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Abstract. Internet of Things (IoT) is a promising profound technology with
tremendous expansion and effect. However, IoT infrastructures are vulnerable
to cyber-attacks due to the constraints in computation, storage, and communica-
tion capacity for the endpoint devices such as thermostat, home appliance, etc. It
was reported that 99% of the cyber-attacks are developed by slightly mutating pre-
viously known attacks to generate a new attack tending to be handled as a benign
traffic through the IoT network. In this research, we developed a new intelligent
self-reliant system that candetectmutations of IoTcyber-attacks usingdeep convo-
lutional neural network (CNN) leveraging the power of CUDAbasedNvidia-Quad
GPUs for parallel computation and processing. Specifically, the proposed system
is composed of three subsystems: Feature Engineering subsystem, Feature Learn-
ing subsystem and Traffic classification subsystem. All subsystems are developed,
verified, integrated, and validated in this research. To evaluate the developed sys-
tem, we employed the NSL-KDD dataset which includes all the key attacks in the
IoT computing. The simulation results showed a superior attacks’ classification
accuracy over the state-of-art machine learning based intrusion detection systems
employing similar dataset. The obtained results showed more than 99.3% and
98.2% of attacks’ classification accuracy for both binary-class classifier (normal
vs anomaly) and multi-class classifier (five categories) respectively. All develop-
ment steps and testing and verification results of the developed system are reported
in the paper.

Keywords: Artificial intelligence · Convolutional neural network · IoT
networks · Cyber-attack detection · Classification

1 Introduction

The Internet of Things (IoT) is comprised of a collection of heterogeneous resource-
constrained objects interconnected via different network architectures such as wireless
sensor networks (WSN) [1]. These objects or “things” are usually composed of sensors,
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actuators, and processorswith the ability to communicatewith each other to achieve com-
mon goals/applications through unique “thing” identifiers with respect to the Internet
Protocol (IP) [2, 3]. Current IoT applications include smart buildings, telecommunica-
tions, medical and pharmaceutical, aerospace and aviation, environmental phenomenon
monitoring, agriculture, industrial processing and manufacturing and others. The basic
IoT layered architecture is shown in Fig. 1. It has three layers: the perception layer
(consist of edge-devices that interact with the environment to identify certain physical
factors or other smart objects in the environment), the network layer (consists of a num-
ber of networking-devices that discover and connect devices over the IoT network to
transmit and receive the sensed data), and the application layer (consists of various IoT
applications/services that are responsible for data processing and storage). Indeed, most
cyber-attacks target the application and network layers of the IoT system.

Fig. 1. IoT layered architecture [4].

IoT is a promising profound technology with tremendous expansion and effect. IoT
infrastructures are vulnerable to cyber-attacks in that within the network simple endpoint
devices (e.g. thermostat, home appliance, etc.) have constraints in computation, storage,
and network capacity other than more complex endpoint devices, such as a smartphone,
laptop etc., that may reside within the IoT infrastructure. Once the IoT infrastructure
is breached, hackers have the ability to distribute the IoT data to unauthorized parties
and can manipulate the accuracy and consistency of IoT data over its entire life cycle
[5]. Therefore, such cyber-attacks need to be addressed for safe IoT utilization. Conse-
quently, vast efforts to handle the security issues in the IoT model have been made in
the recent years. Many of them were developed by coupling the field machine learning
techniques with cybersecurity field. It should be noted that, the majority of IoT attacks
are developed as slight deviations (i.e. mutations) of earlier known cyberattacks [6].
Such slight mutations of these IoT attacks have been demonstrated to be difficult to
identify/classify using traditional machine learning techniques. Indeed, few promising
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state-of-art researches were conducted for cybersecurity using deep neural networks
models such as [7–12].

In this paper, we propose a new intelligent system that can detect mutations of
common IoT cyber-attacks using non-traditional machine learning techniques exploiting
the power ofNvidia-QuadGPUs. The proposed system employs the convolutional neural
network (CNN) along its associated machine learning algorithms to classify the NSL-
KDD dataset records (we call our system as IoT-IDCS-CNN). The NSL-KDD dataset
stores non-redundant records of all the key attacks of IoT computing with different levels
of difficulties. Specifically, the main contributions of this paper can be summarized as
follows:

• We provide a comprehensive efficient detection/classification model that can classify
the IoT traffic records ofNSL-KDDdataset into two (Binary-Classifier) or five (Multi-
Classifier) classes.Also,we present detailed preprocessing operations for the collected
dataset records prior to the use with deep learning algorithms. Besides, we illustrate
a comprehensive view of the computation process of our IoT-IDCS-CNN.

