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Introduction

Knowledge is power
(Scientia potestas est) – Francis Bacon (1561–1626)

Historical Background

Gears and gear transmissions are extensively used in the nowadays industry. Prac-
tically, gears can be found out in the design of almost all mechanisms. Despite
enormous amount of the research in the field has been carried out in the past, the gear
science is still extensively evolving nowadays. The accumulated experience in the
field of gearing, both, from the theory side, and from the experimental side, is
summarized in several fundamental monographs, novel attempts had been under-
taken in the recent years, and important novel results of the research are obtained in
the field of gearing. Latest accomplishments in the gear science are outlined in this
volume.

Uniqueness of this Publication

Newest accomplishments in the gear theory, gear design, gear production, and gear
application are covered in this book. A team of the world lead experts in gear science
have contributed their achievements in the field of gearing. The most important
subjects are the gear science are covered in the book. Numerous gaps between the
current needs of the advanced gear designers and the gear manufacturers are bridged
by the gear science. This book is a unique one as the latest accomplishments in the
scientific theory of gearing and in production and application of gears are considered
to the best possible extent.
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Intended Audience

This book is written by world-known experts in the field of gear design, gear
production, and gear application. This volume is dedicated to gear experts,
concerned with gears and gear transmissions of advanced design: first of all, of
gear drives with a highest possible power density (or, in other words, “power-to-
mass ratio”) and low-noise (or almost “noiseless”) gear transmissions. Most gear
engineers and gear researchers from the industry, as well as graduate students will be
benefitted by the book.

Organization of this Book

The book contains nine chapters. The scientific theory of gearing, gear design, and
gear production are covered in these chapters.

Chapter 1 of the book deals with vector diagrams of gear pairs, and with a
potential possibility of their application to classify gears and gear pairs. The concept
of vector diagram of gearing is briefly outlined at the very beginning of the chapter.
It is shown that all commonly used in the today’s industry gearing feature one degree
of freedom. Transmission of a rotary motion from an input shaft to an output shaft is
the only purpose this degree of freedom serves to. This discussion is followed by a
detailed analysis of gearing with one-, two-, and three complementary degrees of
freedom. Non-circular gearing is an example of gearing with one (or two) comple-
mentary degree of freedom. This section of the chapter is ended by a scientific
classification of all possible kinds of gearing. All the kinds of gearing, that is gearing
with no complementary DoF, as well as gearing having up to three complementary
DoF, are covered in the proposed classification. Then, a transition from the vector
diagrams to gear tooth flanks is discussed. For this purpose, a plurality of potentially
possible and desirable lines of contact that feature reasonable geometry are involved
into the consideration. Taken as a whole, the reported results of the analysis form a
potentially complete and self-consistent classification of gearing of all kinds.

Chapter 2. The proposed chapter starts with the theory defining S� gears and their
properties and compares S� and involute gears. Most of the text deals with cylin-
drical spur gears. The basic idea behind the S� gear theory is to define a rack profile
which would define a curved path of contact. So, the S� rack profile is defined as a
half-symmetric parabolic type function. Mathematical formulation thus enables a
calculation from the rack, via the path of contact to gear flanks with any number of
teeth and reversely.

Chapter 3. The research deals with kinematic pairs in gearing, as well as in
mechanisms of other design. The introduced by Franz Reuleaux concepts of lower
and higher kinematic pairs are briefly discussed, and insufficiency of distinguishing
only of these two groups of kinematic pairs (that is, of “lower” and “higher”
kinematic pairs) is stated. It is stressed on that gearing of all designs feature either
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line or point contact of the interacting tooth flanks of a gear and a mating pinion.
Both of them (namely, line and point contacts of the interacting tooth flanks) are
commonly referred to as “higher kinematic pairs.” Only gear couplings feature the
so-called lower kinematic pairs, when the interacting tooth flanks make “surface-to-
surface contact.” The performance of gearing of all kinds significantly depends on
the design parameters of the kinematic pairs in a gear pair. Insufficiency of the
nowadays interpretation of kinematic pairs is revealed by the undertaken research. It
is shown that instead of kinematic pairs of only two kinds (that is, of lower, and of
higher kinematic pairs), 126 different kinds of kinematic pairs have to be taken into
account. All the newly discovered kinematic pairs are classified.

Chapter 4. Plastic gears have been used for decades in a wide variety of applica-
tions such as consumer articles or electromechanical actuators in the automotive
sector. Plastic-specific material properties such as low density and high damping
characteristics as well as the possibility of mass production through injection
molding are advantageous and contribute to the increasing application of plastic
gears. However, the comparatively large differences in material properties compared
to steel result in plastic gears mostly being used in low-power drives. In particular,
the high temperature dependence of the material properties and lower strength
present a challenge for the application of plastic gears.

In most cases, the gears are running dry or under starved lubrication. In the
context of these operational conditions, the transmission of motion is often of
principal importance as the potential to transmit power is limited due to the high
level of frictional heat in combination with limited capability for heat removal.

The use of a lubricant is required for the transmission of increased power. Grease
lubrication offers the possibility of heat dissipation and the reduction of wear. If even
higher power is to be transmitted, oil lubrication is required. Operation under oil
lubrication separates the tooth flanks from each other and ensures effective dissipa-
tion of the heat generated in tooth contact. Today, VDI 2736 is mainly used for the
design and calculation of plastic gears. In addition to information on the design of
the wheel body and production, this guideline contains approaches for temperature
calculation and load carrying capacity calculation. Due to the high temperature
dependency of the material properties of thermoplastic materials, knowledge of the
gear temperature is of essential importance in the design of plastic gears and one of
the main steps of the load carrying capacity calculation.

VDI 2736 uses the basic principles of the standard DIN 3990 developed for steel
gears to calculate the tooth root and tooth flank load capacity. Especially the high
deflections under load compared to steel gears are currently not sufficiently consid-
ered in VDI 2736. Current research provides new knowledge on the consideration of
deflection effects and their influence on the gear carrying capacity of modern
thermoplastic materials and contributes to the optimized design of plastic gears.

On the material side, new high-performance plastics are constantly being devel-
oped, which further increase the temperature resistance and strength properties
required. In addition to widely used materials such as polyacetal and polyamides,
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polyetheretherketones, and other high-performance materials are increasingly being
applied.

Today, the low availability of standardized strength values represents a challenge
for the design of ideally dimensioned components. For this reason, in addition to the
investigation of the thermal and tribological operating behavior of plastic gears, the
generation of standardized determined strength values is of particular interest.

Chapter 5. Many objectives of gear design and manufacturing can be considered
and resolved by task-based multifunctional conceptual design method developed on
the base of career long experience of design and manufacturing of numerous custom-
made machine tools, innovative hand tools, and other mechanical devices. Require-
ments of geometrical accuracy and manufacturing efficiency are major objectives for
gear manufacturing technologies and for gear chamfering technologies in particular.
To satisfy those requirements, the proposed task-based conceptual design method-
ology is modified and applied in a way to take into account specific needs and
features of gear chamfering procedure. The proposed method of conceptual design
method can be advantageously pointed out from existing design methodologies by
direct consideration of challenged functions at any step of mechanism synthesis, thus
avoiding the exhausting combinational search of large variety of options, by simul-
taneous consideration of several tasks, by similarity and repeatability of analyses and
synthesis tools and design cycles, by development and usage of mechanical–func-
tional models, and by quantitative evaluation of different design scenarios. The
methodology of creation of gear chamfering mechanisms is serving as an example
for extending the scope of application of conceptual, parametric, and analytical
resources of the task-based method to the case of surface reproduction technological
machines. A concept of multi-degree freedom duplication of different geometrical
shapes is the base of methodology for creation of surface reproduction mechanisms,
when two parallel chains are simulating first the geometrical concept of surface
reproduction and the second a mechanical set of links and chains necessary for such
reproduction. First, an analyzing methodology is applied for consideration and
evaluation of various known conceptual diagrams and solutions for reproduction
of chamfer surface. Then based on analyses of existing solutions proper point, linear
and surface models are developed as basic and start structures for future mechanism
development, and finally those models are upgraded by additional degrees of
freedom and parallel chains for satisfying of remained challenges and functions of
conceptual design. Thus, a number of design scenarios are created and filtered for
evaluation and rejection of not valid solutions. In the end, a series of novel structures
are created and proper manufacturing technology is worked out satisfying different
needs of gear chamfering process. Conceptual design phase is commonly preceded
by phase of analyses of existing solutions and proceeded by phase of parametrical
design. Worthy to note that all three procedures are based on the same methodical
base which conceptual phase has and hence have the same methodical values and
same efficiency in application. An objective of parametric optimization for a type of
gear chamfering mechanism is formulated as requirement of providing a stable
surface quality along the involute pattern of a gear teeth. Scope of application of
developed methodology of conceptual design is generalized and extended for
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analyses and synthesis for a class of surface reproduction technological machines.
Necessary and clarifying examples are presented for verification of validity and
efficiency of task-based conceptual design methodology for surface reproduction
mechanisms.

Chapter 6 of the book deals with the principal accomplishments in the scientific
theory of gearing. The names of the scientists, who are credited with these accom-
plishments, are mentioned in a chronological order. Two periods of time are
proposed to be considered. They are the pre-Eulerian, and the post-Eulerian, period
of the evolution of the gear art. No principal accomplishments in the theory of
gearing were attained in the pre-Eulerian period of evolution of the gear art. It is
stated that scientific theory of gearing is originated from publication by Leonhard
Euler of two of his famous papers (the eighteenth century). All the accomplishments
in the scientific theory of gearing are achieved in the post-Eulerian period of
evolution of the theory of gearing.

The “main theorem of parallel-axes gearing,” or, in other words, the “conjugate
action law” in parallel-axes gearing, is loosely attributed to R.Willis (1841), which is
not correct. Charles Camus has carried out a research on this subject, and he was the
first (1733), who obtained a result that deserves to be remembered by the gear
community. Unfortunately, Ch. Camus committed a principal mistake in his
research, and he failed to formulate the “conjugate action law” of gearing correctly.
In the final form, the “main theorem of parallel-axes gearing”was known to L. Euler
and to F. Savary. Therefore, it is proposed to refer to the main theorem of parallel-
axes gearing as to the “Camus-Euler-Savary theorem of gearing” (or just as to the
“CES� theorem of gearing,” for simplicity).

A huge mistake in the theory of gearing was committed by Th. Olivier (1842).
The negative effect of this mistake onto the evolution of the theory of gearing is
discussed in detail. The contribution by G. Grant (1887) to the kinematics and
geometry of intersected-axes gearing is discussed. The contribution by V. Shishkov
(1948), that is, his well-known equation of contact, n � VΣ ¼ 0, is outlined. Equation
of conjugacy, pln � Vm � ng ¼ 0 (S.P. Radzevich, 2018), of the interacting tooth
flanks of a gear and a mating pinion is discussed. The introduced (in around 2008)
concept of operating base pitch in gearing considered in detail. Latest accomplish-
ments in the theory of gearing are summarized and briefly discussed in this section of
the book. These accomplishments form the foundation of the self-consistent scien-
tific theory of gearing (S.P. Radzevich, 2012, 2018). The scientific theory of gearing
is not threatened with destruction, but only superstructure and development are
expected (every scientific theory features this property).

Chapter 7 Hobs are extensively used in the nowadays industry to cut gears. This
entails the necessity to improve the accuracy of hobs. Use of hyperboloidal-type
hobs sounds promising for the improvement of the gear machining operation, along
with the increasing accuracy of the hobbed gears. Hyperboloidal-type hobs may
feature up to 7–11 starts. The number of cutting edges can reach up to 60–120 teeth.

Use of hyperboloidal-type hobs of the modern designs enables a significant
increase in productivity on the gear hobbing operation and to improve the accuracy
of the cut gears.
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Chapter 8. The Torque Method is an easy way for kinematic and power analysis
of planetary gear trains, both simple and compound ones. Moreover, it gives
possibility of optimal choice of a structural scheme (and its parameters) of com-
pound planetary gear trains.

In this chapter, most common ways of optimization of planetary gear trains are
overviewed. Appropriate optimization criteria of the most common simple planetary
gear train (with one external and one internal meshing) are discussed. Multi-
objective choice of structural scheme and its parameters of two-carrier planetary
gear trains is proposed. Two-carrier planetary gear trains with three and four external
shafts are considered. The choice is made between all possible structural schemes of
planetary gear trains in question through the torque method.

Chapter 9. Power transmission has been a challenge during human history. Men
used gears to accomplish this task already at the emergence of our civilization. Gears
were simple wooden aids at first, but the evidences of complex mechanical devices
of antiquity exist. Water and animal powered devices were used during the middle
ages, whereas the renaissance and subsequent development of science discovered
steam engines. The combustion engine, the turbines, and electricity imposed new
impact to the mechanical transmissions which developed up to contemporary highly
efficient devices embedded into aircrafts, vehicles, machine tools, etc. The question
is if there is still a possibility to improve gears, which are substantial part of these
transmissions, in any way.

Contributed by Prof. Stephen P. Radzevich, appendices are titled as follows:

Appendix A: Elements of Differential Geometry of Surfaces
Appendix B: Applied Coordinate Systems and Linear Transformations
Appendix C: Contact Geometry of a Gear and a Mating Pinion Tooth Flanks
Appendix D: Closest Distance of Approach between a Gear, and a Mating Pinion

Tooth Flanks
Appendix E: On Inadequacy of the Terms “Wildhaber-Novikov Gearing,” and “W-N

Gearing”

It is likely this book is not free from omissions or mistakes; or that it is as clear
and ambiguous as it should be. If you have any constructive suggestions, please
communicate them to me via e-mail: radzevich@usa.com.

Stephen P. Radzevich
Scientific editor of:
Recent Advances in Gearing—Scientific Theory and Applications
Sterling Heights, MI, USA

July 31, 2020

xii Introduction



Contents

1 Kinematic Foundations of Scientific Classification of Gearing . . . . . . 1
Stephen P. Radzevich

2 Theory and Applications Based on S-Gear Geometry . . . . . . . . . . . . 51
Gorazd Hlebanja, Miha Erjavec, Matija Hriberšek, Luka Knez,
and Simon Kulovec

3 Kinematic Pairs: Novel Kinds and Classification . . . . . . . . . . . . . . . . 89
Stephen P. Radzevich

4 High-Performance Plastic Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
C. M. Illenberger, T. Tobie, and K. Stahl

5 Application of Task-Based Conceptual Design Method
for Gear Chamfering Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Hrayr V. Darbinyan

6 A Brief Overview of the Evolution of the Scientific
Theory of Gearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Stephen P. Radzevich

7 Hyperboloid-Type Hobs: Design, Manufacture, and Application . . . 293
Valentyn Nastasenko

8 Optimal Selection of the Structural Scheme of Compound
Two-Carrier Planetary Gear Trains and Their Parameters . . . . . . . 339
Dimitar P. Karaivanov and Sanjin Troha

9 Development of Gears from the Antiquity to the Present Time . . . . . 405
Jože Hlebanja and Gorazd Hlebanja

Appendix A: Elements of Differential Geometry of Surfaces . . . . . . . . . 435

xiii



Appendix B: Applied Coordinate Systems and Linear
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

Appendix C: Contact Geometry of a Gear and a Mating
Pinion’ Tooth Flanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Appendix D: Closest Distance of Approach between a Gear
and a Mating Pinion’s Tooth Flanks . . . . . . . . . . . . . . . . . 523

Appendix E: On Inadequacy of the Terms “Wildhaber-Novikov
Gearing” and “W-N Gearing” . . . . . . . . . . . . . . . . . . . . . . 529

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

xiv Contents



Editors and Contributors

About the Editor

Stephen P. Radzevich is a Professor of Mechanical
Engineering and a Professor of Manufacturing Engi-
neering (Institution). He received the M.Sc. (1976), the
Ph.D. (1982), and the Dr. (Eng)Sc. (1991)—all in
mechanical engineering. Dr. Radzevich has extensive
industrial experience in gear design and manufacture.
He has developed numerous software packages dealing
with CAD and CAM of precise gear finishing for a
variety of industrial sponsors. His main research interest
is Kinematic Geometry of Surface Generation, particu-
larly with the focus on (a) precision gear design, (b) high
power density gear trains, (c) torque share in multi-flow
gear trains, (d) design of special purpose gear cutting/
finishing tools, (e) design and machining (finishing) of

precision gears for low-noise/noiseless transmissions of cars, light trucks, etc.
Dr. Radzevich has spent about 40 years developing software, hardware, and other
processes for gear design and optimization. Besides his work for industry, he trains
engineering students at universities and gear engineers in companies. He authored
and co-authored over 30 monographs, handbooks, and textbooks. The monographs
entitled Generation of Surfaces (2001), Kinematic Geometry of Surface Machining
(CRC Press, 2008), CAD/CAM of Sculptured Surfaces on Multi-Axis NC Machine:
The DG/K-Based Approach (M&C Publishers, 2008), Gear Cutting Tools: Funda-
mentals of Design and Computation (CRC Press, 2010, 2nd edition 2017), Precision
Gear Shaving (Nova Science Publishers, 2010), Dudley’s Handbook of Practical

xv



Gear Design and Manufacture (CRC Press, 2012, 2nd edition 2016), Theory of
Gearing: Kinematics, Geometry, and Synthesis (CRC Press, 2012, 2nd edition
2018), Geometry of Surfaces: A Practical Guide for Mechanical Engineers (Willey,
2013, 2nd edition Springer, 2019), and Advances in Gear Design and Manufacture
(CRC Press, 2019) are among the recently published volumes. He also authored and
co-authored about 350 scientific papers and holds over 260 patents on invention in
the field, both US patents and International patents.

Contributors

Hrayr V. Darbinyan is a mechanical engineer with
over 40 years of experience in the field. His extensive
engineering experience has been grown into a task-
based conceptual design methodology providing an
approach for this less studied and understood phase of
the mechanical design. Along the way of its develop-
ment and application, the method has revealed its
resources and regularities which helped the formation
of two adjacent design phases—namely, the analysis of
the prior art and parametric optimization of the already
synthesized structure. Widely being tested on many

custom-made machines and a large variety of hand tools and homeowner products,
in this book, the method is presented in action for analysis, structural development,
and parametric optimization for a specific case of gear processing technology—for
gear chamfering techniques.

Miha Erjavec is currently a project manager at
Podkrižnik d.o.o. Before that he was a development engi-
neer at AMSCWindtec GmbH and at SET GmbH, where
he led the department of numerical simulation and analy-
sis. At Podkrižnik, he took the role of a lead designer and
project manager for gearboxes in robotic applications. He
leads and participates inmany research activities aswell as
development projects associated with gearing technology
or robotics. Furthermore, due to his expertise he supports
the gear manufacturing group at Podkrižnik and a
Podkrižnik-owned company, ORA-Drive. Mr. Erjavec
graduated from the Faculty of Mechanical Engineering
of the University of Ljubljana.

xvi Editors and Contributors



Gorazd Hlebanja is retired professor at the University
of Novo mesto, Faculty of Mechanical Engineering.

He is still involved in teaching Mechatronics and
Contemporary manufacturing systems. His research
interest and engineering projects involved parametric
drafting systems, algorithms for coloring arbitrary con-
tours, group technology-based drafting system, concept
of the online engineering office, and other. He is also
active in S-gear development and research. The
corresponding expertise includes various programming
techniques, CAD/CAM, gear design and technology, sys-

tem development, group technology, etc. Currently, he is consultant in Podkrižnik
Company, where he is involved in the development of intelligent planetary gear trains
based on S-gearing. He authored numerous journal and conference papers, invited
lectures, and patents.

Jože Hlebanja graduated from the Technical Faculty
of the University of Ljubljana in 1952. He was
employed at Metalna Factory, where he was the chief
designer for transport devices and cable cars. In 1960,
the Faculty of Mechanical Engineering invited him to
participate in the field of machine elements as an assis-
tant professor. He wrote several textbooks to facilitate
study and collaborated with industry. He received his
doctorate in 1967 and later became a full professor. He
led an extensive research group that undertook demand-
ing industrial projects. The research results enabled the
justification and inclusion of several new subjects in the
pedagogical process: Design Methodology, Tribology,

Fundamentals of Design, Transport Devices, Planetary Gears, etc.. Under his men-
torship, numerous doctorates were created. When he retired in 1991, he left an
orderly field of expertise, well-equipped laboratories, and effective international
cooperation. For his special contribution to higher education and science, the
University awarded him the title of Professor Emeritus. He still professionally
works and develops gears with a special profile, S-gears. In 2006, the Republic of
Austria awarded him a Grand Honor Medal of Merit for his work in the Slovenian
and International Mauthausen Committee.

Editors and Contributors xvii



Matija Hriberšek is a researcher and project manager
at Podkrižnik d.o.o. When he finished his studies at
Faculty of Mechanical Engineering at the University of
Ljubljana, he got employed at Gorenje d.o.o in technol-
ogy and development department, but soon returned to
the faculty to work as a young researcher. He obtained
Ph.D. in Mechanical Sciences at Faculty of Mechanical
Engineering at the University of Ljubljana in the field of
thermal conditions during cryogenic machining. At
Podkrižnik d.o.o., he works as a researcher who studies
different polymer gears used in power train applications.
He is an expert in the field of thermal heat state mech-
anism, tribological, wear and durability characteristics

of polymer materials. He is the lead project manager for research projects in the
company. He is the author of eight different publications published in different
International SCI journals and conferences.

Christopher Martin Illenberger has studied mechani-
cal engineering and management at the Technical Univer-
sity of Munich. Since 2016, he has been working as a
research associate at the Gear Research Centre (FZG) at
the Technical University ofMunich. Hisfield of activity is
the load carrying capacity of spur gears and gearmaterials.
Since 2019, he is responsible as team leader for the area of
plastic gears at FZG. In this position, Christopher Martin
Illenberger is involved in basic research on the operating
behavior of plastic gears, the development of test and
calculation methods as well as in the development of
polymer powertrains in electric vehicles.

Dimitar P. Karaivanov is an Associate Professor
undergraduate at the Sofia University of Chemical Tech-
nology and Metallurgy, and an Associate Professor at
Faculty of Fire Safety and Civil Protection at the Acad-
emy ofMinistry of Interior Affairs, Bulgaria. He has been
a guest lecturer in several Kazakhstan universities and
co-mentor of 7 graduated Ph.D. students (from Croatia
and from Kazakhstan). Dr. Karaivanov is the author of
over 100 publications, including three monographs, 2 BG

and 1 KZ patents. Over 80 citations are noticed.
Dr. Karaivanov also serves as an Expert in Bulgarian Institute of Standardization

(BIS); National expert of Bulgarian Scientific-Technical Union of Mechanical
Engineering in Gear Trains and Power Transmissions; President of the Balkan

xviii Editors and Contributors



Association of Power Transmissions; and Reviewer of several International Scien-
tific Journals and Member of the Editorial Board of five of them.

Luka Knez received his M.Sc. and Ph.D. in Mechan-
ical Engineering from the University of Ljubljana.
Until 2019, he was employed at the Faculty of
Mechanical Engineering (UL), working in the areas
of Dynamics, Vibration testing, Numerical Simula-
tions, and Human Vibration Research. During that
time, he has authored 7 publications and scientific
papers, 6 monographs, and 52 specific industrial stud-
ies and research reports. He is currently working in the
R&D department of the company Podkrižnik, where he
is responsible for Gear Design, Numerical Simulations,
and Prototype Testing. Recently, he has extended his

interest into the field of Robotics, focusing on precision hardware development and
testing.

Simon Kulovec is the Director of the R&D department
at the company Podkrižnik and is an expert in the field
of free form construction, gear systems and design,
FEM and CFD analysis, modeling, computer-aided
design, CAD programming, and programming lan-
guages (C, C++, Python, Fortran Algorithms). He is a
leading person and responsible for several industrial
projects: GOSTOP (Factories of the Future, Industry
4.0), SGU (S-Gearbox, Horizon 2020, SME Instru-
ment), EDYN (Development of advanced electric out-
board and inboard motors for e-boats), MAP gears

(Advanced materials, methodologies, and technologies for development of light-
weight power transmission components for drives technology), and SACHS RS
(Electric drive system for MTB bikes). Dr. Kulovec is a member of Research group
LECAD, Faculty of Mechanical Engineering, the University of Ljubljana, and
author and co-author of 59 publications, papers, and patents.

Valentyn Nastasenko (of Ukraine) is a Professor of
Mechanical Engineering at Kherson State Maritime
Academy (city of Kherson, Ukraine). He received the
M.Sc., the Ph.D., and the Dr.Sc.—all in mechanical
engineering. Dr. Nastasenko has extensive industrial
experience in gear design and manufacture. For about
a decade, he used to manage a privately owned
manufacturing company. His main research interest is
theory of gearing and gear production. He is a highly

Editors and Contributors xix



experienced expert in other areas of mechanical engineering as well. He authored
two monographs, authored and co-authored numerous manuals, and textbooks. He
also authored and co-authored about 500 scientific papers and holds over 100 patents
on invention in the field.

Stephen P. Radzevich is a Professor of Mechanical
Engineering and a Professor of Manufacturing Engi-
neering. He received the M.Sc., the Ph.D., and the Dr.
Sc.—all in mechanical engineering. Dr. Radzevich has
extensive industrial experience in gear design and man-
ufacture. His main research interest is Theory of Gear-
ing, and Sculptured Part Surface Generation,
particularly with the focus on (a) precision gear design,
(b) high power density gear trains, (c) design of special
purpose gear cutting/finishing tools, etc. Besides his
work for industry, he trains engineering students at
universities and gear engineers in companies. He
authored and co-authored over 30 monographs, hand-
books, and textbooks. He also authored and co-authored

about 350 scientific papers and holds over 260 patents on invention in the field, both
US patents and International patents.

Karsten Stahl is director of the Gear Research Centre
(FZG) and full professor at the Technical University
Munich. His research is focused on experimental, simu-
lative, and analytical investigations of endurance, tribol-
ogy, NVH, materials, and fatigue life analysis of gears
and transmission elements with the target to develop
methods and tools for reliable determination of fatigue
life, efficiency, and vibration characteristics.

Prof. Stahl is the author of over 200 scientific publi-
cations. He is a board member of several scientific
associations, convener of DIN and ISO working groups,
editor of several scientific journals, and president of the
VDI International Conference on Gears.

xx Editors and Contributors



Thomas Tobie is head of the department “Load Carry-
ing Capacity of Cylindrical Gears” at the Gear Research
Centre (FZG), Technical University of Munich. He is
specialized in the fields of gear materials, heat treatment,
gear lubricants, gear strength, and gear testing with
focus on all relevant gear failure modes like tooth root
fracture, pitting, micro-pitting, scuffing, and wear as
well as subsurface initiated fatigue failures. Dr. Tobie
is an active member of several national and international
working groups of DIN, ISO, IEC, and CEC and author
of numerous papers at scientific journals and
conferences.

Sanjin Troha is an Associate Professor with the
Faculty of Engineering at the University of Rijeka. He
teaches several courses for undergraduate students: with
mechanical engineering, shipbuilding, and electrical
engineering background. He is also the lecturer of the
course multi-speed mechanical converters at the doc-
toral studies of mechanical engineering at the Faculty
of Engineering at the University of Rijeka. He has
authored and co-authored over 50 scientific papers,
published in domestic and international journals and

proceedings. His scientific interest is primarily in the fields of complex gearboxes.
He has been a collaborator on several scientific research projects in Croatia and
abroad.

Editors and Contributors xxi



Chapter 1
Kinematic Foundations of Scientific
Classification of Gearing

Stephen P. Radzevich

1.1 Introduction

The discussion in this chapter of the book pertains to the scientific theory of gearing.
In a certain sense, scientific theory of gearing can be viewed as a kind of “road map”
that helps one traveling “from one location” (i.e., from a problem that one is current
encountered with) to “another location” (i.e., to a desirable solution to this problem).

Classification of gearing is one of the main outputs of the proposed [1] scientific
theory of gearing. The core of the Classification is already developed. It will take
certain time to elaborate all the details of the Classification. This is a boring and
time-consuming portion of job to be done in order to finalize the Classification. Of
course, all the details are of importance; however, all of them are not fundamental in
nature.

The author began to work in the field of gears and in the manufacture of gears at
around 1975. Since then I have been asked many times: “Who needs the theory of
gears, and especially your scientific theory of gears? The industry needs high-quality
gears, not gear theory!” This question is incorrect by nature, as the scientific theory
of gearing can be viewed as a kind of “road map” that helps one traveling “from one
location” (i.e., from a problem that one is current encountered with) to “another
location” (i.e., to a desirable solution to this problem).

The gear theory [1] is vital for the development and in in-depth analysis of
gearing, the best suitable for a particular application. All kinds of gearing proposed
in the recent couple centuries [George Grant bevel gearing (1887), Samuel Cone
worm gear drive (1925), Mikhail Novikov conformal gearing (1956), as well as the
rest of the others] can be easily derived from the scientific theory of gearing.
Moreover, novel kinds of gearing (not known yet) are predicted by the gear theory,
as all kinds of gearing are covered by the scientific theory of gearing.
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The gear theory [1] is a powerful mean that helps the user to save funds and time
in cases when subject of a gear project is poorly understood (or even not understood
at all) and when the project has no chance for success from the very beginning.

The origination of gear theory can be traced back to the mid-eighteenth century
when two famous papers on involute gear tooth profile were published by Leonhard
Euler [2, 3]. Lots of research have been carried out since the time of L. Euler. Almost
all of the gear scientists and engineers focused their attention on practical application
of gears, and a very limited number of researchers have investigated gear tooth flank
geometry and gear meshing process—the core of the theory of gearing.

The first ever monograph on gears and gearing, titled Théorie Géométrique des
Engrenages destines (Geometrical Theory of Gearing), was authored by Théodore
Olivier and published in 1842 [4]. An attempt to generalize the theory of gearing has
been undertaken by the author. The research carried out by Th. Olivier significantly
affected the evolution of gear science, as Th. Olivier committed a huge mistake in the
research. Unfortunately, the condition of conjugacy of tooth flanks of a gear and a
mating pinion was ignored by Th. Olivier. The mistake, committed by Th. Olivier in
1842, misleads gear experts all around the world for about two centuries. Tons of
research in the gear science and gear application had no chance for success due to
this mistake even before the research [1] has started.

1.1.1 Vector Diagram of Gear Pair

At the beginning, a few terms, which less experienced readers might be not familiar
with, need to be introduced. Three kinds of gearing are used in the nowadays
industry. These kinds of gearing are as follows:

• Gear pairs having crossing axes of rotation of a gear and a mating pinion. Gearing
of this kind is referred to as “crossed-axes gearing” (or just “Ca� gearing,” for
simplicity). Hypoid gearing, spiroid gearing, worm gearing, and a few others are
good examples of Ca� gearing.

• Gear pairs having intersecting axes of rotation of a gear and a mating pinion.
Gearing of this kind are referred to as “intersected-axes gearing” (or just
“Ia�gearing,” for simplicity). Bevel gearing having different geometries of the
tooth flank in the lengthwise direction, i.e., straight bevel gears, skew bevel gears,
spiral bevel gears, as well as a few of others, are good examples of Ia�gearing.

• Gear pairs having parallel axes of rotation of a gear and a mating pinion. Gearing
of this kind are referred to as “parallel-axes gearing” (or just “Pa�gearing,” for
simplicity). Spur gearing, helical gearing, as well as a few of others are good
examples of Pa�gearing.

Crossed-axes gearing is the most general kind of gearing that is extensively used
in the nowadays industry. Gearing of two other kinds (i.e., Ia�gearing and
Pa�gearing) can be viewed as a corresponding reduced cases of Ca�gearing. In
the first case (Ia�gearing), the center-distance in the gear pair is zero. In the second
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case (Pa�gearing), the axes of gears in a gear pair are parallel: the axes are at zero
shaft angle in design of internal gearing, and the axes are at 180∘ angle in design of
external gearing.

With that said, let’s proceed to consideration of gear vector diagrams (for gear
pairs that features zero complementary degrees-of-freedom).

1.1.1.1 Vector Diagram of Gear Pair Having Zero Complementary
Degrees-of-Freedom

Despite application of gear vector diagrams is known from the earlier times (approx-
imately since the mid of the XX century), in scientific theory of gearing, vector
diagrams are extensively used since the early two-thousands. Gear vector diagram is
a powerful mean for the gear theoreticians.

Taking into account that crossed-axes gearing is the most general kind of gearing,
gear vector diagrams for Ia�gearing and Pa�gearing are considered as
corresponding reduced cases of gear vector diagram constructed for Ca�gearing.

1.1.1.2 Concept of Vector Representation of Gear Pair Kinematics

Vector diagram for crossed-axes gearing can be specified by four principal design
parameters. The rotation vectors, ωg and ωp, of a gear and of a mating pinion, the
center-distance, C, and the crossed-axes angle, Σ, are these four design parameters. It
should be stressed here on the following. As rotations are not vectors in nature, that
special care is required to be undertaken when treating rotations as vectors.

Referring to Fig. 1.1a, [1], consider a crossed-axes gear pair together with the
associated rotation vectors ωg and ωp. A “Cartesian” coordinate system, XYZ, is
associated with the crossed-axes gear pair. The rotation vectors, ωg and ωp, of a gear
and its mating pinion are at a center-distance, C. The center-distance, C, is a straight-
line segment that is measured along the centerline, ℄, and equals to the closest
distance of approach between the axes of rotation, Og and Op, of the gear and its
mating pinion. In the particular case under consideration, the crossed-axes angle, Σ,
is equal to 90∘. However, crossed-axes angle, Σ, can also be either acute (Σ < 90∘) or
obtuse (Σ > 90∘).

The rotation vectors of a gear, ωg, and its mating pinion, ωp, are in fact sliding
vectors (see Fig. 1.1b). They can be applied at any point within the gear axis,Og, and
the pinion axis, Op, correspondingly. It is convenient to apply the rotation vectors,
ωg and ωp, at points of intersection, Ag and Ap, of the corresponding axes of rotation,
Og and Op, by the centerline, ℄ (i.e., by a line along which the center-distance, C, is
measured). As it will be shown later on in this chapter of the book, points Ag and Ap

are by nature the apexes of the base cones of a gear and its mating pinion,
correspondingly. In a case when the axes of rotation, Og and Op, intersect one
another (i.e., when C ¼ 0), it is convenient to apply the rotation vectors, ωg and
ωp, at point of intersection of the axes [1].
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Fig. 1.1 Kinematics of crossed-axes gearing with a constant tooth ratio, u, (a) a schematic of the
gear pair, and (b) an equivalent vector diagram: The rotation vectors, ωg and ωp, of a Ca�gearing
are at a center-distance, C, from each other, and form a crossed-axes angle, Σ. (Adapted from:
Radzevich, S.P., Theory of Gearing: Kinematics, Geometry, and Synthesis, 2nd Edition, revised and
expanded, CRC Press, Boca Raton, FL, 2018, 934 pages.)
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The magnitude of rotation vector of the gear, ωg, equals ωg ¼ j ωgj, whereas the
magnitude of rotation vector of the pinion, ωp, equals ωp ¼ j ωpj. The magnitudes,
ωg and ωp, of the rotation vectors, ωg and ωp, are synchronized with each other.

The rotation vectors,ωg andωp, form a crossed-axes angle, Σ, that is, an equality:

Σ ¼ ∠ ωg, ωp

� � ð1:1Þ

is valid for a gear pair.
Equation (1.1) immediately yields a formula:

Σ ¼ tan �1 j ωg � ωp j
ωg � ωp

ð1:2Þ

for the calculation of the actual value of the crossed-axes angle, Σ.
An analytical criterion of an actual kind of crossed-axes gearing can be composed

based on the actual configuration of the rotation vectors, ωg and ωp. The just
mentioned different kinds of gearing are as follows:

(a) Rotary-negative gearing.
(b) Rotary-positive gearing.
(c) Rotary-zero gearing.

In the nowadays practice, these three kinds of gearing are commonly referred
to as:

1. External gearing.
2. Rack-type (or crown) gearing.
3. Internal gearing.
correspondingly.

The nowadays terminology [namely, the items (i) through (iii)] is inconsistent
because of the following.

A direction of an input rotation in external gearing of conventional design is
changed to an opposite direction. However, in external gearing [5, 6] (see also
Fig. 6.10 on page 125 in [1]), a direction of an input rotation is remained the same.

Similarly, a direction of an input rotation in internal gearing of conventional
design is remained the same. However, in internal gearing [5, 6] (see also Fig. 6.10
on page 125 in [1]), a direction of an input rotation is changed to an opposite
direction.

A discussed example reveals that in scientific analysis, the proposed differentia-
tion of gearing [see items (a) through (c)] should be adopted, instead of the
conventional differentiation of gearing [see items (i) through (iii)].

The angle that is formed by the rotation vector of a gear, ωg, and the vector, ωpl,
of instant rotation of the mating pinion in relation to the gear is the principal feature
for the difference between crossed-axes gear pairs of different kinds. This angle is
either of the following:

1 Kinematic Foundations of Scientific Classification of Gearing 5



(x) Negative value (for rotary-negative gearing)
(y) Zero value (for rotary-zero gearing)
(z) Positive value (for rotary-positive gearing)

These differences can be described analytically.
An equality:

ωpl ¼ ωp � ωg ð1:3Þ

is valid for crossed-axes gearing of all kinds.
The actual sign of the angle [see items (x) through (z)] is the same as the sign of

the dot productωg �ωpl, that is, the angle (I) is negative whenωg �ωpl < 0, (II) is zero
when ωg � ωpl ¼ 0, and (III) is positive when ωg � ωpl > 0.

Ultimately, analytical criteria of a kind of crossed-axes gearing of different design
are summarized in Table 1.1.

Analytical expressions that specify the criteria for the crossed-axes gear pair are
composed on the premise of well-known properties of the dot product of two vectors.

The interested reader is referred to [1] for more in detail discussion of gear vector
diagrams.

1.1.1.3 Vector Diagram of Gear Pair Having a Plurality
of Complementary Degrees-of-Freedom

Noncircular gearing is a good example of gearing that features a plurality of
complementary degrees-of-freedom. The idea of noncircular gears originates from
the precursors of the engineering thought. Gears of this kind were sketched by
Leonardo da Vinci. In the nowadays industry, they found their application in
many mechanical devices.

The nowadays literature pertaining to the design and manufacture of noncircular
gears is less developed than that on gearing of other design.

In addition to gear pairs with a constant fundamental design parameters (gear
pairs of this type may be referred to as “gearing with no complementary degrees-of-
freedom” or as “CΣ u�constant gear pairs”), gearing of other types are also known.
Well-known from many sources, noncircular gearing is an example of gearing with
variable design parameters. Generally speaking, each of the fundamental design
parameters (C, Σ, and u) can be time-dependent. “Gears featuring a plurality of
complementary degrees-of-freedom” (or, in other words, “CΣ u�variable gear
pairs”) possess lots of undiscovered yet important properties to be used in the
industry.

Table 1.1 Analytical criteria of type of crossed-axes gear pairs

Type of crossed-axes gear pair Analytical criterion

Rotary-negative gearing: (“external”, and “internal”) crossed-axes
gear pairs

ωg � (ωp � ωg) < 0

Rotary-zero gearing: Generalized rack-type crossed-axes gear pairs ωg � (ωp � ωg) ¼ 0

Rotary-positive gearing: (“internal”, and (“external”) crossed-axes
gear pairs

ωg � (ωp � ωg) > 0

6 S. P. Radzevich



In the analysis below, each of the fundamental design parameters of a gear pair is
considered as a time-dependent design parameter, that is, as C ¼ C(t), Σ ¼ Σ(t), and
u ¼ u(t). It is reasonable to refer to gear pairs of this kind [that feature variable the
C ¼ C(t), Σ ¼ Σ(t), and u ¼ u(t) parameters] as to “CΣ u�variable gear pairs.” For
convenience, the numberings of the vector diagrams that are used in the proposed
classification of the vector diagrams (see Fig. 1.10 below) are also used for the
analysis of the CΣ u�variable gear pairs.

An example of vector diagram of CΣ u�variable gearing is illustrated in Fig. 1.2.
All the principal design parameter in the gear pair [namely, C, Σ, ωg, and ωp (or the
design parameters C, Σ, and u¼ j ωp j / j ωgj)] may be time-dependent—all of them
can vary in time while a gear pair operates.

“CΣ u�variable” gear pairs of all possible kinds are a challenging subject to be
investigated in the future.

1.1.2 Classification of Gear Vector Diagrams

Gearing of every kind feature at least one degree-of-freedom (DoF). Transmission of
a rotary motion from a driving shaft to a driven shaft is the main purpose of this
degree-of-freedom. In addition to just mentioned degree-of-freedom, one or more
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gA
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Fig. 1.2 Gear vector diagram with three variable fundamental design parameters: of a
CΣ u�variable gear pair
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complementary degrees-of-freedom can be added to a particular design of gearing in
order to keep control over one or more design parameters:

(a) The gear ratio, u � var.
(b) The center-distance, C � var.
(c) The shaft angle, Σ � var.

From this standpoint, the following kinds of gearing are distinguished:

1. Three-degree-of-freedom gearing: CΣ u � var gearing (kinematically, this kind
of gearing is the most general one).

2. Two-degree-of-freedom gearing: either CΣ � var (or u � const) gearing or
Cu � var (or Σ � const) gearing or Σ u � var (or C � const) gearing.

3. One-degree-of-freedom gearing: either u � var(or CΣ � const) gearing or
C � var (or Σ u � const) gearing or Σ � var (or Cu � const) gearing.

4. Zero-degree-of-freedom gearing: CΣ u � const gearing (kinematically, this kind
of gearing is the simplest one).

Zero-degree-of-freedom gearing (namely, CΣ u � const gearing) is the most
extensively used in the nowadays industry kind of gearing. Numerous applications
of one-degree-of-freedom gearing [i.e., u � var(or CΣ � const) gearing] are known
since the nineteenth century. Gearing of the rest of the kinds (i.e., CΣ u � var,
CΣ � var, Cu � var, Σ u � var, C � var, and Σ � var gearing) got no extensive
application in the industry yet.

The total number of the principal design parameters of gearing is limited to four
design parameters (C, Σ, ωg, and ωp). Taking into account that the rotations, ωg and
ωp, somehow correlate to one another, the total number of the principal design
parameters of three-degree-of-freedom gearing can be reduced to three design
parameters (C, Σ, and u). With that said, a self-consistent classification of various
types of gear vector diagrams can be developed as discussed immediately below.

A proposed generalized classification of gear vector diagrams is shown in
Fig. 1.3.
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gear pairs
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C var 
u const 
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gear pairs
( gear pairs)
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1.1.2.1 Gear Vector Diagrams for Three-Degree-of-Freedom Gearing

Shown in Fig. 1.2 is an example of gear vector diagram for three-degree-of-freedom
gearing (for CΣ u�variable gear pairs). Actually, a gear vector diagram of a single
kind can be constructed for three-DoF gearing. Three particular kinds of gear vector
diagram for three-DoF gearing can be distinguished. They are as follows (see
Fig. 1.4):

• Rotary-negative CΣ u�variable gear pairs [ωg � (ωp � ωg) < 0].
• Rotary-zero CΣ u�variable gear pairs [ωg � (ωp � ωg) ¼ 0].
• Rotary-positive CΣ u�variable gear pairs [ωg � (ωp � ωg) > 0].

Potential kinds of CΣ u�variable gear pairs are not limited just to three
abovementioned kinds of gearing, as different portions of a gear periphery may
feature gear sectors of various geometry. In particular, different portions of a gear
periphery may feature all three kinds of the listed above CΣ u�variable gearing.

CΣ u�variable gearing can be construed as the most general kind of gearing.
Varying each of the parameters C , Σ, and u (individually, or in any and all possible
combinations), reduced gearing of all kinds can be derived. It is right point to stress
here that when the gears rotate, only crossed-axes angle, Σ, can be varied indepen-
dently [i.e., Σ¼ Σ(t)]. A variation of the center-distance, C , and the angular velocity
ratio, u, is prespecified by the design parameters of the gear pair [C¼ C[φinput(t)] and
u ¼ u[φinput(t)]].

Gear vector diagrams for three-degree-of-freedom gearing form the first stratum
(I stratum) of the generalized classification (see Fig. 1.3). The first stratum (I) of the
classification consists of just one gear vector diagram (CΣ u� var gearing), as there
is no need for more detail in their classification now, as well as in the nearest future.
It is right point to stress here that plurality of reduced cases of CΣ u � var gearing
with specific features of gear pairs is possible.

C u var� �  gearing 

( ) 0g p g� � �ω ω ω  

( ) 0g p g� � �ω ω ω  

( ) 0g p g� � 	ω ω ω  

Fig. 1.4 Possible kinds of Cu Σ � variable gear pairs (the first stratum of the generalized
classification in Fig. 1.3)
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1.1.2.2 Gear Vector Diagrams for Two-Degree-of-Freedom Gearing

The second stratum (II stratum) in the generalized classification of gear vector
diagrams (see Fig. 1.3) is formed by the gear vector diagrams for two-degree-of-
freedom gearing of three different kinds:

• CΣ � var (or u � const) gear vector diagrams
• Cu � var (or Σ � const) gear vector diagrams
• Σ u � var (or C � const) gear vector diagrams

Illustrative examples of gear vector diagrams for two-degree-of-freedom gearing
of each of three possible kinds are shown in Fig. 1.5, namely, in Fig. 1.5a for
CΣ � var (or u � const) gearing; in Fig. 1.5b for Cu � var (or Σ � const) gearing;
and in Fig. 1.5c for Σ u � var(or C � const) gearing.

It is necessary to point out here that each of the two-degree-of-freedom gear
vector diagrams constructed for CΣ� var gearing, Cu� var gearing, and Σ u� var
gearing can be either rotary-negative [ωg � (ωp � ωg) < 0] or rotary-zero
[ωg � (ωp � ωg) ¼ 0] or, finally, rotary-positive [ωg � (ωp � ωg) > 0]. More in
detail, the second stratum of the generalized classification of vector diagrams of
gearing is schematically shown in Fig. 1.6.

Gear vector diagrams for numerous reduced kinds of two-degree-of-freedom
gearing are distinguished. As an example, gear vector diagrams for (a) crossed-
axes gearing, (b) intersected-axes gearing, and (c) parallel-axes gearing are listed
below:

Reduced cases of crossed-axes gearing:

• Rotary-negativeΣ u�variable gear pairs:C ¼ const 6¼ 0.
• Rotary-negative Cu�variable gear pairs:Σ ¼ const 6¼ 0.
• Rotary-negative CΣ�variable gear pairs: u ¼ const.
• Rotary-zeroΣ u�variable gear pairs:C ¼ const 6¼ 0.
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Fig. 1.5 Gear vector diagrams with two variable fundamental design parameters: of (a) Σ �u
variable gear pair (or C� constant gear pair); (b) Cu� variable gear pair (or Σ� constant gear pair);
and (c) Σ � C variable gear pair (or u � constant gear pair)
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• Rotary-zero Cu�variable gear pairs:Σ ¼ const 6¼ 0.
• Rotary-zero CΣ�variable gear pairs: u ¼ const.
• Rotary-positiveΣ u�variable gear pairs:C ¼ const 6¼ 0.
• Rotary-positive Cu�variable gear pairs:Σ ¼ const 6¼ 0.
• Rotary-positive CΣ�variable gear pairs: u ¼ const.

Reduced cases of intersected-axes gearing:

• Rotary-negativeΣ u�variable gear pairs:C ¼ 0.
• Rotary-zeroΣ u�variable gear pairs:C ¼ 0.
• Rotary-positiveΣ u�variable gear pairs:C ¼ 0.

Reduced cases of parallel-axes gearing:
Rotary-negative Cu�variable gear pairs:Σ ¼ 0∘.
Rotary-zero Cu�variable gear pairs:Σ ¼ const 6¼ 0∘.
Rotary-positive Cu�variable gear pairs:Σ ¼ 180∘.

1.1.2.3 Gear Vector Diagrams for One-Degree-of-Freedom Gearing

The third stratum (III stratum) in the generalized classification of gear vector dia-
grams (see Fig. 1.3) is formed by the gear vector diagrams for one-degree-of-
freedom gearing of three different kinds. These are the following gear vector dia-
grams for one-degree-of-freedom gearing (see Fig. 1.7):

• u � var (or CΣ � const) gear vector diagrams
• C � var (or Σ u � const) gear vector diagrams
• Σ � var(or Cu � const) gear vector diagrams.

Illustrative examples of gear vector diagrams for one-degree-of-freedom gearing
of each of three possible kinds are shown in Fig. 1.7, namely, in Fig. 1.7a for Σ� var
(or Cu � const) gearing; in Fig. 1.7b for C � var (or Σ u � const) gearing; and in
Fig. 1.7c for u � var(or CΣ � const) gearing.

It is necessary to stress here that each of the one-degree-of-freedom gear vector
diagrams constructed for u � var gearing (or CΣ � const gearing), C � var gearing
(or Σ u � const gearing), as well as Σ � var gearing (or Cu � const gearing) can be

C var� � gearing
[u const� gearing]

( ) 0g p g� � �ω ω ω

( ) 0g p g� � �ω ω ω

( ) 0g p g� � 	ω ω ω

Cu var� gearing
[ const� � gearing]

( ) 0g p g� � �ω ω ω

( ) 0g p g� � �ω ω ω

( ) 0g p g� � 	ω ω ω

u var� � gearing
[C const� gearing]

( ) 0g p g� � �ω ω ω

( ) 0g p g� � �ω ω ω

( ) 0g p g� � 	ω ω ω

Fig. 1.6 Possible kinds of the gear vector diagrams for two-degree-of-freedom gearing (the second
stratum of the generalized classification in Fig. 1.3)
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either rotary-negative [ωg � (ωp � ωg) < 0] or rotary-zero [ωg � (ωp � ωg) ¼ 0] or,
finally, rotary-positive [ωg � (ωp � ωg) > 0]. More in detail, the third stratum of the
generalized classification of vector diagrams of gearing is schematically shown in
Fig. 1.8.

Gear vector diagrams for numerous reduced kinds of one-degree-of-freedom
gearing are recognized. As an example, gear vector diagrams for (a) crossed-axes
gearing, (b) intersected-axes gearing, and (c) parallel-axes gearing are listed below:

Possible reduced cases of one-degree-of-freedom gearing:

• Rotary-negative C�variable gear pairs:Σ ¼ const, u ¼ const.
• Rotary-negativeΣ�variable gear pairs:C ¼ const, u ¼ const.
• Rotary-negative u�variable gear pairs:C ¼ const,Σ ¼ const.
• Rotary-zero C�variable gear pairs:Σ ¼ const, u ¼ const.
• Rotary-zeroΣ�variable gear pairs:C ¼ const, u ¼ const.
• Rotary-zero u�variable gear pairs:C ¼ const,Σ ¼ const.
• Rotary-positive C�variable gear pairs:Σ ¼ const, u ¼ const.
• Rotary-positiveΣ�variable gear pairs:C ¼ const, u ¼ const.
• Rotary-positive u�variable gear pairs:C ¼ const,Σ ¼ const.
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Fig. 1.7 Gear vector diagram with a single variable fundamental design parameter: of (a) Σ�
variable gear pair (or Cu �constant gear pair); (b) C� variable gear pair (or Σ � u constant gear
pair); and (c) u � variable gear pair (or Σ � C constant gear pair)—not feasible
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Fig. 1.8 Possible kinds of gear vector diagrams for one-degree-of-freedom gearing (the third
stratum of the generalized classification in Fig. 1.3)
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The C�variable gear pairs (or Σ u�constant gear pairs), Σ�variable gear pairs
(or Cu�constant gear pairs), and u�variable gear pairs (or CΣ�constant gear pairs)
are not feasible because the fundamental design parameters, namely,
(a) C ¼ var,Σ ¼ const, u ¼ const, (b) C ¼ const,Σ ¼ var, u ¼ const, and
(c) C ¼ const,Σ ¼ const, u ¼ var, are not compatible with one another.

It is critical for the further analysis that the total number of the gear vector
diagrams listed above is not an infinite, but, instead, it is limited to a reasonably
small number of the gear vector diagrams. No gear vector diagrams except of the
above considered are possible at all. This means that each one of the gear vector
diagrams can be investigated to the best possible extent aiming application of them
in design gearing.

In “CΣ u�variable” gear pairs of all possible kinds, at every instant of time, that
is, for any and all possible configurations of a gear and its mating pinion, instant base
pitch of a gear, and instant base pitch of a mating pinion, both have to be equal to
instant operating base pitch of the gear pair—this is a must.

1.1.2.4 Gear Vector Diagrams for Zero-Degree-of-Freedom Gearing
(with no Complementary DoF)

Finally, the fourth stratum (IV stratum) in the generalized classification of gear
vector diagrams (see Fig. 1.3) is formed by the gear vector diagrams for zero-
degree-of-freedom gearing. These is the only zero-degree-of-freedom gear vector
diagram CΣ u � const gearing (see Fig. 1.9).

Crossed-axes zero-degree-of-freedom gear pairs are considered in this section of
the book as the most general type of gear pairs. The remaining possible kinds of gear
pairs can be construed as a reduction (simplification) of the corresponding type of the
crossed-axes gear pairs.

There are only three different types of zero-degree-of-freedom gearing having
crossing axes of rotation of a gear and a mating pinion:

( ) 0g p g� � �ω ω ω

( ) 0g p g� � �ω ω ω

( ) 0g p g� � 	ω ω ω

C u const� � gearing

Classification 
in Fig. 1.10

Fig. 1.9 Possible kinds of
Cu Σ � const gear pairs (the
fourth stratum of the
generalized classification in
Fig. 1.3)
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• “Rotary-negative crossed-axes gear pairs,” in which the input rotation is altered
(i.e., ωg/ωg ¼ � ωp/ωp); the gear ratio is negative (u < 0).

• “Rotary-positive crossed-axes gear pairs,” in which the gear rotation is remained
the same (i.e., ωg/ωg ¼ ωp/ωp); the gear ratio is positive (u > 0).

• “Rotary-zero crossed-axes gear pairs,” in which the gear cone angle, Σg, is a right
angle (i.e., Σg ¼ 90∘); rotation of the gear is not zero1 (ωg 6¼ 0).

No other kind of crossed-axes gearing is possible.
The first stratum of the classification of possible kinds of vector diagrams for

zero-degree-of-freedom gearing (Fig. 1.10) is comprised by three different kinds of
crossed-axes gearing:

• Rotary-negative crossed-axes gear pairs.
• Rotary-zero crossed-axes gear pairs.
• Rotary-positive crossed-axes gear pairs.

Numbers 1.1, 1.2, and 1.3 are assigned to crossed-axes gear pairs that comprise
the first stratum of the classification (see Fig. 1.10).

Crossed-axes gear pairs can be reduced to gear pairs of a simpler design. There
are two possible ways for the reduction: first, the center-distance, C, can be set to a
zero value, and, second, the gear and the pinion axes of rotation, Og and Op, can be
set parallel to each other. In the second case, the crossed-axes angle, Σ, is equal to
either Σ ¼ 180∘ or Σ ¼ 0∘.

Let us begin the consideration from the first case when the center-distance, C, of a
rotary-negative intersected-axes gear pair is reduced to zero.

When the equality C ¼ 0 is observed, the gear and the pinion axes of rotation, Og

and Op, intersect each other at point, Apa. This point is commonly referred to as the
“plane-of-action apex, Apa.” The rotation vectors, ωg and ωp, are the two vectors
through the point Apa. They are pointed along the axes of rotation, Og and Op,
correspondingly.

For gear pairs of this kind, a sphere that is centered at the point “plane-of-action
apex, Apa” is convenient to be used for the investigation of engagement of the gear
teeth. Because of this, intersected-axes gear pairs are loosely referred to as “spherical
gear pairs.” The term “spherical” is because the tooth profiles of the gear, and the
pinion in this case are generated on spheres.2 For rotary-negative intersected-axes

1The term “rotary-zero crossed-axes gear pair” is due to that in parallel-axes gearing of this kind the
rotation of the gear is zero (i.e.,ωg¼ 0). “Gear-to-rack gear pair” of a conventional design features a
zero rotation of the gear: for a certain rotation of the pinion, ωp, the rotation of the gear, ωg, is
always zero, ωg ¼ 0. In a more general case of zero crossed-axes gearing, the gear rotation is not
zero (i.e., ωg 6¼ 0). By convention, the term “rotary-zero crossed-axes gear pair” is applied to
gearing of all types, that is, to parallel-axes, intersected-axes, and crossed-axes gearing as well.
2The term “spherical gear pair” is incorrect as gears of other types, for example, crossed-axes gear
pairs, are also engaged in mesh on a sphere. Therefore, replacement of the obsolete and extensively
used term “conical gear pair” with the term “spherical gear pair” is not valid. In order to avoid
ambiguities in further discussions, gearing of this type is referred to as “intersected-axes gearing,”
or just as “Ia�gearing,” for simplicity.
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gear pairs of all kinds, the inequality ωg � (ωp � ωg) < 0 is valid. The component Σg

of the crossed-axes angle, Σ, exceeds a right angle, 90∘ (i.e., Σg > 90∘). Rotary-
negative intersected-axes gear pairs can feature crossed-axes angles of various
values. In particular, the crossed-axes angle, Σ, can be chosen so as to fulfil the
equality Σg ¼ 90∘.

The first row of the second stratum of the classification of all possible kinds of
vector diagrams of gear pairs (see Fig. 1.10) is comprised by three different kinds of
intersected-axes gear pairs, namely, by:

• Rotary-negative intersected-axes gear pairs.
• Rotary-zero intersected-axes gear pairs.
• Rotary-positive intersected-axes gear pairs.

The numbers 1.1.1, 1.2.1, and 1.3.1 are assigned to intersected-axes gear pairs
comprising the first row of the second stratum of the classification.

This is followed by the second case in which the gear and the pinion axes of
rotation are parallel to each other. The shaft angle in these cases is either Σ ¼ 0∘ or
Σ ¼ 180∘.

When the equality Σ ¼ 180∘ is observed, the rotation vectors, ωg and ωp, are
pointed oppositely to one another. Gear pairs of this type are referred to as “parallel-
axes gear pairs” (or just “Pa�gear pairs,” for simplicity). Sometimes the term
“planar gear pair” is used with respect to gearing of this type. The term “planar” is
used as the tooth profiles of the gear, and the pinion in this case are generated within
a plane. The term “parallel-axes gear pair” is preferred and is recommended for use
in scientific publications on theory of gearing. For all rotary-negative parallel-axes
gear pairs, the inequality ωg � (ωp � ωg) < 0 is observed.

On the other hand, when for a parallel-axes gear pair the equality Σ ¼ 0∘ is valid,
the rotation vectors,ωg and ωp, are pointed in the same direction, which corresponds
to a rotary-positive parallel-axes gear pair. For all rotary-positive parallel-axes gear
pairs, the inequality, ωg � (ωp � ωg) > 0, is observed.

Parallel-axes gear pairs of two kinds, namely, rotary-negative gear pairs and
rotary-positive parallel-axes gear pairs, comprise the second row of the second
stratum of the classification of possible types of vector diagrams of zero-degree-
of-freedom gearing (see Fig. 1.10). The numbers 1.1.2 and 1.3.2 are assigned to the
vector diagrams of parallel-axes gear pairs comprising the second row of the second
stratum of the classification.

Ultimately, consider a simplified case of rotary-zero crossed-axes gear pair. In the
extreme cases, the tooth number of the gear can approach infinity. An infinite radius
of the gear is the only case to reduce the rotary-zero crossed-axes gear pair when the
center-distance is not equal to zero (i.e., C 6¼ 0). The vectors of linear velocities, Vg

and Vp, are at a crossed-axes angle, Σ, in relation to each other.
The third row of the second stratum of the classification of all possible kinds of

gear vector diagrams (see Fig. 1.10) is comprised by rotary-zero crossed-axes gear
pairs of this kind. The number 1.2.2 is assigned to the gear pair that comprises the
third row of the second stratum of the classification.
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In a particular case, say, when the crossed-axes angle is equal to zero (Σ ¼ 0∘), a
rotary-zero crossed-axes gear pair reduces to a conventional rotary-zero parallel-axes
gear-to-rack gear pair.

The number 1.2.2.1 is assigned to the parallel-axes gear-to-rack gear pair.
The gear-to-rack gear pair is a perfect example of a rotary-zero parallel-axes gear

pairs of this type.
It is instructive to note here that a rotary-zero parallel-axes rack-type gear pair can

be obtained as an extreme case of either a rotary-negative parallel-axes gear pair (i.e.,
of the gear pair 1.1.2) or a rotary-positive parallel-axes gear pair (i.e., of the gear pair
1.3.2) under the condition that the radius of the gear approaches infinity.3 In this
case, the corresponding vector diagrams 1.1.2.1 or 1.3.2.1 are formally possible.
Gear pairs that correspond to the vector diagrams 1.1.2.1 and 1.3.2.1 are not
profoundly investigated yet.4

Finally, another extreme case is required to be mentioned. In a particular case
when the rotation vectors, ωg and ωp, are equal to each other (i.e., ωg � ωp), the
rotary-positive parallel-axes gear pair 1.3.2 reduces to a gear coupling. For a gear
coupling, the rotation vector, ωpl, is equal to zero (ωpl � 0). The base cones apexes,
Ag and Ap, are coincident with one another. Because the equality ωg � ωp is valid,
the diameters, edg and edp , are both equal to zero (i.e., edg � edp � 0). Therefore, the
plane-of-action apex, Apa, is coincident with the base cone apexes, Ag and Ap

(Ag � Ap � Apa).
This particular case can also be construed as a reduced case of internal

intersected-axes gear pair featuring a zero intersected-axes angle (Σ ¼ 0∘).
The coupling can be composed of an internal and external spur gears with equal

tooth numbers, of a pair of similar bevel gears, or of two face gears. The number
1.3.2.1 is assigned to a degenerate gear pair of this kind.

3More accurately, the radius of the gear “sector,” and not of the gear, approaches infinity.
4The vector diagrams 1.1.2.1 and 1.3.2.1 correspond to the deeply degenerate designs of gear pairs.
Because of these, significant features could be observed when developing tooth flanks for gearing
that correspond to the gear vector diagrams 1.1.2.1 and 1.3.2.1. When friction between the
interacting tooth flanks of the gear, G , and the pinion, P , is ignored, the tangential force by
means of which the torque is transmitted from the driving shaft to the driven shaft acts along the
common perpendicular, ng, to the interacting tooth flanks, G and P. The common perpendicular, ng,
intersect the pitch line, Pln, that is, it intersects the line of action of the vector of instant rotation,ωpl.
In cases of gear pairs that correspond to the vector diagrams 1.1.2.1 and 1.3.2.1, all three rotation
vectors, that is, ωg, ωp, and ωpl, are along a common straight line, Pln. Once the line of action of the
vector ng intersects the line of action of the velocity vector, ωpl, the arm of tangential force in the
gear pair becomes zero. This means that no torque can be transmitted by a gear pair of these
particular kinds of gearing. Gear coupling is not a kind of gearing (no contact ratio can be defined).
This discrepancy needs to be thoroughly investigated.

In reality, a gear axis and its mating pinion axis always are slightly misaligned. Under such a
scenario no discrepancy is observed, and gear pairs can be designed in accordance to the vector
diagrams 1.1.2.1 and 1.3.2.1.
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The third stratum of the classification of all possible kinds of the gear vector
diagrams (see Fig. 1.10) is represented by two types of parallel-axes gear pairs:
(1) the rotary-zero gear pair 1.2.2.1 and (2) the gear coupling 1.3.2.1.

The total number of the gear vector diagrams of zero-degree-of-freedom gearing
is limited to 11 different kinds of vector diagrams. Gear vector diagrams of all
possible kinds are covered by the classification (see Fig. 1.10). No gear vector
diagrams are missed, as well as no gear vector diagrams not covered by the
classification are feasible. This makes it possible to conclude that the proposed
classification (shown in Fig. 1.10) is complete and self-consistent.

The classification can be used for the investigation of the kinematics and the
geometry of gearing of all kinds, that is, of all known kinds of gearing, as well as of
all kinds of gearing not known yet and to be developed in the future.

1.1.3 Line of Contact of Favorable Geometry in a Gear Pair

When a geometrically-accurate gear pair operates, tooth flanks of a gear, G, and that
of a mating pinion, P, make line contact with one another. The line of contact, LC, is
viewed as a planar curve that is entirely located within the plane of action, PA, and
that travels with the plane of action when the gears rotate.

Lines of contact of various geometries can be used to generate the teeth flanks of a
gear and that of a mating pinion in gearing of all kinds. A few examples are
illustrated in Fig. 1.11.

Consider a crossed-axes geometrically accurate gear pair.
Three apexes are recognized in perfect (or, in other words, in geometrically

accurate) crossed-axes gear pair [1]. They are:

(a) The plane-of-action apex, Apa.
(b) The gear-base-cone apex, Ag.
(c) The pinion-base-cone apex, Ap.

Note: in a geometrically accurate intersected-axes gear pair, all three apexes,
Apa, Ag, and Ap, are coincident with one another. Therefore, in a geometrically
accurate straight bevel gear pair, the line of contact, LC, is a straight line through
the apex, Apa � Ag � Ap.

In a case of geometrically accurate crossed-axes gears, the problem of design a
gear pair with “straight” teeth is a bit tricky.

In a particular case, a tooth flank of a gear and that of a mating pinion in a crossed-
axes gear pair can be designed so as to keep a straight line of contact, LCstrait,
between the teeth flanks, G and P , aligned with a straight line through the plane-of-
action apex, Apa. This is schematically illustrated in Fig. 1.11a. The gears, the teeth
flanks, G and P , of which are generated by means of the line of contact, LCstrait, are
referred to as the “pseudo-straight crossed-axes gears,” regardless of the tooth flanks,
G and P , of this particular kind of gearing are curved in their lengthwise direction.
The term “pseudo-straight crossed-axes gears” reflects that the tooth flanks, G and P,
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Fig. 1.11 Examples of possible geometries of the lines of contact, LC , between a gear tooth flank,
G , and a mating pinion tooth flank, P , in perfect crossed-axes gear pair: (a) “pseudo-straight
crossed-axes gears”, (b) “straight-gear crossed-axes gears”, (c) “straight-pinion crossed-axes
gears”, (d) helical crossed-axes gears, (e) spiral crossed-axes gears, and (f) cycloidal crossed-axes
gears. (Adapted from: Radzevich, S.P., Theory of Gearing: Kinematics, Geometry, and Synthesis,
2nd Edition, revised and expanded, CRC Press, Boca Raton, FL, 2018, 934 pages.)
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are generated by a straight line through the plane-of-action apex, Apa. When the
gears rotate, at a certain instant of time, the line of contact, in addition, is aligned
with the axis of instant rotation, Pln.

Pseudo-straight crossed-axes gearing features face contact ratio of a zero value
(mF ¼ 0).

Straight-line segments that have other configurations within the plane of action,
PA, are of particular interest from the perspective of the tooth flank generation when
machining gears. In a particular case, the tooth flanks of a gear and a mating pinion in
a geometrically accurate crossed-axes gear pair can be designed so as to keep the line
of contact, LCspur. g, between the tooth flanks, G and P , aligned with a straight line
through the gear apex, Ag. This design is schematically depicted in Fig. 1.11b. Both
the gear tooth flank, G, and the tooth flank, P, of the mating pinion that are generated
by means of the line of contact, LCspur. g, of such a configuration are not straight;
they are curved in their lengthwise direction instead.

Similarly, the tooth flanks of a gear and a mating pinion in a crossed-axes gear
pair can be designed so as to keep the line of contact, LCspur. p, between the tooth
flanks, G and P, aligned with a straight line through the pinion apex, Ap. This case is
schematically shown in Fig. 1.11c. Both the gear tooth flank, G, and the tooth flank,
P , of the mating pinion, that are generated by means of the line of contact, LCspur. p,
of such a configuration are not straight; they are curved in their lengthwise direction
instead.

Ultimately, the tooth flanks of a gear and a mating pinion in a crossed-axes gear
pair can be generated by an arbitrary straight line, LChelical, that is entirely located
within the plane of action, PA. The straight line of contact, LChelical, passes neither
through the plane-of-action apex, Apa, nor through the gear apex, Ag, nor through the
pinion apex, Ap. The configuration of the line of contact for this particular kind of
crossed-axes is illustrated in Fig. 1.11d. Under such a scenario, the tooth flanks, G
and P , of the gear and the pinion are a kind of screw surfaces.

Finally, one can conclude from that that no geometrically accurate crossed-axes
straight bevel gearing is feasible at all.

Not only straight lines can be used for the purpose of the generation of the tooth
flanks of the gear and the pinion in crossed-axes gearing.

Figure 1.11e illustrates a case when the circular arc of a certain radius, Rlc, is used
to generate the tooth flanks of a gear and a mating pinion in crossed-axes gearing.
The arc is centered at a point within the plane of action, PA, and it is entirely located
within the plane, PA. The tooth flanks, G and P , of complex geometry are generated
by the circular arc. Geometrically accurate spiral bevel gears are generated in
this way.

One more example of a planar line of contact, LCcycl, between the gear tooth
flank, G, and the pinion tooth flank, P , is depicted in Fig. 1.11f. The line of contact,
LCcycl, is entirely located within the plane of action, PA. Geometrically accurate
cycloidal bevel gears are generated in this way.

The main advantage of a straight line (see Fig. 1.11a through Fig. 1.11d), of a
circular arc (see Fig. 1.11e), and of an arc of a cycloidal curve (see Fig. 1.11f) is that
these lines are easy to be reproduced kinematically on a machine tool. Planar curves
of other geometries (namely, involute of a circle arc, sine-curve arc, a few more to be
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mentioned) that could be kinematically generated on a machine tool can also be
implemented to generate the tooth flanks of a gear and a mating pinion in a crossed-
axes gear pair. The convenience of generation of the line of contact, LC, is of critical
importance in this concern.

The approach used above for the derivation of an expression for the position
vector of a point of the tooth flank generated by means of an arbitrary planar curve
[1] can be used for the derivation of an equation for the position vector of a point of
tooth flanks, G and P, generated by means of planar curves those shown in Fig. 1.11.

It is right point to stress here on the importance of the geometry of the line of
contact, LC, for solving the problem of synthesizing a desirable crossed-axes gear
pair. The geometry of the line of contact, LC, is a powerful mean to take control over
the contact geometry of tooth flanks of a gear, G , and its mating pinion, P . This
means that the contact geometry of the tooth flanks, G and P (see Appendix C), is
the key for the determination of the best possible geometry of the line of contact, LC,
for any particular case of crossed-axes gearing.

The total number of planar curves that can be used to design gears with a line of
contact, LC, with a favorable geometry is large and is almost infinite. In the
developed classification of gearing, the discussion of the planar curves LC is limited
only to those curves that are easy to be generated on machine tools. They are:

• A straight-line segment (through the plane-of-action apex, Apa).
• An arbitrary-straight-line segment (not through the plane-of-action apex, Apa).
• Two straight-line segments (herring-bone gears).
• Two straight-line segments (separated from one another).
• Arc of a circle.
• Arc of a cycloidal curve.
• Arc of an involute of a circle.
• Arc of a sine-curve.

In a case of necessity, more planar curves LC can be involved into the
consideration.

Taken in a whole, the kinematics of gearing forms a robust foundation for
scientific classification of geometrically accurate gearing. Later on use of this
concept enables development of scientific classification of gearing of all kinds,
including, but not limited to, approximate gears.

1.1.4 On Classification of Approximate Gearing

Approximate gearing is extensively used in the nowadays industry as they are
cheaper. Tooth flanks of a gear and that of a mating pinion do not obey the conjugate
action law of gearing—this is the first principal feature of approximate gearing of all
design. The second feature is due to neither base pitch of a gear nor base pitch of a
mating pinion; both can be identified in approximate gearing. An example of
approximate gearing is shown in Fig. 1.12. Low to moderate rotations and low to
moderate loading are the two main areas of application of approximate gearing.
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Similar to the classification of geometrically accurate gearing, the kinematic
approach can be implemented for the development of a scientific classification of
approximate gearing as well.

When two rotation vectors associated with an input and with an output shafts are
specified, gears of various geometries can be used to transmit and to transform a
rotation from the driving shaft to the driven shaft. Skew axes helical gears, worm
gearing, and others are used to transmit and to transform a rotation from an input
shaft to an output shaft, the axes of which cross each other at crossed-axes angle of a
certain value.

Gears that feature various gear generic surfaces can be used to transmit and to
transform a given rotation. This makes it possible to conclude that the gear vector
diagram is necessary but not sufficient to identify the actual type of a gear pair. In
this regard, the gear generic surface, of which a gear pair is composed, is of
importance. If the gear generic surface is incorporated into consideration, this
makes possible a further development of the classification of possible kinds of
gear pairs. The orderly classification of gear pairs along with the classification of
gears themselves is a desirable prerequisite for the study of gears in general. It is a
challenging problem to develop a scientific classification of gear pairs.

In general engineering practice, names have been given to most of the numerous
kinds of gear members and gear combinations. However, these names, although
generally accepted and used, are sometimes indefinite and ambiguous. In some
cases, it is hard to find a sufficient number of names to distinguish between variants,
which deserve some recognition of their individuality; in others, the same gear
operating in different ways may have different names. The problem of classification,
moreover, yields different results according to the direction from which it is
approached. By treating gears according to the character of their teeth, one system
of grouping emerges; by considering the relative position of the shafts they connect,
another system is possible; and from the point of view of the real nature of tooth
action, a third grouping is possible.

Below, in this section of the book, an attempt to classify approximate gear pairs
based on their associated vector diagrams is undertaken.

Fig. 1.12 Example of approximate gearing
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1.1.4.1 Origination of the Term “Gear Generic Surface”

Gears, those used in the design of various machines and mechanisms, are somehow
machined on machine tools. Nowadays, machine tools, especially numerical control
machines (NC), are capable of performing any desirable motion of the cutting tool in
relation to the workpiece. This makes possible machining a gear that has any
desirable tooth flank geometry. It is necessary to stress here that use of any desirable
motion of the cutting tool with respect to the work-gear is not a common practice in
machining gears, especially machining gears in high-volume production industries.

The motions the gear cutting tool performs in relation to a work-gear are either a
kind of translation, or a kind of rotation, or a combination of translations and
rotations [7]. This is because a translation and a rotation are the two elementary
motions that can be easily performed on a machine tool. If a relative motion of a
gear-cutting tool is limited either to a translation, or a rotation, or a combination of a
few translations and rotations, then all possible types of gears and gear pairs can be
identified and investigated.

Let us proceed with a discussion of possible gear generic surfaces of gears
machined on conventional machine tools for gear production.

1.1.4.2 Evaluation of the Total Number of Possible Geometries of Gear
Generic Surfaces

Once all possible kinds of gear design are limited to those gears, for which gear
generic surfaces are generated either by a straight-line segment, or by a circular arc,
the following two actions are possible:

1. Identification of all possible types of gears.
2. Development of a classification of possible kinds of gear generic surfaces.

This classification is important for the purpose of designing gear pairs that feature
the most favorable (nearly optimal) design parameters.

1.1.4.3 Possible Geometries of Axial Profile of Gear Generic Surfaces

Referring to Fig. 1.13, consider gear generic surfaces designed for an intersected-
axes gear pair.

If no constraints are imposed, the ideal gear generic surface can be construed as a
locus of consecutive positions of the axis of instant rotation, Pln, when the axis is
rotated about the gear axis, Og. In this way, the gear generic surface is shaped in the
form of a one-sheet hyperboloid of revolution. Two hyperbolas appear in the section
of this surface by a plane through the gear axis of rotation, Og.

An expression for the analytical description of a gear generic surface can be
derived in the following way: consider a gear generic surface that is referred to a
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Cartesian coordinate system, Xa
gY

a
gZ

a
g, as shown in Fig. 1.13. The position vector, r

a
g,

of an arbitrary point, m, of the gear generic surface can be considered as summa of
two components, that is:

rag ¼ Ra
g þ La

g ð1:4Þ

In the reference system, Xa
gY

a
gZ

a
g , one of the components, Ra

g (see Fig. 1.13),
yields analytical representation in vector form:

Ra
g ¼ i �erg cosϕa

g þ j �erg sinϕa
g ð1:5Þ

where:erg is the radius of throat of the gear generic surface (the radius,erg, is measured in the
coordinate plane, Xa

gY
a
g)

ϕa
g is the angular parameter of the gear generic surface.

For analytical description of another component, La
g, of the position vector, r

a
g, the

following expression can be used:

La
g ¼ �i � zag tanΣg sinϕ

a
g þ j � zag tanΣg cosϕ

a
g þ k � zag ð1:6Þ

lnP

a
gX

a
gY

a
gZ

gO

a
g�

m
gω

a
grgr%

a
gL

a
gR

plω

paA

Fig. 1.13 On analytical description of a gear generic surface
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The angular parameter, ϕa
g, of the gear generic surface is the first Gauss parameter

of the gear generic surface.
Equations (1.5) and (1.6) allow for the derivation of an expression:

rag ϕa
g, zag

� �
¼

erg cosϕa
g � zag tanΣg sinϕ

a
gerg sinϕa

g þ zag tanΣg cosϕ
a
g

zag
1

26664
37775 ð1:7Þ

for the position vector, rag, of an arbitrary point, m, of the gear generic surface.
In Eq. (1.7), other Gauss parameter of the gear generic surface is denoted by zag,

and Σg designates the angle that the rotation vector of the gear, ωg, makes with the
vector, ωpl of instant rotation [Σg ¼ ∠ (ωg, ωpl)].

The rotation vector of the gear, ωg, is pointed along the gear axis of rotation, Og.
The vector, ωg, is applied at the throat of the gear generic surface. The vector of
instant rotation, ωpl, is pointed along the axis of instant rotation, Pln. This vector is
applied at the plane-of-action apex, Apa.

The face width of the gear is denoted by eFg. The location of the middle section of
the generic gear surface is specified by the vectors Cg, Ag, and rw. g � cg, as shown in
Fig. 1.14.

A local reference system is associated with the gear generic surface. The origin of
the reference system is at a point, a, within the axial profile of the gear generic
surface. The origin, a, is at the middle of the width, eFg. In the particular case under
consideration, a “Darboux5 frame” is used as the reference system. The “Darboux
frame” is comprised by three unit vectors, nag, t

a
1:g, and ta2:g.

lnPgω
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gt

a
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.w g gr �c
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Fig. 1.14 “Darboux frame”, nagt
a
1:gt

a
2:g, associated with the desirable gear generic surface

5Jean-Gaston Darboux (August 14, 1842–February 23, 1917), a French mathematician.
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The vector, nag, is a unit normal vector to the gear generic surface at the point, a.
An equation:

nag ¼ ug � vg ð1:8Þ

can be used for the calculation of the unit normal vector, nag.
In Eq. (1.8), two unit tangent vectors at a point at a of the gear generic surface are

designated as ug and vg. The unit vectors, ug and vg, are unitless. They are given as
follows:

ug ¼ Ug

j Ug j ð1:9Þ

vg ¼ Vg

j Vg j ð1:10Þ

correspondingly.
In Eqs. (1.9) and (1.10), the tangent vectors, Ug and Vg, are given by Ug ¼

∂rsg=∂Ug and Vg ¼ ∂rsg=∂Vg, correspondingly, and rsgб is the position vector of a
point of the gear generic surface. The Gauss parameters of the gear generic surface
are denoted by Ug and Vg.

The unit normal vector, nag, is a unitless parameter as it is expressed in terms of the
unitless unit tangent vectors, ug and vg [see Eq. (1.8)].

Labeling of the principal directions depends upon the curvature of the gear
generic surface. The principal direction that features a greater curvature, ka1:g (and,
thus, a smaller radius of curvature, Ra

1:g), is labeled as ta1:g . The principal direction
that features a smaller curvature, ka2:g (and, thus, a greater radius of curvature, R

a
2:g) is

labeled as ta2:g [1, 7] (Here, the curvatures, k
a
1:g and ka2:g, and the corresponding radii

of curvature, Ra
1:g and Ra

2:g, are signed values. They are positive in a case of convex
section of the gear generic surface by a normal plane, and they are negative when the
section is concave). As the equality R1 ¼ k�1

1 is valid by definition, the inequalities,
ka1:g > ka2:g and R

a
1:g < Ra

2:g, are always valid.
6 In umbilical points on a surface, when

all the radii of normal curvature are of a constant value (Ra
g ¼ const), the “Darboux

frame” does not exist. In this reduced case, a limit case of the “Darboux frame”when
Ra
1:g approaches infinity (i.e., Ra

1:g ! 1) is used instead of the trihedron, nagt
a
1:gt

a
2:g.

The unit tangent vectors, ta1:g and ta2:g, are the principal vectors at point within the
gear generic surface. The first and the second principal directions on the gear generic

6Remember that the algebraic values of the radii of principal curvatures, Ra
1:g and R

a
2:g, relate to each

other as Ra
2:g > Ra

1:g . In the case of umbilical points, all radii of normal curvature are equal.
Therefore, the principal directions, ta1:g and ta2:g (and, consequently, the principal radii of curvature,
Ra
1:g and Ra

2:g), are not identified for umbilical points on gear generic surface.
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surface are specified by the tangent vectors, ta1:g and t
a
2:g. The vector, t

a
1:g, is tangential

to the section of the gear generic surface by a transverse plane through the point, a, as
this section is convex. The first principal direction is specified by the unit tangent
vector, ta1:g . The vector, ta2:g , is tangential to the cross section of the gear generic
surface by an axial plane through the point, a, as this section is concave. The second
principal direction is specified by the unit tangent vector, ta2:g.

The unit tangent vectors, ta1:g and ta2:g, are specified by the expressions:

ta1:g ¼
Ta
1:g

j Ta
1:g j

ð1:11Þ

ta2:g ¼
Ta
2:g

j Ta
2:g j

ð1:12Þ

where Ta
1:g and Ta

2:g are the vectors of the first and the second principal directions of
the gear generic surface. Known methods [1, 7] are used for the calculation of the
unit tangent vectors, ta1:g and ta2:g.

Once the unit vectors, nag, t
a
1:g, and ta2:g, are mutually orthogonal, and two of them

(namely, ta1:g and ta2:g) are pointed along the principal directions on the gear generic
surface, they comprise a trihedron that is commonly referred to as “Darboux frame.”

As shown in Fig. 1.14, the gear generic surface has a favorable geometry as it is
generated by the axis, Pln, when the axis is given a rotation about the gear axis of
rotation, Og. Unfortunately, a gear generic surface of this geometry is impractical,
mostly because it is inconvenient from manufacturing perspective. Gear generic
surfaces of simplified geometries are commonly used instead of the one depicted in
Fig. 1.14.

As it is adopted in this text, all possible elementary motions of the gear cutting
tool in relation to a work-gear are limited to just translations, rotations, and feasible
combinations of translations and rotations. Bearing this concept in mind, all possible
shapes of gear generic surface can be identified. The “Darboux frame,” nagt

a
1:gt

a
2:g, is

helpful to this end.
Consider the gear generic surface of a gear machined by the gear cutting tool that

performs a straight motion relative to the work-gear. No physical constraints are
imposed on machining of the gear this way. The parameters of the straight motion
are assigned so as to make a trajectory of the straight motion of the gear cutting tool
tangential to the hyperbola at the point, a, as schematically illustrated in Fig. 1.15. In
the case under consideration, the desirable hyperbolic profile of the gear generic
surface is substituted by the straight-line segment, which is tangential to the hyper-
bola at a. The straight-line segment is at an angle, φa

g , relative to the gear axis of
rotation, Og. The angle, φa

g , can be expressed in terms of the first derivative of an
equation of the hyperbola calculated at the point, a. The actual form of an equation
for the calculating the angle φa

g depends on the kind of parameterization of the
equation of the hyperbolic axial profile of the desirable gear generic surface.
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The approximation of the hyperbolic arc segment by the straight-line segment
results in zero curvature of the gear generic surface in the second principal direction
(ka2:g ¼ 0). The first principal curvature, ka1:g, can be determined using for this purpose
the “Meusnier’s7 theorem”:

ka1:g ¼
cos ∠ cg,nag

� �h i
rw:g

ð1:13Þ

As of the straight-line axial profile is tangential at a to the hyperbola, no changes
to the orientation of the axial profile are observed. As a result, the “Darboux frame,”
nsgt

s
1:gt

s
2:g , associated with the approximated gear generic surface is identical to the

trihedron nagt
a
1:gt

a
2:g associated with the desirable gear generic surface.

Crossed-axes gears of conventional design, “Hypoid gearing” in particular,
feature the gear generic surface that feature the geometry illustrated in Fig. 1.15.

a
g

Straight-line segment

paA

plω

lnP

gω 2. 2.
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g g�t t

s a
g g�n n
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gC

gO
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g gr �c

Fig. 1.15 Axial profile of a gear generic surface approximated by a straight-line segment tangential
to the hyperbola at point, a

7Jean Baptiste Marie Charles de la Place Meusnier (June 19, 1754–June 17, 1793), a French
mathematician.
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Consider gear generic surface of a gear that is machined by the gear cutting tool,
that performs a rotary motion relative to the work-gear. Again, no physical con-
straints are imposed on machining the gear this way.

Two different methods of cutting the gear can be distinguished in this case.
First, the parameters of the rotary motion are set up so as to make the trajectory of

the rotary motion of the gear cutting tool tangential to the hyperbola at point a, as
illustrated in Fig. 1.16. In the case under consideration, the desirable hyperbolic
profile of the gear generic surface is replaced with a circular-arc segment that is
tangential to the hyperbola at a. The approximation of the hyperbolic arc segment by
the circular-arc segment results in a positive curvature of the section of the gear
generic surface by an axial plane. The direction at which the normal curvature is the
greatest possible is labeled as ts1:g. The normal curvature in this direction is labeled as
ks1:g. The direction at which the normal curvature is of the smallest possible value is
labeled as ts2:g. The normal curvature in this direction is labeled as ks2:g. Ultimately,
either the two identities ts1:g � ta1:g and ts2:g � ta2:g (as depicted in Fig. 1.16) or the
inverse identities, ts1:g � ta2:g and ts2:g � ta1:g , are valid. In this way, the gear generic
surface is affected by the kinematics of the gear-machining process. Consequently,
the kinematics affects the labeling of the unit vectors of which the “Darboux frame”
is composed.

a
g
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plω

lnP
gω

2. 2.
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g g�t t

s a
g g�n n
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gC

gO

Hyperbola
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Circular arc segment

g gr �c

Fig. 1.16 Axial profile of the gear generic surface approximated by a convex circular arc tangential
at point, a , to the hyperbola
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Because the circular-arc axial profile is tangential at point a to the hyperbola, no
changes to the orientation of the axial profile are observed. As a result, the “Darboux
frame,” nsgt

s
1:gt

s
2:g, associated with the approximated gear generic surface is identical

to that, nagt
a
1:gt

a
2:g, associated with the desired gear generic surface.

Second, the parameters of the rotary motion are set up so as to make the trajectory
of the rotary motion of the gear cutting tool tangential to the hyperbola at point a, as
schematically illustrated in Fig. 1.17. In this scenario, the desirable hyperbolic
profile of the gear generic surface is replaced with a circular-arc segment that is
tangential to the hyperbola at point, a. The approximation of the hyperbolic arc
segment by the circular-arc segment results in a negative curvature of the section of
the gear generic surface by an axial plane. The identities ts1:g � ta2:g and t

s
2:g � ta1:g are

valid in the case under consideration, as illustrated in Fig. 1.17.
Because the circular-arc axial profile is tangential at a to the hyperbola, no

changes to the orientation of the axial profile are observed. As a result, the “Darboux
frame,” nsgt

s
1:gt

s
2:g, associated with the approximated gear generic surface is similar to

the nagt
a
1:gt

a
2:g associated with the desirable gear generic surface.

Gears that have circular-arc axial profiles of the gear generic surface (see
Fig. 1.16 and Fig. 1.17) do not have an extensive application in the industry yet.

Methods to cut gears on both, on machine tools, and on gear generators are not
limited to those in which the actual and desired axial profiles of generic gear surface
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Fig. 1.17 Axial profile of the gear generic surface approximated by a concave circular arc
tangential to the hyperbola at point, a
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are in tangency to each other at a certain point. The profiles can intersect each other
at a certain angle.

The straight-line segment of an actual axial profile of the gear generic surface can
be tilted at an angle, ϑsg, as schematically shown in Fig. 1.18. The angle, ϑsg, measured
in the counterclockwise direction is considered to be of a positive value. The
orientation of the “Darboux frame,” nsgt

s
1:gt

s
2:g , of the actual gear generic surface in

relation to the “Darboux frame,” nagt
a
1:gt

a
2:g , of the desirable gear generic surface is

specified by the angle, ϑsb. The trihedron, n
s
gt

s
1:gt

s
2:g, is turned about the unit vector,

ta1:g, in a counterclockwise direction through the angle, ϑsg (see Fig. 1.18a).
The actual value of the angle, ϑsg , is in the range of 0∘ < ϑsg < φa

g þ 90∘ . In a
particular case, the value of angle, ϑsg, can be chosen as equal to angle, φa

g, at which
the tangent to the hyperbola is tilted relative to the gear axis of rotation, Og, as shown
in Fig. 1.18b. A cylindrical gear for a crossed-axes gear pair is machined under such
conditions.

Similarly, the straight-line segment of an actual axial profile of the gear generic
surface can be tilted at an angle, ϑsg, in the opposite direction as shown in Fig. 1.19.
The angle, ϑsg, in this case is of a negative value. The trihedron, nsgt

s
1:gt

s
2:g, is turned

about the unit vector, ta1:g , in a clockwise direction through the angle, ϑsg (see
Fig. 1.19a).
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Fig. 1.18 Axial profile of the gear generic surface approximated at point, a, by a straight-line
segment that makes a certain positive angle, ϑsg, in relation to the unit normal vector, nag: (a) conical
gear, and (b) cylindrical gear
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The actual value of the angle, ϑsb, is in the range of� φa
g þ 90∘

� �
< ϑsg < 0∘. In a

particular case, an actual value of the angle ϑsg can be set up equal to ϑ
s
g ¼ 90∘ � φa

g.
In this scenario, the straight-line segment is perpendicular to the gear axis of rotation,
Og, as shown in Fig. 1.19b. A face gear for a crossed-axes gear pair is machined in
this case.

Gears that feature axial profile of the gear generic surface in the form of straight-
line segments tilted at a certain angle, ϑsg, (see Fig. 1.18 and Fig. 1.19) are used in the
design of special-purpose gear trains.

Similar to the gears that have an inclined straight-line profile (see Fig. 1.18 and
Fig. 1.19), circular-arc axial profile of gear generic surface can also be tilted at either
positive or negative angle, ϑsg, relative to the unit normal vector, nag, to the desirable
gear generic surface.

The results of the analysis performed for convex circular-arc axial profiles
inclined at a certain angle, ϑsg , in relation to the unit normal vector, nag , at the
point, a, to the hyperbola are illustrated in Fig. 1.20.

When the angle, ϑsg, is of a positive value (see Fig. 1.20a), the “Darboux frame,”
nsgt

s
1:gt

s
2:g , of the actual gear generic surface in relation to the “Darboux frame,”

nagt
a
1:gt

a
2:g, of the desirable gear generic surface is turned about the unit vector, t

a
1:g, in

a counterclockwise direction through the angle, ϑsg. The actual value of the angle, ϑ
s
g,

is in the range of 0∘ < ϑsg < φa
g þ 90∘ . In a particular case, the value of angle, ϑsg ,

can be set up equal to the angle, φa
g, at which the tangent to the hyperbola is tilted

relative to the gear axis of rotation,Og, as shown in Fig. 1.20b. A torus-like gear for a
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Fig. 1.19 Axial profile of a gear generic surface approximated at the point, a, of the hyperbola by a
straight line segment at a certain negative angle, ϑsg , in relation to the unit normal vector, nag :
(a) conical gear, and (b) face gear
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crossed-axes gear pair is machined in this scenario. The outer portion of the torus is
employed in this case as the gear generic surface.

When the actual value of the angle, ϑsg, is of a negative value (see Fig. 1.20c), the
“Darboux frame,” nsgt

s
1:gt

s
2:g , of the actual gear generic surface in relation to the

“Darboux frame,” nagt
a
1:gt

a
2:g, of the desirable gear generic surface is turned about the

unit vector, ta1:g , in a clockwise direction through the angle, ϑsg . The value of the
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Fig. 1.20 Axial profile of a gear generic surface approximated by a convex circular arc at a certain
angle, ϑsg, in relation to the unit normal vector, nag, at the point, a, to the hyperbola
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angle, ϑsg, is in the range of � φa
g þ 90∘

� �
< ϑsg < 0∘. In a particular case, the value

of angle, ϑsg , can be set up equal to ϑsg ¼ 90∘ � φa
g , at which the tangent to the

hyperbola is tilted relative to the gear axis of rotation, Og, as shown in Fig. 1.20d. A
torus-like face gear for a crossed-axes gear pair is machined under such conditions.

The results of the analysis performed for a concave circular-arc axial profile that
is inclined at a certain angle, ϑsg, in relation to the unit normal vector, nag, at the point,
a, to the hyperbola are illustrated in Fig. 1.21.

When the angle, ϑsg, is of a positive value (see Fig. 1.21a), the “Darboux frame,”
nsgt

s
1:gt

s
2:g , of the actual gear generic surface in relation to the “Darboux frame,”

nagt
a
1:gt

a
2:g, of the desirable gear generic surface is turned about the unit vector, t

a
1:g, in

a counterclockwise direction through the angle, ϑsg. The actual value of the angle, ϑ
s
g,

is in the range of 0∘ < ϑsg < φa
g þ 90∘ . In a particular case, the actual value of the

angle, ϑsg, can be set up equal to the angle, φa
g. In this scenario, the equality ϑsg ¼ φa

g

is valid. The angle, φa
g , is the angle at which the tangent to the hyperbola is tilted

relative to the gear axis of rotation,Og, as shown in Fig. 1.21b. A torus-like gear for a
crossed-axes gear pair is machined under such conditions. The inner portion of the
torus serves in this case as the gear generic surface.

When the angle ϑsg is of a negative value (see Fig. 1.21c), the “Darboux frame,”
nsgt

s
1:gt

s
2:g , of the actual gear generic surface in relation to the “Darboux frame,”

nagt
a
1:gt

a
2:g, of the desirable gear generic surface is turned about the unit vector, t

a
1:g, in

the clockwise direction through the angle, ϑsg. The actual value of the angle, ϑ
s
g, is in

the range of � φa
g þ 90∘

� �
< ϑsg < 0∘ . In a particular case, the actual value of the

angle, ϑsg, can be set up equal to ϑ
s
g ¼ 90∘ � φa

g, at which the tangent to the hyperbola
is tilted relative to the gear axis of rotation, Og, as shown in Fig. 1.21d. A torus-like
face gear for a crossed-axes gear pair is machined under such conditions.

In addition to the possible gear generic surfaces shown in Fig. 1.14 through
Fig. 1.21, a few more gear generic surfaces can be derived under an assumption that
the axial vector, Ag, is equal to zero (i.e., Ag ¼ 0). Examples of such gear generic
surfaces are schematically illustrated in Fig. 1.22.

The total number of generic gear surfaces in this case is limited to six different
kinds from three surfaces.

First, the straight-line segment can be either tangential to the hyperbola at point,
a (see Fig. 1.22a), or inclined to the hyperbola at a certain angle, ϑsg (see Fig. 1.22b).
From the perspective of a gear design, it makes no difference whether the angle, ϑsg,
is of a positive or of a negative value.

Second, the convex circular-arc profile also can be either tangential to the
hyperbola at point, a (see Fig. 1.22c), or it can be inclined to the hyperbola at a
certain angle, ϑsg (see Fig. 1.22d). From the perspective of a gear design, it makes no
difference whether the angle, ϑsg, is of a positive or of a negative value.
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Third, this statement is also true with respect to a concave circular-arc profile,
which also can be either tangential to the hyperbola at point, a (see Fig. 1.22e), or it
can be inclined to the hyperbola at a certain angle, ϑsg (see Fig. 1.22f).

An intermediate conclusion can be drawn up from this discussion: the total
number of possible gear generic surfaces of the considered geometry is a finite
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Fig. 1.21 Axial profile of the gear generic surface approximated by a concave circular arc at a
certain angle, ϑsg, in relation to the unit normal vector, nag, at the point, a, to the hyperbola. Parts (a)
through (d) are discussed in the text
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value and is limited just to 27 gear generic surface profiles. They are constructed in a
section of a gear by an axial plane.

In addition to ideal gear generic surfaces (see Fig. 1.14), gear generic surfaces of
three more kinds can be drawn up from each of Fig. 1.15 through Fig. 1.17. Then,
analysis of Fig. 1.18 and Fig. 1.19 returns four gear generic surfaces: two of them
feature the angle, ϑsg, of an arbitrary value, and two more of them feature the angle,
ϑsg, of a specific value, that is, either ϑ

s
g ¼ φa

g in the first case or ϑ
s
g ¼ 90∘ � φa

g in the
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Fig. 1.22 Gear generic shapes of gears that feature the axial vector, Ag, of a zero length (Ag ¼ 0).
Parts (a) through (f) are discussed in the text

36 S. P. Radzevich



second case. Similarly, gear generic surfaces of four more geometries can be drawn
up from the analysis of Fig. 1.20 and Fig. 1.21. Gear generic surfaces of three more
geometries for face gears can be obtained similar to that illustrated in Figs. 1.19b,
Fig. 1.20d, and Fig. 1.21d. The geometry of gear generic surfaces of these kinds is
evident; therefore, it is not illustrated in the figures. Ultimately, nine more gear
generic surfaces are drawn up from Fig. 1.22.

Ultimately, it is possible to investigate all the designs of gears those machined on
conventional machine tools, as well as on gear generators of conventional design.

1.1.4.4 Profile of Gear Generic Surface Constructed in Section by Plane
at an Angle to Gear Axis

Discussed earlier in this section of the book, possible gear generic surfaces are
constructed in a section of a gear by a plane through the gear axis of rotation. More
opportunities in this regard are available if sections by a plane at an angle to the gear
axis of rotation are considered. A plane at an angle to the gear axis of rotation is
referred to as the “inclined cross section” of the gear.

Section of a gear by an axial plane is a convenient reference for the specification
of the configuration of an inclined section of the gear.

The axial section of a gear is specified as a section by a plane through the gear
axis of rotation, Og. An equivalent specification of an axial cross section of the
approximate gear can be given in terms of the unit tangent vectors, ta1:g and t

a
2:g, of the

principal directions on the desirable gear generic surface, as illustrated in Fig. 1.23.
It is convenient to specify an inclined plane section of a gear in terms of the unit

tangent vectors, ts1:g and ts2:g , of the principal directions on the actual generic gear
surface. The inclined cross section is a plane through the unit tangent vectors, ts1:g
and ts2:g.

At point, a, configuration of the “Darboux frame,” nsgt
s
1:gt

s
2:g , of the actual gear

generic surface in relation to the “Darboux frame,” nagt
a
1:gt

a
2:g , of the perfect gear

generic surface can be specified by an angle, νsg . The trihedron nsgt
s
1:gt

s
2:g is turned

about the common unit normal vector, nag � nsg , through the angle, νsg , in the
clockwise direction looking from the end of the vector, nag (see Fig. 1.23a). In a
particular case, when the equality νsg ¼ 0∘ is valid, an inclined plane section reduces
to the aforementioned axial plane section. When the angle, νsg, is not of a zero value
(νsg 6¼ 0∘ ), three different cases can be distinguished. Before proceeding with this
issue, it is necessary to point out here the following observation: as the unit normal
vector, nag, in the general case is not perpendicular to the gear axis of rotation, Og [the

angle between the vector, nag , and the gear axis, Og, is given by ∠ nag, Og

� �
¼

90∘ � φa
g], the projection, θ

s
g, of the angle, ν

s
g, onto the plane through the gear axis of

rotation, Og, perpendicular to the axial plane section is not equal to the angle, νsg ,
itself (θsg 6¼ νsg ). However, the angles, νsg and θsg , correlate to each other. The
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correlation is of importance for further discussion and can be established in the
following way.

The angle, θsg , can be defined as the angle that is formed by the unit tangent
vector, ts2:g, and the gear axis of rotation, Og. In a local reference system, xsyszs, that
has the axes along the unit vectors, nsg, �ts1:g, and ts2:g, the unit tangent vector, t

s
2:g,

can be expressed as ts2:g ¼ ks. The directions of the axes of this reference system are
specified by the “Darboux trihedron,” nsgt

s
1:gt

s
2:g , as shown in Fig. 1.23. In the

Cartesian coordinate system, XgYgZg, associated with the gear, the direction of the
gear axis,Og, can be specified by the unit vector, kg. In order to calculate the value of
the angle, θsg , both the vectors, ts2:g and kg, have to be represented in a common
reference system. Let us represent the vector, ts2:g, in the coordinate system, XgYgZg.
For this purpose, a local coordinate system, xsyszs, that has its origin at point a is
used. The unit tangent vector together with the coordinate system, xsyszs, have to be

turned about the axis, xs [about the unit normal vector nsg � nag
� �

] through the angle,

νsg. The operator of rotation, Rt νsg, nag
� �

, is used for the analytical description of this

coordinate system transformation:
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Fig. 1.23 Possible configurations of the characteristic cross section of a gear generic surface. Parts
(a) and (b) are discussed in the text
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Rt νsg, nag
� �

¼

1 0 0 0

0 cos νsg sin νsg 0

0 � sin νsg cos νsg 0

0 0 0 1

26664
37775 ð1:14Þ

In this new position of the local reference system, xsyszs, the unit vectors, nsg, t
s
1:g,

and ts2:g, align with corresponding unit vectors of the “Darboux frame,” nagt
a
1:gt

a
2:g.

