
RC4D: A New Development of RC4
Encryption Algorithm

Rawan Alsharida1 , Maytham Hammood1(B) , Mohamed A. Ahmed1 ,
Barzan Thamer1, and Mohanaad Shakir2

1 Department of Computer Science, College of Computer Science and Mathematics,
University of Tikrit, Tikrit, Iraq

{rawan-adel,maythamhammood}@tu.edu.iq
mohamed.aktham3@gmail.com, sdd3512@gmail.com

2 College of Business, University of Buraimi, Al-Buraimi, Oman
mohanaad.t@uob.edu.om

Abstract. Cryptography is one of the essential methods for securing
the information. In cryptography, there are many encryption algorithms;
some of them strong where the others are broken. RC4 stream cipher one
of the most common algorithms that are characterized by its speed in
implementation does not need large storage space and has less complex-
ity, but there are weaknesses in its output. Numerous researches work on
the RC4 stream cipher to boost the security of it, to be strong enough.
However, the biases in the output are still in most of the enhancement.
The researchers claim that its swap function is responsible for those
biases. They recommended to ignore some initial bytes from the key-
stream output, to dispose of this before de facto encryption begins. This
paper present new development over the RC4 algorithm (RC4D) via
amendment in the first and second parts of the algorithm. In the first
part, it increases the use of the key operations to obtain more consider-
able randomness, while adding one more random variable and use the Xor
function in the second part. Thus, the experimental result of the NIST
statistical tests and the distant-equalities statistical analysis shows the
RC4D more robust than the original RC4.

Keywords: RC4 · Stream cipher · Cryptography

1 Introduction

Encryption is vital nowadays for keeping our information confidential. We need
to maintain our information through it convert into unreadable in the pub-
lic channel via encryption [1]. Encryption aims to protect information from any
attempt to reveal confidential data by any unauthorized third party, and the data
is protected through the use of one of the algorithms for encryption. Besides,
encryption in information security means encrypting data and making it incom-
prehensible for protection. Data can only be processed with an encryption key

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
B. Ghita and S. Shiaeles (Eds.): INC 2020, LNNS 180, pp. 19–30, 2021.
https://doi.org/10.1007/978-3-030-64758-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64758-2_2&domain=pdf
http://orcid.org/0000-0003-4106-1363
http://orcid.org/0000-0001-7986-5805
http://orcid.org/0000-0002-4663-4469
http://orcid.org/0000-0002-1208-3013
https://doi.org/10.1007/978-3-030-64758-2_2


20 R. Alsharida et al.

that converts the regular written form into an encrypted format [2]. There are
two primary types of encryption algorithms which are symmetrical and asym-
metric. In the asymmetric key type use two key one of them for encryption and
the other for decryption. Where in the symmetric key just use one key for encryp-
tion and decryption and key should be random. The randomness is significant,
and it is challenging to be expected. Here, the strong point of this type, which
is meant by randomness according to the definition, and there are two types of
randomness; True Random Number Generators(TRNGs) and Pseudo Random
Number Generators (PRNGs) [3]. However, the type (TRNGs) that generates
randomness using the unpredictable physical process noise likes thermal noise or
jitter. This type is not suitable for encryption because the source of randomness
is non-deterministic for that reason the same chain cannot be regenerated but
it is good to generate a random keys for encryption. Where the second type
(PRNGs) generates a certain sequence of numbers by using a specific function
and mathematical algorithms to generate a pseudo-random series in a deter-
ministic way that will appear random, however, this type is used in encryption
because it is fast, and can regenerate the same sequence by using the same input
string as a seed. The seed must be random and long enough to increase the
randomness of the output sequence. RC4 is an algorithm consisting of a simple
structure that has been proven after being subjected to necessary testing and
analysis by researchers and has proven to be powerful enough on various plat-
forms. The fundamental of this algorithm is one internal state table of size N
(which mostly 256), which ultimately functions as the S-box for performing the
primary mixing in bytes.