• Weprovide a simplifieddevelopment/validation environment and configurations along
with an extensive simulation results to gain insight into the proposed model and
the solution approach. This includes simulation results related to the classification
accuracy, classification time and classification error rate for the system validation of
both detection (Binary-Classifier) and classification (Multi-Classifier) in addition to
benchmarking of our findings with other related state-of-art works.

The rest of this paper is organized as follows: Sect. 2 introduces and justify the
dataset of IoT cyber-attacks employed in our system. Section 3 provides details of
the proposed system design and architecture. Section 4 presents the environment for
system development and validation. Section 5 discusses the details about experimental
evaluation, comparison, and discussion. Finally, Sect. 6 concludes the findings of paper.

2 Dataset of Cyber-Attacks

NSL-KDD [13] is a reduced version of the original KDD’99 dataset [14] and consists
of the same features as KDD’99. However, NSL-KDD includes more up-to-date and
non-redundant attack records with different levels of difficulties. Figure 2 shows sample
records of original KDD-NSL training dataset in CSV format but read by notepad in
TXT format (prior to any processing technique). In this research, NSL-KDD dataset is
collected and employed for many reasons including:

(a) It can be efficiently imported, read, preprocessed, encoded, and programed to
produce two- or multi- class classification for IoT Cyber-attacks.

(b) It covers all key attacks of IoT computing including: Denial-of-Service (DoS) [15],
Probe (side channel) [16], Root to Local (R2L) [17], User to Root (U2R) [17].

(c) It is obtainable as TXT/CSV filetype consisting a reasonable number of non-
redundant records in the train and test sets. This improves the classification process
by avoid the bias towards more frequent records.
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Fig. 2. Sample records of KDD-NSL training dataset.

(d) It reveals high-level of IoT traffic structures and cyberattacks as well as it can be
customized, expanded, and regenerated [13].

NSL-KDD dataset has been thoroughly developed with high-level diverse interpre-
tations of the training data covering normal and abnormal IoT network traffic data. The
normal data samples represent the legitimate data packets processed by the IoT network.
The abnormal data samples represent mutated data packets (i.e., attacks) achieved by
slight mutations in the previously developed attacks such as the small changes in the
network packet header configurations. The original dataset is available in two classi-
fication forms: two-class traffic dataset with binary labels and multi-class traffic data
set including attack-type labels and difficulty level. In both cases, it comprises 148,517
samples each with 43 attributes such as duration, protocol, service, and others [18]. The
statistics of traffic distribution of NSL-KDD dataset is summarized in Table 1.

Table 1. Statistics of traffic distribution of NSL-KDD dataset [14].

Two-classes
dataset

Multi-classes dataset

Normal Attack Normal DoS Probe R2L U2R

Training 67343 58630 67343 45927 11656 995 52

Testing 9711 12833 9711 7458 2754 2421 200

Total 77,054 71,463 77,054 53,385 14,410 3,416 252

3 System Modeling

In this research, the proposed system is partitioned into distinct subsystems each ofwhich
is implemented with several modules. Specifically, the system is composed of three
subsystems including: Feature Engineering (FE), Feature Learning (FL), and Detection
and Classification (DC), as illustrated in Fig. 3.
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Fig. 3. The three main subsystems composing the proposed system.

3.1 Implementation of Feature Engineering (FE) Subsystem

This subsystem is responsible for conversion of raw IoT traffic data records ofNSL-KDD
dataset into amatrix of labeled features that can be fed and trained by the neural network’s
part of the FL subsystem. The implementation stages of this subsystem include:

Importing NSL-KDD Dataset: In this stage, the collected dataset has been
imported/read using MATLAB in a tabulated format instead of raw data in the orig-
inal dataset text files. All data columns are assigned virtual names based on the nature
of data in the cells. The imported dataset includes 43 different features/columns.

Renaming Categorial Features: Four of imported 43 features are categorial features
that need to be renamed prior the data encoding and sample labeling processes. These
features are the target protocol, the required service, the service flag, and the record cat-
egory (e.g. normal or attack). Therefore, the four categorial columns have been renamed
accordingly in this stage.