Then, it is necessary to turn the “Darboux frame,” nagt
a
1:gt

a
2:g , about the ys�axis

[about the unit tangent vector, ta1:g ] through the angle, φa
g (see Fig. 1.15). The

operator of the rotation, Rt φa
g, ta1:g

� �
, is used for the analytical description of this

coordinate system transformation:

Rt φa
g, ta1:g

� �
¼

cosφa
g 0 � sinφa

g 0

0 1 0 0

sinφa
g 0 cosφa

g 0

0 0 0 1

26664
37775 ð1:15Þ

The operator, Rs (s � g), of the resultant coordinate system transformation is

calculated as the product of the operators of rotation, Rt νsg, nag
� �

andRt φa
g, ta1:g

� �
:

Rs s� gð Þ ¼ Rt φa
g, ta1:g

� �
� Rt νsg, nag
� �

ð1:16Þ

It should be noted here that the order of multipliers in Eq. (1.16) is of importance
and this order cannot be altered.

Once the operatorRs (s � g) of the resultant coordinate system transformation is
calculated, the expression:

ts gð Þ
2:g ¼ Rs s� gð Þ � ts2:g ð1:17Þ

can be used for the analytical description of the unit tangent vector, ts2:g , in the
reference system, XgYgZg.

Use of the expression for the unit tangent vector, ts gð Þ
2:g [see Eq. (1.17)], makes the

calculation of the angle θsg possible:

θsg ¼ tan �1
j ts gð Þ

2:g � kg j
ts gð Þ
2:g � kg

 !
ð1:18Þ

Equations (1.15) through (1.18) yield derivation of an expression:
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θsg ¼ cos �1 cosφa
g � cos νsg

h i
ð1:19Þ

for the calculation of the angle, θsg.
When the angle, νsg, is equal:

νsg ¼ cos �1 cosΣg

cosφa
g

� �
ð1:20Þ

the unit tangent vector, ts2:g, is aligned with the axis of instant rotation, Pln. The actual
value of the angle, θsg (see Fig. 1.23b) in this particular case is equal to Σg.

Four different configurations of the inclined plane section of a gear are distin-
guished depending on the actual value of the angle, θsg.

First, the angle, θsg, can be equal to zero. When the equality θsg ¼ 0∘ is valid, the
inclined plane section reduces to the axial plane section of the gear.

Second, an actual value of the angle θsg can be in the range of 0∘ < θsg <

180∘ � Σg. For convenience, the difference (180
∘ � Σg) is denoted by θsg

h i
. It can

be shown that the rotation of the inclined plane section about the xs�axis through an
angle, νsg, is equivalent to its rotation about the centerline through a corresponding
angle, θsg . This is due to the perfect gear generic surface which is a surface of
revolution. Surfaces of revolution allow for sliding over themselves. Therefore, the
parameters of rotation of an inclined plane section about the centerline can be
expressed in terms of the parameters of rotation of the same inclined plane section
about the unit normal vector, nag � nsg, and vice versa. Under such an interpretation,
point a is not considered; instead, point, ai, is considered (see Fig. 1.23b).

Third, the actual value of the angle, θsg , can be equal to its critical value, θsg

h i
.

When an equality θsg ¼ θsg

h i
is valid, the unit tangent vector, ts gð Þ

2:g , is aligned with the

vector of instant rotation, ωpl. In this particular case, point a is not considered;
instead, point apl is considered (see Fig. 1.23b).

Fourth, the actual value of the angle, θsg, can exceed its critical value, θsg

h i
, and,

thus, the inequality θsg > θsg

h i
is valid. Corresponding point, aj (not shown in

Fig. 1.23b), in this particular case is located beyond point, apl.
Taking into account that the first case (θsg ¼ 0∘) returns 26 possible gear generic

surfaces, one of which is the perfect gear generic surface, the total number of
possible gear generic surfaces is limited to just 105. Some of the gear generic
surfaces resemble each other. However, even for gear generic surfaces with a similar
appearance, the conditions of generation of tooth flanks can be different. Therefore,
all of the gear generic surfaces are required to be carefully investigated individually.
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The following three important conclusions can be drawn up from this discussion:

1. The total number of feasible gear generic surfaces is not infinite, but it is a finite
number. This means that it is possible to count and investigate all possible designs
of gears machined on conventional gear generators.

2. Gears with any of the gear generic surfaces are convenient for machining as only
rotations and translations are required to reproduce the required motion of the
gear cutting tool in relation to the work-gear.

3. An appropriate area of application can be specified for all the gears briefly
discussed in this section of the book.

The above discussion is helpful to systemize possible geometries of the gear
generic surfaces.

1.1.5 Possibility of Classification of Approximate Gearing

As the total number of possible gear generic surfaces is limited just to 105, it is
possible to combine the surfaces by two and in this way to obtain all possible gear
pairs. It can be proved that the total number of such combinations does not exceed
1052. Not all of them are possible physically. For example, no parallel-axes gear pair
can be designed using two gear generic surfaces with concave axial profiles. Because
interference of gear generic surfaces in this case is inevitable, gear pair of this
particular kind cannot be designed. A few examples of feasible and infeasible
combinations of gears by two are schematically shown in Fig. 1.24. A gear with a
convex axial profile and a pinion with a straight axial profile comprise a possible
combination of gears. A gear pair of this kind can exist physically (see Fig. 1.24a). In
contrast, a gear with a concave axial profile and a pinion with a straight axial profile
do not comprise a possible combination of gears. A gear pair of this kind cannot exist
physically (see Fig. 1.24b). A similar behavior is observed with a gear and a pinion
that have convex and concave axial profiles, correspondingly, as illustrated in
Fig. 1.24c, d. In order to come up with a feasible combination of gears comprising
a gear pair, the magnitude of the radius of curvature of the concave profile, Rp, has to
be greater than the radius of curvature, Rg, as shown in Fig. 1.24c. Otherwise, when
the inequality Rp < Rg is observed, a gear pair of this geometry becomes infeasible
(see Fig. 1.24d). More examples in this regard can be provided.

It can be assumed from these simple examples that the total number of possible
gear pairs is significantly less than 1052.

In order to evaluate the maximum number of possible kinds of gear pairs, it is
useful to recall that 105 possible kinds of the gear generic surfaces are composed of
one perfect gear generic surface, 26 gear generic surfaces with a convex axial profile,
26 gear generic surfaces with a straight axial profile, and 26 gear generic surfaces
with a concave axial profile.

Gear generic surfaces that feature a convex axial profile can be properly com-
bined with all 105 kinds of gear generic surfaces of the pinion. Therefore, the total
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number of combinations of this particular kind is limited to 26 � 105 ¼ 2730
combinations.

Gear generic surfaces that feature straight axial profile can be properly combined
with all 70 pinion generic surfaces. Therefore, the total number of combinations of
this particular kind is limited just to 26 � 70 ¼ 1820 combinations.

Finally, gear generic surfaces that feature straight axial profile can be properly
combined with all 70 pinion generic surfaces. Therefore, the total number of
combinations of this particular kind is limited to 26 � 35 ¼ 910 combinations.

Because the numbers, 2730, 1820, and 910, are finite numbers, the total number
of possible combinations of gear generic surfaces is also a finite number. This
number does not exceed 5460 combinations. Evidently, not all of these combinations
exist physically. After a detailed investigation of all the possible combinations is
carried out, it is possible to realize that the total number of practical types of gear
pairs is significantly less than the precalculated number of 5460 combinations.

The total number of approximate gearing (namely, non-conjugate gearing) is
huge. However, all of them are covered by the proposed classification that is based
on inherent features of gear machining/generating process.

Possible kinds of gear pairs to be determined should be considered together with
the possible kinds of vector diagrams for geometrically accurate gear pairs (see
Fig. 1.10). All the possible kinds of gear pairs can be investigated. This is due to the
total number of possible kinds of gear pairs which is equal to a finite number, and not
to an infinite number.
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Fig. 1.24 Combinations of two gear generic surfaces: (a) and (c) feasible, and (b) and (d) infeasible
combinations
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Use of the aforementioned technique makes it possible to investigate all possible
kinds of gear pairs. No gear pair is missed under such an investigation. Novel
designs of gear pairs can be discovered as the output of such an investigation.

1.1.6 Examples of Implementation of Classification
of Approximate Gearing

Once the number of possible combinations of generic gear surfaces by two is found
to be finite, it is possible to consider individually every possible combination of the
gear generic surfaces by two and identify a possibility and an appropriate area of
application for each particular combination. A few illustrative examples in this
regard are considered immediately below.

The desired gear generic surfaces of a gear pair that features intersecting axes of
the gear and its mating pinion are represented with two cones having a common
apex. The perfect gear generic surfaces for the case of an external gear pair are
schematically shown in Fig. 1.25a. The gear generic surfaces contact each other
along a straight line that is aligned with the axis of instant rotation, Pln. The axis of
rotation of the gear, Og, the axis of rotation of the pinion, Op, and the axis of instant
rotation, Pln, intersect one another at a common point, which is coincident with the
plane-of-action apex, Apa.

In Fig. 1.25, a trivial case of interacting of the gear generic surfaces in gear pairs is
shown. Many kinds of external conical gear pairs can be designed on the premise of
this particular combination of the gear generic surfaces. One of the many possible
examples is illustrated in Fig. 1.25b.

Internal gear pairs as well as rack-type gear pairs that have intersecting axes of a
gear and a mating pinion also feature the desirable gear generic surfaces, shaped in
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Fig. 1.25 Desirable gear generic surface for an external gear pair that features intersecting axes of
rotation of a gear and a mating pinion
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the form of cones. The apexes of the cones are snapped together. For internal gear
pairs, a gear generic surface is represented by a surface of an internal cone of
revolution as depicted in Fig. 1.26a. The generic surface of the pinion is represented
by a surface of an external cone of revolution.

In a particular case, the pitch cone angle of a gear can be set up equal to 90∘. In
this scenario, the gear degenerates into a flat gear, as schematically shown in
Fig. 1.26b. A gear of this kind is commonly referred to as the “round rack” (or as
a “crown gear,” in other terminology). The apex of the round rack is always snapped
together with the apex of the pinion.

Gear pairs designed on the basis of perfect gear generic surfaces, as schematically
shown in Fig. 1.26, have limited application in practice. The lack of comprehensive
investigation of generic gear surfaces of these kinds is one of the main reasons
for this.

A gear and a pinion can be designed and machined in such a way that the actual
gear generic surfaces of each of them differ from their perfect geometry. In cases like
these, either the apex of the gear or of the pinion or both is off the axis of instant
rotation, Pln.

Two examples of gear generic surfaces of external gear pairs that feature
intersecting axes of rotation of the gear and the pinion are shown in Fig. 1.27.

A gear pair may feature generic surfaces shaped in the form of external cones of
revolution. When the cone angles of the cones of revolution differ from the cone
angle for the perfect gear generic surfaces, as illustrated in Fig. 1.27a, the apex of the
gear is off the axis of instant rotation, Pln. Ultimately, a conical gear pair can be
designed on the basis of the actual gear generic surfaces of this kind. Gear pairs of
this kind do not have an extensive application in the nowadays practice.
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Fig. 1.26 Desirable gear generic surfaces for intersected-axes gearing: (a) an internal gear pair and
(b) a rack-type gear pair
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In a particular case, a gear pair can be designed so that the generating straight-line
segment of the actual pinion generic surface is parallel to the pinion axis of rotation,
Op (see Fig. 1.27b). Under such a scenario, the actual pinion generic surface is not a
cone of revolution; it is shaped in the form of a cylinder of revolution instead. Gear
pairs composed of an external conical gear and a matting cylindrical pinion are used,
for example, in the design of helicopter transmissions; they also have numerous
other applications.

In both cases, shown in Fig. 1.27, gears are often referred to as “external crown
gears.”

A gear pair can be designed and machined in such a way that the actual gear
generic surface is shaped in the form of an internal cone of revolution (Fig. 1.28).
Many similarities can be found between external (see Fig. 1.27) and internal gear
pairs of these two kinds. Again, in a particular case, the actual pinion generic surface
is not a cone of revolution, but is shaped in the form of a cylinder of revolution
instead. Gear pairs composed of internal conical gear and a matting cylindrical
pinion have limited application in the industry. Gear pairs of this kind are not
thoroughly investigated yet, and their area of potential application has not been
properly identified so far.

In both cases shown in Fig. 1.28, gears are often referred to as “internal crown
gear.”

Ultimately, the gear generic cone of a gear pair that has intersecting axes of
rotation of the gear and the pinion is degenerated into a plane that is rotated about the
gear axis of rotation, Og. Two examples of the gear generic surfaces of this type are
schematically shown in Fig. 1.29a, b. In a particular case, when the pitch radius of
the gear approaches infinity, the gear is transformed into a straight rack (see
Fig. 1.29c). Gear pairs of this kind have not been thoroughly investigated yet, and
their area of potential application is not properly identified so far.
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Fig. 1.27 Two examples of gear generic surfaces for external intersected-axes gearing, that feature
straight-line axial profiles

1 Kinematic Foundations of Scientific Classification of Gearing 45



In all cases illustrated in Fig. 1.29, the gear is referred to as “rack-type crown
gear.” Rack-type gear pairs have the following two features: (1) the pitch plane of the
gear is the plane through the centerline, and (2) the apex of the pitch cone of the
pinion is located within the centerline.

Based on the developed classification of vector diagrams of gear pairs, and on the
concept of gear generic surfaces, all known gear drives can be developed. For
example, advanced gear drives such as Spiroid gearing [8], Helicon gearing [9], as
well as others can be developed using the proposed approach. Moreover, many novel
designs of gearing can be developed using the proposed approach.

Use of the discussed approach makes possible to cover all known designs of gear
pairs, as well as all novel, potentially possible designs of gear pairs, many of which
have potential areas of implementation still to be identified. As the approach is based
on the extensive application of vector representation of gear pairs, use of axodes and
operating pitch surfaces in many cases becomes useless. However, pitch surfaces
relevant to the corresponding gear-machining process are still useful.

The discussion on classification can be ended with a generalized classification of
possible kinds of gear pairs that is schematically depicted in Fig. 1.30.

Based on the classification of possible kinds of gear vector diagrams (see
Fig. 1.10), a certain number of gear pairs can be developed for each gear vector
diagram. The gear pairs differ from one another by the geometry of tooth flanks in
the lengthwise direction. All these gear pairs are referred to as “geometrically
accurate gear pairs,” (or “perfect gear pairs,” in other terminology).

Taking into account possible displacements of the tooth flanks of a gear and a
mating pinion, a certain number of Spr�gear pairs can be developed. The number of
possible designs of Spr�gear pairs is equal to the number of ideal gear pairs. Gear
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Fig. 1.28 Two examples of gear generic surfaces for internal intersected-axes gearing, that feature
straight-line axial profiles
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pairs of this kind can also be referred to as “desirable (geometrically accurate) real
gear pairs.”

Ultimately, a certain number of “real gear pairs” can be developed based on a
corresponding desirable gear pair. The total number of real gear pairs significantly
exceeds the total number of desirable real gear pairs.

The discussion in this chapter of the book illustrates the possibility of the
development of a scientific classification of all possible designs of gearing. It is
clear now that the classification (see Fig. 1.30) can be represented in detail based on
the results of the analysis discussed in this monograph.

1.2 Concluding Remarks

This section of the book deals with kinematic foundations of scientific classification
of gearing. For this purpose, gear vector diagrams with zero, as well as with plural
complementary degrees-of-freedom are implemented. It is demonstrated that all
possible kinds of gearing can be classified based on the vector representation of
gear pair kinematics. Such a classification is necessary and beneficial for many
purposes. The development of all possible kinds of gears, and later on of all possible
kinds of gearing, is one of the reasons for the development of the classification.

A scientific classification of gear vector diagrams for gearing having from three to
zero complementary degree-of-freedom is proposed. In the most general case,
gearing of this kind is referred to as “CΣ u�variable gearing.” “CΣ u�variable
gearing” features a huge potential for the researchers. This chapter is just an
illustration of capabilities of “CΣ u�variable gearing.” Each particular kind of
“CΣ u�variable gear pairs” deserves to be considered in a separate chapter.

Desired lines of contact of a gear and that of a mating pinion are discussed. A
possibility of classification of approximate gearing is analyzed. Gear generic sur-
faces are recommended to implement for this purpose. A few examples of imple-
mentation of the classification of approximate gearing are provided.
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Chapter 2
Theory and Applications Based on S-Gear
Geometry

Gorazd Hlebanja, Miha Erjavec, Matija Hriberšek, Luka Knez,
and Simon Kulovec

2.1 Introduction

Involute gears, which transmit power through convex-convex contact, are used in
contemporary machines almost without a competition. This is due to gradual
development of Euler’s [1] invention over centuries and important improvements
in both manufacturing technologies and materials. This reflects in higher quality and
loading capacity. However, the intrinsic property of the involute gear is its curvature
radii function that is approaching to exceedingly small values in the dedendum part
when approaching the base circle, where the said radius becomes zero. Therefore,
high contact loads arise in this area. Additionally, for gears with a low number of
teeth, the dedendum flank is comparatively short, thus invoking excessive sliding
and friction losses and the possibility of premature damage in this area. Yet another
problem is undercutting of the dedendum area. Therefore, there exists a permanent
need for improved gears, with such features as a convex-concave contact, a stronger
root, improved curvature radii, better lubrication conditions, etc. And S-gear geom-
etry is an attempt in this context.

Many papers discussed various aspects of S-gears, e.g., their definition [2],
possibilities of various gear types (e.g., helical, crossed, worm gears, planetary
gears, etc.) [3], their radii of curvature, contact pressure, relative and sliding veloc-
ities, oil thickness, initial pressure angles, etc. [4–6], thermal properties [7], and
various gearing aspects as well toward miniaturization or heavy industry. This
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chapter discusses some shaping possibilities of external and internal gear pairs.
Besides, an important issue—thermal properties and comparison to the involute
gears – is presented in the chapter. This becomes of the utmost importance in plastic
gears. Experiments with plastic gears confirm theoretically discussed properties.

2.1.1 Plastic Gears: Lifetime Testing

In the past decades, polymer materials for gears have been increasingly used.
Polymer gears provide in many applications alternatives to traditional metal gears.
The worldwide market for plastic gears in 2017 was estimated to be 2.67 billion €

(3.06 billion US$); it will grow with a compound average growth rate (CAGR) of
approximately 1.3% to 2.88 billion € (3.31 billion US$) in 2023. When polymer
gears were entering the market in the second half of the twentieth century, they were
predominantly used as cheap replacement for metal gears in simple applications. As
designers and engineers have been constantly pushing the limits, polymer gears can
in the meantime be found in a variety of power transmissions applications, including
demanding high-performance uses in product with high added values.

Modern polymer gears have many benefits of their unique properties (e.g., lower
specific weight, reduced moment of inertia, improved NVH performance—noise,
vibration, harshness). Thermoplastic gears are mostly manufactured by injection
molding process. Additionally, to achieve narrow tolerance requirements, in some
cases they may also be made by hobbing.

Technical resins used for engineering purposes possess improved mechanical,
electrical, and thermal characteristics compared to commodity plastics and are
capable of withstanding complex loads in structurally demanding applications.
The most common materials for gears are polyamide (PA), polyoxymethylene
(POM), polyether ether ketone (PEEK), and polybutylene terephthalate (PBT).
Additives are used sometimes to improve mechanical properties of polymer, e.g.,
glass, carbon, and aramid fibers. To decrease the temperature and consequently
prolong lifetime, PTFE, silicon, graphite, and boron nitride can be used. Mechanical
properties of plastics depend on material; however, production and test conditions
also have influence. To predict mechanical stresses and consequently lifetime of gear
pair, temperature-dependent material polymer materials must be modeled due to
meshing process which is mechanically and thermally exposed phenomenon.

To determine the optimum material combination in terms of lifetime, tempera-
tures, type of damage for appropriate gear application, the choice of materials for the
driving, and the driven gear is crucial. Due to this fact, it is desirable to perform tests
of polymer gears to determine behavior of chosen gear pair. The test can be
accelerated with the aim to rapidly obtain suitability of meshed materials in terms
of temperatures and wear. In order to optimize proper selection of a material, it is
necessary to conduct lifetime tests under different loads with several repetitions for
the same testing conditions. So, data cycles for thermoplastic gears are produced,
which can be used for modeling a real gear pair for application in KISSsoft. Many
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researchers in the past used different material combinations, which have been proven as
appropriate in the context of optimal operating lifetime, temperature distribution
development (flank/tooth), and thermoplastic gear wear. According to the literature,
the most used material combinations are Steel/POM, POM/PA, PA/PBT, and Steel/PA,
sometimes in combination with various additives. S- and E-gears in a combination of
driving alloy steel and driven POM gear lifetime tests are discussed in the chapter.

2.1.2 Planocentric Gearboxes with S-Gear Geometry

Planocentric gear boxes are in technical use for many decades due to their main
characteristic, which is reduction of rotational speed and accordingly increased
torque in the smallest available volume. The expected efficiency may be as high as
90% or more, and gear ratios can achieve up to 160:1 in a single step configuration.
Basic arrangements of this type are described in renowned references, e.g., [8], and
[9]. Gearboxes of this type are used in robotics, machine tools, aeronautics, aircraft,
marine, and many other industries. The efficiency can be above 90%, and gear ratios
can achieve up to 160:1 (160 rotations of the input shaft for a single turn of the output
shaft). The available industrial solutions include Sumitomo cyclo gearboxes [10],
Spinea drives [11], Nabtesco [12], Onvio [13], and many others. The device with the
same function and different principle is Harmonic Drive. Gearings are usually
cycloidal or lantern.

Pure mechanical drives can conform to high-tech industry requirements regarding
backlash, lost motion, stiffness, hysteresis, etc. However, supplementary features
based on sensorics can add additional functionalities to such gearbox. So, an
accurate output shaft positioning and an output torque sensorics can be installed in
the device as an option. Such new functionalities can enable incorporation of such
devices in collaborative robot’s arm joints and adaptive control. An upgrade to a
self-aware condition monitoring system could increase the overall reliability of the
drive and the effective predictive maintenance. And a corresponding condition moni-
toring could enable safe human interactions which is of special importance, e.g., in the
field of robotics. Many analytical tools were used to analyze tolerances, to discover
impact of some influencing factors like backlash, shaft deformation, and single or
cumulative pitch deviation, and some of these methods are presented in the chapter.

2.2 S-Gears Geometrical and Thermal Properties

Some important properties of S-gears are the following:

1. Possibility of shaping by two parameters defining the rack flank curve, which can
be used to modify teeth, e.g., a pressure angle, tooth thickness, etc.

2. Cylindrical spur S-gears can operate with a low number of teeth down to 6 or
even 4.
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3. Convex-concave contact in the vicinity of meshing start and end.
4. Comparatively lower radii of curvature, which implies lower contact pressure.
5. Higher contact oil film thickness, which is due to higher relative velocities in the

contact.
6. S-gears exhibit relatively longer dedendum part of a pinion tooth flank (compar-

ing to the involute gear) which is meshing with a gear addendum. Difference
between the pinion dedendum length and the gear addendum length indicates
amount of sliding. And less sliding means less frictional work and less developed
heat, which is of special importance for plastic gears.

These properties are elaborated and compared to the involute gears. First, let us
examine S-gear definition as illustrated in Fig. 2.1. To define a gear tooth flank, one
needs to define a rack profile.

The rack profile with the coordinate origin in the kinematic pole is defined by the
following function:

f xð Þ ¼ apm 1� 1� x
m

� �n� �
, x � 0

�apm 1� 1þ x
m

� �n� �
, x < 0

(
ð2:1Þ

where lim
x!0þ

f 0 xð Þ ¼ lim
x!0�

f 0 xð Þ.
Factors ap and n, namely, the height factor and the exponent in Eq. (2.1), act as

form factors, which affect the tooth shape properties. The initial pressure angle
amounts to αw0 ¼ 90� – αP(0) and αP(0) ¼ f’(0) ¼ n ap m. So, the initial pressure
angle is a dependent variable, αw0 ¼ f(n, ap), whereas the module m acts as a scaling
factor. The rack tooth can be regarded as a cutting tool.

As illustrated in Fig. 2.1, the arbitrary point Pi on the rack tooth flank defines the
unique point Ui on the path of contact. And this point Ui defines the point Gi on the
tooth flank of a pinion and the point Hi on the tooth flank of a wheel, both with any
number of teeth. This trigonometrical procedure, described in detail in [2], is valid
for internal gear pairs as well. The transformations from the rack profile flank
through the path of contact to gears are bijective, that is, they always give the
same rack flank in the reverse direction. These transformations could also have
been represented by object translations and rotations in appropriate coordinate
systems, of course by employing the basic law of gearing.

As already stated, the gear flank and tooth shape influencing factors are ap and n;
however, one of them can be replaced by the initial pressure angle αw0. Two gear
pairs are shown here to illustrate the tooth shape variability, namely, the external
(Fig.2.2) and the internal gear pair (Fig.2.3) with zp¼ 10 and zw or zr¼ 30. Two gear
pairs were designed: the first with αw ¼ 22o and ap ¼ 1.3 and the second one with
αw ¼ 18� and ap ¼ 1.5 in both cases. All gears were designed with the module
m ¼ 50 mm, and since the module acts only as a scaling factor, its size is of no
importance in this context. Rack profiles and paths of contact are the same for
internal and external gears. Both rack profiles do not differ much, apart from the
inclination and corresponding pressure angle. But the derived paths of contact
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apparently differ in their length and curvature in the meshing starting and end zones,
as one can observe in Figs. 2.2 and 2.3. The active parts of both paths of contact
delimited by gear tip circles are designated as gA1E1 and gA2E2 . So, for the higher

Fig. 2.1 Design of the path of contact, teeth flanks of both gears based on the rack profile [2]
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pressure angle, the path of contact shortens and becomes more curved and inversely
(longer and less curved path of contact) for lower pressure angles. The external tooth
root becomes stronger and tooth tip thinner for the larger pressure angle and
inversely for smaller pressure angles, whereas the internal gear tooth tip and tooth
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space at its root become thinner to some extent for higher pressure angles. And the
internal gear addendum height shortens for lower pressure angles, as the meshing
start points A1 and A2 show (Figs. 2.2 and 2.3). The active length of the path of
contact fAE, the lengthgADwhich corresponds to the base pitch, and the contact ratio
for all combinations from Figs. 2.2 and 2.3 are collected in Table 2.1.

A combination of internal and external S-gears can be used to design a planetary
gear train, as the one illustrated in Fig. 2.4 [14]. It is true that the involute ring gear
assures the concave contact in the entire contact zone, whereas the S-gears have a
change to the convex-concave type of contact in the vicinity of the ring gear tip. So,
the concave contact prevails. And more important, the planet and sun gear contacts
are convex-concave, and gears with a small number of teeth can be designed.

2.2.1 Thermal Properties

Thermal load has a disadvantageous effect on the power transmission of a mating
gear pair for all types of gears, regardless of size, material, or any other parameters.
However, it is of a high importance in plastic gears due to their thermal sensitivity.
Heat is generated by friction at the contacting surfaces of the mating teeth flanks
where the load transmitting surfaces slide with the relative velocities. Work of
friction depends on the flank load, the friction coefficient and on the sliding path
length of a contact, whereas thermal power additionally depends on the sliding
speed. The generated heat is treated as energy loss, where surface heating is
unfavorable, and the temperature rise depends on heat flow into the gear material.
Thermal properties of the employed gear material(s) are of the utmost importance in
this context.

The mating gear teeth flanks combine the pinion dedendum and the gear adden-
dum flanks from the meshing start to the kinematic pole C and the pinion addendum
and the gear dedendum from C toward the meshing end point. The contact is
propagating on the path of contact by rolling and sliding. The active size of the
pinion dedendum is smaller than that of the gear addendum. This implies amount of
sliding of the addendum on the shorter pinion dedendum, which is illustrated in

Table 2.1 Path of contact characteristics for internal and external S-gear pairs (zp ¼ 10, zw ¼ 30,
m ¼ 50 mm)

Initial pressure angle αw0 18 22

Internal gear pair

Active length, l eAE [mm] 190.6 165.76

Base pitch, lfAD [mm] 150.4 145.6

Contact ratio, ε [/] 1.27 1.14

External gear pair

Active length, l eAE [mm] 190.7 162.920

Base pitch, lfAD [mm] 148.2 144.5

Contact ratio, ε [/] 1.29 1.13
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Fig. 2.5 for both S- and E-gear pair. Amount of sliding also implies thermal impact.
In general, the dedendum-addendum length difference depends on module, number
of teeth, and pressure angle. For S-gears the said difference also depends on forming
factors—the height factor ap and the exponent n. The length difference in the case of
S-gears is comparatively more convenient, so less sliding is produced along the
contact propagation compared to the involute case. As Fig. 2.5. suggests:

ΔlE ¼ l gAewBew

� �
� l gAepBep

� �
> ΔlS ¼ l gAswBsw

� �
� l gAspBsp

� �
ð2:2Þ

Typical circumstances of the involute gears in the vicinity of the meshing start
point disclose small driving pinion radii of curvature and rather high radii of
curvature of the driven gear, which imply high sliding velocities in this area. The
normal force FN is transmitted through the contact, which causes the force of friction

Reduktor za
 i = 729

z = 21
z = 48

Fig. 2.4 A planetary (spur) gear train (sun gear z ¼ 6, planet gear z ¼ 21, ring gear z ¼ 48)
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Ffr oriented tangentially to the contact and the corresponding power of friction,
Pfr ¼ Ffr vg. The power of friction being generated in the contact representing losses
transforms to the heat flow, distributed to both involved flanks. A greater part of the
heat is therefore distributed to the slower driving gear and the rest to the longer
contacting area of the driven gear. The friction force grows to high levels already at
the meshing start, which negatively influences (braking) the contact point velocity
along the path of contact and induces negative sliding on the driving gear flank.

2.2.2 Analytical Approach

A program for calculation of the S-gear rack profile, the path of contact, the pinion,
and the inner or outer gear was supplemented by necessary computations of power,
work, flank pressure, contact width, velocities, and flash temperatures. All the
parameters can be represented along the path of contact or the active flank profile.
Power of friction is therefore given by:

Pfr ¼ Ffr � vg ¼ μ � Ft= cos αWð Þ � vg ð2:3Þ

The work of friction along the active contact from tA¼ 0 to tE is given by the sum:

Afr ¼
XtE

tA
Pfri � Δti ð2:4Þ

So, the frictional work in a single pinion rotation is zp � Afr and multiplied by the
rotational frequency frictional work accomplished in a minute ν � zG � Afr. The
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average frictional power is then Pfr av ¼ ν ∙ zG ∙ Afr/60. Table 2.2 collects data for the
E- and S-spur gear pair with m ¼ 1 mm, zp ¼ zw ¼ 20, αwE ¼ 20o, αwS ¼ 18�, and
b ¼ 6 mm.

A calculation of flash temperatures was also conducted in [7]. Whereas the S-gear
pair develop similar maximum values in A, B, D, and E, that is, approximately 38 K,
the maximum values for the E-gear pair are in A and E and range around 59 K for the
nominal load T ¼ 0.6 Nm and ν ¼ 1439 min�1.

2.3 Testing of Plastic Gears

Selection of material combinations for laboratory testing is based on the existing
applications. Material alternatives were tested and characterized as well. Due to
importance of proper material selection, the company decided to develop and
produce own testbenches. Temperature measurements of a contact spot and temper-
ature field of meshing gears were provided by a thermal camera. Optris Xi80 device
was used for this purpose. Spot temperature was acquired during entire loading cycle
of the lifetime tests, which was facilitated by Optris PIX Connect software. Based on
test duration and rotational speed of the selected thermoplastic gears, lifetime cycles
were calculated and imported together with flank/root temperature into Software
KISSsoft (module Plastics Manager). Based on the processed input data in Plastics
Manager, Wohler Curves (S-N) for selected material combinations were obtained.
After each experimental lifetime test, the wear characterization has been performed
according VDI 2736 [15, 16] with Alicona device and evaluation of the gear
failure mode.

Table 2.2 Frictional work and average frictional power [7]

S-gears E-gears

Tt ¼ 0.6 nm, Pt ¼ 90.415 W, ν ¼ 1439 min�1, lU ¼ 3.891 mm

Work in a single contact 0.0052 J 0.0064 J

Work in a single rotation 0.1040 J 0.1278 J

Work in a minute 149.61 J 183,87 J

Average frictional power 2.4935 W 3.0644 W

Tt ¼ 0.7 nm, Pt ¼ 104.8 W, ν ¼ 1428 min�1, lU ¼ 4.5976 mm

Work in a single contact 0.0061 J 0.0075 J

Work in a single rotation 0.1213 J 0.1491 J

Work in a minute 173.21 J 212,87 J

Average frictional power 2.8868 W 3.5479 W
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2.3.1 Gear Geometry and Manufacturing

Small gears of equal size are used, with the module of 1 mm and z ¼ 20. Some
crucial differences between E- and S-gears were revealed in previous paragraphs.
Important characteristics of these gears are collected in Table 2.3, whereas Fig. 2.6
shows the distinction between S- and E-geometry and two plastic materials.

Many manufacturing technologies were used in initial experiments, whereas
material pair was a popular combination POM PA66. First, molded gears were
employed, where it was discovered that shrinkage and corresponding coefficients
can be unreliable and results elusive [17]. So, it was decided, that gears should be
hobbed to reflect correct gear geometry, first with a single cutting hob. And

Table 2.3 Tested gear characteristics

Gear geometry E S

Teeth number, z [/] 20 20

Width, b [mm] 6 6

Module, m [mm] 1 1

Pressure angle at normal section, α [�] 20 18

Tip diameter, da[mm] 22 22

Reference diameter, d [mm] 20 20

Root diameter, df [mm] 17.5 17.7

Base diameter, db [mm] 18.79 –

Dedendum limit, dlm [mm] 18.95 18.59

Base tangent length, Wk 7.66

Fig. 2.6 Involute (above) and S-gears (below) made of PA66 (left) and POM-C (right)
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POM-PA66 raw material extruded rods. Since such operations are ineffective,
regular hobs were produced for E- and S-gears (Fig. 2.7). Initially, raw parts are
injection molded with the machine Krauss Maffei KM 50/100 CX. Raw parts were
hobbed on Koepfer 200. Plastic parts are usually molded in general, whereas the
expense for an injection tool could be too high for small lot sizes of a few thousand
pieces. It was discovered [18] that the quality of molded gears compared to hobbed
gears is at least two grades lower (measured with the 3D CMM Wenzel, with the
gear inspection module). Inspection protocols according to DIN3961/62 revealed
grade around Q8 for cut gears and above Q10 for molded gears. CMM is used
regularly to ensure proper quality.

2.3.2 Testing Arrangement

Notable efforts in the promotion of a sustainable production lead toward more
recycling and avoidance of harmful media. Therefore, lifetime tests are performed
lubrication-free, i.e., dry on the own built testbenches in R&D laboratory of the
Podkrižnik Company. The tests in discussion are conducted at ambient temperature.
Figure 2.8 shows the testbench with a control and DAQ system.

The torque setting is based on a difference in the input values of frequency
converters for a driving and a driven motor. The testbench calibration in terms of
the selected torques was performed by measuring torsional deformations of a driving
and a driven shaft at different setting frequencies.

During the entire duration of lifetime tests, spot temperatures and thermal state of
meshing gears were measured with thermal camera Optris Xi80, where visualization
was performed by PIX Connect software, as shown in Figs. 2.9a, 2.10a, and 2.11a.
After each test, post-processing of time-temperature data was performed and aggre-
gated. So, time-temperature diagrams were produced for the determined spot area of
each meshing gear pair with S or E tooth flank profile. The prescribed conditions are

Fig. 2.7 S-gear hob for gears of module 1 mm
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presented in Table 2.4 and resulting temperature diagrams in Figs. 2.9b, 2.10b, and
2.11b.

Testbench is programmed to stop when a 5% decrease of input current of the
motors and consequently torque decrease of the tested gear pair appear. A timer,
which stops when the current drops due to gear failure, is connected to the frequency
converters. The accurate test duration time is recorded in this way, and the duration
time multiplied by RPM implies the number of cycles of the experiment.

In this series of experiments, a combination driving steel and driven POM gear
was used. Torques leading to expediter lifetime characteristics were 1.5, 1.3, and
1.1 Nm. And a minimal statistical relevance was attained by three repetitions for
each torque and both gear flank shapes. Lifetime tests were conducted at stable
ambient laboratory temperature which was 22 �C � 0.5 �C. The selection of torques
was furthermore based on the preliminary lifetime testing of different types of
polymer gears reported in [19].

Frequency 
converter 

PC and PIX Connect so�ware 
(monitoring gear 

temperatures) 

Timer, 
counter 

Fig. 2.8 Testing arrangement—testbench for lifetime testing of thermoplastic with thermal camera
to monitor temperature data
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2.3.3 Experimental Results

The temperature-time dependency consists of three main sections, which are
(a) running-in area where thermoplastic driven gear fits to steel gear in terms of
tooth flanks; (b) a phase of a quasi-stationary operating at stable temperature; and
(c) a phase of increasing gear wear that, in combination with fatigue, causes failure
of thermoplastic gears.

The running-in phase of the E-gear pair has a characteristic course in the form of a
transient phenomenon where the increase in temperature on tooth flanks was
detected, which is due to the unmodified involute tooth tip profile, a high load,
and subsequent teeth deformation (see [9], p. 98). So, a driven gear suffers an
additional impact at a meshing start point A and temperature rise. The consequence
is rather high initial wear of a driven plastic gear. S-gears do not exhibit such effects,
so the temperature rise proceeds until the second, stationary phase.

20

30

40

50

60

70

80

90

100

0 500.000 1.000.000 1.500.000 2.000.000

T
[°

C
]

N [ ]

Comparison Involute and S- shape profile

M = 1.5 Nm, n = 1400 rpm

Involute profile

S profile

a) 

b) 

Fig. 2.9 Comparison of E- and S-tooth profile for a steel-POM gear pair at M ¼ 1.5 Nm and
n ¼ 1400 min�1. (a) Temperature spot in the meshing area E (left) and S (right) profile of teeth. (b)
Temperature-time profiles (S, green; E, grey)
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In the next phase, relatively stationary conditions prevail. For E-gears the initially
high temperature drops and prevails until the final phase. Uniform wear occurs in
this phase for both gear types. The last phase of the lifetime test shows significant
changes of the gears. This is due to the increased wear above the critical limit in
connection with the fatigue of the material, which causes degradation of the bonds
between the molecules in the material and the subsequent teeth failure.

The spot temperature for M ¼ 1.5 Nm in the stationary zone is around 70 �C for
S-gears and around 80 �C for E-gears. This temperature is in the zone above 60 �C
for torque 1.3 Nm for both gear geometries. The E-gears do not show the abnormal
temperature rise at start. However, S-gears have higher cycle numbers. The spot
temperature for E-gears starts rising at about 2,000,000 cycles until final failure.
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Fig. 2.10 Comparison of E- and S-tooth profile for a steel-POM gear pair at M ¼ 1.3 Nm and
n ¼ 1400 min�1. (a) Temperature spot in the meshing area E (left) and S (right) profile of teeth. (b)
Temperature-time profiles (S, green; E, grey)
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The temperature-time diagrams for 1.1 Nm show similar temperature for both
gear geometries, initially below and later above 60 �C without abrupt deviations
during entire lifetime test for both gear types. However, there is a distinct difference
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Fig. 2.11 Comparison of E- and S-tooth profile for a steel-POM gear pair at M ¼ 1.1 Nm and
n ¼ 1400 min�1. (a) Temperature spot in the meshing area E (left) and S (right) profile of teeth. (b)
Temperature-time profiles (S, green; E, grey)

Table 2.4 Testing parameters at ambient temperature

INPUT PARAMETERS

Gear pairing (driving
gear-driven gear)

Tooth
profile

Torque,
M [Nm]

Rotational frequency of
gears, n [min�1] Repetitons

Steel—POM E- and
S-shape

1.5 1400 3

Steel—POM E- and
S-shape

1.3 1400 3

Steel—POM E- and
S-shape

1.1 1400 3
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in the number of loading cycles in favor of S-gears. The results are collected in
Table 2.5.

The temperature behavior of E-gear pairs in the starting phase differs for higher
and lower loads, which was numerically simulated for loads of 1.5 and 1.1 Nm. The
contact analysis of meshing gears was provided by KISSsoft. Figure 2.12 shows
results of the simulation for both loads for involute gear pair without tip relief.

The contact analysis for 1.1 Nm shows a transverse overlap ratio εα ¼ 1.905,
meanwhile the theoretical one is 1.534. The increase of 24% in the transverse
overlap ratio is clearly visible through distinctively prolonged part at the start, before
point “A,” and at the end, after point “E,” of a meshing gear pair.

Table 2.5 Lifetime cycles of
E- and S-gear pairs, driving
gear steel, and driven
gear POM

Load M [Nm] E [�106] S [�106]

1.5 1.62 1.88

1.3 3.43 4.84

1.1 5.34 7.83

Theore�cal ''A'' 

Theore�cal''E'' 

Actual ''A'' 

Actual ''E''

Theore�cal ''A'' 

Theore�cal ''E'' 
Actual ''E'' 

Actual ''A'' 

M = 1.1 Nm

M = 1.5 Nm

Fig. 2.12 Theoretical path of contact and actual meshing line (red) for 1.1 Nm (above) and 1.5 Nm
(below) (driving steel gear, blue; driven POM gear, green)
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For a higher load, 1.5 Nm, a transverse overlap ratio εα¼ 2.000 is reported, which
means the increase of 30% comparing to the theoretical one. The gears remain in
mesh/contact for a longer time, hence producing more heat (out of roll—point “E”—
location) due to higher teeth deformation which occurred at loading conditions
M ¼ 1.5 Nm compared to M ¼ 1.1 Nm. It is assumed that the detected temperature
distinction (Fig. 2.9b, E-gear shape) is due to unmodified tooth flank profile which
induces increased wear of a POM gear driven by a steel gear.

The phenomenon of temperature increase for E-gear pairs with higher loads and
material combination steel-POM (where POM is highly deformable) is typical for
the said material combination, whereas two plastic materials tend to possess similar
deformability. So, a combination of POM PA66 E-gear pairs when loaded with
1.5 Nm reveals continuous temperature rise to the short lifetime (around
200,000 cycles) with thermal failure. Figure 2.13 therefore shows POM-PA66
GF30 TF15 Si2–2 E-gears loaded by 1.1 Nm, compared to 1.5 Nm steel-POM
combination (E- and S-gears). The temperature-time diagram for plastic gears shows
different thermal behavior than steel-POM combination. Typically for the initial part
of the lifetime test is that the temperature increases slowly due to uniform deforma-
tion of driver and driven gear for which thermo-mechanical properties are at the
same level in terms of values. After the rise to around 60 �C, the temperature
significantly increases again due to the drop in mechanical properties, especially
Young Modulus E for both thermoplastics. This results in a higher deformation level
and consequently higher temperatures generated in the meshing zone which imply
higher wear of the gear tooth flanks. The increased wear rate in this case is also
caused by fibers which can be on the surface of a hobbed gear. Temperature
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Fig. 2.13 Comparison of temperature-time diagrams for E- and S-gears for 1.5 Nm and E-gear pair
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stabilization is conditioned by the achieved wear of the tooth flanks. When fatigue of
material in combination with wear becomes critical, the failure occurs.

2.3.4 Wear Detection

The basic idea is to detect a shape of worn plastic gear and compare it to the new one.
Such an analysis is facilitated by an optical 3D measurement microscope, Alicona
Infinitive Focus SL. Some preliminary results for POM S-gear is presented below.
So, the new S-gear is compared to a gear loaded by 1.1 Nm and failed after 7.851 x
106 cycles, which is illustrated for both gears in Fig. 2.14. Both profiles are
compared in Fig. 2.15, where one can observe that the worn gear suffered severe
wear and some plastic deformation before it failed. It seems reasonable to expect less
wear with higher loads and lesser number of cycles.

2.4 Planocentric Gearbox with S-Gear Geometry

The planocentric gearbox has coaxial input and output shafts, and large transmission
ratios can be achieved based on a gear ring with internal gearing in combination with
usually two planet gears with external gearing, where the difference in the numbers
of teeth between the gear ring zv and the planet gears zp rules the output gear ratio
(Eq. 2.5). The difference in ring and planet numbers of teeth should be one, to
achieve maximal reduction:

iout ¼ zp � zv
zp

ð2:5Þ

The planet gears are mounted on an eccentric shaft, where bearings separate the
planet gears from the eccentric. The planet gears wobble around the gear ring, that is,
they reverse for one tooth in each revolution of the eccentric. The wobbling
movement is in accordance with a hypocycloidal movement where the generating
circle with the radius of the eccentric is rolling on the kinematic circle of the ring
gear. At the same time, the planet gear kinematic circle rolls in the inner side of the
ring gear kinematic circle, which is simultaneous with the rotation of the eccentric. In
this way the planetary gears develop rotation superimposed on the wobble. So, the
input rotation of the eccentric is transformed into the reduced output rotation of the
cage with the pins according to the gear ratio in the reverse direction of the input
shaft in the same axis. And the gear ring is fixed to the housing.

SGU gearbox presented in this chapter is midsized device with zp ¼ 80 and
zr ¼ 81 with reduction ratio 80 and nominal torque 120 Nm and backlash below
0.016o.
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Fig. 2.14 3D scanned topography and 2D view of new (above) and worn (below) POM S-gear
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2.4.1 Kinematic Circumstances

The eccentric driven planocentric gear train can be regarded as a simple mechanism
with two links. The first link size is the radius of the eccentric, and its joint indicates
its position. The second one connects the eccentric with a point on the planet gear
(a rigid body), e.g., the contact point. The eccentric link rotates and induces
movement of the chosen point on the planet gear, which is restricted by the following
rule:

rv ¼ rp
φp

φv
ð2:6Þ

rv and rp are the radii of the kinematic circles of the ring gear and the planet gear,
respectively. If the ring gear rotates for φv, the planet rotates for φp. Figure 2.16
illustrates movement of the planet based on the rotation of the eccentric and rolling
of the planet kinematic circle on the fixed ring circle.

A simple algorithm can be used to define movement of the planet based on the
rotation of the eccentric and limited by Eq. (2.6):

– Tp0 and Tv0 coincide with C. P0 is a point on the planet also coinciding with C.

– Tp1 and Tv1 are calculated according to Eq. (2.6). It is true: p ¼ π m ¼ cCTv1 ¼cCTp1.
– Eccentric turns for φv to the new point Op1. kkp rolls on kkv in such a way that

Tp1 coincides with Tv1. So, tangents and normals of kkv and kkp coincide in Tv1.
– The normal of the planet in this point runs through Ov and Op1.
– Since the planet is a rigid body, the right leg of the angle φp rotates around Op1 in

CW direction for the difference Δφ ¼ φv � φp.
– The procedure is continuous, but it can be numerically calculated by any adequate

number of steps.

Fig. 2.15 2D wear presentation of S-gear at prescribed loading parameters: M ¼ 1.5 Nm,
n ¼ 1400 min�1 at ambient temperature (red) compared to a new S-gear (green)
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The above procedure can be formalized. Thus, successive points on the ring gear
kinematic circle Tvi are defined as follows:

xTvi ¼ rv cosφvi and yTvi ¼ rv sinφvi: ð2:7Þ

Similarly, successive position points Opi of the eccentric are:

xOpi ¼ e cosφvi and yOpi ¼ e sinφvi: ð2:8Þ

The coordinates of the moving point Pi on the planet gear are:

xPi ¼ xOpi þ rp cosΔφi and xPi ¼ yOpi þ rp sinΔφi: ð2:9Þ

The eccentricity e is defined by Eq. (2.10):

e ¼ zv � zp
2

� m ð2:10Þ

The planet gear tooth movement into a new ring gear tooth space is illustrated in
Fig. 2.17 by 20 iterations. So, each point and the planet gear position in Fig. 2.16 are
based on successive rotations of the eccentric for 18�.

Fig. 2.16 Planetary gear movement as a simple mechanism with two links of the ring gear [14]
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2.4.2 Gradual Development

Several prototypes, named SGU, were produced, assembled, and tested during the
development period. These prototypes were used for testing important characteris-
tics and to acquire knowledge in design of succeeding gearbox. The gearbox
contains an input shaft with eccentrics. As a motor rotates, the eccentric shaft rotates
two planetary gears which wobble on the ring gear. Two planetary gears are
positioned to enclose 180�. A cage consists of a supporting ring and output ring
(serving also as the output shaft) that are connected by pins in an interference fit. The
cage is rotated by planetary gears, having appropriate holes in which connecting pins
with bearings comply. The cage is fixed to the input shaft by bearings at the
extremities and in a similar manner to the housing with the ring gear. In this way a
compact low-volume gearbox is designed. Initial prototypes are devices with a
reduction ratio of 80 (zv ¼ 81 and zp ¼ 80), an outer diameter of around ϕ100,
and having a module of 1 mm. The required maximal working torque is 120 Nm.

The device is presented in Fig. 2.18 with a 3D schematic and a photo. This
gearbox incorporates an absolute output position encoder, which is also an innova-
tive Slovenian product, namely, the AksIM absolute rotary encoder [21] made by
RLS.

Crucial components, namely, the eccentric, the ring gear, and the planets are
measured on a CMM before assembly. The tests include backlash, hysteresis and
stiffness, kinematic error, vibrations, and noise, as well as durability tests. The
devices were disassembled afterward, and critical components were inspected on
the CMM and optically.

Figure 2.19 shows the ring gear and one of the planets of the specimen 01 after the
conducted durability tests. The hole in the planet (which is adapted for the cage of
pins with bearing bushings) is slightly worn in the circumferential direction

Fig. 2.17 Simulation of a planet gear tooth movement in accordance with hypocycloid generated
on the kinematic circle of the ring gear [20]
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according to the acting force on the output bearing bushings of the pins. The
specimen was submitted to high torques and speeds. The planet gears were made
of 42CrMo4 and the ring of 25CrMo4, all gears plasma nitrided to HV700. The gears
were also carefully examined by an optical microscope. The gear teeth did not show
any wear or damages. Initial wear appeared in some planet teeth tips and at certain
locations in teeth tips. The reason is in the meshing errors, which were discovered by
measuring teeth of the planets and the ring gear with a CMM.

Fig. 2.18 3D schematics of the planocentic gearbox (left) and a prototype (right)

Fig. 2.19 Ring gear (left)
and a planet (right) of a
specimen 01 after durability
tests
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2.4.3 Backlash and Stiffness

The results presented in following paragraphs were done on a custom-built
testbench, which was primarily used to conduct lifetime tests. The testbench is
shown in Fig.2.20 and consists of two servo motors (SM), one on the input and
one on the output side and a flange, which is used to attach the gearbox under test.
SM1 drives the gearbox, and SM2 provides the torque load on the gearbox by
breaking. The system is controlled by a PLC and uses the input and output torque
sensors (both Kistler type 4520A200) and a hall sensor on the input side. Individual
components of the system are connected by elastic couplings.

When needed the testbench was also upgraded with the Dewesoft, Dewe43A
DAQ, system and the appropriate sensors for different tests. The obtained data was
post-processed using a specific program written in Python. Two different types of
tests are further presented in this manuscript:

– Measurement of the gearbox stiffness and backlash.
– Measurement of kinematic error.

The testbench described above in combination with the Dewesoft DAQ was
adapted to measure the stiffness curves of the SGU gearbox as well as those of
other robot gearboxes commercially available (labeled Drive 1 and Drive 2). For this
purpose, the output shaft was fitted with the Renishaw incremental encoder
(consisting of RESM20USA052 encoder ring and the reading head
V2CKD20D20F). The torque was measured by the already mentioned Kistler torque
sensor where the data acquisition (DAQ) rate was 20 kHz. The input shaft was held

SM 1 – input side 

Torque sensor 1 

Elas�c coupling  

Gearbox 

Elas�c coupling  

Elas�c coupling  

SM 2 – output side 

Torque sensor 2 

Fig. 2.20 Testbench used for lifetime tests (detailed view)
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fixed by a clamp, and the output shaft was subjected to a torque load from approx-
imately �130 Nm to 130 Nm by hand via a lever, which was purposely mounted at
the output side of the testbench. The loading cycle was repeated three times as can be
observed from Fig.2.21 (left). The curve actually represents the characteristic of the
discussed planocentric gearbox. The resulting stiffness curves practically overlap,
showing high repeatability of the measurement cycles. The stiffness curve is sec-
tionally linear, and the backlash for the data in Fig. 2.21 is 0.89 arcmin (measured at
0 Nm).

It is interesting to compare the developed gearbox to other available high-tech
devices. So, Fig. 2.21 (right) shows the stiffness curves of Drive 1 and Drive 2. A
comparison with the SGU drive reveals approximately equal backlash values: Drive
1 0,9 arcmin and Drive 2 0,8 arcmin. The stiffness of these gearboxes however is
higher, also sectionally linear.

To determine the overall or averaged backlash of the SGU gearbox, 36 different
points were measured in the following manner:

• The first four points were obtained by sequentially rotating the input shaft by 90�.
• The input shaft was then rotated for 9x360�, and the next four points were then

measured (90� apart).
• This pattern was repeated until the output shaft of the gearbox rotated for 360�,

giving a total of 36 points (position of the first 4 points coincides with the last
4 points).

The result of each of the measuring points was a stiffness curve as shown in
Fig. 2.21. From these curves, individual backlash values were determined, and the
average value was the calculated. The individual backlash values and the average
value for the SGU gearbox are shown in Fig. 2.22. The average backlash was 0.52
arcmin, whereas individual values would rise to 1 arcmin. The standard deviation of
the measured data is 0.49 arcmin, which we believe can be attributed to geometric
tolerances of different gearbox parts, especially the runout and single pitch
deviation.

Fig. 2.21 Stiffness curve of the SGU gearbox (left) and commercially available gearboxes (right)

76 G. Hlebanja et al.



2.4.4 Kinematic Error

The same testbench was also used to measure the kinematic error of the SGU
gearbox. The measurements were done at a constant rotational speed. Two Renishaw
incremental encoders were used on the input and output shaft to measure actual shaft
positions. The ring RESM20USA075 and the reading head V2CLM20A20F was
used on the input side, whereas the output side was equipped with the encoder ring
RESM20USA052 and the reading head V2CKD20D20F. The acquisition speed of
the DAQ was 200 kHz.

The kinematic error (Δφ) of a gearbox is the deviation of the angular position of
the gearbox from its ideal, theoretical angular position. The kinematic error is
measured as a difference between the input and output shaft rotation for full
revolution (360�) of the output shaft, where the kinematic error is the difference
between the maximal and minimal measured value. The kinematic error for SGU is:

φout þ Δφ ¼ i � φinp or Δφ ¼ i � φinp � φout ð2:11Þ

The output ratio i is defined by Eq. 2.5. The incremental encoder (its scale), which
is used to measure the rotation of the output shaft is always mounted with a small

Fig. 2.22 Measured backlash values for 36 different points
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eccentric error as illustrated in Fig. 2.23. Consequently, the obtained measurements
must be corrected with a regression curve [22]:

Δl
Δφ � r0 þ e � cos φ0 þ φð Þ ð2:12Þ

r0 is the scale radius, φ0 the azimuth angle, e erroneous eccentricity, and φ phase
angle.

The uncorrected (raw) results of the kinematic error measurements together with
the fitted regression curve are presented in Fig. 2.24—left. And the corrected

Fig. 2.23 Eccentrically
aligned encoder

Fig. 2.24 Kinematic error of the SGU gearbox and the calculated regression line (left); the
compensated kinematic error of the SGU gearbox (right); remark: vertical scale factors do not match
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kinematic error of the SGU prototype, using the calculated regression curve is
presented in Fig. 2.24—right. The kinematic error after correction, measured from
a minimal to maximal value, is around 2.8 arcmin.

2.4.5 Influence of Geometric Tolerances

KISSsys and KISSsoft software [23] were employed to simulate and calculate
various aspects of the SGU gearbox performance. However, the simulation of
attainable manufacturing tolerances proved difficult; therefore, the gearbox kinemat-
ics was calculated using analytical equations, and a special program was written in
Python. The input of the developed program is the nominal geometry, the rotation of
the input shaft, the time vector, and the geometric tolerances (errors) of each of the
gearbox components. The errors are user input and can be either measured from an
actual component or obtained from the technical documentation of a future
component.

The result of this program is an envelope of planet gear teeth movement into the
ring gear tooth spaces, which is integrated in the gearbox housing. This result can be
used to predict the gearbox backlash and a possible interference. An example of the
calculated envelope for a chosen SGU tooth with the nominal geometry for the first
three ring gear positions is shown in Fig. 2.25. As expected for the nominal
geometry, the tooth fits optimally into the internal gear, resulting in a low (but not
zero) backlash.

Fig. 2.25 Example of the kinematic envelope induced by a chosen planet gear tooth with nominal
geometry into the first three spaces of the ring gear
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Besides the nominal geometry, the program was used with various input
parameters. A comparison between the nominal geometry, the measured geome-
try of an erroneous component, and the tolerance class IT6 geometry is presented
in Fig. 2.26 (left) and zoomed to disclose some details in Fig. 2.26 (right). The
input parameters used for the gearbox envelope calculation are shown in
Table 2.6.

The nominal geometry fits ideally into the internal gear tooth spaces. However,
the IT6 geometry is required by the technical documentation of the SGU gearbox
and defined to produce a minimal (near zero or zero) backlash as presented in the
results; the measured results are added as an example of a non-fit geometry. The
latter are taken from measurements of erroneous components that proved difficult
to turn in the assembled gearbox and based on measured values they correspond to
IT9 tolerance class. The ragged edge of the envelope results from the way it is
calculated:

– The geometry of a tooth (or teeth) is generated at first as a cloud of points.
– These points are then moved according to the appropriate kinematics and traced

as they move, as it can be observed from Fig. 2.27.
– A search algorithm then finds the points that are on the outer edge (border) of

movement. As a result, the ragged edge is generated.

Fig. 2.26 Envelope of the SGU tooth in one of the internal gear slots; red, nominal geometry;
green, measured tooth geometry; yellow, tolerances of IT6 and its detail (right)

Table 2.6 Input parameters
used for the gearbox envelope
calculation

Input fp [μm] Fr [μm]

Nominal 0 0

Measured 10 40

IT6 7.5 20
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2.4.6 Single Pitch Deviation and Runout

Since the SGU gearbox should conform to requirements in high-tech industries, it is
important to rule out also possible influences of the single pitch deviation fp and
runout Fr on the contact conditions of meshing gears. The definitions of the single
pitch deviation and the runout are according to ISO1328-1 [24]. The simulation of
the mesh conditions by the contact analysis considers influence of both parameters.

KISSsoft works with E-gears. However the current KISSsoft user manual [25]
includes possibility of a progressive profile modification (p. 343 of the named
manual), which can be used as a modification in the addendum and the dedendum
of a gear tooth, and is defined as follows:

Δad ¼ 2 � Cad � d � dk
dt � dk

� � f ad=5

and Δdd ¼ 2 � Cdd � d � dk
dv � dk

� � f dd=5

ð2:13Þ

Δad and Δdd stand for a profile modification function in addendum and
dedendum. Cad and Cdd are modifying tip relief (or corresponding active dedendum
modification) and fad and fdd power coefficients. If a coefficient amounts to 5, the
relief becomes linear. dt, dv, dk, and d, are diameters of the tip circle, dedendum
circle, kinematic circle, and current circle. One can adapt the involute flank adden-
dum and dedendum to S-gear flank in this way. Such a modification is justified since
the addendum and dedendum heights are rather small, between 0.2 and 0.25 m.

The simulation takes the tolerance allowance requirement form gear drawings
corresponding to the quality class Q6 in accordance with ISO1328-1, i.e., fp¼ 7.5 μm
and Fr ¼ 21 μm for each gear, planet, and the ring gear.

Since eventually each tooth of a given gear will come in mesh with each tooth of
its counterpart gear, a contribution of both pitch and runout deviations of both gears
shall be considered. This is done by the quadratic tolerance sum, i.e., for the single
pitch deviation fp and for the runout Fr:

f p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2p1 þ f 2p2

q
and Fr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
r1 þ F2

r2

q
ð2:14Þ

Fig. 2.27 Movement of
individual tooth profile
points
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From the practical aspect, assuming the manufacturing process is stable, with
Cp � 1.33 (Cp is the process capability index), and considering the equations above,
the values to be considered are fp ¼ 8.16 μm and Fr ¼ 22.85 μm. Hence, the
simulation parameters matrix consisting of four individual cases is defined:

1. fp ¼ �8.16 μm,
2. Fr/2 ¼ �11,425 μm.

Figure 2.28 (right) depicts the mesh line at fp ¼ +8.16 μm and Fr/
2 ¼ +11,425 μm, whereas Fig. 2.28 (left) illustrates the contact pressure of meshing
gears. The transverse contact ratio is εα ¼ 1.45 and the contact pressure 410 MPa, if
both simulation parameters are positive.

Figure 2.29 collects results if the single pitch deviation becomes negative. So, the
contact pressure of meshing gears and the mesh line at fp ¼ �8.16 μm and Fr/

Fig. 2.28 Contact pressure (left) and mesh line at fp ¼ +8.16 μm and Fr/2 ¼ +11,425 μm (right)

Fig. 2.29 Contact pressure (left) and mesh line at fp ¼ �8.16 μm and Fr/2 ¼ +11,425 μm (right)
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2 ¼ +11,425 μm are presented. The transverse contact ratio is εα ¼ 6.37 and the
contact pressure 1440 MPa.

The next combination is for the positive single pitch deviation fp ¼ +8.16 μm and
the negative runout Fr/2 ¼ �11,425 μm and presented in Fig. 2.30. The transverse
contact ratio is εα ¼ 0.81 and the contact pressure 201 MPa.

And finally, a simulation for both negative values is conducted, so the values for
fp ¼ �8.16 μm and Fr/2 ¼ �11,425 μm are considered in Fig. 2.31. The transverse
contact ratio is εα ¼ 6.85 and the contact pressure 1378 MPa.

Additional simulations for evaluation of the single pitch deviation influence
should be performed with the values for a single pitch deviation fp ¼ �8.16 μm
and without zero runout (Fr ¼ 0 μm).

Fig. 2.30 Contact pressure (left) and mesh line at fp ¼ +8.16 μm and Fr/2 ¼ �11,425 μm (right)

Fig. 2.31 Contact pressure (left) and mesh line at fp ¼ �8.16 μm and Fr/2 ¼ �11,425 μm (right)
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Two cases are possible, as shown in Fig. 2.32. with the negative fp ¼ �8.16 μm
and Fig. 2.33 with the positive fp ¼ +8.16 μm. In the first case, the transverse contact
ratio amounts to εα ¼ 6.57 and the contact pressure to 1411 MPa, and in the second
case the transverse contact ratio amounts εα ¼ 1.22 and the contact pressure to
331 MPa.

The analysis shows that a single pitch deviation influences the meshing gears with
a high impact. The runout itself is neglectable compared to the single pitch deviation.
Therefore, a special care for a single pitch deviation should be taken when
manufacturing gears which means the optimization of the manufacturing technology
should focus on achieving best possible single pitch deviation, hence a better quality
than Q6.

Fig. 2.32 Contact pressure (left) and mesh line at fp ¼ �8.16 μm and Fr/2 ¼ 0 μm (right)

Fig. 2.33 Contact pressure (left) and mesh line at fp ¼ +8.16 μm and Fr/2 ¼ 0 μm (right)
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2.5 Conclusion

The presented chapter deals with S-gears, which are defined with a half parabolic
function of the rack flank, which then defines a single path of contact, and this
implies an external or internal gear geometry. Furthermore, the definition parameters
ap and n and the derived parameter—the initial pressure angle αw in C facilitate
shaping of the gear, which was demonstrated in the chapter. Thermal properties of
S-gears, i.e., their advantage over E-gears are due to the fact that the former mesh
with less sliding and more rolling, so S-gears reveal less frictional force and
frictional losses or heat.

The next subchapter deals with lifetime testing of S- and E-gears. The examined
gear pairs were a combination of an alloy steel driving gear and a driven POM gear
(POM contained some heat-resistant additives). The tests with loads of 1.5, 1.3, and
1.1 Nmwere repeated at least three times. They were conducted on small testbenches
with thermal camera coverage and data logging. The testbench automatics registered
failure time. There was a clear distinction between the S- and E-gears in favor of the
former.

SGU planocentric gearbox is designed with S-gear geometry. The prototype
series has a reduction ratio of 80; it already contained an absolute position encoder.
And as an option, it can incorporate a torque sensor as well. The development
question was how to assemble a device with proper performance and how to
implement fast and accurate certification tests, e.g., backlash and stiffness curves,
kinematic error, noise and vibration, durability tests, etc. That is why the testbench
was designed and built, which helped in the assessment of many important results.
The second part of the subchapter 2.4 is about analytical approach which also
disclosed many development guidelines. So, it was analytically ascertained that
gears should be put in (sub)tolerance ranges, and ring gears and planets should be
mated (one in the higher subclass and the other in the lower one) [20], to attain better
accuracy of the device. Also, the influence of the bearing and carrier tolerances was
analyzed and discovered that even the robust device can deform to such extent that
gear teeth can be in interference and tooth tips should be adapted. It was also found
out that the single pitch deviation has a high impact on the gearbox operation, so a
special care for a manufacturing process is necessary.
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Chapter 3
Kinematic Pairs: Novel Kinds
and Classification

Stephen P. Radzevich

3.1 Introduction

The investigation of machines began in the ancient times. A simple machine uses a
single applied force to do work against a single load force. The concept of “simple
machine” was helpful at the beginning of the human activity in the area of machine
design. The idea of a “simple machine” originated with the Greek philosopher
Archimedes around the third century BC who investigated the so-called simple
machines. Usually the term refers to the six classical simple machines that were
defined by Renaissance scientists:

• Wheel and axle—makes work easier by moving objects across distances. The
wheel (or round end) turns with the axle (or cylindrical post) causing movement.

• Inclined plane—a flat surface (or plane) that is slanted, or inclined, so it can help
move objects across distances.

• Wedge—instead of using the smooth side of the inclined plane to make work
easier, the pointed edges to do other kinds of work can be used.

• Lever—any tool that pries something loose is a lever. Levers can also lift objects.
A lever is an arm that “pivots” (or turns) against a fulcrum (the point or support on
which a lever pivots).

• Pulley—instead of an axle, a wheel could also rotate a rope, cord, or belt. This
variation of the wheel and axle is the pulley. In a pulley, a cord wraps around a
wheel. As the wheel rotates, the cord moves in either direction.

• Screw—when an inclined plane is wrapped around a cylinder, its sharp edge
becomes a screw. A screw is actually just another kind of inclined plane.
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The identification of simple machines arises from a desire for a systematic
method to invent new machines. Therefore, an important concern is how simple
machines are combined to make more complex machines. One approach is to attach
simple machines in series to obtain compound machines.

A more successful strategy was identified by Franz Reuleaux. Reuleaux realized
that a lever, pulley, and wheel and axle are in essence the same device: a body
rotating about a hinge. Similarly, an inclined plane, wedge, and screw are a block
sliding on a flat surface.

This realization shows that it is the joints, or the connections that provide
movement, that are the primary elements of a machine. Starting with four types of
joints, the “revolute joint,” “sliding joint,” “cam joint,” and “gear joint,” and related
connections such as cables and belts, it is possible to understand a machine as an
assembly of solid parts that connect these joints.

3.1.1 Kinematic Pairs: Basics

“Kinematic pair” is one of the fundamental concepts in the mechanisms and machine
theory. Kinematic pairs can be found out in the design of every machine and of every
mechanism. Examples of kinematic pairs of different kinds in gearing [(a) point-
contact kinematic pair in the design of skew-axes gearing, (b) line-contact kinematic
pair in the design of helical gearing, and (c) surface-to-surface-contact kinematic pair
in the design of gear coupling] are illustrated in Fig. 3.1. Taking into account the
importance of kinematic pairs to the science and practice of machines and

Fig. 3.1 Kinematic pairs of different kinds in gearing: (a) point-contact kinematic pair in the design
of skew-axes gearing, (b) line-contact kinematic pair in the design of helical gearing, and (c) sur-
face-to-surface-contact kinematic pair in the design of gear coupling
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mechanisms, properties of kinematic pairs of all kinds are required to be compre-
hensively investigated.

The beginning of investigation of kinematic pairs can be traced back to the 1875
research undertaken by Franz Reuleaux [1]. Franz Reuleaux introduced the kine-
matic pair as a new approach to the study of machines that provided an advance over
the motion of elements consisting of simple machines [2]. Reuleaux (Fig. 3.2) was
the first to introduce “kinematic pair” as a new approach to the study of machines
that provided an advance over the motion of elements consisting of simple
machines [2].

According to Reuleaux:

Definition 3.1 Kinematic pair is a connection between two bodies that imposes
constraints on their relative movement.

In the nowadays terminology the definition to the term “kinematic pair” is
formulated in a slightly different way:

Definition 3.2 Kinematic pair is a combination of two contiguous links, allowing
their relative movement.

The following definitions are recommended by IFToMM:

Definition 3.3 Kinematic pair is a connection between two links restricting their
motion.

Definition 3.4 Lower kinematic pair is a kinematic pair that is formed by surface
contact between its elements.

Definition 3.5 Higher kinematic pair is a kinematic pair that is formed by either
line or point contact between the elements.

Fig. 3.2 Franz Reuleaux
(1829—1905)
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In particular, Reuleaux stressed that kinematic pair consists exactly of two
elements and that these two elements interact with one another (Fig. 3.3).1 In the
matter of connections between rigid bodies, Reuleaux recognized only two kinds of
kinematic pairs. He called them “higher kinematic pairs” and “lower kinematic
pairs” of elements. With higher kinematic pairs, the two elements are in contact at
a point or along a line. Lower kinematic pairs are those featuring “surface-to-surface
contact.” On the premise of this approach numerous classifications of kinematic
pairs are developed by the researchers to this end. An example of such classifications
of kinematic pairs is illustrated in Fig. 3.4 [4]. A plurality of variations of this
classification can be easily found out in the public domain.

As it follows from the consideration below in this section of the book, in the
meantime it is not sufficient to distinguish only the lower kinematic pairs with

Fig. 3.3 The so-called “wrapping pair” (pulley-and-belt drive, chain drive, and so forth) is NOT a
kind of “kinematic pair,” as it does not align to the Reuleaux definition for the term “kinematic pair”

1According to the definition of the term “kinematic pair,” only two rigid bodies in contact are
considered in this text. No flexible bodies [belts, chains, and so forth (three bodies!!)] are
considered here as they are not covered by the definition to the term “kinematic pair” (mechanisms
with flexible bodies are often loosely referred to as “wrapping pair/lower pair”. Such a term is
incorrect as mechanisms with flexible bodies have to be considered separately of kinematic pairs:
such mechanisms are not kinematic pairs by nature). In mechanisms with a flexible body there is no
relative motion of a pulley and a mating flexible body at points of their contact, that is, they are
motionless in relation to one another. No contact is observed at the rest of points, at which the pulley
and the flexible body travel in relation to each other.

Two rigid bodies can make contact at a few points/lines (compound joints). Each of such a
contact have to be considered as a separate point/line contact kinematic pair, as a conventional
kinematic pair, and not in whole as a multiple-contact kinematic pair (see [3] and others).
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“surface-to-surface contact” and the higher kinematic pairs that feature either line
contact or point contact of the interacting functional surfaces, like it was permissible
in the time of Franz Reuleaux. There are a few important reasons for that.

First, higher kinematic pairs with point contact, and those with line contact of the
interacting functional surfaces, are not equivalent to one another. Therefore, they
must be distinguished from one another and, thus, considered separately. Also,
different terms are required to be introduced to refer to higher kinematic pairs with
point contact and to those with line contact of the functional surfaces.

Second, even when the interacting functional surfaces of two kinematic pairs,
both feature, either point or line contact, the performance of kinematic pairs with the
same kind of contact can be significantly different depending on the parameters of
contact geometry of the functional surfaces. In other words, the performance of two
kinematic pairs with point contact (or of two kinematic pairs with line contact) is
significantly affected by contact geometry of their functional surfaces and by the
degree of their conformity in particular. The latter is vital (a) for gearing [5] in a
general sense, (b) for high-conformal gearing in particular [6], (c) for contact and
bending strength of kinematic pairs, (d) for functional surfaces wear, (e) for
elastohydrodynamic lubrication (EHD lubrication) of heavily loaded kinematic
pairs [7], and so forth.

Fig. 3.4 An example of a conventional classification of kinematic pairs. (Adapted from [10])
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The outlined features of kinematic pairs with point, and with line contact of
functional surfaces, along with a few more features mentioned below in this chapter
of the book, reveal the necessity in a more in-depth investigation into possible kinds
of kinematic pairs for the needs of the nowadays industry.

3.1.2 Traditional Approach to Design and Analysis
of Kinematic Pairs

When kinematic pairs are discussed, most sources available in the public domain
provide mainly several kinematic pair schemes. “Plane-to-plane,” “ball in a pocket,”
“round cylinder-to-plane,” “ball-to-plane,” and so forth are among them. The total
number of designs of kinematic pairs, considered in the textbooks on theory of
machines and mechanisms, does not exceed a dozen. No comprehensive and sys-
tematic analysis of all possible kinds of kinematic pairs has been done to this end.

Kinematic synthesis of linkages was carried out by Denavit and Hartenberg
[8]. An extensive research on possible kinds of kinematic pairs was undertaken by
Dr. L.T. Dvornikov [9], who also worked on the development of the theory of
kinematic pairs [10]. Many efforts on the development of the theory and systema-
tization of kinematic pairs of mechanical systems were undertaken by Dr. E.Ya.
Zhivago [11], as well as numerous others.

Without going into details of the analysis of the results of the research achieved to
this end, a following conclusion can be drawn up:

Conclusion 3.1
The theory of kinematic pairs is too far from to be completed.

Therefore, a more in-detail research into possible kinds of kinematic pairs and the
development of their classification is required to be undertaken.

Following the terminology adopted since the time of F. Reuleaux, higher kine-
matic pairs are comprised of two functional surfaces that make contact at a point.
Therefore, two functional surfaces in point contact are sufficient to specify a
corresponding higher kinematic pair. However, a plurality of kinematic pairs that
meet the specified requirements (two surfaces that make point contact) may feature
significantly different performance properties. This means that the conventional
definition of the term “higher kinematic pair” is insufficient as it doesn’t establish
one-to-one correspondence between a particular kinematic pair and its anticipated
performance. It is evident that, for example, “convex-to-convex contact” of two
functional surfaces and their “convex-to-concave contact” are significantly different
from one another from the perspective of bearing capacity, regardless of that in both
cases the functional surfaces make point contact and in both cases they are referred to
as “higher kinematic pair.” This practice is not good.

Another example of two higher kinematic pairs that, from the first glimpse,
appear very similar (or almost identical) to one another pertains to “convex-to-
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concave contact” of two functional surfaces with a small difference between radii of
their normal curvature. When the difference between the radii of normal curvature in
one of two kinematic pairs is significantly smaller than that in the other kinematic
pair, the bearing capacity of the first one is drastically different from that of the
second one (again, regardless of both the kinematic pairs are still referred to as
“higher kinematic pair”).

Inconsistency of the adopted terminology in the realm of higher kinematic pairs is
clearly illustrated by the two just considered examples. More in-detail analysis of
contact geometry of two functional surfaces in a higher kinematic pair is necessary to
be undertaken in order to better understand all the features and behavior of kinematic
pairs of different design.

3.1.3 Instantaneous Kinematics (Mobility) in Kinematic Pairs

It is adopted below in this chapter of the book that a kinematic pair that features a
highest possible degree of freedom is referred to as the most general one.

A kinematic pair of five degrees of freedom (five DoF kinematic pair) is sche-
matically shown in Fig. 3.5. Here, two bodies, namely, a Body 1 and a Body 2, are
bounded by smooth regular surfaces. The bodies B1 and B2 make contact at point K.
The origin of a local reference system, xKyKzK, coincides with the contact point, K.
The coordinate axes, xK, yK, and zK, are along the corresponding unit vectors t1:B1 ,
t1:B2 , and nB1 , of the Darboux frame, t1:B1 t1:B2 nB1 . Depending on timing of the
elementary linear and rotary motions vx and ωx, as well as of vy and ωy, four motions
of the Body 2 over the Body 1 are permissible:

• Sliding over the Body 1 (with the contact point trace within the plane yKzK)
• Rolling over the Body 1 (with the contact point trace within the plane yKzK).
• Sliding over the Body 1 (with the contact point trace within the plane xKzK).
• Rolling over the Body 1 (with the contact point trace within the plane xKzK).

The rotation, ωz, of the body Body 2 about the common perpendicular, nB1, is the
fifth permissible motion of the Body 2 in relation to the Body 1.

Kinematic pairs that feature point contact between the functional surfaces may
have up to five degrees of freedom. Kinematic pairs that feature “surface-to-surface
contact” between the functional surfaces feature not more than three degrees of
freedom. Therefore, from the standpoint of mobility, point contact kinematic pairs
are more general compared to “surface-to-surface contact” kinematic pairs. Kine-
matic pairs that feature line contact between the functional surfaces occupy a
position between the point contact kinematic pairs and between the “surface-to-
surface contact” kinematic pairs.

The kinematic pairs with the lesser mobility than that shown in Fig. 3.5 can be
viewed as a reduced case of the kinematic pair with point contact of the functional
surfaces.
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3.1.4 Contact Geometry in Kinematic Pairs

The problem of analytical description of contact geometry between two smooth
regular surfaces in the first order of tangency is a challenging one. Contact geometry
of curves and surfaces is under consideration by scientists for a long while. Inves-
tigation of contact geometry of curves and surfaces can be traced back to the
eighteenth century. The study of the contact of curves and surfaces was undertaken
in considerable detail by J.L. Lagrange2 in his Theorié des Fonctions Analytiques
(1797) [12] and A.L. Cauchy3 in his Leçons sur les Applications du Calcul Infini-
tésimal á la Geometrie (1826) [8]. Later on, in the twentieth century, an investigation
in the realm of contact geometry of curves and surfaces was undertaken by
J. Favard4 in his Course de Gèomètrie Diffèrentialle Locale (1957) [13]. A few
more names of researchers in the field are to be mentioned.
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Fig. 3.5 Schematic of five degree-of-freedom kinematic pair

2Joseph-Louis Lagrange (January 25, 1736–April 10, 1813) – an Italian born [born Giuseppe
Lodovico (Luigi) Lagrangia] famous French mathematician and mechanician
3Augustin-Louis Cauchy (August 21, 1789–May 23, 1857) – a famous French mathematician
4Jean Favard (August 28, 1902–January 21, 1965) – a French mathematician
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3.1.4.1 Dupin indicatrix at Point of Functional Surface

Various methods for analytical description of contact geometry between two smooth
regular surfaces have been developed. An overview of the methods can be found out
in the monograph by Prof. Radzevich [14]. Latest achievements in the field are
discussed in the paper [15] and others and in the monographs [16, 17].

An earlier developed powerful method for analytical description of contact
geometry of two functional surfaces in a kinematic pair is based on the geometry
of Dupin indicatrices, Dup (B1) and Dup (B2), of the functional surfaces B1 and B2,
correspondingly.

In a common section of the functional surfaces, B1 and B2, by a normal plane,
consider a unit tangent vector, tcnf(φ), through a contact point, K. The unit tangent
vector, tcnf(φ), is entirely located in a common tangent plane through K. In a
common normal section, the radii of curvature of the functional surfaces, B1 and
B2, are designated as RB1 and Rp, correspondingly. Let’s designate rB1 φð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RB1 φð Þp
and rp φ, μð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rp φ, μð Þp
.

By definition, position vector of point, rB1 , of the Dupin indicatrix, Dup (B1), is
specified as:

Dup B1ð Þ ) rB1 φð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RB1 φð Þ

p
� tB1 φð Þ ð3:1Þ

At point of a planar local patch of a functional surface, B, an inverse Dupin
indicatrix,Dupk (B) [and a corresponding inverse curvature indicatrix,Crvk (B)], can
be used instead of conventional Dup (B) [and instead of Crv (B)]. In this particular
case, a following form of the Dupin indicatrix, Dup (B1), is preferred:

Dupk B1ð Þ ) rB1:k ¼ r�1
B1

φð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RB1 φð Þ

p� ��1
� tB1 φð Þ ð3:2Þ

In a planar local patch of a functional surface, B, the inverse Dupin indicatrix,
Dupk (B), shrinks to the contact point, K.

Here, in Eqs. (3.1) and (3.2), tB1 is the unit tangent vector through the contact
point, K [in its current configuration, the vector tB1 forms an angle, φ, with the first
principal direction, t1:B1 , on the functional surface B1, i.e., φ ¼ ∠ tB1 , t1:B1ð Þ].

3.1.4.2 Indicatrix of Conformity at Point of Contact of Two Functional
Surfaces

For the analytical description of contact geometry of two functional surfaces, the
indicatrix of conformity, CnfR (B1/B2), at point of contact of the bodies B1 and B2 can
be used. The construction of this planar characteristic curve, CnfR (B1/B2), of the
fourth order is based on Dupin indicatrices, Dup (B1) and Dup (B2).
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The functional surfaces are turned in relation to one another about the common
perpendicular, nB1, through an angle. This angle, μ, is referred to as the “angle of the
surfaces local relative orientation, μ.” By definition, the angle, μ, is formed by the
unit vectors of the first principal directions, t1:B1 and t1:B2 (or, the same, of the second
principal directions, t2:B1 and t2:B2 ), that is, μ ¼ ∠ t1:B1 , t1:B2ð Þ
[or μ ¼ ∠ t2:B1 , t2:B2ð Þ]. In the common reference system, xKyK, the position vector
of point, rB2 , of the Dupin indicatrix, Dup (B2), is specified as:

Dup B2ð Þ ) rB2 φ, μð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RB2 φ, μð Þ

p
� tB1 φ, μð Þ ð3:3Þ

“Dupin indicatrices” for all possible kinds of smooth regular functional surfaces,
B1 and B2, are illustrated in Fig. 3.6. In total, there are ten different kinds of local
patches of the functional surfaces, and, therefore, there are just ten different kinds of
the corresponding “Dupin indicatrices.” Here, in Fig. 3.6, functional surfaces are
designated as B.

Position vector, rcnf, of a point of the indicatrix of conformity,5 CnfR (B1/B2)
[18, 19], at point of contact of two functional surfaces, B1 and B2, can be expressed in
terms of the distances rB1 and rB2 as follows (see Fig. 3.7):

Cnf R B1=B2ð Þ ) rcnf φ, μð Þ ¼ rB1 φð Þ � rB2 φþ μð Þ½ � � tcnf φð Þ ð3:4Þ

A position vector of point, rcnf, of indicatrix of conformity, CnfR (B1/B2), at point
of contact, K, of the functional surfaces, B1 and B2, is described by Eq. (3.4).

For kinematic pairs with a planar local patch of a functional surface, a following
form of the “indicatrix of conformity, Cnfk (B1/B2),” is preferred:

Cnf k B1=B2ð Þ ) rcnf :k φ, μð Þ ¼ r�1
cnf φ, μð Þ

¼ rB1 φð Þ � rB2 φþ μð Þ½ ��1 � tcnf φð Þ ð3:5Þ

The indicatrix of conformity, Cnfk (B1/B2), at point of contact of a gear tooth
flank, G, and a mating pinion tooth flank, P , is shrunk to a point coincident with the
contact point, K, in all cases of “surface-to-surface contact” and “locally-surface-to-
surface contact” (and not only in cases of “plane-to-plane contact”) of the tooth
flanks.

The unit vector, tcnf(φ), can be expressed in terms of fundamental magnitudes of
the first and the second order calculated at point of contact, K, of the functional
surfaces, B1 and B2.

5For the first time ever, an equation of the indicatrix of conformity, CnfR (B1/B2), was published in:
Pat. No. 1,185,749, USSR, A Method of Sculptured Surface Machining on a Multi-Axis NC

Machine./S.P. Radzevich, Int. Cl. B23c 3/16, Filed: October 24, 1983
Pat. No. 1,249,787, USSR, A Method of Sculptured Surface Machining on a Multi-Axis NC

Machine./S.P. Radzevich, Int. Cl. B23c 3/16, Filed: December 27, 1984
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The interested reader is referred to [5, 6, 16, 17], as well as to other advanced
sources, for more details on the indicatrix of conformity at point of contact between
two smooth regular surfaces.
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Fig. 3.6 Dupin indicatrices, Dup (B), at point of all ten kinds of local patches of functional
surfaces, B1 and B2, in kinematic pairs [for planar local patch of functional surface B1 (or of
functional surface B2) the Dupin indicatrix, Dup (B), occupies the entire plane. Therefore, in such a
case, it is recommended to construct the inverse Dupin indicatrix, Dupk (B), that is a point
coincident with the point K, instead of the regular Dupin indicatrix, Dup (B)]
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“Dupin indicatrices,” Dup (B1) and Dup (B2), along with indicatrices of confor-
mity, CnfR (B1/B2), at point of contact, K, of two functional surfaces, B1 and B2, are
extensively used below for the analysis of contact geometry of the interacting
surfaces, B1 and B2.

3.1.5 Kinds of Functional Surfaces

The total number of different surfaces that bound real objects is infinitely large. A
systematic consideration of surfaces for the purposes of investigation and analysis of
kinematic pairs is of critical importance. Therefore, in order to proceed with the
analysis of contact geometry in kinematic pairs, an in-detail analysis of possible
kinds of functional surfaces is required to be performed.

The total number of possible kinds of functional surfaces in kinematic pairs
actually is endless. An advantage can be taken from that in kinematic pairs of the
most general kinds, only small portions of the entire functional surfaces interact with
one another. It is common practice to refer to small portions of functional surfaces as

Kx
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11.Bt
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( , )cnfr � �

Ky

2 ( )Br �

1 ( )Br �
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12.Bt

�

21.Bt

b�

a�

c� K

Fig. 3.7 On derivation of equation of the indicatrix of conformity, CnfR(B1/B2), at point of contact,
K, of two functional surfaces B1 and B2
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to the “local patches of functional surface.” At point of a local patch of every
functional surface, two principal radii of curvature, R1 and R2 (here an equality,
R2 > R1, is always valid), can be specified. The principal radii of curvature, R1 and
R2, are signed values: they are positive for convex, are negative for concave, and are
equal to a zero for flatten section of a surface by principal planes, C1 and C2. No
inequality of the kind R2 � R1 is permissible; as in the case of R2 ¼ R1, no principal
directions at a surface point can be identified. An inequality, k1 > k2, that is
equivalent to R2 > R1 is also extensively used in the analysis.

Mean curvature,M , andGaussian curvature, G, can be attributed to every surface
point:

M ¼ R1 þ R2

2
ð3:6Þ

G ¼ R1 � R2 ð3:7Þ

Different kinds of local patches of functional surfaces are distinguished based on
various permissible combinations of the actual values of the mean curvature, M :
(M > 0, M < 0, M ¼ 0), and the total curvature, G : G > 0, G < 0, G ¼ 0, at a
surface point. At umbilic surface point, an equality,M ¼ k, is valid (here the normal
curvature at the umbilic surface point is denoted by k).

The total number of local patches of functional surface is limited just to ten
possible kinds [16, 17]. They are as follows:

1. Three kinds of convex, that is, with a positive Gauss curvature (G > 0) and a
positive mean curvature (M > 0) local patches of functional surface.

2. Three kinds of concave, that is, with a positive Gauss curvature (G > 0) and a
negative mean curvature (M < 0) local patches of functional surface.

3. Three kinds of hyperbolic, that is, with a negative Gauss curvature (G < 0) and
either with a positive (M > 0 ) or with a negative (M < 0 ) local patches of
functional surface.

4. One kind of a flatten, that is, with a zero Gauss curvature (G ¼ 0) and either with
a positive (M ! þ1) or with a negative (M ! �1) local patches of functional
surface. These two kinds of flatten local patches of functional surfaces (either
with M ! þ1 or with M ! �1) are equivalent to one another.

In a particular case, curvature indicatrix, Crv (B), is convenient to visualize the
features of shape of each of ten kinds of local patches of functional surfaces. Here,
the curvature indicatrix, Crv (B), is a portion of a plane bounded by a corresponding
Dupin indicatrix, Dup (B), constructed at that same point of the functional
surface [17].

Dupin indicatrices, Dup (B), along with curvature indicatrices, Crv (B), for all
possible kinds of local patches of functional surfaces in kinematic pairs are depicted
in Fig, 3.6. Note that curvature indicatrices are not labeled here.

For a planar local patch of the functional surface B, points of the curvature
indicatrices Crv (B) either occupy all the plane surface or all of them are remote to
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infinity. Therefore, no graphical interpretation is provided to the curvature
indicatrices Crv (B) of a planar local patch of the functional surface in kinematic
pairs.

3.1.6 Kinds of Kinematic Pairs

On the premise of the definition to the term “kinematic pair” proposed by
F. Reuleaux (i.e., that “kinematic pair” is a connection between two bodies that
imposes constraints on their relative movement), a following approach is adopted in
this text to develop a classification of kinematic pairs.

A kinematic pair that features a highest possible degree of freedom corresponds to
the first stratus in the classification. The fewer the degree of freedom, the lower the
stratus of a kinematic pair in the classification, and vice versa.

In the rest of the text below, the terms “higher kinematic pair” and “lower
kinematic pair” are not used at all. Instead, the following kinds of kinematic pairs
are distinguished:

1. “Point-contact kinematic pairs”
2. “Line-contact kinematic pairs”
3. “Surface-to-contact kinematic pairs”.

Kinematic pairs of all kinds fall into one of these categories.
Taking into account, that there are only ten different kinds of local patches of

smooth, regular functional surfaces B1 and B2 (see Fig. 3.6), every kind of the surface
contact can be represented more in detail. For the analysis, a square morphological
matrix of size is composed. An example of the morphological matrix is
illustrated in Fig. 3.8. All possible combinations of the surfaces contact are covered
by this morphological matrix. One axis of the morphological matrix is represented
by ten kinds of local patches of the functional surfaces B1, while another axis is
represented by ten kinds of local patches of the functional surfaces B2. The morpho-
logical matrix contains 100 different combinations of the local patches of a func-
tional surfaces B1 and of a functional surfaces B2. As not all contacts of local patches
B1 and B2 are physically feasible, therefore, only:

C2
10 þ 10 ¼ 10!

2! 10� 2ð Þ!þ 10 ¼ 55 ð3:8Þ

of them are necessary to be investigated in detail. For example, no contact is
permissible between two concave surfaces B1 and B2. Also, concave surfaces can’t
make contact with saddle-like surfaces and so forth. Ultimately, for kinematic pairs
that feature true point contact between the functional surfaces, the total number of
contacts between the bodies, B1 and B2, is limited to 29 different kinds.

A morphological matrix 10 � 10 (see Fig. 3.8) is used with a goal to perform an
in-detail analysis of kinematic pairs. In this matrix, the combinations of the
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functional surfaces, B1 and B2, along the “diagonal” formed by the pairs 1.1, 2.2, 3.3,
. . ., 10.10 and below the diagonal are taken into account, while the rest of the
combinations of the surfaces B1 and B2 located above the diagonal can be found
out among those located below the diagonal.

Moreover, some of the combinations of the surfaces B1 and B2 cannot form a
contact because of the physical constraints. For example, none of a concave func-
tional surface B1 can make contact with a concave functional surface B2 (and vice
versa) with no interference into one another. Similarly, none of the planar functional
surface B1 can make contact with a concave or a saddle-like functional surface B2

(and vice versa) with no interference into one another. All of these and the similar
combinations of the surfaces B1 and B2 are also eliminated from the further analysis
(see Fig. 3.8).

3.1.6.1 Kinematic Pairs that Feature “Point-Contact” between
Functional Surfaces

In “point-contact kinematic pairs” (or just “Pc�kinematic pairs,” for simplicity), the
functional surfaces, B1 and B2, make contact at a single point. A more in-detail
analysis reveals that the following kinds of contact between the functional surfaces,
B1 and B2, have to be recognized in “point-contact kinematic pairs.”

Kinematic Pairs with True-Point-Contact of Functional Surfaces

The “true-point-contact” kinematic pairs (or just “TPc�kinematic pairs,” for sim-
plicity) of different kinds are distinguished.

First, there are several different kinds of “convex-to-convex” “true-point-con-
tact” kinematic pairs that feature either elliptic or umbilic or parabolic functional
surfaces in contact. The kinematic pairs of this kind are composed of two convex
functional surfaces, B1 and B2 (Fig. 3.9):

• Elliptic-to-elliptic-contact kinematic pair.
• Elliptic-to-umbilic-contact kinematic pair.
• Elliptic-to-parabolic-contact kinematic pair.
• Umbilic-to-umbilic-contact kinematic pair.
• Umbilic-to-parabolic-contact kinematic pair.
• Parabolic-to-parabolic-contact kinematic pair.

The kinematic pairs of this kind feature a single contact point between the
functional surfaces B1 and B2. In Fig. 3.8, these kinematic pairs correspond to 1.1,
2.1, 2.2, 5.1, 5.2, and 5.5, contacts of the functional surfaces B1 and B2. Relative
orientation of the Dupin indicatrices, Dup (B1) and Dup (B2), at contact point of the
kinematic pairs of this particular kind are shown in Fig. 3.9. There are no constraints
onto the actual value of the angle of local relative orientation, μ, of the contacting
functional surfaces, B1 and B2, for the kinematic pairs labeled 1.1, 2.1, 2.2, 5.1, and
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5.2. For the kinematic pair labeled 5.5, the values, μ ¼ 0∘ and μ ¼ � 180∘, of the
angle, μ, are not permissible; as in this scenario, the kinematic pair 5.5 is no longer a
kind of “convex-to-convex” “true-point-contact” kinematic pairs.

The diagrams, shown in Fig. 3.9, correspond to the so-called non-conformal
kinematic pairs. The term “non-conformal kinematic pairs” is due to that in all
sections of the functional surfaces by a plane through the common perpendicular,
the lines of intersection of the surfaces make either convex-to-convex or convex-to-
straight line contact (therefore, they are of nonnegative values).

Second, there are only two different kinds of “convex-to-planar” “point-contact”
kinematic pairs that feature either elliptic or umbilic functional surface in contact
with a planar local patch of a mating functional surface.

The kinematic pairs of this kind are composed of two functional surfaces, B1 and
B2 (see Fig. 3.10):

• Planar-to-elliptic-contact kinematic pair.
• Planar-to-umbilic-contact kinematic pair.

Kinematic pairs of this kind feature a single contact point between the functional
surfaces B1 and B2. In Fig. 3.8, these kinematic pairs correspond to 6.1 and 6.2,
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Fig. 3.9 Indicatrices of conformity, CnfR(B1/B2), and the curvature indicatrices, CrvR (B1) and
CrvR (B2), at contact point of kinematic pairs that feature convex-to-convex “true-point-contact” of
the functional surfaces B1 and B2 (the values, μ ¼ 0∘ and μ ¼ � 180∘, of the angle, μ, of the
functional surfaces, B1 and B2, local relative orientation are not permissible in the design of the
kinematic pair of the kind 5.5)
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contacts of the functional surfaces B1 and B2. The cases 6.5 and 6.6 are not
considered here, as the kinematic pairs of these kinds are not “true-point-contact”
kinematic pairs. Details on the kinematic pairs of this particular kind are shown in
Fig. 3.10. There are no constraints onto the actual value of the angle of local relative
orientation, μ, of the contacting functional surfaces, B1 and B2, for the kinematic
pairs labeled 6.1 and 6.2.

Third, there are several different kinds of “convex-to-hyperbolic” “point-contact”
kinematic pairs that feature different kinds of hyperbolic functional surface in
contact with convex local patches of a mating functional surface. Kinematic pairs
of this kind feature a single contact point between the functional surfaces B1 and B2.
In Fig. 3.8, these kinematic pairs correspond to 8.1, 8.2, 9.1, 9.2, 10.1, and 10.2,
contacts of the functional surfaces B1 and B2. The kinematic pairs of this kind are
composed of two convex functional surfaces, B1 and B2 (see Fig. 3.11):

• Elliptic-to-hyperbolic (pseudo-concave)-contact kinematic pair.
• Umbilic-to-hyperbolic (pseudo-concave)-contact kinematic pair.
• Elliptic-to-minimal (pseudo-umbilic)-contact kinematic pair.
• Umbilic-to-minimal (pseudo-umbilic)-contact kinematic pair.
• Elliptic-to-hyperbolic (pseudo-convex)-contact kinematic pair.
• Umbilic-to-hyperbolic (pseudo-convex)-contact kinematic pair.

For the kinematic pairs labeled 8.1, 9.1, and 10.1, the actual value of the angle, μ,
of the functional surfaces local relative orientation is in the range of μmin < μ < μmax,
where μmin and μmax are the minimum and the maximum permissible values of the
angle μ, correspondingly.

There are no constraints onto the actual value of the angle of local relative
orientation, μ, of the contacting functional surfaces, B1 and B2, for the kinematic
pairs labeled 8.2, 9.2, and 10.2.

The diagrams, shown in Fig. 3.11, correspond to the so-called semi-conformal
kinematic pairs. The term “semi-conformal kinematic pairs” is due to that in certain
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Fig. 3.10 Details of the “point-contact” kinematic pairs that feature a planar functional surface B1

in contact with either elliptic, or umbilic functional surface B2
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sections of the functional surfaces by a plane through the common perpendicular, the
lines of intersection of the surfaces make either convex-to-convex or concave-to-
convex contact (i.e., curvature of the curves of intersection of the functional surfaces
are of opposite sign).

Fourth, there are three different kinds of “convex-to-hyperbolic” “point-contact”
kinematic pairs that feature different kinds of hyperbolic functional surfaces in
contact with convex parabolic local patches of a mating functional surface. Kine-
matic pairs of this kind feature a single contact point between the functional surfaces
B1 and B2. In Fig. 3.8, these kinematic pairs correspond to 8.5, 9.5, and 10.5,
contacts of the functional surfaces B1 and B2. The kinematic pairs of this kind are
composed of two convex functional surfaces, B1 and B2 (see Fig. 3.12):

• Parabolic-to-hyperbolic (pseudo-concave)-contact kinematic pair.
• Parabolic-to-minimal (pseudo-umbilic)-contact kinematic pair.
• Parabolic-to-hyperbolic (pseudo-convex)-contact kinematic pair.

For the kinematic pairs of these three kinds, the actual value of the angle, μ, of the
functional surfaces local relative orientation is in the range of μmin < μ < μmax, where
μmin and μmax are the minimum and the maximum permissible values of the angle μ,
correspondingly.

To a certain extent, the diagrams, shown in Fig. 3.12, can be considered as “semi-
conformal kinematic pairs.” In certain sections of the functional surfaces by a plane
through the common perpendicular, the lines of intersection of the surfaces make
either straight-to-convex or concave-to-convex contact.

Fifth, there are three different kinds of “hyperbolic-to-hyperbolic” “point-con-
tact” kinematic pairs that feature different kinds of hyperbolic functional surfaces in
contact with hyperbolic local patches of a mating functional surface. Kinematic pairs
of this kind feature a single contact point between the functional surfaces B1 and B2.
In Fig. 3.8, these kinematic pairs correspond to 10.8, 10.9, and 10.10, contacts of the

8.5

Parabolic-to-hyperbolic
(pseudo-convex)

1( )Dup B

2( )Dup B

Ky

KxK

9.5

Parabolic-to-minimal
(pseudo-umbilic)

Ky

Kx

1( )Dup B

2( )Dup B

K

10.5

1( )Dup B

2( )Dup B

Parabolic-to-hyperbolic
(pseudo-concave)

Kx

Ky

K

� �

�

Fig. 3.12 Relative orientation of the Dupin indicatrices, Dup (B1) and Dup (B2), at contact point of
kinematic pairs that feature convex-parabolic-to-hyperbolic “true-point-contact” of the functional
surfaces B1 and B2 (the actual values of the angle, μ, of the functional surfaces, B1 and B2, local
relative orientation is in the range of: μmin � μ � μmax)
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functional surfaces B1 and B2. The kinematic pairs of this kind are composed of two
convex functional surfaces, B1 and B2 (see Fig. 3.13):

• Hyperbolic (pseudo-convex)-to-hyperbolic (pseudo-concave)-contact
kinematic pair.

• Hyperbolic (minimal)-to-hyperbolic (pseudo-concave)-contact kinematic pair.
• Hyperbolic (pseudo-concave)-to-hyperbolic (pseudo-concave)-contact

kinematic pair.

For the kinematic pairs of these three kinds, the actual value of the angle, μ, of the
functional surfaces local relative orientation is in the range of μmin < μ < μmax, where
μmin and μmax are the minimum and the maximum permissible values of the angle μ,
correspondingly.

The diagrams, shown in Fig. 3.13, correspond to the so-called semi-conformal
kinematic pairs.

Sixth, there are a few different kinds of “point-contact” kinematic pairs composed
of different kinds of elliptic, umbilic, and parabolic, functional surfaces in contact.
Kinematic pairs of this kind feature a single contact point between the functional
surfaces B1 and B2. In Fig. 3.8, these kinematic pairs correspond to 3.1, 3.2, 4.1, 4.2,
7.1, and 7.2, contacts of the functional surfaces B1 and B2. The kinematic pairs of this
kind are composed of two convex functional surfaces, B1 and B2 (see Fig. 3.14):

• Convex elliptic-to-elliptic (concave)-contact kinematic pair.
• Convex umbilic-to-elliptic (concave)-contact kinematic pair.
• Convex elliptic-to-umbilic (concave)-contact kinematic pair.
• Convex umbilic-to-umbilic (concave)-contact kinematic pair.
• Convex elliptic-to-parabolic (concave)-contact kinematic pair.
• Convex umbilic-to-parabolic (concave)-contact kinematic pair.

