK(M) =
∞∑

i=0

((Ā − B̄K)T )iM(Ā − B̄K)i,

T T
K (M) =

∞∑
i=0

(Ā − B̄K)iM((Ā − B̄K)T )i

and PK is the solution to the Lyapunov equation,

PK = (Ā − B̄K)T PK(Ā − B̄K) + (Q̄ + KT RK)
= ĀT PKĀ + Q̄ + KT (B̄T PKB̄ + R)K − ĀT PKB̄K − (B̄K)T PKĀ (16)

To find the K which minimizes cost (15), we define the Hamiltonian,

H = Tr (PKΣ̄) + Tr ((BT PKB + R)KΣ̂CKT ) + Tr (GS)

where

G = −PK + (Ā − B̄K)T PK(Ā − B̄K) + (Q̄ + KT RK) = 0

Using the minimum principle,

∂H

∂S
= −PK + (Ā − B̄K)T PK(Ā − B̄K) + (Q̄ + KT RK) = 0 (17)

∂H

∂PK
= ΨK − S + (Ā − B̄K)S(Ā − B̄K)T = 0 (18)

∂H

∂K
=

∂

∂K
[Tr (KT (B̄T PKB̄ + R)KΣ̂C) + Tr (GS)]

=
∂

∂K
[Tr ((−ĀT PKĀ + PK − Q̄ + ĀT PKB̄K + (B̄K)T PKĀ)Σ̂C)

+ Tr (GS)] (using equation (16))
= B̄T PKĀ(Σ̂C − ΣK) + (B̄T PKB̄ + R)KΣK = 0 (19)
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Equation (17) recovers the Lyapunov Eq. (16), and from Eq. (18) we can deduce
that S ≡ ΣK since K is a stabilizing controller. Equation (19) gives the form of
the optimal controller (if it exists) for a given F

K̂F = (B̄T P̂ B̄ + R)−1B̄T P̂ Ā(I − Σ̂CΣ−1

K̂F
)

where P̂ is the solution to the Lyapunov equation,

P̂ = (Ā − B̄K̂F )T P̂ (Ā − B̄K̂F ) + (Q̄ + K̂T
F RK̂F ) (20)

Since

ΣK = T T
K (ΨK)

=

∞∑
i=0

[
A0 − B0K1 −B0K2

0 F

]i [
B0K1ΣC(B0K1)T + Σ0 0

0 0

] [
A0 − B0K1 −B0K2

0 F

]T i

it is clear that ΣK will be a block diagonal matrix with the second block as all
zeros. Hence ΣK is guaranteed to have at least a zero eigenvalue which results
in ΣK being non-invertible. This means that K̂F does not exist and as a result
the MFE does not exist within the class of linear controllers.

To formulate useful strategies for the SLQ-MFG its useful to recall the MFE
for the LQ-MFG. The MFE of the LQ-MFG is defined by the tuple (K∗, F ∗)
where K∗ is the controller and F ∗ is the matrix which defines the mean-field
trajectory x̄∗. These results are obtained from a previous work [18] and the
reader can refer to the Appendix (Sect. 7.1) for details of the MFE of LQ-MFG.

4.2 ε-MFE of the SLQ-MFG

We introduce the concept of ε-MFE for the SLQ-MFG and the MFE of LQ-MFG
is shown to satisfy this definition. We start by formally proposing the ε-MFE of
the SLQ-MFG. This is followed by the result that the MFE of the LQ-MFG is
also the ε-MFE of the SLQ-MFG where ε → 0 as estimation error due to state
reconstruction approaches 0. Consequently, if the state sketching is performed
in a manner that estimation error is minimized (while obfuscating the state) the
MFE of LQ-MFG is a close-to-optimal strategy for the SLQ-MFG.

Definition 2. The tuple (K ′, F ′) ∈ R
p×2m ×R

m×m is an ε-MFE if F ′ = Λ(K ′)
and

J(K ′, F ′) ≤ J(K,F ′) + ε, ∀K ∈ R
p×2m, ε > 0

This is the analog of the ε-Nash equilibrium for the infinite population case. An
ε-MFE proposes strategies where an agent has at most ε incentive to deviate
from the ε-MFE. Now we note the conditions required for the existence and
uniqueness of the MFE, which are a carry-over from previous work [18].
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Assumption 1. With P given as the unique positive definite solution to the
Discrete-Time Riccati Equation (DARE),

P = AT
0 PA0 + Q − AT

0 PB0(R + BT
0 PB0)−1BT

0 PA0

and furthermore that GP := −(R +BT
0 PB0)−1BT

0 and HP := AT
0 (I +PB0GP ),

we have

‖HP ‖2 +
‖B0GP ‖2‖Q‖2
(1 − ‖HP ‖2)2

< 1

Now we present the result that the MFE of LQ-MFG is also the ε-MFE of
the SLQ-MFG. Moreover ε → 0 if estimation error approaches 0.

Theorem 1. Under Assumption 1, the MFE of LQ-MFG (K∗, F ∗) is also the
ε-MFE of the SLQ-MFG where ε = O(Tr (Σ̂C)) and Σ̂C (as given in Eq. (14))
belongs to the finite set ÊC .

Proof. We start by defining the cost of the tuple (K,F ) in the LQ-MFG. From
Eq. (28), we have

J̃(K,F ) = Tr (PKΣ̄),

where PK satisfies the Lyapunov Eq. (16). Hence, J(K,F ) ≥ J̃(K,F ) for a
given K and F and as a consequence infK J(K,F ) ≥ infK J̃(K,F ). Trying to
characterize ε-MFE,

J(K∗, F ∗) − inf
K

J(K,F ∗)

≤ J(K∗, F ∗) − inf
K

J̃(K,F ∗) = J(K∗, F ∗) − J̃(K∗, F ∗)

= Tr (P ∗Σ̄) + Tr ((BT P ∗B + R)K∗Σ̂CK∗T ) − Tr (P ∗Σ̄)

= Tr
((

ĀT P ∗B̄(R + B̄T P ∗B̄)−1B̄T P ∗Ā
)
Σ̂C

)

The first equality in the above equation is due to Eq. (29), the second one is
obtained by using (15), (28), (16) and the third equality is a result of using the
definition of K∗ (26). Hence,

J(K∗, F ∗) − inf
K

J(K,F ∗) ≤ Tr
((

ĀT P ∗B̄(R + B̄T P ∗B̄)−1B̄T P ∗Ā
)
Σ̂C

)

=ε = O(Tr (Σ̂C))

Now we prove that F ∗ is generated by controller K∗. A generic agent using
controller K∗ will have closed-loop dynamics,

x((k + 1)τ) = (A0 − B0K
∗
1 )x(kτ) − B0K

∗
2 x̄∗(kτ) + B0K

∗
1w(kτ) + w0(kτ),

where x̄∗(kτ) is the mean-field at time t generated by the controller K∗. Aggre-
gating the closed-loop dynamics we get the dynamics of x̄∗,

x̄∗((k + 1)τ) = (A0 − B0(K∗
1 + K∗

2 ))x̄∗(kτ) = F ∗x̄∗(kτ)

Hence we have completed the proof of the second part of the ε-MFE definition,
that is F ∗ is generated by controller K∗. ��
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4.3 (ε + ε)-Nash Equilibrium of the Secure n-Agent LQ Game

We prove that the MFE of the LQ-MFG is also an (ε + ε)-Nash Equilibrium
of the secure n-agent LQ game. We refer to the control law generated by MFE
of LQ-MFG (F ∗,K∗) by μ∗. We now show that for the n-agent game μ∗ is an
(ε + ε)-Nash equilibrium where ε → 0 if the estimation error goes to zero and
ε → 0 if number of agents n → ∞. As a result, if the state sketching is performed
so that the estimation error is minimized (while obfuscating the state) and the
number of agents is large enough, then the MFE of the LQ-MFG is close-to-
optimal strategy for the secure n-agent LQ game. Before stating the theorem,
since we are considering linear controllers, we define the set Πi

K ⊂ Πi, which is
the set of controllers πi that are linear in their arguments.

Theorem 2. Under Assumption 1, let the cost of secure n-agent LQ game under
controller μ∗ be Jn

i (μ∗i, μ∗−i), then

Jn
i (μ∗i, μ∗−i) − inf

πi∈Πi
K

Jn
i (πi, μ∗−i) < ε + ε

where ε = O(σ̂max) and σ̂max := maxΣ̂C∈ÊC
Tr (Σ̂C) and ε = O(σ̂max/

√
n − 1).

Proof. For an agent i,

Jn
i (μ∗i, μ∗−i) − inf

πi∈Πi
K

Jn
i (πi, μ∗−i) =

Jn
i (μ∗i, μ∗−i) − J(K∗, F ∗) + J(K∗, F ∗) − inf

πi∈Πi
K

Jn
i (πi, μ∗−i) (21)

We start by bounding the first expression on the RHS of (21). Let us define
x̄∗(kτ) as the linear mean-field trajectory defined by the state matrix F ∗ (also
by definition generated by controller K∗) and x̄n∗

i (kτ) as the empirical mean-
field trajectory if all agents are following controller μ∗. From [9] we obtain the
expression,

Jn
i (μ∗i, μ∗−i) − J(K∗, F ∗) = O

(√√√√lim sup
T→∞

T−1∑
k=0

Eµ
(
‖x̄n∗

i (kτ) − x̄∗(kτ)‖22
)
/T

)
(22)

To upper bound the expression, we write the dynamics of x̄n∗
i ,

x̄n∗
i ((k + 1)τ) = (A0 − B0K

∗
1 )x̄n∗

i (kτ) − B0K2x̄(kτ) + w̄n
i (kτ)

where w̄n
i (kτ) =

∑
j �=i(w̄j(kτ) + B0K

∗ŵj(kτ))/(n − 1) with distribution
w̄n

i (kτ) ∼ D(0, Σ̄n
i ) where,

Σ̄n
i =

∑
j �=i

Σ̄

(n − 1)2
+

∑
j �=i

BK∗Σ̂Cj
(BK∗)T

(n − 1)2
=

Σ̄

n − 1
+

∑
j �=i

BK∗Σ̂Cj
(BK∗)T

(n − 1)2
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Since Σ̂Cj
belongs to the finite set ÊC , we define a constant σ̂max :=

maxΣ̂C∈ÊC
Tr (Σ̂C). Using this constant we can bound Tr (Σ̄n

i )

Tr (Σ̄n
i ) ≤ Tr (Σ̄)

n − 1
+

m1σ̂max

n − 1

where m1 is a constant. Using the same techniques as [18] the expression on
RHS of (22) is O(Σ̂max/

√
n − 1). Now we bound the second expression on the

RHS in (21). Using techniques used in [18] for any πi ∈ Πi
K ,

Jn
i (πi, μ∗−i) ≥ J(πi, x̄∗) + lim

T→∞
2

T

T−1∑
k=0

E[(xi(kτ) − x̄∗(kτ))T CZ(x̄∗(kτ) − x̄n∗
i (kτ))]

≥ J(K∗, F ∗) − εi + lim
T→∞

2

T

T−1∑
k=0

E[(xi(kτ) − x̄∗(kτ))T CZ(x̄∗(kτ) − x̄n∗
i (kτ))]

≥ J(K∗, F ∗) − ε + lim
T→∞

2

T

T−1∑
k=0

E[(xi(kτ) − x̄∗(kτ))T CZ(x̄∗(kτ) − x̄n∗
i (kτ))]

where εi is obtained from Theorem 1 and εi = O(Tr (Σ̂Ci
)), and hence maxi εi =:

ε = O(Σ̂max). Moreover using techniques similar to [18]

lim
T→∞

2

T

T−1∑
k=0

E[(xi(kτ) − x̄∗(kτ))T CZ(x̄∗(kτ) − x̄n∗
i (kτ))] = O(Σ̂max/

√
n − 1) (23)

Using (22)–(23) we get

Jn
i (μ∗i, μ∗−i) − inf

πi∈Πi
K

Jn
i (πi, μ∗−i) < ε + ε

where ε = O(Σ̂max) and ε = O(Σ̂max/
√

n − 1). ��

4.4 Summary and Discussion

The results in Sect. 4 provide decentralized feedback control laws for the agents
in the multi-agent system, and provide conditions under which they are approxi-
mately optimal for the Secure LQ games. For ease of implementation, we restrict
the controllers of the secure LQ game to the class of linear controllers. The
approximation is characterized in terms of the estimation error and the number
of agents.

In Sect. 4.1, we have shown that for the class of linear controllers, the MFE
does not exist for the SLQ-MFG, as the estimation error in state reconstruction
leads to a non-standard optimal control problem. This problem is overcome by
proposing the idea of an ε-MFE (approximate MFE) in Sect. 4.2. Then the MFE
of the (standard) LQ-MFG is shown to be an ε-MFE of the SLQ-MFG.

It is shown that, ε = O(Tr (Σ̂C)). As Σ̂C is dependent on the private key
C chosen uniformly from set C, by careful choice of C in (2) the estimation
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error can be minimized (while obfuscating the state) resulting in close-to-optimal
strategies for the agent.

In Sect. 4.3, the MFE of LQG has been shown to be (ε + ε)-Nash Equilib-
rium of the secure n-agent LQ game. Moreover, ε = O(Σ̂max) where Σ̂max :=
maxΣ̂j∈ÊC

Tr (Σ̂j) and ε = O(Σ̂max/
√

n − 1). Similar to Sect. 4.2, through a
careful choice of set C in (2), ε can be minimized. It can also be seen that if the
number of agents n is large enough, ε is also small. Hence, MFE of LQ-MFG
will be close-to-optimal for the secure n-agent LQ game.

In the IoBT setting (Sect. 1.2) for example, owing to the scale of the multi-
agent systems, the computation of optimal (Nash) decentralized feedback laws
for the agents is prohibitive. Results in Sect. 4 provide a way to design decen-
tralized feedback control laws by first deriving the results for the infinite agent
case, which is computationally tractable, and then establishing that the same
control laws perform well (are approximately optimal) for the considered large
scale finite agent setting.

5 Empirical Studies

In this section, we empirically investigate the performance and sensitivity of the
(ε + ε)-Nash policies (Sect. 4) to perturbations in the parameters: (i) Sampling
rate (N), (ii) Model parameters (A,B), and (iii) Private keys (C).

We use the average accumulated cost [20] as a metric to measure the per-
formance of the (ε + ε)-Nash policies. The average accumulated cost, Jn,T is
obtained by first simulating the secure n-agent LQ game, under the (ε+ε)-Nash
policies. The average accumulated cost is then defined as [20]:

Jn,T =
1
T

n∑
i=1

1
n

{ T−1∑
k=0

||xi(kτ) − x̄n
i (kτ)||2Q + ||ui(kτ)||2R

}
,

where xi and ui are the state and control trajectories of agent i and x̄n
i is the

empirical mean-field trajectory defined in Eq. (4).
The cost Jn,T is an empirical approximation of the cost per agent Jn

i (Sect. 2),
for T sufficiently large. Hence (for high enough T ) a low value of Jn,T implies
a low value of Jn

t and hence indicates good performance by the (ε + ε)-Nash
policies.

5.1 Performance Sensitivity w.r.t. Sampling Rate

First we explore the effect of increasing the sampling rate N on the cost Jn,T .
As shown in (15), the effect of N on the cost per agent (through the covariance
matrix Σ̄C) is quite involved and hence hard to analyze in closed form. Due to
this reason, we examine this effect using empirical studies.

We simulate the behavior of n = 500 agents, where each agent follows linear
dynamics with states xi ∈ R

10, control actions ui ∈ R
4 and sketched state yi ∈

R
2 , using a fixed set of private keys C (generated randomly with m = 4) and the



218 M. A. uz Zaman et al.

(ε+ ε)-Nash policies stated in Sect. 4.3. Figure 2 presents the effect of sampling
rate N on the average accumulated cost Jn,T for T = {400, 425, 450, 475, 500}.
The values of Jn,T reach steady-state for T > 500.
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Timesteps (T ) = 500

Fig. 2. Average accumulated cost w.r.t. change in sampling rate N .

Observations: Figure 2 shows that for a fixed sampling rate N , the cost Jn,T

decreases to a steady state value, as T increases. This decrease is due to the
stabilizing nature of the (ε + ε)-Nash policies. Furthermore, from Fig. 2 we also
observe that for a fixed T and increasing N , the cost Jn,T decreases to a steady
state value. This suggests that higher sampling rates, N , lead to better perfor-
mance by the (ε+ε)-Nash policies, but high sampling rates may not be achievable
due to limited bandwidth available at the channel (see Fig. 1). This indicates a
trade-off between reduction in cost and limitations of the channel, which calls
for a judicious choice.

5.2 Performance Sensitivity w.r.t. Model Parameters and Private
Keys

Using the same setup as before, we next investigate the average accumulated
cost, under perturbations in model parameters (A,B) (Fig. 3a) and set of private
keys C (Fig. 3b). In the simulation, the perturbed parameters are obtained by
adding randomly generated matrices to A,B and C(i) for i ∈ [M ]. Figure 3a
shows the boxplot1 for perturbation of model parameters (A,B) and Fig. 3b for
perturbation of set of private keys C. The boxes in these figures are ordered by
increasing perturbation magnitude, where perturbation magnitude is defined as
1 The red line in the boxplot represents the median, the box represents the 1st and

3rd quartile and the whiskers represent the max and min values, with outliers shown
as red crosses.
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the Frobenius norm of the perturbation. The x-axes of Figs. 3a and b show the
perturbation magnitudes, for their respective boxplots.
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Fig. 3. Distribution of average accumulated cost Jn,T w.r.t. magnitude of perturbation
of model parameters (A, B) and set of keys C, with T = 500. (Color figure online)

Observations: Figure 3a shows that as the perturbation in the model param-
eters (A,B) increases, the median and variance of the cost Jn,T increases as
well, signifying a decrease in performance. The increase in median cost Jn,T is
quite intuitive, as the (ε + ε)-Nash policies have been generated for the model
parameters (A,B) and any perturbation of these parameters should cause a loss
in performance. The increase in variance of cost Jn,T is due to random nature
of the perturbation, higher perturbation magnitudes result in a bigger spread
of the perturbations, resulting in a bigger spread of the average accumulated
cost Jn,T . On the other hand, the median and variance of cost Jn,T is shown
to be quite insensitive to small perturbations of the set of keys C (Fig. 3b). This
result is quite interesting and opens a path for future studies to investigate online
methods to maintain security in the face of adapting adversaries.

In this section, we have empirically investigated the performance of the (ε+ε)-
Nash policies and inferred the following. There is a clear trade-off when choosing
the sampling rate N , as the performance improves for higher N but it might be
bounded from above due to channel limitations. Furthermore, we have discovered
that the performance of (ε + ε)-Nash policies deteriorates with perturbations in
model parameters (A,B) but is insensitive to perturbations in the set of private
keys C.
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6 Conclusion

In this paper, we have proposed the framework of Secure Linear Quadratic Mean-
Field Games (SLQ-MFGs) to analyze multi-agent interactions between agents
solving a consensus problem. Each agent has a sensor and a controller, with
communication carried out over a noiseless channel, which however is suscepti-
ble to eavesdropping. The agents are coupled through their objective functions
as in consensus problems. We have proposed a multi-rate sensor output sam-
pling mechanism for the controller to reconstruct the state, albeit with some
estimation error. We showed that this estimation error results in non-existence
of the Mean-Field Equilibrium (MFE) of the SLQ-MFG for the class of linear
controllers, and hence introduced the notions of ε-MFE and (ε + ε)-Nash equi-
libria to characterize consensus in secure multi-agent interactions. Moreover,
we have established that MFE of (standard) LQ-MFG, in which the controller
has perfect state information, corresponds to ε-MFE of the SLQ-MFG, and an
(ε+ε)-Nash equilibrium for the secure n−agent dynamic game. Finally, we have
empirically demonstrated that the performance of the (ε + ε)-Nash equilibrium
improves with increasing sampling rate N , deteriorates with variations in model
parameters (A,B), and is insensitive to small perturbations in the set of private
keys C.

A number of extensions are being considered for future work: (i) A secure
and robust n-agent LQ game where the adversary is strategic and can inject
malicious signals into the communication channels of the agents to manipulate
them into desired behavior, (ii) Design of the set of private keys C such that the
estimation error is minimized while ensuring the obfuscation of the state from
the adversary,(iii) Optimal state reconstruction (e.g. MMSE) strategy for the
multi-rate setup with noise, (iv) Learning in secure n-agent LQ games where the
agents have incomplete knowledge of its dynamic system and/or cost function.

7 Appendix

In this section, we provide some necessary background material for completeness.

7.1 MFE of the LQ-MFG

Here we briefly discuss the MFE of the LQ-MFG which has been developed in
a previous work [18]. We note from [18] that the dynamics of the generic agent
in the LQ-MFG are given by,

x((k + 1)τ) = A0x(kτ) + B0u(kτ) + w0(kτ) (24)

Although w0 is assumed to be non-Gaussian (Sect. 2.2) the results of [18] (which
assume Gaussian distribution) still hold, since we restrict our attention to the
class of linear controllers. In the standard LQ-MFG, the multi-rate setup is not
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required since the controller has access to the true state of the agent. The generic
agent aims to minimize the cost function,

J̃(μ, x̄) = lim sup
T→∞

1
T
Eμ

{ T−1∑
k=0

||x(kτ) − x̄(kτ)||2Q + ||u(kτ)||2R
}

, (25)

where x̄ is the mean-field trajectory. Next we restate the existence and unique-
ness guarantees of MFE for the LQ-MFG.

Proposition 1. ([18]). Under Assumption 1 the LQ-MFG ( (24)–(25)) admits
the unique MFE given by the tuple (K∗, F ∗) ∈ R

p×2m × R
m×m. The matrix

F ∗ = Λ(K∗) = A0 − B0(K∗
1 + K∗

2 ), and controller K∗ is defined as,

K∗ = (B̄T P ∗B̄ + R)−1B̄T P ∗Ā∗, where Ā∗ =
[
A0 0
0 F ∗

]
(26)

and P ∗ is the solution to the DARE,

P ∗ = Ā∗T
P ∗Ā∗ + Q̄ − Ā∗T

P ∗B̄(R + B̄T P ∗B̄)−1B̄T P ∗Ā∗ (27)

and B̄ and Q̄ as defined in (11) and (12), respectively.

The DARE is obtained by substituting K∗ in the Lyapunov Eq. (16) hence P ∗ =
PK∗ . An important point to note is that in the LQ-MFG the estimation error is
0, as the controller has perfect access to the state of the agent. This translates
to the covariance matrix of estimation error ΣC = 0 and hence Σ̂C = 0 for LQ-
MFG. Using (15) the cost of linear controller K and linear trajectory defined by
matrix F for the LQ-MFG will be

J̃(K,F ) = Tr (PKΣ̄) (28)

where PK is the solution to the Lyapunov Eq. (15). Furthermore it can also be
verified that

K∗ = argminK J̃(K,F ∗) (29)

This MFE (K∗, F ∗) can be obtained by using the mean-field update operator as
discussed in [18].
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9. Moon, J., Başar, T.: Discrete-time LQG mean field games with unreliable commu-
nication. In: 53rd IEEE Conference on Decision and Control, pp. 2697–2702. IEEE
(2014)

10. Guo, X., Hu, A., Xu, R., Zhang, J.: Learning mean-field games. In: Advances in
Neural Information Processing Systems (2019)

11. Fu, Z., Yang, Z., Chen, Y., Wang, Z.: Actor-critic provably finds Nash equilibria
of linear-quadratic mean-field games. In: International Conference on Learning
Representation (2020)
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Abstract. In this work we consider the problem of defending against
adversarial attacks from UAV swarms performing complex maneuvers,
driven by multiple, dynamically changing, leaders. We rely on short-time
observations of the trajectories of the UAVs and develop a leader detec-
tion scheme based on the notion of Granger causality. We proceed with
the estimation of the swarm’s coordination laws, modeled by a general-
ized Cucker-Smale model with non-local repulsive potential functions and
dynamically changing leaders, through an appropriately defined iterative
optimization algorithm. Similar problems exist in communication and
computer networks, as well as social networks over the Internet. Thus,
the methodology and algorithms proposed can be applied to many types
of network swarms including detection of influential malevolent “sources”
of attacks and “miss-information”. The proposed algorithms are robust
to missing data and noise. We validate our methodology using simulation
data of complex swarm movements.

Keywords: Leader detection · Anti-UAV defense · Identification of
swarm coordination laws

1 Introduction

Air defense systems have been forced to constantly adapt and evolve over time
to combat various new types of aerial threats. Today’s air defense systems are
highly capable of taking out single targets with ever increasing levels of precision.
However, the advent and proliferation of the use of Unmanned Aerial Vehicles
(UAV’s) now poses new challenges to air defense systems. With the increase in
computing capabilities in low cost hardware components, it has become feasible
for adversarial forces to employ UAV swarms to be used for activities ranging
from surveillance to deadly payload delivery and targeted attacks. While modern
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high-precision targeting anti-air defenses are capable of taking down a single
UAV, when it comes to a large swarm of UAV’s attacking simultaneously, these
defences can be rendered ineffective. These problems are even more challenging
when in UAV swarms, a few units are managed by humans (we refer to them
as “leaders”, while most units “follow”, leading to very effective management
of large swarms. When the role of leaders can be dynamically re-assigned the
monitoring and defense against such swarms becomes even more difficult.

The first question that needs to be addressed in creating a defense against a
hostile UAV swarm is understanding the control (coordination) and communica-
tion laws governing how the drones move and interact with each other. In large
swarms it is unlikely that all the interacting drones have independent control and
motion planning algorithms (of the kind found in the single robot planning liter-
ature [24]). Instead, flocking models have been proposed to study animal flocks
and artificial swarm dynamics [1,2,8,9,20,25,27]. The investigation of these bio-
logical swarms have provided inspiration and useful modeling abstractions for
addressing these challenging problems.

However, when studying complex swarm maneuvers, autonomous models
such as the Cucker-Smale model [8,11] or the Boids model [27] cannot capture
the behavior of the swarm, and leadership is often incorporated in the flocking
model [31]. Having understood the flocking nature of the swarm, one key idea
for creating a defense strategy in order to combat the swarm involves accurately
identifying the leaders and the underlying dynamics of particle interactions in the
swarm. The first step requires the clear identification of the leaders in the hostile
swarm. If the leaders can be identified in real time then modern air defense sys-
tems such as high precision laser weapons which are aimed at combating UAV’s
can be used to take out these leaders, thus disrupting the operation of the entire
swarm. Recent work into leader detection has looked into the use of Markov
Chain Monte Carlo based group tracking methods [6]. However, in order to han-
dle real time leader detection in high particle count swarms this paper proposes
a Granger causality based detection method.

In this paper we will use the terms agents and particles interchangeably.
Extracting the laws of interaction (or coordination) between agents is the next
requirement for creating a defense strategy against large hostile swarms. Under-
standing the governing dynamics of the hostile swarm will enable the defense
system to plan ahead and anticipate how the swarm would react to different
strategies such as the focused removal of the agents identified as leaders. Multi-
ple methods exist in order to identify the underlying interactions and dynamics
of particle swarms. Statistical [5,16], and, mainly, model-based [8,20,27] learn-
ing approaches have been used to infer interaction rules between particles. In [4]
symbolic equations are generated from the numerically calculated derivatives of
the system variables, in [19] the constitutive equations of physical components
composing the system are learned, while in [18] the order of a fractional differen-
tial system of equations, which models the system, is estimated. Recently, Matei
et al. in [20], and Mavridis et al. in [22] have modeled the networked swarm as
a port-Hamiltonian system [29] and have accurately reconstructed the laws of
interaction (or coordination) of the swarm and its dynamical properties, from
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observed trajectories of the individual agents. Furthermore in these recent works
[20,22,23] we have also demonstrated the robustness of the associated algorithms
to both noisy observations as well as missing data.

Similar problems are found in many other types of large networked systems,
including communication and computer networks, sensor networks, networked
cyber-physical systems, biological systems, and social networks over the Inter-
net. In such systems there are corresponding notions of leaders, such as initiators
of a malicious attack, or coordinators of malevolent behavior, or initiators of a
biological cell-malfunction, or influential sources of miss-information or untrust-
worthiness [30]. In all these problems fast identification of the leaders and the
associated followers groups (or influence groups) is essential for defending and
correcting such malevolent actions and functions. Thus the applicability of the
ideas and methods proposed in this work is very broad, with the appropriate mod-
eling and semantic changes for the various domains.

In this work, we focus on observations of complex swarm maneuvers driven by
multiple dynamically changing leaders, and propose a leader detection scheme,
based on the notion of Granger causality, that allows for the online estimation of
the particle interaction laws through an appropriately defined iterative optimiza-
tion algorithm. In the learning process, we assume a generalized Cucker-Smale
model with non-local repulsive potential functions and dynamically changing
leaders [31]. We validate our methodology using simulation data of complex
swarm movements. Similar problems exist in communication and computer net-
works, as well as social networks over the Internet. Thus the methodology and
algorithms proposed can be applied to many types of network swarms including
detection of influential malevolent “sources” of attacks and “miss-information”.

The rest of the manuscript is organized as follows: Sect. 2 describes the models
used to describe the swarm dynamics, and Sects. 3 and 4 introduce the leader
detection algorithm. In Sect. 5 the learning algorithm for the swarm’s interaction
laws is formulated. Finally, Sect. 6 presents the experimental results, and Sect. 7
concludes the paper.

2 Modeling Complex Swarm Maneuvers

Fig. 1. Reconstructing complex swarm dynamics. The agents’ trajectories are observed
and used to detect leaders and identify a port-Hamiltonian networked system modeling
their interaction rules.

We view the interconnected problems of modeling and learning the interaction
laws of a swarm as one problem that can be analyzed in the microscopic scale as a
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port-Hamiltonian networked system. We extend existing simulation models, such
as the Boids and the Cucker-Smale models, to incorporate interaction, commu-
nication and dynamics terms that can capture realistic complex swarm maneu-
vers and develop corresponding simulation models in the macroscopic domain.
Specifically, we introduce

– a scalable simulation algorithm, based on the Boids model, that can capture
interaction laws and communication protocols of complex swarm maneuvers,
including (a) velocity alignment, (b) spatial cohesion, (c) collision avoidance,
and (d) response to dynamically changing leaders.

– a large-scale learning algorithm, based on the generalized Cucker-Smale model
and automatic differentiation, designed to work on state-of-the-art deep learn-
ing platforms that can identify the interaction laws (a)–(d) by observing par-
ticle trajectories of position and velocity (Fig. 1).

2.1 Extended Boids Model

The Boids algorithm is a widely used artificial flocking simulation algorithm
based on three basic rules [27].

1. Cohesion: Boids are steered in such a way that they move towards the aver-
age position (perceived center of mass) of local flockmates. The radius of
attraction is a parameter than can be tuned in this section.

2. Alignment : Boids are steered towards the average heading and average speed
of local flockmates.

3. Separation: Boids are steered in such a way that they avoid crowding local
flockmates. This acts as a collision avoidance strategy between particles.

The Boids model can be written as a dynamical system:{
ẋi = vi

v̇i = −c∇Uc(x) − a∇Ua(x, v) + s∇Us(x)
(1)

where

– ∇Uc(x) = xi − 1
Nc

∑
j �=i 1[xi−xj≤rc]xj = 1/2∇‖xi − 1

Nc

∑
j �=i 1[xi−xj≤rc]xj‖2,

simulates the cohesion rule,
– ∇Ua(x, v) = vi− 1

Na

∑
j �=i 1[xi−xj≤ra]vj = 1/2∇‖vi− 1

Na

∑
j �=i 1[xi−xj≤ra]vj‖2,

simulates the velocity alignment rule, and
– ∇Us(x) =

∑
j �=i 1[xi−xj≤rs](xi − xj), simulates the collision avoidance (sepa-

ration) rule.

In addition to these rules, the interacting agents (boids) may be modeled to
have a tendency towards a particular place, by adding an attractive term with
respect to a possibly time-dependent potential function

−w∇Uw(x, xw) = −w1[xi−xw≤rw](xi − xw) = −1/2w1[xi−xw≤rw]∇‖xi − xw‖2

simulating strong wind or leadership.
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Although the Boids model is widely adapted in many simulations due to its
simplicity, the fact that the interaction of each particle with its neighbors is local,
i.e., the existence of the neighborhood radii ra, rs, rc etc., introduces problems
with the differentiability of the cost function of the learning problem. In order to
preserve differentiability and be able to utilize existing large-scale optimization
frameworks for deep learning to work, we need to replace the indicator function
of belonging to a neighborhood with a smooth interaction function ψ that defines
the grade of membership of a particle to the neighborhood of another.

2.2 Cucker-Smale Model with Leadership

When focused on the learning algorithm, we model the swarm with the Cucker-
Smale model [7,8]. In order to model complex flock maneuvers, we borrow from
the theory of flock leadership (see e.g. [31]) and incorporate leadership to the
Cucker-Smale model as follows:

Definition 1. Consider an interacting system of N particles. The leader sets
L(i), 1 ≤ i ≤ N of cardinality |L(i)| = 1 are assigned to each particle represent-
ing the index of the leader particle that it is following. Then the Cucker-Smale
(CS) model with leadership is defined in the following:{

ẋi = vi

v̇i = K
N

∑N
j=1 ψij(x(t), v(t))

(2)

where

ψij(x) =

{
−∇U(‖xi − xj‖), j /∈ L(i), j �= i

G(‖xi − xj‖)(vj(t) − vi(t)) − ∇U(‖xi − xj‖), j ∈ L(i)
(3)

with a typical choice for the interaction function G that provably results in flock-
ing behavior being G(r) = 1

(1+r2)γ and the potential function usually taking the
form U(r) = −CAe−r/lA + CRe−r/lR , with CA, CR, lA, lR positive scalars.

It has been shown in [20] that the Cucker-Smale model with potentials is
equivalent to a fully connected N-dimensional network of generalized mass-
spring-dampers with appropriately defined Hamiltonian functions, that can be
written in a port-Hamiltonian form

ż = [J(z) − R(z)]
∂Hz)
∂z

(4)

where z = (q, p), with q, p ∈ R
N(N−1)

2 being the vectors of relative distances and
momenta between each pair of particles, and the quantities J = −JT, H and R
are appropriately defined. The dependence of (5) on the interaction function ψ
is introduced by the resistive term R = R(ψ) [20].
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It is straightforward to show that the CS model with leadership is equivalent
to an input-state-output port-Hamiltonian system of the form

ż = [J(z) − R(z)]
∂H(z)

∂z
+ g(z)u, (5)

where g(z) is appropriately defined, and u is an external control input that
affects only the leader particles and is responsible for their trajectories.

The intuitive difference in the interaction function is actually the sole dif-
ference between the Boids model and the Cucker-Smale model with potentials.
This also justifies why we may use the Boids model to simulate and the CS
model to learn, and why approaching the simulation and learning problems with
a single dynamical system is important for reconstructing the dynamics of com-
plex swarm maneuvers. The difference in the interaction functions is illustrated
in Fig. 2.

Fig. 2. The indicator “neighborhood” function in Boids model and the interaction
function in Cucker-Smale model.

We would like to emphasize that all the models proposed in our work
including port-Hamiltonian systems, Boids, CS interaction potentials, are useful
abstractions inspired from biology and physics. However the underlying systems
do not have to be biological or physical. The validity of the abstraction is mea-
sured by the degree with which these abstract models can generate dynamic
trajectories very similar to the observed ones (or the observed time varying data
series). Therefore these abstractions can be used, and have been used, to model
the various networked systems we mentioned earlier.

3 Leader Detection

We adopt a majority vote criterion for leader detection, where each particle i
votes for the particle j to be the leader, according to a measure related to the
observed trajectories of the particles.
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3.1 Granger Causality

Clive Granger in [10] defined a causality relationship based on two principles:

i. The cause happens prior to its effect
ii. The cause has unique information about the future values of its effect.

Given these assumptions, we say that a time series Y Granger-causes X if the
past values of Y provide statistically significant information about the future
values of X. In other words, we associate the existence of a causal effect of Y on
X with the following Hypothesis Test :

Definition 2. Let Y, X be stationary random processes, and consider the fol-
lowing two auto-regression models

xt = α0 +
p∑

i=1

αixt−i + ε1t , t > p (6)

xt = α0 +
p∑

i=1

αixt−i +
q∑

i=1

βiyt−i + ε2t , t > max {p, q} (7)

where εt ∼ N(0, σ2) is white noise. Then the non-causality null Hypothesis:

H0 : βi = 0,∀i ∈ {1, . . . , q}

is rejected if model (7) fits the data {xt}T+n
t=T , T > max {p, q}, in a window of n

samples, significantly better than model (6), i.e. if

p � P

[
F > F̂ |H0

]
< a

for a given confidence level a, e.g. a ≤ 0.05, where

F̂ =

∑T+n
t=T ε1t − ∑T+n

t=T ε2t
q∑T+n

t=T ε2t
n − (p + q + 1)

(8)

We note that if (6) and (7) were simple regression models, the random vari-
able F would be defined such that it follows an F (q, n− (p+q+1)) distribution.
Because of the autoregression nature of (6), (7), it can be shown (e.g. Ch. 8 of
[12]), that qF asymptotically follows a χ2(q) distribution as n → ∞. In case of
non-stationary processes X, Y , one can apply the AR models to the n-th order
differences, resulting in ARIMA models.
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3.2 Leader Detection Based on Granger Causality

The leader-particle relationship is causal, satisfying both assumptions of Granger
Causality. In order to make sure that we capture causality, and not merely
correlation, we follow the hypothesis test described in Sect. 3.1 for each pair of
particles (i, j).

As a result, a particle i votes for j to be the leader, where each vote takes the
value Gij , with G = 1[p<α] indicating Granger Causality, where p is the p-value
according to the χ2 distribution as argued in Sect. 3.1.

However, because of the high correlation between the trajectories of the
particles-followers, it is often the case that Gij � 1 even between two followers. In
order to avoid such confusion, we bypass the last quantization step Gij = 1[p<α],
and compare directly the p-values. Going one step further, we can see that the
lowest p-value, corresponds to the highest F̂ -value. Moreover, the profile of the
F̂ij values is such that F̂ij is consistently higher (i.e. lower variance) for every
i, when j is the leader. In other words, even though for a follower j, a set of
F̂ij values may be high, indicating that particles with different indices i may be
leaders, for each i, a high fluctuation on the observed values F̂ij is indicative
of a false positive, i.e. that particle i is not a leader. Therefore, we define the
proposed leader detection algorithm to be based on the measure

Fv,j =
μ̂F̂·j

σ̂F̂·j

=

∑
i�=j F̂ij√

N
∑

i�=j F̂ 2
ij −

(∑
i�=j F̂ij

)2

for each j. The measure Fv,j can be thought of as the inverse coefficient of vari-
ation, and is designed such that particles i with high variation on the observed
values F̂ij , for different followers-voters j, are not selected as leaders. The detec-
tion algorithm is shown in Algorithm1.

Algorithm 1. F -Based Leader Detection Algorithm
Require: w(big enough), t, λ

for i in {1, . . . , N + 1} do
for j �= i do

In the window [t − w, t]:
Compute F̂ij

Compute Fv,j = Fv,j =
μ̂F̂·j
σ̂F̂·j

end for
end for
Select the leader: LF ← arg maxj Fv,j

4 Estimating the Number of Leaders

The first question one needs to answer when dealing with leader detection is the
number of leaders that the algorithm is trying to find. We view this problem as
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a clustering problem given a window of position and velocity observations of the
particles, since it is reasonable to assume that particle trajectories will be more
‘similar’ to each other if they are following the same leader.

However, the number of the clusters is not known a priori, which makes stan-
dard clustering algorithms based on Vector Quantization (e.g. k-means) inappro-
priate for this application. Instead, we need an unsupervised learning algorithm
that progressively estimates the number of clusters by adding new clusters only
when some measure of distortion is high enough to support this decision. In this
regard, the Deterministic Annealing algorithm [28] is a fitting clustering algo-
rithm for estimating the number of leaders and is presented in the next Section.

4.1 Deterministic Annealing

The observation of annealing processes in physical chemistry motivated the use of
similar concepts to avoid local minima of the optimization cost. Certain chemical
systems can be driven to their low-energy states by annealing, which is a gradual
reduction of temperature, spending a long time at the vicinity of the phase
transition points.

Deterministic Annealing (DA), proposed by Rose [28], is an annealing opti-
mization method that tries to achieve a good compromise between the world
of stochastic relaxation, or simulated annealing [15], and the world of deter-
ministic optimization. On the one hand it is deterministic, meaning that we do
not want to be wandering randomly on the energy surface while making incre-
mental progress on the average, as is the case for stochastic relaxation. On the
other hand, it is still an annealing method and aims at the global minimum,
instead of getting greedily attracted to a nearby local minimum. One can view
DA as replacing stochastic simulations by the use of expectation. An effective
energy function, which is parameterized by a (pseudo) temperature, is derived
through expectation and is deterministically optimized at successively reduced
temperatures.

The Optimization Problem. The problem of divergence-based Vector Quan-
tization can be stated as an optimization problem:

Problem 1. Let X : Ω → S be a random variable defined in the probability
space (Ω,F ,P), and d : S × ri(S) → [0,∞) be a divergence measure, with ri(S)
representing the relative interior of S. Let V := {Sh}k

h=1 be a partition of S with
respect to d and M := {μh}k

h=1, such that μh ∈ ri(Sh), h ∈ K, K := {1, . . . , k},
and define the quantizer Q : S → S such that Q(X) =

∑k
h=1 μh1[X∈Sh].

Then the problem is formulated as

min
M,V

J(Q) := EX [d (X,Q(X))]

The distortion function J is typically non convex and riddled with poor local
minima. In order to deal with this phenomenon, soft-clustering approaches have
been proposed as a probabilistic framework for clustering, where input vectors
are assigned to clusters in probability.
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For the randomized partition we can rewrite the expected distortion as

D = E [dφ(X,M)]
= E [E [dφ(X,M)|X]]

=
∑

x

p(x)
∑

μ

p(μ|x)dφ(x, μ)

where p(μ|x) is the association probability relating the input vector x with the
codevector μ. At the limit where the association probabilities are hard and each
input vector is assigned to a unique codevector with probability one, this becomes
identical with the traditional hard clustering distortion.

We seek the distribution that minimizes D subject to a specified level of
randomness, measured by the Shannon entropy

H(X,M) = E [− log p(X,M)]
= H(X) + H(M |X)
= E [− log p(X)] + E [E [− log p(M |X)|X]]

= H(X) −
∑

x

p(x)
∑

μ

p(μ|x) log p(μ|x)

by appealing to Jaynes’s maximum entropy principle [13] which states: of all the
probability distributions that satisfy a given set of constraints, choose the one
that maximizes the entropy.

The optimization is conveniently formulated as the minimization of the
Lagrangian

F = D − TH (9)

where F represents the free energy and T is the temperature parameter that
acts as a Lagrange multiplier. Clearly, for large values of T we maximize the
entropy, and, as T is lowered, we trade entropy for reduction in distortion.

As in the case of Vector Quantization, we form a coordinate block opti-
mization algorithm by successively minimizing with respect to the association
probabilities p(μ|x) and the codevector locations μ. Minimizing F with respect
to the association probabilities p(μ|x) is straightforward and gives the Gibbs
distribution

p(μ|x) =
e− dφ(x,μ)

T∑
μ e− dφ(x,μ)

T

while, in order to minimize F with respect to the codevector locations μ we set
the gradients to zero

d

dμ
D = 0 =⇒ d

dμ
E [E [dφ(X,μ)|X]] = 0

=⇒
∑

x

p(x)p(μ|x)
d

dμ
dφ(x, μ) = 0
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Remark 1. If dφ is a Bregman divergence [3,21], such as the Euclidean distance
or the Kulback-Leibler divergence, we get d

dμdφ(x, μ) = dφ
dμ (μ)(x − μ), which

allows for the direct computation of the optimal solution μ as the convenient
centroid form

μ = E [x|μ] =
∑

x xp(x)p(μ|x)
p(μ)

This deterministic optimization procedure takes place for decreasing values
of the temperature T such that DA maintains minimum free energy (thermal
equilibrium) while gradually lowering the temperature. Adding to the physical
analogy, it is significant that, as the temperature is lowered, the system under-
goes a sequence of “phase transitions”, which consists of natural cluster splits
where the cardinality of the codebook (number of clusters) increases. This is a
bifurcation phenomenon and provides a useful tool for controlling the size of the
clustering model relating it to the scale of the solution. At very high temperature
(T → ∞) the optimization yields uniform association probabilities

p(μ|x) = lim
T→∞

e− dφ(x,μ)
T∑

μ e− dφ(x,μ)
T

=
1
K

and all the codevectors are located at the same point

μ = E [X]

which is the expected value of X (in practice we get the sample mean of the
N realizations of X that we observe). As we lower the temperature, the cardi-
nality of the codebook changes. The bifurcation occurs when a set of coincident
codevectors splits into separate subsets, which can be traced when the Hessian
of F loses its positive definite property. In other words, the effective number of
codevector depends only on the temperature parameter which is the Lagrange
multiplier of the multi-objective minimization problem (9).

We can approach the bifurcation using perturbation analysis. At each temper-
ature, we can generate a perturbed pair of codevectors for each effective cluster
which, after convergence, can either merge together or separate depending on
whether a phase transition has occurred.

The Algorithm. A computationally efficient implementation of the DA algo-
rithm for clustering can be constructed in this way. The complete algorithm
is shown in Algorithm 2 and constitutes a batch unsupervised learning algo-
rithm that provides the ability to trade complexity for accuracy by progressively
increasing the model size (number of efficient clusters) when needed (when a
critical temperature has been reached). Furthermore, as argued in Remark 1,
when dφ is a Bregman divergence [3,21], such as the Euclidean distance or the
Kulback-Leibler divergence, the optimization steps can be solved analytically
providing a computationally efficient implementation.
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Algorithm 2. Deterministic Annealing Algorithm
Require: Dataset X � |X | = N

Set parameters:
Kmax � maximum number of codevectors
Tmax, Tmin � maximum and minimum temperatures

Initialize:
K = 1 � number of codevectors
T = Tmax > 2λmax(Cx) � temperature
μ1 =

∑
x xp(x), p(μ1) = 1 � 1st codevector

while K < Kmax and T > Tmin do
Replace each μi with a perturbed pair {μ′

i, μ
′′
i }

Update:
p(μ′

i) = p(μ′′
i ) = p(μi)/2

K ← 2K
repeat � Step (O)

for i = 1, . . . , K do
Update:

p(μi|x) ← p(µi)e
− dφ(x,μi)

T

∑
i p(µi)e

− dφ(x,μi)
T

, ∀x � Step (E)

p(μi) ← ∑
x∈X p(x)p(μi|x) � Step (M1)

μi ←
∑

x∈X xp(x)p(µi|x)
p(µi)

� Step (M2)
end for

until Convergence � ‖Δμi‖ < εc, ∀i
Keep only effective codevectors:
if ‖μi − μj‖ < εn then

discard μj

set p(μi) ← p(μi) + p(μj), ∀i �= j
end if
Update K
Lower the temperature � T ← γT

end while
Do one hard-clustering loop � Step (O) with T = 0

5 Learning the Particle Interaction Laws

For the learning task we model the networked system of interacting agents as a
port-Hamiltonian system representing a general Cucker-Smale model (5) [20]. We
make use of the position and velocity trajectories of the particles to recover the
resistive terms R(z) and the Hamiltonian H(z), which is equivalent to recovering
the interaction functions ψij(x, v) of a general Cucker-Smale model (2).

The components of the interaction model (resistive element and the spring
Hamiltonian) are modeled as neural-networks with one hidden layer, and the
following optimization problem with a mean square error (MSE) loss function is
formulated
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minw
1
n

∑n
i=1 ‖ż(ti) − ˙̂z(ti;w)‖2 (10)

s.t. ż(ti) = [J(z(ti)) − R(z(ti))]
∂H(z(ti))

∂z + g(z)u (11)

˙̂z(ti;w) =
[
J(z(ti)) − R̂(z(ti;w))

]
∂Ĥ(z(ti;w))

∂z + g(z)u, (12)

where n is the number of time samples, w = {W [0], b[0],W [1], b[1]} is the set
of optimization variables, and (̂·) represents quantities estimated by the neural
networks.

We approach the solution w∗ of (10) with respect to

Vp(θ) :=
tf∑

τ=t0

‖ż∗(τ) − ż(τ)‖2

with an iterative gradient descent method

θn+1 = θn − αn(∇θVp(θn)), n = 0, 1, 2, . . . (13)

where the iteration maps αn : R2 → R
2, n ≥ 0 are defined in accordance with the

Adam method of moments for stochastic optimization [14], and the computation
of the gradient vectors is implemented using automatic differentiation [17].

The term g(z)u is not estimated, but, instead, the actual trajectories of the
leader particles are used, which incorporate the effect of this term. This requires
the knowledge of the leader particles, as well as the followers of each leader.
This is provided by the proposed algorithms for leader detection, presented in
Sects. 3 and 4. In order to create a scalable learning system, we have focused on
the Pytorch [26] deep learning platform that, in addition to automatic differen-
tiation, is endowed with ODE solver capabilities.

6 Experimental Results

6.1 Case of One Leader

We showcase the proposed algorithm in the complex swarm movements shown
in Fig. 3 and 5, where the trajectories of the particles are generated by the
Cucker-Smale and extended Boids models with one leader, respectively.

We simulated the system of ODEs of the port-Hamiltonian system in (5),
with the interaction function as reconstructed by the trained neural network,
which resulted in the reconstructed particle trajectories that are depicted in
Fig. 4 and 6.
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Fig. 3. An example of 2D particle trajectories of a swarm following the dynamics of a
Cucker-Smale model with one leader.

Fig. 4. The actual (blue) and estimated (red) trajectory of the position of a random
agent over time for 20s (y-axis in arbitrary units). (left) The x-coordinate. MSE% =
0.0004. (right) The y-coordinate. MSE% = 0.0001. (Color figure online)

Fig. 5. An example of 2D particle trajectories of a swarm following the dynamics of
an extended Boids model with one leader.

Fig. 6. The actual (blue) and estimated (red) trajectory of the position of a random
agent over time for 20s (y-axis in arbitrary units). (left) The x-coordinate. MSE% =
0.1357. (right) The y-coordinate. MSE% = 0.1819. (Color figure online)
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We note that the rule-based Boids model generates more jerky trajectories
compared with the Cucker-Smale dynamical system and the reconstruction is
less than ideal, as expected. This is an indication, however, that the proposed
methodology is robust to noisy data generated by a model of unknown form.

6.2 Case of Multiple Leaders

We showcase the proposed algorithm in the complex swarm movement shown in
the Fig. 7. where the trajectories of the particles are generated by the CS model
with leadership with two leaders.

Fig. 7. An example of 2D particle trajectories of a swarm following the dynamics of a
Cucker-Smale model with two leaders.

In order to apply our port-Hamiltonian based learning algorithm, we first
estimate the sets L(i), 1 ≤ i ≤ N with our leader detection algorithm presented
in Sects. 3 and 4. The results of the reconstruction of the interaction function
are shown in Fig. 8.

Fig. 8. The actual (blue) and estimated (red) particle interaction function of a swarm
following the dynamics of a CS model with two leaders. The x- and y-axes are in
arbitrary units. The mean squared error is MSE = 0.193657. The x-axis corresponds
to the relative distance between a particle and its neighbor. (Color figure online)
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7 Conclusion and Discussion

In this work we focus on the problem of defending against adversarial attacks
by artificial UAV swarms. The swarms can be driven by multiple dynamically
changing leaders and perform highly complex maneuvers. Existing air defense
infrastructure is largely inadequate when dealing with the sheer number of agents
in the swarm. In this research we propose a method which enables the identifi-
cation of the leaders of the swarm, as well us the underlying coordination laws.
This is the first and most challenging task in the defense strategy against hostile
swarm attacks in existing air defense systems.

We develop a leader detection scheme based on the notion of Granger causal-
ity, relying on short-time observations of the trajectories of the UAVs. We then
proceed with the online estimation of the swarm’s coordination laws, modeled by
a generalized Cucker-Smale model with non-local repulsive potential functions
and dynamically changing leaders, through an appropriately defined iterative
optimization algorithm. The proposed methodology is robust to both missing
data and noise and is validated using simulation data of complex swarm move-
ments.

While the key focus of this work is related to the defense against hostile UAV
swarms, similar problems are found in many other types of large networked sys-
tems, including communication and computer networks, sensor networks, net-
worked cyber-physical systems, biological systems, and social networks over the
Internet. In such systems there are corresponding notions of leaders, such as ini-
tiators of a malicious attack, coordinators of malevolent behavior, initiators of a
biological cell-malfunction, or influential sources of miss-information or untrust-
worthiness. In all these problems fast identification of the leaders and the associ-
ated follower groups (or influence groups) is essential for defending and correcting
such malevolent actions and functions. Thus the applicability of the ideas and
methods proposed in this work is very broad, with the appropriate modeling and
semantic changes for the various domains. Important directions of our current
and future research include extensions of the framework and algorithms to these
broader domains, as well as the utilization of game theoretic methods for their
analysis (non-cooperating, cooperating and mean-field games).
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Abstract. Electric power grid components, such as high voltage trans-
formers (HVTs), generating stations, substations, etc. are expensive to
maintain and, in the event of failure, replace. Thus, regularly monitor-
ing the behavior of such components is of utmost importance. Further-
more, the recent increase in the number of cyberattacks on such sys-
tems demands that such monitoring strategies should be robust. In this
paper, we draw inspiration from work in Moving Target Defense (MTD)
and consider a dynamic monitoring strategy that makes it difficult for
an attacker to prevent unique identification of behavioral signals that
indicate the status of HVTs. We first formulate the problem of finding
a differentially immune configuration set for an MTD in the context of
power grids and then propose algorithms to compute it. To find the opti-
mal movement strategy, we model the MTD as a two-player game and
consider the Stackelberg strategy. With the help of IEEE test cases, we
show the efficacy and scalability of our proposed approaches.

1 Introduction

The electric power grid forms the backbone of all the other critical infrastructures
(communication, transportation, water distribution, etc.) of a country, and thus,
necessitates the presence of adequate monitoring strategies to quickly detect
any anomalous behavior(s) that may have manifested in the system. It is of
utmost importance to not only detect such anomalous behavior but also to take
appropriate actions quickly to prevent the failures of power grid components
which in turn, may lead to a large scale blackout [1]. Components such as High
Voltage Transformers (HVTs), generating stations, substations, etc. are essential
to the power grid and thus, their operational behaviors are monitored at all
times with the help of Phasor Measurement Units (PMUs are devices, which
are utilized as sensors, for monitoring the power grid). The problem of placing
these sensors has been studied by multiple researchers over the past decade [18,
21]. Recently, in [4,17], the authors proposed a sensor placement approach that
can uniquely identify the source of the anomaly by utilizing the sensor readings
generated by PMUs. With the continuous discovery of real-world attacks such as
c© Springer Nature Switzerland AG 2020
Q. Zhu et al. (Eds.): GameSec 2020, LNCS 12513, pp. 241–253, 2020.
https://doi.org/10.1007/978-3-030-64793-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64793-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-64793-3_13


242 S. Sengupta et al.

Stuxnet [13], Dragonfly [28] and a wide range of cyberattacks– jamming, Denial
of Service, packet dropping, false-data injection and compromise of data integrity
[15,16] – robustness of existing sensor placement mechanisms becomes critical.
Thus, in this work, we leverage the ideas of Moving Target Defense (MTD) in
cybersecurity [12,25] and the Minimum Discriminating Code Set (MDCS) based
PMU placement [3,4] to build a defense-in-depth solution.

We continuously move the detection surface to make it challenging for an
adversary to impede the unique identification of failure signals of HVTs. While
PMUs are difficult to move, as opposed to the movement of physical resources
in security games [19], once placed, they can be efficiently activated and deac-
tivated, similar to the dynamic movement in intrusion detection systems [23].
While one may choose to activate all the PMUs placed upfront, the cost of main-
taining them can become an impediment. Hence, the periodic use of a smaller
subset (that still ensures unique identification) of the sensors placed upfront can
be considered. Further, work in MTD has relied solely on heuristic guidance when
constructing the configuration set that can result in all defenses being vulnerable
to one attack, i.e. it is not differentially immune [22]. In this paper, we propose
methods that ensure the MTD configuration set is differentially immune.

First, we define a novel variant of the MDCS problem, called the
K−differentially Immune MDCS (hereafter K-δMDCS). We find K MDCSs of
a graph, in which all K solutions can uniquely identify failing HVTs, with the
added constraint that no two MDCSs share a common vertex; thus resulting in
a differentially immune configuration set for the MTD. Given that the original
MDCS problem is NP-Complete, we show that K-δMDCS is also NP-Complete
and provide an optimal Quadratically Constrained Integer Linear Programming
(QC-ILP) approach to find the Kmax-MDCS of a graph. While our approach
proves scalable for large power networks (MATPOWER IEEE test cases), we
also propose a greedy approach that is computationally faster but trades-off on
finding the largest K value. Second, we model the interaction between the power
utility company (hereafter, the defender) and the adversary, as a normal-form
game. The notion of Strong Stackelberg equilibrium used in this game-theoretic
formulation, popular in existing literature [25,26], assumes a strong-threat model
and aids in finding a good sensor activation strategy for the defender. Finally,
we show the efficacy of our strategy and the scalability of our proposed approach
on several IEEE power test cases of varying sizes.

2 Preliminaries

Fig. 1. IEEE 14 Bus Single Line
Diagram

In this section, we first describe an electric power
grid scenario and highlight how it can be mod-
eled as a graph. Then, we describe the MDCS
problem, showcasing how solutions to it can
help with sensor placement, for the unique mon-
itoring of HVTs. Finally, we provide a quick
overview of Moving Target Defense (MTD) and
the notion of differential immunity.
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t1 t2 t3 t4 t5V1/T =

V2/S =

Fig. 2. Bipartite Graph derived from the IEEE 14-bus network with 2-hop signal
propagation constraints. (Color figure online)

2.1 The Electric Power Grid as a Graph

In Fig. 1, we show the IEEE 14 Bus single line
diagram of an electrical power grid. In [4], the authors proposed a set of graph
construction rules that model the monitoring of HVTs as a bipartite graph G =
(T ∪ S,E), where T represents the set of High Voltage Transformers (HVTs)
that need to be uniquely monitored and S represents the locations where the
PMUs (or sensors) can be potentially placed (PMU’s cannot be directly placed
on HVTs), and E represents the set of edges that exist if the operational behavior
signal of an HVT (t ∈ T ) reaches a PMU (s ∈ S) within a pre-specified number
of hops. As Signal-to-Noise ratio (SNR) is used to measure the operational signal
of an HVT in the real-world, and are known to quickly deteriorate over multiple
hops, we, similar to prior works [4,17], consider the number of hops to be at
most 2 (see Fig. 2).

2.2 Minimum Discriminating Code Set (MDCS)

The MDCS problem is a special case of the Minimum Identifying Code Set
(MICS) [14], and was first studied in [6]. Given a graph, the goal of MICS is to
identify the smallest set of nodes on which sensors can be placed such that two
properties are met (given domain-specific information propagation constraints).
First, if an event occurs at an entity represented by a node in the graph, a unique
set of sensors is activated leading to easy identification of the node (entity).
Second, every node should trigger a non-empty set of sensors if an event occurs
at the node. In MDCS, the problem is adapted to a bipartite graph scenario
with two (disjoint) sets of nodes– (i) nodes of interest, where an event may
occur, which have to be uniquely identified with the sensors, and (ii) nodes on
which sensors can be placed. Formally, we can define the MDCS problem in the
context of sensor placement in power grid systems as follows [4].

Definition 1. Given a Bipartite Graph, G = (T ∪ S,E), a vertex set S′ ⊆ S is
defined to be the Discriminating Code Set of G, if ∀t ∈ T,N(t) ∩ S′ is unique,
where N(t) denotes the neighborhood of t. The Minimum Discriminating Code
Set (MDCS) problem is to find the Discriminating Code Set of minimum size.

Figure 2 represents the bipartite graph obtained from Fig. 1, with 5 nodes in
T , representing the 5 HVTs, and 40 nodes in S. An MDCS solution S′ ⊆ S of
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this graph consists of three nodes (indicated by the three colored nodes) which
ensure that they provide a unique code to identify each of the 5 nodes in T (colors
above the nodes of T indicate the unique combination of sensors activated).

2.3 Moving Target Defense (MTD) and Differential Immunity

Conceptually, MTD, popular in cyber-security, seeks to continuously move
between a set of system configurations available to a defender, to take away the
attacker’s advantage of reconnaissance [12]. The key idea is that the attacker
may not encounter the expected system configuration at the time of the attack,
thereby being rendered ineffective. Formally, an MTD system can be described
using the three-tuple 〈C, T,M〉 where C represents the set of system configura-
tions a defender can move between, T represents a timing function that describes
when the defender moves and M represents the movement strategy [24]. The goal
of this work is two-fold– (1) to construct a desirable set C (for which we define
the K-δMDCS problem in Sect. 3) and (2) an optimal movement strategy M
(by modeling the interaction as a game in Sect. 4).

Note that when a single attack can cripple all the defense configurations ∈ C,
MTD cannot aid in improving the robustness. In [22], the authors introduce the
notion of differential immunity that aims at measuring the amount of diversity
between configurations ∈ C. In this work, we consider a C that is differentially
immune (denoted as δ), i.e. each attack, allowed by the threat model defined
later, can only cripple one defense configuration. This ensures maximum diversity
of C and implies the highest robustness gains for the formulated MTD.

3 K Differentially Immune MDCS (K-δMDCS)

To design the configuration set C for an MTD system, we first need to find multi-
ple MDCS sets of a bipartite graph. For this purpose, we desire K differentially
immune MDCS (K-δMDCS) where no two MDCS solutions share a common
sensor placement point. Formally,

Definition 2 (K-δMDCS). Given a Bipartite Graph, G = (T ∪S,E), K vertex
sets Si ⊆ S, i ∈ {1, . . . , K} are defined to be K-δMDCS of G, if the following
conditions hold– (1) all the sets Si are MDCSs of graph G and (2) for all possible
pairs of sets (Si, Sj), Si ∩ Sj = ∅.

First, we want to activate the minimum number of sensors placed in the
network at any point in time. Hence, we use K sets, all of which are MDCS, i.e.
have the smallest cardinality. Second, the use of differentially immune MDCS
tries to optimize for robustness in adversarial settings. If an attacker were to
attack a particular sensor placement point s ∈ S, it can hope to, at best, cripple
a singular MDCS Si ∈ C, from uniquely identifying HVT failure. If the defender
selects an MDCS Sj ∈ C(j 
= i), then the attacker will not succeed in affecting
the functionality of the power grid sensors. We will now show that the decision
problem corresponding to K-δMDCS is NP-complete.

Lemma 1 K-δMDCS is NP-Complete, given K is an integer and K > 0.
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t1 t2 t3 t4 t5V1/T =

V2/S =

Fig. 3. The IEEE 14-bus power grid graph has 4 − δMCDS solutions.

Proof. We note that the original MDCS problem, which is known to be NP-
Complete [6], is a special case (when K = 1). ��
Corollary 1 K-δ Graph Problems such as K-δMinimum Identifying Code Set
(MICS), K-δMinimum Set Cover (MSC), K-δMinimum Vertex Cover (MVC)
are NP-Complete when K is an integer and K > 0.1

Let us denote the size of an MDCS for a bipartite graph G as m. In K-
δMDCS, the goal of the defender is to find K MDCSs each of size m. Then,
the defender needs to place K ∗ m sensors in the power grid and, at any point
in time, activate an MDCS set (of size m) to uniquely identify failures in T .
While a large number of defender strategies (i.e. larger values of K) helps to
increase their options for sensor activation in turn reducing the success rate for
the attacker, it also incurs the cost of placing K ∗ m sensors. Thus, the ideal
choice of K should trade-off robustness vs. sensor costs (when K = 1, robustness
using MTD is impossible to achieve).

In cases where the defender has sufficient resources, one might ask what is
the maximum size of K? Depending on the structure of the underlying graph,
this question may have a trivial answer. For example, if the bipartite graph has
a t ∈ T and N(t) = {s}, s ∈ S, any MDCS of G needs to place a sensor on s to
uniquely detect a fault in t. Hence, there can exist no two MDCSs that do not
share a common node since s has to be a part of both. In such cases, the max
value of K, denoted as Kmax, is 1. Beyond such cases, similar to the problem of
finding the maximum value of K in the K-clique problem, finding Kmax demands
a search procedure over the search space of K that we now describe.

3.1 Finding Max K for K-δMDCS

We first propose a Quadratically Constrained Integer Linear Program (QCILP)
that given a value of K, finds K Discriminating Code Sets (DCSs). We then
showcase the algorithm for searching over possible values of k ∈ {1, . . . , |S|} to
find the largest K. To define the QCILP for G = (T ∪ S,E), we first consider
|S| ∗ k binary variables where, xsk = 1 if a sensor is placed in node s ∈ S for the
1 Note that in the context of these problems, the distinction between the node sets T

and S in MDCS are unnecessary and one can view the graphs as G = (V, E).
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kth DCS, and 0 otherwise. We also use a variable l that denotes the size of the
DCSs found. We can now describe our QCILP, presented below.

min
l,x

l

s.t. l =
∑

s

xsk ∀k All k DCS has the same size l.

∑

s∈S

(xsk − xsk′)2 = 2l ∀(k, k′) No two DCSs should have a common sensor.

∑

s∈N(t)

xsk ≥ 1 ∀t,∀k All t ∈ T has a sensor monitoring them for all the k solutions.

∑

s∈N(t)ΔN(t′)

xsk ≥ 1 ∀(t, t′),∀k t and t
′ trigger unique sensors for the k-th DCS.

xsk ∈ 0, 1∀s,∀k (1)

The last two constraints ensure that each of the K solutions is Discrimination
Code Sets where (1) all t ∈ T trigger at least one sensor s ∈ S and (2) for all
pairs of t and t′ (both ∈ T ), there exists at least one sensor in the symmetric
difference set of t and t′ that is a part of the DCS, which in turn uniquely
distinguishes between t and t′. The first two constraints ensure that all k DCSs
are of equal size and no two DCSs shares a common sensor. We can now ask the
question as to whether the DCSs found by Eq. 1 is indeed the Minimum DCSs
(MDCSs) for the graph G. In this regard, we now show the following.

Theorem 1 For all values K ≤ Kmax, the optimization problem in Eq. 1 returns
K-δMDCS.

Proof. We consider proof by contradiction. Given the value of K(≤ Kmax), let
us assume that the solution returned by Eq. 1 is not the K-δMDCS for the
graph G. If this is the case, at least one of the two properties in the definition of
K-δMDCS is violated. Thus, either (1) the returned solution consists of a DCS
that is not the Minimum DCS, or (2) there exists a sub-set (of size greater than
one) among the set of DCSs that share a common node.

Owing to the third and fourth constraints, all the solutions constitute a DCS.
Now, if (1) is violated, all the DCSs returned by the QCILP, of length l, are not
the MDCS for G. Thus, the MDCS must have a DCS of size l′ ≤ l. Given that
the minimization objective finds the smallest DCS and K ≤ Kmax, this cannot
be possible. Hence, (1) does not hold.

For (2), let us say that there exists a subset of the DCSs returned that share
a common node. If this was the case, then at least one solution pair has to share
a common node. If this node is denoted as s∗ and the two solutions are termed
as k and k′, then for the second constraint, given xs∗k = xs∗k′ = 1, the term for
s∗ is zero. Even if the other l − 1 nodes in the solutions k and k′ are unique, the
terms will add up to 2 ∗ (l − 1) thereby violating the second constraint. This is
not possible and as a consequence, (2) does not hold. ��
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Algorithm 1: Finding Kmax − δMDCS.
1: In: G = (T ∪ S, E)
2: Out: Kmax − δMDCS
3: solutions ← ∅
4: K ← 1
5: while K ≤ |S| do
6: solutionsK ← Solve Eq. 1 with K
7: if solutionsK == ∅ then
8: break Infeasible for K > Kmax
9: end if
10: if solutions ! = ∅ and |solutions(l)| < |solutionsK(l)| then
11: break DCS returned is not MDCS for K > Kmax
12: end if
13: solutions ← solutionsK
14: K ← K + 1
15: end while
16: return solutions

Given this, we can now consider cases where K > Kmax. When K > Kmax,
the optimization problem in Eq. 1 is either infeasible or returns K DCSs that are
not MDCS for graph G. This condition holds by the definition of Kmax (proof
by contradiction ensues if neither of the two cases holds). With these conditions
in mind we can design an iterative approach, shown in Algorithm 1, to find the
Kmax − δMDCS of a given graph.

Figure 3 showcases the 4−δMDCS solutions returned by Algorithm 1 for the
14-bus power grid network. The different colors indicate the different MDCSs
found for G and the shades of the same color indicate an MDCS set. As shown,
each of the four MDCS has a size of l = 3 and uniquely identifies all the trans-
formers T . The lack of overlapping colors in the bottom set of nodes indicates
that no two MDCS share a common s ∈ S.

While the procedure in Algorithm 1 finds the Kmax−δMDCS, it can be time-
consuming for the largest networks (although it works well on large power-grids
as shown in the experimental section). Thus, one can consider a greedy approach
in which one solves the MDCS problem using [4]. We then solve this ILP with
the additional constraints that xs = 0 for all the sensors found in the current
solution and keep doing so until (1) the ILP becomes infeasible or (2) results in
DCS that does not have minimum cardinality. In the experimental section, we
will see that although this approach is faster, it can output K-δMDCS where
K < Kmax. The sub-optimality is a result of the ordering “enforced” by the
current optimal MDCSs which in turn, proves to be infeasible constraints for
the latter iterations of the problem.

4 Game Theoretic Formulation

The defender’s goal is to maintain the unique identifying capability of HVTs at
all times. Conversely, the attacker tries to prevent this capability, thereby mak-
ing it harder for the defender to effectively monitor the HVTs. Here, we seek
to find the optimal movement function M for the sensor activation MTD to aid
the defender to realize its objective. To do so, we consider a strong threat-model
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where the attacker A with recon, is aware of the defender D’s (probabilistic) sen-
sor activation strategy, thereby making the Stackelberg Equilibrium an appro-
priate solution concept for our setting. We use a polynomial-time approach to
find the Strong Stackelberg Equilibrium of the game [8]. We now briefly describe
the various parameters of the formulated game (see Fig. 4).

Defense Actions. The defender has Kmax pure strategies and the configuration
set C = Kmax −δMDCS. If one uses the greedy algorithm instead of the optimal
approach (both described in the previous section), the number of pure strategies
obtained may be less than Kmax.

Attack Actions. We assume that an attacker can spend reconnaissance effort in
figuring out the sensor placement point. Thus, its action set includes attacking
a sensor that may be considered for activation (instead of all nodes in |S|).
While one can consider attackers with the capability to attack multiple sensor
activation points, it is often too expensive a cost model as it demands resource
procurement and distribution over a wide geographic area.

AD | AA . . .

0,

UD( t1
t4

)
, t2

t5

)
, t3) − CA( )

+
∑

t∈T
UD(t),

−CA( )

+
∑

t∈T
UD(t),

−CA( )

UD(t3),

UD( t1
t2

, t4
t5

) − CA( )

. . .

. . . . . .

. . .

Fig. 4. Game-matrix for the dynamic sensor activation problem.

Player Utilities. The game has two different kinds of utilities that are used to
calculate the rewards. First, the defender receives the utility associated with
uniquely identifying a transformer t ∈ T in the case of anomalous spikes indica-
tive of failure (to occur). We assume that a transformer supplying power to
an important building (e.g. the White House or the Pentagon) is considered to
be more important than one supplying power to a residential area. Second, the
attacker’s cost for attacking a particular sensor needs to be considered. While
some sensors may be placed in high-security areas, others may be easier to access.
We conduct randomized trials with both these values ∈ [0, 10], with 10 indicating
the HVT/sensor most important to protect/difficult to attack.

In the bottom right corner of Fig. 4, the defender, owing to the attacker
attacking a sensor, is only able to uniquely identify t3 and thus, only gets reward
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proportional to it. Contrarily, the attacker, due to attacking a sensor, can make
failures of t1 and t2 (and t4 and t5) indistinguishable and receives the corre-
sponding utilities, minus the cost of attacking the sensor denoted by the light
blue node (∈ S, Fig. 3). Similarly, if the attacker selects the attack represented
by the first attack column (sensor denoted by the dark brown node), the defender
cannot identify any HVT and thus, gets a utility of zero.