The RC4 algorithm was initially designed in 1987 by Ronald Rivest and
was kept as a secret until it was disclosed onto the network in 1994 [4]. This
Stream Cipher algorithm, which uses the symmetric key, is an algorithm that
is known by its speed, and when comparing it with the DES algorithm, it is
the best in terms of speed and more straightforward in terms of complexity. In
addition, it is used in various protocols, and multiple applications such as Wi-Fi
protected access (WPs) and Transport Layer Security (TLS) for web browsing,
emailing, and instant messaging. Many encryption operations used in wireless
rely on symmetric encryption and are used in Oracle, SQL, protocol (SSL),
Wired equivalency privacy protocol. In this research, the researchers design an
encryption algorithm that is characterized by its speed in implementation does
not need large storage space, less complicated, and is more reliable in protect-
ing information or data. It also has a higher degree of security for devices with
limited resources, and there is no bias for the first bits as in the RC4 algorithm.
The remainder of the paper is ordered as comes: Literature Review in Sect. 2.
Section 3 is RC4 explanation where Sect. 4 presents some weaknesses of RC4.
The presentation of the modified RC4 algorithm is in Sect. 5. Performance eval-
uation is in Sect. 6. The implementation in Sect. 7 then ended by the conclusion
in Sect. 8.



RC4D: A New Development of RC4 Encryption Algorithm 21

2 Literature Review

Many researchers in the field of data security found weaknesses in the secu-
rity of the RC4, while many researchers tried to develop the RC4 algorithm
to bypass these vulnerabilities. However, an attack on this algorithm was pro-
vided by Flunrer et al. [5], and the main goal is to eliminate the interconnection
between outputs.

Thus, the creation of several modified algorithms was developed for the orig-
inal RC4 algorithm and on that disability, but these algorithms that improve
the original algorithm affected the speed of implementation. On the other hand,
others tried to improve the speed of the algorithm but caused a reduction in ran-
domness [6–18]. Nishith et al. developed the RC4 algorithm order to enhance the
security of the RC4 by replacing along these variable lines above it to encode an
element. The time it takes to encode and decode using the proposed algorithm
is barely a little more substantial than the original algorithm [7]. Hammood
et al. [8] introduced a random RC4 algorithm (RRC4) to pass the overcome
the weak scheduling of keys in the RC4 algorithm. This algorithm enhanced
the confidentiality of the encrypted text and proved more random than the
original RC4 algorithm. Also, the coding and decoding time for the improved
algorithm was the same time in the original algorithm. Ali et al. [9] presented an
advanced algorithm based on the original RC4 algorithm, where this algorithm
led to an increase in the randomness generated by using mathematical opera-
tions, which are Factorial and some other variables. In this case, the security
of the algorithm was enhanced, but in contrast, during the comparison of the
improved algorithm with the original algorithm, the results showed there is a
clear increase in implementation time and the storage space, where the reason
for this increase is the Factorial process. Variably Modified Permutation Compo-
sition (VMPC) was suggested by Zoltak’s [10], which includes many changes in
the initialization and the processing rounds as well as in the output generating.
It was contagious to be effective in the application and solution of vulnerability
in the KSA of RC4 which was described by Fluhrer et al. [5] Pseudo-Random
Generation Algorithm (PRGA) structure of VMPC is sophisticated more than
the RC4 which makes it higher resistant to attack. Paul and Preneel [11] through
their research, introduced a new algorithm, an improved RC4A algorithm, and
as a reinforcement over the RC4 algorithm, after discovering an unusual sta-
tistical weakness in generations of the first two key bytes for RC4. They said
that the number of outputs demanded to distinguish an RC4 random output
was 225. RC4A is powerful against most of the weaknesses in RC4, especially
the weaknesses of distribution at the first two bytes output. Nevertheless, one
year later Maximov introduced a distinct attack on VMPC and RC4A together.
Thus distinct attack could distinguish ciphertext from a truly random number
[12]. Pu and Chung, [13] presented a group key update method to improve the
randomness of RC4 thus increase the security against the attacks by using the



22 R. Alsharida et al.

same length of the key and initialization vector. The experimental results show
this method uses minimum resource from constrained devices such as wireless
sensors. The results confirm that the new produced key and the update of the
key are random. Also, the randomness will improve during the abundance of
sensor nodes is increased.