For the kinematic pairs of these six kinds, the actual value of the angle, μ, of the
functional surfaces local relative orientation is in the range of μmin < μ < μmax, where
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Fig. 3.13 Relative orientation of the Dupin indicatrices, Dup (B1) and Dup (B2), at contact point of
kinematic pairs that feature hyperbolic-to-hyperbolic “true-point-contact” of the functional surfaces
B1 and B2 (the actual values of the angle, μ, of the functional surfaces, B1 and B2, local relative
orientation is in the range of: μmin � μ � μmax)
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Fig. 3.14 Relative orientation of the Dupin indicatrices, Dup (B1) and Dup (B2), at contact point of
kinematic pairs that feature concave “true-point-contact” of the functional surfaces B1 and B2 of
elliptic, umbilic, and parabolic type (in the kinematic pairs labeled 3.1 and 7.1 the actual value of the
angle, μ, of the functional surfaces, B1 and B2, local relative orientation is in the range of:
μmin � μ � μmax)
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μmin and μmax are the minimum and the maximum permissible values of the angle μ,
correspondingly.

As shown in Fig. 3.14, diagrams 3.1, 3.2, 4.1, and 4.2 correspond to the so-called
conformal kinematic pairs. The term “conformal kinematic pairs” is due to that in all
sections of the functional surfaces by a plane through the common perpendicular
normal curvature, the lines of intersection of the surfaces is always of opposite sign.
To a certain extent, the diagrams labeled 7.1 and 7.2 can also be considered as
“conformal kinematic pairs.”

Kinematic Pairs with Locally-Line-Contact of Functional Surfaces

The “locally-line-contact” kinematic pairs (or just “LLc�kinematic pairs,” for sim-
plicity) are those that feature zero difference between the magnitudes of radii of
normal curvature, RB.1 and RB.2, in a section by a plane through a common perpen-
dicular at contact point. A zero difference between the magnitudes of normal radii of
curvature of two functional surfaces, B1 and B2, is observed when the radii of normal
curvature are of equal magnitudes, and of opposite sign, that is, when the equality
RB.1 ¼ � RB.2 is valid. Due to this feature, the minimal diameter, dmin

cnf , of the
indicatrix of conformity, CnfR (B1/B2), at point of contact of the functional surfaces,
B1 and B2, equals to zero, and, therefore, the equality d

min
cnf 	 0 is always observed in

all locally-extremal point-contact kinematic pairs. This is the reason kinematic pairs
of the kind under consideration are referred to as “locally-extremal-contact” kine-
matic pairs as they feature an extremal value of minimal diameter of the indicatrix of
conformity (dmin

cnf 	 0).
Evidently, the “locally-extremal-contact” kinematic pairs can be composed either

by a convex and a concave local patches of the functional surfaces, B1 and B2, or by a
convex and a saddle-like of the functional surfaces, B1 and B2. No locally-extremal
kinematic pairs can be composed if both of the functional surfaces are concave, or
one of them is concave, while another one is a saddle-like local patch of the
functional surface.

Different kinds of kinematic pairs with locally-line-contact of functional surfaces
are distinguished.

First, several different kinds of “locally-line-contact” kinematic pairs that are
composed by either convex elliptic or convex umbilic functional surfaces make
contact with concave functional surfaces of various geometries. The kinematic pairs
of this kind are composed of a convex and a concave functional surfaces, B1 and B2

(see Fig. 3.15):

• Elliptic (concave)-to-elliptic (convex)-contact kinematic pair.
• Elliptic (concave)-to-umbilic (convex)-contact kinematic pair.
• Umbilic (concave)-to-elliptic (convex)-contact kinematic pair.
• Parabolic (concave)-to-elliptic (convex)-contact kinematic pair.
• Parabolic (concave)-to-umbilic (convex)-contact kinematic pair.
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Kinematic pairs of this kind feature a single contact point between the functional
surfaces, B1 and B2, along radii of normal curvature of equal magnitude and opposite
sign. In Fig. 3.8, these kinematic pairs correspond to 3.1, 3.2, 4.1, 7.1, and 7.2,
contacts of the functional surfaces B1 and B2. Indicatrices of conformity, CnfR(B1/
B2), at contact point of the functional surfaces, B1 and B2, of the kinematic pairs of
this particular kind are shown in Fig. 3.15. There are no constraints onto the actual
value of the angle of local relative orientation, μ, of the contacting functional
surfaces, B1 and B2, for the kinematic pairs labeled 3.2, 4.1, and 7.2. For the
kinematic pairs labeled 3.1 and 7.1, the actual value of the angle, μ, of the functional
surfaces, B1 and B2, local relative orientation equals to a value μ ¼ μll. c at which the
contacting surfaces form a locally-line-contact.

Second, numerous different kinds of “locally-line” point-contact kinematic pairs
composed either of elliptic or umbilic or parabolic, functional surfaces that make
contact with functional surfaces of hyperbolic geometry. Kinematic pairs of this kind
feature a single contact point between the functional surfaces. In Fig. 3.8, these
kinematic pairs correspond to 8.1, 8.2, 8.5, 9.1, 9.2, 9.5, 10.1, 10.2, and 10.5,
contacts of the surfaces, B1 and B2 (see Fig. 3.16):

• Hyperbolic (pseudo-concave)-to-elliptic (convex)-contact kinematic pair.
• Hyperbolic (minimal)-to-elliptic (convex)-contact kinematic pair.
• Hyperbolic(pseudo-convex)-to-elliptic (convex)-contact kinematic pair.
• Hyperbolic (pseudo-concave)-to-umbilic (convex)-contact kinematic pair.
• Hyperbolic (minimal)-to-umbilic (convex)-contact kinematic pair.
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Fig. 3.15 Indicatrices of conformity, CnfR(B1/B2), at contact point of kinematic pairs that feature
convex-to-concave “true-point-contact” of the functional surfaces B1 and B2 (the actual value of the
angle, μ, of the functional surfaces, B1 and B2, local relative orientation equals to a value μ¼ μll. c at
which the contacting surfaces form a locally-line contact)
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• Hyperbolic(pseudo-convex)-to-umbilic (convex)-contact kinematic pair.
• Hyperbolic (pseudo-concave)-to-parabolic (convex)-contact kinematic pair.
• Hyperbolic (minimal)-to-parabolic (convex)-contact kinematic pair.
• Hyperbolic(pseudo-convex)-to-parabolic (convex)-contact kinematic pair.

Indicatrices of conformity, CnfR(B1/B2), at contact point of the functional sur-
faces, B1 and B2, of the kinematic pairs of this particular kind are shown in Fig. 3.16.
For the kinematic pairs labeled as 8.1, 8.2, 8.5, 10.1, 10.2, and 10.5, the actual value
of the angle, μ, of the functional surfaces local relative orientation equals to a value
μ ¼ μll. c at which the contacting surfaces form a locally-line-contact. No constraints
on the actual value of the angle, μ, are imposed in the kinematic pairs 8.2, 9.2, 9.5,
and 10.2.

Third, there are three different kinds of “locally-line” point-contact kinematic
pairs composed of hyperbolic functional surfaces that make contact with functional
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Fig. 3.16 Indicatrices of conformity, CnfR(B1/B2), at contact point of locally-line kinematic pairs
that feature hyperbolic-to-convex “point-contact” of the functional surfacesB1 and B2 (the actual
value of the angle, μ, of the functional surfaces, B1 and B2, local relative orientation equals to a value
μ ¼ μll. c at which the contacting surfaces form a locally-line contact)
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surfaces of hyperbolic geometry. Kinematic pairs of this kind feature a single contact
point between the functional surfaces. In Fig. 3.8, these kinematic pairs correspond
to 10.8, 10.9, and 10.10, contacts of the surfaces, B1 and B2 (see Fig. 3.17):

• Hyperbolic (pseudo-concave)-to-hyperbolic (pseudo-convex)-contact
kinematic pair.

• Hyperbolic (pseudo-concave)-to-hyperbolic (minimal)-contact kinematic pair.
• Hyperbolic (pseudo-concave)-to-hyperbolic (pseudo-concave)-contact

kinematic pair.

Relative orientation of the curvature indicatrices, Crv (B1) and Crv (B2), at
contact point of kinematic pairs that feature hyperbolic-to-hyperbolic “locally-line-
contact” of the functional surfaces, B1 and B2, is shown in Fig. 3.17. For the
kinematic pairs of this design, the actual value of the angle, μ, of the functional
surfaces local relative orientation equals to a value μ ¼ μll. c at which the contacting
surfaces form a locally-line-contact.

Locally Surface-to-Surface Contact Kinematic Pairs I

The “locally-surface-to-surface_I-contact” kinematic pairs (or just “LSSc.1�kinematic
pairs,” for simplicity) are those featuring zero difference between the magnitudes of
the radii of normal curvature, RB.1 and RB.2, in all sections by a plane through a
common perpendicular at contact point of the functional surfaces. A zero differ-
ence between the magnitudes of normal radii of curvature of two functional
surfaces, B1 and B2, is observed when the radii of normal curvature are of equal
magnitude, and are of different sign, that is, when the equality RB.1 ¼ � RB.2 is
valid. As this difference is extremely small (it is equal to zero), kinematic pairs of
this kind are also referred to as “locally-extremal-contact” kinematic pairs.
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Fig. 3.17 Relative orientation of the curvature indicatrices, Crv (B1) and Crv (B2), at contact point
of kinematic pairs that feature hyperbolic-to-hyperbolic “locally-line-contact” of the functional
surfaces B1 and B2 (the actual value of the angle, μ, of the functional surfaces, B1 and B2, local
relative orientation equals to a value μ ¼ μll. c at which the contacting surfaces form a locally-line
contact)
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“Locally-surface-to-surface_I-contact” kinematic pairs cannot be composed of
two convex functional surfaces, B1 and B2.

Different kinds of kinematic pairs with “locally-surface-to-surface_I-contact” of
functional surfaces are distinguished.

Four different kinds of “locally-surface-to-surface_I-contact” kinematic pairs that
are composed by hyperbolic functional surfaces make contact with hyperbolic
functional surfaces of various geometries. The kinematic pairs of this kind are
composed of two hyperbolic functional surfaces, B1 and B2 (see Fig. 3.18):

• Elliptic (concave)-to-elliptic (convex)-contact kinematic pair.
• Umbilic (concave)-to-umbilic (convex)-contact kinematic pair.
• Hyperbolic (concave)-to-hyperbolic (convex)-contact kinematic pair.
• Hyperbolic (minimal)-to-hyperbolic (minimal)-contact kinematic pair.

One more kinematic pair of the kind under consideration is represented with:

• Planar-to-planar-contact kinematic pair.

Kinematic pairs of this kind feature a single contact point between the functional
surfaces, B1 and B2, along with equal magnitude and opposite sign radii of normal
curvature in sections by a plane through the common perpendicular. In Fig. 3.8,
these kinematic pairs correspond to 3.1, 4.2, 9.9, and 10.8, contacts of the functional
surfaces B1 and B2. One can imagine that the principal radii of curvature, R1B1 , R2B1 ,
R1B2 , and R2B2 , in the kinematic pairs, 3.1, 4.2, 9.9, and 10.8, approach in infinity
(R1B1 ! 1 , R2B1 ! 1 , R1B2 ! 1 , and R2B2 ! 1 ). In such a scenario, the
functional surfaces, B1 and B2, are getting flatten. Actually, flattening of the func-
tional surfaces is observed in any and all kind of kinematic pairs, and not only in the
designs 3.1, 4.2, 9.9, and 10.8. Therefore, in Fig. 3.18, “locally-surface-to-surface_I-
contact” kinematic pairs with flatten functional surfaces, B1 and B2, are labeled as
1.1, 2.1, 2.2, 3.1, . . ., 10.9, and 10.10.

Relative orientation of the Dupin indicatrices, Dup (B1) and Dup (B2), at contact
point of the kinematic pairs of this particular kind are shown in Fig. 3.18. For the
kinematic pair labeled 3.1, 9.9, and 10.8, the actual value of the angle, μ, of the
functional surfaces, B1 and B2, local relative orientation equals to a value μ¼ � 90∘

for all the “locally-surface-to-surface_I-contact” kinematic pairs. No constraints
onto the actual value of the angle, μ, of the functional surfaces, B1 and B2, local
relative orientation are imposed in a case of hyperbolic (minimal)-to-hyperbolic
(minimal)-contact kinematic pair (labeled as 4.2).

The indicatrices of conformity, CnfR(B1/B2), for kinematic pairs featuring
“locally-surface-to-surface_I-contact” of the functional surfaces, B1 and B2, is
always shrunk to a point. This point is coincident with the contact point, K, of the
functional surfaces.

3.6.1.4. High-conformal point-contact kinematic pairs I. The performance of
point-contact kinematic pairs is strongly correlated to the degree of conformity to
each other of the functional surfaces, B1 and B2, at every point of their contact. The
more conformal the surfaces B1 and B2 at points of their contact, the better the
performance of the kinematic pair, and vice versa.
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Qualitatively, the degree of conformity at a point of contact of two functional
surfaces can be viewed as follows. Consider a section of two functional surfaces, B1

and B2, by a plane through the common perpendicular. The radii of normal curvature
of the surfaces, B1 and B2, within the plane section are designated by RB1 and RB2 ,
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Fig. 3.18 Indicatrices of conformity, CnfR(B1/B2), and relative orientation of the curvature
indicatrices, Crv (B1) and Crv (B2), at contact point of kinematic pairs featuring hyperbolic-to-
hyperbolic “point-contact” of the functional surfaces B1 and B2. In all the kinematic pairs indicatrix
of conformity, CnfR(B1/B2), is shrunk to a point coincident with contact point, K. (In the kinematic
pairs 3.1, 9.9, and 10.10, the actual value of the angle, μ, of the functional surfaces, B1 and B2, local
relative orientation is restricted to μ¼ � 90∘. No constraints onto the actual value of the angle, μ, is
observed in the kinematic pair 4.2)
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correspondingly. A mismatch of the radii of normal curvature of the surfaces, RB1

and RB2 , is denoted by δR:

δR ¼j RB1 � RB2 j ð3:9Þ

The functional surfaces, B1 and B2, are referred to as “high-conformal point-
contact kinematic pairs I” (or just “HCc.1�kinematic pairs,” for simplicity), if the
actual value of the normal radii mismatch, δR, is in the range of:

0 < δR � δR½ � ð3:10Þ

where [δR] is the maximum permissible mismatch of the radii of normal curvature of
the surfaces, RB1 and RB2, at which the contact is still referred to as “high conformal”
(for details on conformity criterion in kinematic pairs, see section immediately
below).

Conformity Criterion in Kinematic Pairs

In order to establish a criterion by means of which conformal contact in kinematic
pairs is separated from their “high-conformal” contact, consider two functional
surfaces, B1 and B2, that are intersected by a normal plane through the contact
point, K. The plane is constructed so as to be perpendicular to the common tangential
straight line, tCL. The constructed section of the tooth flanks is schematically shown
in Fig. 3.19.

The plane section of the first functional surface is labeled B1. Within the differ-
ential vicinity of the contact point, radius of curvature of the curve B1 is labeled RB1.
The radius, RB1 , is of a negative value (RB1 < 0), as in this example the functional
surface B1 is considered concave.
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Fig. 3.19 Section of the functional surfaces, B1 and B2, in a conformal kinematic pair by a plane
through a current point of contact: The plane is perpendicular to the trace of the contact point across
the surfaces, B1 and B2
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Prior to the operating load is applied, the plane section of the second functional
surface is labeled B


2. After the load is applied and the second functional surface is
slightly penetrated into the first functional surface, the same section, B


2, is labeled
B2. It is assumed here that within the differential vicinity of the point of contact, the
radii of curvature of the curves of intersection of the surfaces, B


2 and B2, are of the
same value, RB2 . The radius of curvature is of a positive value (RB2 > 0), as in this
example the second functional surface is considered convex.

In the initial configuration of the functional surfaces, B1 and B2, contact point is
labeled KB1. After the operating load is applied, and the functional surfaces interfere
with each other, the contact point is labeled KB2 (in the deformed stage of the
functional surfaces).

The functional surfaces, B1 and B2, intersect with each other at two points, a and
b. The distance, l, between the points indicates the degree of conformity of the
functional surfaces of radii RB1 and RB2 . The greater the distance, l, the higher the
degree of conformity of the functional surfaces, and vice versa.

The distance, l, between points a and b can be expressed in terms of the radii of
normal curvature, RB1 and RB2 , and the displacement, bk:

l ¼ 2RB2 sin α ð3:11Þ

For the calculation of the actual value of the angle α RB1 , RB2 , bk� �
, the follow-

ing formula is derived:

α RB1 , RB2 , bk� �
¼ cos �1

R2
B2
� R2

B1
þ RB2 þ RB1 � bk � RB2

� �2

2RB2 RB2 þ RB1 � bk � RB2

� �
0
B@

1
CA ð3:12Þ

Equation (3.12) is derived on the premise of the law of cosines.
As it follows from the analysis of Eq. (3.12), actual value of the angle α in

Eq. (3.11) depends on actual values the radii of normal curvature, RB1 and RB2 , as
well as on the displacement bk.

For convenience of the further analysis of the plane section (see Fig. 3.19), all the
design parameters in Eq. (3.12) are normalized by the pinion radius RB2 . The
normalized design parameters are designated as follows: RB2=RB2 ¼ 1, RB1=RB2 ¼bK, and kRB2=RB2 ¼ bk.

Actual value of the angle α can be expressed in terms of the normalized design
parameters in the following form:

α ¼ cos �1
1� bK2 þ 1þ bK � bk� �2

2 � 1þ bK � bk� �
0
B@

1
CA ð3:13Þ
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The function l ¼ l bk, bK� �
is valid for both, for the “convex-to-convex” and for

“convex-to-concave” contacts of the functional surfaces, B1 and B2. For conformal
kinematic pairs, only cases of “convex-to-concave” contacts of the functional
surfaces are of interest.

In Fig. 3.20, a three-dimensional plot of the function l ¼ l bk, bK� �
is constructed

for the cases of “convex-to-concave” contacts of the functional surfaces, B1 and B2,
in a kinematic pair.

A performed analysis of the 3D-plot allows the following conclusions.

The sections of the surface l ¼ l bk, bK� �
by the planes bki ¼ Const (see Fig. 3.20)

are represented by the curves that have asymptotes. For a particular curve, ki¼Const,
shown in Fig. 3.20 in the bold line, the axis l and the straight line l ¼ 1 are the
asymptotes.

The greatest possible degree of mismatch in the curvature of the functional
surfaces, B1 and B2, corresponds to an infinite value of the parameter bK ! �1 .
An interval of alteration of the parameter bK starting from �1 and going up to
approximately bK ¼ �2 can conveniently accommodate any desirable displacement
of the functional surfaces, B1 and B2, from their correct location. However, in the

Fig. 3.20 Three-dimensional plot of the function l ¼ l bk, bK� �
constructed for conformal (“convex

-to-concave” kind of contact between the functional surfaces, B1 and B2) kinematic pairs
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range �1 < bK < �2 of alteration of the parameter bK, an increase in the degree of
conformity of the functional surfaces, B1 and B2, is negligibly small. In the range of
variation of the parameter bK , the load-carrying capacity of a conformal kinematic
pair remains approximately at the same value. Therefore, use of just the “convex-to-
concave” contact of the functional surfaces gives almost no improvement to the
load-carrying capacity of kinematic pairs. For the “convex-to-concave” contact, an
additional requirement has to be fulfilled in order to significantly improve the load-
carrying capacity of a conformal kinematic pair.

On the other hand, even a small alteration in the actual value of the parameter bK
within the interval �2 < bK < �1 results in a significant increase in the degree of
conformity of the functional surfaces, B1 and B2. This immediately entails a
corresponding increase in the load-carrying capacity of the kinematic pair.

High-conformal kinematic pairs feature “convex-to-concave” contacts of the
functional surfaces. Moreover, the degree of conformity at point of contact of the
functional surfaces in “high-conformal kinematic pairs” exceeds a certain critical
value (the threshold, in other words).

In the aforementioned example (see Fig. 3.20), the value of parameter bK (i.e., the
value of bK � �2) can be referred to as a critical value, that is, bKcr. This allows one to
distinguish between “conformal kinematic pairs” (for which �1 < bK < bKcr ) and
“high-conformal kinematic pairs” (for which bKcr � bK < �1). Because of the favor-
able conditions of contact of the functional surfaces, high-conformal kinematic pairs
allow for a significantly greater power density.

Without going into the details of this analysis, it is clear that high-conformal
kinematic pairs require tighter tolerances for any possible displacements of the
functional surfaces, B1 and B2, from their desirable locations and orientations. This
relates not just for the tolerances on the manufacturing errors, but to any and all
possible displacements caused by thermal extension, elastic deflection, and so forth.
Otherwise, there could be no future for high-conformal transmission system.

The separate from one another area of existence of “conformal” and “high-
conformal kinematic pairs” is schematically illustrated in Fig. 3.21.

The performed analysis of the 3D plot shown in Fig. 3.20 can be extended,
although the extension is a bit aside of the main stream of the subject of this research.

Consider sections of the surface l ¼ l bk, bK� �
intersected by planes bKi ¼ Const

(see Fig. 3.20). An example of such sections is shown by the bold dashed line. For
high-conformal kinematic pairs, the parameter bKi for these lines is in the range ofbKcr � bKi < �1. The degree of mismatch in the curvature of the functional surfaces
in high-conformal kinematic pairs is smaller compared to that in conformal kine-
matic pairs.

The indicatrix of conformity CnfR(B1/B2) [see Eq. (3.4)] [and inverse indicatrix of
conformity, Cnfk(B1/B2)] is developed aiming the analytical description of the
contact geometry of two interacting functional surfaces, B1 and B2, in a kinematic
pair. The minimum diameter, dcnf, of the indicatrix of conformity, CnfR(B1/B2), at a
current contact point, bK , of the functional surfaces, B1 and B2, can be used as a
quantitative measure of the degree of conformity of the interacting bodies in a
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kinematic pair. In “high-conformal kinematic pairs,” the degree of conformity of the
functional surfaces, B1 and, B2, exceeds a threshold beyond which a significant
increase in the bearing capacity of the interacting functional surfaces is observed.
Schematically, this property of “high-conformal kinematic pairs” is illustrated in
Fig. 3.22.

For a certain degree of conformity, dacnf , at point of contact of the functional
surfaces, B1 and B2, the bearing capacity of the kinematic pair can be evaluated by a
certain number, A. If the degree of conformity of the functional surfaces, B1 and B2,
is increased from dacnf to a value of dbcnf , an insignificant increase in the bearing
capacity of the kinematic pair from a number A to a number B occurs. An increase in
the bearing capacity is insignificant in the case under consideration as both the
degrees of conformity, dacnf and dbcnf , are smaller than the threshold [dcnf], beyond
which a significant increase in the bearing capacity of the functional surfaces, B1 and
B2, occurs.

Let us assume that the degree of conformity, dccnf , is greater than the threshold,
[dcnf]. When the inequality dccnf > dcnf

� �
is valid, the bearing capacity of the

functional surfaces, B1 B2, grows much faster.
In “high-conformal kinematic pairs,” the inequality dccnf � dcnf

� �
is always

observed.
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Fig. 3.21 Impact of the degree of conformity, δcnf, at contact point of two functional surfaces, B1

and B2, onto the bearing capacity of the kinematic pair
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Kinds of High-Conformal Point-Contact Kinematic Pairs I

At a single common point, K, high-conformal point-contact kinematic pairs feature
convex-to-concave contact at least in a single plane through the common perpen-
dicular (no “high-conformal point-contact kinematic pairs I” can be comprised by
two convex functional surfaces, B1 and B2). Due to this feature, the minimal
diameter, dmin

cnf , of the indicatrix of conformity, CnfR (B1/B2), at point of contact of
the functional surfaces, B1 and B2, exceeds zero, that is, the inequality: d

min
cnf > 0 is

always observed in all kinds of high-conformal point-contact kinematic pairs. On top
of that, in high-conformal point-contact kinematic pairs, the minimum diameter of

the indicatrix of conformity, CnfR(B1/B2), is in the range of 0 < dmin
cnf � dmin

cnf

h i
.

Point-contact kinematic pairs of the kind under consideration are referred to as
“high-conformal” as they feature a very small difference between radii of normal
curvature in a common section by a plane through a common perpendicular. The
“very small difference” can be quantified.6

( )a

2Bn
2B

1B

1Bn

K

( )b

max
cnft 1Bx

1( )Crv B

cnfd

1 2 ( / )RCnf B B
1By

2 ( )Crv B

1( )Crv B

min
cnfd

K 11.Bt

12.Bt

22.Bt

21.Bt �

�

Fig. 3.22 An example of the indicatrix of conformity, CnfR (B1/B2), constructed at point of contact
of the functional surfaces, B1 and B2, in a kinematic pair

6It is commonly adopted that “high-conformal point-contact kinematic pairs I” (as well as “high-
conformal point-contact kinematic pairs II” below) cannot be composed of two convex functional
surfaces, B1 and B2, by a convex and a flatten surfaces and so forth. This is correct to a certain
extent. For example, one can imagine a convex functional surface, B1, of elliptical kind with a
flatten functional surface, B2. If the principal radii of curvature, R1B:1 and R2B:1 , of the functional
surface, B1, approach an infinity (R1B:1 ! 1 and R2B:1 ! 1 ), then any desirable degree of
conformity of two convex functional surfaces, B1 and B2, can be attained. Kinematic pairs of this
particular kind (as well as of similar kinds) are not covered in this research. The same is valid with
respect to “convex-to-convex” contacts of the functional surfaces.
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First, there are two different kinds of “high-conformal point-contact kinematic
pairs I” kinematic pairs that feature either elliptic or umbilic functional surface, B2, in
contact with a planar local patch of a mating functional surface, B1 (see Fig. 3.23):

• Planar-to-elliptic-contact high-conformal kinematic pair.
• Planar-to-umbilic-contact high-conformal kinematic pair.

Kinematic pairs of this kind feature a single contact point between the functional
surfaces B1 and B2. In Fig. 3.8, these kinematic pairs correspond to 6.1 and 6.2,
contacts of the functional surfaces B1 and B2. Details on kinematic pairs of this
particular kind are shown in Fig. 3.23. There are no constraints onto the actual value
of the angle of local relative orientation, μ, of the contacting functional surfaces, B1

and B2, for the kinematic pairs labeled 6.1 and 6.2.
Second, there are several different kinds of “convex-to-hyperbolic” “high-con-

formal point-contact kinematic pairs I” that feature different kinds of hyperbolic
functional surface in contact with convex local patches of a mating functional
surface. Kinematic pairs of this kind feature a single contact point between the
functional surfaces B1 and B2. In Fig. 3.8, these kinematic pairs correspond to 8.1,
8.2, 9.1, 9.2, 10.1, and 10.2, contacts of the functional surfaces B1 and B2. The
kinematic pairs of this kind are composed of two convex functional surfaces, B1 and
B2 (see Fig. 3.24):

• Elliptic-to-hyperbolic (pseudo-concave) “high-conformal point-contact kine-
matic pairs I”.

• Umbilic-to-hyperbolic (pseudo-concave) “high-conformal point-contact kine-
matic pairs I”.

• Elliptic-to-minimal (pseudo-umbilic) “high-conformal point-contact kinematic
pairs I”.

6.1

Convex elliptic-to-plane

1B

2B

2( )Dup B2.2 2.2[ ]R R� � �

K

K

6.2

Convex umbilic-to-plane

2( )Dup B

1B

2B

2 2[ ]R R� � �

K

K

Fig. 3.23 Details on “high-conformal point-contact_I” kinematic pairs that feature a planar
functional surface B1 in contact with either elliptic, or umbilic functional surface B2. (In the diagram
6.1.: R2.2 is the second principal radius of curvature of the B2 (the following inequality is valid for
R2.2: R2.2 > R1.2, where R1.2 is the first principal radius of curvature of the B2), [R2.2] is the minimal
permissible value of the radii of normal curvature. In the diagram 6.2.: R2 is the normal radius of
curvature of the functional surface, B2 (where [R2] is the minimal permissible value of the radii of
normal curvature)
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• Umbilic-to-minimal (pseudo-umbilic) “high-conformal point-contact kinematic
pairs I”.

• Elliptic-to-hyperbolic (pseudo-convex) “high-conformal point-contact kinematic
pairs I”.

• Umbilic-to-hyperbolic (pseudo-convex) “high-conformal point-contact kine-
matic pairs I”.
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Fig. 3.24 The Dupin indicatrices, Dup (B1) and Dup (B2), at contact point of “high-conformal
point-contact_I” kinematic pairs that feature convex-to-saddle-like “point-contact” of the func-
tional surfaces B1 and B2 [in contacts 8.1, 9.1, and 10.1, the actual value of the angle, μ, of the
functional surfaces, B1 and B2, local relative orientation, is in the range of �[μ] < μ < + [μ])
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The following condition, 0 < dmin
cnf � dmin

cnf

h i
, is valid for all six kinematic pairs

listed above.
For the kinematic pairs labeled 8.1, 9.1, and 10.1, the actual value of the angle, μ,

of the functional surfaces local relative orientation is in the range of μmin < μ < μmax,
where μmin and μmax are the minimum and the maximum permissible values of the
angle μ, correspondingly.

There are no constraints onto the actual value of the angle of local relative
orientation, μ, of the contacting functional surfaces, B1 and B2, for the kinematic
pairs labeled 8.2, 9.2, and 10.2.

Third, there are three different kinds of “convex-to-hyperbolic” “high-conformal
point-contact kinematic pairs I” that feature different kinds of hyperbolic functional
surfaces in contact with convex parabolic local patches of a mating functional
surface. Kinematic pairs of this kind feature a single contact point between the
functional surfaces B1 and B2. In Fig. 3.8, these kinematic pairs correspond to 8.5,
9.5, and 10.5, contacts of the functional surfaces, B1 and B2 (see Fig. 3.25):

• Parabolic-to-hyperbolic (pseudo-concave)-contact kinematic pair.
• Parabolic-to-minimal (pseudo-umbilic)-contact kinematic pair.
• Parabolic-to-hyperbolic (pseudo-convex)-contact kinematic pair.

For the kinematic pairs of these three kinds, the actual value of the angle, μ, of the
functional surfaces local relative orientation is in the range of μmin < μ < μmax, where
μmin and μmax are the minimum and the maximum permissible values of the angle μ,
correspondingly.

Fourth, there are three different kinds of “hyperbolic-to-hyperbolic” “high-con-
formal point-contact kinematic pairs I” that feature different kinds of hyperbolic
functional surfaces in contact with hyperbolic local patches of a mating functional
surface. Kinematic pairs of this kind feature a single contact point between the
functional surfaces B1 and B2. In Fig. 3.8, these kinematic pairs correspond to 10.8,
10.9, and 10.10, contacts of the functional surfaces B1 and B2 (see Fig. 3.26):

• Hyperbolic (pseudo-convex)-to-hyperbolic (pseudo-concave)-contact
kinematic pair.

• Hyperbolic (minimal)-to-hyperbolic (pseudo-concave)-contact kinematic pair.
• Hyperbolic (pseudo-concave)-to-hyperbolic (pseudo-concave)-contact

kinematic pair.

For the kinematic pairs of these three kinds, the actual value of the angle, μ, of the
functional surfaces local relative orientation is in the range of μmin < μ < μmax, where
μmin and μmax are the minimum and the maximum permissible values of the angle μ,
correspondingly.

Fifth, there are a few different kinds of “high-conformal point-contact kinematic
pairs I” composed of different kinds of elliptic, umbilic, and parabolic, functional
surfaces in contact. Kinematic pairs of this kind feature a single contact point
between the functional surfaces B1 and B2. In Fig. 3.8, these kinematic pairs
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correspond to 3.1, 3.2, 4.1, 4.2, 7.1, and 7.2, contacts of the functional surfaces B1

and B2 (see Fig. 3.27):

• Elliptic (convex)-to-elliptic (concave)-contact kinematic pair.
• Umbilic (convex)-to-elliptic (concave)-contact kinematic pair.
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Fig. 3.25 Relative
orientation of the Dupin
indicatrices, Dup (B1) and
Dup (B2), at contact point of
“high-conformal point-
contact_I” kinematic pairs
that feature convex-
parabolic-to-hyperbolic
“true-point-contact” of the
functional surfaces B1 and
B2 (the actual values of the
angle, μ, of the functional
surfaces, B1 and B2, local
relative orientation is in the
range of μmin � μ � μmax)
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• Elliptic (convex)-to-umbilic (concave)-contact kinematic pair.
• Umbilic (convex)-to-umbilic (concave)-contact kinematic pair.
• Elliptic (convex)-to-parabolic (concave)-contact kinematic pair.
• Umbilic (convex)-to-parabolic (concave)-contact kinematic pair.

For the kinematic pairs of these three kinds, the actual value of the angle, μ, of the
functional surfaces local relative orientation is in the range of μmin < μ < μmax, where
μmin and μmax are the minimum and the maximum permissible values of the angle μ,
correspondingly.
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Fig. 3.26 Relative orientation of the Dupin indicatrices, Dup (B1) and Dup (B2), at contact point of
kinematic pairs that feature concave “true-point-contact” of the functional surfaces B1 and B2 of
elliptic, umbilic, and parabolic type (in the kinematic pairs labeled 3.1 and 7.1 the actual value of the
angle, μ, of the functional surfaces, B1 and B2, local relative orientation is in the range of
μmin � μ � μmax)
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Summarizing, one can conclude that all possible kinds of point-contact kinematic
pairs:

• Are composed of two functional surfaces B1 and B2 having one point in common.
• Feature five degrees of freedom.
• The minimal diameter, dmin

cnf , of the indicatrix of conformity, CnfR (B1/B2), at point
of contact of the functional surfaces, B1 and B2, is always of a positive value, that
is, the inequality dmin

cnf > 0 is always valid in point-contact kinematic pairs.

Point contact kinematic pairs of all kinds are covered in the discussion in Sect.
1.6.1.
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Fig. 3.27 Relative orientation of the Dupin indicatrices, Dup (B1) and Dup (B2), at contact point of
kinematic pairs that feature concave “true-point-contact” of the functional surfaces B1 and B2 of
either elliptic, or umbilic, or parabolic type (in the kinematic pairs labeled 3.1 and 7.1 the actual
value of the angle, μ, of the functional surfaces, B1 and B2, local relative orientation is in the range of
μmin � μ � μmax)
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3.1.6.2 Kinematic Pairs that Feature “Line-Contact” between
the Functional Surfaces

In “line-contact kinematic pairs” (or just “Lc�kinematic pairs,” for simplicity), the
functional surfaces, B1 and B2, make contact along an arc of a curve. A more in-detail
analysis reveals that the following kinds of contact between the functional surfaces,
B1 and B2, have to be recognized in “line-contact kinematic pairs.”

Kinematic Pairs with True-Line-Contact of Functional Surfaces

The “true-line-contact” kinematic pairs (or just “TLc�kinematic pairs,” for simplic-
ity) of different kinds are distinguished. In “true-line-contact” kinematic pairs, the
functional surfaces, B1 and B2, make contact along an arc of a curve. At every point
of the line of contact, the arc of contact is entirely (locally) located in a section of the
surfaces by a plane through the common perpendicular. In a particular case, this
plane can be congruent to one of two principal planes of the surfaces. There is no
correlation between radii of normal curvature in the rest of the normal planes. “True-
line-contact” kinematic pairs of no design can be composed by two convex func-
tional surfaces in contact.

First, there are numerous different kinds of “true-line-contact” kinematic pairs
that are composed by either convex elliptic or convex umbilic or parabolic functional
surfaces that make contact with concave functional surfaces of various geometries.
The kinematic pairs of this kind are composed of two convex functional surfaces, B1

and B2 (see Fig. 3.28):

• Elliptic (concave)-to-elliptic (convex)-contact kinematic pair (3.1).
• Elliptic (concave)-to-umbilic (convex)-contact kinematic pair (3.2).
• Umbilic (concave)-to-elliptic (convex)-contact kinematic pair (4.1).
• Parabolic (convex)-to-parabolic (convex)-contact kinematic pair (5.5).
• Parabolic (convex)-to-parabolic (convex)-contact kinematic pair (6.5).
• Parabolic (concave)-to-flatten-contact kinematic pair (7.1).
• Parabolic (concave)-to-umbilic (convex)-contact kinematic pair (7.2).
• Parabolic (convex)-to-parabolic (convex)-contact kinematic pair (7.5).

In Fig. 3.8, these kinematic pairs correspond to 3.1, 3.2, 4.1, 5.5, 6.5, 7.1, 7.2, and
7.5, contacts of the functional surfaces B1 and B2. Indicatrices of conformity,
CnfR(B1/B2), along with the Dupin indicatrices, Dup (B1) and Dup (B2), at contact
point of the kinematic pairs of this particular kind are shown in Fig. 3.28. There are
no constraints onto the actual value of the angle of local relative orientation, μ, of the
contacting functional surfaces, B1 and B2, for the kinematic pairs labeled 3.2, 4.1,
6.5, and 7.2. For the kinematic pairs labeled 3.1, 5.5, 6.5, and 7.1, the actual value of
the angle, μ, of the functional surfaces, B1 and B2, local relative orientation equals to
μ ¼ � 180∘.
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Second, there are several different kinds of “true-line-contact” kinematic pairs
composed of elliptic, umbilic, and parabolic, functional surfaces that make contact
with functional surfaces of hyperbolic geometry. Kinematic pairs of this kind feature
a single contact point between the functional surfaces. In Fig. 3.8, these kinematic
pairs correspond to 8.1, 8.2, 8.5, 9.1, 9.2, 9.5, 10.1, 10.2, and 10.5, contacts of the
surfaces, B1 and B2 (see Fig. 3.29):

• Hyperbolic (pseudo-concave)-to-elliptic (convex)-contact kinematic pair (8.1).
• Hyperbolic (minimal)-to-elliptic (convex)-contact kinematic pair (8.2).
• Hyperbolic(pseudo-convex)-to-elliptic (convex)-contact kinematic pair (8.5).
• Hyperbolic (pseudo-concave)-to-umbilic (convex)-contact kinematic pair (9.1).
• Hyperbolic (minimal)-to-umbilic (convex)-contact kinematic pair (9.2).
• Hyperbolic(pseudo-convex)-to-umbilic (convex)-contact kinematic pair (9.5).
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Fig. 3.28 Indicatrices of conformity, CnfR(B1/B2), at contact point of kinematic pairs that feature
convex-to-convex “true-line-contact” of the functional surfaces B1 and B2 (in the cases 3.1, 5.5, 7.1,
and 7.5, the actual value of the angle, μ, of the functional surfaces, B1 and B2, local relative
orientation equals to μ¼ n � 90∘, n is an integer number; no constraints onto the angle, μ, is observed
in the cases 3.2, 4.1, 6.5, and 7.2)
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• Hyperbolic (pseudo-concave)-to-parabolic (convex)-contact kinematic pair
(10.1).

• Hyperbolic (minimal)-to-parabolic (convex)-contact kinematic pair (10.2).
• Hyperbolic(pseudo-convex)-to-parabolic (convex)-contact kinematic pair (10.5).

For the kinematic pairs of the kinds labeled as 8.1, 8.2, 8.5, 10.1, 10.2, and 10.5,
the actual value of the angle, μ, of the functional surfaces local relative orientation
equals to μ¼ � 180∘. No constraints on the actual value of the angle, μ, are imposed
in the kinematic pairs 8.2, 9.2, 9.5, and 10.2.
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Fig. 3.29 Indicatrices of conformity, CnfR(B1/B2), at contact point of true-line kinematic pairs that
feature hyperbolic-to-convex “true-line-contact” of the functional surfaces B1 and B2 (in the cases
8.1, 9.5, 10.1, 8.5, 9.5, and 10.5, the actual value of the angle, μ, of the functional surfaces, B1 and
B2, local relative orientation equals to μ ¼ n � 90∘, n is an integer number; no constraints onto the
angle, μ, is observed in the cases 8.2, 9.9, and 10.2)
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Locally Surface-to-Surface Contact Kinematic Pairs II

The “locally-surface-to-surface_II-contact” kinematic pairs (or just
“LSSc.2�kinematic pairs,” for simplicity) are those that feature true line contact of
the functional surfaces in a section by a normal plane and zero difference between
magnitudes of radii of normal curvature, RB.1 and RB.2, in all the rest sections by a
plane through a common perpendicular at contact point of the functional surfaces.
Therefore, the Dupin indicatrices, Dup (B1) and Dup (B2), are congruent, and, thus,
all the diameters of the indicatrix of conformity, CnfR(B1/B2), are of a zero value,
dmin
cnf ¼ 0.
“Locally-surface-to-surface_II-contact” kinematic pairs cannot be composed of

two convex functional surfaces, B1 and B2.
Different kinds of kinematic pairs with “locally-surface-to-surface_II-contact” of

functional surfaces are distinguished.
There are four different kinds of “locally-surface-to-surface_II-contact” kine-

matic pairs that are composed by functional surfaces, B1 and B2, of various geom-
etries (see Fig. 3.30):

• Elliptic (convex)-to-elliptic (concave) “locally-surface-to-surface_II-contact”
kinematic pair.

• Parabolic (convex)-to-parabolic (concave) “locally-surface-to-surface_II-con-
tact” kinematic pair.

• Hyperbolic (minimal)-to-hyperbolic (minimal) “locally-surface-to-surface_II-
contact” kinematic pair.

• Hyperbolic (pseudo-concave)-to-hyperbolic (pseudo-convex) “locally-surface-
to-surface_II-contact” kinematic pair.

Kinematic pairs of this kind feature a common line of contact point between the
functional surfaces, B1 and B2, along with equal magnitude and opposite sign radii of
normal curvature in sections by a plane through the common perpendicular. In
Fig. 3.8, these kinematic pairs correspond to 3.1, 7.5, 9.9, and 10.8, contacts of the
functional surfaces B1 and . One can imagine the principal that the radii of curvature,
R1B1 , R2B1 , R1B2 , and R2B2 , in the kinematic pairs 3.1, 4.2, 9.9, and 10.8, approach in
infinity (R1B1 ! 1, R2B1 ! 1, R1B2 ! 1, and R2B2 ! 1). In such a scenario, the
functional surfaces, B1 and B2, are getting flatten. Actually, flattening of the func-
tional surfaces is observed in any and all kind of kinematic pairs, and not only in the
designs 3.1, 4.2, 9.9, and 10.8. Therefore, in Fig. 3.30, “locally-surface-to-surface_I-
contact” kinematic pairs with flatten functional surfaces, B1 and B2, are labeled as
1.1, 2.1, 2.2, 3.1, . . ., 10.9, and 10.10.

Relative orientation of the curvature indicatrices, Crv (B1) and Crv (B2), at
contact point of the kinematic pairs of this particular kind is shown in Fig. 3.30.
For the kinematic pairs under consideration, the actual value of the angle, μ, of the
functional surfaces, B1 and B2, local relative orientation equals to a value
μ ¼ � 180∘.
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The indicatrices of conformity, CnfR(B1/B2), for kinematic pairs featuring
“locally-surface-to-surface_II-contact” of the functional surfaces, B1 and B2, are
always shrunk to a point. This point is coincident with the contact point of the
functional surfaces.
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Fig. 3.30 Indicatrices of conformity, CnfR(B1/B2), and the curvature indicatrices, Crv (B1) and Crv
(B2), at contact point of “locally-surface-to-surface_II-contact” kinematic pairs [in all the contacts,
the actual value of the angle, μ, of the functional surfaces, B1 and B2, local relative orientation,
equals μ ¼ � 180∘)
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High-Conformal Point-Contact Kinematic Pairs II

The performance of kinematic pairs is strongly correlated to the degree of confor-
mity of the functional surfaces, B1 and B2, to each other at every point of their
contact. The more conformal the surfaces B1 and B2 at points of their contact, the
better the performance of the kinematic pair, and vice versa.

The “high-conformal point-contact kinematic pairs II” (or just “HCc.2�kinematic
pairs,” for simplicity) feature true line contact of the functional surfaces in one of two
principal sections and a small difference between magnitudes of radii of normal
curvature, RB.1 and RB.2, in all the rest sections by a plane through a common
perpendicular at contact point of the functional surfaces. Therefore, the curvature
indicatrices, Crv (B1) and Crv (B2), are congruent, and, thus, all the diameters of the
indicatrix of conformity, CnfR(B1/B2), are of a zero value, dmin

cnf ¼ 0.
Four different kinds of “high-conformal point-contact kinematic pairs II” com-

posed of functional surfaces, B1 and B2, of various geometries are distinguished (see
Fig. 3.31):

• Elliptic (convex)-to-elliptic (concave) “locally-surface-to-surface_II-contact”
kinematic pair.

• Parabolic (convex)-to-parabolic (concave) “locally-surface-to-surface_II-con-
tact” kinematic pair.

• Hyperbolic (minimal)-to-hyperbolic (minimal) “locally-surface-to-surface_II-
contact” kinematic pair.

• Hyperbolic (pseudo-concave)-to-hyperbolic (pseudo-convex) “locally-surface-
to-surface_II-contact” kinematic pair.

At one of the principal sections, the functional surfaces make line contact, while

in the other principal plane section, an inequality, dcnf � dmin
cnf

h i
, is observed [in all

the contacts, the actual value of the angle, μ, of the functional surfaces, B1 and B2,
local relative orientation equals μ ¼ � 180∘). In Fig. 3.8, these kinematic pairs
correspond to 3.1, 7.5, 9.9, and 10.8, contacts of the functional surfaces B1 and B2.
Relative orientation of the curvature indicatrices, Crv (B1) and Crv (B2), at contact
point of the kinematic pairs of this particular kind is shown in Fig. 3.31. For the
kinematic pairs under consideration, the actual value of the angle, μ, of the functional
surfaces, B1 and B2, local relative orientation equals to a value μ ¼ � 180∘.

The indicatrices of conformity, CnfR(B1/B2), for kinematic pairs featuring
“locally-surface-to-surface_II-contact” of the functional surfaces, B1 and B2, are
always shrunk to a point. This point is coincident with the contact point of the
functional surfaces.
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3.1.6.3 Kinematic Pairs that Feature “Surface-to-Surface-Contact”
between Functional Surfaces

In “surface-to-surface-contact kinematic pairs” (or just “SSc�kinematic pairs,” for
simplicity), the functional surfaces, B1 and B2, make contact within a common
surface patch.7 A more in-detail analysis reveals that the following kinds of contact
between the functional surfaces, B1 and B2, have to be recognized in “surface-to-
contact kinematic pairs.”

Considered locally, “surface-to-surface-contact kinematic pairs” cannot be dis-
tinguished from the shown in Fig. 3.18, “locally-surface-to-surface_I-contact”
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Fig. 3.31 Indicatrices of conformity, CnfR(B1/B2), and the curvature indicatrices, Crv (B1) and Crv
(B2), at “high-conformal point-contact kinematic pairs II” kinematic pairs. At one of the principal
sections functional surfaces make line contact, while in the other principal plane section an

inequality, dcnf � dmin
cnf

h i
, is observed [in all the contacts, the actual value of the angle, μ, of the

functional surfaces, B1 and B2, local relative orientation, equals μ ¼ � 180∘)

7Kinematic pairs of the design under consideration can also be referred to as “true surface-to-surface
contact kinematic pairs” (or just “TSSc�kinematic pairs,” for simplicity).
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kinematic pairs and from the shown in Fig. 3.30 “locally-surface-to-surface_II-
contact” kinematic pairs. Indicatrix of conformity at any point of contact of the
functional surfaces in “surface-to-surface-contact kinematic pairs” is shrunk to a
point.Moreover, “true-surface-to-surface-contact kinematic pairs” can be viewed as a
reduced case of any of the shown in see Fig. 3.8. Kinematic pairs 1.1, 2.1, 2.2, 3.1, . . .,
10.9, and 10.10.

To avoid indefinites, the following is helpful to be taken into account.
In a kinematic pair, the functional surfaces, B1 and B2, have to have at least one

degree of freedom in relation to each other. Therefore, surfaces not of all geometries
can be used in the design of kinematic pairs of the kind under consideration. In order
to be suitable for application in the design of kinematic pairs that feature surface-to-
surface-contact of the functional surfaces, a functional surface has to allow “sliding
over itself.”

The property of surface B to allow for sliding over itself means that for the surface
B there exists a corresponding motion: when performing this motion, the enveloping
to the consecutive positions of the traveling surface B is congruent to the surface
B itself.

According to that, the following functional surfaces that allow for sliding “over
themselves” are recognized (see Fig. 3.32):
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Fig. 3.32 Functional surfaces that allow for sliding over themselves
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• A screw surface of a constant axial pitch ( px ¼ Const)—one degree of freedom.
• A surface of rotation about the centerline of the surface of revolution (the axial

pitch of a screw surface is reduced to a zero px ¼ 0)—one degree of freedom.
• A surface of translation along the directrix (the axial pitch of a screw surface

approaches to an infinity px ! 1)—one degree of freedom.

In addition, a few reduced cases of the surfaces that allow for sliding “over
themselves” can also be distinguished:

• A cylinder of revolution (a cylinder of revolution allows a rotation about, as well
as a straight motion along the centerline of the cylinder)—two degrees of
freedom.

• A sphere (a sphere allows for three rotations about three axes independently)—
three degrees of freedom.

• A plane (a plane surface allows straight motion in two different directions within
the plane, as well as a rotation about an axis that is perpendicular to the plane)—
three degrees of freedom.

It is proven [20–23] that there are no other kinds of functional surfaces that allow
for sliding over themselves.

From the standpoint of surface geometry, kinematic pairs those composed of two
screw surfaces are more complex (and are more general) compared to kinematic
pairs composed either of the “sphere-to-sphere” surfaces (having a single degree of
freedom) or of the “plane-to-plane” surfaces (both having three degrees of freedom).

A performed analysis of possible kinds of kinematic pairs composed of two
surfaces congruent to one another reveals that there are only six possible kinds of
kinematic pairs of this particular design. The kinematic pairs of all of these designs
form a separate group of kinematic pairs.

There are six different kinds of kinematic pairs composed by two congruent local
patches of functional surfaces, B1 and B2:

• Screw-to-screw-contact kinematic pair (one DoF).
• Surface-of-rotation-to-surface-of-rotation-contact kinematic pair (one DoF).
• Surface-of-translation-to-surface-of-translation-contact kinematic pair (one

DoF).
• Cylinder-of-rotation-to-cylinder-of-rotation-contact kinematic pair (two DoF).
• Sphere-to-sphere-contact kinematic pair (three DoF).
• Plane-to-plane-contact kinematic pair (three DoF).

“True-surface-to-surface-contact kinematic pairs” of no other design are feasible.

3.1.7 Classification of Kinematic Pairs

Depending on the kind of contact of two functional surfaces, the following groups of
kinematic pairs are recognized:
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Pc�kinematic pairs (i.e., point-contact kinematic pairs):
TPc�kinematic pairs (i.e., true-point-contact kinematic pairs)—29 kinds in total.
LLc�kinematic pairs (i.e., locally-line-contact kinematic pairs)—20 kinds in total.
LSc.1�kinematic pairs (i.e., locally-surface-to-surface_I-contact kinematic pairs)—

7 kinds in total.
HCc.1�kinematic pairs (i.e., high-conformal-contact_I kinematic pairs)—20 kinds

in total.
Lc�kinematic pairs (i.e., line-contact kinematic pairs):
TLc�kinematic pairs (i.e., true-line-contact kinematic pairs)—23 kinds in total.
LSc.2�kinematic pairs (i.e., locally-surface-to-surface_II-contact kinematic

pairs)—8 kinds in total.
HCc.2�kinematic pairs (i.e., high-conformal-contact_II kinematic pairs)—8 kinds

in total.
SSc�kinematic pairs (i.e., surface-to-surface-contact kinematic pairs):
TSSc�kinematic pairs (i.e., true-surface-to-surface-contact kinematic pairs)—6

kinds in total.

The following classification of the discussed kinds of kinematic pairs, both, all
earlier known, as well as all newly introduced kinematic pairs, are covered by the
proposed classification.

Only 29 + 23 + 6 + 20 + 7 + 8 + 20 + 7 + 8¼ 128 kinds8 of contact of two smooth,
regular surfaces P and T are possible in nature.9 For some kinds of the surfaces
contact, no constraints are imposed on the actual value of the angle μ of local relative
orientation of the functional surfaces, B1 and B2. For the rest kinds of the functional
surfaces contact, a corresponding range of the allowed value of the angle μ
[μmin] � μ � [μmax] is specified. For particular cases of the functional surfaces
contact, the only feasible value μ ¼ [μ] is allowed.

The proposed classification of possible kinds of kinematic pairs is illustrated by a
chart shown in Fig. 3.33. As seen from Fig. 3.33, four stratums (I through IV) are
distinguished in the classification. There are as many as 128 (in total) different kinds
of kinematic pairs. The proposed classification (see Fig. 3.33) is self-consistent and
complete (or, at least, potentially complete).

A more in-detail analysis of the kinematic pairs of all of the listed geometries is
desirable.

In reality, the functional surfaces, B1 and B2, in a kinematic pair are displaced in
relation to one another (that is inevitable). The total displacement of the functional
surfaces can be expressed in terms of three (a) elementary linear displacements (δx,
δy, δz) along the axes of a local reference system, xKyKzK, with the origin at contact
point, K, and (b) three elementary angular displacements (φx, φy, φz) about the axes
of the local reference system, xKyKzK. If the linear, δx, δy, and δz, and the angular, φx,
φy, and φz, displacements are taken into account, the so-called quasi-surface-to-

8It is desirable to have these numbers verified by an independent researcher(s).
9The results of a more in-detail investigation of all possible kinds of true point contact of two
smooth, regular surfaces in the first order of tangency can be found in [5, 6, 16].
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surface-contact kinematic pairs of the first (I) and of the second (II) kind can be
introduced into consideration. Quasi-surface-to-surface-contact kinematic pairs of
the first (I) kind feature single contact point, K. Quasi-surface-to-surface-contact
kinematic pairs of the second (II) kind feature a common contact line, LC. Incorpo-
ration of the quasi-surface-to-surface-contact kinematic pairs of the first (I) and of
the second (II) kind into the analysis represents an additional way for further
evolution of the proposed classification of the kinematic pairs (see Fig. 3.33). This
potential concept is not covered in this text, and it may be a subject for future work.

3.2 Concluding Remarks

This chapter of the book deals with kinematic pairs. Possible kinds of kinematic
pairs are investigated. Novel kinds of kinematic pairs are discovered. Correspon-
dence between normal curvatures of functional surfaces in kinematic pairs is inves-
tigated. Instead of two groups of kinematic pairs commonly recognized in the
nowadays practice (i.e., instead of the so-called lower kinematic pairs and higher
kinematic pairs), it is proposed to distinguish three groups of kinematic pairs,
namely:

(a) “Point-contact kinematic pairs” (or just “Pc�kinematic pairs,” for simplicity)
(b) “Line-contact kinematic pairs” (or just “Lc�kinematic pairs,” for simplicity)
(c) “Surface-to-surface-contact kinematic pairs” (or just “Sc�kinematic pairs,” for

simplicity)

True-Point-Contact
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Locally-Line-Contact KP

Locally S-to-S Contact KP: I

Point Contact KP

I

High-conformal-contact KP: I
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Line Contact KP S-to-S Contact KP

True S-to-S Contact KP
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23 8 68

39 6

128 (in total) possible kinds of kinematic pairs (KP)

Fig. 3.33 Classification of possible kinds of kinematic pairs: There are as many as 128 (in total)
different kinds of kinematic pairs (KP); S � to � S stands for “Surface-to-Surface” contact of the
functional surfaces
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The concept of three groups of kinematic pairs is originated from two patents [18]
(of 1983) and [19] (of 1984) and is based on the research undertaken by the author in
the late 1970s.

A novel classification of all possible kinds of kinematic pairs is proposed. The
proposed classification is potentially complete and is open for further improvements.

Proper labeling can be used for identification of kinematic pairs: instead of the
indefinite terms “higher kinematic pair” and “lower kinematic pair,” appropriate
labels (for instance, the kinematic pair #11.7) can be used instead.

A more in-detail analysis of the kinematic pairs of all of the listed geometries is
desirable.
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Chapter 4
High-Performance Plastic Gears

C. M. Illenberger , T. Tobie , and K. Stahl

Nomenclature

a (mm) Center distance
aACR (–) Auxiliary factor to calculate Yε, ACR
AG (m2) Heat dissipating surface of the mechanism housing
b (mm) Face width
bH (mm) Hertzian semi-width
bw (mm) Common face width of the gear pair
Cα (μm) Amount of tip relief
c0 (N/(mm∙μm)) Single stiffness
d1 (mm) Reference diameter
ED (–) Relative tooth-engagement time
FN (N) Normal force
FR (N) Friction force
Ft (N) Tangential force
fzi (–) Correction factor of Δεw
fεβ (–) Correction factor of overlap ratio
i (–) Transmission ratio
HV (–) Tooth loss factor
KA (–) Application factor
KF (–) Application factor for tooth root load
KFα (–) Face factor
KFβ (–) Width factor
KH (–) Factor for tooth flank loading
Kv (–) Dynamic factor
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kW 10�6∙mm3/(N∙m) Wear coefficient
kϑ, Fla K∙(m/s)0.75∙mm1.75/W Heat transfer coefficient of the plastic gear (flank)
kϑ, Fuß K∙(m/s)0.75∙mm1.75/W Heat transfer coefficient of the plastic gear (root)
lFl (mm) Profile line length of the active tooth flank
mn (mm) Normal module
NL (–) Number of load cycles
P (W) Power
pet (mm) Transverse normal base pitch
pH (N/mm2) Hertzian pressure
Rλ, G (K∙mm2/W) Heat transfer resistance of the mechanism housing
SFmin (–) Required minimum safety factor (root)
SHmin (–) Required minimum safety factor (flank)
T1, 2 (Nm) Torque
Td (Nm) Torque
u (–) Transmission ratio
v1, 2 (m/s) Circumferential speed
vg (m/s) Sliding speed
vt (m/s) Tangential speed
vΣ (m/s) Sum speed
Vol (m3) Volume
w (N/mm) Normal line load
Wm (mm) Averaged linear wear
Wzul (mm) Permissible linear wear
YFa (–) Form factor
YSa (–) Stress correction factor
YSt (–) Stress correction factor
Yβ (–) Helix angle factor
Yε (–) Contact ratio factor
Yε, ACR (–) Modified contact ratio factor
z1, 2 (–) Number of teeth (pinion/wheel)
ZE (–) Elasticity factor
ZH (–) Zone factor
ZR (–) Surface roughness factor
Zβ (–) Spiral angle factor
Zε (–) Contact ratio factor
Δεw (–) Load-induced increase in actual contact ratio
Δεzi (–) Approximated increase in actual contact ratio due to

the numbers of teeth
Δϑtooth (K) Increase of tooth temperature
εα (–) Transverse contact ratio
εα, w, mod (–) Modified actual contact ratio
ϑ0 (�C) Ambient temperature
ϑFuß (�C) Tooth root temperature
ϑFla (�C) Tooth flank temperature
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ϑM (�C) Bulk temperature
ϑOil (�C) Oil temperature
μ (–) Coefficient of friction
σF (N/mm2) Tooth root stress
σF0 (N/mm2) Nominal tooth root stress
σFlimN (N/mm2) Fatigue strength
σFP (N/mm2) Permissible root strength
σH (N/mm2) Flank pressure
σHlimN (N/mm2) Rolling contact fatigue strength
σHP (N/mm2) Permissible flank pressure

4.1 Introduction

Plastic gears are gaining more and more importance and are used in new applica-
tions. In the past, the focus was mostly on motion transmission in actuators, but
current developments show a trend toward applications with higher drive power. In
the automotive sector, in addition to a large number of electric actuators driven by
plastic gears, safety-critical applications such as braking and steering systems are
increasingly equipped with plastic gears. In the drive unit of e-bikes, plastic gears are
the current state of the art, and the use of plastic gears is also conceivable in the drive
train of small urban electric vehicles. In order to dimension plastic gears in line with
requirements and to fully exploit the potential of thermoplastic materials, solid
knowledge of material behavior is required both during production and in subse-
quent operation. This chapter explains the current state of the art for plastic gears and
offers comprehensive insights into current research projects.

4.1.1 State of the Art and Application of Plastic Gears

4.1.1.1 Materials and Properties

The mechanical-thermal properties resulting from the molecular structure of differ-
ent plastics allow a classification of the materials into different sub-categories:
thermosetting plastics, elastomers and thermoplastics. In the environment of drive
technology, semi-crystalline thermoplastics are mainly used as gear materials.
Among others acc. to [1], the following semi-crystalline thermoplastics are partic-
ularly relevant for the production of plastic gears:

• High-molecular polyethylene of high density (PE-HD).
• Polyoxymethylene (POM).
• Polyamide (PA).
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• Polybutylene terephthalate (PBT).
• Polyetheretherketone (PEEK).

To further increase the mechanical properties or to specifically adjust them, fiber
reinforcements are often added to the respective base material. Glass or carbon fibers
are usually applied to the matrix materials to increase the mechanical parameters
such as Young’s modulus and tensile strength. Further, the addition of aramid fibers
is possible to improve the mechanical properties. In order to positively influence the
frictional properties, especially in dry running, friction-reducing additives such as
graphite and polytetrafluoroethylene (PTFE) may be utilized. This enables on the
one hand the reduction of the friction coefficient and the associated heat generation
in the tooth contact; on the other hand, efficiency, wear, and service life can be
optimized. When selecting friction-reducing fillers, however, it should be noted that
the fillers are primarily recommended for improving the tribological properties on
the tooth flank, where they have a positive effect, while other mechanical properties
such as strength can be negatively influenced [2].

The mechanical properties of thermoplastics differ significantly from those of
metallic construction materials. For instance, the Young’s modulus and tensile
strength are not only several times lower than those of steel but are also highly
temperature-dependent. High-loading speeds increase tensile strength and Young’s
modulus, while elongation at break decreases. In static loading, plastics are
deformed by creep [2]. Table 4.1 shows the mechanical properties as well as the
maximum continuous operating temperature of exemplary thermoplastic gear mate-
rials that are chosen typically when designing plastic gears.

An increase in temperature reduces the fraction of semi-crystalline areas in the
material, which results in a reduction of the Young’s modulus and the strength
properties. If the glass transition temperature is exceeded, a significant reduction of
the mechanical properties is to be expected.

Humidity is another influencing parameter on the properties of plastic gears.
Thermoplastic materials absorb moisture from the environment to varying degrees.
An increasing moisture content reduces the yield stress and the modulus of elasticity.
Furthermore, the absorption of moisture leads to volume changes due to
expansion [2].

Thermoplastic materials exhibit viscoelastic material behavior. This behavior is
responsible for the material damping of thermoplastic materials. The damping
coefficients differ depending on the type of material and temperature. The high-

Table 4.1 Mechanical properties of typically applied thermoplastic gear materials [2]

Material
Density
in kg/m3

Young’s modulus at
23 �C in N/mm2

Tensile strength at
23 �C in N/mm2

Max. continuous
operating temperature
in �C

PA 46 1.20 3300 100 140

PA 66 1.15 3000 85 90

POM 1.41 2900 65 90

PEEK 1.28 3600 100 250
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damping characteristics compared to steel materials have a positive effect on the
noise emissions of plastic gears. Another important property of thermoplastics is
their resistance to gaseous and liquid chemicals. Table 4.2 shows the resistance of
exemplary thermoplastics to chemicals acc. to [2]. Resistance to chemicals allows
plastic gears to operate in environments where steel gears cannot be used due to
corrosion.

4.1.1.2 Manufacturing

The vast majority of plastic gears produced are injection molded. Depending on the
material used, the desired gear quality as well as the quantities produced and the size
of the individual components, other manufacturing processes such as casting or
machining processes can also be considered. For the production of high volumes, the
injection molding process is typically the most cost-effective manufacturing process
in terms of individual unit costs. In this process, the thermoplastic granulate is
melted and injected via a screw into a cavity, where the melt takes on the shape of
the cavity after solidification. In addition to the low unit costs, another major
advantage of the injection molding process is the largely free design of the mold.
In addition to conventional involute gears, alternative geometries can also be
manufactured which can only be machined to a limited extent by conventional
hobbing. Highly integrated components can further be manufactured. In order to
achieve a sufficiently precise gearing quality, however, it is necessary to consider the
shrinkage of the material during the cooling process. Components with large wall
thicknesses tend to form voids and to shrink during cooling, which is why the
production of injection molded gears is subject to production limitations. The
addition of fiber reinforcements can reduce shrinkage. Depending on the flow

Table 4.2 Resistance of typically applied thermoplastics to chemicals acc. to [2] (+ resistant, ○
limited resistance, - not resistant)

Chemical PA 46 PA 66 POM PEEK

Alcohols Methanol + ○ + +

Ethanol + ○ + +

Propanol + ○ + +

Water Cold + + + +

Hot ○ ○ ○ +

Fuels Gasoline + + + +

Diesel + + + +

Acids Hydrochloric acid � � � ○

Sulfuric acid � � � �
Acetic acid � � � +

Bases Potassium hydroxide + + +

Sodium hydroxide + + +

Ammonium hydroxide o + +
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direction, however, considerable differences in shrinkage behavior can occur, which
can lead to distortion in the component [2].

A further manufacturing process is the unpressurized casting of larger compo-
nents with part masses starting at approximately 1 kg. The raw component is
machined after polymerization, since the materials used (PA6G, PA12G) lead to
comparatively high shrinkage, which cannot be compensated by corrections in the
mold [2].

For small and medium series, machining processes are applied to a large extent.
For this purpose, the same tools are suitable as are used for the production of steel
gears. However, the constraint on the hobbing movement for the production of
involute gears represents a limitation in the design of machined plastic gears.

The manufacturing accuracy and the resulting gearing quality are strongly depen-
dent on the manufacturing method and the respective process conditions.

4.1.1.3 Design

The design possibilities offered by injection molding are very diverse. In particular,
it is possible to injection mold stepped gears and overmold shafts and hubs. Further,
there is the possibility of direct manufacturing of highly integrated components.
Different wall thicknesses cause an unequal shrinkage behavior during cooling of the
component and can lead to distortion and internal stresses. For the purpose of
economic production, the gears can be equipped with cutouts. On the one hand,
this reduces the amount of resources required during production and, on the other
hand, reduces the weight of the component. It is advisable to ensure that the cutouts
are symmetrically arranged to minimize distortion of the plastic gear. In order to
increase the stiffness of the gear body ribs can be applied.

If possible, the torque should be transmitted form-fittingly from the gear to the
corresponding shaft. Overmolding of inserted shafts generally results in good cen-
tering of the gear teeth. When manufacturing large-size plastic gears, larger steel
inserts can be overmolded to reduce dimensional changes due to shrinkage [2].

4.1.1.4 Fields of Application

Plastic gears are used within a wide range of power starting from less than 0.001 kW
in small consumer goods to up to approximately 1 kW in high performance appli-
cations such as e-bike transmissions. A large share of the applications for plastic
gears is in the household appliance sector. Here, plastic gears are used not only for
drives in toys, but also, and in particular, in kitchen appliances and tools. In many
cases, the plastic gears are operated dry or with starved lubrication. A lifetime
lubrication with grease is often used. In applications in printing and food technology,
the use of a lubricant is often completely avoided due to hygiene requirements. A
growing market for plastic gear wheels can be found especially in the smart home
sector, where new functions are realized by means of electric drives. Here,
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automatically controlled roller blinds, venetian blinds as well as automatic garage
doors, roof windows and other applications are suitable for the use of plastic gears.

Plastic gears are also increasingly used in the automotive sector. The reason for
this is the constant introduction of new functions such as electrically adjustable
mirrors, belt tensioners, seat adjustment, and many other applications, which above
all increase comfort. But also, in the area of safety-relevant functions, plastic gears
are increasingly used in the automotive sector. These include, for example, the
parking brake and electric power steering, where plastic gears are used. In the
powertrain segment, plastic gears are used primarily in the field of electric
micromobility. Plastic gears are nowadays an essential part of the drive train of
e-bikes. The power to be transmitted by the e-bike is in the range of the power that
can be transferred with high-performance plastics. Although plastic gears are not yet
used for the currently growing market of electrified urban light vehicles with drive
powers of <15 kW, in view of new material developments and improved calculation
and simulation possibilities, plastic gears appear at least conceivable, so that the
achievable performance can be continually increased.

4.1.2 Design and Calculation Methods for Plastic Gear
Applications

4.1.2.1 Tooth Temperature

The knowledge of the gear surface and bulk temperature is of essential meaning
when designing plastic gears. Since material properties such as elasticity and
strength are highly temperature dependent, the resulting temperature distribution
during operation has to be known to avoid undesired failure such as melting or
fatigue damage due to reduced gear strength at elevated temperatures. Particularly in
dry or starve-lubricated systems the maximum drive power is limited due to the low
thermal conductivity of the plastic gears and the rise of the gear temperatures during
operation. Fig. 4.1. shows melting damages on a dry running PA12 gear. Grease
lubrication is one possibility to reduce friction in the gear contact and thus minimize
friction losses in order to increase the possible drive power. Operation under
oil-lubricated conditions is another way to drastically increase the maximum drive
power since the generated heat is not only reduced by means of lower friction losses
due to lubrication but heat is also removed from the gear contact by the lubricant
itself. Another possibility to reduce gear temperatures and to increase transferable
power is to modify the tooth geometry in order to reduce friction losses by means of
loss-optimized gear geometry [3].

Among the first investigations on the thermal behavior of plastic gears is the work
of Hachmann and Strickle [4] in the 1960s. They conducted experimental investi-
gations on the thermal operating behavior of polyamide gears and the resulting gear
strength. As a result of their research they suggested a method to calculate the bulk
and surface temperature of plastic gears under different lubrication modes. The basic
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calculation method consists of a thermal equilibrium between the heat generated in
the tooth contact and the heat dissipated from the gearbox to the outside. Depending
on the material pairing, geometry, lubrication conditions, and drive power, the tooth
temperature will increase until a thermal equilibrium is achieved. Hachmann and
Strickle derive equations for the determination of tooth temperatures from their
experimental investigations. The influence of viscoelastic losses on the temperature
rise is neglected. The basic method is used until present and forms also the core of
the temperature calculation used in VDI 2736 [5].

Blok [6] introduces an approach to determine the flank surface temperature based
on the model of a strip-shaped heat source moving over the tooth flank during tooth
engagement. This model considers friction losses due to load, geometry, and the
resulting sliding speeds. The calculation of the temperature rise in dependence of the
sliding speeds results in the fact that there is no temperature rise calculated at the
pitch point, which resembles a simplification since only friction losses are consid-
ered and other effects such as viscoelasticity are neglected when determining the
tooth temperature with this approach.

A further method for tooth temperature determination is suggested by Takanashi
and Shoji [7]. They consider not only the effect of frictional losses on the gear
temperature but also viscoelastic losses. The viscoelastic effects are modelled using
a spring-damper approach. The heat generated in the tooth contact is calculated from
the sum of the two components, friction and viscoelasticity. The generated heat is
also compared to the heat dissipated by the gearbox, and a state of equilibrium of

Fig. 4.1 Melting damage at
PA12 gears [3]
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constant steady-state temperature is determined. A particular challenge in the appli-
cation of the calculation approach is often the availability of material characteristics.
Due to the large number of parameters required, this method is used in compara-
tively few cases.

The currently most widely used method for determining tooth temperatures on
plastic gears is published in VDI 2736 [5]. The calculation method is strongly
derived from the approach of Hachmann and Strickle [4] and is based on the same
basic assumptions. Eqs. (4.1) and (4.2) show the calculation approach for determin-
ing tooth root and tooth flank temperature according to VDI 2736 [5]. Tables 4.3, 4.4
and 4.5 show the required parameters for the temperature calculation according to
VDI 2736 [5].

ϑFuß � ϑ0 þ P ∙ μ ∙HV ∙
kϑ,Fuß

b ∙ z ∙ vt ∙mnð Þ0:75 þ
Rλ;G

AG

 !
∙ED0:64 ð4:1Þ

ϑFla � ϑ0 þ P ∙ μ ∙HV ∙
kϑ,Fla

b ∙ z ∙ vt ∙mnð Þ0:75 þ
Rλ;G

AG

 !
∙ED0:64 ð4:2Þ

Table 4.3 Coefficient of
friction [25]

Lubrication Pairing μ

Circulating oil All 0.04

Oil mist All 0.07

Grease All 0.09

Dry Plastic/steel 0.20

PA/PA 0.40

POM/POM 0.28

POM/PA 0.18

PA/PBT 0.35

POM/PBT 0.18

Table 4.4 Heat transfer
resistance of the metallic
mechanism housing
in K∙m2/W [25]

Mechanism Rλ,G

Open with unimpeded entry of air 0

Partially open housing 0.015. . .0.045

Closed housing 0.060

Table 4.5 Heat transfer
coefficients of the plastic gear
in K∙(m/s)0.75∙mm1.75/W [25]

Lubrication Pairing kθ,Fuß kθ,Flanke
Circulating oil All 0 0

Dry/grease/oil
mist

Plastic/
plastic

2.1 � 103 9.0 � 103

Plastic/steel 0.9 � 103 6.3 � 103
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4.1.2.2 Tooth Load Carrying Capacity Acc. To VDI 2736

The considerable differences between the material properties of metallic gears and
those of gears made of thermoplastics require a dedicated calculation method for
determining load carrying capacity of plastic gears. In order to calculate the lifetime
of involute metallic gears DIN 3990 [8] or ISO 6336 [9] are commonly used. These
standards have been developed and improved for several decades and are also used
as the basic framework for the tooth load carrying capacity of thermoplastic gears.

Tooth Root Load Carrying Capacity

To calculate the tooth root load carrying capacity, the single teeth of a plastic gear are
represented by the model of a fixed cantilever beam. The area of maximum bending
stress appears in the area of the tooth root at the contact point of 30�-tangent and the
tooth root radius. The approach according to VDI 2736 [5] is based on DIN 3990
method C [8] and assumes that the tooth force attacks at the tooth tip of the plastic
gear. Equations (4.3) to (4.5) show the calculation process for determining the tooth
root load carrying capacity. The fatigue strength σFlimN thereby differs for each type
of thermoplastic:

σF ¼ Ft

mn ∙ b
∙ YFa ∙ YSa ∙Yβ ∙Yε ∙KA ∙Kv ∙KFβ ∙KFα � σFP ð4:3Þ

σFP ¼ σFlimN ∙YSt=SFmin ð4:4Þ
σFlimN ¼ f ϑFuß,NLð Þ ð4:5Þ

The occurring tooth root stress is determined by the external load and geometric
parameters as well as other influencing factors such as dynamics of the overall
system and load distribution. VDI 2736 [5] requires a safety factor of SFmin ¼ 1.6
for intermittent operation at NL load cycles and a safety factor of SFmin ¼ 2.0 for
continuous operation until NL ¼ 108 load cycles. VDI 2736 [5] contains temperature
and load-cycle-dependent tooth root strength values for several thermoplastics such
as POM and PA66. However, for a large number of relevant thermoplastic materials,
no strength data is available.

Tooth Flank Load Carrying Capacity

The approaches used to determine the tooth flank load carrying capacity are based on
those for the calculation of steel gears acc. to DIN 3990 [8]. Equations (4.6) to (4.8)
show the calculation of the flank load carrying capacity of thermoplastic spur gears
as a function of temperature and load cycles acc. to VDI 2736 [5]. The rolling contact
fatigue strength σHlimN thereby differs for each type of thermoplastic:
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σH ¼ ZE ∙ZH ∙Zε ∙Zβ ∙
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ft ∙KH

bw ∙ d1
∙ uþ 1

u

r
� σHP ð4:6Þ

σHP ¼ σHlimN ∙ZR=SHmin ð4:7Þ
σHlimN ¼ f ϑFla,NLð Þ ð4:8Þ

The calculated flank pressure σH is compared to the permissible flank pressure
σHP (Eq. (4.7)). VDI 2736 [5] requires a safety factor of SHmin¼ 1.25 for intermittent
operation at NL load cycles and a safety factor of SHmin ¼ 1.4 for continuous
operation until NL ¼ 108 load cycles. The respective strength values σHlimN are
load cycle and temperature dependent. VDI 2736 [5] contains flank strength values
for a limited number of thermoplastic materials such as PA66 and PBT.

Frictional Wear Load Carrying Capacity

Abrasive wear is particularly relevant for dry running, as the tooth surfaces are not
separated by a lubricant film. VDI 2736 [5] contains a calculation approach to
determine the averaged linear wear of dry running plastic gears. Equations (4.9)
and (4.10) show the calculation approach for the determination of wear.

Wm ¼ Td ∙ 2 ∙ π ∙NL ∙HV ∙ kW
bw ∙ z ∙ lFl

� Wzul ð4:9Þ

Wzul ¼ 0:1 . . . 0:2ð Þ ∙mn ð4:10Þ

According to VDI 2736 [5], the averaged linear wear Wm is compared to a
permissible linear wear Wzul in order to calculate the gear lifetime with regard to
wear. Further details such as wear coefficients for various materials are contained in
VDI 2736 [5].

4.1.3 Recent Research Results

4.1.3.1 Thermal Behavior

Since the resulting gear temperature during operation is one of the main influence
factors on gear lifetime, investigations to determine the gear temperature, respec-
tively the knowledge of the occurring gear temperature are necessary. Besides the
drive power, the tooth temperature is mainly influenced by the lubrication conditions
and the tooth geometry. Within the scope of extensive investigations, different
geometries and materials are examined and evaluated with regard to their tooth
temperature under varying test conditions. The following section shows essential
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results from research projects investigating the operating behavior and load carrying
capacity of plastic gears [3, 10, 11].

The tooth temperatures of plastic gears investigated in Klicken oder tippen Sie
hier, um Text einzugeben. are determined on the FZG standard back-to-back test rig
acc. to DIN ISO 14635 [12]. Fig. 4.2 shows the test rig with mounted test gears. It
uses a closed power loop principle (four-square configuration) to provide a fixed
torque to a pair of test gears. Two shafts connect the slave gear unit with the test
gearbox. On the pinion shaft, there is a load clutch to apply a load torque (i.e., by
using a load lever and weights). Therefore, one half of the load coupling is locked,
while the other half can be loaded. During operation, the electric engine only
provides the occurring losses of the system. The test rig can be run in different
lubrication configurations. Apart from dry running, grease and oil lubrication can
also be used. Using oil lubrication, either oil sump or oil injection lubrication can be
applied. Heating cartridges and cooling pipes in the gear housing as well as an
external tempering unit for the injected oil allow controlling of the lubricant tem-
perature in the oil sump.

The gear temperature can be monitored during operation using thermal sensors
that are applied in bores located at different positions in the plastic gear. The sensor
signal is routed through a hollow shaft to a telemetry system which enables contin-
uous sampling of the temperature measurements during back-to-back testing
[11]. Fig. 4.3 shows a thermal sensor in the middle of the tooth chord of an
exemplary plastic test gear. To characterize the thermal operating behavior of the
plastic gears, stage tests are conducted where speed is raised in steps at constant
torque until a thermal equilibrium is reached.

Fig. 4.2 FZG back-to-back test rig [10]
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The comparatively low thermal conductivity of different plastic materials results
in locally different tooth temperatures within the plastic tooth especially during dry
running due to lower heat dissipation from the tooth contact without lubricant.

Figure 4.4 shows exemplary temperature distributions in a gear tooth of the test
gear geometry C20 (see Table 4.6) at two different speeds. The temperature distri-
butions are interpolated on the basis of the measured data. In addition to the loaded

Fig. 4.3 Thermal sensor to
measure tooth temperature
[11]

Fig. 4.4 Exemplary stationary temperature distribution of a PA12G test gear, operation at room
temperature, geometry C20 (see. Table 4.6) [3]
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tooth flanks, the temperature of the unloaded flank is determined as well. It is
apparent that the loaded tooth flank has the highest temperatures. In the area of the
pitch point there are slightly lower temperatures than in the dedendum and adden-
dum flank area. This is attributed to the sliding speeds decreasing toward the pitch
point. The temperature of the loaded tooth root area is below that of the loaded flank
area. The tooth flank friction can therefore be identified as the decisive heat source.
Damping losses in the tooth root area obviously play a subordinate role with PA12G
in dry running [3].

The temperature increases, especially in dry running, due to the lack of cooling
effect by the lubricant depending on the operating conditions, to some extent
considerably. To enable the transmission of higher power, plastic gears are usually
operated using a lubricant. Measurements of the tooth temperature under
oil-lubricated conditions show a considerably lower temperature increase compared
to dry-running plastic gears.

Following the equations for determining the tooth temperature according to VDI
2736 [5], the tooth temperature is influenced by the geometric parameters of the test
gear, the heat transfer coefficient, and also the transferred power [10]. Investigations
of the tooth bulk temperature with polyacetal (POM) gears are carried out at
oil-lubricated conditions. The investigated geometries KST-A (mn ¼ 1 mm),
KST-B (mn ¼ 2 mm), and KST-C (mn ¼ 3 mm) are of different design size. The
geometries are described in detail in Table 4.8. The results of the temperature
measurements are shown in Fig. 4.5. Speed is varied under constant load and
oil-sump temperature. The difference between oil temperature and measured bulk
temperature is evaluated and in the following referenced to as Δϑtooth. Speed is
raised in stages from 400 rpm to 3000 rpm after the tooth bulk temperature has
reached steady conditions. Under constant load, Δϑtooth rises with increasing
imparted energy. The amount of heat resulting from higher sliding velocities in
tooth contact and viscoelastic losses, due to tooth deflection under load, leads to
higher Δϑtooth. Higher loads affect higher Hertzian stress and tooth deflections,

Table 4.6 Low loss test gear geometry

Geometry C20 C20S LL30 LL40

Pinion Wheel Pinion Wheel Pinion Wheel Pinion Wheel

Centre distance (mm) 91.5

Normal module (mm) 4.5 4.5 2.75 1.75

Normal pressure
angle (�)

20 20 30 40

Helix angle (�) 0 31 26 15

Face width (mm) 22 20 22 20 22 20 22 20

Number of teeth (-) 16 24 14 21 24 36 40 60

Tip diameter (mm) 82.5 118.5 84.4 119.7 78.2 114.1 74.8 110.8

Transverse contact
ratio (-)

1.44 1.45 1.01 0.45

Total contact ratio (-) 1.44 2.18 2.03 1.39
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resulting in increasing tooth temperatures. For all tooth geometries, Δϑtooth is within
the same dimension of approximately 4 to 12 K at 3000 rpm depending on the
transferred torque. Additional tests at lower oil temperatures are conducted in which
comparable values for Δϑtooth are monitored [11].

Knowledge of the occurring tooth temperatures is essential in plastic gear design.
Temperature is influenced by various parameters such as material, lubrication,
geometry, and load. Extensive experimental research has been performed to inves-
tigate the thermal operation behavior of plastic gears. It was shown that oil

Fig. 4.5 Measured
temperature difference
between tooth bulk
temperature and oil
temperature of KST-A,B,C
(POM) [11]
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lubrication is a suitable measure to reduce frictional heat generation in comparison to
dry running. Further research work has to be done in order to characterize more
materials and to establish reliable thermal operating data required for the plastic gear
design process.

4.1.3.2 Low Loss Plastic Gears

Temperature dependent material properties and limited operational temperatures
limit the use of plastic gears. One possibility to enhance the operational scope of
plastic gears is a change of the gear geometry. Low loss gears feature the following
geometric properties: High pressure angles result in smaller tooth height and a
shortened path of contact. The tooth contact is concentrated around the pitch
point. This results in a reduction of frictional losses and thus less heat generation.
Furthermore, a better coefficient of efficiency can be achieved and the transferable
power can be raised significantly. Fig. 4.6 shows an exemplary steel-plastic pairing
with low loss geometry.

In Fig. 4.7, a comparison between different test gear geometries is shown. The
geometries are shown in true scale in axial cross section. The smaller normal module

Fig. 4.6 Low loss geometry
LL40, PA12G/16MnCr5 [3]

Fig. 4.7 Comparison of conventional tooth geometry (C20) with low loss geometries (LL30 &
LL40) [3]
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of the low loss gears is clearly visible. The larger pressure angles of the low loss gear
geometries are indicated by the inclination of the tooth flanks and the pitch of the
path of contact [3]. Table 4.6 shows the test gear geometries of the conventional C20
and C20S as well as the test gear geometries of the low loss geometries LL30 and
LL40.

An FZG efficiency test rig is used to investigate the gear efficiency of the different
geometries. The FZG efficiency test rig is based on the FZG standard back-to-back
test rig acc. to DIN EN ISO 14635 [12]. Due to the parallel construction by mounting
the test gear set both in the test gear and in the slave gearbox and the measurement of
the occurring torque losses on the engine shaft, the gear efficiency of a single gear set
can be measured and calculated. The detailed test rig setup is described in [3]. In
Fig. 4.8, the load-dependent loss grades of power of the different investigated test
gear geometries are shown. All tests are run in dry condition at constant mass
temperature of the plastic test gears. As expected, the comparison shows that the
loss-optimized design can be confirmed experimentally. The losses of the moderate
variant LL30 are approximately 60% of the losses of the reference variant C20. The
extreme low loss variant LL40 reaches approximately 20% of the losses of the
reference geometry. In contrast, the conventional C20S variant reveals an increased
loss grade of power than the reference variant due to the longer path of contact and
the helix angle [3].

Figure 4.9 shows the influence of the lubrication condition and different lubricant
media on the load-dependent loss grade of power. For all conducted test runs, the
conventional tooth geometry C20 is used under constant test conditions and a
constant gear temperature of 40 �C. As expected, the losses reach the highest values
at dry conditions. The use of a lubricant can drastically reduce the losses. This

Fig. 4.8 Influence of gear
geometry on efficiency [3]
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applies to both grease and water lubrication. The lowest losses are achieved by using
oil as a lubricant [3].

The lubricant film separating the surfaces of the mating tooth flanks reduces
friction in the tooth contact and thus increases efficiency. In dry-running operation,
however, solid-body friction occurs, which results in losses due to the higher friction
coefficient.

For experimental determination of the thermal operating limit in dry running, the
drive power is increased incrementally until the respective test gear fails due to
thermal damage such as melting. The results of the investigations are shown in
Fig. 4.10. All tests are run in dry condition in a plastic-steel gear pairing. It is clearly
visible that by applying low loss geometry, a significant increase in performance
with regard to thermally induced damage can be achieved compared to conventional
tooth geometries. By using the moderate low loss geometry LL30, an increase of
nearly 60% compared to conventional design can be obtained. Geometry LL40
achieves an increase of more than 70% compared to the conventional C20 gear
design.

In addition to efficiency and maximum transferable power, the occurring abrasive
wear is also investigated experimentally. Here, the different geometries are exam-
ined on the test rig, and the wear progress is determined and evaluated gravimetri-
cally. It can be observed that especially the loss-optimized variants tend to form wear
notches in the dedendum flank area. This notch can lead to impermissible stress
conditions during further operation, which can ultimately lead to a shear fracture of
the gears in the dedendum flank area. Fig. 4.11 shows the comparison of the average
mass wear rates of the different gear geometries investigated. The plastic wheels
made of PA12G are each paired with a steel pinion in dry running. The tests

Fig. 4.9 Influence of
lubrication condition and
lubricating media on
efficiency [3]
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Fig. 4.10 Thermal power
limit for different gear
geometries [3]

Fig. 4.11 Influence of gear
geometry on wear behavior
[3]
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performed show an approximately linear wear progression. Compared to the con-
ventional geometry C20, the two variants C20S and LL30 show considerably higher
wear rates. In contrast, the wear rate of the extremely loss-optimized test variant
LL40 shows significantly lower wear characteristics. Gear geometry LL40M is
largely identical to LL40 and is only characterized by reduced gear backlash.

The influence of the lubrication conditions on the wear behavior is shown in
Fig. 4.12. The investigations are carried out with gear geometry C20 in the combi-
nation PA12G wheel and 16MnCr5 pinion. The measurements confirm the expec-
tations of a significant reduction in wear by using a lubricant. In contrast to the test
runs in dry running and with grease lubrication, the wear coefficient of the
oil-lubricated variant has to be determined tactilely, since the amounts of wear are
on the one hand significantly lower than in dry running and on the other hand an
increase in mass could also be determined due to interactions between oil and plastic
wheel [3].

Low loss gears are advantageous with regard to the thermal operating behavior
since frictional losses and the resulting gear temperatures can be reduced by the loss-
optimized gear geometry. Especially for dry running plastic gears, the thermal power
limit can be increased by applying low loss geometry. Disadvantageous, however,
are higher bearing loads resulting in higher bearing losses compared to operation
with conventional gear geometry. Furthermore, the lower contact ratio results in an
increased dynamic response, which can have a negative effect on the noise behavior
of the gears. Moreover, more design space is required in order to achieve a load
carrying capacity comparable to standard gears [13].

Fig. 4.12 Influence of
lubrication condition on
wear behavior [3]
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4.1.3.3 Tooth Root Load Carrying Capacity

The tooth root load carrying capacity of plastic gears is highly influenced by load
induced deflections during operation. Since the Young´s modulus of thermoplastic
gear materials is about one hundredth of that of steel gear materials and strength is
about one tenth of that of steel, the load induced deflections are about ten times
higher on plastic gears than on steel gears. The current guideline for plastic gear
design VDI 2736 [5] is strongly oriented on the calculation approaches of steel gears
[8]. When applying this VDI-guideline, the essential aspect of the increase in the
actual contact ratio of plastic gears under load and the associated reduced tooth root
stress is neglected compared to the undeformed gear. Test results confirm the strong
influence of the deflections on the tooth root load capacity [10], which is not
sufficiently taken into account by the current VDI-guideline.

Extensive experimental investigations are carried out to evaluate the influence of
load-induced deflections on the tooth root load carrying capacity. The experimental
investigations are accompanied by theoretical work. The aim is to integrate the
deflection influences, which have not been considered so far, into the calculation
method according to VDI 2736 [5], and to modify the calculation method accord-
ingly. Table 4.7 shows the geometrical parameters of a theoretical study in which the
influence of the number of teeth on the deflections under load and the actual contact
ratio is evaluated. In [14], a method to calculate the actual contact ratio and the
corresponding tooth root stress of plastic gears (ACORARS≙ Actual Contact Ratio
Root Stress) is proposed. ACORARS considers the load-dependent deflections of
plastic gears by calculating the actual contact ratio under load and the effect of load
sharing of several tooth pairs on the corresponding tooth root stress. The iterative
procedure requires implementation in a computer program. A simplified approach to
calculate the actual contact ratio and the resulting tooth root stress for standard
profile tooth geometries is introduced in [11].

The load-induced increase in contact ratio Δεw is calculated according to
Eq. (4.11) as the difference between the actual contact ratio and the “nominal”
transverse contact ratio:

Δεw ¼ εα,w � εα ð4:11Þ
Δεzi z1, z2ð Þ ¼ 0:15 ∙

ffiffiffiffi
z1

p
∙ z2=z1ð Þ0:1 ð4:12Þ

Table 4.7 Main geometry data for variation of number of teeth calculation [10]

Pinion Wheel

Normal module (mm) Variable

Number of teeth (�) 16. . .96 Variable

Transmission ratio (�) 1. . .6

Load Ft/(b∙mn) (N/mm2) 40

Normal pressure angle (�) 20

Young’s modulus (N/mm2) 210,000 1300
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In Eq. (4.12), an estimation of the geometry-dependent increase in contact ratio is
shown for external gears with z1 � z2. The increase in contact ratio is dependent of
the number of teeth [14]. The actual contact ratio under load εα,w can be calculated
using Eqs. (4.13) and (4.14) also considering the influence of the number of teeth
acc. to Eq. (4.12).

εα,w � εα þ 0:13 ∙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ft=b

εα þ f εβ
� �

∙ pet ∙ c0

s
∙ f zi ð4:13Þ

f zi ¼ max 1,
Δεzi z1, z2ð Þ
Δεzi 36, 54ð Þ

� �
ð4:14Þ

The results of the estimation of the increase in contact ratio are shown in Fig. 4.13
for a constant load (marked as est.). Further, the results for the increase in contact
ratio calculated iteratively with ACORARS (marked as ACR) are shown as well.
Good correlation between the estimated values and the results according to
ACORARS can be found. With increasing number of teeth, the load-induced
increase in contact ratio is significant. Due to the load distribution over several
pairs of teeth compared to the undeformed condition, the tooth root stress can be
significantly reduced. In order to take the effects of εα,w into consideration when
calculating the tooth root bending stresses, a modified approach to calculate the
contact ratio factor Yε is proposed according to Eqs. (4.15) and (4.16). In comparison
to VDI 2736 [5], a modified contact ratio factor is used within the ACORARS
approach:

Fig. 4.13 Increase in contact ratio acc. to ACORARS for different numbers of teeth and transmis-
sion ratios [11]
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Yε,ACR ¼ aACR þ 1� aACR
εα,w

ð4:15Þ

aACR ¼ max min 2:6� εα,wð Þ ∙ 0:25
0:8

, 0:25

� �
, 0

� �
ð4:16Þ

The calculation approach of the corresponding tooth root stress under consider-
ation of load-induced deflections is shown in Eq. (4.17). The contact ratio factor Yε is
substituted by the modified contact ratio factor Yε,ACR:

σF,mod ¼ KF ∙YFa ∙YSa ∙Yε,ACR ∙Yβ ∙
Ft

b ∙mn
ð4:17Þ

The field of application of this approximation basically extends to standard
profiles according to DIN 867 [15] of steel-plastic spur gear pairings [11]. Since
the effects of common flank profile modifications on the actual contact ratio are
comparatively small in comparison to load-induced deflections, the approximation
of the actual contact ratio according to Eq. (4.17) is usually adequate. The consid-
eration of further modifications and deviations is possible via the factors KFα and KFβ

which are contained in KF [5, 11].
The experimental investigations with regard to tooth root load carrying capacity

of plastic gears are performed on a FZG back-to-back test rig, which is based on the
standard configuration according to DIN EN ISO 14635 [12]. Fig. 4.14 shows the
lubrication and cooling configuration of the test gear housing which is filled with
FVA reference oil FVA3A (incl. 4% Anglamol (A99)) which is classified as a
mineral oil ISO VG 100. Anglamol 99 is an extreme pressure additive based on
sulfur and phosphorus components. Pipes arranged in the oil bath are fed and drained
by water, allowing cooling of the oil bath. Heating cartridges in the housing walls
allow heating of the oil. Furthermore, to improve temperature control performance of
the system, additional oil of an external oil tempering unit is injected into the
meshing gears as common for injection lubrication [11].

Fig. 4.14 Test gear housing
of FZG test rig acc. to
[11, 12]
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In Fig. 4.15, the design of the investigated plastic gears is shown. The gear rim is
molded around a steel insert containing axial bores which are filled by plastic
material during the manufacturing process, granting a form-fitting connection
between both components. The steel insert enables a reliable torque transmission
form the gear teeth to the test rig shaft. The gear geometries of the objected test gears
are shown in Table 4.8. All subjected gear pairs feature a transmission ratio of i¼ 1.5
and a center distance of a ¼ 91.5 mm. For manufacturing reasons, the plastic gears
contain radii on the tip edges. The plastic test gears are paired with case carburized
and ground 16MnCr5 steel pinions. To enable smoother engagement, pinions of
KST-B and KST-C contain a tip relief. The flank shape of pinions of KST-A is not
modified [11].

The conducted back-to-back test runs are operated under continuous torque
monitoring until a “loss of drive” situation occurs due to a tooth root breakage of
the plastic test gear wheel. In order to establish a constant gear temperature during
the back-to-back test runs, the oil-sump temperature during testing is controlled to
compensate the temperature difference Δϑtooth. The test runs are conducted at a
constant tooth temperature of 80 �C. Fig. 4.16 shows an exemplary tooth root failure
on a POM test gear of test geometry KST-B. The crack initiation of the occurring

Fig. 4.15 Design of plastic
gears [11]

Table 4.8 Test gear geometry

Geometry

KST-A KST-B KST-C

Pinion Wheel Pinion Wheel Pinion Wheel

Centre distance (mm) 91.5

Normal module (mm) 1 2 3

Normal pressure angle (�) 20 20 20

Helix angle (�) 0 0 0

Face width (mm) 22 20 22 20 22 20

Number of teeth (-) 72 108 36 54 24 36

Tip diameter (mm) 74.8 111.3 76.5 113.0 78.3 114.7

Transverse contact ratio (-) 1.18 1.19 1.20
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tooth root failures for all test runs occurs in the area of the tooth root radius. The test
runs to investigate the tooth root strength of POM gears are conducted with gear
geometries KST-A, KST-B, and KST-C. Test gear geometry KST-C (mn ¼ 3 mm)
shows a tendency to form small cavities during the manufacturing process due to
comparatively large wall thicknesses in combination with the shrinkage behavior of
POM.

In Fig. 4.17 the nominal tooth root stress σF of all conducted test runs with
different gear geometries is shown at the respective number of load cycles where the
gears failed due to tooth root breakage. The tooth root stress is both calculated
according to VDI 2736 [5] and according to the modified ACORARS approach
which considers the effect of load-induced increase of the actual contact ratio on the
occurring tooth root stress.

Fig. 4.16 Exemplary tooth
root fracture of a KST-B
POM gear [10]

Fig. 4.17 Bearable tooth root stress acc. to VDI 2736 [5] and modified ACORARS for different
POM gear geometries [11]
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The calculation was conducted using the following input values: KF ¼ 1.0;
Yβ ¼ 1.0; YFα ¼ 2.0; YSα ¼ 1.8 [11]. The calculation of the respective tooth root
stress at failure without consideration of load-induced deflections according to VDI
2736 [5]e results in unrealistically high tooth root stresses for geometries with high
numbers of teeth (KST-A; z1 ¼ 72; z2 ¼ 108). Furthermore, the level of bearable
tooth root stresses varies for the different tooth geometries although all test gears are
manufactured from the same POM material. Alternatively, a recalculation of the
same experimental data with the modified and simplified ACORARS approach
results in a comparable level of bearable tooth root stress for the different investi-
gated gear geometries. The bearable tooth root stress for gear geometry KST-C
reaches slightly lower values than the other investigated geometries. This effect is
caused by a reduced load-bearing cross-section due to occurring cavities in the
KST-C test gears. However, the good correlation of the bearable tooth root stress
according to Eq. (4.17) shows that the main influence factors of load-induced
deflections can be considered in an adequate accuracy [11].

The evaluation of the test results shows that the tooth root strength calculation of
plastic gears with high numbers of teeth according to VDI 2736 [5] is definitely on a
conservative level. However, this may lead to an underestimation of the potential of
plastic gears with high numbers of teeth with regard to their tooth root load carrying
capacity due to the negligence of the elasto-kinematic effect of load-induced increase
of the actual contact ratio and the resulting load distribution on further teeth.

Theoretical and experimental research has been conducted in order to consider
the load-induced effects of tooth deflections on the tooth root load carrying capacity
which are neglected in current design guidelines such as VDI 2736 [5]. Based on
VDI 2736 [5], a modified calculation approach for the determination of the tooth
load carrying capacity has been developed and contributes to a more precise design
of plastic gears.

4.1.3.4 Flank Load Carrying Capacity

Operation of plastic gears under oil-lubricated conditions and the use of high-
performance materials allow a significant increase of the transmitted power com-
pared to dry running or grease-lubricated systems. The generation of a lubrication
film between meshing teeth leads to a separation of the tooth surfaces and to a
reduction of the occurring friction losses. Furthermore, the generated heat during
operation can be dissipated effectively by means of the lubricant. This leads to lower
tooth temperatures of oil-lubricated plastic gears at identical drive power in com-
parison with dry running and to higher tooth flank strength due to cooling effects.
Experimental investigations with oil-lubricated plastic gears show that typical flank
failure modes such as wear and melting can be prevented under sufficient lubricating
conditions. However, fatigue damages such as pitting on the active tooth flank
become more relevant [16]. However, current design guidelines for plastic gears
such as VDI 2736 [5] only contain tooth flank strength numbers for a limited number
of materials.

168 C. M. Illenberger et al.



Polyetheretherketone (PEEK) is a high-performance plastic that is particularly
suitable for use at higher temperatures and higher power levels. Investigations on the
tooth root load carrying capacity [10] indicate a comparatively high tooth root
strength. However, pitting damages occur with regard to the tooth flank load
carrying capacity. The calculation approach for determining the tooth flank carrying
capacity of plastic gears according to VDI 2736 [5] is shown in Eqs. (4.6) to (4.8).
The calculation approach is based on the assumption that the maximum flank
pressure is present in the area of single tooth contact.

The load-induced deflections of plastic gears, however, may cause meshing
interferences which lead to local pressure peaks in the area of premature and
posterior meshing. These meshing errors can have a negative effect on the flank
load carrying capacity of the respective plastic gears. Fig. 4.18 shows an exemplary
flank fracture that is caused by high flank pressures due to meshing interference in
the area of posterior meshing. Adequate measures to reduce high flank pressures
such as a tip relief have to be applied in order to ensure high flank load carrying
capacity and to establish reliable strength data for new thermoplastic materials such
as PEEK according to VDI 2736 [5] [16].

Profile modifications on the mating steel pinion are experimentally investigated in
order to avoid undesired flank damages in the area of posterior meshing. The
experimental investigations are run on a FZG back-to-back test rig as shown in
Fig. 4.14 using oil injection into the gear mesh. The investigations are performed
using an ISO VG 100 reference mineral oil (FVA 3A [17]) and test gear geometry
KST-C as shown in Table 4.8. The PEEK plastic gear is paired with a modified steel
pinion (case carburized 16MnCr5). The steel pinion features a tip relief of
Cα � 400 μm in order to avoid undesired flank fractures due to posterior meshing.
The applied tip relief is dimensioned using the program system RIKOR
[18]. RIKOR is suitable to calculate load and pressure distributions of gears and
used to optimize the microgeometry of the investigated gears. The aim of the

Fig. 4.18 Flank shear
fracture at a PEEK gear [10]
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calculations carried out here is to completely relieve the load on the dedendum flank
area of the plastic wheel by means of a flank modification on the steel pinion.