Table 1. Game parameters and defender’s reward for playing the different Cs and Ms
for the various power-grid networks.

C Movement function M

Graph |S| + |T | |AD| |AA| URS (K) URS (Kmax) SSE (K) SSE (Kmax)

(K/Kmax) (K/Kmax)

14 Bus 45 4/4 12/12 18.5 ± 4.7 18.65 ± 4.7 20.62 ± 4.6 20.72 ± 4.6

30 Bus 89 4/4 16/16 26.45 ± 5.7 27.25 ± 5.6 29.44 ± 6 29.9 ± 5.8

39 Bus 96 7/9 28/36 18.7 ± 5 19.24 ± 5.2 19.8 ± 5.3 19.73 ± 5.3

57 Bus 170 6/6 60/60 70.76 ± 10.8 70.88 ± 11.1 73.5 ± 10.6 73.07 ± 10.7

89 Bus 422 16/21 96/126 50.67 ± 8.9 51 ± 9 52.2 ± 9.2 52.2 ± 9.2

118 Bus 367 2/2 10/10 31.35 ± 6 31.6 ± 6 32.45 ± 6.4 32.61 ± 6.1

2383 Bus 5927 2/3 212/318 832.7 ± 38.7 836.16 ± 36.7 835.34 ± 39 842.34 ± 39.4

5 Experimental Simulation

In this section, we conduct simulation studies on seven IEEE test graphs pop-
ular in the power domain [29]. Characteristics of these graphs such as the total
number of nodes (i.e. |S| + |T |) are shown in Table 1. The table further lists the
K values for the K-δMDCS found by the greedy and the optimal Algorithm 1,
and is denoted by K and Kmax respectively. The number of attacker strate-
gies is listed in the fourth column. This value can be obtained by multiplying
the corresponding K value with the size of an MDCS for graph G, since none
of the K-δMDCS share a common node. We now discuss two results – (1) the
effectiveness of the game-theoretic equilibrium compared to the Uniform Ran-
dom Strategy baseline (which chooses to activate a particular MDCS with equal
probability) and (2) the time is taken by the greedy and the optimal algorithm
and their respective solution quality.

Effectiveness of Game-Theoretic Equilibrium. In Table 1, we show that in
all test cases, the optimal movement strategy at the Strong Stackelberg Equilib-
rium (SSE) gives the defender a higher reward than choosing URS. When using
URS or SSE, in most cases we see higher gains when the construction of the
MTD configuration set C is optimal (URS(Kmax) obtained from Algorithm 1)
as opposed to using a greedy algorithm (URS(K)). We expected this as the
higher number of differentially immune options (as Kmax > K) chosen with
equal probability reduces the probability of picking the weakest strategy. When
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the value of Kmax = K, such as for 14, 30, 57 and 118 buses, we see that the dif-
ference between the two versions of URS (or two versions of SSE) are negligible.
A reason for the non-zero difference between the rewards values arises because of
the MDCS sets chosen, although the total number of sets chosen are the same.
We also see that the difference in defender rewards can be large even when the
difference between K and Kmax is small in the case of larger networks (e.g. 2383
bus). Thus, without finding the Kmax and the SSE for the optimal C, it is hard
to establish the loss in rewards. Given that these strategies are pre-computed,
the power grid utility operator should not consider the greedy strategy unless
the time required becomes prohibitive.

Fig. 5. Time taken by the optimal (Algorithm 1) vs. the greedy approach for finding
Kmax − δMDCS and K-δMDCS (the K values are shown above the plot points).

Computational Time for Finding. C In Fig. 5, we compare the time taken
for finding the configuration set C using the optimal vs. the greedy approach.
We choose the logarithmic scale for the y-axis because the computational time
of the optimal and greedy approaches for the 14, 30, 39, 57, and 118 buses was
less than a second, and thus difficult to distinguish between on a linear scale.
The largest disparity occurs when the size of the optimal set Kmax is greater
than the K-sized set found by the greedy approach (39/89/2383 Bus). In other
cases, while the optimal approach is slower, it provides the guarantee that no
solution with a greater K exists, which is absent in the greedy case. A case where
the logarithmic scale, from a visualization perspective, does not do justice is the
2383-Bus. The time taken by the greedy approach is 15 s compared to 291 s
taken by the optimal approach. While the K value differs by a factor of one, the
resultant gain in defender’s game value, as shown in Table 1, is relatively large.
Thus, the added time in generating the optimal configuration set needs to be
criticized based on the gain obtained in the underlying game.
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We also consider the pragmatic scenario when the K value is fixed by the
defender up-front owing to budget restrictions of sensors that can be placed in
the power network. In this case, the greedy approach has to iteratively find one
solution at a time, adding them to the constraint set of future iterations until the
desired k is reached. On the other hand, the iterative procedure in Algorithm 1
can be altogether ignored and one can simply return the solution found by the
optimization problem in Eq. 1.

6 Related Works

Adversarial attacks on power grids comprise of false-data injection, jamming,
DoS and packet-dropping attacks [9,10,15]. While researchers have proposed a
multitude of defense mechanisms [27], including Moving Target Defense (MTDs)
[7,20], they do not consider the problem of sensor placement to monitor HVTs.
On the other hand, works that leverage the formalism of Discriminating Code
Sets [6] to optimize sensor placement [4], have focused on scalability issues and
provided theoretical bounds in these settings [3]; completely ignore the issue of
robustness to adversarial intent. In this work, we attempted to fill in this gap.

While an array of research work has formally investigated the notion of find-
ing an optimal movement function M for MTDs, the configuration set C is
pre-decided based on heuristic guidance from security experts [24]. While some
works consider the aspect of differential immunity by analyzing code overlap for
cyber systems [5] or Jacobians of gradients for deep neural networks [2], these
measures have no way of ensuring differential immunity. The notion of k-set
diverse solutions in Constraint Satisfaction Programming (CSP) [11], although
conceptually similar to our notion of differential immunity, does not have the
added constraint of finding a minimum sized solution (as in the case of MDCS).
In adversarial scenarios, our work is the first to formalize the notion of diversity
in graphs and propose linear programming methods to find them.

7 Conclusion

We considered the problem of monitoring the behavior of HVTs in adversarial
settings and proposed an approach based on MTD, formulating it as a game
between the power utility company (the defender) and an adversary. We showed
that finding the configuration set for the defender is NP-Complete and presented
two algorithms– an optimal QC-ILP and a greedy iterative-ILP. Optimal move-
ment strategies at Stackelberg Equilibrium enabled the defender to activate k
sensors at a time and uniquely identify failure points in the face of adversarial
attacks. Results obtained on several IEEE test cases showed that our method
yields the highest expected reward for the defender.
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Abstract. While social networks are widely used as a media for infor-
mation diffusion, attackers can also strategically employ analytical tools,
such as influence maximization, to maximize the spread of adversarial
content through the networks. We investigate the problem of limiting
the diffusion of negative information by blocking nodes and edges in
the network. We formulate the interaction between the defender and
the attacker as a Stackelberg game where the defender first chooses a
set of nodes to block and then the attacker selects a set of seeds to
spread negative information from. This yields an extremely complex bi-
level optimization problem, particularly since even the standard influence
measures are difficult to compute. Our approach is to approximate the
attacker’s problem as the maximum node domination problem. To solve
this problem, we first develop a method based on integer programming
combined with constraint generation. Next, to improve scalability, we
develop an approximate solution method that represents the attacker’s
problem as an integer program, and then combines relaxation with dual-
ity to yield an upper bound on the defender’s objective that can be
computed using mixed integer linear programming. Finally, we propose
an even more scalable heuristic method that prunes nodes from the con-
sideration set based on their degree. Extensive experiments demonstrate
the efficacy of our approaches.

Keywords: Influence maximization · Influence blocking · Stackelberg
game

1 Introduction

The problem of diffusion over social networks has received considerable prior
attention in the literature, both from the perspective of promoting diffusion (the
so-called influence maximization problem) as well as in preventing its spread (the
influence blocking problem). The influence maximization problem aims to select
a subset of nodes on a network to maximize the overall spread of influence, such
as adoption of a product or an opinion [6,10]. Influence blocking presumes that a
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Q. Zhu et al. (Eds.): GameSec 2020, LNCS 12513, pp. 257–276, 2020.
https://doi.org/10.1007/978-3-030-64793-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64793-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-64793-3_14


258 F. Jia et al.

diffusion process is spreading, typically either from a set of known nodes, or from
nodes selected according to some known distribution, with the goal of blocking
its path through either a select set of nodes or edges [12–15,30,33].

In many settings, influence maximizers are malicious parties, and our goal
is to limit their overall influence. For example, in cybersecurity, influence max-
imization may correspond to the spread of malware on the network, while in
criminology we may be concerned about the spread of criminal influence (such as
promoting membership in gangs or terrorist organizations). It is natural in these
settings to consider the problem of adversarial influence blocking (AIB), where
a defender can first block (inoculate) a set of nodes or edges, and the adversary
subsequently unleashes an influence maximization process. In the cybersecurity
setting, we may impose use restrictions on a subset of computing devices, or
even island these from the internet.

We model the resulting problem as a Stackelberg security game in which the
defender first chooses (deterministically) which subset of nodes to block, and
the attacker then selects a subset of seed nodes to begin network diffusion. The
adversary’s goal is to maximize overall influence, whereas the defender aims to
minimize it. Note that this problem is significantly more difficult than the tradi-
tional influence blocking problem, since we are now allowing the choice of seeds
to be adversarial, and to condition on the nodes we choose to block. Despite the
extensive prior research on both influence maximization and influence blocking
problems and their many variants, however, no general effective solution exists
for the adversarial influence blocking problem.

The AIB problem is an extremely challenging bi-level optimization prob-
lem for a host of reasons. First, even computing influence for general influence
measures is difficult [4,5]. Moreover, influence maximization is hard even if we
assume that we can use a black-box (e.g., simulations) to compute expected
influence, and it’s only a subproblem. To address these technical challenges, we
first approximate influence maximization in the lower-level problem by a maxi-
mum node domination problem. While this problem is still NP-Hard [24], it can
be solved using integer linear programming (ILP). We make use of this, together
with a constraint generation algorithm, to develop the first practical solution
to AIM. To increase scalability, we develop an approximation based on a relax-
ation of the attacker’s ILP combined with duality, which yields a single-level
mixed-integer linear program for the defender to solve. We further improve the
scalability of the resulting approach by using simple node pruning heuristics
(removing a subset of nodes from consideration in the optimization problem).
Through extensive experiments, we show that our approach is more effective
for computing influence blocking nodes than state of the art alternatives for a
variety of influence measures, including domination, independent cascades, and
linear threshold models.

Related Work. Influence maximization (IM) is a classical problem in social net-
work analysis, which aims at identifying a set of seeds to maximize the spread of
influence under an information diffusion model, such as the independent cascade
(IC) and linear threshold (LT) model. It has been shown that identifying such
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a seed set is NP-hard and proposed a greedy algorithm with provable guaran-
tees [10].

On the contrary, a host of works consider the influence blocking problem
of limiting the spread of information, typically through blocking the paths of
diffusion, or equivalently modifying the underlying network structure. Some of
them considered removing the edges, with the goal of minimizing the averaged
influence of all nodes by treating each node as a seed independently [13–15], or
minimizing the overall influence of a known set of sources [12]. Most of these
works proposed heuristic algorithms, and experimentally demonstrated the effi-
cacy under the LT or/add IC models. An exception is that the objective function
under the LT model is supermudular, resulting in scalable and effective algo-
rithms [11,12]. There are also other works considering removing nodes from the
network and proposed several heuristic approaches based on the node properties,
such as out-degrees [1,3,25] and betweenness centrality [33]. However, all these
works consider a rather static scenario, where the initial set of seeds is known
and fixed, which is fundamentally different from ours.

Besides modifying the network structure, an orthogonal line of works [2,9]
consider the problem of spreading positive information as the best response to
limit the eventual negative influence caused by the static adversary. Other works
focus on the game-theoretic version where both the players choose to propagate
their influence strategically and simultaneously [26–28]. Several following works
model such a setting as games between the two sources in various application
scenarios such as the defending against misinformation in elections [32] and
protecting assets in an interdependent setting [29].

Our approach relies on approximating the influence of maximization as the
Maximum Node Domination problem, which we term as k-MaxVD. In a graph,
the set of dominated nodes of a node i includes i and its neighbors. The Node
Domination Set [8] of a node-set U is then the union of all the dominated nodes
of every node in U . The k-MaxVD problem is then to find the set U of k nodes
such that the size of its Node Domination Set is maximized. k-MaxVD is proved
to be NP-hard, and a simple greedy algorithm achieves an approximation ratio
of (1 − 1/e) [24].

2 Problem Formulation

In this section, we formulate the adversarial influence blocking problem as a
Stackelberg game where the attacker solves the influence maximization prob-
lem after observing a network modified by the defender. To make it tractable,
we approximate the attacker’s problem as the maximum node domination (k-
MaxVD) problem.

Stackelberg Game Model. We consider a graph G = (V,E), with a set of n
nodes V and a set of m edges E. A defender selects a set of nodes SD ∈ V
to block (remove from the graph) aiming at minimizing the negative influence
caused by the attacker. We use G(SD) to denote the modified graph after nodes
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in SD are blocked. After observing G(SD), an attacker selects an initial set of
seeds SA to maximize the influence under a given influence diffusion model.
Since the attacker’s strategy is conditioned on the choice of SD, we represent
it as a function g(SD). The interaction between the defender and the attacker
is formulated as a Stackelberg game with the defender as the leader and the
attacker the follower. To formalize, we denote the utilities of the defender and
the attacker as UD(SD, SA) and UA(SD, SA), respectively. Our goal is thus to
seek the Stackelberg Equilibrium (SE) of the game, which is defined as follows:

Definition 1. A strategy profile (S∗
D, g∗(SD)) forms a Stackelberg Equilibrium

of the game if it satisfies two conditions:

– The defender plays a best response:

UD(S∗
D, g∗(S∗

D)) ≥ UD(SD, g∗(SD)),∀SD.

– The attacker plays a best response to SD:

UA(SD, g∗(SD)) ≥ UA(SD, g(SD)),∀g, SD.

In particular, we focus on approximating a Strong Stackelberg equilibrium (SSE),
in which the attacker breaks ties (if any) in the defender’s favor.

Next, we define the utilities for both players in terms of the results of
adversarial influence on the network. Specifically, the influence of a seed set
SA chosen by the attacker is the total number of influenced nodes resulting
from an exogenously specified diffusion model, denoted by σ(SA|G(SD)). The
particular game we consider is a zero-sum game in which the attacker’s util-
ity is the influence σ(SA|G(SD)); formally, UD(SD, SA) = −σ(SA|G(SD)) and
UA(SD, SA) = σ(SA|G(SD)). A key concept in this model is the influence maxi-
mization problem, InfluMax(G), which takes a graph G as input and outputs an
optimal set of seeds; this is the attacker’s problem. Consequently, finding the
SSE of the game involves solving the following bi-level program:

min
SD

σ(S∗
A|G(SD))

s.t. |SD| ≤ kD

S∗
A = InfluMax(G(SD))

s.t. |SA| ≤ kA, (1)

where kA and kD are budget constraints on SA and SD, the sets of nodes the
attacker can influence, and the defender can block (remove from the graph),
respectively.

It is evident that the bi-level program (1) is quite intractable, first because
common influence measures, such as using the independent cascades model, are
intractable to compute, second because influence maximization is itself NP-Hard,
and third because both the outer and inner optimization problems are non-
convex. Furthermore, given that there are many competing models of diffusion
of influence on networks, there is even ambiguity in how to best instantiate the
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influence function σ(SA|G(SD)). For these reasons, we next propose an approxi-
mation of the influence functions that introduces considerably more structure to
the problem, and that can be a proxy for many conventional influence functions
in the literature.

Approximating the Influence. Solving the previous bi-level program involves solv-
ing InfluMax(G(SD)) given any SD. However, finding the optimal seed set SA that
maximizes σ(SA|G(SD)) is NP-hard for essentially any common influence mea-
sure [10]. In fact, even mathematically formulating InfluMax(G(SD)) is not easy
– the typical approaches treat InfluMax(G(SD)) as a black box and identify the
optimal SA through simulation. To make our problem more tractable, we approx-
imate σ(SA|G(SD)) as the cardinality of the dominated node set with respect to
SA, denoted by D(SA|G(SD)). Specifically, given a node v ∈ V , its dominated
node set is defined as the v and its neighbors in the graph, i.e., Dv = v ∪ N(v),
where N(v) is the set of neighbors of v. Then the dominated node set of SA is
defined as

D(SA|G(SD)) = ∪v∈SA
Dv = {u|∃v ∈ SA, s.t.(u, v) ∈ E},

and we approximate the influence function using the cardinality of this set:
σ(SA|G(SD)) ≈ |D(SA|G(SD))|. As a result, the influence maximization problem
InfluMax(G(SD)) is approximated as the maximum node domination problem,
which is to find the node set SA that maximizes D(SA|G(SD)). The resulting
bi-level problem we aim to solve is

min
SD

|D(S∗
A|G(SD))|

s.t. |SD| ≤ kD

S∗
A = arg maxSA

|D(SA|G(SD))|
s.t. |SA| ≤ kA. (2)

The solution to problem (2) then becomes the approximate solution to prob-
lem (1). We note that approximation here is not formal; rather, we use exper-
iments below to show its effectiveness in comparison with a number of alter-
natives. Moreover, node domination is itself a natural influence measure (as a
generalization of a node’s degree centrality).

3 Solution Approach

In this section, we present several approaches for computing the defender’s opti-
mal strategy. To begin, we rewrite the bi-level problem as follows. Denote the
defender’s strategy as a binary vector x = {0, 1}n, where xi = 1 means that the
defender chooses to block node vi and xi = 0 otherwise. Similarly, let y = {0, 1}n

denote the attacker’s strategy, where yi = 1 means that the attacker selects vi

as a seed and yi = 0 otherwise. Then D(SA|G(SD)) can be written as a function
of x and y:
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F (x,y) =
∑

vi∈V

(1 − xi) · min{1,
∑

vj∈NI(vi)

yj} (3)

where N I(vi) = vi ∪ N(vi). As a result, the defender’s problem (2) can be
rewritten as

min
x

max
y

F (x,y)

s.t. yi ≤ 1 − xi, xi, yi ∈ {0, 1}, ∀i,
n∑

i=1

xi ≤ kD,

n∑

i=1

yi ≤ kA, (4)

where the first constraint ensures that the node blocked by the defender cannot
be selected as a seed by the attacker.

Next, we begin by developing a mixed-integer linear programming formu-
lation for the attacker’s problem, and subsequently make use of it to obtain
both optimal and approximately optimal, but more scalable, solutions to the
defender’s influence blocking problem.

3.1 Computing Attacker’s Best Response

We begin with the attacker’s problem. Fixing the defender’s decision x, the
attacker seeks to maximize the objective F (x,y) in (3). We linearize each non-
linear term min{1,

∑
vj∈NI(vi)

yj} by replacing it with one auxiliary continuous
variable ti ∈ [0, 1] and one extra inequality ti ≤ ∑

vj∈NI(vi)
yj . Consequently,

the attacker’s problem can be formulated as a Mixed Integer Linear Program
(with fixed x), denoted as BR-MILP:

max
y,t

∑

vi∈V

(1 − xi) · ti

s.t. yi ≤ 1 − xi, i = 1, 2, · · · , n
∑

vi∈V

yi ≤ kA, yi ∈ {0, 1}

ti ≤
∑

vj∈NI(vi)

yj , 0 ≤ ti ≤ 1 (5)

The solution y∗ to this MILP corresponds to the optimal strategy of the attacker
given the defender’s strategy x.

3.2 Optimal Influence Blocking: A Constraint Generation Approach

We now propose a way to compute the exact solution to the bi-level problem (4)
by using a constraint generation method. The defender’s optimal problem can
be alternatively expressed as the following optimization problem:
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min
x,t

n∑

i=1

ti (6)

s.t.
∑

vi∈V

xi ≤ kD, xi ∈ {0, 1} (7)

ti = min{1 − xi,
∑

j∈NI(vi)

y∗
j (1 − xj)},∀i, where (8)

y∗ = BR-MILP(x). (9)

If we let Y denote the complete set of the attacker’s strategies, we can further
rewrite this by a very large optimization problem in which we explicitly enu-
merate all of the attacker’s actions. In this problem, the defender aims to find
a strategy x such that the tight upper bound of the attacker’s utility is mini-
mized. For each y ∈ Y , we can introduce the corresponding variables ti,y showing
whether node i is influenced given the attacker’s strategy y. Constraint (8) given
each y can be linearized to (12)–(14) by introducing binary variables bi,y which
indicates whether 1−xi <

∑
j∈NI(vi)

yj(1−xj). Introducing a sufficiently large
constant M allows us to further linearize all of the non-linear terms, yielding the
following:

min
x,td

UA (10)

s.t.
∑

vi∈V

xi ≤ kD, xi ∈ {0, 1} (11)

UA ≥
n∑

i=1

tdi,y,∀y ∈ Y (12)

1 − xi − M(1 − bi,y) ≤ ti,y ≤ 1 − xi,∀y ∈ Y, ∀i (13)
∑

j∈NI(vi)

yj(1 − xj) − Mbi,y ≤ ti,y ≤
∑

j∈NI(vi)

yj(1 − xj),∀y ∈ Y, ∀i (14)

However, the MILP above is clearly intractable since the set Y is combi-
natorial. To tackle the computational issue, we develop a constraint generation
algorithm. The key to this algorithm is to replace Y with a small subset of
attacker strategies Ŷ ⊂ Y , along with all of the associated constraints, so that
the modified MILP above becomes DEF-MASTER(Ŷ ), in which we can specify
an arbitrary subset of attacks Ŷ . Now we can start by an arbitrary small set
of attacks, and interleave two steps: solve DEF-MASTER(Ŷ ) using the set of
attacks Ŷ generated so far to obtain a provisional solution x for the defender,
and identify a new attack y that is a best response to x. We can stop this as soon
as the best response of the attacker no longer improves their utility compared
to the solution obtained by DEF-MASTER(Ŷ ). Algorithm 1 fully formalizes the
proposed constraint generation procedure, where is the set of optimal BR-MILP
is just the mixed-integer linear programming approach for identifying the best
response of the attacker presented in formulation (5). Note that we can uti-
lize the returned influence value tay of BR-MILP to prune irrelevant constraints
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of DEF-MASTER. Specifically, we only generate constraints (13)–(14) for each
influenced node (tai,y = 1). For the node with tai,y = 0, we add the constraint
tdi,y = 0, because given an attacker’s strategy y, the uninfluenced node will not
be influenced no matter what x is. Consequently, we denote the refined master
problem by DEF-MASTER (Ŷ , T̂ a) in Algorithm 1.

Algorithm 1. Constraint Generation (CG)

1: Ŷ = ∅, T̂ a = ∅,
2: UUB

A = ∞, UUB
A = 0

3: x∗, xdef = 0
4: while UUB

A − ULB
A > gap do

5: (tay, y, UA) ← BR-MILP(xdef )

6: Ŷ = Ŷ ∪ {y}, T̂ a = T̂ a ∪ {tay}
7: if UA < UUB

A then
8: Update the upper bound UUB

A = UA

9: Update the incumbent solution x∗ ← xdef

10: (xdef , ULB
A ) ← DEF-MASTER(Ŷ , T̂ a)

11: return x∗

3.3 Approximating Optimal Influence

The constraint generation approach enables us to effectively compute optimal
influence blocking. However, it fails to scale to networks of even a moderate
size. We now propose a principled approximation approach that makes use of
a linear programming (LP) relaxation of the attacker’s problem combined with
LP duality.

Specifically, by relaxing the integer constraint on each yi, the attacker’s prob-
lem (5) becomes a linear program (LP) with variables y and t. Its dual is

min
λ0,q,α,β,γ

kAλ0 +
n∑

i=1

(1 − xi)qi +
n∑

i=1

βi +
n∑

i=1

γi

s.t. λ0 + qi + βi −
∑

vj∈NI(vi)

αj ≥ 0,

αi + γi ≥ 1 − xi,

λ0, qi, αi, βi, γi ≥ 0, i = 1, 2, · · · , n

(15)

where λ0, q, α, β, γ are the dual variables. By substituting the inner problem
with (15), the defender’s bi-level program can be reformulated as a minimization
problem with the same objective as that in (15), with the difference that x now
are variables. Finally, we can linearize the non-linear terms

∑n
i=1(1 − xi)qi as

follows. We introduce new variables wi ≥ 0 and a large constant M , such that
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wi = (1 − xi)qi, i = 1, 2, · · · , n. We further introduce linear constraints for each
wi, qi, and xi:

−M(1 − xi) ≤ wi ≤ M(1 − xi), (16)
qi − Mxi ≤ wi ≤ qi + Mxi. (17)

The full defender’s problem can thus be formulated as a MILP, which we
denoted by DEF-MILP:

min
x,λ0,q,α,β,γ,w

kAλ0 +
n∑

i=1

wi +
n∑

i=1

βi +
n∑

i=1

γi

s.t.
n∑

i=1

xi ≤ kD,

λ0 + qi + βi −
∑

vj∈NI(vi)

αj ≥ 0,∀ i

αi + γi ≥ 1 − xi, ∀ i

constraints (16−17)
xi ∈ {1, 0}, w, λ0, q, α, β, γ ≥ 0.

(18)

The optimal strategy for the defender is then the solution x∗ to (18).

3.4 Scaling up Through a Pruning Heuristic

Even finding the approximately optimal strategy for the defender above involves
solving a MILP (18), of which the number of constraints grows linearly with the
number of nodes. This is a computational bottleneck, especially when the net-
work is large. We propose a heuristic approach to deal with very large networks.
The basic idea is to limit the strategy space of the defender.

We write the DEF-MILP (18) as a function DEF-MILP (X, kA, kD, G),
where X denotes the strategy space of the defender. Our algorithm relies on
pruning some less important nodes, which significantly reduce the strategy space
X. Note that the importance of the nodes can be measured by different metrics,
such as the node degree. Our Heuristic Pruning Algorithm is presented in Algo-
rithm 2. The idea is to first sort the nodes according to some importance metric
in descending order, and then restrict the defender’s strategy space in the top-
lD nodes; that is, setting xi = 0 for the rest. Finally, we solve the MILP with
restricted strategy space. The parameter lD controls the trade-off between the
time complexity of solving the MILP and the quality of the solution.

4 Extensions

Weighted Influence Maximization. A natural extension of influence maximiza-
tion allows each node vi ∈ V to be associated with non-negative weight μi
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Algorithm 2. Heuristic Pruning Algorithm
1: procedure Pruned-MILP(kA, kD, lD, G = (V, E))
2: SortedList = SortingAlg(V )
3: Xpruned ← {0, 1}n

4: for i in SortedList[ld, n] do
5: ∀x ∈ Xpruned, fix x[i] = 0

� Limit the strategy space to top ld nodes
6: xdef ← DEF-MILP(Xpruned, kA, kD, G)
7: lastNum ← kd - calBlockedNum(xdef )
8: for i in SortedList do
9: if lastNum ≤ 0 then

10: break
11: if xdef [i] == 0 then
12: xdef [i] = 1
13: lastNum = lastNum − 1

14: return xdef

15: procedure calBlockedNum(xdef )
16: num = 0
17: for i in xdef do
18: num+ = i

19: return num

capturing its importance in the final outcome [10]. Here we denote this problem
as weighted influence maximization (WIM). They defined the weighted influence
function σμ(S) as the expected value outcomes B of the quantity

∑
vi∈B μi,

where B denotes the random set activated by the process with initial seed set
S.

To incorporate weighted influence maximization, we generalize our model by
associating a weight to each node in the objective function (3), i.e., F (x,y) =∑

vi∈V μi(1 − xi) · min{1,
∑

vj∈NI(vi)
yj}.

The inner problem of the attacker’s best response can be formulated by
modifying the objective in (5) to

∑
vi∈V μi(1 − xi) · ti.

Applying the same procedure of calculating the defense strategy of the non-
weighted version, we can formulate the defender’s optimization problem. The
procedure is briefly described as follows. First, we can directly generalize the
MILP formulation of the attacker’s best response. Next, we relax the integer
constraint on each yi and take the dual of the resulting LP. The bi-level problem
can then be reformulated as a non-linear minimization problem by replacing the
inner problem with the relaxed dual. Finally, we introduce the large number M
to linearize the non-linear term, we can get the final formulation, denoted as
DEF-WMILP, shown as follows.
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min
x,λ0,q,α,β,γ

kAλ0 +
n∑

i=1

wi +
n∑

i=1

βi +
n∑

i=1

γi (19a)

s.t. &w, λ0, q, α, β, γ ≥ 0 (19b)
∑

vi∈V

xi ≤ kD (19c)

λ0 + qi + βi −
∑

vj∈NI(vi)

αj ≥ 0,∀i (19d)

αi + γi ≥ μi(1 − xi),∀i (19e)
constraints (16)−(17) (19f)
xi ∈ {1, 0},∀i. (19g)

For the heuristic pruning algorithm Pruned-MILP, we can substitute DEF-
MILP with DEF-WMILP.

Blocking Both Edges and Nodes. The model can be further generalized by consid-
ering blocking both edges and nodes with different costs. Suppose that the cost
of blocking an edge is ce and the cost of blocking a node is cn, and the defender
chooses to block a subset of both edges and nodes given a total budget BD.
Let zij = {0, 1}, ∀(i, j) ∈ E denote the defender’s edge strategy, where zij = 1
means that the defender chooses to block edge (i, j) and zij = 0 otherwise. Then
the defender’s budget constraint becomes:

∑

vi∈V

xicn +
∑

(i,j)∈E

zijce ≤ BD (20)

Once blocking a node, it is not necessary to block the edges linked to the node.
To demonstrate this node-edge relationship, we introduce an integer variable
kij ∈ {0, 1}, ∀(i, j) ∈ E and the following linear constraints.

zij − 0.5 ≤ Mkij (21)
xi − 0.5 ≤ M(1 − kij) (22)
xj − 0.5 ≤ M(1 − kij) (23)

Given the defender’s strategy z and x, the attacker’s best response can be
modified to

max
y,t

∑

vi∈V

(1 − xi) · ti (24)

s.t.
∑

vi∈V

yi ≤ kA, yi ∈ {0, 1} (25)

yi ≤ 1 − xi,∀i (26)

ti ≤ yi +
∑

vj∈N(vi)

yj(1 − zji), 0 ≤ ti ≤ 1,∀i (27)
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Finally, taking the dual of the relaxed attacker’s problem, the defender’s problem
can be formulated as a non-linear mixed integer program:

min
x,Z,λ0,q,α,β,γ

kAλ0 +
n∑

i=1

(1 − xi)qi +
n∑

i=1

βi +
n∑

i=1

γi

s.t. w, λ0, q, α, β, γ ≥ 0
∑

vi∈V

xicn +
∑

(i,j)∈E

zijce ≤ BD

λ0 + qi + βi − αi −
∑

vj∈N(vi)

αj(1 − zij) ≥ 0,∀i

αi + γi ≥ μi(1 − xi),∀i

constraints (21)−(23)

(28)

We can linearize the non-linear terms by replacing (1 − xi)qi by introducing
a new variable wi and replacing αj(1 − zij) with bij . Then the optimal defense
strategy (x∗, z∗) can be obtained by solving the large-scale MILP (24).

min
x,Z,λ0,q,α,β,γ,b,k,w

kAλ0 +
n∑

i=1

wi +
n∑

i=1

βi +
n∑

i=1

γi (29a)

s.t. w, k, b, λ0, q, α, β, γ ≥ 0 (29b)
∑

vi∈V

xicn +
∑

(i,j)∈E

zijce ≤ BD (29c)

λ0 + qi + βi − αi −
∑

vj∈N(vi)

bij ≥ 0,∀i (29d)

αi + γi ≥ μi(1 − xi),∀i (29e)
M(1 − zij) ≥ bij ≥ −M(1 − zij),∀(i, j) ∈ E (29f)
αj + Mzij ≥ bij ≥ αj − Mzij ,∀(i, j) ∈ E (29g)
constraints (16)−(17), (21)−(23)
zij , kij ∈ {0, 1},∀(i, j) ∈ E;xi ∈ {0, 1},∀i.

5 Experiments

In this section, we test our defense approaches against several attacks and also
compare them with several defense baselines from previous works. All runtime
experiments were performed on a 2.6 6 GHz 8-core Intel Core i7 machine with
16 GB RAM. The MILP instances were solved using CPLEX version 12.10.

Data Sets. We conduct experiments on both synthetic graphs and real-world
networks.
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Fig. 1. Comparison between constraint generation and DEF-MILP in terms of runtime
(left) and the attacker’s utility (right).

– Synthetic graphs: We generate synthetic graphs from three graph mod-
els: Erdos-Renyi (ER) model [7], Watts-Strogatz (WS) model [31] generates
networks with small-world properties., and Barabasi-Albert (BA) model [31].
Specifically, each edge in the ER model is generated with probability p = 0.1.
In the WS model, each node is initially connected to 5 nodes in a ring topol-
ogy and we set the rewiring probability as 0.15. In the BA model, at each
time we add a new node with m = 3 links that attach to existing nodes.

– Real-world networks: We consider four real-world networks. The Email-
Eu-Core network [20,34] is generated using email data from a large European
research institution, which has 1,005 nodes and 25,571 edges. The Hamster-
ster friendships network [17,18] is an undirected friendship network of the
website hamsterster.com with 1,858 nodes and 12,534 edges. We also tested
on the sub-networks of a Facebook friendship network [23] and the Enron
email network [16,22], where the sub-networks are sampled by the Forest
Fire sampling method [19].

Methodology. Given a graph G, we employ a defense strategy to block kD nodes,
resulting in a modified graph GM . The attacker then uses an attack strategy
to select kA seeds to spread the influence. We then measure the utility of the
attacker under various combinations of defense and attack strategies. Specifically,
we test our proposed defense strategies (CG, DEF-MILP, DEF-WMILP, and the
corresponding pruned algorithms) against three attacks (k-MaxVD, IM, WIM). We
also compare our defense strategies with several defense baselines. These attack
and defense strategies are detailed as follows.

Attacks. We consider three types of attacks: k-MaxVD, IM, and WIM. In the
k-MaxVD attack, the attacker solves BR-MILP (5) to find the seeds. In the IM
attack, the attacker employs an efficient variation, termed CELF-greedy [21], of
the classical greedy algorithm [10] to solve the influence maximization problem.
Specifically, CELF-greedy utilizes the submodularity of the spread function and
conduct an early termination heuristic, which achieves up to 700 times efficiency
improvement while still providing a (1−1/e) approximation guarantee. The WIM
attack is a variation of the IM attack adapted to the weighted setting.
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(a) ER (k-MaxVD) (b) ER (IC) (c) ER (LT) (d) ER (WIM)

(e) WS (k-MaxVD) (f) WS (IC) (g) WS (LT) (h) WS (WIM)

(i) BA (k-MaxVD) (j) BA (IC) (k) BA (LT) (l) BA (WIM)

Fig. 2. The performance of DEF-MILP on synthetic networks against several attacks.

Defenses. Our optimal defense strategy is constraint generation(CG), and the
primary defense strategy is DEF-MILP, where the defender solves the MILP
(18) to find the set of nodes to block. We also consider DEF-WMILP, which is
a variation of DEF-MILP in the weighted setting, as well as the corresponding
pruning algorithms.

We compare our defense strategies with the following baselines. First, we
consider a class of heuristic defense approaches where the defender blocks nodes
in descending order of a specific node centrality measurement. The intuition is
that node centrality measures the importance of a node in the network and
blocking nodes with high centrality is more likely to limit the influence. In
the experiment, we use node degree (out-degree in case of directed graphs),
betweenness, PageRank, and influence as the centrality measurements and term
the corresponding defenses as Degree, Betweenness, PageRank, and Influence,
respectively. Specifically, the influence of a node is measured by the number of
influenced nodes in the network when it is treated as the sole seed. We also
consider four other baselines: Influence Maximization (IM), Greedy, WDom,
and Random. In IM, the defender acts as an influence maximizer and blocks kD

nodes that would cause the maximum influence. Greedy is a heuristic approach
proposed in [30]. They assume that an attacker chooses some influential nodes
at the beginning, and a protector blocks the nodes according to the maximum
marginal gain rule. In our experiment, we set the influential nodes as the seeds
selected by influence maximization in the original network. In WDom, we define
a quantity WDomj =

∑
vi∈NI(vj)

μi for a node j, where μi is the non-negative
weight of the node i, as the sum of weights of node j’s dominating nodes. This
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(a) Hamsterster(kA = 30) (b) Email-Eu-core(kA = 20)

Fig. 3. The performance of PRUNED-MILP on Hamsterster and Email-Eu-core networks
against k-MaxVD.

(a) Email-Eu-core (b) Hamsterster,0.03 (c) Hamsterster,0.4 (d) FB606(IC)

(e) Enron3600,0.03 (f) Enron3600,0.4 (g) Enron4300,0.03 (h) Enron4300,0.4

(i) FB2000,0.01 (j) FB3000,0.01 (k) FB2000,0.1 (l) FB3000,0.1

Fig. 4. The performance of PRUNED-MILP on real-world networks against IM attackers.

Fig. 5. The performance of PRUNED-MILP on real-world networks against WIM attack-
ers. Left: Email-Eu-core, kA = 20. Middle: Hamsterster, kA = 30, p = 0.03. Right:
Hamsterster, kA = 30, p = 0.4.

heuristic is used to defend WIM attackers by blocking kD nodes with highest
WDom. Finally, Random selects a random set of nodes to block.

Comparison with Constraint Generation. First, we compare DEF-MILP with
the constraint generation (CG) algorithm. We consider several variations of CG
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using a gap parameter, which defines the gap between solution quality of newly
generated constraint (i.e., attack) and the best previously generated constraint; a
gap of 0 implies that CG computes an optimal solution, whereas other gaps trade
off optimality and efficiency. We evaluate the algorithms on ER networks whose
sizes increase from N = 15 to N = 65. For each network’s size, we generate 50
instances to test the runtime and 25 instances to test the attacker’s utility with
various random seeds and take the average. The experiments are conducted
under DEF-MILP defense and CG defenses with budget kD = 5,against the
K-MaxVD attack with kA = 5.

We can see that the results of DEF-MILP are quite close to that of optimal
CG solutions, and are in some cases better than CG that uses a small gap.
Though the DEF-MILP is not far from the optimal solution, the runtime is
significantly reduced. Figure 1 shows that even if we loosen the gap of CG
algorithms to 1, 2, and 3, the runtime of DEF-MILP is still considerably lower.

Results on Synthetic Graphs. In our experiments, we generate 64-node graphs
for k-MaxVD and IM (including IC and LT) attackers with budgets kA = 5. We
generate 80-node networks for WIM attackers with kA = 6. Each node is associated
with a value μi ∼ U [0, 1].

As shown in Fig. 2, our defense strategy DEF-MILP and DEF-WMILP out-
perform all other baselines under all three attacks. We note that on BA graphs,
heuristics based on node importance is comparable to the MILPs, while all these
approaches perform significantly better than Random. One possible reason is that
in BA graphs, there are a few high-degree nodes that can be effectively identified
by centrality based algorithms.

For the defense algorithms, we can see that several heuristics can work effec-
tively. RageRank is a good heuristic under k-MaxVD attack. IM works better than
other heuristics under the LT model in our experiments. For the WIM attacker,
WDom heuristic can be slightly better than other heuristics.

Results on Real-World Networks. As the size of real-world networks is signifi-
cantly larger, we only test Pruned-MILP and prune the nodes in descending
order of the degrees. We compare Pruned-MILP with Degree that uses the
same node property to select nodes.

Figure 3 shows the utility of the k-MaxVD attacker on Hamsterster friend-
ships network, with kA = 30, and Email-Eu-core network, with kA = 20. The
results show that our proposed approach outperforms the Degree algorithm, even
though aggressive pruning is used.

Figure 4 shows the defense of the IM attackers with different diffusion models
in three networks. Linear Threshold (LT) model is used in the Email-Eu-core
network. Uniform Independent Cascade (UIC) with different propagation prob-
abilities are used in Hamsterster friendship network and the Weighted Indepen-
dent Cascade (IC), in which each edge from node u to v has the propagation
probability 1/deg(v) to activate v, is used in a 606-node sampled Facebook net-
work. The budgets of the attacker are set as kA = 20, kA = 30 and kA = 10,
respectively.
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Table 1. The effect of integrality relaxation of BR-MILP (5) in Hamsterster and
Email-Eu-core networks.

kA Hamsterster Email-Eu-core

MLP MMILP Gap (‰) MLP MMILP Gap (‰)

10 320.500 320.000 1.563 690.380 689.000 2.002

20 443.000 443.000 0.000 784.000 782.000 2.558

30 531.875 531.000 1.648 836.500 836.000 0.598

40 603.750 603.000 1.244 872.090 872.000 0.103

50 660.500 660.000 0.758 895.830 895.000 0.927

60 707.375 707.000 0.530 915.839 915.000 0.917

For the larger two network datasets, we evaluate the performance of
PRUNED-MILP in their sub-networks. Enron email network is sampled to
Enron3600 containing 3,600 nodes and 11,412 edges and Enron4300 contain-
ing 4,300 nodes and 11,968 edges (kA = 70). Facebook network is sampled to
sub-networks with 2000 (kA = 40) and 3000 (kA = 60) nodes. The two sets of
networks are applying different UIC model in view of small (p = 0.01, p = 0.03)
and large (p = 0.1, p = 0.4) diffusion probabilities. Figure 4 shows that our
algorithm is generally better than the Degree algorithm.

Next, we evaluate our PRUNED-MILP defense of WIM attack. Figure 5
shows the utility of the attacker on the Email-Eu-core network and the Ham-
sterster friendship network. Each node vi ∈ V in the networks is assigned a value
μi uniformed distributed in [0, 1].

We compare the two pairs of experiments with two kinds of pruning orders,
Degree and WDom. Intuitively, WDom considers the value of nodes so that it might
be more adaptable to this problem. Figure 5 shows that applying the proposed
PRUNED-MILP outperforms the original defense strategies.

The Effect of LP Relaxation. In our approach, we relaxed the integral con-
straints on the variables y of the BR-MILP, through which we are essentially
optimizing over an upper bound of the attacker’s utility. We demonstrate the
quality of this approximation through experiments. Let the relaxed problem
be BR-LP. We compare the optimal objective values of BR-MILP and BR-LP,
denoted as MLP and MMILP , respectively. We are interested in the integrality
gap defined as IG = MLP /MMILP . Table 1 shows the gap in percentage, defined
as Gap = (MLP − MMILP )/MMILP , for the Hamsterster network and Email-
Eu-core network with the attackers’ budget from 10 to 60. The results show that
the gaps in various cases are almost negligible, demonstrating a good approx-
imation quality at least from an experimental perspective. The experiments in
synthetic networks achieves similar results.

Trade-Off in Heuristic Pruning Algorithm. The parameter ld in our pruning
algorithm trades off the run-time and quality of the algorithm. In Table 2, we
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Table 2. The run-time and solution quality in Hamsterster network with kD = 400
and kA = 30

ld 400.0 500 550.0 600.0 639.0

Run-time (sec) 7.4 12.8 17.4 131.0 589.0

UIM 188.7 153.7 146.8 138.4 133.1

Uk−MaxVD 210.0 194 175.0 164.0 155.0

show the run-time and the attacker’s utilities with different configurations of ld
in Hamsterster network when kD = 400 and kA = 30. Uk−MaxVD denotes the
utility of the k-MaxVD attacker, and UIM denotes the utility of the IM attacker
with propagation probability p = 0.4. We can observe that when ld increases,
runtime quickly increases, but the solution quality also improves. However, when
ld is larger than one threshold, CPLEX cannot return the solution in reasonable
time.

6 Conclusion

In this paper, we investigate the problem of blocking adversarial information in
social networks, where a network defender aims to limit the spread of misinfor-
mation by blocking nodes in the network. We model the problem as a Stackelberg
game and seek the optimal strategy for the defender. The main challenge is to
find the best response for the attacker, which involves solving the influence maxi-
mization problem. Our approach is to approximate the attacker’s influence max-
imization as the maximum node domination problem, which can be expressed
as an integer program. This enables us to develop a constraint generation app-
roach for the defender’s problem. Further, by utilizing linear program relaxation
and its duality, we reformulate the defender’s problem as a mixed-integer linear
program, which can be solved efficiently. We further develop a heuristic pruning
algorithm to deal with large networks efficiently, as well as a constraint genera-
tion algorithm to compute the exact solution iteratively.

We test our defense approaches against several attacks on synthetic graphs
and real-world networks and compare them with various state-of-the-art defense
baselines. The experiment results show that our proposed defense approaches
can effectively limit the spread of misinformation in an adversarial environment,
outperforming all other baselines.
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Abstract. Stochastic policy gradient methods using neural representa-
tions have had considerable success in single-agent domains with continu-
ous action spaces. These methods typically use networks that output the
parameters of a diagonal Gaussian distribution from which the result-
ing action is sampled. In multi-agent contexts, however, better policies
may require complex multimodal action distributions. Based on recent
progress in density modeling, we propose an alternative for policy rep-
resentation in the form of conditional normalizing flows. This approach
allows for greater flexibility in action distribution representation beyond
mixture models. We demonstrate their advantage over standard methods
on a set of tasks including human behavior modeling and reinforcement
learning in multi-agent settings.

Keywords: Continuous actions · Stochastic policies · Multi-modality ·
Density modeling · Continuous security games

1 Introduction

The multi-agent learning literature contains many examples of multiple self-
interested agents with imperfect information that are strategically interacting
with each other [6]. Imperfect information and strategic interaction conditions
require agents that can both model complex strategies of other interacting agents
and formulate complex strategies in response. This often requires action distri-
butions that are multi-modal to model the effects of hidden latent variables and
to avoid being predictable to other agents. Current success in multi-agent learn-
ing is based on representing stochastic policies with categorical distributions
over discrete actions [45] and population-based training to maintain a mixture
of strategies [31]. Moreover, the recent success with AlphaStar on Starcraft II
requires conditioning the agent’s policy on hand-crafted features indicating dif-
ferent modes of human play [49].

However, past work in multi-agent contexts has largely focused on discrete
action domains where multimodal behaviors are easily represented by categorical
distributions. Single agent continuous control tasks are often modeled as either
deterministic policies [44] or multivariate Gaussian with diagonal covariances as
stochastic policies [41]. Deterministic policies are known to be suboptimal for
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multi-agent scenarios [18]. In our experiments, we find that Gaussian represen-
tations of stochastic policies overly restrict the model class to have multimodal
behaviors and thus lead to suboptimal performance in multi-agent domains.
Consequently, devising methods to learn such complex representations for multi-
agent systems is a significant challenge from a practical standpoint and is a key
motivation for our work.

Density modeling is a rich field of study. Mixture models are often used
to build multi-modal distributions from unimodal ones. This approach can be
effective when the degree of multi-modality is known. We show in this work how
complex multi-agent interactions can often require more flexible distributions
than those achieved by mixture models. Recent advances in generative modeling
[8,12,26] have shown promise for modeling complex distributions. Various Nor-
malizing Flow models [8,9,11,25,37] allow learning invertible transformations of
distributions that maintain ease of sampling and density evaluation while cap-
turing complex distributions encountered in the real-world [34]. Due to their
generality, these models can also allow reasoning about states and actions, mak-
ing them useful for policy representations.

Our main contributions in this work are:

– Providing several examples of multi-agent problems that require complex
action distributions for agent policies.

– Showing how conditional normalizing flow models can be used to represent
a continuous stochastic policy, i.e. distributions over actions that are condi-
tioned on the current state of the agent.

– Demonstrating their effectiveness in two multi-agent learning contexts:
1. Imitation learning in multi-agent multi-modal behavior modeling.
2. Reinforcement learning in multi-agent imperfect information stochastic

games to learn mixed strategies that are difficult to exploit.

We compare against standard multivariate Gaussian policies as well as their
mixtures and provide qualitative and quantitative differences in learned agent
behavior on a suite of synthetic and real-world tasks.

2 Background and Related Work

This section outlines the components of our approach and discusses relevant
prior work.

2.1 Flow Models

Flow models are invertible transformations that map observed data x to a latent
variable z from a simpler distribution, such that both computing the probability
density p(x) and sampling x ∼ p(x) are efficient. Represented as a function
f , the key idea is to stack individual simple invertible transformations [8,9] as
z = f(x) = f1◦· · ·◦fL(x), with each fi having a tractable inverse and a tractable
Jacobian determinant. Sampling is efficient because x = f−1(z) = f−1

L ◦ · · · ◦
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f−1
1 (z), where z is sampled from a simple distribution like the standard normal

or logistic, q. To take into account the change in volume due to application of
transforming functions, the log density can be written as:

log p(x) = log q(z) +
L∑

i=1

log
∣∣∣∣det

∂x(i−1)

∂x(i)

∣∣∣∣ (1)

where x(i) = f−1
i ◦ · · · ◦ f−1

1 (z) and x(0) = z. Computing the model density and
training by maximum likelihood is efficient because Eq. (1) is easy to compute
and differentiate with respect to the parameters of the flows fi.

2.2 Stochastic Games

Multi-agent reinforcement learning problems are typically modeled as stochastic
games [30,42]. These comprise of a state space S, I = {1, . . . , n} agents with
their observation and action spaces as O1, . . . ,On and A1, . . . ,An, respectively;
(stochastic) reward functions Ri : S × A1 × . . . × An → R for each agent;
(stochastic) observation functions Oi : S → Oi for each agent; a (stochastic)
transition function T : S × A1 × . . . × An → S; and an initial state distribution
ρ(s0) on S. The goal of each agent in the game is to maximize the discounted
future reward with discount factor γ. A special case of a stochastic game with
one agent is a partially observable Markov decision process (POMDP) [27]. A
Markov decision process (MDP) in turn is a special case of a POMDP with
observation function as identity.

Strategic interactions between agents are studied through the lens of game
theory. A repeated normal-form game (NFG) is a special case of a stochastic
game with only one state. The reward functions Ri can be combined together into
a single payoff function U : S×

∏n
k=1 Ai → R

n. We can define the strategy profile
as π = (π1, . . . , πn) and π−i as the same strategy profile but without the policy πi

of agent i. The expected utility of an agent i is then ui(π) = Eπ[U(a) | a ∼ π]. A
best response for agent i given π is BR(π−i) = arg maxπi ui((πi, π−i)). A profile
π∗ is a Nash equilibrium, if for each agent i, the strategy πi = BR(π−i).

Security games between a defender and an attacker are often modeled as a
special kind of two-player normal-form games [23]. The attacker may choose to
attack any targets from the set T . The defender tries to prevent such attacks by
covering targets using resources from the set D. The utilities for each player can
be obtained given the game state (i.e. the target locations) and agent actions.
These games have been used to model defender-adversary interaction in pro-
tecting infrastructure targets such as airports, ports, and flights [7,39,46] with
discrete locations. However, this model is increasingly being applied to protecting
wildlife [50], fisheries [15], forests [19,21,22], and other domains with continuous
spaces.

2.3 Imitation Learning and Agent Modeling

Given a set of observed states and corresponding actions as expert demonstra-
tions, the goal of imitation learning is to learn a policy πθ that matches the
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expert’s behavior as closely as possible. We focus on the behavior cloning app-
roach that treats this task as a supervised learning problem [36], learning a
stochastic policy πθ that maximizes the likelihood of observed expert actions.
We leave other imitation learning paradigms [17] for future work. The same
principles can be applied to modeling an agent’s behavior given sample trajec-
tories [38]. Bhattacharyya et al. [3] observe that capturing multi-modality of
agent behavior is important in multi-agent contexts such as automated driving.
Vinyals et al. [49] show that bootstrapping agent policies via imitation learning
is often an important first step for solving complex games.

2.4 Multi-agent Reinforcement Learning

Although there are several approaches for solving zero-sum games, such as linear
programming, fictitious play [5], replicator dynamics [48] or regret minimiza-
tion [4] for zero-sum games, they often suffer an exponential increase in com-
plexity with the size of state-action space. With the recent success of reinforce-
ment learning (RL) at solving complex high-dimensional tasks, adapting such
methods for multi-agent contexts provides a viable approach for solving high-
dimensional multi-agent problems. One can independently apply RL to multiple
agents with individual agents treating other agents as parts of stochastic envi-
ronments [31]. Other approaches include self-play [16] and policy space response
oracles (PSRO) [28]. However, with the exception of Bansal et al. [2] and Liu
et al. [31], these have mostly been limited to discrete actions. Liu et al. [31] and
Lanctot et al. [28] recognize the importance of training a population of agents to
capture the multi-modal behavior. Kamra et al. [21,22] demonstrate the utility
of applying deep reinforcement learning methods for continuous space security
games but do not explore multi-modality.

Some explored policy architectures for various single-agent continuous control
tasks. Haarnoja et al. [13] note that Gaussian mixtures can represent multi-
modal policies with the number of modes specified in advance. Recent work shows
implicit policies like those based on Normalizing Flows can obtain competitive
performance on single agent continuous control tasks but do not explore the
context of multi-agent domains [47]. Moreover, the standard choice for policy
representation for continuous action spaces continues to be unimodal diagonal
Gaussian [29,41], even in the context of multi-agent domains [31]. We show that
this choice can limit policy representability for multi-agent contexts.

3 Normalizing Flow Policy Representation

3.1 Conditional Flow as Policy Representation

While a flow model is capable of modeling complex distributions, to use it as
a policy representation, we need to condition its output on some state s. We
propose to embed such state conditioning in each individual transformation, fi

in Eq. (1), of the flow model while maintaining its invertibility and computational



Normalizing Flow Policies for Multi-agent Systems 281

z ∼ q(z)
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Fig. 1. Computational graph for conditional RealNVP

efficiency. Formally, we want to transform z ∼ q to a policy, a ∼ π(a | s) by
defining a = f−1(z, s) with f−1(z, s) = f−1

L (f−1
L−1(· · · f−1

1 (z, s) · · · , s), s) and
z ∼ q. The conditional log probability turns into:

log π(a | s) = log q(f(a, s)) +
L∑

i=1

log
∣∣∣∣det

∂x(i−1)

∂x(i)

∣∣∣∣ (2)

where x(i) = f−1
i (x(i−1), s) and x(0) = z.

Based on RealNVP [9], we propose the following conditional coupling layer
for f−1

i : Given a D dimensional input x(i−1) and some positive integer d < D,
the D dimensional output x(i) from the application of f−1

i is defined as:

y
(i)
1:d = x

(i−1)
1:d

y
(i)
d+1:D = y

(i−1)
d+1:D � exp(α(i)(x(i−1)

1:d , s)) + t(i)(x(i−1)
1:d , s)

(3)

where α(i) and t(i) are scale and translation functions from R
d → R

D−d and �
is the Hadamard product. These functions are represented by neural networks.
Since x

(i−1)
1:d is unchanged in y(i), we switch rows in y(i) to get x(i) where x

(i)
1:D−d =

y
(i)
d+1:D and x

(i)
D−d+1:D = y

(i)
1:d. Thus, a sequence of two conditioning coupling

layers modifies all dimensions of x. See Fig. 1 for the computational graph.
The reverse mapping, fi, is efficient when x(i) is known (and so is y(i)) and

is performed by:

x
(i−1)
1:d = y

(i)
1:d

x
(i−1)
d+1:D = (y(i)

d+1:D − t(i)(y(i)
1:d, s)) � exp(−α(i)(y(i)

1:d, s))
(4)

The Jacobian, ∂x(i−1)

∂y(i) , is of the form:

∂x(i−1)

∂y(i)
=

⎡

⎣
Id 0d

∂x
(i−1)
d+1:D

∂y
(i)
1:d

diag(exp(−α(i)(y(i)
1:d, s)))

⎤

⎦ (5)
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where Id ∈ R
d×d is an identity matrix; diag(exp(−α(i)(y(i)

1:d, s))) ∈ R
(D−d)×(D−d)

is a diagonal matrix with exp(−α(i)(y(i)
1:d, s)) on its diagonal entries. Since ∂x(i−1)

∂y(i)

is a lower triangular matrix, log
∣∣∣det ∂x(i−1)

∂y(i)

∣∣∣ = −
∑D−d

i=1 α(i)(y(i)
1:d, s))i can be

efficiently computed. Since switching rows does not change the magnitude of
the determinant, we have log

∣∣∣det ∂x(i−1)

∂x(i)

∣∣∣ = log
∣∣∣det ∂x(i−1)

∂y(i)

∣∣∣, which is used in
Eq. (2).

General policy optimization algorithms only require parametrized density
models to model the action distributions conditioned on the state. By main-
taining the invertibility and the triangular Jacobian of the RealNVP layers
while embedding the state conditioning in the scale and translation functions,
our flow-based architecture can effectively represent agent policies. At sampling
time, we first sample z ∼ p(z) and get a = f−1

L (f−1
L−1(· · · f−1

1 (z, s) · · · , s), s) with
each f−1

i (xi−1), s) calculated as in Eq. (3). The log probability is calculated by
Eq. (2) where z = f1(f2(· · · fL(x, s) · · · , s), s) with each fi(x(i), s) calculated as
in Eq. (4) and log

∣∣∣det ∂x(i−1)

∂x(i)

∣∣∣ as described above.

3.2 Representation Capability

For the internal coupling of different dimensions of the action, at each conditional
coupling layer, one part of the dimensions of x is coupled with the other part
by neural network functions. With the application of row switching, we need at
least three coupling layers to have every axis coupled with every other axes [8].

There are multiple possible ways to condition the flow model on the state.
Here we discuss the limitations of the two most straightforward modifications
and how our proposed structure overcome these limitations.

– Having the state conditioning only at the base distribution q, i.e. z ∼ q(z | s)
and a = f−1(z). In this case, we will have a fixed transformation function
f−1 for any state s, so log π(a | s) = log q(f(a) | s) + log

∣∣det ∂z
∂a

∣∣. Then
for any two states s1, s2 ∈ S, the log probability of the same action a is
given by log π0(a | s1) − log π0(a | s2) = log q(f(a) | s1) − log q(f(a) | s2),
i.e., the log probability difference is only in the base distribution. Since the
base distribution is often simple (this is the point of using flow models), its
representational capability is limited.

– Having the state conditioning only at one of the transformation layer, i.e.
z ∼ p(z) and a = f−1

L ◦ · · · ◦ f−1
i (f−1

i−1 ◦ · · · ◦ f−1
1 (z), s). This means that

the network needs to embed both the sampling information of z and the
state information of s in x(i) = f−1

i (f−1
i−1 ◦ · · · ◦ f−1

1 (z), s). In most flow
models, the dimension of x(j)∀j ∈ {1 . . . L} is equal to the dimension of the
action space |A|. In most reinforcement learning tasks, the dimension of the
state space |S| is much larger than |A|. E.g., consider tasks with images as
state representations. When |S| � |A|, there could be significant information
loss when compressing the state information into x(i). Our experiments also
indicate that such a method performs worse than the proposed structure (see
results for NFP1 [47] in Sect. 4).
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Our method overcomes the above limitations by using the state as side infor-
mation at each transformation layer. It is able to generate drastically different
distributions at different states by changing the transformation at each layer.
The network architecture also needs to compress less information. Because the
state information is available at each transformation layer, the network does not
need to embed all the state information in the latent variables.

4 Experiments

We aim to show that Flow models can be effective policy representations for
multi-modal multi-agent scenarios with continuous actions. We first evaluate
Flow policies for a synthetic and a real-world agent-modeling task, where multi-
modality is important, since often for real world games, agent policies need to be
bootstrapped from human demonstrations [43,49]. We then show the importance
of multi-modal policy representations for learning difficult-to-exploit strategies
in the context of continuous action games.

We compare Flow policies against the standard diagonal multivariate Gaus-
sian policies, as well as the Gaussian policies with full covariance using Cholesky
decomposition (noted as CG policy). We also compare against the mixture of
multivariate diagonal or full covariance Gaussian policies (noted as GMM and
MCG policies). We focus on the conditional RealNVP [9] as described in Sect. 3
as our Flow policy. We also compare against the architecture introduced in Tang
and Agrawal [47] (noted as NFP1) which also uses the flow model as the policy
representation with state conditioning only at the first transformation layer. Due
to the reasons described in Sect. 3.2, we found it suboptimal and more difficult
to train compared to our approach. Additional details on the policy and training
implementations are in the appendix.

4.1 Agent Modeling

For agent modeling tasks, we use behavior cloning to maximize the likelihood of
actions in the training data [36].

Synthetic. To verify that Flow policies can learn to represent multi-modal
behavior, we designed a simple environment to model human driving in response
to a traffic light at an intersection. As soon as the traffic light turns yellow, the
driver either needs to accelerate or decelerate to avoid coming into conflict with
the orthogonal traffic. Figure 2 givens an illustration of the scenario.

Figure 4a shows the sampled expert accelerations along the road (ẍ) with
noticeable multi-modal behavior. Aggressive drivers decelerate and show nega-
tive ẍ, while defensive drivers accelerate and display a positive ẍ. We randomly
split this data into 90% train and 10% test sets. We repeat this experiment 10
times and report the average log-likelihood of the samples from the test partition.
Test scores are reported in Table 1.
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Fig. 2. Agent modeling scenarios: Top:
Traffic Light; Bottom: Traffic Weaving
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Fig. 3. Traffic Weaving: First Wasser-
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ẍ
(a
cc
el
er
at
io
n)

(c) CG

0 20
x (position)

−5

0

5

ẍ
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Fig. 4. Traffic Light Intersection: Distribution of agent acceleration along the road for
different policy parameterizations. The grey line indicates the intersection location.

Learned policies can be evaluated by sampling their actions for the same
batch of initial states. As can be seen in Fig. 4b, the diagonal multivariate
Gaussian fails to capture the action distribution as shown by the expert drivers.
It tries to cruise along at the same speed even when close to the intersection.
Predicting a full covariance matrix (denoted by CG) does not fix the problem
as can be seen in Fig. 4c. Figures 4d and e as well as Table 1 suggest that
mixture models help a little and have lower spread beyond the intersection.
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Table 1. Average best test log-likelihood scores. Best scores for Gaussian mixture
models were achieved with k = 3 for Traffic Light Intersection, and k = 20 for Traffic
Weaving. Higher is better.

Policy Traffic light Weaving

Gaussian 1.21 ± 0.02 −1.94 ± 0.10

Cholesky Gaussian 1.20 ± 0.02 −1.79 ± 0.21

k-Gaussian mixture 1.40 ± 0.07 0.19 ± 0.14

k-Cholesky Gaussian mixture 1.38 ± 0.07 0.17 ± 0.18

NFP1 1.30 ± 0.08 −0.55 ± 0.11

RealNVP 1.46 ± 0.04 0.86 ± 0.25

NFP1 performs significantly worse than mixture models. Figure 4g shows that
our conditional RealNVP better models the agents with very little spread of
constant speeds beyond the intersection point.

For more complex scenarios, identifying the correct number of Gaussians
(k) in a mixture model can be difficult and inference can be quite slow with
many modes, especially with full covariance. Flow representations, however, can
capture such multi-modality efficiently.

Real World. Schmerling et al. [40] demonstrate the importance of modeling
multi-modality in human-robot interaction policies for effective decision making.
We use the Flow policy representation to learn a generative model for human
driver actions from the dataset associated with the traffic-weaving scenario.1

Two drivers intend to swap lanes without communication on a straight road
with 134 m. Figure 2 illustrates the scenario. The dataset contains 1105 trials
recorded from 19 different pairs of human drivers. The state contains the velocity
and position of both vehicles, and the action to learn is the acceleration of the
vehicles. We divide the trials with 90% for training and 10% for testing. These
are then normalized using the mean and the standard deviation of the entire
training set.

The test scores are reported in Table 1. On this dataset, the RealNVP policy
again obtains the highest score. Gaussian policies, both with a diagonal covari-
ance and a full covariance, behave the worst due to their unimodality. The GMM
policies have better performance but are still limited by their representational
capability.

To compare the quality of the generated trajectories, we compute their per-
timestep first Wasserstein distance [35] to the expert trajectories in the test set.
The results are shown in Fig. 3. The RealNVP policy has the lowest distance
on almost every time step, indicating that the trajectories sampled from the
RealNVP policy distribution are the closest to the demonstration distribution
compared to other approaches.

1 https://github.com/StanfordASL/TrafficWeavingCVAE.

https://github.com/StanfordASL/TrafficWeavingCVAE


286 X. Ma et al.

4.2 Multi-agent RL

We next test whether our flow policies can be trained using policy optimization
in the context of multi-agent reinforcement learning.

Repeated Iterated Games. We first construct a series of simple two player
continuous games including the polynomial game, the uniform game, and the
Bertrand game [32] as didactic examples of the importance of complex action
distributions in competitive continuous games.

Table 2. Utility functions for continuous
games, where ai is the mean of an agent’s 2D
action

Game Player 1 (u1(a1, a2)) Player 2

(u2(a1, a2))

Polynomial (a1 − a2)
2 −u1(a1, a2)

Uniform min(|a1 − a2|/2, 1 − |a1 − a2|/2)−u1(a1, a2)

Bertrand

⎧
⎪⎪⎨

⎪⎪⎩

(a1 + 1)/3 if a1 < a2

(a1 + 1)/6 if a1 > a2

(a1 + 1)/4 if a1 = a2

u1(a2, a1)

Table 3. Continuous games: Average
first Wasserstein distance between the
sampled distributions and the equilib-
rium distributions over 5 trials. The
GMM and MCG use 10 Gaussian
components. Lower is better.

GaussianCG GMMMCGRealNVP

Polynomial

P1 0.78 0.50 0.09 0.14 0.04

P2 0.54 0.420.11 0.21 0.11

Uniform

P1 0.54 0.19 0.05 0.04 0.05

P2 0.36 0.14 0.06 0.05 0.04

Bertrand

P1 0.50 0.570.06 0.10 0.06

P2 0.50 0.660.06 0.10 0.07

Formally, a continuous game is defined by a tuple G ≡ (I, (Ai)i∈I , (ui)i∈I),
where I is a finite set of players, Ai is the player’s action space, ui :

∏
i Ai → R

is the player’s associated payoff function. For the games under consideration,
agent actions are defined as ai ∈ [−1, 1] × [−1, 1] and the utility functions are
defined in Table 2.

Figure 5 shows the equilibrium distribution as well as the histogram of the
sampled actions of the learned policies. The figures show that GMM and Real-
NVP policies converge more closely to the equilibrium distributions than the
standard Gaussian ones. The first Wasserstein distance between the sampled
distributions and the equilibrium distributions are shown in Table 3, confirming
our observation that RealNVP and mixture policies generate distributions that
are closer to the equilibrium.

Farm Security Games. To evaluate the scalability of different policy represen-
tation methods with high-dimensional observations, we construct a competitive
environment based on the Forest Security game of Kamra et al. [21], called Farm
Security, with the defender allocating scarecrows on the farm to save the food
from attacker birds. We summarize the farm state, s as a 160 × 160 matrix
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Fig. 5. Repeated iterated game: Nash equilibrium and sampled agent actions. Upper:
player 1; Lower: player 2. The horizontal axis is the average action, and the vertical
axis is the frequency (probability density function for NE).

containing a grayscale image of the farmland. An example input is shown in
color in Fig. 6. The defender chooses the coordinate location of the scarecrow,
aD ∈ R

2. The attacker crosses the boundary of the farm to move towards the
plant locations, stops at any point on their path, eats the food particles in a
radius Ra, receives a reward proportional to the food in that radius, and exits
back to their starting location. The attacker’s action is aA ∈ R

2, specifying the
coordinate location of its stopping point. The attacker is considered ambushed if
its path comes within distance Rg from the scarecrow’s location. An ambushed
attacker gets a penalty −rpen and the defender receives a reward rpen.

The farm state represents a 2 × 2 square area where plants are distributed
uniformly in rows with intervals of 0.5. Rows of food are randomly generated with
orientations from −π/4 to π/4 and widths from 1/12 to 1/4. Both agents have
an active radius of 1/6. To avoid expensive image generation during training, we
pre-generate 1000 farm states as the training set. We additionally generate 100
farm states as the test set to evaluate generalization.
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Fig. 6. Left: Example farm. Green dots represent the plants. Right: Farm with the
attacker bird (red circle) and the defender scarecrow (blue circle) visualized, the yellow
line represents the path from the entering point of the attacker. (Color figure online)

We compare standard multivariate Gaussian and mixture of Gaussian policies
against our RealNVP policy. Because the inputs are images, we use a convolu-
tional neural network (CNN) as the feature extractor with structures suggested
by Kamra et al. [20]. We show two example trained strategies on environments
from the test set in Figs. 7 and 8. For the attacker, the Gaussian policy uni-
formly spreads the attack and fails to take into account the plant distribution.
The GMM policy performs better and is able to cover a large portion of the
food particles when the rows of food are flat, as shown in Fig. 7. When the rows
of food are more diagonal as in Fig. 8, each Gaussian component in the GMM
policy could only cover a small region of food. In both cases, the proposed Real-
NVP policy is able to adapt its distribution to cover most of the food particles.
Since the behavior of the defender is largely affected by the attacker’s strategy,
its performance is difficult to compare from sample visualizations.

Evaluating complex multi-agent interactions is a challenging problem. Two
recent empirical game-theoretic approaches include Nash Averaging [1] and α-
Rank [33]. We focus on the α-Rank method based on evolutionary dynamics [33]
for comparing different policy representation strategies owing to its applicability
to general sum multi-player games. Applying these ranking approaches requires
pairwise evaluation of all strategies under consideration to form a payoff matrix
for each player. In our case, these strategies correspond to the model used for
the player agent’s policy representation.

We perform pairwise evaluations with each policy representation for the agent
by playing 104 games between each individual policy pair. The evaluation matri-
ces for each agent are shown in Fig. 9a and b for train and test sets respectively.
Given the α-Rank for the different policy representations shown in Figs. 10 and
11, we find that the RealNVP policy for both attacker and defender form a sink
node in the evaluation Markov chain. It is ranked the highest with increasing
ranking intensity α (relates to selection pressure in evolutionary dynamics), ver-
ifying that conditional flow models lead to more robust policies. Our intuition is
that for a given food distribution, the attacker is incentivized to cover a larger
area of the food, i.e. to have larger action distribution entropy. This makes it
more difficult to be caught by the defender. Similarly, the defender is motivated
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dle/Right: Log-probability of the agents’ action distributions. (Color figure online)
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Fig. 8. Farm Security game sample 2: Visualization of agents’ policies. Left: Scatter
of food particles and agents’ actions: Red: attacker, Blue: defender, Green: food; Mid-
dle/Right: Log-probability of the agents’ action distributions. (Color figure online)
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(a) Training set. Left: Defender, Right:
Attacker.

(b) Test set. Left: Defender, Right:
Attacker.

Fig. 9. Farm Security game: Visualization of agents’ average payoff matrix

Fig. 10. Farm Security game: Alpha ranking on the training set. Left: Ranking curve,
Right: Evaluation Markov chain. The tuple (defender, attacker) follows the order: 0:
Gaussian, 1: 10-GMM, 2: RealNVP. The blue node indicates the sink node. (Color
figure online)

to cover a larger portion of the farm boundary so that the attacker could not
exploit it. However, especially for the attacker, covering an arbitrary food distri-
bution is not easy with Gaussian and GMM policies. For the Gaussian attacker, a
small standard deviation would make its attack easily predicted by the defender,
while a large standard deviation means that a large portion of its attacks are
wasted on no food regions. Due to the high penalty of being ambushed, the
policy learns to have a large standard deviation and thus its attacks tend to be
uniform. For the GMM attacker, especially in the situations shown in Fig. 8,
the covariance between the x and y positions of the food particles is stronger,
which is poorly represented by the diagonal Gaussian components in GMM. In
this case, each Gaussian component’s standard deviation becomes very small to
avoid wasted attacks and the entropy of the GMM policy becomes much lower,
making it easier to be caught from the defender’s perspective. In comparison,
the RealNVP attacker is able to show good food coverage on all different food
patterns. Although not shown here, using a MCG policy in this environment
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Fig. 11. Farm Security game: Alpha ranking on the test set. Left: Ranking curve,
Right: Evaluation Markov chain. The tuple (defender, attacker) follows the order: 0:
Gaussian, 1: 10-GMM, 2: RealNVP. The blue node indicates the sink node. (Color
figure online)

could converge to similar action distributions as the RealNVP policy. However,
the training clock time of MCG is much longer due to its complex structure.