Hammood et al. presented [14] new improvement over RC4 by using two-state
tables to rise its randomness, thus reduce the correlation between the output and
the key but also the time of encryption is increased. Yao et al. [15], through his
research, contributed analysis and improvement of the safety of the RC4 algo-
rithm via applying a public key with RC4. Still, it drove to an increment in the
system size and execution time. Three algorithms presented in [16] for improv-
ing RC4 each one has different properties but RC4-2S+ with two state tables
to generate four key bytes in every round are the best one and more random-
ness without affecting its speed, but it has high bias. Suman et al [17] analysed
different variants of RC4 to find out the benefit of dropping initial bytes. Also,
they produced multiple S-boxes by various logics and a unique key to increas-
ing robust of RC4 but the speed of RC4 increased. Zelenoritskaya et al. [18]
presented an improvement of the RC4, by using parallel LFSR with stochastic
transformation boxes. Thus, the complexity of the relationship between the key
and the initial state increased. However, the using of LFSR led to an increase in
the time of execution.

3 Description of RC4

Several Stream Cipher algorithms rely on the use of Linear Feedback Shift Regis-
ters (LFSRs), particularly in physical components, but when the RC4 algorithm
was de-signed (LFSRs) were not used. RC4 algorithm involves two parts to pro-
duce the first component key. It is a Key Scheduling Algorithm (KSA), as shown
in Algorithm 1. The second component is the Pseudo-Random Generation Algo-
rithm (PRGA), as shown in Algorithm 2, which is executed consecutively [4].

RC4 algorithm has a variable key size domain between 8 to 256 bytes to
initialize 256 bytes in the initial state array by the number from 0 to 255. The
KSA algorithm produces flipping or initial switching by mixing the flipping or
the corresponding switch by using the key, and the result of this flipping is
considered an entrance to the part PRGA. This step creates the final key RC4
starts with switching, and the secret key is used to produce random swapping.
The next phase is the PRGA algorithm that generates bytes of the keystream,
which performs the XOR process with the plaintext to obtain the ciphertext. The
concept of the RC4 algorithm is to make the flipping or switching of elements
by exchanging them with each other for higher randomization.



RC4D: A New Development of RC4 Encryption Algorithm 23

Algorithm 1. RC4 - KSA algorithm
Set N ← 256
Set i ← 0
while (i<N) do

S[i] ← i
i ← i+ 1

end while
Set i ← 0
Set j ← 0
while (i<N) do

j ← (j + S[i] +K[i mod L])mod N
Swap (S[i] , S[j])

end while
return S

Algorithm 2. RC4 - PRGA algorithm
Set i ← 0
Set j ← 0
while generate key-stream do

i ← (i+ 1)mod N
j ← (j + S[i])mod N
Swap (S[i] , S[j])
Output ← S[(S[i] + S[j])mod N ]
Ciphertext ← Output ⊕ Plaintext
return Ciphertext

end while

4 The Cryptanalysis of RC4

Cryptanalysis is used to violate cryptographic security systems by breaking
encrypted messages without the known cryptographic key. It mainly focuses
on identifying the non-random procedure. There are many weaknesses in the
RC4 algorithm a set of vulnerabilities that can be solved, and the other group is
considered a threat by attackers to exploit. One of the weaknesses in the case of
initialization is the statistical bias that occurs in word distribution in the first
outlet. The problem of the algorithm in the first component (KSA) is simple
but random. There is a relationship between some byte units of the secret key,
so the analysis of these bytes makes it possible to attack RC4. The key flow
that starts at the beginning of the algorithm is a one-time swaps S (identical
to the value of (i) the pointer indicating the entry) for low values, and S [j] = j
is possible during initialization [19]. Roos [20] found another weakness in RC4,
which is a correlation among the values of the first table and the keystream.
The primary reason is the status table that started in the sequence (0, 1, 2, ...,



24 R. Alsharida et al.

255) and at least one of the 256 temporary keys. The first byte that was created
from the key is highly correlated with a few first bytes of PRGA output; thus,
to solve this issue, it has been advised to discard the initial byte of PRGA out-
put. The main objective of the adversary is to obtain the original key, internal
state, or output key to access the plaintext. Since prior studies of RC4, there
are some weaknesses in it, such as biased bytes, and key recovery where various
attacks focus on obtaining the private key for the internal state [21]. Tomašević
et al. [22] displayed a cryptanalytic attack that utilizes the tree design of this
cipher and offers an abstraction of prevailing conditions for the information of
its state table. To obtain the initial state will using the hill-climbing strategy
for the search in the tree of general conditions. The complication of this attack
is weaker than that of an exhaustive search. The successful attack on RC4 uti-
lized the existence of biases in the RC4 keystream to make plaintext recovery
attacks against TLS-RC4 [23]. Hammood et al. [24] evaluated the likelihood of
the generating ciphertext for each pair of byte values for each 256-byte round
than found new four biases.