The profile modification of the steel pinion is illustrated in Fig. 4.19. In contrast to
the conventional, unmodified microgeometry of the steel pinion, the modified
geometry with the applied tip relief guarantees that the sharp tooth tip of the steel
pinion will not engage with the dedendum flank area of the driven plastic gear during
posterior meshing. This measure effectively reduces the maximum flank stress and
prevents the plastic gear from undesired flank fractures.

The test runs to evaluate the flank load carrying capacity of the test gears are
performed at a uniform oil temperature of 80 �C at different torque levels. The test
runs are stopped regularly for optical inspection of the flank condition and the
damage development.

Table 4.9 shows the development stages of pitting on an exemplary plastic test
gear. The damages appear in the area of single tooth contact in the dedendum flank
area of the PEEK gear. As the number of load cycles increases, the flank area
damaged by pitting also increases steadily, so that the active flank area is gradually
disrupted. Visually, there is a large resemblance to the pitting common on steel
gears. Also, the pitting appears preferably in areas of high Hertzian flank pressure
and negative specific sliding speeds.

Figure 4.20 shows an enlarged view of an exemplary pitting damage on a test
wheel. In addition, the beginning of the path of contact “A,” the position of the pitch
point “C,” and the end of contact “E” are also shown.
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Fig. 4.19 Microgeometry of the steel pinion, pitch diameter d ¼ 72 mm [16]
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Table 4.9 Development of pitting damages on a plastic wheel, T2 ¼ 43Nm, ϑoil¼80 �C [16]

Fig. 4.20 Exemplary
pitting damages including
positions A, C, and E at gear
flank [16]
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The pittings are located preferably in the dedendum flank area below the pitch
point “C” where negative specific sliding and high Hertzian pressure affect the flank
surface.

In Fig. 4.21, the development of the active flank surface of the plastic wheel that
is damaged by pitting is illustrated. Depending on the number of load cycles, the
corresponding proportion of the flank surface damaged by pittings is evaluated for
different torque levels.

For the investigations performed herein, a critical damaged area of the total active
flank surface of the plastic wheel of 2% is identified as the boundary between
progressive and linear/degressive damage development. Therefore, a value of 2%
pitting damage area is defined as the respective failure criterion for the flank load
carrying capacity investigations. The flank area damaged by pitting increases pro-
gressively for high torque levels. Below the critical damage area, the development is
linear/degressive [16].

The test runs for the evaluation of the pitting lifetime are run to a maximum
number of 50∙106 wheel load cycles and considered as passed specimen or until the
failure criterion of 2% damage area is reached. Fig. 4.22 shows the evaluation of the
pitting fatigue data derived from the experimental data shown in Fig. 4.21. The flank
pressure σH is calculated according to VDI 2736 [5]. The S-N-curve for PA66 is also
shown for a safety factor of SH ¼ 1.0 and a flank temperature of ϑflank ¼ 90 �C
according to VDI 2736 [5]. The literature values for PA66 and the strength data of
PEEK have approximately the same gradient. However, the bearable flank pressure
of PEEK determined herein reaches noticeably higher values than PA66. The
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Fig. 4.21 Development of pitting damaged active flank area of the plastic wheel for different
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suitability of PEEK for high-performance applications, particularly for environments
of higher ambient and operation temperatures, can be confirmed by the herein
performed investigations [16].

In order to evaluate the flank load carrying capacity of thermoplastic materials,
consequently adequate measures to reduce meshing interference, which can lead to
undesired flank fractures, have to be taken. Experimental investigations show the
generation of pitting damages at PEEK gears in the area of high Hertzian pressure
and negative specific sliding. Based on the damage progression, criteria for the
evaluation of flank load carrying capacity were derived, and first results on the
flank load carrying capacity of PEEK gears were presented. These investigations are
also necessary for other thermoplastic materials in order to obtain the strength
numbers required for the design of plastic gears.

4.1.3.5 Tribology

In addition to the experimental investigation of the operating behavior and load
carrying capacity of plastic gears in the back-to-back gear test rig, fundamental
investigations of the tribological behavior of plastic materials can be carried out in a
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Fig. 4.22 PEEK pitting failure data, , ϑOil ¼ 80 �C, PA66 S-N-curve for reference [16]
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twin-disc test rig. The focus of the investigations is the characterization of the
friction and temperature behavior as well as the viscoelastic behavior of thermoplas-
tic materials. The experimental investigations are supplemented by accompanying
theoretical considerations of the thermo-elastohydrodynamically lubricated (TEHL)
contact.

The experimental tribological investigations are carried out using an FZG twin
disk test rig as shown in Fig. 4.23. Two cylindrical disks (80 mm in diameter, 20 mm
in width) are mounted onto two axially parallel shafts that can be driven indepen-
dently by two electric engines. Speed of the electric engines can be continuously
variated. The upper disk is mounted on a skid which is connected to the test rig frame
by thin steel sheets. The skid is supported laterally by a load cell which measures
frictional forces as reaction forces of the skid. The lower disk is mounted at the pivot
arm. Normal contact force can be applied by the normal load spring mechanism via
the pivot arm. In order to investigate lubricated contacts, the test rig features an oil
injection system which feeds the contact zone with temperature-controlled lubricant.
The temperature of the upper disk is continuously measured using thermal sensors
which are applied approximately 5 mm below the disk surface. Additionally, oil inlet
temperature, surface velocities and frictional forces are continuously monitored. The
coefficient of friction μ in the contact zone as well as the sum velocity vΣ and the
sliding velocity vg can be calculated by Eqs. (4.18) to (4.20):

μ ¼ FR

FN
ð4:18Þ

vΣ ¼ v1 þ v2 ð4:19Þ
vg ¼ v1 � v2 ð4:20Þ

The investigated disks are made of extruded homopolymeric POM and wet
polished to a mean surface roughness value of Ra < 0.2 μm. The corresponding

Fig. 4.23 FZG twin disk test rig [19]
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steel disks are machined from 16MnCr5 that are ground and polished resulting in a
mean surface value of Ra < 0.1 μm. As a lubricant, plain mineral oil ISO VG
100 without additives is used. A schematic illustration of the contact setup is
shown in Fig. 4.24.

The experimental investigations of the TEHL contact are accompanied by theo-
retical studies. For this purpose a modified TEHL simulation model [19] is used to
characterize the thermoplastic TEHL contact. The tribosimulation is used to compare
the general behavior of the plain steel-steel TEHL contact and the hybrid steel-
thermoplastic TEHL contact. The loading conditions are in a typical range for
thermoplastic contacts and are shown in Table 4.10. Due to the significantly lower
Young’s modulus of POM in comparison to 16MnCr5, the corresponding Hertzian
pressure in the hybrid steel-plastic contact is only 16% of the Hertzian pressure
obtained in a plain steel-steel contact at identical normal load. The Hertzian semi-
width of the plastic-steel contact is significantly larger than the respective half-width
of a plain steel-steel contact.

The resulting hydrodynamic pressure distribution of both steel-steel and steel-
plastic contact is shown in Fig. 4.25. The loading conditions shown in Table 4.10
apply, while the oil injection temperature is set to 60 �C. The abscissa of the diagram
is normalized to the Hertzian semi-width bH. As expected, the calculated

Fig. 4.24 Schematic representation of the investigated TEHL contact setup [19]

Table 4.10 Operating conditions of TEHL investigations [19]

Pairing

Normal
line load

Hertzian
pressure

Hertzian
semi-width

Sum-
velocity

Oil injection
temperature

Sliding
speed

w pH bH vΣ ϑoil vg
N/mm N/mm2 mm m/s �C m/s

16MnCr5-
16MnCr5

100 428.5 0.149 8.00 40 3.43

16MnCr5-
POM

69.6 0.823
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hydrodynamic pressure in the steel-POM contact is significantly lower than the
respective hydrodynamic pressure obtained in the plain steel-steel contact.

Figure 4.26 shows the calculated temperature distribution of the steel-POM
TEHL contact according to the loading conditions shown in Table 4.10. The
considered heat sources include compression and shearing of the lubricant. While

Fig. 4.25 Comparison between steel-steel and steel-POM TEHL contact [19]

Fig. 4.26 Temperature distribution in the thermoplastic-steel TEHL contact in deformed config-
uration (gap height adjusted for visualization purpose) [19]
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shear heating can be obtained predominantly in the middle of the contact, positive
pressure gradients lead to heating in the contact inlet zone, and negative pressure
gradients lead to a heat sink in the contact outlet zone [19]. The temperature gradient
within the POM material appears steep in normal direction to the surface due to the
low thermal inertia of POM. The generated heat is accumulated at the POM surface.
The analysis of the heat fluxes in the contact zone shows that the POM body
accumulates approximately 8% of the generated heat in the contact. However, the
maximum temperature rise of approximately 8 K in Fig. 4.26 shows discrepancies to
the experimentally measured bulk temperatures as shown in Fig. 4.27. This may
result from viscoelastic effects, which are an additional heat source and are not
considered in the herein conducted simulations.

Figure 4.27 shows experimental results conducted on the twin disk test rig. The
friction behavior and the measured quasi-stationary bulk temperatures in different
material depths are evaluated. The coefficient of friction is averaged by three
measurements at the testing conditions shown in Table 4.10. The sliding speed is
increased continuously from 0 up to 6.55 m/s. Both coefficient of friction and bulk
temperature rise nearly linearly with increasing sliding speed up to approximately
3.5 m/s. With higher sliding speeds, the bulk temperature rises more quickly due to
the low heat conduction properties of thermoplastics. Generally, a low coefficient of
friction is obtained for the conducted measurements. This effect is due to the low
lubricant pressure viscosity. Increasing sliding speeds cause higher shear friction and

Fig. 4.27 Measured friction curve and POM bulk temperatures in 3, 5, and 8 mm depth of
POM-steel TEHL contact [19]
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shear heating in the lubricant which results in a further decrease of the lubricant
viscosity results in a low friction increase with increasing sliding speeds.

The basic tribological investigations provide important insights into the frictional
behavior of thermoplastics. The determination of coefficients of friction serves
primarily to evaluate the thermal operating behavior and to understand the wear
behavior. The results thereby contribute significantly to material characterization.

4.1.4 Challenges for the Future Application of Plastic Gears

The high-temperature dependency and the low strength properties compared to steel
still pose a great challenge for the use of plastic gears. Especially in applications with
higher power, there are still limits. However, the continuous development and the
increased use of simulative design methods allow a more precise design and
calculation of the stresses as well as of the resulting service life of thermoplastic
components. One example is the use of multiphysical material models in which the
complete life cycle from injection molding to friction, wear, and another tooth
damage can be considered.

However, the use of such material models requires a reliable database of different
thermoplastic materials with comprehensive information on material behavior and
service life. At present, this information is not available in sufficient detail. The
determination of material characteristics is also not sufficiently standardized at the
current state of the art. For example, there are currently a large number of different
test rig concepts for determining characteristic data, such as for evaluating the tooth
root and tooth flank load capacity. A standardization of the execution and evaluation
of tests for the determination of characteristic properties contributes decisively to the
comparability and reliability of material characteristics. This is particularly impor-
tant in view of the large number of different plastics available on the market. Another
challenge is the use of fiber reinforcements. The influence of different fibers on the
operating behavior and the load carrying capacity is currently the subject of research
and cannot yet be sufficiently considered in the presently available design guide-
lines. With regard to a further increase in performance and an extension of the range
of applications of plastic gears, the use of different fiber reinforcements offers
enormous potential.

Increasing transferable power and the development of new high-performance
applications are generally accompanied by larger component sizes. Here,
production-related limits are set by the injection molding process. Material shrinkage
and the risk of the formation of defects are production-related risks. In view of new
requirements in the area of condition monitoring, sensors and other electronic
components are increasingly being integrated into gear wheels. An integral design
of plastic gears with integrated sensors for condition monitoring enables safe
operation of the plastic components. The development of methods for condition
monitoring and the production of highly integral plastic components are currently
the subject of research.
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With respect to saving resources and the increasing importance of CO2 neutral
products, requirements for the environmental sustainability of plastic components
will become increasingly important in the future. At present, only a small proportion
of engineering plastics is recycled or not recycled at all, while production is very
energy- and resource-intensive. The recirculation and recycling of plastic compo-
nents and the development of bio-based and biodegradable technical materials have
hardly been researched so far and has to be considered in the near future.

Despite all the progress made, the direct substitution of steel gears by plastic is
associated with enormous challenges. The following example, shown in Table 4.11,
illustrates the difficulties that can arise when simply changing the material from steel
to a thermoplastic.

As an example, a hypothetical application in a 1 kW oil-lubricated gearbox is
used, which is operated at a material temperature of approximately 50 �C. The
demonstration of the tooth root and tooth flank load carrying capacity is to be
provided for an exemplary service life of 50 million load cycles. The reference
gear made from case hardened steel (16MnCr5) is operated at a transmission ratio of
i ¼ 2 and features a design size of mn ¼ 0.6 mm.

The calculation of the load carrying capacity of the reference steel/steel pairing
according to ISO 6336 [9] results in a safety factor of SH ¼ 1.20 and SF ¼ 1.74 for
the flank and tooth root load carrying capacity. All load factors are set to Ki¼ 1.0 for
the performed calculation of the load carrying capacity.

Table 4.11 Challenges in direct material substitution

Steel/Steel Plastic/Plastic

i (-) 2

mn (mm) 0.6 1.5

b/mn (-) 20

mnPlastic/mnSteel (-) 2.5

aPlastic/aSteel (-) 2

VolPlastic/VolSteel (-) 10

SH (-) 1.20 1.25
SF (-) 1.74 1.40
Load parameters

Min. load cycles (-) 50∙107

P (kW) 1
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The dimensions of a gear pairing made of polyamide for the same power output
and the same required service life differ fundamentally from the steel design due to
the very different strength properties between steel and plastic. The plastic gear
design is calculated according to VDI 2736 [5]. Similar to the calculation of the
exemplary steel gears, all load factors are set to Ki¼ 1.0. In order to achieve a certain
geometric comparability between steel and plastic gear design, an identical face-
width/normal-module-ratio b/mn ¼ 20 is applied. The resulting plastic gears are
significantly larger than the corresponding steel gears. The safety factors for flank
and tooth root load carrying capacity are in the same range compared to the reference
steel gears. While the center distance and normal module approximately double, the
volume of the plastic gears increases approximately by a factor of ten compared to
the steel reference gears. At such an increase in size, the mass of the plastic gears
already exceeds the mass of the steel gears, so that any weight benefits of the plastic
are eliminated.

The design example shows that a direct substitution of steel by plastic is not in
any situation beneficial. Rather, a plastic-oriented design has to be realized under
consideration of the possibilities in production and the material properties in order to
utilize plastic components in gearboxes profitably.

Therefore, further research is still needed to fully exploit the potential of thermo-
plastic gears. In addition to the research work mentioned above regarding mainly the
thermal operating behavior and load carrying capacity, there is also great potential in
the optimization of the injection molding process [20].

Further potential for optimization lies in the modification of the tooth geometry to
improve the load carrying capacity [21, 22], since the injection molding process
offers a high degree of design freedom. At present, there are hardly any studies
available on helical plastic gears. Nakamura [23] performs investigations on the load
carrying capacity of helical plastic gears. However, there is still a need for further
research in this topic. In the context of thermal operating behavior, increasingly
complex thermal calculation models are being developed using the finite element
method in order to predict the tooth temperatures accurately [24].

In addition to experimental and theoretical research work, it is also advisable to
promote and further develop standardization processes in the field of plastic gear
design. Besides more complex methods for the calculation and design of gears such
as the finite element method, standards are very beneficial and indispensable,
especially in an early stage of development. Standardized processes as known
from the steel gear sector [8, 9] can provide a considerable contribution for gear
designers.

4.2 Conclusion

Plastics are increasingly used due to their lightweight construction potential and the
possibility of cost-effective mass production by injection molding. The development
of new materials and the constant advancement of calculation and simulation
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methods enable the use of plastic gears at ever higher drive powers. The high-
temperature dependency of the material properties and the low strength have,
however, a negative effect and limit the possibilities of plastic gear applications.
Knowledge of the material behavior during operation is essential for the safe design
of plastic components. In this context, comprehensive theoretical and experimental
investigations of the operating behavior and load carrying capacity of plastic gears
make an important contribution to a deeper understanding of thermoplastic mate-
rials. In addition to the investigation of tooth root and flank load capacity, the
temperature behavior and the wear behavior and alternative gear geometries are
also investigated. Basic tribological investigations provide helpful information about
the lubricated steel-plastic contact. The present work provides a comprehensive
insight into current research in the field of plastic gears and shows the possibilities
and limits of the use of plastic gears. The presented results can find a direct way into
practical application. In addition to results on the thermal operating behavior of
different materials and tooth geometries, a method for calculating the tooth root load
carrying capacity is also presented, which takes into account influences that have not
been taken into account so far and consequently improves the calculation accuracy.
The practical research results thus support the gear designer at an early stage of gear
development and can be used as a useful source of information.
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Chapter 5
Application of Task-Based Conceptual
Design Method for Gear Chamfering
Mechanisms

Hrayr V. Darbinyan

5.1 Introduction

The growing demand in novel consumer products and continuous progress of
metalworking and machine-building technologies are driving the development of
appropriate design and verification methodologies and other technical guidelines.
The post-industrial era and especially the ever-spread digitization have heavily
influenced the methodical support on such engineering activities as design and
development of new products and techniques. Referring to traditional and classic
mechanical design, one can state growing interest in finding ways of novel
approaches for design better matching to the up-to-date demands of quick market
response, raised efficiency and broader service of design methodologies, and the
tendency of unification of different aspects of mechanical design on a unified basis.
The analysis step of mechanical design, for instance, which is preceding the con-
ceptual design phase, is essential in terms of consideration of previous knowledge
and is putting the basis of design to create a novel product. Further steps of
embodiment design, engineering verification, feasibility and manufacturing confir-
mation, parametric design and optimization, post design testing adjustment, and
justification phases are completing the whole design cycle. Generally remaining on
different methodical bases, all those phases are following a single aim to create a
novel product with qualified and competitive features. Gear design and manufactur-
ing is a specific and outstanding area of machine building and engineering in general
where broad involvement of theory, practice, evaluation, production, and all the
other milestones specific for any engineering product is more specific for the gear
engineering.
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For this reason, consideration of gear chamfering process as a necessary step of
gear chamfering technology is quite typical and characteristic for performing and
presenting three unified methodologies. The task-based concept design method was
firstly developed for the case of concept design with advantageous features and later
extended for one preceding and another following the methods of analysis of a
mechanical object and for parametric design and optimization. The current study
aims to describe analysis of gear chamfering methods followed by conceptual design
of novel devices and ending with parametric design. All three steps are introduced as
organized on a single methodical base with the usage of newly developed means of
visualization and presentation of those methodologies that are enabling and simpli-
fying accessibility of the proposed method.

5.1.1 Task-Based Design Review

5.1.1.1 Task-Based Conceptual Design

Conceptual design is the most challenging and less understood step of general
mechanical design. The difficulties of its description and formulization are coming
from first from the nature of conceptual design implying search of a novel structure
with novel properties among the great number of candidate solutions. The second
reason is the individual nature of the designing process depending on design
tradition, skill, and experience of the designer. Design process being attractive and
creative by its definition may bring the designer more results and satisfaction when
being organized in a way to free the designer from the routine task of checking a
large number of options with necessary efforts of visualization. Combinational
methods widely used for novel structure solution search are useful for the automatic
organization of search process with minimum human involvement. However, they
are providing solutions for a key or primary function only suggesting modifications
within fixed topology with randomly generated accompanying functions with a high
probability of negative features among them. This fact of consideration of a primary
function in combinational search dramatically lowers its methodical ability. Any
design process is valued for providing a multifunctional solution but not appreciated
for the fact of generation from a single topology. For the past few decades, due to
growing demand on fresh products with advantageous proprieties and because of
wider application of digital technologies, the challenge of better organization of
conceptual design process becomes more actual, and this demand was satisfied by
several approaches and methodologies. The task-based design methods can be
conventionally divided into methods based on mostly on human participation or
on computer-aided methods with minimum involvement of human factor. Some
examples for the second group of task-based design methodologies are quite suc-
cessful when directing a designer to organize a new product development with novel
properties [1–5]. Trendy and classical methods [6, 7] of splitting mechanical com-
ponents from functional ones have apparent abstraction and visualization means and
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require consideration of a large number of candidate solutions in an attempt to isolate
a workable and optimal one. An original publication [8] is using analyses of the vast
engineering database as a source for a novel product design, where the search trend
implies consideration of either combination of various movements of basic links or
direct search of solutions among existing solutions. Insufficient level of abstraction
and visualization narrows the opportunities of processing and getting optimal results
among mechanical means having required functions and properties. Any design
methodology can be evaluated by the number of essential design tasks considered
during a mechanism synthesis process and distribution of those tasks along with
steps of conceptual design. Having more tasks involved provides broader and full
satisfaction of design aim with the maximum number of demanded properties of a
novel product. Concluding one may state that concept design methods are mostly
serving a single design target and using vast nomenclature of design tools, they
rarely show direct dependence between the function and mechanical category, thus
misleading the designer from the search task-based and efficient solution.

5.1.1.2 Task-Based Analyses of Mechanical Objects

Analyses of a mechanical object are preceding the synthesis and parametric design
phases, and any new solution is analyzed against the prior art and known prototypes
to avoid a reproduction of known solutions. General overview [9, 10] of analyses of
a mechanical object shows that they are mostly separated approaches for different
embodiments of the mechanical objects, and those approaches are not methodically
connected. Every method has its own specific rules and laws for analyses, creating a
systematic disadvantage because the modification from one embodiment to the other
one should be done on the same systematic basis and using the same toolset. Another
shortcoming or methodical difficulty should be seen in the absence of a model or of
etalon mechanism which can serve as a guide or as a merit for comparing different
structures following to the same task of design for a better understanding. The
mechanical object should have the ability to be modified structurally and function-
ally to allow the designer to find the hidden properties of the structure. This act of
recognizing an object will significantly win and will be much useful if organized on a
function-based way. The analyzing methods are lacking in such an approach which
is hiding the properties and the source of features the object may have because they
are not connecting the structural properties with functional properties. Based on
those mentioned above, we may conclude that the analysis method should obtain the
same toolset and methodology as the conceptual design methodology and parametric
design methodology have.

5.1.1.3 Task-Based Parametric Design and Optimization

A classical approach of mechanical design implies consecutive implementation of
the chain including an establishment of the task, accomplishment of conceptual
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design, dealing with parametric design and optimization, technological assurance,
including manufacturing and assembling, and finally post design verification and
acceptance by the end user. Traditionally the mentioned components of the design
process are methodically separated from each other having their own rules of self-
organization and implementation. Despite this fact, attempts of methodical merger
and unification, especially for the conceptual and parametric steps, can be found
[11]. A tendency of further focusing on such unification can be observed, which is
logically accommodated in the idea of simplification of design tools on the one hand
and the growing involvement of digital technologies in the mechanical design
process on the other. In a classical approach for the parametric design [12], an
organization of optimum search process is based on consideration of some schematic
or other visualized graphical presentations containing variables subject to definition
or optimization, a set of constraints limiting the range of some variables and a target
function(s) subject to be numerical satisfaction. The structural-graphical support for
organizing the parametric design process in some cases is even missing. In the
instances of its presence, the structure cannot necessarily explain and arrange
solution of the target function, saying less about secondary but still essential
functions. A novel method of conceptual design [13] implies the application of a
set of methodical tools that allows firstly to set the task and manage and monitor the
whole process of task-based design starting from the creation of models including
essential components of the future mechanism.

Appropriately modified methodical tools are applicable for the organization of the
next parametric design and optimization process with usage of the same structure
formation rules which are specific for concept design. Those tools are upgraded to a
level to have the possibility of presentation and description of design parameters
(variables) subject to definition and optimization. They are using the perceptive level
of structural and graphical visualization. Once the conceptual design cycles are
arranged in a way to support the concept quantified evaluation process, the para-
metric design cycles are ending in calculative structures and schemas making
possible and facilitating composition of equations and resolving them against chal-
lenged parameters of conceptual design. As a major design tool applicable for
conceptual design phase, the grant DOF (degree of freedom) action is also practiced
for the parametric design, where the functional meaning of such actions is in
duplication of parametric relations lowering the DOF of the structure or making
the grant DOF actions mechanically possible. Parametric models built in such way
are applicable not only for solving parametric optimization tasks but are workable
also for force analyses of mechanisms [13]. On the background of enormous heritage
for methodologies of conceptual and parametric design, for example [14, 15], the
author’s decades-long mechanical design experience for various mechanical devices
(machine and hand tools, home and leisure appliance products, etc.) has proved the
workability and efficiency of self-developed methodology for conceptual and para-
metric design against the firstly mentioned ones. Simultaneous consideration of
function and mechanism, application of unified synthesis and analyses tools, various
visualization means, and usage of same modification tools for mechanical and
functional sets can be related to the advantageous features of the suggested unified
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conceptual and parametric design methodology. That’s worthy to note that method-
ical arsenal of conceptual design fits and satisfies the needs and requirements of
structure analyses – a step that precedes the conceptual design and stores its
resources.

5.1.1.4 Novel Task-Based Conceptual and Parametric Design Method

Mainly explained by growing market interest and demand for new products, the
issue of development and application of effective methods of conceptual design has
turned into a high-priority problem. Several methodologies for mechanical design
and guidelines are developed through the latest decades. A novel task-based con-
ceptual design method [16] developed upon long-term experience of various
mechanical devices is based on simultaneous consideration of both mechanical
and functional sets once those sets are appropriately modified to conditions best
matching design requirements and best providing conditions for getting a novel
current solution for a single or functional set and continuing the search of remained
design tasks in an identical way. A localized set of function and mechanism is
considered a design model. The key model may have different contents depending
on step, level, and scale of design task. The method has confirmed its efficiency not
only for resolving tasks of conceptual design but also is workable for some tasks of
parametric design [13].

5.1.1.5 Tasks and Objectives

The present study has a task and objectives to improve organization and visualiza-
tion of all three steps of mechanical design: for analyses and conceptual and
parametric design. This objective is going to be reached by usage of universal graphs
which can serve of the three steps and are including necessary structural, function,
and parametric data essential and ready for a step-by-step processing. The further
objective of current study is to review and put on a single basis the three steps of
mechanical design and organize analyzing, synthesizing, and calculative methodi-
cally unified formats using the available methodical and modification tools devel-
oped for the case of conceptual design.

5.1.2 Theoretical Background of Current Chapter

5.1.2.1 Author’s Experience

From the early stages of author’s experience in mechanical design, it has been
noticed efficiency and practical value of mechanical-functional composition and
decomposition when modifying some original structure into an upgraded one to
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develop a fresh and previously not existing design that satisfies some set of pre-given
functions or challenging tasks.

Also based on design experience, it was first found that the decomposition unit
could be variable and differing in contents, and that’s a challenge or design task in
the establishment of the complexity of this unit, and, secondly, any act of decom-
position is implemented for some purpose – the task or sub-task of design. In an
ultimately exaggerated case, the components at a higher degree of decomposition
could be imagined and named as “construction bricks” as the smallest size of
mechanical unit firstly given in an unbiased order with a design task to organize
proper physical-mechanical-kinematical order of their connection in a way to satisfy
a set of pre-given functions, features, or properties of a novel structure.

5.1.2.2 “Construction Bricks”

Those units are formed as a result of structural decomposition based on the consec-
utive application of elementary links and elementary movements (sliding and revo-
lute). The general structural decomposition and breakdown into “construction
bricks” stimulate designer’s imagination by the huge number of design opportuni-
ties. It is challenging him or her with the necessity to consider-accept-reject one by
one all the options which most probably turns designers’ activity into a not creative
and time-consuming one. On the other hand, the evaluation and consideration
process for the case of task-based design should have an outcome defined by the
achievement and implementation of a specific function(s), so manipulation and
processing of functional data is a must condition. From this point, the arrangement
and management of functional data should be provided to assure evaluation of a
specific design solution from the functional standpoint. Analogously with above, a
mentioned set of “construction bricks” originally given and generated along design
process functions tend to grow in numbers and thus make difficult their consider-
ation. The same relates to a separate set of functional variables as well which are
considered simultaneously with a set of “construction bricks.” This circumstance
explains the limited scope of application and low efficiency of some design meth-
odologies which are letting the designer analyze a vast number of candidate solu-
tions before the designer comes to unacceptable results with the limited number of
achieved functions. And this circumstance also prompts the apparent solution or
direction about the organization of design process through a certain level of decom-
position of “design bricks” on the one hand and a certain level of decomposition of
involved functions and by following the must condition of assigning a certain set of
functions to any action of decomposition of the mechanical means on the other. Also
based on long-term design experience, it was noticed that generation of a daughter
function from the parent function has methodical similarity to the act of growth or
multiplication of newly involved or generated mechanical links from the original
link. This fact implies the possibility of development and application of the unified
methodology of processing and arrangement of both mechanical and functional data.
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5.1.2.3 Building of a Mechanism

Origination of a novel link from the existing one can be described in a particular case
by well-known action of granting a degree of freedom. Anyhow the birth of a new
link shouldn’t be limited by the necessity of mobility or the second link relative to
the first or basic one but should be viewed at a broader context, accepting that any
relation between two mechanical links can be the reason for some function (positive,
negative, not expected, assisting, secondary, any). Ignoring this relation may reflect
negatively on the completeness of the task of the design process and considering of
which may provide a more comprehensive and full design process. At this point, the
“links” category should be defined, depending on the needs of the design process and
setting the efficiency and possibility of analyzing or synthesizing action. In the most
common case, the links are the same as the physical links or rigid bodies with no
elasticity. In more uncommon cases, the link can be interpreted as a human body,
some environment (e.g., air, liquid, machine oil, etc.), or links having elasticity (e.g.,
springs) and requiring some additional sub-links for explaining the mobility or
functionality of a spring. And in the most abstract case, a link can be represented
as a mechanical sum of a set of links with no mobility between them or as a result of
kinematical trajectory once generated or activated or followed by a set of necessary
movements and then frozen at a stage after a definite set of moves has been
implemented. All the commonality of movements, frozen movements, mutual
influencing, and contacting could be generalized into one category of relation
between the links. This relation is directly defining the character of link mobility
against another one and is defining the function implemented as a result of such
relation.

Worthy of mentioning that the links can be connected by three kinds of connec-
tions or relations:

First is the classic case of the kinematical joint.
Second is a conventional relation for the case with the link should be connected

for some function so the function is given but the character of the kinematical
connection is unknown. In this case the edge of the graph used for structure
description is representing not a kinematical joint but the function.

Third case goes for the character of contact of a relation between the formation
element of surface tracking tool and the surface of the chamfer. Depending on
kinematical diagram and type of applicable tool the gear chamfering process may
be described as one or two parametric surface reproduction.

5.1.2.4 Visualization

A design model with two links as vertices of a graph and an edge between them
representing the mobility of links and the function implemented by such connection
has and stores practical and methodical resource for task-based conceptual design,
feature analyses, and parametric design and optimization. It should be noted that
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generally any mechanical device intended to be used purposely to implement an
action to simplify or make more comfortable the human job or enlarge the scope of
human power and accessibility is composed of generalized links composing a closed
chain. From this point, the idea of two link/one function model is not complete and
should be completed by an additional parallel edge having two meanings: firstly this
edge contains additional links of parallel chain necessary to get a close loop for the
purpose mentioned above, and, secondly, this extra edge represents the new set of
functions, that should be added to the original task functions to allow evaluating the
composed mechanical functional model thoroughly. Worthy to note that additional
edge directly adds the number of links, and simplicity feature is to be considered
directly per number of links and kinematical or other relations inserted by the
involvement of the new edge. It should be noted that in both cases when connecting
the second link to the first one and with coming back to the first link using a third
one, the same procedure of choosing the source link and the target link and
connecting those two links via mobility or by type of relation, in general, is
implemented.

Connection of two links should provide a closed loop with the last edge labelled
by symbol γwhich stands for general relation of the previous link of a closed-loop to
the first link and bears the physical meaning of a generalized contact. Touching the
fingers of user to the handles of a hand tool or contacting of cutting edge of a work
tool to the processed surface of a workpiece may serve as examples of the edge γ.
Any link is subject to further disintegration as well as any group of set of links is
subject to uniting and grouping. A methodical demand of composition and decom-
position requires all the actions to be done on a functional basis.

5.1.2.5 Composition of Models

The idea of the model takes a central and essential place in the suggested conceptual
design method as a mean for concentrating on design task and focusing on the
resolution of a separate task or function. Having the flexibility or being built per
needs of the design process, it may address to main design target and be checked
against the remained requirements or secondary functions. With the same success, it
may collect requirements consecutively and be shaped in a way to address a set of
requirements. In the following example of the development of gear chamfering
mechanisms, the model is constructed according to the first principle. The accuracy
of chamfer surface reproduction is targeted as a main requirement, and the nominal
model checks the other conditions of efficiency, flexibility, tool, and kinematical
simplicity in further qualitative and quantitative evaluation.

5.1.2.6 Synthesis Tools and Design Cycles

Method of decomposition into “construction bricks” extremely limits the scope and
size of applicable design tools set, thus simplifying and unifying the synthesis
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process. A set of “construction bricks” as a unit of a higher level having confirmed
features can be involved in the composition process if those features are known from
design history and database. Such unit should be preliminary decomposed or
composed to a necessary level of applicability. Those cases are typical for synthe-
sizing actions where the connection of two links is just a procedure of completing a
well-known standard kinematical structure (a four-bar mechanism, for instance) with
well-known properties and functions. A design procedure organized in a way as
mentioned above could be repeated in a cycling manner. It can be composed as a set
of methodically identical cycles, where the periods are arranged in an order with
gradual involvement of required design tasks functions, starting from the main or the
most important one and ending with secondary functions.

5.1.2.7 Modification Formats: Synthesis

Once the advantages and features of suggested conceptual design are explained, we
can step forward to the creation of standard-based formats which could be further
used for the conceptual and parametric design and analyses. First, we approach the
synthesis format consisting of task planning, implementation, and evaluation steps.

At task planning step, original two links are considered connected in a way to
implement the given function. If the physical nature of the connection is not precise,
then the links are connected virtually just planning the implementation.

Next step of implementation is organized by a set of synthesizing tools, realizing
composition and decomposition of the mechanical object or original two links once
the mechanical product is not developed yet.

Two main tools for providing a pre-given function are the composition and
decomposition of mechanical components, and both procedures are carried out on
a function-based manner. Under composition or decomposition, we may understand
granting DOF or freezing DOF actions and specific modification of mechanical
category when a solid link can be presented as a set of some links connected in a
way to compose the named link. The primary approach of conceptual design implies
consideration of a set of links in an attempt to implement a pre-given function. So,
the synthesis development format should include the first stage of primarily given
links and the second stage of modifying those links into the state to either satisfy a
pre-given function or to plan the satisfaction of the pre-given function. As a result of
this procedure, we may have consecutively arranged links as an open mechanical
chain, or we may have a close loop as a result of completing the open-chain by the
last or final link, so the final circuit is composed. So far as every step of modification
is accompanied by the emergence of secondary or lower-tier functions then, for an
overall evaluation, the preliminary given set of tasks should be gradually added by
those emerged functions. The best or the most convenient visualization mean to
describe this process is the presentation by means of graphs, where vertices are for
links and edges are for kinematic joints or planned functions and edges connect
vertices as representations of kinematical or other joints. The format is divided into
fragments where the pre-given function is planned and where the pre-given function
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is implemented. Implementation of the pre-given functions can be provided by
simple granting of degree of freedom where another link having the freedom against
the base link may have mobility and necessary movements to implement the
pre-given function.

What is specific for the suggested conceptual design method is that each step may
be satisfied by one or more pre-planned functions or every function should be
satisfied at consecutive steps. According to the third case, implementation of one
function already includes specific level and status or other functions provided by the
same topology which need either qualitative or quantitative evaluation per the
present contents of the developed structure. This circumstance is specific for the
below-considered example of the development of gear chamfering mechanisms
(Sects. 1.3, 1.4, and 1.5).

Another synthesis scenario is to build a model granted by all required functions or
features as a result of decomposing the physical diagram. Decomposition should be
done to a state comparable with the model at the same structural basis and judge
about presence or absence of the necessary features.

So, the synthesis format should include all the mentioned possibilities to allow the
designer to plan the implementation of the pre-given function one by one by
decomposing the set of functions into main one and secondary ones and following
the instructions already described to get the pattern for implementation of those
functions. Once the pre-given functions and the accompanying functions are figured
out, they are subject of evaluation and decision-making about acceptance or rejec-
tion. A single cycle of synthesis process is completed when the pre-given function at
the current stage is achieved, and the next functions are planned and delivered to the
following design cycle list. The synthesis process is completed when all the
pre-given, accompanying, and negative functions are satisfied.

5.1.2.8 Modification Formats: Analyses

The above-described structure of synthesis format can be reversed into analyses
format if the necessary modification and decomposition is started from the real
physical object instead of task of planning in synthesis format. Secondly, the
analyses format is finished with decomposed 3D and 2D models with necessary
graphs for their description and indication of revealed functions. Analogously to the
synthesis format, a single topology may contain and provide several functions so a
single level of modification can be enough for evaluation of not one but a set of
functions. The decomposed topology later is used for grouping or regrouping links
for description or evaluation of quantitative functions as velocity or efficiency which
don’t require an additional topology but are requiring set of grouped links, kinemat-
ical joints between those links, and parameters for describing quantitatively those
movements. The analyses format is successfully workable also for database consid-
eration and usage so that an existing solution can serve as example for prior art object
of competitions. As well they can serve as bank of accumulated knowledge subject
to proper modification prior using ready solutions for the needs of synthesis and
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conceptual design. The analyses format can generate models with needed and
positive properties which can serve as the base or start point for synthesis instead
of concept design from scratch.

Alternatively, the same target can be reached using the database that is using the
previous knowledge with the direct involvement of definite structure and a certain
set of functions.

5.1.2.9 Modification Formats: Parametric Design

Analyzes of design knowledge, mechanism guidebooks and structural solutions
databases is an important and necessary premise for creating of a new product – a
mechanism, a tool, a machine tool or a consumer product. Successful solution of this
objective assures the success of not repeating the mistakes or previous knowledge
acting in a way not to create a bicycle and formulate the task for the development of a
new competitive product. The mentioned objective sounds with and is present in the
objective of evaluation of new solutions and in the aim of comparative analysis and
setting the goals and tasks for the synthesis of a new product with economically valid
features. As well it is valid for the case of patent analyzes when that’s necessary to
evaluate a new solution or to assess the novelty of a patent-pending structure by
revealing advantageous features and qualitative novelty from the prior art and known
prototypes.

Firstly, the approach will allow for revising the object under consideration not
only from the point of its physical appearance but from the point of its contents.

Secondly, this step may substantially win from the point of description and
explanation or from a descriptive and explanatory point of view as a counterweight
to narrative and not descriptive methods can be explained using existing or specif-
ically developed graphic or visualization means.

Thirdly, the method of modification of a physical object will give a chance to
reveal and review new, positive, hidden positive, hidden negative functions and
provide a full-scale outlook for the object being under consideration. For the same
time, some views or images or status of the modified object may serve as models and
virtual mechanisms for full-scale evaluation of the existing product and for the
precise formulation of original conditions for creating or synthesizing of a new
product.

The procedure for general design, conceptual design, analyses, and parametric
design is summarized in Figs. 5.1, 5.2, and 5.3, correspondingly.

5.1.3 Analyses of Gear Chamfering Methods

Three of almost a dozen known gear chamfering methods and devices are going to
be analyzed in this paragraph to figure out the ability of each of them to address six
characteristics that are specific to these devices. Choice and description of those
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specific functions are presented in the Sect. 1.3.1. As it was mentioned earlier, the
analyses should be run in a comparative manner having a merit mechanism (model)
combining in itself the specific characteristics of gear chamfering process. A model
with theoretical point tool is used for reproduction of chamfer surface along toothed
(or any other) pattern. Description of the point model is presented in Sect. 1.3.2.
Once the point model is built, and the evaluation criterion are worked out, a single
cycle of analysis can be implemented by the steps below:

• Building a point model (3D and 2D) as a merit for evaluating features of a gear
chamfering method and mechanism taking into consideration main criteria of
geometric accuracy of chamfer surface.

Fig. 5.1. General design
flowchart

Fig. 5.2. Flowchart for
synthesis
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• Setting procedure for evaluation of the point model features.
• Composing the general structural-functional graph of point model with the

indication of links, functions, and movement parameters.
• Separation of specific sub-chains from the general graph for qualitative and

quantitative evaluation of point model features.
• Comparison of contents (structure) and value (the ability of function implemen-

tation) of a specific sub-chain with appropriate sub-chain of the point model.
• Quantified evaluation of a feature based on a proper set of links and movement

parameters provided by and grouped out from the general graph (quantitative
characteristics).

• Quantified assessment and making a conclusion about the ability of every
sub-chains to implement the function predefined by the point model and record-
ing an appropriate weight coefficient (qualitative characteristics).

After setting analyses format, the next action should be building of the point
model for side-by-side comparison with known gear chamfering methods/
mechanisms.

5.1.3.1 Set of Functions Describing Gear Chamfering Methods

Coming to the chamfering methods and mechanisms, we need to formulate six basic
features which are describing this kind of devices. Firstly, these mechanisms should
be accurate that means they should assure accurate duplication or tracking of both
carcass lines of chamfer surface – the guide line and the generating line. Accuracy of
those lines means precise duplication for the guide line and stability of shape and
position of the chamfering triangle for the generating line.

Fig. 5.3. Flowchart for analyses, database, and parametric design

5 Application of Task-Based Conceptual Design Method for Gear Chamfering. . . 195



The efficiency of chamfer surface reproduction means the speed of surface
tracking by a tool of both carcass lines. Evaluation of this feature doesn’t require
any update or further development of the point model; so far, all the necessary
components and parameters are included in it. The third feature subject to evaluation
and revealing is the tool simplicity.

The point model can be described as a model holding a tool of zero degrees of
complexity. The feature of flexibility defines the method’s ability to track guide
lines of different shapes and generating lines with different value, angle, and
direction. From this view the point model has highest flexibility because of presence
in it of five degrees of freedom.

Kinematical simplicity shows how a method is qualified to include a smaller
number of components with simple kinematical connections between them. For the
point model, kinematical simplicity is at zero levels because of the highest number of
degrees of freedom. And the last merit specific for a chamfering method is the level
of energy consumption defined by the character of processing a steel gear: by chip
removal or by plastic deformation. For the case of a point model it’s at a lower level
because it has no ability of metal processing. Despite this disadvantage, the point
model can be used as a merit for analyzing the main features of existing gear
chamfering mechanisms. After analyzing of the mentioned characteristics, each
method has got an evaluation score based on decomposition analyses (except criteria
of energy consumption).

5.1.3.2 Construction of a Point Model as Merit for Analyzing Gear
Chamfering Methods (Table 5.1)

First important feature characterizing a chamfering method is the ability of the
method to duplicate a geometrically accurate chamfer surface. That means those
chains should assure duplication or tracking of both surface composition lines: the
guide line and the generating line as the carcass for tracking a 3D surface of a
chamfer along the toothed pattern. The guide line of a toothed pattern is coinciding
with its toothed pattern by itself. And the accuracy of the generating line means the
stability and constancy of the three pages of chamfer generating triangle against the
toothed pattern.

The normal page is directed perpendicularly to the toothed pattern, the axial page
is parallel to the axis of the gear, and the hypotenuse of the triangle is the generating
line of the chamfer surface by itself. Creation of sub-mechanisms for guide line and
generating line and creation of the whole mechanism of gear chamfering model are
based on the consecutive application of elementary movements or primitive move-
ments in a way to be responsible for a specific function.

This action is planned in Table 5.1-1–4 where firstly it is set the general
requirement of surface formation (Table 5.1-1), then it is specified to accuracy
issue (Table 5.1-2), and this requirement in its turn is subdivided into accuracy
requirements for the guide line (Table 5.1–3) and generating line (Table 5.1-4). In
the most simple and theoretical way, any complicated pattern included the toothed
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Table 5.1 Format of point model synthesis for chamfer surface generation

Point Model for Chamfer Surface Generation –W=1.0
Set of Challenged Functions with Weight Coefficients for Importance

F1:Accuracy - 0.25 F11:Guide Line Accuracy- 0.13

F12:Generate Line Accuracy- 0.12

F4:Tool Simplicity- 0.1

F2:Efficiency- 0.3 F21:Guide Line Efficiency- 0.15

F22:Generate Line Efficiency- 0.15

F5:Kinematic Simplicity- 0.1

F3:Flexibility- 0.1 F31:Guide Line Flexibility- 0.05

F32:Generate Line Flexibility- 0.05

F6:Energy Consumption-0.1 (Total-1.0)

Development of Point Model

Task Planning

F0: Functions in 

General

F1: Accuracy F11: Guide Line Accuracy F12: Generate Line Accuracy

1

2

3 4

Task Solution

F11: Guide Line Accuracy F12: Generate Line Accuracy

5 6

General Solution Graph Function Breakdown

7

(1)

(3)

3D Model 2D Model

8 9

(continued)
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Table 5.1 (continued)

Graphs for Feature Explanation and Evaluation

F11: Accuracy of Guideline Reproduction F12: Accuracy of Generating Line Reproduction

10 11

Set of Links and Parameters Involved

(2)                                 (3)

Evaluation of Synthesized Functions

0.13 0.12

F21: Efficiency of Guideline Reproduction F22: Efficiency of Generating Line Reproduction

(4) (5)

Evaluation of Synthesized Functions

0.15 0.15

F31: Flexibility of Guideline Reproduction F32: Flexibility of Generating Line Reproduction

12 13

(8) (9)

Evaluation of Synthesized Functions

0.05 0.05

F4: Tool Simplicity F5: Kinematic Simplicity

14 15

(10) (11)

Evaluation of Synthesized Functions

0.15 0.1

(continued)
Table 5.1 (continued)
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pattern can be reproduced by a set of functionally connected movements, like sliding
movements along axis X and Y. In a simple combination of two sliding links L1 and
L2, relative axis L0 is satisfying reproduction of the guide line (Tables 5.1-8 and 9).

As it is mentioned above, the graphs are organized as closed loops where the
starting is for the toothed pattern or work gear (L0) and the end link belongs to the
surface tracking tool which is bringing back the chain of vertices with original point
belonging to the toothed pattern. Edge γ is symbolizing contact of surface tracking
point L5 with chamfer surface subject to reproduction. The edge γ in all the graphs is
simulating contact of point L5 to the chamfer. The symbol γ has more general
interpretation of any relation between the links different from a conventional kine-
matical joint.

The last link of the model is a slider containing a point which is tracking the
toothed surface; for that reason, the developed model can be called a point model.
Table 5.1 includes the necessary steps and actions for the creation and evaluation of
the point model. The overall weight score or coefficient of the point model is equal to
1 because of the model setting the standards for gear chamfering mechanism and
despite the fact of having theoretical nature with no metal processing ability. The
three chamfering methods (using an end mill, comb mill, and plastic deformer as a
tool) subject to analyses are for physical processing, so the appropriate adjustments
for weight coefficients are done allowing side-by-side comparison:

1. Evaluation of efficiency of processing is done by grouping the necessary param-
eters from Tables 5.1–4 and 5) for guide line sub-chain and from Tables 5.1-10
and 11 for generating model and based on this set is calculated the velocity of
reproduction of both lines.

2. F31 as flexibility, the functional relation f(x, y)¼ 0 allows the reproduction of any
pattern, and relation (z,φ,R) permits reproduction of any chamfering triangle
(F32) hypotenuse.

3. The simplicity of point model tool F4 can be evaluated as at zero complexity or at
highest (max) simplicity because of its theoretical point nature.

4. With kinematic simplicity F5, the model has the highest complexity level because
of the maximum number of functional movements concentrated in the point
model.

Tables 5.1(1–4) is showing the planning step of the construction of the point
model.

Tables 5.1-5, 6, and 7 is for the task solution step, including to separate compo-
sition of graphs for providing the guide line (Table 5.1-5) and generating line
(Table 5.1-5) accuracy.

Table 5.1-8 is for the general structural-functional graph with generalized and
combined edges for several functions, when the same structure can perform several
and combined functions. The edges of the graph first are showing the planned
functions and then after consecutive connection of the links and defining the
kinematical joints between them.
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Table 5.1-9 is for the composed 3D model as a result of synthesizing action with
indications of links and kinematical joints, while Table 5.1-10 is for 2D presentation
of the 3D model.

Tables 5.1-15 are for review of features of all the functions subject to implemen-
tation by the point model. Evaluation of each function is considered at two levels
either qualitative when the presence of links with appropriate connections are
enough to confirm function or quantitative when besides the presence of the links
the type of connection between them and derivatives is needed for feature
evaluation.

Table 5.1-8 is for the edges of the graph first showing the planned functions and
then after consecutive connection of the links and defining the kinematical joints
between them.

5.1.3.3 Mathematical and Physical Connections between Revealed
Parameters of Gear Chamfering Methods

Presented formats have the methodical ability for mathematical and physical
connections between the parameters to provide ways for the description of the
tooth surface. First, they contain necessary data for describing the position of the
endpoint of a radius vector tracking the chamfering surface being supported by
them by the set of elementary movements. The elementary movements are the
sliding and revolutionary movements around and along three coordinate axes.
These movements can be easily described by 4 x 4 matrices, each of them having
a single variable parameter. On the other hand, this method of description correctly
sounds with the methodical representation of structures where the links are either
physical objects with zero dimensions or the links are solidified or frozen results of
fixed movements.

5.1.3.4 End Mill Gear Chamfering Method Analyses (Table 5.2)

The tool has the highest flexibility per guide line (Table 5.2-9) and lowest fixed
flexibility for the generating line (Table 5.2-11) because of the concentration of all
the three movements in the solid conical body of the end mill. The fixed parameters
are shown in bold to emphasize their fixed and frozen nature (Table 5.2-11).
Compared with the point model, additional freedom is granted for simulating the
presence of minimal radius for end mill R0 needed for providing necessary different
from zero velocity of metal cutting (Table 5.2-2). Kinematical simplicity (Table 5.2-
15) is at an average level due to involvement in the proper sub-chain part of total
surface tracking movements. Comparison is done by side-by-side comparison of a
current method and the point model.

The simplest way for making chamfer of a longer toothed pattern is the applica-
tion of end mill which is practically applicable for large module gears having enough
space between two neighbor teeth to allow placing a small end mill inside. The
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format for analyzing gear chamfering mechanisms starts with the composition of a
3D model consisting of decomposed sliding and rotary links revealed behind the
physical model and allowing the description of the features of the mechanism under
consideration. The appropriate sub-mechanism or 3D model is practically the same
with point model structure and contents with two major differences. Firstly, move-
ments of the first two sliders can be implemented on the base of a CNC machine, for
example, to provide the motion along the toothed pattern. And, secondly, the end
mill has a minimum radius necessary for providing minimum speed of cutting or
milling. One more difference is that the angle of orientation of forming triangle has
two different meanings and applications. First, this angle is frozen at the value of
360� to provide the body of the end mill. This shape formation is possible when the
larger side of the triangle is frozen, and second is for creation of the body of an end
mill. These circumstances are defining the flexibility of the end mill method at the
highest degree for the toothed guideline and the lowest flexibility degree for the
chamfer generating line. Other features of the end mill mechanism are described and
presented in the analyzing format in Table 5.2.

The overall rating of end mill method is 0.7 lower than that of the point model,
due to limited efficiency and flexibility features.

5.1.3.5 Comb Mill Gear Chamfering Method Analysis (Table 5.3)

The next method of gear chamfering process subject to analysis is the method of a
comb mill which is using a standard tool for gear processing for gear chamfering.
The comb mill has cutting teeth arranged circumferentially instead of helically
arranged cutting teeth of a worm gear. Physical diagram and 3D decomposed
model, 2D model, and structural-functional graph are presented in an analyzing
format in Table 5.3. This method is based on the separation of two functions of
reproduction of the toothed pattern and application of means to provide the velocity
of the main movement of cutting. The first function is implemented by a rack
engaged with the teeth subject to chamfering, and second function is given to the
comb mill being rotated at a speed of cutting movement and being located at a
specific position relative to the axis and face of the gear. Appropriate 3D and 2D
models are presented in Table 5.3. The 2Dmodel is helping to the composition of the
structural-functional graph. The graph is representing by itself a closed-loop starting
from the toothed pattern and ending by the final slider of the decomposed structure of
the comb mill.

This chain includes all the necessary components enough to combine them into
appropriate sets for describing any required function or property of the comb mill
method. Worthy to note that those components and parameters are useful and
applicable for the description for qualitative as well as quantitative features of gear
chamfering method. For example, the comb method is good for productivity or
efficiency because of the large diameter of the comb mill. The method is relatively
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Table 5.2 Functional and structural analyses of end mill method for gear teeth chamfering

Analyzes of End Mill Method – W=0.7

Physical Diagram Decomposed 3D Diagram

1 2

2D Model General  graph Function Breakdown

3 4

(1)

(2)

Graphs for Feature Explanation and Evaluation

F11: Accuracy of Guideline Reproduction per End 

Mill Method

F11: Accuracy of Guideline Reproduction per 

Point Model

5 6

Set of Links and Parameters Involved

(3) (4)

Evaluation of Analyzed Functions

0.12 0.13

F12: Accuracy of Generating Line Reproduction

per End Mill Method

F12: Accuracy of Generating Line 

Reproduction per Point Model

(continued)
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Table 5.2 (continued)

7 8

(5) (6)

Evaluation of Analyzed Functions

0.12 0.12

F21: Efficiency of Guideline Reproduction F21: Efficiency of Guideline Reproduction per 

Point Model

(7) (8)

F22: Efficiency of Generating Line Reproduction F22: Efficiency of Generating Line 

Reproduction per Point Model

(9) (10)

F31: Flexibility of Guideline Reproduction per End 

Mill Method

F31: Flexibility of Guideline Reproduction per 

Point Model

9 10

(11) (12)

Evaluation of Analyzed Functions

0.05 0.05

F32: Flexibility of Generating Line Reproduction

per End Mill Method

F32: Flexibility of Generating Line 

Reproduction per Point Model

11 12

(13) (14)

Evaluation of Analyzed Functions

0.03 0.05

F4: Tool Simplicity per End Mill Method F4: Tool Simplicity per Point Model

(continued)
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simple, but it is not high scored for the accuracy feature and for simplicity of
positioning of the tool relative to the face of the gear (Table 5.3-6). All those
features can be derived from the general structural-functional graph following the
2D model in Table 5.3. The simplicity of the tool is shown by means of three
decomposed sliders simulating a sliding and a circular movement. The connections
between the parameters of those movements are underlining the simplicity of the
tool because of the linear character of relations between those movements. Accu-
racy of reproduction of the chamfer surface is scored at the middle than the lower
level; so far, the surface is generated as a specific and not accurately controlled
cross section of the surface of comb mill by the chamfered edges of the toothed
pattern (Table 5.3-5).

High number and concentration of decomposed links in the comb mill method’s
mechanism, including the fixed links responsible for tool-work gear positioning,
define low accuracy of gear chamfering, with no flexibility for the chamfer’s
generating line. Symbolically this fact can be presented as equal to zero and the
derivatives of parameters as mentioned above as constant parameters: see
Table 5.3-9.

Table 5.2 (continued)

13 14

(15) (16)

Evaluation of Analyzed Functions

0.03 0.15

F5: Kinematic Simplicity per Comb Mill Method F5: Kinematic Simplicity per Point Model

15 16

(17) (18)

Evaluation of Analyzed Functions

0.03 0.1
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Table 5.3 Functional and structural analyses of comb mill method for gear teeth chamfering

Analyzes of Comb Mill Method-W=0.72

Physical Diagram Decomposed 3D Diagram

1 2

2D Model General  graph Function Breakdown

3 4

(1)

(2)

Graphs for Feature Explanation and Evaluation

F11: Accuracy of Guideline Reproduction per Comb 

Mill Method

F11: Accuracy of Guideline Reproduction per 

Point Model

5 6

Set of Links and Parameters Involved

(3) (4)

Evaluation of Analyzed Functions

0.12 0.13

F12: Accuracy of Generating Line Reproduction per 

Comb Mill Method

F12: Accuracy of Generating Line 

Reproduction per Point Model

(continued)
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Table 5.3 (continued)

7 8

(5)

(6)

Evaluation of Analyzed Functions

0.05 0.12

F21: Efficiency of Guideline Reproduction F21: Efficiency of Guideline Reproduction per 

Point Model

(7) (8)

F22: Efficiency of Generating Line Reproduction F22: Efficiency of Generating Line 

Reproduction per Point Model

(9) (10)

F31: Flexibility of Guideline Reproduction per 

Comb  Mill Method

F31: Flexibility of Guideline Reproduction per 

Point Model

9 10

(11) (12)

Evaluation of Analyzed Functions

0.05 0.05

F32: Flexibility of Generating Line Reproduction

per Comb Mill Method

F32: Flexibility of Generating Line 

Reproduction per Point Model

(continued)
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5.1.3.6 Plastic Deformer Gear Chamfering Method Analyses (Table 5.4)

The next method subject to analyzing is the method of plastic deformation which
would be considered the most progressive and effective way of gear chamfering in
modern gear chamfering techniques. The disadvantage of plastic deformer is in its

Table 5.3 (continued)

11 12

(13)

(14)

Evaluation of Analyzed Functions

0.03 0.05

F4: Tool Simplicity per Comb Mill Method F4: Tool Simplicity per Point Model

13 14

(15) (16)

Evaluation of Analyzed Functions

0.03 0.15

F5: Kinematic Simplicity per Comb Mill Method F5: Kinematic Simplicity per Point Model

15 16

(17) (18)

Evaluation of Analyzed Functions

0.03 0.1

5 Application of Task-Based Conceptual Design Method for Gear Chamfering. . . 207



Table 5.4 Functional and structural analyses of plastic deformer method for gear teeth chamfering

Analyzes of Plastic Deformer Method-W=0.75

Physical Diagram Decomposed 3D Diagram

1 2

2D Model General  graph Function Breakdown

3 4

(1)

(2)

Graphs for Feature Explanation and Evaluation

F11: Accuracy of Guideline Reproduction per 

Plastic Deformer  Method

F11: Accuracy of Guideline Reproduction per 

Point Model

5 6

Set of Links and Parameters Involved

(3) (4)

Evaluation of Analyzed Functions

0.12 0.13

F12: Accuracy of Generating Line Reproduction

per Plastic Deformer Method

F12: Accuracy of Generating Line 

Reproduction per Point Model

(continued)
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Table 5.4 (continued)

7 8

(5)                        (6)

Evaluation of Analyzed Functions

0.12 0.12

F21: Efficiency of Guideline Reproduction F21: Efficiency of Guideline Reproduction per 

Point Model

(7) (8)

F22: Efficiency of Generating Line Reproduction F22: Efficiency of Generating Line 

Reproduction per Point Model

(9) (10)

F31: Flexibility of Guideline Reproduction per 

Plastic Deformer Method

F31: Flexibility of Guideline Reproduction per 

Point Model

9 10

(11) (12)

Evaluation of Analyzed Functions

0.03 0.05

F32: Flexibility of Generating Line Reproduction

per Plastic Deformer Method

F32: Flexibility of Generating Line 

Reproduction per Point Model

11 12

(13) (14)

Evaluation of Analyzed Functions

0.05 0.05

F4: Tool Simplicity per Plastic Deformer Method F4: Tool Simplicity per Point Model

(continued)

5 Application of Task-Based Conceptual Design Method for Gear Chamfering. . . 209



complexity due to the concentration of a large number of elementary movements.
The focus of parameters is also the reason for the complicated processing surface this
tool has, being the reason for difficult manufacturing and maintenance. The method
is quite simple from the kinematical point, including less number of movements
needed for reproduction of a chamfer along the toothed pattern.

3D composition of the model reveals necessary sub-chains for describing essen-
tial properties of the gear chamfering mechanism. The guide line and generating line
reproduction sub-mechanisms are separated from each other, giving a chance to
reproduce different gears of the same module. What is remarkable to the generating
line sub-chain, it reveals and shows clearly that concentration of large number of
frozen movements in the body of plastic deformer is lowering the flexibility of the
tool and making complicated its manufacturing and maintenance. Those frozen
movements in the generating line sub-chain are indicated on the fixed character of
the chamfering triangle, which is limiting the flexibility of the method (Table 5.4
(1-4)).

Table 5.4 (continued)

13 14

(15) (16)

Evaluation of Analyzed Functions

0.12 0.15

F5: Kinematic Simplicity per Plastic Deformer 

Method

F5: Kinematic Simplicity per Point Model

15 16

(17)

(18)

Evaluation of Analyzed Functions

0.07 0.1
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5.1.3.7 Short Conclusions on Analyses

Some short conclusions are summarizing the experience of analysis of four gear
chamfering methods and setting objectives for further study:

1. Decomposition is practically useful for revealing the hidden and not apparent
functions which are necessary for the full-scale understanding of the values and
resources of a specific gear chamfering method.

2. Three-level visualization of structural means (physical diagram-3D-2D) is provid-
ing step-by-step decomposition of a particular method. It is ending by a graph
containing all the necessary set of sliders and revolution units which are connected
by movement parameters and linked to each other on a functional basis. This set of
data is essential and sufficient for any per demand combination for the description
of qualitative and quantitative features of a specific gear chamfering method.

3. A point model is useful for visualizing main features of gear chamfering mech-
anism and serves as a merit for setting objectives and creating a set of practical
gear chamfering mechanisms having the fundamental properties of the point
model.

5.1.4 Synthesis of Gear Chamfering Mechanisms

The analyzing format based on the point model can be modified into further formats
for synthesizing new structures and for parametric design and optimization, keeping
the main features of the task-based conceptual design. Listing here the main ele-
ments of task-based conceptual design we can point out. Synthesis of gear chamfer-
ing mechanisms includes the following steps and basic components:

• The synthesis process is started by indication or choice of two original links for
the gear chamfering mechanisms – they are the work gear and the tool gear.

• At the next step, the basic function is inserted between the two links as a relation.
• Decomposition of the inserted function to sub-functions upon the necessity.
• The satisfaction of the challenging tasks by either granting a degree of freedom or

using database resources.
• Doing the necessary decomposition of the database resources before its application.
• Organization of repeatable synthesis cycles and visualization of this process.
• Consideration of different design scenarios.
• Development and insertion of an evaluation mechanism.

5.1.4.1 Construction of a Linear Model for Synthesizing Gear
Chamfering Methods (Table 5.5)

As stated in Sect. 1.3.2, the point model has no resource of practical implementation
of metal processing and chip removal. Hence a further linear model should be
synthesized for addressing this essential feature of a chamfering method.
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Table 5.5 Format of linear model synthesis for chamfer surface reproduction

Linear Model for Chamfer Surface Reproduction-W=0.87
Set of Challenged Functions with Weight Coefficients for Importance

F1:Accuracy - 0.2 F11:Guide Line Accuracy- 0.1

F12:Generate Line Accuracy- 0.1

F4:Tool Simplicity- 0.12

F2:Efficiency- 0.3 F21:Guide Line Efficiency- 0.15

F22:Generate Line Efficiency- 0.15

F5:Kinematic Simplicity- 0.1

F3:Flexibility- 0.1 F31:Guide Line Flexibility-0.05

F32:Generate Line Flexibility-0.05

F6:Energy Consumption- 0.05 

(Total-0.87)

Development of Linear Model

Task Planning

F0: Functions in General F1: Accuracy F11: Guide Line 

Accuracy

F12: Generate Line 

Accuracy

1

2

3 4

Task Solution

F11: Guide Line Accuracy F12: Generate Line Accuracy

5 6

General Solution Graph Function Breakdown

7

(1)

(2)

2D Model 2D Extended Model

(continued)
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Table 5.5 (continued)

8 9

3D Model

10

Graphs for Feature Explanation and Evaluation

F11: Accuracy of Guideline Reproduction F12: Accuracy of Generating Line Reproduction

10 11

Set of Links and Parameters Involved

(3)       (4)   

Evaluation of Synthesized Functions

0.1 0.1

F21: Efficiency of Guideline Reproduction F22: Efficiency of Generating Line Reproduction

(5)          (6)   

(7) (8)

Evaluation of Synthesized Functions

0.1 0.1

F31: Flexibility of Guideline Reproduction F32: Flexibility of Generating Line Reproduction

(continued)
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A linear model of gear chamfering mechanism is a developed state of the point
model. The idea of the linear model is coming from application or usage of a line as a
cutting edge of a metalworking tool, so granting it the metal processing ability upon
implementation of necessary relative movements against the work gear. That’s
obvious that using a curved line instead of point should change the structure of
point model accordingly because a curved line doesn’t indifferently position against
the work gear and the chamfer surface. Modification of the point model is done in
two steps: for guide line sub-chain and for generating line sub-chain. The point
model includes links for inter-perpendicular movements along axis X and Y for
tracking the point along the toothed pattern. This model is not applicable for the case
of the toothed gear because two inter-perpendicular movements along axis X and
Y are not workable for the case of reproduction of toothed pattern and gear engage-
ment. Gearing is requiring rotational movement for at least one element of toothed
pair. In a classic gear engagement, both gears are rotational, and this fact is setting
premises of reproduction of one gear by the other. So, the first modification of the
point model relates to the sub-chain of the guide line reproduction mechanism.
Construction of this sub-chain is shown in Table 5.5 organized in a way to allow
the designer to follow every step of the conceptual design of gear chamfering
mechanism on a functional or task-based basis. Two original links are enabling the

Table 5.5 (continued)

12 13

(9)     (10)  

Evaluation of Synthesized Functions

0.05 0.05

F4: Tool Simplicity F5: Kinematic Simplicity

14 15

(11)

(12)

Evaluation of Synthesized Functions

0.1 0.05
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growth of the set of elementary movements resulting in the reproduction of the first
toothed pattern by the other. The work gear pattern fixed to the ground link is
methodically assumed to be the same as the toothed gear subject to chamfering. At
this step, the link L3 further called a leading gear is granted by necessary movements
which are sufficient for the reproduction of a guide line on the work gear. From the
topological point of view, the guide line reproducing sub-units for the point model
and end linear model is identical.

Next task of conceptual design (Table 5.5-4) relates to the composition of a
sub-unit of generating triangle, and already developed several functions and solu-
tions from the point model are going to be used here. Usage of generating line chain
from point model (Table 5.4-5) means that orientation of the triangle plane in normal
to the chamfer surface and both movements in normal and axial directions are valid.
The choice of the direction of the normal movement is decided by the position of
normal in the point of contact of leading gear and the work gear. That is also the
place to note that the curved line L6 selected as a cutting line (edge) of the tool in the
developed gear chamfering mechanisms is subject to further decomposition in the
coordinate system linked to the last element of guideline sub-chain. The parameter of
the orientation of the generating triangle in a plane perpendicular to the guideline
will change the position of generating line from his normal to the guide line. This
de-orientation will happen because the leading gear should be duplicated and
transferred to the end link of the triangles’ sub-mechanism to be able to take part
and implement generation and processing of all the chamfer surface along the entire
guide line. To keep tool gear curved pattern in previous position against the leading
gear, the cutting edge of the tool gear should be re-oriented on the same angle of
orientation according to the orientation angle of sub-chain for generating triangle.
Granting this new movement to the cutting edge to the basic structure of the point
model is completing now into the structure of the linear model. Compared with the
point model, one can notice the topological identity between point and linear models
and with an additional degree of freedom necessary for triangle re-orientation.
Comparing the number of degrees of freedom between point and linear models,
one can notice a higher complexity of the linear model. So, after confirmation of the
positive features of the linear model inherited from the point model, other unfavor-
able functions are challenged, which are subject to further satisfaction and solution.
Basic requirements to the chamfering mechanisms listed for the point model are
repeatedly listed in Table 5.5. The high accuracy score of the point model can be
passed to the linear model for both guide line and generating line.

The efficiency of reproduction of the chamfer surface by the linear model can be
provided by directing the main cutting speed along the longer guide line of the
toothed pattern and directing the slower rate of feeding along the short edge of
generating triangle hypotenuse.

Tool simplicity should be rated as an advantageous feature because of the
concentration of a smaller number of elementary movements in the body of the
cutting tool. The set of primary movements (describing the complexity of the cutting
tool) are separated from the general functional-structural graph and form the basic
structure of the linear model for presenting and evaluating the qualitative
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characteristics of the linear model. The mentioned (Table 5.5-7) set of elementary
movements in the frozen status is equivalent to the shape of a standard gear with
straight teeth when chamfering a straight tooth gear and to the form of a bevel gear
when chamfering a bevel gear. More advantages of the cutting tool (tool gear) are
becoming thus visible. Firstly, manufacturing of the tool requires standard technol-
ogy of gear processing, and secondly the maintenance, more specifically, the
sharpening of such tool gear, needs a pure refreshment of the face by flat grinding.

Synthesis plan implemented in Table 5.5 includes the steps below:

• Plan the sub-chain for guide line.
• Plan the same for generating line.
• Implement chain for guide line.
• Compose the general graph.
• Create an extended model for reduction of the degree of freedom.
• Reveal conical kinematic surface for the reproduction of generating line.

Comments and results of actions implemented in Table 5.5 are listed below:

• Accuracy is defined by the accuracy of the toothed pattern reproduction.
• Accuracy depends on fixation and activation of parameters included in the

sub-chain of generating triangle.
• Flexibility is defined by gear transmission of a large set of work gears having the

same module with the tool gear.
• Several evaluations of flexibility for generating line are possible.
• Tool synthesis is defined by using a linear cutting edge for gear chamfer

processing by chip removal.
• According to the design task and depending on the simplicity of two sub-chains,

different combinations of frozen and granted movements are possible.
• Further breakdown of L0 (work gear) is needed for its detailed description. See

Sect. 1.5 Parametric Design for sub-mechanism of L0 and its graph.

5.1.4.2 Using the Database for Completing Linear Model

On the way of simplification of the kinematical diagram based on the linear model, a
task should be challenged for minimizing the excessive number of degrees of
freedom. The search of such mechanisms from the database or their reinvention
can be organized by equipping the current basic structure of the linear model by
additional sliders composing an extra generating triangle as it is shown in Table 5.5-
9. The cutting edge being now connected to the connecting rod of a four-bar
mechanism with additional movement along the axis of toothed gear will be able
to keep its normal position to specific areas or fragments of the toothed pattern. The
number of degrees of freedom can be reduced by connecting the normal and axial
movements or the cutting edge when a standard chamfer angle is required or by the
flexible connection of those two movements when the angle of chamfer angle is
needed to be variable. The linear model with extra constructed parallelogram
mechanism is serving as a base for the development of a series of gear chamfering
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mechanisms. The developed extended linear model (Table 5.5-11) contains all the
necessary parameters and content of required links for providing different qualitative
and quantitative features of gear chamfering mechanisms. It also has the resource of
reinventing or reengineering its structure into well-known structures and mechanical
solutions from the database but for the satisfaction of tasks specific for the current
(e.g., gear chamfering) conceptual design. Oppositely the known mechanisms from
the database can be modified using the links implementing exclusively elementary
movements into sub-chains and parallel chains for equipping as the linear model as
well as the chamfering mechanisms constructed on the base of the linear model.

5.1.4.3 Mathematical Expressions

Set of the parameters revealed due to the linear model are allowing to compose
mathematical expressions for describing the curves of guideline and surface of
chamfer and chamfer surface. They are also enabling to organize a parametric design
and optimization process for minimizing the maximum height of micro-roughness as
it will be shown in Sect. 1.5. Those regulations and connections are listed in the
linear model format presented in the Table 5.5. The linear model, as it was men-
tioned earlier, is serving as a base for creation of several gear chamfering
mechanisms.

5.1.4.4 Gear Chamfering Mechanism: Gear Engagement + Equidistant
Tracking (Table 5.6)

Before going detailed description of synthesized gear chamfering mechanisms, the
3D model of connecting rod sub-mechanism should be developed from decomposed
sliders as shown in Table 5.5-10. Easy to notice that the leading gear and the cutting
gear are remaining parallel permanently being rotated around axis shifted from each
other on the value of angle of chamfering triangle re-orientation. Thus, the axis of
lead gear and work gear is being moved on the amount of equidistant radius R.

Such a mechanism can be re-invented if the trajectory of the end slider could be
turned into a solid internal conical surface fixed to the lead gear. In its turn, the
decomposed sliders are forming external conical surfaces attached to the leading
gear and contacting with the abovementioned outer conical surface. Many other
embodiments based on the extended linear model of gear chamfering mechanisms
can be developed; anyhow, we will stop on two of them. The solution with internal
and external comical gears is shown in Table 5.6-7. At this stage, the next challenge
of ground link choice should be satisfied. In an option according to Table 5.6-7, the
link holding the axis of rotation for work gear and tool gear serves as a ground link,
so the lead gear and a tool gear are forming a standard gear transmission, while the
work gear has a feed movement directed in the normal direction to a specific
fragment of the toothed pattern of the work gear. In the solution (Table 5.6-7), a
fixed chamfering angle is equal to the half of the angle of the conical surface at the
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Table 5.6 Format for synthesis of gear chamfering mechanism for full toothed pattern

Synthesis of Gear Chamfering Mechanism for Full Toothed Pattern –W=0.82
Set of Challenged Functions with Importance of Weight Coefficients

F1:Accuracy - 0.2 F11:Guide Line Accuracy- 0.1

F12:Generate Line Accuracy- 0.1

F4:Tool Simplicity- 0.12

F2:Efficiency- 0.3 F21:Guide Line Efficiency- 0.15

F22:Generate Line Efficiency-

0.15

F5:Kinematic Simplicity- 0.07

F3:Flexibility- 0.08 F31:Guide Line Flexibility-0.03

F32:Generate Line Flexibility-0.05

F6:Energy Consumption-0.05 (Total-

0.82)

Usage of Linear Model with Advantageous Features

General Graph Function Breakdown

1

(1)

(2)

Linear Model as Original State of Synthesis

2D Extended Model 3D Model

2 3

Task 1: Reduce DOF for Chamfer Generating Line Chain (F7:). 

Task 2: Use or Synthesize Chain for Gear Pattern Reproduction Task 

F7: Regrouping the Links F7: Planning of  Task1 F7: Planning and 

Solution of Task 2

F7:Solution of Task1

4 5 6 7

Kinematic Solution for F7 : Two options: Use database or synthesize

(continued)
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Table 5.6 (continued)

8 9

10 11

F8:Reduce DOF for Chamfer Generating Line Chain: Task Planning and Graph Solution

F8: Regrouping the Links F8: Concentration on 

Task-1

F8: Concentration on 

Task-2

F8: Graph Solution

12 13 14 15

Kinematic Solution for F8

16 17

F9:Combination of Guide Line and Generating Line Chains: Kinematic Solution for F9

2D Models

(continued)
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top. This solution will be further used for parametric design and optimization for
feeding direction to satisfy the requirement of limitation of the maximum height of
micro-roughness on the chamfer surface along the guide line (see Sect. 1.5).

The work gears are driven away from the fixed axis of the lead gear in a specific
direction relative to toothed pattern of the work gear. If the chamfer is needed to be
processed on the neighbor profiles, only then the feed movement has a fixed path,
and it is reciprocated for serving both patterns (Table 5.6-7).

Plan of synthesizing mechanism #1 on the base of the linear model includes the
steps as listed:

Table 5.6 (continued)

18

3D Model

19
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• The original state of synthesis, base structure, planning, and solution.
• Composing sub-chains from database resources and by freezing movements for

creating of the conical surface of chamfer tracking triangle.
• Combining of chains and getting conceptual design solution for mechanism #1.

5.1.4.5 Gear Chamfering Mechanism: Gear Engagement + Helical
Movement (Table 5.7)

Another simplified solution of gear chamfering mechanism can be obtained by
using the specific property of the two involutes of a basic circle are equidistant.
This fact is allowing to organize the feeding movement using a pure rotation of the
cutting gear against the lead gear. The pattern reproduction function can be easily
implemented by meshing the two lead and work gears, thus maximally simplifying
the mechanism into a simple pair of engaged lead gear and work gear. The tool gear
in such mechanism is arranged coaxially with the lead gear and has the rotational
feeding movement as a simple rotation around the common axis (Tables 5.7-18
and 19).

The axial movement of the tool gear is mechanically connected with the rotational
feeding movement that’s reducing the number of controllable variables and param-
eters. The last structure of gear chamfering mechanism can be separated from the
general structural-functional chain of the linear model, and its synthesis path is
followed in Table 5.7.

An example of simplified linear model implementation is shown in Table 5.7.
Here the work gear is fixed, and a faceplate equipped with several work gears is
running around the centrally located lead gear in a planetary movement. The work
gear is connected to a feeding chain which drives it in a reciprocated feed movement
around the lead gear axis. The entire set of chamfer surface tracking movements are
present including the axis shifting of the tool gear due to conical inserts between the
lead gear and work gear which are acting as cams.

5.1.5 Parametric Design of Gear Chamfering Mechanisms

The parametric design format keeps the same methodical structure with concept
design and analyses formats: firstly, the task is formulated of definition of a design
parameter of gear chamfering mechanism which is responsible for chamfer surface
quality. The search of parameter is started by composing a calculative scheme which
in its turn depends on already developed basic 3D and 2D models of gear chamfering
mechanism which are now subject of further decomposition for setting a proper
calculative diagram. So far definition of the challenged parameter is connected with
intersection of two curves, one the kinematical contour of tool gear and the other
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Table 5.7 Format for synthesis of gear chamfering mechanism for two sides of toothed profile

Synthesis of Gear Chamfering Mechanism for Two Sides of Toothed Profile-W=0.83
Set of Challenged Functions with Importance of Weight Coefficients

F1:Accuracy - 0.18 F11:Guide Line Accuracy- 0.08

F12:Generate Line Accuracy- 0.1

F4:Tool Simplicity- 0.12

F2:Efficiency- 0.3 F21:Guide Line Efficiency- 0.15

F22:Generate Line Efficiency- 0.15

F5:Kinematic Simplicity- 0.08

F3:Flexibility- 0.1 F31:Guide Line Flexibility- 0.05

F32:Generate Line Flexibility- 0.05

F6:Energy Consumption-0.05(Total-

0.83)

Usage of Linear Model with Advantageous Features

General Graph Function Breakdown

1

(1)

(2)

Linear Model as Original State of Synthesis

2D Extended Model 3D Model

2 3

F7:Shorten Chain for Chamfer Generating Line Chain: Task Planning and Graph Solution

F7: Plan the Task F7: Plan the Task F7: Plan the Task

4

Kinematic Solution for F7: Two options: Use database or synthesize

(continued)
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kinematical curve of a point of work gear in reversed movement; so further decom-
position of basic 3D model relates to creating of virtual mechanisms for reproduction
of such curves. Those mechanisms will include the necessary set of parameters
enough to be included in proper equations and get the challenged parameter as a
result of solution of those equations.

Table 5.7 (continued)

8 9

F9:Combination of Guide Line and Shortened Generating Line Chains into a Single Mechanism: 

Kinematic Solution for F9

2D Models

18

3D Model

19
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5.1.5.1 Task of Parametric Design and Optimization

The visualized arrangement of formats developed for the conceptual design and
analyses phases can be further extended to the step of parametric design and
optimization of a gear chamfering mechanism. The same method of the composition
and decomposition of mechanical and functional categories, being used for modifi-
cation, composition, and decomposition, previously applied for synthesis and ana-
lyses of gear chamfering mechanism can be modified and used now for parametric
design needs. Those methods can be used for revealing the basic set of parameters
for composing equations and solving them. The graph visualization method can
further be utilized for producing intermediate calculative diagrams. And the tech-
nique of virtual mechanisms may serve for the composition of sub-mechanisms for
revealing the hidden and necessary parameters.

5.1.5.2 Classical Approach of Parametric Design

The classical approach of parametric design and optimization embraces the con-
struction of a combined functional expression containing the main or several essen-
tial target functions including in it the whole set of variable parameters defining the
entire range of variables as a boundary of search and parametric design [12]. The
functional is subject of analysis within the whole range of variables, and the behavior
of the target function is evaluated according to the fact of approaching or distancing
of the current functional value from preliminary defined nominal target. Despite its
classical nature and wide and general application, this approach implies compilation
or variable parameters inside the main functional that provides the connection
between variables without the possibility of obvious and blatant evaluation and
demonstration of the physical meaning of the variables. Traditionally this method-
ology of the parametric design was built on the search and building of most efficient
mathematical methods, following the development of numerical methods which are
keeping their scientific and calculative and usefulness value for mechanics. Nowa-
days this approach has an alternative in terms of usage of digital and computerized
techniques for the solution of equations, which has an enormous computing resource
giving a chance to the designer to concentrate more on the revealing and optimiza-
tion of new qualitative values of a novel mechanism. Thus, the designer has the
opportunity to save on the development of mathematical models more concentrating
on mechanical properties of the new design.

5.1.5.3 Alternative Approach of Parametric Design

Now coming to the alternative or the suggested methodology, we may draw parallels
and make a comparison between conceptual design and parametric design method-
ologies. If in the case of conceptual design the links are related in the way to provide
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the demanded function and then in the case of parametric design the links are related
by the kinematical joints exclusively, then the links can be described as cases of
kinematical embodiments with frozen parameters.

In the case of conceptual design, the number of links is growing per design task
demand, and reduction of that number is organized as an attempt to provide a
qualitative feature or function. In the case of parametric design, such growth or
reduction may be planned in an effort for revealing, describing, and defining of new
or additional parameters. Such action is the same as the freezing or thawing the links
this time organized for the needs of parametric design. Such approach grants the
designer a possibility to find the location of each parameter in several or in the
general calculative scheme, to get the opportunity of building sub-structures per
demand for discovering, defining, and optimizing the necessary parameters. The
designer also gets the chance of establishing connections between the parameters, for
reducing the number of unknown values, for instance, assuring the opportunity of
setting a convenient design environment and visualizing the way of grouping and
composing equations for resolution of unknown parameters. Once the computing
schemas are established, the main calculative load is transferred on digital methods
and techniques.

5.1.5.4 Procedure of Suggested Parametric Design

The current methodology of conceptual design, as it will be shown below, is
applicable also for the building of well-known mechanisms for tracking of famous
curves as involutes, cycloids, and epicycloids.

It is as well applicable for the parametric synthesis of newly developed mecha-
nisms for reproduction of chamfered surfaces along toothed patterns of gears,
following the specific requirement of quality of chamfer surface. Those requirements
are limiting the maximum height of inconsistency or micro-roughness along both
guide line and generating line of the chamfer surface of the toothed pattern.

Table 5.8 presents a format of parametric design with the objective of minimiza-
tion of the maximum height of surface micro-roughness. This objective is planned
and solved as an intersection of two trajectories.

First is the trajectory inversed movement of a specific original point on the height
of micro-roughness of the work gear. And the second is the kinematical contour of
the tool gear. The coordinates of the intersection point are allowing to define the
direction of normal feed on the tool gear, which is presenting by itself the solution
and searched value of parametric design. If described by trajectories, the intersection
point is the common point of two paths. If defined by radius vectors, the intersection
point is the equality of two radius vectors in the same system of Cartesian coordi-
nates. And if represented by structural-functional graphs, modified for the parametric
design case, then the intersection point is the equality of two edges of two graphs.

Those graphs are visualizing the contents of the parameters and are showing the
origination of the sub-mechanisms and equations.
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Table 5.8 Format for parametric design for orientation angle of a gear chamfering mechanism

Definition of Orientation Angle of a Gear Chamfering Mechanism

Task of parametric design: define order of changing the value of parameter f in a way to limit 

maximum height of micro roughness of the chamfer surface

Original Data for Parametric Design

3D model 2D model General Graph

1 2 3

Kinematic solution of mechanism

4 5

Formation of micro roughness along the guide line of chamfer surface

6

(continued)
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Table 5.8 (continued)

Task Planning

Find intersection point of top point of work gear in a reversed movement against tool on the work 

tools’ involute curve (10 epicycloid x 6 involute)

Links and parameters involved

Modification and development of necessary graphs for finding the intersection point

Grouping the links for parametric design

7 8

Source graph and task for organizing the sub graphs

9

(continued)
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Table 5.8 (continued)

Graph for link L6 – tool gear Graph for work gear L0 reversed epicycloid 

movement

Sub mechanism for involute pattern of link L6 –
tool gear

Sub mechanism for  work gear L0 reversed 

epicycloid movement

12 13

Equation of involute 10 according sub graph 10 Equation of epicycloid 6 according sub graph 6

(2)   

(3)

(4)     

(5)    

Graph resolution of intersection point of curves 6 and 10

14

Equality of radius vectors of curves 6 and 10 Equality of Cartesian coordinates of curves 6 

and10

(6) (7)

Definition of polar coordinates of intersection point T1

, (8)
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5.1.5.5 Surface Micro-Roughness

At this point, an additional requirement of surface microroughness should be
considered and satisfied so far as the developed new kinematical diagram for gear
chamfering mechanism implies the formation of step like irregularities along the
hypotenuse of the generating triangle and irregularities shaped by neighboring arcs
along the guideline of the chamfer surface. The micro-roughness can be described as
a result of limited numbers of waves where each wave has a summarizing surface of
several continuous positions of the cutting edge on them. The number of the waves
and the number of the steps should be defined and calculated in a way not to allow

(continued)
Table 5.8 (continued)

Definition of angle for normal feed direction

(9)

Chart for choosing the direction of normal feed depending on revolutions of work gear

15

Trajectory Chart

16
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the max height of the micro-roughness to become higher than a standard limited
value from standard requirements to the surface quality.

5.1.5.6 Procedure of Implementation of Suggested Parametric Design
(Table 5.8)

The synthesized mechanism (Table 5.6) is subject to parametric design, so its 2D and
3D models and general structural-functional graph are serving as start point data for
such study. Parametric design of gear chamfering mechanism is done for definition
of parameter φ1 for defining the orientation of normal feed movement of the tool gear
in normal direction to a specific point of work gear toothed pattern.

The question is to provide such a direction of normal feed movement of work gear
that will correspond to the intersection point of the kinematical contour of work gear
to intersect the point T1.

The intersect point T1 is defined by the intersection of two curves – circumference
of outer top gear diameter and involute contour 9, limiting the maximum height of
micro-roughness according to the surface quality standard.

The intersection of two curves should be defined to find the common point of the
kinematical contour of tool gear which will pass through point T1 on the work gear.
The first curve is the kinematical contour of tool gear, and the second curve is the
epicycloid trajectory of point T1 in a reversed movement against fixed tool gear.

This definition should be planned, organized, and implemented by the develop-
ment of two sub-mechanisms.

The first mechanism is for tracking an epicycloid trajectory of point T1, and the
second one is responsible for tracking the kinematical contour of tool gear, which is
presenting an involute curve by itself.

For the composition of sub-mechanisms, the set of links should be grouped from
the original structural solution of gear chamfering mechanism (Table 5.6).

After regrouping, a further decomposition of Link L6 (tool gear) is needed for
description of involute 6 – kinematical contour of tool gear.

Further decomposition provides the basic set of parameters, sufficient for the
composition of both challenged curves (involute 6 and epicycloid 9). The formation
of equations can be accomplished by using radius vectors combined through a
product of matrices as well as by putting equality of Cartesian coordinates of both
curves or in another more excellent way. Proper graphs are accompanying and
explaining the steps of further decomposition and process of revealing the parame-
ters. Numerical methods are implementing the resolution of unknown parameter φ1.
The result of the definition of parameter φ1 is shown on graph (Tables 5.8-15) where
the horizontal axis is for the number of work gear revolutions which are needed to
process chamfer on all the teeth before having the necessity to redirect and change
the direction of normal feed movement. And the vertical axis is for the angular value
of orientation of normal feed movement plane measured against the fixed inter-
axis line.
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5.2 Concluding Remarks

1. A successful attempt has been accomplished to keep systematic unity when
applying the methods of task-based concept design for mechanism analyses and
parametric design.

2. For conceptual design, links are related in a way to provide the functions, while
for analyses, the proper structure is decomposed in a way to explain the present
features. Reverse order of identical actions confirms methodical unity of both
procedures.

3. For the parametric design, the decomposition action adopted from conceptual
design is applied for the further decomposition of links as per the needs of
parametric design. The methods of conceptual design identically organize the
composition of sub-mechanisms for composing equations containing the chal-
lenged parameters subject to resolution.

4. The category of the model keeps its general task concentration meaning for
synthesis and analysis cases. For the parametric design case, a model defines a
set of parameters having content and connection between them sufficient for
finding the solution for unknown parameter.

5. Visualization of all three processes significantly wins by application of graphs
storing and presenting the necessary information for each activity: the contents of
links, the connections between the links, the reason of function for having a
proper set of connections, and the visualized possibility of planning and
implementing of various tasks of mechanical design.
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Chapter 6
A Brief Overview of the Evolution
of the Scientific Theory of Gearing

Stephen P. Radzevich

6.1 Introduction

Gears are the means by which power is transferred from source to application. Gears
and gear transmissions are extensively used in the nowadays industry. Gearing and
geared transmissions drive the machines of modern industry. Gears move the wheels
and propellers that transport us over the sea, on the land, and in the air. Transmission
and transformation of rotation from an input shaft to an output shaft is the main
purpose of gearing of all kinds. A sizeable section of industry and commerce in
today’s world depends on gearing for its economy, production, and livelihood. No
doubt gearing of all kinds will be extensively used in the future.

It should be realized here that there are two different considerations when the state
of the art of gearing is discussed. Gear design, and gear manufacture, that is based on
common sense of smart handicrafts and on accumulated practical experience is one
of the two. An engineering approach that is based on scientific accomplishments in
the theory of gearing is the other one.

Taking into account the incompleteness and the inconsistency of the nowadays
knowledge in the theory of gearing, an in-depth investigation into the gear kinemat-
ics and the gear geometry has been undertaken in the recent years by the author.

This chapter of the book is written in the following manner. At the beginning, a brief overview of
the pre-Eulerian period of the gear art is done. Then, the fundamental accomplishments in the
“scientific” theory of gearing are identified, and a name of the corresponding key contributor
(s) is associated (where possible) with each of the accomplishments. As the overall number of
the “fundamental” accomplishments in the scientific theory of gearing is limited, and it is not
large, the overall number of the fundamental contributors to the “scientific” theory of gearing is
also limited. Irrespective of many other researchers (not mentioned in this section of the book)
that have also contributed a lot to the field of gearing, they cannot be regarded as the
“fundamental contributors” to the “scientific” theory of gearing.
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Most of the results of the research that has been carried out are discussed in the
monograph [1]. The fundamentals of the proposed scientific theory of gearing are
based on the key accomplishments in the gear kinematics, and the gear geometry.
With that said, it makes sense to begin the discussion with a brief overview of the
evolution of the scientific theory of gearing. This will help us to identify what is
already done in the field, where we are now, and what has to be done in the future.

Such an analysis has to be carried out in order to credit every accomplishment in
the scientific theory of gearing with the name of the key contributor. In the mean-
time, not all the achievements in the field of gearing can be attributed with a right
name of a gear researcher. A gear researcher who has contributed significantly to the
theory of gearing deserves to be credited with a corresponding scientific result.

Several achievements in the theory of gearing cannot be credited to right persons.
For example, the names of the key contributors for (a) the condition of contact of the
tooth flanks and (maybe this accomplishment is NOT exactly from gearing but from
another area of the theory of machines and mechanisms) (b) equal base pitches are
not known. A few more achievements in this regard can be mentioned. It is desirable
to get the appropriate names identified.

The aforementioned, as well as other accomplishments, are vital to the scientific
theory of gearing. It is desirable to know who was the first to come up with these
meaningful results, as well as in what way these results have been achieved.

The main goal of the book chapter titled “A Brief Overview of the Evolution of
the Scientific Theory of Gearing” is to briefly outline “all” the known fundamental
accomplishments in the scientific theory of gearing and to credit right gear
researchers with the corresponding scientific achievements in the field, that is, an
effort is undertaken aiming to associate each of the fundamental accomplishments in
the scientific theory of gearing with the name of the corresponding gear researcher
who contributed a particular accomplishment. In order to mention all the key
researchers in the field and to miss none of them, the following approach is adopted
below.

First, all (with no exclusions) the fundamental accomplishments to the scientific
theory of gearing are listed in a chronological order.

Second, a name of a key gear researcher is associated with each of the accom-
plishment, that is, the name of a researcher who was the first either to discover or to
contribute the most to a particular accomplishment in the scientific theory of gearing.
For example, Leonhard Euler is credited with the application of the involute of a
circle for the gear tooth profile, as he was the first to prove that the involute tooth
profile fits the best the needs the gear tooth geometry, regardless of the involute of a
circle is known1 long before Euler has made his discovery in 1760.

In addition to that, a few huge mistakes committed in the past by the gear
researchers when investigating gears are also mentioned in order to better understand
the theory and to properly value those scientists who contributed much to the

1The involute of a circle was first proposed by Philippe de la Hire in 1696, and it was later in the
eighteenth century when Leonhard Euler proposed the involute curve as a viable tooth profile.
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scientific theory of gearing. Mistakes of this type can be referred to as the “key
mistakes” in the theory of gearing. Following the adopted approach, it is helpful to
separate the names of the principal contributors to the scientific theory of gearing
from those who contributed less to the subject, and, moreover, from those who
committed mistakes that significantly affected the evolution of the theory of gearing.

The results of the research carried out by the author, and a few papers earlier
published by the author [2–4], are extensively used in this section of the book. Other
sources are extensively used as well [5, 6], and others. The consideration begins with
ancient gear designs that are created only due to common sense and ends with the
modern scientific theory of gearing.

Tons of sources where investigated prior to making a possible representation of
the principal accomplishments in the scientific theory of gearing in a chronological
order. A limited number of the sources were selected for a more detailed analysis.
These sources are summarized in [1]. The reported analysis is based mostly on the
results of the research listed in [1].

The scientific theory of gearing is the foundation of gear design, production,
inspection, and application of gears. Below in this chapter of the book, the purpose,
principal features, and evolution of the gear theory are discussed.

Prior to beginning the discussion on the scientific theory of gearing, it makes
sense to clarify the meaning of the term “scientific theory.” As it is understood from
the text below, a “scientific theory” has to be based on a few postulates (on a limited
input information), which the entire theory can be derived from. The fewer the total
number of the postulates, the more powerful scientific theory can be derived, and
vice versa. In the case of the scientific theory of gearing, the minimum required input
information is limited to:

(a) A disposition of an input shaft relative to an output shaft.
(b) Input rotation.
(c) Input torque.
(d) Output rotation (or output torque).

The entire analytical description of gearing, the kinematics and the geometry of
gearing, the elements of gear dynamics, and so forth, can be derived from the clauses
(a) through (d).

All the results in a scientific theory of gearing are interconnected with one
another. An additional information on gearing (if any) can also be incorporated
into the analysis. With that said, it is clear now that all the earlier developed so-called
theories of gearing (proposed by T. Olivier (1842) [7], Ch. Gochman (1886) [8],
F. Litvin (2004), D. Dooner (2012), as well as numerous others) cannot be referred to
as “scientific theories of gearing,” as they represent just a collection of scientific/
engineering results that are independent from one another, are not interconnected
with one another, and do not form a self-consistent theory.

The art and science of gearing have their roots before the Common Era. Yet many
engineers and researchers continue to delve into the areas where improvements are
necessary, seeking to quantify, establish, and codify methods to make gears meet the
ever-widening needs of advancing technology.
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Despite gears and geared transmissions are investigated for a long while, the
nowadays knowledge of the gear theory is poor and is completely insufficient.
Moreover, the author is doubtful that all the principal accomplishments in the theory
of gearing are known to all the gear researchers, those who are actively involved in
the research in the field.

Motivation: The necessity of “cleaning” of the gear science from incorrect,
wrong, and loosely statements, as well as from other inconsistencies, is the main
reason to write this section of the book.

The bottom line is as follows: All the principal accomplishments in the theory of
gearing have to be identified, and a gear researcher, who has contributed signifi-
cantly to the theory of gearing, deserves to be credited with the corresponding
scientific result.

Those who don’t know their own history have no chance for success in the future.

6.1.1 Main Periods in the Evolution of the Theory of Gearing

Gears are used to transmit and transform a rotation from an input shaft to an output
shaft. Depending on a particular application, gearing has to meet certain additional
requirements, namely, high accuracy of transmission of rotation and high power
density2, which have to be ensured by gears.

The development and investigation of gearing with a constant angular velocity
ratio3 (i.e., gearing for which the equality ωp/ωg ¼ const is valid) is one of the main
goals of the scientific theory of gearing [1]. Gearing with a constant angular velocity
ratio (or gearing with a pre-specified function of the angular velocity ratio) is
commonly called “geometrically accurate gearing,” or “ideal gearing,” or just
“perfect gearing,” for simplicity. More generally, the design of gearing with a
prescribed function of the angular velocity ratio (i.e., (a) non-circular gearing with
a constant center-distance, (b) non-circular gearing with a variable center-distance,
(c) gearing with a variable shaft angle, and (d) gearing with a variable center-
distance, and a variable shaft angle simultaneously) is also covered by the scientific
theory of gearing.

Many efforts were undertaken in the past by hundreds of researchers aiming for
the development of the “theory of gearing.” However, not many of them have really
contributed to the theory.

Below in this chapter of the book, the evolution of gearing from the earliest times
to the present day is concisely discussed with the emphasis on the “theory of
gearing.” The consideration is mainly focused on the kinematics of gear pairs, the

2The term “power density” is commonly used as an equivalent to the term “power-to-weight ratio”
(this concept deserves to be investigated more carefully).
3In a more general sense, that is, when non-circular gears are taken into account, use of “perfect
gearing” makes possible an exact function of the pre-specified angular velocity ratio.
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geometry of the interacting tooth surfaces, as well as on some other kinematic and
geometric aspect of gears and gearing pairs.4 The following rule is adopted in this
section of the book: first, all principal contributions to the scientific theory of gearing
are identified. Second, the names of the scientists who contributed these accom-
plishments are named. Following this rule, not many gear researchers are credited
with the fundamental contributions to the field of gearing – only those who were the
first to obtain a fundamental result of the research in the field.

As it was earlier (circa 2012) proposed by the author [1, 2, 9, 10], the evolution of
the theory of gearing falls into three periods, namely:

(a) Pre-Eulerian period of the gear art.
(b) The time of the fundamental contribution by L. Euler.
(c) Post-Eulerian period of the theory of gearing.
The principal accomplishments in the scientific theory of gearing are considered

below in a chronological order in alignment with the just mentioned three periods of
the evolution. It is believed that all (or, at least, almost all) principal accomplish-
ments are covered in the paper.

6.1.1.1 Pre-Eulerian Period of Evolution of the Gear Art

The earliest account of gears comes from ancient Chinese and Greek literature.
Because of force-multiplying properties of gears, early engineers used them for
hoisting heavy loads such as building materials. The mechanical advantage of
gears was also used for ship anchor hoists and catapult pre-tensioning.

The earliest written descriptions of gears are said to have been made by Aristotle
[5] in the fourth century B.C. It has been pointed out that the passage attributed by
some to Aristotle, in “Mechanical Problems of Aristotle” (ca. 280 B.C.), was
actually from the writings of his school. In the passage in question, there was no
mention of gear teeth on the parallel wheels, and they may just as well have been
smooth wheels in frictional contact. Therefore, the attribution of gearing to Aristotle
is most likely incorrect. The real beginning of gearing was “probably” with Archi-
medes, who in about 250 B.C. invented the endless screw turning a toothed wheel,
which was used in engines of war. Archimedes also used gears to simulate astro-
nomical ratios. The Archimedean were early forms of the wagon mileage indicator
(odometer) and the surveying instrument. These devices were “probably” based on
“thought” experiments of Heron of Alexandria (ca. 60 A.D.), who wrote on theo-
retical mechanics and the basic elements of mechanisms.

In the Ancient times, transmission and transformation of a rotation were the only
purpose of gearing. The quality of rotation of the output shaft, that is, smoothness of
its rotation, was out of importance in the earliest designs of gears. Therefore, it was a
common practice to build pin gears made up of wood, the gear tooth profile

4The evolution of the geared mechanisms is out of the scope of this chapter of the book.
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geometry was not considered at all, and pin gears successfully met all the require-
ments of that time.

Judging from the history books is one thing. Finding hard evidence of actual
gears is another. The biggest problem in finding archeological evidence of gears is
that early gear materials were not built to last. Gears manufactured at this time were
probably made of bronze. When bronze tools and mechanical pieces broke, they
were simply melted down and refashioned into something else.

The oldest surviving relic containing gears is the Antikythera mechanism5,
named for the Greek island near which the mechanism was discovered in a sunken
ship in 1900. The mechanism is not only the earliest relic of gearing6 but is also an
extremely complex arrangement of epicyclic differential gearing. The mechanism is
identified as a calendrical Sun and Moon computing mechanism and is dated to
about 87 B.C.

The Antikythera mechanism (see Fig. 6.1) is the oldest7 known artifact consisting
gears. Here, an image of the original Antikythera mechanism is shown in Fig. 6.1,a.