In general, different games may require different form of equilibrium distri-
butions, and some of them might be well fitted by the existing policy repre-
sentations. However, we often do not know the optimal distribution a priori in
practice, and thus a flexible representation is needed.

5 Conclusion

We focused on representations for agent policies in multi-agent continuous con-
trol contexts. Our experiments showed that even mixture models may not suffice
for modeling multi-modal action distributions for optimal behavior. We pre-
sented how normalizing flows can be used to represent multi-modal policies and
how they can be structured for multi-agent contexts. Their effectiveness was
demonstrated on both agent-modeling and reinforcement learning tasks. Con-
ditional normalizing flows significantly improve the learning of complex, multi-
modal behavior over standard multivariate Gaussian or mixture of Gaussian rep-
resentations. Our experiments indicate that multi-agent learning requires choos-
ing appropriate policy representations irrespective of learning algorithms. The
proposed policy representation does not impose any limitations on the learn-
ing algorithms, and thus should be applicable to other domains. The potential
applications of this work include, but not limited to, the IT security and commer-
cial competitions where continuous and high dimensional strategies are needed.
Combining our model with the recent developments in imitation learning [3] and
reinforcement learning [28] for multi-agent systems is important future work.
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A Appendix

Policy Implementation. Our implementation is based on the Garage [10]
reinforcement learning library. We use a multi-layer perceptron (MLP) consisting
of 3 hidden layers with 64, 64, and 32 hidden units for the Gaussian, Cholesky
Gaussian, GMM and MCG policies. The mean and covariance (and weights for
mixture models) use the same MLP except the last layer for better knowledge
sharing. The NFP1 policy uses the standard RealNVP structure with 5 coupling
layers. An additional state conditioning layer is added after the first coupling
layer. The state conditioning layer uses an MLP of 2 hidden layers with 64 hidden
units [47]. For the proposed conditional flow policy, we use 5 coupling layers and
each coupling layer has an MLP of 2 hidden layers with 32 hidden units. The
MLP takes the concatenation of the observation and half of the latent variables
(x1:d, d = 
D/2�) as the input, and output the scale and translation factors α
and t as introduced in Sect. 3.1. The output α is then clipped between [−5, 5] for
better numerical stability. We additionally add a tanh on the final outputs for all
policies similar to Haarnoja et al. [14], which helps limit the policy output space
as well as bound the entropy term in loss. We make sure that the total number
of parameters for different models stay close to 104 for a fair comparison. All
the hidden layers use ReLU activations. For the farm security game, since the
inputs are images, we additionally add a convolutional neural network (CNN)
of 2 convolution layers as the feature extractor to all models. The convolution
layers have 32 and 16 channels. The filter sizes are 16 × 16 and 4 × 4, and the
strides are 8 × 8 and 2 × 2. This CNN structure is suggested by Kamra et al.
[20].

Agent Modeling. We use behavior cloning as our training algorithm in
Sect. 4.1 which maximizes the likelihood of actions in the training data [36].
We use a batch size of 1024. The learning rate starts from 0.01 and decays at a
rate of 0.8 every 1000 iterations. We train each policy with 5 × 103 and 2 × 104

iterations on the synthetic and real world datasets.

Multi-agent RL. We use proximal policy optimization (PPO) [41] as our policy
optimization algorithm in Sect. 4.2. We add an extra entropy term to the loss
function for better exploration. The entropy of the policies are estimated using
the negative log-likelihood of one sampled action for each state. The weight of
the entropy loss starts with 1.0 and decays at a rate of 0.999 per iteration. We
train all players independently at the same time. We use the Adam optimizer [24]
with a fixed learning rate of 10−4. The training lasts 104 epochs with a batch
size of 512 for the repeated iterated games and 2048 for the farm security game.
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Abstract. Diversity plays a significant role in network security, and we
propose a formal model to investigate and optimize the advantages of
software diversity in network security. However, diversity is also costly,
and network administrators encounter a tradeoff between network secu-
rity and the cost to deploy and maintain a well-diversified network. We
study this tradeoff in a two-player nonzero-sum game-theoretic model of
software diversity. We find the Nash equilibrium of the game to give an
optimal security strategy for the defender, and implement an algorithm
for optimizing software diversity via embedding a graph-coloring app-
roach based on the Nash equilibrium. We show that the opponent (i.e.,
adversary) spends more effort to compromise an optimally diversified
network. We also analyze the complexity of the proposed algorithm and
propose a complexity reduction approach to avoid exponential growth in
runtime. We present numerical results that validate the effectiveness of
the proposed software diversity approach.

Keywords: Software diversity · Game theory · Network security

1 Introduction

Diversity-based defenses to network security have recently emerged as a rec-
ognized approach to resilience. In particular, these types of defenses introduce
uncertainty and probabilistic protection from attacks and provide a rich frame-
work for diversifying program transformations [2,14,21]. In a few areas of secu-
rity (e.g.., moving target defense [2]) there has been a wide application of soft-
ware diversity techniques. For example, methods have been proposed for giv-
ing the software a dynamically shifting attack surface for both binary executa-
bles and web applications [15]. However, there remain limitations with these
defenses depending on the threat. For example, address space layout randomiza-
tion is ineffective against buffer-overflow attacks, such as the de-randomization
attack [23]. Graph theory, and particularly attack graphs, provides a unique for-
mal approach to help quantify the efficiency and effectiveness of temporal and
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spatio-temporal diversity mechanisms. Moreover, security games on graphs
[1,3,4] provide mathematical approaches that can offer insights into questions
such as what is the tradeoff between network security and software diversity,
and what must be diversified and when [14]. To address these questions, we
introduce mathematical models that use game theory to examine the connection
between the distribution of differing software configurations on a network and
the resulting risk to network security against a motivated attacker.

Software diversity involves randomizing transformations that make program
implementations diverge between each networked device or between each exe-
cution. These proactive defense strategies can increase the attackers’ workload
[14,16]. There is an analogy to biological ecosystems, where the resiliency of
a population to disease or the invasion of a nonnative species depends heav-
ily on biodiversity. Likewise, network resiliency can be increased (especially
against novel threats) by using efficient strategies for increasing software diver-
sity. Attack graphs are an important tool that models the network’s topology
and spatio- temporal vulnerabilities used to validate various defense approaches.
Attack graphs can be generated in different ways to represent interactions
between the host’s vulnerabilities and its neighbors’ vulnerabilities. In addition
to using the attack graph for understanding how network topology and vul-
nerabilities impact the effectiveness of diversity-based defenses, a security game
on an attack graph captures the connections between diversity, security, and
reachability [21]. In this paper, a security game is formulated and played on an
attack graph to study the effectiveness of diversity-based defenses. The devel-
oped game investigates the tradeoff faced by the defender between diversity cost
and security level. Our main contributions in this paper are:

– We propose a general model suitable to study software diversity for the secu-
rity of networked systems. Our model captures the set of vulnerabilities and
the network topology through an attack graph.

– We formulate a novel game model to study the effect of diversity on network
security under attack as a two-player nonzero-sum game.

– We present a complete algorithm to solve the game model and obtain the
Nash equilibrium diversity strategy.

– We analyze the complexity of the proposed algorithm and introduce a com-
plexity reduction approach that is shown to yield an almost exact reward for
the defender in our numerical results.

– Finally, we present numerical results for the developed software diversity app-
roach that show the effectiveness of the obtained diversity strategy at Nash
equilibrium.

The rest of the paper is organized as follows. We discuss related work in
Sect. 2. In Sect. 3, we present the system model, define the game model, and
propose our algorithm for software diversity. Our numerical results is presented
in Sect. 4. Finally, we conclude our work and discuss future work in Sect. 5.
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2 Related Work

The scope of the problem we consider belongs to three interacting active research
fields: network diversity, resilience, and game theory. Diversity has been a design
objective to secure networks against various types of attacks including Zero-Day
attacks [28]. It has been shown that the intuition behind the ability of diver-
sity to increase the resiliency of systems and networks is effective [10]. Garcia
et al. [10] show using a data-driven study that building a system with diverse
operating systems is a useful technique to enhance its intrusion tolerance capabil-
ities. Moreover, diversity-by-design has been used to increase a communication
network’s throughput [6,17]. For security, the authors in [5] proposed an auto-
mated approach to diversify network services to enhance the network’s resilience
against unknown threats and attacks. In their approach, they considered con-
straints associated with diversity. Software diversification techniques are also
used to enhance network security by reducing the attack surface [26,27].

Graph coloring is a well-known problem in dynamic channel assignment to
reduce interference between adjacent nodes [4,24]. However, the applications go
beyond reducing network interference to include securing medical images [19,25].
Moreover, graph coloring has been used in several computer science applications
such as data mining, clustering, image capturing, image segmentation, network-
ing, etc. [11]. Game theory has been used directly to solve graph coloring prob-
lems; such research problems are named “coloring games”. A coloring game is a
two player non-cooperative game played on a finite graph using a set of colors
in which players take turns to color the vertices of the graph such that no two
adjacent vertices have the same color [13].

Game theory has been used extensively to study security problems and under-
stand the strategic behavior of adversarial users and attackers [1,12,22]. In [1], a
game-theoretic framework is developed to investigate jamming attacks on wire-
less networks and the defender mitigation strategy. Kiekintveld et al. [12] pro-
posed a scalable technique to calculate security resource allocation optimal policy
of practical problems like police patrolling schedule for subway and bus stations.
A first step to quantify and measure diversity as a security metric appeared in
[21] where a game model has been used to investigate the necessary conditions for
network defender to diversify and avoid monoculture systems. However, diversity
is understudied in the literature of security games. In this paper, we introduce
a generalized nonzero-sum game model between the network defender and an
attacker. Motivated by the aforementioned benefits of diversity, the defender
player selects the best diversity policy in response to the attacker’s strategies.
The game is played over an attack graph that captures the network topology
and the dependencies between the vulnerabilities in the network.

3 System Model

Consider a network of arbitrary size, |N |, where N is the set of nodes of the
network. The network topology is defined by its adjacency matrix. Let H, denote
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the graph adjacency matrix, where any entry of the network [Hu,v] = 1 if node
v is connected to node u, and is equal to 0 otherwise, for every u, v ∈ N .

We assume the network graph is represented using a directed graph denoted
by G(N ,H), where [Hu,v] = 1, denotes an edge between node u and node
v. This assumption fits a hierarchical network with a set of entry nodes that
allow users to access the network. Such networks resemble networks with a chain
of command. It also represents an interesting scenario where the depth of the
network can be captured. Adversaries are interested in reaching targets that are
practically installed in deeper layers of the network.

For each node v ∈ N , there is a certain software type that is running on the
node. A software type can abstract several properties, for example, it can model
the operating system, honeypot type, or specific application. For simplicity, we
assume the set of all used software types to be S, where each node is assigned
one software type s ∈ S. Let NSW denote node-software matrix of size |N |×|S|.
For instance, the NSW matrix shown in Eq. (1) represents a network of 3 nodes
and a set S = {s1, s2}, where node 1 runs software type s1 and the remaining
two nodes run software type s2.

NSW =

⎡
⎣

1 0
0 1
0 1

⎤
⎦ (1)

Each software type has one or more vulnerabilities. We let V be the set of
all vulnerabilities. Again we use matrix representation to define the software
to vulnerabilities relation. Let SWV be a |S| × |V| be a binary matrix, where
each row is a vector associated with each software type that indicates which
vulnerability is associated with that software. Specifically, any entry SWV [i, j] =
1 if and only if a software si ∈ S suffers vulnerability vj ∈ V, and SWV [i, j] = 0
otherwise.

Given NSW and SWV , the set of vulnerabilities that could be exploited
by the attacker can be defined for each node. However, to target a node that
node should satisfy two conditions. First, it should be reachable through a path.
Secondly, that node should be exploitable through at least one vulnerability.
Note that an attacker can reach any node if and only if there exists a path
between network’s entry node and that node subject that the attacker can also
compromise all the nodes that belong to this path.

Let Pv be a set of nodes connecting the network entry node and any node
v ∈ N . Specifically, Pv = {v0, ..., v}, where v0 is an entry node, and v denotes
any node in the network, however v usually denotes the node being targeted
by the attacker. Hence, the set of software implemented on each node affects
the ability of an adversary to reach v as he is required to exploit all nodes that
belong to the path Pv.

We define a two-player nonzero-sum game between the network administrator
as the defender and an adversary as the attacker. We consider the defender to
be player 1 and the attacker to be player 2. We start by discussing the attacker
problem and the possible attack strategies.
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3.1 Attacker Problem

The goal of the attacker is to compromise a subset of targeted nodes in the
network using an attack toolbox. We assume that the attacker has a set of
probes that allow him to compromise a set of vulnerabilities. More specifically,
each probe in the toolbox can exploit a subset of vulnerabilities. Let B denote the
set of all probes, i.e, the toolbox available to the attacker. The relation between
each probe in B and the kind of vulnerabilities it exploits is characterized through
a probe matrix.

The probe matrix denoted by P is a |B| × |V| binary matrix. Any entry
P[i, j] = 1 if the ith probe is capable of exploiting the jth vulnerability, for every
i ∈ B and j ∈ V, and P[i, j] = 0 otherwise. For instance, the matrix in Eq. (2)
represents two probes within the attacker action space and three vulnerabilities.
If the attacker attacks the network using the first probe, she will only compromise
the subset of reachable nodes with software that suffers vulnerability V ul1. On
the other hand, if the attacker attacked the network using the second probe, she
will be able to compromise all reachable nodes with software type that suffers
V ul2 and V ul3.

P =
[
1 0 0
0 1 1

]
(2)

The attacker increases his payoff by maximizing the number of compromised
nodes in the network. Therefore, the attacker chooses to use a collection of probes
instead of using a single probe when attacking the network. We can readily define
the attacker action space as the collection set of all elements in the probe set
B. Let the attacker action space be denoted by A2. Specifically, A2 = {0, 1}|B|.
Therefore, any attack action a2 ∈ A2 is a binary vector of length |B|, where
a2(i) = 1 when the ith probe is used in the attack, and a2(i) = 0 otherwise,
for i = 1, 2, ..., |B|. To avoid trivial game scenarios, we assume a cost associated
with each probe which can represent (for example) the increased likelihood of
detection. Let Ca(a2) be the cost for each probe. As we discuss in more detail
later, the attacker faces an interesting trade-off as he wants to attack the network
using a larger number of probes to compromise more nodes, while reducing his
attack cost to avoid expensive attacks. Next, we discuss the defender problem
before we fully characterize the players’ payoff functions in more detail.

3.2 Defender Problem

We focus on a defender who uses diversity to enhance network security. The
defender action affects the node software matrix, NSW . Based on the available
number of software types and how they are assigned to nodes in the network,
the defender can increase the level of diversity in the network. The defender can
potentially use all the available software types to achieve the maximum level
of security through diversity. However, a highly diversified network is harder
to operate and maintain. Therefore, the defender incurs a cost associated with
the diversity size, |S|. Let Cd(a1) denote the cost associated with the defense
strategy, for any defender action a1 ∈ A1, where A1 is the defender action space.
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The defender action space contains all the combinations of software types. The
defense strategy a1 selects a subset out of the software set, S. For instance, a
defense strategy a1 = {s1, s2, s3} means that the defender is implementing 3
different software types to run on different nodes in the network.

Allocating the selected software types over different nodes is similar to the
well-known graph coloring problem. Therefore, we adapt graph-coloring algo-
rithms to implement strategies that ensure that neighboring nodes do not run
the same software type whenever possible. Having a larger palette with more col-
ors will directly enhance the effectiveness of the graph coloring algorithm. This
in turn reduces the attacker reachability to a smaller set of nodes. In Algorithm
1, we leverage the graph coloring algorithm proposed in [9] to implement such
an approach.

The defender trade-off is to minimize the size of the set of software types to
be diversified, to reduce nodes’ reachability while minimizing the cost associated
with such a defense strategy. In other words, the defender aims to secure the
maximum number of nodes using the minimum number of different software
types. However, the attacker attempts to compromise the maximum number of
nodes using the smallest number of probes. Next, we quantify the payoff functions
for both players.

3.3 Payoff Functions

The goal of the defender is to secure the network through securing as many nodes
as possible using software diversity. Protecting nodes can be achieved through
the careful distribution of different software types to neighboring nodes. The
subset of secured nodes depends on their topological locations in the network
and the vulnerabilities associated with the software type assigned to each of them
as defined via the SWV matrix. Given the software vulnerability matrix, SWV ,
and node software matrix NSW , one can easily define a node vulnerability
matrix, NV , that defines the subset of vulnerabilities associated with each node
as follows,

NV = NSW × SWV. (3)

Recall that the graph is colored according to the action played by the defender,
a1, and hence NSW is defined. However, the attacker action, a2, defines the set
of exploitable vulnerabilities according to probe matrix P. The attacker goal is
to maximize the number of compromised nodes, which is denoted by K, and can
be expressed as follows:

K = mean

(∑
v∈N

( ∑
u∈Pv

1{u∈E(a2)}

))
, (4)

where 1{.} is an indicator function, which is equal to one when {u ∈ E(a2)},
where E(a2) is the set nodes that can be exploited and compromised by the
attacker. The set of exploitable nodes E(a2) contains all nodes that are assigned
a software type that has any of the vulnerabilities that can be compromised using
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the probes in a2. Let Va2 denote the set of vulnerabilities that the attacking
probe(s) can exploit given the attacker action, a2. Also, let NV (u) be the set of
vulnerabilities associated with the software type running on node u. Then, the
set of exploitable nodes can be defined as, E(a2) = {u ∈ N|NV (u) ∩ Va2 �= Φ}.
Therefore, K represents the average distances between exploitable nodes (i.e,
subgraphs diameter).

The defender encounters a diversity cost Cd(.) that depends on the number
of software types (colors) used to color the network graph. For simplicity, we
assume a fixed cost per color.

Therefore, the defender payoff function can be written as:

R1(a1, a2) = −K − Cd(a1), (5)

and the attacker payoff function is written as:

R2(a1, a2) = K − Ca(a2). (6)

The K term captures an interesting tradeoff for the defender. If the defender
has a large budget and does not care about the defense cost, using a very large
number of software types is still a double-edged sword. A higher number of soft-
ware types (i.e., colors) allows for a better graph coloring outcome and hence lim-
its the attacker’s ability to reach a bigger community. However, since each soft-
ware suffers a subset of vulnerability, this may increase the number of exploitable
nodes in the graph. Therefore, using all the available software types to color the
graph may not be in favor of the defender. It is worth noting that we do not
assume that any of the software types are risk-free, otherwise, the problem is
trivial and the defender better off using a complete monoculture of that secured
software.

On the attacker side, using the maximum number of available probes is always
in favor of the attacker if the cost per probe is zero. Thus, the game is designed to
investigate the trade-off between the reward of exploiting nodes using available
probes, and the cost associated with each subset of probes.

3.4 Game Problem

We now formulate the game Γ (P,A,R), where:

– P = {Defender,Attacker} is the set of players.
– A = {A1 × A2} is the game action space, which is the product of the action

space of the defender and the action space of the defender as defined in the
previous subsection.

– R = {R1, R2} denotes the game reward set.

As shown in Eqs. (5) and (6), Γ is a nonzero-sum game with a finite num-
ber of pure actions for every player. Nonzero-sum reflects the fact that the
attacker does not benefit from the cost paid by the defender, and vice versa.
Let A and B denote payoff matrices for the defender and attacker, respectively.



304 A. H. Anwar et al.

Both matrices are of size |A1| × |A2|. The defender maximizes over the rows of
A, and the attacker maximizes his reward over the columns of B. Moreover, let
x be a vector of |A1| × 1 and y be a vector of |A2| × 1. A mixed strategy, x,
is a probability distribution over the action space, |A1|. Similarly, the attacker
mixed strategy, y, is a probability distribution over the action space, |A2|.
Theorem 1. For the finite game Γ , there exists at least one point (x∗,y∗) of
mixed equilibrium.

Proof. The proof follows Nash’s theory in [20] directly. The theory states that for
every pair of payoff matrices A, B there is a nonzero number of mixed equilibria.

��
For any mixed strategy, y, played by the attacker, the defender maximizes

his expected reward by solving the following optimization problem to find his
best response strategy x∗,

maximize
x

xTAy

subject to
|A1|∑
i=1

x(ai
1) = 1,

x ≥ 0.

(7)

On the other side, for any mixed strategy, x, played by the defender, the
attacker finds the optimal attacking strategy y∗ by solving the following opti-
mization problem,

maximize
y

xTBy

subject to
|A2|∑
j=1

y(aj
2) = 1,

y ≥ 0.

(8)

It has been shown by Chen et al. [8] that for the general n-person nonzero-sum
non-cooperative games, computing Nash equilibria is PPAD-complete. However,
for the two-player case of a nonzero-sum game with a finite number of pure
strategies as Γ , a necessary and sufficient condition for a point to be a point
of equilibrium is that it is a solution of a single programming problem of a
quadratic objective function and a set of linear constraints and the objective
function has a global maximum of zero as shown in [18]. Based on the work in
[18], MATLAB code has been developed in [7] that computes at least one point of
Nash equilibrium using sequential quadratic programming based quasi-Newton
technique which is used to solve the above optimization problems in (7) and (8).
We apply the procedure shown in Algorithm 1 to obtain a software diversity
strategy based on the formulated game.
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Algorithm 1. Diversify
1: procedure Diversify(G, S, B, SWV, P, Cd, Ca) � Input parameters
2: System Initialization
3: Define: A1, A2

4: for a1 ∈ A1 do
5: Graph Color (G, a1) � Graph coloring algorithm
6: Update NSW � Build node-software matrix
7: Compute NV = NSW × SWV � node-vulnerability matrix
8: for a2 ∈ A2 do
9: Compute R1(a1, a2) → update A

10: Compute R2(a1, a2) → update B

11: GameSolver(A, B) → x∗,y∗ � Mixed strategies equilibrium for (7), (8)

3.5 Game Complexity

The computational time for solving the game programs depends on the dimen-
sions of the action space A, or the number of pure actions for each player.
Unfortunately, the time grows exponentially in the number of strategies of both
players.

For our game model, the number of pure actions does not grow with the num-
ber of nodes of the network. Instead, it grows with the number of software types
available to the defender, and with the number of probes used by the attacker.
However, this rate of growth is exponentially increasing with the number of soft-
ware types (colors). For instance, if the number of available software |S|, then
the number of pure strategies for the defender, |A1| = 2|S|. Similarly, if the
number of available probes to the attacker is |B|, the number of pure attacker’s
pure actions is |A2| = 2|B|.

3.6 Complexity Reduction

Since the set of vulnerabilities associated with each software type is known to the
defender, the defender can prioritize the use of available software types accord-
ingly. More specifically, let w be weight vector of size |S|, such that,

w = SWV × e, (9)

where e, is a column vector of all ones of size |V| × 1. Hence, w represents the
weight of each software type s ∈ S, in terms of the number of vulnerabilities it
introduces into the network when used by the defender.

Therefore, the defender does not need to consider all the possible combina-
tions of the available software types. Instead, the defender optimizes over the
number of software types (i.e, number of colors) to implement, and sorts the
software set according to their weights in ascending order. For instance, if the
defender decided to use three software types, she can immediately pick the three
colors with the smallest weights according to w as defined in (9).
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This approach leads to a significant reduction in the complexity of the game
as the size of the action space |A1| will not grow exponentially with the number
of the available software types |S|, it will grow linearly, instead.

Moreover, in the case of a perfect information game, the defender is assumed
to know the probe matrix P as defined in Eq. (2). Therefore, the defender may
sort the attacker’s probes according to their potential damage. Along the same
lines as w, let d = P × e denote the damage vector of size |B| × 1, the defender
can sort the probes available to her opponent in descending order according to
damage vector d assuming a worst-case scenario in which the attacker always
uses the most powerful probe first. The attacker is now optimi- zing the num-
ber of probes to use when launching an attack. With this reduction, we can
redefine the action space for both players as follows, Ā1 = {1, 2, ..., |S|} and
Ā2 = {1, 2, ..., |B|}.

Using these heuristics we can significantly enhance the runtime of Algorithm
1 and present a Fast-Diversify as shown in Algorithm 2.

Algorithm 2. Fast-Diversify
1: procedure Diversify(G, S, B, SWV, P, Cd, Ca) � Input parameters
2: System Initialization
3: Compute w, d
4: Sort w ”Ascend”
5: Sort d ”Descend”
6: Define: Ā1, Ā2

7: for a1 ∈ A1 do
8: Graph Color (G, a1) � Graph coloring algorithm
9: Update NSW � Build node-software matrix

10: Compute NV = NSW × SWV � node-vulnerability matrix
11: for a2 ∈ A2 do
12: Compute R1(a1, a2) → update A
13: Compute R2(a1, a2) → update B

14: GameSolver(A, B) → x∗,y∗ � Mixed strategies equilibrium for (7), (8)

In the following section, we present numerical results to validate the devel-
oped algorithms.

4 Numerical Results

We now present numerical results that validate the proposed game model. First,
we consider a 20-node network that we generated such that any two nodes are
connected directly with an edge with probability 0.5, as illustrated in Fig. 1a. We
investigate the behavior of the players based on the Nash equilibrium strategies
computed for the proposed game model with different values of the game model
parameters.
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(a) A 20-node network topology. (b) A 30-node network topology

Fig. 1. The two generated network topologies with randomly generated edges.

For the network topology shown in Fig. 1a, we plot the attacker’s reward in
Fig. 2a for different numbers of software types. It is clear that as the number of
available software types increases, the defender can color the graph more effi-
ciently, and hence software diversity will significantly reduce the attacker reward.
However, increasing the number of available software types does not imply that
the reward of the defender increases steadily since the defender plays his Nash
equilibrium strategy. The Nash equilibrium strategy may lead the defender not
to use all the available colors, since the use of a larger set of software types
may introduce new vulnerabilities to the network. Therefore, in Fig. 2a, the
attacker reward when the defender unilaterally deviated from his Nash strat-
egy was higher than the attacker reward even when the defender used only a
single software type (i.e., mono-culture case). In Fig. 2b, the defender reward is
plotted at a different number of software types for the Nash equilibrium defense
strategy from both sides. The defender reward is non-decreasing as the number
of available software types increases.

To understand the effect of the cost parameter for both players, we plot the
defender and attacker rewards at different cost values when the game played on
a 30-node network, as shown in Fig. 1b.

As shown in Fig. 3a, the defender and the attacker rewards are plotted for
different cost values per each software used by the defender at Nash equilibrium.
The defender reward decreases as the cost increases since the defender tends to
exclude more software types to avoid the defender cost Cd. On the other side,
the attacker reward increases as the defender diversity capabilities are limited
by the increasing cost while the cost per probe is fixed at 1. For the considered
network, the vulnerability set contains 3 vulnerabilities, and the attacker has
four probe types. To illustrate the role of the cost per probe, we plotted the
reward of both players versus the cost per probe in Fig. 3b. At a low cost per
probe, the defender reward is stably low as the attacker can afford the cost to
use all his probes in the attack. As the cost per probe increases beyond 1, the
defender reward starts to increase. However, since the defender cost is fixed at



308 A. H. Anwar et al.

(a) Attacker reward.
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(b) Defender reward.

Fig. 2. Players’ reward vs. the number of software types at Nash equilibrium.
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Fig. 3. Comparing players’ reward versus their action cost values

a low value of 0.1, the attacker is being punished more and hence the attacker
cost starts to decrease significantly.

Finally, we compare the efficiency of the proposed algorithm versus the cost
per software and cost per probe in Fig. 4a. We made the cost per software equal
to the cost per probe for simplicity. As shown in Fig. 4a, the Fast-Diverisfy
algorithm yields the exact reward for the defender and very comparable to the
attacker as Algorithm 2 assumes a worst-case scenario for the attacker to reduce
complexity. Moreover, in Fig. 4b we compare the runtime of both algorithms to
show the significant reduction in complexity achieved via Algorithm 2.
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Fig. 4. Comparison between the performance of the two proposed algorithms.

5 Conclusion and Future Work

We studied a software diversity approach for network security via a formulated
game-theoretic model over an attack graph. In this context, we developed a novel
game model to study the interactions between network defender and an adver-
sary when software diversity is the main defensive strategy for the defender. We
adapted a graph-coloring algorithm for computing Nash equilibrium diversifying
strategy and developed a complexity reduction approach to obtain Nash equi-
librium more efficiently making the proposed diversifying algorithm applicable
in large-scale networks with a larger number of colors. Numerical results com-
puted using our model show both the benefits of software diversity as well as
the detailed tradeoffs that are necessary for both attackers and defenders in this
scenario. We also validate the computational effectiveness of our algorithms for
practical applications. Our ongoing research is focused on extending the formu-
lated game model to account for cases of incomplete information. In this case,
the software vulnerability matrix and the probe matrix are unknown before-
hand by the defender.
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Abstract. A Decentralized Denial of Service is an attack done by an
agent capable to control the spread of a malware. This is a combination of
epidemiological and conflictual aspects between several decision makers.
There exists in the literature papers that study (non oriented) epidemics
and papers that study network attacks regardless the epidemiological
aspect. We put together the two aspects and provide a new game theo-
retical model which is part of the family of partially observable stochastic
games (POSG) but with particular features. We prove the consistency
of heuristic search value iteration (HSVI) based algorithms. Our frame-
work is applied to optimally design a cyber deception technique based
on honeypots in order to control an epidemic cyber-attack of a network
by a strategic attacker. Some basic simulations are proposed to illustrate
the framework described in this work-in-progress paper.

Keywords: Epidemic models · Partially observable stochastic game ·
Heuristic search value iteration

1 Introduction

Cyber security is becoming an important research area in global security world.
First, with the high level of usage of connected devices and equipments, under-
standing cyber attacks is the most important stage in order to build efficient
cyber defense. Second, we are living in a word that is more and more connected,
and the effect of networks is no more to prove its impact on our everyday life,
particularly in cyber security. For example, despite most internet of things (IoT)
providers have improved the security of their devices, the number of IoT devices
attacked by distributed denial of service (DDoS) is still increasing [1]. Recently,
the combination of tools from game theory (understanding strategic situations
with several decision makers), mathematical modelling of infectious disease and
network science (understanding interaction structure between decision makers)
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have demonstrated their strength to build new models that bring interesting
cyber defense mechanisms [8] and [9]. An important cyber deception technique
in order to mitigate cyber attacks is the use of honeypots. A honeypot is a token
that a player can place on an edge of the network to create fake information.
Honeypot strategies have been recently theoretically and practically optimized in
lateral movement [3] through the heuristic search value iteration (HSVI) [10] dis-
cussed in the field of partially observable Markov decision processes (POMDPs).
However, the definition of HSVI in game theory applies to the more general con-
cept of one-sided partially observable stochastic games (OS-POSGs). Further-
more, in a context of attack by epidemics, (1) the aim of the network attacker
is to make on every node a transition from his desire, non infected to infected
for example, (2) attacker has the true information over the network state. One
of such epidemics is Mirai botnet, an epidemic that compromises a maximum
number of IoT devices before launching a DDoS using the compromised IoT
devices. Consequently, the fight against botnet epidemics can be studied as a
zero-sum OS-POSG like in [11]. To the best of our knowledge, there is no work
that addresses the stopping of epidemic from the perspective of POSGs. This
work-in-progress paper illustrates how to deal with this scientific gap.

We define a game model based on the actions of an attacker trying to com-
promise and take control of vulnerable nodes in a network, and the actions of a
defender trying to mitigate attacker’s actions while offering patches to vulnera-
ble nodes. Moreover, each node reacts to both players actions and therefore the
global state of the system evolves accordingly. This model associates epidemics
and POSG models. The definition of an epidemic model corresponds to the com-
partmentalisation of the individual states and the possible transitions of an indi-
vidual from one compartment to another. The Susceptible-Infected-Recovered
(SIR) model [2] for instance involves infectious (or infected) nodes (compart-
ment I), who carry the virus, susceptible nodes (compartment S), which are
vulnerable but not infected and recovered (or resistant, non vulnerable) nodes
(compartment R). Botnet epidemics are SIR epidemics type like in [5], in which,
without loss of generality, we consider only S → I (S to I), S → R and I → S
transitions. The attacker does not observe defender’s actions, which induces a
general POSG with partial observations for both sides. Indeed, even-though she
knows the game state (perfect information on one side), no player observes the
opponent’s moves (incomplete information on both sides). Our model considers
the vulnerability of nodes and the defender placing honeypots on edges to detect
some propagation and cure relevant nodes. The contributions of the paper are
threefold:

– a zero-sum stochastic game model is proposed to study optimal deception
strategies against virus propagation,

– we study a two-player zero-sum stochastic game in which no player observes
the opponent’s actions and prove that the heuristic search value iterated can
be applied in this model,

– our model involves two players acting strategically on the system composed
of actors acting in a probabilistic way.
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The rest of the paper is organized as follows. In the next section, we describe
our model and the problem. Then, in Sect. 3, the solution of the problem is
given and in Sect. 4, we prove several properties of the dynamic programming
operator. After this, we provide some numerical illustrations in Sect. 5 and finally
we present a short discussion on further works and a conclusion in Sect. 6. Note
that all proofs and a complete related work section are fully described in the
long version of this paper [7].

2 Model Description

We present the model that describes interactions between the botnet (controlled
by an attacker), the devices and the agent (the defender) who intends to prevent
the botnet from controlling the network throughout the infected nodes.

2.1 Problem Description

An attacker is trying to take control of a large number of devices of a network
and make it a foothold to lunch a fatal attack. This attack may be for example
to overload a server with a very large number of requests. Her strategy consists
in silently spreading over the network a worm that ensures her the control of any
device. She will propagate the worm until she has taken control of the desired
number of devices. Fortunately for attacker, as observed in the Mirai attack [1],
many devices do not have customized passwords and are therefore vulnerable,
so attacker just has to select these vulnerable devices to spread the worm up to
the targeted number. She frequently makes a probe over the network and then
knows which nodes are vulnerable, which nodes are infected (and which nodes
are resistent). To mitigate this spread, a defender combines two solutions:

1. He offers patches for infected devices and incites them to accept it. He also
incites vulnerable, non-infected devices to customize their passwords and
therefore become resistant against any attack. However, the result of this
incitement is not predictable. Nevertheless, defender knows the decision of
any device, i.e. knows if a device has been patched or not.

2. Defender has at his disposal a fixed number of honeypots that he can deploy
on edges. The validity of each honeypot is one time-slot. Note the attacker
does not have the honeypots localization knowledge. A honeypot detects any
virus propagation that traverses the edge and then the defender strongly
incites the device and the newly infected nodes to patch.

This scenario is repeated until attacker has reached the targeted number of
infected devices or there is no infected device left in the network (the latter is
an absorbing state of the system as the virus has totally disappeared).

Defender’s action consists in reallocating a limited number of honeypots (not
necessarily all) on edges of the network at any new time-slot of the game.
Attacker’s action at any time-slot consists in choosing neighbours of infected
devices to propagate the worm from, i.e. choosing an edge to propagate the
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virus from an infected node to a non-infected one. We assume that from each
infected device she can chose at most one adjacent node to contaminate. Also, at
each time-slot of the game, each node may decide to change his state by applying
the patch if the node is infected, or changing his password if the node is sus-
ceptible to be infected by the virus. This node decision is made randomly and
known by defender. The nodes behavior given by the probability distribution of
their choice is known by the attacker and the defender.

2.2 Model

Because of an epidemic spreading over the network and users’ actions, there
are 3 classes of devices: infected devices (I), susceptible devices (S), that are
vulnerable and non infected, and resistant devices (R), that cannot be success-
fully attacked.1 For instance, a resistant device has a customized password and
we assume that he will be resistant forever. In other words, R is an absorbing
state, or there is no transition from R to any other state. For an infected device
to become resistant, two transitions are necessary: I → S then S → R. This is
because an infected device must be patched first (transition from state I to state
S) to be restored with basic features including default password, and then to
change the default password to a customized password (transition from state S
to state R). These two transitions cannot be done during a single stage. Indeed,
changing the default password is useless while the node is under the control of
the botnet. So we consider transition I → R is not possible at one stage. Con-
sequently, only 3 transitions are possible for any device state dynamic in our
framework: S → I, S → R and I → S as depicted in Fig. 1.

infection

patching
customizing the password

I S R

Fig. 1. Possible effective state transitions for each device.

There is a clear conflict between the attacker and the defender, but the
information knowledge is not the same for these two decision makers. Attacker
knows the global state of network (i.e. the state of each device at any time-slot
of the game) but cannot observe defenders’ actions while defender, who only
knows the decision taken by devices about patching and password changing, has
a partial observation of the global state. At the beginning of each time-slot, he
only knows nodes who became susceptible or resistant in the past time-slot, but
not the ones that are infected.
1 Unlike in [6], we consider the use of the world “resistant”: (1) instead of “recovered”

to keep in thought the non-vulnerability of the device; (2) instead of “removed” to
keep in thought that the device is still in the game scenario.
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The problem can be modeled with a two-player zero-sum OS-POSG concept
with private observation in which attacker does not know the actions defender
has taken. Such a model is neither a classical POSG ([3]), in which attacker
observes defender’s actions, nor POSG with private information, in which no
player can observe another player’s private state [4]. Furthermore, the epidemic
aspect brings forward two additional parameters: the endogeneous probabilities
of transitions S → R and I → S. Our model is a stochastic game represented
by the tuple:

G =
(
G, Z, A1, A2, O, �, α, T, r, b0

)
,

where:

– G = (V, E) is the network (a finite and non directed graph) with V set of
nodes (devices) and E set of edges;

– Z is the set of possible states of the devices, Δ (Z) is the set of probability
distributions over Z. The global state is given by the class (S, I or R) of each
node and the total number of states is 3|V |.

– A1 and A2 respectively denote the sets of possible actions for defender and
attacker, A = A1 × A2 is the set of possible joint actions;

– O is the observation space (of the defender);
– � and α are respectively the probability for a susceptible node to become

resistant at the next time step and the probability for an infected node to
become susceptible at the next time step (see Fig. 1);

– T : Z×O×Z×A −→ [0, 1] is an application such that T (· | z, a) ∈ Δ (Z × O)
(i.e. T (· | z, a) is a probability distribution over Δ (Z × O)) for any (z, a) ∈
Z × A. T is called the transition function;

– r : Z × Z −→ R is the reward function induced from a transition of a node
state. r (zi, z

′
i) is the reward of defender when state of node i changes from zi

to state z′
i;

– b0 ∈ Δ (Z) is the initial belief of defender over the state of the network.

The game is repeated and at each time-slot, each player (attacker and
defender) chooses an action as illustrated on Fig. (2).

2.3 Model Description

For a better understanding of the proposed framework, we bring up the following
mathematical notations.

The system. To simplify, we say that nodes are indiced by 1, 2, . . . , i, . . . , |V |.
An edge is any pair {i, j} of connected nodes, i.e. a subset of V of 2 elements.
So, E ⊆ {

e ∈ 2V
∣
∣|e| = 2

}
. 3 different objects (S, I and R) define the possible

states of any node at each time-slot of the repeated game. The state of each
node defines the global state z = (zi)

|V |
i=1 of the network with

zi =

⎧
⎨

⎩

S if node i is susceptible
I if node i is infected
R if node i is resistant

.
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h

h

1

2

3

4

5

6

7

8

9

10

Beginning of the time-slot (and
of the first stage). Defender
places 2 honeypots, on edges
4 ↔ 5 and 9 ↔ 10; attacker
lunches the propagation 1 → 3,
2 → 6 and 4 → 5; the first two
ones are undetected but the last
one is detected.

1

2

3

4

5

6

7

8

9

10

End of the first stage (and beginning
of the second stage). The propaga-
tion on nodes 3 and 6 is not detected
and therefore result in two new hosts,
whereas defender has intercepted an
infection traversing the edge 4 ↔ 5.
Nodes 4 and 5 therefore accept to
patch.

1

2

3

4

5

6

7

8

9

10

End of the time-slot (and of the
second stage). With respect to
probabilities α and �, nodes 1, 3
and 6 transition I → S, node 5
transitions S → R and the other
nodes do not effectively change
their state.

i = susceptible node; i = infected node; i = resistant node; = edge; = edge
chosen by attacker; h = honeypot edge.

Fig. 2. One time-slot of the game: a possible scenario with 10 nodes

The actions
– Defender’s action consists in deploying honeypots on edges. The maxi-

mum number h of honeypots is fixed and a honeypot remains on an edge
only for one time-slot. Since he knows resistant nodes and also knows
that there is no interest for the attacker to attack a resistant node, the
defender will place a honeypot only on an edge between non-resistant
ends. Hence, a defender’s action is any set a1 of at most h edges that are
disjoint from R and has the following properties:

⎧
⎨

⎩

a1 ⊆ E
|a1| ≤ h
∀u ∈ a1, u ∩ R = ∅

. (1)

– Attacker’s action consists in propagating the worm from each infected
node through one edge of her choice linking this node to an adjacent,
susceptible node if such a node exists. To model this action, we say that
any attacker’s action is an edge, keeping in mind that : attack is lunched
from an infected node; attacker will infect only susceptible nodes; from
every infected node, infection will propagate to at most one node. Finally,
an attacker’s action is a set a2 of edges such that: each edge contains an
infected node and a susceptible node; for all infected node i there exists
at most one edge through which an infection is lunched. i.e.:

⎧
⎪⎪⎨

⎪⎪⎩

a2 ⊆ E

∀u ∈ a2,

{
u ∩ I 	= ∅
u ∩ S 	= ∅

∀i ∈ I, |{u ∈ a2 : i ∈ u}| ≤ 1

. (2)

The transition happens in two steps: the joint action a = (a1, a2) in the
state z makes the network transition to an intermediate state a (z) (Players’
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action); nodes’ probabilistic moves in the state a (z) causes another transition
to a state z′ for the following time-slot (nodes’ actions).

– Players’ action. In case node i is susceptible, his state changes (to
infected) if and only if attacker lunches an attack from an infected node
to him. In case node i is infected, his state changes (to susceptible) if
and only if defender detects an attack lunched from its position through
a honeypot to a susceptible node. Remember that resistant nodes remain
resistant.
We introduce for any collection X of sets, the set U (X) =

⋃

ω∈X

ω. Note

that: a node i is a side of an infection (either the side propagating or
receiving) if and only if i ∈ U (a2); node i is a side of an undetected infec-
tion if and only if i ∈ U (a2) \ U (a1 ∩ a2). The transitions due to player’s
action can be explained as follows: the state of a susceptible node tran-
sitions if and only if the node is a side an infection and is not a side
of a detected infection; the state of an infected node transitions if and
only if the node is a side of a detected infection. We denote by a (z)i the
intermediate state of node i induced by player’s actions a when the state
of the system is z. Then, for all node i:

zi = S =⇒
{

a (z)i = I ⇐⇒ i ∈ U (a2) \ U (a1 ∩ a2)
a (z)i = S ⇐⇒ i 	∈ U (a2) \ U (a1 ∩ a2)

,

zi = I =⇒
{

a (z)i = I ⇐⇒ i 	∈ U (a1 ∩ a2)
a (z)i = S ⇐⇒ i ∈ U (a1 ∩ a2)

,

zi = R =⇒ a (z)i = R.

– nodes’ actions. After this first intermediate transition, each node who is
still susceptible after player’s actions becomes resistant with probability
� or remains susceptible; each node who is still infected after player’s
actions becomes susceptible with probability α or remains infected. The
relying probabilities P (z′

i | a (z)i , zi) are given in the following table:

z′
i

S I R
zi a (z)i

S
S 1− � 0 �
I 0 1 0

I
S 1 0 0
I α 1− α 0

R R 0 0 1

The observations. Defender information concerns the nodes who decide to
change their states, possibly under the incitement of defender. Formally, if
we consider observation to be the result of such a transition, an observation
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is a set o such that:
⎧
⎨

⎩

o ⊆ S ∪ R

i ∈ o ⇐⇒
({

a (z)i = S
z′
i = R

or
{

a (z)i = I
z′
i = S

)
. (3)

The transition function. The calculation of the probability T (z′, o | z, a) for a
transition from a state z to a state z′ is worth done only for the subsequent
observation, i.e. for the unique observation o = o (z, z′) such that:

i ∈ o (z, z′) ⇐⇒
({

zi = S
z′
i = R

or
{

zi = I
z′
i = S

)
.

More explicitly, T (z′, o | z, a) =
{
P (z′

i | a (z)i , zi) if o = o (z, z′)
0 otherwise , where

a (z)i is the intermediate state from the state z to the state z
′

when the
joint action a = (a1, a2) is taken.
The rewards. The transition of any node’s state results in a payoff to defender
and exactly the opposite value to attacker. This payoff function of the node
states at current and next time-slots and we define it by tree non-negative
constants r1, r2 and r3 as shown in Fig. 3.

Next state z′
i

S I R

Current state zi

S 0 −r2 r3
I r2 −r1 −−
R −− −− 0

Fig. 3. Defender’s payoff for any node i state transition.

Defender’s total payoff is defined by:

R(z, z′) =
∑

i∈V

r(zi, z
′
i), (4)

while his reward is the expected total payoff:

R̄ (z, a) =
∑

z′∈Z

P
(
z′ ∣∣ a (z) , z

) × R(z, z′) =
∑

z′∈Z

∑

i∈V

P
(
z′ ∣∣ a (z) , z

) × r(zi, z
′
i).(5)

3 Solution Description

Defender does not know the targeted number of nodes attacker wishes to infect,
but attacker’s payoff measures how much she is coming close or far to her objec-
tive. So we solve the game where defender’s objective is to maximize her total
(or expected total) reward at infinite horizon. We precise some notion of game
theory for a better understanding of the strategy in our particular context.
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3.1 Strategies

Attacker may be playing a mixed strategy. Henceforth, any defender’s strategy
that is optimal in pure strategy is also optimal in mixed strategy. So we are
interested only in mixed strategies. At each time-slot of the repeated game,
players strategies are called one-stage strategies. For defender who does not know
the network’s state, the strategy π1 is a probability distribution over the set A1

of his possible actions. i.e. π1 ∈ Δ (A1). The set of defender one-stage strategies
is Δ (A1). Attacker’s strategy depends on the state z of the network and, for any
state z, she plays conditional strategy π2 (· | z) ∈ Δ (A2). i.e. she plays action
a2 with probability π2 (a2 | z). So, attacker’s one-stage strategy is a probability
vector π2 : Z −→ Δ (A2) that maps a probability distribution π2 (· | z) to any
state z. The set of attacker’s one-stage strategies is Δ (A2)

Z .
Defender updates his belief time-slot after time-slot according to the one-

stage strategies. If he has the belief b at current time-slot, plays action a1, makes
observation o while he knows that attacker has played strategy π2, then he
updates his belief to a value b

′
such that:

ba1,o
π2

(
z

′)
=

1
Pb,π2 (o | a1)

∑

z∈Z

∑

a2∈A2

T
(
z

′
, o

∣
∣
∣ z, a1, a2

)
b (z)π2 (a2 | z) , (6)

where

Pb,π2 (o | a1) =
∑

z′ ,z∈Z

∑

a2∈A2

T
(
z

′
, o

∣
∣
∣ z, a1, a2

)
b (z) π2 (a2 | z) . (7)

Yet, each one-stage strategy may follow player’s information up to the
moment he/she is going to take his/her action. This information is called
history. The history of defender at time-slot t ≥ 2 is the sequence h1 =(
a1
1, o

1, a2
1, o

2, . . . , at−1
1 , ot−1

)
of observations and defender’s actions up to time-

slot t − 1; the history of attacker at time-slot t ≥ 2 is the sequence h2 =(
z1, a1

2, z
2, a2

2, . . . , z
t−1, at−1

2 , zt
)

of network’s states and attacker’s actions up to
time-slot t − 1, added to the current state; at time-slot 1 attacker’s history is
reduced to state of the network and defender has an empty history.

3.2 Utility

Discounting the reward with a factor γ ∈ [0, 1], we consider the total expected
reward, denoted utility, at infinite horizon.2 At any time-slot at which each player
i plays strategy πi in state z, the expected reward (of defender) is given by:

Ez
π1,π2

[
R̄

]
=

∑

a1∈A1

∑

a2∈A2

π1 (a1) π2 (a2 | z) R̄ (z, a1, a2) =
∑

a∈A

π (a | z) R̄ (z, a) , (8)

2 Since the number of infected node cannot exceed |V |, the probability at each time-

slot that all infected nodes become susceptible is greater or equal to (1 − α)|V |. So, at
a certain time-slot, there will be no infected node and later all node will be resistant.
There is no payoff from this time-slot and consequently the total expected reward
converges even with discount factor γ = 1.
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where π (a | z) = π1 (a1) π2 (a2 | z) is the probability that players play the joint
action a. The expected reward (of defender) who plays with belief b over the
network state is:

Eb
π1,π2

[
R̄

]
=

∑

z∈Z

b (z)Ez
π1,π2

[
R̄

]
. (9)

So, if both players are playing a joint strategy π = (π1, π2), then, given initial
belief b0, the utility (of defender) is given by:

Uπ1,π2

(
b
0
)

=
∑

z∈Z

b
0
(z)E

z
πz

[
R̄

]
+

∞∑
t=2

γ
t−1

×
∑

z∈Z

∑
z2,··· ,zt∈Z

a1,··· ,at−1∈A

o1,··· ,ot−1∈O

[
b
0
(z)

(
t∏

τ=2

[
T

(
z

τ
, o

τ−1
∣∣∣zτ−1

, a
τ−1

)
π

(
a

τ−1
∣∣∣zτ−1

)])
E

zt
πh

[
R̄

]
]

=
∑

z∈Z

b
0
(z) ϕ (z) , (10)

where

ϕ (z) = E
z
πz

[
R̄

]

+

∞∑
t=2

γ
t−1 ∑

z2,··· ,zt∈Z
a1,··· ,at−1∈A

o1,··· ,ot−1∈O

[(
t∏

τ=2

[
T

(
z

τ
, o

τ−1
∣∣∣zτ−1

, a
τ−1

)
π

(
a

τ−1
∣∣∣zτ−1

)])
E

zt
πh

[
R̄

]]
.(11)

3.3 Objectives

Defender’s objective is to maximize his utility, which is the opposite for attacker’s
objective. The solution is then a strategy π1 which is defender’s a best response
to some strategy π2 which is also a best response to π1. When defender plays
a strategy π1, we should suppose that attacker is best responding to π1 and
consider the utility in this case, referred to as the value function vπ1 of strategy
π1 with initial belief b0, defined by:

vπ1 : Δ (A1) −→ R
b0 �−→ min

π2
Uπ1,π2

(
b0

) . (12)

Denote

U =
∞∑

t=0

γt

(
min

z,a1,a2
R̄ (z, a1, a2)

)
=

min
z,a1,a2

R̄ (z, a1, a2)

1 − γ
=

r

1 − γ
(13)

and

L =
∞∑

t=0

γt

(
max

z,a1,a2
R̄ (z, a1, a2)

)
=

max
z,a1,a2

R̄ (z, a1, a2)

1 − γ
=

r

1 − γ
, (14)
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where r = min
z,a1,a2

R̄ (z, a1, a2) and r = max
z,a1,a2

R̄ (z, a1, a2). It is clear each reward is

bounded between min
z,a1,a2

R̄ (z, a1, a2) and max
z,a1,a2

R̄ (z, a1, a2). Consequently, each

utility is bounded between L and U and Eq. (12) is consistent. The goal of
defender who has the belief b0 is to maximize the value of the game. The optimal
value v∗ of the game when defender has initial belief b0 is the application:

v∗ : Δ (A1) −→ R
b0 �−→ max

π1
vπ1

(
b0

) . (15)

This notation is consistent for the aforementioned reason.
The following theorem gives the main result of important properties over the

optimal value function v∗.

Theorem 1. The optimal value function v∗ of the game is convex and δ-
Lipschitz continuous.

Following this theorem, we can prove that the heuristic search with the value
iteration (HSVI) procedure holds and can be used to determine solutions of the
game.

4 Value Backup Operator

In this section, we prove that the heuristic search with the value iteration (HSVI)
procedure holds under our assumptions as well as in the general concept of two-
player zero-sum OS-POSG where one player knows everything but not the cur-
rent action of his opponent. To this end, we review the proof of all relevant
properties in the following section. Let us first introduce the value backup oper-
ator for stochastic games in which attacker has a complete information and we
prove that important results for this operator still hold for our particular stochas-
tic game with partial information. The defender’s reward in this time-slot game
when strategies π1 and π2 are played is

UV
π1,π2

(b) = R̄imm
π1,π2

(b) + γR̄b,subs
π1,π2

(V ) , (16)

where

R̄imm
π1,π2

(b) =
∑

z∈Z

∑

a1∈A1

∑

a2∈A2

b (z)π1 (a1) π2 (a2 | z) R̄ (z, a1, a2)

=
∑

z∈Z

∑

a∈A

b (z)π (a | z) R̄ (z, a)
(17)

is the reward in the one-stage game and

R̄subs
π1,π2

(b, V ) =
∑

a1∈A1

∑

o∈O

π1 (a1)Pb,π2 (o | a1) V
(
ba1,o
π2

)
(18)
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is the reward in the subsequent game. Denote by HV the optimal value function
of the stage game, called value backup operator, i.e.:

[HV ] (b) = UV
π1,π2

(b) = max
π1

min
π2

[
R̄imm

π1,π2
(b) + γR̄subs

π1,π2
(b, V )

]
. (19)

After several lemmas and properties described in the full version of the paper
in [7], we have the following main theorem which induces that the optimal value
v∗ of the game is the fix point of the value backup operator H.

Theorem 2. The operator H is γ-contracting in the space of convex continuous
functions V : Δ (Z) −→ R under the max-norm: ‖V ‖∞ = max

b∈Δ(Z)
‖V (b) ‖.

Henceforth from Banach fix point theorem, operator H admits a fix point V ∗

to which converges any sequence (Vn)n∈N∗ of convex continuous functions such
that Vn+1 = HVn for every n. The following theorem states that this fix point
is the value v∗ of the game, which means that any algorithm that iteratively
corrects the value converges to v∗.

Theorem 3. The value v∗ of the game is the fix point of the backup operator
H.

Following this important property and based on dual linear programs, two
algorithms are proposed in the longer version of this work-in-progress paper [7]
in order to compute the lower bound V Υ

UB and the upper bound V Γ
LB of the

optimal value v∗ of the game. Since V Υ
UB and V Γ

LB are iteratively refined upper
and lower bounds of the optimal value function at any belief b, it is possible to get
a ε-optimal value at any belief b with any precision ε, i.e: V Υ

UB (b) − V Γ
LB (b) ≤ ε.

5 Numerical Illustrations

Some simulations of simple strategies for both players are presented in this
section. We consider an Erdos-Reyni random graph with 50 nodes and a param-
eter 0.3 (probability to active each edge). Both players strategy is a fully random
strategy without history. Meaning that the attacker chooses randomly a suscepti-
ble device from an infected device uniformly, and the defender chooses randomly
the edges to allocate honeypots uniformly over the possible edges (edges that
connect two not resistant nodes). A single node, chosen randomly, is infected
at time-slot 1 and all the other nodes are susceptible. Examples of simulations
are depicted on Fig. (4). Note that on Fig. (4b) we observe the impact of the
probability to change the default password on the defender’s utility and also
on the extinction time of the virus. The number of honeypots h has also an
important impact on these two performance measures. Other simulations run
100 times with ρ = 0.1, show that the average utility goes from 83.03 with a
99% confidence interval [23.38−142.68] to 385.40 with a 99% confidence interval
[355.23 − 415.58], when h goes from 3 to 10.
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(a) Evolution of each state categories when ρ = 0.1. (b) Impact of the reaction of devices to become resis-
tant.

Fig. 4. Output of simulations with γ = 0.99, h = 3, r1 = 0.1, r2 = 1, r3 = 10 and
α = 0.5.

6 Conclusions and Further Work

This work is related to possible transitions of node states in a network prone to
malware attack. Each transition makes attacker loose what defender gains and
may be probabilistic or caused by actions of both decision makers. This security
problem is part of the large family of cyber security and the solution concept
studied here is cyber deception. Particularly, we are interested in honeypots tech-
niques which help to discover infected nodes into a network through observing
cyber contamination. Our framework is much more complicated than traditional
zero-sum OS-POSG model, because information about player’s actions is not
fully observable. Even in this complex system, we have been able to prove that
the heuristic search value iteration can be applied in order to find lower and
upper bound on the optimal value of the game.

This work is still in progress and implementation of the algorithms are on
going. The epidemiological aspect of this model further makes intricate the non-
scalability of algorithms designed for the general model. So we wish to outline
efficient algorithm specially designed for this model.
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Abstract. Counterfeiting has been a pervasive threat to the security
of supply chains. With the development of cyber technologies, tradi-
tional supply chains move their logistics to the cyberspace for better
efficiency. However, counterfeiting threats still exist and may even cause
worse consequences. It is imperative to find mitigating strategies to com-
bat counterfeiting in the cyber supply chain. In this paper, we establish
a games-in-games framework to capture the interactions of counterfeit-
ing activities in the cyber supply chain. Specifically, the sellers in the
cyber supply chain play a Stackelberg game with consumers, while sell-
ers compete with each other by playing a Nash game. All sellers and
consumers aim to maximize their utilities. We design algorithms to find
the best response of all participants and analyze the equilibrium of the
supply chain system. Finally, we use case studies to demonstrate the
equilibrium behavior and propose effective anti-counterfeit strategies.

Keywords: Game theory · Cyber supply chain · Supply chain
security · Games-in-games framework · Anti-counterfeit strategy

1 Introduction

A supply chain is a network that integrates business entities, information,
and resources to produce and distribute a specific product to final consumers
[2,13,15]. One of the significant threats to supply chain security is counterfeit-
ing. Counterfeits can be roughly categorized into deceptive and non-deceptive
counterfeits. Deceptive counterfeits can penetrate the licit supply chain in inter-
mediate processes such as manufacturing and distribution, directly disrupting
the market order and damaging the market regulations. Non-deceptive counter-
feits, on the other hand, influence the market through the illicit supply chain,
which opens a way for counterfeit trafficking. The non-deceptive counterfeits
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circulate to consumers via the illicit market and produce an indirect negative
impact on the licit market by occupying the market share that belongs to the gen-
uine goods. To summarize, counterfeiting can pose security threats to the supply
chain both explicitly and implicitly by deceptive and non-deceptive counterfeits.

With the development of cyber technologies, many corporations have moved
the operation of their supply chains to the cyberspace by developing online
markets. Despite the merits of convenience and efficiency, such a paradigm shift
does not address counterfeiting issues in the cyber supply chain. It can even
exacerbate counterfeiting threats due to the new features of the cyber supply
chain.

One notable feature of the cyber supply chains is its simplicity. While the
traditional supply chain contains sophisticated intermediate processes such as
inventory and transportation to ensure the completeness, the structure of the
cyber supply chain is more straightforward. The postal services replace the dis-
tribution process, and the retail takes place online instead of in physical stores.
Therefore, sellers and buyers can make direct contact through online markets.
The lack of intermediate processes in the cyber supply chain makes it even
harder for inspections. For example, the massive amount of packages in postal
services challenge the authority to trace counterfeits. The inspection deficiency
may result in more severe counterfeiting in supply chains.

Another feature of the cyber supply chain is its accessibility. Cyber technolo-
gies enable a large population to conveniently access the cyber supply chain,
resulting in a large potential market scale. However, easy accessibility may
worsen the counterfeiting issues. First, the identity of participants in the cyber
supply chain can be anonymous. The anonymity and indifference facilitate the
vending of counterfeits. Second, the illicit market scale becomes non-negligible.
The traditional illicit market highly depends on geographical locations. Never-
theless, the advent of online markets and cyber supply chains break geographical
location limitations. People can buy counterfeits online, which results in a sig-
nificant expansion of the illicit market scale.

Due to these new features, counterfeiting in the cyber supply chain has cre-
ated a series of losses in various industries [7,14]. Effective policies are imperative
to reduce counterfeiting losses. However, some seemingly reasonable and direct
strategies may not be sufficient and, at times, counter-productive. An example
is the opioid supply chain [17]. The misuse of opioids has caused a growing num-
ber of overdose deaths, forcing medical and public health to reduce prescription
opioids from 2010 to 2016. However, the reduced supply increased demand for
illicit opioids and resulted in the prosperity of the opioid illicit market, espe-
cially the illicit online market, causing even more overdose deaths. The failure
of such a seemingly reasonable policy is because of the lack of understanding of
the ecosystem of the coexisting illicit and licit supply chains.

The concept of equilibrium from game theory can be used to understand the
interaction and balanced behaviors of multiple players. Therefore, we propose a
games-in-games framework to capture the features of the coexisting cyber sup-
ply chains and model the interaction of counterfeiting activities. The proposed
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framework enables a holistic understanding of how counterfeiting in the cyber
supply chain works and the development of effective anti-counterfeit policies.
In our model, we aggregate the large population of sellers and consumers into
single players to focus on the population level interaction. To characterize the
consumers’ diversity, we adopt a random variable to represent the consumers’
attitude towards the counterfeits. The sellers are abstracted into three individ-
ual players: one licit seller and two illicit sellers, who only sell deceptive and
non-deceptive counterfeits, respectively. All of them seek to occupy the market
share and maximize their utilities. The consumers decide which market to buy
the product to maximize their utility. The interactions between the sellers and
the consumers can be modeled by a Stackelberg game, and all the sellers’ inter-
actions can be represented by a Nash game. We integrate the Nash game and
the Stackelberg game into a games-in-games framework. The proposed frame-
work provides an approach for understanding the interactions of counterfeiting
activities in the cyber supply chain. It also enables us to simultaneously capture
the explicit and implicit impacts of counterfeiting on the cyber supply chain.
Through the analysis, we discover the key factors that affect the equilibrium
of the counterfeit ecosystem and propose effect population-level anti-counterfeit
strategies to overcome counterfeiting in the cyber supply chain.

The contributions of this paper are summarized as follows:

(i) We identify the unique features of the cyber supply chain and propose a
games-in-games framework to characterize counterfeiting activities in the
cyber supply chains.

(ii) We formulate the counterfeiting problem as a game with piece-wise contin-
uous utilities and develop computational algorithms for this class of games.

(iii) We analyze the impact of different factors on the equilibrium of the counter-
feiting problem and propose effective anti-counterfeit strategies to suppress
counterfeiting in the cyber supply chain.

1.1 Related Work

Counterfeiting has posed security threats to the supply chain infrastructure.
Many recent works have focused on the modeling of the counterfeit supply
chains to provide a fundamental understanding of the impact of counterfeit-
ing. Li and Yi [12] have reviewed counterfeiting in supply chains, identifying the
impact of counterfeiting, possible producers’ reactions, and supply chain struc-
ture under counterfeiting issues. Works such as [1,8,11] have provided a general
analysis of the counterfeiting in supply chains and their impact on the pro-
ducers and consumers. Studies also examined possible anti-counterfeit methods
to mitigate counterfeiting activities. Anti-counterfeit detection and mitigation
strategies have been studied in [3,10]. In particular, Grossman et al. in [9] have
categorized counterfeit products into deceptive and non-deceptive ones, and ana-
lyzed the impact of foreign non-deceptive counterfeits to the domestic welfare.
They have also discussed the enforcement and confiscation policies to fight coun-
terfeits. In the more recent work [18], Zhang et al. have analyzed the strategies to
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fight counterfeiting when there are one brand name product and a non-deceptive
counterfeit in the market. The authors have also studied the fighting strategies
equilibrium in the market with two competing brand name product and one
counterfeit.

Game-theoretic approaches have been extensively used in supply chain stud-
ies to develop strategic solutions to combat counterfeits. The strategic pricing
mechanism in the supply chain with counterfeiter and defective items have been
studied in [4,16]. In particular, Cho et al. in [5] have studied the strategic decep-
tive and non-deceptive counterfeiters’ behaviors in licit and illicit supply chain
separately. The authors have also analyzed the impact of counterfeiting on the
brand-name company and consumers’ welfare, and have provided viable strate-
gies to combat counterfeiting. In this work, we adopt a similar consumer model
that views consumers as a continuum. The proposed game-theoretic framework
focuses on the analysis of the ecosystem consisting of a licit supplier, an illicit
online supplier, and consumers, and studies the outcomes of the games between
licit and illicit suppliers who anticipate the consumer demands. We observe a
phenomenon of oversupply in the market when the licit supplier competes with
the illicit supplier in the markets. The analysis of the ecosystem leads to a design
of mitigation strategies to mitigate the impact of the illicit products.

1.2 Organization of the Paper

The rest of the paper is organized as follows. Section 2 models all the participants
in the licit and illicit supply chains. Section 3 formulates the counterfeiting prob-
lem using the games-in-games framework. We analyze the problem and present
algorithms to find the best response of each player and the equilibrium solution
in Sect. 4. Case studies are used in Sect. 5 to demonstrate the algorithms and
the equilibrium solution. Several practical anti-counterfeit strategies based on
the interaction model are also proposed. Section 6 concludes the paper.

2 Model of Cyber Supply Chain

We focus on the counterfeits of substitute products in the cyber supply chain.
These products are more prone to counterfeiting, and the cyber supply chain
related to these products suffers both explicit and implicit influence from coun-
terfeiting simultaneously. Regarding the straightforward structure and accessibil-
ity features, we aggregate the massive participants in the cyber supply chain into
four players, and abstract the interaction of counterfeiting activities in Fig. 1.

The licit seller S1 manufactures and vends genuine goods with quantity q1 to
the licit market1. The illicit seller S2 (S3) fabricates deceptive (non-deceptive)
counterfeits with quantity q2 (q3) and sells them to the licit (illicit) market. The
notation in the paper is summarized in Table 1.

1 We will use licit and illicit markets to refer to the licit and illicit online markets for
simplicity. The same applies to the licit and illicit cyber supply chains.
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Fig. 1. Sketch of the interaction of counterfeiting activities. We use S1, S2, and S3 to
denote the licit seller and two illicit sellers, and C to denote consumers.

Table 1. Summary of notations.

qi: the production size of the seller Si (units);

ui: the utility of the seller Si ($);

po, pb: the licit and illicit market sale price per unit ($/unit);

Do, Db: the licit and illicit market share (or demand) (units);

φg, φf : the consumers’ valuation for the real and fake product per unit ($/unit);

uc: the consumers’ utility ($);

ao, ab: the sale price elasticity in the licit and illicit market ($/unit);

bo, bb: the maximum price in the licit and illicit market ($);

ci: the marginal cost for the seller Si ($/unit);

θ: the type of each consumer;

k: the scaling factor in consumers’ valuation ($/unit);

a: the consumers’ valuation elasticity;

α: the weight of price-taking strategy in the illicit market;

η: the portion of the non-vigilant consumers in the licit market;

γ: the confiscation probability of the illicit seller in the licit market;

s: the confiscation penalty of the illicit seller ($)

2.1 Consumers’ Model

Each consumer is characterized by her type θ, a random variable representing
her interest in the real and fake product. Consumers with small θ care less
about product authenticity because counterfeits may be acceptable substitutes
for them. The consumer with θ = 0 has the same interest in the real and fake
products. As θ increases, the consumer cares more about product authenticity
and gives less valuation to counterfeits. We assume that θ has a uniform distri-
bution over [0, 1], and that the total market scale is 1. A consumer’s valuations
on a genuine product φg and a counterfeit φf are

φg = k · 1, φf = k(1 − aθ), (1)
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where k > 0 is the scaling factor, and a > 0 is the valuation elasticity. A
consumer has three available actions to maximize her utility: going to the licit
market (L), or going to the illicit market (I), or buying nothing (N), denoted as
Ac = {L, I,N}. When a consumer decides to buy nothing, her utility is trivially
zero, i.e., uθn = 0. The utility for going to the illicit market is

uθb = φf − pb. (2)

We assume that some of the consumers who choose the licit market are vigilant
and skeptical. They prefer to suspect the product is counterfeit. Let η denote the
portion of the ordinary consumers, and hence 1− η is the portion of the vigilant
consumers. The average utility of a consumer for choosing the licit market is

uθo = ηφg + (1 − η)φf − po. (3)

Let aθ ∈ Ac denote the consumer’s action with type θ. The individual consumer’s
utility with type θ is

uθ = uθo1{aθ=L} + uθb1{aθ=I} + uθn1{aθ=N}, (4)

where 1{•} is the indicator function. Since the population of all consumers is
normalized to 1, and θ is uniformly distributed over [0, 1], the net utility uc of
total consumers is the accumulative result of all uθ:

uc =
∫ 1

0

uθdθ, (5)

which is independent of consumers’ type θ.

2.2 Pricing Mechanisms in Licit and Illicit Market

The sale price is related to the amount of products in the market. We assume
that the licit market’s sale price has a linear relationship with the total amount
of products in the licit market:

po = bo − ao(q1 + q2), (6)

where bo is the maximum price that may come from price controls, and ao is the
sale price elasticity. Illicit sellers may set the price for counterfeits based on their
intentions. We assume that the illicit market’s sale price comprises two terms:

pb = αpo + (1 − α)(bb − abq3). (7)

The first term explains the price-taking strategy. The second term illustrates the
price-setting strategy, in which illicit sellers have more control to set the price.
We assume such control is linear in the production size q3. bb is the maximum
price, and ab is the price elasticity. α ∈ [0, 1] emphasizes the relative weight of
two pricing strategies in the illicit market.

Since the market scale is 1, we can rescale the production size of each seller to
the unit interval [0, 1], as producing products more than one unit is not necessary.
Therefore, the sale prices po and pb vary in a range.
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2.3 Sellers’ Utility

Let Do and Db denote the licit and illicit market share, respectively. Note that
Do may contain deceptive counterfeits due to the counterfeit penetration. The
real licit market share for the licit seller S1 is q1

q1+q2
Do. Likewise, the real licit

market share for the illicit seller S2 is q2
q1+q2

Do. Thus, S1’s utility is given by

u1 =
q1

q1 + q2
Dopo − c1q1. (8)

S2’s utility is similar, but he will face confiscation risks in the licit market. Let
γ denote the seizure probability from authorities and s denote the confiscation
penalty, then the utility of the seller S2 is

u2 = (1 − γ)
q2

q1 + q2
Dopo − c2q2 − γs. (9)

Due to the virtuality of the online market, illicit trades are hard to detect.
Even when the authority discovers several illicit trades, illicit sellers can quickly
close their virtual trade portals and start a new one elsewhere. Therefore, we set
the confiscation probability for illicit sellers in the illicit market as 0. The utility
of the illicit seller S3 is

u3 = Dbpb − c3q3. (10)

3 Problem Formulation and Game Structure

In this section, we propose a games-in-games framework to formulate the coun-
terfeiting problem. The action space of the seller Si is Ai = {qi | 0 ≤ qi ≤ 1}
for i = 1, 2, 3. A Nash game can capture the competition among three sellers.
Each seller seeks to maximize his utility by choosing the optimal production
size. Also, all sellers play a Stackelberg game with consumers. All consumers
form the follower to make the purchase decisions and maximize their utility.
The games-in-games framework is presented in Fig. 2.

Fig. 2. The structure of the games-in-games framework.
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3.1 Stackelberg Game

In the Stackelberg game, three sellers are the leader, and consumers are the
follower. After observing the sale price po and pb, every consumer decides her
action to maximize her utility so that the consumers’ net utility is maximized:

Pc : max
aθ∈Ac

∫ 1

0

uθdθ. (11)

The leader’s problem in the Stackelberg game is defined by another Nash
game because three sellers compete with each other. The Stackelberg game can
be represented by Gs := {C,Si,Ac,Ai, uc, ui} for i = 1, 2, 3.

3.2 Nash Game

The interaction among thee sellers can be characterized as a Nash game, where
each player aims to maximize his profit. We denote this strategic game by Gn :=
{Si,Ai, ui}, i = 1, 2, 3. The utility ui, i = 1, 2, 3, are defined in (8)–(10). We
denote the aggregated action space as A = {(q1, q2, q3) | 0 ≤ q1, q2, q3 ≤ 1}.
Therefore, Gn is a continuous game defined on the unit cube.