One Hot Encoding of Categorial Features: This module is responsible for conver-
sion of the categorial data records into numerical data records in order to be employed
by the neural network. Therefore, three categorial features undergo through One Hot
Encoding process (1-N encoding) [19]. These features are the protocol column, the ser-
vice column, and the flag column. The class feature/column is left for samples labeling
process.

Labeling the Target Feature: This stage concerns with the samples labeling using
numerical (integer) labels for the target classes. Therefore, the categorial ‘Class Col-
umn’ will be converted to numerical classes according to the classification technique.
In our system implementation, we are considering two forms of traffic classifications:
Binary classification (1: Normal vs. 2: Attack) and Multi classification (1: Normal, 2:
DoS, 3:Probe, 4: R2L, 5: U2R). After this stage, all data records are available into numer-
ical format (i.e. no categorial data are exist anymore). As a result of 1-N encoding and
numerical labeling, we converted the dataset into 123 features and one data label.

Converting Tables to Double Matrix: At the end of dataset importing, encoding, and
labeling processes, the dataset samples and targets should be provided to the neural
network inputs of FL subsystem as a matrix of all input numerical samples. Therefore,
encoded dataset tables have been converted to double matrix (148517 × 124).
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Matrix Resizing with Padding Operation: This module is responsible to adjust the
size of the dataset matrix to accommodate the input size for the FL subsystem. This was
performed by resizing the matrix of the engineered dataset form 148517 × 124 to the
new size of 148517 × 784, since the input size of every individual sample processed
at FL subsystem is 28 × 28 (=784). Thereafter, the new empty records of this matrix
were padded with zero-padding technique [20]. Besides, to avoid any feature biasing in
the samples of the dataset, the padded records were distributed equally around the data
samples.

Matrix Normalization with Min-Max Norm: Data normalization is performed to
get all the data points to be in the same range (scale) with equal significance for each of
them. Otherwise, one of the great value features might completely dominate the others
in the dataset. Thus, this module is responsible to normalize all integer numbers of the
datasetmatrix into a range between 0–1usingMin-MaxNormalization (MX-Norm) [21].
MX-Norm is well-known method to normalize data as its commonly used in machine
learning applications. In this method, we scan all the all values in every feature, and
then, the minimum value is converted into a 0 and the maximum value is converted into
a 1, while the other values are converted (normalized) into a fraction value from 0 to 1.

Converting Tables to Double Matrix: This module is responsible to create the attack
samples for the CovNet by reshaping the one-dimensional vectors of attack records
into two-dimensional square matrices to accommodate the input size for the developed
CovNet network. Accordingly, every one-dimensional vector sample (1 × 784) will be
reshaped into two-dimensional matrix (28 × 28).

3.2 Implementation of Feature Learning (FL) Subsystem

So far, the FE subsystem has been developed and the next step is to process the encoded
input features using FL subsystem-based CNN. The deep learning network will to be
trained with minimum classification error and thus maximum accuracy. Generally, CNN
involves of various layers including convolution, activation, pooling, flatten and others.
Convolutional layers are the core constructing component of CNN network and they are
hierarchically assembled to generate a number of feature-maps which enable CNNs to
learn complex features being a vital operation to recognize patterns in the classification
anddetection tasks. Therefore, theFL subsystem is responsible to develop the appropriate
CNN that can accept the encoded features from FE subsystem at the input layer and train
on them with multiple hidden layers as well as updates the training parameters before
classifying the IoT traffic dataset as normal or anomaly (mutated). The implementation
stages of this subsystem include:

Feature Mapping with 2D-Convolution Operations Layer: This module is respon-
sible to generate new matrices called feature maps that emphasizes the unique features
of the original matrix [22]. These feature-maps are produced by convolving (multiply
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and accumulate) the original matrix (nin × nin) using a number (N ) of (k × k) convo-
lution filters with padding size (p) and stride size of (s) which yields the feature maps
(nout × nout). The size of the resultant feature maps can be evaluated as follows:

nout = (nin + 2p − k)/s + 1 (1)

In this research, we have applied 20 convolution filters (9 × 9) over the 28 × 28
input samples with (p = 0, and s = 1) which resulted in 20 feature map each (20× 20).