5 Modified RC4 Algorithm

Due to the existence of many weaknesses in the RC4 algorithm, as mentioned
earlier, in this research, the RC4 algorithm was improved through modification
in the first and second parts. In the first part, as shown in Algorithm 3, RC4D-
KSA was modi-fied through an increase using the key and generates new ran-
dom variable to obtain more randomness, while in the second part, as shown in
Algorithm 4; RC4D -PRGA the algorithm was modified by generate new random
variable and XORed it with the random j then find S[S[j] ⊕ S[T ]]. Thus, the
randomness will increase. The modifi-cation in the RC4D- KSA does not take
much time, because they only happen 265 times.

Algorithm 3. RC4D - KSA algorithm
Set N ← 256
Set i ← 0
while (i<N) do

S[i] ← i
i ← i+ 1

end while
Set i ← 0
Set j ← 0
while (i<N) do

j ← (j + S[(i+K[i modL])modN ] +K[i modL]) modN
Swap (S[i] , S[j])

end while
return S



RC4D: A New Development of RC4 Encryption Algorithm 25

Algorithm 4. RC4D - PRGA algorithm
Set i ← 0
Set j ← 0
Set D ← 0
while generate key-stream do

i ← (i+ 1)mod N
j ← (j + S[i])mod N
Swap (S[i] , S[j])
Output ← S[(S[i] + S[S[j] ⊕ S[D]])mod N ]
Set D ← Output
Ciphertext ← Output ⊕ Plaintext
return Ciphertext

end while

6 Performance Evaluation

There is a set of different criteria for measuring the level of safety and perfor-
mance of the specific encryption algorithm. At this time, two measurements were
used. The first test was distant-equalities statistical test [25] and the second test
a random statistical Suite test [27] created by the NIST (National Institute of
Standards and Technology). In addition, evaluated the time of the performance
of the proposed algorithm.

6.1 Distant-Equalities Statistical Test

As mentioned, there are weaknesses in Stream Cipher algorithms in the process
of generating keys; there is bias in randomization. This test works to measure
this bias by generating a large number of keys (N) and then measures how
similar these keys are between them [25,26]. Simply this test each key with the
eight keys followed it’s by a matrix consisting of 8 different events: Event Zi for
i ∈ 1, 2, 3, 4, 5, 6, 7, 8 The first event Z1 test the first key with the second key,
Event two Z2 test the first key with the third key, Event three Z3 test the first
key with the fourth key, Event four Z4 test the first key with the fifth key, Event
five Z5 test the first key with the sixth key, Event six Z6 test the first key with
the seventh key, Event seven Z7 test the first key with the eighth key, Event
eight Z8 test the first key with the ninth key. Note t : (start test) begins from
K1 to Kn. Zi++ in every t for i =1,2,3,4,5,6,7,8. The probability of each event
in the output is p = 1/N, where N is the keyword size of the algorithm. However,
the expected number of occurrences for every event of n samples is present in
Eq. 1. [25]

E = np (1)

In addition, the standard deviation of the number of occurrences is given by the
binomial distribution as shown in Eq. 2 [25].



26 R. Alsharida et al.

Table 1. Distant-equalities statistical test results for RC4.

Samples Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7 Event 8

225 25.9838 −65.9029 26.6885 −24.9691 13.7112 0.489631 4.57946 2.93726

σ =
√

(np(1 − p)) (2)

The test calculations the numbers of occurrences for the Events from one to eight
then compares them with the results of model E = np utilize σ as the measure
of deviation as shown in Eq. 3. [25]

d = (f − E)/σ (3)

Where d is the test calculates, and f represents the measured number, which is
standard statistical practice. Table 1 represents the amounts of standard devi-
ations that measured numbers of appearing for Events from Event1 to Event8
were different compere with their estimated values (d = (f − E)/σ) for different
word sizes (N = 8) operates. We found a clear bias between the Event1 and the
Event2 that the Event2 approximates 3σ of the Event1 almost three times the
first event while otherwise, the bias may not be in the Event6 and Event7.

Table 2. Distant-equalities statistical test results for RC4D.

Samples Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7 Event 8

225 1.86613 −2.27851 −1.36554 −0.271437 2.04778 1.33317 0.979784 −0.887913

Fig. 1. Distant-equalities statistical test results for RC4 and RC4D.