4 Analysis of Counterfeiting in Cyber Supply Chain

In this section, we present the equilibrium analysis of the counterfeiting prob-
lem. We first analyze the market share and derive its piecewise linear expression,
which leads to a game with piecewise continuous utilities. Then we study algo-
rithms to find the equilibrium solution by solving each seller’s best response.

4.1 Market Share Analysis

The market share is a function of the solution to the consumers’ problem (11).
When solving for (11), we fix the production size q1, q2, q3, and the sale price
po, pb. As uc in (5) contains indicator functions, the consumers’ problem (11) is
equivalent to

P̃c :
∫ 1

0

max{uθo(θ), uθb(θ), uθn(θ)}dθ, (12)

The solution to (12) generates a series of critical points θ∗’s, which partitions
the interval [0, 1] into several subintervals. In each subinterval, uθo, uθb, or uθn

is greater than the other two. Since the total market scale is 1, each subinter-
val length can be interpreted as the corresponding market share. Suppose that
critical points yield an interval [a, b] where uθo is greater than uθb and uθn

. This
means that the licit market share Do = |b − a|. Therefore, the market shares Do

and Db refer to the subintervals where uθo and uθb is the largest element among
{uθo, uθb, uθn}, respectively.

Since uθo, uθb, and uθn are linear in θ, we can find the critical points θon, θbn,
and θob by solving three equations: uθo = uθn gives θon = k−po

ka(1−η) ; uθb = uθn
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gives θbn = k−pb

ka ; uθo = uθb gives θob = po−pb

ηka . These critical points form intervals
that represent the market shares. Note that the market share can vary quite often
due to the change of the production size qi. We make two assumptions to simplify
our analysis.

First, we assume that the illicit market sale price is always less than the licit
market sale price, i.e., pb ≤ po. There is no reason for a consumer to purchase a
counterfeit if she knows it is more expensive than a genuine product.

Second, we assume that the illicit market is always attractive to some portion
of the consumers, but it will never attract the entire consumer body to purchase
counterfeits. The former part of the assumption indicates that the illicit market
is preferable for the consumers with small θ (near 0). It can happen because
the first assumption suggests that the counterfeit price is always less than the
real goods. Mathematically, it means that k − pb,max ≥ 0. The latter part of
the assumption is natural as we never expect all consumers to go to the illicit
market to buy counterfeits. Mathematically, it is equivalent to the critical point
θbn < 1, which is illustrated in the following proposition.

Proposition 1. If k − ka ≤ pb,min, then θbn is guaranteed to be within [0, 1].

With the assumptions above, there are three cases to discuss to find the
market shares. Each case corresponds to a sub-region in the aggregated action
space A.

– Region I (R1), the illicit market monopoly region, where only the illicit market
share is positive. We have θon ≤ θbn; Do = 0 and Db = θbn.

– Region II (R2), the partial competition region, where consumers have three
actions to take. We have θon > θbn and θon < 1; Do = θon −θob and Db = θob.

– Region III (R3), the pure competition region, where consumers only have two
available actions (I and L), because buying nothing yields the least utility.
We have θon > θbn and θon ≥ 1; Do = 1 − θob and Db = θob.

Therefore, the aggregated action space A is partitioned into three sub-regions
by θon = θbn and θon = 1. Let q :=

[
q1 q2 q3

]T ∈ R
3. We write

θon = θbn ⇒ A1q + b1 = 0, θon = 1 ⇒ A2q + b2 = 0.

where A1 =
[−ao(1 − α(1 − η)) −ao(1 − α(1 − η)) (1 − α)(1 − η)ab

]
and

b1 = −(α(1 − η) − 1)bo − (1 − α)(1 − η)bb − ηk; A2 =
[−ao −ao 0

]
and

b2 = bo − k + (1 − η)ka. Therefore, three sub-regions can be characterized as

R1 = {q | A1q + b1 ≥ 0, 0 ≤ q ≤ 1},

R2 = {q | A1q + b1 ≤ 0, A2q + b2 ≥ 0, 0 ≤ q ≤ 1},

R3 = {q | A2q + b2 ≤ 0, 0 ≤ q ≤ 1}.

(13)

Figure 3 shows an example of the partition of A.

Remark 1. We denote Cij as the plane that separates Ri and Rj . C12 = {q | A1q+
b1 = 0, 0 ≤ q ≤ 1} is called the profit plane as C12 determines whether Do is zero
or not. C23 = {q | A2q + b2 = 0, 0 ≤ q ≤ 1} is called the growth rate switch plane
as the growth rate of Do changes when crossing C23.
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Fig. 3. Partition sketch of the aggregated action space A.

Based on (13), we obtain the expression of the market shares Do and Db:

Do =

⎧⎪⎨
⎪⎩

0 q ∈ R1
k−po

ka(1−η) − po−pb

ηka q ∈ R2

1 − po−pb

ηka q ∈ R3

, Db =

{
k−pb

ka q ∈ R1
po−pb

ηka q ∈ R2 ∪ R3

, (14)

where po and pb are defined in (6) and (7), respectively. Therefore, Do and
Db are piecewise continuous, which results in piecewise continuous utility ui,
i = 1, 2, 3. The game Gn is a three-player Nash game with piecewise continuous
utility functions.

4.2 Best Response Functions

The definition of seller Si’s best response is as follows.

Definition 1 (Best response). For the seller Si with action qi, his best
response is defined by BRi(q−i) := {v ∈ Ai | ui(v, q−i) ≥ ui(w, q−i) ∀w ∈ Ai},
where i ∈ {1, 2, 3} and −i := {1, 2, 3}\{i}.

Best Response of Seller S3. Since Db varies differently in R1 and R2∪R3 from
(14), the utility u3 has two distinct expressions in the corresponding regions. We
first find the unconstrained maximizers of u3 in R1 and R2 ∪ R3, respectively,
and then compute the best response of S3 by comparing the utility values at the
boundary points and at the unconstrained maximizers.

In R1, we have u3 = k−pb

ka pb − c3q3, which is quadratic and concave in q3.
The unconstrained maximizer in R1 is:

q∗
3,R1(q1, q2) = arg max

q3
u3 =

bb

ab
+

αpo

(1 − α)ab
− k

2(1 − α)ab
− c3ka

2(1 − α)2a2
b

. (15)

Likewise, in R2∪R3, we have u3 = po−pb

ηka pb−c3q3. The unconstrained maximizer
in this region is

q∗
3,R23(q1, q2) =

bb

ab
+

αpo

(1 − α)ab
− po

2(1 − α)ab
− c3ηka

2(1 − α)2a2
b

. (16)
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Note that the given pair (q1, q2) affects which sub-region the seller S3 will
stay. For example, if (q1, q2) = (0, 0), S3 must stay in R1. If (q1, q2) = (1, 1), S3

can only stay in R2 ∪R3. Also, the separating plane C12 and the box constraints
are also critical to determine which sub-region the seller S3 is in. We propose
Algorithm 1 to find the best response of S3. For simplicity we write u3(q3) :=
u3(q1, q2, q3) as (q1, q2) are parameters when computing best response.

Algorithm 1: Calculate the best response BR3(q1, q2) of the seller S3.
input: q1, q2
qt ← (−b1 − A1,1q1 − A1,2q2)/A1,3 ; // compute crossing point on C12

if qt ≤ 0 then
BR3(q1, q2) ← arg max{u3(0), u3(1), u3(q

∗
3,R1)} ; // S3 is in R1

else if qt ≥ 1 then
BR3(q1, q2) ← arg max{u3(0), u3(1), u3(q

∗
3,R23)} ; // S3 is in R2 ∪ R3

else
q̃∗
3,R1 ← arg max{u3(0), u3(qt), u3(q

∗
3,R1)} ; // maximizer in R1

q̃∗
3,R23 ← arg max{u3(qt), u3(1), u3(q

∗
3,R23)} ; // maximizer in R2 ∪ R3

BR3(q1, q2) ← arg max{u3(q̃
∗
3,R1), u3(q̃

∗
3,R23)}

end

Note that arg max{·} is the argument of the maximum element. For example,
if f(a) > f(b), then a = arg max{f(a), f(b)}.

Best Response of Seller S1. For the seller S1, as Do has distinct definitions
in R1,R2 and R3, we have three different cases for the utility u1. Since Do = 0
in R1, the utility becomes u1 = −c1q1. Thus, the maximizer of u1 in R1 is
q∗
1,R1 = 0. When entering R2, Do becomes positive, and the utility is

u1 =
q1

q1 + q2

(
k − po

ka(1 − η)
− po − pb

ηka

)
po − c1q1.

To find the maximizer of u1 in R2, we note that both the sale price po and
the market share Do are positive in R2. Although the concavity of u1 is not
guaranteed, the positivity of the two quantities allows us to use the gradient
accent method to find the maximizer. We arrive at the following theorem.

Theorem 1 Suppose f(x) is a concave and quadratic function and let g(x) =
x

x+a where a > 0. Suppose that f(x) is positive on [b, c] where b > 0, then the
maximizer of f(x)g(x) on [b, c] is either at the boundary or a stationary point
that satisfies the first-order condition, and the maximizer is unique.

Proof See Appendix A. �	
From (6) and (14), we know that in R2 and R3, Do and po are both positive

and linear in q1. Do has a positive coefficient for q1 while po has a negative one.
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Algorithm 2: Calculate the best response BR1(q2, q3) of the seller S1.
input: q2, q3
Compute crossing points for each sub-region ;
// I1 = [0, a], I2 = [a, b], I3 = [b, 1]
for i ← 1 to 3 do

u1 ← λDo,ipo − c1q1 ; // Do,i refers to Do in Ri

if i = 1 then
q∗
1,Ri ← 0

else
Gradient ascent: q∗

1,Ri ← arg maxq1∈Ii u1(q1) ;
end

end
BR1(q2, q3) ← arg max{u1(q

∗
1,R1), u1(q

∗
1,R2), u1(q

∗
1,R3)} ;

So Dopo is positive, quadratic, and concave in q1. Using Theorem 1, we can get
the unique maximizer of u1 in R2 and R3 using the gradient ascent method.

Figure 3 helps visualize how to compute the crossing points of each sub-
region. When fixing (q2, q3) and varying q1 from 0 to 1, S1 will pass R1, R2 and
R3 in turn, leaving two crossing points denoted as a and b. The crossing points
generate three intervals I1 = [0, a], I2 = [a, b], and I3 = [b, 1]. q1 ∈ Ii indicates
that S1 is in the sub-region Ri, i = 1, 2, 3. Note that when q2 is close to 0 (or
1), we have b = 1 (or a = 0), which means S1 will not appear in R3 (or R1).

Best Response of Seller S2. The seller S2’s utility u2 has almost the same
structure as u1. Therefore, Algorithm 2 can be applied to find the best response
of S2 by substituting u1 with u2. The computation of crossing points of each
sub-region for S2 is also similar. We fix (q1, q3) and vary q2 from 0 to 1, and then
compute the crossing point a, b and the related intervals I1, I2, and I3.

4.3 Iterative Algorithm

The definition of the Nash equilibrium of three sellers is as follows.

Definition 2 (Nash equilibrium). The Nash equilibrium solution to the game
Gn is a set of strategies (q∗

1 , q
∗
2 , q

∗
3) ∈ A such that for all qi ∈ Ai, i ∈ {1, 2, 3},

ui(q∗
i , q∗

−i) ≥ ui(qi, q
∗
−i).

The equilibrium of a Nash game can be found by the intersection of all
players’ best responses. We propose Algorithm 3 based on iterative methods
to find the equilibrium of the game Gn. The existence of the equilibrium can
be demonstrated by simulations. A notable result in our problem is that the
best response of the seller S3 is a point-to-point mapping provided that some
conditions are satisfied. We arrive at the following results.
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Theorem 2 The seller S3 in the Nash game Gn has a point-to-point best
response provided that the inequalities (17)–(18) hold:

ηk + (1 − η)(1 − α)bb

1 − α(1 − η)
≤ 3 − η

2
k +

(1 − η)c3ka

2(1 − α)ab
, (17)

ηk + (1 − η)(1 − α)(bb − ab)
1 − α(1 − η)

≥ 2ηk

1 + η
− η(1 − η)c3ka

(1 + η)(1 − α)ab
. (18)

Besides, the best response is continuous.

Proof See Appendix B. �	
Numerical results corroborate that the best responses of the players S1 and S2

are point-to-point mappings under suitable parameters. The fixed point iterative
method can be used to find the pure strategy equilibrium of the problem given
an initial point q0 := (q1,0, q2,0, q3,0).

Algorithm 3: Iterative method to find Nash equilibrium.
input: q0 = (q1,0, q2,0, q3,0), ε, kmax

k ← 0 ; // iteration counter

while k < kmax do
/* we denote brk(q) as best responses of player Si */

BRk(qk) ← [br1(qk) br2(qk) br3(qk)]
T ; // form aggregated best

response

qk+1 ← BRk(qk) ;
if ‖qk+1 − qk‖ ≤ ε then

break ;
end
qk ← qk+1 ;
k ← k + 1;

end
qnash ← qk+1.

5 Case Studies and Simulations

In this section, we use case studies to quantify the equilibrium strategy using the
designed algorithms. Consider a licit and an illicit market characterized by bo =
10, ao = 2 and bb = 7.5, ab = 1.5. The parameter α = 0.6 indicates the weight
of the illicit seller’s price-taking strategy. The consumers are parameterized by
a = 1

3 and k = 9.5. The production costs for three sellers are set to c1 = 4
and c2 = c3 = 2. The cheap production cost differentiates the counterfeits with
the genuine product and indicates the counterfeit’s low quality. The confiscation
probability and the penalty are γ = 0.2 and s = 3. The portion of non-vigilant
consumers in the licit market is η = 0.7.



Combating Online Counterfeits 339

5.1 Best Response and Equilibrium Strategy

The best responses of S1, S2, and S3 are presented in Fig. 4. The best response
of S3 is continuous, as proved before. Simulations also show that the other two
players’ best responses are point-to-point mappings. The equilibrium in this case
is (q1, q2, q3) = (0.44, 0.82, 0.09). We notice that S1’s best response production
increases with q3 when there are few deceptive counterfeits. This shows that in
the competition with S3, S1 can always keep a low sale price to attract more
consumers from the illicit market. The best response of S3 corroborates the
claim. It decreases when q1 increases (for large q1), which indicates that non-
deceptive counterfeits are no longer attractive to consumers as the licit market
price goes down. This is common in the cyber supply chain because sellers’
anonymity provides less useful information to products and makes consumers
more price sensitive. However, deceptive counterfeits can significantly erode the
licit market share and affect S1’s best production strategies. We see that S1’s
best response decreases with q2, and whatever the condition is, the best-response
production of S2 is large. This is because S2 takes advantage of consumers’ trust
in the licit market and the low counterfeit production cost to steal the licit
market share. The anonymity and the reduced structure in the cyber supply
chain make the situation even worse, accounting for the considerable value of q2
in the equilibrium. The fact indicates the deceptive counterfeits can pose more
severe threats to the cyber supply chain security than non-deceptive counterfeits.

Best response of S1. Best response of S2. Best response of S3.

Fig. 4. All sellers’ best responses are continuous and point-to-point mappings.

Remark 2 We notice that the simulation shows the total production size (q1 +
q2 + q3) not equal to the total demand (1) at the equilibrium. This result can
be viewed as the outcome of the competitive production planning process. The
competition in production planning can lead to oversupply and thus the inef-
ficiency of the equilibrium. The phenomenon of oversupply aligns with several
observations made by works in management operations. Christensen in [6] has
discussed the oversupply issues of rigid disk drivers due to competitions. The
oversupply can also be interpreted by the asymmetric position of sellers and
buyers. In economics, the perfect market equilibrium is characterized by the
best response of sellers and buyers; i.e., they are in the symmetric position.
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The impact on each other eventually leads to the market equilibrium with sup-
ply equal to demand. In our framework, the consumers are the follower of a
Stackelberg game instead of a Nash game player. The sellers can anticipate
the consumers’ demand, but the consumers follow the price determined by the
sellers’ production decision-making. Three sellers plan their optimal production
volumes by mainly considering the competition among each other.

5.2 Discussion on Parameter Sensitivity

Some parameters are critical for the player’s performance and the equilibrium.
We discuss and visualize their impact on the equilibrium using simulations.

Valuation Elasticity a. Consumers’ tolerance on counterfeits is reflected by
a. The larger a is, the fewer consumers are willing to tolerate counterfeits,
leading to a decreasing profit and production size to the illicit sellers. We
let a = 0.25, 0.3, 0.33, respectively, leaving other parameters unchanged. The
equilibria when a = 0.3 and a = 0.33 are (q1, q2, q3) = (0.31, 0.85, 0.73) and
(0.44, 0.82, 0.09), respectively. As a progresses, counterfeits become less attrac-
tive. The production volumes of S1 and S2 are suppressed as shown in Fig. 5.

(a) Production size qi in different valuation
elasticity a.

(b) Market shares Do and Db in different
valuation elasticity a.

Fig. 5. Increasing a can diminish the production size of illicit sellers and the illicit
market share.

Weight of Price-Taking Strategy α. Large α means that the illicit seller is
more willing to follow the licit market sale price than set the price. As Fig. 6
indicates, large α corresponds to a small best-response production of S3. S3

gradually loses his price advantage as α increases. The consequence of large
α is that the licit and illicit markets have comparable sale prices. Consumers
naturally prefer the licit market when the prices are similar. Although there may
be deceptive counterfeits in the licit market, the average utility of purchasing in
the licit market can be higher than that in the illicit market, depending on the
consumers’ belief η. This explains why S3 loses the market share under large α.
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(a) Best response of S3 when
α = 0.55.

(b) Best response of S3 when
α = 0.6.

(c) Market shares and equi-
librium under different α.

Fig. 6. Large α can effectively diminish the illicit seller S3’s production, and free more
market share to the licit market.

Consumers’ Belief in Licit Market η. We see that η < 1 tilts the profit
plane C12, which amplifies the illicit market’s impact on the licit market by
reducing the consumers’ average utility in the licit market. The licit market has
to attract more consumers to maintain the same consumers’ utility than η = 1.
Also, increasing η helps reduce the size of R1 as Fig. 7 shows. Smaller R1 allows
S1 to establish a positive market share Do more easily. As the total market
share is fixed, larger η decreases illicit sellers’ profit and crushes counterfeits
production. The simulation corroborates the conclusion. The market equilibrium
is (q1, q2, q3) = (0.05, 1.0, 1.0) when η = 0.5, which yields Do = 0.51 and Db =
0.49. When η increases to 0.7, the equilibrium becomes (0.44, 0.82, 0.09), which
gives a market share Do = 0.98 and Db = 0.02. Two illicit sellers’ production
capacities are reduced, and the illicit market share is also suppressed. The utility
of the licit seller S1 increases from u1 = 0 to u1 = 0.8.

(a) η = 0.5. (b) η = 0.7.

Fig. 7. The partition of the aggregated action space A. Larger η yields smaller R1,
which helps S1 take positive market share more easily.

Confiscation Probability γ. We discuss the impact of γ because the penalty s
is a constant term in S2’s utility. As Fig. 8 shows, a large γ reduces the illicit seller
S2’s production size and profit. S1’s production size and profit are increasing with
γ as expected. However, S1 does not entirely absorb the market share freed by S2.
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S3 also takes some of it, which is because of the price advantage: the illicit market
sale price is less than the licit price, so counterfeits are always attractive to some
portion of consumers. Notably, deceptive counterfeit penetration is more severe
than expected. When γ = 0.2, the amount of deceptive counterfeits reaches q2 =
0.82. Counterfeiting is rampant when the inspection is loose, and the deceptive
counterfeit penetration scale is much larger than the non-deceptive counterfeit
trafficking in the illicit market. This is particularly true in the cyber supply chain
because the wide availability and online sellers’ anonymity make inspections
much difficult. Note that S2’s utility is negative when γ = 0.4. It means the
confiscation risk is greater than the revenue of selling deceptive counterfeits,
providing an effective anti-counterfeit strategy.

(a) Production size qi under different γ. (b) Utility ui under different γ.

Fig. 8. Large γ can restrain the illicit seller S2’s production and free more market
share. However, the freed market share is taken by both sellers S1 and S3.

5.3 Anti-Counterfeit Strategies

The special features of the cyber supply chain are characterized by parameters.
The parameter sensitivity analysis in Sect. 5.2 provides insights on how to sup-
press the profit and illicit sellers’ production. Based on this, we propose strategies
to mitigate counterfeiting in the cyber supply chain ecosystem.

First, the strategies that improve the consumers’ faith in the licit market
(increasing η) and reduce their tolerance on counterfeits (increasing a) can
weaken counterfeiting problems in the cyber supply chain. Based on the cyber
platform, actions such as third-party cyber insurance for products and digital
authentications from the market organizer will help.

Second, the strategies that increase α can help diminish counterfeit produc-
tion size. Large α indicates less power of illicit sellers in setting the illicit market
sale price. One way to enlarge α is to attract more licit sellers to participate
in the cyber supply chain. In this way, the illicit sellers’ autonomy on price-
making will be weakened, and they are forced to follow the licit market sale
price. Optimizing the cyber supply chain process for licit sellers also contributes
to improving α. For example, more efficient delivery and economical production
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processes can make genuine products more competitive, so that licit sellers seize
more initiative in the price-making stage.

Third, improving confiscation probability γ can suppress the deceptive coun-
terfeits. Deceptive counterfeits can jeopardize the licit market and licit supply
chain by taking more market share and disrupting the market order. Although it
is potentially hard to trace the deceptive counterfeits in the cyber supply chain,
advanced techniques can be considered, such as using RFID chip nad QR code
for verification, adopting blockchain technologies to track product life cycle.

6 Conclusion

In this work, we have investigated the equilibrium and anti-counterfeit strategies
on counterfeiting activities in the cyber supply chain ecosystem by establishing
a games-in-games framework. We first analyze the features of the cyber sup-
ply chain and use the game-theoretic approach to capture the interactions in
counterfeiting activities. A Nash game and a Stackelberg game are then formu-
lated to yield a games-in-games framework. The developed algorithms are used
to calculate the best responses of the sellers and the market equilibrium. Case
studies investigate different sellers’ behaviors under different scenarios. Based
on the analysis and numerical experiments, three anti-counterfeit strategies are
proposed to restrain counterfeiting activities. The framework also opens a way to
understand the complex interactions of counterfeiting in the cyber supply chain.
Future work will explore the equilibrium in incomplete information scenarios.
Information asymmetry may affect the market equilibrium, which is crucial to
combat counterfeiting in the cyber supply chain ecosystem. Limited information
will also impact the available anti-counterfeit strategies for both authorities and
licit suppliers.

A Proof of Theorem 1

Let f(x) = px2 + qx + r. The concavity of f indicates that p < 0, and let
h(x) = f(x)g(x). Then

h′′(x) = 2pg(x) + f(x)
−2a

(x + a)3
+

2a

(x + a)2
(2px + q).

Note that g(x) is concave and increasing on [b, c]. We discuss three possibilities.

– f(x) is increasing on [b, c], i.e., − q
2p ≥ c. Since f(x) and g(x) are both increas-

ing and positive on [b, c], thus x∗ = arg max h(x) = c.
– f(x) is decreasing on [b, c], i.e., − q

2p ≤ b. We check the Hessian of h(x). The
first two term are clearly negative. As f(x) is decreasing, we have f ′(x) =
2px + q < 0 on [b, c]. Therefore, the Hessian h′′(x) < 0 and h(x) is concave
on [b, c]. The maximizer of h(x) can characterized by the first-order condition
h′(xfoc) = 0. Thus x∗ is the argument of max{h(b), h(c), h(xfoc)}.



344 Y. Zhao and Q. Zhu

– f(x) is both increasing and decreasing on [b, c], i.e., b < − q
2p < c. We split

[b, c] into two subintervals [b,− q
2p ] and (− q

2p , c]. In the first interval, h(x) is
increasing. In the second interval, h(x) is concave. Note that h(x) is contin-
uously differentiable on [b, c], which means h′(x) is continuous. Since

h′(− q

2p
) = f(− q

2p
)g′(− q

2p
) > 0,

h′(x) is positive in a small neighborhood of x = − q
2p , which means h(x)

is still increasing in that small neighborhood. Therefore, we obtain that the
maximizer is either x = c or the point which satisfies the first-order condition,
i.e., x∗ is the argument of max{h(c), h(xfoc)}.

Since h′(x) is continuous and is nonzero constant on any subintervals of [b, c],
the uniqueness of the maximizer is guaranteed.

B Proof of Theorem 2

From (14), The nonsmoothness of Db occurs when q3 crosses C12. Let I1 and
I23 denote the interval such that Db = k−pb

ka when q3 ∈ I1 and Db = po−pb

ηka
when q3 ∈ I23. Note that I1 and I23 are parameterized by q1 and q2. We write
I23 = [0, q3,s] and I1 = [q3,s, 1]. When q3,s = 0 or 1, I23 or I1 is empty; when
q3,s ∈ (0, 1), both I1 and I23 are nonempty. We call q3,s the crossing point.

When one of I1 and I23 is empty, Db is smooth on the entire [0, 1]. As the
utility function u3 is concave, the maximizer is unique. When I1 and I23 are
both nonempty, u3 comprises two concave and quadratic functions u3,1, u3,23 on
I1 and I23. Clearly, the concavity of u3 is not guaranteed.

Let W = {(q1, q2, q3) | 0 ≤ q1, q2 ≤ 1, q3 = 0}, and projW C12 be the
projection of C12 onto W. Note that if η < 1, the profit plane C12 is not
parallel to the q3 axis, and hence the projection forms a closed polytope:
projW C12 = {(q1, q2) | (q1, q2, q3) ∈ C12,∀q3 ∈ [0, 1]}. When (q1, q2) ∈ projW C12,
I1 and I23 are both nonempty. When (q1, q2) 
∈ projW C12, either I1 or I23 is
empty. Next, we let q∗

3,u and q∗∗
3,u be the unconstrained maximizers of u3,1 and

u3,23, respectively. Let q∗
3 be the maximizer of u3 in [0, 1]. To guarantee the

uniqueness of q∗
3 , we set q∗

3 as the crossing point q3,s. The following inequalities
must hold:

q∗
3,u ≤ q3,s, q∗∗

3,u ≥ q3,s ∀(q1, q2) ∈ projW C12

Further simplification tells for all (q1, q2) ∈ projW C12, we have

po ≤ 3 − η

2
k +

(1 − η)c3ka

2(1 − α)ab
, po ≥ 2ηk

1 + η
− η(1 − η)c3ka

(1 + η)(1 − α)ab

Since projW C12 is closed, po,min and po,max exist. By taking these two values
into the inequalities above, we obtain the inequalities (17)-(18).

To prove the continuity, it is clear that projW C12 ⊂ W. For the region
{(q1, q2, q3) | (q1, q2) ∈ projW C12, q3 ∈ [0, 1]}, the best response is the crossing
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point q3,s. All the crossing points form the plane C12, which is continuous in
(q1, q2). For the region {(q1, q2, q3) | (q1, q2) ∈ W\projW C12, q3 ∈ [0, 1]}, the
best response is either 0 or 1 or the unconstrained minimizer calculated by (15)
or (16). All of them are continuous in (q1, q2). This proves the continuity of the
best response of the seller S3.
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Abstract. In this work, we investigate a security game between an
attacker and a defender, originally proposed in [6]. As is well known,
the combinatorial nature of security games leads to a large cost matrix.
Therefore, computing the value and optimal strategy for the players
becomes computationally expensive. In this work, we analyze a spe-
cial class of zero-sum games in which the payoff matrix has a special
structure which results from the additive property of the utility func-
tion. Based on variational principles, we present structural properties
of optimal attacker as well as defender’s strategy. We propose a linear-
time algorithm to compute the value based on the structural properties,
which is an improvement from our previous result in [6], especially in the
context of large-scale zero-sum games.

Keywords: Security game · Zero-sum game · Nash equilibrium ·
Computational complexity

1 Introduction

Game theory [2] is a useful tool to model adversarial scenarios. Security games
model attack scenarios wherein an attacker attacks a number of targets while
the defender allocates its resources to protect them to minimize the impact. One
of the main questions in the area of security is how to allocate resources effi-
ciently due to the limited available resources for the defender. The payoff for the
attacker and the defender is based on the successfully attacked and protected
targets, respectively. Traditionally, due to the adversarial nature of the problem,
attacker-defender games have been modeled as zero-sum games, and the resulting
saddle-point strategies are assumed to be optimal for both players. In general,
two-player zero-sum game can be formulated as an linear programming (LP)
problem [2], and therefore saddle-point equilibrium can be computed in polyno-
mial time. The most efficient running time of solver for a general LP problem
is O(n2.055) [9]. However, solving security games with more than 2 resources for
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attacker and defender with a general LP solver is computationally expensive due
to the combinatorial nature of the problem.

In the past two decades, game theory has played an important role in quanti-
fying and analyzing security in large-scale networked systems. Here, we mention
some of these efforts across several applications. For example, a game theoretic
framework is proposed for security of smart grids in [4,17,18,21]. In these models,
players can distribute the limited budget over the entire set of nodes of the net-
work, and consequently the combinatorial nature of the game is relaxed. Authors
in [4] propose an evolutionary game framework that models integrity attacks and
defenses in an Advanced Metering Infrastructure (AMI), modeled as a tree, in
a smart grid. In [18], a game-theoretic defense strategy is developed to protect
sensor nodes from attacks and to guarantee a high level of trustworthiness for
sensed data. Authors in [5,8,10,16] and [22] consider the notion of information
security in a networked system from game theoretic perspective. [10] introduces
a method for resolving uncertainty in interdependent security scenarios in com-
puter network and information security. In [22], authors examine security game
in which each player collectively minimizes the cost of virus spread while assur-
ing connectivity. In [5,8], authors propose a game-theoretic model for adaptive
security policy and power consumption in the Internet of Things. In [16], authors
introduce a game-theoretic framework for optimal stochastic message authenti-
cation, and they provide guarantees for resource-bounded systems. In [7], authors
focus on notions of self-protection (e.g., patching system vulnerabilities) and self
insurance (e.g., having good backups) rather than only security investments in
information security games. In [11], authors propose a game theoretic frame-
work for picking vs guessing attacks in the presence of preferences over the
secret space, and they analyze the trade-off between usability and security. For
a comprehensive survey of game-theoretic approaches in security and privacy in
computer and communication, a reader could refer to [19].

Security games pose computational challenges in analysis and synthesis of
optimal strategies due to exponential increase in the size of the strategy set
for each player. A class of security games which renders tractable computational
analysis is that of Stackelberg games [1]. In Stackelberg models, the leader moves
first, and the follower observes the leader’s strategy before acting. Efforts involv-
ing randomized strategies [12] and approximation algorithms [3] for Stackelberg
game formulation of security games have been proposed to efficiently allocate
multiple resources across multiple assets/targets. In order to extend the efficient
computational techniques for simultaneous move games, efforts have been made
to characterize conditions under which any Stackelberg strategy is also a NE
strategy [15]. An extensive review of various efforts to characterize and reduce
the computational complexity of Stackelberg games with application in security
can be found in [6], and references therein. Here, we mention a few that are rele-
vant to the problem under consideration. [13] shows that computing the optimal
Stackelberg strategy in security resource allocation game, when attacker attacks
one target, is NP-hard in general. However, when resources are homogeneous
and cardinality of protection set is at most 2, polynomial-time algorithms have
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been proposed by the authors. [13] propose an LP formulation similar to Kiek-
intveld’s formulation, and presents a technique to compute the mixed strategies
in polynomial time.

In [14], a security game between an attacker and a defender is modeled as
a non-zero-sum game with multiple attacker resources. The authors analyze the
scenario in which the payoff matrix has an additive structure. They propose an
O(m2) iterative algorithm for computing the mixed-strategy Nash Equilibrium
where m is the size of the parameter set. Motivated from [14], in [6], we ana-
lyzed a zero-sum security game with multiple resources for attacker and defender
in which the payoff matrix has an additive structure. Based on combinatorial
arguments, we presented structural properties of the saddle-point strategy of
the attacker, and proposed an O(m2) algorithm to compute the saddle-point
equilibrium and the value of the game, and provided closed-form expressions for
both. In this paper, we show that a zero-sum security game can be reduced to
the problem of minimizing the sum of the k-largest functions over a polyhedral
set which can be computed in linear time [20]. Based on this insight, we use a
variational approach to propose an O(m) algorithm which is the best possible
in terms of the complexity. Moreover, we present structural properties of the
saddle-point strategy of both players, and an explicit expression for the value of
the game.

The rest of the paper is organized as follows. In Sect. 2, we present the
problem formulation. In Sect. 3, we present structural properties of the opti-
mal attacker strategy. In Sect. 4, we present a linear time algorithm to compute
the value of a large-scale zero-sum game. In Sect. 5, we present structural prop-
erties of the defender’s optimal strategy, and a dual algorithm to compute the
value and equilibrium. In Sect. 6, we present our conclusions along with some
future work.

2 Problem Formulation: Security Game

Consider a two-person zero-sum game, and let I = {1, . . . , m} denote a set of
targets. We assume an attacker (player 1) chooses ka-targets to attack. So, there
are na =

(
m
ka

)
actions for player 1. On the other hand, protection budget of

targets is limited, and we assume that only kd targets will be protected by the
defender (player 2). So, there are nd =

(
m
kd

)
actions for player 2. The defender has

no knowledge about the targets chosen by player 1. In order to find the optimal
strategy for the players, we formulate a strategic security game (X ,Y, A), where
X and Y denote the action sets for attacker and defender, respectively, and
card(X ) = na, card(Y) = nd. Every element xi ∈ X represents a set of targets
that are attacked. Similarly, yi ∈ Y represents a protected targets. Each xi ∈ X
and yi ∈ Y is a ka-tuple, and kd-tuple subset of I, respectively.

The attacker has no information about the targets that are protected by the
defender. Let φi denote the cost associated to target i. Moreover, without loss
of generality, we assume that targets are labeled such that φi ≥ φj ≥ 0 for i > j.
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We consider an additive property for the utility function i.e., entries of the
cost matrix A are defined as follows:

Aij =
∑

{l|l∈xi∩yc
j}

φl. (1)

A represents the game matrix or payoff matrix for player 1. Since we consider a
zero-sum game, the payoff matrix for player 2 is −A. Note that we assume both
players have the complete information of the target costs.

Let p, q be the probability vectors representing the mixed strategies for player
1 and player 2, respectively. The expected utility function is

v = pT Aq.

According to the minimax theorem, every finite two-person zero-sum game has
a saddle point with the value, v∗, in mixed strategy p∗ =

[
p∗
1, . . . , p

∗
na

]T for

player 1, and mixed strategy q∗ =
[
q∗
1 , . . . , q

∗
nd

]T for player 2, such that player
1’s average gain is at least v∗ no matter what player 2 does. And player 2’s
average loss is at most v∗ regardless of player 1’s strategy, that is

pT Aq∗ ≤ p∗T Aq∗ ≤ p∗T Aq.

In order to solve every finite matrix game, we can reduce the game to the
following LP problem,

maximize
p

v

subject to v ≤
na∑

i=1

piAij , j = 1, . . . , nd

p1 + · · · + pna
= 1

pi ≥ 0 for i = 1, . . . , na.

(2)

However, the dimension of the decision variables in the above formulation is
(na + 1) which is exponential in terms of m. In the next section, we present an
equivalent LP formulation with dimension m to compute v∗.

3 Structural Properties of the Attacker’s Strategy

In this section, we investigate the structural properties of the optimal attacker’s
strategy. The value of the game (v∗) can be defined as follows based on the
attacker’s mixed strategy p:

v∗ = max
p

min
1≤i≤nd

(pT A)i,
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where (pT A)i denote the ith element of pT A. From (1), (pT A)i can be written
in the following form,

(pT A)i =
na∑

j=1

pjaji =
na∑

j=1

pj

∑

l∈xj∩yi
c

φl =
∑

l∈yc
i

αlφl,

where,

αj =
∑

{i|j∈xi}
pi =⇒ M[m,ka]p = α, (3)

where α = [α1, . . . , αm]T , and M[m,ka] ∈ R
m×na is a combinatorial matrix1.

Since M[m,ka] is a combinatorial matrix,
∑m

i=1 αi = ka. Moreover, in the
following lemma we show that for any feasible α there exists a feasible p. Hence,
the problem reduces to computing α∗.

In the following, let ei denote the unit vector of dimension m with ith element
equal to one, and ∇αv represents the gradient of v respect to α.

Lemma 1. M[m,ka] is a surjective mapping.

Proof. Please refer to [6] for the proof. ��
Based on the above lemma, the problem reduces to computing α∗.

Lemma 2. α∗ satisfies the following property:

α∗
i φi ≥ α∗

jφj for i > j (4)

where α∗
j is defined in (3) for p∗.

Proof. Assume the following holds for α∗:

α∗
imφim ≥ · · · ≥ α∗

i1φi1 . (5)

Note that v∗ is (m−kd)-sum of smallest αlφl, that is v∗ =
∑im−kd

l=i1
α∗

l φl. Assume
that there exist i and j such that α∗

i φi < α∗
jφj for i > j. φi ≥ φj ⇒ α∗

j > α∗
i .

α∗
i < 1, α∗

j > 0 ⇒ (ei − ej)T ∇αv|v∗ ≤ 0. Since v∗ is the maximum value
of the (m − kd)-sum of smallest αlφl, we arrive at a contradiction. Therefore,
α∗

i φi ≥ α∗
jφj for i > j. ��

Corollary 1. α∗ and v∗ satisfy the following property:

(a) v∗ =
∑m−kd

l=1 α∗
l φl,

(b) α∗
mφm = · · · = α∗

sφs > α∗
s−1φs−1 ≥ · · · ≥ α∗

s−rφs−r, α∗
s−r−1 = · · · = α∗

1 = 0
for 1 ≤ s ≤ max(ka,m − kd) and 0 ≤ r ≤ s − 1.

1 A combinatorial matrix M[m,k] ∈ R
m×(mk ) is a boolean matrix containing all combi-

nations of k 1’s. Each column of M has k entries equal to 1 and rest of the entries
equal to 0. In other words, M is a matrix constructed from

(
m
k

)
combinations of k

one in an m dimensional vector.
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Proof. (a) Since v∗ is (m − kd)-sum of smallest αlφl, This property can be
concluded directly from Lemma 2.

(b) Let k denote max(ka,m − kd). First, we show that there is an optimal
solution such that α∗

mφm = · · · = α∗
kφk. We proceed the proof by contradiction.

We assume that ∃i ∈ {k+1, . . . , m} such that α∗
i φi > α∗

i−1φi−1. Since
∑m

l=1 αl =
ka, there is j ∈ {1, . . . k} such that α∗

j < 1. Therefore, (ej − ei)T ∇αv|v∗ ≤ 0.
Note that if (ei − ej)T ∇αv|v∗ < 0 is a contradiction with the fact that v∗ is
the optimal value, and if (ei − ej)T ∇αv|v∗ = 0 then it means there are multiple
solutions which at least one satisfy the property. Moreover, from Lemma 2, if
α∗

mφm = α∗
sφs then α∗

mφm = · · · = α∗
sφs, which completes the proof. ��

Let s∗, r∗ denote the indices for optimal structure expressed in Corollary 1.
Let Ua and Ud, called active sets of attacker and defender, denote the union of
xi’s and yi’s corresponding to the support sets of p∗ and q∗, respectively.

Corollary 2. In a security game (X ,Y, A), Ua = {s∗ − r∗, . . . , m}. When s∗ >
m − kd, the defender has a pure strategy with Ud = {m − kd + 1, . . . , m}, else
Ud = {s∗, . . . , m} (for s∗ ≤ m − kd).

Proof. The proof of first part directly follows from the fact that αm, . . . , αs∗−r∗ >
0 and αs∗−r∗−1 = · · · = α1 = 0.

For second part, consider (p∗T A)j . The following condition holds for
Ui∗,i∗+r∗ :

αmφm = · · · = αs∗φs∗ > αs∗−1φs∗−1 ≥ · · · ≥ αs∗−r∗φs∗−r∗

αs∗−r∗−1 = · · · = α1 = 0.

When ka + kd ≤ m, (p∗T A)j > v∗ for all j such that {1, . . . , s − 1} 
⊆ yc
j .

Consequently,
q∗
j = 0 ∀j s.t. {1, . . . , s − 1} 
⊆ yc

j ,

else p∗T Aq∗ > v∗, which is a contradiction. Therefore, any q∗
j corresponding to

yj such that yj ∩ {1, . . . , s − 1} 
= ∅ is zero. In other words, Ud = {s∗, . . . , m}.
Based on similar arguments, we can conclude that Ud = {s∗, . . . , m} for

ka +kd > m and s∗ ≤ m−kd. When ka +kd > m and s∗ > m−kd, (p∗T A)j > v∗

for all j such that {s, . . . , m} ∩ yc
j 
= ∅, and consequently q∗

j = 0. Therefore,

q∗
j = 0 ∀j s.t. {s, . . . , m} 
⊆ yj

Since the defender has kd resources, it has a pure strategy to allocate it to targets
{m − kd + 1, . . . , m}. ��
Remark 1. According to Corollary 2, both players choose mixed strategies that
involve targets with highest impacts (φi).
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4 Computation of v∗

Based on Lemma 2, we can solve the following LP to compute v∗:

maximize
α1,...,αm

m−kd∑

l=1

αlφl

subject to αiφi ≥ αjφj for all i > j
m∑

i=1

αi = ka

αi ≤ 1 i = 1, . . . , m.

(6)

Note that from Lemma 1, we show that for any α which satisfies the conditions
in (6), there exists a p on a simplex such that Mp = α, which satisfy the
feasibility condition of (6).

From Corollary 1, v∗ and α∗ can be computed by examining all feasible
solutions for 1 ≤ s ≤ k (k = max(ka,m − kd)), and 0 ≤ r ≤ s − 1 which satisfy
the condition in Corollary 1 (b). Let U denote a square matrix of dimension k.
The (i, i + r)th entry of U (denoted by Ui,i+r) is the solution to the following
problem:

maximize
α1,...,αm

m−kd∑

l=1

αlφl

subject to αmφm = · · · = αsφs > αs−1φs−1 ≥ · · · ≥ αs−rφs−r

αs−r−1 = · · · = α1 = 0, s = k − i + 1
0 ≤ αl ≤ 1,∀l ∈ I.

The following theorem relates v∗ to the elements of U .

Theorem 1. v∗ = max
i,j

{Ui,j}, and the entries of U are as follows:

For i ≤ ka + kd − m:
{

Ui,i = 0,

Ui,i+r =
∑m−kd

l=s−r φl when ciφs ≥ ka − r > ciφs−1

For i > ka + kd − m:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui,i = ka(i−k−kd+m)
ci

when ciφs ≥ ka

Ui,i+r =
∑s−1

l=s−r φl + (ka−r)(i−k−kd+m)
ci

,

when ciφs−r > (i − k − kd + m), and ciφs ≥ ka − r > ciφs−1,

Ui,i+r = (ka − r − ci−1φs)φs−r +
∑s−1

l=s−r+1 φl + (i − k − kd + m)φs

when ciφs−r ≤ (i − k − kd + m) and ciφs ≥ ka − r > ciφs − 1
Ui,i+r = 0 otherwise

where ci =
∑m

j=s
1
φj
.
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Proof. First, we consider the case s ≤ m − kd. Let the optimal solution be
α∗ = (α∗

1, . . . , α
∗
m). Since αi = αs(φs/φi) for i ≥ s, δαi = δαs(φs/φi) for

any perturbation δαs. Since
∑

αi = ka, any allowable perturbation around α∗

satisfies the following condition:

m∑

j=1

δαj = 0 =⇒
s−1∑

j=1

δαj + ciφsδαs = 0, (7)

where ci =
∑m

j=s
1
φj

. Consider a perturbation that involves perturbing αl for
l < s and αs, . . . , αm. From (7), we obtain the following:

δαl = −ciφsδαs (8)

Based on the first order necessary conditions for maxima, we obtain the following:

δv|v∗ < 0 =⇒ φlδαl +
m−kd∑

j=s

φsδαs = φlδαl + φs(m − kd − s + 1)δαs < 0 (9)

Let g(φ) = −ciφ+(m−kd −s+1). Substituting (8) in (9) leads to the condition
g(φl)δαs < 0. g(φl) > 0 ⇒ δαs < 0 ⇒ ∀j < s, α∗

j = 1. If for any l < s,
g(φl) < 0 ⇒ δαs > 0 ⇒ α∗

s = 1.
As a result, we obtain the following conditions:

α∗
j = 1 if g(φj) > 0

α∗
s = 1 if ∃j such that αjg(φj) < 0, (10)

From (10), we conclude that α∗ and v∗ can have the following forms:

1.

αj =

⎧
⎨

⎩

0 j = 1, . . . , s − r − 1
1 j = s − r, . . . , s − 1

ka−r
ciφj

j = s, . . . , m
(11)

From feasibility conditions in (6) (i.e.
∑m

l=1 αl = ka, αj ≤ 1 and αsφs >
αs−1φs−1), we conclude that at (i, i + r)th entry of U , feasibility condi-
tions are satisfied if ciφs ≥ ka − r > ciφs−1. Substituting (11) in Ui,i+r =
∑m−kd

j=1 αjφj leads to the following expression for Ui,i+r:

Ui,i+r =
s−1∑

l=s−r

φl +
(ka − r)(i − k − kd + m)

ci
(12)

2.

αj =

⎧
⎪⎪⎨

⎪⎪⎩

0 j = 1, . . . , s − r − 1
δ j = s − r
1 j = s − r + 1, . . . , s
φs

φj
j = s + 1, . . . , m,

(13)
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where δ = (ka−r−ci−1φs), which results from
∑m

j=1 αj = ka. Since 0 < δ ≤
1, 0 < ka − r − ci−1φs ≤ 1, which is equivalent to ciφs ≥ ka − r > ciφs − 1.
Moreover, substituting (13) in Ui,i+r =

∑m−kd

l=1 αlφl leads to the following
expression for v:

Ui,i+r = δφs−r + (i − k − kd + m)φs +
s−1∑

l=s−r+1

φl. (14)

3.

αmφm = · · · = αsφs, αs 
= 0, αj = 0 for j ∈ {1, . . . , s − 1}

Substituting the above condition in Ui,i+r =
∑m−kd

l=1 αlφl, we obtain the
following:

Ui,i+r =
m−kd∑

l=s

αlφl = (i − k − kd + m)αjφj (15)

=⇒ αj =
Ui,i+r

(i − k − kd + m)φj
, j ∈ {s, . . . , m} (16)

By substituting (16) into Ui,i+r =
∑m−kd

l=1 αlvl, we obtain the following:

m∑

j=s

Ui,i+r

(i − k − kd + m)φj
= ka =⇒ Ui,i+r =

ka(i − k − kd + m)
∑m

j=s
1
φj

(17)

Let ci =
∑m

j=s
1
φj

. Next, we have to check whether α satisfies the feasibility
conditions of (6). Substituting Ui,i+r in (16) leads to the following:

αj =
{ ka

φjci
j ∈ {s, . . . , m}

0 j ∈ {1, . . . , s − 1}

Finally, we consider the case when ka + kd > m. Since Ui,i+r =
∑m−kd

l=s−r αlφl

and αj = 0 for j = 1, . . . , m − kd, for i = 1, . . . , ka + kd − m, Ui,i = 0. Moreover,
Ui,i+r can be written as Ui,i+r =

∑m−kd

l=s−r αlφl, and the feasible α’s are given as
follows:

αj =

⎧
⎨

⎩

0 j = 1, . . . , s − r − 1
1 j = s − r, . . . , s − 1

ka−r
ciφj

j = s, . . . , m
(18)

If ciφs ≥ ka − r > ciφs−1, then (i, i + r)th entry of U is feasible. For all i >
ka + kd − m, the arguments are same as for the case ka ≤ m − kd.

Since v∗ is the maximum value which satisfies all feasibility conditions, v∗ is
the maximum entry of U . ��
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Next, we show that U is a sparse matrix, which leads to a linear time algo-
rithm for computing v∗. Let U I and U II be square matrices of dimension k
defined as follows:

U I
i,i+r =

{
Ui,i+r ciφs−r > (i − k − kd + m), ciφs ≥ ka − r > ciφs−1,

0 otherwise , (19)

U II
i,i+r =

{
Ui,i+r ciφs−r ≤ (i − k − kd + m), ciφs ≥ ka − r > ciφs − 1

0 otherwise (20)

Lemma 3. Given an infeasible cell in U I , either all the cells to the right (in
the same row) or all the cells below (in the same column) are infeasible.

Proof. Consider an infeasible cell (i, i + r) in U I . For a cell to be infeasible, at
least one of the three inequalities in (19) needs to be violated.

(a) First, consider the case ciφs−1 ≥ ka − r ⇒ ciφs−1 ≥ ka − r′, ∀r′ ≥ r. In
other words, if ciφs−1 ≥ ka − r, there is no feasible solution in (i, i + r′)th

entry of U I for all r′ ≥ r.
(b) Next, consider the case, ka − r > ciφs. Since ci+1φs−1 = ciφs−1 + 1, ka −

r + 1 > ci+1φs−1 ⇒ (i + 1, i + r)th entry of U I cannot be feasible. Since i is
arbitrary, we can conclude that (i+ j, i+ r)th entry of U I cannot be feasible
for all j ≥ 1.

(c) Finally, consider the case in which the inequality ciφs−r > (i − k − kd + m)
is the only one that is violated at (i, i + r)th entry of U I . Therefore, ciφs ≥
ka − r > ciφs−1 ⇒ ka − r + 1 > ci+1φs−1, and consequently, there is no
feasible solution in (i + j, i + r)th entry of U I for all j ≥ 1. Therefore, any
column of U I contains at most one feasible (non-zero) entry.

Corollary 3. At most one cell in a column of U I is feasible.

Proof. The proof follows directly Lemma 3(c).

Theorem 2. v∗, α∗ can be computed in O(k) time.

Proof. From Lemma 3 and Corollary 3, we can conclude that from a current cell
(i, j) in U I , one needs to search either in cell (i+1, j) or cell (i, j +1) to find the
next feasible element. Therefore, a linear search (O(k)) that alternates between
rows and columns leads to the cell containing the maximum element.

Next, we show that all feasible entries in U II can be computed in O(k) time.
For each row i, there is at most one r which satisfies ciφs ≥ ka − r > ciφs − 1
in (20). Therefore, for each row in U II , we can find the feasible cell in constant
time. This implies that all feasible entries in U II can be computed in O(k) time,
and a linear or a logarithmic search among the feasible entries provides the
maximum element. ��

Algorithm 1 gives v∗, α∗ and active targets for the attacker and the defender
in linear time.
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Algorithm 1. Computation of the value, and active targets
1: Input: φ1, . . . , φm and ka, kd

2: Output: v∗, α∗, Ua, Ud

3: Construct U based on Theorem 1 and Theorem 2.
4: i1 ← 1
5: for j = 1 : m − kd do
6: for i = i1 : j do
7: if ciφs ≥ ka − r > ciφs−1 then
8: if ciφ − s − r > i − k − kd + m then
9: Ui,i+r =

∑s−1
l=s−r φl + (ka−r)i−k−kd+m

ci
,

10: end if
11: i1 ← i
12: return i
13: else if ka − r > ciφs then
14: i1 ← i
15: return i
16: else
17: Ui,i+r = 0
18: i1 ← i
19: end if
20: end for
21: end for
22: for i = 1 : k do
23: find r such that ciφs ≥ ka − r > ciφs − 1
24: if ciφs−r ≤ i − k − kd + m, and ciφs ≥ ka − r > ciφs − 1 then
25: Ui,i+r = (ka − r − ci−1φs)φs−r +

∑s−1
l=s−r+1 φl + (i − k − kd + m)φs

26: else
27: Ui,i+r = 0
28: end if
29: end for
30: v∗ ← max Ui,j

31: (i∗, j∗) ← arg max Ui,j

32: Ua ← {k − j∗ + 1, . . . , m}
33: Ud ← {k − i∗ + 1, . . . , m}

5 Dual Analysis: Structural Properties of the Defender’s
Strategy and Algorithms

In this section, we present structural results for the optimal strategy of the
defender, and present an O(m) algorithm to compute v∗ and its corresponding
optimal strategy. From the definition of v∗, we obtain the following:

v∗ = min
q

max
1≤j≤na

(Aq)j .
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where (Aq)j denote the jth element of Aq. From (1), (Aq)j can be written in the
following form,

(Aq)j =
nd∑

i=1

qiaji =
nd∑

i=1

qi

∑

l∈xj∩yi
c

φl =
∑

l∈xj

βlφl,

where,

βj =
∑

{i|j∈yi
c}

qi =⇒ β = M[m,m−kd]q, (21)

where β = [β1, . . . , βm]T , and M[m,(m−kd)] ∈ R
m×nd is a combinatorial matrix.

Since M[m,m−kd] is a combinatorial matrix,
∑nd

i=1 βi = m − kd. Moreover, from
Lemma 1, for any feasible β there exists a feasible q.

The following lemma provides the structure of β∗.

Lemma 4. β∗ satisfies one of the following conditions:

(a) φs−r ≥ β∗
sφs = · · · = β∗

mφm ≥ φs−r−1, and β∗
1 = · · · = β∗

s−1 = 1,
(b) φs−r ≥ β∗

sφs = · · · = β∗
mφm = φs−r−1,

and β∗
s−1φs−1 ≥ β∗

sφs, and β∗
1 = · · · = β∗

s−2 = 1,
where 1 ≤ s ≤ m, 0 ≤ r ≤ s − 1, r + 1 ≤ ka ≤ r + m − s.

Proof. Let the sequence {i1, . . . , im} of indices satisfy the following condition:

β∗
i1φi1 ≥ · · · ≥ β∗

imφim (22)

Note that v∗ =
∑ika

l=i1
β∗

l φl.
First, we show that β∗

ika
φika

= β∗
ika+1

φika+1 . Assume 1) β∗
ika

φika
>

β∗
ika+1

φika+1 2) there exists an i ∈ {ika
, . . . , im} such that β∗

i < 1. Since
(ei − eika

)T ∇βv|v∗ < 0 at v∗, we arrive at a contradiction. Now, assume
β∗

ika+1
= · · · = β∗

im
= 1. Since

∑m
l=1 βl = m − kd and kd ≥ 1, there exist

i, j ∈ {i1, . . . , ika
}, i > j such that β∗

i , β∗
j < 1. Therefore, (ej − ei)T ∇βv|v∗ < 0,

and we arrive at a contradiction. Therefore, β∗
ika

φika
= β∗

ika+1
φika+1 . In a similar

manner, we can show that β∗
mφm = β∗

ika
φika

.
Next, we prove that ∀i such that β∗

i φi 
= β∗
mφm, there is at most one β∗

j < 1
and β∗

j φj > β∗
mφm, and the rest of β∗

i ’s are 1. Assume that there are β∗
j <

1, β∗
k < 1 such that β∗

j φj 
= β∗
mφm and β∗

kφk 
= β∗
mφm. If β∗

kφk, β∗
j φj > β∗

mφm,
and j > k, then (ek − ej)T ∇βv|v∗ < 0, and we arrive at a contradiction. Now,
assume that β∗

j φj < β∗
mφm, and β∗

j < 1, therefore (ej − ei)T ∇βv|v∗ < 0 for all i
such that β∗

i φi > β∗
j φj , which leads to a contradiction.

Next, we prove that β∗ always satisfies one of the conditions in the Lemma.
Let Γ = {i|β∗

i φi = β∗
mφm}. First, we prove that ∀j ∈ Γ if β∗

j < 1 then j + 1 ∈
Γ. To begin with, we assume that β∗

j < 1, β∗
j φj = β∗

mφm and j + 1 /∈ Γ. If
β∗

j+1φj+1 > β∗
j φj , (ej − ej+1)T ∇βv|v∗ < 0, which leads to a contradiction.

Moreover, if β∗
j+1φj+1 < β∗

j φj then β∗
j+1 < 1 and (ej+1 − ei)T ∇βv|v∗ < 0 for
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all i such that β∗
j+1φj+1 < β∗

i φi. This completes the proof for the first structure
in the Lemma. Let j = min(Γ) and βj∗ = 1. Therefore, for any i ∈ Γ, either
β∗

i < 1 ⇒ i + 1 ∈ Γ or β∗
i = 1, φj = φi. The last condition leads to the second

structure in the Lemma. ��
Similar to the analysis for the attacker, from the above Lemma, we can

compute v∗ and β∗ by examining all possible solutions which satisfy conditions
(a) or (b) in Lemma 4. Let W be a square matrix of dimension m.

Theorem 3. v∗ = min
i,j

{Wi,j}, where entries of W are defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wi,i+r = (ka−r)(i−kd)
ci

+
∑s−1

l=s−r φl,

for s − 1 ≥ r ≥ 0, r + m − s ≥ ka ≥ r + 1, ciφs−r ≥ i − kd ≥ ciφs−r−1,

Wi,i+r = (i − kd + 1 − ciφs−r−1)φs−1 + (ka − r)φs−r−1 +
∑s−2

l=s−r φl,

for s − 1 ≥ r ≥ 0, r + m − s ≥ ka ≥ r + 1,

ciφs−r−1 + 1 > i − kd + 1 ≥ ci+1φs−r−1

Wi,i+r = +∞, otherwise

where, ci =
∑m

j=s
1
φj
.

Proof. First case corresponds to the structure (a) in Lemma 4. In this case,
β1 = · · · = βs−1 = 1. Since

∑m
l=1 βl = m − kd, and βsφs = · · · = βmφm, we

obtain the following expression for βj

βj =
i − kd

ciφj
, j = s, . . . , m, (23)

where i = m−s+1 and ci =
∑m

j=s
1
φj

. Next, we provide the feasibility conditions
for structure (a). Since 0 ≤ βj ≤ 1, ciφs ≥ i − kd. Moreover, φs−r ≥ βsφs ⇒
ciφs−r ≥ i − kd. Additionally, βsφs ≥ φs−r−1 ⇒ i − kd ≥ ciφs−r−1. Note that
ka-largest terms of βlφl contain at least one term in the set {βsφs, . . . , βmφm}.
Therefore, r+m−s ≥ ka ≥ r+1. By substituting (23) into Wi,i+r =

∑ika

l=i1
βlφl,

Wi,i+r =
(ka − r)(i − kd)

ci
+

s−1∑

l=s−r

φl. (24)

The second case corresponds to the structure (b) in Lemma 4. In this case,
β1 = · · · = βs−2 = 1. Since

∑m
l=1 βl = m−kd and βsφs = · · · = βmφm = φs−r−1,

we obtain the following:

βj =
φs−r−1

φj
, j = s, . . . , m, (25)

βs−1 = i − kd + 1 − ciφs−r−1, (26)

where i = m−s+1 and ci =
∑m

j=s
1
φj

. Next, we provide the feasibility conditions
for structure (b). Since βs−1φs−1 ≥ φs−r−1, and 0 ≤ βs−1 < 1, ciφs−r−1 + 1 >
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i − kd + 1 ≥ ci+1φs−r−1. Note that ka-largest terms of βlφl contain at least
one term in the set {βsφs, . . . , βmφm}. Therefore, r + m − s ≥ ka ≥ r + 1. By
substituting (25), (26) into Wi,i+r =

∑ika

l=i1
βlφl,

Wi,i+r = (i − kd + 1 − ciφs−r−1)φs−1 + (ka − r)φs−r−1 +
s−2∑

l=s−r

φl. (27)

��
Since W is a square matrix of dimension m, v∗ can be computed in O(m2).

As in the case of the defender, we can show that W can be computed in O(m)
due to sparsity of W (the feasibility conditions).

Theorem 4. v∗ can be computed in O(m).

Proof. Let W a and W b denote matrices of the following form:

W a
i,i+r =

{
Wi,i+r satisfying structure (a) in Lemma 4

0 otherwise , (28)

W b
i,i+r =

{
Wi,i+r satisfying structure (b) in Lemma 4

0 otherwise . (29)

First, note that all feasible entries of W a and feasible entries of W b are
disjoint due to complimentary feasibility conditions (i − kd ≥ ciφs−r−1 in W a,
and i − kd < ciφs−r−1 in W b). Moreover, since ciφs−r ≥ i − kd ≥ ciφs−r−1,
for any s there is at most one specific r which satisfies conditions of W a. This
implies that computation of all feasible entries of W a is in O(m). Therefore, any
row of W has at most one feasible entry of W a.

Next, we show that computing all feasible entries of W b is in O(m). From
the second structure of Lemma 4, for any ŝ, r̂ and î = m − ŝ + 1, if βŝ−1 > 1
(βŝ−1 < 0), (i, î + r)th entry of W is infeasible for all i > î, r > r̂ (i < î, r < r̂)
since it implies βs−1 > 1 (βs−1 < 0). Therefore, at every entry of W , βs−1

provides a criteria for which the rest of entries, in the same row and in the same
column are entirely infeasible, and consequently it is not required to check the
feasibility of those entries. In other words, value of βs−1 provides a criteria for
direction of searching for feasible entries of W b. Thus, computing feasible entries
of W b is in O(m). ��

6 Conclusion

In this work, we address a security game as a zero-sum game in which the
utility function has additive property. We analyzed the problem from attacker
and defender’s perspective, and we provided necessary conditions for the optimal
solutions. Consequently, the structural properties of the saddle-point strategy for
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both players are given. Using the structural properties, we reach to the linear
time algorithm, and semi-closed form solutions for computing the saddle points
and value of the game.

There are several directions of future research. One direction is to use the
proposed structural properties to formulate a network design problem to min-
imize the impact of attacks, which leads to design of resilient networks from
security perspective. Another direction of future research is to generalize the
results of this work to nonzero-sum games with different utility functions for
attacker and defender. Finally, we plan to extend our analysis to security games
with non-additive utility functions.
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Abstract. Zero-sum games have been used to model cybersecurity scenarios
between an attacker and a defender. However, unknown and uncertain environ-
ments have made it difficult to rely on a prescribed zero-sum game to capture the
interactions between the players. In this work, we aim to estimate and recover
an unknown matrix game that encodes the uncertainties of nature and oppo-
nent based on the knowledge of historical games and the current observations
of game outcomes. The proposed approach effectively transfers the past expe-
riences that are encoded as expert games to estimate and inform future game
plays. We formulate the game knowledge transfer and estimation problem as a
sequential least-square problem. We characterize the structural properties of the
problem and show that the non-convex problem has well-behaved gradient and
Hessian under mild assumptions. We propose gradient-based methods to enable
dynamic and adaptive estimation of the unknown game. A case study is used to
corroborate the results and illustrate the behavior of the proposed algorithm.

Keywords: Zero-sum games · Security games · Neural networks · Least-square
estimation · Sensitivity analysis · Gradient-based methods

1 Introduction

In many adversarial scenarios, such as a battlefield and cyber threats, a defender plays
against unknown opponents in uncertain environments. The prior knowledge or experi-
ence of the game may provide the defender a way to estimate the game by leveraging
his past experience with the environment, or transfering other experiences of his own or
from someone else. These experiences are encoded or represented by games that capture
critical characteristics of an adversarial entity, including the incentives, the capabilities,
and the information structures. The direct estimation of the game provides the defender
a sufficient situational awareness of the unknown environment and enables dependable
reasoning for making decisions.
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Dealing with uncertainties in games has a long history. Harsanyi in 1967 [9] intro-
duced Bayesian games and the notion of “type”, encapsulating all uncertainties in pay-
offs, actions, and psychological attributes of a player into the “type” space to overcome
the technical difficulty created by the reasoning using infinite hierarchies of beliefs [15].
Built on Harsanyi’s Bayesian game framework, many recent efforts have been on identi-
fying and estimating structures of the game model, given the data of multiple equilibria
[12,23] or the observed frequency of choices [10,19].

The estimation of games within Bayesian frameworks often requires the structural
knowledge of baseline game models. However, in many security applications, this
knowledge may not be directly available. It is difficult, if not impossible, to specify
the set of uncertain parameters and the unknowns in security games, since mapping out
the structural unknowns can be a challenging task, let alone the unknown unknowns.
Hence, there is a need to shift the paradigm from a Bayesian-based approach to a com-
pletely data-driven and model-agnostic one. To this end, this work presents an estima-
tion framework that is purely based on the past experiences and the real-time obser-
vations. We focus on the estimation of finite zero-sum static games, which are central
to security applications, such as in network configurations [24], network provisioning
[20], and jamming attacks [25].

We formulate MASAGE, a sequential least-square estimation problem over the
game space, which is formed by the past transferable experiences. This approach dis-
penses with the knowledge of parametric uncertainties and the payoff structure of the
game but takes the game as an object for estimation instead. In this work, we focus on
a class of linear game estimators. Under mild assumptions, the static least-square game
estimation problem is probably solvable by gradient-based algorithms. We extend the
static framework to its sequential counterpart, in which the security game is estimated
dynamically based on sequential observations. We characterize the structural properties
of the estimation problem and show the convergence properties of the gradient-based
data-driven adaptive algorithm.

2 Related Work

Game identification and estimation [2,10,12,18,19] have been investigated in eco-
nomics literature. Hotz et al. in [10] have first considered a conditional choice probabil-
ity estimator of the structural parameters in dynamic programming models. Following
this work, [18,19] have proposed an identification and estimation framework based on
time-series data using observed choices. They have considered a class of asymptotic
least-square estimators defined by the equilibrium conditions. For discrete games and
normal-form games, Bajari et al. in [1] and [2] have proposed simulation-based estima-
tors for parametric games using algorithms that compute all the game equilibria. With a
focus on the multiplicity of equilibira, Jovanovic in [12] has highlighted that the infor-
mation of multiple solutions affects the statistical inference strategy. These works share
a common structure that uses equilibria data from firms or companies to estimate the
structural parameters of static or dynamic models. Our work studies this problem from
a model-agnostic perspective by formulating the estimation directly on the game space.
This work focuses on the class of zero-sum matrix games, which plays an important
role in cybersecurity.
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The analysis of the least-square game estimation problem relies on the perturba-
tion theory of matrix games. Two closely related works are [8] and [6]. Gross in [8]
has considered a general case of real matrices and computed the left and right value
derivative with respect to arbitrary matrix entries. The author has observed that when
the matrix has only one Nash equilibrium pair, the derivative exists, and the right and
left derivatives are equal. Cohen et al. in [6] and [7] have studied the completely mixed
matrix games and bi-matrix games, and have given the value derivatives with respect to
the matrix entries. The authors have provided useful results of strategy derivative and
higher-order derivatives of saddle-point values.

3 Problem Formulation

3.1 Preliminary

Game Description. Consider a two-player zero-sum finite game G represented by
a triplet 〈N ,{A1,A2},{u1,u2}〉. Here, N = {P1,P2} is the player set containing a
defender P1 and an attacker P2; A1 = {1,2, . . . ,N1} and A2 = {1,2, . . . ,N1} are action
sets for P1 and P2, respectively, with N1 = |A1| and N2 = |A2|; u1 :A1 ×A2 → R and
u2 : A1 ×A2 → R are the utility functions of P1 and P2, respectively. Since the game
is zero-sum, u1 + u2 = 0. The zero-sum game can be fully characterized by a single
matrix of the size N1 ×N2. P1 is the row player. P2 is the column player. Each row and
column is indexed by the corresponding actions of the player. Each entry of the matrix
is associated with a payoff value that is viewed as cost to P1 but utility to P2.

We consider the scenario where the payoffs of the games are uncertain. To cap-
ture the uncertainties, we define a random matrix M : Ω → R

N1×N2 over an underlying
probability space (Ω ,F ,P). Each entry of matrixM is a random variable defined on the
probability space. The underlying distributions of the random variables are unknown to
the players. Let val(·) be the saddle-point value of a matrix game. Random matrix game
M gives rise to its associated game value z= val(M).

Expert Games and Game Estimation. We consider the following scenario. The play-
ers do not know their game prior to the play. However, they are given a set of expert
games that they have played before and know that their game will be similar and related
to the set of expert games. The game is determined by nature, i.e., ω ∈ Ω is realized
when the game starts. Let M̄ ∈R

N1×N2 denote this game. The players cannot observe ω
but can observe the outcome of the play of the game, i.e., the value of the sampled game
M̄, denoted by z̄. M̄ is also called the target game as the goal of the sequential play of
the game is to estimate its value based on the prior information of the expert games and
the sequential observations of z̄. The formulation of this problem will be made clear
later in Subsect. 3.2.

A Nonlinear Least-Square Estimator. To provide a formal framework of the estima-
tion problem, we first consider the following non-sequential estimation problem. At
the start of the game, the defender has a set of S expert games M = {M1, . . . ,MS}
that is non-random and observable, where S ∈ N is the number of expert games; Let
S := {1, . . . ,S}, Mi, i ∈ S are informed to the player from past interactions or experi-
ences that satisfy following properties:
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(i) All expert games have nonzero saddle-point values, i.e., for all i ∈ S ,

val(Mi) �= 0; (1)

(ii) each pair of expert games are not strategically equivalent, i.e., for all i, j ∈ S ,

∀c ∈ R, Mi �= cMj; (2)

(iii) entries of expert games are bounded, i.e., for all i ∈ S , a ∈ A1, b ∈ A2,

∃B ∈ R, (Mi)ab ≤ B. (3)

The defender can observe the value of the game of the unknown game M̄, z̄ before the
play of the game. The information that is available to the defender is I = {M , z̄}. The
goal of the defender is to find an estimator μ :I → R

N1×N2 that maps the information
set of the defender to find an estimate M̂ = μ(I). Here,I denotes the set of all possible
information to the defender.

We consider a class of linear estimators L(M ;α) that are parameterized by a weight
vector α ∈ X , where X ⊆ R

S is the parameter space, α = [α1,α2, . . . ,αS]T. The esti-
mators take the following form:

M̂ = L(M ;α) =
S

∑
i=1

αiMi (4)

From (4), we can see that the linear estimator is taken as the linear combination of
expert games. A natural criterion of an optimal estimator is the one that minimizes the
error between the outcomes of the estimated game and the target game. The outcome
of the estimated game is given by val(L(M ;α)), while the outcome of the target game
is assumed to be observable by the defender, which takes the value of z̄. Hence, the
residue error of the estimation is

ε = z̄−val(L(M ;α)) (5)

An optimal linear estimator μ∗ = L(M ;α∗) with the optimal parameters α∗ is the one
that minimizes the residue error (5) using the following squared error criterion J(α):

J(α) := |val(L(M ;α))− z̄|2. (6)

To sum up, finding an optimal linear estimator is equivalent to solve the following
finite-dimensional unconstrained problem (SP):

(SP) min
α

J(α) (7)

The solutions to optimization problem (SP) provide a foundation for sequential esti-
mation of the game. One trivial solution to the problem is to let α� such that J(α�) = 0.
Consider ratio κi := z/val(Mi), i ∈ S . A subset of optimal points α� would be
{κiei}Si=1, where {ei}Si=1 represents the standard basis of RS. These vectors are triv-
ial solutions obtained by degenerating the set of multiple expert games into a singleton.
The resulting estimation is a scaling of a chosen expert game. It is apparent that they
are strategically equivalent games. However, these trivial solutions are arguably biased
in terms of combining the information given by the experts and we need optimal points
that take multiple expert games into consideration. In Sect. 4, we study J(α) further to
develop iterative algorithmic solutions.
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3.2 Dynamic Linear Estimation Problem

Building on the estimation problem above, we formulate a dynamic linear estimation
problem. Consider that the game is played sequentially. At the beginning of each time
step t, the player has cumulated t expert-game sets {M (t ′)}tt ′=1. At step t, an unknown
game M̄(t) is sampled from the underlying probability space (Ω ,F ,P). The defender
can observe the outcome of the play z̄(t), which is the saddle-point value of the unknown
game, i.e., z̄(t) = val(M̄(t)). By the end of the play, the defender has accumulated infor-
mation I(t) = { {M (t ′)}tt ′=1,{z̄(t

′)}tt ′=1 }.
The goal of the defender is to find a sequential estimator μt(I(t)) to estimate a

sequence of unknown games M̄(t) based on his accumulated information.
At each step t, we consider a linear estimator μt(I(t)) taking the form of

μt(I(t)) := L(M (t);α) := α1M
(t)
1 +α2M

(t)
2 + . . .+αSM

(t)
S .