Feature Activation with ReLU Function: This module is responsible to activate all
units of the feature maps with non-linear rectification function namely known as ReLU.
ReLU function is MAX (X,0) that sets all negative values in the matrix X to zero while
all other values are kept constant. The reason of using ReLU is that training a deep
network with ReLU tended to converge much more quickly and reliably than training a
deep network with other non-linear activation functions such sigmoid or tanh activation
functions [23].

Down-Sampling with Pooling Operations Layer :This module is responsible to gen-
erate newmatrices called pooled featuremaps that reduces the spatial size of the rectified
feature maps and thus reduces the number of parameters and computation complexity in
the network [22]. This can be done by combining the neighboring points of a particular
region of the matrix representation into a single value that represent the selected region.
The adjacent points are typically selected from a fixed size-square matrix (determined
according to the application). Among these points of the applied matrix, one value is
nominated as themaximum ormean of the selected points. In this research, we have used
the mean pooling technique to develop the pooling layer since it combines the contribu-
tion of neighboring points instead of only selecting the maximum point. To produce the
pooled feature-maps (Lout × Lout), the pooling filter (f × f ) is independently applied
over the rectified feature-maps (Lin × Lin) with stride (s) as follows:

Lout = (Lin − f )/s + 1 (2)

In this research, we have applied 20 pooling operation (2 × 2) over the 20 × 20
rectified feature-maps with (s = 2) which resulted in 20 feature map each (10 × 10).

3.3 Implementation of Detection and Classification (DC) Subsystem

DC subsystem is responsible of providing traffic classification for the input traffic data
into binary-class classification (2-Classes: normal vs. anomaly) or multi-class classifica-
tion (5-Classes: Normal, DoS, Probe, R2L, U2R). This subsystem is composed of three
consecutive stages as follows.

Flattening Layer of Pooled Feature Maps: Thismodule is responsible to linearize the
output dimension of the convolutional/pooling layers network to create a single long
feature vector [22]. This can be achieved by converting the 2D data of N- Pooled feature-
maps into a 1-D array (or vector) to be inputted to the next layer, which is connected
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to the final classification model, called a dense or fully connected layer. Since flatten
layer collapses the spatial dimensions of the input into the channel dimension (array),
this means that if the input to the flatten layer is (N ) feature maps each with a dimension
of (Fin × Fin) then the flattened output (Fout) can be obtained by linear multiplication
of the input dimensions by the number of maps, that’s it:

Fout = N ×Fin ×Fin (3)

In this research, since we have 20 pooled feature maps (N = 20), each with
dimension of 10 × 10 (Fin = 10), then, our flatten layer comprise of 2000 nodes.

Fully Connected Layer with ReLU Function: Fully Connected (FC) layers- as name
implies- are those layers where all the inputs from one layer are connected to every
activation unit of the next layer [22]. Commonly, FC layers are located as the last few
layers of any CNN. Therefore, this module is responsible to compile the high level
features extracted by previous layers (convolutional and pooling layers) into a reduced
form of low level features in which they can be used by the classifier located at the output
layer to provide classification probabilities. In this research, we have developed the FC
layer with 200 neurons connected with 2000 nodes of the flattened (FL) layer which
provide a layer complexity reduction by 10 : 1. As the inputs pass from the units of FL
layer through the neurons of FC layer, their values are multiplied by the weights and
then pass into the employed activation function (normally ReLU function) just in the
same way as in a the classical NN (i.e. shallow NN). Thereafter, they are forwarded to
the output classification layer where each neuron expresses a class label. Note that, FC
layer also goes through a backpropagation [24] process to determine the most accurate
values of its trainable parameters (weights WFL × WFC = 2000 × 200).

Output Layer with SoftMax Function: This module is responsible to provide/predict
the correct classification for each evaluated sample record of the utilized IoT attacks-
dataset. Here we are providing two types of classification including the binary-classifier
(normal or anomaly) and the multi-classifier (normal, DoS, Probe, R2L, U2R). The
data points received from the 200 neurons of the FC layer (A1,A2, . . . ,A200) are fully
connectedwith thefiveneurons (C1,C2,C3,C4,C5) of the output classes (j = 5vectors)
through the transposed weight connections (WT

j ). This can be achieved algebraically as
follows:

(4)