It was observed that when applied the test over original RC4, the bias is very
clear, in most the events spatially in the first five events as shown in Table 1. In



RC4D: A New Development of RC4 Encryption Algorithm 27

contrast, the results of RC4D showed it’s very good there is no bias when use the
same amount of key as shown in Table 2. The results indicate the randomness
increases because the authors add a new random parameter. Thus, the RC4D
is given better results than RC4. As shown Fig. 1 which describes the difference
between RC4 and the new RC4.

6.2 Randomness Test

The generated keystream is examined by a set of NIST (National Institute of
Standards and Technology) tests, which is a statistic set of random number
generation tests that include 16 statistical analyses to perform randomization of
the output chain of a random number or an integer random number generator
[27]. PRGA tests were performed using NIST, and the probability of a valid
random number generator was represented with a value of P. These tested are
produced and the simplified mean of the P-values from these tests, as shown in
Table 3. In the test, the P-values are compared to 0.01, the P-values are passed
when they are larger than 0.01, and the series produced is random and uniformly
distributed. If the tests give a value of P equal to 1, then the string is a completely
random series, but if the P-values is zero, it means that the string is entirely
random. Success means that the string is acceptable and has good randomness,

Table 3. NIST Tests Applied to Standard RC4 and Modified RC4 (RC4D).

Statistical Test Name RC4 RC4D

p-value Result p-value Result

Approximate Entropy 0.436169 Pass 0.541461 Pass

Block Frequency 0.325088 Pass 0.438262 Pass

Cumulative Sums (Forward) 0.581981 Pass 0.602363 Pass

Cumulative Sum (Reverse) 0.448262 Pass 0.638262 Pass

FFT 0.457888 Pass 0.497533 Pass

Frequency 0.598393 Pass 0.625319 Pass

Lempel-Ziv compression 1 Pass 1 Pass

Linear Complexity 0.422196 Pass 0.590875 Pass

Longest Runs 0.430753 Pass 0.571836 Pass

Non periodic Templates 0.472041 Pass 0.534455 Pass

Overlapping Template 0.476283 Pass 0.451715 Pass

Random Excursions 0.50275 Pass 0.552624 Pass

Random Excursions Variant 0.588278 Pass 0.506814 Pass

Rank 0.493697 Pass 0.536438 Pass

Runs 0.406088 Pass 0.568629 Pass

Serial 0.558872 Pass 0.450122 Pass

Universal Statistical 0.557777 Pass 0.697207 Pass



28 R. Alsharida et al.

while failure indicates that it is not acceptable and not random. Some of the 16
tests accepted large sizes of output series and failed in the small size, as well
as other tests accepted large and small sizes of output series. In our program,
a large volume (1000000 bytes) of each secret key is created. In this paper, as
shown in Table 3 the result indicates that the RC4D is better than the original
RC4 in most of the tests.

7 Implementation

When implementing the algorithm using the C++ language, the values in the
algorithm inputs in the initial state from 0 to 255, and the key length was 16
byte only. The time of execution in both algorithm the original RC4 and RC4D
is approximately the same as shown in Table 4.

Table 4. Execution time of RC4 and RC4D.

Key Size (kilobyte ) RC4 Time (m.s) RC4D Time (m.s)

100,000 12.488 12.518

1,000,000 117.849 118.315

8 Conclusions

In this paper, the author presents an improvement over the RC4 encryption algo-
rithm. It is also more reliable in protecting information or data and has a higher
degree of security for devices with limited resources; also, there is no bias for the
first bits as in the original algorithm With the increasing of modern technology
nowadays the challenge is how to secure the data and confidential information
against the weak souls, which are electronic armies and malicious intentions have
piqued these companies. For fear of theft of these data and information has been
encrypted, this data and information using different encryption algorithms, but
these algorithms contain vulnerabilities exploited by hackers to steal data and
information. Thus, to increase security and reduce potential attacks should be
used robust encryption algorithms. In this research, we presented improvement
over RC4 and test the result by NIST statistical test and a distance statistical
test. These tests help to detect the weaknesses of the stream cipher algorithms.
The test is distinguished from the previous tests at its speed, as well as it is
characterized by giving results of high accuracy and efficiency, so it is useful in
the process of improving the cipher algorithms. These characteristics of RC4D
algorithm make it a better nominee for effective applications as compared to the
original RC4 Algorithm.