Here, the linear mapping L :RS →R
N1×N2 is parameterized by a fixed vector α . At time

t, the optimal parameters α∗(t) minimize the time-average accumulated residue error
as follows:

J(t)(α) =
1
t

t

∑
t ′=1

|z̄(t ′) −val(L(M (t ′);α))|2. (8)

It is clear that J(t) depends on the samples of the game at each step t. We formulate
the nonlinear regression problem at time t called DP-t.

(DP− t) min
α

J(t)(α) (9)

Discussion on Asymptotic Behavior. The formulated problem coincides with the stan-
dard form of nonlinear regression with a linearly parameterized function class, in which
the following presumption holds:

z̄t
′
= val(L(M (t ′);α0))+ ε(t

′) t ′ = 1, . . . , t (10)

where ε(t ′) are i.i.d. errors with zero mean and bounded variance, and α0 is the true
parameter. The least-square estimator α∗(t) is said to be strongly (weakly) consistent if
α∗(t) → α0 a.s. (in prob.) as t → ∞ [22].

The strong or weak consistency of α∗(t) depends on a series of conditions rigor-
ously proved in [11,14,22]. Under the assumption of consistency, α∗(t) is asymptot-
ically unbiased and induces minimum variance. In such case, while the estimation of
game matrix is not necessarily unbiased, it still provides valuable information, since the
value of estimated game enjoys asymptotic optimality.

4 Objective Function Analysis

In this section, we provide analytical results to give theoretical insights on the prob-
lem. We first characterize several properties of the objective functions including their
continuity, differentiability, and convexity. In the second part of this section, we study
parameter perturbations on the objective function.
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4.1 Basic Properties

Let v(t)(α) be the error between observations and value of output game at step t for a
linear estimator with parameter α , given by

v(t)(α) := val(L(M (t);α))− z̄(t) = val(L(M (t);α)− z(t)E) (11)

Let f (t)(α), and g(t)(α) be the saddle-point strategies of estimated game M for a given
α . The error (11) can be rewritten as

v(t)(α) = f (t)T(α)(L(M (t);α)− z(t)E)g(t)(α)

where E ∈R
N1×N2 is a matrix with all entries being 1. In dynamic estimation problems,

the accumulated squared error up to time t is J(t)(α) = ∑t
t ′=1

(
v(t

′)(α)
)2
.

Lemma 1. v(t)(α) is continuous differentiable in domain R
S, so is J(t)(α).

Proof. From [21], |val(A)−val(B)| ≤ d(A,B) for any real matrices A,B ∈ R
N1×N2 with

metric d(A,B) =maxi∈A1, j∈A2 |Ai j −Bi j|. For sufficiently small ε and all-one S dimen-
sion vector 1S,

|v(t)(L(M ;α + ε1S))− v(t)(L(M ;α))| ≤ ε max
i∈A1 j∈A2

| ∑
s∈S

(Ms)i j|.

v(t)(α) is continuous as the term maxi∈A1 j∈A2 |∑s∈S (Ms)i j| is bounded. Picking the
‖ · ‖2 norm, we arrive at

lim
ε→0

|v(t)(L(M ;α + ε1S))− v(t)(L(M ;α))|
‖α + ε1S −α‖2 ≤ 1

‖1S‖2 max
i∈A1 j∈A2

| ∑
s∈S

(Ms)i j|.

Thus, given bounded expert game matrices, v(t)(α) is continuous differentiable in R
S,

and so is J(t)(α) since it is a sum of squares of v(t
′)(α). ��

Lemma 2. J(α) is non-convex in domain R
S.

Proof. We prove the result by contradiction. Suppose that J(α) is convex in the convex
domain R

S, then it must satisfy that ∀λ ∈ [0,1] and ∀α1,α2 ∈ R
S,

J(λα1+(1−λ )α2) ≤ λJ(α1)+(1−λ )J(α2). (12)

Pick arbitrary λ ∈ (0,1) and two fundamental solutions: α1 = κ1e1, α2 = κ2e2 in (12)
and yield

|val(L(M (t);λα1+(1−λ )α2))− z̄|2 ≤ 0

⇒ val
( M2

val(M2)
+λ (

M1

val(M1)
− M2

val(M2)
)
)
= 1

Thus, for bounded matrix M1 and M2 which has nonzero saddle-point values, it must
hold that

M1 =
val(M1)
val(M2)

M2,

which contradicts to property (2). This contradiction indicates that J(α) is not convex.
��
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4.2 Perturbation Theory of Parameterized Matrix Game

In this subsection, we determine the first-order and second-order derivatives of the game
value with respect to entries of the payoff matrix. We first introduce the concept of
completely mixed games.

Definition 1. A matrix game M is said to be completely mixed if, for every saddle-point
solution ( f ,g), no element of f or g is zero. If M is completely mixed, then N1 = N2 and
the saddle-point solution of M is unique.

Let M̂(t) := L(M (t);α) denote the estimation of the game at time t. We make the
following assumptions on the parameter space and estimated game.

Assumption 1. The parameter space X is a subset of Euclidean space RS where for
all α ∈ X , c(α) ≤ ‖α‖ ≤C(α).

Assumption 1 restricts the parameter to a compact space. It prevents the output estima-
tion from approaching infinity or 0.

Assumption 2. M̂(t) is completely mixed for all t.

Assumption 2 implies that the estimated game matrix is square and nonsingular. It
enables the computation of first-order and second-order derivatives of the objective
functions.

For games that are not completely mixed, their computations remain an open prob-
lem. Lloyd Shapley [6] has observed that the nonexistence of any derivatives as a func-
tion of a given matrix element correspond to degeneracies in the linear-programming
solution of the game. Assumption 2 coincides with the facts in [5] that the set of
N1 ×N2 matrices which have unique saddle-point points is open and everywhere dense
in N1 ×N2-space; i.e., solutions are unique for most of the N1 ×N2 matrices. With
Assumption 2, we avoid equilibrium selection by degenerating saddle-point solution
sets into singletons and ensure the uniqueness of f (t)(α) and g(t)(α). The explicit
expression of saddle-point solutions are feasible under Assumption 2, as shown in
Lemma 3 following [21].

Lemma 3. Assume that 1T[M̂(t)]−11 is nonzero. For every t and given α , under
Assumption 2 and we have:

(i) v(t)(α) = 1/1T[M̂(t)]−11− z(t).
(ii) f (t)T(α) = 1T[M̂(t)]−1val(M̂(t)).
(iii) g(t)(α) = [M̂(t)]−11val(M̂(t)).

Here, vector 1 is a vector of appropriate dimension with all entries being 1. The assump-
tion of 1T[M̂(t)]−11 being nonzero is without loss of generality. Lemma 3 enables the
following direct computation of the gradient of the error (11).

Theorem 1. For every t, under Assumption 2, the gradient vector of the error (11) is
given by

∇v(t)(α) = (δ (t)
1 (α), . . . ,δ (t)

S (α))T, (13)

where δi(α) = f (t)T(α)M(t)
i g(t)(α), i ∈ S . Furthermore, ‖∇v(t)(α)‖ is bounded by

some positive constant.
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Proof. Given that M̂(t) is completely mixed, the results in Lemma 3 hold. According to
the product rule of derivatives, we have ∀i ∈ S :

∂v(t)(α)
∂αi

= f (t)T(α)M(t)
i g(t)(α)+

∂ f (t)T(α)
∂αi

M̂(t)g(t)(α)+ f (t)T(α)M̂(t) ∂g(t)(α)
∂α

= f (t)T(α)M(t)
i g(t)(α)+

∂ f (t)T(α)
∂αi

M̂(t)[M̂(t)]−11v(t)(α)

+ v(t)(α)1T[M̂(t)]−1M̂(t) ∂g(t)(α)
∂αi

= f (t)T(α)M(t)
i g(t)(α)+ v(t)(α)

(
∂ f (t)T(α)1

∂αi
+

∂1Tg(t)(α)
∂αi

)

= f (t)T(α)M(t)
i g(t)(α).

Stacking all the partial derivatives of i’s gives the gradient. For any α ∈X that satisfies
Assumption 2, we have

‖∇v(t)(α)‖ ≤ ‖( max
i∈A1, j∈A2

|(M(t)
1 )i j|, . . . , max

i∈A1, j∈A2

|(M(t)
S )i j|

)T‖

‖∇v(t)(α)‖ ≤ ‖( min
i∈A1, j∈A2

|(M(t)
1 )i j|, . . . , min

i∈A1, j∈A2
|(M(t)

S )i j|
)T‖.

Thus, for bounded expert matrices, ‖∇v(t)(α)‖ is bounded too, which can be viewed as
a corollary of Lemma 1. ��
Corollary 1. Under Assumption 2, the gradient of J(t)(α) is given by

∇J(t)(α) =
2
t

t ′

∑
t ′=1

(
(δ (t)

1 (α), . . . ,δ (t ′)
S (α)

)T
v(t

′)(α). (14)

Remark 1. The entry δ (t)
i (α) indicates the sensitivity or the change in the accumulated

square error with respect to a perturbation of αi. It can be interpreted as the partial

contribution by expert i to the reduction of the error. Note that f (t)T(α)M(t)
i g(t)(α) is the

expected outcome of the expert game i, M(t)
i , achieved with the saddle-point strategies

of M̂(t).

We are also interested in the sensitivity of ∇J(t)(α) with respect to the changes in
variable α .

Theorem 2. For every t, under Assumptions 1 and 2, v(t)(α) is twice continuously

differentiable, and so is J(t)(α). The Hessian of v(t)(α) :=

[
∂ 2v(t)(α)
∂αi∂α j

]

i, j∈S
is given

by

∂ 2v(t)(α)
∂αi∂α j

= φ (t)
i j M

(t)
i g(t)(α)+ f (t)T(α)M(t)

i ϕ(t)
i j , i, j ∈ S , (15)
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where

φ (t)
i j =

(
1T f (t)T(α)M(t)

j g(t)(α)− f (t)T(α)M(t)
i

)
[M̂(t)]−1

ϕ(t)
i j = [M̂(t)]−1

(
f (t)T(α)M(t)

j g(t)(α)1−M(t)
i g(t)(α)

)
.

Furthermore, the Hessian ∇2J(t)(α) is bounded; i.e., there exists a positive constant,
such that ‖∇2J(t)(α)‖ ≤ 1

2β , where ‖∇2J(t)(α)‖ is the maximum (real) eigenvalue.

Proof. Under Assumption 2, the derivative of (13) exists, for i, j ∈ S :

∂ 2v(t)(α)
∂αi∂α j

=
∂ f (t)(α)

∂α j
M(t)

i g(t)(α)+ f (t)T(α)M(t)
i

∂g(t)(α)
∂α j

From Lemma 3, we have

f (t)T(α)M̂(t) = 1Tval(M̂(t))

M̂(t)g(t)(α) = val(M̂(t))1.

Take derivative w.r.t α j on both sides and we arrive at the derivative of the saddle-point
strategies:

φ (t)
i j =

∂ f (t)(α)
∂α j

=
(
1T f (t)T(α)M(t)

j g(t)(α)− f (t)T(α)M(t)
i

)
[M̂(t)]−1

ϕ(t)
i j =

∂g(t)(α)
∂α j

= [M̂(t)]−1
(
f (t)T(α)M(t)

j g(t)(α)1−M(t)
i g(t)(α)

)

The Hessian ∇2J(t)(α) can be constructed using the first and second-order derivatives
of v(t)(α). Its entry takes the following form:

[∇2 J(t)(α)]i j =
t

∑
t ′=1

∂v(t ′)(α)
∂αi

∂v(t ′)(α)
∂α j

+
∂ 2v(t

′)(α)
∂αi∂α j

v(t
′)(α).

Using triangular inequality, we obtain

‖[∇2 J(t)(α)]i j‖ ≤
t

∑
t ′=1

‖∂v(t ′)(α)
∂αi

∂v(t ′)(α)
∂α j

+
∂ 2v(t

′)(α)
∂αi∂α j

v(t
′)(α)‖

≤
t

∑
t ′=1

‖∂v(t ′)(α)
∂αi

∂v(t ′)(α)
∂α j

‖
︸ ︷︷ ︸

first term

+‖∂ 2v(t
′)(α)

∂αi∂α j
v(t

′)(α)‖
︸ ︷︷ ︸

second term

.

The boundedness of Hessian entry is determined by the first term and the second term.
We have for any t ′ ∈ {1, . . . , t}, the first term is bounded according to Theorem 1:

‖∂v(t ′)(α)
∂αi

∂v(t ′)(α)
∂α j

‖ ≤ ‖max
a,b

[M(t ′)
i ]ab‖ · ‖max

a,b
[M(t ′)

j ]ab‖.
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For the second term,

‖∂ 2v(t
′)(α)

∂αi∂α j
v(t

′)(α)‖ ≤ ‖v(t ′)(α)φ (t ′)
i j M(t ′)

i g(t
′)(α)‖+‖ f (t ′)T(α)M(t ′)

i ϕ(t ′)
i j v(t

′)(α)‖

≤ (Q+P)‖val(M̂)− z̄(t
′)‖‖[M̂(t ′)]−1‖

≤ (Q+P)(‖val(M̂)‖‖[M̂(t ′)]−1‖+‖z̄(t ′)‖‖[M̂(t ′)]−1‖),
where Q and P are positive constants such that

‖1T f (t)T(α)M(t)
j g(t)(α)− f (t)T(α)M(t)

i ‖ · ‖M(t)
i g(t)(α)‖ ≤ Q

‖ f (t)T(α)M(t)
j g(t)(α)1−M(t)

i g(t)(α)‖ · ‖ f (t)T(α)M(t)
i ‖ ≤ P.

The parameterized ‖[M̂(t ′)]‖−1 is bounded since α is lower bounded by positive con-
stant according to Assumption 1. Since the eigenvalue of a square matrix is bounded
by its maximum entry multiplied by its order, ‖[M̂(t)]−1‖‖val(M̂(t))‖ is also bounded,
according to Lemma 3:

‖[M̂(t)]−1‖‖val(M̂(t))‖ = ‖[M̂(t)]−1‖/‖1T[M̂(t)]−11‖

≤
N1maxi, j

(
[M̂(t ′)]−1

)
i j

∑i, j

(
[M̂(t ′)]−1

)
i j

Similarly, boundedness of Hessian entries implies that its eigenvalues are bounded by
some constant, and thus we arrive at a bound β . ��
In the following, we provide a lemma that establishes the relation between bounded
Hessian and Lipschitz continuity, and then give the main theorem that ensures the con-
vergence of gradient-based algorithms.

Lemma 4. Let f :RS →R be a twice continuously differentiable function. If there exists
a positive constant β such that ‖∇2 f‖ ≤ β , where ‖∇2 f‖ is the matrix norm, then

∀α, α̃ ∈ R
S : ‖∇ f (α)−∇ f (α̃)‖ ≤ β‖α − α̃‖.

Proof. The result can be proved by using a second-order Taylor expansion around α
and α̃ , i.e.,

f (α)− f (α̃) = ∇ f (α̃)T(α − α̃)+
1
2
(α̃ −α)T∇2 f (ξ1)(α̃ −α)

= −∇ f (α)T(α̃ −α)− 1
2
(α − α̃)T∇2 f (ξ2)(α − α̃),

where ξ1 = α + t1(α̃ − α) and ξ2 = α̃ + t2(α − α̃) and t1, t2 ∈ (0,1). We combine the
two relations and obtain

‖∇ f (α)−∇ f (α̃)‖ ≤ 1
2
‖∇2 f (ξ2)‖‖α̃ −α‖+ 1

2
‖∇2 f (ξ2)‖‖α − α̃‖

≤ β‖α̃ −α‖.

��
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Theorem 3. For every t, under Assumption 2, the vector functions |v(t)(α)|2 are Lips-
chitz continuous; i.e., there exists a Lipschitz constant β > 0, such that for all α, α̃ ∈X
that satisfies

‖∇v(t
′)(α)v(t

′)(α)−∇v(t
′)(α̃)v(t

′)(α̃)‖ ≤ β‖α − α̃‖; (16)

and
‖∇J(t)(α)−∇J(t)(α̃)‖ ≤ 2β‖α − α̃‖. (17)

Furthermore, the following holds:

J(t)(α)− J(t)(α̃) ≤ (∇J(t)(α̃))T(α − α̃)+β‖α − α̃‖2. (18)

Proof. Inequality (16) immediately follows Lemma 4 and the analysis in Theorem 2.
To obtain (17), we add up (16) for all t ′ and use the triangular inequality.

‖∇J(t)(α)−∇J(t)(α̃)‖ ≤ 2
t

∑
t ′=1

‖∇v(t
′)(α)v(t

′)(α)−∇v(t
′)(α̃)v(t

′)(α̃)‖

≤ 2β‖α − α̃‖.

Inequality (18) is a basic result following (17):

J(t)(α)− J(t)(α̃) =
∫ 1

0
(α − α̃)T∇J(t)(α̃ +ξ (α − α̃))dξ

≤
∫ 1

0
(α − α̃)T∇J(t)(α̃)dξ

+
∫ 1

0
‖α − α̃‖‖∇J(t)(α̃ +ξ (α − α̃))−∇J(t)(α̃)‖dξ

≤ (∇J(t)(α̃))T(α − α̃)+β‖α − α̃‖2.
��

The gradient and the Hessian of the errors, together with the property of Lipschitz
continuity, provides a theoretical foundation for developing gradient-based algorithms,
which will be discussed in Sect. 5.

5 Algorithmic Analysis

In this section, we develop gradient-based algorithms to find the linear optimal esti-
mator, and study their convergence properties. We first formally present the optimality
conditions that characterize the solutions to the dynamic problem 8.

Proposition 1 (Stationary Points). For every t, due to non-convexity, we are satisfied
at finding a solution α∗(t) for J(t)(α) in DP-t that satisfies the first-order conditions,

∇J(t)(α∗) = 0

which we refer to as stationary points.
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A descent algorithm starts from initial point α0, proceeding iteratively as follows:

αk+1 = αk+ γksk, k = 0,1,2, . . . ,

where γk ∈ R+ is the stepsize and sk ∈ R
S represents the descent direction. Many

choices are plausible for the descent direction, resulting in different algorithmic imple-
mentations; e.g., steepest gradient (i.e., sk = −∇J(t)(αk)), Newton’s method (i.e., sk =
−(∇2J(t)(αk))−1∇J(t)(αk)), and other variants (e.g., quasi-Newton methods). Algo-
rithm 1 gives a steepest gradient descent algorithm, which is well known to achieve a
linear convergence rate. The tolerance ε denotes the stopping criteria.

Algorithm 1: Optimal Linear Estimation Using Steepest Gradient

Data: {M (t ′)}tt ′=1, {z(t
′)}tt ′=1;

Input: α0, {γk}, ε;
for k ← 1,2, . . . do

foreach i ← 1 to t do
( f (i),g(i)) ← saddle-point(L(M (i),α)− z(i)E)

end

∇J(t)(αk) ← 1
t ∑t

i=1

(
∇v(i)(α)

)
v(i)(α);

if ‖∇J(t)(αk)‖ ≤ ε ;
then

Break
end
αk+1 ← αk − γk∇J(t)(αk);

end
Result: α∗

Pseudo-Gradient Approximation. As saddle-point strategies are computationally
costly to obtain, determining a steepest direction is relatively inefficient. In fact, the
descent direction can be approximated once the approximation error is sufficiently
small. We hereby provide a pseudo gradient method that uses a surrogate descent direc-
tion s̄k, where for all i ∈ S

s̄ki =
t

∑
t ′=1

1
N1N2

∑
i, j
(M(t ′)

i )i j

(
1

N1N2
∑
i, j
(M̂(t ′))i j − z̄(t

′)
)

. (19)

In short, the pseudo-gradient approximates the gradient by replacing δ (t ′)
i with the mean

value of M(t ′)
i and replacing val(M̂(t ′)) with average entry value of M̂(t ′). By doing so,

we eliminate the problem for computing the saddle-point strategies and game values,
significantly reducing the computational complexity.

5.1 Sequential Observation and Adaptation

When t becomes large, steepest gradient methods are inefficient as it needs to sweep
through the entire dataset. It is more attractive to use an incremental method that can
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sequentially update the gradient. The incremental gradient method is described as fol-
lows:

αk+1 = αk − γk
(

t

∑
i=1

∇v(i)(ψ i−1)v(i)(ψ i−1)

)

, (20)

where at iteration k:

ψ i = ψ i−1 − γk∇v(i)(ψ i−1)v(i)(ψ i−1) i= 1, . . . , t.

The stepsize selection is essential to ensure the convergence of the iterations. Usually
when γk does not diminish to 0, there will be an oscillation within ψ i.

Assumption 3. The following conditions are satisfied:

(a) The product of every error (11) and its gradient is bounded for all α ∈ X and
every t ′, t; i.e.,

‖∇v(t
′)(α)v(t

′)(α)‖ ≤ c1+ c2‖∇J(t)(α)‖ (21)

for positive constants c1 and c2;
(b) Diminishing stepsize, i.e., ∑∞

k=0 γk = ∞ and ∑∞
k=0(γk)2 < ∞.

Corollary 2. Under Assumption 3, for all α ∈ X , we have

(1−2c2)‖∇J(t)(α)‖ ≤ 2c1. (22)

Particularly, when 0 < c2 < 1
2 , ‖∇J(t)(α)‖ is bounded by

2c1
1−2c2

.

This bound can be obtained through triangular inequality:

‖∇J(t)(α)‖ =
2
t
‖

t

∑
t ′=1

∇v(t
′)(α)v(t

′)(α)‖

≤ 2
t

t

∑
t ′=1

‖∇v(t
′)(α)v(t

′)(α)‖

≤ 2c1+2c2‖∇J(t)(α)‖
Proposition 2. Under Assumption 3, the incremental gradient method 20 applied to 8
generates a sequence {αk}. J(t)(αk) converges to a finite value and limk→∞ ∇J(t)(αk)=
0. Every limit point of αk is a stationary point of problem 8.

Proof. We provide a sketch of the proof here. At iteration k, we have

ψ1 = αk − γk∇v(1)(αk)v(1)(αk)

ψ2 = αk − γk∇v(2)(ψ1)v(2)(ψ1)
...

...

ψ t = αk − γk∇v(t)(ψ t−1)v(t)(ψ t−1)
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Adding them up, we obtain

αk+1 = αk − γk
(
∇J(t)(αk)−

t

∑
t ′=2

(∇v(t
′)(αk)v(t

′)(αk)−∇v(t
′)(ψ t ′−1)v(t

′)(ψ t ′−1))
)

= αk − γk
(
∇J(t)(αk)−wk)

Using Theorem 3, we see that the error term wk = ∑t
t ′=2 ∇v(t

′)v(t
′)(αk) −

∇v(t
′)v(t

′)(ψ t ′−1) = ∑t
t ′=2w

k
t ′ is bounded, for every t

′:

wk
t ′ ≤

t−1

∑
i=2

‖∇v(t
′)v(t

′)(ψ i)−∇v(t
′)v(t

′)(ψ i−1)‖

+‖∇v(t
′)v(t

′)(αk)−∇v(t
′)v(t

′)(ψ1)‖

≤ β
(‖αk −ψ1‖+

t−1

∑
i=2

‖ψ i −ψ i−1‖)

= βγk(‖∇v(t
′)v(t

′)(αk)‖+
t−2

∑
i=1

‖∇v(t
′)v(t

′)(ψ i)‖).

According to Assumption 3 (21),

wk
t ′ ≤ βγk((t−1)(c1+ c2‖∇J(t

′)(αk))‖+
t−2

∑
i=1

‖∇J(t
′)(αk)−∇J(t

′)(ψ i)‖)

Leveraging Corollary 2, we recursively eliminate ∇J(t
′)(ψ i) and see that the error term

wt is bounded; i.e., there exist positive constants C1 and C2 such that

wk ≤ γk(C1+C2‖∇J(t)(αk)‖) (23)

Here, we omit the algebraic calculation of constantsC1 andC2. Note that the elimination
procedures are similar. Using (18), we obtain

J(t)(αk+1)− J(t)(αk) ≤ γk(−‖∇J(t)(αk)‖2+‖∇J(t)(αk)‖‖wk‖)
+ γ2β‖∇J(t)(α)+wk‖2

≤ γk(−1+ γk(C2+2β )+2(γk)3C2
2β )‖∇J(t)(α)‖2

+(γk)2(C1+4γ2C1C2β )‖∇J(t)(α)‖+2(γk)4C2
1β

As Assumption 3 states that (γk)2 diminishes to 0, the terms multiplying γk with order
2 or higher will go to 0. For k sufficiently large, γk → 0, for some positive constants c′

1
and c′

2,

J(t)(αk+1)− J(t)(αk) ≤ −γkc′
1‖∇J(t)(α)‖2+(γk)2c′

2‖∇J(t)(α)‖+2(γk)4C2
1β .

Observe that if ‖∇J(t)(α)‖ ≥ 1, then ‖∇J(t)(α)‖ < ‖∇J(t)(α)‖2, or else ‖∇J(t)(α)‖2 ≤
‖∇J(t)(α)‖ ≤ 1, and thus ‖∇J(t)(α)‖ ≤ 1+‖∇J(t)(α)‖2. Then,

J(t)(αk+1)− J(t)(αk) ≤ −γk(c′
1 − γkc′

2)‖∇J(t)(α)‖2+o((γk)2). (24)
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For k sufficiently large, c′
1−γkc′

2 ≤ 0, so that J(t)(αk+1)≤ J(t)(αk) and J(t)(αk+1)≥ 0.
(24) satisfies the deterministic form of supermartingale theorem. Hence J(α) converges
to some finite value and it must have ∑∞

k=0 γk‖∇J(t)(αk)‖2 ≤ ∞. Since we assume
∑∞
k=0 γk = ∞, it also has to satisfy liminfk→∞ ‖∇J(t)(αk)‖ = 0. Due to Lipschitz con-

tinuity, limsupk→∞ ∇J(t)(αk) is also 0 (the proof is omitted here), and hence the limit
points are stationary points. ��

Stochastic Gradient Descent (SGD). The surrogate estimated gradient is:

αk+1 = αk − γk∇Ĵ(t)(αk) (25)

= αk − γk
1
|B| ∑

b∈B
∇v(b)(αk)v(b)(αk), (26)

where the indices b is chosen from batch set B. SGD is a stochastic version of incre-
mental method, exhibiting a lower computational cost in one single iteration with less
gradient memory storage. SGD guarantees weak convergence in non-convex systems
under Lipschitz-smoothness, pseudo-gradient property, and bounded variance of the
descent direction [4]. In our problem where there may exist multiple minimum, SGD
potentially admits global optimum.

5.2 Extended Kalman Filter

We consider a commonly used iterative method for nonlinear least-square estimation,
Gauss-Newton method, which is given as follows:

αk+1 = αk − γk(JvJTv +λ I)−1Jvv(αk), (27)

where Jv =
(
∇v(1)(αk), . . . ,∇v(t)(αk)

)
is the Jacobian of the vector v(αk) =

(
v(1)(αk),

. . . ,v(t)(αk)
)T

and λ I stands for a possitive multiple of the identity matrix as proposed
in Levenberg-Marquardt method [17] to ensure nonsingularity caused by the rank defi-
ciency of Jv.

Gauss-Newton iteration (27) is obtained by approximating Hessian with (JvJTv +Δt)
as result of solving quadratic subproblems iteratively using linearized objective function
around every αk. This approximation avoids computing the individual residue Hessian
∇2v(t

′)(α), t ′ = 1, . . . , t, in Theorem 2.
Extended Kalman Filter (EKF) [3,4,16] is an incremental version of the Gauss-

Newton method. Starting with some point α0, a single cycle of the method updates
the α via iterations that aims to minimize the partial sums ∑ j

t ′=1 |v(t ′)(α)|2 j = 1, . . . , t
successively. Thus, it sequentially generates the vectors:

ψ t ′ = argmin
α

t ′

∑
i=1

∣
∣v(i)(ψ i−1)+

(
∇v(i)(ψ i−1)

)T(α −ψ i−1)
∣
∣2 t ′ = 1, . . . , t

We consider the algorithm where ψ t ′ are obtained through increments:

ψ i = ψ i−1 − (Hi)−1∇v(i)(ψ i−1)v(i)(ψ i−1), i= 1, . . . , t, (28)
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with ψ0 = αk at step k, where matrices Hi are generated by:

Hi = λHi−1+∇v(i)
(
ψ i−1)∇v(i)

(
ψ i−1)T , i= 1, . . . , t, (29)

with λ being a positive constant and H0 = λ I at iteration k = 0. The algorithm uses ψ t

at the end of an iteration to update αk:

αk+1 = αk − (Ht(k+1))−1(
t

∑
i=1

∇v(i)(ψkt+i−1)v(i)(ψkt+i−1)
)
, (30)

where

Ht(k+1) = λ I+
k

∑
j=0

t

∑
i=1

∇v(i)
(

ψkt+i−1
)

∇v(i)
(

ψkt+i−1
)T

. (31)

Proposition 3 (Extended Kalman Filter (EKF) [3]). Assuming that there is a constant
c > 0 such that scalar λk used in the EKF algorithm at iteration k satisfies:

0 ≤ 1−λ t
k ≤ c

k
, k = 1,2, . . . .

Then, the EKF algorithm generates a bounded sequence of vectors ψ i. Each of the limit
points of {αk} is a stationary point of the least-square problem 8.

Proof. One can follow the argument in Proposition 2 of [3] to show the convergence
of EKF, when a series of conditions are satisfied, among which the Lipschitz condition
has been verified. ��
Remark 2. λ represents the discount factor that discounts the effects of old information.
An interpretation of this algorithm is that, as the defender proceeds to estimate, the
previous experience tends to be gradually out-of-date, while newly encountered ones
should be highly valued in the estimation.

6 Case Study

In this section, we study a network configuration game to corroborate the results and
investigate the numerical properties of the algorithms. Consider a game with an attacker
and a defender in a network of server group. The defender chooses a subset of servers
to monitor and protect, while the attacker selects a subset of them to attack. The inter-
actions induce some value for both players.

Assuming that each player has four strategies and the defender does not know the
game, we can use a N1 ×N2 matrix game with random entries to capture this scenario.
The defender sequentially estimates the game based on past experiences (i.e., expert
games) and value observation. This situation is illustrated in Fig. 1.
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(a) Network configuration (b) Game estimation

Fig. 1. Illustration of adversarial interaction and estimation process.

6.1 Experimental Setting and Results

Here, we conduct the experiment by fixing configuration parameters shown in
Table 1. We generate the matrices M(t ′) and values of z̄(t

′) from i.i.d. distributions
N (μ14,σ2I4×4) and N (μz,σ2

z ), with a fixed random seed. As a result, the differ-
ences between values of expert games and target games scale well. We compare the
performances of different methods for both SP and DP-t, and show their convergences
in Fig. 2.

Table 1. Configurations

Variables Values Variables Values

Data horizon t 30 M (t ′) entry distribution (μ , σ) (1,1)

Vector α Size S 5 z̄(t
′) value distribution (μz, σz) (1,1)

Stepsize γk 0.98k ×0.01 Parameter α initialization 1S
Tolerance ε 1e−5 Batch size |B| 1

Game size 4×4 Fading factor λ for EKF 0.9

The well-known Lemke-Howson algorithm [13] is implemented to find the saddle-
point strategies and values of matrix games.

6.2 Discussions

From Fig. 2, one shall see Gauss-Newton method as well as EKF exhibit convergence
faster than others as they naturally tune the stepsize. Meanwhile, the pseudo-gradient
method displays promising convergence behavior. It can be seen in (a) that the partial
contribution by expert 2 dominates the learning process, indicating greater similarity

between expert game M(1)
2 and M̂.

We notice that the output square matrix M̂ usually does not satisfy Assumption 2
as the estimated saddle-point mixed strategies have 0 elements in the iterative process.
However, despite this, the algorithms still converge, indicating that Assumption 2 is a
conservative assumption for practice.
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(a) Single observation at t = 1

(b) Multiple observation at t = 30

Fig. 2. Estimation curve for both static (a) and dynamic (b) problems

7 Conclusions and Future Research

This work has formulated and analyzed static and dynamic least-square game estima-
tion problems for a class of finite zero-sum security games. The formulation captures
the scenario where the players do not know the adversarial environments they interact
with. We have studied the basic properties of least-square errors and developed itera-
tive algorithms to solve the game estimation problem. The proposed approach effec-
tively transfers the past experiences that are encoded as expert games to estimate the
unknown game and inform future game plays. We have seen that the algorithms work
over randomly generated datasets despite certain assumptions are not strictly satisfied.

There are many open research problems that could be addressed as future work.
First, it has been observed that the assumption for completely mixed game is conser-
vative. The future work would investigate the properties of the error functions when
the assumption does not hold. Second, it would be possible to extend this framework
for stochastic games. We would capture the dynamic adversarial environment using a
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stochastic game representation, and estimate the environment using multi-time scale
observations.
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1 Artificial Intelligence Center, Department of Computer Science, Faculty of
Electrical Engineering, Czech Technical University in Prague, Prague, Czechia

{petr.tomasek,branislav.bosansky}@fel.cvut.cz
2 Department of Computer and Information Science, University of Oregon,

Eugene, USA
tnguye11@uoregon.edu

Abstract. Security games are a defender-attacker game-theoretic model
where the defender determines how to allocate scarce resources to pro-
tect valuable targets against the attacker. A majority of existing work
has focused on the one-shot game setting in which the attacker only
attacks once. However, in many real-world scenarios, the attacker can
perform multiple attacks in a sequential manner and leverage observable
effects of these attacks for better attack decisions in the future. Recent
work shows that in order to provide effective protection over targets, the
defender has to take the prospect of sequential attacks into consideration.
The algorithm proposed by existing work to handle sequential attacks,
however, can only scale up to two attacks at most. We extend this line
of work and focus on developing new scalable algorithms for solving the
zero-sum variant of security games. We formulate security games with
sequential attacks as a one-sided partially observable stochastic games.
We show that the uncertainty about the state in the game can be mod-
eled compactly and we can use variants of heuristic search value iteration
algorithm for solving these games. We give two variants of the algorithm
– an exact one and a heuristic formulation where the resource reallocation
possibilities of the defender are simplified. We experimentally compare
these two variants of the algorithm and show that the heuristic variant is
typically capable of finding high-quality strategies while scaling to larger
scenarios compared to the exact variant.
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1 Introduction

Defender-attacker security games are a well-known class of resource allocation
games where a defender has to protect a set of targets against an attacker. The
defender chooses how to allocate his limited resources to these targets while the
attacker chooses which target(s) to attack. In practice, the one-shot security
game setting was used in several successful applications, in which the attacker is
assumed to attack only once [1,5,6,8,9,13]. However, in many real-world security
domains, the attacks might occur sequentially – the attacker can choose to attack
targets in a sequence while observing the results of executed attacks. Performing
a sequential attack is beneficial for the attacker due to discovered knowledge (by
attacking a target, the attacker can partially discover the current allocation of the
defending units). Only recently, a new model of security games with sequential
attacks (SGSA) has been introduced [7] showing that it is indeed necessary for
the defender to be prepared for the sequential attacks.

In SGSA, both players choose their actions simultaneously over several
rounds—each round corresponds to a simple security game (in which the defender
allocates the resources to the targets and the attacker chooses one target to
attack). Afterwards, the outcome of the actions is determined—if the attacked
target has been unprotected (protected, respectively), the attack is successful
(unsuccessful). The game then enters into the next round while assuming that
the attacked target is no longer available for protection/attack. Moreover, if the
attack was unsuccessful, the defending unit that was present at the target cannot
be reallocated to protect other targets. The initial work [7] introduced several
variants of SGSA and showed that it is indeed better for the attacker to attack in
sequence. Therefore, the defender must take the possibility of sequential attacks
into consideration and provided an algorithm for computing Strong Stackelberg
equilibrium for selected variants. However, the general algorithms for solving
SGSA are missing. The existing algorithms for computing a Strong Stackelberg
equilibrium for SGSA are restricted to two rounds only (the attacker can perform
two attacks) if the defender is able to reallocate the units and it is not clear
whether a generalization to multiple rounds is possible.

In this work, we attempt to address this computation limitation of the pre-
vious work, with the following main contributions. First, we leverage recent
advancement in solving sub-classes of zero-sum partially observable stochastic
games (POSGs) in which one player has perfect information and the other player
has partial information, termed one-sided POSGs (OS-POSGs) [3,4]. Algorithms for
solving OS-POSGs are based on a heuristic search value iteration (HSVI) algorithm
and are capable of handling very long horizons. We show that zero-sum SGSA
can be formulated as a OS-POSGs, thus allowing us to use the existing algorithms
of solving OS-POSGs. Second, we develop a new compact representation for SGSA
to avoid the exploration of an exponential number of states (due to exponen-
tially many possible subsets of protected targets) involved in the computation
of the original HSVI algorithm. While the idea behind using the compact repre-
sentation in HSVI has been introduced for a lateral-movement game in computer
networks [2,3], the technical realization of this idea in the domain of security
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games is non-trivial and novel. Third, in order to further improve the scala-
bility, we introduce a heuristic variant of the game where we introduce a mild
restriction for the defending units—each target can be in one stage protected
only by one unit, and this allocation of units is determined heuristically. While
this heuristic partitioning of targets among the defending units can negatively
affect the quality of defending strategies, our experimental evaluation shows that
with an increasing number of targets, the quality of strategies is very close to
the exact formulation. Moreover, the heuristic variant scales to larger scenarios.
Finally, we conduct extensive experiments to evaluate proposed methods. We
show that (1) ignoring the sequential aspect and solving each round separately
results in strategies with poor quality and that (2) our methods can solve larger
SGSA with multiple rounds (which the existing algorithm cannot handle) while
maintaining high-quality strategies for the players in the game.

2 Technical Background

In this section, we first provide the basic definitions for one-sided partially
observable stochastic games (OS-POSGs) and describe the ideas behind the heuris-
tic search value iteration (HSVI) algorithm. We then formally define security
games with sequential attacks (SGSAs).

2.1 One-Sided Partially Observable Stochastic Games (OS-POSG)

OS-POSG [4] is an imperfect-information two-player zero-sum infinite-horizon
game with perfect recall, formally defined as a tuple G = 〈S,A1, A2, O, τ, ρ〉.
The game evolves in rounds, where in each round a stage game is played. At
each stage, the game is in one of the states s ∈ S and players simultaneously
pick their actions a1 ∈ A1 and a2 ∈ A2. The initial state of the game is drawn
from a probability distribution b0 ∈ Δ(S) over the set of states S, which is
treated as a parameter of the game and termed the initial belief. The one-sided
nature of the game results in the fact that while player 2 can observe the game
perfectly (i.e., his only uncertainty is the action a1 player 1 decided to take in
the current stage), player 1 lacks detailed information about the course of the
game (i.e., he is uncertain not only about the action a2 for the current stage but
also about the current state of the game).

The choice of actions determines the outcomes for the current stage: player 1
gets an observation o ∈ O and the game transitions to a state s′ ∈ S with
transition probability τ(o, s′ | s, a1, a2), where s is the current state of the game.
Furthermore, player 1 gets a reward ρ(s, a1, a2) for this transition, and player 2
receives −ρ(s, a1, a2) (the rewards are not directly observable by player 1). Note
that the next stage of the game s′ is a result of joint action (a1, a2) and actions of
player 2 (who has perfect information) directly affects the observations received
by player 1 and thus his belief as well. The rewards are discounted over time
with discount factor γ, 0 < γ < 1.
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2.2 Heuristic Search Value Iteration (HSVI)

State of the art method for solving OS-POSGs [4] is a modification of the HSVI
algorithm for Partially Observable Markov Decision Processes [10,12] that com-
bines heuristic search techniques with piecewise linear convex value function
representations. The goal of HSVI is to approximate the optimal value function
V ∗ : Δ(S) → R that maps each belief point to a value of the game (should the
players follow optimal strategies) using a pair of value functions V (lower bound
on V ∗) and V (upper bound on V ∗) – see Fig. 1. HSVI refines these bounds by
solving a sequence of stage games. In each of these stage games, the algorithm
searches for the optimal strategies of both players (i.e., π1 ∈ Δ(A1) for player 1
and π2(s) ∈ Δ(A2) for player 2) while assuming that the play in the subsequent
stages yields values represented by value functions V or V , respectively. When
moving to the next stage in sequence, the stage with maximum excess approxi-
mation error between corresponding upper and lower bound weighted by reach
probability is selected. The key advantage of this approach is that in practice,
we do not need to solve the whole game tree but only a smaller portion of it.
Furthermore, the algorithm uses two approximations on the optimal value func-
tion V ∗ (V and V ). By further refining, these approximations are converging to
the optimal value and the margin by which the approximated solution is worse
than the optimal one has guaranteed bounds (unlike in other value iteration
methods).1

Fig. 1. HSVI local update in the belief b [11] (Color figure online)

The lower bound V (blue line in Fig. 1) on V ∗ is represented by commonly
used vector representation as a finite set Γ of linear functions αi : Δ(S) → R.
Where the value at a belief state b is the maximum projection of b onto the set
Γ. The value of V (b) is point-wise maximum over this set

V (b) = max
α∈Γ

(α · b)

These linear functions are termed alpha vectors and represent expected outcomes
of strategies found by the algorithm (black lines in the bottom part of Fig. 1).
1 For theoretical results and proofs refer to [11].
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Since the HSVI algorithm relies on the local updates (i.e., updating bounds
for specific belief point) and improving bounds in the neighborhood of the local
update (as shown in Fig. 1 local update results not only in improving bounds in
particular belief point but also in its neighborhood), the upper bound cannot be
represented by a vector set. Therefore, the upper bound V on V ∗ is expressed
using a set Υ = {(b(i), y(i)) | 1 ≤ i ≤ |Υ|} of belief/value points (b(i), y(i)) (dots
in the upper part of Fig. 1). The lower convex hull of this set of points is then
used to obtain the value of V (b) (red dashed line in Fig. 1).

V (b) = min
λ∈R

|Υ|
≥0

⎧
⎨

⎩

∑

1≤i≤|Υ|
λiy

(i) | 1T λ = 1,
∑

1≤i≤|Υ|
λib

(i) = b

⎫
⎬

⎭

Finally, HSVI local updates are performed by adding a new vector (for the lower
bound) or a point (for the upper bound) to the current sets Γ and Υ, respectively.

Compact Representation HSVI. The dimension of the value function V ∗

depends on the number of states, which can be potentially very large. There-
fore an abstraction scheme was proposed [3]. This abstraction scheme reduces
the dimensionality of the problem by creating a simplified representation of the
beliefs over the state space. This means that each belief b ∈ Δ(S) in the game is
associated with a characteristic vector χ(b) = A · b (for some matrix A ∈ R

k×|S|

where k � |S|). The characteristic vector corresponding to the initial belief b0

is denoted as χ0. It was proved that value function V s computed using compact
representation is valid lower bound on the solution of the original game (value
function V ∗) – [3, Theorem 1]. And also that the value function V s is convex
– [3, Theorem 2]. Compact representation HSVI was shown to outperform the
current state of the art algorithms for solving large OS-POSGs [2,3] in terms of
scalability with only negligible loss in quality. In this work, we aim to modify
this method for a different domain of games and achieve similar results.

2.3 Security Games with Sequential Attacks

Security games with sequential attacks (SGSA) [7] are an extension to the classical
Stackelberg security games (SSG) model. The defender has to perpetually defend
a set of targets T using a limited number of resources R. The attacker is able to
surveil the defender’s strategy and adjust his attack based on the surveillance.
An action of the defender is deploying his limited set of resources Rs to protect
targets from T s in each game state s ∈ S. Similarly, an action of an attacker
represents attacking one of the targets from T s in each game state s ∈ S. The
mixed strategy of the defender in each state s ∈ S then corresponds to a prob-
ability distribution over pure strategies in that state. Finally, each target has
associated a set of payoff values that define the utilities for both players. Since
we restrict to the zero-sum case, we assume that the payoff values correspond to
the perspective of the attacker receiving in case of a successful or failed attack,
respectively. SGSAs further extend this model by incorporating sequential attacks
allowing an attacker to attack multiple times during one game.
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The SGSA dynamic works as follows. Initially, the resources of the defender are
randomly allocated to targets according to a mixed strategy of the defender in
the initial stage. During the execution time, the defender samples a specific allo-
cation of resources from his mixed strategy. The attacker is aware of defender’s
mixed strategy, but he lacks the information which targets are protected at the
execution time. By attacking targets sequentially, the attacker is able to obtain
additional information about a state of the game through observations from
previous attacks. Based on the observation, the attacker can update his belief
about the strategy of the defender and decide on targets to attack next that
would benefit the attacker the most. After each attack, the game moves to the
next stage and the defender decides whether to move security resources to any
other target or not (by sampling from his mixed strategy for that particular
stage of the game).

This paper focuses on solving SGSAs in the resource-movement setting under
the following assumptions. First, we assume that the attacker can carry out
K > 1 rounds of attacks and attack one target per round. Furthermore, the
attacker can discover whether target ti was protected after attacking that par-
ticular target. Note that this observation reveals only protection status for target
ti and the attacker is still unaware of the current protection status of remaining
targets. The defender has to move security resources among targets in response
to each attack, and there is a constant reallocation cost c ≥ 0 for moving a
resource from one target to another one2. Further, we assume that when a tar-
get ti is attacked, the damage caused by the attack (if any) to ti is already done.
Therefore, that target will not be considered in future rounds. In addition, if
there is a security resource protecting the attacked target, the resource has to
resolve that attack. Thus the defender can no longer use that resource for future
defense.

3 Using OS-POSGs for Sequential Attacks

In this section, we first represent our SGSA modeled game as OS-POSG. Then
we present an HSVI-inspired algorithm for solving such games and discuss two
variants of it—an exact one and a simplified heuristic formulation.

3.1 Representing SGSA as OS-POSG

Since the attacker can attack multiple times in SGSA, the game itself is divided
into several rounds (stage games). Each of these stage games is equivalent to a
state of the game we are trying to solve forming a set of states S. These states
are described by a set of remaining security resources R, set of remaining targets
T , the number of remaining attacks K and initial allocation of security resources
χ (based on the final allocation in the previous state). As mentioned above, in

2 Note that this can be generalized even further so that costs correspond to, for exam-
ple, distances between the targets in a graph.
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SGSA the defender has perfect information about the current situation in the
game (current state of the game) and is only uncertain about the attack that
will be performed. On the other hand, the attacker has only partial information
since he knows only the set of remaining targets and the number of remaining
resources. Therefore we can easily represent SGSA as OS-POSG. The defender
from SGSA corresponds to the perfect-info player in OS-POSG (player 2 in the
definition) and the attacker corresponds to the imperfect-info player (player 1
in the definition). Observation sent to the attacker contains information about
whether there was a security resource on the attacked target or not. Reward
function ρ returns utility of attack based on whether it succeeded or not plus
the cost for reallocating security resources (if the reallocation cost c > 0). Finally,
transition function τ determines the set of remaining resources R′ and targets
T ′ and initial allocation χ′ for state s′ based on taken actions. Each state s ∈ S
has its own specific value function V s (note that this value function is equal to
the value function of a subgame rooted in the state s) with corresponding upper
(V

s
) and lower (V s) bound.
The initial allocation χ consists of a set of marginal distributions over

targets—one for each resource r ∈ R—stating what is the probability that
resource r is protecting target i. As the following example demonstrates, we
cannot use aggregated marginal coverage ignoring the resources. In this case,
the transition function τ could not uniquely define the next state of the game –
the rules of SGSA require that we can identify which resource was protecting a
target in case of an unsuccessful attack (that resource is removed for next stages
and the allocation of other resources has to be rescaled appropriately).

Example: Let’s consider instance of SGSA presented in Fig. 2. This instance
corresponds to stage game with 2 security resources and 4 targets and possi-
ble transitions to future stage games after target t1 is attacked. Note that the
final allocations in the root game are represented by marginal probabilities xr

per resource r. In this representation, we can easily determine the initial alloca-
tion in future stage after attacker being caught either by resource r1 or r2 (the
initial allocation is normalized distribution consisting of probabilities xr[i] that
are not crossed out). Let’s assume that we will use marginal probabilities over
targets (x[i] =

∑
r∈R xr[i];∀i ∈ T ) instead. In such a case, we will be still able

to compute coverage of targets that will ensure the same immediate reward in
first stage game as marginal probabilities per resource representation. After suc-
cessful defense of a target i, security resource r protecting i is removed from the
game and all contributions of r to marginal probabilities over targets must be
deleted. However, when representing initial allocations by marginal probabilities
over targets, we do not know the exact contributions of individual resources.
Therefore, we cannot compute the exact initial allocation for sub-games after
catching the attacker. To handle this issue, we have to use marginal probabili-
ties per resource.
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Fig. 2. Example of SGSA

3.2 HSVI-Inspired Algorithm

Our definition of SGSA uses a compact representation of states and uncertainty.
Our algorithm (the pseudocode is shown in Algorithm 1) is based on the HSVI
algorithm for compactly-represented lateral-movement game in computer net-
works [2,3]. While the overall schema of the algorithm is similar and follows the
steps of the original HSVI as described in Sect. 2.2, the main technical difference
is in the algorithms for solving stage games and thus updating the lower and
upper bound functions (described in Sects. 3.3 and 3.4).

Besides this, there are two minor changes to the structure of the algorithm
itself. One of the differences is that SGSA is finite horizon game (the number of
rounds is limited by the number of attacks K) while the OS-POSG is infinite hori-
zon thus we can omit discount factor γ. Another difference between Algorithm 1
and HSVI for abstracted OS-POSGs is that we do not explore only state s′

max with

maximum weighted gap p(s′
max)∗(V

s′
max(χ′)−V s′

max(χ′) but instead we explore

each possible state s′ for which holds p(s′)∗(V
s′

(χ′)−V s′
(χ′) > 0. This decision

is based on the experimental evaluation, where we achieved significantly better
runtime when exploring all possible states with a non-zero weighted gap.

The algorithm (Algorithm 1) works as follows. First, for each state s ∈ S we
initialize bounds V

s
and V s (line 1) to valid piecewise linear and convex lower and

upper bound on V s. During the initialization phase, we initialize sets Γ and Υ for
each state of the game. Every set Γ is initialized by one linear function represent-
ing the value of corresponding game state assuming that reallocation cost c = 0
and in the future states the defender will always catch the attacker on such a tar-
get from the remaining ones where the attacker has the highest penalty for being
caught. Similarly, every set Υ is initialized by points representing all possible pure
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strategies of the defender in that particular state and value achieved when playing
according to that strategy assuming that all resources have to be reallocated, and
in the future states, the defender will never catch the attacker while the attacker
always attacks the most valuable target from the set of remaining targets. After the
initialization, we perform a sequence of trials (lines 3–5) from initial characteristic
vector χ0 until the desired precision ε > 0 (determined on line 2) is reached.

In each of the trials, we first compute the optimal optimistic strategy of
player 2 (line 7) and update sets Γ and Υ based on the solutions of V s(χ) and
V

s
(χ) (line 8). Next, we iterate over each pair of action a1 of player 1 and

observation o leading to next state s′ with a non-zero weighted gap (lines 9–12).
For each of these states we update Γ′ and Υ′ based on the solutions of V s′

(χ′)

and V
s′

(χ′) (line 13). If the gap V
s′

(χ′) − V s′
(χ′) is greater than desired ε, we

recurse to the characteristic vector χ′ (lines 14–15). Finally, the update of sets
Γ and Υ is done by adding a new alpha vector or point to the corresponding set.

1 Initialization

2 Set ε = (V
s0

(χ0) − V s0(χ0)) ∗ 10−2

3 while V
s0

(χ0) − V s0(χ0) > ε do
4 Explore(s0, χ0, ε)

5 Update Γ and Υ based on the solutions of V s0(χ0) and V
s0

(χ0)

6 procedure Explore(s, χ, ε)
7 (b, π2) ← optimal belief and strategy of defender in V s(χ)

8 Update Γ and Υ based on the solutions of V s(χ) and V
s
(χ)

9 for (a1, o) ∈ A1 × O do
10 s′, χ′ ← τ(χ, a1, π2, o)
11 Determine reach probability p(s′) of state s′

12 if p(s′) ∗ (V
s′

(, χ′) − V s′
(χ′) > 0 then

13 Update Γ′ and Υ′ based on the solutions of V s′
(χ′) and V

s′
(χ′)

14 if V
s′

(χ′) − V s′
(χ′) > ε then

15 Explore(s′, χ′, ε)
Algorithm 1: HSVI inspired algorithm for SGSA

As mentioned previously, one of the key differences in our HSVI-inspired algo-
rithm for solving SGSAs compared with the original HSVI is in the computation
of lower bound V and upper bound V , which is domain dependent. We propose
two variants of HSVI inspired algorithm for solving our SGSAs. The difference
between them is in the way how they approach solution (i.e., estimation of V
and V ) of stage games (i.e., the assumed set of available actions of the defender
in each stage game). The first one is exact and assumes the whole action space
consisting of all possible joint actions. The second one is a simplified heuris-
tic formulation and reduces the size of the action space by assuming that each
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resource has its own set of assigned targets that can be covered by that particu-
lar resource and these sets are mutually disjoint. Therefore, it is ensured that no
target can be covered by more than one resource and we do not need to use joint
actions and can use separate reallocation actions for each individual resource.
The different action sets used by these variants result in a different construction
of linear programs used for solving stage games as well. We describe these two
variants in the following.

3.3 Exact Variant of the Algorithm

As we mentioned above, the marginal probabilities of covering targets are not
enough and we need probability for each target being covered by particular
resource. Therefore we have to consider all possible joint reallocation actions
(i.e., all possible combinations of reallocating each resource from all possible
starting positions to every possible end position3). This means that we have to
deal with extremely large action space with size exponential in the number of
resources R (the size of the action space is T 2∗R). The huge action spaces result
in extremely large linear programs for computing game values.

Initializing Lower Bound and Upper Bound. The presented linear program
is general for an arbitrary number of resources R. For the sake of simplicity, we
show the linear program for lower bound initialization of a game with R = 2:

min V s (1a)

s.t.
∑

i∈N

xr[i] = 1 ∀r ∈ R (1b)

∑

i,j

m[i, k, j, k] = 0 ∀k ∈ T (1c)

∑

j,k,l

m[i, k, j, l] = χ1[i] ∀i ∈ T (1d)

∑

i,k,l

m[i, k, j, l] = χ2[j] ∀j ∈ T (1e)

∑

i,j,l

m[i, k, j, l] = x1[k] ∀k ∈ T (1f)

∑

i,j,k

m[i, k, j, l] = x2[l] ∀l ∈ T (1g)

x−[i] =
∑

j,k∈T

∑

l,n∈N\i

m[j, l, k, n] ∀i ∈ T (1h)

x−[i] ∗ u[i] +
∑

r∈R

xr[i] ∗ p[i] ≤ V s ∀i ∈ T (1i)

m[i, j, k, l] ≥ 0 ∀i, j, k, l ∈ T (1j)

3 Note that only reallocation actions resulting in situations where no target is covered
by more than one resource are assumed.
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In the above linear program, the defender is looking for a new allocation of 2
security resources in stage game without considering future stages and realloca-
tion. The probability of executing a joint reallocation action is expressed using
the variable m, where the value of m[i, k, j, l] corresponds to the probability of
the first resource moving from target i to target k AND the second resource
moving from target j to target l. We have to ensure that probabilities m of joint
actions cannot exceed the initial allocation χr of each resource r (constraints
(1d), (1e)) and sums to the final marginal probabilities xr per resource r ∈ R
(constraints (1f), (1g)). The final marginal probabilities xr over targets T per
resource r ∈ R must sum to 1 (constraint (1b)). We also need to ensure that
one target cannot be covered by more than 1 resource at a time (constraint
(1c)). Now, in order to correctly identify the initial allocation in possibly subse-
quent stages of the game, we need conditional probabilities in case the attacker
attacks a target i that would be protected by some resource or unprotected,
respectively. The probability that no resource protects target i is represented by
variable x−[i]. Finally, constraints (1i) represent the best response of the attacker
to the defender’s strategy and ensure that the defender will minimize the reward
received by the attacker.

Updating Lower Bound and Upper Bound. During HSVI inspired compu-
tation, we need to solve linear programs for lower and upper bound and based on
the solutions of these programs update set of alpha vectors Γ and set of points Υ
respectively. The linear programs for computing value of lower and upper bound
look almost the same as for the initialization. The only difference is that these
linear programs will take into account future stages and reallocation cost.

First, we add constraints defining the reallocation costs for all actions:

C[k, l,m, n] = 2 ∗ c ∀k,m ∈ R,∀l ∈ R \ k,∀n ∈ R \ m (2a)
C[k, l,m,m] = c ∀k,m ∈ R,∀l ∈ R \ k (2b)
C[k, k,m, n] = c ∀k,m ∈ R,∀n ∈ R \ m (2c)
C[k, k,m, n] = 0 ∀k,m ∈ R (2d)

C =
∑

i,j,k,l∈T

m[i, j, k, l] ∗ C[i, j, k, l] (2e)

Where constraints (2a)–(2d) ensure that the reallocation cost C for each joint
action corresponds to the number of resources reallocated by that joint action.
Variable C represents a reallocation cost of defenders mixed strategy.

Second, we must add constraints for values propagating from future stage
games. In the stage game with 2 resources, there are three possible next stages
reachable after an attack on target i is performed. The defender either did not
catch the attacker or the attacker was caught by either resource r1 or r2.

We need two components to correctly compute the values of future stage
games: (1) alpha vectors representing the value function of each particular sub-
game and (2) initial allocation of security resources in those sub-games. Note
that the future initial allocations must correspond to the final allocation in the
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current stage game and that the future initial allocations are already weighted by
probabilities of reaching corresponding sub-games (initial allocation of individual
resources in a sub-game sums to the reach probability of that sub-game). For
the sub-game reachable when the attacker was not caught on target i, we will
use set of alpha vectors A−[i] (stands for set Γ in lower bound linear program
and for the lower convex hull of set Υ in upper bound linear program) and initial
allocation b−[i] which consist of initial allocation b1

−[i] of resource r1 and initial
allocation b2

−[i] of resource r2—constraints (3a) and (3b). When the attacker
was caught on target i we will use set of alpha vector A+[i] (corresponding to
set Γ or lower convex hull of set Υ respectively). As initial allocation we will
either use b1

+[i] (when caught by r1) or b2
+[i] (when caught by r2)—constraints

(3e) and (3f).

b1
−[att] = [

∑

j,k∈T,l∈T\att

m[j, i, k, l];∀i ∈ R \ att] ∀att ∈ T (3a)

b2
−[att] = [

∑

j,k∈T,l∈T\att

m[j, l, k, i];∀i ∈ R \ att] ∀att ∈ T (3b)

b−[i] = [b1
−[i], b2

−[i]] ∀i ∈ T (3c)
∑

α∈A−[i]

α ∗ b−[i] ≤ V −[i] ∀i ∈ T (3d)

b1
+[i] = [

∑

j,k∈T

m[j, i, k, l];∀l ∈ T \ i] ∀i ∈ T ; (3e)

b2
+[i] = [

∑

j,k∈T

m[j, l, k, i];∀l ∈ T \ i] ∀i ∈ T (3f)

∑

α∈A+[i]

α ∗ b1
+[i] ≤ V+,1[i] ∀i ∈ T (3g)

∑

α∈A+[i]

α ∗ b2
+[i] ≤ V+,2[i] ∀i ∈ T (3h)

Constraint (3d) stands for expected future value if no resource is present at
target i. Constraints (3g) and (3h) represent expected future values if resource
r1 or r2 is protecting target i.

Finally, we need to modify constraints (1i) to take into account reallocation
cost and values of future states

x−[i] ∗ u[i] + V−[i] +
∑

r∈R

(xr[i] ∗ p[i] + V+,r[i]) + C ≤ V s (4)

3.4 Heuristic Variant of the Algorithm

To tackle the issue with large action space needed for the exact variant of our
algorithm, we devised a simplified heuristic formulation of stage games we need
to solve. The heuristic formulation assumes that each resource has its own set of
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assigned targets that can be covered by that particular resource and these sets
are mutually disjoint. Such distribution ensures that every target can be covered
by only one resource and therefore we can have separate reallocation actions
for each resource r. This means that the size of the action space is significantly
reduced since it is no longer exponential but linear.

Initializing Lower Bound and Upper Bound. The smaller number of
actions in the game results in less variables in the linear program and easier
construction of the linear program as well. In general, the linear program for
initialization of lower bound looks as follows:

min V s (5a)

s.t.
∑

i,j∈T

mr[i, j] = 1 ∀r ∈ R (5b)

∑

j∈T

mr[j, i] = xr[i] ∀r ∈ R,∀i ∈ T (5c)

∑

j∈Tr

mr[i, j] = χr[i] ∀i ∈ T (5d)

∑

j∈Tr\i

xr[j] ∗ u[i] + xr[i] ∗ p[i] ≤ V s ∀i ∈ T, r ∈ R;Tr � i (5e)

mr[i, j] ≥ 0 ∀i, j ∈ T (5f)

Where mr[i, j] stands for the probability of executing a reallocation action of
resource r from target i to target j. As in the linear program in the exact variant
of algorithm, we have to ensure that the probabilities of reallocation actions mr

of resource r sums to 1 (constraints (5b)) and do not exceed the initial allocation
χr (constraints (5d)) and sums to final marginal probabilities xr per resource
r (constraints (5c)). Finally, we represent best response of the attacker by the
constraints (5e).

Updating Lower Bound and Upper Bound. The modifications needed to
obtain linear programs for computing lower and upper bound are similar to the
ones used for the exact variant. Since actions in the heuristic variant correspond
to the reallocation of only one resource (unlike the joint actions in the exact
variant that correspond to the reallocation of multiple resources), we do not
need to specifically define reallocation costs for actions. Thus first step is to add
constraints for values of future states, which can be represented as follows:
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br
−[i] = [

∑

k∈T

mr[k, j] − λr
−[i, j];∀j ∈ Tr] ∀i ∈ T,∀r ∈ R (6a)

∑

j∈T

λr
−[i, j] =

∑

r′∈R

xr[i] ∀i ∈ T,∀r ∈ R (6b)

b−[i] = [br
−[i];∀r ∈ R] ∀i ∈ T (6c)

∑

α∈A−[i]

α ∗ b−[i] ≤ V −[i] ∀i ∈ T (6d)

br
+[i] = [

∑

k∈T

mr[k, j] − λr
+[i, j];∀j ∈ Tr] ∀i ∈ T,∀r ∈ R (6e)

∑

j∈T

λr
+[i, j] =

∑

j∈Tr\i

xr[j] ∀i ∈ T,∀r ∈ R (6f)

b+[i] = [br
+[i];∀r ∈ R ∧ i /∈ Tr] ∀i ∈ T (6g)

∑

α∈A+[i]

α ∗ b+[i] ≤ V+,r[i] ∀i ∈ T, r ∈ R;Tr � i (6h)

λr
−[i, j] >= 0 ∀r ∈ R,∀i, j ∈ T (6i)

λr
+[i, j] >= 0 ∀r ∈ R,∀i, j ∈ T (6j)

Since we are not using joint actions anymore, the initial allocation for reached
sub-game conditioned by final allocation in the current game can be easily
obtained. However, it will not be automatically weighted by reach probability
(initial allocation of individual resources will not sum to the reach probability of
that stage game) like in the exact variant. To achieve that we allow the defender
to modify the initial allocation of the followup stage game. Therefore we intro-
duce slack variables λ− and λ+ that are used by the defender to decrease initial
allocations of individual resources and make it sum to reach probability of that
stage game. Value of slack variable λr

−[i, j] represents how much the defender
reduced initial allocation of resource r on target j if target i was attacked and the
attacker was not caught. Similarly, the value of slack variable λr

+[i, j] represent
how much the defender reduced initial allocation of resource r on target j if tar-
get i was attacked and the attacker was caught. Constraints (6a) (equivalent to
constraints (3a) and (3b)) and (6e) (equivalent to constraints (3e) and (3f)) select
the initial allocations of individual resources for sub-games while constraints (6b)
and (6f) ensure that selected initial allocations will remain non-negative. Con-
straints (6d) and (6h) represent expected future values after successful attack
and after attacker being caught, respectively (equivalent to constraints (3d) and
constraints (3g) and (3h), respectively).

Finally, just like in the case of exact variant, we need to modify (5e) in similar
way as (1i), resulting in the following constraint:

∑

j∈Tr\i

xr[j] ∗u[i]+V−[i]+xr[i] ∗ p[i]+V+,r[i]+
∑

l∈R,m,n∈T

ml[m,n] ∗ c ≤ V s (7)
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4 Experimental Evaluation

In this section we present experimental evaluation of proposed variants of our
algorithm introduced in Sects. 3.3 and 3.4. We compare these variants based on
their runtime and solution quality.

4.1 Experiments Setting

The evaluation has been performed on sets of randomly generated games with
varying parameters – the number of targets T , number of resources R and num-
ber of attacks K. Each of these games has randomly generated rewards of the
attacker for successful attacks on targets (uniformly taken from interval [0, 6]),
attacker’s penalties from being caught on individual targets (uniformly taken
from interval [−6, 0]), reallocation cost (uniformly taken from interval [0, 1]) and
initial allocation (i.e., χ0). In the heuristic variant of our algorithm, targets were
uniformly distributed to individual resources in descending order of attacker’s
utility for a successful attack.

All computational results have been obtained on computers equipped with
Intel Xeon Scalable Gold 6146 processors and 32 GB of available RAM while
limiting the runtime to 2 h. We used CPLEX 12.9 to solve linear programs. The
solution approaches were required to find an ε-optimal solution where ε is set

to 1% of the error (V
s0

(χ0) − V s0
(χ0)) after the initialization phase described

in Sect. 3.2 is completed. If the algorithm failed to reach this level of precision
within 2 h, we report such instance as unsolved. The results are based on 50
randomly generated games for each parameter set.

In order to compare the quality of computed defense strategies across multiple
instances of generated games, we (1) evaluate the exploitability of the strategies
of the defender by computing a best response for the attacker (since we are
restricted to zero-sum games) and we (2) normalize the differences between the
expected outcomes against the best-responding attacker to obtain comparable
relative differences across various instances of generated games. Similarly to
setting the target error ε, we use the initial size of the interval between the
upper and the lower bound for the initial belief as the normalization factor.

4.2 Comparison with State of the Art

To the best of our knowledge, right now there is no clear state of the art solution
approach to compare with. Comparing to the methods proposed in [7] is not
possible due to the different assumed setting. We focus on solving zero-sum
SGSAs with reallocations costs without limiting the number of attacks. On the
other hand, previous work focused on solution of general-sum SGSAs without
reallocation cost with limiting the number of attacks K = 2 [7].

The solution approach closest to the state of the art is solving the game as
separate SSGs. This method scales much better than other proposed methods;
however, it significantly falls behind in the quality of the solution. As we can
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Fig. 3. Difference of best response values produced by heuristic algorithm and separate
SSG approach compared to non-heuristic algorithm.

observe in Fig. 3, solution quality of separate SSGs approach (compared to the
solution found by the exact variant of our algorithm) becomes significantly worse
with an increased size of the game. This is due to the fact that each stage game
is solved separately without taking into account future stages. This means that
we can solve each stage optimally in the sense of separate games. However, since
solution in previous time step directly affects solution in the current one, these
solutions are not optimal from the global point of view (e.g., the defender cannot
control reach probabilities of individual stage games).

On the other hand, for the simplified version of our algorithm holds the
opposite, the difference in solution quality (compared to the solution found by
the exact variant of our algorithm) decreases with an increased size of the game.
Therefore we focus solely on analysis of HSVI solution approach.

4.3 Algorithm Scalability

First we focused on the scalability of proposed variants in the size of the game -
number of targets T , number of resources R and number of attacks K (Fig. 4).
In Fig. 4, we use two y-axes. The left y-axis represents the runtime (seconds)
in a logarithm scale (upper part of the figure). The right y-axis presents the
percentage of unsolved games (bottom part of the figure).

Figure 4a depicts the scalability in the number of targets T . We can observe
that with a fixed small number of resources R and attacks K both variants scale
quite well up to the T = 10 solving nearly 100% of instances for each game size.
With further increasing number of targets, the percentage of unsolved instances
becomes higher, especially for the exact variant.

In Fig. 4b, we present the scalability in the number of resources R. The exact
approach was able to solve only the smallest game instances with R = 2. On
the other hand, the heuristic variant was capable of finishing all computations
within 2 h and achieved reasonable runtime across all sizes of game instances.
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(a) (b)

(c) (d)

Fig. 4. Scalability in different parameters affecting the size of the game (a) number
of targets T, (b) number of resources R, (c) number of attacks K and (d) number
of targets T and resources R with a fixed number of attacks K. Averages based on
50 instances for each parameter set. Confidence intervals mark the standard error.
The reported runtimes include only instances solved by the algorithm variants. The
percentage of instances where the algorithm variants failed to terminate within 2 h are
reported separately.

Figure 4c shows the scalability in number of attacks K. Again, we can observe
that the exact variant struggles when it comes to solving larger games resulting
this time in no instances solved. The heuristic approach keeps its performance
and solves all instances in the given time limit.

Finally, in Fig. 4d, we present scalability for fixed number of attacks K = 2
and increasing number of targets T and resources R with fixed ratio T : R. These
results support what we were able to observe in all previous scalability experi-
ments. The exact variant can easily solve smaller games with runtimes not very
different from those achieved by the simplified one. However, with the increasing
game size, the solution speed rapidly degrades. This behaviour is closely con-
nected to the number of actions considered by these variants. The exact one
has to use joint-actions which results in T 2∗R actions in the problem. On the
other hand, the simplified heuristic variant assumes that targets are exclusively
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(a) (b)

(c) (d)

Fig. 5. Difference between computed upper bound value and best response value of the
corresponding strategy depending on different parameters affecting size of the game
(a) number of targets T, (b) number of resources R, (c) number of attacks K and
(d) number of targets T and resources R with a fixed number of attacks K. Averages
based on 50 instances for each parameter set. The reported differences include only
instances where best response value was worse than upper bound value. The percent-
age of instances where the best response value was better than upper bound value is
reported separately.

assigned to individual resources for cover (i.e. each resource has assigned a list of
targets that can be covered by this resource and these sets are mutually disjoint).
Thus the heuristic approach can work with separate reallocation actions for each
resource, resulting in T 2 ∗ R actions. The number of actions directly affects the
size of a linear program and therefore the memory and time requirements for
solving it.

4.4 Solution Quality

In this section, we focus on the solution quality of our proposed approaches.
First, we compare the exact version of our algorithm with its heuristic variant.
We observe that the solution quality of the simplified heuristic approach highly
depends on the size of the game, and the bigger the game is the closer the
heuristic best response gets to the exact one (Fig. 3). The worse values achieved
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by the heuristic approach are due to the exclusive target assignment used in the
heuristic.

The following example demonstrates the key limitation of the heuristic app-
roach and the reason for not good quality of the strategies found by the heuristic
variant in games with small number of targets (see the difference for T = 4 in
Fig. 3 that is 0.373 on average). Without loss of generality, let’s assume we want
to solve a game with T = 3, R = 2, attacker’s rewards for attacking non-covered
target u = [3, 3, 3] and no penalties for the attacker when being caught or real-
location cost. In the exact variant, we are able to achieve the game value of 1
since it is possible to cover all three targets with uniform probability 2

3 . On the
other hand, in the heuristic approach two targets will be assigned to one resource
and one target to the other resource. Because of this, we are no longer able to
achieve the same coverage as in the exact approach and the best we can do is to
cover that single-assigned target with probability 1 and the remaining two tar-
gets (those assigned to the same resource) with uniform probability 1

2 resulting
in the game value of 1.5. The actual difference in expected outcomes between
the optimal strategy and the heuristic strategy can be even higher if the rewards
of the attacker for a successful attack are higher or if the reallocation costs are
considered. However, with the increasing number of targets T (or the number of
resources R), the impact of this limitation decreases (to 0.201 for T = 10).

Since we cannot compute optimal strategies using the exact variant for larger
instances, we evaluate the robustness of strategies computed by the heuristic
variant of our algorithm as the difference between the computed upper bound
value and the best response value of the corresponding strategy (normalized by
initial gaps – Fig. 5). In this figure, we use two y-axes. The left one represents
the difference between the upper bound and best response values (upper part
of the figure) and the right one presents the percentage of games in which the
best response value was strictly better than the computed upper bound value
(bottom part of the figure). As Fig. 5 shows, the heuristic algorithm was capable
of retaining its properties across all instances and keep the average exploitability
of computed strategies below 5%.