Note that, the output layer also goes through a backpropagation process to determine
the most accurate values of its trainable parameters (weights WFC × Wout = 200 × 5).
The last layer of the neural network is a Softmax layer which has similar number of
nodes as the output layer. Softmax normalizes the output into a probability distribution
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on classes [22]. Specifically, Softmax assigns numerical probability values for every
class at the output layer where these probabilities should sum up to 1.0 (following a
probability distribution). Given an input a vector (x) of (K) real numbers and (i) defines
the index for the input values, then, SoftMax function σ : Rk �→ R

k is defined as follows:

σ (x)i = exi/
∑K

j=1
exi − for i = 1, 2, 3, . . . ,K and x = (x1, x1, . . . , xK) ∈ R

k

(5)

3.4 System Integration

In this section, we integrate all the aforementioned subsystems and modules by Putting-
It-All-Together to come up with complete system architecture of our IoT-IDCS-CNN.
Figure 4 illustrates the top view architecture of the integrated system as a feedforward
CovNet network based IoT attack detection system.

Fig. 4. Top view architecture of the proposed IoT-IDCS-CNN.

According to the system architecture, after data preprocessing stages and using the
28×28 input matrix, we constructed 784 (=28×28) input nodes. To extract features of
the input data, the network encompasses a deep convolutional layer involving a depth of
20 convolution filters of size (9 × 9). Thereafter, the results of the convolutional layer
passes via ReLU activation function which followed by the subsampling operation of the
pooling layer. The pooling layer utilizes the average pooling method with 2× 2 subma-
trices. The pooled features are then flattened to 2000 nodes. The classification/detection
neural network comprises the single hidden fully connected (FC) layer and the output
classification layer. This FC layer comprises 200 nodes along with ReLU activation
function. Since our system requires the classification of the data into 5 classes, there-
fore, the output layer is implemented with 5 nodes with SoftMax activation function.
The next table, Table 2, recaps the final integrated CovNet based system for IoT attacks
detection.

Moreover, the life cycle for the packet traffic received at the IoT gateway is provided
in Fig. 5 below. The input layer takes the encoded features generated from FE subsystem
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Table 2. Summary of the developed CovNet for IoT attacks detection/classification system.

Layer Comment Trainable parameters

Preprocessing 148517 Sample each (28 × 28) –

Input 28 × 28 nodes (784 nodes) –

Convolution 20 convolution filters (9 × 9) + ReLU WCon (9 × 9 × 20)

Pooling Mean pooling (2 × 2) –

Flattening 2000 nodes –

Fully Connected 200 nodes + ReLU WFCL (2000 × 200)

Output 5 nodes (or 2 nodes) + SoftMax WOut (200 × 5)

in order to be trained at the CNN which update the training parameters and generate the
least cost/loss value (error)with optimal accuracy. The output layer employs the SoftMax
classifier which is used to classify the data using two classification techniques include:
binary classification technique which provides two categories (normal vs anomaly) and
the multi-classification technique which provides five categories (normal, DoS attack,
Probe attack, R2L attack, U2R attack).

Fig. 5. Comprehensive view of the computation process IoT-IDCS-CNN.

4 Simulation Environment

To implement, verify, and validate the proposed IoT attacks detection and classification
system (IoT − IDCS − CNN ), the training and testing were performed on the NSL-
KDD dataset involving the key attacks for IoT communication. The classifier model was
determined to have either two classes (binary attack detection) or five classes (multi-
attack classification). The proposed system was implemented in MATLAB 2019a. To
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evaluate the systemperformance, experimentswere performed using a high-performance
computing platform utilizing the power of central processing unit (CPU) and graphical
processing unit (GPU) with Multicore structure of NVIDIA GeForce® Quadro P2000
Graphic card. The specifications for the workstation used in development, validation &
verification are provided via Table 3.

Table 3. The system develompment and validation environment.

System unit Specifications

Processor Unit (CPU) Intel Core I9-9900 CPU, 8 Cores, @ 4900 MHz

Graphics Card (GPU) NVIDIA Quad P2000@1480 MHz, 5 GB Mem, 1024 CUDA Cores

Cache Memory ($) 16 MB Cache @ 3192 MHz

Main Memory (RAM) 32 GB DDR4 @ 2666 MHz

Operating System (OS) 64 bit, Windows 10 Pro

Hard Disk Drive (HD) SATA 1 TB Drive + 256 GB SSD

Besides, the experimental setup for training/testing model has been configured as
follows:

• Dataset Distribution:

– 85% of the dataset used for training (i.e., ~128500 data sample records).
– 15% of the dataset used for testing (i.e., ~20000 data sample records).