Fig. 6.1 The Antikythera mechanism (100 BC to 205 BC)

5The artifact was recovered in 1900–1901 from the Antikythera shipwreck off the Greek island of
Antikythera. Its significance and complexity were not understood until decades later. Believed to
have been designed and constructed by Greek scientists, the instrument has been dated either
between 150 and 100 BC, or, according to a more recent view, at 205 BC. This precious example of
antique genius complexity grade was so high that artefacts of a similar complexity and workman-
ship did not reappear for a millennium and a half, when mechanical astronomical clocks were built
in Europe.
6The South-pointing chariot (invented in the fifth century BC) is another known device that
contains gears. Unfortunately, only numerous nowadays designed reconstructions (not replicas)
of the South-pointing chariot are known, and no original artifact remained.
7The earliest known reference to a gear was around 50 A.D.;Hero of Alexandria, through the “Book
of Song,” suggests that the South-pointing chariot may have employed differential gears as early as
the reign of the Zhou Dynasty (1045–256 BC) of China (Radzevich, S.P, Dudley’s Handbook of
Practical Gear Design and Manufacture, 3nd ed., Boca Raton, FL: CRC Press, 2016, 629 pages.).
However, no artifact of the South-pointing chariot is discovered so far. Only nowadays designed
reconstructions/simulations are known. Therefore, in the meantime, the South-pointing chariot
cannot be considered as a relic of a mechanism with gears.
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Fig. 6.1,b illustrates the Antikythera mechanism overlapped with the image of its
replica. A 3D image of a similar overlap is depicted in Fig. 6.1,c. The device has
more than 30 gears, although some scientists suggested as many as 72 gears, with
teeth formed through equilateral triangles.

Commonly gears of early design were made out of wood with cylindrical pegs
and were often lubricated with animal fat grease. An example of old-style gears
made of wood is depicted in Fig. 6.2.

Gears were used in wind and water wheel machinery for decreasing or increasing
the provided rotational speed for application to pumps and other powered machines.
An early gear arrangement is used to power textile machinery. The rotational speed
of a water or horse-drawn wheel was typically too slow to use, so a set of wooden
gears was needed to be used to increase the speed to a usable level.

In gearing of old designs (see Figs. 6.1 and 6.2, and others), no special care was
taken of the geometry of the interacting tooth surfaces of the gears. Practical men
were able by various empirical means to get gears adequate for their needs, at least
until the early nineteenth century, when the mathematician’s work was translated
into practical language. Purely empirical solutions for the form of gear teeth can only
be accounted for by the fact that gears operated at “low speeds” and under “small
loads.” No theory of gearing was necessary to design old-style gears as the rotations
were low, and there were no constraints on power density of the gearing. Common
sense was the only tool used by the smart ancient craftsmen when designing and
manufacturing the gears.

Fig. 6.2 Old-style gears
made out of wood
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The art of gearing was carried through the European Dark Ages, appearing in
Islamic instruments such as the geared astrolabes that were used to calculate the
positions of the celestial bodies. Perhaps the art was relearned by the clock- and
instrument-making artisans of fourteenth-century Europe, or perhaps some crystal-
lizing ideas and mechanisms were imported from the East after the crusades of the
eleventh through the thirteenth centuries.

It appears that an English abbot of St. Alban’s monastery, born Richard of
Wallingford in 1330 A.D., reinvented the epicyclic gearing concept. He applied it
to an astronomical clock that he began to build and that was completed after his
death.

A mechanical clock of a slightly later period was conceived by Giovanni de
Dondi (1348–1364). Diagrams of this clock, which did not use differential gearing,
appear in the sketchbooks of Leonardo da Vinci, who designed geared mechanisms
himself [11].

Numerous famous names have indicated their interest to gears and gear drives.
Leonardo da Vinci (1452–1519), Albrecht Dürer (1471–1528), Robert Hooke8

(1635–1703), and numerous others can be mentioned in this regard.
Numerous designs of gearing are discussed in the famous book by Leonardo da

Vinci [11]. In 1967, two of Leonardo da Vinci’s manuscripts, lost in the National
Library in Madrid since 1830, were rediscovered [11]. One of the manuscripts,
written between 1493 and 1497 and known as “Codex Madrid I” [11], contains
382 pages with some 1600 sketches. Included among this display of Leonardo’s
artistic skill and engineering ability are his studies of gearing. Among these are tooth
profile designs and gearing arrangements that were centuries ahead of their
“invention.”

Albrecht Dürer9 is credited with discovering the epicycloidal shape (ca. 1525).
For a long while, the most accurate gears were produced by clockmakers and

instrument makers. Questions of exact tooth form, pressure angle, and strength did
not enter into the designs of the clockmakers and instrument makers.

Contemporary gears for the uniform transmission of power and rotation are based
in much on the application of mathematical curves discovered by scientists in the
sixteenth and seventeenth centuries, in the design of teeth flanks. In the period 1450
to 1750 the mathematics of gear tooth profiles and theories of geared mechanisms
became established.

Mathematicians turned their attention to gear tooth profile only in the seventeenth
century. Girard Desargues (1591–1661), Philippe de La Hire (1640–1718) [12], and
Charles Camus (1699–1768) [13] are the names of the most prominent contributors
to the gear science in the pre-Eulerian period of evolution of the gear theory.

8In 1666, R. Hooke demonstrated for The Royal Society a model of gearing that he has invented
earlier. Later on the gearing of this kind Hooke described in his 1674 book Lectiones Cutlerianae.
The gearing of this particular kind is nowadays known asWhite’s gearing. May be this is somehow
associated with Mr. Christopher White of London who manufactured a microscope for R. Hooke.
9Albrecht Dürer (May 21, 1471–6 April 6, 1528), a German painter, printmaker, mathematician,
engraver, and theorist
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Desargues, de La Hire, and Camus have summarized the main accomplishments in
the field of gearing in the pre-Eulerian period of time. The results of the research
obtained by these scientists are very close to the origin of the scientific theory of
gearing.

In particular, the first record on the use of cyclic curves as the tooth profile of a
gear is related to Gerard Desargues10. Desargues’ work on gearing is known mostly
from the records made by his student Philippe de la Hire11. A treaty on epicycloids
and their usage in mechanics is discussed in his book [12]. Philippe de la Hire was
the first to describe the use of epicycloids for gears that ensured (as he loosely meant)
a uniform transmission of rotation. De la Hire considered the involute as the best
among exterior cycloids, since he recognized that it is the special case in which the
generating circle’s radius is infinite. He also noted that the involute tooth gives the
teeth of the corresponding rack as having straight sides. It took 150 years before this
principle found practical application.

The first major contribution to the geometry of gear wheels came from France.
Charles Etienne Louis Camus12 is the first mathematician to work the theory of gear
teeth into a systematic and general theory of mechanism.

Camus was close to discover the “conjugate action law” for the case of parallel-
axes gearing [13]. He showed that in order to get as output a uniform angular
velocity, it is necessary to shape the two teeth so that they can be generated like
epicycloids by rolling one and the same curve on two different circles.

Charles Camus was the first [13] who formulated the condition that, in his
opinion, has to be fulfilled for a pair of gears to be able transmitting a rotary motion
smoothly. According to Camus, this condition is formulated as follows:

If, in a uniform rotation, power is to be transmitted via a pair of teeth, then the
normal to the teeth flanks at the contact point (within the path of contact) must pass
through the pitch point.

Another formulation of that same condition by other researchers is represented in
the form:

If an auxiliary curve is rolling on the pitch circles of circular gears, any point
attached to this curve traces conjugate profiles.

This sounds similar to the fundamental theorem of gearing known nowadays (see
below in this chapter of the book). Camus’ principle of gearing is illustrated with
1733 schematic (see Fig. 6.3). In this schematic, the path of contact, namely, a
curved line segment13 KBC, and the line of action at different angular configurations

10Girard Desargues (February 21, 1591–September 1661) was a French mathematician and
engineer.
11Philippe de la Hire (March 18, 1640–April 21, 1718) was a French physicist, astronomer,
mathematician, and engineer.
12Charles Étienne Louis Camus (August 25, 1699–February 2, May 4, 1768) was a French
mathematician and mechanician
13The line of action, KBC, cannot be a curve, as a force acts only along a straight line, that is, along a
straight line of action, and not along a curve.
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of the mating gears, that is, BC, MP, and RQ, do not align to one another.14 The
schematic (see Fig. 6.3) reveals that Camus did not realize the difference between the
“path of contact” and the “line of action.” Camus loosely assumed that the line of

1W
2W

C

B
M

P
Q

R

K

Fig. 6.3 Illustration of Camus’ gearing principle (1733)

14It is instructive to note here that the schematic shown in Fig. 6.3 is a kind of mistake because of the
following reasons. First, the path of contact is an envelope to consecutive positions of the instant
line of action. Therefore, it is not permissible that the line of action, BC, intersects the path of
contact, KBC. The path of contact must be in tangency with the line of action, BC. Second, when
numerous instant lines of contact are through the pitch point C, then no enveloping curve (i.e., no
path of contact) can be constructed. A few more reasons for infeasibility of gearing shown in
Fig. 6.3 are to be mentioned.
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action, LA, in geometrically accurate gearing can be shaped in a form of an arbitrary
planar curve (as illustrated in Fig. 6.3), which is incorrect.

Despite Camus was close to discover the fundamental theorem of gearing, he did
not succeed doing that. As it is shown below in this chapter of the book, for gears
that operate on parallel shafts, the only feasible case is when both the “path of
contact” and the “line of action” are straight lines that align with one another, as it is
observed in involute gearing.

Therefore, it is incorrect to grant Camus with the discovery of the “conjugate
action law.”

Camus repeated much of de La Hire’s work, although he added many important
elements of his own. He gives a detailed analysis of the teeth desirable for the
combination of a spur and lantern gear.

Camus did, however, correct de La Hire in that he recognized the fact of sliding of
even the epicycloidal teeth one upon the other and said that this phenomenon is one
of the principal sources of friction and wear in gearing.

The action of engaged teeth relative to the line of centers is discussed, and he
points out that the action is best when engagement takes place after the working face
of the driving tooth has passed the line of centers, that is, during the receding action.

Camus goes on to consider the problem of the minimum number of teeth and that
of the proper form for the ends of the teeth. He deals with true bevel gears and uses
the rolling-cone principle for their analysis. But he considers only the case of
interaction of a crown and a bevel gear.

Camus does not consider the involute tooth at all. Although he analyzes trains of
gears, he says nothing of the form of teeth required in a series of three or more gears.
This can probably be accounted for by the fact that he had only clockwork in mind.
The mills of this era seldom had trains of more than two gears engaged.

Clearly, Camus had the basis for a theory of mechanism of gear teeth, but it was
not systematically and completely worked out, as in R. Willis [14].

Despite the mathematicians began investigating some curves aiming for their
application for the purpose of gearing, no foundations in the theory of gearing has
been made at that time.

The condition of contact of the interacting tooth flanks is the only contribution to
the scientific theory of gearing attained in the pre-Eulerian period of the gear art. The
initially proposed for mechanics of machines in a more general sense, the condition
of contact of two machine elements can also be implemented with respect to gears.
This condition is schematically illustrated in Fig. 6.4.

( )a

pVPinion

gV Gear

( )b
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( )c
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Gear

Fig. 6.4 Condition of contact of a gear and a mating pinion tooth flank: (a) perfect contact,
Vg ¼ Vp, (b) separation of the tooth flanks occurs, Vg < Vp, and (c) interference of the tooth flanks
occurs, Vg > Vp
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In order to fulfill the condition of contact, the contact point, both of a gear and a
mating pinion’s tooth flanks, has to travel with an equal velocity along the common
perpendicular, that is, the equality Vg � Vp has to be valid (see Fig. 6.4,a). In this
scenario, the relative velocity is zero (Vrel ¼ 0). In a case Vg < Vp, the relative
velocity is of a positive value (Vrel > 0), and the components 1 and 2 separate from
one another (see Fig. 6.4,b). Inversely, in a case Vg > Vp, the relative velocity is of a
negative value in this scenario (Vrel < 0), and the components 1 and 2 interfere into
one another (Fig. 6.4,c). None of these two scenarios are permissible in geometri-
cally accurate gearing.

The condition of contact is important to the theory of gearing. Unfortunately, it is
not known who should be credited with this important accomplishment (it is likely
this is because the condition of contact has been discovered for a more general case
of mechanical engineering, and not for the purposes of gears).

Accomplishments in the field of gearing and gear art in the pre-Eulerian period of
evolution of the gear art are briefly summarized immediately below:

• Various primitive designs of wooden gearing were developed with the purpose to
transmit a rotary motion between two shafts.

• Gears that operate (a) on parallel shafts, namely, parallel-axes gearing; (b) on
intersected shafts, namely, intersected-axes gearing; and (c) on crossed shaft,
namely, crossed-axes gearing, are already known in pre-Eulerian period of
evolution of the gear art.

• All the early designs of gearing operate at low rotations and transmit a low torque.
• No tooth flank geometry was taken into account, first of all because of the absence

of necessity of doing that: Low-power-density wooden gears that operate at low
rotations met the current customer requirements of that time.

• It became clear that the performance of a gear pair depends on a specific tooth
profile of the mating gears, namely, teeth wear in gearing depends on the actual
shape of a gear and a mating pinion tooth.

• Mathematicians indicated an interest to a special tooth profile of a gear and a
mating pinion that allows the lowest tooth flank wear.

• Epicycloid is investigated as a potential candidate that can be used to shape the
gear teeth, and epicycloidal tooth flank geometry was proposed for gearing that
operates on parallel shafts.

• It was realized at that time that in gearing with epicycloidal geometry of the gear
teeth, a rotation cannot be transmitted smoothly –with a constant angular velocity
ratio.

• Involute of a circle was known at that time. However, there was no understanding
that this curve best meets the needs of gearing.

The gearing that was common in the pre-Eulerian period of evolution of the gear
art are far from being referred to as “perfect gearing” as they are not capable of
transmitting a rotary motion smoothly. Geometrically inaccurate gears (those feature
variable angular velocity ratio) are still in use even in the nowadays industry in cases
when the rotations are low, and the transmitted power is low as well.
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6.1.1.2 The Time when the Fundamental Contribution by L. Euler Has
Been Done – The Origin of the Scientific Theory of Gearing

The interest of mathematicians (at the beginning of Desargues, de La Hire, and
Camus, and later on of Euler) seems to have come from a desire to increase
efficiency and reduce wear in mills of various types where, although the speeds
were low, the load was not substantial. Indirectly, these problems were associated
with the quality of the transmitted rotation, that is, with the smoothness of rotation of
the output shaft. It could happen that the problem of design of geometrically-
accurate gears can be traced back to this period of time.

It was Leonhard Euler15 (1707–1783), a famous scientist (born in Switzerland),
whom the origin of the scientific theory of gearing can be traced back to. In the first
half of the 1750s, L. Euler (Fig. 6.5) has proved that involute of a circle is the best
planar curve that fits to shape a gear tooth profile in geometrically accurate parallel-
axes gearing [15]. The main contribution by L. Euler to the scientific theory of
gearing is outlined in his two papers [15, 16].

In Euler’s first paper (see Fig. 6.6) on gears [15] (written in the first half of the
1750s), he proved that in gearing, the tooth profile sliding is inevitable. As for the
shape of the teeth, Euler in this paper did not succeed in going beyond what was
already done by Camus. However, Euler’s second paper (see Fig. 6.7) [16] (written
presumably 10 years later) is very original.

Fig. 6.5 Leonhard Euler
(1707–1783)

15Leonhard Euler (April 15, 1707–September 18, 1783) was a pioneering Swiss mathematician
and physicist
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Fig. 6.6 Title page of the paper by Euler, L. (1754-55), “De Aptissima Figure Rotarum Dentibus
Tribuenda” (“On Finding the Best Shape for Gear Teeth”), in: Academiae Scientiarum Imperiales
Petropolitae, Novi Commentarii, t. V, pp. 299-316
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Fig. 6.7 Title page of the paper by Euler, L., “Supplementum. De figura dentium rotarum”. In:
Novi Comm. Acad. Sc. Petropol, 1767. (Originally published in Novi Commentarii academiae
scientiarum Petropolitanae 11, 1767, pp. 207-231)
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Involute Tooth Profile for Parallel-Axes Gearing

It is proven in these papers [15, 16] that in parallel-axes gearing the involute of a
circle16 is the only planar curve that minimizes friction between mating gear teeth,
and, therefore, involute tooth profile is the only kind of tooth profile that should be
used to design conjugate gear pairs. In these papers [15, 16], Euler also shows the
grasp and precision of his great mathematical mind. He specifically states the
conditions:

• Uniform rotary motion of both gears.
• In the mutual action of the teeth “nullus atritus oriatur,” no interference between

the mating teeth flanks (however, a gap between the mating teeth flanks, that is,
equality of base pitches of the mating gears, is not considered yet).

The following conclusion can be drawn from the discussion above:
Conclusion 1: The scientific theory of gearing originated from Euler’s two

famous papers on the geometry of the ideal shape of gear teeth [15, 16] in parallel-
axes gearing.

Conclusion 2: The scientific theory of gearing is tightly connected with the
application of an involute of a circle to shape gear teeth in parallel-axes gearing.
Despite the fact that involute of a circle was known to mathematicians long before
the time, when L. Euler has carried out his research on the shape gear teeth, it was
L. Euler who proposed to use involute of a circle in the design of geometrically
accurate (i.e., perfect) parallel-axes gearing.

By now, the kinematics and geometry of parallel-axes involute gearing are
investigated so extensively that there is no need to discuss here gearing of this
particular design more in detail, as it is trivial and is outlined in textbooks on
machine and mechanisms theory.

The Euler-Savary Formula

Euler’s papers on gear wheels [15, 16] are part of a development that started
essentially with the investigation of the ordinary cycloid: the curve described by a
point on the circumference of a circle when this circle rolls without slipping on a
straight line [17]. In this paper [16] Euler derived a formula that is equivalent to the
Euler-Savary formula17 in the nowadays interpretation. It is remarkable that
although Euler was merely studying a very specific subject, gear wheels, the
Euler-Savary18 formula belongs from a modern point of view to planar theoretical

16Invention of the involute tooth profile, which best fits the practical needs of the industry, is
commonly credited to Leonhard Euler (1707–1783).
17The consequences from the Euler-Savary formula (the involute tooth profile, and the conjugate
action law) are important to the theory of gearing, while the formula itself is of less importance.
18Felix Savary (October 4, 1797–July, 15, 1841) was a French mathematician and mechanician
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kinematics and has general validity. Euler in this context also discovered the
so-called involute gearing, nowadays the most popular form of gearing.

When a planar motion is considered at a particular instant of time, a modern
kinematician thinks of a particular position of a moving axode in relation to a
stationary axode. The point where the two curves touch each other is the “instanta-
neous center of rotation” (or the “pitch point,” in other terminology). Clearly, an
arbitrary point P of the moving plane describes a curve in the stationary plane. At a
particular moment under consideration, point P coincides with a particular point of
the curve that it traces. The tangent to the curve in this particular point can be
constructed easily by means of the pitch point. How about the center of curvature at
this particular point? Nineteenth-century kinematicians have extensively studied the
relation between the points of the moving plane and the corresponding centers of
curvature of their trajectories in the stationary plane. This particular relation has
many properties.

Refer to Fig. 6.8,a, where an arbitrary configuration of two interacting planar
curves is shown. The stationary axode is π1. The moving axode is π2. The point O at
which the two axodes touch each other is the instantaneous center of rotation or pitch
point at the moment that we are considering. The k2 is a curve in the moving plane.
The k1 is the envelope in the stationary plane of the set of positions in the stationary
plane of k2. In the position under consideration, the curves, k1 and k2, touch each
other at the point C. The points N1, N2, M1, and M2 are, respectively, the centers of
curvature of the planar curves k1, k2, π1, and π2, corresponding to the points C andO.
Let θ be the angle between the common tangent to the axodes and the common
perpendicular at C to the curves k1 and k2. Then the following expression is valid:

1
ON1

� 1
ON2

� �
� sin θ ¼ 1

OM1
� 1
OM2

ð6:1Þ

This is the Euler-Savary formula or theorem. The variables ON1, ON2, OM1, and
OM2 correspond to the directed line segments and are signed values. The pitch point,
O, is the origin of a Cartesian coordinate system with pr as positive x�axis and pn as
positive y�axis. Similarly, O is also the origin of a Cartesian coordinate system O ξ η
with directed line segment OC defining the positive direction of the ξ�axis. The two
systems have the same orientation. As for the signs of the variables in the Euler-
Savary formula, ONi is positive if moving from O to Ni is a move in the direction of
the ξ�axis. OMi is positive if moving from O to Mi is a move in the direction of the
x�axis.

A modern proof of the Euler-Savary formula was given in 1970 by
G.R. Veldkamp [18].
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Fig. 6.8 The schematics used by L. Euler for the derivation of the involute gear tooth profile.
(Adapted from: Euler, L. “Supplementum. De Figura Dentium Rotarum”. Novi Commentarii
adacemiae Petropolitanae 11, 1767, pp. 207-231. (E330, Opera omnia, 17, pages 196-219). [29])

250 S. P. Radzevich



Leonhard Euler and the Euler-Savary Formula

In the first paper on gears [15] (written in the first half of the 1850s), and in the
second paper [16], written presumably 10 years later, Euler didn’t investigate
general planar motion at a particular instant of time. Instead, he investigated the
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form of the teeth of gear wheels. The general validity of the formula that he
discovered is an accidental spin-off of his research. This arises because, in general,
just as for first and second order properties, a planar motion at a particular instant can
be represented by a circle rolling without slipping on another circle. This is exactly
what we are dealing with when we have planar circular gear wheels fulfilling the
Euler’s condition of a constant velocity ratio.

Euler started with Fig. 6.8,b. The points A and B are the centers of the two wheels.
The curves, EOM and FON, are the two profiles of the teeth of the wheels. O is the
point where the two profiles touch and the line perpendicular to the tangent in O cuts
AB in the point T. When the gear wheels rotate, a moment MA about the center
A yields a moment MB about the center B. It is easy to see that at the instant of time
under consideration, the ratio of these two moments equals BT/AT. Euler argues that
the condition of a constant velocity ratio implies that the ratio of these two moments
must be constant, which leads to a kinematic result: The common normal in the point
where the profiles touch each other intersects AB in a stationary point T. From a
modern point of view, point T is the pole of the motion of the two gear wheels with
respect to each other. The axodes of the two gear wheels are two circles, one of
which is centered at A and another one is centered at B. The two circles touch one
another at point, T. Euler has proved a kinematic result by means of a dynamic
argument.

After making clear that the point T is stationary, Euler determined several
relations between the parameters depicted in Fig. 6.8,b, and differentiated them.
He basically considered a slight change in the position of the two profiles with
respect to each other, using the fact that the common normal intersects the center-
distance, AB, always at the stationary point T. After some calculations are executed,
this reveals that the ratio of the angular velocities, dη/dξ, is equal to the ratio TA/TB.
For an arbitrary configuration of the profiles, Euler then derives the following
expression that enabled him, in principle, to calculate the actual value of the radius
of curvature ρ0 of the profile NOM out of the parameters of profile EOM:

ρ0 ¼ c � cosω� r � p � cosφ� b2 � cosω � d p sinφð Þ
c � d p � sinφð Þ � a2 � dφ cosω

ð6:2Þ

The explanation for the parameters in Eq. (6.2) can be found in Fig. 6.8,b.
In a particular configuration, one can assume, without loss of generality, that the

profile EOM is a circle and that the center of curvature of the profile NOM coincides
with Q. Then, the equalities, dp ¼ 0 and ρ0 ¼ OQ, are valid. Moreover, if the foot
points of the perpendiculars, from, respectively, A and B, on the line PQ (see
Fig. 6.8,c), are designated as R and S, then it can be shown that Eq. (6.2) implies:

RT � SQ � TPþ ST � RT � TQ ¼ 0 or
RT � TP
RP

þ ST � TQ
SQ

¼ 0 ð6:3Þ
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This is Euler’s version of the Euler-Savary formula19. It can be shown that
Eq. (6.3) is equivalent to Eq. (6.1).

The Euler-Savary formula has an amazing interpretation. It turns out that when
p coincides with R, then Q coincides with S. And naturally Euler considered the
possibility that this is the case during entire motion. The profiles then are involutes of
the circles CB and CA (see Fig. 6.8,d). At this moment involute gearing has been
discovered [17].

In Fig. 6.9, a schematic of the equivalent three bar mechanism that is used
nowadays for the derivation of Euler-Savary formula is shown. In particular, a
formula for the calculation of an actual value of the radius of curvature, ρp, is derived

19Félix Savary was the first to derive the Euler-Savary formula in its modern form. Savary’s proof
can be found in: Leçons et cours autographiés, Notes sur les machines, par le professeur F. Savary,
Ecole Polytechnique, 1835–1836 (unpublished lecture notes; available in the Bibliothéque
Nationale in Paris).
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Fig. 6.9 Schematic of the equivalent three bar mechanism that is used nowadays for the derivation
of Euler-Savary formula
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based on the similarity of the triangles △AQ1P and △AO1N1. A formula for the
calculation of an actual value of the radius of curvature, ρg, is derived based on the
similarity of the triangles △AO2N2 and △AQ2P.

A reduced case of the equivalent three bar mechanism that is used nowadays for
the derivation of an involute gear tooth profile is depicted in Fig. 6.10. The joints are
located at points Q�

1 and Q�
2, instead of points Q1 and Q2 correspondingly.

The proposed parallel-axes involute gearing with zero axes misalignment/dis-
placement by L. Euler deserves to be referred to as “Eulerian gearing,” or simply as
“Eu�gearing”:

Definition 6.1. Eulerian gearing (or just Eu�gearing, for simplicity) is a kind of
parallel-axes involute gearing that features zero axes misalignment/displacement.
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Fig. 6.10 Schematic of the equivalent three bar mechanism that is used nowadays for the
derivation of an involute gear tooth profile
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Such a terminology can be used for science purposes; similar to that are the terms
“Newtonian fluid,” “absolutely rigid body,” and “absolutely black body” that can be
easily found in the public domain.

Despite the invention of the involute tooth profile is of critical importance, at the
time of L. Euler the difference between the line of action and the path of contact in a
gear pair has been not understood in detail. This is, in much, because in the case of
parallel-axes gearing, both the lines, namely, the line of action, LA, and the path of
contact, Pc, are straight line segments that align to one another. Later on, this
inconsistence in interpretation of involute gearing became the root cause of many
mistakes when gearing of other designs were proposed and investigated. The main
reason for that is as follows.

For gearing that operates on parallel shafts, involute tooth profile is the only tooth
geometry under which the tooth flanks (a) are enveloping to one another and (b) are
conjugate to each other (or, in other words, they are “reversibly enveloping profile,”
or just “Re�profile,” for simplicity [19]). Epicycloidal tooth flanks of the mating
gears are enveloping to each other, but they are not conjugate to one another – they
are not a type of “Re�surfaces.”

The principle of common tangent has been detailed by Euler. He specifically
points out the need for the proper design of gear teeth to avoid friction and wear and
indicates this application for clocks. Most clockmakers, however, ignored this, if
they ever heard of it. Euler’s treatment of gear teeth was very general and was carried
out by the application of principles of analytic geometry using both differential
calculus and integral calculus. He set up mathematical expressions for gears to move
without friction between their teeth (actually for a minimum value of friction). Then,
he set up expressions for gears to move with uniform motion.

L. Euler and F. Savary together have devised an analytical method for determin-
ing the curvature centers of gear teeth flanks.

The importance of the “conjugate action law” worked out by L. Euler (gears
designed according to this law have a steady speed ratio) became correctly realized
much later.20

For over a century the invention of involute tooth profile was not used in practice.
The industrial revolution in Britain in the eighteenth century saw an explosion in the
use of metal gearing. A science of gear design and manufacture rapidly developed
through the nineteenth century. The invention and the beginning of application of
steam and gas turbines that operate at high rotations and produce lots of power
immediately turns the attention of engineers to involute gearing.

It should be stressed here that the concept of the “gear/pinion base pitch” (linear
base pitch), as well as the concept of the “operating base pitch” (linear operating base
pitch) in a parallel-axes gear pair was not known to L. Euler.

20There is no evidence on whether or not Euler stressed [15, 16], on the difference between the line
of action, LA, and the path of contact, Pc.
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6.1.2 Accomplishments in the Theory of Gearing in the Time
of the Fundamental contribution by L. Euler Are Briefly
Summarized Immediately below

• It is proven by L. Euler in the mid of the eighteenth century that involute tooth
profile meets the best the requirements of parallel-axes gearing.

• The fundamental theorem of parallel-axes gearing was known due to Euler and
Savary.

• There is no evidence that a difference between the line of action, LA, and the path
of contact, Pc, was realized by Euler and Savary, as in cases of parallel-axes
gearing these two lines align to each another.

• No significant accomplishments at that time are done in the area of intersected-
axes, as well as crossed-axes gearing.

The invention of involute tooth profile for parallel-axes gearing is one of the
cornerstone accomplishments in the scientific theory of gearing. This achievement
is referred to as the beginning of the scientific theory of gearing.

6.1.2.1 Post-Eulerian Period of Evolution of the Theory of Gearing

Since the time when L. Euler carried out his research on involute gearing, scientific
theory of gearing got a significant impulse. Numerous contributions to the scientific
theory of gearing have been done in the post-Eulerian period of evolution of the gear
theory [1, 2, 9, 10]. Principal accomplishments in the scientific theory of gearing are
outlined below in a chronological order [1].

Robert Willis and the Fundamental Theorem of Parallel-Axes Gearing

In the nineteenth century, a profound investigation of mechanisms in general sense
has been undertaken by Robert Willis21. In his 1841 book [14] titled “Principles of
Mechanisms,” R. Willis compiled the lectures for his students and knowledge about
gears which could be used in practice. In the book, gearing was discussed by the
author to the best extent possible in his time.

Despite the “fundamental theorem of parallel-axes gearing” was known to
L. Euler, and to F. Savary, this theorem got an extensive recognition in Europe
due to publication of the famous book by Robert Willis [14]. Because of this the
“fundamental theorem of parallel-axes gearing” is often referred to as the “Willis’
theorem.” The latter is incorrect.

21Reverend Robert Willis (February 27, 1800–February 28, 1875), an English academic, was a
professor at Cambridge.
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The “fundamental theorem of gearing” is known now mostly due to the 1841
book by R. Willis [14]:

Fundamental theorem of parallel-axes gearing (according to R. Willis): The
angular velocities of the two pieces are to each other inversely as the segments
into which the “line of action” divides the line of centers, or inversely as the
perpendiculars from centers of motion upon the line of action.

Nowadays, the “fundamental theorem of parallel-axes gearing” is commonly
referred to as “Camus-Euler-Savary fundamental theorem of gearing” (or as
“CES�theorem of gearing,” for simplicity).

As already stressed in this chapter of the book, in parallel-axes gearing, the line of
action, LA, and the path of contact, Pa, represent two different straight lines that align
with one another. The “fundamental theorem of parallel-axes gearing” gives an
insight to make a difference between these two lines, LA and Pa. Unfortunately, in
the meantime, this difference is not realized by most of the gear researchers.

Generalizing “CES�theorem of gearing” to a case of spatial gearing, one can
come up with a conclusion (~2008, Prof. S.P. Radzevich), according to which:

Conclusion 3: Two smooth regular surfaces that travel in relation to one another
are called “conjugate surfaces” if and only if the surfaces contact each other along a
line, and a common perpendicular through every point of the line of contact
intersects the axis of instant rotation of the surfaces.

And further:
Conclusion 4: Two (spatial) curves within two smooth regular surfaces that travel

in relation to one another are called “conjugate curves” if and only if the curves are
always in (point) contact, and a common perpendicular through contact point
intersects the axis of instant rotation of the surfaces.

A Mistake Committed (1842) by Theodore Olivier

The necessity of the theory of gearing for the needs of gear practitioners is realized
for a long while. It is likely the 1842 book by Th. Olivier [7] is the first book ever
titled as Theory of Gearing. This book by Th. Olivier is followed by the 1852 book
by E. Sang [20], then by the 1886 master thesis by H.I. Gochman [8], as well as by
numerous other books on the topic, published later on.

The research in the field of theory of gearing has been significantly affected by
Theodore Olivier22. As early as 1842 a monograph by Th. Olivier on the theory of
gearing [7] was published. This monograph is the first monograph ever to be titled
Geometric Theory of Gearing (“Théorie Géométrique des Engrenages”). Therefore,
it is incorrect to claim that F. Litvin is the author of the “first book on the theory of
gearing,” as some gear experts loosely do.

It is a right point to mention here that in the research undertaken by Th. Olivier,
graphical methods developed in descriptive geometry are extensively used.

22Théodore Olivier (January 21, 1793–August 5, 1853), a French mathematician and engineer
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In his 1842 book [7], Th. Olivier proposed two principles for generating tooth
flanks of the gear teeth. These principles are commonly referred to as the first and the
second “Olivier’s principles of generating of enveloping surfaces.” Later on, both
these principles got an extensive usage by gear scientists. Instead, he considered the
tooth flanks, G and P , just the enveloping surfaces (i.e., insufficient).

In a general case of gear meshing, both the principles proposed by Th. Olivier are
incorrect, as the condition of conjugacy of the interacting tooth flanks of a gear, G,
and a mating pinion, P , is not taken into account (the condition of conjugacy is just
ignored).

The violation of the condition of conjugacy of the tooth flanks is a huge mistake
committed by Th. Olivier.

Both Olivier’s principles are valid just in reduced cases, when the traveling
surfaces allow for sliding over themselves, and the sliding occurs in the direction
of the enveloping motion. In these reduced cases, the principles by Th. Olivier are
getting useless. Therefore, there is no reason in applying “Oliver’s principles” for the
purpose of generation of conjugate tooth flanks in a gear pair.

Due to the mistake committed by T. Olivier, no geometrically accurate gears can
be designed, and only approximate gears can be designed instead. There is no chance
to anticipate any significant improvements if gears are designed following “Oliver’s
principles.” Therefore, Th. Olivier cannot be considered as a contributor to the
scientific theory of gearing as his accomplishments are a kind of mistake that has
negatively affected further development of the gear science.

Later on, that same mistake was committed (1886) by Ch. Gochman [8], the
Russian researcher of gears and gearing. This mistake is also observed in all the
books by F. Litvin (1914–2017), V.A. Shishkov [21], G.I. Shevel’ova [22], as well
as in many other books by authors who adopted Olivier’s approach.23

Miscellaneous Improvements to the Gear Art

The proposed curved tooth configuration by A.C. Semple24 in the first half of the
nineteenth century (1848) captured the interest of many mechanical engineers and
inventors.

The second ever known monograph on the theory of gearing has been published
in 1852 by E. Sang [20]. This book, titled A New General Theory of the Teeth of
Wheels, is nothing more rather than a compilation of the known achievements in the
field of gearing. No contribution to the theory of gearing has been done by
E. Sang [20].

23It is likely Dr. Fraifeld [23] is among those most affected (influenced) with the two “Olivier
principles.” Generating (hobbing) of gears for “Novikov gearing” is another example where
ignorance of the condition of conjugacy resulted in insufficient accuracy of the machined gears.
24US Patent No. 5.647, Rack and Pinion, Amzi C. Semple, June 27, 1848
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Among the experts in the field of gearing in that period of time, the name of
Thomas Tredgold25 should be mentioned as well. As a gear person he is mostly
known for his proposed approximation of bevel gears (i.e., of intersected-axes gears)
by appropriate cylindrical gears (i.e., by parallel-axes gears). The proposed approx-
imation, that is, the so-called Tradgold approximation, significantly simplifies the
calculation of bevel gearing in engineering practice.

The Research Carried out by Chaim Gochman

In 1886 a new effort to evolve the theory of gearing was undertaken by Chaim
Gochman26. In his master’s thesis, he converted the results earlier obtained by
Th. Olivier (who used graphical methods for solving problems in the field of
gearing) into that same results obtained by means of the methods developed in
analytical geometry [8]. As it is claimed on page 7 in the research by Ch. Gochman
[8], no new scientific results are contributed by Gochman to those already obtained
by Olivier [7]. The interested reader is referred to [4] for details on this research.

In his master’s thesis [8], Ch. Gochman loosely considered the tooth flanks of a
gear and a mating pinion only as surfaces enveloping to one another. The require-
ment of conjugacy of the mating tooth flanks was ignored, which is a huge mistake.
The fulfillment of the condition of contact is sufficient only in the cases when “no”
rolling motion is observed. Otherwise, this condition needs to be complemented with
(a) the condition of conjugacy and (b) the equality of a gear base pitch and its mating
pinion base pitch to the operating base pitches of a gear pair [1].

It must be clearly realized that the terms “conjugate surfaces” and “enveloping
surfaces” are not equivalent to one another: all conjugate surfaces are enveloping to
each other, but NOT vice versa, that is, not all enveloping surfaces are conjugate to
one another. In detail, the committed mistake is discussed by Professor
S. Radzevich [4].

The bottom line of this discussion is as follows: there is no chance to develop a
scientific theory of gearing based only on the condition of contact of a gear and a
mating pinion’s tooth flanks, and ignoring:

(a) The condition of conjugacy of the interacting tooth flanks.
(b) Equality of base pitches of a gear and a mating pinion to operating base pitch of

the gear pair, and so forth.

The direction of evolution of the gear theory that strictly follows the Olivier-
Gochman approach represents the dead end in the evolution of the theory of gearing.

25Thomas Tredgold (August 22, 1788–January 28, 1829), an English engineer and author
26Chaim I. Gochman (1851–1916), a Russian mechanician (Novorossiysk University, Odessa,
now in Ukraine)
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Equality of Base Pitches in Geometrically Accurate Parallel-Axes Gearing

The interaction of tooth flanks, G and P , of a gear and a mating pinion to a certain
extent can be construed as that in a cam mechanism, especially in cases when just
one pair of teeth is engaged in mesh. It is common in gearing that two or even more
pairs of teeth are engaged in mesh at that same time. In order to make multiple
engagements possible, base pitches in interacting tooth flanks, G and P , have to be
equal to one another; therefore, fulfillment of an equality pb. g ¼ pb. p is a must in
geometrically accurate parallel-axes gearing. Here, pb. g and pb. p are base pitches
(see Fig. 6.11) of a gear and a mating pinion, correspondingly. Only involute gears
feature base pitch, and only involute gear pairs are capable of transmitting a uniform
rotary motion smoothly from a driving shaft to a driven shaft. No other gear tooth
profiles are capable of ensuring that. Gears with non-involute tooth profile feature no
base pitches. Therefore, as in non-involute gear pairs, base pitches do not exist, of
course, they cannot be equal, and, ultimately, the gear pair is not capable of
transmitting a uniform rotation smoothly.

The condition according to which base pitches of a gear and its mating pinion in a
geometrically accurate gear pair have to be equal to one another is an important
contribution to the scientific theory of gearing. Unfortunately, no name of a gear
researcher is known who was the first to derive this significant accomplishment in
the theory of gearing. Moreover, even the exact date when this accomplishment was
attained also is not known. Hopefully, in the future, both the name and the date of the
invention will be identified.

Tooth Flank Geometry in Geometrically Accurate Intersected-Axes Gearing

For over a century involute parallel-axes gearing was the only kind of gearing for
which perfect geometry of the tooth flanks (namely, the involute tooth profile) was
known. The desirable geometry of the tooth flanks neither in intersected-axes
gearing, nor in crossed-axes gearing, was known for over a century.
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Fig. 6.11 Base pitch, pb, in
a basic rack, R
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It was George Barnard Grant (1849–1917) who proposed (January 14, 1887) a
correct method of generation of the tooth flanks in geometrically accurate
intersected-axes gearing [24].

Grant’s achievement got no extensive application in the industry, as for a long
while (and even nowadays) the industry was satisfied with approximate gears that
are easier and cheaper in production.

On the author’s opinion, G. Grant underestimated his contribution to the scientific
theory of gearing. Moreover, there is no evidence that Grant’s achievement is
properly valued even in nowadays gear community.

Shishkov Equation of Contact, n � VΣ ¼ 0

The “condition of contact” of the interacting tooth flanks of a gear, G, and a mating
pinion, P , is the first scientific result of fundamental importance that can be used in
the foundation of the scientific theory of gearing. The “condition of contact” is also
known as the “enveloping condition” or “law of contact.” The contact condition
states that:

Condition of contact: At every point of contact of the tooth flanks of a gear, G ,
and a mating pinion, P , the projection of the relative velocity vector onto the
common perpendicular to the interacting tooth flanks is zero.

The condition of contact of two interacting tooth flanks in a gear pair is known for
centuries. Per the author’s opinion, this important condition was already known to
Camus (1733) [13] or even to Desargues.

As the theory of gearing evolves, new requirements to the theory arose. Since the
time when the gear scientists started realizing the importance of the “condition of
contact,” the forms of its representation were different. In particular, the condition of
contact (see Fig. 6.12) required an analytical representation. Numerous attempts
were undertaken to derive an appropriate equation that reflects proper condition of
contact of a gear, G, and a mating pinion’s, P , tooth flanks.

Without going into details of the analysis of this particular problem,27 it should be
stressed here that finally the condition of contact is represented in the form of the dot
product of the unit vector of the common perpendicular, n, at point of contact of the
tooth flanks, G and P , and the instant velocity vector, VΣ, of the resultant relative
motion of the tooth flanks, G and P . The dot product has to be equal to zero:

n � VΣ ¼ 0 ð6:4Þ

27For details, the interested reader is referred to the paper by the author: Radzevich, S.P., “Briefly on
the Kinematic Method and on the History of the Equation of Contact in the Form of n � V ¼ 0,” In:
Theory of Mechanisms and Machines, 2010, No. 1. Vol. 15, pp. 42–51. http://tmm.spbstu.ru

6 A Brief Overview of the Evolution of the Scientific Theory of Gearing 261

http://tmm.spbstu.ru


This was Prof. V.A. Shishkov who proposed (in 1940s–early 1950s, and not later
194828) Eq. (6.4) to describe the condition of contact of two tooth flanks, G and P ,
[21, 25].

Here, n is the unit vector of the common perpendicular, and VΣ is the linear
velocity vector of the instantaneous resultant motion of the gear and the mating pinion.

Equation (6.4) is based on the fact that at common point(s) (points of contact, in
other words), the linear velocity vector of the instantaneous resultant motion of the
gear and the mating pinion, VΣ, and the unit vector of the common perpendicular, n,
have to be perpendicular to one another.

As it follows from the research undertaken by Prof. Radzevich [3], Prof. Shishkov
is the first to represent the condition of contact of two smooth regular surfaces in the
form of dot product n � VΣ ¼ 0 of the unit vector of a common perpendicular, n, by
the vector of the velocity of the relative motion of the interacting surfaces at a point
of their contact. The equation of contact in the form n � VΣ ¼ 0 is known as
“Shishkov equation of contact” [1, 3], and others.

The “Shishkov equation of contact” is a valuable contribution to the scientific
theory of gearing. Nowadays, this equation is extensively used by many gear
researchers. Unfortunately, this equation is often loosely supposed to be an equation
of conjugacy, which is not correct.

The interested reader may wish to go to [3] for more details on “Shishkov
equation of contact.”
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Fig. 6.12 Permissible
instantaneous relative
motions in gearing

28It could happen that the equation of contact, n � V ¼ 0, can be found out even in earlier (before
1948) publications by Professor V.A. Shishkov – in his earlier papers, PhD thesis, and so forth.
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Principal Planes and Reference Systems Associated with Gearing

For a gear pair with a specified set of the design parameters, a corresponding vector
diagram for the rotation vectors (as well as for the torques) can be constructed.
Several principal directions are associated with a gear pair. These directions are
defined by the rotation vectors of a gear, and a mating pinion, the instant rotation
vector, and by the center-line. Use of the principal directions allows for construction
of a set of principal planes, and principal reference systems associated with a gear
pair. By means of the principal planes and principal reference systems, analysis of
gearing of all kinds gets significantly simpler.

The set of principal planes is comprised of “pitch-line plane” (or just
“Pln�plane,” for simplicity), “center-line plane” (or just “Cln�plane,” for simplic-
ity), “normal plane” (or just “Nln�plane,” for simplicity), and the plane of action,
PA. All these planes are shown in Fig. 6.13:

“Pitch-line plane” is the plane through the axis of instant rotation, Pln, and the
center-line, ℄, of the gear pair.

“Center-line plane” is the plane through the center-line, ℄, of the gear pair
perpendicular to the pitch line, Pln.

“Normal plane” is the plane through the plane-of-action apex, Apa, perpendicular
to the center-line, ℄, of the gear pair.

“Plane of action” is the plane through the axis of instant rotation (the pitch line),
Pln, at a transverse pressure angle, ϕt. ω, with respect to the center-line, ℄, of the
gear pair.
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Fig. 6.13 Principal planes associated with a gear pair: the pitch-line plane (the Pln�plane), the
center-line plane (the Cln�plane), the normal plane (the Nln�plane), and the plane of action (the
PA�plane)
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A set of principal reference systems is associated with the vector diagram of a
gear pair as shown Fig. 6.14. The rotation vectors, ωg and ωp, of a gear and its
mating pinion are at a certain center-distance, C, and they cross one another. Points
Ag and Ap are the points of intersection of the gear axis of rotation, Og, and the pinion
axis of rotation, Op, correspondingly, with the centerline, ℄. The point Ag is referred
to as the “gear apex,” and the point Ap is referred to as the “pinion apex.” The vector
of instant rotation, ωpl, of the pinion in relation to the gear is a vector through the
point Apa. This point is located within the centerline, ℄. The point Apa is referred to as
the “plane-of-action apex.”

Ultimately, five reference systems are introduced:

• The main reference system, XlnYlnZln, associated with the gear pair.
• The stationary gear reference system, Xg. sYg. sZg. s.
• The gear reference system, XgYgZg.
• The stationary pinion reference system, Xp. sYp. sZp. s.
• The pinion reference system, XpYpZp.

These reference systems are referred to as the “principal reference systems”
associated with a gear pair.
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Fig. 6.14 Principal reference system XlnYlnZln associated with a gear pair
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Contact Geometry: Indicatrix of Conformity Cnf R G=Pð Þ at Point of Contact
of Tooth Flanks

In order to analytically described the degree of conformity at a point(s) of contact of
the tooth flanks, G and P, a planar characteristic curve was proposed by S. Radzevich
[26], late 1970s–at the beginning of 1980s. This characteristic curve is commonly
referred to as the “indicatrix of conformity, Cnf R P �Gð Þ .” The indicatrix of
conformity is derived on the premise of “Dupin indicatrices,” Dup Gð Þ and
Dup Pð Þ, of the tooth flanks, G and P , at a point of their contact.

The equation of the “indicatrix of conformity, Cnf R G=Pð Þ” at a point of contact
of a gear tooth flank, G , and a mating pinion tooth flank, P , is defined of the
following structure (see Fig. 6.15):

Cnf R G=Pð Þ ) rcnf φ, μð Þ
¼ rg φð Þ sgnRg φð Þ þ rp φ, μð Þ sgnRp φ, μð Þ ð6:5Þ

Here, Rg and Rp are the radii of normal curvature of a gear and a mating pinion’s
tooth flanks; and rp ¼

ffiffiffiffiffiffi
Rp

p
; μ is the angle of local relative orientation of the tooth

flanks, G and P , at a point K of their contact; and φ is the angular parameter of the
indicatrix of conformity, Cnf R G=Pð Þ.
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Fig. 6.15 On the definition of the indicatrix of conformity, Cnf R P �Gð Þ, at point of contact of
tooth flanks, G and P. (After Prof. S.P. Radzevich: Radzevich, S.P., Differential-Geometric Method
of Surface Generation, Dr.Sci. Thesis, Tula, Tula Polytechnic Institute, 1991, 300 pages)
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Indicatrix of conformity, Cnf R G=Pð Þ , at a point of contact of two interacting
tooth flanks, G and P , is vital for designing perfect gear pairs, and, especially, for
solving a problem of synthesizing a most favorable gear pair for a particular
application.

Condition of Conjugacy pln � Vm � ng ¼ 0 of Interacting Tooth Flanks
for Gearing of all Kinds

The condition of conjugacy29 of two interacting tooth profiles of a gear and a mating
pinion is a bit tricky. Informally, the condition of conjugacy can be interpreted in the
following manner.

Assume that a profile of one member of a gear pair is given. Then, the tooth
profile of the mating member of the gear pair can be generated as an envelope to
consecutive positions of the first member in its motion in relation to the second
member. Then assume that the tooth profile of the second member of a gear pair is
known, and the tooth profile of the first member of the gear pair is generated as an
envelope to consecutive positions of the second member in its motion in relation to
the first member. Then, compare the obtained tooth profiles of the first member of the
gear pair with its original profile. If they are identical to one another, then the
interacting tooth flanks are conjugate to one another. Otherwise, the interacting
tooth flanks are not conjugate to one another.

The condition of conjugacy of interacting surfaces is more robust than the
enveloping condition. All conjugate surfaces are enveloping to one another, but
not vice versa – not all enveloping surfaces are conjugate.

In parallel-axes gearing, the problem of conjugacy of the tooth profiles/flanks has
been solved in the eighteenth century (~1760) by L. Euler.

In involute gearing (see Fig. 6.16), the line of action, LA, and the path of contact,
Pc, align to one another at every point of contact, K, of the tooth flanks G and P of the
gear and the pinion, correspondingly. This is possible as both the line of action LA
and the path of contact Pc are straight lines through the pitch point, P, at transverse
pressure angle, ϕt, to a perpendicular to the center line. This feature of involute
gearing is the root cause of confusion as the line of contact and the path of contact are
commonly not distinguished from one another in intersected-axes gearing, as well as
in crossed-axes gearing.

At around 2008, condition of conjugacy of the tooth flanks, G and P, in intersected-
axes gearing, and in crossed-axes gearing was formulated by Prof. S. Radzevich. To be
conjugate, the tooth flanks, G and P , have to be designed so as:

(a) To retain the instant line of action, LAinst, within the plane of action.
(b) To ensure that the straight line, LAinst, intersects the axis of instant rotation, Pln,

at every angular configuration of the gears when they rotate.

29Conjugate tooth profiles/surfaces are also known as “reversibly-enveloping” profiles/surfaces
(or just as Re�profiles/surfaces, for simplicity) [19].

266 S. P. Radzevich



Later on, the condition of conjugacy of a gear, G, and a mating pinion’s, P , tooth
flanks is described analytically by Prof. S. Radzevich (2017) in the form of a triple
scalar product pln � Vm � ng ¼ 0.

The condition of conjugacy of the tooth flanks, G and P , of a gear and its mating
pinion is of critical importance when designing gears for high-power-density gear
pairs, as well as of gear pairs for low-noise/noiseless transmissions.

Angular Base Pitches: Operating Angular Base Pitch in a Gear Pair

In order to transmit a rotary motion between two shafts, at certain periods of time
more than one pair of teeth needs to be engaged in mesh simultaneously. To meet
this requirement base pitches of the mating gears must be equal to one another. This
fundamental requirement30 is known only for the cases of perfect parallel-axes
gearing with zero axis misalignment.
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Fig. 6.16 The line of action, LA, and the path of contact, Pc, in an involute gearing

30It is a right point to mention here that the author failed trying to identify the name of a gear
researcher who should be credited with this fundamental requirement in the theory of gearing.
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The earlier discussed in this chapter of book the concept on equal linear base
pitches of a gear and a mating pinion in geometrically accurate parallel-axes gearing
is evolved (Prof. S. Radzevich, circa 2008 [1]) to the most general case, that is, to the
case of crossed-axes gearing (intersected-axes gearing is viewed here as a reduced
case of Ca�gearing). For this purpose, a “concept of angular operating base pitch of
a gear pair, φb. op” is introduced. A gear angular base pitch, φb. g, has to be equal to
φb. op, and the pinion angular base pitch, φb. p, also has to be equal to φb. op:

φb:g � φb:op

φb:p � φb:op

(
ð6:6Þ

The concept of equal angular base pitches of a gear and a mating pinion to an
operating angular base pitch in the gear pair is illustrated in Fig. 6.17.

The “condition of equality of base pitches” of two mating gears [see a set of
Eq. (6.6)] is a valuable contribution to the scientific theory of gearing. This condition
is used when designing precision gearing of all kinds.

Crossed-Axes Gearing with Line Contact between the Tooth Flanks
(R-Gearing)

A problem of geometrically accurate parallel-axes gearing with line contact between
the tooth flanks has been solved by L. Euler, who proposed (circa ~1760) involute
gear tooth profile (or, in other words, “Eu�gearing”). A problem of perfect
intersected-axis gearing with line contact between the tooth flanks has been solved
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Fig. 6.17 On the concept of equal angular base pitches of a gear and a mating pinion to operating
angular base pitch of a gear pair. (After Prof. S.P. Radzevich: Radzevich, S.P., Theory of Gear-
ing: Kinematics, Geometry, and Synthesis, 2nd Edition, revised and expanded, CRC Press, Boca
Raton, FL, 2018, 934 pages)
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by G. Grant, who proposed (1887) a method of generation of perfect bevel gear tooth
flank. Gearing of this design is referred to as “Gr�gearing”). For the first time ever,
the problem of geometrically accurate crossed-axes gearing with line contact
between the tooth flanks (the so-called R�gearing) has been solved (~2008) by
Radzevich [1]. Tooth flank G of a gear (and of a mating pinion P ) in crossed-axes
gearing of this design is generated by a line of contact, LCdes, of a desirable geometry
that travels together with the plane of action, PA, when the gears rotate. The tooth
flanks, G and P , are viewed as a locus of the desirable line of contact, LCdes,
considered in a corresponding reference system. The interested reader is referred to
[1] for more detail description of the principal features of design of R�gearing.

Scientific Classification of Gearing

An extensive use of vector representation of gear pairs made possible the develop-
ment of a scientific classification of vector diagrams of gear pairs
(Prof. S. Radzevich, circa 2008 [1]). Vector diagrams of gear pairs with constant
values of the center-distance, C, the crossed-axes angle, Σ, and the gear ratio, u, the
so-called CΣu�constant gear pairs, as well as the so-called CΣu�variable gear pairs,
are covered by the classification. The classification of the gear pairs was further
evolved to a scientific classification of gear pairs themselves.

Geometrically Accurate Real Gearing

On the premise of the recent accomplishments in the scientific theory of gearing, a
novel gear system is developed by Prof. S. Radzevich at around ~2008 [1]. This gear
system is commonly referred to as Spr�gearing. If gears in a Spr�gear pair are
manufactured to the tolerances for the gear accuracy, then the gear pair is insensitive
to the axes misalignment that does not exceed the tolerances for the axes’
misalignment. This means that the angular base pitch of the gear, and that of the
mating pinion, are remained equal to the operating base pitch of the gear pair as long
as the axes misalignment is within the tolerance band for the deviations.

Generalized Form of Equation of Conjugacy of Interacting Tooth Flanks: For
Gearing of all Kinds

The considered in this section of the book condition of conjugacy (see Fig. 6.18) of
the interacting tooth flanks of a gear and a mating pinion, G and P, provides a verbal
description of the requirements to be meet by conjugate tooth flanks. Recently
(2017), an equation of conjugacy of the tooth flanks, G and P , was derived
(Prof. S. Radzevich, circa 2008 [1]):
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pln � Vm � ng ¼ 0 ð6:7Þ

Here the following are designated (see Fig. 6.18):

pln is the unit vector along the axis of instant rotation, Pln.
Vm is the linear velocity vector of a point of a desirable line of contact, LCdes,

between the tooth flanks G and P .
ng is the unit vector of a common perpendicular at point of contact of the tooth flanks

G and P .

If the condition of conjugacy [i.e., specified by Eq. (6.7)] is fulfilled at every point
of a desirable line of contact, LCdes, the gear pair designed this way is capable of
transmitting smoothly an input steady rotation to the output shaft.

Accomplishments in the theory of gearing in the post-Eulerian period of evolu-
tion of the theory of gearing are briefly summarized immediately below:

• The fundamental theorem of parallel-axes gearing (i.e., the “Camus-Euler-Savary
fundamental theorem of gearing”) is formulated. Later on, this theorem was
published in the book by Robert Willis [14], and sometimes is loosely referred
to as “Willis fundamental theorem of gearing,” which is incorrect.

• The importance of the “condition of contact” between two interacting tooth flanks
(i.e., the “enveloping condition”) is realized; various forms of representation of
this important condition, both verbal and analytical, are known at that time.

• Investigation into intersected-axes and crossed-axes gearing started at this time.
• A huge mistake in the interpretation of the interaction between the tooth flanks of

mating gears has been committed by T. Olivier [7] (1842), and repeated by
C. Gochman [8] (1886). All the research in the field of gearing in the years
since 1842 through the recent years are significantly affected by this mistake.
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Fig. 6.18 On derivation of equation of conjugacy, pln � Vm � ng ¼ 0, of the tooth flanks, G and P .
(After Prof. S.P. Radzevich: Radzevich, S.P., Theory of Gearing: Kinematics, Geometry, and
Synthesis, 2nd Edition, revised and expanded, CRC Press, Boca Raton, FL, 2018, 934 pages)
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• Prof. Shishkov proposed to represent the earlier known condition of contact of the
interacting tooth flanks of a gear and a mating pinion in the form of the dot
product n � VΣ ¼ 0. This equation of contact is a key equation in the kinematic
method of surface generation. Commonly, this equation is referred to as
“Shishkov equation of contact,” n � VΣ ¼ 0.

• The condition of conjugacy of interacting toothflanks of a gear and amating pinion
is not understood, and in most cases this important condition is ignored. This is a
consequence of the mistake committed by T. Olivier in the nineteenth century.

• The requirement according to which the base pitches of a mating gear and its mating
pinion are construed only in part, and only for the case of perfect parallel-axes
gearing. The concept of the operating base pitch of a gear pair is not realized at all.

The “fundamental theorem” of parallel-axes gearing and the “contact condition”
(i.e., the “enveloping condition”) can be considered as the main contribution to the
scientific theory of gearing attained at this time.

In the period until the end of the nineteenth century, the development of the tooth
flank profile geometry was more or less completed for the case of parallel-axes
gearing. Since that time, involute gearing prevailed as the most advantageous shape
of the gear teeth flanks.

6.1.3 Other Contributions to the Field of Geometrically
Accurate Gearing

Regardless of unavailability of the scientific theory of gearing till the beginning of
the twenty-first century, gear practitioners on their own have proposed numerous
designs of geometrically accurate gearing.

6.1.3.1 Grant Bevel Gearing

In this regard, the invention [24] by George Grant31 (see Fig. 6.19) should be
mentioned first of all. The use of the invention [24] allows generating bevel gear
tooth flanks for geometrically accurate intersected-axes gearing. This is due to that in
one of the possible applications of the invention, “. . . the rolling cone is increased in
size until its center angle is ninety degrees, and it becomes a plane circle. Its element

31George BarnardGrant (December 21, 1849–August 16, 1917) is considered one of the founders
of gear-cutting industry in the USA (Grant established a gear-cutting machine shop in Charlestown,
Massachusetts. When this business expanded, he moved the workshop to Boston, expanded it, and
named it the Grant Gear Works. From this extremely successful establishment evolved the
Philadelphia Gear Works and the Cleveland Gear Works. George Grant even wrote several very
successful books on the subject, for example, A Treatise on Gear Wheels; A Handbook on the Teeth
of Gears, Their Curves, Properties and Practical Construction, and so forth).
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will form an epicycloidal surface as before, but it is now called an “involute”
surface” (see Fig. 6.19). Therefore, the bevel gear tooth flanks are generated by
the describing method adopted to the case of intersected-axes gearing, that is, bevel
gearing. This is a significant scientific achievement by G. Grant in the field of
scientific theory of gearing. Fig. 6.20 is a good evidence of perfect tooth flank

Fig. 6.19 The essential of the G. Grant’s invention [U.S. Pat. No. 407.437. Machine for Planing
Gear Teeth./G.B. Grant (1887)]

Fig. 6.20 The involute toothflank in a bevel gear according toG.Grant [seeFig. 143 in:Grant,G.B.,A
Treatise on Gear Wheels, 6th edition, Philadelphia Gear Works, Inc., Philadelphia, 1893, 105 p.]
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geometry in a bevel gear, correctly realized by G. Grant at the end of the twenty-first
century. An elementary device (see Fig. 6.21) was used in the past to demonstrate the
principal features of meshing in a bevel gear pair.

The contribution by G. Grant is incomplete, as he proposed only a method of
generation of tooth flanks of a gear for intersected-axes gear pairs (Ia�gearing). The
concept of the “gear/pinion angular base pitch,” as well as the concept of the
“operating angular base pitch” of a gear pair, was not known to G. Grant.

However, G. Grant was a gear practitioner, and not a researcher, and (per the
author’s personal opinion) he did not properly value this as his accomplishment,
which is of significant importance to the scientific theory of gearing. In addition, in
the time of G. Grant, there was no necessity in more accurate bevel gears compared
to those produced by the gear generating method. Because of this, the invention by
G. Grant was forgotten for over a century.
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Fig. 6.21 Demonstration of principal features of meshing in a bevel gear pair
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6.1.3.2 Contribution by Professor N.I. Kolchin

In the mid of the twentieth century, an interesting analytical research in gearing
(in bevel gearing in particular) has been undertaken by Professor A.I. Kolchin of the
USSR [27]. Professor A.I. Kolchin analytically described the results discovered and
known in the public domain before his book was published. However, his contribu-
tion to the theory of gearing was important as a profound mathematical analysis of
gears has been started from his research [27].

6.1.3.3 Novikov Conformal Gearing

In the late 1940s and at the beginning of 1950s, an extensive research work in the
field of gearing has been carried out by Dr. M.L. Novikov32 in Moscow, at Military
Aviation Engineering Academy. Ultimately, a novel design of high-performance
gearing was proposed [28, 29]. Later on, the results of the research were summarized
in the doctoral thesis [30] and in the monograph [31] by Dr. M.L. Novikov.

The proposed design of gearing features “to-convex-to-concave” contact between
the interacting tooth flanks of a gear and a mating pinion. The gear designer is free to
design the rest of the gear and the pinion tooth profiles.

When Professor M.L. Novikov carried out his research in the field of conformal
gearing, he loosely assumed that in order to transmit a uniform rotary motion, the
gear teeth do not need to have special shapes, such as the involute of a circle. He
meant that, if a gear is made helical, then the helix itself can ensure uniform angular
motion and tooth profiles can then be chosen with a view to minimizing contact
stresses. This is a bit confusing: in order to transmit a rotation smoothly, the mating
tooth profiles must be either involute or, in a degenerate case, they can feature the
“involute tooth point” geometry.

“Novikov gearing” is a type of helical gearing that has a zero length of the field of
action, that is, the equality Za ¼ 0 is valid in “Novikov gearing” (this entails a zero
transverse contact ratio, mp ¼ 0, in “Novikov gearing”). The equality of the base
pitch of the gear and the pinion, to the operating base pitch of the gear pair, is the
principal feature of “Novikov gearing” that distinguishes it from helical non-involute
gearing of other types.

It is customary to associate “Novikov gearing”33 with the patent “Gear Pairs and
Cam Mechanisms Having Point System of Meshing” [29]. Evidence can be found
out in scientific literature revealing the unfamiliarity of the gear community around
the world with this original publication [29] on “Novikov gearing” (see Appendix H

32Mikhail L. Novikov (March 25, 1915–August 19, 1957), a famous Soviet gear researcher
33The first pair of “Novikov gearing” made of aluminum alloy (a pre-prototype) was cut on April
25, 1954, by a disk-type mill cutter. For testing, 15 gear pairs were machined in the summer of 1954
by the disk-type mill cutter. Hobs for cutting gears for “Novikov gearing” were proposed later on by
Professor V.N. Kudr’avtsev (as early as in 1956) – this is a huge mistake committed by Professor V.
N. Kudr’avtsev to cut gears for “Novikov gearing” by hobs.
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for details). As early as 1955, before the invention application was filed, a doctoral
thesis [30] on the subject had been defended by M.L. Novikov. The author’s
familiarity with the practice of defending the doctoral thesis adopted in the former
Soviet Union allows an assumption that the concept of “Novikov gearing” had been
proposed in the late 1940s. After M.L. Novikov was granted with the patent [29], a
monograph by him was published [31]. The concept of “Novikov gearing” is
discussed in detail in the two aforementioned valuable sources [30, 31]. Unfortu-
nately, none of them are quoted by the gear experts in Western countries and in the
USA. This makes it possible a conclusion that gear experts around the world are not
familiar with these two valuable sources of information on “Novikov gearing.”

Formally, in “Novikov gearing,” the tooth flanks have circular arc profile.
Actually, as it has been shown later by Professor S.P. Radzevich [32] that “Novikov
conformal gearing” is a reduced type of involute gearing in which the involute tooth
profile is shrunk to a point, and the rest of the tooth profiles are shaped in the form of
a circular arc. Because of this, “Novikov conformal gearing” is a kind of geomet-
rically accurate gearing (a reduced type of involute gearing) that is capable of
transmitting a steady rotation smoothly.

6.1.3.4 Contribution by Professor V.a. Gavrilenko

An extensive research in the field of gearing in the 1930s through the 1960s has been
carried out by Professor V.A. Gavrilenko34. He spent decades on extensive research
in the field of gearing, particularly in the geometrical theory of involute gearing. In
the author’s opinion, the most systematic discussion on involute gearing ever can be
found in the monograph by V. Gavrilenko [33]. Unfortunately, the fundamental
monographs by V. Gavrilenko are not known for the most of gear experts neither in
Europe nor in the USA.

6.1.3.5 Contribution by Jack Phillips

An intensive research into spatial involute gearing was undertaken by Prof.
J.R. Phillips35 [34] who is credited with a new look and in in-depth understanding
of the kinematics and the geometry of involute gearing with crossing axes of rotation
of driving and of driven gears.

34Vladimir A. Gavrilenko (June 21, 1899–June 6, 1977), Doctor (Engineering) Sciences and
Professor of Mechanical Engineering (Bauman State Technical University, Moscow, Russia)
35Jack Raymond Phillips (July 18, 1923–January 11, 2009), a famous Australian gear expert
(mechanician)
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6.1.3.6 Contribution by Walton Musser

In the late 1950s, Walton Musser36 proposed a novel kind of transmission, the
so-called harmonic drive. Although this invention revolutionized the theory of
“machines and mechanisms,” harmonic drive is not a kind of gear drives in the
sense considered in this monograph (gear drives consist of three components,
namely, driving gear, driven gear, and the gear housing, while harmonic drive
consists of four elements: a wave generator, flex-spline, stationary ring-gear, and
the housing). This is the only reason why harmonic drives are not discussed in this
monograph; this kind of transmission is out of the scope of the book.

Accomplishments in the field of gearing in that period of time are briefly
summarized as follows:

• A breakthrough invention in the field of intersected-axes gearing has been made
by G. Grant. He proposed a Machine for Planing Gear Teeth (U.S. Pat.
No. 407.437, [24]) that is capable of machining perfect straight bevel gears.
The geometry of a straight bevel gear tooth flank (that is equivalent to the involute
of a circle in cases of parallel-axes gearing) is proposed by G. Grant for the case of
intersected-axes gearing.37

• A novel design of conformal gearing was proposed by Dr. M. Novikov [29].

Grant’s invention [24] is an important contribution to the theory of gearing.
Novikov’s invention completely aligns with the well-developed theory of parallel-
axes involute gearing, as “Novikov conformal gearing” is a reduced case of involute
gearing.

6.1.4 Developments in the Field of Approximate Gearing38

To meet the current needs of the industry, practical gear engineers proposed numer-
ous approximate designs of gearing. Initially when the designs were proposed, it
loosely assumed that each of them is capable of transmitting a rotation smoothly.
Unfortunately, it was shown later on that they do not meet all the requirements
perfect gears needs to meet.

36Walton Clarence Musser (April 5, 1909–June 8, 1998), a famous American inventor; he is the
inventor of the “harmonic drive” (1957).
37Per the author’s opinion, G. Grant did not realize the importance of his invention. In the time of
Grant, the industry was fulfilled with the available on the market approximate gears; no interest to
precision (and more costly) bevel gears was indicated by the industry at that time.
38For more in detail discussion on manufacture of gears for approximate gearing, the interested
reader may wish to go to Chap. 1 “Gears: Brief Notes on the History of Methods of Machining
Gears and of Design of Gear Cutting Tools” in the book: Radzevich, S.P., Gear Cutting Tools:
Science and Engineering, CRC press, Boca Raton, Florida, 2017, 606 pages.
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6.1.4.1 Samuel Cone Double-Enveloping Worm Gearing

First rudimentary “double-enveloping” worm gear drive was known since the times
of Leonardo da Vinci [11]. Nowadays double-enveloping worm gearing was pro-
posed as early as in 1891 by Dr. Friedrich Wilhelm Lorenz39 of Germany. In his
invention Dr. Lorenz proposed methods to generate the worm and the gear of the
double-enveloping worm-gear drive, and then he had received two patents for these
accomplishments. A bit later (at a round 1920) and independently a similar double-
enveloping worm gearing was proposed by Mr. Samuel Cone40 of the USA.
Wilhelm Lorenz and Samuel Cone understood very well the advantages of the drives
they had invented, particularly, the increased load capacity due to the higher contact
ratio in comparison with that of conventional worm-gear drives. Although the
geometry of Lorenz and Cone’s drives differs, both types offer this advantage.

Double-enveloping worm gearing is an example of approximate gearing as it does
not meet all three fundamental laws of gearing [1].

6.1.4.2 Approximate Bevel Gearing

Early accomplishments in the field of bevel gearing are tightly connected with the
name of William Gleason41. In 1874, his invention of the straight bevel gear planer
for the production of bevel gears with straight teeth substantially advanced the
progress of gear making.

The early part of the twentieth century was the beginning of the automotive
industry, which required a broader application of bevel gears to transform rotation
and power between intersected axes. In the 1920s, automotive industry designers
also needed (a) a gear drive to transform motions and power between crossed axes
and (b) a lower location for the driving shaft. The Gleason Works engineers met
these needs with pioneering developments directed at designing new types of gear
drives and the equipment and tools to generate the gears for these drives.

The proposed designs of bevel gears in the nowadays industry are examples of
approximate gearing as they are developed and manufactured based on application
of the imaginary straight-sided crown gear (basic crown rack). Because of this,
nowadays bevel gears of all kinds, that is, straight bevel gears, skew bevel gears,
spiral bevel gears, and others, both face-milled and face-hobbed, do not meet all
three fundamental laws of gearing [1].

39Friedrich Wilhelm Lorenz (1842–1924), Doctor of Engineering, inventor, and founder of the
Lorenz Company
40Samuel I. Cone (1842–1924), a civilian machinist and draftsman, an American inventor of
double-enveloping worm gearing
41William Gleason (1836–1922), founder of The Gleason Works, Rochester, NY
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6.1.4.3 Approximate Crossed-Axes Gearing

The concept of the gearing that operates on crossing shafts can be traced back to the
times of Leonardo da Vinci [11].

The need for more accurate and quieter running gears became obvious with the
advent of the automobile. Although the hypoid gear was within our manufacturing
capabilities by 1916, it was not used practically until 1926, when it was used in the
Packard automobile. The hypoid gear made it possible to lower the drive shaft and
gain more usable floor space. By 1937 almost all cars used hypoid-geared rear axles.

The success with the design, manufacture, and application of the contemporary
crossed-axes gearing is credited in much to two famous gear experts, namely, Nikola
Trbojevich (also known as Nicholas Terbo) and Ernest Wildhaber.

Nikola Trbojevich, a world-known research engineer, mathematician, and inven-
tor, was a nephew and friend of Nikola Tesla. Mr. Trbojevich42 held nearly 200 US
and foreign patents, principally in the field of gear design.

Mr. Trbojevich’s most notable work that brought him international recognition
was the invention of the “Hypoid gear.” First published in 1923, it was a new type of
spiral bevel gear employing previously unexploited mathematical techniques. The
“Hypoid gear” is used on the great majority of all cars, trucks, and military vehicles
today. Together with his invention of the tools and machines necessary for its
manufacture, the “Hypoid gear” became an integral part of the final drive mechanism
of automobiles by 1931. Its effect was immediately apparent in that the overall
height of rear-drive passenger automobiles was reduced by at least four inches.

Ernest Wildhaber43 is one of the most famous inventors in the field of gear
manufacture and design. He is granted with 279 patents on gearing, some of
which have a broad application in the gear industry because of his work as an
engineering consultant for The Gleason Works. The hypoid gear drive is one of the
most famous inventions by Dr. Wildhaber. He proposed different pressure angles for
the driving and coast tooth sides of a hypoid gear, which allowed him to provide
constancy of the tooth top-land.

The proposed designs of crossed-axes gears in the nowadays industry are exam-
ples of approximate gearing as they are developed and manufactured based on
application of the imaginary crown gear with straight-sided profile (basic crown
rack). Because of this, nowadays crossed-axes gears of all types, both face-milled
and face-hobbed, do not meet all three fundamental laws of gearing [1].

42Nikola John Trbojevich (May 21, 1886–December 2, 1973), also known as Nicholas J. Terbo, a
world-known research engineer, mathematician, and inventor, held the basic patent for the Hypoid
Gear.
43Ernest Wildhaber (1893–1979), Doctor of Engineering, h.c., Inventor, and consultant for The
Gleason Works
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6.1.4.4 Face Gearing

Face gearing can be viewed as a reduced case either of intersected-axes gearing, or of
crossed-axes gearing when the pitch cone angle increases to the right angle. All
known designs of face gearing, both intersected-axes gearing and crossed-axes
gearing, are approximate gearing as they do not meet all three fundamental laws of
gearing [1]. The face cutting technique used to produce there crossed-axes gears is
supplied by these three companies (The Gleason Works, Klingelnberg-Oerlikon,
Yutaka Seimitsu Kogyo, LTD) is based upon an empirical and manufacturing
technology that predates the World War II.

Accomplishments in the field of gearing in that period of time can be briefly
summarized as follows:

• Double-enveloping (approximate) gearing was proposed by Wilhelm Lorenz of
Germany (1874), and a bit later (at a round 1920) by Samuel Cone of the USA.

• Design of and methods for machining of approximate hypoid gearing were
proposed by Nikola Trbojevich, and later on improved by Ernest Wildhaber,
both of the USA.

• Face gearing are widely used in the design of Fellow’s gear shaping machines.

The most significant contributions to the field of gearing at that time are made in
the field of approximate gearing: to their design and production.

6.1.5 Theory of Gearing at the Beginning of the Twenty-First
Century: State of the Art

It should be stated here from the very beginning that no self-consistent (or potentially
self-consistent) scientific theory of gearing is developed by the beginning of the
twenty-first century (by the year of ~2010).

Among others, a self-consistent scientific theory of gearing must possess two
important properties.

First, it must cover all known designs of gears and gearing with no exclusion.
Second, it must cover all (with no exclusion) unknown yet designs of gears and

gearing, that is, the theory must possess the property to predict novel designs of gears
and gearing.

All the books published so far under the title “Theory of Gearing” [starting from
the first (1841) book by Théodore Olivier [7], and ending with the latest publications
in the field – by the year of ~2010] consist no scientific theory of gearing. These
books cannot be referred to as a “theory of gearing”; rather they are collections of
known achievements in the field of gearing, having no ability to predict novel
unknown designs of gears and gearing.

No doubt, a scientific theory of gearing is necessary to the gear researchers and
practical engineers as it is a powerful tool for the development of novel designs of
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gears and gearing with a prescribed performance. Such a scientific theory of gearing
can be developed now. With that said, it is important to revise the earlier obtained
accomplishments in the field of gearing and identify those of them that can be useful
in the development of the fundamental scientific theory of gearing.

6.1.6 Favorable Approximate Gearing

Easier manufacture is the principal advantage of approximate gearing over perfect
gearing. Due to this advantage approximate gears will be used in the industry for a
long while.

A theory of favorable approximate gearing can be (and will be) developed on the
premises of the scientific theory of gearing [1]. Only in such a scenario approximate
gear pairs with favorable design parameters can be designed.

6.1.7 Accomplishments in the Field of “Non-circular”
Gearing

The most general case of non-circular gears with the crossing axes of rotation is
analyzed. For the analysis, a reference system, associated with gear pair in a natural
way, is used [the axes of the reference system are along:

(a) The axis of instant rotation, Pln .
(b) The center-distance, ℄.
(c) Perpendicular to these two directions, Pln and ℄].

In the analysis, the center-distance C , the crossed-axes angle Σ , and the gear ratio
u, are assumed variable. In particular cases, one or two variable parameters consid-
ered of a constant value. Under such the assumption, a classification of perfect
CΣ u�gearing is developed (S. Radzevich, ~2017) [1].

6.1.8 Tentative Chronology of the Evolution of the Theory
of Gearing

Summarizing the above discussion, the benchmarking achievements in the theory of
gearing are schematically outlined in Fig. 6.22.

The proposed chronology begins with an analysis of what was done in
pre-Eulerian period of evolution of the gear art. Contributions to the field of gearing
by Desargues, de la Hire, and Camus comprise the pre-Eulerian period of evolution
of the theory of gearing. In the schematic (see Fig. 6.22), number “0” is assigned to
the pre-Eulerian period evolution of the theory of gearing.
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The pre-Eulerian period of evolution of the gear art is followed by the time when
the fundamental contribution to the theory of gearing was made by L. Euler. The
latter is considered as the origin of the scientific theory of gearing.

Invention of involute gearing44 by L. Euler (1760) is a benchmarking achieve-
ment in the theory of gearing. Per the author’s opinion, the origin of the “scientific
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⑦
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The dead end of evolution

of the gear science

Fig. 6.22 Tentative chronology of evolution of the scientific theory of gearing

44It needs to be stressed here that involute of a circle itself was known long before the invention of
involute gearing by L. Euler.
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theory of gearing” has to be associated with this accomplishment. In the schematic
(see Fig. 6.22), number “1” is assigned to the invention of involute gearing by
L. Euler.

The rest of the items in Fig. 6.22 correspond to the principal accomplishments in
the theory of gearing that follow the contribution by L. Euler. Where possible, the
names of the researchers and dates are associated with the corresponding
accomplishments.

The next step in the development of the theory of gearing has been made by
L. Euler and F. Savary who are granted with the “fundamental theorem of gearing”
(along with Ch. Camus). Later on, in 1841, this theorem has been published in the
book by R. Willis [14]. Number “2” is assigned in the schematic (see Fig. 6.22) to
the achievement in the scientific theory of gearing. The “Camus-Euler-Savary
fundamental theorem of gearing” is valid only for parallel-axes gearing.

In 1842 a huge mistake has been committed by T. Olivier who proposed his
version of the theory of gearing based just on the enveloping condition of conjugacy
of the interacting tooth flanks of a gear and a mating pinion. The condition of
conjugacy of the tooth flanks is not taken into account by T. Olivier. This event is
labeled as “3” in the schematic (see Fig. 6.22).

A “parallel” line (the items #3 through #8) corresponds to a wrong way of the
evolution of the gear theory. The mistake committed by T. Olivier [7] (1842), and
repeated by C. Gochman [8] (1886), significantly impaired further fundamental
developments in the theory of gearing (“4,” “8,” and others in Fig. 6.22). Only
approximate gears can be designed following this way. This is the dead end of
evolution of the gear science.

The accomplishments in the theory of gearing labeled as “5” trough “7” are
applicable in both branches, that is, (a) in the “dead end” of the theory45 (“4,” “8,”
and others in Fig. 6.22), as well as (b) in the way that leads to the self-consistent
scientific theory of gearing [1] (“5” through “14,” and others in Fig. 6.22). No perfect
intersected-axes and crossed-axes gearing can be designed following this way. No
correct tooth flank modification in parallel-axes gearing is possible – only trial and
error method can be used to determine the parameters of the tooth flank modification.

The condition that requires equal base pitches of a gear and its mating pinion
(only in cases of parallel-axes gearing) is known for a long while (note, the
“operating base pitch” of a gear pair is not known yet). Per the author’s estimate,
this requirement, that is, item “5” in Fig. 6.22, is known since the mid of the
nineteenth century. Unfortunately, in the meantime it is not possible to identify the
name of the gear scientist who should be credited with this significant accomplish-
ment in the scientific theory of gearing.

Spherical involute in perfect bevel gearing (item “6” in Fig. 6.22) is known
since 1887.

45It is a right point to stress here that the “dead end” in the diagram in Fig. 6.22 means that no
“perfect” Ia� and Ca�gearing are possible; no “correct” tooth flank modification in Pa�gearing is
possible; and trial and error method is dominated.
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“Shishkov equation of contact” (item “7” in Fig. 6.22) deserves to be mentioned
here, as use of this equation makes possible significant simplifications of the
kinematic method of surface generation, especially in cases when both the contact
perpendicular, n, and the instant linear velocity vector, VΣ, can be determined with
no derivatives of equations of the tooth flanks, G and P , as well as the parameters of
the kinematics of a gear pair.

Conditions of contact of the interacting tooth flanks, G and P , are investigated
analytically, and an equation of the indicatrix of conformity, Cnf R G=Pð Þ, at point of
contact of tooth flanks of a gear, G, and a mating pinion, P, (item “9” in Fig. 6.22) is
derived [26, 35–37], and others.

Equation of conjugacy pln � Vm � ng ¼ 0 (item “17” in Fig. 6.22) of the
interacting tooth flanks, G and P , is derived by Prof. S.P. Radzevich (2017).

Then, the below-listed accomplishments were contributed by Professor
S. Radzevich in around 2008:

• Condition of conjugacy of the tooth flanks for gear pairs of all types (item “10” in
Fig. 6.22), including intersected-axes gear pairs and crossed-axes gear pairs.

• The concepts of (a) “base pitch” in intersected-axes gear pairs, and crossed-axes
gear pairs, and (b) the “operating base pitch” in gear pairs of all types (item “11”
in Fig. 6.22).

• The equality of base pitches of a gear and its mating pinion to the “operating base
pitch” in gear pairs of all types (item “12” in Fig. 6.22).

• Design of geometrically accurate crossed-axes gearing with line contact between
the tooth flanks, G and P , that is, R�gearing (item “13” in Fig. 6.22).

• A scientific classification of vector diagrams of gear pairs of all types (item “14”
in Fig. 6.22.

• Design of perfect (crossed-axes) gearing insensitive to the axes misalignment,
that is, Spr�gearing (item “15” in Fig. 6.22).

• Principal planes and principal reference systems associated with a gear pair are
introduced by Professor S. Radzevich in around 2015.

• Equation of conjugacy pln � Vm � ng ¼ 0 (item “17” in Fig. 6.22) of the
interacting tooth flanks, G and P , is derived by Prof. S.P. Radzevich (2017).

A theory of favorable approximate gearing will be developed in the future. The
discussed scientific theory of gearing is a reliable foundation for the theory of
favorable approximate gearing to be developed.

It should be realized that the diagram in Fig. 6.22 is tentative. More accomplish-
ments in the scientific theory of gearing and the corresponding gear researcher’s
names can be added in Fig. 6.22 if a more in detail investigation into the evolution of
the scientific theory of gearing will be undertaken. Only the key (the fundamental)
achievements in the scientific theory of gearing are included in the diagram (see
Fig. 6.22) in its current stage.

Generally speaking, geometrically accurate gear pairs of any kind can be
designed based on the scientific theory of gearing.46

46Theory of gearing can be viewed as a kind of “road map” that helps the user traveling from one
point (location) to another point (location) in a most efficient way.
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The listed accomplishments form the foundation of the “self-consistent scientific
theory of gearing” (Radzevich, S.P., 2012, 2018).

The proposed chronology (see Fig. 6.22) is open for further improvements.
Constructive recommendations, comments, and concerns appreciated.

6.1.9 On Other Efforts that Pertain to the Evolution
of the Scientific Theory of Gearing

The author has turned his interest to the evolution of the gear science about a decade
ago [3, 38].

Despite gears are extensively used in the industry of many industrially developed
countries, not much accomplishments to the theory of gearing are contributed to this
end. No accomplishments to the theory of gearing are contributed in the recent years
in North America (including the USA and Canada), in Europe (including Germany,
Austria, as well as the rest of European countries), and in Asian countries (including,
but not limited to China, Taiwan, Japan, and South Korea). In Australia, only the
2003 book by Jack Phillips on General Spatial Involute Gearing [34] deserves to be
mentioned in this regard. Production of quality gears in the industry is based in much
on the accumulated experience, and not on the means and methods derived from the
theory of gearing. Even lead companies in the field of gear design and manufacture
indicate poor familiarity with the latest achievements in the theory of gearing. An
article [39], as well as many others, is a perfect illustration of poor familiarity of the
gear community with the latest achievements in the theory of gearing.

In the recent years, numerous papers on the history of gearing (both in English
and in Russian languages) have been authored/co-authored by Babichev, Barmina,
Lagutin, Volkov, and others of Russia. All these publications are available in the
public domain. A claim on the so-called Russian school of theory of gearing has
been aggressively made by the authors. It should be stressed here that all these
publications are focused not on the principal accomplishments in the scientific
theory of gearing.

The discussion in this section of the book, along with the results of the earlier
performed retrospective analysis on the history of evolution of the scientific theory
of gearing [1, 2], reveals that this aggressive claim has been made with no sufficient
validity. Are there significant accomplishments to the scientific theory of gearing
(made by representatives of the so-called Russian school of theory of gearing) that
are not taken into account (and not indicated in the chart shown in Fig. 6.22)? Feel
free to name them, if any! An appropriate comment will be helpful for the enhance-
ment of our understanding of the evolution of the scientific theory of gearing.

In the published papers and monographs authored even by the leading
Soviet/Russian gear researchers, there is no evidence of understanding of the
kinematics and geometry of the following:
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(a) Novikov gearing (Novikov gearing is missed by Soviets due to their poor
professionalism in the theory of gearing; gear experts from Western countries
contributed zero to gearing of this particular design) [40].

(b) Spiroid gearing47 (and geometrically accurate worm gearing in a more general
sense).

(c) Perfect intersected-axes and (more generally) crossed-axes gearing.
(d) Perfect gears with the axes misalignment, and so forth.
(e) Still making no difference between enveloping surfaces and conjugate surfaces.
(f) They are not capable of demonstrating that the so-called gearing48 proposed by a

charlatan V.V. Stanovskoi (http://www.ec-gearing.ru/company.php) is a fake.
(g) For decades [for over “50 (!!) years in the theory and practice of gearing”], they

carry out a meaningless research on gearing with a “closed line of contact that
shrinks” when the gears rotate.

A few more to mention. What can be expected from the less experienced gear
researchers of Russia?

Prof. Ya.S. Davidov, one of the Soviet “coryphaeus” in the field of gearing, in his
“Memories . . .” correctly compared all the Russian gear theoreticians with the
“swamp” (http://referat.znate.ru/text/index-8600.html). A following dialog took
place between Prof. F.L. Litvin and Prof. Ya.S. Davidov, when they were discussing
the features of “Novikov gearing”: “In one of the conversations with me F.L. Litvin
very correctly compared the work of Novikov to the rock thrown into the swamp and
caused a stirring of water” (It is likely the comparison of the gear community in the
Soviet Union/Russia with a “swamp” makes sense). Can someone ignore this
opinion of two well-known Soviet/Russian gear researchers (of Prof. F.L. Litvin,
and Prof. Ya.S. Davidov), when they have compared all the Russian gear theoreti-
cians with the “swamp”? This comparison is one more evidence that the claim on the
so-called special “Russian school of theory of gearing” is at least doubtful, if not to
say more.

The just made conclusion has to be taken into account when the readers meet the
meaningless term “Russian school of theory of gearing” (as well as similar terms
introduced by Russians in the recent years: “classical school of theory of gearing”
and “the gold age of theory of gearing”). In the meantime, experienced readers are
skeptical with that and are commonly having a laugh when they read about the
so-called Russian school of theory of gearing [9].

47After about 40 (!) PhD theses and 5 (!) Dr. Sci theses are defended by these people, how is it
permissible to ask a question: “What do we know about spiroid gearing”? What did you do all this
time?
48Amazingly, but this stupid “gearing” is supported by two doctors of sciences (Dr. Scherbakov, N.
R., the chairperson of “Geometry” department, and Dr. Bubenchikov, A.M., the chairperson of
“Theoretical Mechanics” department, both of Tomsk State University, Russia) who are granted
with scientific degree of Dr.Sci. in mathematics and physics.
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6.2 Concluding Remarks

In this chapter of the book a brief overview on the evolution of the scientific theory
of gearing is carried out.

All (or, at least, almost all) the principal accomplishments in the scientific theory
of gearing are identified and are briefly overviewed in the chapter. The discussion
begins with the consideration of the earliest designs of gears. The evolution of the
theory of gearing falls into three periods, namely, pre-Eulerian, Eulerian, and post-
Eulerian periods of the gear art. The scientific theory of gearing is originated in the
Eulerian period of the gear art. Then, the developments in the field of perfect gearing
are considered. The contributions by G. Grant, Professor N. Kolchin, Professor
M. Novikov, Professor V. Gavrilenko, and others are covered in this discussion.

The developments in the field of approximate gearing is another consideration in
this chapter of the book. Here S. Cone double-enveloping worm gearing, approxi-
mate bevel gearing, approximate crossed-axes gearing, as well as face gearing are
briefly discussed.

A brief summary of the principal accomplishments in the theory of gearing
achieved by the beginning of the twenty-first century is provided. The condition of
contact of the interacting tooth flanks of a gear and pinion, condition of conjugacy of
the interacting tooth flanks of a gear and pinion, and condition of equality of base
pitches of the interacting tooth flanks of a gear and pinion are covered in this
discussion.

To the best of the author’s knowledge, all the principal accomplishments are
covered in this text. Where possible, the accomplishments are attributed with
corresponding names of the gear researchers, and dates when the contribution has
been done.49 These accomplishments form the foundation of the self-consistent
scientific theory of gearing (proposed by Radzevich, S.P. circa 2008 [1]). The
scientific theory of gearing is not threatened with destruction, but only superstructure
and development are expected (every scientific theory features this property).

Ultimately, a tentative chronology of the evolution of the theory of gearing is
proposed.

Among others, the discussion is aimed to initiate an in-depth investigation in the
field of the origins of the scientific theory of gearing.

More names of the gear researchers deserve to be mentioned. However, consid-
eration in this section of the book is limited to the evolution only of the theory of
gearing. Therefore, the number of names of the researchers is limited only to those
who contributed to the kinematics and the geometry of gearing.

49Except of the contributions by L. Euler, the contributions by other members of theHall of Fame at
the Gear Research Center (The University of Illinois at Chicago) are out of the scope of the
scientific theory of gearing, and, thus, are not discussed here.
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Brief critical comments on the so-called Russian school of theory of gearing are
outlined.

A comprehensive research on the evolution of the theory of gearing is necessary
to be undertaken in the nearest future. It is needed that the research be based on
in-depth study of the original scientific works of all principal investigators of the
topic. The history of engineering is not less important than the engineering itself. The
better we know the past, the better we can predict the future.

The discussion in this chapter of the book is helpful for better understanding of
the fundamental principles of gearing.
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Chapter 7
Hyperboloid-Type Hobs: Design,
Manufacture, and Application

Valentyn Nastasenko

7.1 Introduction

Scientific and technological progress requires constant updating of equipment and
technologies, various machines and mechanisms being the basis [1, 2]. Gears are an
important component used in many machines and mechanisms, especially in tur-
bines, machine tools, devices, appliances, automobiles, tractors, material handling
machinery, and other types of equipment. As the requirements for technical and
economic indicators of these technical systems are constantly growing, there is an
increasing need to improve the accuracy and smoothness of the gears, rotation
speeds, and powers transmitted by them. At the same time, requirements for accu-
racy, quality, and processing performance of gears are constantly increasing, which
should be met in a timely manner, with maximum values of technical and economic
indicators. The solution to these problems is associated with the improvement of
technological processes, equipment, and tools for the manufacture of gears.

Currently, various methods are used for the manufacture of gears. The main ones
are as follows: precision casting, rolling of gear teeth by plastic deformation, the use
of 3D printing, and cutting, which is most widely used.

This is explained by the fact that gears require the use of materials of high
strength, as well as high quality and precision of the tooth profile machining.
Tolerances for high-precision gears their relative position and direction are from
10 to 3–4 μm. Therefore, the use of the above methods has significant
limitations:

1. Precision casting—by scope of application, nomenclature and number of gears,
the use of materials and the accuracy of obtaining the gear tooth profile;
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2. Tooth rolling—by materials, processing accuracy, and the need for specific
expensive equipment;

3. 3D printing—by the used materials, their strength and accuracy of these
processes.

It should be noted that the current trends of replacing the manufacturing processes
of products with 3D printing in gear processing are not applicable yet since 3D
printers do not provide the ability to control the jet of molten metal with high
precision. Metal deforms when cooled and distorts the profile of gear teeth. These
errors are superimposed on the accuracy errors of the applied 3D printers. If the
method of spraying with metal powder is used, then for bonding it requires welding
of the powder grains in the points of contact. This is technically possible when the
powder spray is heated to a temperature of about 1000�C. However, such a com-
pound is loose and requires pressing or strong kinetic acceleration and impact of
grains, preferably in a deep vacuum (similar to the kinetic ion bombardment method
when applying wear-resistant coatings [3]). It complicates the equipment used and
spikes the gear cost process. Prospects for improving 3D printers are associated with
great a technical difficulty, which increases the cost of their design and puts off the
creation of high-precision (3–4 μm) 3D printing systems to the indefinite future.

Therefore, the most common and promising method of processing gears in the
next 10–20 years will be cutting processes, due to their high accuracy, relative low
cost, and wide versatility. Among these processes, a number of basic ones are
outlined as follows:

1. processing of gears by copying inter-tooth space with cutting broaches and their
blocks;

2. processing of gear teeth by copying and unit single of division used the disk and
end tools;

3. processing of gear teeth by continuous rolling with hobs, shavers, and worm
grinding wheels.

Broaching is an expensive method because it is associated with the need for a
large number of broaches, their profile depending on the pitch and the number of
machined gear teeth. Quite complex and expensive equipment is also used. There-
fore, this method is cost-effective mainly in mass production. Of the rolling
broaching [4] makes the tool universal, however, for multi-tooth wheels, its length
increases significantly and increases with the increase in the size of the teeth of the
machined wheel. The complexity and dimensions of the equipment used in this case
increase sharply. Therefore, for more than 40 years of development, the method is
not widely used. However, there is experience with its use for small gears with small
tooth sizes.

The processing of gear teeth by disk and end mills and grinding wheels is used in
single and small-scale production [5]. This is connected with the low productivity of
the process due to the need for a single division and performing idling return strokes.
However, the high accuracy of the design and manufacture of tools (especially the
end ones) has expanded the opportunities of their application for machining high-
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precision gears [6]. Constraining factors of such processing: (1) the need for
expensive CNC machines with high-precision servo systems and technologies and
adjusting of their motion, which are programmed for 8–9 types; (2) the problem of
increasing tool life is aggravated, which leads to the need to equip it with materials
from hard alloys and reduce cutting modes (productivity) [7]. These factors signif-
icantly limit the use of this method for high-performance finishing of multi-toothed
gear rims of medium and large modules without the regrinding of tools [8].

Gear processing with worm cutting tools has been widely used in serial and large-
scale production [5] since it provides high productivity, which is second only to
broaching, and high accuracy (up to 3rd degree), which is second only to processing
on CNC machines and the end tool. However, with increasing accuracy of worm
cutting tools and machine tools used for them, a reserve is created for processing
gears of the third and higher degrees of accuracy. The versatility of the use of worm
gear cutting tools for processing any number of gear teeth is their important
additional advantage. Therefore, the solution to the problem of increasing their
accuracy and performance is an urgent and important scientific and practical task
[8]. Moreover, the combination of the division and break-in chains simplifies the
machine tools by 10–20%, adequately decreasing their cost and increasing accuracy.
Since on modern CNC hobbers the rigid kinematic connection of the main motion
and break-in chains generating a worm gear it is possible to replace, with servo
systems with CNC and separate drive, this expands their prospects for the multiple of
worm gear cutter mill processing [9].

Herewith, combined processing is recognized as the most preferable—obtaining a
gear blank by 3D printing with minimal allowances for subsequent finishing machin-
ing with worm tools, which requires their development.

The solution of these problems is the main goal of the work performed. Its
scientific novelty is the rationale for the most appropriate designs of worm gear
cutting tools and their manufacturing technologies and equipment for their
production.

7.1.1 Accuracy and Performance of Hyperboloid-Type Hobs

Currently, it is real and economically feasible to process gears to the third degree of
accuracy with deviations of the profile and tooth pitch within 3–4 microns. It is also
possible to perform gear processing of the second and first degrees of accuracy with
an end tool on CNC machines. However, the high technical costs of its implemen-
tation narrow the scope of their economically viable application only for special
types of products, for example, high-speed turbines, multipliers, high-precision
gearboxes, machine tools, and devices.

Worm tools (milling cutters, shavers, and grinding wheels) provide the possibility
of machining gears up to the third degree of accuracy. Among them, worm cutters
(hobs) are most widely used. Worm shewing is used mainly for worm gears, and
grinding is used for gears with small tooth sizes, where a significant increase in the
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diameter of the circle is possible, which compensates for errors by reducing the angle
of elevation of the helix of the main worm.

By technical and economic efficiency indicators, the hobs are most effective for
processing gears of 8 ... 5th degree of accuracy. However, the high technical and
economic performance of worm milling prompts its use to further improve the
accuracy and productivity of gear processing, which is possible in three following
basic ways (Fig. 7.1) [8]:

1. improving the accuracy of designing and production of tools;
2. increasing tool wear resistance;
3. increasing the number of turns.

If the first two ways are given great attention, there is lack of attention—to the
third way. This is explained by the fact that with an increase in the number of
approaches, the accuracy of processing the gear teeth profile decreases due to an
increase in its faceting and distortion of the tool teeth profile. The load on the tool
teeth is also growing due to an increase in the cross section of the cut chips.
Therefore, it is necessary to solve these problems, which clarifies the tasks set. In
full, their solution is possible only through the use of systematic methods of
searching for new technical solutions [10], which is the basis for further work.
Given that worm tools excels disk and end tools in terms of durability, and due to
the continuity of the process—in terms of productivity, therefore, is advisable to
refuse using the latter.

However, an effective concept for improving and developing worm milling
cutters is currently lacking. This confirms the general identity of the designs of
rough and finishing worm mills [11]. They differ only in the size of the dividing
diameter, the number of racks and the accuracy and quality of manufacture although
their working conditions are different. Since traditional solutions for well-known
worm mills have practically exhausted their technical and economic capabilities
[12], development of new directions for their design and a concept for improving
them are therefore required.

7.1.1.1 Design Concept of Hyperboloid-Type Hobs

Currently, theories of designing gears and tooth profiles are receiving great attention
[13]. Sections 1–6 of this monograph are also devoted to the improvement of such
meshing.

However, in the end, the real profile of the machined gear is formed by the profile
of the tool teeth, the parameters of its installation in the working bodies of the
machine and the shaping movements that the machine performs [14]. Therefore, the
initial concept for designing gears is the use of a method based on a combination of
these parameters.

For example, varying the different installation options for the cutters allows
getting three main worm types when turning [5], which significantly affect the
shape of the profile of their threads and the conditions of their operation:
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– Archimedean ZA (their geometric characteristics are the Archimedean spiral in
the cross section of the worm and the straight profile of the turns in their axial
section);

Fig. 7.1 General block diagram of the improvement of worm gear cutting tools
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– Convolute ZN (their geometric characteristics are the elongated involute in the
cross section of the worm and three straight profile turns: ZN1—in the section
normal to the thread turns, ZN2—in the section normal to the cavity between
turns, ZN3—in section on the axial, normal to the right and left thread profiles);

– Involute ZI (their geometric characteristics in the cross section are the involute
from the diameter of the design cylinder and the straight profile of the thread
along a helical line tangent to the surface of the design cylinder).

All of the listed types of main worms, which are formed by the cutting edges of
the cutters and their installation options, are shown in Fig. 7.2.

Since these main worm types are the basis for the design of worm tools, the initial
concept of the helical movement of the generating curves should be applied to them.
Such a technique in the countries of the former USSR was proposed by
G.G. Inozemtsev [15] and was developed in the works of P.R. Rodin [16],
S.I. Lashnev [17], G.N. Kirsanov [18], and other scientists.

As early as at the stage of formation of the main worms (Fig. 7.2), errors arise due
to the helical shape of their threads and the installation parameters of the tool. They
are the largest for Archimedean worms ZA since the cutter is installed in the axial
plane of the worm, and the threads are formed in relation to it at the angle of their
rise. Therefore, the larger this angle is, the greater is the difference in the directions
of the axial and helical lines of the worm and the higher the error in the formation of
the profile of its threads. This type is applicable only to single-start, low-precision
worms. To increase it, correction of the profile of the right and left cutting edges of
the cutter is required. Another disadvantage is the different size of the lateral rear
angles at these edges, which complicates their design and technology of manufactur-
ing and regrinding.

Fig. 7.2 Types of main worms obtained by turning with incisors of sharpen
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For convolute ZN worms, these errors are reduced since the cutter is installed at
an angle to the axial plane in the direction of the helix of the worm at an angle of its
rise. For ZN1 and ZN2 types of worms, these errors are almost identical since the
cutting edges of the cutter are equally placed relative to the axial plane of the worm.
For ZN3 worms, these errors are reduced since the deviations of the cutting edge of
the cutter from the axial plane of the cutter are minimal. However, all these errors
increase with an increase in the angle of the rise of the main worm helix, which is
typical for multi-start structures.

For involute ZI worms, the cutting-edge placement parameters are selected so that
an involute worm thread profile is formed. However, an increase in accuracy
compared to ZN3 worms is not significant, and the technology for their manufacture
is significantly complicated. Therefore, the ZI type of worms is not widely used for
the manufacture of worm gear cutting tools and is rarely used for the manufacture of
high-precision worm gear pairs since their wear, even at the breaking-in stage,
eliminates the advantages of such pairs. More important factors for worm gears
are the conditions for the formation and holding of the oil wedge in the worm and
gear teeth pair.