5 Conclusion

In this work, we study the problem of sequential attacks in security games.
We introduce a new formulation of zero-sum security games that consider such
sequential attacks, and we use the formalism of one-sided partially observable
stochastic games. This allows us to use existing algorithms developed for this
class of games. We exploit compact representation of uncertainty and design a
heuristic variant of the problem that, for larger games, achieves very similar
quality of strategies compared to the exact formulation, while scaling to greater
depths and the number of resources. Our paper opens a new possible direction
for studying security games with sequential attacks. Key components of the algo-
rithm can be improved to achieve even better scalability. The second important
direction is a modification of the algorithm to support also general-sum security
games and computation of Strong Stackelberg equilibria.
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Abstract. This paper studies a special class of games, which enables
the players to leverage the information from a dataset to play the game.
However, in an adversarial scenario, the dataset may not be trustworthy.
We propose a distributionally robust formulation to introduce robustness
against the worst-case scenario and tackle the curse of the optimizer. By
applying Wasserstein distance as the distribution metric, we show that
the game considered in this work is a generalization of the robust game
and data-driven empirical game. We also show that as the number of data
points in the dataset goes to infinity, the game considered in this work
boils down to a Nash game. Moreover, we present the proof of the exis-
tence of distributionally robust equilibria and a tractable mathematical
programming approach to solve for such equilibria.

Keywords: Data-driven optimization · Distributionally robust game ·
Mathematical programming

1 Introduction

In the past decade, game theory as a powerful mathematical tool has been used
by researchers to analyze security issues in Cyber-physical systems (CPS) [14],
Internet-of-Things [5], cloud computing [20], etc. As the advancements in data
analysis, attackers can deploy more sophisticated attacks using information from
the dataset [4,15,16]. The dataset can be log files, connection histories, or server
deployment diagrams. The defender can also use statistical methods to defend
herself from these attacks. The classical game theory approach does not capture
this data-driven feature of modern security concerns. Thus, there are potentials
in combining data science and game theory to further the analysis of the case
where the players extract information from data to play the game.

With reference to Fig. 1, consider the following cyber security scenario: both
the attacker and the defender have the access to an open-source dataset. Both of
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them aim to improve their performance by using this dataset. Nevertheless, fully
trusting this dataset is not plausible as the dataset can be either incomplete or
sometimes intentionally poisoned. Mathematically speaking, blindly extracting
information from a dataset in an empirical fashion oftentimes will result in an
overoptimistic result. We propose a distributionally robust game framework cap-
ture the balance between optimism and conservativeness. In this work, we assume
that all the players have the same uncertainty of the game, i.e., there is no infor-
mation privately possessed by any players. We also assume that the uncertainty
can be characterized by a random variable. Each player faces a distributionally
robust optimization problem and is robust to the worst-case distribution of the
uncertainty parameter in the system model.

Fig. 1. A block diagram of the interaction between the attacker and the defender.

Our contributions are summarized as follows: we first define a data-driven
empirical game (EG). A data-driven EG involves players estimating the distri-
bution of the uncertainty parameter in an empirical way, and the players are
able to learn the true distribution asymptotically. The empirical players suffer
from the curse of the optimizer and oftentimes are too optimistic. Therefore,
we propose a data-driven distributionally robust game framework to combat
the overoptimism, while making sure that players are too not conservative as in
robust games. We identify the relations between the proposed game with existing
games. We define a special class of equilibria, which is termed distributionally
robust equilibrium (DRE). As the ambiguity in distribution can be characterized
by a robustness parameter, this DRE can potentially simplify the distribution-
ally robust mechanism design problem. Besides, as the ambiguity is generated
by a dataset, the DRE considered in this work is endowed with the data-driven
feature, which allows the possibility of sequential mechanism design. We show
that when the robustness parameter goes to zero, the game boils down to an
empirical game which is a Nash game. And when the robustness parameter goes
to infinity, the game becomes a classical robust game. Then, we prove the exis-
tence of the DRE using Kakutani’s fixed point theorem. Finally, we present a
mathematical programming to solve for DRE.
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Our work is closely related to [4,11], in which the authors provide the perfor-
mance guarantees and tractable formulations for a data-driven distributionally
robust optimization problem using the Wasserstein metric. Moreover, as the
equilibrium concept considered here falls in the category of Knightian equilib-
rium, our work is related to [9] as well. There are also numerous papers on
distributionally robust game theory [3,12,17], in which the ambiguity sets are
not data-driven. Our work can be considered as a generalization of robust game
[1], where the authors focus on the distribution-free setting.

Section 3 reviews the robust game theory. Section 4 develops a data-driven
game model in which players utilize the information from data empirically. In
Sect. 5, we first motive the formulation of the data-driven distributionally robust
game. Then, we formally define such games, prove the existence of the equilib-
rium, and provide a tractable mathematical programming approach to solve for
such equilibria. In Sect. 6, we use a bimatrix game as a toy example to validate
the convergence result. Finally, Sect. 7 concludes the paper and points out the
possible directions for future work.

2 Preliminaries

Let ξ ∈ Ξ ⊆ R
m be a random variable, where m ∈ Z+. Let M(Ξ) be the space of

all probability distributions Q supported on Ξ with EQ[‖ξ‖] =
∫
Ξ

‖ξ‖Q(dξ) < ∞.
Here, ‖ · ‖ represents an arbitrary norm on R

m.

Definition 1. (Wasserstein Distance) [19] The Wasserstein metric d :
M (Ξ) × M (Ξ) → R+ is defined via

d (Q1,Q2) = inf
π∈Π

{∫

(ξ1;ξ2)∈Ξ×Ξ

‖ξ1 − ξ2‖π (dξ1, dξ2)

}

for all measures Q1,Q2 ∈ M (Ξ), where Π the space of all the joint distributions
of ξ1 and ξ2 with marginals Q1 and Q2, respectively.

Theorem 1. (Kakutani’s Fixed-Point Theorem) [8] If x → φ(x) has an
upper semicontinuous point-to-set mapping of an r-dimensional closed simplex
S in to ωi(S), then ∃ x0 ∈ S, such that x0 ∈ φ(x0).

3 Robust Game

Consider an incomplete-information game (I -game) with a finite set of players
I = {1, 2, ..., N} and a finite set of actions Ai ∈ R

Ai for each player i, where
Ai ∈ Z+. As mention by Harsanyi in [6], the incompetence of information induced
by uncertainty can be summarized and embedded in the cost functions (objective
functions, cost matrix). We denote the uncertain parameter by ξ ∈ Ξ. For player
i, we define his cost functions as Ci(ai, a−i; ξ) :

∏
i∈I Ai × Ξ → R, where a−i :=

(a1, ..., ai−1, ai+1, ..., aN ) is the collection of other players’ actions. Note that all
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the players considered in this work are minimizers. Moreover, we assume that
the uncertainty set Ξ is finite.

In [2,6], with the assumptions common prior and common knowledge of ratio-
nality, we can transform an I-game to a complete-information game (C-game),
which is commonly known as a Bayesian game. However, the Bayesian game
fails to characterize the case where common prior or stochastic information of
the uncertainty is unavailable.

In [1], the authors have proposed a distribution-free game framework to study
incomplete-information games. In their proposed game, robust game, players are
assumed to be robust to the uncertainty. Formally, a robust game can be defined
as a tuple,

G := (I,S) , (1)

where S is the state of nature. Every state of nature s ∈ S is a vector

s = (I, (Ai)i∈I , (ci)i∈I),

where Ai is a nonempty finite set of actions of Player i. ci : Ai × Ξ → R the
cost function of Player i where A = ×i∈I Ai. In this work, we assume that
the players do not have private information and this allows us to transform the
I-game G to a C-game.

For every i ∈ I, let xi be the mixed strategy of Player i, which is defined to be
a probability over the action space, i.e., xi = (xi(ai))ai∈Ai

∈ Δi := Δ(Ai) and
Δ(·) is the simplex of a finite set. For the ease of notation, define the expected
cost induced by the mixed strategy profile x = (xi,x−i) as the following

ci(xi,x−i; ξ) =
∑

ai∈Ai

∑

a−i∈A−i

Ci(ai, a−i; ξ)xi(ai)
∏

j �=i,j∈I
xj(aj),

where A−i =×j �=i,j∈I Ai. The equilibrium concept used in robust game G is
given by the following:

Definition 2. A mixed strategy profile x∗ = (x∗
i ,x

∗
−i) is robust-optimization

equilibrium solution in G if for i ∈ I,

max
ξ∈Ξ

ci(x∗
i ,x

∗
−i; ξ) � max

ξ∈Ξ
ci(xi,x∗

−i; ξ), (2)

where x−i ∈ Δ−i :=×j �=i,j∈I Δ(Aj).

The following theorem guarantees the existence of the robust-optimization
equilibrium in G.

Theorem 2. (Existence of Equilibria in Robust Finite Games) [1] In the game
defined by G, if Ci(ai, a−i; ξ) is bounded for all i ∈ I, (ai, a−i) ∈ A and ξ ∈ Ξ,
then there exists an ex post equilibrium.
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4 Data-Driven Empirical Game

In a data-driven empirical game (EG), we assume that the uncertainty parameter
is a random variable, and is selected according to some unknown distribution by
a chance move at the beginning of the game. Let P be the measure induced by the
random variable ξ. The players can observe N such games played independently
and the realizations of the uncertainty parameter. Then every player makes the
estimation from the same set

Ξ̂(N) =
{

ξ̂(1), ξ̂(2), . . . , ξ̂(N)
}

⊆ ΞN , (3)

which consists of N independent realizations of the random variable ξ. We call
Ξ̂(N) dataset, and each element in it data point. In [10], the author formalizes a
framework which enables the players to learn as statisticians. Formally, define
the learning rule as a mapping from the dataset (3) to the belief space:

� : ΞN → Δ(Ξ).

In particular, we are interested in empirical players in this work, who estimate
P using an empirical approach as follows

Q̂
(N) := �

(
Ξ̂(N)

)
=

1
N

N∑

n=1

δξ̂(n) ,

where δ is the Dirac delta function. We term Q̂
(N) as common empirical prior

in this work. The empirical learning rule not only is appealing for its neat and
simple form, but also enjoys the following property:

Lemma 1. Let the dataset Ξ̂(N) be defined as (3) which contains N indepen-
dent realizations of ξ. When the number of realizations (data points) N goes to
infinity,

�
(
Ξ̂(N)

)
→ P, a.s.

Proof. The proof of this lemma is an immediate result of law of large numbers.
�	

The lemma above says that as the number of samples goes to infinity, the empir-
ical players can learn the true distribution of ξ, P.

The empirical players can benefit from the information obtained from the
dataset. Indeed, it is not hard to show that given x−i ∈ Δ−i, for every possible
empirical measure Q̂

(N) induced by the dataset Ξ̂(N)

E
Q̂(N) [ci(xi,x−i; ξ)] � max

ξ∈Ξ
ci(xi,x−i; ξ).

By letting
ζ∗
i (x−i) ∈ arg min

xi∈Δi

E
Q̂(N) [ci(xi,x−i; ξ)] ,
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we have that

E
Q̂(N) [ci(ζ∗

i (x−i),x−i; ξ)] � min
xi∈Δi

max
ξ∈Ξ

ci(xi,x−i; ξ).

This inequality says that by leveraging the stochastic information from the
dataset, the players behave less conservatively.

It is worth noting that as all the players make use of the same dataset to
estimate in the same empirical fashion, they share the same empirical distri-
bution. Thus, this distribution is also common knowledge. We further assume
that the fact that all the players being empirical is common knowledge. We pro-
ceed by defining the data-driven EG, which falls into the category of I -game. A
data-driven EG is given by a tuple

G(N) :=
(
I,S,P, Ξ̂(N)

)
,

where P is the true measure of ξ. Now, we are ready to show that data-driven
EBG as an I -game is equivalent to a C-game. As mentioned earlier, the players
acknowledge that all of them are empirical and they share the empirical distri-
bution, the data-driven EG is equivalent to a Nash game by replacing the cost
matrix Ci(ai, ai; ξ) with

C̃i(ai, a−i) := E
Q̂(N) [Ci(ai, ai; ξ)] ,

where the expectation is taken over ξ with respect to Q̂
(N). Thus, data-driven

EG is also equivalent to a C-game. Moreover, as it is equivalent to a Nash game,
the existence of the Nash equilibrium is also guaranteed.

5 Data-Driven Distributionally Robust Game

In this section, we propose a new class of games which is termed data-driven
Distributionally Robust Game (DRG) in which we use Wasserstein distance as
the distribution metric. To motive this framework, we first answer a few essential
questions.

5.1 Motivation

Why Distributionally Robust Formulation? The direct application of
empirical distribution as estimated distribution suffers from optimizer’s curse
[18]. It is well known that the empirical estimator Q̂

(N) is be an unbiased esti-
mator of P, i.e.,

EQ(N)

[
Q̂

(N)
]

= P.

where Q
(N) is the measure induced by the N data points. With fixed x−i,

EQ(N)

[
E
Q̂(N) [ci(xi,x−i; ξ)]

]
= EP [ci(xi,x−i; ξ)] .
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By Jensen’s inequality,

EQ(N)

[

min
xi∈Δi

E
Q̂(N) [ci(xi,x−i; ξ)]

]

� min
xi∈Δi

EQ(N)

[
E
Q̂(N) [ci(xi,x−i; ξ)]

]

= min
xi∈Δi

EP [ ci(xi,x−i; ξ)] .

Let
ζ∗
i (x−i) ∈ arg min

xi∈Δi

E
Q̂(N) [ci(xi,x−i; ξ)] .

Then, for every x−i ∈ Δ−i,

EP [ ci(ζ∗
i (x−i),x−i; ξ)] � min

xi∈Δi

EP [ ci(xi,x−i; ξi)] .

As shown above, given the other players’ strategies, a player inclines to be
overoptimistic due to the optimizer’s curse. Therefore, it is reasonable to employ
some “robustness” to deal with this overoptimism. In this work, given a tuple
of his counterparts’ strategies, we suppose that each player formulates the best
response as the solution of a distributionally robust optimization problem.

Note that, in our framework, we assume that a player’s opponents are outside
the scope of the player’s viewpoint. That is, the player takes the distributionally
robust view only of the uncertainties of his cost function, with a tuple of the
other players’ strategies given. From this perspective, each player does not take
a distributionally robust approach to his uncertainty with respect to this tuple
itself. Moreover, we assume that each player’s distributionally robust view of
the game is common knowledge, which allows the players to predict each other’s
best-response correspondences. Thus, the players in the game defined by (4) can
reach consistent predictions of what each other will play.

We interpret the distributionally robust game in a security setting. Suppose
the players (defender and attacker) have the access to the same open-source
dataset. On one hand, the players aim to obtain useful information from this
dataset to achieve better defend/attack results. On the other hand, the dataset
may not be reliable. It is natural for the players to be robust to the inference
of the dataset. Hence, the distributionally robust formulation is a reasonable
choice in a security problem in order to balance the optimism and conserva-
tiveness. However, one may have the concern over the reason why the players
are assumed to know the same dataset. Indeed, in real world, the defender and
the attacker oftentimes have different information (knowledge) due to different
financial capabilities, backgrounds, identities, etc. In such cases, one may need to
resort to Bayesian game framework. The information-asymmetric case is beyond
the scope of this work and we leave it to future work.

Why Wasserstein Distance? In this work, we assume that each player adopts
Wasserstein Distance as the metric measuring the difference between two dis-
tributions. Formally, a distributionally robust game using Wasserstein distance
is defined by the following vector

G(N)
ε =

(
I, S̃,P, Ξ̂(N)

)
, (4)
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where s̃ := (I, (Ai)i∈I , (ci)i∈I , ε) and s̃ ∈ S̃. The parameter ε is the radius of the
Wasserstein ball, which stands for the robustness of the players. It is determined
by the nature and assumed to be common knowledge and the same for all the
players. The key feature distinguishing Wasserstein distance as a distribution
metric from other distribution metrics is that the worst-case distribution can be
supported outside the dataset. In a game setting, the utilization of Wasserstein
distance can be interpreted as the following: the knowledge of the support set
the types are common knowledge shared between the players. Using Wasserstein
distance as distribution metric enables the players to utilize this support infor-
mation. Moreover, this allows the players to be robust against perturbations of
the data points [4]. It also makes sense in a security scenario: both of the defender
and the attacker want to use every bit of information available to improve their
performance while maintaining certain level of robustness.

5.2 Equilibrium Concept

With the empirical distribution Q̂
(N) being centered, we construct a Wasserstein

ball as follows:

Bε

(
Q̂

(N)
)

=
{
Q ∈ M(Ξ) : d(Q, Q̂(N)) � ε

}
,

which contains all the possible probability measures, whose Wasserstein distance
with the empirical distribution is less than ε. Here, M(Ξ) is the set of all the
possible distributions whose support is Ξ.

Definition 3. A mixed strategy profile x = (x∗
i ,x

∗
−i) is an distributionally

robust equilibrium (DRE) solution if no player can decrease their interim
expected cost by unilaterally changing their strategy: for i ∈ I and every mixed
strategy xi ∈ Δi,

sup
Q∈Bε(Q̂(N))

EQ

[
ci(x∗

i ,x
∗
−i; ξ)

]
� sup

Q∈Bε(Q̂(N))
EQ

[
ci(xi,x∗

−i, ; ξ)
]
. (5)

Remark 1. By definition, DRE is a relaxation of Knightian equilibrium. In a
homogeneous game where each player has the same objective function and action
set, DRE falls in the category of Knightian equilibrium. The DRE exhibits several
advantageous features:

1. The proposed DRE can be used as a solution concept in mechanism design
and characterize the incentive compatibility such that each player has the
incentive to truthfully reveal his private information in DRE. The players’
uncertainty about their cost functions provides a potential opportunity for the
mechanism designer to strategically design the ambiguity set as an additional
rule of encounter to achieve the designer’s social goal.

2. Suppose that the ambiguity set is given and not a part of the design. When
the ambiguity set is different, one will need to solve the design problem all
over again. The ambiguity set in DRE being induced by a dataset enables
one to design a data-driven mechanism sequentially, as the only difference in
ambiguity sets is the center of the Wasserstein ball.
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When the robustness parameter ε goes to 0, then the Wasserstein ball col-
lapses inward to {Q̂(N)}. Consequently, a data-driven DRG becomes a data-
driven EG, i.e.,

lim
ε→0

G(N)
ε = G(N).

On the other hand, when ε goes to infinity, Data-Driven DRG becomes a classi-
cal robust game, as all the probability mass will concentrate on the worst-case
support, i.e.,

lim
ε→∞ G(N)

ε = G.

If we see ε as a tuning parameter, then G(N)
ε can be regarded as a generalization

which bridges the robust game and data-driven EG.

5.3 Existence of DRE

In this section, we give the theoretical guarantee of the existence of DRE, which
largely follows from Theorem 1 in [1]. In order to prove the existence of DRE in
the game defined by G(N), we first define the mapping ρ

(N)
i,ε : Δ × ΞN → Δi as

the following

ρ
(N)
i,ε (xi,x−i, Ξ̂(N)) = sup

Q∈Bε(Q̂(N))
EQ [ci(xi,x−i; ξ)] . (6)

Moreover, we define the following “point-to-set” mapping for game G(N),

Φ(N)
ε : Δ × ΞN → Δ.

Specially, we choose Φ(N)
ε to be the following

Φ(N)
ε (x, Ξ̂(N)) =

{

x̃ = (x̃i, x̃−i)
∣
∣
∣ x̃i ∈ arg min

ui∈Δi

ρ
(N)
i,ε (ui,x−i, Ξ̂(N)), i ∈ I

}

,

(7)
which is the set of all the best response strategies given the strategy profile x.

Theorem 3. Let Ξ be finite, and Ci(ai, a−i; ξ) be bounded for all ξ ∈ Ξ. There
exists at least one DRE in the game defined by G(N)

ε .

Sketch of Proof. We start the proof by proving that ρ
(N)
i,ε (xi,x−i, Ξ̂(N)) is contin-

uous on Δ, and that for each i ∈ I, ρ
(N)
i,ε (xi,x−i, Ξ̂(N)) is convex in xi. Then, the

mapping Φ(N)
ε can be shown to be non-empty, convex and upper semicontinuous.

Applying Kakutani’s fixed-point theorem immediately gives us the theorem. �	
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5.4 Asymptotic Consistency

We must notice that there may exist more than one equilibrium, i.e., the equi-
librium may not be unique. Then, from now on, it will be reasonable to work on
the set of equilibriums, which is given by

E(N)
ε (Ξ̂(N)) =

{
x | x ∈ Φ(N)

ε (x, Ξ̂(N))
}

.

This set is non-empty due to Theorem 3.
When the true distribution of ξ is known to all the players, the problem boils

down to a standard Nash game. This Nash game can be represented by a tuple
GNash = (I,S,P). Similar to (6) and (7), define

ρi(xi,x−i) = EP [ci(xi,x−i; ξ)] ,

and

Φ(x) =
{

x̃ = (x̃i, x̃−i)
∣
∣
∣ x̃i ∈ arg min

ui∈Δi

ρi(ui,x−i), i ∈ I
}

,

respectively. Characterized by fixed points, the set of equilibria in GNash is given
by

E = {x | x ∈ Φ(x)} .

It is not hard to see that E is non-empty.

Proposition 1. Define a sequence of Wasserstein ball radius {εN}∞
N=1 with the

following property
lim

N→∞
εN = 0.

Then,
lim

N→∞
E(N)

εN
(Ξ̂(N)) = E , a. s.

Proof. When N goes to infinity, by using Lemma 3.7 from [4], we obtain that

Q
∞

[
lim

N→∞
d(P, Q̂(N)) = 0

]
= 1.

Hence,

lim
N→∞

ρ
(N)
i,ε (xi,x−i, Ξ̂(N)) = lim

N→∞
sup

Q∈Bε(Q̂(N))
EQ [ci(xi,x−i; ξ)]

= EP [ci(xi,x−i; ξ)]
= ρi(xi,x−i), a. s.

Then, it is clear that

lim
N→∞

Φ(N)
ε (x, Ξ̂(N)) = Φ(x), a. s.

The argument in the proposition follows.
�	

Remark 2. Proposition 1 exhibits the convergence result concerning the equi-
librium set. As the number of data points goes to infinity, the distributionally
robust game G(N) is equivalent to the standard Nash game G in terms of the
equilibria.
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5.5 Tractable Formulations

In this section, we derive a tractable formulation using which one can solve for
the DRE (as defined in (5)) in G(N)

ε . Without loss of generality, we study a
two-player game, i.e., I = {1, 2}. Denote the cost matrix of the i-th player by

Ci(ξ) = [Ci(a1, a2; ξ)]a1∈A1,a2∈A2
, i ∈ I.

Recall that the i-th player faces the following optimization problem:

min
xi∈Δi

sup
Q∈Bε(Q̂(N))

EQ

[
xT

1 Ci(ξ)x2

]
. (8)

We drop the outer minimization for the clarity of notations. By the definition of
Wasserstein ball, (8) can be rewritten as

sup
Q

∑

ξ∈Ξ

xT
1 Ci(ξ)x2 Q(ξ)

s.t. d(Q̂(N),Q) � ε.

(9)

By the definition of Wasserstein distance,

sup
Q

∑

ξ∈Ξ

xT
1 Ci(ξ)x2 Q(ξ)

s.t. min
Π

∑

ξ;ξ′∈Ξ

|ξ − ξ′|Π(ξ; ξ′) � ε

∑

ξ∈Ξ

Π(ξ; ξ′) = Q̂
(N)(ξ′)

∑

ξ′∈Ξ

Π(ξ; ξ′) = Q(ξ).

(10)

By eliminating the variable Q, we reduce (9) equivalently to

sup
Π

∑

ξ;ξ′∈Ξ

xT
1 Ci(ξ)x2 Π(ξ; ξ′)

s.t.
∑

ξ;ξ′∈Ξ

|ξ − ξ′|Π(ξ; ξ′) � ε

∑

ξ∈Ξ

Π(ξ; ξ′) = Q̂
(N)(ξ′), ∀ ξ′ ∈ Ξ.

(11)

The dual optimization of (11) is given by

min
λ�0

λε +
∑

ξ′∈Ξ

Q̂
(N)(ξ′)s(ξ′)

s.t. s(ξ′) + λ|ξ − ξ′| � xT
1 Ci(ξ)x2, ∀ ξ; ξ′ ∈ Ξ.

(12)
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It is worth noting that there is no duality gap between (11) and (12) as (11) is
essentially a linear programming. We can also write (12) as

min
λ�0

λε +
∑

ξ′∈Ξ

Q̂
(N)(ξ′)s(ξ′)

s.t. s(ξ′) � max
ξ∈Ξ

[
xT

1 Ci(ξ)x2 − λ|ξ − ξ′|] , ∀ ξ′ ∈ Ξ

So far, we have reduced the robust formulation using Wasserstein to a simpler
form.

5.6 Mathematical Programming for DRE

By expanding the constraint that xi ∈ Δi and writing down (12) in the epigraph
form, we have that for Player i,

min
xi,λi�0,ηi,{s(ξ′)}ξ′∈Ξ

ηi

s.t. λiε +
∑

ξ′∈Ξ

Q̂
(N)(ξ′)si(ξ

′) � ηi

si(ξ
′) + λi|ξ − ξ′| �

∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x1(a1)x2(a2),

∀ ξ; ξ′ ∈ Ξ

xi(ai) � 0, ∀ ai ∈ Ai
∑

ai∈Ai

xi(ai) = 1.

(13)

The Lagrange function of (13) is given by

Li(xi, λi, ηi, {s(ξ′)}ξ′∈Ξ, {ωi(ξ, ξ
′)}ξ,ξ′∈Ξ, θi, σi)

=ηi +
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)

(
xT

1 Ci(ξ)x2 − si(ξ
′) − λi|ξ − ξ′|

)

+ θi

⎛

⎝λiε +
∑

ξ′∈Ξ

Q̂
(N)(ξ′)s(ξ′) − ηi

⎞

⎠ + σi

⎛

⎝1 −
∑

ai∈Ai

xi(ai)

⎞

⎠

=(1 − θi)ηi + λi

⎛

⎝θiε −
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)|ξ − ξ′|

⎞

⎠ + σi

+
∑

ai∈Ai

⎛

⎝
∑

a−i∈A−i

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)Ci(a1, a2; ξ)x−i(a−i) − σi

⎞

⎠ xi(ai)

+
∑

ξ′∈Ξ

⎛

⎝θiQ̂
(N)(ξ′) −

∑

ξ∈Ξ

ωi(ξ, ξ
′)

⎞

⎠ si(ξ
′).
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Here, xi(ai) � 0, λi � 0, and ηi and {si(ξ′)}ξ′∈Ξ are free variables. Thus, we
need

1 − θi = 0,

θiε −
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)|ξ − ξ′| � 0,

θiQ̂
(N)(ξ′) −

∑

ξ∈Ξ

ωi(ξ, ξ′) = 0,

∑

a−i∈A−i

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)Ci(a1, a2; ξ)x−i(a−i) � σi.

After some algebraic operations, we can write the dual problem to (13) as

max
{ωi(ξ,ξ′)�0}ξ,ξ′∈Ξ,σi

σi

s.t.
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)|ξ − ξ′| � ε,

Q̂
(N)(ξ′) =

∑

ξ∈Ξ

ωi(ξ, ξ
′), ∀ ξ ∈ Ξ,

∑

a−i∈A−i

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)Ci(a1, a2; ξ)x−i(a−i) � σi, ∀ ai ∈ Ai.

The mathematical problem used to solve for DRE is given by the following,

max
κ

∑

i∈I
(σi − ηi)

s.t. λiε +
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)si(ξ′) � ηi, ∀ i ∈ I,

si(ξ′) + λi|ξ − ξ′| �
∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x1(a1)x2(a2),

∀ ξ, ξ′ ∈ Ξ
∑

ai∈Ai

xi(ai) = 1, ∀ i ∈ I,

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)|ξ − ξ′| � ε, ∀ i ∈ I,

∑

a−i∈A−i

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)Ci(a1, a2; ξ)x−i(a−i) � σi, ∀ ai ∈ Ai, i ∈ I,

Q̂
(N)(ξ′) =

∑

ξ∈Ξ

ωi(ξ, ξ′), ∀ ξ′ ∈ Ξ, i ∈ I,

(14)
where

κ = {xi(ai) � 0, λi � 0, ηi, {si(ξ′)}ξ′∈Ξ, {ωi(ξ, ξ′) � 0}ξ,ξ′∈Ξ, σi}i∈I
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is the collection of decision variables.

Theorem 4. Solving the mathematical programming above is equivalent to find-
ing the DRE (as defined in (5)) in G(N)

ε .

Proof. “⇐” Let (x∗
1,x

∗
2) be an DRE. Then, for i ∈ I, x∗

i is the best response to
x∗

−i. As there is no duality gap between dual and primal,
∑

i∈I (σ∗
i − η∗

i ) =
0. Show κ∗ is global maximum. We first notice that

∑

a1∈A1,a2∈A2

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)Ci(a1, a2; ξ)x2(a2)x1(a1) � σi.

By the second, the fourth and the fifth constraints in (14),

ηi =
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)si(ξ′) + λiε

�
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)si(ξ′) +
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)λi|ξ − ξ′|

�
∑

a1∈A1

∑

a2∈A2

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)Ci(a1, a2; ξ)x1(a1)x2(a2).

Thus,
ηi � σi.

“⇒” Let κ∗ be the maximizer of (14). Then, we show that

σ∗
i = η∗

i , i ∈ I. (15)

From the first, the second and the fourth constraints, we have

σ∗
i = η∗

i

� λ∗
i ε +

∑

ξ;ξ′∈Ξ

ω∗
i (ξ; ξ′)

[
x∗T

1 Ci(ξ)x
∗
2 − λ∗

i |ξ − ξ′|
]

� λ∗
i

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)|ξ − ξ′| +

∑

ξ;ξ′∈Ξ

ω∗
i (ξ; ξ′)

[
x∗T

1 Ci(ξ)x
∗
2 − λ∗

i |ξ − ξ′|
]
,

s∗(ξ′) � max
ξ

∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x
∗
1(a1)x

∗
2(a2) − λ∗

i |ξ − ξ′|,

and

η∗
i � λ∗

i ε +
∑

ξ;ξ′∈Ξ

ω∗
i (ξ; ξ′)s∗

i (ξ′)

� λ∗
i ε +

∑

ξ;ξ′∈Ξ

ω∗
i (ξ; ξ′) max

ξ

∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x
∗
1(a1)x

∗
2(a2) − λ∗

i |ξ − ξ′|.



A Data-Driven Distributionally Robust Game Using Wasserstein Distance 419

Fig. 2. The comparison of data-driven EG, Nash Game, and data-driven DRG.

From the last constraint,

σ
∗
i

�
∑

a1∈A1

∑

a2∈A2

∑

ξ;ξ′∈Ξ

ω
∗
i (ξ; ξ

′
)Ci(a1, a2; ξ)x1(a1)x

∗
2(a2)

=
∑

a1∈A1

∑

a2∈A2

∑

ξ′∈Ξ

Q
∗(N)

(ξ
′
)Ci(a1, a2; ξ)x1(a1)x

∗
2(a2)

� λ
∗
i ε +

∑

ξ;ξ′∈Ξ

ω
∗
i (ξ; ξ

′
)

⎛

⎝
∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x1(a1)x
∗
2(a2) − λ

∗
i |ξ − ξ

′|
⎞

⎠

� λiε +
∑

ξ;ξ′∈Ξ

ω
∗
i (ξ; ξ

′
) max

ξ

⎛

⎝
∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x1(a1)x
∗
2(a2) − λ

∗
i |ξ − ξ

′|
⎞

⎠

Thus, we have

sup
Q∈Bε(Q̂(N))

EQ

[
ci(x∗

i ,x
∗
−i; ξ)

]
� σ∗

i = η∗
i � sup

Q∈Bε(Q̂(N))
EQ

[
ci(xi,x∗

−i; ξ)
]
.

Therefore, (x∗
1,x

∗
2) is a DRE.

�	

6 Numerical Example

Consider a security game which is captured by a nonzero-sum game. The uncer-
tainty parameter ξ represents the security environment, which influences the
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payoff. Assume that the payoff matrices are given by the following:
[
(1 + ξ, 3) (0, 2)

(2, 0) (−1, 1)

]

,

where ξ ∈ Ξ = {−1, 1}. The true distribution of ξ is P[ξ = 1] = 1/2, and
P[ξ = 1] = 1/2. When there is perfect distribution information (both players
know the true distribution), the Nash equilibrium is (1/2, 1/2), and the expected
value of the game is (1/2, 3/2). For the distributionally robust case, let the
radius of Wasserstein ball be εN = 1/N . As illustrated in Fig. 2, the value and
equilibrium of both data-driven EG and data-driven DRG converge to the ones
in Nash Game. We notice that the strategy of Player 1 and the value of Player
2 stay unaltered. By the indifferent principle [13], the bimatrix game considered
here is fully mixed. In this case, the strategy of Player 1 only depends the payoff
matrix of Player 2, and the value of Player 2 only depends on the strategy of
Player 1.

7 Conclusions and Future Work

7.1 Conclusions

In this paper, we have proposed a new type of data-driven game model in which
the players are capable of exploiting the information in the dataset. We have
adopted the distributionally robust formulation to address the issue arising from
the curse of the optimizer. We have used Wasserstein ball as the ambiguity set
with the empirical distribution centered. By tuning the radius of the Wasser-
stein ball, we have demonstrated the relations between the proposed game and
the existing games. We have also given the mathematical programming whose
solutions are a subset of data-driven DRE.

7.2 Future Work

1. Data-Driven Distributionally Robust Bayesian Game In this work, we
did not consider the case where there exists private information. As Harsanyi
pointed out, the incomplete information is quite involving as there is belief
hierarchy. We can use the information from the dataset to form the player’s
beliefs. As the belief are not generated from the common prior, the players are
suspicious about the data-based belief. Therefore, it is reasonable to introduce
robustness.

2. Data-Driven Dynamic Game It is also possible to extend the data-driven
dynamic game. In a dynamic system, the agents do not have perfect nor
complete knowledge of the system. While making decisions, they observe the
outcomes of the system and update their knowledge. And with the updated
knowledge, the agents are able to make better decisions.

3. One-Sided Data-Driven Game Consider a two-player game. One player
has the access to the dataset Ξ̂ and the other player has the access to the
dataset Ξ̃. If Ξ̃ ⊆ Ξ̂, this becomes a one-sided information game, in which one
player has more information than the other [7].
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Abstract. Security is rarely single-dimensional and is in most practi-
cal instances a tradeoff between dependent, and occasionally conflicting
goals. The simplest method of multi-criteria optimization and games with
vector-valued payoffs, is transforming such games into ones with scalar
payoffs, and looking for Pareto-optimal behavior. This usually requires
an explicit weighting of security goals, whereas practice often only lets
us rank security goals in terms of importance, but hardly admits a crisp
numerical weight being assigned. Our work picks up the issue of opti-
mizing security goals in descending order of importance, coming to the
computation of an optimal solution w.r.t. lexicographic orders. This is
interesting in two ways, as it (i) is theoretically nontrivial since lexi-
cographic orders do not generally admit representations by continuous
utility functions, hence render Nash’s classical result inapplicable, and
(ii) practically relevant since it avoids ambiguities by subjective (and
perhaps unsupported) importance weight assignments. We corroborate
our results by giving numerical examples, showing a method to design
zero-sum games with a set of a-priori chosen Nash equilibria. This simple
instance of mechanism design may be of independent interest.

Keywords: Lexicographic order · multi-criteria optimization ·
Mechanism design · Security economics

1 Introduction and Motivation

Security is in many practical instances a multi-dimensional matter. Basic secu-
rity goals like confidentiality, integrity and availability (CIA) are known to be
potentially conflicting. For example, encryption serves confidentiality but can
be problematic for availability. Likewise, keeping systems or data redundant to
increase availability makes confidentiality more complex and may add to the
attack surface. Generally, the different dimensions of security can depend on
parameter settings (for example, threshold secret sharing has different resilience
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against passive or active adversaries, regarding recoverability of the secret but
also its confidentiality [16,21,26,35]), or security properties themselves (such as
is the case for sanitizable signatures [4]). The general problem reaches much
beyond basic cryptographic matters, since also risk management is by default a
multi-dimensional challenge [28] of keeping financial losses, damages to reputa-
tion, legal liabilities and many more under control.

Generally, the priority of security goals depends on the application domain,
and we can broadly distinguish two example domains with opposite priorities
regarding CIA (we spare the full spectrum of security requirements here, as it
would take us much beyond the scope of this section and work):

– data-processing enterprises will have confidentiality as their highest good,
followed by integrity, and lastly followed by availability of the personal data
in their possession.

– production-oriented enterprises, on the contrary, will not necessarily rely on
continuous processing of personal data, but rather will protect their produc-
tion lines, i.e., availability is their top priority. Likewise, production control
signals need integrity protection (as second priority goal), followed by confi-
dentiality as the least important among the three goals.

We will later illustrate our methods by showing how to apply them in an enter-
prise whose main business is processing personal data, or producing goods. It
will turn out that the results are somewhat different, yet the method of com-
puting them is the same in both cases, without the need to become explicit on
a numeric difference in terms of importance of the security goals.

1.1 Related Work

Our work addresses the problem of multi-criteria optimization and -game the-
ory, which is traditionally approached by scalarizing the vector-valued revenues
gained by each player. While the concept of a Nash equilibrium is straightfor-
ward to generalize to a Pareto-Nash equilibrium [19] or -security strategy, the
hereby involved importance weights put practitioners to the challenge of finding
a meaningful quantification of importance for the relevant goals, or more gener-
ally, prioritization of security requirements [14,24], whose importance is widely
recognized throughout security practitioners [18,25,34]. Sophisticated methods
and heuristics to do this include the Choquet integral [12], fuzzy logic [31], or
resorting to Pareto-optimality [33].

The problem of optimization over lexicographic orders itself is in fact not
new, yet has seen surprisingly little attention for security applications, despite
the fact that security goals are often in a very strict order of importance. The
theoretical toolbox is rich, and includes axiomatic studies and characterizations
[8–10,15] and questions of equilibria in lexicographically ordered vector-payoffs
[17] and min-max optimization [22,23]. The latter is most closely related to
our work, yet ours is conceptually different and uses a sequential application of
criteria. Essentially, we adapt the “lexicographic method” (also called preemtive
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approach; see [5]) used in multi-criteria optimization, to the computation of
equilibria in zero-sum games for security in a new form.

1.2 Our Contribution

The main contribution made in this work is the description of a simple method to
compute a game-theoretic optimum if several goals are involved that obey a total
order of priority without resorting to scalarization by using importance weights.
As an implied consequence, we get a method to thereby refine ambiguous equi-
libria if they are intended as defense strategies, or as pointers to neuralgic spots
in a system; the latter occurring if we interpret the optimal attack strategies in
this way.

Independently, we corroborate our results by illustrating the computation
using a method of mechanism design, allowing us to construct zero-sum games
with a set of defined, i.e., designed, equilibria for both players. We remark that
our focus on two-person zero-sum games is what makes the construction challeng-
ing, as it is conceptually not difficult to construct certain multi-player nonzero-
sum games with desired optima: in the most trivial instance, we can just let the
payoff for a player be independent of the other player’s actions, and let it attain
a maximum at the desired location(s). More generally, we may look for functions
(e.g., polynomials) that, when having their domain restricted to points where
the opponents have their optima, still have optima at desired positions. While
this is, strictly speaking, no longer a strategic interaction with conflicts, and
hence an uninteresting case for game theory or security, it nonetheless yields a
theoretically valid instance of a general game. The most extreme instance is thus
with exactly opposite goals of the players that depend on the player’s mutual
actions, i.e., a zero-sum game. This class of games is also useful in security model-
ing, since it delivers worst-case defenses without the need for accurate adversary
models or -profiling [29,30,32,36].

2 Preliminaries

2.1 Notation

We let vectors appear as bold-printed lower-case letters, and matrices will use
uppercase bold printed letters. Sets will appear as upper case letters in nor-
mal font. Families of sets are written in calligraphic font. Let ≤lex be the
lexicographic order over Rn × Rn, defined in the usual way by setting a =
(a1, . . . , an) ≤lex (b1, . . . , bn) if and only if [a1 < b1]∨[(a1 = b1)∧(a2, . . . , an) ≤lex

(b2, . . . , bn)]. In the following, let U be a metric vector space, and let ≤ be an
ordering relation on it. Typically, U will be a space spanned over R.

For a finite set X = {x1, . . . , xn}, we let the symbol Δ(X) be the simplex
over X, i.e., the set Δ(X) := {∑n

i=1 λi · xi|λi ≥ 0 for all i, and
∑n

i=1 λi = 1}.
Games are triples (N,S,H), with N being a finite set of players, S being a
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family of finite sets, one Si ∈ S associated with each player giving its actions,
and H is a collection of functions ui : Si × S−i → R of utility functions. Herein,
the notation S−i is the cartesian product of all elements in S, excluding Si. It
expresses the joint actions taken by player i’s opponents. Throughout this work,
we will have N = {1, 2}, S = {S1 = Δ(AS1), S2 = Δ(AS2)} for finite action
spaces AS1, AS2 with n elements for player 1, and m elements for player 2. In
this special case, we can represent the whole game by an (n × m)-payoff matrix
A, and abbreviate our notation by referring to the matrix A to synonymously
mean the game that it defines.

2.2 Representability of the Lexicographic Order

Given an ordering relation ≤ on a set U × U , we say that ≤ is representable by
a function f : U → R if, [a ≤ b] ⇐⇒ [f(a) ≤ f(b)] for all a, b ∈ U that are
comparable under ≤.

It is well known that the lexicographic order, in general, does not lend itself to
a representation by any continuous function. This folklore result is made precise
as Proposition 1, whose proof we let follow in Appendix A for convenience of
the reader.

Proposition 1. On the totally ordered set ([0, 1]2,≤lex), there is no continu-
ous function f : [0, 1]2 → R with the property that (x1, x2) ≤lex (y1, y2) ⇐⇒
f(x1, x2) ≤ f(y1, y2).

Proposition 1 makes lexicographic orders generally difficult to handle in
optimization algorithms, since it lacks the minimal requirement of continuity,
assumed in many optimization methods (up to the stronger requirement of dif-
ferentiability). On the bright side, this lack of continuity only holds in the most
general setting, and special situations may still admit a continuous representa-
tion, or other means of efficient optimization, as we outline next.

3 Finding Lex-Order Optimal Strategies

Our algorithm to compute equilibria over lexicographic orders will decompose a
vector-valued game matrix into a sequence of games, in which the i-th game has
a payoff matrix composed from the respective i-th coordinates in each vector.
That is, given the vector-valued utility function u : S1 × S2 → Rd for a player,
on the discrete strategy spaces S1, S2, we define the k-th game for k = 1, 2, . . . , d
via the matrix Ak = (uk(r, c))(r,c)∈S1×S2 . Note that all game matrices have the
same n × m-shape.

Towards finding an optimum, i.e., an equilibrium, over the lex-order, we
induct over the coordinate k = 1, 2, . . . , d, and prove the existence of equilibria
along the way. The goal is finding strategies that are lex-order optimal for each
player, in light of unilateral deviation.

Induction start k = 1 : The game A1 is only about scalar payoffs, and the equi-
librium w.r.t. the ≤-order over R is also lex-order optimal, since the two relations
coincide on scalars.
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Remark 1. We emphasize that the solution for k = 1 is the only stage at which
the optima are the same as equilibria, since the lex-order and the real-valued ≤
coincide only in that case. As the idea will be seeking optima in the next stage
among the optima found for (all of the) previous games, the term “equilibrium”
will hereafter be understood conditional on the strategies constrained to be also
equilibria for previous games (namely Ak−1,Ak−2, . . .). Clearly, the solution
may not be an equilibrium for any of the games when considered in isolation
and independent of the others.

Remark 2. (Number of optima is finite). The characterization of equilibria by
linear programs (appearing in Appendix B in the context of constructing games
with desired equilibria) defines the feasible set of solutions via a finite number
of inequalities. Therefore, the overall solution set, though generally infinite (as
all convex combinations of optima are themselves also optimal; cf. Lemma 1), is
representable by a finite (though in the worst case exponentially large) number of
points, whose convex combination represents all feasible solutions, and hence also
all optima therein. This finiteness property in fact holds in a measure-theoretic
sense for almost all games [13].

Induction step k − 1 → k : For the induction until k − 1, we can assume a finite

set Ek−1 =
{

(x∗
k−1,1,y

∗
k−1,1), . . . , (x

∗
k−1,nk−1

,y∗
k−1,nk−1

)
}

of optima (cf. Remark
1). For the induction hypothesis, assume that all of them are also optima of the
(k − 1)-th game Ak−1.

Our goal for the induction step is refining the equilibria into an optimum
for the game Ak on the k-th coordinate. The basic idea is to play the game Ak

restricted only to strategies that are already optimal for Ak−1, so as to retain
optimality in the previous games, when optimizing our behavior in the next
game Ak. We materialize this plan now.

From the set Ek−1, we define an auxiliary game Bk: its strategy spaces
are Sk,1 =

{
x∗
k−1,i|i = 1, . . . , nk−1

}
and Sk,2 =

{
y∗
k−1,i|i = 1, . . . , nk−1

}
. The

implied (nk−1 × nk−1)-payoff structure is the matrix

Bk := ((x∗
k−1,i)

T · Ak · y∗
k−1,j)

nk−1
i,j=1. (1)

The so-constructed zero-sum game has its own equilibria, the entire set of which
is enumerable by known algorithms [1]. Moreover, we have convenient topological
properties, assuring that the set among which we look for optima is convex and
closed, and the strategy spaces of Bk are compact sets. This is Lemma 1.

Lemma 1. Let A be a matrix inducing a zero-sum game, on the strategy spaces
S1 ⊂ Δ(Rn), S2 ⊂ Δ(Rm). If ≤ is a continuous ordering1, and u : S1 × S2 → R

1 An ordering ≤ is called continuous, if all bounded sequences (an) with an ≤ b for
all n ∈ R, have a limit that also satisfies the same bound limn→∞ an ≤ b, if that
limit exists. The lexicographic order is discontinuous w.r.t. this definition, since the
sequence (1/n, 0) ≥lex (0, 1) for all n ∈ N, but limn→∞(1/n, 0) = (0, 0) ≤lex (0, 1).
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is continuous w.r.t. a norm on Rn and the order topology induced by ≤, then the
set of mixed Nash equilibria for the zero sum game A is nonempty, convex and
compact.

Combining Lemma 1 with Glicksberg’s theorem [11] yields an equilibrium
(α∗

k,β
∗
k) ∈ Rnk−1 × Rnk−1 in the game Bk, which by definition satisfies the

saddle point condition αT · Bk · β∗
k ≤ (α∗)T · Bk · β∗

k ≤ (α∗)T · Bk · β, for all
α,β.

By the same token as in Remark 2, we can assume a finite number nk of
equilibria in Bk, and let us put these as rows into two matrices Xk−1 ∈ Rnk×nk−1

and Ynk×nk−1
k−1 . These two relate to Bk via Bk = Xk−1 · Ak · YT

k−1.
Since the pure strategies in Bk are all equilibria in Ak−1, any mixed strategy

pair (α∗
k,β

∗
k) ∈ Δ(Sk,1) × Δ(Sk,2) played in Bk induces an equilibrium

x′
k := (α∗

k)
T · Xk−1, and y′

k := (β∗
k)

T · Yk−1 (2)

for the game Ak−1 by Lemma 1 (note that the payoff is continuous, since the
auxiliary game Bk is a standard matrix game and as such with continuous payoffs
over mixed strategies). Thus, the pair (x′

k,y
′
k) satisfies the saddle point condition

in Ak−1, being xT ·Ak−1 · y′
k ≤ (x′

k)
T ·Ak−1 · y′

k ≤ (x′
k)

T ·Ak−1 · y for all x,y.
Our goal is showing that the pair (x′

k,y
′
k) is also optimal in the game Ak. To

this end, we will adopt player 1’s perspective, playing some arbitrary but fixed
x �= x′

k, while player 2 sticks to y′
k.

Towards a contradiction, suppose that player 1 could improve in Ak by play-
ing x,

xT · Ak · y′
k > x′

k · Ak · y′
k. (3)

Substituting the definition of x′
k and y′

k by means of Xk−1,Yk−1 gives on the
left side of (3)

(α∗
k)

T · Xk−1 · Ak · YT
k−1

︸ ︷︷ ︸
=Bk

·β∗
k = (α∗

k)
T · Bk · β∗

k.

With the same substitution on the right side of (3), we get xT ·Ak ·YT
k−1 ·β∗

k >

α∗
k ·Bk ·β∗

k. Now, if there were some x̃ such that xT = x̃T ·Xk−1, we could rewrite
the last inequality into x̃T · Xk−1 · Ak · YT

k−1 · β∗
k = x̃T · Bk · β∗

k > α∗
k · Bk · β∗

k,
to contradict the fact that (α∗

k,β
∗
k) is an equilibrium in Bk, and thereby finally

refute (3). But such an x̃ is in fact easy to find, since the possible actions are
restricted to equilibrium strategies in Ak−1. The vector x must thus be a mix of
rows from the matrix Xk−1, putting x into the row-space of Xk−1. In that case,
the equation system xT = x̃T · Xk−1, even if over-determined, has a solution
being the sought x̃. Hence, (3) cannot hold, and x′

k is also optimal in the game
Ak, when the opponent plays y′

k. By symmetry, the argument for the second
player works analogously, and the induction step is complete, delivering the
sought simultaneous optimum (x′

k,y
′
k) as given by (2). Figure 1 summarizes the

construction as an algorithm.
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Remark 3. From another angle, the above procedure is viewable as starting in
the game on the first coordinate, with a possibly large set E1 of equilibria, and
then narrowing down, resp. refining, this set to those elements E2 ⊆ E1 that are
also optimal in the game A2. Repeating this procedure, we then further restrict
the set to E3 ⊆ E2, in which only those strategies are retained that are also
optimal in the game A3, etc. It is obvious that the equilibria in A1 can be disjoint
from those in A2, which means that a strategy carried over from Ek to Ek+1 may
no longer be an equilibrium in Ak+1. This brings us back to the initial remark
made at the induction step, calling the solutions “conditional optimal” rather
than equilibria. However, since we are after optimality w.r.t. a lexicographic
order, all we count is the chances of worsening the outcome upon an unilateral
deviation from the final solution. Since the final set Ed ⊆ Ed−1 ⊆ · · · ⊆ E1 = {
all equilibria in A1} contains only equilibria for the first game, deviating from
it would worsen our situation on the first coordinate, and hence irrespectively
of the other coordinates, would make the result lex-order worse. Upon equality,
the second coordinate kicks in, and so on.

Now, let us wrap up by putting the result in the context of security: like
a conventional, scalar-valued, zero-sum game, our lex-ordered optima here have
the same property of being a worst-case defense against any adversarial behavior,
as long as the defender adheres to the final optimum.

Input: A set of payoff matrices A1, . . . ,Ad ∈ n×m,
Output: A lex-order optimal strategy x∗,y∗ with the properties told by Prop.2
Procedure:

1. Compute all equilibria in the game A1 (e.g., using the algorithm from [1]),
and collect the optima for player 1 in the set S1,1 and the optima for player
2 in the set S1,2.

2. Put k ← 1
3. if k = d, then return any (x∗,y∗) ∈ Sk,1 × Sk,2 as the final result and

terminate.
4. Otherwise (if k < d), update k ← k + 1
5. Arrange the elements of Sk−1,1 as rows of a matrix X and arrange the elements

of Sk−1,2 as rows of a matrix Y, and compute the matrix Bk = X · Ak · YT .
6. Compute all equilibria in the matrix game Bk and collect them in a set

Ek :=
{
(α∗

1,β
∗
1), . . . , (α∗

nk
,β∗

nk
)
}
.

7. Iterate over i = 1, 2, . . . , nk pairs (αi,βi) ∈ Ek and for each pair, compute
x′
i = (αi)

T · X,y′
i = (βi)

T · Y. Put all the resulting x′
i into the set Sk,1 and

the resulting y′
i into the set Sk,2.

8. go back to step 3.

Fig. 1. Computation of lexicographically optimal multi-goal security strategies
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More formally, we have:

Proposition 2. Let A1, . . . ,Ad be a series of game-matrices, all of (n × m)-
shape, describing a security game between a defender as player 1, and an attacker
as player 2, whose unknown payoffs may be U1, . . . ,Ud, in the same game.

Let the defending player 1 substitute Uk := −Ak for all k = 1, 2, . . . , d, in
lack of better knowledge, and let x∗ = x′

d,y
∗ = y′

d be the output computed by the
lexicographic method as described in Fig. 1.

Then, conditional on the attacker acting within its own action space (i.e., not
playing any strategy whose payoff is not captured by the columns in the Ak’s),
we have the actual payoff in the k-th game for k = 1, 2, . . . , d for the defender
satisfy

x∗ · Ak · y∗ ≤ x∗ · Ak · y,

for any true behavior y of the attacker.

The proof is a simple consequence of the equilibrium property that we have
shown to hold for each Ak: it means that each x′

d,y
′
d is a saddle point

x · Ak · y′
d ≤ x′

d · Ak · y′
d ≤ x′

d · Ak · y,

for all k = 1, 2, . . . , d, since each x′
k,y

′
k is a convex combination of saddle points.

If player 2 has a different incentive than engaging in a zero-sum competition, then
the saddle point property will ensure that player 1’s revenue can only increase
by the unilateral deviation of player 2. The worst case is attained for exactly
opposite intentions, i.e., a zero-sum regime.

4 Applications and Examples

4.1 Refining Ambiguous Attack or Defense Strategies

One appeal of using game theory to analyze attacker/defender scenarios is its
simultaneous account for the natural opposition of interests. Thereby, it deliv-
ers optimal defenses and optimal attacks, but their practical value depends on
matters of plausibility (e.g., for attacks), or feasibility (e.g., for defenses).

Implausible equilibria arise in models that neglect certain interests of the
attacker, or under oversimplifying assumptions on the attack models. Likewise,
infeasible defenses can result from models missing on certain cost or efforts
imposed on the defender if it were to implement the game-theoretically opti-
mal choice. The existence of ambiguities in Nash equilibria is well documented,
and we can state the following explicit result for security games as zero-sum
competitions:

Lemma 2. Pick any set of vectors E1 =
{
x∗
1, . . . ,x

∗
k1

} ⊂ Rn and E2 = {y∗
1,

. . ., y∗
k2

} ⊂ Rm, where k1 < n and k2 < m. Then, there is a finite two-person
zero-sum game whose equilibria are exactly the set Δ(E1) × Δ(E2).
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Lemma 2 is proven in Appendix B. It essentially tells that any desired equilibrium
for both, the defender and the attacker can be “enforced” by a proper mechanism
designed, which is not per se surprising, but this mechanism can take the form
of a simple security game. Conversely, this means that we may expect either a
unique or an infinitude of equilibria in even the simplest instances of security
games, making a method of refining them necessary. The usual way of resorting
to more advanced concepts of equilibria is not necessarily also a practical way
to go, since it still can leave practically relevant aspects untouched, see some
examples following below.

The lexicographic method of computing equilibria does not require a priori
knowledge of all relevant dimensions, and can refine ambiguous or implausible
results “as needed” by bringing in further utility values. For example, several
ways of defending a system by randomization of actions can be judged upon the
following additional criteria:

Cost of Changing from Between Strategies: Randomization itself causes
friction losses, and this is in conflict with the common practice of “never touch a
running system”. Thus, changing configurations requires efforts (e.g., people can
be reluctant to change their password) and proper modeling [6] that can lead to
further utility values for the lexicographic optimization.

Predictability of a Defense for the Attacker: Since a randomized action
is essentially describing a random variable, we can – as an additional “utility”
– ask for the uncertainty that our defense has against a guessing adversary.
To measure this, we could define the randomized choice rule’s min-entropy as
another utility of interest (not Shannon-entropy, since this is in general not a
good measure of unpredictability against guessing).

Cost or Times to Exploit: For the attacker, even if there is a vulnerability
to exploit, it is typically a complex choice to pick the “easiest” one. Methods
like the Common Vulnerability Scoring (CVSS) associate several scores with a
vulnerability, such as required background knowledge, necessary form and dura-
tion of access, etc. All these lend themselves to defining their own utility values
for the attacker, and can be brought into a lexicographic optimization for the
defender to narrow down the set of optimal defenses in such multiple dimensions.

4.2 Example 1: The Pure Algorithm (Numerical Illustration)

Let us now give a numerical example of the computational method from Sect. 3
on a game with two payoffs per player. We start with a constructed matrix A1

(obtained by application of the techniques to prove Lemma 2; see Appendix B),

A1 =

⎛
⎜⎜⎜⎜⎝

0.955986 −0.272557 0.316327 −0.405844 0.102397 −0.662056
0.0454297 −0.0580642 −0.178636 −0.187195 0.130912 0.204854
−0.298982 0.05127 −0.17908 0.0170827 0.0593234 0.292065
−0.436331 0.223209 −0.113101 0.453724 −0.301461 0.340507
−0.558309 0.0324137 0.0676309 −0.0335246 0.251095 −0.076376

⎞
⎟⎟⎟⎟⎠

, (4)
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known to have three equilibria x∗
1, . . . ,x

∗
3 for player 1, and 2 optimal strategies y∗

1 ,y∗
2

for player 2 (given explicitly in Appendix B as (5) and (6)), and another matrix

A2 =

⎛
⎜⎜⎜⎜⎝

5 4 5 3 3 2
5 5 3 2 5 1
3 3 1 1 2 4
2 2 5 5 2 3
2 3 2 4 3 2

⎞
⎟⎟⎟⎟⎠

chosen purely at random, but with the same shape as A1. A systematic construction
of A2 would be possible (e.g., using a selection of the vectors used above to construct
A1), but the optimization does not hinge on such constructed input(s).

Now, the auxiliary game matrix B2 arises from computing the equilibria of the
scalar-valued matrix game A1, which we know to be given by any combination of
{x∗

1,x
∗
2,x

∗
3} × {y∗

1 ,y
∗
2} =

{
(x∗

1,i,y
∗
1,i)

}n1=6

i=1
. The matrix has as many rows as player 1

has equilibria, and as many columns as player 2 has equilibria, being

B2 =

(
3.27905 3.35008 3.31098
3.0755 3.1093 3.00523

)
.

In this game, an equilibrium is computable by linear programming, explicitly stated as
primal (P ) and dual problem (D) in Appendix B, using the GNU linear programming
kit [20]. An equilibrium is found as

α∗
2 = (1, 0), and β∗

2 = (1, 0, 0),

so that the final optimum for both players is obtained by evaluating (2), giving

x′
2,1 = (0.236624, 0.259513, 0.011683, 0.330247, 0.161933) (= x∗

1)

and

y′
2,1 = (0.11090, 0.13516, 0.22033, 0.12635, 0.23811, 0.16914) (= y∗

1).

From here onwards, the process would continue likewise by enumerating all equilib-
ria that exist in the game B2, to make up a list of strategies x′

2,1, . . . ,x
′
2,n2 and

y′
2,1, . . . ,y

′
2,n2 to define the game B3 and so on. Since the process is repetitive, we

let our example stop here, with a unique solution obtained for the second coordinate
already. Once we are left with a single solution, the iteration may safely stop, since
considering further payoff matrices for higher coordinates cannot further narrow down
the set of equilibria; it would remain the same optimum over all coordinates > k, once
the solution is unique at stage k.

4.3 Example 2: Data Download

Let us recap the two distinct settings of a company processing personal data or run-
ning a production line. In both cases, we assume that data is being downloaded from
redundant servers, some of which may be compromised by an adversary. The settings
are different for the two companies in the following way:

– for the production-oriented enterprise, Alice will download software or control
scripts, neither of which has a particular demand for confidentiality, but must
be available and integrity protected, in this order of importance for the two. The
overall goals are thus
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“Availability” > “Integrity” > “Confidentiality”.
– for the personal data processing enterprise, it may not matter too much if the data

of a particular person is not instantly accessible, but it must remain confidential
in all cases, and needs protection from manipulation. The priorities are thus

“Confidentiality” > “Integrity” > “Availability”.

M1

M3

M2

admin

1. download

2. hash verification

3. use data

user

Fig. 2. Example scenario for data download

Towards a specific example, suppose that an administrator has three servers to
potentially retrieve data from (where “data” can be a software or personal data), and
that the policy prescribes to do a majority vote verification. That is, data retrieved
from one server Mi needs to be checked against another redundant server Mj

2; if the
results are consistent, we have a 2-out-of-3 majority pointing to the downloaded data
as correct, since the data is apparently the same as if it were when downloaded from
the verification server Mj and checked against the other server Mi. If the verification
fails, the data could be checked for consistency with a third server.

Let the situation be as depicted in Fig. 2, and consider the following likelihoods
for a man-made hacker attack (probabilities p1, p2, p3) or a natural outage of a server.
Natural failures are hereby considered individually different, e.g., due to varying traffic

2 This is indeed the standard idea behind putting cryptographic hash fingerprints
on download sites for open-source software, addressing the possibility of a forged
installation bundle. The package’s fingerprint as put on the website next to the
download is for verification against independent other mirrors that offer the same
download.
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loads, distinct hard- and software configurations, different administrative procedures
applying to a server and its mirror, or similar, leading to different probabilities q1, q2
and q3 assumed here:

mirror M1 M2 M3

probability of being hacked p1 = 0.1 p2 = 0.05 p3 = 0.01

probability of failure (reliability) q1 = 0.1 q2 = 0.2 q3 = 0.15

With this, we can set up a payoff structure with the strategies {M1, M2}, {M2, M3}
and {M1, M3}, meaning that both servers are used by the players; for player 1, using
{Mi, Mj} means download from Mi and verify against Mj . The same strategy for the
attacker means that exactly Mi and Mj are being attacked, with success chances as
given in the table above.

Assuming stochastic independence, we get the following generic payoff structure,
where �i is a likelihood later to be substituted by either pi or qi,

{M1, M2} {M1, M3} {M2, M3}
{M1, M2} (1 − �1)(1 − �2) 1 − �1 1 − �2
{M1, M3} 1 − �1 (1 − �1)(1 − �3) 1 − �3
{M2, M3} 1 − �2 1 − �3 (1 − �2)(1 − �3)

which, upon substituting the values �i = pi or �i = qi values, gives the confidentiality
game Aconf and availability game Aavail

Aconf :=

⎛
⎝

0.855 0.9 0.95
0.9 0.891 0.99
0.95 0.99 0.9405

⎞
⎠ , and Aavail =

⎛
⎝

0.72 0.9 0.8
0.9 0.765 0.85
0.8 0.85 0.68

⎞
⎠ .

Now, the optimization is either w.r.t. the goal priorities “Confidentiality” > “Avail-
ability”, coming to the payoff vector (xT ·Aconf ·y,xT ·Aavail ·y), or with the reversed
goal priorities “Availability” > “Confidentiality”, giving the (reversed) payoff vector
(xT · Aavail · y,xT · Aconf · y).

Let us compute the results in both cases separately:

1. For confidentiality as the highest goal, we find only a single equilibrium being

x∗
1 = (0, 0.09548, 0.90452), and y∗

1 = (0.49749, 0, 0.50251)

with the saddle point value v1 = 0.94523, i.e., an ≈ 94% chance of the data being
not compromised (w.r.t. confidentiality).
Since this equilibrium is unique, it carries through to the second coordinate without
any further change, giving the 1× 1-payoff structure B2 = (0.7526). This is, at the
same time, the best achievable payoff regarding availability, so we have the lex-
order optimum being (Pr(Confidentiality), Pr(Availability)) = (0.94523, 0.7526).

2. If availability is the highest-priority goal, we first look for a saddle point on Aavail,
giving

x∗
2 = y∗

2 = (0.40564, 0.55531, 0.03905),



434 S. Rass et al.

with the availability likelihood being the saddle point value v2 = 0.82308, i.e., an
≈ 82% chance for the data to be downloadable.
As before, this equilibrium is unique, and hence no change upon proceeding
to further coordinates will happen. The game B2 is again 1 × 1 and rewards
the (constant) value 0.89537. The lex-order optimum is thus (Pr(Availability),
Pr(Confidentiality)) = (0.82308, 0.89537).

Generally, the procedure will make the goal with highest priority matter most, with
the multi-criteria optimization subsequently refining the set of equilibria existing for
the first goal. This is in contrast to other instances of multi-goal treatment, where the
goals may play equally important roles. From the complexity perspective, the enumer-
ation of equilibria per goal can take worst-case exponential time (in the number of
strategies), but practically, there may not be a need to compute all equilibria in all
cases; the method will never shrink the set towards emptiness, since once the set is
singleton at stage k, it will remain unchanged for k + 1, k + 2, . . . , d. Thus, as long
as equilibria remain plausible in the context at hand, the computational burden may
be kept in feasible bounds. Nonetheless, this may still call for other refinements like
perfect equilibria or others. Imposing such additional constraints on the equilibria per
stage is a straightforward matter.

5 Conclusion

We described a simple method to do multi-criteria optimization with goal priorities as
optimization over lexicographic orders. As a natural side-effect, our algorithm narrows
down a potentially large set of ambiguous Nash equilibria to fewer ones, and therefore
is a natural refinement of the general Nash equilibrium in case of multiple criteria. It
is, however, fair to admit that this process is in general not guaranteed to establish
ultimate uniqueness of the equilibrium. In general, the so-found optimum depends on
the specific goal prioritization, reflecting the fact that security strategies are expectedly
different depending on the application domain. The method is algorithmically simple,
and implemented as open source and freely available (see [2] for a software to enumerate
equilibria, and [27] for the source code behind the examples given in this work).

While our method to construct games with desired ambiguous equilibria (see
Appendix B) is here used only for the sake of illustrating, it may be of independent
interest, e.g., for teaching general game theory to construct examples.

Acknowledgement. The authors would like to thank the anonymous reviewers for
valuable and constructive feedback on this work.

A Proof of Proposition 1

Towards a contradiction, suppose there were such a function f then, it obviously cannot
be constant, for otherwise, it were meaningless. Thus, there must be some value x for
which f(x, 0) �= f(x, 1), and the interval I(x) := [f(x, 0), f(x, 1)] has nonzero width.

Furthermore, any two such intervals I(x), I(y) are disjoint: if there were x, y such
that the intervals overlap, then we would have f(x, 0) < f(y, 0) < f(x, 1) < f(y, 1),
which, since f represents the ordering, entails (x, 0) <lex (y, 0) <lex (x, 1) <lex (y, 1),
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in which the first <lex implies x < y and the second implies y < x, which is not possible
at the same time.

Let us pick some particular (arbitrary) x for which f(x, 0) �= f(x, 1) in the following.
Since f is continuous, so is the function f(h) := f(x + h, 0) − f(x + h, 1). Our choice
of x makes f(0) > 0, and this relation holds in an entire compact neighborhood f of
0. The compactness of f implies that f attains a minimum ε > 0 on f .

Each h ∈ f gives rise to a set I(x + h), whose length is by construction ≥ ε.
Furthermore, all these uncountably many sets are pairwise disjoint, so that adding up
their lengths would add up to infinity.

This is, however, impossible given the fact that this all happens within the unit
interval [0, 1], whose length is 1. This final contradiction refutes the initial assumption
on the existence of a continuous function f to represent the lexicographic order.

B Proof of Lemma 2

Suppose that we have picked a set of vectors 0 ≤ x∗
1, . . . ,x

∗
k1 ∈ Rn for k1 < n, to be

equilibrium strategies for player 1, and likewise, let 0 ≤ y∗
1 , . . . ,y

∗
k2 ∈ Rm with k2 < m

be a set of chosen equilibria for player 2 in our zero-sum game to be constructed.
Let the matrix X be such that all x∗

i ∈ N(X), when N(X) denotes the null-space
of the matrix X. This matrix is directly constructible by taking the singular value
decomposition of the matrix whose rows are exactly the desired x∗

i . In defining X in
this way, each (mixed) strategy x∗

i makes the other player indifferent in its response,
since X · x∗

i = 0.
Analogously, we can construct a matrix Y whose null-space is spanned by{

y∗
1 , . . . ,y

∗
k2

}
, thus achieving (y∗

i )
T · YT = 0 for all i = 1, 2, . . . , k2.

Finally, pick any random matrix Z with a conformable shape to have the matrix
product A = XT · Z · Y ∈ RnA×mA well-defined3. By associativity, A retains the
properties of X and Y, so that we still have (x∗

i )
T · A = 0 and A · y∗

j = 0 for all i, j.
Now, take A as the (nA × mA)-payoff matrix in the game. It is well known that we
can obtain an equilibrium for a maximizing player by solving the linear program

(P ) min

=:cT︷ ︸︸ ︷(
0
1

)T

·

=:x︷ ︸︸ ︷(
v
μ

)
s.t.

=:B︷ ︸︸ ︷(−AT 1

1 0

)
·
(

μ
v

) ≥
=

=:b︷ ︸︸ ︷(
0
1

)

and μi ≥ 0 for all i = 1, . . . , nA

in which the conditions given here in matrix notation evaluate to the minimization
of the saddle-point value v, upper-bounding the payoff obtained from the matrix A by
playing the i-th row with probability μi, i.e., μT ·A ·ei ≤ v for all i when ei is the i-th
unit vector. The lower block in the product B · μ = 1 is then just the condition that
the sum of all μi should equal 1.

Now, look at the dual program for the other player being

3 Here, nA and mA are new variables to describe the shape; their values depend on
how many equilibria we want to enforce, and whether these are linearly dependent.
This determines the dimension of the nullspaces, which sets the values for nA, mA.



436 S. Rass et al.

(D) maxbT ·

=:y︷ ︸︸ ︷(
ν
v

)
, s.t. yT ·

(−A 1

1 0

) ≤
=

=cT︷ ︸︸ ︷(
0
1

)T

and νi ≥ 0 for all i = 1, . . . , mA.

The point of our construction is that in the matrix products B · x and yT · B, the
following happens:

– in (P ), we get the expression −A · μ = 0 for every μ ∈ {
x∗
1, . . . ,x

∗
k1

}
or linear

combinations thereof. Thus, the constraint ≥ 0 on this row is satisfied with equality
if v = 0.

– Likewise, evaluating the constraints in (D) creates the inner term −νTA = 0
for all ν ∈ {

y∗
1 , . . . ,y

∗
k2

}
(and any linear combinations thereof). Thus, the dual

constraint ≤ 0 is also satisfied with equality.

Now, an equilibrium (μ, ν) in the zero-sum game A is characterized by μ being an
optimum in (P ) and ν being an optimum in (D), and by strong duality, this happens
if both are feasible for the respective constraints, and the respective optima are equal.
Putting these conditions together, we find (μ, ν) to be an equilibrium if and only if
the following conditions are all satisfied:

1. B · x ≥ b, i.e., feasibility for (P ): this holds by construction, even with equality in
all rows.

2. yT · B ≤ cT , i.e., feasibility for (D): this also holds by construction with equality.
3. cT ·x ≤ yT ·b, which can only hold if the two values are equal. But we constructed

all equilibria to create the value v = μT · A = A · ν = 0, so equality holds here
too.

Thus, all pairs (x∗
i ,y

∗
j ) are equilibria of our matrix game A.

Remark 4. Switching the players’s directions between minimization and maximization,
as well as changing the saddle-point value from v = 0 into some chosen v′ �= 0 is easy
by a proper affine transformation A′ �→ ±A + v′.

It is easy to see that the so-constructed game has the designed equilibria, but also
many others, since not only the convex-combination, but any linear combination of the
chosen vectors will be in the nullspace. Let us take a short break here to numerically
illustrate the intermediate construction.