RC4D: A New Development of RC4 Encryption Algorithm 29

References

1. Rueppel, R.A.: Analysis and design of stream ciphers. Springer, New York (2012).
https://doi.org/10.1007/978-3-642-82865-2

2. Lamba, C.S.: Design and analysis of stream cipher for network security. In: Second
International Conference on Communication Software and Networks, Singapore,
pp. 562-567 (2010). https://doi.org/10.1109/ICCSN.2010.113

3. Thomas, D.B., Luk, W.: High quality uniform random number generation using
LUT optimised state-transition matrices. J. VLSI Signal Process 47, 77–92 (2007).
https://doi.org/10.1007/s11265-006-0014-9

4. Rivest, R.L.: The RC4 encryption algorithm, RSA Data Security Inc., 129-2, March
1992. This document has not been made public

5. Fluhrer, S., Mantin I., Shamir, A.: Weaknesses in the key scheduling algorithm
of RC4. In: Proceedings of Annual Workshop on Selected Areas in Cryptography,
Springer, Heidelberg, vol. 2259, pp. 1-24 (2001). https://doi.org/10.1007/3-540-
45537-X 1

6. Xie, J., Pan, X.: An improved RC4 stream cipher. In: International Conference on
Computer Application and System Modeling (ICCASM ), IEEE vol. 7, pp.156-159
(2010). https://doi.org/10.1109/ICCASM.2010.5620800

7. Sinha, N., Chawda, M., Bhamidipati, K.: Enhancing security of improved RC4
stream cipher by converting into product cipher. Int. J. Comput. Appl. (0975 -
8887) vol. 94 - No .18, pp. 17–21, May 2014. https://doi.org/10.5120/16459-6132

8. Hammood, M.M., Yoshigoe, K., Sagheer, A.M.: RC4 stream cipher with a random
initial state. In: Proceedings in Information Technology, Springer, Dordrecht, p.
407 (2013). https://doi.org/10.1007/978-94-007-6996-0 42

9. Sagheer, M.A., Searan, S.M., Alsharida, R.A.: Modification of RC4 algorithm to
increase its security by using mathematical operations, J. Software Eng. Intell.
Syst. 1(2), ISSN 2518-8739 (2016). http://www.jseis.org/Volumes/Vol1/V1N2-1.
pdf

10. Zoltak, B.: VMPC One way Function and Stream Cipher, Fast Software Encrypt.
FSE, LNCS, 3017, pp. 210–225. Springer, New York (2004)

11. Paul, S. Preneel, B.: A new weakness in the RC4 keystream generator and an
approach to improve the security of the cipher. In: Fast Software Encrypt, FSE,
LNCS 3017. New York: Springer, Heidelberg, pp. 245–259 (2004). https://doi.org/
10.1007/978-3-540-25937-4 16

12. Maximov, A.: Two linear distinguishing attacks on VMPC and RC4A and weakness
of the RC4 family of stream ciphers. In: Fast Software Encryption, FSE, Vol 3557,
pp. 342-358, Springer, Cham (2005). https://doi.org/10.1007/11502760 23

13. Pu, C., Chung, W.C.: Group key update method for improving RC4 stream cipher
in wireless sensor networks. In: International Conference on Convergence Informa-
tion Technology, Gyeongju, pp. 1366-1371 (2007)

14. Hammood, M.M. Yoshigoe, K., Sagheer, A.M.: RC4-2S: RC4 stream cipher with
two state tables. In: Information Technology Convergence, pp. 13–20. Springer,
Netherlands (2013). https://doi.org/10.1007/978-94-007-6996-0 2

15. Yao, Y., Chong, J., Xingwei, W.: Enhancing RC4 algorithm for WLAN WEP pro-
tocol. In: Control and Decision Conference (CCDC), pp. 3623–3627, IEEE (2010).
https://doi.org/10.1109/CCDC.2010.5498536