It should also be noted that the linear profile of the cutting edges of the cutters is
unacceptable for all types of high-precision worms since it exactly coincides with the
line profile of the turns of the worm only on helical lines located on the diameter of
the initial cylinder, on which the angle of elevation of their turns is determined.
Above and below this diameter, the helical shape of the worm threads leads to the
curvature of their profile, which must be taken into account by adjusting the profile
of the cutting edges of the cutter. These deviations are negative (inside the edge) for
the sections forming the thread head and positive (outside the edge) for the sections
forming the thread root. The larger is the angle of the thread rise, the greater is the
difference in positive and negative deviations, or the higher are the resulting errors of
the threads, if the profile correction is not performed.

In addition, the method of screw movement of the forming curves requires the
elimination of the following disadvantages: (1) the mismatch of the planar initial
contour of the tool rail to the real tool contour formed by the producing surface of the
screw form; (2) inconsistencies of the forming curves for the front and backed back
surfaces; (3) transformation of profiles of tools of the first order (worm cutters,
shavers, and grinding wheels), and second order (cutters, and grinding wheels that
form the tool of the first order), the conditions of their editing and running during
regrinding.

Therefore, for further improvement of profiling accuracy, the method of screw
movement of the forming curves began to become more complicated to increase the
accuracy of profiling due to the accurate determination of these curves on the profile
of tools of the first and second order [14]. At the same time, the profile of its teeth is
definitively formed by two helical surfaces: (1) the front, (2) the backed-off one,
which is performed to maintain the profile of the milling cutter tooth after regrinding
along its front surface. Thus, no matter how precisely the worm backed-off cutter is
designed, the real shape of the cutting edge of its teeth will be obtained when the
working bodies of the machine move two forming curves: (1) a curve formed by
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helical and reciprocating movement of the working surface of the backed-off tool
when it comes in contact with back surface of the cutter tooth; (2) a curve formed
during the helical movement of the working surface of the grinding wheel during its
contact with the front surface of the cutter tooth. In this case, the theoretical forms of
the generating curves of instruments of the second order are replaced by technolog-
ical curves obtained on the basis of simple types of movements [19]—in a straight
line or along an arc of a circle, and in special cases—along an Archimedean spiral or
involute, which introduces its errors. A theoretically accurate profile of the
manufacturing surface of second-order tools can be obtained on CNC machines
programmed by 8–9 types of movements. However, this option is acceptable in
special cases of production and unacceptable in serial, large-scale, and mass pro-
duction, due to significant technical and economic costs.

It should also be taken into account that when performing a backing-off surface of
the cutter teeth, it is impossible to obtain their accurate profile along the entire length
of this surface.

This is caused by decrease in tooth size from the initial cross section of original
milling cutter outer diameter to the final section of the sharpen one, the of which is
smaller than the original. This is explained by the fact that due to the need to obtain a
rear angle, the back surface of the teeth is made in an Archimedean spiral. Therefore,
the direction of the generatrix of the backing curve does not coincide with the
direction generatrix of the front sharpening surface of the tooth. Since the mismatch
in the direction of the generatrix curves grows toward the end of the tooth, therefore,
the errors caused by it grow. Errors appear when the rack is turned by a tangent to the
helical line of the main worm. In order to reduce errors, the relieved cutter should be
turned in the plane parallel to the front surface of the milling cutter tooth, along
which it is regrind (convolute worms ZN). The relieved surface being grinded
compared to backing with the cutter, which leads to an increase in errors after
regrinding. When grinding the back surface of the milling cutter tooth with a disk
or conical end grinding wheel, they are set by a tangent to the backing curve.
Therefore, their generating surface does not coincide more distinctly with the
direction of the generatrix of the front tooth surface being grinded compared to
backing with the cutter, which leads to an increase in errors. These errors increase
with an increase in the angle of inclination of the rack to the worm axis, which is
typical with an increase in the number of threads.

These errors can be eliminated by transforming (lengthening) the profile of the
backed-off tool in time of its movement along the back of the backed-off teeth and
returning to its original length on the tops of the following teeth. However, it is still
difficult to implement technically. Therefore, the backed-off cutters are profiled
according to the design section associated with half the length of the ground part
of the backed-off surface from the top of the tooth. Thus, milling cutters that are new
and worn after regrinding are the least accurate, but have opposite errors. The most
accurate milling cutters are ground at half the length of backed-off surface, which is
made on the surface backed by a cutter.

When sharpening milling cutter teeth with a conical grinding wheel along the
front surface of the helical shape, errors also arise which are eliminated by replacing
the rectilinear shape of its generatrix with the convex curvilinear form. The
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parameters of this curvature depend on the diameter of the initial cylinder of the
milling cutter and the inclination angle of its teeth front surface (the latter grows in
multiple-thread milling cutters). However, the value of such a trueing is also not
constant for the backed-off milling cutters, since with regrinding, their outer diam-
eter decreases, which causes appropriate errors. When trueing the worn-out grinding
wheel, its diameter decreases, which changes the conditions for its conjugation with
the front surface and introduces additional errors. A theoretically accurate profile of
the generating surface of a grinding wheel can be obtained on grinding machines by
equipping them with a CNC trueing tool programmed for three types of movements
[20]. However, this option is acceptable only in special cases of grinding milling
cutters for the production of highly precise gears and is unacceptable in serial, large-
scale, and mass production, due to significant technical and economic costs.

The performed analysis allows us to conclude that the theoretical profile of the
milling cutter tooth is formed in the section normal to its thread and is transformed
depending on the diameter of the initial cylinder, the angle of its helical line rise, the
type of main worm, the selected backing curve, the size of the rear angle, and the
parameters of the helical front surface. Further, real technological errors of
manufacturing worm milling cutters are additionally superimposed on it. They are
minimized by increasing the accuracy and rigidity of machine tools, tools of the
second order and the technological system of machine-tool-device-tool-workpiece.
At the stage of profiling milling cutters, they are considered absolutely accurate and
rigid. Therefore, its errors are neglected since the correct choice of a machine tool
and technological system allows them to be reduced to 2–4 microns. Another
limitation adopted in the work performed is the development of worm tools for
processing involute gears and their modifications. In this case, errors in the profiling
of tool rack are excluded since the rack tooth profile is adopted instead, shown in
Fig. 7.3.

Fig. 7.3 The initial profile of the gear rack for processing gears with an involute tooth profile
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However, in high-precision design techniques (and in this work), the transition
from the flat initial profile of the tool rack to the real tool profile formed by the helical
surface generating, it is taken into account.

In this case, the tool surface is a theoretically accurate surface that meets the
nominal surface of a product at circular, transverse, and longitudinal feeds
implemented in machine engagement during the processing of a gear product by
break-in method.

Tool profile—refers to a flat figure obtained by plane section of a tool surface.
Rolling around method (centroid enveloping)—is characterized by circular and

transverse feeds, in which the initial straight rack rolls without sliding along the
bottom line (centroid) of a product.

The basic worm—represents a geometric helical surface formed by a rack with a
given profile of its teeth and the type of its helical movement, which differs from a
real worm in the absence of deviations of the outer and inner diameters, profile of
threads, helix pitch, type of helical surface, and other geometric and design param-
eters composing this worm.

The data presented allow concluding that in order to reduce the errors of worm
milling cutters; it is advisable to exclude the processes of their teeth backing and
their front surface regrinding. In addition to affecting the accuracy of milling cutters,
regrinding reduces the center-to-center distance in a “milling cutter—cut gear” pair,
which can also be a source of tooth processing errors, especially when machining
worm wheels.

These factors, in conjunction with the previously adopted concept of forming the
profile of the milling cutter teeth by the method of helical movement of the
generating curves of tools of the second order, allow us to consider the concept of
their profiling to be finally developed. It should be borne in mind that worm milling
cutters are the most complex tools in terms of the number of surfaces that form their
teeth, compared to shavers that have no backed-off surfaces, and compared to
grinding wheels that do not have backed-off and front surfaces. Therefore, the
developed concept can be automatically applied for their profiling, when excluding
missing surfaces.

7.1.1.2 Errors of Profiling of Hyperboloid-Type Hobs

Errors associated with the generation of the helical surface of the main worm, helical
front surface, and helical backed-off surface of the teeth are absent in other types of
cutting tools, except for the screw ones. Therefore, they are referred to as “organic”
errors, inevitably associated with their profiling and manufacturing. Since other
types of errors associated with the formation of mounting and supporting surfaces
are characteristic of other types of tools that are widely known and well-studied,
further attention in this work is given to organic errors worm cutting.

The arising of the organic errors of the main worm is due to the transformation of
the original tool rack when it is applied to the surface of the initial worm cylinder
(Fig. 7.4).
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When cylindrical worms are formed by the initial gear rack 1 with the profile
height ArBr, its initial line i.l. is combined with the initial circle i.c. of the main worm
in the profiling point Po. The rack is turned normal at an angle of the helical line rise
of the main worm. This rack hangs over the cylindrical surface of the main worm and
does not coincide with it. Therefore, it hangs over the cylindrical surface of the main
worm and does not coincide with it. The larger is the turning angle, which is typical
for multiple-thread milling cutters, the greater is this mismatch. The current point ir
on the profile of the initial gear rack is determined by the radius vector rr and the
angle of its inclination θr. When moving to a cylindrical worm, rack 1 forms a helical
profile 2 with a height of AwcBwc, and the current point ir of rack profile, having
followed the path iriwc along the involute, will take a new position iwc, determined by
the radius vector rwc and its angle of inclination θwc. Its will adequately distort the
parameters of the thread profile compared with tooth profile of the initial rack. Actual
distortions of the initial rack profile and the worm threads profile are shown in
Fig. 7.5.

The transformation of the right and left profiles of worm threads was obtained
with the helical movement of the linear profile of the gear rack, which has a right
ArrBrr and a left ArlBrl side. The fixed coordinate system of the worm OwXwYwZw is
adopted as the initial one for the helical movement, and the moving coordinate
system O’wX’wY’wZ’w is connected with it, performing translational helical motion
Рw relative to the fixed system when turning for the current angle Ψw. The coordinate

Fig. 7.4 Transformation of the rack profile during the transition to the cylindrical surface of the
main worm
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system of the OrXrYrZr rack is connected to the moving coordinate system and is
turned in it for the lead angle τ of the main worm helical line. Initial line i.l. of a rack
with a profiling point Ро is connected with the operating pitch cylinder of the main
worm of radius rω. The current point ir of the rack profile in its coordinate system is
determined by the XrYrZr parameters, and in the moving coordinate system of the
worm it is determined by the X’wY’wZ’w parameters, radius vector r’w, and its turn
angle θ’w. On the worm, the current point will occupy the position iw with the radius
vector rw and its turn angle θw. The curvature of the worm’s thread profile relative to
the rack tooth profile has deviations: on the right side, into the body at the top, from
the body at the root, and on the left side, from the body at the top, into the body at the
root. These curvatures increase with an increase in the angle of elevation of the main
spiral line of the worm, which is typical for an increase in the number of its thread.

Fig. 7.5 Actual transformation of the rack tooth profile during the transition to the cylindrical
surface thread of the main worm
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In a worm milling cutter, similar transformations also occur during the formation
of a helical front and backed-off tooth back surfaces that fold. As a result of such
transformations, two-thread milling cutters are used only for rough machining of
cylindrical gears, and 3- and 4-thread milling cutters are practically not used, except
for cases of machining worm gears.

The traditional way to reduce the errors in the transformation of worm threads
profile is associated with a decrease in its lead angle to 2�. It is possible with an
increase in the initial diameter of the main worm by 40–50% compared to rough
milling cutters and a decrease in the number of their threads to 1. This way is used for
the rest of the finishing worm tools—shavers and grinding wheels, which increases
their size and weight indicators, and also requires the use of gearing machines tools
of a heavier series (from a larger size range), which increases their cost and reduces
the efficiency of the tooth cutting process. However, a 2� angle is too large for worm
tools that process gears of more than third degree of accuracy, which limits the
possibility of their use or requires reducing this angle by further increasing the
diameter of the main worm.

However, the analysis of the scheme presented in Fig. 7.4 showed that if the
initial state of the rack is preserved without its transformation onto the cylindrical
surface of the main worm, then distortions in the teeth profile of the main worm rack
and threads can be eliminated. This technique is the basis of the proposed concept for
the development of high-precision worm gear cutting tools.

Designs of worms and worm milling cutters are shown in Fig. 7.6. The basic
racks 1 are placed on the cylindrical surface 2 of the main worm in the grooves 3 at
an angle ω normally to its threads. The initial lines of such racks form a hyperboloid
worm since they describe the linear surface of a one-sheet hyperboloid (Fig. 7.6.b).
The teeth 5 of such milling cutters will also form threads of a one-sheet hyperboloid
(Fig. 7.6.c)

The scheme for the formation of the threads profile of the hyperboloid main worm
is shown in Fig. 7.7.

The basic gear rack profile 1 with the teeth of ArBr height, which have a right
ArrBrr and a left ArlBrl sides, contacts the initial line i.l. in the profiling point Po with
an initial circle i.c. of radius rωwc of the cylindrical main worm, or with an initial
circle of radius rωwh of the hyperboloid main worm. This circle is its neck, and to the
right and left of it the diameter of the hyperboloid worm increases, forming a

Fig. 7.6 The formation of hyperboloid worms with gear racks positioned normally to their threads
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Fig. 7.7 Scheme for the formation of the threads profile of the hyperboloid main worm

306 V. Nastasenko



hyperbola in the longitudinal axial section. The fixed coordinate system OwXwYwZw
is connected with these worms, the OwZw axis of which is aligned with their
longitudinal axis, and the OrXrYrZr coordinate system is connected with the rack,
in which the OrZr axis is turned relative to the OwZw axis at an angle ω normal to the
helical line of the main worm. The OrYr and OwYw axes coincide and pass through
the Po profiling point.

Due to the rotation of the OrZr axis, the radial axes of the rack teeth turn for an
angle θri and fan out with a right and left incline relative to the OrYr axis. In this case,
the current point ir of the basic rack profile with the radius vector rri and its turn for
the angle θri, on the hyperboloid surface of the worm, takes the position iwh with the
radius vector rwhi and its turn for the angle θwhi, forming an inclined profile of the
worm threads in its longitudinal direction. The larger the angle ω of the rack incline,
which is typical for multiple-thread worms, the greater the radial incline of its profile.
However, the errors of the profile on the thread surface of the main worm do not
exceed that of the single-thread worm of ZA, ZN, ZI types. By this method, high-
precision execution of multiple-thread worms is possible, and on their basis—the
production of multiple-thread worm gear cutting tools.

In addition to a one-sheet hyperboloid, the formation of two-sheet ones is possible
(Fig. 7.8).

A one-sheet hyperboloid has a number of advantages: it provides a larger
coverage sector of the external gear rim of a cutting tool, reduces the load on the
milling cutter tooth when cutting the allowance. It provides a reserve for increasing
the productivity of gear processing. Their coverage sector significantly exceeds the
coverage sector by cylindrical worms and tools, but it is inferior to globoid worms
and tools (Fig. 7.9).

It should be noted that for globoidal worm gears and gear cutting tools, extensive
experience in their manufacture and operation has been accumulated. Its analysis
showed that despite the advantages in gear teeth contact, which unloads worm

Fig. 7.8 The main types of
rotation hyperboloids: 1—
two-sheet; 2—one-sheet
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threads and worm tool teeth during operation, they are not widely used. This is
explained by the increasing complexity and cost of their manufacture, as well as their
sensitivity to axial errors of the installation relative to the gear symmetry axis.

Hyperboloid worms and tools are also difficult to manufacture. However, due to
the incomplete coincidence of their surface with the surface of the conjugating gear,
these worms are less sensitive to axial errors, and hyperboloid tools, due to the
crossing of their axes and the axes of the machined gears, allow axial movement.
This provides an opportunity for their wider use, and also it allows distributing teeth
wear along the full length of the tool.

Thus, it can be concluded that the main way to reduce the organic errors of worms
and worm gear tools is to switch to hyperboloid versions. Therefore, it is necessary
to overcome the problems and contradictions that arise during their manufacture.
Since other main are similar to cylindrical worms and tools, which are well studied,
In that work so only the general possibilities of their reduction and the associated
contradictions are considered. They take into account the recommendations of the
most powerful system method for finding new technical solutions: Algorithm of
Inventive Problem Solving (AIPS) developed by G.S. Altshuller [21]. According to
it, the resolution of contradictions is possible in space and time (such an example is
given for backing tools). On this basis, the list of errors and possible ways of their
reduction is made (Table 7.1).

Since, in comparison with cylindrical worm gear cutting tools, the complexity
and laboriousness of manufacturing hyperboloid, especially worm cutters milling
and shavers, increase significantly, therefore, in addition to the effect of increasing
their accuracy, additional recovery of these costs is required. It is possible by
increasing the productivity of tools, which presents the further goal of the work
performed.

7.1.1.3 A way to increase productivity of machining by means
of hyperboloid-type hobs

In full, the tasks of increasing the productivity of worm gear cutting tools have not
yet been solved. Despite their advantages (the continuous process of dividing and
generating, which eliminates the presence of idle and reverse motion, accompanying
the processing with disk and end gear cutting mills), there appeared works [7],

Fig. 7.9 Worm pairs with various types of worms: (a) cylindrical, (b) globoid, (c) hyperboloid
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proving the impossibility of achieving more high productivity in them. This is
explained by the fact that when processing gear rims with a large number of teeth,
the sector of their coverage with a worm tool increases significantly. This increases
the number of teeth involved in operation and the load on the gear cutting machine
tool, which forces to reduce processing modes. However, this drawback is not
inherent with worm tools, but with used machines tools. The second factor is the
ability to more easily equip disk and end mills with more high-performance carbide
tool materials. In the design of finishing worm milling cutters and shavers, such
possibilities are limited, and they are mainly made of high-speed steels. Therefore,

Table 7.1 Systematization of errors and contradictions in improving the accuracy of worm gear
cutting tools and ways to eliminate them

The main factors causing
errors

The main ways to eliminate
errors The main contradictions > <

I. Technological errors of manufacturing
1. Non-concentricity,

misalignment and
non-perpendicularity of the
base surfaces.

2. Warping after heat treat-
ment and redistribution of
stresses along the keyway,
turns of the worm, chip
grooves and other transition
surfaces.

3. Deviations of the helix
pitch of the main worm and
chip grooves.

4. Radial and face runout of
the backed surfaces of
tooth.

5. Own tooth profile modifi-
cation at his backing and
regrinding.

In time variation -
Is not found yet.
In space variation -
limited to known traditional
ways:
1. Improvement of equipment

and tooling.
2. Execution of keyway at the

end of the housing.
3. Reducing depth or elimi-

nating chip grooves and
other surfaces.

Depend on
- the tool design, the used
equipment, tooling, and
tools of the 2nd order.

- With single-treaded axial
gearing, the distortions are
similar on each gear tooth;
with multiple-treaded one,
they depend on the multi-
plicity of the number of
treaded of hobs and gear
teeth.

II. Technological errors of operational
1. Errors of installation and

fixing of tools of the 1st
order.

2. Deformation of teeth and
body during cutting.

3. Wear of cutting blades.
4. Technology of performance

re-sharpen.
5. Reducing the outer diame-

ter and running conditions
tools of the 1st order after
re-sharpen or dressing of
tools of the 2st order.

6. Faceting and undulation
during processing, etc.

1. Optimization of accuracy,
size and shape of base sur-
faces, reliability of basing
and fastening.

2. Improvement of the modes
υ, s, t and tool material.

3. Optimization of the design
and geometry of the hobs
cutter teeth.

Depend on:
- processing conditions and
modes υ, s, t;

- design of tools of the 1st
and 2nd order, used equip-
ment and tooling
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after the parameters of the required power are attained, rigidity and strength of the
machine, tooling, tools, machined gear and equipping of worm tools with hard
alloys, they provide higher performance than disk and end ones. It is not only due
to the elimination of idling but also due to the participation in operation of a larger
number of cutting teeth.

It should be noted that the problem of increasing the productivity of worm gearing
is complex [22] because it is associated with a large number of limiting factors,
overcoming of which is impossible in traditional ways. This requires a rejection of
stereotypical approaches. The elimination of these shortcomings is a further goal of
the work performed.

The first of the existing stereotypes is associated with the opinion that increasing
the durability of cutting materials, applying wear-resistant coatings, improving the
geometry of the cutting wedges, etc. improves productivity. In fact, they increase the
tool life, which can be used for two ways: (1) reduce the consumption of cutting
tools, (2) increase productivity. Since the share of the transferred value of the tool in
the cost of manufactured products is 10–15%, therefore, even with an increase in
their durability by two times and a reduction in tool consumption by 50%, the
resulting effect will be 5–7.5%. However, a real increase in durability for tools
that are already close to the pinnacle of excellence usually does not exceed 15–20%,
which reduces the above economic effect to 2–3%. With an increase in processing
productivity by two times, the effect will be about 50% of the cost of the
manufactured products, or three to five times higher than from a reduction in tool
consumption at the highest indices of its durability. Therefore, it is preferable to use
the second way—increase productivity (P) processing.

It is possible to actually increase P in six main ways: (1) by increasing the cutting
depth t, (2) feeding s, (3) cutting speed υ, (4) by dividing the cutting path, (5) by
reducing the time for idling and auxiliary motion, (6) by reducing the time for
installation and removal of parts.

In case of worm cutting gearing, the growth of t is limited by the height of the
wheel tooth. Its division is used only for roughing. For the remaining five ways, their
implementation is possible with restrictions. For example, increasing the feed leads
to a decrease in the quality of processing, and the cutting speed υ sharply reduces the
tool life.

With worm gear cutting tools, all of these next ways are possible.
For example, in hobs dividing of the cutting path is possible when two to four

tools are installed from different sides of the machined gear. However, the complex-
ity of creating, maintenance, and the cost of such equipment increase significantly.
Reduction of idling is possible due to the batch processing of a gear, which has long
been carried out, so a new increase in the possibilities of this way is limited. In
addition, batch processing for multi-toothed gears of the middle and large module is
not used (due to limitations in the milling cutter wear resistance and durability, or in
the accuracy of gearing). Reducing the time for approaching, penetration, exiting,
and withdrawal of tools largely depends on its outer diameter, which requires its
reduction. However, it is impractical due to a decrease in the accuracy of hob.

Thus, the main factor is the processing modes, which require their more detailed
analysis. However, the problems are complex.
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According to the well-known normative for calculating cutting conditions during
gear milling of hob [23], the value of P is determined by dependence (7.1), according
to which its growth depends on the magnitude of the main machine time tm.m.t. and is
ensured by an increase in feed per rotation of the machine table sr.t., the rotational
speed of a milling cutter nh and the number of its threads k, as well as a decrease in
the cutting plunge lc.p., cutting length lc.l., over run lo.r. ¼ 2 . . . 5 mm, and number of
teeth zg of the machined gear.

P ¼ 1
tm:m:t:

¼ sr::t:nhk
lc:p: þ lc:l: þ lo:r:
� �

zg
min �1

� � ð7:1Þ

However, as it follows from Eq. (7.2), for the same feed on the tooth st, the of
threads number of hob k, and the number of gear teeth zg cut, as 2 influencing factors,
is excluded in the transformed dependence (7.3) to determining P. This indicates a
disadvantage of the known method [23]:

sr:t ¼ stzhzg
k

ð7:2Þ

P ¼ 1
tm:m:t

¼ stzhzgnhk

lc:p: þ lc:l: þ lo:r:
� �

zgk
min �1

� � ð7:3Þ

Considering that the cutter rotational speed nh is determined by the dependence
(7.4), and the cutting length lc.l.—by the dependence (7.5), we finally obtain the
dependence (7.6) to determine P:

nh ¼ 1000υ
πDah

ð7:4Þ

where υ is the gear hobbing speed, m/min, and Dah is the outer diameter of the
hob, mm.

lBp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht:g: Dah � ht:g:

� �q
mmð Þ ð7:5Þ

here ht.g. is the height of the machined gear tooth, mm.

P ¼ 1
tm:m:t

¼ 1000stzhυ

πDah

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht:g: Dah � ht:g:

� �q
þ lc:l: þ lo:r:

h i min �1
� � ð7:6Þ

Thus, the factors finally affecting P, within the framework of the dependence
(7.6), it is cutting speed υ, feed per tooth st, number of cutter racks of hob zh, its outer
diameter Dah, and tooth height of gear ht.g.. Herewith, the growth of P according to
the dependences (7.2) and (7.5) is not limited by anything, as shown in Fig. 7.10—
by straight lines. It is also a drawback of the normative [23].
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However, these straight lines do not reflect the real possibilities of increasing
productivity since the limiting factor is the wear time T of the hob in minutes, which
should be no less than the machine cutting gearing time, determined for the selected
cutting speed υ according to the dependence (7.7) [24]:

υ ¼ Cυ

T0:3 sr:t:ð Þ0:5 Pt
π

� �0:1
HB1:25

ð7:7Þ

where Сυ is the norm coefficient of cutting speed, Pt is tooth pitch, mm, НВ is
Brinell hardness for a non-hardened gear machined wheel.

Fig. 7.10 The influence of
the main technological
cutter parameters (υ, sr.t.)
and design parameters hob
(zh, Dah) on the productivity
(P) of worm cutting gearing:
f’(υ), f’(sr.t), f’(zh)—without
considering tool wear time
T; at points—decrease in
tool wear time T/2; solid
line—multiple-start worm
milling; dotted line—single-
start worm milling.

312 V. Nastasenko



Dependence (7.7) allows analyzing the influence of cutting conditions on the
performance of worm cutting gear hob. It follows from this that an increase in cutting
speed by two times leads to a decrease in the tool wear time T of milling cutters to
10 times, and increase in feed to three times. To reduce T by two times, it is enough
(7.1) to increase the cutting speed υ by 1.26 times, (7.2) to increase the feed per tooth
st by 1.43 times. The influence of the durability of worm cutters on the real
possibilities of increasing their productivity is also shown in Fig. 7.10.

However, to eliminate a decrease in T, a combination of these modes is possible.
These are explained by the varying degrees of influence of the feed and speed on the
amount of heat generated during cutting, so their combination is possible without
increasing tooth wear. At T 0.3¼ const, it follows from the dependence (7.8) that an
increase in cutting speed υ by a factor of n is compensated by a decrease in feed st in
n2 times:

T0:3 ¼ Cυ

nυ st
n2

� �0:5 Pt
π

� �0:1
HB1:25

ð7:8Þ

Then, with all else being equal, we obtain not growth, but a decrease in produc-
tivity from the initial value (i) to a new value (υ) in 1

n times (7.9):

ΔPυ ¼ Pυ
Pi

¼ nυ
υ

¼ stð Þ0:5
n2 stð Þ0:5 ¼

1
n

ð7:9Þ

An increase in the feed st by factor of n decreases the durability less significantly
and at T 0,3 ¼ const is compensated by a decrease in cutting speed υ in

ffiffiffi
n

p
times

(7.10):

T0:3 ¼ Cυ

υffiffi
n

p nstð Þ0:5 Pt
π

� �0:1
HB1:25

ð7:10Þ

Then, with all else being equal, we obtain an increase in productivity by a factor
of

ffiffiffi
n

p
times (7.11):

ΔPυ ¼ Pυ
Pi

¼ υ
υ

ffiffiffi
n

p ¼ n stð Þ0:5
stð Þ0:5 ¼ ffiffiffi

n
p ð7:11Þ

However, an increase in feed per tooth st increases the machining waviness hz
along gear teeth – the height of macro-irregularities along the arc of the exit of
milling cutter teeth in the direction of its feed along the gear central axis (Fig. 7.11),
which is unfavorable for the finishing of high-precision gears:

Analysis of the impact of the structural parameters of milling cutter on the gear
worm milling performance allows obtaining the dependence (7.6).
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For standard milling cutters with a constant outer diameter, an increase in the
number of racks zh by a factor of n reduces by a factor of n, the amount of material
being cut, which makes it possible to increase the feed rate st by a factor of n.
However, at the same time, the number of tooth regrinding decreases by a factor of
n2, and the cutter consumption increases within the same range, which is equivalent
to a decrease in their total durability. Then, at T 0.3¼ const, an increase in the number
of racks zh and the feed on the tooth st practically does not give an increase in
productivity Pzh in comparison with the initial Pzhi (7.12):

Pzh ¼ 1000nstnzhυ

πDah

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht:g: Dah � ht:g:

� �q
þ lc:l: þ lo:r:

h i
n2

¼ Pzhi ð7:12Þ

An increase by a factor of n of the initial outer diameter Dаhi of hob leads to an
increase in the cutting speed by a factor of n, which will reduce the milling cutter
durability; therefore. For T 0.3 ¼ const, it will be necessary to reduce υ by a factor of
n. However, it is possible to increase the number of racks zh by a factor of n with a
constant feed st on its tooth, which will increase the feed per 1 milling cutter
revolution by a factor of

ffiffiffi
n

p
. Disadvantages: the dimensions of hob and the consumption

of tool material on them, the dimensions of themachine, the power spent on cutting, and
the length of cutting plunge and over run, the proportion of which is�10% of machine
time and their decrease with gear batch processing. With an increase in the number of
hobs threads, it increases by 2–5% since the angle of intersection of its axis with the axis
of themachined gear increases. Therefore, the performancePDаh in comparisonwith the
initial PDahiwill increase by the value of (7.13):

PDah ¼
1000

ffiffiffi
n

p
szπnzh υ

n

πDah

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht:g: Dah � ht:g:

� �q
þ lc:l: þ lo:r:

h i � 0:9 . . . 0:85ð Þ ffiffiffi
n

p
PDahi ð7:13Þ

An increase in the number of milling cutter racks zh by its 1 thread reduces the
faceting of the product tooth (Fig. 7.11).

1

2

Fig. 7.11 The formation of
faceting and undulation in
the processing of gears
by hobs
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Since the dependence (7.6) includes the cutting length lc.l., which depends on the
specific processing conditions, it cannot be accurately taken into account in the
generalized dependence. However, when processing single products, this way leads
to the greatest decrease in productivity, therefore it is necessary to apply batch
processing of gears, if this is allowed by the accuracy of the gears and the durability
of milling cutters.

Thus, we can conclude that an increase in milling cutter diameter and the number
of its racks provides a real effect of increasing the productivity of gear processing;
however, this way worsens the size and mass parameters of milling cutters and the
equipment used. Therefore, it is necessary to search for other ways, which is the
further goal of the work performed.

Among the parameters considered above, the number of hobs threads was not
taken into account. Currently, the use of multiple-thread hobs is constrained by a
decrease in their accuracy, which grows with an increase in the number of threads
(Fig. 7.4). Therefore, they are applied for roughing, and only in some cases, for semi-
finished machining of gears with the number of teeth z > 25, in the presence of
sufficiently rigid and high-speed gear milling machine tools [5]. However, in [25–
27], the possibility of increasing the productivity of multiple-thread gearing is
denied, which is associated with incomplete consideration of factors [28]. For
example, in [29] it was shown that cutting factors that are optimal at the macro
level may not be optimal at the micro and nanoscale, which requires a deeper
analysis of them. The elimination of this drawback proposed in [28] is considered
below.

In [5, 23], it was shown that multiple-thread worm milling continues to be used
and provides a real increase in productivity, despite the deterioration of individual
parameters of cutting mode, taken into account by correction factors [5]. At the same
time, in addition to the feed and cutting speed, the restrictions are associated with the
highest permissible table rotation frequency according to the ratings of a machine
tool, as well as with the minimum possible number of cut teeth. However, these
shortcomings can be eliminated in two ways: (1) by improving machine tools, (2) by
improving tools.

The first way is possible through the use of machines with a separate drive for
table rotation and for a spindle with a milling cutter, where a worm pair is eliminated
of table, and the synchronization of their rotation is provided by the CNC. However,
this way goes beyond the scope of the research and is not further considered.

Within the first way, a detailed analysis of multiple-thread hobs processing is
required. It was shown in [25–27] that an increase in the productivity of multiple-
thread hobs is considered to be the result of an increase in the diameter and number
of hobs cutter racks zh, rather than the number of threads k. This conclusion is based
on the following considerations:

1. Single and multiple-thread hobs, identical in size, material, tooth shape, and
body, have approximately the same cutting ability, durability, rigidity, and
vibration resistance, so they do not allow unequal cutting forces.
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2. It was experimentally established [30] that the approximate equality of cutting
forces during multiple-thread hobbing (MTH) and single-thread hobbing (STH)
takes place at the same minute feeds, which is possible in case of a decrease in
feed per table revolution sr.t. in proportion to the number of threads k.

3. Since the feed per table rotation sr.t., per hob revolution sr.h. and per hobs tooth st
are connected by the dependence (7.2); therefore, similar cutting conditions are
ensured when the feeds per hob tooth st are equal, and for an equal number of
hobs racks zh–by the equality of feeds per hobs rotation sr.h. Then, to maintain the
cutting forces identical to STH, with MTH, there is a need to reduce the feed sr.t.
by a factor of k; therefore, its performance will be equal to STH, which is
consistent with the elimination of k in the dependence (7.6).

However, in practice with two-thread processing, the need to reducing the feed
sr.t. makes up 20–30%, and not by two times [5]. This is due to the fact that with
equal feeds sr.t., an increase of the thickness of the allowance cut by each tooth of the
multiple-thread hobs by a factor of k is observed. However, there is a slight increase
in cutting forces (only by 1.4–2.5% for two-thread and by 4.6–7.5% for three-thread
milling cutters [30]). This is explained by the fact that when generating gear teeth,
the thickness of the allowance cutoff by the teeth of a single-thread milling cutter is
insignificant, especially during finishing. Therefore, a different degree of influence
of the cut thickness and the radius of curvature of cutting edges on chips shrinkage
occurs, which leads to a relative decrease in cutting forces and the amount of heat
generated [31]. With a sufficiently high sharpness of the cutting edges (for example,
in carbide materials, the radius of their self-sharpening is 10 μm), a change in the
chip’s shrinkage conditions will slightly affect the deformation and the strength of its
separation. This is the second effect (firstis overall increase in tool wear time) from
the use of carbide materials for equipping hobs, which further develops the proposed
concept of their improvement.

Thus, the disproportionate increase in the number of hobbing threads and the
increase in cutting forces is the first reserve for their optimization. The second
reserve is the optimization of faceting and undulation of the machined gear teeth.
With an increase in the number of hobs racks, a reduction in faceting and undulation
becomes redundant for machining gears with predetermined accuracy parameters for
the profile of their teeth [32]. Then the increase in the number of racks is more
appropriate to distribute on several hob threads. With the same value of feed per a
hob tooth, their strength and rigidity are maintained, and the easiest way to increase
the strength of the body and the attachment elements of a hob is possible by
increasing their size. The increase in the number of threads proportionally increases
the feed per hob revolving and per revolving of machine table. Therefore, with an
increase in the wear resistance of hob teeth, this way becomes the most effective for
improving the performance of worm hobs among all the options considered above,
which was first shown in [28].

This analysis allows us to conclude that to increase the accuracy of hobs, they
should be hyperboloid, and to increase productivity–multi-start and multi-tooth, and
also equipped with cutting materials of high wear resistance (carbide or superhard

316 V. Nastasenko



materials) with wear-resistant coatings. These provisions further develop the original
concept of improving worm cutters.

The general scheme of ways to increase the productivity of worm milling cutters
and the contradictions that arise during their implementation is shown in Table 7.2.

Based on the totality of the proposed principles for the development of the
original concept, we can start designing hobs as the most complex tools among
other worm gear cutting tools.

Table 7.2 Comprehensive analysis of the main ways to increase productivity (P) of hobs

Factor I. Increasing the outer diameter of the hob Dah:

Disadvantages
1. Decreases P by

increasing the cutting
plunge path and over-

run of the cutter.
2. Increases the con-

sumption of tool mate-
rial.

3. Increases power
consumption and other
costs of operation and
maintenance due to the
use of more powerful,
overall and expensive

equipment.

Advantages
1. Increases the strength, rigidity, vibration resistance and heat

capacity of milling cutter teeth, which serves as a reserve to increase
durability or P.

2. Provides an increase in the number of cutting racks, which reduces
the load on the milling cutter teeth, increasing their durability and

reducing faceting of the product tooth.
3. Reduces undulation along the product tooth.

4. At the same cutting speed, it reduces the rotational speed, which
improves the table dynamics.

Ways to eliminate the shortcomings (1, 2, 3) and
their capabilities.

Contradictions > <

1, 2, 3. Limitation of
Dah by performance

and equipment
dimensions.

а) Indirect influence on
the increase P through T,
b) Direct influence

through lc.p. and lo.r. – to
decrease P.
c) Optimization of

equipment dimensions.

а) Increase P > < durability T.
b) Increase length of the overrun and

penetration > < increase in the number of
racks zh and T.

Overcoming
the cont-
radictions:

In
time

a) At the time of penetration, Dah must be min, and max when
cutting.

In
space

а) It is possible to transfer the decision to space when creating of the
conical the cut-in part hob (tangential feeds during penetration).

2. The use of
prefabricated hobs

a) Complication pro-
cess of the manufacturing.
b) Complication of the

operation process.

a), b) Manufacturing costs > < operat-
ing costs.

Overcoming
the cont-
radictions:

In
time

a), b) It is impossible to implement this in the traditional way.

In
space

a), b) It is possible to use cheap materials when making the teeth of
the milling cutters disposable, with a wear-resistant coating
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7.1.2 Design features of hyperboloid-type hobs

Cylindrical worm cutting tools (hobs) were first created in England in 1862; they
were preceded by the creation of disk backed-off milling cutters in 1861 in England
[16]. The hobs were of integral design, having a cylindrical body with teeth located
along the helical surface of the main worm. The teeth were formed by their front and
backed rear surfaces. Until the 30s of the twentieth century, their basic design had
not changed; only the parameters of the basic and abutment surfaces, the parameters
and shapes of chip grooves, teeth front and rear surfaces, and the technology of their
processing in the direction of improving the accuracy and quality of processing their
body and teeth had been improved. The applied tool materials had been also
improved (alloy steels were replaced by rapidly cutting tool steels), as well as
methods for their heat treatment. Since the 30s of the twentieth century carbide
hard tool materials began to be developed. Equipping the hobs with them dates back
to 1938. Hard alloy plates were soldered onto the teeth of milling cutters of a
standard design. The problems of soldering a large number of closely spaced teeth
and the low quality of alloys increased the complexity of manufacturing and the
stability of the productive operation of hobs. Since 1944, a number of prefabricated
structures have been created with mechanical fastening in the steel rack body or
individual teeth, including those equipped with hard alloy materials. This way is still
developing to this day.

Development of hard alloy production processes in the 60s of the twentieth
century led to the creation of monoliths hobs with a low tooth height and body
dimensions—with a diameter and length of about 60 mm. Further, hobs of
interlocking design with individual racks and teeth were being developed. However,
the precision of multi-toothed interlocking hobs was inferior to the accuracy of solid
ones; therefore, to process gears of the third degree of accuracy, solid backed hobs of
rapidly cutting tool steels are used. Wherein the problems of creating high-precision
equipment for teeth backing and grinding increased rapidly, which reduced the
production of precision worm tools to a special and inaccessible manufacturing.
Therefore, improving hobs requires a comprehensive solution to all these problems,
including the creation of technologies and equipment. Their solution involves the
following steps: (1) statement of the problem; (2) the search for ways and means of
solving the problem; (3) solution to the problem; (4) design; (5) production; (6) oper-
ation, including repair and restoring; (7) disposal.

Among the main ways to improve worm milling cutters, the most important are
outlined in the general structure of the criteria for the development of technical
systems [33], which are as follows:

1. functional (general–performance, accuracy, durability, strength, reliability and
life length, vibration resistance; special—versatility in terms of the number of cut
teeth, etc.);

2. technological (complexity and manufacturability, technological effectiveness of
operation, repair and disposal, partition into assembly units, the use of materials,
their workability, etc.);
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3. economic costs (for materials, equipment, tools, accessories, labor for production,
operation and maintenance, for electricity and other consumables, for the prepa-
ration and launch of products, for the sale and promotion of products on the
market, etc.);

4. social (safety and environmental friendliness of manufacture, operation, mainte-
nance, repair and disposal, ergonomic use, aesthetic design, etc.).

Fourth group should be made a priority, since safety and environmental friend-
liness should prevail over the mere desire to get profit.

The analysis of the problems and this criterion allows adding to the concept of
worm milling cutters improvement—they must be hyperboloid, multi-tooth, multi-
ple-thread, and non-sharpening. The last factor eliminates backing and sharpening
operations, as well as the equipment required for their implementation, the produc-
tion and auxiliary areas occupied by it, reduces the main and auxiliary personnel,
excludes equipment, tools of the second order, and other consumables and electricity
to perform these works. Herewith, it is most rational to use interlocking hobs with
disposable inserts platers with a wear-resistant coating on their front and rear
surfaces that cannot be removed during regrinding. Removal of the coating leads
to a decrease in durability between regrinding by 1.5–1.6 times. Moreover, non-
sharpening platers improve the conditions for maintainability and recyclability (it is
easier to replace worn inserts and parts hobs, collect hard alloy and other alloyed
materials of the body and fastening elements for reuse). This increases the environ-
mental performance associated with the extraction of raw materials and the produc-
tion of tool material. Unfavorable environmental consequences of backing
operations and regrinding leading to the generation of heat, abrasive dust and
harmful gases, fuel consumption for the generation of electricity required for this,
etc. are also eliminated.

The main criterion for developing non-sharpening hobs is to ensure their dura-
bility, which is not inferior to the total durability of multi-sharpening hobs. The main
criterion for increasing their accuracy and productivity is to reduce gear faceting and
undulation. The general system of their design is given in [34]. In this case, the
studies performed in [32] were used, which show a change in undulation hz and
faceting ht for various feeds per table revolution sr.t., number of threads k, number of
milling cutter racks zh and gear teeth zg. Fig. 7.12 shows these changes at a single-
unit ratio of tooth pitch Pt to the number π: (Pt /π ¼ 1 mm). With an increase in this
ratio, the values of undulation hz and faceting ht increase in direct proportion.

Analysis of Fig. 7.12 showed that for the most effective way to increase produc-
tivity by increasing zh, and then sr.t., its possibilities for hobs of traditional designs
are limited, especially when increasing their cutting properties. For example, carbide
tool materials for milling cutters with a ratio of Pt /π¼ 1 mm can provide a tooth feed
of up to 0.1 mm. In this case, the feed per hob revolution with the number of racks zh
¼ 10 will be 1 mm / rev. However, when machining a single-thread hob of the
wheels with the number of teeth zg ¼ 5, this will lead to sr.t. ¼ 5 mm / rev.t., which
will form an undulation hz¼ 17 μm, which exceeds the maximum tolerance ff for the
tooth profile error (Table 7.3) starting from the eighth degree of accuracy.
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Fig. 7.12 Change in undulation hz and faceting ht for various feed rates sr.t., number of threads k,
hobs racks zh, and gear teeth zg. Curve line AA’, its area of their minimization

Table 7.3 Characteristics of tolerances for gear profile error

Tolerance for tooth profile error ff, μm (GOST 1643-81) Russia

Refinement from degree
to degree is �1.36 times

Degree
of

accuracy

Ratio of tooth
pitch Pt to
number π:
Pt /π (mm).

Diameter of pitch circle d, (mm)

To
125

Over
125
to
400

Over
400
to
800

Over
800
to

1600

Over
1600
to

2000

3 From 1 to 3.5
Over 3.5 to 6.3
Over 6,3 to 10

3.6
4
4.5

4.0
4.5
5.0

4.5
5.0
5.5

5.5
6.0
6.5

7.5
8.0
8.5

4 From 1 to 3.5
Over 3.5 to 6.3
Over 6.3 to 10

4.8
5.3
6.0

5.3
6.0
6.5

6.5
7.0
7.5

8.0
9.0
9.5

11
11.5
12

. . . . . . . . . . . . . . . . . . . . .

8 From 1 to 3.5
Over 3.5 to 6.3
Over 6.3 to 10

14
20
22

18
22
28

25
28
36

36
40
45

50
56
63
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A further increase in number of gear teeth will require a proportional reduction in
of feed sо б.ст and the associated feed sg, which eliminates the use of allowance for
durability from increasing the cutting properties of newmaterials. Since for multiple-
thread hobs the feed per tooth is sg ¼ ksr.t. /(zh zg); therefore, when the same sr.t. for
single-thread milling cutters, it can be increased in proportion to the number of
threads k within the limits caused by the increase in cutting properties. However, for
well-known hobs [11], the implementation of this way is difficult since an increase in
the number of threads leads to a decrease in the number of their racks and to
aggravation in faceting ht (Fig. 7.12). To reduce it according to Fig. 7.12, it is
possible to set the feed rate ksr.t and choose the optimal ratio k/zh or vice versa, set k/
zh and select the optimal feed rate ksr.t. The required faceting parameters for gears of
the eighth degree of accuracy with 10 teeth are provided by 6 teeth per 1 milling
cutter thread, and for the third degree of accuracy this value is 14 teeth. With an
increase in the number of teeth zg of the wheel, it decreases proportionally.

Faceting growth reduction is ensured by the new design of hobs [35], where zh
reaches 90 and compensates for the faceting increase for high-precision gears even at
7 threads, and the total number of teeth is Σzh ¼360–500. This allows increasing the
amount of cut allowance for a tooth and makes the proposed multiple-thread hobs
the most promising tool competing with broaches in performance [36].

Thus, the main advantage of multiple-thread hobs is the possibility of increasing
the feed rate sr.t without increasing the undulation hz in proportion to the number of
threads and the required faceting ht due to the implementation of 12–14 teeth per
1 thread, which is especially effective for increasing productivity and accuracy of
milling cutters in conditions of improving their cutting properties.

However, this raises the problem of making such a large number of teeth on the
one hob thread without increasing its diameter. For this, it is necessary to solve two
problems: (1) to reduce the pitch of hobs teeth; (2) to compensate for the total
reduction in the durability of hobs as a result of elimination of the number of
sharpening.

Further development was carried out for finishing hobs which have two main
differences compared to roughing ones: (a) they cut a uniform allowance up to
0.5 mm thick along the working side surface of the gear teeth, formed after
preliminary roughing or semi-finishing. With such pretreatment along the hollows
of the gear teeth undercut is usually performed, which eliminates the adverse work of
the tool teeth tops; (b) to reduce errors arising from the regrinding of the backed-off
teeth of the milling cutters of holistic and interlocking designs, the number of
sharpening is limited to 6–8.

It is easier to solve the second problem. The way to solve it is the use of
disposable flat straight-shaped plates with a wear-resistant coating on all their
sides, the profile being formed by the profile of the rack tooth, which transfers
these inserts to the special category (Fig. 7.13).

Such inserts allow their reinstallation on the opposite side, which is equivalent to
the second sharpening, and due to the grooves along the cutting edges, they allow
optimal rake angles γ of front cutting surface, which increases their wear resistance
in two to three times [31] and compensates from two to three of sharpening. This
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requires studies on the selection of optimal rake angles, and the shape of the notches
on the side of teeth, which were standard hobs, is not provided. For hobs is
sharpening, with a period between sharpening Tbet, their total durability after
8 sharpens is (1 + 8)Tbet ¼ 9Tbet. Making that for disposable inserts is equivalent
to a 1.5-fold increase in durability, their total equivalent is 2�(2–3)�1.5Tbet ¼ (6–9)
Tbet. It is also possible to use inserts with peripheral side rear angles αs (Fig. 7.13.b).
This eliminates their reinstallation; however, it improves the cutting conditions,
which increases their wear resistance by up to two times [31] and compensates for
the lost possibilities of reinstallations. However, this requires studies on the selection
of optimal teeth peripheral relief angles, which were not provided for standard
milling cutters. When inserts of the second symmetric profile are executed
(Fig. 7.13.c), the number of possible reinstallations doubles, which leads to a
doubling of their wear resistance equivalent of 2(6–9)Tbet. However, this design
option for inserts is rational for teeth with a ratio of Pt /π < 4 mm, and when it is
increased to 6 mm, the first variant is rational, the equivalence of which is (6. . .9)
Tbet. With a further increase in Pt /π, it is advisable to divide the inserts by height into
2–3 parts and alternate them through 1 or 2 teeth; however, the sharpening equiv-
alent decreases.

When solving the first problem, it is necessary to reduce the thickness of hob
tooth up to the thickness of the cutting plate and minimize the thickness of its support
insert, which have of wedge form. For this, a design of hob 1 with an emphasis of the
plates 2 and inserts 3 into each other is proposed (Fig. 7.14). With a flat straight
shape of plates, the back angle α of hob is provided by turning the plates by front
angle γ. The plates with a back angle α are installed along the radial axis of a hob,
which simplifies its design. The fastening of the plates and inserts in the grooves of
the hob of body is carried out by a spring 4 inserted into the hole of the plates and
inserts, fixing them at of the thread end with a support element 5. With a minimum
size of these plates, the spring can be placed into the hollows of the threads between
the plates and inserts, as proposed in [37].

The minimum thickness of the wedge insert cartridge should ensure separating
and curling of chips cut by milling cutter tooth. As it follows from the operating
experience of broaching–it should be a product of 10–12 thicknesses of the cut
allowance for the length of the contact of the teeth with the machined surface, which
is given by the amount of feed per tooth zg. Herewith, the placement of chips is a

Fig. 7.13 Rational cutting insert design options for disposable hobs
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limiting factor in the application of the proposed hobs for roughing gears process.
Within the allowances and feeds used for finishing gear cutting, the wedge insert
thickness of 2–3 mm and the depth of the groove formed by it up to 1 mm provide
the required conditions for curling, separating, and placing of chips. Then, with a
standard thickness of cutting plates of 3.18 mm, the pitch of milling cutter teeth is
5.2–6 mm, and their number grows with the increase in milling cutter diameter. With
a small height of machined teeth plates can be thinner by 1.5–2 times. Reducing the
thickness of the cutting plates with back angles α can be performed by additional
grinding after the plate’s delivery by the manufacturer. However, it is more

Fig. 7.14 Placement of cutting plates and inserts in the hob body
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expedient to supply cutting plates of reduced thickness since their profile is specific
and the order for them is customized, which allows modifying standard size options.
With such teeth pitch and milling cutter diameter of 100 mm, their number is from
50 to 60 pieces, and according to the schemes shown in Fig. 7.14, this quantity is
from 90 and more for the cutting plates of reduced thickness.

It should be noted that the design shown in Fig. 7.14 is developed for a cylindrical
hobs and worm shaver, what simplifying the processing of its teeth and improving
cutting properties when using inserts with optimal geometry of the cutting wedge.
Their use is advisable not only for machining worm gears but also for cylindrical
gears.

However, this hobs and worm shaver design does not provide the possibility of
increasing the number of threads without compromising their accuracy. Although
this drawback is eliminated by hyperboloid milling cutters, their production is still
restrained by two factors:

1. the changed in the thickness and shape of the wedge inserts from the neck to the
end of the hyperboloid milling cutter by increasing its diameter;

2. the need to extend cutting plates due to fan radial orientation of the teeth of hobs
teeth (Fig. 7.7).

This creates a need for production of each wedge insert and cutting plates the first
thread customized, which greatly complicates their manufacture, assembly, and
operation. Performing more than one spiral turn for one thread proportionally
increases the number of such inserts and cartridges, which is irrational. It should
be noted that the individual production of 50–90 designs wedge inserts with a total
number of more than 300 pieces becomes possible only with the development of 3D
printing, which appeared in the twenty-first century. Therefore, hyperboloid hobs
can be considered tools of the twenty-first century. In the twentieth century, their
manufacture was almost impossible [38].

The individual profiling of the cutter plates can be excluded by the method of
point profiling, in which round plates are placed on the right and left sides of the
wedge inserts of milling cutter teeth along the profiling lines, of the normally to their
profile (Fig. 7.15).

The main advantages of point profiling: (1) improving the accuracy of shaping by
simplifying the shape of the cutting edges; (2) elimination of errors in the own profile

αoαo

Fig. 7.15 Simplified arrangement of round plates along tooth profiling lines
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of the rail due to its exclusion; (3) simplification of the shape of carbide inserts or
super-hard materials and process of equipping of them the tool teeth; (4) simplifica-
tion of tool designs as a whole; (5) the use of circular inserts provides the possibility
to distribute the wear of cutting edges along the entire circumference of the plates,
which significantly increases of the which of them equivalence of sharpening
standard hobs.

However, the applicability of this method is limited by the size of the inserts and
wedge insert of hob teeth.

Thus, the real accuracy of such worm milling cutters (hobs and shaver) is ensured
by the accuracy of the plates and their installation parameters. For high-precision
hobs and shaver, this requires the calibration of the plate’s holes and the final
grinding of their outer surfaces with reference to the hole. The requirements for
processing wedge insert their holes, and pins inserted into the holes of plates and
wedge insert are similar. For processing gears of higher than the third degree of
accuracy, their selection is also required. Therefore, the complexity and cost of
manufacturing hyperboloid worm tools bring them to the category of unique ones.

A large number of used plates (from 300 to 500) of hard alloys of relatively high
cost additionally increase their price. When using super-hard materials, it increases
even more. However, the ability to reuse the housing and replace only the cutting
plates reduces these costs. The increase in productivity and accuracy of gearing most
strongly reduces the unit cost of processing gears, especially when their number
increases. The combination of these factors requires solving optimization problems
of the cost-effectiveness using the proposed worm tools.

7.1.3 Features of manufacturing processes and requirements
to equipment

In addition to the problems of designing and manufacturing the cutting part of the
hyperboloid worm gear cutting tools discussed in Section 7.2, there are also prob-
lems of manufacturing the main worm and it’s grooves for installing in them of
cutting racks, or plates and wedge inserts. Methods for their implementation have
been developed since the 70s of the twentieth century [39]. However, they were
based on complex schemes of geometry shaping form and used with a large number
of movements of the machine and tool. As applied to one-sheet hyperboloid worms,
the scheme of the initial version of the machining implemented in the axial plane is
shown in Fig. 7.16.

According to the initial scheme, the processing of a hyperboloid worm is
performed with uniform rotation of the workpiece and its combination with four
motions of inconstant value associated with the movement of the current center of
hyperbola curvature: longitudinal and transverse feeds tool, of his offset value,
alteration lengthening and orientation Ri, and angle of rotation φi of the tool in the
axial plane. With multi-pass machining, a discrete feed to the cutting depth behind
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1 pass is added to them, with the movement of the approach and retraction of tool. At
multi-thread machining, a discrete rotation of the worm blank for a new thread is
added. When processing the worm with milling cutters or grinding wheels, the
movement of their rotation is added, it is the main movement of cutting tools of
the second order.

Processing according to the original scheme requires the following:

(a) fine-tuning the cutter tool of the second order (turning tool) to the size of the
initial diameter of the main worm;

(b) turning of the tool in the direction of the normal to the extreme point of the
hyperbola, as well as its installation at the initial angle φ of turning along the
normal to this point;

(c) setting the initial lengthening of tool, which is equal to the variable radius of
curvature Ri of the hyperbola at the extreme point and is associated with two
current coordinates of the center of its curvature;

(d) producing uniform rotation of the worm (the main cutting movement when
cutting it with a cutter);

(e) complex types of movements: with uniform rotation of the worm (with his coils
and the pitch in the axial section based on the displacement by 1 step of the spiral
per 1 revolution of the worm), coordinated uneven movements perform–turning
of angle φi and variables the magnitude lengthening Ri, of the cutter tool, which
depend on the parameters hyperbole curvature;

(f) performing second smoothly changing caliper feeds—longitudinal and radial,
forming the trajectory of the point of the current center of curvature of the
hyperbola.

These parameters require processing in three ways: (1) on machines with com-
plex kinematics of movements; (2) on CNC machines programmed for 6–8 types of
movements; (3) the use of additional kinematic devices, more complex than for
processing globoid worms with constant R.

Another drawback of machining hyperboloid worms in the axial plane is the
mismatch of the profile of their turns and the profile of a second-order tool, both
among themselves and with the profile of the initial gear rack (Figs. 7.4 and 7.7).
This complicates the control of the worm profile, as well as the manufacture and
control of the profile of the cutting tool of the second order. In the initial methods of

Fig. 7.16 The initial (a) and proposed (b) schemes for the generation of the hyperboloid main
worm
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their machining, a second-order generating tool was adopted, obtained on the basis
of gears conjugating with a given worm, with a specific and unique number of teeth
for this worm pair, which excluded the versatility of the tool used and the machining
process.

The indicated drawbacks are eliminated by manufacturing hyperboloid worms
according to the method proposed in the patent [35], with an oblique feed of a
second-order tool normal to the worm thread (Fig. 7.16), which simplifies the
dependence of the kinematic system settings on the parameters of the worm and
its hyperbola. The number of their threads is not limited herewith.

Implementation of the proposed method is possible on a conventional lathe with
the initial cutter adjustment to the dividing diameter of the worm and replacing the
five initial motions with two main ones: (1) uniform rotation of the worm; (2) uni-
form movement consistent with it with an inclined feed of the second order tool , at
the rate of its shift by one pitch normal to the threads by one worm revolution. In this
case, the coordination of the feed pitches and the profile parameters of the tool are
provided automatically with the same motions as during the machining of cylindrical
worms, therefore, it does not complicate the initial manufacturing processes.

All auxiliary motions–penetration, quick approach, and withdrawal, as well as
returns for multi-pass and multiple-thread worm processing, remain the same with
the original version. Matching the worm threads profile and tools of the second order
with the rack teeth profile in the plane of the operational feed simplifies their
manufacture and control. Implementation of the proposed method is possible by
changing the worm installation angle (Fig. 7.17).

At small angles of worm inclination (up to 6�), its processing can be performed on
existing equipment with the back center of the machine shifted, and the installation
of cutters according to the schemes shown in Fig. 7.2 for ZN, ZN1, and ZN2 of main
worms provides the ability to perform similar ZH, ZH1, and ZH2 of hyperboloid
main worms (Fig. 7.18) [40]. On their basis, it is possible to manufacture hyperbo-
loid worms of worm gears and grinding wheels for machining gears.

Fig. 7.17 Schematics of machining of the right-handed (a) and left-handed (b) hyperboloid
worms with the front location of the support of tool with offset a cutting tool and back center of
the machine
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However, for machines with a front support arrangement, a simpler version of the
implementation of the above schemes in Fig. 7.17 is the deflection of the back center
above the spindle axis (for example, due to pads under the tailstock), which is
acceptable for processing left-hand worms. For right-hand worms, either a back
center deflection below the spindle axis (the implementation of which is difficult) is
required or the rear position of the machine support (which requires its substantial
alteration). A more appropriate option is proposed in the patent [41] due to the use of
a revolving center, which has the ability to move along vertical guides with its
subsequent fixing. Herewith, its deflection is possible, both below and above the axis
of the machine spindle, which provides an angle of worm threads inclination up to
�12 � (Fig. 7.19).

Fig. 7.18 Schemes of generating the main types of hyperboloid worms cut by second-order blade
tools

Fig. 7.19 Installation scheme of a hyperboloid worm on a mandrel with a deflection of the back
center of the machine tailstock with a movable revolving center
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The selection of tilt angles within 12� is due to the fact that its increase affects the
reliability of worm fixation in the centers. However, it provides the machining of
modern high-precision cylindrical worm milling cutters with the number of
threads up to 4 since the actual angle of inclination of their threads to the worm
axis is ωω � 12�.

It should be noted that the installation of worms in movable revolving centers is
advisable only in case of their finishing. Therefore, for 1- to 4-thread hyperboloid
worms, it is proposed that rough processing of all their surfaces and threads profiles
are performed according to the basic technologies for manufacturing cylindrical
worms, and the hyperboloid surface and his threads profile should be cut during
finishing. However, to implement this processing option, an analysis of the errors
arising from this is required, which was performed in [42, 43].

The back center is displaced by a predetermined value�hc, which depends on the
helix angle �ωω and the distance lc between the centers (Fig. 7.17). Their accuracy
depends on the accuracy of the manufacture of ball tops of the machine centers and
the central holes of the worm or its mandrel. Therefore, when processing worms of
high accuracy, constant monitoring and correction of the values of lc and hc is
required. To do this, before installing the worm in the centers of the machine, a
ball is introduced into both center holes of the worm or its mandrel, the diameter db
of which is equal to the diameter of the ball tops of the front and back centers of the
machine. Then, the distance lb between the surfaces of the balls protruding from
the center holes is measured, after which the value of lc is determined by the
dependence (7.14):

lc ¼ lb � db mmð Þ ð7:14Þ

To displace the tool by a predetermined value �htool, depending on the helix
angle �ωω and the distance ltool between the ball to center of the machine back
center and hyperbola transverse axis of symmetry, it is necessary: (1) to place a ball
into the right center hole of the worm or its mandrel having the diameter db equal to
the diameter of the ball top of the machine back center; (2) to measure the distance lb
between the ball surface protruding from the center hole and the base end of the
worm threads; (3) to measure the distance le between the ends of the worm threads; if
the hyperboloid worm is symmetrical, or the distance between the right of end worm
threads and the transverse plane of the neck of the hyperbola, if the hyperboloid
worm is asymmetric; (4) to perform the calculation of ltool according to the depen-
dence (7.15):

ltool ¼ lb � lbe � 1
2

le þ dbð Þ mmð Þ ð7:15Þ
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When using deflectable centers, the length of the mandrel or worm can be any
within the working area of machine tool. Only the helix angle of ωω is important.

In the absence of correction of displacement (7.14), (7.15), the maximum errors
of the hyperboloid surface with the sign (+) will be observable in the worms with a
minimum value of lc and maximum values of lb and le, as well as with a maximum
value of lc and minimum values of lb and le, which requires tightening of tolerances
on these dimensions. Setting tolerances with a sign (+) for the depth of the center
holes and with a sign (-) for the values of lb and le, and vice versa, can partially
compensate for their value.

When roughing the worms using of cylindrical technology, and then finishing
them with displacement of centers, the nature of the transformation of the profile
constituting the allowance for its machining is shown in Fig. 7.20.

Fig. 7.20 The scheme of generating a hyperboloid worm on the basis of the workpiece of a
cylindrical worm with a dedicated allowance for machining its threads profile
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Figure 7.2 shows that dоcw, dаcw, and dfcw are, respectively, the diameters of
dividing circle (pitch circle), addendum, and dedendum circles (protrusions and
troughs circles) of the base cylindrical worm, equal to the starting pitch diameters
of the hyperboloid worm circles: pitch circle dоhws, addendum circle dаhws, and
dedendum circle dfhws;

dоb, dаb, and dfb are, respectively, the diameters of pitch circle, addendum, and
dedendum circles of a workpiece blank, equal to the finishing diameters of the
hyperboloid worm circles: pitch circle dоhwf, addendum circle dаhwf , and dedendum
circle dfhwf;

Δad and Δfd are the allowances for processing inner and outer diameters, Δор is that
for a thread profile.

For basic 1-, 2-, 3-, and 4-thread worms, in the range of their reference circle
diameters dоcw ¼ (16. . .22)Pt /π and helical part lengths lт ¼ 6Pt, the calculation
results of the main parameters of blanks and allowances are shown in Table 7.4.

These errors are an allowance for the machining of hyperboloid main worms.
Milling cutters being limited up to four threads is due to the fact that when

performing about 50 teeth per revolution, the number of teeth per thread is 50/4 �
12, which is the limit for lobbing when machining gears with a high degree of
accuracy. However, unlike the existing four-thread worm tools, the proposed ones
are accurate, which provides their main advantage.

For milling cutters with a large number of teeth, for example 90, an increase in the
number of threads to 7 is possible. However, for machining their bodies with a helix
angle of ωω > 12�, modernization of turning, hydroscopy, thread milling, and thread
grinding machines is required, which ensures their support tilt angle ωω according to
the patent [44]. An example of such a design of a thread grinding machine is shown
in Fig. 7.21.

However, the disadvantages of such machine upgrades are as follows:

1. high complexity of their implementation,
2. in some cases, a decrease in the size of working area,
3. a certain decrease in rigidity and accuracy due to the introduction of additional

machine elements. Their design, creation, and final conditioning will require
significant investment of time and money. Therefore, at the first stage, it makes
sense to apply the process with the displacement of the centers and rest content
with 3- to 4-thread gear cutting tools.

For CNC lathes, the support upgrading is possible due to the installation of a
lifting part with an individual drive 2 on it, which is connected to the drive 1 of the
horizontal support motions of the through the synchronizer 3 when the carriage with
the tool. Holder tool turns at the angle of the worm threads (Fig. 7.22).
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Table 7.4 The main parameters of hyperboloid worms and allowances for their processing with a
displacement of the back center

Starting
diameters,
mm
dohws
(mm),
dahws
(mm),
dfhws
(mm),

Amount of
thread
of main
worm zw
and angle of
its elevation
ωω,
(degrees)

The final
diameter
of the
pitch
circle, mm
dоhwf:
(mm)

The final
diameter of
the
protrusion
of circles
dаhwf
(mm),

The final
diameter
of the
trough of
circles
dfhwf
(mm),

Maximum
the
increase
in outer
diameter
Δad (μm),

Maximum
the thickness
increase of
the turns per
side
Δор (μm),

Pt /π ¼ 3 mm, outer diameter 112 mm, screw length of parts le ¼ 102 mm, type ZN1, amount of
thread zw¼1 . . .4

103.0,
110.5,
95.5,

zw ¼1,
ωω ¼ 1�40'

103.013 110.513 95.513 13 2.2

zw ¼2,
ωω ¼ 3�20'

103.052 110.552 95.552 52 8.9

zw ¼3,
ωω ¼ 5�00'

103.116 110.616 95.616 116 20.0

zw ¼4,
ωω ¼ 6�39'

103.206 110.706 95.706 206 35.2

Pt /π ¼ 5 mm, outer diameter 140 mm, screw length of parts le ¼ 130 mm, type ZN1, amount of
thread zw¼1 . . .4

125.5,
138.0,
113.0,

zw ¼1,
ωω ¼ 2�17'

125.527 138.027 113.027 27 4.6

zw ¼2,
ωω ¼ 4�33'

125.607 138.107 113.107 107 18.3

zw ¼3,
ωω ¼ 6�49'

125.740 138.240 113.240 240 41.0

zw ¼4,
ωω ¼ 9�03'

125.927 138.427 113.427 427 73.0

Pt /π ¼ 8 mm, outer diameter 180 mm, screw length of parts le ¼ 163 mm, type ZN1, amount of
thread zw¼1 . . .4

157.0,
177.0,
137.0,

zw ¼1,
ωω ¼ 2�55'

157.055 177.055 137.055 55 9.4

zw ¼2,
ωω ¼ 5�49'

157.220 177.220 137.220 220 37.6

zw ¼3,
ωω ¼ 8�41'

157.494 177.494 137.494 497 85.0

zw ¼4,
ωω ¼ 11�31'

157.876 177.876 137.876 876 149.8

Pt /π ¼ 10 mm, outer diameter 180 mm, screw length of parts le ¼ 168 mm, type ZN1, amount of
thread zw¼1 . . .4

152.0,
177.0,
127.0,

zw ¼1,
ωω ¼ 3�46'

152.100 177.100 127.100 100 17.1

zw ¼2,
ωω ¼ 7�30'

152.401 177.401 127.401 401 68.6

zw ¼3,
ωω ¼ 11�10'

152.901 177.901 127.901 901 154.1

zw ¼4,
ωω ¼ 14�44'

153.598 178.598 128.598 1598 273,6
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When replacing the tool holder with a grinding head with an individual drive for
grinding wheel rotation, it is possible to use this machine to grind the profile of worm
turns and grooves for installing cutting plates.

Among existing CNC machines, such are already available. Therefore, a real
opportunity is created for the manufacture of high-precision hyperboloid worms and
grinding wheels with any number of threads.

Fig. 7.21 The project of upgrading a thread grinding machine for processing hyperboloid
worms

7 Hyperboloid-Type Hobs: Design, Manufacture, and Application 333



7.2 Concluding Remarks

1. Worm gearing provides a sufficiently high accuracy and performance with
relative simplicity, low cost, and widespread occurrence of equipment and
tools, so it is a prospect for use in the coming 10–20 years, which requires
their improvement.

2. The main goal of improving worm gear cutting tools (hobs and shaver) is to
increase their accuracy, wear resistance, and productivity, as well as their use for
processing gears of the third and higher degrees of accuracy.

3. The most effective way to increase the accuracy, wear resistance, and perfor-
mance of worm gear tools is the transition to hyperboloid multiple-thread multi-
tooth designs equipped with disposable carbide plates.

4. The designs of high-precision high-performance finishing hobs, worm shavers
and worm grinding wheels, as well as methods and equipment for their manu-
facture are justified and proposed.

Fig. 7.22 Project of upgrading a CNC lathe for processing hyperboloid worms
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5. Proposed prefabricated multiple-thread and multi-tooth designs of finishing
hyperboloidal hobs-worm shavers equipped with turning cutting hard alloy
plates, which eliminate the need for these tools regrinding during their exploi-
tation, are recognized as the most effective.

6. The proposed cutting plates provide the ability to generate optimal geometry of
the cutting wedge and the shape of the working surfaces, which significantly
increases their durability.

7. Complexity and cost of manufacturing the proposed tools increase significantly;
however, they are compensated by an increase in productivity and accuracy of
gear teeth machining.

8. Manufacturing of the proposed tools greatly simplifies the proposed equipment
and machines, which requires further development and improvement.

9. The combination of the above data allows recommending further development,
extensive research and implementation of the proposed worm gear cutting tools.

10. The final decision on the use of the proposed tools requires solving expenses
optimization issues and the profit being obtained.
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Chapter 8
Optimal Selection of the Structural Scheme
of Compound Two-Carrier Planetary Gear
Trains and Their Parameters

Dimitar P. Karaivanov and Sanjin Troha

8.1 Introduction

8.1.1 Optimization of Planetary Gear Trains

8.1.1.1 General

The optimization of gear trains is a mandatory stage of the process of their design in
order to increase their quality and reliability.

Gear trains are complex technical objects and their optimization can be done at
different levels [1].

Meshing Optimization

There are quite detailed methods for optimizing the parameters of gear meshing; in
some of them attention is paid to the design and in others to the technological factors.

In the design approach for optimization of the qualitative indicators of the
meshing as an optimization criterion, the load capacity of the gears by contact
stresses and bending stresses is most often used [2–7]. The influence of different
geometrical parameters of the gearing is studied. In [8] a program for computer-
oriented visual construction of gears is presented. The system allows optimization
and creating a 3D model of the gear train in an environment of SolidWorks®.
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In [9] the pitches of the gears are selected so that the gear is “accurate at nominal
load,” which improves the contact of the tooth surfaces during operation.

Tooth modification is one of the most commonly used ways to increase the gears’
load capacity [10, 11] or to reduce vibration [12].

In [13] the emphasis is on the procedure for the selection of the design parameters
(number of teeth, module, tooth face width) in order to optimize the planetary gear
trains.

In [1] a profound study of the influence of the addendum modification of spur
involute teeth on the dynamic processes in the gear trains is made, and a methodol-
ogy for determining the most favorable height addendum modification is proposed.
It is found that the internal dynamic load in the addendum-modified gears (h�a > 1) is
lower than in the standard ones, as the lowest values are obtained at the transverse
contact ratio εα ¼ integer.

In addition to the load capacity, as an optimization criterion, the efficiency is also
used [14]. The optimal values of the profile shift coefficients and the number of teeth
of both gears are determined. In [15] a multi-objective optimization by efficiency,
transverse contact ratio, pressure angle, relative sliding, and tooth form factor are
made, and their influence on the generalized criterion is determined by weight
coefficients.

Within the framework of the “X-Gear” Collective Research Project (COOL-CT-
2006 030433) financed by the European Commission [16], a methodology for
reducing the losses in the gearing with the help of optimizing the tooth geometry
has been developed. Attention is paid to the improvement of the parameters of the
microgeometry (profile shifting, addendum and tooth flank modifications, etc.) and
small corrections of the macrogeometry (number of teeth, module, pressure angle,
tooth face width, etc). The study is focused on cylindrical planetary gear trains with
helical teeth for the automotive industry and wind turbines.

It should be borne in mind that in cylindrical planetary gear trains with spur gears,
the efficiency is high enough to be worth optimizing the tooth geometry in order to
reduce losses. This does not prevent the possibility of looking for a way to reduce the
peripheral velocity of the gear wheels and the sliding velocity in the meshing. More
details on tooth geometry optimizing to reduce meshing loss can be found in [17–
19].

In the technological approach, the processing modes are optimized in terms of
load capacity (maximum permissible contact and bending stresses).

In [20], the negative effect on load capacity from residual stresses after gear
cutting is studied. Their size depends on the degree of wear of the tool and the
number of teeth of the gear and the tool (shaper cutter). These stresses are minimized
by appropriate selection of the parameters of the tool.

Some authors link the technology of gear manufacturing with the technological
cost [21] or labor absorption [22, 23]. In this case, the required load capacity of the
gearing is considered as a fulfilled condition for all variants of the technological
process. The optimal option is sought by the criterion of minimum technological cost
or labor absorption.
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Gear Train Elements Optimization

The rim and the disk of a gear have a significant impact on the stresses in the teeth. In
[24–26] dependencies are derived geometrically and experimentally to determine the
optimal thickness of the gear rim, the further increase of which does not significantly
reduce the stress in the critical section of the tooth.

Gear-shafts and shafts. The bending and torsional stiffness shall be selected so as
to minimize the unevenness of the load in a meshing [27] or in the parallel meshings
of split torque gear trains.

Housing. Deformation of the gearbox housing also affects the load distribution,
especially in heavy-duty gearboxes, where reducing deformation by thickening the
walls is unacceptably material-intensive. For this reason, it is necessary to optimize
the shape of the body [28–30]. Significant attention is also paid to reducing noise
emission [31].

Gear train arrangement. Total mass is a common optimization criterion
[32, 33]. In most cases, the independent parameters are geometric dimensions.
Klein [14] proposes a methodology for minimizing gear volume because it is directly
proportional to production costs, as a criterion for determining the size of the gears
and selected pitting stress limit.

To minimize the dynamic phenomena in the planetary gear trains, various
compensating devices are studied [34, 35]. In non-planetary cylindrical gearboxes,
resonant modes are avoided by varying the number of teeth [36].

In [1] a general methodology for optimization analysis of gearboxes with cylin-
drical and bevel gears is proposed on the basis of a technological-economic criterion,
which takes into account the complex influence of the design, technological, and
economic factors. Dependencies for determining the components of the technolog-
ical and economic criterion for the main elements of the gearboxes—shafts, gears,
housing, and bearings—in different design and technological variants are derived.

8.1.1.2 Optimization of Planetary Gear Trains Arrangement

The pursuit of finding the optimal solution is quite natural in the process of planetary
gear trains (PGTs) design.

Based on the initial data in the design (speed ratio and input torque) can be sought
different technical and economic criteria (target parameters) for optimization—
minimum dimensions, minimum mass, minimum volume, maximum efficiency,
minimum production costs, etc.The control parameters for optimization can be:

• Number of teeth of the sun gear (mostly).
• Profile shift coefficients.
• Material and processing of gears, etc.

In specific cases, only one of the abovementioned criteria (target parameters) can
be decisive for the given arrangement and only through it the optimization may be
performed.
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In the general case, however, it is expedient to make optimization according to
several criteria—multi-objective (multicriteria) optimization.

When setting the number of teeth in the optimization process, the specific
limitations of the type of planetary gear —the conditions for mounting (assembly),
coaxiality, and adjacency of the planets—must be taken into account, and keep in
mind that these limitations can be avoided [27, 37].

One of the tendencies for PGTs optimizing is to achieve equal strength of the sun
gear and planets. In this case, some specific characteristics of PGTs must be taken
into account. For the most commonly used АI-PGT (with one external, one internal
meshing, and an one-rim planet), these are:

1) In non-reversible PGTs, the teeth of the sun gear are loaded in one direction
(pulsating loading), and the teeth of the planets are loaded in both directions
(completely reversed loading). This fact must be taken into account when
determining the bending stress limit (tooth root endurance limit) [27].

2) The number of load cycles of the sun gear teeth depends on the number of
planets. Figure 8.1 shows the possible cases of the number of cycles N1 and N2

of sun gear 1 and planets 2 with respect to base number of cycles Nlim b (at which
long-life fatigue is reached—the knee of Wöhler curve). The number of cycles is
determined by formulae known from the literature [27].

The characteristic for АI-PGT placement of all gears (sun gear and planets) inside
the ring gear allows the optimization in size (and to a large extent in volume and
mass) to be reduced to finding the minimum reference diameter of the ring gear. In
this case, the load capacity of the external meshing is authoritative. Some authors
accept sufficient to use the contact strength [14, 38], while others consider the
bending strength too [23, 39–41].

In [23] a methodology for multi-objective Pareto optimization of АI -PGT by
volume, efficiency, mass, and cost is proposed. The respective weight coefficients of
the different parameters can be selected for each specific case. A minimum radial
overall dimension (ring gear diameter), a maximum efficiency, and minimum clear-
ances (backlash) are the criteria for the multi-objective Pareto optimization of a
compound two-carrier PGT proposed in [42]. An arithmetic mean utility function
is used.

limbN
limbN

limbNN 1N2N N

�

1N2N N

�

1N2N

�

Fig. 8.1 Determination of the stress limit of sun gear 1 and planets 2 at different numbers of load
cycles N1 and N2
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It should be emphasized that in the multi-objective optimization, the convergence
of the different criteria (factors) must be taken into account (Fig. 8.2). Especially at
the АI-PGT, it can be considered that when achieving a minimum radial dimension
(ring gear diameter), minimum (or close to the minimum) mass and volume will be
achieved. At an engineering level, Pareto optimization can be reduced to two
criteria—minimum ring gear diameter and maximum efficiency. Some authors
believe that efficiency of АI-PGT with spur gears is high enough, and its inclusion in
the optimization is only suitable for PGT with helical teeth [43].

It is worth mentioning some other more specialized work on the optimization of
PGTs:

In [44] the optimization of the rim thickness of spur ring gear and planets of a
simple PGT with high gear ratio is presented. The purpose of optimization is to
minimize the total weight for a given power and to determine the minimum thickness
of the rim of ring gear and planets. The methodology also allows to find the
maximum value of the torque that the train can withstand at a given weight. A
new design strategy for design, simulation, and optimization is applied to reduce
weight and increase maximum transmitted torque. Tooth geometry is generated
using a numerical procedure taking into account the modern manufacturing process.
Accurate reproduction of working profiles and fillet curve allows for accurate
calculation of contact and bending stresses. Based on a limited number of simula-
tions, many design variants have been generated, and various optimization criteria
have been implemented.

- Moun�ng (assembly) 
condi�on

- Coaxiality  condi�on
- Adjacent condi�on
- No-undercu�ng 
- Gear train speed 

ra�o
_________________

- Reliability 
- Input torque and 

angular velocity

Requirements

Geometrical
condi�ons and
requirements

Economical 
requirements

Mandatory 
geometrical

requirements

Concomitant
geometric 

requirements

Produc�on cost Opera�ng costs

- Minimum overall 
dimensions

- Minimum diameter 
of PGT

- Material costs
- Manufacturing costs
- Produc�on 

consumables costs

- Efficiency

Fig. 8.2 Planetary gear train design requirements (Redrawn from [45])
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Brüser [45] uses multifactor optimization to find the optimal design-technological
variant of a two-stage PGT. Fig. 18.3 shows the criteria that the designer must
comply with. Of these, four have been selected for optimization purposes—housing
diameter, overall dimension, production cost of sun gear, and efficiency. The
arithmetic mean utility function is used.

Engineering aspects of PGTs optimization can be found in [27], and more
specialized information in [13, 23, 32, 42, 46–51].

8.1.1.3 Optimization as an Element of the Structural Analysis
of Planetary Gear Trains

The first step in PGTs design is choosing a structural scheme. Even with this choice,
the necessary conditions for obtaining an optimal arrangement must be set. Due to
the great variety of PGTs types, in their study it is appropriate to use some structural
symbol representing the gear train (regardless of its arrangement) and the external
shafts coming out of it. The most convenient is the representation of a simple PGT
through the structural symbol of Wolf-Arnaudov. The gear train is represented by a
circle, and the three external shafts—with different thickness lines, depending on the
size of their torques (this avoids the need to inscribe them, which facilitates the
perception of the symbol and reduces the risk of technical errors). Figure 8.3 shows
the structural symbol of the most commonly used simple (single-carrier) PGT (AI
according to [27, 52] or 2 K-H according to Kudryavtsev [27]). In this type of PGT,
the torque of the sun gear is the smallest, the torque of the ring gear is greater, and
that of the carrier is equal to their sum and is in the opposite direction [27]. This ratio
is reflected in the shaft thicknesses on the structural symbol. Other simple (single-
carrier) PGTs can also be successfully represented with this structural symbol, but
not in all of them the carrier is with the biggest torque [27].

In the structural analysis the possibilities for joining several simple (single-
carrier) PGTs in a compound (multi-carrier) one are investigated, and in the optimi-
zation the most suitable combination and its parameters are sought.

In Fig. 8.4 the possible ways of forming a compound two-carrier PGT are shown.
In Fig. 8.4a the compound PGT has two single (external) shafts and two compound
(one external and one internal) shafts.

1
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Fig. 8.3 The most common type of simple single-carrier PGT, torques at its central elements, and
Wolf-Arnaudov’s symbol (1, sun gear; 2, planets; 3, ring gear; H, carrier)
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In the compound PGT in Fig. 8.4b all four shafts (two single and two compound)
are external. The PGT in Fig. 8.4c is with four external (single) shafts and one
internal (compound) shaft.

Each of the coupled shafts can be with one of the three torques (and for the АI-
PGT from Fig. 8.3 each of them can be a sun gear, a ring gear, or a carrier). In the
first case (Fig. 8.4a) 36 combinations are possible (Table 8.1), 21 of which are

Coupled shafts

External compound shaft

a b c

External

Internal compound shaft

Component planetary gear train

single shaft

Fig. 8.4 Types of compound two-carrier PGTs: (a) With three external (two single and one
compound) shafts. (b) With four external (two single and two compound) shafts. (c) With four
external (single) and one internal (compound) shafts

Table 8.1 Possible ways of connecting the two component single-carrier PGTs in a compound
two-carrier PGT according to Fig. 8.4a (with three external shafts)

11

52 25≡

21 12≡

31 13≡

...1 ...2 ...3 ...4 ...5 ...6

1...

2...

3...

4...

5...

6...

12 13 14 15 16

22 23 24 25 26

33 34 35 36
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55 56
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41 14≡

51 15≡

61 16≡

32 23≡

42 24≡ 43 34≡

53 35≡ 54 45≡

62 26≡ 63 36≡ 64 46≡ 65 56≡
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It

It

It

It
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−
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different (non-repeating) [27, 53, 54]. In the second case (Fig. 8.4b) of the 36 com-
binations (Table 8.2) only 12 are different (non-repeating) [27, 49, 53], and in the
third case (Figure 8.4c) the different (non-repeating) schemes are only 6 [27, 53]
(Table 8.3).

The main design parameter of the АI-PGT (Fig. 8.3) is the ratio of the number of
teeth of ring gear z3 to the number of teeth of sun gear z1, on which ratio depends the
basic speed ratio of the gear train with a fixed carrier i0. The basic efficiency also
largely depends on this number of teeth [55–57] as well as the PGT overall
dimensions (respectively, volume, mass, material consumption, and labor costs).

Generally speaking, the purpose of optimization can be to choose the structural
scheme and its parameters (basic speed ratios of the component PGTs) in which the
desired speed ratio is achieved with the best combination of several criteria (e.g.,
minimum dimensions, maximum efficiency, etc.). After this choice it is possible to
proceed to optimization of the arrangement according to other parameters (e.g., the
ones listed in Sect. 8.1.1.1).

There are many more combinations for three- and four-carrier PGTs, but the
approach discussed in this chapter can be applied to them as well.

Table 8.2 Possible ways of connecting the two component single-carrier PGTs in a compound
two-carrier PGT according to Fig. 8.4b (with four external shafts—two single and two compound)

11 22≡

52 25≡

21 12≡

31 13≡

...1 ...2 ...3 ...4 ...5 ...6

1...

2...

3...

4...

5...

6...

12 13 24≡ 14 23≡ 15 26≡ 16 25≡

22 11≡ 23 14≡ 24 13≡ 25 16≡ 26 15≡

33 44≡ 34 35 46≡ 36 45≡

44 33≡ 45 36≡ 46 35≡

55 66≡ 56

66 55≡

41 14≡

51 15≡

61 16≡

32 23≡

42 24≡ 43 34≡

53 35≡ 54 45≡

62 26≡ 63 36≡ 64 46≡ 65 56≡
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8.1.2 Torque Method: An Easy Way for Planetary Gear Train
Analysis

The optimization approaches proposed in this chapter are based on the torque
method [27, 58]. This simple and practical method allows easy and very clear
determination of the speed ratio and the efficiency. It is very appropriate for
investigation of complex compound PGTs [59] as well as for optimization
procedures.

The torques on the three external shafts of АI-PGT are depicted in Fig. 8.3. They
are in a strictly defined ratio, no matter what the operating mode of the gear trains
is—with 1 degree of freedom (as a reducer or a multiplier) or with 2 degrees of
freedom (as a division or a summation differential).

When the losses are disregarded, i.e., efficiency η0¼ η13(Н)¼ η31(Н)¼ 1, this ratio
is as follows:

T1 : T3 : TН ¼ TDmin : TDmax : TΣ ¼ T1 : t � T1 : � 1þ tð ÞT1 ¼ þ1 : þt : � 1þ tð Þ
ð8:1Þ

where:
T1 � TDmin is the ideal torque on the sun gear.
T3 � TDmax is the ideal torque on the ring gear.
TH � TΣ is the ideal torque on the carrier.

Table 8.3 Possible ways of connecting the two component single-carrier PGTs in a compound
two-carrier PGT according to Figure 8.4c (with four single external shafts)
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t ¼ T3

T1
¼ TDmax

TDmin
¼ z3

z1

����
���� > þ1 ð8:2Þ

is the torque ratio of the gear train
η0 ¼ η13(Н) ¼ η31(Н) is the basic efficiency of the PGT (with fixed carrier).
These three ideal torques are in equilibrium

T1 þ T3 þ TH ¼ TD min þ TD max þ TΣ ¼ 0: ð8:3Þ

Knowing the ideal torques on the shafts and considering which of them is input
(with torque TA and angular velocity ωA) and output (with torque TB and angular
velocity ωB) from the equilibrium of the ideal input and output powers

PA þ PB ¼ TA � ωA þ TB � ωB ¼ 0, ð8:4Þ

the gear train speed ratio (kinematic ratio) is obtained as follows:

ik ¼ ωA

ωB
¼ � TB

TA
: ð8:5Þ

When the losses are considered, i.e., the basic efficiency η0 ¼ η13(Н) ¼ η31(Н) < 1,
the real torques T 0

1 � T 0
Dmin, T 0

3 � T 0
Dmax, and T 0

H � T 0
Σ can be determined as a

function of torque ratio tand basic efficiency η0 of the PGT [27]. From the equilib-
rium of the real input and output powers

ΣР ¼ PA � ηþ PB ¼ η � TA
0 � ωA þ TB

0 � ωB ¼ 0 ð8:6Þ

the efficiency can be obtained:

η ¼ �PB

PA
¼ � T 0

B � ωB

T 0
A � ωA

¼ �
T 0
B

T 0
A

ωA
ωB

¼ � iT
ik
, ð8:7Þ

where:

iT ¼ T 0
B

T 0
A

ð8:8Þ

is the so-called torque transformation (torque transmit ratio).
Considering formula (8.5) at last the efficiency can be obtained by torques

η ¼ � iT
ik
¼

T 0
B

T 0
A

TB
TA

: ð8:9Þ

Formulae (8.5) and (8.9) are very useful for optimization analysis of PGTs.
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8.2 Optimal Selection of the Structural Scheme
of Compound Two-Carrier Planetary Gear Trains
with Three External Shafts

8.2.1 Possible Structural Schemes

Each simple PGT (with the exception of some specific types, such as uncoaxial
(open) ones [27]) has three external shafts and is conveniently represented by the
Wolf-Arnaudov structural symbol (Fig. 8.3). As mentioned in Sect. 8.1.1.3,
depending on the way the three outer shafts of the two assembling gears are
connected, 36 combinations are possible, 21 of which are non-repeating
(Table 8.1.). From the various features and possibilities provided by the structural
Schemes [27], for the purposes of optimization, the following will be considered
here:

1. As well as the simple PGT, the compound one has three external shafts with
different torques, two of which (the smaller TDmin and the bigger TDmax) are
unidirectional, and the torque of the third shaft TΣ is opposite, equal to the sum of
the other two torques |TΣ| ¼ TDmin + TDmax.

2. Between the torques on the three external shafts, there are the same dependencies
as in the simple PGT

ΣTi ¼ TD min þ TD max þ TΣ ¼ 0 and TD min < TD max < TΣj j ð8:10Þ

regardless of how the PGT works:

• With one (F ¼ 1) or two (F ¼ 2) degrees of freedom.
• Which is the fixed element at F ¼ 1.
• What is the direction of power flow, i.e., whether the gear train operates as a

reducer or multiplier at F ¼ 1 or as a summation or division differential at
F ¼ 2.

3) Similar to simple PGT, it is convenient to define a torque ratio (the ratio of
unidirectional torques TDmin and TDmax), which can be called an aligned (reduced)
torque ratio and which depends on the torque ratios tI and tII of the component
PGTs

tred ¼ TD max

TD min
¼ f tI , tIIð Þ > 1: ð8:11Þ

It has been found that with this torque ratio, the speed ratios of the compound
PGT for the six cases of operation with one degree of freedom (F ¼ 1) are
determined by the same formulae as in the simple PGT [27, 54].
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It follows from the above that when deriving formulaе for tred¼ f(tI, tII), for each
of the structural schemes from Table. 8.1, its kinematic capabilities (lower and upper
limit of tred) can be determined at given limits of tI and tII [54]. It should be borne in
mind that in some of the structural schemes, depending on the size of the two torque
ratios tI and tII, a different shaft has the least torque (TDmin), i.e., the shafts change
their role in the gear, but the summation shaft (with TΣ) remains the same (Fig. 8.5).

These formulae are shown in Table 8.4. Representing the dependencies in
graphical form allows the designer to quickly find out which of the schemes is
worth considering. Figure 8.6 shows, as an example, some of the most interesting
cases.

A more detailed approach is also possible, in which the structural schemes for the
six cases of operation of each PGT with F ¼ 1 degree of freedom should be drawn.
For the schemes from Table. 8.1, it is convenient to use the designation of the input-
output-(fixed) shafts with their position (according to the directions of the world)
W-west (left), E-east (right), and N-north (top). For example, WE(N) means the left
shaft, input; the right shaft, output; and the top shaft, fixed. These diagrams are
shown in Appendix 8.1. For some schemes from the main diagonal of Table 8.1
(S11, S12, etc.) at tI ¼ tII, an infinity for tred is obtained (tred ¼ 1 due to zero in the
denominator). In this case the output shaft is immovable, and PGT is idling, i.e., the
efficiency is equal to zero.

The first step of any optimization is to select the structural schemes that may
provide the required speed ratio, i.e., they should have the appropriate tred, and to
apply the optimization procedure to them. By varying tI and tII, the plurality of
combinations thereof are obtained in which the PGT can achieve the desired aligned
torque ratio tred. Optimization procedures are applied to this set, and the most
appropriate combination of one or more criteria is sought.

minDT maxDT minDT

T� maxDT

T� maxDT T�

minDT

0,red redt �0,red redt � 0,red redt �

0,I It � 0,II IIt �

Fig. 8.5 Torques on the external shafts of compound PGTs from Table 8.1
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Table 8.4 Determination of the aligned torque ratio tred of structural schemes from Table 8.1 as a
function of the torque ratios of the component PGTs tI and tII

Scheme tI and tII Structural symbol tred ¼ f(tI, tII)

S11

tI � 2 tII
tI � tII
tII

tII � tI � 2 tII
tII

tI � tII

S12

tI � 1 + tII
tI

1þ tII

tI � 1 + tII 1þ tII
tI

S13

For every tI and tII tI � tII � 1

S14

For every tI and tII
tI � tII
1þ tII

S15

For every tI and tII tI þ tI
tII

S16

For every tI and tII tI(1 + tII)

S22

tI � 1 + 2 tII
tI�tII
1þtII

tII � tI � 1 + 2 tII 1þ tII
tI � tII

S23

For every tI and tII (1 + tI) tII

S24

tI � 2þ tII
tII

tI � tII � 1
1þ tII

tI � 2þ tII
tII

1þ tII
tI � tII � 1

(continued)
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Table 8.4 (continued)

Scheme tI and tII Structural symbol tred ¼ f(tI, tII)

S25

For every tI and tII 1þ tI þ tI � tII
tII

S26

For every tI and tII tI + tII + tI � tII

S33

tI � 2 tII
tI � tII
tII

tII � tI � 2 tII
tII

tI � tII

S34

For every tI and tII tI þ tI
tII

S35

For every tI and tII
tI � tII
1þ tII

S36

tI � 1 + tII
tI

1þ tII

tI � 1 + tII 1þ tII
tI

S44

tI � tII
tII þ tI � tII
tI � tII

S45

tI � 1þtII
tII�1

tI � tII
1þ tI þ tII

tI � 1þtII
tII�1

1þ tI þ tII
tI � tII

S46

For every tI and tII 1þ tII þ tI � tII
tI

S55

tI � tII
tII þ tI � tII
tI � tII

(continued)
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8.2.2 Optimization Criteria

8.2.2.1 Overall Dimensions

Compactness, one of the main advantages of PGTs, stems from both the power
sharing between the planets and the fact that all the gears are located in the ring gear
[27]. For this reason, for optimization purposes, it is very convenient to use the
reference diameter of the ring gear as an optimization criterion for the overall
PGT size.

From the load capacity of the external meshing (which is the weak point of the
gear train), the smallest allowable diameter of sun gear d1 can be determined.
Practice shows that surface durability (pitting) is relevant in this case. At a torque

Table 8.4 (continued)

Scheme tI and tII Structural symbol tred ¼ f(tI, tII)

S56

tI � 2
tII�1

tI � tII � 1
1þ tI

tI � 2
tII�1

1þ tI
tI � tII � 1

S66

tI � 1 + 2 tII
tI � tII
1þ tII

tII � tI � 1 + 2 tII 1þ tII
tI � tII

Fig. 8.6 Dependencies of tred as a function of the torque ratios of the component PGTs tI and tII for
several structural schemes from Tables 8.1 and 8.4: a, Scheme 15; b, Scheme 16
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ratio t ¼ z3
z1
> 3, z2 > z1 is obtained. In this more common case, according to ISO

6336 [60] the diameter of sun gear 1 is determined as follows:

d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
H � Z2

E � Z2
ε � Z2

β
2T1

k bw
d1

� �
σ2HP

� u12 þ 1
u12

KA � Kv � KHβ � KHα � Kγ
3

vuut , ð8:12Þ

where:
ZH is the zone factor, which accounts for the influence on Hertzian pressure of

tooth flank curvature at the pitch point and transforms the tangential load at the
reference cylinder to normal load at the pitch cylinder.

ZE is the elasticity factor, considering the influence of material properties—

modulus of elasticity E and Poisson’s ratio ν,
ffiffiffiffiffiffiffi
N

mm2

q
.

Zε is the contact ratio factor, considering the influence of sum length of contact
line (virtual face width) because of double meshing, i.e., the influence of transverse
contact ratio εα (εβ ¼ 0!)

T1 is the torque on the sun gear 1.
k is the number of planets.
ψd1 ¼ bH

d1
is the face width ratio.

u12 ¼ z2
z1
if z2>z1, i.e., t>3 (if z2<z1, i.e., t<3, the ratio u21 ¼ z1

z2
must be used) is the

teeth ratio of the external meshing.
KA is the application factor, adjusting the nominal load Ft in order to compensate

for incremental gear train loads from external sources.
Kv is the internal dynamic factor, accounting for the effects of gear tooth accuracy

grade as related to speed and load. Considering meshing variable stiffness as
parametric excitation too.

KHβ is the face load factor, taking into account the effects of the non-uniform
distribution of load over the gear face on the surface stress due to inaccuracies,
deformations, and bearing clearances.

KHα is the transverse load factor, considering the effect of the non-uniform
distribution of transverse load between several pairs of simultaneous contacting
gear teeth due to inaccuracies in the base pitch pb (as well as deflection under
load, profile modifications, etc.)

Kγ is the mesh load factor, considering uneven load distribution between planets
due to the gears and carrier inaccuracies.

The permissible contact stress is determined as follows:

σHP ¼ σH lim b � ZNT

SH min
ZL � ZR � Zv � ZW � ZX , ð8:13Þ

where:
σH lim b is the allowable stress number—contact (pitting endurance limit).
SHmin is the minimum required safety factor (pitting).
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ZNT is the life factor for test gears for contact stress.
ZL is the lubricant factor, which accounts for the influence of the lubricant

viscosity.
ZR is the roughness factor, which accounts for the surface roughness.
Zv is the velocity factor, which accounts for the influence of pitch line velocity.
ZW is the work hardening factor, which accounts for the effect of meshing with a

surface hardened or similarly hard mating gear.
ZX is the size factor, which accounts for the influence of the tooth dimensions for

the permissible contact stress.
If t ¼ z3

z1
< 3, the case of z2 < z1 is obtained. In this case by formula (8.12), the

reference diameter of planets d2 is determined. And teeth ratio u21 ¼ z1
z2
must be used.

Despite the fact that this case is less common, it is good to take it into account in the
calculations and optimization software.

Given that

u12 þ 1
u12 � 1

¼
t�1
2 þ 1

t�1
2 � 1

¼ t þ 1
t � 1

, ð8:14Þ

formula (8.12) can be represented as follows:

d1 ¼ K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1

t þ 1
t � 1

3

r
, ð8:15Þ

where the coefficient K0 combines the parameters of formulae (8.12) and (8.13)
independent of the structural scheme

K0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
H � Z2

E � Z2
ε � Z2

β
2

k bw
d1

� �
σ2HP

KA � Kv � KHα � KHβ � Kγ
3

vuut : ð8:16Þ

In order to obtain comparable results, the same coefficient K0 must be used in the
analysis of all structural schemes. For example, it can be determined under the
following conditions (admissions):

1. Cylindrical spur gears with involute profile without shifting are used, i.e.,
ZH ¼ 2.5 and Zβ ¼ 1.

2. The gears are made absolutely accurate (without a difference between the errors
in the pitch on the base circle fpb, i.e., Δfpb ¼ 0); this means Khβ ¼ 1.

3. The number of planets is k ¼ 3 and the load is evenly distributed between them;
this means Kγ ¼ 1.

4. The influence of the external and internal dynamic load is neglected; this means
KA ¼ Kv ¼ 1.
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5. The material of gears is a through hardened (tempering) wrought steel with pitting
endurance limit σH lim b ¼ 500 MPa and modulus of elasticity E ¼ 2.1∙105 MPa;
this means ZE ¼ 190

ffiffiffiffiffiffiffiffiffiffi
MPa

p
.

6. In all gear trains bH/d1¼ 0.7, ZN¼ ZL¼ ZR¼ ZV¼ ZW¼ ZX¼ 1, and KHβ∙Zε¼ 1.

After substitution in formulae (8.13) and (8.16), the following is obtained:

K0 � 8,

ffiffiffiffiffiffiffiffiffiffi
1

MPa
3

r
:

Of course, the sun gear diameter can also be determined by the tooth bending
strength [60]. It is important that it depends on the torque T1 and the torque ratio t of
the PGT. From the kinematics of the gear train and from formulae (8.2) and (8.15)
for the reference diameter of ring gear, the following is obtained:

d3 ¼ z3
z1
d1 ¼ t � d1 ¼ K0 � t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1

t þ 1
t � 1

3

r
: ð8:17Þ

The reference diameter of ring gear determined in this way can serve as a criterion
for the size of the simple PGT depending on its torque ratio t (respectively basic
speed ratio i0).

In the analysis of a compound PGT, the torque on each of the sun gears of the
component simple PGTs must be determined as a function of the known torque
(usually this is the smallest external torque Tmin which is an input torque for the
gearbox). Using the torque method, it is not difficult to do this for the corresponding
structural Scheme [54]. In order to derive these formulae, it is first good to know the
relationship between the torques on the sun gears of the two component PGTs. One
of these torques is the smallest torque Tmin in the gear train in general. Table 8.5
shows the formulae for the structural schemes of the compound two-carrier PGTs
with two compound and three external shafts from Table 8.1.

In Table 8.6 are defined the torques T1I and T1II on sun gears of the component
PGTs as a function of the smallest external torque TDmin that is usually an input
torque TA when the gear train operates as a reducer.

With the help of these formulae, by varying the values of the torque ratios of the
component PGTs, their influence on the dimensions of the component PGTs, and
hence on the size of the compound PGT, can be determined.

8.2.2.2 Efficiency

The high efficiency of PGTs in their operation with a movable carrier is due to the
fact that not all transmitted power generates losses, but only that which flows with
respect to the carrier. This effect is observed only in PGTs with a negative basic
speed ratio i0 < 0. It can be assumed that part of the input (absolute transmitted)
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power PA is transmitted by the entire train (as a coupling) with the movement of the
carrier—the so-called coupling power Pcoup– and the rest is transmitted by the
movement of the elements with respect to the carrier, the so-called relative (rolling)
power Prel (Fig. 8.7) [27].

The smaller part of input power is the relative (rolling) power; the greater is the
efficiency. For the correct determination of the efficiency, it is necessary to know the
direction of the relative (rolling) power that can be:

• From the sun gear 1 to the ring gear 3.
• From the ring gear 3 to the sun gear 1.