B.1 Example

We implemented the algorithm in GNU Octave [7], with sources are available from
[27]: for the example, let us fix the strategy spaces for player 1 and 2 to have five, resp.
six, actions. Furthermore, let us pick two equilibria for player 1, and three equilibria
(all mixed for both players) at random, sampling uniformly random values from [0, 1],
and normalizing the vector to unit sum. For a random instance, these equilibria were

strategy 1 2 3 4 5
x∗
1 = (0.236624, 0.259513, 0.0116831, 0.330247, 0.161933)

x∗
2 = (0.26241, 0.117688, 0.21289, 0.284324, 0.122688)

(5)
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and

strategy 1 2 3 4 5 6
y∗
1 = (0.110901, 0.13516, 0.220331, 0.126352, 0.238114, 0.169142)

y∗
2 = (0.1328, 0.45488, 0.0802542, 0.040265, 0.236992, 0.0548095)

y∗
3 = (0.148226, 0.0651162, 0.0286501, 0.31977, 0.375297, 0.0629404)

(6)

With these values, the matrices X1 and Y1 from the previous section are easily found
using the null function in Octave (that internally computes a singular value decom-
position), to find

X =

⎛
⎝

−0.490976 0.689481 0.497453 −0.183545 −0.0490909
−0.617055 −0.273987 0.0243345 0.724245 −0.138025
−0.263877 −0.192006 0.0534469 −0.120881 0.935967

⎞
⎠

and

Y =

⎛
⎝

−0.554165 0.271458 0.237081 0.640731 −0.372757 −0.116278
−0.72375 −0.0592711 0.0703592 −0.314963 0.585821 −0.159171

−0.278293 0.0898957 −0.51704 0.0385987 −0.0337394 0.802816

⎞
⎠

and with a randomly chosen matrix Z, we find the payoff structure

A =

⎛
⎜⎜⎜⎜⎝

0.955986 −0.272557 0.316327 −0.405844 0.102397 −0.662056
0.0454297 −0.0580642 −0.178636 −0.187195 0.130912 0.204854
−0.298982 0.05127 −0.17908 0.0170827 0.0593234 0.292065
−0.436331 0.223209 −0.113101 0.453724 −0.301461 0.340507
−0.558309 0.0324137 0.0676309 −0.0335246 0.251095 −0.076376

⎞
⎟⎟⎟⎟⎠

which is exactly the matrix (4) used in Sect. 4.2.
Solving the linear programs (P ) and (D), we find the following mixed equilibrium

for the game A:

x∗ = (0.28381, 0, 0.37985, 0.24622, 0.09012),
and y∗ = (0.06237, 0, 0.48687, 0, 0.11092, 0.33984)

which is not among the equilibria listed in (5) or (6). However, it is a simple matter to
put the vectors x∗,y∗ into span {x∗

1,x
∗
2} and span {y∗

1 ,y∗
2 ,y

∗
3} via

x∗ = −0.8298 · x∗
1 + 1.8298 · x∗

2 and

y∗ = 2.55931 · y∗
1 − 0.62699 · y∗

2 − 0.93232 · y∗
3 .

B.2 Restricting the Equilibria to the Desired Set

Now, to complete the proof of Lemma 2, it remains to modify the game so that no
solution outside the convex hull of our chosen equilibrium points is possible.

The simplest method of to exclude equilibria outside the desired set is adding a
penalty term to the goal function that vanishes on the desired set of optima. An obvious
choice is letting δ be a distance measure, such as

δ(M,y) := inf {‖x − y‖ : x ∈ M} ,

for a set M ⊂ Rn and a point x ∈ Rn, using any norm ‖·‖ on Rn. Put E1 as the set
of desired equilibria of player 1, and let E2 be the set of desired equilibria for player 2.
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Then, any action outside E1 shall decrease the revenue for player 1, while any deviation
to the exterior of E2 shall increase the payoff for player 1, so that there is an incentive
for player 1 to stay within the desired set of equilibria, and another incentive for player
2 to do the same (zero-sum game). Thus, we change the expected payoff function from
u(x,y) = xT · A · y into

u(x,y) = xT · A · y + δ(y, Δ(E2)) − δ(x, Δ(E1)). (7)

This function is no longer linear, and hence the optimization problems (P ) and (D)
no longer apply as such. But strong duality still holds, since Slater’s condition [3] is
satisfied: note that the change in the payoff functional manifests itself in the primal
problem (P ) as the inequality u(x, ei) ≤ v for ei being the i-th unit vector run-
ning over all strategies of the second player (the likewise converse inequality would
arise in the dual problem (D)). This is due to the fact that we still do a min-
max optimization maxx miny u(x,y), where the inner optimization is easy because
we have only a finite number of choices (or any convex combination of them), making
miny u(x,y) = mini=1,...,m u(x, ei).

More formally, let Bo :=
{
(x,y) : ‖x‖1 < 1, ‖y‖1 < 1

}
be the interior of the unit

balls defining the feasible set of probability distributions, i.e., mixed strategies for both
players. Moreover, let E be the convex hull of all equilibria that are admissible by
design. For Slater’s condition, we look for an inner point that satisfies the constraints
with strict inequality. Note that the affine hull aff(E) is unbounded, and therefore
extends over the bounded convex set E. Moreover, by construction of the penalized
utility (7), we have nonzero contributions of the distance terms outside E. Now, dis-
tinguish two cases:

Case 1: If Bo \ E = ∅, then all probability distributions are admissible equilibria by
design, and there is nothing to restrict (the penalty terms never become active, and
always add zero to the overall utility).
Case 2: Otherwise, the affine hull aff(E) must contain a point (x0,y0) ∈ (Bo∩ aff(E))\E
outside the admissible set E but in the interior of the unit ball. Look at the terms that
sum up to the penalized utility:

xT · A · y = 0, because (x0,y0) are still in the nullspace of A;

δ(x0, Δ(E1)) > 0, because we are outside Δ(E1) ⊂ E;

δ(y0, Δ(E2)) > 0, because we are outside Δ(E2) ⊂ E.

So, whenever δ(x, Δ(E1)) �= δ(y, Δ(E2)), we are done since we have a nonzero utility
for the respective player and hence a Slater point (for one of the players, i.e., either the
primal or the dual problem). Otherwise, if δ(x, Δ(E1)) = δ(y, Δ(E2)), we can slightly
move x farer away from E, since Bo is an open set. This move from x0 to x′

0 with
δ(x0, Δ(E1)) �= δ(x′

0, Δ(E1)) again makes the penalty term overall negative, and we
have (x′

0,y0) as the sought Slater point. The existence of a Slater point certifies strong
duality to hold for the optimization problems. The design of the respective utilities
(having opposite signs since we are playing a zero-sum regime) then assures that all
feasible solutions must be inside the set Δ(E1)×Δ(E2). By strong duality, no solution
outside this region is possible, and Lemma 2 is proven.
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Abstract. Game Theory provides a set of tools and a framework suitable to study
security problems. In this paper, a class of games is developed to study cyber
deception and the interactions between the network defender who is deceiving an
adversary to mitigate the damage of the attack. In order to capture network topol-
ogy, each game is played over an attack graph that can be generated according to
the vulnerabilities associated with each node. The defender’s goal is to take decep-
tive actions to prevent the attacker from taking control over the network resources
exploiting the incomplete information of the attacker regarding the deceptive net-
work gained through the attack reconnaissance stage. To this end, we present
several games such as normal form static, dynamic, hypergame, and a partially
observable stochastic game (POSG) to study the game dynamics at different infor-
mation structures. For the most general class of games, (i.e., POSG), we provide
multiple solution approaches to overcome the intractability of the gamemodel and
finally present numerical result samples to show the effectiveness of each solution
approach.

Keywords: Game theory · Cyber deception · Network security · Attack graph ·
Hypergame · Partial observable stochastic game

1 Introduction

Cyber deception refers to a set of techniques that can be implemented to give attackers
false beliefs. Such set includes information masking, dazzling, hiding, decoying, false
information, and camouflaging [2, 5]. In fact, cyber deception is used from both sides,
the attacker implements deception techniques to hide his true identity, strategy, and
payoff and let the defender believe that the attacker is a legitimate user. However, the
focus of this paper is to study cyber deception as a defense technique implemented by
network admin [1]. In a real threat scenario, the identities of adversaries are unknown
to the defender, which is a huge advantage to the attackers that allows them to collect
information about the network until an intrusion detection system (IDS) catches them
[17]. Therefore, to suppress this advantage from attackers, a defender needs to implement
cyber deception techniques to misrepresent the network and alter its true state, and hence
the outcome of the attackers’ reconnaissance will be useless and misleading. To this end,
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deception techniques such as honeynets [4, 7, 16], data, and file obfuscation techniques
[11, 12, 21, 25], and moving target defense (MTD) [8, 44, 45] have been proposed.
Although, MTD and cyber deception techniques aim to thwart the attackers’ attempts
to collect the system information via changing the attack space and the true state of
the network, however, MTD techniques do not introduce any false information that can
actively mislead attackers. On the other hand, cyber deception may use false objects or
information for the attackers to form false beliefs that affect the decision of the attackers.

Security games literature studied strategic decision-making problems in a game-
theoretic framework between two players, specifically, the network defender and the
attacker [3, 14, 43, 46]. Security games applications includes the protection of critical
infrastructures, [14, 22, 23], computer networks [6, 10, 15, 19, 24, 38, 39, 44, 45]. The
success of strategic deception hinges on the information observed by both players. The
defender may strategically leak or let the attacker access manipulated information about
the network that lures the attacker to behave in a certain way that may or may not be
observed by the defender. How information observability is classified leads to different
classes of the game as discussed in detail in Sect. 2.

In this paper, we present the state-of-the-art game-theoretic models to address cyber
deception and develop a partially observable stochastic game as a generalized frame-
work to study this problem. Secondly, we discuss the complexities and intractability
of POSG games and present several approaches and relaxations to overcome the game
model complexities. Finally, numerical results are presented to validate the proposed
approaches to solve the game.

The rest of the paper is organized as follows: In Sect. 2, we present a line of related
cyber deception work on attack graphs and game theory. After that, in Sect. 3, we discuss
different game classes. In Sect. 4, several approaches are presented to solve the game.
We present numerical results in Sect. 5 and conclude our work in Sect. 6.

2 Related Work

2.1 Attack Graph

An attack graph is a tool used to model network security by capturing network connec-
tivity and vulnerabilities. Attack graphs could be generated in several ways. For instance,
Kamdem et al. [30] generated a vulnerability multi-graph in which node are vulnera-
ble hosts, and edges represent the vulnerabilities between nodes. Authors in [31] used
attack graphs to model the causal relationship of different vulnerabilities and proposed
a probabilistic metric for network security. Stochastic games played on attack graphs
facilitate cyber deception automation and deception policy implementation on networks.
However, the dimension of strategy space explodes for attack graph games in the size
of the attack graph. Moreover, partial observability regarding attacker dynamics is a
struggle against developing deception policy.

A defender can model the behavior of a partially observable attacker using one of
two approaches. A simple but naïve approach is to model the actions of the attacker as
exogenous noise. The second approach is to take into account the attacker’s actions as
observations that are induced given her actions. Finally, the defender can assume that the
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attacker is also monitoring the system partially and is maximizing his long-term reward
symmetrically. The latest model is known as POSG and is the most general framework.

Attack graph is adopted extensively to study cybersecurity problems [32–36]. More
specifically, it is used to study cyber deception using different game-theoretic models.
Thesemodels include normal formgames, Stackelberg games, hypergames, and partially
observable stochastic games.

In [32], a full information normal form game is played on an attack graph to study
the effect of software diversity to deceive adversaries and enhance network security.
The goal of the defender is to diversify the network attack graph to prevent the attacker
from launching a full-scale zero-day attack exploiting a single vulnerability. Moreover,
a diversified network requires a larger number of probes to collect information. Hence
the attacker interacts more with the network which leads to early detection. The attack
graph captures the network topology and the relation between the set of vulnerabilities
associated with each node. Our results show that diversity limited the attacker’s ability
to control the network.

In a social network, a malicious user attacks the network through influencing its
node. Therefore, one way to counter his negative influence is by blocking a subset of
edges (i.e., a subgraph) [33]. We formulated the interaction between the defender and
the attacker as a Stackelberg game where the defender first chooses a set of nodes
to block in order to minimize the attacker’s influence. After observing the modified
network, the attacker selects a set of seeds to spread negative information from. To avoid
the computational complexity of this bi-level game theoretic optimization problem, an
approximate method models the attacker’s problem as the maximum node domination
problem. To solve this problem, we first develop a method to formulate the problem
as an integer programming combined with constraint generation. Also, proposed an
approximate solution to enhance scalability [33]. Considering a Stackelberg game, the
defender in [34] is assumed to allocate defensive resources and manipulate the attack
graph. We provided techniques for efficiently solving the problem as a mixed-integer
linear program.

In amore sophisticated attack scenario, the network suffers an outbreak of a spreading
virus. An epidemic game-theoretic model is developed in [36] to study these types of
attacks. Epidemic models are used in cybersecurity to model the change of nodes’ states
over time. In other words, at each time slot, a node could be infected, vulnerable, or
recovered. The epidemic model captures the transition of nodes between the mentioned
three states. In [36], we proposed a POSG game with one-sided information where
players don’t observe the actions of each other. In this epidemic-gamemodel, the attacker
at any time-slot selects a subset of neighbors of infected nodes to propagate the malware
from via connecting edges. On the other hand, the defender distributes a limited number
of honeypots over selected edges of the network. We show that the heuristic search
value iteration (HSVI) algorithmdeveloped initially to solve partially observableMarkov
decision process (POMDP) [40], can be used to efficiently solve this class of POSGs.
To this end, we show that the value function operator of the epidemic game model has
the necessary properties such that it can be solved using an HSVI-like algorithm.
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2.2 Hypergame

Another approach to handle uncertainty is the hypergame framework [35, 37, 41]. Hyper-
game theory studies the case where the game players have different views of the game
model including the strategies of their opponents therefore it fits perfectly to study
cyberdeception. Although Hypergame theory can be used to study multiple players, we
restrict our discussion for the two-player Hypergame for cyber deception.

A Hypergame G= (V1, V2) consists of two preference vectors for each player. Each
vector represents the player’s perspective of the game. In a fully observed game, each
player knows his opponent’s preference vector. On the other hand, practically player p
can perceive player q’s preferences partially, in terms ofV21 andV12 as the perspective of
player 1 of player 2 preference and vice versa. In hypergame, players play two different
games according to how each player perceives the game. Therefore, a player makes his
own decision based on his perceived game. In cyber deception, the attacker is unaware
of the induced network state after the deceptive actions have been implemented by the
network defender. To solve for an equilibrium of hypergamewith a first-level perception,
each player plays their own perceived game. First, the attacker solves his perceived game
and find the equilibrium of the adversary perceived game as denoted by (ae(A),de(A)).
Similarly, the defender solves his perceived game, and find the equilibrium (ae(D),de(D))
of the game. Finally, the hypergame equilibrium is (ae(A),de(D)).

In [37], we developed a hypergame model that examines how attacks spread inside
the network using attack graphs. In this mode, the defender installs honeypots on well-
selected nodes to thwart the attack. Based on the formulated hypergame, the defender
decides where to place honeypots. The game is repeated after players receive the payoff
of their actions. According to her payoff, the attacker could choose to cover themaximum
number of nodes to increase his reward at the current stage. However, the attacker could
also decide to explore other unvisited nodes. We estimate the amount of time needed for
an attacker to reach the target nodes through experiments, which provides a quantitative
measure to determine when it is necessary to disable all the connections to the target
nodes.

In [35], we focused on the problem of joint designing a decoy placement strategy
and a deceptive defense strategy that maximally exploits the fact that decoy locations
are partially observable by the attacker to ensure that the defender can satisfy his/her
goal in temporal logic. Given the large space searching for optimal decoy placement
policy, we use formal methods to show that the utility function is non-decreasing and
monotone. We formulated a deception hypergame to place decoy devices. In this game,
the defender allocates decoys to deceive and trap the attacker. We have also synthesized
stealthy deceptive strategies with temporal logic specifications using hypergame theory
in [41] to develop sure winning and almost-sure winning strategies for the defender.

3 Information Model and Game Formulation

3.1 On the Complexity of POSG

Information monitoring determines the class of the game to be played between the
attacker and the defender. In a complete information game, the game reward function,
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possible actions, and player identity is common knowledge. However, if players don’t
know all the information about their opponent, then we are dealing with an incomplete
information game. This arises if, for example, the defender does not know the reward
function or the possible strategies of the attacker. In a game of perfect monitoring, each
player fully observes the actions taken by the other players. This is different from a
class of game of imperfect monitoring in which, a player does not know what specific
action is played by his/her opponent after any stage. Therefore, poker is studied under
the latter class of games. A stochastic game is played in a sequence of stages with
the game dynamically evolving from one state to another depending on the actions
taken by all players. The most general framework that combines an evolving game,
with imperfect monitoring is the partially observable stochastic game (POSG). In this
class, the game information is known to both players, however, each player observes
the game evolution and/or his opponent’s actions partially. POSGs are the most general
framework in game theory literature. A single-agent dynamic game resort to a Markov
decision process (MDP). The optimal policy of an MDP can be obtained efficiently
in polynomial time as shown in [20]. On the other side, Conitzer and Sandholm have
shown that hardness of determining whether a pure-strategy Nash equilibrium exists
in a Markov (stochastic) game is PSPACE-hard [9]. Adding uncertainty to an MDP
results in a partially observable MDP (POMDP) where an optimal policy cannot be
obtained in polynomial time anymore. Eventually, the complexity of solving a POMDP
is known to be PSPACE-complete [20]. A POMDP is considered a single-agent POSG.
Goldsmith andMundhenk [13] have shown that extending a POMDP to a noncooperative
multi-agent scenario (i.e., POSG) results in a NEXPNP-complete problem to determine
whether there is a “good” strategy for that game and optimal policy existence problem
associated with POSGs is undecidable [18].

3.2 Game Model

A zero-sum partially observable stochastic game is a tuple (S, A1, A2, O1, O2, T, R, binit)
where S is a finite set of states, A1, A2 are finite sets of actions of player 1 and player 2,
respectively. O1, O2 denote observation sets of player 1 and player 2, respectively. T(o1,
o2, s | s0, a1, a2) is the probability of transition from s0 to s, while observing (o1, o2),
under action profile (a1, a2). R(s, a1, a2) denotes the reward of player 1 under (a1, a2)
at state s, and binit ∈ �(S) is some initial state-belief vector. To study cyber deception
within a POSG we need to define the game components regarding our system model.

Let the defender be player 1 and the attacker be player 2. Assuming that the game is
played over an attack graph G(V, E), where V is the set of nodes and E is the set of edges.
A node represents a vulnerability that can be exploited by the attacker, while an edge
connecting two nodes v1 and v2 means that a vulnerability v2 can be exploited only if
the attacker can reach it through exploiting v1. In other words, the set of edges manifests
the dependencies between the network vulnerabilities based on the network topology.
The attacker decides which vulnerability or a subset of vulnerabilities to exploit. The
defender, on the other side, inserts fake vulnerabilities along the graph edges such as
honeypots to deceive the attacker. The defender decides the locations of the honeypots
to maximize his long-term expected reward. The attacker does not observe the actions of
the defender and vice versa. The state of the game, s, represents the current location of
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the attacker as well as the locations of the honeypots. In other words, the state captures
the joint history of actions taken by the players. However, each player observes the
state partially through observing (o1,o2) instead. As mentioned above, for the general
stochastic game, a no-regret policy is not tractable [13], set aside the partially observable
case. Therefore, in the next section,wediscuss solution approaches for POSGunder some
natural assumptions and relaxations.

4 Game Solving Techniques

In this section, we propose different techniques and approaches to solve POSG formu-
lations for cyber deception. This includes solving POMDP + embedded game approach
[42], and One-sided POSG [29].

4.1 POMDP Embedded Game

In the first approach, we adopt the POMDP game model and leverage the rich literature
of efficient solving algorithms [26]. In this approach, we solely focus on the defender’s
cyber deception strategy to maximize his long-term discounted reward. The attacker is
assumed to have local knowledge about the network structure, and hence she can only
reason about her immediate reward.

V ∗(b) = maxa1∈A1

[
R(a1, b) + γ

∑
b′∈B

τ
(
b′, a1, b

)
V ∗(b′)] (1)

Adopting the conventional POMDP notations, Eq. (1) represents the value function
under the optimal policy that maps the belief space to action space. A key component
of the above equation is the belief update function, τ

(
b′, a1, b

)
. In order to calculate

that function, one needs to know the state transition dynamic as well as the observation
associated with each transition. The state transition model, T

(
s′, a1, s

)
, is known by the

defender.
On the other hand, observations are directly related to the action played by the

attacker. Let O
(
o, s′, a1

) = Pr
(
o|s′, a1, b

)
denote the probability of observing observa-

tion o with the system transitioning from state belief b under action a to state belief b(s′).
Using game-theoretic reasoning, the defender can exploit Nash equilibrium strategies
adopted by the attacker to estimate the probability that the attacker has played a specific
action given any state, s ∈ S. The defender can then calculate the belief update function
as follows:

P(o|s′, a1, b) =
∑
s∈S

P(o|s′, a1, s)b(s)

Where,

P
(
o|s′, a1, s

) =
∑
a2∈A2

P(o|a2, s′, s)P(a2|s′, s)

τ
(
b′, a1, b

) =
∑

{o∈O|SE(b,a1,o)=b′} P(o|a1, b)
for every possible future belief, b′, where SE(b, a1, o), denotes the state estimate
computed as the probability P

(
s′|a1, o, b

)
.
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4.2 One-sided POSG

In the second approach we focus on a class of one-sided partially observable stochastic
games (OS-POSGs). In thismodel, the attacker is assumed to be perfectly informed about
the current state. Along the same lines of POMDP, the belief space is a simplex are over
state space and the value function defined over the belief space is convex. The class
of one-sided POSGs has been studied previously in [27] as Level-1 stochastic games
with incomplete information. Therefore, one-sided POSG’s value function has similar
structure to the value function of POMDPs. Let G = (S, A1, A2, O, T, R, γ) where, S
is a finite set of game states, and O denotes the observation set. The function T(.| s, a1,
a2) ∈ �(O × S) represents probabilistic transition function between states under action
profile (a1,a2). The current state of the game is revealed to the attacker only. The goal is
to find a defense strategy that maximizes the expected discounted reward over an infinite
number of stages. Numerical results showed that active deception significantly enhanced
the security of the network. A strategy that maps the history of actions and observations
for player, i, is called ‘behavioral strategy’ and denoted by, σi.

In OS-POSG, the attacker observes the current state, s. Therefore, his decision rule
at each state, s, is π2 (a2|s), while the defender (player 1) decision rule is not conditional
over the state, and is denoted by, π1 (a1). If player 1 played a1 ∈ A1 and observed o ∈
O, his updated belief τ (b, a1, π2, o) over state future state, s’, can be expressed as:

τ(b, a1,π2, o)
(
s′
) = 1

Pb,π1,π2 [a1, o]
∑
s,a2

b(s)π1(a1)π2(a2|s)T(o, s′|s, a1, a2).

The value of strategy σ1 is

valσ1(b) = infσ2∈�2Eb,σ1,σ2

(
Discγ

)
Where Discγ is the infinite discounted reward, for some 0 ≤ γ < 1. The optimal

value function can hence be expressed as:

V ∗(b) = supσ1∈�1val
σ1(b)

Although we have defined the value function V ∗ as the supremum over the strategies
of player 1 at each the belief point, however finding the value for the given belief is as
hard as solving the game itself. Our approach relies on an alternative characterization
of the optimal value function V∗ to follow the structure of the optimal value function
of a POMDPs. The idea behind this approach is to start with a coarse approximation
V0: �(S) → R of the value function V∗, and then iteratively improve the approximation
by applying the Bellman’s operator H, iteratively, Vi+1 = HVi . One can show that the
function HV resulting from applying H on a convex continuous function V as formulated
above is also convex and continuous. Hence, we can apply the operator H iteratively.
Operator H can be used to approximate the optimal value function V∗. The bellman
operator, H, is a contraction mapping, and hence converges to the unique fixpoint, and
which is the optimal value function V*, therefore [HV](b) leads to the Nash equilibrium
of the corresponding stage game. The described structure of the H operator and the value
function V(b), we can hence adopt POMDP solving approaching such as value iterations
and Heuristic Search Value Iteration (HSVI) for better performance.
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5 Results

To show the efficiency of the developed algorithms in Sects. 3.1 and 3.2, we present
sample results that show the effectiveness of the cyber deception strategies developed
via the proposed POSG algorithms.

First, we present results for themodel introduced in Sect. 3.1, [42]. In this context, the
attacker can only reason his actions based on local information, not the whole network.
However, the defender is solving his imperfect information game with the defender
assuming that the attacker is rational and following Nash strategies at equilibrium for
each subgame (i.e., game stage). For a 7-node network, the defender decides where to
place a honeypot, while the attacker is evading honeypots to stay stealthy as long as
possible and attack real nodes. The defender receives a reward if capturing the attacker
in a honeypot while losses if the attacker escaped honeypots. The defender incurs a cost
for placing honeypots, and there is a cost per attack paid by the attacker. Both players can
choose to stay idle to avoid the cost associated with each action. In Fig. 1, the defender
reward is plotted versus the capture cost. As shown, the proposed deception algorithm
outperforms other schemes. Defender’s reward increases as the capture cost incurred by
the attacker when caught increases. However, if the cost is very high, it forces the attacker
to back off to avoid the high-risk action, the defender reward goes down. Note that, in this
scenario, we mainly focus on the capture reward due to successful deception. As shown
in Fig. 1, a fixed allocation policy does not recognize game dynamics, and hence ignores
all observations that are available through the network monitoring systems, IDS, etc.
On the other hand, random deception strategies do not consider the network structure,
it randomly allocates honeypots as the game evolves.

Fig. 1. Defender reward against capture cost for a 7-node network

For the second approach described in Sect. 3.2 [29], we developed an algorithm for
the OS-POSG. Specifically, a Heuristic Search Value Iteration (HSVI) is used to solve a
OS-POSG game modeling a lateral movement problem. The HSVI algorithm leverage
a double-oracle algorithm for strategy generation [28].

The game is played over a synthesized computer network. The attacker aims to reach
a target node from a source node through the graph edges while minimizing the cost of
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controlling each of the interconnecting nodes. The attacker can gain control over any
of the visited nodes unless countermeasures were taken by the defender, such as the
deception mechanism. Using this mechanism, the defender can discover the attacker’s
locationvia honeypots. InFig. 2,we compare threeHSVI-based algorithms, also showing
the percentage of instances where the algorithms failed to terminate within 2 h are shown
in the bottom. NH is the number of honeypots used, and k is the average node degree.
Figure 2, clearly illustrates the scalability of the developed heuristic defender algorithm.
Our novel algorithms scale several orders of magnitude better compared to the existing
state of the art.

Fig. 2. Number of vertices in the network and confidence intervals mark the standard error.

6 Conclusion

In this paper, we presented a body of work covering cyber deception over attack graphs.
We presented several game-theoretic models considering different information struc-
tures to capture players’ uncertainties. Attack graphs have been used to map out the
network topologies along with vulnerabilities of nodes. We highlighted the computa-
tional complexity of each game model, especially the partially observable stochastic
game model. Solution approaches have been discussed to overcome the intractability of
POSGs under specific conditions. Solution approaches have been implemented to solve
the proposed game models to generate deception strategies that enhanced network secu-
rity. To show the effectiveness of cyber deception using the game model, we presented
sample numerical results. Our ongoing research focuses on implementing the developed
cyber deception in real network settings to refine the model parameters and quantify
the deception overhead. We are extending the game model to account for time-varying
vulnerabilities.
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Abstract. As machine learning (ML) techniques are becoming widely
used, awareness of the harmful effect of automation is growing. Espe-
cially, in problem domains where critical decisions are made, machine
learning-based applications may raise ethical issues with respect to fair-
ness and privacy. Existing research on fairness and privacy in the ML
community mainly focuses on providing remedies during the ML model
training phase. Unfortunately, such remedies may not be voluntarily
adopted by the industry that is concerned about the profits. In this
paper, we propose to apply, from the user’s end, a fair and legitimate
technique to “game” the ML system to ameliorate its social accountabil-
ity issues. We show that although adversarial attacks can be exploited
to tamper with ML systems, they can also be used for social good. We
demonstrate the effectiveness of our proposed technique on real world
image and credit data.

Keywords: Adversarial machine learning · Adversarial attacks ·
Artificial intelligence fairness · Data privacy

1 Introduction

Increasingly, machine learning (ML) models have been deployed in many criti-
cal applications ranging from credit scoring to triaging patients for emergency
care (e.g., [19]). Unfortunately, using ML models for critical decision-making
tasks can raise fairness and privacy concerns. For example, an ML model used
to predict criminal recidivism has been shown to be biased against a certain
subgroup [25]. In other cases, ML models could be used to predict some sensi-
tive information. For instance, it has been shown that ML models could predict
sexual orientation based on Facebook likes and/or profile images [30]. The sexual
orientation information by itself may be sensitive and even the existence of an
accurate ML model could result in significant privacy loss.
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To address some of these issues, there is an active ongoing research on fairness
and privacy in ML. The proposed techniques range from new algorithms that
produce fair ML models (see the survey for more details [8]) to differentially
private machine learning models that protect individual privacy (see the survey
for more details [15]). Unfortunately, most of these techniques require the buy-
in of the organization that is deploying the ML model and may not be easily
leveraged by end users in the already deployed ML models.

Although, some existing privacy regulations such as GDPR [9], if requested,
require ML based decisions to be audited by humans. Still, as the recent research
indicates, it is not always possible for humans to detect potential biases in the
ML models (e.g., [2]) even if the ML decisions are explained using explainable
AI techniques.

In this work, we propose a complementary approach that tries to protect
individual privacy and increase fairness by “attacking” the ML model directly.
In other words, the user may modify some of his/her data, the input to the
ML model, so that the privacy sensitive decisions that could be generated by
the ML model are impacted and the potential bias of the ML model is reduced.
Our approach is based on the observation that many of the ML models are not
robust against adversarial attacks that modify inputs to the ML models (e.g.,
adding background noise to deceive an image classifier). Therefore, such app-
roach can be used to hinder ML models that try to predict sensitive information
and increase fairness by changing “biased” decisions without any cooperation
from the organizations that deploy the ML models.

Compared to traditional adversarial machine learning settings, in this con-
text, we want to make sure that our attacks are ethical and legal. In other words,
it may be illegal to lie about your income in a credit card application but it is
acceptable to get a free checking account from a bank to improve your credit
score. To address this challenge, we carefully define the cost of data modification
in the developed “adversarial” attacks so that illegal, unethical, and unfeasible
modifications are not considered during the “attack”.

The main contributions of this paper could be summarized as follows:

– We provide a framework that improves privacy and fairness without the coop-
eration of the ML model owners.

– Our framework is carefully designed by specifying appropriate cost functions
to only consider data modifications that are legal and ethical.

– We empirically show the utility of this framework in two different applications
(image classification and credit application).

The rest of the paper is organized as follows: in Sect. 2, we discuss the related
work. In Sect. 3, we provide a generic framework that shows how to deploy
adversarial attacks for improving privacy and fairness and show the initiation of
this generic model in two application domains. In Sect. 4, we show the utility
of the proposed framework in two different applications via extensive empirical
evaluation. Finally, in Sect. 5, we conclude with the discussion of our results and
the future work.
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2 Related Work

Adversarial attacks have become a major threat to applications that heavily rely
on the integrity and accuracy of machine learning models. Adversarial learning
has been an active research area for years [4,10,17,21,34,35], but only catches
more awareness as the deep learning technique becomes popular. Recent studies
on adversarial attacks mainly target gradient-based attacks against deep neural
networks for image classification [5,6,13,23,28].

More recently, concerns on adversarial attacks are being raised in other
machine learning application domains such as finance and health care where
modifying data is more restricted by data domain constraints [14,24]. Ballet
et al. [3] demonstrate how adversarial samples can be crafted for tabular data
in the finance domain. They discuss the unique challenge specific to models
trained on tabular data: how to make the modified sample, such as a loan appli-
cation, remain credible and relevant for a potential expert eye? Unlike image
data, tabular features are not interchangeable and less readable. For people with
expert knowledge, only a small subset of features is most critical when making
decisions. Therefore, adversarial attacks should avoid this subset of important
features when modifying samples. An empirical study on tabular data attacks
and their detection and mitigation by model interpretation and reducing attack
vector size has been presented in [16].

The influence of adversarial attacks has also been investigated in the context
where users can game machine learning systems to gain or protect for better
social, economic, moral, and political advantages [18,24]. For example, Protective
Optimization Technologies (POTs) provide the users of machine learning systems
with tools to counter or contest the biases and discriminatory harms caused by
these systems [18]. For dishonest users gaming the system to gain advantages,
such as the approval of a loan application, features critical to the final decisions
can be identified and verified to mitigate this kind of attack against the decision-
making systems [24].

The threat of adversarial attacks in the applications of computer vision,
ranging from self-driving cars to surveillance and security, has become a heated
topic recently. A detailed survey can be found in [1]. For the purpose of poisoning
attacks, backdoors and patches—digital patterns and their physical realizations
deliberately inserted into images to cause misclassification—have been heavily
studied in image classification [12,22,31].

Deep Learning has become the backbone of various face recognition systems
offered by Amazon, IBM, Google, Microsoft and other companies like FacePlus-
Plus. Wang & Kosinski [30] applied Deep Learning to test whether the sexual
orientation of a person can be accurately predicted better than a human pre-
dicting it. They claim that upon transfer learning with VGGFace, they are able
to predict sexual orientation with a better accuracy than the human. In wake of
such claims, it becomes imperative to be able to safeguard sensitive attributes
identifiable from images from such black box models. One such approach is using
adversarial examples for good as done by [27]. They have used DCGAN to gen-
erate glasses to fool the state-of-the-art face recognition systems. They have also
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proposed a general framework where anyone can train their model with a set of
generator and a discriminator to create adversarial examples that can fool any
machine recognition systems of choice for face images.

Our work is different from these major lines of research in that our “attacks”
are strictly constrained to the set of feasible instances to which a user data profile
can be legitimately modified to achieve fairness and protect privacy. In addition,
we take into account the cost of data modification so that changes made to the
data would be most feasible and least expensive to the end user. Our objective
is to legitimately “attack” the system to mitigate its inherent biases with the
least disruption to both parties that must adhere the terms of the contract.

3 Modeling Socially Good Adversarial Attacks

Given a machine learning model f , an instance (x, y) where x is the feature
vector for the instance (e.g., a vector of real numbers representing an image)
and y is the class value (e.g., y = ‘Heterosexual’). x can be modified to x′ by the
user such that

arg minx′ c(x, x′)
subject to x′ ∈ Fx, f(x′) = t (1)

for a set of feasible instances Fx, cost function c that measures the cost of
modifying the original instance x by the user, and the desired target class t.

It is important that the instance x′ can only adopt modifications that are
ethical. Therefore, for a given context, we want to make sure that the set of
possible modification Fx is carefully defined. For example, in the case of image
processing, we may want to find x′ so that the changes to x can be done by
adding “eyeglasses”. In other words, we may want to make sure that by putting
a pair of eyeglasses to an image, a ML model that predicts sexual orientation
can be fooled without significantly changing the overall image.

In other domains, there may be other constraints. For example, for a credit
card application, it may be illegal to lie about your income. At the same time,
opening a new free checking account may be a totally valid and ethical change,
especially if this change improves the chance of getting the credit application
approved. Therefore, it will be crucial to define the Fx correctly in different
contexts.

In addition, to correctly identify Fx, we need to carefully define the cost
function c that guides the modification. For example, in credit card application,
reducing the existing debt to income ratio may help with the application but it
may not be feasible due to the associated monetary cost.

Finally, the attack target t should be carefully designed. For example, for
credit application, the t could be the “approved” status. Below, we discuss how
our framework could be applied in two important application domains: image
classification and credit application evaluation.
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3.1 Ethical and Practical Adversarial Attacks for Image
Classification

In the case of image classification, we would like to achieve multiple goals. First,
we would like the modifications to be concentrated on only certain parts of the
images. For example, we may want the modification to be able to printed on a
face covering that is commonly worn during covid-19 pandemic. Alternatively, we
may want to consider modifications that can be printed and shown on eyeglasses.
Therefore, we require the modification to be part of a set Xm (i.e., modifications
concentrated around the eye of the user). In addition, we would like to make
sure that the modification ε is bounded appropriately in some norm.

arg minε f(x + ε) = t

subject to ‖ε‖ ≤ δ, ε ∈ Xm (2)

3.2 Ethical and Practical Adversarial Attacks for Classification
with Discrete Attributes

In many domains such as credit application, many of the attributes could be
discrete. In addition, due to legal and ethical concerns, we may want to avoid
changing certain attributes. In such settings, for each attribute k that could
be legally modified, we define the cost of those feasible modifications via cost
matrix Ck

i,j . For attribute k, keeping Ak
i the same has zero cost (i.e., Ck

i,i = 0).
On the other hand, infeasible modifications would have cost of infinity ∞, and
the remaining modifications could be assigned appropriate cost value Ck

i,j (i.e.,
cost of changing attribute Ak

i to Ak
j ). For example, if the credit applicant has no

cell phone, getting a cell phone could be a costly but a feasible transformation.
On the other hand, getting rid of the cell phone subscription may not be feasible.

Using these observations, we can rewrite Eq. (1) as follows:

arg min⋃K
k=1({ik,jk})

∑K
k=1 wk · Ck

ik,jk

subject to f(M(x)) = t

where M represent the set of modifications that is applied to each attribute (i.e.,
M =

⋃K
k=1({ik, jk})), K is the total number of attributes, and wk is the relative

weight of the attribute.

4 Experiments

In the next two Sects. 4.1 and 4.2, we present the experimental results on the
CelebA dataset and the German Credit dataset that illustrate how our proposed
framework can be applied in practice.



462 V. Belavadi et al.

4.1 Methodology and Experimentation for CelebA Dataset

Dataset Creation
We train our image classifier on a subset of data from the public CelebA dataset
[20]. CelebA dataset is a large scale face-attribute dataset of 202,599 face images
from 10,177 celebrity identities with large pose and background variations. The
CelebA dataset is richly annotated with 5 landmark locations and 40 binary
attributes like ‘Arched Eyebrows’, ‘Eyeglasses’, ‘Gender’, ‘Smiling’, ‘Wearing
Hat’ etc. We preprocess our training dataset by first extracting 68 facial land-
marks using the dlib features from the target image. If an image has no dlib
features: either because the image has no facial landmarks or because the face
is too small to be detected, we eliminate the image. We then scale the image for
convergence during the training process. We also augment our dataset to con-
sider rotation, random cropping, and horizontal flip variants of the same image.
By data augmentation, we intend to artificially increase the data size and thus
ensure our target model is generalizable on real data. Figure 1 demonstrates the
different image augmentation techniques used. For each original image, we use
four augmented images for the training process.

Fig. 1. Data augmentation used to improve classifier accuracy.

Model Training
For our experiments, we have chosen the concept of Gender to train and generate
our ethical adversarial examples.1 We trained our gender model with 20,000 male
and 20,000 female examples using transfer learning [33] on the VGGFace model
with VGG16 architecture [29]. We chose to transfer learn on the VGGFace model
as it has been trained on 2.6 million faces of 2,622 celebrities and hence can
robustly extract the high level facial features from our images. In our custom
model, we first extract the model features from the penultimate layer in our
model. We do so by freezing the blocks (specifying their learning rate to be 0).

1 Although the gender information is not privacy sensitive, we use this as a substitute
for more privacy-sensitive concept such as sexual orientation.
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These features are then fine-tuned and further trained by passing them through
the final convolution block and the three custom convolution blocks defined
on top of it. The final convolution block has relatively smaller learning rate
for fine-tuning purposes compared to the custom convolution layers. We train
our model using softmax loss. For comparison purposes, we have also trained a
gender model on the inception v3 architecture, though our adversarial attacks
will be primarily on our custom VGG16 model. Table 1 presents the training and
validation accuracy of the VGG16 and the inception v3 architectures. As can be
observed, the gender concept is successfully learned for the CelebA dataset.

Table 1. Determining gender on the basis of the image

Model f train acc f val acc

inception v3 model 97% 93%

VGG16 model 94.75% 94.44%

Attack Mechanism
We use the attack mechanism developed in [26] to attack the gender concept
using the artifact of eyeglasses. We first align our data sample to be attacked
using target landmarks (canonical pose marks). Once the data is aligned, we
choose good candidate images for attack and preprocess them. In our setting, an
image is a good candidate image if 1) it is classified correctly without any per-
turbation and 2) the difference in probability between the correct and incorrect
classes is more than 3%. We chose the 3% threshold as we want the classifier to
be able to confidently predict the class better than random guessing (50% prob-
ability). 3% ensures that the winning probability of the correct class is 51.5%
and the other class is 48.5%. We then normalize our images by subtracting the
standard normalization constant from them.

Fig. 2. Random color initialization of our artifact

To satisfy the constraint based nature of our attack, we perform modifications
only on our artifact (eyeglasses) added to the face. We ensure this by limiting
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perturbation area on the artifact’s location on the image. In the case of our arti-
fact, i.e eyeglasses, we focus around the eyes in the specific location of eyeglasses.
Before performing the attack, we first initialize our artifact (eyeglasses) to a set
of random starting colors to provide an “easy” starting point for perturbation.
If any of the starting colors causes change in the original classification, we hold
on to that specific initialization for our attack, else we randomly choose one
from the set. We show an example of initialization in Fig. 2, where we have the
eyeglasses artifact before and after initialisation. Given the exact location of our
artifact, we selectively normalize the gradients by replacing them with 0 in non-
artifact areas of the input and normalizing them with respect to the maximum
gradient value otherwise. Once our gradients are normalized, we then perturb
them by taking a small step-size in the direction of the gradient. We keep adding
the perturbations to the gradient till we flip at least half of the images of the
batch. Since we previously initialized the gradients of non-artifact based areas
with 0, we guarantee to perturb only the gradients of the artifact region. For
this experiment, we chose 279 female candidate images and 266 male candidate
images. In both cases, we were able to successfully attack all the chosen images
and achieve an attack success rate of 100%. Some of the adversarial examples
and their corresponding base images are shown in Figs. 3 and 4.

Fig. 3. Examples of base images

Fig. 4. Examples of adversarial attack images with glasses

Our results indicate that the adversarial attacks in the context of image
classification can be easily used to hide sensitive information (e.g., gender infor-
mation) that can be inferred by the image classification models.
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4.2 Methodology and Experimentation for German Credit Dataset

Dataset Creation
For evaluating our framework on discrete data, we chose Statlog (German Credit
Dataset) [11]. The German Credit dataset has clearly defined attributes with
respect to the ground truth. The dataset, however, is highly imbalanced with
70% of the attributes being good credit and 30% being bad credit and this
imbalance needs to be handled with over/under sampling techniques. For the
preprocess step, we encode the categorical features with one-hot encoding and
normalize the numerical attributes. After the preprocessed data is fed to the
pipeline, we handle the data imbalance by first over-sampling using SMOTE [7]
and then under-sampling using the Edited Nearest Neighbours [32] technique.
We train our models on this pipeline using 10-fold cross validation. Table 2 lists
the best case validation accuracy of the select ML models on the German Credit
dataset:

Table 2. Complete training data balanced with SMOTEENN

Classifier Validation accuracy F1 score

RandomForest 76% 84%

AdaBoost 73% 82%

XGBoost 75% 84%

SVM 75% 83%

RidgeClassifier 72% 80%

Attack Mechanism
We choose 125 samples from the original test data that have been correctly classi-
fied as “Bad Credit”. Our objective is to find the minimum cost multi-attribute
change that will flip the classification of our examples to “good credit”. We
start by changing only one attribute at a time. After that we keep adding other
attributes to be changed simultaneously. For example, in our first pass, we mod-
ify only attribute i1 and record which samples change their classification. In the
second pass of our algorithm, we change attributes i1 and i2 together and record
the flipped samples. In the nth pass, we will be changing n attributes i1 . . . in.
We are only allowed to change an attribute from one of it’s legitimate domain
values to another. At each pass, we also record the transformation tuple set that
caused target classification. Suppose we are changing two attributes i1 (with
subclasses j and k) and i2 (with subclasses m and n). A possible transformation
instance for n = 2 attributes may look like: ((Ai1

j , Ai1
k ),(Ai2

m, Ai2
n )). We discuss in

detail about our cost functions for feasible transformations in the next section.
A transformation tuple based attack is similar to the adversarial example

creation for images, in the sense that we cause imperceptible changes to the
pixel values of our image to change the classification of our model. The differ-
ence between the two is that in the discrete scenario we change our data one
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attribute at a time: initially changing one attribute and recording if the classifi-
cation changes, then, changing two attributes simultaneously and recording the
classification change and so forth. Our algorithm is model agnostic and does not
depend on the ML model’s internal loss function formulation to work.

In this setting, we define the feasible instance space that includes only the
following six modifiable attributes: Duration, Credit amount, Purpose, Savings,
Other installment plans, and Telephone. Since our algorithm involves multi-step
multi-attribute change, the order of attribute change has impact on both speed
and efficacy. We prefer the more sensitive attributes (attributes that easily cause
change in the classification) to be changed early in our algorithm to ensure that
we have the minimum attribute change for our examples. A simple way to decide
the sensitivity of the attributes is to change each of the attributes individually
and see which attributes have the highest attack success rate. Table 3 shows the
attack success rate for our six attributes ordered from the highest success rate
to the lowest success rate.

Table 3. Success rate of flipping classification result when one attribute is changed
(out of 125)

Attribute Attack success rate

Purpose 20%

Duration 10.4%

Savings 8.8%

Credit amount 6.4%

Telephone 4.8%

Other installment plans 4%

Given the ordering of the attributes as shown in the table above, we run the
multi-pass attack. We store those transformation tuples that cause the model
to flip classification from “Bad” credit to “Good” credit. Table 4 gives us the
attack success rate when we change more than one attribute. As we can see in
the results, as the number of attributes changed increases, the attack success
rate also increases. When we change six attributes, our attack success rate is
90%. However, this doesn’t capture the cheapest possible attribute change for
any given example which will be described in the next section.

Cost Formulation
Given a list of transformations that can be performed on an example, we also
have the constraint that our attribute-changes should be drawn from a pool
of feasible and ethical attribute modifications. To get a list of feasible trans-
formations for each of the attributes, please refer to the appendix. To address
the feasibility of individual attribute changes, we formulate a cost matrix C
and assign a cost penalty to every attribute change. This cost penalty will be
extremely large (close to infinity ∞) to discourage certain attribute change and
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Table 4. Success rate of number of examples flipped (out of 125)

Num attr changed Attack success rate

2 52.8%

3 60.8%

4 69.64%

5 80.8%

6 90.4%

certain sub-attribute changes. For other changes, the cost matrix formulation
assigns small non-negative float value (between 0 and 1) as the cost. For exam-
ple, for attribute i (with three subclasses j, k and z), the feasible attribute
changes are: j to k, k to z, then Ci

j,z, Ci
z,k, Ci

k,j and Ci
z,j are all ∞ since they

are infeasible changes. We also assign a weight wi to each attribute i to weigh
the influence of that particular attribute in our cost formulation. Assume, each
example e can have a set of transformation tuples M = (m1,m2, ...) such that
f(M(x)) = t, where t is good credit. Given our cost formulation mechanism,
(C and w), the cost required to get a classification flip from bad credit to good
credit is arg min⋃K

k=1({ik,jk})
∑K

k=1 wk · Ck
ik,jk

, where K is the total number of
attributes. We have three different cost formulation mechanisms for C and w
that will be discussed below.

To understand the impact of the cost function, we experimented with three
types of cost functions for the cost matrix formulation of attribute change. In
all the three formulations, the infeasible attribute changes are assigned ∞ cost.
The first cost function f1 treats every feasible attribute change as equal. For
example, if in one of our transformation tuple M , we are changing attribute i
from subclass j to subclass k and attribute l from subclass m to n, then our cost
function will ensure Ci

j,k = Cl
m,n and wi = wl. The second cost function f2 treats

different attribute change differently, however each individual attribute will have
a fixed cost for changes within the sub-classes. Going back to our example of
attribute i with three subclasses (i, j and z), if the feasible modifications for
i are j to k, and k to z, then Ci

j,k = Ci
k,z. However, for different attributes

i and l, Ci
j,k �= Cl

m,n and wi �= wl. The third cost function f3 treats every
attribute and sub-attribute change independently. The motivation behind this
cost function formulation is that it might be easy to move between specific
changes in sub-attribute classes for the same attribute class compared to others.
So in the third case, Ci

j,k �= Ci
j,z, Ci

j,k �= Cl
m,n and wi �= wl. Figure 5 shows

the relationship between minimum attributes required to be changed and the
percentage of examples that can be flipped. We have plotted this comparison
for our three different cost formulations. As we can see the distribution of the
percentage has flattened with the introduction of variable weighting component
into cost function formulation. Figure 6 gives the percentage of examples flipped
as a function of the maximum cost possible (i.e., the maximum allowed cost
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of changing all the feasible attributes without considering transformations with
infinite costs). The fixed cost formulation has a very bumpy and uneven plot. As
we introduce attribute weighting and non-uniform cost formulation for attribute
changes, the graph becomes more smooth. As expected, as the “transformation
cost” increases, more of the instances can flipped.

Fig. 5. Percentage of total attributes flipped vs min. attributes changed)

Fig. 6. Percentage of total attributes flipped vs percentage of maximum cost
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5 Conclusion

In this paper, we present an approach to protecting individuals’ privacy and
fair opportunity by encouraging the end user to “game” a machine learning
system in a legitimate manner. The idea is adapted from the adversarial learning
problem that studies the vulnerability of machine learning systems to adversarial
attacks—modifying data to foil the learning system. By incentivizing positive
changes to the user’s data profile, we can “convince” the learning system to make
a different but fairer decision. If used properly, we show that this hostility against
machine learning systems can become a powerful tool at the end user’s disposal
to protect and improve privacy and fairness. Our empirical results indicate that
this idea can be successfully used, in a constrained way, to protect individuals
against potentially harmful biases embedded in ML systems.

Appendix A

We consider the following attributes to change in our German Credit data:

1. Purpose: For getting the loan ex. car(new), car(old), repairs, education, etc.
2. Duration: Increase/decrease the duration (in months) to see the change in

granting loan.
3. Credit amount: Increase and decrease the credit amount granted as a matter

of percentage of original amount. ex: 1.05x, 1.10x, 0.90x, 0.85x where x is the
current amount.

4. Savings account/bonds: Change the number of savings and bonds from None
(A65) to ‘...100 DM’ (A61).

5. Other installment plans: Change from None (A143) to Bank/Store
(A141/A142).

6. Telephone: Change the ownership of telephone from None (A191) to registered
in user’s name (A192).
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Abstract. This paper reviews a series of works done on the multi-agent
perimeter defense scenario, in which a team of intruders try to score by
reaching the target region while a team of defenders try to minimize the
score by intercepting those intruders. We describe how the small-scale
differential games are solved and are leveraged to design team strate-
gies in the large-scale swarm versus swarm scenarios. Three different
approaches to analyze the large-scale games (MM, MIS, and LGR) are
introduced with comments on their relative strengths and weaknesses. As
a unique contribution of this paper, we discuss how the existing results
can be extended into more general problem formulations. Furthermore,
we point out the limitations of the current work and suggest potential
directions for future research.

Keywords: Pursuit-evasion games · Multi-agent systems ·
Cooperative control · Reach-avoid games · Perimeter defense

1 Introduction

Multi-robot systems (MRS) have gained significant attention in the past few
decades. Since MRS are naturally robust due to their redundancy, and are also
able to distribute into large areas, there are various application spaces that are
anticipated. Of particular relevance to this paper is a class of scenarios related
to security and defense applications. Specifically, we discuss a scenario in which
a group of defenders is tasked to protect a region from a group of intruders.

Since we are concerned with two parties with conflicting objectives, the study
of effective strategies naturally fits into game-theoretic analyses. The problem
which we call the perimeter defense game considers a scenario where intruders
try to reach the perimeter of a target region without being intercepted by the
defenders, whereas a team of defenders seek to intercept or capture those intrud-
ers before they reach the perimeter. This is a variant of pursuit-evasion games
for which various versions of one pursuer vs. one evader scenarios have been
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considered, and the differential-game approach has been applied successfully to
derive equilibrium strategies [1,16].

In the past decade, there have been increasing efforts in solving pursuit-
evasion games that involve multiple pursuers or multiple evaders. When the
game is set up so that a group of agents faces a single opponent, the optimal
solution leads to coordination strategies for the group. There are works that look
at the problem from the perspective of the pursuers [29,30,35], and also those
that consider the problem from the evaders’ side [6,12,24].

The derivation of the optimal strategies becomes more challenging when the
game is played between teams of agents: i.e., multiple pursuers and multiple
evaders [11]. The main challenge is in the dimensionality of the state space that
prohibits us from naively applying the differential-game techniques. Similar to
other multi-agent problems, the Voronoi tessellation has been widely employed
to reduce the large-scale problems into a local area-minimization problem, or to
assign pursuers to evaders [15,18,20,39].

When there is a target region to be protected, the problem becomes a vari-
ant of the target guarding problem, originally introduced in [16]. A version of
this problem is called the target-attacker-defender game [9,17,22], which has
relevance to missile guidance applications [9,21]. A similar scenario is also called
the reach-avoid game [5,37,38], and it has been studied in many different variants
[2,3,14,34–36], including coast-line guarding or boarder defense [7,10,13,31], and
three-dimensional environments [8,33].

Target 

Intruders 

Defenders 

Fig. 1. Illustration of a perimeter defense game. Multiple intruders are approaching
the target, while the defenders are tasked to intercept them.

This paper is concerned with the perimeter defense game, which is a variant of
the target guarding problem where defenders are constrained to move on a convex
target region [25–28]. This additional constraint leads to convenient closed-form
solutions, as well as their interesting geometric interpretations. Moreover, the
problem has high relevance to scenarios involving ground vehicles defending a
building, or aerial vehicles patrolling around a no-fly zone.
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This paper serves as an overview of various results and developments pre-
sented in our previous publications [25–28]. After formulating the perimeter
defense problem in Sect. 2, we review solution methods and the associated results
in Sect. 3. The potential extensions and generalizations of those results are con-
sidered in Sect. 4. Finally, Sect. 5 discusses the limitations in the current work
and suggests directions for future research.

2 Problem Statement

We consider planer dynamics of point particles representing NA intruders and
ND defenders. The symbols A and D are reserved to denote the intruders and
the defenders respectively. The agents all have simple dynamics (i.e., first-order
integrator), implying that they can change their velocity instantaneously, and
this velocity vector is the control variable for each agent. Without the loss of
generality, the intruders and the defenders have bounds on there speed, ν and 1,
respectively. The parameter ν has a constraint ν ≤ 1, implying that the intruders
are at most as fast as the defenders.

We make the following assumptions: (A1) the defenders move along the
perimeter of the target region; (A2) the target region is convex; (A3) each agent
has access to full-state information (i.e., positions of all agents); and (A4) inter-
cept or capture occurs when the distance between the intruder and the defender
becomes zero.

Viewing the game from an individual intruder’s perspective, either one of the
following three happens: (i) it reaches the perimeter without being intercepted
by any of the defenders (ii) the distance with the defender becomes zero when
it reaches the perimeter, or (iii) it does not reach the perimeter in finite time.
The third case is caused by the defender’s maneuver to place itself between the
target and the intruder. Therefore, we define both (ii) and (iii) as capture. Any
intruder that achieves the outcome (i) will score a point.

Viewing the game in the team vs. team level, the objective function Q is the
number of intruders that score, i.e., reach the perimeter without being captured
by the defenders (outcome (i) above). The intruder team seeks to maximize
Q while the defender team seeks to minimize Q. The problem is to find the
equilibrium strategies that give

min
Γ D

max
Γ A

Q = max
Γ A

min
Γ D

Q,

where Γ D and Γ A denote the defender and intruder team strategies respectively.

3 Solution Method

A common approach in the variants of the multi-player target guarding problem
is to leverage the results of the games played between a small number of play-
ers. The low-level velocity control strategies obtained in this small-scale game
are combined with the high-level assignment policies to design the team-level
strategies.
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3.1 Agent-Level Control Policy

One vs. One. The smallest problem is the game played between one defender
and one intruder. The key result that we need from this small-scale problem
is the solution to the game of kind, which consists of the barrier surface and
the corresponding control strategies. The barrier surface divides the state space
into two regions: the intruder-winning region and the defender-winning region.
If the initial configuration of the game falls in the intruder-winning region, then
the intruder has a strategy to score, whereas if the game starts in the defender-
winning region, then the defender has a strategy to guarantee capture.

To derive the barrier surface, one can consider a game of degree in which the
payoff J is defined as the distance between the defender and the intruder at the
time of breaching, i.e., when the intruder reaches the perimeter. The intruder
tries to maximize this distance while the defender tries to minimize it. If an
equilibrium exists, the Value function is defined as

V = min
ωD

max
vA

J = max
vA

min
ωD

J, (1)

where ωD denotes the defender’s control on a one-dimensional space, and vA

denotes intruder’s velocity. Once the equilibrium strategies ω∗
D and v∗

A are
derived, the Value V is a function of the player positions, and the barrier surface
can be identified as the level set V = 0.

1

ν

θ

φ

(a) (b)

A

D

A

D

Fig. 2. Construction of the intruder strategies. (a) For circular perimeters, circles scaled
by ν are used. (b) For non-circular perimeters, the approach angle φ is used.

The barrier for a circular perimeter was first derived in [25] using geometric
approach, and later verified with differential game approach in [32]. The equilib-
rium defender strategy is to simply move in the direction of the intruder. Using
the polar angle shown in Fig. 2, the equilibrium defender strategy is

ω∗
D = sign(θ).

The intruder’s equilibrium strategy is to move towards the tangent point on a
circle scaled by the speed ratio ν [25,32].

The above defender strategy for the circular perimeter is almost trivial since
any intruder position that gives θ = 0 clearly defines the “front” of the defender’s
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position. When considering a non-circular perimeter (e.g.., polygon), this surface
that divides the left and the right side from the defender’s position is not immedi-
ately obvious. In addition, the intruder strategy can no longer be parameterized
by the polar angle.

In [26], these issues are addressed by parameterizing the intruder strategies
based on the approach angle, which is defined by the angle between the intruder’s
direction of motion and the tangent vector of the curve at the breach point. The
optimal approach angle was derived to be

φ = cos−1 ν.

This result tells us that the intruder should approach the tangent point on the
target when ν = 1, whereas it should approach the closest point on the target
when ν → 0. It is easy to verify that this result matches with the special case
where the target is circular.

The barrier is also obtained for the case when the perimeter is some arbitrary
convex shape [26]. A convenient way to visualize the barrier surface is to look
at the slice of the state space at a particular defender position. Then the barrier
for that particular defender position is shown as a closed curve that completely
surrounds the target region (Fig. 3a).

(a) (b)

Target

Target

Ba
rri
er

Ba
rri
er

Fig. 3. Contour of the value function and the barrier curve for a non-circular perimeter.
The region enclosed by the barrier is the intruder-winning region, and the region outside
is the defender-winning region. (a) One vs. one game. (b) Two vs. one game.

The results obtained in the above accommodate any value of the speed ratio
ν ∈ (0, 1], however, the result for the case with ν = 1 lends itself to a nice
geometric interpretation. Firstly, the intruder’s equilibrium strategy is to move
towards the tangent of the target region (for both circular and non-circular
perimeters). Secondly, the barrier curve is constructed by pieces of geometry
called the involute. An involute of a convex shape is the locus of a point on a
piece of taut string as the string is either unwrapped from or wrapped around
the shape. In our case, the shape of interest is the target region.
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Two vs. One. To consider an explicit form of cooperation among the defenders,
we extended the one vs. one results into a game played between two defenders
and one intruder [25,26,32]. Since the intruder must avoid both defenders, the
optimal breach point against one defender may be suboptimal against anoteher
defender. Depending on the configuration, the safest breach point now becomes
either the optimal breach point against the closer defender or the mid-point
between the two defenders. The defender pair’s optimal strategy is to approach
the intruder from both sides, which we call the pincer movement. Importantly,
the defender-winning region provided by the pincer movement is larger than the
union of the winning regions provided by the individual defenders [25,28,32].
The barrier derived for the two vs. one game has a greater implication beyond
the additional consideration in the assignment strategy. The intruder-winning
regions for the two vs. one game gives us a way to directly analyze an arbitrary
size of the game played between nD defenders and nA intruders, which will be
discussed at the end of Sect. 3.2.

3.2 Team-Level Coordination Policies

The results from small scale games are used to develop team strategies when
there are ND defenders and NA intruders. Let Q denote the number of intruders
that reach the perimeter without being captured. Let the team strategies Γ D

and Γ A denote the mappings from the current states (positions of all the agents)
to the control actions ωD = [ωD1 .., ωDND

] and vA = [vA1 ..,vANA
] respectively.

The large-scale game uses this score Q as the payoff function, which the defender
team minimizes and the intruder team maximizes. If an equilibrium exists, the
Value function is

Q∗ = min
Γ D

max
Γ A

Q = max
Γ A

min
Γ D

Q. (2)

The goal is to find the equilibrium team strategies (Γ ∗
D,Γ ∗

A) and the Value Q∗.
Since directly solving this large-scale game is very challenging, various

approximation methods have been proposed. We describe three approaches in
analyzing the multi-player games represented by: maximum matching (MM),
maximum independent set (MIS), and the local game regions (LGR).

Man-to-man Defense. The results of the one-defender vs. one-intruder game
immediately leads to a naive coordination strategy for the defender team. We
can assign each defender to an intruder that it can capture, i.e., one in the cor-
responding defender-winning region. What we must avoid in these assignments
is any overlap in the defenders or the intruders. More specifically, we must not
assign a single defender to multiple intruders, since capture is only guaranteed
against one intruder. In addition, we must not assign multiple defenders to a sin-
gle intruder, since such redundant assignments will reduce the overall number of
capture, leading to a higher score.

The optimal assignment of defenders to intruders in the man-to-man defense
framework is provided by matching in graph theory. Considering a bipartite
graph, where one set of nodes represents the defenders and the other represents
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the intruders, we draw edges from each defender to all the intruders that it can
capture. By performing maximum-cardinality matching (MM) on this bipartite
graph, we obtain the optimal man-to-man defense that gives us an upper-bound
on the score

Q∗ ≤ QMM = NA − NMM, (3)

where NMM denotes the number of matches.
This general approach was originally proposed in [3,4], and it has been

applied to other variants of the problems [25,36]. Due to its simplicity, there
is a potential for application to many other scenarios, which will be discussed
further in Sect. 4.1. The downside of this approach is that this naive coordination
strategy does not account for a tighter cooperation that can happen between the
defenders or the intruders. The cooperation between the defenders was incorpo-
rated by leveraging the result of two-defender vs. one-intruder game.

Two-on-one Defense. A naive extension of the maximum-cardinality matching
approach is to incorporate the results of the two vs. one game by assigning
pairs of defenders to intruders. We are tempted to simply augment the bipartite
graph with nodes representing the pairs of defenders, and adding edges from
each defender pair to all the intruders that it can capture. However, we cannot
perform maximum-cardinality matching on this bipartite graph since a node
representing a single defender and one that represents a pair may share the
same defender, which leads to an overlapping assignment.

To circumvent this problem, we can construct a new graph in which each
node represents an assignment in the original graph, and the edges represent
any conflict between the assignments: i.e., whenever two assignments share any
defender or intruder, they are connected. By solving the Maximum Independent
Set (MIS) problem on this transformed graph, we obtain the set of assignments
without any overlapping defenders or intruders. This assignment method guaran-
tees that the number of capture is greater than the one provided by the maximum
matching, i.e., the provided upper bound is tighter:

Q∗ ≤ QMIS = NA − NMIS ≤ QMM, (4)

where NMIS denotes the cardinality of the maximum independent set. However,
the down side of this method is its computational complexity. Since MIS problem
is NP-hard, it does not scale well with large number of agents. An improvement
over the MM and MIS approaches is presented next.

Local Game Decomposition. As was mentioned in Sect. 3.1, the barrier curve
for the two vs. one game leads to a stronger coordination policy beyond two-on-
one assignments. Consider a specific pair of defenders and the intruder-winning
region that it defines (Fig. 3b or Fig. 4). We call it the Local Game Region (LGR)
as it leads to a region-based decomposition method [28].

The results of the two vs. one game tell us that the nk
A intruders contained in

this LGR can win against the defender pair, by approaching near the mid-point.
Additionally, this result implies that any defender outside of this LGR cannot
capture any of those intruders. Therefore, only those nk

D defenders contained
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Fig. 4. Local game regions (LGRs) and the associated subteams. (a) An LGR that
contains three intruders and two defenders. (b) The intruder team’s optimal selection
of the LGRs, G∗, leading to the overall score of Q = 3.

in the LGR can possibly contribute to capture. If the intruders have a local
numerical advantage, i.e., qk = nk

A − nk
D > 0, then the intruders can achieve a

score of qk. The subscript k denotes the indexing of the defender pairs, or the
LGRs.

Now, the intruder team can maximize the guaranteed score by intelligently
selecting the set of LGRs in which they play the local game [28]. Let G denote
the set of disjoint LGRs, then the intruder team can consider the following
optimization problem:

QLG = max
G

∑

k∈G

q′
k, (5)

where q′
k = max{0, qk}.

Theorem 1 (From [28]). Let Γ ∗
A denote the intruder strategy corresponding to

the teaming into G∗ and then playing the two vs. one game against the defender
pair associated to each LGR. The strategy Γ ∗

A guarantees

Q∗ ≥ QLG (6)

for all permissible defender strategies. �

Importantly, this is the first result in the team-level coordination policy that
gives an intruder team strategy and a corresponding lower bound on the score.
In [28] we also propose a defender team strategy Γ ∗

D based on the local game
decomposition. The strategy first removes any uncapturable intruders based on
the result of Theorem 6. Then the two-on-one defense are assigned to intruders
that are near the boundary of the LGRs with the score qk = 0. Intuitively,
this assignment is used to ensure that no additional intruder enters the LGRs
that already has an equal number of intruders and defenders, which we call
the occupied LGRs [28]. Finally, one-on-one defense is assigned to the remaining
agents. In [28], we explain how this strategy accounts for the sequence of captures
that occur in time, in contrast to the MM and MIS approaches that are ignorant
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of such dynamical aspects. Finally, [28] discusses the class of initial configurations
from which the following relationship is guaranteed

Q(Γ ∗
D,Γ A) ≤ Q(Γ ∗

D,Γ ∗
A) ≤ Q(Γ D,Γ ∗

A), (7)

which implies that the strategies are at an equilibrium.

4 Extensions and Generalizations

This section discusses potential extensions and generalizations of the results
described in the previous section.

4.1 Assignment-Based Defense Policies

The solution method involving the one vs. one results and the maximum-
cardinality matching (MM) gives us a generic framework to solve various swarm
vs. swarm problems. An immediate extension of the perimeter defense prob-
lem is the engagement between intruders and defenders that can move in three-
dimensional space. A similar problem has been considered for agents that can
freely move in three-dimensional space, with target region defined as a plane [33].

A direct extension of the perimeter defense scenario is the hemisphere guard-
ing problem, in which defenders that move on a hemisphere seek to intercept
aerial intruders. An initial step to solve this problem is presented in [23], where
one vs. one engagement between an aerial defender and a ground intruder is
considered. This is an intermediate step towards intruders that can freely move
in three-dimensional space. Once we have the barrier surface from this small-
scale problem, we can determine whether the intruder is capturable or not for
every defender-intruder pair. This information allows us to convert the design of
strategies in continuous velocity space into a matching problem, as was discussed
in Sect. 3.2.

Heterogeneous Speed. The assignment approach also extends to teams with
heterogeneous capabilities. For example, defenders may have various speed lim-
its. In this case, the barrier surface will be different for every defender. How-
ever, this variation does not affect the assignment method, since all we need
in the high-level matching algorithm is the pair-wise information of whether
a given defender can capture a given intruder or not. Similarly, the intruders
may have different speeds without affecting the overall solution method. It is
worth noting that the closed-form solution for the one vs. one game provided
in our work becomes useful in the presence of these speed variations, since the
required win/loss information can be obtained computationally efficiently. When
the numerical approach with HJI PDE is used (as in [3,4]), the extension becomes
more challenging because the barrier surfaces for all possible values of ν have to
be computed a priori and be stored to be used as a look-up table.

Intruder Weights. Another immediate extension of the assignment based app-
roach is the case when different intruders carry different weights in terms of the



A Review of Multi Agent Perimeter Defense Games 481

damage they incur when the perimeter is breached. For example, the threat level
of each intruder may be described by some weighting factor. In this case, the
maximum cardinality matching will be modified to a Linear Sum Assignment
Problem that can be solved by the well-known Hungarian Algorithm.

MIS Approach. The solutions to the two-defender vs. one-intruder game were
used to improve the defender team’s performance by considering explicit cooper-
ation among pairs of defenders. A similar approach will apply for other problems
if any n-defender vs. m-intruder subproblem is identified and solved. In the trans-
formed graph, each node represents an assignment of a team of n defenders to
a group of m intruders, and each edge represents a conflict. Each node (assign-
ment) also carries a weight based on the number of intruders or their weighted
sum according to the relative threat level as was discussed with intruder weights.
Each edge represents a conflict whenever two different assignments contain the
same defender or the intruder. By finding the Maximum-weight Independent
Set on this graph, we can optimize the defender to intruder assignments that
account for explicit cooperation.

4.2 Cooperative Intruder Strategies

The tasks given to the defender team and the intruder team are fundamentally
different, and it is easy to see that the assignment-based approaches do not work
well for the intruder team. More specifically, each intruder cannot simply select
a single defender and play a one vs. one game against it. Instead, an intruder
has to avoid all defenders in order to reach the target and score a point. This
asymmetry makes it difficult for us to design a cooperative team strategy for the
intruders.

The decomposition method using the local game regions (LGRs) presented
in [28] was most useful in the sense that it led to a cooperative intruder strategy,
which was not provided by either the MM or the MIS formulations. The essence
of this approach is in the analysis based on local numerical advantages. In the
perimeter defense game, a local overmatch situation was created by the intruder
subteams that simultaneously attack a single point on the perimeter.

A similar strategy will likely to appear in the multi-player reach avoid game
if it is assumed that the defender is consumed by the intruder whenever a cap-
ture occurs, i.e., a single defender cannot capture multiple intruders. The main
challenge in extending the LGR decomposition to the reach avoid game or any
other variants of the target guarding problem is in the definition of the regions
that leads to an efficient combinatorial optimization. Each region must have two
elements: (a) an associated intruder subteam that, and (b) a set of defenders
that every intruder in the subteam can win against. The latter gives us the com-
plement of the defender subteam associated to the region, which leads to the
sufficient condition for the intruder subteam to score: nk

A > nk
D.
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5 Limitations and Future Directions

In this section we discuss the limitations in the existing works and consider
directions for future developments.

Defender Dynamics. We assumed that the defender’s motion is constrained
on the perimeter. The most significant consequence of this constraint is the fact
that the intruders can ensure no defender captures more than one intruder, by
approaching the perimeter simultaneously. This property makes the perimeter
defense game to be interesting only when NA < ND, since the intruder team can
always guarantee a score otherwise.

Sequential Capture. If we allow the defenders to leave the perimeter and
pursue the intruder, there is a possibility of multiple captures achieved by a single
defender. Such scenario leads to several interesting avenues for future work. First,
the defender team strategy will now contain a vehicle routing problem, which is a
complex combinatorial optimization problem even in the case where the locations
to be visited by the agents are stationary. Secondly, the intruder behavior will
now have a more meaningful distinction between an evasive maneuver and an
offensive maneuver. More specifically, some of the intruders may try to lure the
defenders away from the perimeter so that other intruders can successfully reach
the target. Such cooperation schemes have been considered for small-scale games,
e.g.., [29]. The design of defender’s strategy will also become complex because
there is a potential conflict between (i) pursuing an intruder, and (ii) staying
close to the target for subsequent captures. The design of coordination strategies
for large teams is therefore an interesting problem from the perspective of both
the defenders and the intruders.

Fast Intruders. The existing results are provided for any speed ratio ν ∈ (0, 1],
i.e., the intruders cannot be faster than the defenders. It is easy to see that this
assumption is necessary for one vs. one game since if the intruder has a speed
advantage, then it can come arbitrarily close to the perimeter and outrun the
defender to always guarantee intrusion. This is still the case even when there are
multiple defenders. The degeneracy arises due to the combination of assumptions
(A1) and (A4) in Sect. 2. To consider a faster intruder scenario, we must relax
either or both of those two assumptions (e.g.., consider nonzero capture radius)
and design strategies for the defenders to coordinate their motion.