• CovNet Configurations:

Input (Sample) Size = 28 x 28. Number of Kernels = 20. 
Conv. Kernel Size = 9 x 9. Mean Pooling filter size = 2 x 2. 
Activation function = ReLU. Classifier function= SoftMax. 
Number of Hidden Layers = 5. Number of Output classes = 2 or 5. 

• Model Optimization Configurations:

– Optimization Algorithm = Mini Batch Gradient Descent (find minimum loss).
– Mini_batch_size = 50, Momentum factor (β) = 0.95, learning rate (α) = 0.05.
– Momentum updates = MomCon[9 × 9 × 20], MomFCL[2000 × 200],
MomOut[200 × 5].

– All Momentum updates were initialized using ZEROS matrices (zeros(size)).

• Training Model Configurations:

– Training technique = back-propagation with momentum (to update weights).
– Trainable weights = WCon[9 × 9 × 20],WFCL[2000 × 200], WOut[200 × 5].
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– Backprop. Derivatives = dWCon[9 × 9 × 20], dWFCL[2000 × 200],
dWOut[200 × 5].

– The number of epochs = 100 and the number of iterations per epoch = ~2500.
– All trainable weights were initialized using random number generator (rand).
– All backpropagation derivatives were initialized using ZEROS matrices.

• Weight update policy:

– dWCon = dWCon
Mini_batch_size , dWFCL = dWFCL

Mini_batch_size , dWOut = dWOut
Mini_batch_size

– MomCon = α ∗ dWCon + β ∗ MomCon;→ WCon = WCon + MomCon

– MomFCL = α ∗ dWFCL + β ∗ MomFCL;→ WFCL = WFCL + MomFCL

– MomOut = α ∗ dWOut + β ∗ MomOut;→ WOut = WOut + MomOut .

5 Results and Discussion

To verify the effectiveness of the proposed system in compliance with its intended
functionalities and missions, we have evaluated the system performance using the rec-
ommended testing dataset in terms of the classification accuracy, classification error
percent and the classification time as follows:

ClassificationAccuracy(%) = CorrectlyPredictedSamples
NumberofTestingSamples

× 100% (6)

ClassificationError(%) = Incorrectly Predicted Samples
Number of Testing Samples

× 100% (7)

Classification Time(ms) =
No.Runs∑

i= 1

Execution time (i) × 1000

No.Runs
(8)

The plot for the overall testing classification accuracy and overall classification loss
(classification error) comparing the performance of the binary-classifier (2-Classes) and
the multi-classifier (5-Classes) obtained during the validation process of NSL-KDD
dataset are illustrated in Fig. 6. According to the figure, at the beginning and after
one complete pass (epoch) of testing process, both classifiers showed relatively low
classification accuracy proportions with 85% and 79% registered for 2-Class classifier
and 5-Class classifier, respectively. Thereafter, both classification accuracy curves begin
to roughly be increasing in a stable tendency while testing epochs proceeds with faster
and higher ceiling level obtained for the classification accuracy of 2-Class classifier.
After training the system for 100 epochs, the system was able to record an overall
testing accuracy proportions of 99.3% and 98.2% for 2-Classs classifier and 5-Classs
classifier, respectively, for the given testing dataset samples. Conversely, it can be clearly
seen that both classifiers showed relatively high classification error proportions at the
beginning of the testing process with 15% and 21% registered for 2-Class classifier and
5-Class classifier after one testing epoch, respectively. Thereafter, both classification
error rates started to systematically decline while the binary classifier progresses with
faster threshold achieving 0.7% of incorrect prediction proportion (classification error
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percentage). However, the classification error rate proportion for the multi-classifier has
saturated with less than 2.0% of incorrect prediction. This range of classification error
of both classifiers (0.7%–1.8%) is permitted to avoid underfitting or overfitting from the
training loss (~0.0%) and training accuracy (~100%) and thus provided high-accuracy
classification performance.

Fig. 6. Testing Detection/Classification Accuracy/Error Rate vs. number of Epochs.