This depends on which of both elements is input (driving) and which output
(driven) for the relative power. Given that the direction of the torque and the angular
velocity coincides on the input element and is different on the output element, the
following condition can be written with respect to the torque of the sun gear T1 and
its relative angular velocity ω1 rel ¼ ω1 � ωH with respect to the carrier H:

Table 8.5 Determination of the torques T1I and T1II on the sun gears of component PGTs as a
function of the minimal torque Tmin in the compound PGT and the torque ratios tI and tII of the
component PGTs

11, 15, 55 12, 14 13, 16, 56

22, 24, 44 23, 26, 46 12, 45

33, 36 ,66 34 35

I IIt t> I IIt t<

1 minIT T=
1 min

II
I

I

tT T
t

=

1 min
I

II
II

tT T
t

=
1 minIIT T=

1I IIt t> + 1I IIt t< +

1 minIT T=

1 minIIT T=

1 min

1 II
I

I

tT T
t
+

=

1 min
1

I
II

II

tT T
t

=
+

1 minIT T=

1 minI IT t T= ×

I IIt t>

1 minIT T=

I IIt t<

1 min

1

1

II
I

I

tT T
t

+
=

+

1 minIIT T=1 min

1

1

I
II

II

tT T
t

+
=

+

1 minIT T=

( )1 min1I IT t T= + ×

1I IIt t> - 1I IIt t< -

1 minIT T=
1 min

1

II
I

I

tT T
t

=
+

1 minIIT T=1 min

1 I
II

II

tT T
t
+

=

1 minIT T=

1 minIIT T=

( )1 min1I IIT t T= +

1 minIIT T=

1 minI IIT t T= ×

1 minIIT T=
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Table 8.6 Determination of the torques T1I and T1II on the sun gears of component PGTs as a
function of the minimal external torque TDmin of the compound PGT

Scheme tI and tII Structural symbol T1I and T1II ¼ f(tI, tII,TDmin)

S11
tI � 2 tII T1I ¼ TDmin; T1II ¼ tI

tII
TD min

tII � tI � 2 tII T1I ¼ tII
tI�tII

TD min ; T1II ¼ tI
tI�tII

TD min

S12
tI � 1 + tII T1I ¼ TDmin; T1II ¼ tI

1þtII
TD min

tI � 1 + tII T1I ¼ 1þtII
tI

TD max ; T1II ¼ TDmin

S13
For every tI and tII T1I ¼ TDmin; T1II ¼ tI � TDmin

S14
For every tI and tII T1I ¼ TDmin; T1II ¼ tI

1þtII
TD min

S15
For every tI and tII T1I ¼ TDmin; T1II ¼ tI

tII
TD min

S16
For every tI and tII T1I ¼ TDmin; T1II ¼ tI � TDmin

S22
tI � 1 + 2 tII T1I ¼ TDmin; T1II ¼ 1þtI

1þtII
TD min

tII � tI � 1 + 2 tII T1I ¼ 1þtII
tI�tII

TD min ; T1II ¼ 1þtI
tI�tII

TD min

S23
For every tI and tII T1I ¼ TDmin; T1II ¼ (1 + tI)TDmin

S24

tI � 2þtII
tII

T1I ¼ TDmin; T1II ¼ 1þtI
1þtII

TD min

tI � 2þtII
tII

Not possible if
tI > 2 and tII > 2

S25
For every tI and tII T1I ¼ TDmin; T1II ¼ 1þtI

tII
TD min

(continued)
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Table 8.6 (continued)

Scheme tI and tII Structural symbol T1I and T1II ¼ f(tI, tII,TDmin)

S26
For every tI and tII T1I ¼ TDmin; T1II ¼ (1 + tI)TDmin

S33
tI � 2 tII T1I ¼ T1II ¼ 1

tI
TD min

tII � tI � 2 tII T1I ¼ T1II ¼ 1
tI�tII

TD min

S34
For every tI and tII T1I ¼ 1þtII

tII
TD min ; T1II ¼ 1

tII
TD min

S35
For every tI and tII T1I ¼ tII

1þtII
TD min ; T1II ¼ 1

1þtII
TD min

S36
tI � 1 + tII T1I ¼ T1II ¼ 1

1þtII
TD min

tI � 1 + tII T1I ¼ T1II ¼ 1
tI
TD min

S44
tI � tII T1I ¼ 1þtII

tI�tII
TD min ; T1II ¼ 1þtI

tI�tII
TD min

S45

tI � 1þtII
tII�1 T1I ¼ tII

1þtIþtII
TD min ; T1II ¼ 1þtI

1þtIþtII
TD min

tI � 1þtII
tII�1 T1I ¼ 1

tI
TD min ; T1II ¼ 1þtI

tI �tII TD min

S46
For every tI and tII T1I ¼ 1

tI
TD min ; T1II ¼ 1þtI

tI
TD min

S55
tI � tII T1I ¼ tII

tI�tII
TD min ; T1II ¼ tI

tI�tII
TD min

S56

tI � 2
tII�1 T1I ¼ 1

1þtI
TD min ; T1II ¼ tI

1þtI
TD min

tI � 2
tII�1

Not possible if
tI > 2 and tII > 2

(continued)

8 Optimal Selection of the Structural Scheme of Compound Two-Carrier. . . 359



T1 � ω1 rel
> 0 � sun gear 1 is driving inputð Þ
< 0 � sun gear 1 is driven outputð Þ

�
ð8:18Þ

Depending on the direction of the relative power, the real torques are determined
as follows:

Driving (input) sun gear:

T 0
3 ¼ η0 � t � T 0

1 < T3 ð8:19Þ

T 0
1 ¼

1
η0

� T
0
3

t
> T1 ð8:20Þ

Driven (output) sun gear:

T 0
3 ¼

1
η0

� t � T 0
1 > T3 ð8:21Þ

T 0
1 ¼ η0 �

T 0
3

t
< T1 ð8:22Þ

The correct determination of the torques can be easily checked by means of the
equilibrium condition

Table 8.6 (continued)

Scheme tI and tII Structural symbol T1I and T1II ¼ f(tI, tII,TDmin)

S66
tI � 1 + 2 tII T1I ¼ T1II ¼ 1

1þtII
TD min

tII � tI � 1 + 2 tII T1I ¼ T1II ¼ 1
tI�tII

TD min

AP

relP

coupP

0 relP Pψ ψ

0 relPη .
.

.

B AP Pη

=

=

Fig. 8.7 Types of power in АI-PGT (Redrawn from [27])
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T 0
1 þ T 0

3 þ T 0
H ¼ 0: ð8:23Þ

In the above formulae η0 is the basic efficiency of the simple PGT in work with
fixed carrier H

η0 ¼ 1� ψ0, ð8:24Þ

where ψ0 is the basic loss factor.
For the purposes of first approximation comparative analysis, it is sufficient to

assume some value of the basic efficiency η0I ¼ η0II, the same for all Schemes
[54]. However, when compiling computer programs, the influence of some factors
on the basic efficiency can be taken into account. For example, [61] recommends
determining the meshing loss factor by one of the known formulae [27], [63]

ψ0 ¼ 1þ kB þ kS þ kCð Þ:ψ z0 ð8:25Þ

where:
ψ0 is the basic loss factor.
ψ z0 is the meshing loss factor.
kB ¼ 0.06 	 0.07 is the coefficient of planet bearing loss.
kS ¼ 0.09 	 0.01 is the coefficient of sealing loss.
kC ¼ 0.25 	 0.02 is the coefficient of churn and crushing loss.
The values on the left are for the high-speed stage [62].
With sufficient accuracy for engineering practice, meshing loss factor can be

determined as follows [63]:

ψ z0 ¼ z3 þ z1
z3 � z1

0:15
z1

þ 0:2
z3

� �
: ð8:26Þ

On the basis of experimental studies [27, 64], it was found that in practice there is
an equality of the meshing losses in АI-PGT (i.e., deviation of less than 5%), in the
transmission of relative power Prel from the sun gear 1 to the ring gear 3 and vice
versa. This means

ψ z13 Hð Þ � ψ z31 Hð Þ ¼ ψ0 ð8:27Þ

For basic efficiency η0 the following is obtained:

η13 Hð Þ � η31 Hð Þ ¼ η0 ¼ 1� ψ0 ð8:28Þ

In order to be able to compare different structural schemes by efficiency, it is
convenient to use their aligned (reduced) efficiency ηred, determined when working
with a fixed summation shaft.
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For all structural schemes from Table 8.1, the aligned (reduced) efficiency is
determined as a function of the torque ratios tI and tII of the component PGTs and of
their basic efficiencies η0I and η0II

ηred ¼ f tI , tII , η0I , η0IIð Þ ð8:29Þ

taking into account the change in the role of their shafts (Table 8.7).
For the optimal choice of structural scheme by efficiency, it is sufficient to

determine the scheme with the highest aligned (reduced) efficiency without looking
for the efficiency at six cases of gear operation.

Table 8.7 Determination of the aligned efficiency ηred of structural schemes from Table 8.1 as a
function of the torque ratios tI and tII and basic efficiencies η0I and η0II of the component PGTs (see
tred from Table 8.4)

Scheme tI and tII Structural symbol η0red ¼ f(tI, tII, η0I, η0II)

S11
tI � 2 tII

η0red ¼
η0I �tI�

tII
η0II

tII
η0II
tI�tII
tII

tII � tI � 2 tII η0red ¼
η0II �tII

tI
η0I

�η0II �tII
tII

tI�tII

S12
tI � 1 + tII η0red ¼

η0I �tI
1þ tII

η0II
tI

1þtII

tI � 1 + tII η0red ¼
1þη0II �tII

tI
η0I
1þtII
tI

S13
For every tI and tII η0red ¼ η0I �η0II �tI �tII�1

tI �tII�1

S14
For every tI and tII η0red ¼

η0I �η0II �tI �tII
1þη0II �tII

tI �tII
1þtII

S15
For every tI and tII η0red ¼

η0I �tIþη0I �tI
tII
η0II

tIþ tI
tII

S16
For every tI and tII η0red ¼ η0I �tI 1þη0II �tIIð Þ

tI 1þtIIð Þ

S22
tI � 1 + 2 tII

η0red ¼
η0I �tI�

tII
η0II

1þ tII
η0II

tI�tII
1þtII

tII � tI � 1 + 2 tII η0red ¼
1þη0II �tII
tI
η0I

�η0II �tII
1þtII
tI�tII

(continued)
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Table 8.7 (continued)

Scheme tI and tII Structural symbol η0red ¼ f(tI, tII, η0I, η0II)

S23
For every tI and tII η0red ¼ 1þη0I �tIð Þ η0II �tII

1þtIð ÞtII

S24

tI � 2þtII
tII η0red ¼

η0I �η0II �tI �tII�1
1þη0II �tII
tI �tII�1
1þtII

tI � 2þtII
tII

Not possible if
tI > 2 and tII > 2

S25
For every tI and tII η0red ¼

1þη0I �tIþη0I �η0II �tI �tII
η0II �tII

1þtIþtI �tII
tII

S26
For every tI and tII η0red ¼ η0I �tIþη0II �tIIþη0I �η0II �tI �tII

tIþtIIþtI �tII

S33
tI � 2 tII

η0red ¼
η0I �tI�

tII
η0II

tII
η0II
tI�tII
tII

tII � tI � 2 tII η0red ¼
η0II �tII

tI
η0I

�η0II �tII
tII

tI�tII

S34
For every tI and tII η0red ¼

η0I �tIþη0I �tI
tII
η0II

tIþ tI
tII

S35
For every tI and tII η0red ¼

η0I �η0II �tI �tII
1þη0II �tII

tI �tII
1þtII

S36
tI � 1 + tII η0red ¼

η0I �tI
1þ tII

η0II
tI

1þtII

tI � 1 + tII η0red ¼
1þη0II �tII

tI
η0I
1þtII
tI

S44
tI � tII

η0red ¼
η0II �tIIþ

η0II
η0I

tI �tII
tI
η0I

�η0II �tII
tIIþtI �tII
tI�tII

S45

tI � 1þtII
tII�1 η0red ¼

η0I �η0II �tI �tII
1þη0I �tIþη0II �tII

tI �tII
1þtIþtII

tI � 1þtII
tII�1 η0red ¼

1þ tI
η0I

þ tII
η0II

tI �tII
η0I �η0II
1þtIþtII
tI �tII

(continued)
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8.2.2.3 Reduced Backlash

In some cases, the backlash in a PGT reduced to the input shaft may be important.
The impact openings in reversing, for example, depend on it [65]. The same applies
to the reduced stiffness.

In order to obtain comparable results for all structural schemes, the following
simplification assumptions must be made:

• In all gears of all structural schemes, there is the same backlash (clearance) along
the path of contact j0z (Fig. 8.8).

• All gears are without profile shifting or modifications.
• All planet bearings are with the same radial clearance jB.

From Fig. 8.8 it is seen that instead of a backlash along the path of contact j0z, it is
possible to work with a backlash along the reference circle jz, the relation between
which can be assumed jz ¼ j0z � cos αw where αw is the pressure angle.

Due to the clearances in the meshings and in the planet bearings, in PGT with two
fixed shafts the third can rotate at an angle φ (φ1 for sun gear, φ3 for ring gear, and
φH for carrier), which is the clearance reduced to the corresponding shaft (backlash).

If j0z12 is the backlash in the mesh of the sun gear 1 with the planets 2 and j0z23 is
the backlash in the mesh of the planets 2 with the ring gear 3 (Figure 8.9a), it can be
assumed that the tooth of the sun gear moves along the path of contact at a distance
j0z12 þ j0z23 ¼ 2 j0z. This is more convenient to express by moving along the reference
circle 2 jz. Then because of the clearance in the bearings jB, the tooth in question

Table 8.7 (continued)

Scheme tI and tII Structural symbol η0red ¼ f(tI, tII, η0I, η0II)

S46
For every tI and tII

η0red ¼
1þη0II �tIIþ

η0II
η0I

tI �tII
tI
η0I

1þtIIþtI �tII
tI

S55
tI � tII

η0red ¼
η0II �tIIþ

η0II
η0I

tI �tII
tI
η0I

�η0II �tII
tIIþtI �tII
tI�tII

S56

tI � 2
tII�1 η0red ¼

η0I �η0II �tI �tII�1
1þη0I �tI
tI �tII�1
1þtI

tI � 2
tII�1

Not possible if
tI > 2 and tII > 2

S66
tI � 1 + 2 tII

η0red ¼
η0I �tI�

tII
η0II

1þ tII
η0II

tI�tII
1þtII

tII � tI � 1 + 2 tII η0red ¼
1þη0II �tII
tI
η0I

�η0II �tII
1þtII
tI�tII
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moves 2 jB along the reference circle (Fig. 8.9b). The all rotation of the sun gear φ1 is
determined in Figure 8.9c

tanφ1 ¼
2 jz þ 2 jB

d1
2

: ð8:30Þ

The angle φ1 is small enough to assume that φ1 ¼ tan φ1. Then the reduced
backlash can be represented as follows:

φ1 ¼
4 jz þ jB
	 


d1
: ð8:31Þ

In a similar way, dependencies for the backlash reduced to the ring gear φ3 and to
the carrier φH can be obtained:

zj� zj �

zj zj

w� w�

Fig. 8.8 Backlash in the meshing

Fig. 8.9 Determination of the backlash of sun gear φ1 in case of fixed ring gear 3 and carrier H (c)
due the backlash in mesh (a) and the planet bearings clearance (b)
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φ3 ¼
4 jz þ jB
	 

t � d1 ¼ φ1

t
¼ i31 Hð Þ � φ1, ð8:32Þ

φH ¼ 4 jz þ jB
	 

1þ tð Þd1 ¼ φ1

1þ t
¼ iH1 3ð Þ � φ1, ð8:33Þ

or

φH ¼¼ t
1þ t

φ3 ¼ iH3 1ð Þ � φ3: ð8:34Þ

Assuming that the output shaft is locked with a clearance allowing rotation
(backlash) at an angle ξi, for each of the three above-considered cases, the reduced
backlash can be determined by the formulae given in Table 8.8.

For the study of compound PGTs it is necessary to determine the reduced
backlash taking into account the connections between the shafts of
component PGTs.

Backlash reduced to a single external shaft (Fig. 8.10).
Firstly, the backlash φbII in the second PGT is determined, i.e., backlashes are

reduced to the shaft bII forming the internal compound shaft b. Then the backlash φa

of the input shaft is determined by the formulae in Table. 8.6; consider that
ξbI ¼ φbII.

Backlash reduced to a compound external shaft (Fig. 8.11).
In this case, the two component PGTs must be considered together. The rotation

of the compound shaft can be represented as the sum of two angles

φd ¼ φ0
d þ φ�

d, ð8:35Þ

where:
φ0
d is the angle (φdI or φdII) at which the backlash of one component PGT is

completely removed.
φ�
d is the angle at which the remaining backlash in the other PGT is removed.

The remaining backlash φ�
d is removed simultaneously, both directly from the

external compound shaft φd0 and through the internal compound shaft of the PGT
whose backlash has already been removed φd00

φ�
d ¼

1
1
φd0

þ 1
φd00

: ð8:36Þ

For each structural scheme (Table 8.1) after applying the dependencies from
(8.31) to (8.34) and from Table 8.6, by formulae (8.35) and (8.36) the backlashes
reduced to the external compound shaft can be obtained.

Backlash reducing in a particle structural scheme
Determination of the backlash for structural scheme 15 from Table 8.1 is consid-

ered as an example, but the logic is the same for an arbitrary structural scheme.
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Backlash reduced to the shaft a (Figure 8.12a)
The backlash in the second component PGT reduced to the ring gear is deter-

mined by formula (8.32)

φ3II ¼
4 jz þ jB
	 

tII � d1II : ð8:37Þ

The backlash in the first component PGT reduced to the sun gear at fixed carrier
and locked with clearance ξ3 ¼ φ3II ring gear is determined by Table 8.6

φa ¼ φ1I þ tI � φ3II , ð8:38Þ

where:
φ1I is the rotation of sun gear caused by clearances in the first PGT, determined by

formula (8.31)

φ1I ¼
4 jz þ jB
	 


d1I
: ð8:39Þ

After substitution in the corresponding formula in Table 8.6, for the reduced
backlash the following is obtained:

IIbIb

I II
a

d
c

b

a�

Fig. 8.10 Backlash reduced
to a single external shaft

IIbIb

I II
a

d
c

b

d�

Id IId

Fig. 8.11 Backlash reduced
to a compound external
shaft
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a

b

c

IIbIb

I II
a

d
c

b

a�

Id IId

IIbIb

I II
a

d
c

b

Id IId

c�

IIbIb

I II
a

d
c

b

d�

Id IId

Fig. 8.12 Determination of reduced backlash in the compound two-carrier PGT arranged
according to Scheme 15 from Table 8.1: (a) Backlash reduced to the single external shaft a. (b)
Backlash reduced to the single external shaft c. (c) Backlash reduced to the compound external shaft
d
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φa ¼
4 jz þ jB
	 


d1I
þ tI
tII

� 4 jz þ jB
	 


d1II
: ð8:40Þ

Backlash reduced to the shaft c (Figure 8.12b)
The backlash in the first component PGT reduced to the ring gear is determined

by formula (8.32)

φ3I ¼
4 jz þ jB
	 

tI � d1I : ð8:41Þ

The backlash in the second component PGT reduced to the carrier at fixed sun
gear and locked with clearance ξ3 ¼ φ3I ring gear is determined by Table 8.6:

φc ¼ φHII þ tII
1þ tII

� φ3I , ð8:42Þ

where:
φHII is the rotation of carrier caused by clearances in the second PGT, determined

by formula (8.24)

φHII ¼
4 jz þ jB
	 

1þ tIIð Þd1II : ð8:43Þ

After substitution in the corresponding formula in Table 8.6, for the reduced
backlash the following is obtained:

φc ¼
4 jz þ jB
	 

1þ tIIð Þd1II þ

tII
1þ tII

� 4 jz þ jB
	 

tI � d1I : ð8:44Þ

Backlash reduced to the shaft d (Figure 8.12c)
The backlashes in the two component PGTs, reduced to the shafts forming the

compound one, are determined: reduced to the carrier of the first PGT by formula
(8.33) and to the sun gear of the second PGT by formula (8.31)

φdI ¼
4 jz þ jB
	 

1þ tIð Þd1I ; φdII ¼

4 jz þ jB
	 


d1II
: ð8:45Þ

In order to apply formula (8.35), it must be determined which of the two rotations
is smaller (φ0

d). For this purpose, the sizes of the diameters of the sun gears must be
determined by formula (8.15)

d1I ¼ K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1I

tI þ 1
tI � 1

3

r
; d1II ¼ K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1II

tII þ 1
tII � 1

3

r
: ð8:46Þ
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From the kinematic analysis and Table 8.5, it is known that for Scheme 15 T1I is
the smallest external torque and input torque, when operating as a reducer, i.e.,
T1I ¼ TDmin ¼ TA, and T1II is obtained as follows:

T1II ¼ tI
tII

T1I : ð8:47Þ

Substituting formula (8.47) into formula (8.46) for the sun gears diameters, the
following is obtained:

d1I ¼ K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1I

tI þ 1
tI � 1

3

r
; d1II ¼ K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1I

tI tII þ 1ð Þ
tII tII � 1ð Þ

3

s
: ð8:48Þ

After substituting formula (8.48) into formula (8.45) and comparing, it is
established that for each tI and tII 2 [2 	 12], the inequality φdII > φdI is valid.
Then the rotation of the input shaft by formula (8.35) is as follows:

φd ¼ φdI þ φ�, ð8:49Þ

where φ� is determined by formula (8.36)

φ�
d ¼

1
1
φd0

þ 1
φd00

φ0
d ¼ φdII � φdI

φ00
d ¼

φ0
d

tII
ih3I ¼ φ0

d

tII
� tI
1þ tI

������ : ð8:50Þ

After substitution for φd, the following is obtained:

φd ¼ 4 jz þ jB
	 
 1

d1II
� 1

1þ tIð Þd1I

� �
tI

tI þ tII þ tI � tII þ
1

1þ tIð Þd1I

� �
: ð8:51Þ

After processing the formulae (8.40), (8.42), and (8.51), for the backlash reduced
to the three external shafts, the following is obtained:

φa ¼ 4 jz þ jB
	 


A15, ð8:52Þ

φc ¼ 4 jz þ jB
	 


A15
tII

tI þ tI � tII , ð8:53Þ

φd ¼ 4 jz þ jB
	 


A15
tII

tI þ tII þ tI � tII , ð8:54Þ

where the constant A15 is

A15 ¼ tI � d1I þ tII � d1II
tII � d1I � d1II : ð8:55Þ
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From Table 8.4 it is seen that the aligned (reduced) torque ratio of Scheme 15 is

tred ¼ tI þ tI
tII

¼ tI þ tI � tII
tII

: ð8:56Þ

Then for the backlash reduced to the three outer shafts, it is

φa ¼ 4 jz þ jB
	 


A15, ð8:57Þ
φc ¼ φa

tred
, ð8:58Þ

φd ¼
φa

1þ tred
: ð8:59Þ

The constant A15 can be expressed as a function of the torque ratios (tI and tII) and
the smallest of the torques on the external shafts TDmin, which for this scheme is the
torque of the shaft of the sun gear of the first component PGT (TDmin � T1I)

A15 ¼
tI

ffiffiffiffiffiffiffi
tIþ1
tI�1

3

q
þ tII

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tI tIIþ1ð Þ
tII tII�1ð Þ

3

q
K0 � tI � tII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TD min

tI tIþ1ð Þ tIIþ1ð Þ
tII tI�1ð Þ tII�1ð Þ

3

q : ð8:60Þ

Backlash reducing in structural schemes from Table 8.1
For each of the structural schemes from Table. 8.1, the backlashes reduced to the

three external shafts by the above procedure are determined. The constants Aij

analogous to those determined by formula (8.60) are determined. For each of the
structural schemes, the below dependencies are valid:

φD min ¼ 4 jz þ jB
	 


Aij, ð8:61Þ

φD max ¼ φD min

tred
, ð8:62Þ

φΣ ¼ φD min

1þ tred
, ð8:63Þ

where:
φDmin is the backlash reduced to the shaft with the smallest external torque TDmin.
φDmax is the backlash reduced to the shaft with the biggest external torque TDmax.
φΣ is the backlash reduced to the shaft with summation external torque TΣ.
Aij is an original expression peculiar to each structural scheme (Table 8.9).
tred is the aligned (reduced) speed ratio of compound PGT in question (Table 8.4).
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Table 8.9 Determination of constant Aij in formula (8.61).

Scheme tI and tII Structural symbol Aij ¼ f(tI, tII, d1I, d1II)

S11
tI � 2 tII A11 ¼ tI � d1I þ tII � d1II

tII � d1I � d1II

tII � tI � 2 tII A11 ¼ tI � d1I þ tII � d1II
tI � tIIð Þd1I � d1II

S12
tI � 1 + tII A12 ¼ tI � d1I þ 1þ tIIð Þd1II

1þ tIIð Þd1I � d1II

tI � 1 + tII A12 ¼ tI � d1I þ 1þ tIIð Þd1II
tI � d1I � d1II

S13
For every tI and tII A13 ¼ A16 ¼ tI � d1I þ d1II

d1I � d1II
S14

For every tI and tII A14 ¼ tI � d1I þ 1þ tIIð Þd1II
1þ tIIð Þd1I � d1II

S15
For every tI and tII A15 ¼ tI � d1I þ tII � d1II

tII � d1I � d1II
S16

For every tI and tII A16 ¼ A13 ¼ tI � d1I þ d1II
d1I � d1II

S22
tI � 1 + 2 tII A22 ¼ 1þ tIð Þd1I þ 1þ tIIð Þd1II

tI � tIIð Þd1I � d1II

tII � tI � 1 + 2 tII A22 ¼ 1þ tIð Þd1I þ 1þ tIIð Þd1II
tI � tIIð Þd1I � d1II

S23
For every tI and tII A23 ¼ A26 ¼ 1þ tIð Þd1I þ d1II

d1I � d1II
S24

tI � 2þ tII
tII

A24 ¼ 1þ tIð Þd1I þ 1þ tIIð Þd1II
1þ tIIð Þd1I � d1II

tI � 2þ tII
tII

Not possible if
tI > 2 and tII > 2

S25
For every tI and tII A25 ¼ 1þ tIð Þd1I þ tII � d1II

tII � d1I � d1II
(continued)
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Table 8.9 (continued)

Scheme tI and tII Structural symbol Aij ¼ f(tI, tII, d1I, d1II)

S26
For every tI and tII A26 ¼ A23 ¼ 1þ tIð Þd1I þ d1II

d1I � d1II
S33

tI � 2 tII A33 ¼ d1I þ d1II
tII � d1I � d1II

tII � tI � 2 tII A33 ¼ d1I þ d1II
tI � tIIð Þd1I � d1II

S34
For every tI and tII A34 ¼ d1I þ 1þ tIIð Þd1II

tII � d1I � d1II
S35

For every tI and tII A35 ¼ d1I þ tII � d1II
1þ tIIð Þd1I � d1II

S36
tI � 1 + tII A36 ¼ d1I þ d1II

1þ tIIð Þd1I � d1II

tI � 1 + tII A36 ¼ d1I þ d1II
tI � d1I � d1II

S44
tI � tII A44 ¼ 1þ tIð Þd1I þ 1þ tIIð Þd1II

tI � tIIð Þd1I � d1II
S45

tI � 1þ tII
tII � 1 A45 ¼ 1þ tIð Þd1I þ tII � d1II

1þ tI þ tIIð Þd1I � d1II

tI � 1þ tII
tII � 1 A45 ¼ 1þ tIð Þd1I þ tII � d1II

tI � tII � d1I � d1II
S46

For every tI and tII A46 ¼ 1þ tIð Þd1I þ d1II
tI � d1I � d1II

S55
tI � tII A46 ¼ 1þ tIð Þd1I þ d1II

tI � d1I � d1II
S56

tI � 2
tII � 1

A56 ¼ tI � d1I þ d1II
1þ tIð Þd1I � d1II

tI � 2
tII � 1

Not possible if
tI > 2 and tII > 2

(continued)
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8.2.2.4 Reduced Stiffness

Sometimes it is important to know the dynamic parameters of the transmission,
including the gear train. In this case, it is advisable to take into account the possible
dynamic characteristics when choosing the structural scheme. In order to study the
influence of the structural scheme and its parameters on the reduced to the external
shafts’ stiffness of the PGT, the shafts can be considered as perfectly rigid, and only
the stiffnesses in the gearing and planet bearings can be taken into account. The
analysis of real arrangements shows that the angular compliance of the shafts is not
more than 5 to 10% of the compliance of the gear train [66].

It is convenient to present the stiffness in the meshing as follows [54]:

cz ¼ Fbn

Δz
, ð8:64Þ

where:
cz is the mean value of mesh stiffness, N

μm.

Δz is the tooth deformation on the path of contact, μm.
Fbn is the normal load (force) in the mesh, N.
Normal force can be represented as

Fbn ¼ 2T
dw � cos αw , ð8:65Þ

where:
T is the torque on the shaft of one of the mated gears, N.
dw is the diameter of operating circle of the gear in question. For gears without

profile shifting, it is equal to the reference diameter (dw ¼ d ), m.
αw is the pressure angle.
The angle of rotation of the shaft of gear in question due to deformation Δz can be

represented as

φc � tanφc ¼ 2Δc � cos αw
d

: ð8:66Þ

Table 8.9 (continued)

Scheme tI and tII Structural symbol Aij ¼ f(tI, tII, d1I, d1II)

S66
tI � 1 + 2 tII A66 ¼ d1I þ d1II

1þ tIIð Þd1I � d1II

tII � tI � 1 + 2 tII A66 ¼ d1I þ d1II
tI � tIIð Þd1I � d1II

8 Optimal Selection of the Structural Scheme of Compound Two-Carrier. . . 375



After substitution of formulae (8.64) and (8.65) in (8.66), the angular rotation of
the shaft is obtained:

φc ¼ 4T
cz � d2

: ð8:67Þ

Then the angular stiffness cφ ¼ T
φc
is equal to

cφ ¼ cz � d2
4

: ð8:68Þ

After reasoning similar to those for backlashes (Sect. 2.2.3), dependencies for the
stiffness reduced to the three shafts of a simple PGT with one fixed shaft and one
locked with stiffness can be created (Table 8.10) [54].

Based on these dependencies, the reduced stiffness to the input shaft (external
shaft with the lowest torque TDmin) of the compound PGT can be determined. For
compound PGTs in Table 8.4, the formula is [54].

cφD min
¼ k

8 1
cz
þ 1

cB

� �
Bij

, ð8:69Þ

where:
k is the number of planets.
cz and cB are the stiffnesses in the mesh and planet bearings.
Bij ¼ f(tI, tII, d1I, d1II) is an original expression peculiar to each structural

scheme (Table 8.11).

Table 8.10 Reduced stiffness to the input shaft cφ in the case of output shaft locked with stiffness
cξ

As a reducer (reduce the speed) As a multiplier (multiply the speed)

cφ1H
¼ 1

1
cφ1

þ 1þ tð Þ2 1
cξH

cφH1
¼ 1

1
cφH

þ 1
1þtð Þ2 � 1

cξ1

cφ13
¼ 1

1
cφ1

þ t2 1
cξ3

cφ31
¼ 1

1
cφ3

þ 1
t

	 
2 1
cξ1

cφ3H
¼ 1

1
cφ3

þ 1þ 1
t

	 
2 1
cξH

cφH3
¼ 1

1
cφH

þ 1

1þ1
tð Þ2 �

1
cξ3
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Table 8.11 Determination of constant Bij in formula (8.69)

Scheme tI and tII Structural symbol Bij ¼ f(tI, tII, d1I, d1II)

S11
tI � 2 tII B11 ¼ t2I �d21Iþt2II �d21II

t2II �d21I �d21II

tII � tI � 2 tII B11 ¼ t2I �d21Iþt2II �d21II
t2I �t2IIð Þd21I �d21II

S12
tI � 1 + tII B12 ¼ t2I �d21Iþ 1þtIIð Þ2d21II

1þtIIð Þ2d21I �d21II

tI � 1 + tII B12 ¼ t2I �d21Iþ 1þtIIð Þ2d21II
t2I �d21I �d21II

S13
For every tI and tII B13 ¼ B16 ¼ t2I �d21Iþd21II

d21I �d21II

S14
For every tI and tII B14 ¼ t2I �d21Iþ 1þtIIð Þ2d21II

1þtIIð Þ2d21I �d21II

S15
For every tI and tII B15 ¼ t2I �d21Iþt2II �d21II

t2II �d21I �d21II

S16
For every tI and tII B16 ¼ B13 ¼ t2I �d21Iþd21II

d21I �d21II

S22
tI � 1 + 2 tII B22 ¼ 1þtIð Þ2d21Iþ 1þtIIð Þ2d21II

t2I �t2IIð Þd21I �d21II

tII � tI � 1 + 2 tII B22 ¼ 1þtIð Þ2d21Iþ 1þtIIð Þ2d21II
t2I �t2IIð Þd21I �d21II

S23
For every tI and tII B23 ¼ B26 ¼ 1þtIð Þ2d21Iþd21II

d21I �d21II

S24
tI � 2þtII

tII B24 ¼ 1þtIð Þ2d21Iþ 1þtIIð Þ2d21II
1þtIIð Þ2d21I �d21II

tI � 2þtII
tII

Not possible if
tI > 2 and tII > 2

S25
For every tI and tII B25 ¼ 1þtIð Þ2d21Iþt2II �d21II

t2II �d21I �d21II

S26
For every tI and tII B26 ¼ B23 ¼ 1þtIð Þ2d21Iþd21II

d21I �d21II

(continued)
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Table 8.11 (continued)

Scheme tI and tII Structural symbol Bij ¼ f(tI, tII, d1I, d1II)

S33
tI � 2 tII B33 ¼ d21Iþd21II

t2II �d21I �d21II

tII � tI � 2 tII B33 ¼ d21Iþd21II
t2I �t2IIð Þd21I �d21II

S34
For every tI and tII B34 ¼ d21Iþ 1þt2IIð Þd21II

t2II �d21I �d21II

S35
For every tI and tII B35 ¼ d21Iþt2II �d21II

1þtIIð Þ2d21I �d21II

S36
tI � 1 + tII B36 ¼ d21Iþd21II

1þtIIð Þ2d21I �d21II

tI � 1 + tII B36 ¼ d21Iþd21II
t2I �d21I �d21II

S44
tI � tII B44 ¼ 1þtIð Þ2d21Iþ 1þtIIð Þ2d21II

t2I �t2IIð Þd21I �d21II
S45

tI � 1þtII
tII�1 B45 ¼ 1þtIð Þ2d21I2þt2II �d21II

1þt2Iþt2IIð Þd21I �d21II

tI � 1þtII
tII�1 B45 ¼ 1þtIð Þ2d21Iþt2II �d21II

t2I �t2II �d21I �d21II

S46
For every tI and tII B46 ¼ 1þtIð Þ2d21Iþd21II

t2I �d21I �d21II

S55
tI � tII B55 ¼ t2I �d21Iþt2II �d21II

t2I �t2IIð Þd21I �d21II
S56

tI � 2
tII�1 B56 ¼ t2I �d21Iþd21II

1þtIð Þ2d21I �d21II

tI � 2
tII�1

Not possible if
tI > 2 and tII > 2

S66
tI � 1 + 2 tII B66 ¼ d21Iþd21II

1þtIIð Þ2d21I �d21II

tII � tI � 1 + 2 tII B66 ¼ d21Iþd21II
t2I �t2IIð Þd21I �d21II
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If the reference diameters of the sun gears are determined by formula (8.15) and
Table 8.5, a formula can be obtained for the stiffnesses as a function of torque ratios
tI and tII of the component PGTs and several constants: the stiffnesses in the mesh cz
and bearings cB; the number of planets k; meshing parameters (K0); and the input
torque TA � TDmin (which affects the geometric dimensions).

By varying the values of tI and tII (in the range from 2 to 12), their influence on the
reduced angular stiffness cφ can be determined. From this one can look for the most
favorable combination of tI and tII (i.e., the distribution of the total speed ratio
between the two planetary stages) to obtain the desired stiffness. Also it is possible
to make a comparative analysis between the different structural schemes. It is
appropriate to emphasize that of the above optimization criteria, the reduced stiffness
is the least important for the choice of the structural scheme and its parameters. In
many of the mechanisms in the transmission or in the working body, there are quite
large elasticities (couplings, ropes, chains, pneumatic wheels, etc.), which minimize
the impact of the elasticity of the gear.

In multi-objective optimization, other parameters can be defined (e.g., gear
trains mass).

8.2.3 Multi-Objective Optimization Procedure

8.2.3.1 Optimization within One Structural Scheme

The given required total speed ratio of the compound PGT, resp. the aligned torque
ratio tred, can be realized at different values of the torque ratios tI and tII of the
component PGTs. The purpose of optimization is to find the most suitable
combination.

One of the possible approaches is to vary the values of tI and tII in a certain
interval (for the considered PGT it is from 2 to 12). The variation step can be chosen
small enough (e.g., 0.1) without being related to the number of teeth on the sun
wheel and the ring gear (to facilitate the procedure) [54]. If desired, the number of
teeth can be included by setting a value for and increasing by one tooth [49].

For each of the combinations of tI and tII, the values of the parameters used for
optimization criteria are determined (ring gears diameters d3I and d3II, efficiency ηred,
the reduced backlash to the input shaft φDmin). Then, by one of the known methods
for multi-objective optimization, the most appropriate combination is chosen.

The case of Pareto optimization by weight coefficients [67, 68] is presented
below, which the authors consider the most appropriate in this case. Other methods
are also possible [69].

In [42] programs for optimal choice of the torque ratios of the component gear
trains tI and tII from the standpoint of maximum efficiency and minimum overall
dimensions and backlash are proposed for each of the possible structural schemes
(Tables 8.1 and 8.2). All these programs contain a module which determines whether
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the structural scheme has the required kinematic capabilities when changing tI and tII
within a given interval in order to fulfill:

– The desired value for speed ratio i ¼ ωA
ωB
, i.e., for aligned (reduced) torque ratio of

compound PGT tred in case of PGT from Table 8.1.
– The desired values for the two output angular velocities ωB and ωBμ in case of

PGT from Table 8.2.
– A desired ratio between the two output angular velocities ωB

ωBμ
in case of PGT from

Table 8.2.

The range of tI and tII is chosen by the user and cannot go out of the previously
determined values

2 � tI min � tI � tI max � 12 ð8:70Þ
2 � tII min � tII � tII max � 12: ð8:71Þ

For the structural schemes of the main diagonal of Tables 8.1 and 8.2, this check
is connected with the minimum allowed values for the efficiency

ηBr:1 � ηmin and ηBr:2 � ηmin ð8:72Þ

as if tI ¼ tII in theory infinity is obtained for the speed ratio and zero for the
efficiency.

The above check for the kinematic capabilities could be made by directly
assigning values to tI and tII at regular intervals with no connection to a certain
number of teeth.

The efficiency of the component gear train is a function of the torque ratios tI and
tII and the basic efficiencies η0I and η0II of the component PGTs. For a more accurate
reading of the influence of the structural scheme parameters on the efficiency, an
approach is assumed, in which the efficiencies of the component PGTs η0I and η0II
are determined as a function of the number of teeth of the gears in the corresponding
PGT [63]

η0 ¼ 1� ψ z ¼ 1� z3 þ z1
z3 � z1

0, 15
z1

þ 0, 2
z3

� �
: ð8:73Þ

For this reason the following approach for determining tI and tII is used:

1. Choice of number of teeth for the sun gears of the component gear trains z1I and
z1II.

2. Determination of minimum and maximum number of teeth of the ring gears z3I
min ¼ tI min. z1I, z3II min ¼ tII min. z1II, z3I max ¼ tI max. z1I, z3II max ¼ tII max. z1II.

3. Determination of the current values of the torque ratios tI ¼ z3I
z1I

and tII ¼ z3II
z1II
.
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4. Consecutive increase in the number of teeth of the ring gear of one gear train (e.g.,
the second one) one tooth at a time until the maximum value (determined in p. 2)
is reached.

5. Consecutive increase in the number of teeth of the other gear train (e.g., the first
one) one tooth at a time, while the cycle is repeated for the second gear train (p. 3)
until the maximum value (determined in p. 2) is reached.

The program allows the inclusion of fulfillment check for the additional condi-
tions when choosing the number of teeth:

– Coaxiality condition, i.e.,

z2 ¼ z3 � z1
2

¼ int ð8:74Þ

– Mounting condition

z3 þ z1
k

¼ int ð8:75Þ

In practice, the coaxiality condition is eluded by choosing appropriate corrections
of the tooth meshing, which are even recommended from the standpoint of teeth
bending stiffness.

The mounting condition could also be eluded [27] with appropriate design
solutions.

A program is created, which determines within 3 cycles the current values of the
various parameters of the component (η0I, η0II, d3I, d3II) and compound (η0red, φDmin,
ηBr.1, ηBr.2, φBr.1, φBr.2) planetary gear trains as a function of tI and tII.

The thus established database is used for building the graphical relations of the
changes in the parameters as a function of tI and tII, which contribute to the quick
orientation of the designer in the capabilities of the various structural schemes.

Due to differences in the dimensions and variations of the individual criteria, they
are normalized while nondimensional quantitative measures are assumed:

ki tI , tIIð Þ ¼ f i tI , tIIð Þ � fmin
i

fmax
i � fmin

i

or

k j tI , tIIð Þ ¼ fmax
j � f j tI , tIIð Þ
fmax
j � fmin

j

ð8:76Þ
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where:
ki(tI, tII) is the normalized (nondimensional) value of the criteria with minimum

values.
kj(tI, tII) is the normalized (nondimensional) value of the criteria with maximum

values.
fi(tI, tII) and fj(tI, tII) are the current values of the corresponding characteristics.
fmax and fmin are the extremal values of the characteristics in the given range of tI

and tII.
The generalized criterion is assigned. It is expressed by a purpose function

obtained from the scalar product of the vectors, the components of which are weight
coefficients and nondimensional purpose evaluations

Z tI , tIIð Þ ¼
Xn
i¼1

χi:ki tI , tIIð Þ ð8:77Þ

where:
χ ¼ (χi)

0 is the vector of the weight coefficients, 0<χi <1; ∑χi ¼ 1.
k ¼ (ki)

0 is the vector of the nondimensional purpose evaluations

t�I , t�II
	 


: min
tmin�tI , tII�tmax

Z tI , tIIð Þ: ð8:78Þ

The weight coefficients reflect the priority of each criterion. Thus, the different
degree of importance of the various criteria for each particular case of gear train
application is taken into account.1

The optimal solution regarding the controlling parameters tI and tII is the one in
which the purpose function (8.77) reaches its minimum value.

8.2.3.2 Optimal Choice of a Structural Scheme

Within the single-objective optimizations, the choice of the most appropriate struc-
tural scheme is reduced to the determination of the best combination of tI and tII for
the chosen parameter in the various structural schemes, comparison of the parameter
values, and determination of the most appropriate structural scheme (with the
corresponding values of tI and tII).

In multi-objective optimization the most appropriate values for tI and tII for each
of the given structural schemes are determined as well from the standpoint of the
generalized criterion (8.77).

1At the end of the twentieth century, there was a tendency toward dismissing the optimization
methods with weight coefficients as subjective. Modern computer technology with its advanced
dialogue mode enables the rapid simulation of different variants (with different weight coefficients)
and renders these methods more flexible and suitable for various tasks, which definitely compen-
sates the shortcomings of subjectivism and even turns it into advantage.
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With first approximation one could expect the best structural scheme to be the one
with the lowest value of the purpose function (8.77). For more accurate results,
however, it is desirable that what is determined by the multi-objective optimization
values of the individual criteria (characteristics, indices) be compared with one
another. This means another normalization where (8.76) becomes

ki pshð Þ ¼ f i pshð Þ � fmin
i

fmax
i � fmin

i

or

k j pshð Þ ¼ fmax
j � f j pshð Þ
fmax
j � fmin

j

ð8:79Þ

where:
ki( psh) is the normalized (nondimensional) value of the criteria with minimum

values.
kj( psh) is the normalized (nondimensional) value of the criteria with maximum

values.
fi( psh) and fj( psh) are the current values of the corresponding characteristics

obtained by multi-objective optimization of the various schemes.
fmax and fmin are the extremal values of the characteristics obtained by multi-

objective optimization of the various schemes.
psh is the number of the structural scheme participating in the optimization.
The procedure for determining the purpose function (8.77) and its minimum

value (8.78) is repeated for the thus determined nondimensional values of the criteria
k( psh).

The process in (8.79) features the various versions of the structural schemes
corresponding to the kinematic criterion (to provide the necessary ratio between the
output angular velocities ωB

ωBμ
in the admissible range of tI and tII).

Figure 8.13 presents the result of the optimization of all variants which provide
the desired speed ratios (the most appropriate structural scheme is given in the
bottom row).

The design, technological, and economic optimization methods reviewed in Sect.
1.1 can be applied to the variant chosen by the method above (according to the
specific case).

A major advantage of the proposed program is the possibility to take different
indices and study their dependence on the torque ratios of the component gear trains.
This enables the detailed study of the various structural schemes (Fig. 8.14).
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8.3 Program 2-BRZ

Developed 2-BRZ program (software) is intended for investigation of single-speed
and two-speed two-carrier PGTs. It is written in the Compaq Visual Fortran Profes-
sional Edition 6.6.0. The program has three subprograms for:

Fig. 8.13 Result of the optimization of all variants providing the desired speed ratios

Fig. 8.14 Total speed ratio
as a function of torque ratios
tI and tII of scheme S13WN
(E)
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• Analysis of characteristics of arbitrary variant.
• Synthesis of all solutions that meet the set requirements.
• Evaluation of the solution.

A description of its subprogram (modules) is given below.

8.3.1 Subprogram for PGT Characteristics Analysis

This subprogram enables the generation of sets of different characteristics of each of
the PGT variants according to the given input data in the input file and recording
these sets in a file. This allows engineering visualization of large data sets and
comprehensive analysis. In order to speed up the response of the program, there is
also the possibility to obtain a reduced record of the data sets of the analyzed variant
of the PGT.

Reduced record contains data on the PGT variant at given intervals of torque
ratios tI and tII. These data are:

• Achievable gear ratios.
• Teeth numbers of planets.
• Planets modules.

Reference diameters of ring gears

• Ratios of reference diameters of ring gears.
• Approximate masses of gears (sun gear, ring gear, and planets) in

component PGT.
• Approximate mass of gears in compound PGT.
• Calculated efficiency of compound PGT.
• Dispersion of the calculated efficiency shown by standard deviation.
• Relative speeds of planets.
• Forces on planet bearings.
• Torques on the brake shafts.

The complete set, in addition to the above data, also contains:

• Rotational speeds of all elements.
• Torques on all elements.
• Power on all elements.
• Relative (rolling) power in both component PGTs.

All the above data is accompanied by an ordered pair of torque ratios tI and tII of
component PGTs so that they can be graphically represented as functions of these
ratios. The program also allows the display of the interdependence of the values of
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these characteristics, where one or two characteristics can form a domain and the
third a codomain.

All output data of the analysis subprogram are entered in the folder all results of
the developed program 2-BRZ.

8.3.2 Subprogram for PGT Variants Synthesis

The synthesis subprogram returns as a result of all solutions (PGT variants) that meet
the requirements from the input file of the 2-BRZ program as well as the sets of their
quantitative characteristics. The output data is written to the results folder and they
are:

• Alphanumeric designation of the compound PGT variant.
• Corresponding torque ratios of component PGTs.
• Corresponding speed ratios.
• Numbers of teeth of ring gears of component PGTs.
• Modules of PGTs meshing.
• Ratios of reference diameters of PGTs ring gears.
• Approximate masses of gears (sun gear, ring gear, and planets) in

component PGT.
• Approximate mass of gears in compound PGT.
• Relative speeds of planets.
• Dispersion characteristic of the calculated equivalent2 efficiency (standard

deviation).
• Possible specific circulated power.

8.3.3 Subprogram for Evaluation of the Solution

The solution evaluation subprogram enables the ranking of the compound PGT
variants according to the criteria covered by the complex global objective function
and the selection of optimal solution.

The minimum of the global objective function Zglmin gives, conditionally speak-
ing, the optimal solution. Namely, this solution is a recommendation of a program in
which the most important criteria are expressed by weight coefficients. Due to the
impossibility of the mathematical model to cover all criteria that affect the quality of
the solution, as well as the problem of lack of information for exact values of the
weight of the criteria, it is strongly recommended to critically evaluate solutions
from the aspect of criteria not covered by the mathematical model.

2Equivalent efficiency is calculated for two-speed PGTs on the base of efficiencies in work with
both speeds (i1 and i2) considering relative working time of each of them.
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In the output file rank in the results folder (program 2-BRZ) with the ordinal
number indicating the position of each variant of the compound PGT on the priority
scale, the program system returns:

• Compound PGT variant designations with corresponding weight coefficients.
• The value of the global objective function, i.e., the quantitative evaluation of the

solution.
• The corresponding torque ratios tI and tII of component PGTs.
• Achievable speed ratio of compound PGT (total speed ratio).
• Dispersion of equivalent efficiency determined by standard deviation.
• Reference Diameter of the Larger Ring Gear (Indicator for Overall Dimension

of Compound PGT)
• Ratio of the reference diameters of the ring gears of larger and smaller

component PGT.
• Approximate mass of gears in compound PGT.
• Rotational speed of the fastest planet.
• Modules of PGTs meshing.
• The minimum required dynamic load capacity of the most loaded planet

bearing.

8.3.4 Input Data

So far, the possibilities of the program in the form of output are listed. In order to
obtain the output data, input data must be entered. The input data is entered in the
input file (program 2-BRZ). Some of them will be shown in the following
examples.

8.4 Examples of Selection of the Optimal Compound PGT
Variant

8.4.1 Optimal Choice of Single-Speed PGT

In case the goal is to arrange a single-speed PGT (Table 8.1), the program will
generate a set of variants of single-speed PGTs that can meet the set requirements.
Each variant of this set, in the general case, has a set of ordered pairs of torque ratios
tI and tII, where each individual ordered pair enables the realization of the required
total speed ratio in its tolerance interval. All arranged pairs within the corresponding
variant enable the realization of the required speed ratio, but with different overall
dimensions of component PGTs, different efficiency, different relative speeds of
planets, etc. The program can find the most acceptable ordered pair of torque ratios
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guided by selected criteria. The criteria are accompanied by certain weight coeffi-
cients which describe their importance—see formula (8.77).

With a given torque on the input shaft of TA ¼ 50Nm, the required total speed
ratio i¼ 30.5
 0.5, and the number of teeth of sun gears z1I¼ z1II¼ 18, the program
provides solutions. Secondary input data is not shown in this example.

The program makes it possible to compare all variants of the compound PGT with
each other and to obtain a priority list of variants with their optimal parameters
according to the weights of the selected criteria.

For three different combinations of weights, the program generates three files
with a list of PGT variants by priority that can achieve the given total speed ratio. In
Table 8.12, Table 8.13, and Table 8.14, variant designations with some basic data are
listed.

From Table 8.12 it can be seen that according to this criterion the optimal variant
is 66NE(W). This variant has the smallest radial dimensions d3max¼ 180 mm, but it
has a relatively low degree of efficiency η¼ 0.481. The second variant is 26WE
(N) with an ordered pair of torque ratios (6, 3.3333) which has a slightly larger
dimension d3max¼ 195 mm and a significantly higher efficiency η¼ 0.964.

The analysis of Table 8.13 shows that according to the criterion of the highest
efficiency, the optimal variant is 26WE(N) with an ordered pair of torque ratios
(4.1667, 5) and the calculated efficiency η¼ 0.966. The priority list shows that the

Table 8.12 Priority list of PGT variants with associated parameters obtained with weight coeffi-
cients χd ¼ 1, χη ¼ 0

Variants Zgl tI tII i η d3max, mm d3max/d3min

S66NE(W) 0 3.8333 4 30 0.481 180 1.043

S26WE(N) 0,02717 6 3.3333 30.333 0.964 195 1.032

S55NE(W) 0,03261 3.6667 3.1667 30.555 0.734 198 1.069

S26WN(E) 0,04484 6 3.5 -30.5 0.964 204.75 1.083

S16WN(E) 0,04484 6.5 3.5 30.25 0.964 204.75 1

S33NE(W) 0,05299 5 5.1667 31 0.462 209.25 1.033

S16WE(N) 0,05435 6.6667 3.5 -30 0.963 210 1.025

S44NE(W) 0,0625 3.1667 3.6667 30.555 0.734 214.5 1.075

S23WN(E) 0,08016 6.6667 3.8333 30.389 0.963 224.25 1.068

S23WE(N) 0,08967 8.5 3.1667 -30.083 0.958 229.5 1.074

S13WN(E) 0,09239 8.5 3.6667 -30.167 0.959 231 1.007

S13WE(N) 0,09239 8.3333 3.6667 30.555 0.960 231 1.027

S44NE(W) 0,12228 5 4.1667 -30 0.806 247.5 1.1

S55NE(W) 0,12228 4.1667 5 -30 0.806 247.5 1.1

S22NE(W) 0,22826 4 4.1667 -30 0.461 306 1.02

S33NE(W) 0,2731 10.5 10.1667 -30.5 0.521 330.75 1.033

S66NE(W) 0,29348 9.5 9.1667 -30.5 0.538 342 1.036

S11NE(W) 0,30435 5 4.8333 30 0.465 348 1.031

S11NE(W) 0,32609 5 5.1667 -30 0.444 360 1.032

S22NE(W) 0,86957 9.1667 8.8333 30.5 0.558 660 1.038
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Table 8.13 Priority list of PGT variants with associated parameters obtained with weight coeffi-
cients χd ¼ 0, χη ¼ 1

Variant Zgl tI tII i η d3max, mm d3max/d3min

S26WE(N) 0 4.1667 5 31 0.966 247.5 1.886

S16WN(E) 0.00098 5 5 31 0.965 247.5 1.571

S23WN(E) 0.00098 5 5 31 0.965 270 1.714

S26WN(E) 0.00137 4.3333 5 -31 0.965 270 1.978

S23WE(N) 0.00246 5 5.1667 -31 0.964 279 1.771

S16WE(N) 0.00246 5.1667 5 -31 0.964 247.5 1.520

S13WE(N) 0.00496 5.1667 6 31 0.963 297 1.825

S13WN(E) 0.00653 5.3333 6 -31 0.962 297 1.768

S55NE(W) 0.07694 12 8.3333 30.54 0.926 432 1.28

S44NE(W) 0.07694 8.3333 12 30.54 0.926 432 1.28

S55NE(W) 0.08717 8.3333 11.8333 -30.55 0.920 426 1.262

S44NE(W) 0.08717 11.8333 8.3333 -30.55 0.920 426 1.136

S66NE(W) 0.77995 8.8333 9.1667 30.5 0.559 330 1.038

S22NE(W) 0.77995 9.1667 8.8333 30.5 0.559 660 1.038

S11NE(W) 0.80696 10 9.6667 30 0.545 696 1.031

S33NE(W) 0.81254 9.8333 10.1667 30.5 0.542 320.25 1.034

S22NE(W) 0.81955 9.1667 9.5 -305 0.538 684 1.036

S66NE(W) 0.81955 9.5 9.1667 -305 0.538 342 1.036

S11NE(W) 0.84752 10 10.3333 -30 0.524 720 1.032

S33NE(W) 0.85269 10.5 10.1667 -30.5 0.521 330.75 1.033

Table 8.14 Priority list of PGT variants with associated parameters obtained with weight coeffi-
cients χd ¼ 0.5, χη ¼ 0.5

Variant Zgl tI tII i η d3max, mm d3max/d3min

S26WE(N) 0.01503 6 3.3333 30.333 0.964 195 1.031

S16WN(E) 0.02377 6.5 3.5 30.25 0.964 204.75 1

S26WN(E) 0.02431 6 3.5 -30.5 0.964 204.75 1.083

S16WE(N) 0.0295 6.6667 3.5 -30 0.963 210 1.026

S23WN(E) 0.04272 6.6667 3.8333 30.389 0.963 224.25 1.068

S23WE(N) 0.05048 7.3333 3.6667 -30.555 0.961 231 1

S13WE(N) 0.05153 8.3333 3.6667 30.555 0.960 231 1.027

S13WN(E) 0.05269 8.5 3.6667 -30.167 0.959 231 1.006

S55NE(W) 0.18314 7 5.5 30.333 0.872 283.5 1.041

S55NE(W) 0.19463 5.6667 7.1667 -30.852 0.866 290.25 1.035

S44NE(W) 0.20058 5.1667 6.5 30.063 0.863 292.5 1.144

S44NE(W) 0.21317 6.6667 5.3333 -30.666 0.857 300 1.136

S66NE(W) 0.46493 3.8333 4 30 0.481 180 1.043

S33NE(W) 0.50931 5 5.1667 31 0.462 209.25 1.033

S66NE(W) 0.55651 9.5 9.1667 -30.5 0.538 342 1.036

S33NE(W) 0.56289 10.5 10.1667 -30.5 0.521 330.75 1.033

S22NE(W) 0.59804 4 4.1667 -30 0.461 306 1.020

S11NE(W) 0.63184 5 4.8333 30 0.465 348 1.031

S11NE(W) 0.66304 5 5.1667 -30 0.444 360 1.032

S22NE(W) 0.82476 9.1667 8.8333 30.5 0.559 660 1.038
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first eight mentioned variants of PGT have the same value of efficiency, so when
choosing the best variant, the variant that is better according to other criteria can be
chosen.

The analysis of Table 8.14 shows that taking into account both criteria with equal
weights, the best choice is the variant 26WE(N) with an ordered pair of torque ratios
(6, 3.3333) which has a reference diameter of radially larger ring gear d3max¼
195 mm and calculated efficiency η¼ 0.964. In this variant, the degree of efficiency
does not change significantly with all three combinations of weight coefficients.

In the same way, an optimal solution for different input data can be sought. The
program will offer a list of solutions based on the criteria with which it works, and
based on the list of solutions, the designer can choose the appropriate variant of the
PGT, guided by criteria that are not built into the logic of the program.

8.4.2 Optimal Choice of Two-Speed PGT

Compound PGTs with two internal and four external shafts (Table 8.2) are investi-
gated. For operating with F ¼ 1 degree of freedom, the brake on one of the external
shafts is needed. These PGTs are appropriate to realize two speed ratios (iBr1 and
iBr2) with two brakes (Br1 and Br2) on two external shafts. Three locations of both
brakes are possible [27, 49]:

• Brakes on both compound shafts (Fig. 8.15a).
• Brakes on both single shafts (Fig. 8.15b).
• Brakes on a single and on a compound shaft (Fig. 8.15c).

All possible working modes (brakes’ location and power flow direction) of all
variants are checked through the optimization procedure. The variants are described
by number from Table 8.2 and indication of input and output shafts (by letters
according to the four directions of the world—W-west, N-north, E-east, and
S-south). For example, S16NW means Scheme 16 from Table 8.2 with top
(N-north) shaft as input and left (W-west) shaft as output.

a b                         c

Fig. 8.15 Possible locations of both brakes at two-carrier PGT with four external shafts: a) Brakes
on both compound shafts. b) Brakes on both single shafts. c) Brakes on a single and on a compound
shaft
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Two of more common cases of these PGT applications are investigated below.
Example A: Two-speed compound PGT with positive speed ratios
To show how the program can help set up a two-speed PGT, the following

example is shown. Some relevant inputs are:

• Number of required speed ratios is 2: 9.8 �i1� 10 and 3.9 �i2� 4.
• Intervals of torque ratios are 2 �tI�12 and 2 �tII� 12.
• Numbers of teeth of sun gears are z1 I¼ 18 and z1 II¼ 18.
• Relative working times with every speed ratio (i1 and i2) are αi1¼0.7 (70%) and

αi2¼0.3 (30%).
• Input torque is TA¼ 50 Nm and input speed is nA¼ 2850 min�1.

Based on the 2-BRZ program, results are obtained that show the basic parameters
of PGT variants that can realize the required speed ratios. Some of the basic
parameters of these variants are listed in Table 8.15, Table 8.16, and Table 8.17.

Table 8.15 Priority list of solutions obtained with weighting coefficients χd ¼ 1, χη ¼ 0

Priority Scheme tI tII i1 i2 d3 max , mm ηeq
1. S16WN 3 2 10 4 117 0.953

2. S55NE 5 3 10 4 157.5 0.930

3. S13WE 5 2 10 4 157.5 0.940

4. S36SE 4.833 8.833 9.833 3.912 238.5 0.986

5. S33SN 3 8.833 9.833 4 238.5 0.984

6. S12WN 8.833 2 9.833 3.944 238.5 0.979

Table 8.16 Priority list of solutions obtained with weighting coefficients χd ¼ 0, χη ¼ 1

Priority Scheme tI tII i1 i2 d3 max , mm ηeq
1. S36SE 4.833 8.833 9.833 3.912 238.5 0.986

2. S33SN 3 8.833 9.833 4 238.5 0.984

3. S12WN 8.833 2 9.833 3.944 238.5 0.979

4. S16WN 3 2 10 4 117 0.953

5. S13WE 5 2 10 4 157.5 0.940

6. S55NE 5 3 10 4 157.5 0.930

Table 8.17 Priority list of solutions obtained with weighting coefficients χd ¼ 0.5, χη ¼ 0.5

Priority Scheme tI tII i1 i2 d3 max , mm ηeq
1. S16WN 3 2 10 4 117 0.953

2. S36SE 4.833 8.833 9.833 3.912 238.5 0.986

3. S33SN 3 8.833 9.833 4 238.5 0.984

4. S12WN 8.833 2 9.833 3.944 238.5 0.979

5. S13WE 5 2 10 4 157.5 0.940

6. S55NE 5 3 10 4 157.5 0.930
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The analysis of Table 8.15, which was obtained only according to the criterion of
minimum dimensions (χd ¼ 1), shows that the smallest radial dimensions of the
larger ring gear are obtained with the S16WN variant with an ordered pair of torque
ratios tI and tII (3; 2). In this case, the reference diameter of the larger ring gear is
d3max¼ 117 mm. It can be seen that in this variant the mass is also the smallest. The
calculated equivalent efficiency is ηeq¼ 0.953.

The analysis of Table 8.16, obtained only according to the criterion of the
maximum equivalent efficiency (χη ¼ 1), shows that S36SE is the variant with the
highest efficiency. The calculated efficiency is ηeq¼ 0.986, but the reference diam-
eter of the larger ring gear is d3max¼ 234 mm—significantly larger than the reference
diameter of the best variant from Table 8.15 (117 mm).

The analysis of Table 8.17 obtained according to both criteria with the same
weighting coefficients (χd¼ 0.5 and χη¼ 0.5) shows that the optimal variant is
S16WN, as in the case of χd¼ 1 and χη¼ 0.

It is observed that changing the weight of the criteria changes the value of the
global function of the target, and thus the position of the variants in the priority list.

With two-speed PGTs, only one combination of torque ratios tI and tII can give
the required speed ratios. This means that when choosing the optimal solution, they
cannot vary in the search for torque ratios because otherwise the speed ratios would
also change. Numerous computer syntheses of various solutions show that
two-speed two-carrier PGT do not have a large number of variants that can meet
the kinematic requirements. This makes it relatively easier to choose the right
solution.

Example B: Reversible two-speed compound PGT
Reversible two-speed compound PGTs can provide different speeds (by absolute

value) in every direction (appropriate for technological machines with slow working
and fast retrieval movement) or equal speeds in both directions—mainly used in
vessels [27, 47, 49–51, 70]. The second case is investigated below.

Some relevant inputs are:

• Number of required speed ratios is 2: �4.6 �i1� �4.4 and 4.4�i2�4.6.
• Intervals of torque ratios of component PGTs are 1.4 �tI�6 and 1.4 �tII�6.
• Relative working times with every speed ratio are αi1¼ 0.9 (90%) and αi2¼0.1

(10%).
• Input torque is TA¼ 3000 Nm and input speed is nA¼ 1800 min�1.

It is necessary to determine the torque ratios tI and tII, actual speed ratios i1 and i2,
teeth numbers of all gears, and efficiency. All component PGTs are with k ¼ 3
planets.

Based on the 2-BRZ program, results are obtained that show the basic parameters
of PGT variants that can realize the required gear ratios. Some of the basic param-
eters of these variants are listed in Table 8.18, Table 8.19, and Table 8.20. The speed
ratios are indicated as iBr1 and iBr2 in dependence on the locked brake—Br1 or Br2
(Table 8.20). Marked (colored) values of efficiency are for forward speed of the boat
(at which it mainly operates).
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Table 8.18 Main parameters of both component PGTs

Scheme tI tII z1I z2I z3I z1II z2II z3II
S36SN 3.5 4.55 14 17 49 20 35 91

S16WE 1.714 1.604 42 15 72 53 16 85

S33SE 1.714 4.437 42 15 72 16 27 71

S13WN 3.5 1.553 14 17 49 47 13 73

S12WS 4.55 1.553 20 35 91 47 13 73

S55NE 1.714 3.4 42 15 72 15 18 51

Table 8.19 Speed ratios and efficiencies of compound PGTs

Scheme iBr1 iBr2 η0I η0I ηBr1 ηBr2
S36SN 4.5 -4.55 0.973 0.985 0.979 0.985

S16WE -4.464 4.407 0.976 0.978 0.962 0.976

S33SE -4.438 4.422 0.976 0.980 0.980 0.959

S13WN 4.5 -4.436 0.973 0.973 0.979 0.934

S12WS -4.55 4.573 0.985 0.973 0.985 0.969

S55NE 4.4 -4.475 0.976 0.974 0.980 0.924

Table 8.20 Acceptable solutions (A-input shaft; B-output shaft)

No. Scheme Structural scheme No. Mark Structural scheme

1 S36SN 4 S13WN

2 S16WE 5 S12WS

3 S33SE 6 S55NE
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8.5 Concluding Remarks

This chapter discusses a method for optimal selection of a structural scheme and its
parameters of compound two-carrier PGTs. The optimization methodology is based
on the torque method, which makes it easy and understandable for the engineer. The
optimization procedure is demonstrated on compound two-carrier planetary gear
trains with three external shafts. Due to the limited volume of this chapter, the
authors have not shown the peculiarities of the application of the method in other
more complex two- and multi-carrier PGTs, but the main things are the same.

According to the presented methodology, an optimization procedure for selection
of structural scheme and its parameters for two-speed change-gears on the base of
compound two-carrier PGTs with four external shafts has been developed, details of
which can be found in [42, 47, 49, 50]. Other aspects of these interesting PGTs can
be found in [48, 70–72].

The proposed methodology is also suitable for more complex multi-carrier PGTs.

Appendix 8.1

Total speed ratio i of six working modes of compound PGTs from Table 8.1 as a
function of torques ratios tI and tII of component PGTs.

Scheme S11 S12 S13
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Chapter 9
Development of Gears from the Antiquity
to the Present Time

Jože Hlebanja and Gorazd Hlebanja

9.1 Emergence of Gears

Gears soon became vital components of machines transmitting power and movement
from an energy source to accomplish useful work. According to historical evidence,
irrigating machines emergence might be attributed to ancient Egypt (or great river
valley civilizations in general) because of human need to irrigate soil to produce
needed food. This machine, called sakia (Fig. 9.1), used simple wooden gears
(Fig. 9.2) to transmit power and rotation. At first, the ancient population irrigated
soil by swapes or shadufs. Such a device consisted of a bucket on the end of a cord
that hung from the long end of a pivoted boom which was counterweighted at its
short end. Based on observation, they realized that they could increase capacity by
tying a greater number of containers to a rope. On this basis, a paternoster-like device
was gradually developed, which consists of a rope formed into a ring, with buckets
(containers) attached at regular intervals, hung onto a wheel. They probably first
rotated the wheel manually and thus lifted the water from the river, poured it into a
trough, and irrigated the fields. The hard, manual operation was strenuous and
ineffective, so later a whim was developed to replace human power with that of
draught animals. The whim is composed of a horizontal gear wheel attached to a
rotary vertical pillar, which the animal pulls and spins around its vertical axis, while
the gear drives the paternoster via its tandem gear (Fig. 9.2) and a horizontal shaft,
roughly as seen in Fig. 9.1. The shadufs and sakias are still in use in some parts of the
world.
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It is obvious that this simple device could have been produced at the time with
simple tools, which were at disposal at that time. These and similar devices used the
oldest wooden gears we know as a result of human creative capacity.

Fig. 9.1 Photo of a sakia
[1]

Fig. 9.2 Gearing of a sakia
[1]
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Figure 9.2 shows that gear teeth were simple rounded pegs fixed in the gear
wheel. The whim gear rotated slowly with a pace of the draught animals, while the
speed of the paternoster wheel depended on the transmission ratio of the gears. The
precision of the rotation transmission was insignificant, and uninterrupted rotation of
the whim, continuously fed the soil. Through the centuries, pumping water by whim
with simple gears was perfected and spread to the fields of the great rivers like the
Euphrates and Tigris in Mesopotamia, the Indus and Ganges in India, and the Yellow
River and Yangtze in China.

9.2 Old Greeks

Antiquity time was a fruitful era for the development of geared devices and
machines. Many machines with gears were described and passed on to succeeding
generations by great scholars of that era, including the Greek philosopher Aristotle
(384–322 BC), a student of Plato and the teacher of Alexander the Great; Archime-
des of Syracuse (287–212 BC), a mathematician, physicist, and engineer; and Philo
of Byzantium (ca. ~280 BC– a. 220 BC), who was a famous engineer and mechanic.

Aristotle in his works described machines such as the pulley, crankshaft, rollers,
and irrigation devices with gears. Archimedes knew the principle of leverage and
cranes, as well as worm gears. So, Fig. 9.3 illustrates a winch made of a gear train
and a worm for the handle. He is famous for saying: “Give me a place to stand on,
and I will move the Earth,” so the ancient reports have revealed that Archimedes
moved a ship weighing 4200 tons out to sea using a system of levers, pulleys, and
gear trains. Philo of Byzantium was famous for a chain drive and water-lifting device
consisting of a gear and a rack employing also hydraulic principles. He wrote a large

Fig. 9.3 Archimedes’
winch consisting of a gear
train and a worm ended
handle [2]
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a technological compendium entitledMechanike syntaxis (Compendium of Mechan-
ics) consisting of nine parts, which included introduction to mathematics, mechan-
ics, building a harbor, artillery, pneumatic principles and devices, mechanical
amusements, defense preparations, siege craft, and study of cryptography [3].

The Antikythera mechanism (Fig. 9.4) was recovered in 1900–1901 from the
Antikythera wreck. Its significance and complexity were not understood until
decades later. The construction has been dated to the early first century BC. This
precious example of antique genius complexity grade was so high that artifacts of
similar complexity and workmanship did not reappear for a millennium and half,
when mechanical astronomical clocks were built in Europe. All discovered parts of
the mechanism are now in the National Archaeological Museum, Athens.

The true function of the Antikythera mechanism was not understood until
recently, when scientists disclosed its structure and written material by contemporary
methods, which include surface imaging, digital radiography (2D&3D), and com-
puter tomography. The device is remarkable for the level of miniaturization and for
the complexity of its parts and has at least 42 gears, 21 axles and shafts, and
8 pointers [5], although some scientists suggested as many as 72 gears, with teeth
formed through equilateral triangles. The mechanism calculated the position of the
Sun and Moon or other astronomical information such as the locations of planets, so
it can be treated as an ancient analogue mechanical computer. Since the purpose was
to position astronomical bodies with respect to the celestial sphere, with reference to
the observer’s position on the surface of the Earth, the device was based on the
geocentric model [5]. Numerous models, gearings, 3D models, STL models, and
simulations, were produced all over the world based on The Antikythera Mechanism
Research Project (AMRP), and an example is presented in Fig. 9.5.

Fig. 9.4 The Antikythera mechanism: Fragment A—front and rear [4]
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9.3 Roman Times

The underlying mechanism of the sakia type irrigation device was used by many
generations throughout Antiquity and the Middle Ages, with the gear teeth being
perfected, while expanding the use of whim as a source of energy for various tasks.
By expanding their rule over a large part of Europe, the Romans also spread
knowledge inherited from the Greeks and Egyptians. Instead of a whim, the Romans
also used the water energy of rivers or streams by a water wheel on a horizontal shaft,
which drove the conical millstones on a vertical shaft by a gear pair, as illustrated in
Fig. 9.6, left, as an example of Vitruvius’ (c. 80–70 BC to c. 15 BC) engineering
work. He was a Roman author, an architect, and a civil and military engineer. He
wrote The Ten Books on Architecture—De architectura, which influenced artists and
architects from the Early Renaissance onward [6]. However, Vitruvius also designed
drainage systems consisting of several reverse overshot water wheels, e.g., the
fragments found in Rio Tinto mines [7]. Vitruvius also designed a hodometer,
consisting of a set of gears and worms, which dropped a small ball into the box
for each passed mile. Vitruvius himself said that his knowledge derived from famous
old Greek sources [2].

The power from the energy source—a whim or a water wheel—was transmitted
by wooden gears, similar to those shown in Fig. 9.6, right, for over two thousand
years without major changes. Manufacturers of such gears were always master
carpenters. They shaped the water wheels and the geared wheels based on experi-
ence. According to historical sources, such gears on country mills and saws would
have lasted for several decades. The Romans also used waterpower for sawing. The
Roman sawmill at Hierapolis in Asia Minor from the third century incorporated a

Fig. 9.5 The Antikythera
mechanism, 3Dmodel of the
inner structure
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crank and connecting rod mechanism, which was used for saws cutting marble [8].
Water-driven mills and saws with wooden gears could have been found along the
rivers and streams all over Europe until the beginning of the twentieth century, and
some of them are preserved as examples of our technical heritage.

Heron of Alexandria (c.10–70 AD) was an ancient Greek mathematician and
engineer active in his native city of Alexandria, Roman Egypt. He is considered the
greatest experimenter of antiquity [9]. His numerous works start with an aeolipile, a
jet engine which spins when heated. A vending machine, distributing a dose of holy
water after insertion of a coin, a wind-wheel, a force pump, the Heron’s fountain, and
a syringe-like device are also attributed to Heron. Several variants of gear train
arrangements for lifting heavy loads, such as illustrated in Fig. 9.7, are his inventions
as well.

9.4 Middle Ages

In the late Middle Ages, from the thirteenth century on, mining became quite
widespread. Agricola [10] extensively described the development of mining
methods, metallurgical processes, geology, mineralogy, and according law from
the earliest times to the sixteenth century in his work De Re Metallica. Georgius
Agricola, born as Georg Bauer, 1494–1555, was a German humanist scholar,
mineralogist, and metallurgist. He was broadly educated but took a particular interest
in the mining and refining of metals. His work De Re Metallica was published in
1556, one year after his death. This 12-volume work is a comprehensive and
systematic study on all available factual and practical aspects, concerning mining

Fig. 9.6 Roman water mill, according to Vitruvius, left [2]. Appearance of wooden gears, such as
those in water mills after many years of operation, right
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and metallurgy by means of direct observation. Unrivalled in its complexity and
accuracy, it served as the standard reference work for two centuries [11].

The mechanical principles of winding, ventilating, and pumping machinery
described in the book were already known and old. The block and pulley, the
windlass, the water wheel, the transmission of power through shafts and gear wheels,
chain pumps, and piston pumps with valves were all known to the Greeks and
Romans. Devices, used for lifting ore, ranged from simple man-powered windlasses
to rather complex, in both direction operating water wheels. Horse-operated whims
were also often, with the same working principle as ancient sakia as illustrated in
Fig. 9.8 (left). The same applies to the water-lifting device which consists of an iron
frame and three iron axles on which two pairs of drums with rundles and toothed
wheels are mounted with a total reduction ratio of 36. The input axle also contains a
fly wheel to facilitate action, Fig. 9.8 (right), as described in the sixth book of De Re
Metallica.

The specialty of the machine from Fig. 9.8 (left) is the usage of a brake. A miner
in the shaft pushed the vertical beam down and thus lifted the braking beam up by
reverting the oscillating beam and stopped the braking wheel. This machine could
have lifted ore 240 feet, and up to four horses could have rotated the whim,
depending on the actual depth and loads. Nevertheless, waterpower was the limiting
factor of the mine shaft depth. This did not change until the discovery of the steam
engine which offered a new, powerful source of energy. Parallel to mining, crafts-
manship was also thriving. Able self-taught masters honed their skills and learned
how to make complex wooden gear wheels by hand, while in the meanwhile, with
the advancement of metallurgy, they also began to manufacture cast iron gears.
Despite the widespread use of gears to transmit movement and energy, manufactur-
ing was still based on previous experience. The whims were also widely used in
agriculture, e.g., for threshing.

Fig. 9.7 A worm winch for
lifting loads [2]
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9.5 Mechanical Clocks

Sun dials and water clocks were introduced to Europe by the Romans and perfected
by Arabs. The rare “horologes” during the Middle Ages were water powered. The
word clock (from the Latin word clocca, “bell”), which gradually supersedes
“horologe,” suggests that it was the sound of bells which also characterized the
prototype mechanical clocks that appeared during the thirteenth century in Europe
[12]. These devices were often without hands, indicating time only by bells, telling
people to attend service. Churches and monasteries needed to know the precise time
to perform their duties, so the first mechanical clocks were developed by monks in
monasteries. The first mechanical clock with hands in Germany dated to 1304 and
was situated in the Benedictine monastery of Erfurt [2]. It was driven by a weight
and regulated by a simple step regulator. In that period, similar clocks appeared in

Fig. 9.8 A whim-based lifting machine. A, toothed drum which is on the upright axle; B,
horizontal axle; C, drum which is made of rundles; D, braking wheel; E, drum made of hubs; F,
brake; G, oscillating beam; H, short beam; I, hook (left). A water-lifting system. A, iron frame; B,
lowest axle; C, fly wheel; D, smaller drum made of rundles; E, second axle; F, smaller toothed
wheel; G, larger drum made of rundles; H, upper axle; I, larger toothed wheel; K, bearings; L,
pillow; M, framework; N, oak timber; O, support of iron bearing; P, roller; Q, upper drum; R,
clamps; S, chain; T, links; V, dippers; X, crank; Y, lower drum or balance weight (right) [10]
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Italy, France, and England, e.g., Canterbury Cathedral installed a “great horologe” in
1292. The complexity of the geared mechanism of such clocks is represented in
Fig. 9.9 showing the clock mechanism of the Überlingen cathedral tower near
Bodensee [2].

The gears were from iron, and the wheels were forged and geared manually,
shaped by an experienced master. The clocks of the period were powered by
weights, and the introduction of springs in the fifteenth century was highly advan-
tageous. Christiaan Huygens used a pendulum for clocks in 1656 [13], which
increased accuracy of mechanical clocks. With an increased demand for clocks,
the reputation of the clock-making profession grew, and the number of clockmakers’
guilds and masters increased, which led to the accelerated development of clocks,
their miniaturization, and increased precision.

9.6 Leonardo da Vinci

Leonardo da Vinci (1452–1519) was the most famous engineer of all time. He left
the legacy of his ideas of gear transmission in the form of sketches. So, he sketched
numerous geared arrangements, e.g., helical gears, bevel gears, worm gears, and
noncircular gears, however without precise teeth definitions. Leonardo was directly
involved with the technological issues of his time and sought to find answers to
questions with a pencil in his hand, drawing solutions to an issue, which could not all
have been realized at the time. In any case, his sketches present solutions and reflect
the technology of the time. Although Leonardo left a multitude of sketches on
transmitting power and movement from one shaft to another, he did not study

Fig. 9.9 Überlingen clock
mechanism, 1540 [2]
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teeth flanks, so he did not contribute to the advancement of teeth theory. In order to
give an idea of the ingenious art of sketching without redrawing, Fig. 9.10 shows an
example of a mechanism as an assembly and in detail where angular and ratchet
toothed wheels were used to convert back and forth movement to a concurrent rotary
motion.

Agricola already described iron gears in his work De Re Metallica. Since its
durability this already signifies the discovery of new, improved teeth flanks.

9.7 Great Scientists from the Sixteenth to the Eighteenth
Century

Modern gears, which transmit power and movement uniformly, are based on the
application of mathematical curves in the design of teeth flanks and discovered by
great scientists in the sixteenth and seventeenth centuries, Galilei, Desargues, de la
Hire, Camus, and Euler.

The first was Galileo Galilei (1564–1642), who, after having finished his studies
in medicine, devoted his research to geometry and the mathematics of plane curves.
In his 1598 treatise, he was the first to name and mathematically define curves
generated by a point on a circle rolled along a straight line or along another circle of a
cycloid. In addition to other laws of nature and physics, his discoveries include the

Fig. 9.10 Leonardo’s
sketch of the geared device
from “Il codice Atlantico”
[2]
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law of oscillation of the pendulum (1583) and free fall. He also improved the
telescope (1609). Galileo was a professor of geometry, mechanics, and astronomy
at the University of Padua until 1610. Since he was spreading and teaching helio-
centric system, he was sentenced to the house arrest in 1633. During this time, he
wrote works on new disciplines, now known as kinematics and strength of materials
[14].

French architect and engineer Girard Desargues (1591–1661) was the first to use
cyclic curves for practical purposes. He is also considered the predecessor of
descriptive geometry and is known particularly for his work on conic sections
(curves obtained by intersecting a cone with a plane). Desargues is also known for
constructing a system for raising water, which he installed near Paris, using the
principle of the epicycloidal wheel [15].

Some of Desargues’ work is known only from the records made by his student
Philippe de la Hire (1640–1718), French physicist, astronomer, mathematician, and
engineer, who learned from Desargues all that was known about cycloids at the time.
A treaty on epicycloides and their usage in mechanics was published in his 1694
book entitledMémoires de mathématique et de physique [16]. Philip de La Hire was
the first to describe the use of epicycloids for gears that ensured a uniform transmis-
sion of rotation [17]. Such a gear with a one-sided epicycloidal gearing with eight
teeth is shown in Fig. 9.11 (left), while Fig. 9.11 (right) shows a pin gearing, for
which de la Hire designed the correct shape of the tooth flank by generating an
equidistant curve for the involute. Until recently, such gearing was used in raising
mechanisms for small floodgates in water-powered sawmills. De la Hire explored the
use of cycloids for the shape of teeth flanks of special gears.

In his work “Sur la figure des dents des roués et des ailes des pignons pour rendre
les horologes plus parfaits” (1733) Charles Etienne Louis Camus (1699–1768), a
mathematician and professor from Paris [18], discovered the conditions that have to
be fulfilled for a pair of gears. This condition is defined by the following: “if, in
uniform rotation, power is to be transmitted by a pair of teeth, then the normal to the
teeth flanks at the contact point P (on the path of contact) must pass through the pitch
point C” [2], as illustrated in Fig. 9.12, which is exactly the law of gearing known
today.

This can be illustrated by a pair of cycloid gears with a rolling circle whose point
P generates a hypocycloid on the pinion with a straight tooth flank, while the gear
tooth flanks have the shape of an epicycloid. The teeth flanks come into contact on
the path of contact where both flanks have a common tangent and normal, the latter
passing through the pitch point C.

Independently of de la Hire and Camus, Leonhard Euler (1707 Basel–1783 St.
Petersburg) sought the most advantageous shape of gear teeth flanks, and according
to Jacobi, [19] in 1752 he was the first to publish a treatise on the usefulness of the
involute for the shape of gear teeth flanks [20]. His concept of involute gearing
shown in Fig. 9.13, left, is in common use today. Euler also discovered that the
uniform transmission of power by gear teeth flanks always involves friction, which
causes loss of energy. He also showed how to graphically determine the radii of
curvature, which is presented for a pair of cycloid gears in Fig. 9.13, right. During
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Fig. 9.11 Single-sided pin gearing (left); pin-gear rack driven by a single-sided gearing with an
equidistant involute flank (right)

Fig. 9.12 Illustration of
Camus’ gearing principle
from 1733
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the rotation of the gears, the normal to teeth flanks at contact point must always
pass through the pitch point C, which is why the instantaneous center of rotation is
at point D, while at the same time the gear also rotates around axis O1, which is
why the curvature center of the tooth flanks must be at contact point P, i.e., the
intersection Q of the normal to the teeth flanks at the contact point and the
connecting line DO1. Since the diameter of the rolling circle is equal to half of
the pitch diameter of the big gear, the tooth flank of the big gear in this illustration
has the shape of a straight line with the curvature center in infinity. Euler and
Savary together devised an analytical method for determining the curvature centers
of gear teeth flanks.

Christiaan Huygens (1629–1695) also had a major impact on the accelerated
development of gears, when he made the pendulum clock in 1656/1657. The
Huygens clock, which he patented in 1657, was very precise for its time, and
with later improvements it could also display minutes as well as hours. Gears
were used to transmit movement from the escapement mechanism to the han-
dles, and weights for driving the pendulum. In the following years, Huygens
also made a clock whose gear mechanism was driven by a spiral spring made of
steel.

Discoveries by Galileo (doctrine of cycloids and the law of the pendulum, 1583),
de la Hire (normal to the tooth flank, 1694), Camus (law of gearing, 1733), and Euler
(involute gearing, 1752) can be treated as the basis for the development of contem-
porary gears. The era of the early development ended when the first steam engine
was successfully constructed at the beginning of the eighteenth century. This was an
exceptional milestone for humanity, as it was now possible to translate heat energy

Fig. 9.13 Euler’s involute gearing (left); curvature centers of teeth flanks at the contact point in the
case of a cycloid pair of teeth (right)
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into mechanical operation based on natural laws, and marked the time when
machines began to perform physical tasks previously done by people and animals.

9.8 James Watt

James Watt (1736–1819) was a Scottish inventor, mechanical engineer, and chemist
who improved Thomas Newcomen’s (1712) steam engine with a design enhance-
ment, the separate condenser (1776), which was fundamental to the changes brought
by the Industrial Revolution. The separate condenser avoided huge waste of energy
and radically improved the power, efficiency, and cost-effectiveness of steam
engines. He adapted his engine to produce rotary motion and, thus, greatly broad-
ened their use beyond pumping water [21]. Figure 9.14. shows the double-action
steam engine, designed by Boulton andWatt, which included a centrifugal governor,
yet another Watt’s invention.

The first steam engines were simple piston engines used for drawing water from
the mines, and based on them a double-action rotary shaft engine was developed in
1781. In 1770, Watt introduced a unit for power based on horsepower “HP”
(1 HP ¼ 75 kpm/s), and the watt unit for measuring power was named after him
(1 W ¼ J/s). He invented a centrifugal speed governor for his machines, which had
“rapid” velocity for the time – 40 movements per minute – which later decreased to

Fig. 9.14 Engraving of a
1784 steam engine designed
by Boulton and Watt [21]
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30 movements per minute. Although the crank shaft was already known in Roman
times, the patent was granted to Watt’s opponent. Watt overcame this obstacle with
planetary gears, as shown by Fig. 9.15, where a planetary gear is rigidly attached to
the connecting rod of the tandem, while the sun gear is attached to the driven shaft
[22] (Encyclopædia Britannica Online, “James Watt,” 2020).

The new steam machine immediately became extremely popular, and in 1784 the
Albion milling company ordered a Watt steam machine with a rotary shaft and gears.
The machine, with a power of 20 PS to drive 20 mill stones, was built in 4 years, and
in 1788 there was a ceremony to mark the beginning of operations. The gears had
cycloid teeth flanks and were made by hand from forged iron. Watt and Rennie
assessed in 1783 that teeth in corresponding gears were submitted to bending, so
their calculations were adjusted accordingly. After the first successes, the develop-
ment of the steam engine blossomed both in terms of construction and use. The first
railways were laid on land, and the first steam ships started sailing the sea.

9.9 Electricity and Combustion Engine

The successful introduction of the Watt steam engine in the eighteenth century was
followed by new successful inventions in the nineteenth century, dealing with
electric power. Thus, the Belgian Zenobe Gramme (1826–1901) in 1870 invented
the first electrical generator producing direct current. Nikola Tesla (1856–1943) in
1885 discovered the rotating magnetic field of alternating current. As a result of
Tesla’s work, the Niagara power-plant producing 3.7 MW (5000 HP) of electric
energy from AC generator was connected to grid in 1895.

Fig. 9.15 Watt’s planetary gears for the transmission of the piston movement into shank rotation:
(left) for external gear pair; (right) internal gear pair [2]
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On the other hand, in 1861, Nikolaus August Otto (1831–1891) patented the first
internal combustion engine running on petrol, and in 1892 Rudolf Diesel
(1858–1913) patented the internal combustion engine running on gas, while Karel
Benz (1844–1929) and Gottlieb Daimler patented an engine-driven automobile
almost at the same time, at about 1887. These inventions demanded a much higher
quality and loading capacity of gear transmissions. In addition to the already
mentioned inventions, the discovery of the high-pressure steam turbine developed
by the Swede Gustav de Laval (1819–1913) in 1887 and the low-pressure turbine
designed by Charles Algernon Parsons (1854–1931) the same year should be
stressed.

The enthusiasm over new sources of power and possibilities for mechanical
operation gave birth to ambitious goals, which included a rack railway to the
Jungfrau in Switzerland. In 1894, the entrepreneur Adolf Guyer-Zeller
(1839–1899) was granted a license for the construction of the 9.34 km rack railway
from the Kleine Scheidegg station at 2.061 meters to the Jungfraujoch summit
station at 3.454 meters (Fig. 9.16).

The construction of the railway with the gauge of 1 m began in 1896 and was built
in four stages. It was inaugurated in 1912. The difference in height between the
upper and lower station was 1.393 m, the average operational speed was 12.5 km/h,
and the average gradient 15% and maximum gradient 25% [23]. Figure 9.15 (left)
shows the view of the electrical AC locomotive of 50 Hz, 500/550 V with 240 HP at
the gear and a detailed view of the rack and gear of app. 70 cm, Fig. 9.15 (right),
design-type Strub [2]. The successful project was remarkable at the time.

Fig. 9.16 (left) Jungfrau locomotive; (right) gear and rack
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9.10 Impact to the Gear Science in the Nineteenth Century

Remarkable scientists of the eighteenth century laid the foundations and laws for
designing teeth flanks, which were followed by more elaborate designs considering
special machine parts for power transmission. Together with the development of
energy machines came the development of processing machinery, which had specific
issues regarding speed, which were overcome by gearboxes. Production demands for
gears in a higher quality grade rose accordingly, but the manufacturers had limited
knowledge. Due to the need for much greater loads and speeds, the gears had to be
made of more durable materials, which posed the problem of manufacturing the
required design of teeth flanks. This led to calls for uniform manufacturing
guidelines.

Robert Willis (1800–1875) was a professor at Cambridge, who in 1841 published
the book, entitled Principles of Mechanisms [24], where he compiled the lectures for
his students and knowledge about gears which could be used in practice. At the time,
gears were mostly made from cast iron, which made correcting casting-related
mistakes a great problem. In 1836, Willis presented his idea on the unification of
the shape of gear teeth with the gear train composed of three gears. His suggestion
implies that the gears should be interchangeable, which means same pitches and
same teeth sizes and an arbitrary number of gear teeth, ranging between z ¼ 12
and z ¼ 1. He expressed the listed requirements with a “module,” which he
designated with the letter M and defined as the quotient of the pitch t and the number
π (M ¼ t/π). He also defined pitch circles with a given number of teeth and pitch t,
whose diameter was expressed with the product of the module and the number of
teeth, d0 ¼ M z. He chose a uniform height of the teeth, which was equal to the
module (h¼M). Sometime later (1873), Paul Hoppe [25], similarly as Willis before
him (Fig. 9.17, left), expressed the unification of teeth sizes with the threesome
involute gear train (Fig. 9.17, right).

Willis also studied the effect of the contact angle on the shape of teeth. He found
that 15� is the appropriate value when the number of teeth is limited (under-cutting
when z < 15). The shape of gears was determined by the number of teeth z,
module M, and pressure angle.

Franz Reuleaux (1829–1905) was one of the professors who were strongly
involved in the development of gears. He studied the effect of the contact path on
the shape of gear teeth flanks and the flank load carrying capacity. He stated, based
on his research, that involute gears are the most advantageous. He became famous
for his textbook Construkteur (1861), which focused on the topics of design in
mechanical engineering and the kinematics of gear pairs.

The development of the tooth flank profile shape was completed until the end of
the nineteenth century. The law of gearing, which uniformly defined the relations
between the contacting teeth flanks and the path of contact, was affirmed. Based on
the above, the involute gearing prevailed as the most advantageous shape of teeth
flanks.
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9.11 Gear Manufacturing

Edward Sang (1805–1890) defined a rack as a gear with an infinite radius whose
pitch circle is a straight line in his book New General Theory of the Teeth of Wheels
(1852) [27]. And in 1861, Carl Hermann Wiebe (1818–1881) defined a rack for
involute teeth flanks where the common normal passes through the convergence
point of two involutes, always through the same point on the line connecting the axes
of base circles, which also means that all contact points represent the path of contact
and that the rack teeth flanks are straight [28].

The basis for manufacturing cylindrical gears by rolling with a spiral milling
cutter was first constructed and patented in 1856 by German engineer Christian
Schile in Oldham. Schile was the first to carry out the coordinated movement
(rotation) of the workpiece (gear) and worm milling cutter, but he did not realize
the manufacturing machine. The latter was constructed based on an American patent
first in 1887 by George Grant (1849–1917) and in 1894 by Julius Eduard Reinecker
(1832–1895) from Chemnitz. The Reinecker Company was the first German factory
that produced machine tools for manufacturing gears by rolling with a worm milling
cutter [2].

Hermann Pfauter (1854–1914) from Chemnitz substantially improved
Reinecker’s system of manufacturing gears with a worm milling cutter and patented
the improvement in 1900, receiving the patent entitled “Pfauterverfahren.” He, too,

Fig. 9.17 Threesome gear train (left) after Willis; (right) after Hoppe (in [2])
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founded a factory of machine tools for serrating gears by rolling with a worm milling
cutter (Hermann Pfauter [29]).

Parallel to the development of gear manufacturing with a milling cutter, a gear
shaper system with a straight rack tool and the Fellows gear shaper system with a
circular rack tool were also developed. The gear shaper system with a straight rack
was realized by Reinecker and in 1908 by Max Maag (1883–1960), while the gear
shaper system with a circular rack was realized in 1896 by Edwin Fellows
(1865–1945) [30].

9.12 Gear Development until 1940

At the turn of the century, the use of involute gearing was already established in
general engineering and heavy industry, while cycloidal gears were mostly used in
fine mechanics. Moreover, also known were effective methods for manufacturing
gears either by rolling with a milling cutter or by a straight or a circular shaping
(Fellows). The development of gears was closely connected to the development of
energy machines at the time, which was based on emerging higher education courses
in applied sciences in developed European countries that also comprised machine
elements, design, and technical drawing. The knowledgeable graduates intensely
worked on developing energy and processing machines, whose power, rotational
speeds, and consequently complexity of gear arrangements grew rapidly. In general,
the speed of energy supplying machines did not correspond to the needs of
processing machines, which was resolved by gear transmissions.

Major sources of power became the quickly developing electric motors, which
drove processing machines via added or built-in gears. Werner von Siemens
(1816–1892), who built the first electric railway in 1879 [31], deserves special credit
in this respect. Parsons’ (1854–1931) low pressure steam turbine (1884) was also
gaining importance [32]. Thus, power of anew installed devices scaled rapidly as
well as the demand for appropriate gears. In power plants, steam piston engines were
replaced by steam turbines, which also began driving large freight, passenger, and
military ships. Steam turbines of high-power outputs (from 30.000 to 70.000 HP)
and rotational speeds between 4000 and 5000 RPM were used to run propellers on
big ships. Rotational speeds of the ship propeller should be substantially smaller,
depending on the type of propeller, which was overcome with high-performance
turbine gear transmissions.

Manufacturers of all types of vehicles became new customers of specially
designed gears. The field developed quickly, so a new plant for manufacturing
high-performance gears with the MAAG system was built in Friedrichshafen to
satisfy the demand of the automobile and aviation industry.

Other industries also imposed new requirements for gearings, which included
highly loaded but slower running gears used in transport devices and lifts, quietly
operating gears used in the textile industry, high-performance printing machines, and
particularly demanding high precision gears for machine tools.
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The widespread use of gears required standardization, so in 1927 tools for
manufacturing involute gears were standardized (DIN 867) [33] along with the
prescribed modules, pressure angles, and uniform addendum size equaling the
module. Gear manufacturing by rolling enabled the rack profile shifting, which
furthermore enabled the improved kinematic characteristics of gears. Materials for
gears changed from cast iron at the turn of the century to alloy steels in the 1930s.
High-quality and stronger steel was made in electric arc furnaces. With tempering
and surface heat treatment, gear teeth flanks became more durable, and gears became
smaller and achieved greater load-bearing capacity. Besides steel, brass and plastic
materials were used for gears in fine mechanics. Improved tools and new machinery
shortened production time. Moreover, new machines and cutting tools also perfected
treatment processes, such as grinding, honing, and lapping, achieving smoother teeth
flank surface.

Dimensioning of gears also greatly improved in the first half of the twentieth
century. In this respect, Stephen P. Timoshenko (1878–1972) in 1925 based on the
theory of elasticity [34] improved theoretical foundations of gear teeth root strength
dimensioning, whereas Robert V. Baud (1894–1970) in 1925 elaborated the stress
state of gear teeth by the principles of photoelasticity, which was proved by
Timoshenko [35]. Both highlighted that the basic factor influencing the root strength
of a tooth was stress concentration on the fillet, so that a rounding between the
dedendum and root circle needs to be considered.

Wear of gear flanks was recognized even before the end of the nineteenth century
on the gears made of gray cast iron. When the wear and pitting damages were
detected on steel gears, it was realized that this was due to flank load. Hertzian
pressure, which became a measure of the tooth flank load, was formulated by
Heinrich R. Hertz (1857–1894) in 1881. Major researchers in the field of gearings
studied the application of the Hertzian equation for designing teeth flank, including
August Föppl (1854–1924), who presented Hertz’s theory for the first time to a wide
circle of engineers in Munich in 1897 [35]; Earle Buckingham (1887–1978), who
studied Hertzian equation regarding the influence of load on flank wear considering
the material and the pressure angle and presented his findings to AGMA in 1926; and
Gustav Niemann (1899–1982) who in 1938 studied the rolling strength based on
Hertz’s theory and depending on the surface state, hardness, and loading [25].

With the development of working and energy supplying machines, the mechan-
ical loads and working speeds increased and thereby also the heat produced due to
friction, which could have caused severe damage due to the scuffing of teeth flanks.
In 1931,Hermann Hofer (1891–1963), who was the head of gear development at the
ZF factory, suggested that the measure of scuffing risk should be the limit value
A ¼ P n1/b, with P being the tangential force on the teeth, n1 rotational speed of the
pinion, and b the tooth width. With numerous tests on gears of various intended
functions and loads (automobile industry—gearboxes), Hofer obtained a partial limit
value A’ for each test and then calculated the average limit value A ¼ 70,000. This
means that particular gear pairs are scuffing resistant during operation if their
resistance Sa ¼ 70,000/A’ < 1 [25].
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John O. Almen (1886–1973) was employed at GM’s (General Motors) research
laboratory and defined the measure of scuffing risk load as the product P V < PVmax,
with P being the Hertzian pressure, V the sliding speed of one flank along another at
a contact point, and PVmax experimentally obtained value [25].

Dutch researcher H. Blok chose flash temperature Tfl,max at the most exposed
point of contact for the measure of scuffing risk. Blok presented his “flash temper-
ature” concept and equation in 1937. Tfl is a consequence of friction and the sliding
speed of the contact surfaces. During operation, the teeth are scuffing safe if Blok’s
flash temperature is lower than the permissible one determined by tests [37].

Based on these important development milestones, one can see that the develop-
ment of geometric characteristic and the manufacturing of gears from the turn of the
century to World War II reached a high level of industrial production in all
industrially developed countries. Many new shapes were possible and could have
been manufactured by advanced machinery; however, according to the current needs
in terms of production and operating features, involute gears were the most appro-
priate. The production of gear increased along with the growing needs and the
expansion of the engineering field.

Several gear types were developed depending on the position of the shafts and
transmission rates, e.g., cylindrical, helical, bevel, and worm gears. During decades,
the cutting technology greatly improved and was supplemented by fine machining
for lower surface roughness and heat treatment. New materials, particularly alloy
steel, made possible less weight and better durability, and special materials enabled
production of gears operating in special atmospheric and temperature conditions.
Due to higher complexity and demands, gear manufacturing faced requirements
toward smaller tolerances; consequently corresponding machine tools and cutters
were developed, as well as necessary measurement equipment. Standards defining
gear qualities for various applications were enforced. Unfortunately, this also
enabled more lethal war machinery helping effective ruination of previous achieve-
ments and welfare of our civilization during World War II. The corresponding
knowledge retained, and the development soon continued with an accelerated pace
in the new millennium. Some notable scientists, who contributed to new achieve-
ments and disseminated their knowledge, are professors H. Winter and B.-R. Höhn
from TU Munich, D.W. Dudley from California, F.L. Litvin from the University of
Illinois at Chicago, and S.P. Radzevich (EATON Corporation, Detroit, USA).

9.13 Need for Standardization

After World War II there was a strong need for renovation and consequently for
research and development and consequently for standards in industry. In 1947, the
International Organization for Standardization (ISO) was founded in London. The
organization adopted iso, based on the Greek word isos (ἴσoς, meaning equal), as the
universal short form of its name [38]. ISO became a network of the national
standards institutes, which enlarged from initially 25 to already 164 countries, one
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member per country, with a Central Secretariat in Geneva, Switzerland, that coor-
dinates the system. And within its framework, the ISO committee TC60 for gears
was founded. The ISO committee coordinates development of recommendations and
standards in the field of gears, and its members come from research institutions or
gear manufacturers in their countries, where all gear-related activities are conducted.
Besides international, there are several national organizations dealing with gears,
e.g., AGMA in the USA, BGA in the UK, VDI in Germany, IET in France, JSME in
Japan, and CMSE in China. The International Federation for the Theory of Machines
and Mechanisms (IFTOMM) was founded in the town of Zakopane, Poland, in
1969, initiated by professor Artabolevky [39]. Its members largely focused on gear
research. The foundation of the theory on elasto-hydrodynamic lubrication is among
the most important developments of this later period. Regarding production, auto-
mated manufacturing of the highest-quality gears is the most prominent. The belief
that involute gears are the best solution persists, and a lot of research work has been
and is conducted in this context. Despite the engineering industry at the turn of the
third millennium can offer almost perfect involute gears, they might not be appro-
priate for all tasks faced by the industry today.