Partial Information. Finally, one of the strongest assumptions in the exist-
ing variants of the target guarding problems is the assumption that each agent
knows the location of all other agents (i.e., full state information). In a real-
istic setting the detection of the intruders is an important consideration. As a
step towards a more holistic solution, [27] considers the design of a patroller
team that ensures the detection of any agent that approaches a certain distance
from the perimeter. Additionally, for large-scale problems, the defenders must be
able to act on locally collected information. The work in [19] developed a train-
ing methodology to learn communication strategies from a centralized expert
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policy. The proposed method was used to design a decentralized version of the
MM assignment strategy without any centralized coordination mechanism.

Importantly, neither of the above works directly addressed the issue of unseen
intruders. The consideration of such partial information will make any pursuit-
evasion game much more difficult to solve. When an equilibrium is infeasible to
obtain, a design of reasonable team strategies will be of great importance to the
field.

6 Conclusion

This paper presented an overview of the works done on the multi-agent perime-
ter defense game, in which a team of intruders seek to reach a target region while
a team of defenders try to intercept those intruders. The multi-player game can
be solved by first deriving the strategies for the games played between a small
number of agents (one vs. one and two vs. one) and leveraging those results in the
team-level coordination strategies. Three different analysis methods (maximum
matching, maximum independent set, and local-game decomposition) have vary-
ing levels of cooperation. While the local-game decomposition generates the most
sophisticated team behavior, the maximum matching has the most straightfor-
ward ways of being applied to other problems. There are several limitations in the
current problem formulation that lead us to future developments in the aspects
related to the agent dynamics, payoff function, and the information structure.
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Abstract. Hardware security and trust has received a lot of attention in the past
25 years. The purpose of this paper is to introduce the fundamental problems
related to hardware security and trust to audiences who do not necessarily have
hardware design background. In order to do that, we first discuss the evolving
roles of hardware in security from an enable to an enhancer and now an enforcer
as it get involves more and more in system security. Then we review the following
key problems in hardware security, physical attacks, side channel analysis, intel-
lectual property protection, hardware Trojan, hardware security primitives, and
applications in security and trust. We provide a novel view of these problems and
the corresponding solutions from the perspective of information battle between
the attackers and designers, where we consider three types of information: data
collected, processed, and stored by the hardware; information hidden in the design
as watermark, fingerprint, and Trojans; and the chip fabrication variations that can
be extracted and utilized. It is interesting to see how the hardware security and
trust problems can be unified under this framework of information battle (steal-
ing and protection). Unfortunately, there are more unknowns and challenges than
what we have discovered on this framework as we illustrated in the section of open
problems. However, the emerging Internet of Things and cyber physical systems
have provided a large application field for researchers and practitioners to work
on hardware based lightweight security.

Keywords: Hardware security · Trusted IC · Intellectual property protection ·
Reverse engineering · Side channel analysis · Physical unclonable function ·
Hardware trojan · Logic obfuscation · Hardware security primitives ·
Information hiding · Lightweight authentication

1 Introduction

The year of 1996 saw two important events in what we now know as hardware security
and trust. First, timing attack was reported as a computationally inexpensive method
to break cryptosystems including Diffie-Hellman, RSA, and DSS [1]. This leads to the
discovery of various side channel analysis (SCA) attacks, which take advantage of sys-
tem’s different execution time, power consumption, electromagnetic emission or other
physically measureable characteristics while running same operations with different
values (such as bit ‘0’ and bit ‘1’) to reveal the cryptographic keys. Second, the Virtual
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Socket Interface Alliance (VSIA) was founded to enhance semiconductor industry’s
design productivity by establishing standards for the adoption of intellectual property
(IP). The alliance attracted more than 200 companies worldwide and was dissolved in
2008 after accomplishing it mission. VSIA identified six challenges and built devel-
opment and working groups (DWG) for each of them in 1997. IP protection was one
of the most technically challenging with the goals to 1) enable IP providers to protect
their IPs against unauthorized use, 2) protect all types of design data used to produce
and deliver IPs, 3) detect use of IPs, and 4) trace use of IPs [2]. Most reported research
efforts were on side channel attacks and IP protection for about a decade before several
other important discoveries in hardware security and trust.

The problems of trusted integrated circuit (IC) design and hardware Trojan detection
were proposed around 2005 and 2007, respectively. One of the most notable efforts on
these problems is a sequence of DARPA programs: trusted integrated circuits (TRUST),
integrity and reliability of integrated circuits (IRIS), supply chain hardware integrity for
electronics defense (SHIELD), and Automatic Implementation of Secure SoCs (AISS).
Trusted IC was defined as doing exactly what it is asked, no more and no less [3] and
was recommended to be re-defined more precisely as “no less and no malicious more”
[4]. One way to make ICs untrusted is to embed hardware Trojans (HT), which is a piece
of circuit that is added to the design or modified from the original design for malicious
purposes. HTwas first reported in [5]. Also in 2007, silicon physical unclonable function
(PUF) got a great deal of attention. PUF is a device or sub-circuit embedded on chip to
capture the fabrication variations in the forms of path delay, device voltage transfer, or
other characteristics. Such variations exist in the silicon manufacturing process and are
considered to be unpredictable and uncontrollable. PUF can generate and store secret that
can be used as keys or seeds to generate random numbers; and create challenge-response
pairs that can be used for chip authentications [6].

These are just a few key topics in the emerging field of hardware security and
trust. In 1999, the Cryptographic Hardware and Embedded Systems (CHES) conference
was founded “for research on both design and analysis of cryptographic hardware and
software implementations”. In 2008, the International SymposiumonHardwareOriented
Security and Trust (HOST) was established “for researchers and practitioners to advance
knowledge and technologies related to hardware security and assurance”. Nowadays, all
the major conferences on hardware, architecture, and system design cover the topics of
hardware security and trust, which is also listed in the leading security conferences. For
instance, Crypto solicits submissions on “secure implementation and optimization in
hardware”. USENIX Security has an area of “hardware security” with topics on secure
computer architecture, embedded system security, malicious and counterfeit hardware
detection, and side channels.

In this paper, we will discuss the evolving role of hardware in security and cyberse-
curity in Sect. 2. We will introduce the key problems in hardware security and trust and
the state-of-the-art approaches in Sects. 3. The synergy of these problems and solutions
will be analyzed in Sect. 4. Unlike a comprehensive survey for hardware engineers, we
will provide the researchers with little hardware design background the perspectives of
information battle between the attackers and defenders. We discuss the open problems
in hardware security and conclude the paper in Sect. 5.
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2 The Role of Hardware in Cybersecurity

In 2009, Iwas invited to give a talk to a group of audiencewho are not computer engineers
about hardware’s role in security and trustworthy computing. I used the terms enabler,
enhancer, and enforcer to describe this evolving role and I also questioned whether
hardware has become the weakest link in security and trust.

Security starts with cryptography which is built on sound mathematics foundations
and implemented either in software or hardware. But ultimately it is the computer hard-
ware that enables us to realize all the security protocols. Consider the extremely high
computational complexity of the modern cryptography schemes, it is impossible for
human to do the computation manually without the help of computing devices. For
example, in the modular exponentiation operation which computes ae(modn), all the
values are huge number with the exponent e suggested to be 1024-bit or longer. In such
cases, hardware is absolutely needed as an enabler.

It is well known that many applications, security related or not, have better perfor-
mance when implemented in hardware comparing to their software based implemen-
tation. Dedicated hardware, sometimes called accelerators, are built for the purpose of
performance enhancement. Ironically, hardware is also used to break the security proto-
cols (e.g. through brute-force attacks). Indeed, it was the increasing computation power
that made data encryption standards (DES) unsecure and motivated the establishment of
the advanced encryption standard (AES). In 2001, Rijndael ciphers was selected from
many AES candidates in part because of its efficiency and implementation details [7].

Then computer hardware becomesmore actively involved in security and trustworthy
computing. The first line of defense is built in hardware to protect the CPU, memory
and data. For example, a biometric coprocessor checks user’s biological features such
as fingerprint, iris, and pulse to authenticate the user before giving user the permission
to access the computer or the network. Another example is the trusted platform module
(TPM) chips that are embedded to all the laptops and smart phones. A TPM chip helps
system to manage all the security and trusted computing functions.

However, the high involvement of hardware in security also introduces the new
attacking surface in hardware implementation of the cryptographic systems. Hardware
engineers are traditionally trained to optimize performance and security is not con-
sidered when hardware is designed and built. This gives attackers another target, in
particular when there is no flaw in the crypto algorithms, software vulnerabilities have
been patched, and network communication becomes secure. The side channel attack we
mentioned earlier is one example. More security and trust vulnerabilities in hardware
will be discussed later, which prompts me to ask the question whether hardware is the
weakest link (after human) in cybersecurity (Fig. 1).

From the information standpoint, an enabler is a passive information processor; an
enhancer is a dedicated processor for specific information process; and an enhancer
is one that collects information, processes information, and makes decisions (such as
authentication and access control) accordingly. Information may leak during the process
on hardware, causing security vulnerabilities that we will elaborate next.
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Fig. 1. A slide that illustrates the role of hardware in security and trust (2011).

3 Key Problems in Hardware Security and Trust

In this section, we review the key research problems and practices in hardware security
and trust. We will also discuss the existing countermeasures. More detailed and conclu-
sive list of topics can be found in the call for papers of the recent conferences focusing
on hardware security in the Appendix.

3.1 Physical Attacks

As the name suggests, physical attacks refer to the attacks where an attacker has physical
access to a system or is within its proximity to collet certain physical information. The
goal of physical attacks is to break or “learn” the system without authorization. Unlike
cryptanalysis which uses mathematical analysis on the cryptographic algorithms to find
flaws, physical attacks attempt to exploit the vulnerabilities in the implementation of the
system. Based on whether the target system will be damaged during and after the attack,
physical attacks can be classified in three groups: invasive attacks where the attacker
“breaks” the system physically to learn, the system will be damaged and there will be
tampering evidence left; non-invasive attacks where the attacker learns by “using” the
systemwithout causing any damage or leaving any trace of tampering; and semi-invasive
attacks where the attacker needs to access the surface of the system without “breaking”
or “damaging” it, there will be no or very little tamper evidence.

In hardware, invasive physical attacks are also known as reverse engineering where
an attacker will depackage the chip or device to expose the silicon die to learn the inner
structure and the functionality of the chip. For modern multi-layer chips, the attacker
will remove layer by layer to study features in each layer. Reverse engineering is legal
and very common in industry as companies use it to learn from their competitors and
legacy systems where the detailed design information is unavailable. There are com-
mercial advanced reverse engineering tools available, which makes reverse engineering
based attacks possible. Reverse engineering will cause damage to the chip or device and
thus cannot be repeated on the same device. More about reverse engineering and the
countermeasures will be discussed in the section of design IP protection.

Common non-invasive attacks include side channel analysis (whichwewill elaborate
in details in the next subsection), fault based attacks, data remanence, and brute force. The
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idea of fault based attacks is to put the system into abnormal and unexpected execution
state in the hope that such states are not well protected by design. This can be achieved by
injecting faulty data or unexpected instructions, or changing the execution environment
such as lowing the voltage. Data remanence are attacks on the data stored in the SRAM,
EEPROM, or flash memory. Because of certain physical features of these memory,
data stored for a long time may leave some trace even after it is removed or powered
down, protected data may also become readable at extreme environment such as low
temperature or frequently changed voltage. When the search space is not sufficiently
huge, brute force search for the cryptographic keys or backdoor access to a system
becomes possible with the help of today’s powerful computers.

Semi-invasive attacks to hardware normally require depackaging the chip but will
not need the reverse engineering steps to learn and will not make physical contacts
with the internal wires. This normally helps to launch more powerful attacks such as
fault injection or side channel analysis because now the silicon die is decapsulated and
exposed to the attackers.

3.2 Side Channel Analysis

An attacker can observe a system’s physical characteristics from side channels during
execution and uses such characteristics to reveal the system’s secret information such
as the cryptographic keys. These physical features can be power, current, timing or
delay, electromagnetic emission, acoustic and optical information, and even the system’s
output values. Side channel analysis (SCA) attacks have two phases: measuring and data
analysis. During the first phase, the attacker will monitor the system’s execution and
collect the physical features of interest. Then, the attacker will perform data analysis on
the collected side channel information to determine the on-chip secret information.

SCAattacks are perhaps themost successful attacks tomodern cryptographic systems
for two main reasons. First, they target the weakness of the implementation of the crypto
algorithms, not the algorithms themselves. Therefore, a mathematically sound algorithm
can become vulnerable against SCA attacks. Second, these attacks are non-invasive,
passive, and will not leave any trace of attack. They use the signals leaked from side
channels during system’s normal execution and thus it will be hard to detect and catch
such attacks.

Fig. 2. Side channels in a simplified
microprocessor.

SCA attacks rely on the fact that the execution of
the same operations with different input values will
generate different trace on the side channels. For
example, in the popular square and multiply imple-
mentation of modular exponentiation, the compu-
tation will be performed iteratively on each of the
key bit with the multiplication being carried out
only when the key bit is ‘1’. This will create asym-
metric information in terms of the execution time
and power consumption for different key bit values,
enabling the timing and power analysis attacks.

Figure 2 illustrates a simplified architecture of a standard microprocessor or a com-
puting device. It has its memory hierarchy of the main memory, data cache, instruction
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cache, and register files. This is the central processing unit, or CPU, with control log-
ics, function blocks, and the arithmetic and logic unit (ALU). In a typical flow of the
execution of a software or program, instructions and data will be loaded from the main
memory to I-cache andD-cache. The registers are the closest storage to the CPU and thus
have the fastest access time. The CPUwill take instructions and data from these memory
units and process them accordingly. The result will be written back to the memory, either
cache or the main memory.

Now assume that we store some secret data in the registers during the execution
and revisit the typical execution blow to identify the side channel vulnerabilities. First,
memory load operation will get data from D cache to the register file. This needs the
memory address of the data. If the address is determined by or related to the secret data,
the secret might leak from the memory address. When the secret data is overwritten
by the data from the memory, there will also be information leak. For example, when
the register file is reset to be all 0s, it requires power to overwrite all the 1s, but there
is almost zero power consumption on the bit that was previously 0. Similarly, when a
memory store operation is performance, information might leak from either the memory
address or the data to be written to the memory. During arithmetic and logic operations,
particularly when the operation is performed at bit-level, the secret data may be exposed
through side channel. For example, the execution of a multiplication with two random
large numbers and the samemultiplication with one operand equal to one will have quite
different behaviors that can be observed through power or timing side channels. Finally,
data might leak from the control flow of the execution as we have seen from the example
of modular exponentiation where whether the multiplication is executed will depend on
the key bit values.

Common countermeasures to SCA attacks either try to hide side channel information
or remove its dependency on the secret data. Crypto algorithms can bemodified, typically
by randomization, to remove the correlation between the cryptographic key values and
the side channel information generated while running the crypto algorithm using the key.
Second, physical security can be used to keep the attackers away from the proximity,
access, and possession of the system under attack. For example, acoustic shielding
can protect acoustic emission and the secure construction zoning is common to prevent
potential EMemission attacks. Third, designpartitioning, in particular the emerging2.5D
and 3D fabrication and split manufacturing, can help tomitigate SCA attacks. Separating
on-chip infrastructures such as power supply rails, clock networks, and testing facilities
from crypto operations and other applications will make it more challenging for side
channel information collection. Masking and blinding is another approach to remove the
correlation between the secret data and the side channel signals. For instance, XORing
the output of a logic unit with some pre-selected data will mask the real output, which
can be retrieved only when the pre-selected data is known. Finally, hiding is the most
common methods to increase the difficulty for the SCA attackers to gather side channel
data. This can be achieved by careful design that will leak identical information on
different key values, by using asynchronous logic, or by generating random noise.
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3.3 Intellectual Property Protection

Design intellectual properties (IP) are the components or units that can be considered as
stand-alone for being reused or integrated into a larger design with efforts much lower
than redesigning the component. IPs are the most valuable for the company who designs,
manufactures, and owns them. However, an adversary can steal or misuse IPs by forg-
ing, tampering, counterfeiting, overbuilding, and so on. Most of these IP infringements
require reserve engineering to some extent.

The VISA has identified three major IP protection methods: Deterrent methods
enable an IP owner to deter the infringer fromcontemplating IP theft by using proper legal
means including patents, copyrights, contracts, trademarks, and trade secrets.Protection
mechanisms usemeans such as encryption, licensing agreements, obfuscation, dedicated
hardware, or chemicals to prevent unauthorized access to the IP. Detection approaches
such as digital watermarking, fingerprinting, and metering, help the IP owners to detect
and trace both legal and illegal use of their IPs.

Most protection mechanisms are mature and could be effective, but they incur addi-
tional design cost such as the computational expensive encryption/decryption, the inte-
gration and packaging of chemicals and dedicated hardware ware. Deterrent methods
do not directly prevent IP piracy from happening, but rather discourage the misuse of
IPs because the attackers, once being caught, may face lawsuits and severe penalty to
recover the financial loss of the IP owner. However, all of the aforementioned means
except trade secrets are affirmative rights, which means that it is the IP owner’s respon-
sibility to identify IP infringement and catch the IP infringer. Therefore, majority of
efforts in IP protection in the past couple of decades are on the detection approaches.

Digital watermarking embeds IP owner’s signature into the IP during its design, inte-
gration, and testing phases. The watermark, if needed, can be retrieved from the IP to
prove the authorship. Digital fingerprinting incorporates IP buyer’s unique information
into the IP in order to identify the traitor should any IP infringement happens. Metering
is a means to create/insert tags into each copy of the IP or chip, making them unique to
facilitate the trace chip. Recently developed IP protectionmethods havemade the distinc-
tion between protection and detection approached vague. For example, active metering
and logic locking techniques are protection mechanisms that provide chip owners post-
fabrication control of the fabricated chips (because they can disable the normal usage
of the chip). Meanwhile, circuit obfuscation method intentionally introduces ambiguity
to chip design to confuse reverse engineering attackers and should be considered as
detection approach. Split manufacturing and 3D integration technologies also facilitate
IP protection by giving designers the option of fabricating chips in multiple foundries
and serve both the purposes of protection and detection.

3.4 Hardware Trojan

A hardware Trojan is any modification or addition to a circuit for malicious purpose.
Common malicious goals of hardware Trojan include leaking sensitive information,
changing or controlling the functionality of the circuit, and reducing circuit reliability.
Based on different criteria, hardware Trojans can be categorized in many different ways.
We list a few below as we discuss more features of hardware Trojan.
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First, hardware Trojans can be as small as only a few logic gates (e.g. malicious
on-chip sensors and the killer switch) and can be as large as a functional block such as
a powerful antenna which is capable of sending out sensitive information. An external
disable/enable signal combined with a simple 2-input logic AND gate can be used to
control any functional units (e.g. the encryption engine) on the chip.

These small and large hardware Trojans can be inserted almost all over the system.
Trojans in the on-chip clock (or power) network can change system’s clock frequency (or
operating voltage) to launch fault attacks or timing (or power) side channel information
leaking. Trojans in the system’s memory structure can maliciously change data or leak
information. Trojans in the CPU or functional units can create faulty output or disable
the functional units. Trojans in the input-output periphery can facilitate fault injection
attacks or provide misleading results.

Hardware Trojans normally are triggered by specific signals or events that are rare to
occur under normal execution mode (in order to minimize the chance of being detected
or accidentally activated). These triggers can be from inside the chip such as whether
the counter has reached a specific value (time bomb) or certain on-chip temperature has
been sensed by the temperature sensor. They can also be controlled externally by triggers
hidden behind user input or environmental conditions.

Hardware Trojans can be embedded during any untrusted phase in the chip design,
fabrication, and testing process, or any stage of the IC supply chain. Thismakes hardware
Trojan detection and prevention a very challenging task. It is important to mention that
the goal of hardware Trojan detection is determine whether a chip or system contains any
hardware Trojan. If a Trojan is found, we can conclude that the chip or system cannot be
trusted. But unfortunately, one can never claim a chip is Trojan free because a system’s
functionality can never be completely specified and thus there are always unspecified
functionality being implemented in the chip [10].

Hardware Trojan detection can be done at chip test time followed by run-time mon-
itoring. At test time, one can use logic test-based approaches to run different input and
verify the corresponding output generated by the chip while monitoring chip’s execution
behavior. Since we have mentioned earlier that Trojans are triggered by rare signals or
events, such logic test detection methods could fail. Monitoring side channels during
the test can help to capture some Trojans but it may have high false alarm rate due to
measurement errors, noise, and hardware fabrication variations. Such SCA based moni-
toring should be kept during the normal execution of the chip because test time detection
methods can never discover all the Trojans.

3.5 Hardware Security Primitives

It is well know that chips, even identical designed and fabricated with the same mask
on the same wafer, exhibit the intrinsic manufacturing variations from the complicated
semiconductor fabrication process. Such variations are believed to be random and cause
the unpredictable chip performance. However, it is extremely difficult, if not impossible,
to model or control the manufacturing variations as the semiconductor industry has
failed to do so in the past half century. The concept of physical unclonable function
(PUF) takes advantage of the randomness, unclonability, and uncontrollability of such
intrinsic variations to deliver security primitives. The most popular applications of PUF



494 G. Qu

are to create and store cryptographic keys, to facilitate random number generation, and
to generate challenge-response pairs for authentication.

Figure 3 shows the basic ring oscillator (RO) PUF structure. As we can see, N
identical ROs are implemented but the fabrication variations will make them have dif-
ferent delays. The two multiplexers (MUX) will select two ROs and compare their delay
through the readings of the two counters. For example, one can define a bit ‘0’ is the RO
on the top is faster and a bit ‘1’ if the one at the bottom is faster. There are numerous
reports on how to create PUF bits, make them robust against operation environments,
optimize the amount of bits generated from a given hardware resource, and how to use
PUF for security applications.

Fig. 3. The architecture of ring oscillator PUF [6].

3.6 Applications in Security and Trust

There are many research efforts to connect circuit level hardware security with lower
level such as memory and new materials (resistive RAM, phase change memory, Spin-
transfer torque magnetic RAM, etc.), and with upper level at architecture, software,
communication and physical layer. We give two examples on how hardware can help
security at system or device level.

As hardware is the root of all systems ranging from the sensors, smart portable
devices, and medical implants to vehicle components, smart home appliances, smart
grid, cloud computing servers, and the general Internet of Things (IoT) and cyber phys-
ical systems (CPS), it is not surprising to see that they are used not only to implement
system security protocols, but also contribute to improve system security. This is partic-
ularly true for the recent IoT and CPS applications where the devices may be resource
constrained and cannot afford to the computational and resource expensive cryptographic
solutions. For example, many hardware based lightweight authentication schemes have
been proposed to authenticate device, user, and computation.

Figure 4 shows how silicon PUF can be used to enhance the entropy of a random
variable [8]. The bell-look curve at the bottom is the Shannon entropy when a random
input bit is generated with a given percentage of 1’s. For example, in the middle when
there are 50% 1’s and 50% 0’s, perfect entropy is reached. But on both ends when there
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are very few 1’s or a lot of 1’s, the entropy will be very low. With the assist of RO PUF,
we can see that the entropy is improved significantly. The top curve is the case when
PUF is combined with XOR. This indicates a cost effective way to convert data from a
poor entropy source to high entropy bit-stream.

Fig. 4. Bit entropy enhanced by silicon PUF [8].

As another example, Fig. 5 shows how the benchmark images “snowflakes” and
“trees” can be superimposed to generate the image of “snowfall”, where each pixel value
of the “snowfall” is obtained by adding the pixel values of “snowflakes” and “trees” at
the same pixel position [9]. We design an adder in hardware to perform this operation.
When the same adder design is implemented on two different FPGA boards, we reduce
the operating voltage for both FPGA to force addition errors as shown in Fig. 6. Clearly
we can see the visual difference between these erroneous images and the original one.
More importantly, different adders create different errors, making it possible to use such
fabrication variation induced errors for device authentication [9].

(b) (c)(a)

Fig. 5. Creation of “snowfall” (c) by superimposing “snowflakes” (b) on top of “trees” (a) [9].

4 Information Battle Perspective of Hardware Security

We analyze the key problems in hardware security and trust listed in the previous section
from the perspective of information.

Consider the role that hardware plays as an enabler and an enhancer, it may process
and store sensitive information of the attacker’s interest. Through different types of
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(a) (b) (c)

(d) (e) (f)

Fig. 6. An example of the effect of fabrication variations in voltage over-scaling based computa-
tion. In (a) the gray scale image Snowfall is computed using trees and snowflakes without voltage
over-scaling; in (b) and (c) the image is computed under voltage over-scaling with two adders
which are identical in every aspect, except the process variation of the transistors; (d) and (e)
shows the error pattern found in the figure (b) and (c). This error pattern shows the deviations
for each adder from the correct image. Subfigure (f) shows the difference between the two error
pattern (d) and (e). The source images were downsized to 52× 40 pixels for reducing computation
time.

attacks that include physical attacks and side channel analysis, the attacker attempts to
obtain the desired information directly or indirectly. For example, invasive attack to a
smartcard can reveal the contents stored in the memory, analyzing timing or power side
channel information can help the attacker to reveal the cryptographic key used in the
crypto algorithm. Consequently, all the countermeasures against such attacks try to hide
the sensitive information, to disable the attacker’s access to side channels, or to remove
the correlation between the sensitive information and the side channel information.

For design IP protection, the design and implementation details are the value of the
IP and take the forms of hardware device, IP cores, gate layout, FPGA configurable bit
streams, Verilog code, optimization algorithms, and so on. Reverse engineering is one
vehicle for the attackers to retrieve these information from a IP product. IP protection
methods either protect such information, making them inaccessible, or embed more
information into the IP as watermark, fingerprint, and tags for detection purpose. So
here we see a new dimension of information protection by adding more proof-carrying
information into the design and implementation of IPs. This can be done as encryption
(where the information to be protected is encrypted and the encryption key becomes the
vital information for decryption) or obfuscation (where the original design information is
hidden behind the camouflaged logic gates). Figure 7 illustrates the basic idea of digital
watermarking as a steganography system [11]. Digital fingerprint and metering tags can
be embedded in the same way.

Unlike watermarking multimedia contents, adding digital watermark into hardware
IP has a fundamentally different challenge: the contents of the multimedia artifacts can
change as long as the end consumer, which is human, cannot tell or can tolerate the differ-
ence between the original and the watermarked copy. However, for hardware IP, changes
to the design and implementation of the IP are normally unacceptable because they may
cause malfunctions. As depicted in Fig. 6, we view the creation of IP as solving a con-
straint optimization problem, where system’s specifications and design requirements are
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Fig. 7. Digital watermarking for IP protection as a steganography system [11].

considered to be the original constraints.We convert IP author’s signature into constraints
that will not cause any conflicts or violation to the original constraints. The proposed
digital watermarking system is a steganography system where the original constraints
serve as the cover-constraint and the author’s signature is the embedded-constraint. The
stego-problem to solve is both sets of constraints. Now we solve this stego-problem,
that is, design and implement the IP to satisfy both the original and the embedded con-
straints. The solution, or the developed IP, will have the property to meet not only the
original constraints, but also a set of seemingly random constraints that we embedded
as watermark, or the proof of author’s signature. It is crucial to extract the watermarking
information from the stego-solution.

Interestingly, hardware Trojan also can be considered as information embedded into
the system, but for malicious purposes. Trojan detection becomes the process of finding
such hidden information and evidently attacker’s physical attack and SCA methods has
be utilized.

The intrinsic fabrication variation information carried by the chip is another type of
interesting information. PUF is the circuitry that collects such information and converts
it to data that can be used for security such as cryptographic keys. As we have discussed
earlier, one of the biggest challenge in PUF is its usability as most of the fabrication vari-
ations are very sensitive to the chip’s operating environment including power, voltage,
and temperature. If we consider PUF as the noise introduced during the manufacturing
process, PUF information’s sensitivity to environmental factors is the “measurement”
error/noise when the PUF circuitry collects the fabrication variation. When PUF is used
in the system, various security concerns, such as how to steal PUF information or forge
the challenge-response pair, share the same core of how to protect the PUF information
from unauthorized access or usage. This brings us back to the start of this section where
we discussed securing data and data processing against attacks.

5 Open Problems and Conclusions

Security becomes one vital concern for almost all systems. Hardware, as the player
to collect, process, store, and transmit information, not only causes various security
vulnerabilities, largely due to the lack of consideration of security and trust in hardware
design flow, but can also makes the system more security at lower cost. So the first and
most important challenge for hardware security is how to convince the users that the
hardware system is secure and trusted. For example, when a sensor collects data and
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sends the sensor readings to the network, how to check whether the right and accurate
data is collected? Are the sensor’s data calibration and other pre-processing schemes
executed in a secure and trusted execution environment? Is the data storage secure and
uncompromised? Does the sensor have any Trojan or side channel that might leak the
data?

Secondly, how to utilize hardware to build and enhance system security and trust?
We already know hardware security primitives have this potential with the advantage of
low cost and sometimes better security (e.g. unclonability of the fabrication variations
and requirement of the physical presence of or close proximity to the hardware). Such
hardware based lightweight schemes are good for applications such as authentication
when the security level is low. How to establish a formal foundation for the hardware
base lightweight security protocols? This seems to be a very challenging task as the
semiconductor industry still does not have any accurate models for various fabrication
variations and it will be impossible to conduct any quantitative study on the security
protocols built on such variations. For example, the randomness and unclonability of
variations are just the general beliefwithout any proof or validation.Nevertheless, finding
new security applications based on hardware is still of great interest.

Finally, from the perspective of hardware designer, IP protection is still an important
yet open problem. As one of the earliest challenges from the industry, IP protection is
a real problem and still has not received the attention it deserves. In part, this is due to
the complexity of IP validation and integration as well as other challenges for IP reuse.
Before IP reuse becomes a common design practice, we cannot see the true value of
IPs and how serve IP infringement could be. Fortunately, the incidents of tampering,
reverse engineering based IP stealing, and counterfeiting reported in the recent years
have raised the global awareness of IP protection. The existing IP protection techniques
are not adequate. For example, two the most well-studied active IP protection meth-
ods, logic locking and circuit obfuscation are vulnerable to SAT-based attacks. Digital
watermarking and fingerprinting methods are relatively mature and there is the ongo-
ing efforts to integrate them into the hardware design flow. However, the impact to the
system performance caused by embedding watermark and fingerprint is still unknown.

Acknowledgement. This work is supported in part by the DARPA project entitled “INDEPEN-
DENT VERIFICATION &VALIDATION (IV&V) OF THE AISS PROGRAM”.



Hardware Security and Trust 499

Appendix

CHES 2021 list of topics in the call for paper (https://ches.iacr.org/2021/callforpaper
s.php)

HOST 2021 list of topics in the call for paper (http://www.hostsymposium.org/call-
for-paper.php).
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hors.htm#cfp)

http://asianhost.org/2020/authors.htm#cfp


Hardware Security and Trust 501

References

1. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In: Crypto 1996, pp. 104–113 (1996)

2. Virtual Socket Interface Alliance: Intellectual Property Protection White Paper: Schemes,
Alternatives and Discussion, Version 1.1, January 2001

3. Report of the Defense Science Board Task Force on High Performance Microchip Supply,
February 2005

4. Qu, G., Yuan, L.: Design THINGS for the internet of things – an EDA perspective. In:
Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 411–
416, November 2014

5. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan Detection using IC
Fingerprint. In: IEEE Symposium on Security and Privacy, pp. 296–310, May 2007

6. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key
generation. In: Proceedings of 44th ACM/IEEE Design Automation Conference, pp. 9–14,
June 2007

7. United States National Institute of Standards and Technology (NIST): Announcing the
ADVANCED ENCRYPTION STANDARD (AES), Federal Information Processing Stan-
dards Publication 197, 26 November 2001

8. Wang, Q., Qu, G.: A silicon PUF based entropy pump. IEEE Trans. Dependable Secure
Comput. 16(3), 402–414 (2018)

9. Arafin, M., Gao, M., Qu, G.: VOLtA: voltage over-scaling based lightweight authentication
for IoT applications. In: Proceedings of 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 336–341, January 2017

10. Gu, J., Qu, G., Zho, Q.: Information hiding for trusted system design. In: Proceedings of the
46th ACM/IEEE Design Automation Conference, pp. 698–701, June 2009

11. Qu, G., Potkonjak, M.: Intellectual Property Protection in VLSI Design: Theory and Practice.
Springer Science and Business Media, Berlin, May 2007. https://orcid.org/10.1007/b105846

https://orcid.org/10.1007/b105846


Security Games with Insider Threats

Derya Cansever(B)

Army Research Office, Durham, NC 27703, USA
derya.h.cansever.civ@mail.mil

Abstract. Many cyber-security defense strategies rely on the information asym-
metry between the defender and the attacker. Examples of information asym-
metry include passwords and network configuration parameters. Using private
information, defenders can drastically increase the computation complexity of the
attacker and render his/her attacks inefficient. Availability of insider information
can alter the equilibrium and favor the attacker. This paper discusses some of the
attributes of private information and describes a three-player game with a partially
collaborating insider to illustrate its impact.

Keywords: Insider threat · Stackelberg games · Cyber security

1 Introduction

Protection of infrastructure and information technology systems from advanced and
ever more sophisticated cyber-attacks is a major concern. These attacks, often called
Advanced Persistent Threat (APT), are launched by well-funded entities and are persis-
tent in pursuing their objectives.Moreover, they often act in a stealthyway to avoid being
detected to maximize the long-term payoffs. In fact, it is well documented that cyber-
attacks can remain undetected for months or even longer. APT attacks cause staggering
amounts of costs to nation states as well as to corporations. Advances in technologies
can in principle benefit both sides. However, attackers seem to remain one step ahead in
many cases.

Amain attribute of the conflict between APT, termed the Attacker, and the defending
entity, termed the Defender, is the asymmetry in their respective information structures.
The defender does not know when and where the attack will occur. Even with advanced
network monitoring systems, attacks may occur without the defender’s knowledge. The
Defender has an advantage in the asymmetry of information on the actual architecture,
configuration attributes and parameters of the system to be defended. This advantage
can provide definitive advantage to the defender. However, if an entity in the Defender’s
organization is compromised and discloses some of the private information for personal
gain, this potential advantage can turn into significant vulnerability. In fact, it is reported
that [1] in 2018, 44% of data breaches are attributable to insiders. We discuss private
information and insider threats in Sect. 2. In Sect. 3, we describe a three-player game
with a compromised insider. Potential open research areas are discussed in Sect. 4.
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2 Private Information

Information asymmetry is a foundational aspect of cyber defense. Defenders use private
information to make it more difficult for the Attacker to accomplish his/her goal. Exam-
ples of information asymmetry include encryption and Moving Target Defense (MTD)
[2]. In symmetric encryption, lack of knowledge of the key by the Attacker makes it
extremely difficult for the attacker to decrypt the text of interest. Similarly, lack of the
knowledge of the pattern, or the algorithm, that governs the change in configuration
parameters makes it very difficult for the Attacker to accomplish his/her goals.

The conflict between the Attacker and the Defender can be modeled as a game where
each player pursues conflicting interests. If we neglect for a moment the penalties on
their respective controls, the conflict can be approximated by a zero-sum game. For
example, the Attacker may be trying to maximize the probability of breaching the IT
system, while the Defender is attempting to minimize that probability. Let X denote
the state of the system, YA denote the information of the Attacker, and YD denote the
information of the Defender, αA the strategy of the Attacker and lD denote the strategy
of the defender, and P(.) the probability of breach. Assume that P(.) is strictly concave
in the actions of the Attacker and the Defender. The Defender is trying to minimize

E{P(X, αA, lD| YD}, while the attacker is trying to maximize
E{E{P(X, αA, lD| YD}| YA}. Assuming that the probability space of YA is coarser

than the one of YD, E{P(X, αA, lD| YD} is a random variable from the point of view
of the Attacker. Let us call it ϕ. Let us assume that YD has finite support. Then, for
each realization of the random variable ϕ, the Attacker faces a different optimization
problem. The Attacker will maximize the conditional expectation of ϕ given YA. Let P*
denote the actual outcome of this game for a given realization of ϕ, and P0 denote the
expected outcome of the game relative to the Attacker. Assume that P(.) is a monotonous
function of YD and it is strictly concave in αA, lD for each value of ϕ. Then, P* will be
smaller than P0 unless the Attacker has access to the actual realization ofϕ. The defender
wants to make the absolute value of the difference between P* and P0 for each possible
realization of ϕ as large as possible, weighted by its probability of occurrence. One way
to accomplish this goal is to maximize the entropy of YD. That is, to ensure that YD

can take values that are wide spread from its mean, and the respective probabilities of
such occurrences are not relatively small. Thus, it is in the best interest of the Defender
to ensure that the entropy of its private information is maximized. This can be accom-
plished by choosing a complex and long password, or increasing the rate of the change
of configuration parameters in MTD systems. In addition to maximize the difference
between the actual and expected values of the payoff function, the Defender will also try
to make the solution of this optimization problem as hard as possible to obtain for the
Attacker. This can be accomplished by maximizing the Kolmogorov complexity of the
optimization problem of the Attacker in computing its solution. But Kolmogorov com-
plexity and entropy are related. In fact, the Kolmogorov complexity of an i.i.d. sequence
converges to its entropy [3]. Thus, maximizing the entropy of its private information is
advantageous for the defender in several aspects: make it difficult for the Attacker to
compute optimal strategy, and also ensure that the expected outcome of optimal strat-
egy of its adversary is relatively mediocre compared with what it could have been if
he/she had access to the Defender’s private information. The Defender’s advantage can
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be reduced when an agent that functions in the defending team is compromised and is
willing to share parts of the Defender’s private information with the Attacker for his/her
own benefit. We discuss such a setting in the next Section.

3 Stealthy Attacks with Insider Information

Consider a security game obtain control of IT resources. This game is described in detail
in [4]. Figure 1 describes the evolution of the game when there is no Insider in play.

Fig. 1. Atwoplayers stealthygame.Blue circles and red circles represent defender’s and attacker’s
actions, respectively. A blue segment denotes that the resource is under protection, and a red
segment denotes that the resource is compromised. (Color figure online)

This is is a variation of the FlipIt game, [5], where an agent that decides to make a
move will have control of the resources. We assume that the defender does not know
when the attacker moves, while the Attacker can find out when the Defender made
the last move with a random delay ω called the “awareness time”. The awareness time
represents the period of time it takes for the attacker to find out that the Defender has in
fact moved to control the resource. A reasonable strategy for the Defender is to move to
control the resource on pints in time that are exponentially distributed to avoid learning
by the adversary. TheAttacker’s corresponding best strategy is to act immediately afterω
seconds elapsed. When there is a compromised insider in the defense team, the outcome
of the game can change significantly. The insider can help the attacker in reducing the
awareness timeω by partially disclosing insider information, and obtain personal benefit
by doing so. On the other hand, being a part of the organization, the insider shares its
revenue; hence, it may also choose to help the defender against the attacker. In both cases,
however, the insider will try to hide its adversary actions from the defender. The insider
can inform the Attacker to reduce the awareness time by notifying the Attacker after the
Defender’s last action (immediately or with a judiciously chosen delay). The sooner it
notifies the Attacker, the more it gets paid by the Attacker, but also incurs a higher risk of
being detected by the Defender. In this three-person game, the defender first determines
and declares its strategy β. After observing β, the insider then decides whether to help
the attacker or the defender. In the former case, it makes a “take-it-or-leave-it” offer γ

> 0 to the attacker. In the latter case, it helps the defender by choosing a γ < 0. Finally,
given β and γ, the attacker decides its strategy α. The defender determines the optimal
strategy based on the above considerations, which makes the multi-person optimization
problem a three level Stackelberg game. Figure 2 below shows the impact of the presence
of the insider on the Defender’s and Attacker’s payoff functions as a function of unit
cost CD for the Defender. With partial disclosure of private information by the insider,
the Attacker and the Defender can face significant changes in their respective payoffs,
depending on the values of the game parameters.
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Fig. 2. Change in payoff functions under the presence of an insider.

4 Conclusions and Future Research

Increasing the entropy of the externally observable entities that are related to the state of
a system appears to be good strategy for the defenders of cyber systems. Such strategies
can be implemented as publicly available security policies, or as actions that amount
to intentional signaling to malicious entities that are trying to learn from the actions of
the defenders. Design of policies that induce uncertainty for the attackers and that also
have robustness properties against actions of insiders could pave fruitful research areas.
This is in contrast to the problem of reinforcement learning, where the goal is to learn
about the system and to control it efficiently. Analysis of the trade-offs among exploring,
mis(signaling) and exploiting functions of control policies for multi-agent systems with
asymmetric information could amount to challenging and fertile research topics.
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Abstract. This paper focuses on the security issues in next-generation
wireless broadband networks. As such networks are expected to play
a critical role in modern society, there is an increasing focus on their
security and robustness. Such networks are expected to satisfy stringent
security requirements and guarantee uninterrupted end-to-end service
for diverse applications. The goal of this paper is to discuss long-term
challenges in the design of such networks as well as new research oppor-
tunities in developing security mechanisms for such networks.
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1 Introduction

Wireless broadband networks have seen continuous development and evolution
over the last two decades. Each new generation of cellular technology has brought
new capabilities, including increasing data rates, lower latencies, and increased
coverage.

It is widely recognized that broadband wireless networks have reached a
turning point in their evolution. Next generation cellular networks are expected
to connect billions of heterogeneous Internet of Thing (IoT) devices, enable
machine-to-machine communications, and support a variety of mission-critical
services in multiple application domains, including transportation, public safety,
and defense. This is in contrast to today’s cellular systems which are designed
to support voice and data communications for individual customers. The next-
generation networks are expected to have a high degree of reliability and avail-
ability, and meet strict requirements on performance and service assurance. The
new capabilities are expected to enable exciting new applications such as Aug-
mented Reality/Virtual Reality (AR/VR) and video analytics.

Future wireless broadband networks constitute a complex system that lever-
ages modern technologies, including software-defined networking (SDN) and Net-
work Function Virtualization (NFV). The transition to SDN leads to an emphasis
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foreign copyright protection may apply 2020
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on software implementation, including at the base station radio level. Moreover,
future broadband networks are expected to rely on cloud technologies, includ-
ing edge cloud, to support network operation. Furthermore, such networks can
benefit from the convergence and maturation of multiple technologies, such as
massive MIMO, and from the ability to utilize higher frequency bands, such as
mmWave, to achieve high data rate, ultra-low latency, and increased coverage
(such as reaching mobile end-points inside the buildings).

Future mobile networks are expected to attract new groups of users and stake-
holders that can use different slices of the networks for their unique applications.
Service providers can offer mobile infrastructure as a service to various indus-
tries such as defense, power grid, transportation, and smart agriculture, that
have unique security and reliability requirements. In addition, future networks
are expected to provide real-time compute capabilities and facilitate content dis-
tribution, in addition to supporting traditional connectivity and data delivery
services.

Due to the increasing reliance of many sectors of modern society on
mobile broadband services, their security and reliability have become issues of
paramount importance. However, the current focus of developers, standard bod-
ies, and network operators is on performance and functionality, while security
and resilience remain a secondary consideration. Today’s tools and technique for
system design lack principled approaches, which could result in security vulner-
abilities and unpredictable behaviors.

The goal of this paper is to highlight fundamental longer-term security chal-
lenges for next-generation networks. We will also outline several approaches that
have the potential to address these challenges.

2 Security Goals and Challenges

Securing a complex system that spans a very large geographical area is a
formidable task. The mobile broadband system is expected to be one of the
largest engineering systems in the world. The complex structure of the system, its
reliance on the wireless medium for user access and backhaul, as well as its large
user base creates many attack surfaces for malicious agents. Furthermore, the
limited capabilities of IoT devices make it harder to deploy sophisticated secu-
rity functions, which will force network designers to rely on light-weight security
methods. It is likely that some elements of the system will remain unprotected
and highly vulnerable to attacks.

2.1 Goals

The main goal of the mobile broadband system is to provide end-to-end security,
which will ensure that every network application can function in a reliable and
predictable manner. This goal can only be achieved through holistic solutions
that coordinate security functions among various network elements.

Another important goal for the next-generation wireless broadband networks
is to achieve a drastic reduction (several orders of magnitude) in the overall
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number of vulnerabilities compared to the current systems. This is due to the
fact that future networks can be used in life-critical systems and any interruption
in network service may lead to very significant consequences.

The security requirements can be different for different groups of users. For
example, the network slices that are used for industrial control applications
or intelligent transportation systems must have higher levels of security and
reliability than slices that serve traditional consumers.

Furthermore, future networks can offer security as a service. This could
include a formal specification of the provided security guarantees as well as
the consequences of not meeting these security guarantees.

Enabling high levels of security should come at a reasonable cost and incur
minimum overhead in terms of system efficiency. Accordingly, the major goal
of the system designers is to strike a reasonable trade-off between security and
efficiency.

2.2 Challenges

In general, the more complex the system, the more difficult it is to secure. In
particular, the large number of configuration parameters will result in a larger
attack surface. Next-generation systems are expected to offer great flexibility,
which makes the task of securing them more difficult.

Securing next-generation systems requires appropriate solutions to the fol-
lowing challenges:

Physical Layer Security. The air-interface and radio access networks use a
shared medium, and hence are vulnerable to intentional interference and jam-
ming. Next-generation systems are expected to share spectrum among multiple
service providers and technologies, which can make it harder to detect malicious
attacks.

Hardware and Supply Chain Security. This includes a trustworthy hard-
ware design that ensures that each hardware component of the system functions
according to the specification. Since the network devices are expected to be man-
ufactured by different providers, factory device identity management tools can
be used to mitigate potential risks.

Software/ Software-Defined Networking (SDN) Security. With the
advent of the SDN approach, more network functions will be implemented in
software. SDN frameworks, however, are prone to their own vulnerabilities (see,
e.g.., [6]).

Slicing/Virtualization Security. Since the future networks support different
slices, there is a need to properly separate them so the users or different slices
cannot adversely affect each other. The orchestration mechanisms should include
security features to eliminate attack doors at the time of slice creation and
resource allocation.

IoT Security. The large number of IoT devices connected to the future wire-
less broadband networks will likely be the weakest link in the entire system.
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Light-weight tools will be required to support end-to-end encryption and iden-
tify management for such devices. Developing scalable security mechanisms will
be the key to addressing this problem. The attacker can also exploit the fact
that the IoT devices have severe energy constraints due to limitation on the
battery capacity or on the amount of energy that can be harvested from the
environment.

Security challenges are exacerbated by the fact that the currently adopted
standards (including these developed by the 3GPP) leave many critical secu-
rity enhancements as optional. Furthermore, the ambiguity and the lack of for-
mal representation open the door for different interpretations by vendors, which
weakness the security properties of the operational systems. Furthermore, the
networks are designed to support backward compatibility with older generations,
which weakens the impact of newer security enhancements.

Open Source. In today’s networks, the networking solutions are provided by
individual vendors that follow a “closed source” approach for their software
stacks and utilize closed (“black box”) hardware. The closed nature of their sys-
tems makes it harder to secure these networks due to the lack of visibility inside
the black box devices as well as due to the lack of certainty in their behavior.
However, open source solutions may introduce additional security challenges [1].

3 Opportunities

Security challenges present unique opportunities for researchers and developers.
This section presents some of the concepts and tools that have the potential to
address the challenges referenced in Sect. 2.2.

Provable Security/Security by Design. In most engineering systems, the
performance and flexibility of the systems are prioritized while security and
privacy are treated as an afterthought. By addressing security requirements at
the early stages of the design process, the developers and the system architects
can eliminate entire categories of threats. Security by design can be coupled
with the clean slate approach while the system architects are not constrained
by compatibility requirements or by the requirements to be compatible with the
existing systems.

Composable Security. The services provided by next generation wireless
broadband systems cut across multiple layers and include multiple network com-
ponents. Indeed, fifth-generation networks are expected to provide end-to-end
slicing capabilities. Accordingly, there is a need to coordinate the security func-
tions be provided by multiple layers and network components. This, in turn,
will require tools to reason and analyze the joint behavior of distributed secu-
rity mechanisms to ensure the correctness of operations, eliminating redundant
security functions, and minimizing the performance overhead.

Machine Learning (ML)/Artificial Intelligence (AI) Security. ML/AI
tools and techniques are expected to play a significant role in the next-generation
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wireless systems. Due to their reliance on training data sets, ML/AI tools can
be exploited by the attacker to steer the system to an unstable state [5].

Programmable Security. It is highly desirable to move from the static
(decided in advance) security policies to dynamic policies that can be easily
updated during the operation of the system. Security functions can also be pro-
grammed by following the SDN approach, as opposed to the current practices
in which security policies are configured. Programmable security provides more
flexibility in responding to highly dynamic and evolving threats [3].

Developing Security Metrics and Indices. While there exists a large body
of research on assessing reliability of engineering systems in the presence of con-
ventional failures, assessing risk in the case of directed attacks is not well under-
stood. Accordingly, it would be useful to develop a probabilistic methodology
for assessing the ability of systems to withstand directed attacks aimed at the
different system components. This methodology would lead to the development
of security indices that can quantify the degree of resilience of the given system.

Leveraging Formal Methods. Formal methods can be leveraged to enable
provable security guarantees about systems at specification and design time as
well as to enable security measurement, verification, and validation at deploy-
ment time [2]. In addition, the formal methods can benefit the network standard-
ization process through the development of a methodology to formally specify
and reason about the network protocols. This methodology will address the
problems associated with traditional ways of describing protocols using a natu-
ral language [4].
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Abstract. In this document, we investigate the use of Distance Mapping ideas
and what they enable for system logs. In the field of telecommunication
networks, log files are used for service quality assurance, and are coming from
various devices, back end systems, and general usage of the network. Typically,
these log files are not allowed to be monetized or shared with third parties, thanks
to legal restrictions on privacy issues. While there are some existing early
solutions to this, such as Differential Privacy or Homomorphic Encryption, we
propose here to look at Distance Mapping to transform the raw data (the system
log files) into highly usable but anonymized data. The resulting data can be used
directly by Machine Learning algorithms, visualization algorithms, or be
considered for re-embedding. While this approach transforms the data format
significantly and limits its usage only for distance-based data mining and
machine learning tools, it is an elegant and computationally feasible
methodology for such applications.

1 Motivation

Logs are generated by applications to record important information and events during
the runtime of a system. Automated log analysis has been an active area of research [5,
8] focusing on how to use logs effectively. These event logs can be used in combination
with machine learning techniques for different purposes, including forensic analysis [2]
and anomaly detection [1].

5G telecommunications enable increased connectivity and the deployment of
diverse Internet of Things (IoT) applications. By combining logs from different sources
of a distributed system, we can build an overview of its state, which provides
situational awareness when investigating an incident. Logs play a crucial role in
analyzing the state of both 5G infrastructure [6] and the IoT applications built on top of
it [4].

Log files can also be used for data mining. For example, telecommunications
operators hold large amounts of log data, which often includes information related to
the traffic, location and movement of connected mobile equipment. This data can be
monetized by mining it internally to build better services or by selling it to external
parties for commercial purposes. However, the latter is often not possible due to
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regulations on privacy and data protection rules and the risks of re-identification of
users or systems.

2 Problem and Proposed Solution

To use the contents of log files in machine learning, data is transformed typically to a
format that can be used by an algorithm, i.e. numerical data, (often arbitrarily mapping
values to integers). This raises issues, as detailed in [3], and falls short with text fields
as in log files. We propose to use the technique in [3], named Distance Mapping,
followed by neighbor re-embedding [7].

The idea in Distance Mapping is to create a function that maps probabilistically the
distances between elements in the original metric space X; dð Þ (with X a set of values,
and d a distance function over that set) to distances in a well-known space, such as the
canonical Euclidean R; dEUCð Þ: Distances between log entries (across all fields:
timestamp, message,…) are mapped to distances between points in a Euclidean space
that are as likely (probabilistically) to be at that distance. The goal is to preserve the
structure of the data, specifically distance-based, such as density, separation of clusters
and classes,…

With pairwise distances between log entries mapped, the mapped distances can be
used by distance based machine learning, e.g. K-Means. Some techniques do not use
directly distances, so we perform re-embedding of the data into another space [3]: We
convert pairwise distances between points to a set of points that respects those pairwise
distances. For outlier detection, visualization, and machine learning, re-embedding the
mapped distances into R

d is ideal. For privacy, and having data of the same format as
the original, we can decide to re-embed the mapped distances into the original space.
We obtain a data set of the same format as the original, with log entries that relate to
each other (in terms of pairwise distances) as in the original data, and yet none of the
entries are the same as in the original data.

We theorize that this last approach allows for generating synthetic data that
preserves (statistically) pairwise distances between original data points, and the
structure of the data (understood here as based on distances).

References

1. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diagnosis from
system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference,
pp. 1285–1298. ACM, Dallas Texas, October 2017

2. Kahles, J., Törrönen, J., Huuhtanen, T., Jung, A.: Automating root cause analysis via
machine learning in agile software testing environments. In: 12th IEEE Conference on
Software Testing, Validation and Verification (ICST), pp. 379–390, April 2019

3. Miche, Y., Ren, W., Oliver, I., Holtmanns, S., Lendasse, A.: A framework for privacy
quantification: measuring the impact of privacy techniques through mutual information,
distance mapping, and machine learning. Cogn. Comput. 11(2), 241–261 (2019)

514 G. Limonta and Y. Miche



4. Noura, H.N., Salman, O., Chehab, A., Couturier, R.: DistLog: a distributed logging scheme
for IoT forensics. Ad Hoc Netw. 98, 102061 (2020)

5. Oliner, A., Stearley, J.: What supercomputers say: a study of five system logs. In: 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2007), pp. 575–584, June 2007

6. Sundqvist, T., Bhuyan, M.H., Forsman, J., Elmroth, E.: Boosted ensemble learning for
anomaly detection in 5G RAN. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI
2020. IFIP Advances in Information and Communication Technology, vol. 583, pp. 15–30.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49161-1_2

7. Yang, Z., Peltonen, J., Kaski, S.: Scalable optimization of neighbor embedding for
visualization. In: International Conference on Machine Learning, pp. 127–135. PMLR, May
2013

8. Zhu, J., et al.: Tools and benchmarks for automated log parsing. In: IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pp. 121–130, May 2019

A Data Mining Friendly Anonymization Scheme for System Logs using Distance Mapping 515

https://doi.org/10.1007/978-3-030-49161-1_2


Author Index

Aggarwal, Palvi 103
Alpcan, Tansu 3
Anwar, Ahmed H. 297, 445

Baras, John S. 223
Başar, Tamer 203
Basu, Kaustav 241
Belavadi, Vibha 457
Ben-Asher, Noam 23
Bhatt, Sujay 203
Bhattacharya, Sourabh 349
Bilinski, Mark 80
Bošanský, Branislav 385

Cansever, Derya 502
Chan, Kevin S. 23, 147
Chen, Juntao 365
Cullen, Andrew C. 3

Deugoue, Gabriel 312
diVita, Joe 80

Eghtesad, Taha 58
Emadi, Hamid 349

Fang, Fei 23, 147
Ferguson-Walter, Kimberly 80
Fu, Jie 168
Fugate, Sunny 80

Gabrys, Ryan 80
Gonzalez, Cleotilde 103
Granados, Alonso 45
Gupta, Jayesh K. 277

Hayel, Yezekael 312
Huang, Linan 125

Jabbari, Shahin 103
Jia, Feiran 257

Kambhampati, Subbarao 241
Kamhoua, Charles 23, 147, 257, 297, 312,

445

Kamhoua, Charles A. 168
Kantarcioglu, Murat 457
Katzef, Marc 3
Kiekintveld, Christopher 45, 297
Kochenderfer, Mykel J. 277
König, Sandra 422
Kopacz, Justin 3
Kulkarni, Abhishek N. 168
Kumar, Vijay 472

Laszka, Aron 58
Leckie, Christopher 3
Leslie, Nandi O. 23, 147, 168, 297
Limonta Gabriela 511
Luo, Huan 168

Ma, Xiaobai 277
Marshall, Erin 188
Mauger, Justin 80
Mavridis, Christos N. 223
Miah, Mohammad Sujan 45
Miche Yoan 511
Milani, Stephanie 147

Nguyen, Thanh H. 385
Nowak, Robert 188

Ortiz, Anthony 45

Pan, Yunian 365
Peng, Guanze 365, 405
Procaccia, Ariel D. 23

Qu, Gang 486

Rass, Stefan 422

Sen, Arunabha 241
Sen, Ayon 188
Sengupta, Sailik 241
Shen, Weiran 147
Shi, Zheyuan Ryan 23
Shishika, Daigo 472



Souza, Brian 80
Sprintson, Alex 506
Suriyarachchi, Nilesh 223

Tambe, Milind 103
Thakoor, Omkar 103
Thuriasingham, Bhavani 457
Tomášek, Petr 385
Tsemogne, Olivier 312

uz Zaman, Muhammad Aneeq 203

Vayanos, Phebe 103
Venkatesan, Sridhar 23, 147
Vorobeychik, Yevgeniy 58, 257

Wiegele, Angelika 422

Zhang, Tao 405
Zhao, Yuhan 326
Zhou, Kai 257
Zhou, Yan 457
Zhu, Quanyan 125, 326, 365, 405
Zhu, Xiaojin 188

518 Author Index


	Preface
	Organization
	Contents
	Machine Learning and Security
	Distributed Generative Adversarial Networks for Anomaly Detection
	1 Introduction
	2 Related Work
	2.1 Anomaly Detection
	2.2 GANs for Anomaly Detection

	3 Game-Theoretic Model of Generative Adversarial Networks
	3.1 GAN Games
	3.2 GAN Training Methods and Challenges

	4 A Novel Distributed GAN Framework
	4.1 Peer-GAN Game
	4.2 Peer-GAN Distributed Training and Convergence

	5 Anomaly Detection and Simulation Results
	5.1 Peer-GAN Convergence
	5.2 Sample Reconstruction
	5.3 Anomaly Detection Comparison

	6 Conclusion
	References

	Learning and Planning in the Feature Deception Problem
	1 Introduction
	2 The Feature Deception Problem
	3 Learning the Adversary's Preferences
	4 Computing the Optimal Feature Configuration
	5 Experiments
	5.1 Learning
	5.2 Planning
	5.3 Combining Learning and Planning
	5.4 Case Study: Credit Bureau Network

	6 Related Work
	7 Discussion
	References

	A Realistic Approach for Network Traffic Obfuscation Using Adversarial Machine Learning
	1 Introduction
	2 Motivation and Related Work
	3 Experimental Setup
	3.1 Dataset
	3.2 Realistic Features
	3.3 Classification Model

	4 Adversarial Settings
	4.1 Defender Model
	4.2 Adversary Model
	4.3 Obfuscation Approaches

	5 Restricted Traffic Distribution Attack
	5.1 Perturbation Constraints
	5.2 Distribution Constraints
	5.3 Framework

	6 Results
	7 Conclusions and Future Work
	References

	Adversarial Deep Reinforcement Learning Based Adaptive Moving Target Defense
	1 Introduction
	2 Preliminaries
	2.1 Independent Reinforcement Learning
	2.2 Deep-Q-Network Learning

	3 Model
	3.1 Environment and Players
	3.2 State
	3.3 Actions
	3.4 Rewards
	3.5 Observations

	4 Problem Formulation
	4.1 Pure Strategy
	4.2 Mixed Strategy
	4.3 Solution Concept

	5 Framework
	5.1 Solution Overview
	5.2 Challenges
	5.3 Solution Approach

	6 Evaluation
	6.1 Baseline Heuristic Strategies
	6.2 Implementation
	6.3 Numerical Results

	7 Related Work
	7.1 Moving Target Defense
	7.2 Reinforcement Learning for Cybersecurity

	8 Conclusion
	References

	Lie Another Day: Demonstrating Bias in a Multi-round Cyber Deception Game of Questionable Veracity
	1 Introduction
	2 Related Work
	3 Analysis of Optimal Attacker Strategies
	3.1 Game Model
	3.2 Cost Hypothesis
	3.3 Analysis

	4 Simulation
	4.1 Simulation Model
	4.2 Parameters
	4.3 Results
	4.4 Demonstrating Cognitive Bias

	5 Conclusion
	References

	Cyber Deception
	Exploiting Bounded Rationality in Risk-Based Cyber Camouflage Games
	1 Introduction
	1.1 Related Work

	2 Risk-Based Cyber Camouflage Games (RCCG) Model
	3 Rational Attackers
	3.1 Zero-Sum RCCG
	3.2 Unconstrained General-Sum RCCG
	3.3 Constrained General-Sum RCCG

	4 A Model-Driven Approach with Prospect Theory
	4.1 Learning Model Parameters from Data
	4.2 Robust Solution with Prospect Theory

	5 GEBRA: Exploiting Bounded Rationality Model-Free
	6 Numerical Results
	7 Summary
	A RCCG for Rational Attackers
	B Sensitivity to Learning Error
	C Computing Strict Competitiveness
	References

	Farsighted Risk Mitigation of Lateral Movement Using Dynamic Cognitive Honeypots
	1 Introduction
	1.1 Related Works
	1.2 Notation and Organization of the Paper

	2 Chronological Enterprise Network Model
	2.1 Time-Expanded Network and Random Service Links
	2.2 Attack Model of Lateral Movement over a Long Duration
	2.3 Cognitive Honeypot

	3 Farsighted Vulnerability Mitigation for Long-Term Security
	3.1 Imminent Vulnerability
	3.2 k-stage Vulnerability
	3.3 Curse of Multiple Attack Paths and Two Sub-Optimal Honeypot Policies
	3.4 LTV Analysis Under Two Heuristic Policies

	4 Conclusion
	References

	Harnessing the Power of Deception in Attack Graph-Based Security Games
	1 Introduction
	2 Game Model
	3 Theoretical Analysis
	4 The MILP Approach for Layered DAGs
	4.1 Bipartite DAG
	4.2 Layered DAG

	5 The NAS Approach for General DAGs
	6 Experiments
	6.1 Bipartite DAGs
	6.2 General DAGs

	7 Related Work
	8 Discussion and Conclusion
	References

	Decoy Allocation Games on Graphs with Temporal Logic Objectives
	1 Introduction
	2 Problem Formulation
	2.1 Attack-Defend Games on Graph
	2.2 Formulating the Decoy Allocation Problem

	3 Main Result
	3.1 Deceptive Synthesis: Hypergames on Graphs
	3.2 Compositional Synthesis for Decoy Allocation

	4 Conclusion
	References

	Popular Imperceptibility Measures in Visual Adversarial Attacks are Far from Human Perception
	1 Introduction
	2 Study Overview
	2.1 Human Just Noticeable Difference (JND)
	2.2 Popular Imperceptibility Measures d()

	3 Human JND Experiments
	4 Results
	4.1 Qualitative Assessment
	4.2 Quantitative Assessment

	5 Discussions and Conclusion
	References

	Cyber-Physical System Security
	Secure Discrete-Time Linear-Quadratic Mean-Field Games
	1 Introduction
	1.1 Agent Model and Objective
	1.2 A Motivating Application
	1.3 Main Results and Organization

	2 Secure LQ-MFG: Model and Objective
	2.1 Secure n-agent Linear Quadratic (LQ) Game
	2.2 Secure Linear Quadratic Mean-Field Game (SLQ-MFG)

	3 State Reconstruction Using Multi-rate Sensor Output Sampling
	4 Equilibria of Secure LQ Games
	4.1 MFE of the SLQ-MFG
	4.2 -MFE of the SLQ-MFG
	4.3 (+ )-Nash Equilibrium of the Secure n-Agent LQ Game
	4.4 Summary and Discussion

	5 Empirical Studies
	5.1 Performance Sensitivity w.r.t. Sampling Rate
	5.2 Performance Sensitivity w.r.t. Model Parameters and Private Keys

	6 Conclusion
	7 Appendix
	7.1  MFE of the LQ-MFG

	References

	Detection of Dynamically Changing Leaders in Complex Swarms from Observed Dynamic Data
	1 Introduction
	2 Modeling Complex Swarm Maneuvers
	2.1 Extended Boids Model
	2.2 Cucker-Smale Model with Leadership

	3 Leader Detection
	3.1 Granger Causality
	3.2 Leader Detection Based on Granger Causality

	4 Estimating the Number of Leaders
	4.1 Deterministic Annealing

	5 Learning the Particle Interaction Laws
	6 Experimental Results
	6.1 Case of One Leader
	6.2 Case of Multiple Leaders

	7 Conclusion and Discussion
	References

	Moving Target Defense for Robust Monitoring of Electric Grid Transformers in Adversarial Environments
	1 Introduction
	2 Preliminaries
	2.1 The Electric Power Grid as a Graph
	2.2 Minimum Discriminating Code Set (MDCS)
	2.3 Moving Target Defense (MTD) and Differential Immunity

	3 K Differentially Immune MDCS (K-MDCS)
	3.1 Finding Max K for K-MDCS

	4 Game Theoretic Formulation
	5 Experimental Simulation
	6 Related Works
	7 Conclusion
	References

	Security of Network Systems
	Blocking Adversarial Influence in Social Networks
	1 Introduction
	2 Problem Formulation
	3 Solution Approach
	3.1 Computing Attacker's Best Response
	3.2 Optimal Influence Blocking: A Constraint Generation Approach
	3.3 Approximating Optimal Influence
	3.4 Scaling up Through a Pruning Heuristic

	4 Extensions
	5 Experiments
	6 Conclusion
	References

	Normalizing Flow Policies for Multi-agent Systems
	1 Introduction
	2 Background and Related Work
	2.1 Flow Models
	2.2 Stochastic Games
	2.3 Imitation Learning and Agent Modeling
	2.4 Multi-agent Reinforcement Learning

	3 Normalizing Flow Policy Representation
	3.1 Conditional Flow as Policy Representation
	3.2 Representation Capability

	4 Experiments
	4.1 Agent Modeling
	4.2 Multi-agent RL

	5 Conclusion
	A  Appendix
	References

	A Game Theoretic Framework for Software Diversity for Network Security
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Attacker Problem
	3.2 Defender Problem
	3.3 Payoff Functions
	3.4 Game Problem
	3.5 Game Complexity
	3.6 Complexity Reduction

	4 Numerical Results
	5 Conclusion and Future Work
	References

	Partially Observable Stochastic Games for Cyber Deception Against Network Epidemic
	1 Introduction
	2 Model Description
	2.1 Problem Description
	2.2 Model
	2.3 Model Description

	3 Solution Description
	3.1 Strategies
	3.2 Utility
	3.3 Objectives

	4 Value Backup Operator
	5 Numerical Illustrations
	6 Conclusions and Further Work
	References

	Combating Online Counterfeits: A Game-Theoretic Analysis of Cyber Supply Chain Ecosystem
	1 Introduction
	1.1 Related Work
	1.2 Organization of the Paper

	2 Model of Cyber Supply Chain
	2.1 Consumers' Model
	2.2 Pricing Mechanisms in Licit and Illicit Market
	2.3 Sellers' Utility

	3 Problem Formulation and Game Structure
	3.1 Stackelberg Game
	3.2 Nash Game

	4 Analysis of Counterfeiting in Cyber Supply Chain
	4.1 Market Share Analysis
	4.2 Best Response Functions
	4.3 Iterative Algorithm

	5 Case Studies and Simulations
	5.1 Best Response and Equilibrium Strategy
	5.2 Discussion on Parameter Sensitivity
	5.3 Anti-Counterfeit Strategies

	6 Conclusion
	A Proof of Theorem 1
	B Proof of Theorem 2
	References

	Theoretic Foundations of Security Games
	On the Characterization of Saddle Point Equilibrium for Security Games with Additive Utility
	1 Introduction
	2 Problem Formulation: Security Game
	3 Structural Properties of the Attacker's Strategy
	4 Computation of v*
	5 Dual Analysis: Structural Properties of the Defender's Strategy and Algorithms
	6 Conclusion
	References

	MASAGE: Model-Agnostic Sequential and Adaptive Game Estimation
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Preliminary
	3.2 Dynamic Linear Estimation Problem

	4 Objective Function Analysis
	4.1 Basic Properties
	4.2 Perturbation Theory of Parameterized Matrix Game

	5 Algorithmic Analysis
	5.1 Sequential Observation and Adaptation
	5.2 Extended Kalman Filter

	6 Case Study
	6.1 Experimental Setting and Results
	6.2 Discussions

	7 Conclusions and Future Research
	References

	Using One-Sided Partially Observable Stochastic Games for Solving Zero-Sum Security Games with Sequential Attacks
	1 Introduction
	2 Technical Background
	2.1 One-Sided Partially Observable Stochastic Games (OS-POSG)
	2.2 Heuristic Search Value Iteration (HSVI)
	2.3 Security Games with Sequential Attacks

	3 Using OS-POSGs for Sequential Attacks
	3.1 Representing SGSA as OS-POSG
	3.2 HSVI-Inspired Algorithm
	3.3 Exact Variant of the Algorithm
	3.4 Heuristic Variant of the Algorithm

	4 Experimental Evaluation
	4.1 Experiments Setting
	4.2 Comparison with State of the Art
	4.3 Algorithm Scalability
	4.4 Solution Quality

	5 Conclusion
	References

	A Data-Driven Distributionally Robust Game Using Wasserstein Distance
	1 Introduction
	2 Preliminaries
	3 Robust Game
	4 Data-Driven Empirical Game
	5 Data-Driven Distributionally Robust Game
	5.1 Motivation
	5.2 Equilibrium Concept
	5.3 Existence of DRE
	5.4 Asymptotic Consistency
	5.5 Tractable Formulations
	5.6 Mathematical Programming for DRE

	6 Numerical Example
	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References

	Security Games over Lexicographic Orders
	1 Introduction and Motivation
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Representability of the Lexicographic Order

	3 Finding Lex-Order Optimal Strategies
	4 Applications and Examples
	4.1 Refining Ambiguous Attack or Defense Strategies
	4.2 Example 1: The Pure Algorithm (Numerical Illustration)
	4.3 Example 2: Data Download

	5 Conclusion
	A Proof of Proposition 1
	B Proof of Lemma 2
	B.1 Example
	B.2 Restricting the Equilibria to the Desired Set

	References

	Emerging Topics
	Game Theory on Attack Graph for Cyber Deception
	1 Introduction
	2 Related Work
	2.1 Attack Graph
	2.2 Hypergame

	3 Information Model and Game Formulation
	3.1 On the Complexity of POSG
	3.2 Game Model

	4 Game Solving Techniques
	4.1 POMDP Embedded Game
	4.2 One-sided POSG

	5 Results
	6 Conclusion
	References

	Attacking Machine Learning Models for Social Good
	1 Introduction
	2 Related Work
	3 Modeling Socially Good Adversarial Attacks
	3.1 Ethical and Practical Adversarial Attacks for Image Classification
	3.2 Ethical and Practical Adversarial Attacks for Classification with Discrete Attributes

	4 Experiments
	4.1 Methodology and Experimentation for CelebA Dataset
	4.2 Methodology and Experimentation for German Credit Dataset

	5 Conclusion
	References

	A Review of Multi Agent Perimeter Defense Games
	1 Introduction
	2 Problem Statement
	3 Solution Method
	3.1 Agent-Level Control Policy
	3.2 Team-Level Coordination Policies

	4 Extensions and Generalizations
	4.1 Assignment-Based Defense Policies
	4.2 Cooperative Intruder Strategies

	5 Limitations and Future Directions
	6 Conclusion
	References

	Hardware Security and Trust: A New Battlefield of Information
	1 Introduction
	2 The Role of Hardware in Cybersecurity
	3 Key Problems in Hardware Security and Trust
	3.1 Physical Attacks
	3.2 Side Channel Analysis
	3.3 Intellectual Property Protection
	3.4 Hardware Trojan
	3.5 Hardware Security Primitives
	3.6 Applications in Security and Trust

	4 Information Battle Perspective of Hardware Security
	5 Open Problems and Conclusions
	Appendix
	References

	Security Games with Insider Threats
	1 Introduction
	2 Private Information
	3 Stealthy Attacks with Insider Information
	4 Conclusions and Future Research
	References

	Securing Next-Generation Wireless Networks: Challenges and Opportunities (Extended Abstract)
	1 Introduction
	2 Security Goals and Challenges
	2.1 Goals
	2.2 Challenges

	3 Opportunities
	References

	Short Paper
	A Data Mining Friendly Anonymization Scheme for System Logs using Distance Mapping
	1 Motivation
	2 Problem and Proposed Solution
	References
	Author Index