16. Hammood, M.M., Yoshigoe, K., Sagheer, A.M.: Enhancing security and speed of
RC4. Int. J. Comput. Network Technol. 3(02) (2015). https://doi.org/10.12785/
ijcnt/030201

https://doi.org/10.1007/978-3-642-82865-2
https://doi.org/10.1109/ICCSN.2010.113
https://doi.org/10.1007/s11265-006-0014-9
https://doi.org/10.1007/3-540-45537-X_1
https://doi.org/10.1007/3-540-45537-X_1
https://doi.org/10.1109/ICCASM.2010.5620800
https://doi.org/10.5120/16459-6132
https://doi.org/10.1007/978-94-007-6996-0_42
http://www.jseis.org/Volumes/Vol1/V1N2-1.pdf
http://www.jseis.org/Volumes/Vol1/V1N2-1.pdf
https://doi.org/10.1007/978-3-540-25937-4_16
https://doi.org/10.1007/978-3-540-25937-4_16
https://doi.org/10.1007/11502760_23
https://doi.org/10.1007/978-94-007-6996-0_2
https://doi.org/10.1109/CCDC.2010.5498536
https://doi.org/10.12785/ijcnt/030201
https://doi.org/10.12785/ijcnt/030201


30 R. Alsharida et al.

17. Das, S., Ghosh, R., Pal, R.K.: An approach of refining RC4 with performance
analysis on new variants. Sādhanā 44(11), 223 (2019). https://doi.org/10.1007/
s12046-019-1209-7

18. Zelenoritskaya, A.V., Ivanov, M.A., Salikov, E.A.: Possible modifications of RC4
stream cipher. In: Advanced Technologies in Robotics and Intelligent Systems, pp.
335–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33491-8-40

19. Mister, S. Tavares, S.E.: Cryptanalysis of RC4-like Ciphers. In: International Work-
shop on Selected Areas in Cryptography, Springer, Cham (1998). https://doi.org/
10.1007/3-540-48892-8 11

20. Roos, A.: A class of weak keys in the RC4 stream cipher, September 1995. http://
agreg.dnsalias.org/Luminy/WeakKeys-report.pdf

21. Jindal, P., Singh, B.: Performance analysis of modified RC4 encryption algorithm.
In: Recent Advances and Innovations in Engineering (ICRAIE), 2014. IEEE (2014).
https://doi.org/10.1109/ICRAIE.2014.6909247

22. Tomašević, V., Bojanić, S., Nieto-Taladriz, O.: Finding an internal state of RC4
stream cipher. Inf. Sci. 177(7), 1715–1727 (2007)

23. AlFardan, N., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.: On
the security of RC4 in TLS. In: Presented as Part of the 22nd USENIX Security
Symposium, pp. 305-320 (2013)

24. Hammood, M.M., Yoshigoe, K.: Previously overlooked bias signatures for RC4, 4th
Inter-national Symposium on Digital Forensic and Security (ISDFS). Little Rock,
AR 2016, 101–106 (2016). https://doi.org/10.1109/ISDFS.2016.7473526

25. Zoltak, B.: Statistical weaknesses in 20 RC4-like algorithms and (probably) the
simplest algorithm free from these weaknesses - VMPC-R, IACR Cryptology ePrint
Archive, IJCSN, 2014. https://eprint.iacr.org/2014/315.pdf

26. Zoltak, B.: Statistical weakness in Spritz against VMPC-R: in search for the RC4
replace-ment. IACR Cryptology ePrint Archive, 985, (2014). https://eprint.iacr.
org/2014/985.pdf

27. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson,
M., Van-gel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications,
NIST special publication 800–22. Gaithersburg, National institute of standards
and technology (NIST) (2001). https://apps.dtic.mil/dtic/tr/fulltext/u2/a393366.
pdf

https://doi.org/10.1007/s12046-019-1209-7
https://doi.org/10.1007/s12046-019-1209-7
https://doi.org/10.1007/978-3-030-33491-8-40
https://doi.org/10.1007/3-540-48892-8_11
https://doi.org/10.1007/3-540-48892-8_11
http://agreg.dnsalias.org/Luminy/WeakKeys-report.pdf
http://agreg.dnsalias.org/Luminy/WeakKeys-report.pdf
https://doi.org/10.1109/ICRAIE.2014.6909247
https://doi.org/10.1109/ISDFS.2016.7473526
https://eprint.iacr.org/2014/315.pdf
https://eprint.iacr.org/2014/985.pdf
https://eprint.iacr.org/2014/985.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a393366.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a393366.pdf

	RC4D: A New Development of RC4 Encryption Algorithm
	1 Introduction
	2 Literature Review
	3 Description of RC4
	4 The Cryptanalysis of RC4
	5 Modified RC4 Algorithm
	6 Performance Evaluation
	6.1 Distant-Equalities Statistical Test
	6.2 Randomness Test

	7 Implementation
	8 Conclusions
	References