Moreover, we have analyzed the time required to perform attack detection or clas-
sification for one IoT traffic sample. To obtain accurate and precise results, we have
run the validation test for 500 times and then computed the time statistics for detec-
tion and classification. Figure 7 shows the detection/classification time performance for
the proposed model (either 2-Class or 5-class classifier). According to the figure, the
time required to detect/classify one sample record ranges from (Min ≈ 0.5662ms) to
(Max ≈ 2.099ms) with average time of (Mean ≈ 0.9439ms) recorded for the 500
simulation runs. This average time (around 1ms) is very useful for the system to run
in dynamical environment such as the real time IDS applications. Finally, to gain more
insight on the advantage of the proposed method, we benchmark IoT-IDS-CNN classi-
fication system by comparing its performance with other state-of-art machine learning
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based intrusion/attacks detection systems in terms in termsof classification accuracymet-
ric. For better and more reasonable evaluation, we have selected the related researches
that employs machine learning techniques for intrusion/attacks detection/classification
for the NSL-KDD dataset (the same used by our system) to be compared with our
proposed IoT-IDS-CNN. Therefore, we summarize the classification accuracy metric
values for related state-of-art research’s in the following table, Table 4, in chronological
order. Accordingly, it can be obviously noticed, that the proposed IoT-IDS-CNN model
has improved the cyber-attacks classification accuracy of other ML-IDS models by an
improvement factor (IF) of (~1.03 – 1.25).

Fig. 7. Run time performance of IoT Traffic classification over 500 simulation runs.

Table 4. Comparison with state-of-art ML-IDS employing same dataset.

Research Method Accuracy Remark IF %

K. Taher et al.
2019 [6]

ANN with SVM
Classifier

≈83.7% 3-classes, with 2 hidden layers
and used only 35-features

1.173

X. Gao et al. 2019
[7]

Deep NN with
ensemble voting

≈85.2% 5-classes, 3-methods: Decision
Tree, Random Forest,
K-Nearest

1.152

S. Sapre, et al.
2019 [8]

Different ML-IDS
techniques

≈78.5% 5-classes, with 2 hidden layers
and Naïve Bayes Classifier

1.251

Chowdhry, 2017 [9] DNN with SVM +
K-Nearest

≈94.6% 5-classes, 6 hidden layers, used
only 35-features, 1-NN
Classifier

1.038

(continued)
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Table 4. (continued)

Research Method Accuracy Remark IF %

Javaid et al. 2016
[10]

Deep Autoencoders
(DAE)

≈88.4% 2-classes, with 5 hidden layers
and SoftMax classifier

1.123

Yadigar, et al. 2016
[11]

DNN with Extreme
Learning
Machine(ELM)

≈91.7% 2-classes, Hybrid feature
selection: (consistency subset
evaluation + DoS
characteristic features), used
only DoS attacks, 17 Features

1.080

Proposed Method CNN: IoT-IDS_
CNN

≈98.2%
≈99.3%

2-classes
5-classes

CNN, 5 hidden
layers and SoftMax
classifier

-

6 Conclusions and Future Directions

A new intelligent and self-reliant intrusion detection system (IDS) for IoT cyber-attacks
detection and classification using deep convolutional neural network (CNN) was pro-
posed and developed in this paper. The proposed system takes advantage of the powerful
CUDA based Nvidia-Quad GPUs and theMulti-Core I9 Intel CPUs of the system devel-
opment platform for improved computation and faster processing. Specifically, the pro-
posed system is composed of three subsystems: Feature Engineering (FE) subsystem,
Feature Learning (FL) subsystem and Detection and Classification (DC) subsystem.
All subsystems were completely developed, integrated, verified, and validated in this
research. Because of the use of CNN based design, the proposed system was able to
detect the slightly mutated attacks of IoT networking (represented collectively by NSL-
KDD dataset which includes all the key attacks in the IoT computing) with detection
accuracy of 99.3% of normal or anomaly traffic, and classify the IoT traffic into five
categories with classification accuracy of 98.2%. Such results of the implemented sys-
tem outperform several similar up-to-date state-of-art research results in the same area
of study. In future, we will consider the inclusion of more detailed description of our
system modules and the machine learning algorithms. Also, we will perform and incor-
porate more comprehensive performance analysis to gain more insight about the system
efficiency such as the confusion matrix to analyze the attacks’ detection True/False Pos-
itives and the True/False Negatives and other evaluation metrics including the Precision,
Recall, F-Score Metric, False Alarm Rate. Moreover, we will provide more robust val-
idation for our system using K-Fold Cross Validation as well as the comparison of our
system with other State-of-Art ML-IDS employing different dataset.
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