9.14 New Gear Tooth Flank Shapes

The perfect, optimal shape of involute gears transmits power by the convex-convex
contact. However, the intrinsic property of the involute gear is their curvature radius
function in the dedendum part when approaching the base circle. Values in general
are small and limit to zero at the base circle, and therefore high contact loads in this
area. Additionally, for gears with low number of teeth, the dedendum flank is
comparatively short, thus invoking excessive sliding and friction losses. Yet another
problem is undercutting of the dedendum area. This was why numerous gear
developers sought new solutions to make the teeth flanks of the driving and the
driven gears fit together better.

In view of this requirement, the concave-convex pair seems an obvious solution,
which was precisely what researchers and inventors suggested. Let us mention only
a few, the most characteristic ones, in this paper.

In 1921, Francis John Bostock (1881–1943) and Swinfen Bramley-Moore filed a
patent for the VBB gearing (Fig. 9.18), which was bought by Vickers shipbuilding
company after successful tests in 1924 [25]. The VBB gearing is based on a
mathematically defined curved contact path. The tests showed that flank stiffness
increased three to four times. With the VBB gearing, Vickers manufactured a large
number of turbine gearboxes for powers ranging between 450 and 19,000 HP and
rotational speeds between 5.9 and 44.2 m/s. Despite its great initial success, VBB
gearing did not survive in practice. H.W. Harrison reported that the reason for this
was that it was too noisy during operation and the susceptibility to changes in the
distance between axes.
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Ernest Wildhaber, a development engineer at Gleason, worked along the same
lines. In 1923, he designed, and in 1926 [40] a US patent was granted for a concave-
convex gear pair whose flanks are in the form of arcs with the curvature center near
the rolling circles. In 1955, M.L. Novikov designed similar pair of profiles, which he
patented in 1956. [41] Working gearing has the point contact of teeth flanks and can
operate only as helical gearing. The Wildhaber tooth flank profile is in normal
section to the helix, while the Novikov gear profile in Fig. 9.19 is shown in the
front view (in the direction of the gear axis).

Extensive research was carried out on the load-bearing capacity of WN gears.
And researchers largely agree [42] that untempered WN gears have approximately
three times higher flank strength than the same size involute gears, while surface-
hardened or tempered involute gears are superior to WN gears. Wildhaber failed in
researching his gear to such extent that would enable users to learn their qualities, so
they were never included in production.

On the contrary, Soviet engineers did study Novikov gears and use them widely
in oil pumps, compressors, tractors, construction machines, etc. The Russians also
developed the Novikov gear with double contact, as represented on a rack in
Fig. 9.20, which is defined by the Russian standard GOST 17744–72. The Chinese,
who follow advancements achieved in Russia, also use Novikov double-contact
gears to a great extent, prescribed by the Chinese standard JB 2940–81. However, it
should be noted that gears according to Wildhaber’s patent and those according to

Fig. 9.18 VBB gearing (Vickers–Bostock–Bramley), (left) gear pair z1 ¼ 30, z2 ¼ 180; (right)
z1 ¼ 30, z2 ¼ 1 (rack)

Fig. 9.19 Novikov gears
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Novikov’s patent differ, so the naming of WN gears is inappropriate [43]. Litvin [44]
stated that Wildhaber’s gearing had a line-type contact and the Novikov’s, a point-
type contact. Also gear pairs with intersected axes and crossed axes can be designed
based on the idea proposed by Novikov [14].

Another attempt is that ofHawkins, who in 2005 [45] patented non-involute gears
with conformal contact. In 2009 G. and J. Hlebanja [46] proposed a new version of
WN gears, UPT (uniform power transmission) gears, illustrated in Fig. 9.21.
According to this proposal, the tooth flank profile is comprised of three circular
arcs, with the first arc forming the addendum, the second forming the dedendum, and
the third arc forming the intermediate section, which prevents the flanks from
touching as they rotate around the kinematic pole C. The advantage of this solution
is a simple flank geometry, which is easier in terms of tools, while the relative
rotation of one gear vis-à-vis its pair is similar to the movement of the shaft in the
bearing. The essential element of the UPT gears is the absence of a pitch line and the
gear-teeth contact in the transverse plane. In addition, there is no sliding between the
teeth flanks in the transverse plane. Power is mainly transmitted by the rolling of the
teeth flanks at both contact points, with the simultaneous sliding of the teeth flanks
around the pitch point C. The contact load is divided into two contact points. Better
lubrication conditions can be expected because of the thicker oil-film thickness and
lower heat generation. And the most important features of the UPT gears are
non-intermittent sliding and power transmission. These features indicate that UPT
gears can be used with heavy loads in non-stop operating condition, for example, in
the power transmission of wind turbines, gear units for refinery services, and similar
applications.

Despite prevailing use of involute gears, there exists a permanent need for
improved gears with such features as a convex-concave contact, a stronger root,
improved curvature radii, better lubrication conditions, etc. Such an attempt was
implementation of a gear pair based on the curved path of contact, which implied a

Fig. 9.20 Rack for Novikov gear with double teeth contact

428 J. Hlebanja and G. Hlebanja



concave-convex fit of the meshing gear teeth flanks at meshing start and end zones.
The path of contact is a sequence of contact points of the meshing gear pair, which
transmits rotation, where each contact point complies with the law of gearing. The
path of contact should also warrant sufficiently high contact ratio. The contact load
in the kinematic pole C depends on the initial pressure angle αC. The starting
pressure angle αA is limited due to the contact ratio and contact load. The condition
for manufacturing gears of the same module with an arbitrary number of teeth by the
same tool profile is the half-symmetrical path of contact. Gears are designed with
regard to their root strength and flank durability. The path of contact shape and the
root fillet influence the root thickness, whereas the flank shape essentially influences
its durability. The basic factors influencing flank durability are the reduced radii of
curvature and amount of sliding. So, higher radii imply lower Hertzian pressure.
Also, the sliding circumstances are essentially improved in the case of convex-
concave contact. The research showed that areas of the path of contact with a higher
curvature imply lower sliding and higher reduced radii of curvature. Due to the
necessity of the stronger oil film in the meshing start zone, the path of contact
curvature in that area should be higher, and the path of contact takes on a distinctive
S-form.

This tooth flank form was used in grooved roller gears for rolling mills. It was
successfully installed in the Sisak rolling mill, with variations in other facilities.
Gears were helical, β¼ 28�, and transmitted 1500 kW at 80 up to 160 RPM. Material
was alloy steel 30CrMoV9 [47]. The tooth profile is illustrated in Fig. 9.22. Initially,
in the facility the involute gearing was installed, which suffered severe scuffing in
the gear teeth dedendum and addendum areas soon after installation. S-formed
gearing was an essential improvement, operating for several decades, so it was
also reported in Niemann and Winter 1989 (p. 43). Experiences with the gears
featuring the curved path of contact and corresponding shape led to the mathemat-
ically defined S-gear shape. Recently, J. and G. Hlebanja [48] presented a new
method of designing gears based on the basic rack tooth profile. The simplified

Fig. 9.21 UPT gears proposed by Hlebanja; rack profile (left); UPT gear pair with mn ¼ 5 mm;
z1 ¼ 12, z2 ¼ 20 (right)
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expression that defines the positive part (where C is the origin) of a rack profile flank
is:

yPi ¼ ap 1� 1� xPið Þn½ � ð9:1Þ

The rack profile flank definition can be regarded as a cutting tool definition. Each
rack profile then designates a single (curved) path of contact and corresponding
external or internal gears with arbitrary numbers of teeth. The discussion of the
S-gears is presented in Chap. 2. So, let us only briefly mention some features. The
mating gears exhibit convex-concave contact in the vicinity of the contact start and
contact end. The minimal teeth number of spur S-gears can be as low as four. The
S-gear tooth flank profile assures higher comparative curvature radii, and thus lower
contact load and higher relative velocities of the contact surfaces which imply better
lubrication. Due to their S-shape, the velocity characteristics of mating gears are
improved, especially in both meshing limit areas with high relative velocities and
low sliding. The meshing start zone in involute gears represents potential danger of
micro-pitting, whereas S-gears exhibit advantage in this context due to the ticker oil
film in this area, which diminishes possibility of damage. Another important feature
of the S-gears is more evenly distributed contact point density, which causes lower
sliding and less power losses. The dedendum flank of pinion is not substantially
smaller as that of gear addendum even for low number of teeth. Therefore, authors
believe this gear type can be a successful substitute for involute gears for diverse
applications, like gearboxes for wind power plants on the large scale and miniature
plastic gears for various purposes.

9.15 Conclusion

Millennia ago, humans invented machines driven by animals which could perform
useful work for them. Energy was transmitted by the movement of gears to those
elements which perform the given task. In all periods, from the first irrigation

Fig. 9.22 Industrial
implementation for rolling
mills [47]
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devices along the Nile to this day, gears have been essential composite parts of
machines, transmitting energy from the source to the user. For millennia, wood was
the only material available for making gears, and humans or animals the only sources
of energy. Such systems are still in use in agriculture in some places of the planet.
The first iron gears date back to when the steam engine became the source of power,
while the use of involute machines dates back to Euler. Machines for manufacturing
gears followed industrial needs of the nineteenth century and were further developed
with the accelerated pace in the twentieth century. In-depth scientific work and
standardization followed World War I. After World War II, Novikov gears were
developed, which are widely used in Russia and China, while involute gears are
preferred in the West. Further, many efforts have been made to design even better
geometry. S-gears can be regarded in this way, with some features, which can cope
with arising problems with new industrial applications with standardized involute
gears.

One of the great names of gear science is Darle W. Dudley, who presented the
development of gears at a conference on gears in 1988 in Zhengzhou in China,
concluding his presentation with a centennial forecast [49]. The set targets have
already been achieved and even exceeded in the 25 years since. Today, we can also
concur that the difference in the rotational speed of energy and working machines is
not overcome. This cannot be always solved by direct driving electro-motors, which
means that gears and the development of the field will still be needed.

Despite systems are becoming more electrical, even mechatronic, their improved
functionality with increased power consumption requires reliable mechanical sub-
systems. The essential parts of such systems are various gear arrangements with
increasing demands (e.g., higher power density, lower noise, lower cost, increased
reliability, and service life), so the research in this area keeps pace. Results are
improved materials; manufacturing methods like power skiving and 5D CNC
machining; improved calculation methods and programs, e.g., KiSSsoft; guidelines
for calculation of gears made of plastics and their testing methods, e.g., VDI
Richtlinie 2736, parts 1 to 4; improved gear shapes; and more. So, the research
interest can be observed in numerous published papers and conferences, like AGMA
Fall Technical meetings or biannual VDI Conference on Gears in Garching near
Munich with more than 600 participants.
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Appendix A: Elements of Differential Geometry
of Surfaces

The discussion in this book is focused primarily on the elements of theory of gear
cutting tool design.

The gear and the pinion tooth flank and their motion in space in relation to one
another are analytically described in a reference system. An orthogonal
“Cartesian”1 reference system is a major kind of reference systems that is com-
monly used for this purpose. Mutually perpendicular coordinate axes of a “Carte-
sian” coordinate system are conventionally labeled as X, Y, and Z.

In a “Cartesian” reference system, the axes can be oriented in either a left- or
right-handed sense. A right-handed “Cartesian” reference system is preferred, and
all algorithms and formulae used in this book assume a right-handed convention.

A coordinate system provides a numerical frame of reference for the three-
dimensional space in which the theory is developed. Two coordinate systems are
particularly useful to us: the ubiquitous “Cartesian” (XYZ) rectilinear system and
the spherical polar (r, θ, φ) or angular system. “Cartesian” coordinate systems are
the most commonly used, but angular coordinates are often helpful as well.

1René Descartes (March 31, 1596–February 11, 1650), (Latinized form: Renatus Cartesius), a
French mathematician, philosopher, and writer
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Specification of a Gear Tooth Flank

A gear tooth flank could be uniquely determined by two independent variables.
Therefore, we give a gear tooth flank G (see Fig. A.1), in most cases, by expressing
its rectangular coordinated Xg, Yg, and Zg, as functions of two “Gaussian2 coordi-
nates” Ug and Vg in a certain closed interval3:

G ) rg ¼ rg Ug, Vg

� � ¼
Xg Ug, Vg

� �
Yg Ug, Vg

� �
Zg Ug, Vg

� �
1

2
666664

3
777775 ðA:1Þ

U1:g � Ug � U2:g;V1:g � Vg � V2:g

gr

gX

gv

gV�

gU�

curvegV �

G

gn
Tangent plane

gu
gZ

gY

m

curvegU �Fig. A.1 Principal
parameters of local topology
of a gear tooth flank, G

2Johann Carl Friedrich Gauss (April 30, 1777–February 23, 1855), a famous German mathema-
tician and physical scientist
3All the equations that are valid for the gear tooth flank, G, are also valid for the pinion tooth flank,
P .
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where:
rg is the position vector of a point of the gear tooth flank, G
Ug and Vg are curvilinear coordinates (“Gaussian coordinates”) of the gear tooth

flank, G
Xg, Yg, Zg are “Cartesian” coordinates of the point of the gear tooth flank, G
U1. g, U2. g are the boundary values of the closed interval of the Ug� parameter
V1. g, V2. g are the boundary values of the closed interval of the Vg� parameter
The parameters Ug and Vg must enter into Eq. (A.1) independently, which means

that the matrix:

M ¼

∂Xg

∂Ug

∂Yg

∂Ug

∂Zg

∂Ug

∂Xg

∂Vg

∂Yg

∂Vg

∂Zg

∂Vg

2
6664

3
7775 ðA:2Þ

has a rank 2.
Positions, where the rank is 1 or 0, are singular points; when the rank at all points

is 1, then Eq. (A.1) represents a curve.
Other methods of surfaces specification are known as well. Specification of a gear

tooth flank by:

• An equation in explicit form.
• An equation in implicit form.
• A set of parametric equations.

are among the most frequently used in practice methods of surfaces specification.
It is assumed here and below that any given kind of a gear tooth flank, G ,

specification can be converted either into the vector form or into the matrix form
of its specification as it is following from Eq. (A.1).

Tangent Vectors and Tangent Plane; Unit Normal Vector

The following notation is proven to be convenient in the consideration below.
The first derivatives of rg with respect to “Gaussian coordinates” Ug and Vg are

designated as:

∂rg
∂Ug

¼ Ug ðA:3Þ

∂rP
∂VP

¼ VP ðA:4Þ

Appendix A: Elements of Differential Geometry of Surfaces 437



and for the unit tangent vectors:

ug ¼ Ug

j Ug j ðA:5Þ

vg ¼ Vg

j Vg j ðA:6Þ

correspondingly.4

The direction of the tangent line to the Ug-coordinate line through a given point
m on the gear tooth flank, G, is specified by the unit tangent vector ug (as well as by
the tangent vector Ug). Similarly, the direction of the tangent line to the Vg-coordi-
nate line through that same point m on a gear tooth flank G is specified by the unit
tangent vector vg (as well as by the tangent vector Vg).

The significance of the unit tangent vectors ug and vg becomes evident from the
following considerations.

First, unit tangent vectors ug and vg yield an equation of the tangent plane to a
gear tooth flank G at a specified point m:

Tangent plane )
rt:p � rmg
h i

ug
vg
1

2
66664

3
77775 ¼ 0 ðA:7Þ

where:
rt. p is the position vector of a point of the tangent plane to a gear tooth flank G at a

specified point m
rmg is the position vector of the point m on a gear tooth flank G

Second, tangent vectors yield an equation of the perpendicular Ng and of the unit
normal vector ng to a gear tooth flank G at a given point m:

Ng ¼ Ug � Vg ðA:8Þ

and

ng ¼ Ng

j Ng j ¼
Ug � Vg

j Ug � Vg j ¼ ug � vg ðA:9Þ

When the order of the multipliers in Eqs. (A.8) and (A.9) is chosen properly, then
the unit normal vector ng (as well as the normal vector Ng) is pointed outward of the
bodily side of the surface G.

4It is right point to underline here that the unit tangent vectors uP and vP are dimensionless values as
they are following from Equations (A.5) and (A.6).
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Local Frame

Two unit tangent vectors ug and vg along with the unit normal vector ng comprise a
local frame ug, vg, ng having the origin at a current point m on a gear tooth flank G.
Unit tangent vector ug is perpendicular to the unit normal vector ng (i.e., ug⊥ ng), as
well as unit tangent vector vg is also perpendicular to the unit normal vector ng (i.e.,
vg ⊥ ng). Speaking generally, the unit tangent vectors ug and vg are not perpendic-
ular to one another; they form a certain angle ωg. In order to construct an orthogonal
local frame, either the unit tangent vector ug in the local frame (ug, vg, ng) must be
substituted with a unit tangent vector u�g, or the unit tangent vector vg in that same
local frame (ug, vg, ng) must be substituted with a unit tangent vector v�g. For the
calculation of the newly introduced unit tangent vectors u�g and v�g , the following
equations can be used:

u�g ¼ ug � ng ðA:10Þ
v�g ¼ vg � ng ðA:11Þ

It is convenient to choose that order of the multipliers in Eqs. (A.10) and (A.11),
which preserves the orientation (the hand) of the original local frame (ug, vg, ng),
namely, if the original local frame (ug, vg, ng) is right-hand oriented, then the

newly constructed local frame [either the local frame u�g, vg, ng
� �

, or the local

frame u�g, vg, ng
� �

] should also be a right-hand oriented local frame, and vice

versa.
It should be pointed out here that another possibility to construct an orthogonal

local frame is also available. A local frame of this kind is commonly referred to as
“Darboux5 frame” and is briefly considered below in this section of the book.

Unit tangent vectors ug and vg to a surface G at a pointm are of critical importance
when solving practical problems in the field of gearing. This statement is proven by
numerous examples shown below.

Fundamental forms of a Surface

Consider two other important issues concerning the gear tooth flank geometry – both
relate to intrinsic geometry in differential vicinity of a current surface point m.

“First fundamental form of a surface.” The first issue is the so-called the first
fundamental form,Φ1. g, of a gear tooth flank G. The metric properties of a gear tooth

5Jean Gaston Darboux (August 14, 1842–February 23, 1917), a French mathematician
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flank G are described by the first fundamental form,Φ1. g, of the surface. Usually, the
first fundamental form, Φ1. g, is represented as the quadratic form:

Φ1:g ) ds2g ¼ Eg dU
2
g þ 2Fg dUg dVg þ Gg dV

2
g ðA:12Þ

Here, in Eq. (A.12) the following are designated:
sg is the linear element on a gear tooth flank G (sg is equal to the length of a

segment of a certain curve on a gear tooth flank G).
Eg, Fg, Gg are fundamental magnitudes of the first order at a surface point.
Equation (A.12) for the first fundamental form, Φ1. g, is known from many

advanced sources. In the theory of gearing, another form of analytical representation
of the first fundamental form, Φ1. g, is proven to be useful:

Φ1:g ) ds2g ¼ dUg dVg 0 0
� � �

Eg Fg 0 0

Fg Gg 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775 �

dUg

dVg

0

0

2
6664

3
7775 ðA:13Þ

This kind of analytical representation of the first fundamental form Φ1. P is
proposed by Prof. S.P. Radzevich (~2008).

The practical advantage of Eq. (A.13) is that it can easily be incorporated into
computer programs when multiple coordinate system transformations are used. The
last is vital for the theory of gearing.

Fundamental magnitudes of the first order, Eg, Fg, Gg, can be calculated from the
set of the following equations:

Eg ¼ Ug � Ug ðA:14Þ
Fg ¼ Ug � Vg ðA:15Þ
Gg ¼ Vg � Vg ðA:16Þ

Equations (A.14) through (A.16) can be represented in an expanded form:

Eg ¼ ∂rg
∂Ug

� ∂rg
∂Ug

¼ ∂Xg

∂Ug
� ∂Xg

∂Ug
þ ∂Yg

∂Ug
� ∂Yg

∂Ug
þ ∂Zg

∂Ug
� ∂Zg

∂Ug
ðA:17Þ

Fg ¼ ∂rg
∂Ug

� ∂rg
∂Vg

¼ ∂Xg

∂Ug
� ∂Xg

∂Vg
þ ∂Yg

∂Ug
� ∂Yg

∂Vg
þ ∂Zg

∂Ug
� ∂Zg

∂Vg
ðA:18Þ

Gg ¼ ∂rg
∂Vg

� ∂rg
∂Vg

¼ ∂Xg

∂Vg
� ∂Xg

∂Vg
þ ∂Yg

∂Vg
� ∂Yg

∂Vg
þ ∂Zg

∂Vg
� ∂Zg

∂Vg
ðA:19Þ
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Fundamental magnitudes of the first order, Eg, Fg,Gg, are functions of theUg- and
Vg-coordinates of a point of a gear tooth flank G. In general form, these relationships
can be represented in the form:

Eg ¼ Eg Ug, Vg

� � ðA:20Þ
Fg ¼ Fg Ug, Vg

� � ðA:21Þ
Gg ¼ Gg Ug, Vg

� � ðA:22Þ

It is important to point out here that fundamental magnitudes Eg and Gg are
always positive (i.e., Eg > 0,Gg > 0), and the fundamental magnitude Fg can be equal
to zero (Fg � 0). This results in that the first fundamental form, Φ1. g, at a point of a
gear tooth flank G , is always positively defined (Φ1. g � 0), and it cannot be of a
negative value.

By the use of the first fundamental form, Φ1. g, the following major parameters of
geometry of a gear tooth flank G can be calculated:

(a) Length of a curve-line segment on a gear tooth flank G.
(b) Square of a gear tooth flank G portion that is bounded by a closed curve on the

surface.
(c) Angle between any two directions on a gear tooth flank G.

Length, sg, of a curve-line segment:

Ug ¼ Ug tð Þ ðA:23Þ
Vg ¼ Vg tð Þ ðA:24Þ

on a gear tooth flank, G, is given by the equation:

sg ¼
ðt
t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg

dUg

dt

	 
2

þ 2Fg
dUg

dt
dVg

dt
þ Gg

dVg

dt

	 
2
s

dt ðA:25Þ

t0 � t � t1

For the calculation of square, Sg , of a gear tooth flank G patch Σ, which is
bounded by a closed curve on the surface G, the following equation can be used:

Sg ¼
ðð
Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q
dUg dVg ðA:26Þ
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Ultimately, value of the angle, ωg, between two given directions through a certain
point m on a gear tooth flank G can be calculated from one of the equations below:

cosωg ¼ Fgffiffiffiffiffiffiffiffiffiffiffi
EgGg

p ðA:27Þ

sinωg ¼ Hgffiffiffiffiffiffiffiffiffiffiffi
EgGg

p ðA:28Þ

tanωg ¼ Hg

Fg
ðA:29Þ

For the calculation of the discriminant, Hg, of the first fundamental form, Φ1. g,
the following equation can be used:

Hg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q
ðA:30Þ

It is assumed here that the discriminant, Hg, is always nonnegative – that is,

Hg ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q
.

The first fundamental form, Φ1. g, represents the length of a curve-line segment,
and thus it is always nonnegative – that is, the inequality Φ1. g � 0 is always valid.

The first fundamental form, Φ1. g, remains the same when the surface is banding.
This is another important feature of the first fundamental form Φ1. g.

“Second fundamental form of a surface.” The “second fundamental form, Φ2. g”

of a gear tooth flank G is another of the two abovementioned issues. The second
fundamental form Φ2. g describes curvature of a smooth regular surface G.

Consider a point K on a smooth regular part surface G (Fig. A.2). The location of
the point K is specified by two coordinates Ug and Vg. A line through the point K is
entirely located within the surface G . A nearby point m is located within the line
through the point K. The location of the point m is specified by the coordinates
Ug + dUg and Vg + dVg as it is infinitesimally close to the point K. The closest
distance of approach of the point m to the tangent plane through the point K is
expressed by the second fundamental formΦ2. g. Torsion of the curve Km is ignored.
Therefore, the distance a is assumed equal to zero (a ¼ 0).

The second fundamental form, Φ2. g, describes the curvature of a smooth, regular
part surface G. Usually, it is represented as the quadratic form (Fig. A.2):

Φ2:g ) �drg � dng ¼ Lg dU
2
g þ 2Mg dUg dVg þ Ng dV

2
g ðA:31Þ

Equation (A.31) is known from many advanced sources.
In the theory of gearing, another analytical representation of the second funda-

mental form, Φ2. g, is proven to be useful:
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Φ2:g ) dUg dVg 0 0½ � �

Lg Mg 0 0

Mg Ng 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775 �

dUg

dVg

0

0

2
6664

3
7775 ðA:32Þ

This analytical representation of the second fundamental form, Φ2. P, is proposed
by Prof. S.P. Radzevich (~2008).

Similar to Eq. (A.13), the practical advantage of Eq. (A.32) is that it can easily be
incorporated into computer programs when multiple coordinate system transforma-
tions are used. The last is vital for both for the theory of gearing.

In Eq. (A.32), the parameters Lg,Mg, Ng designate fundamental magnitudes of the
second order.

By definition, fundamental magnitudes of the second order are equal:

gZ

gXgY

*m

G

Tangent plane

m ,g g g gU dU V dV� �

,g gU V
K

0a �

*m

m

K
*m

Fig. A.2 On definition of second fundamental form,Φ2. g, at a point of a smooth gear tooth flank, G
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Lg ¼ �Ug � ∂ng
∂Ug

¼ ng � ∂Ug

∂Ug
ðA:33Þ

Mg ¼ � 1
2

Ug � ∂ng
∂Vg

þ Vg � ∂ng
∂Ug

	 

¼ ng � ∂Ug

∂Vg
¼ ng � ∂Vg

∂Ug
ðA:34Þ

Ng ¼ �Vg � ∂ng
∂Vg

¼ ng � ∂Vg

∂Vg
ðA:35Þ

For the calculation of the fundamental magnitudes of the second order of a
smooth regular gear tooth flank G, the following equations can be used:

Lg ¼
∂Ug

∂Ug
� Ug � Vgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q ðA:36Þ

Mg ¼
∂Ug

∂Vg
� Ug � Vgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q ¼
∂Vg

∂Ug
� Ug � Vgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q ðA:37Þ

Ng ¼
∂Vg

∂Vg
� Ug � Vgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q ðA:38Þ

Equations (A.36) through (A.38) can be represented in an expended form:

Lg ¼

∂2Xg

∂U2
g

∂2Yg

∂U2
g

∂2Zg

∂U2
g

∂Xg

∂Ug

∂Yg

∂Ug

∂Zg

∂Ug

∂Xg

∂Vg

∂Yg

∂Vg

∂Zg

∂Vg

���������������

���������������ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q ðA:39Þ

Mg ¼

∂2Xg

∂Ug∂Vg

∂2Yg

∂Ug∂Vg

∂2Zg

∂Ug∂Vg

∂Xg

∂Ug

∂Yg

∂Ug

∂Zg

∂Ug

∂Xg

∂Vg

∂Yg

∂Vg

∂Zg

∂Vg

���������������

���������������ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q ðA:40Þ

444 Appendix A: Elements of Differential Geometry of Surfaces



NP ¼

∂2Xg

∂V2
g

∂2Yg

∂V2
g

∂2Zg

∂V2
g

∂Xg

∂Ug

∂Yg

∂Ug

∂Zg

∂Ug

∂Xg

∂Vg

∂Yg

∂Vg

∂Zg

∂Vg

���������������

���������������ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q ðA:41Þ

Fundamental magnitudes of the second order, Lg,Mg, Ng, are also functions of the
Ug- and Vg-coordinates of a point of a gear tooth flank G . In general form, these
relationships can be represented in the form:

Lg ¼ Lg Ug, Vg

� � ðA:42Þ
Mg ¼ Mg Ug, Vg

� � ðA:43Þ
Ng ¼ Ng Ug, Vg

� � ðA:44Þ

The discriminant, Tg, of the second fundamental form, Φ2. g, can be calculated
from the following equation:

Tg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LgNg �M2

g

q
ðA:45Þ

We now come to the theorem, which is essential justification for considering the
differential geometry of surfaces in connection with the six fundamental magnitudes.
It has been proven (1867) first by Bonnet6 and may be enunciated as follows:

Theorem A.1 When six fundamental magnitudes Eg, Fg, Gg and Lg, Mg, Ng are
given, and when they fulfill the Gauss characteristic equation, and the two
Mainardi7-Codazzi8 relations, they determine a gear tooth flank G uniquely say as
to its position and orientation in space.

This theorem is commonly referred to as the “main theorem in the theory of
surface,” or simply as “Bonnet theorem.” According to the main theorem, two
surfaces that have identical first and second fundamental forms must be either
congruent or symmetrical to one another.

By use of six fundamental magnitudes, all parameters of local geometry of a
given part surface can be calculated.

6Pierre Ossian Bonnet (December 22, 1819–June 22, 1892), a French mathematician
7Gaspare Mainardi (June 27, 1800–March 9, 1879), an Italian mathematician
8Delfino Codazzi (March 7, 1824 – July 21, 1873), an Italian mathematician
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Principal Directions on a Gear Tooth Flank

. The direction of vectors of principal directions, T1. g and T2. g at a point on a gear
tooth flank G, can be specified in terms of the ratio dUg/dVg. For the vectors of the
first, T1. g, and for the second, T2. g, principal directions at a point m of a smooth,
regular part surface G, the corresponding values of the ratio dUg/dVg are calculated
as roots of the quadratic equation:

Eg dUg þ Fg dVg Fg dUg þ Gg dVg

Lg dUg þMg dVg Mg dUg þ Ng dVg

����
���� ¼ 0 ðA:46Þ

The first principal plane section, C1. g, is perpendicular to a gear tooth flank G at a
current surface point m and passes through the vector of the first principal direction
T1. g. The second principal plane section, C2. g, is orthogonal to a gear tooth flank G
at a current surface point m and passes through the vector of the second principal
direction T2. g.

The principal directions T1. g and T2. g can be identified at any and all points of a
smooth, regular gear tooth flank G except of umbilic points and in flatten points of
the surface. At umbilic points of a surface, as well as at flatten points, principal
directions cannot be identified.

In the theory of gearing, it is often preferred to use not the vectors T1. g and T2. g

of the principal directions, but, instead, to use the unit vectors t1. g and t2. g of the
principal directions. The unit tangent vectors t1. g and t2. g are calculated from the
equations:

t1:g ¼ T1:g

j T1:g j ðA:47Þ

t2:g ¼ T2:g

j T2:g j ðA:48Þ

correspondingly.
Unit tangent vectors t1. g and t2. g of principal directions at a point m on a gear

tooth flank G along with unit normal vector ng at that same point m comprise an
orthogonal local frame (t1. g, t2. g, ng). All three unit vectors t1. g, t2. g, and ng are
mutually perpendicular to one another. The local frame (t1. g, t2. g, ng) is com-
monly referred to as “Darboux frame.”

Curvatures at a Point of a Part Surface

The first, R1. g, and the second, R2. g, principal radii of curvature at a point of a gear
tooth flank G are measured within the first and in the second principal plane sections,
C1. g and C2. g, accordingly. For the calculation of values of the principal radii of
curvature, the following equation is commonly used:
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R2
g �

EgNg � 2FgMg þ GgLg
Tg

Rg þ Hg

Tg
¼ 0 ðA:49Þ

Remember that algebraic values of the radii of principal curvature, R1. g and R2. g,
relate to one another as R2. g > R1. g. In particular cases, at umbilic points on a gear
tooth flank G, no principal curvatures can be identified as all normal curvatures of the
tooth surface G at an umbilic point are equal to one another.

Another two important parameters of local topology of a gear tooth flank G are:

• Mean curvature, Mg.
• Intrinsic curvature (“Gaussian curvature” or “full curvature”), Gg.

For the calculation of the curvatures Mg and Gg , the following equations are
commonly used:

Mg ¼ k1:g þ k2:g
2

¼ EgNg � 2FgMg þ GgLg

2 � EgGg � F2
g

� � ðA:50Þ

Gg ¼ k1:g � k2:g ¼
LgNg �M2

g

EgGg � F2
g

ðA:51Þ

The expressions for the mean curvature Mg and for the “Gaussian curvature,
Gg”:

Mg ¼ k1:g þ k2:g
2

ðA:52Þ
Gg ¼ k1:g � k2:g ðA:53Þ

considered together yield a quadratic equation with respect to principal curvatures k1.
g and k2. g:

k2g � 2Mg kg þ Gg ¼ 0 ðA:54Þ

The following formulae

k1:g ¼ Mg þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

g � Gg

q
ðA:55Þ

k2:g ¼ Mg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

g � Gg

q
ðA:56Þ

are the solutions to Eq. (A.54).
Here, in Eqs. (A.55) and (A.56), the first principal curvature of a gear tooth flank

G at a current point m is designated as k1. g, and k2. g designates the second principal
curvature of a gear tooth flank G at that same point m.
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The principal curvatures k1. g and k2. g are the reciprocals to the corresponding
principal radii of curvature R1. g and R2. g:

k1:g ¼ 1
R1:g

ðA:57Þ

k2:g ¼ 1
R2:g

ðA:58Þ

The first principal curvature, k1. g, is always larger than the second principal
curvature, k2. g, of a gear tooth flank G at a current point m—that is, the inequality:

k1:g > k2:g ðA:59Þ

is always valid.
This brief consideration of major elements of part surface geometry makes it

possible the introduction of two definitions that are of critical importance for further
discussion.

As it is already mentioned earlier in this section of the book, it is proven by
Bonnet that the specification of the first and the second fundamental forms deter-
mines a unique surface if the “Gauss’ characteristic equation” and the “Mainardi-
Codazzi relations of compatibility” are satisfied, and those two surfaces that have
identical first and second fundamental forms are congruent.9 Six fundamental
magnitudes determine a surface uniquely, except as to position and orientation in
space.

The specification of a surface in terms of the first and the second fundamental
forms is usually called the “natural kind” of surfaces representation. In general form,
this kind of part surfaces representation can be expressed by a set of two equations:

Natural form of a

surface G representation

���� ) G ¼ G Φ1:g,Φ2:g
� � Φ1:g ¼ Φ1:g Eg, Fg, Gg

� �
Φ2:g ¼ Φ2:g Eg, Fg, Gg, Lg, Mg, Ng

� �
(

ðA:60Þ

Equation (A.60) can be derived from Eq. (A.1). A given gear tooth flank G can be
expressed in both forms, namely, either by Eq. (A.19) or by Eq. (A.1).

9Two surfaces with the identical first and second fundamental forms might also by symmetrical.
Refer to the literature – Koenderink, J.J., Solid Shape, The MIT Press, Cambridge, MA, 1990,
699 pages – on differential geometry of surfaces for details about this specific issue.
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Illustrative Example

Consider an example of how an analytical representation of a surface in a “Carte-
sian” reference system can be converted into the natural representation of that same
surface.

A “Cartesian” coordinate system XgYgZg is associated with a gear tooth flank G

as it is schematically shown in Fig. A.3.
The position vector of a point, rg, of the gear tooth flank G can be represented as a

sum of three vectors:

rg ¼ Aþ Bþ C ðA:61Þ

Each of the vectors A, B, and C can be expressed in terms of projections onto the
axes of the reference systemXgYgZg. Then, Eq. (A.61) casts into the equation:

rg Ug,Vg

� � ¼
rb:g cosVg þ Ug cos τb:g sinVg

rb:g sinVg � Ug sin τb:g sinVg

rb:g tan τb:g � Ug sin τb:g

1

2
666664

3
777775 ðA:62Þ

This yields the calculation of two tangent vectors Ug(Ug,Vg) and Vg(Ug,Vg),
which are correspondingly equal:

Involute curve

.b gr

G

gn

gX

H

F

.b g�B

gUgZ

gY

E

M

.b g�
gr

gV

gu

*
gv

0М

C

A

m
Base cylinder

helix

Fig. A.3 Derivation of the
natural form of
representation of a gear
tooth flank, G
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Ug Ug,Vg

� � ¼
cos τb:g sinVg

� cos τb:g cosVg

� sin τb:g

0

2
666664

3
777775 ðA:63Þ

Vg Ug,Vg

� � ¼
�rb:g sinVg þ Ug cos τb:g cosVg

rb:g cosVg þ Ug cos τb:g sinVg

rb:g tan τb:g

0

2
666664

3
777775 ðA:64Þ

Substituting the derived vectors Ug and Vg into Eq. (A.14), one can come up with
formulae for the calculation of the fundamental magnitudes of the first order:

Eg ¼ 1 ðA:65Þ

Fg ¼ � rb:g
cos τb:g

ðA:66Þ

Gg ¼
U2

g cos
4τb:g þ r2b:g

cos 2τb:g
ðA:67Þ

These expressions can be substituted directly to Eq. (A.12) for the first funda-
mental form Φ1. g of the gear tooth flank, G:

Φ1:g ) dU2
g � 2

rb:g
cos τb:g

dUgdVg þ
U2

g cos
4τb:g þ r2b:g

cos 2τb:g
dV2

g ðA:68Þ

The derived expressions for the fundamental magnitudes Eg, Fg, and Gg [see
Eqs. (A.65) through (A.67)] can also be substituted to Eq. (A.13). In this way a
corresponding matrix representation of the first fundamental form Φ1. g of the gear
tooth flank, G, can be calculated. The interested reader may wish to complete these
formulae on his or her own.

The discriminant, Hg, of the first fundamental form of the gear tooth flank, G, can
be calculated from the expression:

Hg ¼ Ug cos τb:g ðA:69Þ

In order to derive an equation for the second fundamental form, Φ2. g, of the gear
tooth flank, G , the second derivatives of the position vector of a point, rg(Ug,Vg),
with respect to Ug- and Vg-parameters are necessary. The above derived equations
for the tangent vectors Ug and Vg [see Eqs. (A.63) and (A.64)] make it possible the
following expressions for the derivatives under consideration:
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∂Ug

∂UP
¼

0

0

0

1

2
6664

3
7775 ðA:70Þ

∂Ug

∂Vg
	 ∂Vg

∂Ug
¼

cos τb:g cosVg

cos τb:g sinVg

0

1

2
6664

3
7775 ðA:71Þ

∂Vg

∂Vg
¼

�rb:g cosVg � Ug cos τb:g sinVg

�rb:g sinVg þ Ug cos τb:g cosVg

0

1

2
6664

3
7775 ðA:72Þ

Further, substitute these expressions [see Eqs. (A.70) through (A.72)] into
Eqs. (A.36) through (A.38). After the necessary formulae transformations are com-
plete, then Eqs. (A.36) through (A.38) cast into the set of formulae for the calculation
of the fundamental magnitudes of the second order of the gear tooth flank, G. This set
of formulae is as follows:

Lg ¼ 0 ðA:73Þ
Mg ¼ 0 ðA:74Þ

Ng ¼ �Ug sin τb:g cos τb:g ðA:75Þ

Further, after substituting Eqs. (A.73) through (A.75) into Eq. (A.31), an equation
for the calculation of the second fundamental form of the gear tooth flank, G, can be
represented in the form:

Φ2:g ) �drg � dNg ¼ �Ug sin τb:g cos τb:gdV
2
g ðA:76Þ

Similar to Eq. (A.68), the derived expressions for the fundamental magnitudes Lg,
Mg, and Ng of the second order can be substituted into Eq. (A.32) for the second
fundamental form Φ2. g. In this way a corresponding matrix representation of the
second fundamental form, Φ2. g, of the surface G can be derived. The interested
reader may wish to complete this formulae transformation on his or her own.

For the calculation of the discriminant, Tg, of the second fundamental form, Φ2. g,
of the gear tooth flank, G, the following expression can be used:

Tg ¼ Ug sin τb:g cos τb:g ðA:77Þ
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The natural representation of the gear tooth flank, G, can be expressed in terms of
the derived set of six equations for the calculation of the fundamental magnitudes of
the first Eg, Fg, Gg and of the second Lg, Mg, and Ng (Table A.1).

All major elements of local geometry of the gear tooth flank, G, can be calculated
based on the fundamental magnitudes, Eg, Fg,Gg, of the first,Φ1. P, and Lg,Mg, Ng of
the second, Φ2. g, fundamental forms. The location and orientation of the gear tooth
flank, G, are the two parameters that remain indefinite.

Once a part surface is represented in natural form – that is, it is expressed in terms
of six fundamental magnitudes of the first and of the second order – then further
calculation of parameters of a gear tooth flank G becomes much easier. In order to
demonstrate significant simplification of the calculation of parameters of a gear tooth
flank G, several useful equations are presented below as examples.

Few More Useful Equations

Many calculations of parameters of geometry can be significantly simplified by use
of the first and of the second fundamental forms of a smooth, regular part surface G.

For the calculation of value of radius, Rg, of normal curvature within a normal
plane section through a current point m on a gear tooth flank G and at a given
direction the following equation can be used:

Rg ¼ Φ1:g

Φ2:g
ðA:78Þ

“Euler formula” for the calculation of normal curvature, kθ. g, at a point m in a
direction that is specified by the angle, θ, can be represented as follows:

kθ:g ¼ k1:g cos
2θ þ k2:g sin

2θ ðA:79Þ

Here, in Eq. (A.79), θ is the angle that the normal plane section, Cg, makes with
the first principal plane section, C1. g. In other words, θ ¼ ∠ (tg, t1. g); here tg
designates the unit tangent vector within the normal plane section Cg.

Equation (A.79) also is a good illustration of significant simplification of the
calculations when fundamental magnitudes, Eg, Fg, Gg, of the first and Lg,Mg, Ng of
the second order are used.

Table A.1 Fundamental
magnitudes of the first and the
second order of involute gear
tooth flank, G

Eg ¼ 1 Lg ¼ 0

Fg ¼ � rb:g
cos τb:g

Mg ¼ 0

Gg ¼
U2

g cos
4τb:g þ r2b:g

cos 2τb:g

Ng ¼ � Ug sin τb. g cos τb. g
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In order to get a profound understanding of differential geometry of surfaces, the
interested reader may wish to go to advanced monographs in the field. Systematic
discussion of the topic is available from many sources. The author would like to turn
the reader’s attention to the books by [1–3] and others.
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Appendix B: Applied Coordinate Systems
and Linear Transformations

Consequent coordinate systems transformations can be easily described analytically
with implementation of matrices. The use of matrices for the coordinate system
transformation10 can be traced back to the mid of 1940s11 when Dr. S.S. Mozhayev12

began describing coordinate system transformations by means of matrices.
Below, coordinate system transformation is briefly discussed from the standpoint

of its implementation in the theory of gearing.

Coordinate System Transformation

Homogeneous coordinates utilize a mathematical trick to embed three-dimensional
coordinates and transformations into a four-dimensional matrix format. As a result,
inversions or combinations of linear transformations are simplified to inversions or
multiplication of the corresponding matrices.

10Matrices were introduced into mathematics by A. Cayley in 1857. They provide a compact and
flexible notation particularly useful in dealing with linear transformations, and they presented an
organized method for the solution of systems of linear differential equations.
11Application of matrices for the purposes of analytical representation of coordinate system
transformation should be credited to Dr. S.S. Mozhayev [Mozhayev, S.S., General Theory of
Cutting Tools, Doctoral Thesis, Leningrad, Leningrad Polytechnic Institute, 1951, 295 pages].
Dr. S.S. Mozhayev began using matrices for this purpose in the mid of 1940s. Later on, matrix
approach for coordinate system transformation has been used byDenavit andHartenberg, as well as
by many other researchers.
12S.S.Mozhayev is a Soviet scientist mostly known for his accomplishments in the theory of cutting
tool design.
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Homogeneous Coordinate Vectors

Instead of representing each point r (x, y, z) in three-dimensional space with a
single three-dimensional vector,

r ¼
x

y

z

2
64

3
75 ðB:1Þ

homogeneous coordinates allow each point r (x, y, z) to be represented by any of
an infinite number of four-dimensional vectors:

r ¼

T � x
T � y
T � z
T

2
6664

3
7775 ðB:2Þ

The three-dimensional vector corresponding to any four-dimensional vector can
be calculated by dividing the first three elements by the fourth, and a four-
dimensional vector corresponding to any three-dimensional vector can be created
by simply adding a fourth element and setting it equal to one.

Homogeneous Coordinate Transformation Matrices
of the Dimension 4 3 4

Homogeneous coordinate transformation matrices operate on four-dimensional
homogeneous vector representations of traditional three-dimensional coordinate
locations. Any three-dimensional linear transformation (translation, rotation, and
so forth) can be represented by a 4 � 4 homogeneous coordinate transformation
matrix. In fact, because of the redundant representation of three-space in a homoge-
neous coordinate system, an infinite number of different 4 � 4 homogeneous
coordinate transformation matrices are available to perform any given linear trans-
formation. This redundancy can be eliminated to provide a unique representation by
dividing all elements of a 4 � 4 homogeneous transformation matrix by the last
element (which will become equal to one). This means that a 4 � 4 homogeneous
transformation matrix can incorporate as many as 15 independent parameters. The
generic format representation of a homogeneous transformation equation for map-
ping the three-dimensional coordinate (x1, y1, z1) to the three-dimensional coordi-
nate (x2, y2, z2) is:
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T� � x2
T� � y2
T� � z2
T�

2
6664

3
7775 ¼

T� � a T� � b T� � c T� � d
T� � e T� � f T� � g T� � h
T� � i T� � j T� � k T� � m
T� � n T� � p T� � q T�

2
6664

3
7775 �

T � x2
T � y2
T � z2
T

2
6664

3
7775 ðB:3Þ

If any two matrices or vectors of this equation are known, the third matrix
(or vector) can be calculated, and then the redundant T element in the solution can
be eliminated by dividing all elements of the matrix by the last element.

Various transformation models can be used to constrain the form of the matrix to
transformations with fewer degrees of freedom.

Translations

The translation of a coordinate system is one of the major linear transformations used
in the theory of part surface generation. Translations of the coordinate system X2Y2Z2
along axes of the coordinate system X1Y1Z1 are depicted in Fig. B.1. Translations can
be analytically described by the homogeneous transformation matrix of dimension
4 � 4.

For an analytical description of translation along coordinate axes, the operators of
translation Tr (ax, X), Tr (ay, Y ), and Tr (az, Z ) are used. These operators yield
matrix representation in the form:

Tr ax,Xð Þ ¼

1 0 0 ax
0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775 ðB:4Þ

Tr ay,Y
� � ¼

1 0 0 0

0 1 0 ay

0 0 1 0

0 0 0 1

2
6664

3
7775 ðB:5Þ

Tr az,Zð Þ ¼

1 0 0 0

0 1 0 0

0 0 1 az
0 0 0 1

2
6664

3
7775 ðB:6Þ

Here, in Eq. (B.4) through Eq. (B.6), the parameters ax, ay, and az are signed
values that denote the distance of translation along the corresponding axis.
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Consider two coordinate systems, X1Y1Z1 and X2Y2Z2, displaced along the X1-
axis at a distance ax as schematically depicted in Fig. B.1a. A pointm in the reference
system X2Y2Z2 is given by the position vector r2(m). In the coordinate system,
X1Y1Z1, that same point m can be specified by the position vector r1(m). Then the
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2X

( )a
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1Z
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2Y

2Z

2X
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1Z
za

1Y

1X2Y

2Z

2X

( )c

Fig. B.1 Analytical
description of the operators
of translations Tr (ax, X),
Tr (ay, Y ), Tr (az, Z )
along the coordinate axes of
a “Cartesian” reference
system XYZ
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position vector r1(m) can be expressed in terms of the position vector r2(m) by the
equation:

r1 mð Þ ¼ Tr ax,Xð Þ � r2 mð Þ ðB:7Þ

Equations similar to Eq. (B.7) are valid for the operators Tr (ay, Y ) and Tr (az,
Z ) of the coordinate system transformation. The latter is schematically illustrated in
Fig. B.1b and B.1c.

Use of the operators of translation Tr (ax, X), Tr (ay, Y ), and Tr (az, Z ) makes
it possible an introduction of an operator Tr (a, A) of a combined transformation.
Suppose that point, p, on a rigid body goes through a translation describing a straight
line from a point p1 to a point p2 with a change of coordinates of (ax, ay, az). This
motion of the point, p, can be analytically described with a resultant translation
operator Tr (a, A):

Tr a, Að Þ ¼

1 0 0 ax
0 1 0 ay
0 0 1 az
0 0 0 1

2
6664

3
7775 ðB:8Þ

The operator Tr (a, A) of the resultant coordinate system transformation can be
interpreted as the operator of translation along an arbitrary axis having the vector
A as the direct vector.

An analytical description of translation of the coordinate system X1Y1Z1 in
direction of an arbitrary vector A to the position of X2Y2Z2 can be composed from
Fig. B.2. The operator of translation Tr (a,A) of that particular kind can be
expressed in terms of the operators Tr (ax, X), Tr (ay, Y ), and Tr (az, Z ) of
elementary translations:

2Z

1Z

2X

1X

1Y

2Y

( , )aTr A

( , )xa XTr

( , )ya YTr

( , )za ZTr

A

The Axis of the Translation

Fig. B.2 Analytical
description of an operator,
Tr (a,A), of translation
along an arbitrary axis
(vector A is the direct vector
of the axis)
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Tr a,Að Þ ¼ Tr az,Zð Þ � Tr ay,Y
� � � Tr ax,Xð Þ ðB:9Þ

Evidently, the axis along the vector A is always the axis through the origins of
both the reference systems X1Y1Z1 and X2Y2Z2.

Any and all coordinate system transformations that do not change the orientation
of a geometrical object are referred to as “orientation-preserving transformation” or
“direct transformation.” Therefore, transformation of translation is an example of a
direct transformation.

Rotation about a Coordinate Axis

Rotation of a coordinate system about a coordinate axis is another major linear
transformation used in the theory of part surface generation. A rotation is specified
by an axis of rotation and the angle of the rotation. It is a fairly simple trigonometric
calculation to obtain a transformation matrix for a rotation about one of the
coordinate axes.

Possible rotations of the coordinate system X2Y2Z2 about the axis of the coordi-
nate system X1Y1Z1 are illustrated in Fig. B.3.

For analytical description of rotation about a coordinate axis, the operators of
rotation Rt (φx,X1), Rt (φy,Y1), and Rt (φz,Z1) are used. These operators of linear
transformations yield representation in the form of homogeneous matrices:

Rt φx,X1ð Þ ¼

1 0 0 0

0 cosφx sinφx 0

0 � sinφx cosφx 0

0 0 0 1

2
6664

3
7775 ðB:10Þ

Rt φy, Y1
� � ¼

cosφy 0 sinφy 0

0 1 0 0

� sinφy 0 cosφy 0

0 0 0 1

2
6664

3
7775 ðB:11Þ

Rt φz, Z1
� � ¼

cosφz sinφz 0 0

� sinφz cosφz 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775 ðB:12Þ

Here φx, φy, and φz are signed values that denote the corresponding angles of
rotations about a corresponding coordinate axis: φx is the angle of rotation around
the X1-axis (pitch) of the “Cartesian” coordinate system X1Y1Z1; φy is the angle of
rotation around the Y1-axis (roll), and φz is the angle of rotation around the Z1-axis
(yaw) of that same “Cartesian” reference system X1Y1Z1.
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Rotation about a coordinate axis is illustrated in Fig. B.3.
Consider two coordinate systems X1Y1Z1 and X2Y2Z2, which are turned about X1-

axis through an angle φx as shown in Fig. B.3a. In the reference system X2Y2Z2, a
point m is given by a position vector r2(m). In the coordinate system X1Y1Z1, that
same point m can be specified by the position vector r1(m). Then, the position vector
r1(m) can be expressed in terms of the position vector r2(m) by the equation:
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Fig. B.3 Analytical
description of the operators
of rotation Rt (φx, X), Rt
(φy, Y ), and Rt (φz, Z )
about a coordinate axis of a
reference system X1Y1Z1
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r1 mð Þ ¼ Rt φx,Xð Þ � r2 mð Þ ðB:13Þ

Equations those similar to that above Eq. (B.13) are also valid for other operators
Rt (φy, Y ) and Rt (φz,Z ) of the coordinate system transformation. These elementary
coordinate system transformations are schematically illustrated in Fig. B.3b and in
Fig. B.3c accordingly.

Rotation about an Arbitrary Axis through the Origin

When a rotation is to be performed around an arbitrary vector based at the origin, the
transformation matrix must be assembled from a combination of rotations about the
“Cartesian” coordinate.

Two different approaches for analytical description of a rotation about an arbi-
trary axis through the origin are discussed below.

Conventional Approach

Analytical description of rotation of the coordinate system X1Y1Z1 about an arbitrary
axis through the origin to the position of a reference system X2Y2Z2 is illustrated in
Fig. B.4. It is assumed here that the rotation is performed about the axis having a
vector A0 as the direction vector. The operator Rt (φA, A0) of rotation of that kind
can be expressed in terms of the operators Rt (φx,X), Rt (φy, Y ), and Rt (φz,Z ) of
elementary rotations:

Rt φA, A0ð Þ ¼ Rt φz,Z
� � � Rt φy,Y

� � � Rt φx,Xð Þ ðB:14Þ

Evidently, the axis of rotation (a straight line along the vector A0) is always an
axis through the origin.

The operators of translation and of rotation also yield linear transformations of
other kinds as well.

“Eulerian Transformation”

“Eulerian transformation” is a well-known kind of linear transformations used
widely in mechanical engineering. This kind of linear transformations is analytically
described by the operator Eu (ψ , θ, φ) of “Eulerian13 transformation.”

13Leonhard Euler (April 15, 1707–September 18, 1783), a famous Swiss mathematician and
physicist who spent most of his life in Russia and Germany
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The operator Eu (ψ , θ, φ) is expressed in terms of three “Euler angles”
(or “Eulerian angles”) ψ , θ, and φ. Configuration of an orthogonal “Cartesian”
coordinate system X1Y1Z1 in relation to another orthogonal “Cartesian” coordinate
system X2Y2Z2 is defined by the “Euler angles” ψ , θ, and φ. These angles are shown
in Fig. B.5.

The line of intersection of the coordinate plane X1Y1 of the first reference system
by the coordinate plane X2Y2 of the second reference system is commonly referred to
as “line of nodes.” In Fig. B.5 the line OK is the line of nodes. It is assumed here and
below that the line of nodes, OK, and the axes Z1 and Z2 form a frame of that same
orientation as the reference systems X1Y1Z1 and X2Y2Z2 do.
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Fig. B.4 Analytical
description of the operator
Rt (φA,A) of rotation about
an arbitrary axis through the
origin of a “Cartesian”
coordinate system X1Y1Z1
(the vector A is the directing
vector of the axis of
rotation)
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The “Euler angle, φ” is referred to as the “angle of pure rotation.” This angle is
measured between the X1-axis and the line of nodes, OK. The angle of pure rotation,
φ, is measured within the coordinate plane X1Y1 in the direction of shortest rotation
from the axis X1 to the axis Y1.

The “Euler angle, θ” is referred to as the “angle of nutation.” The angle of
nutation, θ, is measured between the axes Z1 and Z2. The actual value of this angle
never exceeds 180∘.

The “Euler angle, ψ” is referred to as the “angle of precession.” The angle of
precession, ψ , is measured in the coordinate plane X2Y2. This the angle between the
line of nodes, OK, and the X2-axis. The direction of the shortest rotation from the
axis X2 to the axis Y2 is the direction in which the angle of precession is measured.

In case, when the angle of nutation is equal either θ ¼ 0∘ or θ ¼ 180∘, then the
“Euler angles” are not defined.

Operator Eu (ψ , θ, φ) of “Eulerian transformation” allows for the following
matrix representation:

Eu ψ , θ, φð Þ ¼

� sinψ cos θ sinφþ cosψ cosφ cosψ cos θ sinφþ sinψ cosφ sin θ sinφ 0

� sinψ cos θ cosφ� cosψ sinφ cosψ cos θ cosφ� sinψ cosφ sin θ cosφ 0

sin θ sinφ � cosψ cos θ cos θ 0

0 0 0 1

2
6664

3
7775

ðB:15Þ

It is important to stress here the difference between the operator Eu (ψ , θ, φ) of
“Eulerian transformation” and between the operator Rt (ψA, A0) of rotation about
an arbitrary axis through the origin.
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Fig. B.5 “Euler angles”
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The operatorRt (ψA, A) of rotation about an arbitrary axis through the origin can
result in that same final orientation of the coordinate system X2Y2Z2 in relation to the
coordinate system X1Y1Z1 as the operator Eu (ψ , θ, φ) of “Eulerian transforma-
tion” does. However, the operators of linear transformations Rt (ψA, A0) and Eu
(ψ , θ, φ) are the operators of completely different nature. They can result in
identical coordinate system transformation, but they are not equal to one another.

Rotation about an Arbitrary Axis Not through the Origin

The transformation corresponding to rotation of an angle φ around an arbitrary
vector not through the origin cannot readily be written in a form similar to the
rotation matrices about the coordinate axes.

The desired transformation matrix is obtained by combining a sequence of
elementary translation and rotation matrices. (Once a single 4 � 4 matrix has been
obtained representing the composite transformations, it can be used in the same way
as any other transformation matrix.)

The rotation of the coordinate system X1Y1Z1 to a configuration, which the
coordinate system X2Y2Z2 possesses, can be performed about a corresponding axis
that features an arbitrary configuration in space (see Fig. B.6). The vector A is the
direction vector of the axis of the rotation. The axis of the rotation is not a line
through the origin.

The operator of linear transformation of this particular kind Rt (ψA, A) can be
expressed in terms of the operator Tr (a, A) of translation along and of the operator
Rt (ψA, A0) of rotation about an arbitrary axis through the origin:

Rt φA,Að Þ ¼ Tr �b, B�ð Þ � Rt φA,A0ð Þ � Tr b, Bð Þ ðB:16Þ

Here, in Eq. (B.16) the following are designated:
Tr (b, B)

is the operator of translation along the shortest distance of approach of the axis of
rotation and origin of the coordinate system.

Tr (�b, B�)
is the operator of translation in the direction opposite to the translation Tr (b, B)
after the rotation Rt (ψA, A) is completed.

In order to determine the shortest distance of approach, B, of the axis of rotation
(i.e., the axis along the directing vector B) and origin of the coordinate system,
consider the axis (B) through two given points rB.1 and rB.2.

The shortest distance between a certain point r0 and the straight line through the
points rB.1 and rB.2 can be calculated from the following formula:

B ¼ j r2 � r1ð Þ � r1 � r0ð Þ j
j r2 � r1 j ðB:17Þ
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For the origin of the coordinate system, the equality r0 ¼ 0 is observed. Then,

B ¼j r1 j � sin∠ r1, r2 � r1ð Þ½ � ðB:18Þ

Matrix representation of the operators of translation Tr (ax,X), Tr (ay, Y ), and Tr
(az,Z ) along the coordinate axes, together with the operators of rotation Rt (φx,X),
Rt (φy, Y ), and Rt (φz,Z ) about the coordinate axes is convenient for implementation
in the theory of part surface generation. Moreover, use of the operators is the
simplest possible way to analytically describe the linear transformations.

Resultant Coordinate System Transformation

The operators of translation Tr (ax,X), Tr (ay,Y ), and Tr (az,Z ) together with the
operators of rotation Rt (φx,X), Rt (φy,Y ), and Rt (φz,Z ) are used for the purpose of
composing the operator Rs (1 � 2) of the resultant coordinate system transforma-
tion. The transition from the initial “Cartesian” reference system X1Y1Z1 to another
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Fig. B.6 Analytical description of the operator, Rt (φA, A), of rotation about an arbitrary axis not
through the origin (vector A is the direct vector of the axis of the rotation)
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“Cartesian” reference system X2Y2Z2 is analytically described by the operator Rs
(1 � 2) of the resultant coordinate system transformation.

For example, the expression:

Rs 1� 5ð Þ ¼ Tr ax,Xð Þ � Rt φz,Z
� � � Rt φx,Xð Þ � Tr ay,Y

� � ðB:19Þ

indicates that the transition from the coordinate system X1Y1Z1 to the coordinate
system X5Y5Z5 is executed in the following four steps (see Fig. B.7):

Tr ay,Y
� � ðTranslationÞ

• Followed by rotation Rt (φx,X).
• Followed by second rotation Rt (φz,Z ).
• And finally followed by the translation Tr (ax,X).

Ultimately, the equality:

r1 mð Þ ¼ Rs 1� 5ð Þ � r5 mð Þ ðB:20Þ

is valid.
When the operator Rs (1 � t) of the resultant coordinate system transformation

is specified, then the transition in the opposite direction can be performed by means
of the operator Rs (t � 1) of the inverse coordinate system transformation. The
following equality can be easily proven:
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Fig. B.7 An example of the resultant coordinate system transformation, analytically expressed by
the operator Rs (1 � 5)
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Rs t� 1ð Þ ¼ Rs�1 1� tð Þ ðB:21Þ

In the above example illustrated in Fig. B.7, the operator Rs (5 � 1) of the
inverse resultant coordinate system transformation can be expressed in terms of the
operator Rs (1 � 5) of the direct resultant coordinate system transformation.
Following Eq. (B.21), one can come up with the equation:

Rs 5� 1ð Þ ¼ Rs�1 1� 5ð Þ ðB:22Þ

It is easy to show that the operator Rs (1 � t) of the resultant coordinate system
transformation allows for representation in the following form:

Rs 1� tð Þ ¼ Tr a, Að Þ � Eu ψ , θ, φð Þ ðB:23Þ

The linear transformation Rs (1 � t) [see Eq. (B.23)] can also be expressed in
terms of rotation about an axis Rt (φA, A), not through the origin [see
Eq. (B.16)].

Complex Coordinate System Transformation

In particular cases of complex coordinate system transformations that are repeatedly
used in practice, special purpose operators of coordinate system transformation can
be composed of elementary operators of translation and operators of rotation.

Linear Transformation Describing a Screw Motion about
a Coordinate Axis

Operators for analytical description of screw motions about an axis of the “Carte-
sian” coordinate system are a particular case of the operators of the resultant
coordinate system transformation.

By definition (see Fig. B.8), the operator Scx(φx, px) of a screw motion about X-
axis of the “Cartesian” coordinate system XYZ is equal to:

Scx φx, pxð Þ ¼ Rt φx,Xð Þ � Tr ax,Xð Þ ðB:24Þ

After substituting of the operator of translation Tr (ax,X), and the operator of
rotation Rt (φx,X) [see Eq. (B.10)], Eq. (B.24) casts into the expression:
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Scx φx, pxð Þ ¼

1 0 0 px � φx

0 cosφx sinφx 0

0 � sinφx cosφx 0

0 0 0 1

2
6664

3
7775 ðB:25Þ

for the calculation of the operator of the screw motion Scx(φx, px) about X-axis.
The operators of screw motions Scy(φy, py) and Scz(φz, pz) about Y- and Z-axis

correspondingly are defined in the way similar to that; the operator of the screw
motion Scx(φx, px) is defined:

Scy φy, py
� � ¼ Rt φy, Y

� � � Tr ay,Y
� � ðB:26Þ

Scz φz, pz
� � ¼ Rt φz, Z

� � � Tr az,Zð Þ ðB:27Þ

Using Eqs. (B.5) and (B.6) together with Eqs. (B.11) and (B.12), one can come up
with the expressions:

Scy φy, py
� � ¼

cosφy 0 � sinφy 0

0 1 0 py � φy

sinφy 0 cosφy 0

0 0 0 1

2
6664

3
7775 ðB:28Þ

Scz φz, pz
� � ¼

cosφz sinφz 0 0

� sinφz cosφz 0 0

0 0 1 pz � φz

0 0 0 1

2
6664

3
7775 ðB:29Þ

for the calculation of the operators of the screw motion Scy(φy, py) and Scz(φz, pz)
about Y- and Z-axis.
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x x xa p �� �Fig. B.8 On analytical
description of the operator
of screw motion, Scx(φx,
px)
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Screw motions about a coordinate axis, as well as screw surfaces, are common in
the theory of part surface generation. This makes it practical to use the operators of
the screw motion Scx(φx, px), Scy(φy, py), and Scz(φz, pz) in the theory of part
surface generation.

In case of necessity, an operator of the screw motion about an arbitrary axis either
through the origin of the coordinate system or not through the origin of the
coordinate system can be derived following the method similar to that used for the
derivation of the operators Scx(φx, px), Scy(φy, py), and Scz(φz, pz).

Linear Transformation Describing Rolling Motion of a
Coordinate System

One more practical combination of a rotation and of a translation is often used in the
theory of part surface generation.

Consider a “Cartesian” coordinate system X1Y1Z1 (see Fig. B.9). The coordinate
system X1Y1Z1 is traveling in the direction of X1-axis. The velocity of the translation
is denoted by V. The coordinate system X1Y1Z1 is rotating about its Y1-axis simul-
taneously with the translation. The speed of the rotation is denoted as ω. Assume that
the ratio V/ω is constant. Under such a scenario the resultant motion of the reference
system X1Y1Z1 to its arbitrary position X2Y2Z2 allows interpretation in the form of
rolling with no sliding of a cylinder of radius Rw over the plane. The plane is parallel
to the coordinate X1Y1 -plane, and it is remote from it at the distance Rw. For the
calculation of radius of the rolling cylinder the expression Rw ¼ V/ω can be used.

V
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x w ya R �� �
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Fig. B.9 Illustration of the
transformation of rolling,
Rlx(φy, Y ), of a coordinate
system
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Since the rolling of the cylinder of a radius, Rw, over the plane is performed with
no sliding, a certain correspondence between the translation and the rotation of the
coordinate system is established. When the coordinate system turns through a certain
angle φy, then the translation of origin of the coordinate system along X1-axis is
equal to ax ¼ φr � Rw.

Transition from the coordinate system X1Y1Z1 to the coordinate system X2Y2Z2
can be analytically described by the operator of the resultant coordinate system
transformation Rs (1 � 2). The Rs (1 � 2) is equal:

Rs 1� 2ð Þ ¼ Rt φy, Y1

� � � Tr ax, X1ð Þ ðB:30Þ

Here Tr (ax, X1) designates the operator of the translation along X1-axis, and Rt
(φy, Y1) is the operator of the rotation about Y1-axis.

The operator of the resultant coordinate system transformation of the kind [see
Eq. (B.30)] is referred to as the “operator of rolling motion over a plane.”

When the translation is performed along the X1-axis, and the rotation is performed
about the Y1-axis, the operator of rolling is denoted as Rlx(φy, Y ). In this particular
case the equality Rlx(φy, Y ) ¼ Rs (1 � 2) [see Eq. (B.30)] is valid. Based on this
equality, the operator of rolling over a plane Rlx(φy, Y ) can be calculated from the
equation:

Rlx φy, Y
� � ¼

cosφy 0 � sinφy ax � cosφy

0 1 0 0

sinφy 0 cosφy ax � sinφy

0 0 0 1

2
6664

3
7775 ðB:31Þ

While rotation remains about the Y1-axis, the translation can be performed not
along the X1-axis but along the Z1-axis instead. For rolling of this kind the operator
of rolling is equal:

Rlz φy, Y
� � ¼

cosφy 0 � sinφy �az � sinφy

0 1 0 0

sinφy 0 cosφy az � cosφy

0 0 0 1

2
6664

3
7775 ðB:32Þ

For the cases when the rotation is performed about the X1-axis, the corresponding
operators of rolling are as follows:

Rly φx, Xð Þ ¼

1 0 0 0

0 cosφx sinφx ay � cosφx

0 � sinφx cosφx �ay � sinφx

0 0 0 1

2
6664

3
7775 ðB:33Þ
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for the case of rolling along the Y1-axis, and

Rlz φx, Xð Þ ¼

1 0 0 0

0 cosφx sinφx az � sinφx

0 � sinφx cosφx az � cosφx

0 0 0 1

2
6664

3
7775 ðB:34Þ

for the case of rolling along the Z1-axis.
Similar expressions can be derived for the case of rotation about the Z1-axis:

Rlx φz, Z
� � ¼

cosφz sinφz 0 ax � cosφz

� sinφz cosφz 0 ax � sinφz

0 0 1 0

0 0 0 1

2
6664

3
7775 ðB:35Þ

Rly φz, Z
� � ¼

cosφz sinφz 0 ay � sinφz

� sinφz cosφz 0 ay � cosφz

0 0 1 0

0 0 0 1

2
6664

3
7775 ðB:36Þ

Use of the operators of rolling Eq. (B.31) through Eq. (B.36) significantly
simplifies analytical description of the coordinate system transformations.

Linear Transformation Describing Rolling of Two Coordinate
Systems

In the theory of part surface generation, combinations of two rotations about parallel
axes are of particular interest.

As an example, consider two “Cartesian” coordinate systems X1Y1Z1 and X2Y2Z2
shown in Fig. B.10. The coordinate systems X1Y1Z1 and X2Y2Z2 are rotated about
their axes Z1 and Z2. The axes of the rotations are parallel to each other (Z1 k Z2). The
rotations ω1 and ω2 of the coordinate systems can be interpreted so that a circle of a
certain radius R1 that is associated with the coordinate system X1Y1Z1 is rolling with
no sliding over a circle of the corresponding radius R2 that is associated with the
coordinate system X2Y2Z2. When the center-distance C is known, then radii, R1 and
R2, of the circles (i.e., of centrodes) can be expressed in terms of the center-distance,
C, and of the given rotations, ω1 and ω2. For the calculations, the following
formulae:
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R1 ¼ C � 1
1þ u

ðB:37Þ

R2 ¼ C � u
1þ u

ðB:38Þ

can be used. Here, the ratio ω1/ω2 is denoted by u.
In the initial configuration, the X1 and X2-axes align to each other. The Y1- and Y2-

axes are parallel to each other. As shown in Fig. B.10, the initial configuration of the
coordinate systems X1Y1Z1 and X2Y2Z2 is labeled as X�

1Y
�
1Z

�
1 and X�

2Y
�
2Z

�
2.

When the coordinate system X1Y1Z1 turns through a certain angle φ1, then the
coordinate system X2Y2Z2 turns through the corresponding angle φ2. When the angle
φ1 is known, then the corresponding angle φ2 is equal to φ2 ¼ φ1/u.

Transition from the coordinate system X2Y2Z2 to the coordinate system X1Y1Z1
can be analytically described by the operator of the resultant coordinate system
transformation Rs (1 � 2). In the case under consideration, the operator Rs
(1 � 2) can be expressed in terms of the operators of the elementary coordinate
system transformations:

Rs 1� 2ð Þ ¼ Rt φ1, Z1ð Þ � Rt φ1=u, Z1ð Þ � Tr �C, X1ð Þ ðB:39Þ

Other equivalent combinations of the operators of elementary coordinate system
transformations can result in that same operator Rs (1 � 2) of the resultant
coordinate system transformation. The interested reader may wish to exercise on
his or her own deriving the equivalent expressions for the operator Rs (1 � 2).

The operators of the resultant coordinate system transformations of the kind [see
Eq. (B.39)] are referred to as the “operators of rolling motion over a cylinder.”

When rotations are performed around the Z1- and the Z2-axis, the operator of
rolling motion over a cylinder is designated as Rru(φ1, Z1). In this particular case
the equality Rru(φ1, Z1) ¼ Rs (1 � 2) [see Eq. (B.39)] is valid. Based on this
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Fig. B.10 On derivation of
the operator of rolling,
Rru(φ1, Z1), of two
coordinate systems
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equality, the operator of rolling Rru(φ1, Z1) over a cylinder can be calculated from
the equation:

Rru φ1, Z1ð Þ ¼

cos φ1 � uþ 1
u

� �
sin φ1 � uþ 1

u

� �
0 �C

� sin φ1 � uþ 1
u

� �
cos φ1 � uþ 1

u

� �
0 0

0 0 1 0

0 0 0 1

2
66666664

3
77777775

ðB:40Þ

is derived.
For the inverse transformation, the inverse operator of rolling of two coordinate

systems Rru(φ2, Z2) can be used. It is equal to Rru φ2, Z2ð Þ ¼ Rr�1
u φ1, Z1ð Þ. In

terms of the operators of the elementary coordinate system transformations, the
operator Rru(φ2, Z2) can be expressed as follows:

Rru φ2, Z2ð Þ ¼ Rt φ1=u, Z2ð Þ � Rt φ1, Z2ð Þ � Tr C, X1ð Þ ðB:41Þ

Other equivalent combinations of the operators of elementary coordinate system
transformations can result in that same operator Rru(φ2, Z2) of the resultant coor-
dinate system transformation. The interested reader may wish to exercise on his or
her own deriving the equivalent expressions for the operator Rru(φ2, Z2).

For the calculation of the operator of rolling of two coordinate systems Rru(φ2,
Z2), the equation:

Rru φ2, Z2ð Þ ¼

cos φ1 � uþ 1
u

� �
� sin φ1 � uþ 1

u

� �
0 C

sin φ1 � uþ 1
u

� �
cos φ1 � uþ 1

u

� �
0 0

0 0 1 0

0 0 0 1

2
66666664

3
77777775

ðB:42Þ

can be used.
Similar to that the expression [see Eq. (B.40)] is derived for the calculation of the

operator of rolling Rru(φ1, Z1) around the Z1- and Z2-axis; the corresponding
formulae can be derived for the calculation of the operators of rolling Rru(φ1, X1)
and Rru(φ1, Y1) about parallel axes X1 and X2, as well as about parallel axes Y1 and
Y2.

Use of the operators of rolling about two axes Rru(φ1, X1), Rru(φ1, Y1), and
Rru(φ1, Z1) substantially simplifies analytical description of the coordinate system
transformations.
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Coupled Linear Transformation

It is right point to notice here that a translation, Tr (ax, X), along the X-axis of a
“Cartesian” reference system, XYZ, and a rotation, Rt (φx, X), about the axis X of
that same coordinate system, XYZ, obey the commutative law, that is, these two
coordinate system transformations can be performed in different orders equally. It
makes no difference whether the translation, Tr (ax, X), is initially performed,
which is followed by the rotation, Rt (φx, X), or the rotation, Rt (φx, X), is initially
performed, which is followed by the translation, Tr (ax, X). This is because the dot
products Rt (φx, X) � Tr (ax, X) and Tr (ax, X) � Rt (φx, X) are identical to one
another:

Rt φx, Xð Þ � Tr ax, Xð Þ 	 Tr ax, Xð Þ � Rt φx, Xð Þ ðB:43Þ

This means that the translation from the coordinate system X1Y1Z1 to the inter-
mediate coordinate system X�Y�Z� followed by the rotation from the coordinate
system X�Y�Z� to the finale coordinate system X2Y2Z2 produces that same reference
X2Y2Z2 as in a case when the rotation from the coordinate system X1Y1Z1 to the
intermediate coordinate system X�Y�Z� followed by the translation from the coordi-
nate system X�Y�Z� to the finale coordinate system X2Y2Z2.

The validity of Eq. (B.43) is illustrated in Fig. B.11. The translation, Tr (ax, X),
that is followed by the rotation, Rt (φx, X), as shown in Fig. B.11a, is equivalent to
the rotation, Rt (φx, X), that is followed by the translation, Tr (ax, X) as shown in
Fig. B.11b.
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Fig. B.11 On the equivalency of the linear transformations, Rt (φx, X) � Tr (ax, X) and Tr (ax,
X) � Rt (φx, X), in the operator, Cpx (ax, φx), of coupled linear transformation of a “Cartesian”
reference system XYZ
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Therefore, the two linear transformations, Tr (ax, X) and Rt (φx, X), can be
coupled into a linear transformation:

Cpx ax, φxð Þ ¼ Rt φx, Xð Þ � Tr ax, Xð Þ 	 Tr ax, Xð Þ � Rt φx, Xð Þ ðB:44Þ

The operator of linear transformation, Cpx (ax, φx), can be expressed in matrix
form (see Fig. B.12a):

Cpx ax, φxð Þ ¼

1 0 0 ax
0 cosφx sinφx 0

0 � sinφx cosφx 0

0 0 0 1

2
6664

3
7775 ðB:45Þ

This expression is composed based on Eq. (B.4) for the linear transformation Tr
(ax, X) and on Eq. (B.10) that describes the linear transformation Rt (φx, X).

Two reduced cases of operator of the linear transformation, Cpx (ax, φx), are
distinguished.

First, it could happen that in a particular case the component, ax, of the translation
is zero, that is, ax ¼ 0. Under such a scenario the operator of linear transformation,
Cpx (ax, φx), reduces to the operator of rotation, Rt (φx, X), and the equality
Cpx (ax, φx) ¼ Rt (φx, X) is observed in the case under consideration.

Second, it could happen that in a particular case the component, φx, of the rotation
is zero, that is, φx ¼ 0∘. Under such a scenario the operator of linear transformation,
Cpx (ax, φx), reduces to the operator of translation, Tr (ax, X), and the equality
Cpx (ax, φx) ¼ Tr (ax, X) is observed in the case under consideration.

The said is valid with respect to the translations and the rotations along and about
the axes Y and Z of a “Cartesian” reference system XYZ. The corresponding coupled
operators, Cpy (ay, φy) and Cpz (az, φz), for linear transformations of these kinds
can also be composed (see Fig. B.12b, c):

Cpy ay, φy

� � ¼
cosφy 0 sinφy 0

0 1 0 ay
� sinφy 0 cosφy 0

0 0 0 1

2
6664

3
7775 ðB:46Þ

Cpz az, φz

� � ¼
cosφz sinφz 0 0

� sinφz cosφz 0 0

0 0 1 az
0 0 0 1

2
6664

3
7775 ðB:47Þ

In the operators of linear transformations, Cpx (ax, φx), Cpy (ay, φy), and
Cpz (az, φz), values of the translations ax, ay, and az, as well as values of the
rotations φx, φy, and φz, are finite values (and not continuous). The linear and
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angular displacements do not correlate to one another in time; thus, they are not
screws. They are just a kind of couples of a translation along and a rotation about a
coordinate axis of a “Cartesian” reference system.
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Fig. B.12 Analytical
description of the operators
Cpx (ax, φx), Cpy (ay, φy),
and Cpz (az, φz), of linear
transformation of a
“Cartesian” reference
system XYZ
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Introduction of the operators of linear transformation,Cpx (ax, φx),Cpy (ay, φy),
and Cpz (az, φz), makes the linear transformations easier as all the operators of the
linear transformations become uniform.

The operators of linear transformation Cpx (ax, φx), Cpy (ay, φy), and Cpz (az,
φz), do not obey the commutative law. This is because rotations are not vectors by
nature. Therefore, special care should be undertaken when treating rotations as
vectors – when implementing coupled operators of linear transformations in
particular.

The operators of coupled linear transformations Cpx (ax, φx), Cpy (ay, φy), and
Cpz (az, φz) [see Eq. (B.45) through Eq. (B.47)] can be used for the purpose of
analytical description of a resultant coordinate system transformation. Under such
the scenario, the operator, Rs (1 � t), of a resultant coordinate system transforma-
tion can be expressed in terms of all the operators Cpx (ax, φx), Cpy (ay, φy), and
Cpz (az, φz) by the following expression:

Rs 1� tð Þ ¼
Yt�1

i¼1

j¼x, y, z

Cpij aij, φi
j

� �
ðB:48Þ

In Eq. (B.48), only operators of coupled linear transformations are used.

An Example of Non-orthogonal Linear Transformation

Consider a non-orthogonal reference system X1Y1Z1 having certain angle ω1

between the axes X1 and Y1. Axis Z1 is perpendicular to the coordinate plane X1Y1.
Another reference system X2Y2Z2 is identical to the first coordinate system X1Y1Z1,
and is turned about Z1-axis through a certain angle φ. Transition from the reference
system X1Y1Z1 to the reference system X2Y2Z2 can be analytically described by the
operator of linear transformation:

Rtω 1 ! 2ð Þ ¼

sin ω1 þ φð Þ
sinω1

sinφ
sinω1

0 0

� sinφ
sinω1

sin ω1 � φð Þ
sinω1

0 0

0 0 1 0

0 0 0 1

2
666666664

3
777777775

ðB:49Þ

In order to distinguish the operator of rotation in the orthogonal linear transfor-
mation Rt (1 ! 2) from the similar operator of rotation in a non-orthogonal linear
transformation Rtω(1 ! 2), the subscript “ω” is assigned to the last.

When ω ¼ 90∘, Eq. (B.49) casts into Eq. (B.12).
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Conversion of a Coordinate System Hand

Application of matrix method of coordinate system transformation presumes that
both of the reference systems “i” and “(i
 1)” are of the same hand. This means that
it assumed from the very beginning that both of them are either right-hand- or left-
hand-oriented “Cartesian” coordinate systems. In the event the coordinate systems
i and (i 
 1) are of opposite hand, say one of them is the right-hand-oriented
coordinate system while another one is left-hand-oriented coordinate system, then
one of the coordinate systems must be converted into the oppositely oriented
“Cartesian” coordinate system.

For the conversion of a left-hand-oriented “Cartesian” coordinate system into a
right-hand-oriented coordinate system or vice versa, the operators of reflection are
commonly used.

In order to change the direction of Xi axis of the initial coordinate system i to the
opposite direction (in this case in the new coordinate system (i 
 1) the equalities
Xi 
 1 ¼ � Xi, Yi 
 1 	 Yi and Zi 
 1 	 Zi are observed) the operator of reflection
Rfx(Yi Zi) can be applied. The operator of reflection yields representation in matrix
form:

Rfx Yi Zið Þ ¼

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775 ðB:50Þ

Similarly, implementation of the operators of reflections Rfy(XiZi) and Rfz(XiYi)
change the directions of Yi and Zi axes onto opposite directions. The operators of
reflections Rfy(XiZi) and Rfz(XiYi) can be expressed analytically in the form:

Rfy XiZið Þ ¼

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775 ðB:51Þ

Rfz XiYið Þ ¼

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

2
6664

3
7775 ðB:52Þ

A linear transformation that reverses direction of the coordinate axis is an
“opposite transformation.” Transformation of reflection is an example of “orienta-
tion-reversing transformation.”
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Useful Equations

The sequence of the successive rotations can vary depending on the intention of
the researcher. Several special types of successive rotations are known, including
“Eulerian transformation,” “Cardanian transformation,” and two kinds of “Euler-
Krylov transformations.” The sequence of the successive rotations can be chosen
from a total of 12 different combinations. Even though the “Cardanian transfor-
mation” is different from the “Eulerian transformation” in terms of the combina-
tion of the rotations, they both use a similar approach to calculate the orientation
angles.

RPY-Transformation

series of rotations can be performed in the order “roll matrix, (R),” by “pitch
matrix (P),” and finally by “yaw matrix, (Y ).” The linear transformation of this
kind is commonly referred to as “RPY-transformation.” The resultant transforma-
tion of this kind can be represented by the homogenous coordinate transformation
matrix:

RPY φx, φy, φz

� � ¼
cosφy cosφz þ sinφx sinφy sinφz cosφy sinφz � sinφx sinφy cosφz cosφx sinφy 0

� cosφx sinφz cosφx cosφz sinφx 0

sinφx cosφy sinφz � sinφy cosφz � sinφx cosφy cosφz � cosφy sinφz cosφx cosφy 0

0 0 0 1

2
6664

3
7775

ðB:53Þ

The “RPY-transformation” can be used for solving problems in the field of part
surface generation.

Operator of Rotation about an Axis in Space

A spatial rotation operator for the rotational transformation of a point about a unit
axis a0(cosα, cos β, cos γ) passing through the origin of the coordinate system can
be described as follows, with a0¼A0/ jA0j designating the unit vector along the axis
of rotation A0.

Suppose the angle of rotation of the point about a0 is θ, the “rotation operator” is
expressed by:
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Rt θ, a0ð Þ ¼

1� cos θð Þ cos 2αþ cos θ 1� cos θð Þ cos α cos β � sin θ cos γ

1� cos θð Þ cos α cos β þ sin θ cos γ 1� cos θð Þ cos 2β þ cos θ

1� cos θð Þ cos α cos γ � sin θ cos β 1� cos θð Þ cos β cos γ þ sin θ cos α

0 0

2
6664

ðB:54Þ
1� cos θð Þ cos α cos γ þ sin θ cos β 0

1� cos θð Þ cos β cos γ � sin θ cos α 0

1� cos θð Þ cos 2γ þ cos θ 0

0 1

3
7775

Solution to a problem in the field of part surface generation can be significantly
simplified by implementation of the rotational operator Rt (θ, a0) [see Eq. (B.54)].

Combined Linear Transformation

Suppose a point, p, on a rigid body rotates with an angular displacement, θ, about an
axis along a unit vector, a0, passing through the origin of the coordinate system at
first, and then followed by a translation at a distance, B, in the direction of a unit
vector, b. The linear transformation of this kind can be analytically described by the
homogenous matrix:

Rt θa0,Bbð Þ ¼

1� cos θð Þ cos 2αþ cos θ 1� cos θð Þ cos α cos β � sin θ cos γ

1� cos θð Þ cos α cos β þ sin θ cos γ 1� cos θð Þ cos 2β þ cos θ

1� cos θð Þ cos α cos γ � sin θ cos β 1� cos θð Þ cos β cos γ þ sin θ cos α

0 0

2
6664

ðB:55Þ
1� cos θð Þ cos α cos γ þ sin θ cos β B cos α

1� cos θð Þ cos β cos γ � sin θ cos α B cos β

1� cos θð Þ cos 2γ þ cos θ B cos γ

0 1

3
7775

More operators of particular linear transformations can be found out in the
literature.
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Chains of Consequent Linear Transformations and a Closed
Loop of Consequent Coordinate Systems Transformations

Consequent coordinate system transformations form chains (circuits) of linear trans-
formations. The elementary chain of coordinate system transformation is composed
of two consequent transformations. Chains of linear transformations play an impor-
tant role in the theory of part surface generation.

Two different kinds of chains of consequent coordinate system transformations
are distinguished.

First, transition from the coordinate system XgYgZg associated with the gear tooth
flank, G , to the local “Cartesian” coordinate system xgygzg having the origin at a
point, K, of contact of the gear tooth flank, G, and of the pinion tooth flank, P . This
linear transformation is also made up of numerous operators of intermediate coor-
dinate system transformations (XinYinZin). It forms a chain of direct consequent
coordinate system transformations illustrated in Fig. B.13a.

The local coordinate system, xgygzg, is associated with the gear tooth flank, G. The
operator Rs G ! Kg

� �
of the resultant coordinate system transformation for a direct

chain of the linear transformations can be composed using for this purpose a certain
number of the operators of translations [see Eq. (B.4) through Eq. (B.6)] and a
corresponding number of the operators of rotations [see Eq. (B.10) through
Eq. (B.12)].

Second, transition from the coordinate system, XgYgZg, to the local “Cartesian”
coordinate system, xpypzp, with the origin at a point K of contact of the tooth flanks,
G and P . The local coordinate system, xpypzp, is associated to pinion tooth flank, P .
This linear transformation is also made up of numerous intermediate coordinate
system transformations (XjYjZj), for example, transitions from the coordinate system
XhYhZh associated with gear housing, to numerous intermediate coordinate system
XiYiZi. The linear transformation of this kind forms a chain of inverse consequent
coordinate system transformations shown in Fig. B.13b. The operator Rs G ! Kp

� �
of the resultant coordinate system transformations for the inverse chain of trans-
formations can be composed using for this purpose a certain number of the operators
of translations [see Eq. (B.4), Eq. (B.5), and Eq. (B.6)] and a corresponding number
of the operators of rotations [see Eq. (B.10) through Eq. (B.12)].

Chains of the direct and of the reverse consequent coordinate system transforma-
tions together with the operator of transition from the local coordinate system,
xpypzp, to the local coordinate system, xgygzg, form a closed loop (a closed circuit)
of the consequent coordinate system transformations depicted in Fig. B.13c.

If a closed loop of the consequent coordinate system transformations is complete,
the implementation of a certain number of the operators of translations [see
Eq. (B.4), Eq. (B.5), and Eq. (B.6)] and a corresponding number of the operators
of rotations [see Eq. (B.10) through Eq. (B.12)] returns a result that is identical to the
input data. This means that the analytical description of a meshing process specified
in the original coordinate system remains the same after implementation of the

482 Appendix B: Applied Coordinate Systems and Linear Transformations



operator of the resultant coordinate system transformations. This condition is the
necessary and sufficient condition for existence of a closed loop of consequent
coordinate system transformations.

(a)
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g g gx y z
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Fig. B.13 An example of
direct chain (a), of reverse
chain (b), and a closed loop
(c) of consequent coordinate
system transformations
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Implementation of the chains, as well as of the closed loops of consequent
coordinate system transformations, makes it possible to consider the meshing pro-
cess of the teeth flanks, G and P, in any and all of the reference systems that make up
the loop. Therefore, for consideration of a particular problem of part surface gener-
ation, the most convenient reference system can be chosen.

In order to complete the construction of a closed loop of a consequent coordinate
system transformations, an operator of transformation from the local coordinate
system, xpypzp, to the local coordinate system, xgygzg, must be composed. Usually,
the local reference systems, xgygzg and xpypzp, are the kind of semi-orthogonal
coordinate systems. This means that the axis, zP, is always orthogonal to the coordi-
nate plane, xgyg, while the axes, xg and yg, can be either orthogonal or not orthogonal to
each other. The same is valid with respect to the local coordinate system, xpypzp.

Two possible ways for performing the required transformation of the local
reference systems, xgygzg and xpypzp, are considered below.

Following the first way, the operator Rtω( p ! g) of the linear transformation of
semi-orthogonal coordinate systems (see Fig. B.14) must be composed. The operator
Rtω( p ! g) can be represented in the form of the homogenous matrix:

Rtω p ! gð Þ ¼

sin ωp þ α
� �
sinωp

� sin ωg � ωp � α
� �

sinωp
0 0

� sin α
sinωp

sin ωg � α
� �
sinωp

0 0

0 0 �1 0

0 0 0 1

2
666666664

3
777777775

ðB:56Þ
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Fig. B.14 Local coordinate
systems, xgygzg and xpypzp,
with the origin at contact
point, K
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Here the following are designated:
ωg – the angle that makes Ug and Vg coordinate lines on the gear tooth flank, G
ωp – the angle that makes Up and Vp coordinate lines on the pinion tooth flank, P
α – the angle that makes the axes, xg and xp, of the local coordinate systems xgygzg

and xpypzp
The auxiliary angle β in Fig. B.14 is equal to β ¼ ωT + α.
The inverse coordinate system transformation, that is, the transformation from the

local coordinate system, xgygzg, to the local coordinate system, xpypzp, can be
analytically described by the operator Rtω(g ! p) of the inverse coordinate system
transformation. The operator Rtω(g ! p) can be represented in the form of the
homogenous matrix:

Rtω g ! pð Þ ¼

sin ωg � α
� �
sinωg

sin ωg � ωp � α
� �

sinωg
0 0

sin α
sinωg

sin ωp þ α
� �
sinωg

0 0

0 0 �1 0

0 0 0 1

2
666666664

3
777777775

ðB:57Þ

Following the second way of transformation of the local coordinate systems, the
auxiliary orthogonal local coordinate system must be constructed.

Let’s consider an approach, according to which a closed loop (a closed circuit) of
the consequent coordinate system transformations can be composed.

In order to construct an orthogonal normalized basis of the coordinate system
xgygzg, an intermediate coordinate system x1y1z1 is used. Axis x1 of the coordinate
system x1y1z1 is pointed out along the unit vector ug that is tangent to the Ug-
coordinate curve (see Fig. B.15). Axis y1 is directed along vector vg that is tangent to

gv

1y

gK

1 2 gz z z� �

gn

gr

gu

gX

G

2 gy y�

1 2 gx x x� �

gY

gZ

Fig. B.15 Local coordinate
system, xgygzg, associated
with the gear tooth flank, G
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the Vg-coordinate line on the gear tooth flank, G. The axis, z1, aligns with unit normal
vector, ng, and is pointed outward the gear tooth body.

For a gear tooth flank, G, having orthogonal parameterization (for which Fg ¼ 0,
and therefore ωg ¼ π/2), analytical description of coordinate system transformations
is significantly simpler. Further simplification of the coordinate system transforma-
tion is possible when the coordinate Ug- and Vg-lines are congruent to the lines of
curvature on the part surface G. Under such a scenario, the local coordinate system is
represented by “Darboux frame.”

In order to construct “Darboux frame,” principal directions on the gear tooth
flank, G, must be calculated. Determination of the unit tangent vectors, t1. g and t2. g,
of the principal directions on the gear tooth flank, G, is considered in Appendix A.

In the common tangent plane, orientation of the unit vector, t1. g, of the first
principal direction on the gear tooth flank, G , can be uniquely specified by the
included angle, ξ1. g, that the unit vector, t1. g, forms with the Ug-coordinate curve.
This angle depends on both, on the gear tooth flank, G , geometry, and on the gear
tooth flank, G, parameterization. Depicted in Fig. B.16, is the relationship between
the tangent vectors Ug and Vg and the included angle ξ1. g. From the Law of Sines,

ffiffiffiffiffiffi
Gg

p
sin ξ1:g

¼
ffiffiffiffiffiffi
Eg

p
sin π � ξ1:g � π � ωg

� �� � ¼
ffiffiffiffiffiffi
Fg

p
sin ωg � ξ1:g

� � ðB:58Þ

Here, ωg ¼ cos �1 Fg=
ffiffiffiffiffiffiffiffiffiffiffi
EgGg

p� �
.

1.gξ

gω
1.gt

gV

gU

g g gG = ⋅V V

g g gE = ⋅U U

Fig. B.16 Differential relationships between the tangent vectors, Ug and Vg, the fundamental
magnitudes of the first order, the included the angle, ξ1. g, and the direction of the unit tangent
vector, t1. g
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Solving the expression above for the included angle, ξ1. g, results in:

ξ1:g ¼ tan �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q
Eg þ Fg

ðB:59Þ

Another possible way of constructing of orthogonal local basis of the local
“Cartesian” coordinate system, xPyPzP, is based on the following consideration.

Consider an arbitrary non-orthogonal and not normalized basis, x1x2x3 (see
Fig. B.17a). Let’s construct an orthogonal and normalized basis based on the initial
given basis, x1x2x3.

The cross product of any two of three vectors, x1, x2, x3, for example, cross
product of the vectors x1 � x2, determines a new vector, x4 (see Fig. B.17b).
Evidently, the vector, x4, is orthogonal to the coordinate plane, x1x2. Then, use the
calculated vector, x4, and one of two original vectors, x1 or x2, for instance, use the
vector, x2. This yields a calculation of a new vector, x5 ¼ x4 � x2 (see Fig. B.17c).
The calculated basis, x1x4x5, is orthogonal. In order to convert it into a normalized
basis, each of the vectors, cos ∠ (Y(K ),Xд) ¼ [cos ∠ (X(K ),Yд) cos ∠ (Z(K ),
Zд) � cos ∠ (X(K ), Zд) cos ∠ (Z(K ),Yд)];, cos ∠ (Y(K ), Yд) ¼ [cos ∠ (X(K ),
Xд) cos ∠ (Z(K ),Zд) � cos ∠ (X(K ), Zд) cos ∠ (Z(K ),Xд)];, and cos ∠ (Y(K ),
Zд)¼ [cos∠ (X(K ),Xд) cos ∠ (X(K ),Yд)� cos ∠ (X(K ),Yд) cos ∠ (Z(K ),Xд)]., must
be divided by its magnitude:

e1 ¼ x1
x1j j ðB:60Þ

e4 ¼ x4
x4j j ðB:61Þ

e5 ¼ x5
x5j j ðB:62Þ

The resultant basis e1e4e5 (see Fig. B.17d) is always orthogonal, as well as it is
always normalized.

In order to complete the analytical description of a closed loop of consequent
coordinate system transformations, it is necessary to compose the operator Rs
(Kp ! Kg) of transformation from the local reference system, xpypzp, to the local
reference system, xgygzg (see Fig. B.13c).

In the case under consideration, the axes, zg and zp, align with the common unit
normal vector, ng. The axis, zg, is pointed out from the bodily side to the void side of
the gear tooth flank, G. The axis, zg, is pointed oppositely. Due to that, the following
equality is observed:

Rs Kp ! Kg

� � ¼ Rt φz, zp
� � ðB:63Þ
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The inverse coordinate system transformation can be analytically described by
the operator:

Rs Kg ! Kp

� � ¼ Rs�1 Kp ! Kg

� � ¼ Rt �φz, zp
� � ðB:64Þ
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Fig. B.17 A normalized and orthogonally parameterized basis, e1e4e5, that is constructed from an
arbitrary basis, x1x2x3
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Implementation of the discussed results allows for:

(a) Representation of the gear tooth flank, G , and the pinion tooth flank, P , of the
form cutting tool, as well as their relative motion in a common coordinate
system.

(b) Consideration of meshing of the gear tooth flank, G , in any desired coordinate
systems that is a component of the chain and/or the closed loop of consequent
coordinate system transformations.

Transition from one coordinate system to another coordinate system can be
performed in both of two feasible directions, say in direct as well as in inverse
directions.

Impact of the Coordinate Systems Transformations
on Fundamental Forms of the Surface

Every coordinate system transformation results in a corresponding change to equa-
tion of the gear tooth flank, G, and/or pinion tooth flank, P. Because of this, it is often
necessary to re-calculate coefficients of the first Φ1. g and of the second Φ2. g

fundamental forms of the gear tooth flank, G (as many times as the coordinate
system transformation is performed). This routing and time-consuming operation
can be eliminated if the operators of coordinate system transformations are used
directly to the fundamental forms Φ1. g and Φ2. g.

After been calculated in an initial reference system, the fundamental magnitudes
Eg, Fg, and Gg of the first, Φ1. g, and the fundamental magnitudes Lg, Mg, and Ng of
the second, Φ2. g, fundamental forms can be determined in any new coordinate
system using for this purpose the operators of translation, of rotation, and of resultant
coordinate system transformation. Transformation of such kind of the fundamental
magnitudes, Φ1. g and Φ2. g, becomes possible due to implementation of a formula
that can be found out immediately below.

Let’s consider a gear tooth flank, G , that is given by equation rg ¼ rg(Ug, Vg),
where Ug,Vg

� � 2 G.
For the analysis below, it is convenient to use the equation of the first fundamental

form, Φ1. g, of the gear tooth flank, G, represented in matrix form:

Φ1:g
� � ¼ dUg dVg 0 0½ � �

Eg Fg 0 0

Fg Gg 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775 �

dUg

dVg

0

0

2
6664

3
7775 ðB:65Þ
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Similarly, equation of the second fundamental form Φ2. g of the gear tooth flank,
G, can be given by:

Φ2:g
� � ¼ dUg dVg 0 0½ � �

Lg Mg 0 0

Mg Ng 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775 �

dUg

dVg

0

0

2
6664

3
7775 ðB:66Þ

The coordinate system transformation that is performed by the operator of linear
transformation Rs (1 ! 2) transfers the equation rg ¼ rg(Ug, Vg) of the gear tooth

flank, G , initially given in X1Y1Z1, to the equation r�g ¼ r�g U�
g, V�

g

� �
of that same

gear tooth flank, G, in a new coordinate system X2Y2Z2. It is clear that rg 6¼ r�g.
In the new coordinate system, the gear tooth flank, G, is analytically described by

the following expression:

r�g U�
g, V�

g

� �
¼ Rs 1 ! 2ð Þ � rg Ug, Vg

� � ðB:67Þ

The operator of resultant coordinate system transformation Rs (1 ! 2) casts the
column matrices of variables in Eq. (B.65) and Eq. (B.66) to the form:

dU�
g dV�

g 0 0
� �T ¼ Rs 1 ! 2ð Þ � dUg dVg 0 0½ �T : ðB:68Þ

Substitution of Eq. (B.68) into Eq. (B.65) and Eq. (B.66) makes it possible the
expressions for the fundamental forms, Φ�

1:g and Φ�
2:g, in the new coordinate system:

Φ�
1:g

h i
¼ Rs 1 ! 2ð Þ � dUg dVg 0 0½ �T

h iT
� Φ1:g
� � � Rs 1 ! 2ð Þ � dUg dVg 0 0½ �T

ðB:69Þ

Φ�
2:g

h i
¼ Rs 1 ! 2ð Þ � dUg dVg 0 0½ �T

h iT
� Φ2:g
� � � Rs 1 ! 2ð Þ � dUg dVg 0 0½ �T

ðB:70Þ

The following equation is valid for multiplication:

Rs 1 ! 2ð Þ � dUg dVg 0 0½ �T
h iT
¼ RsT 1 ! 2ð Þ � dUg dVg 0 0½ � ðB:71Þ

Therefore,

Φ�
1:g

h i
¼ dUg dVg 0 0½ �T � RsT 1 ! 2ð Þ � Φ1:g

� � � Rs 1 ! 2ð Þ�  � dUg dVg 0 0½ �
ðB:72Þ

490 Appendix B: Applied Coordinate Systems and Linear Transformations



Φ�
2:g

h i
¼ dUg dVg 0 0½ �T � RsT 1 ! 2ð Þ � Φ2:g

� � � Rs 1 ! 2ð Þ�  � dUg dVg 0 0½ �
ðB:73Þ

It can be easily shown that the matrices Φ�
1:g

h i
and Φ�

2:g

h i
in Eq. (B.72) and

Eq. (B.73) represent quadratic forms with respect to dUg and dVg.
The operator of transformation Rs (1 ! 2) of the gear tooth flank, G, having the

first, Φ1. g, and the second, Φ2. g, fundamental forms from the initial coordinate
system X1Y1Z1 to the new coordinate system, X2Y2Z2, results in that in the new
coordinate system the corresponding fundamental forms are expressed in the form:

Φ�
1:g

h i
¼ RsT 1 ! 2ð Þ � Φ1:g

� � � Rs 1 ! 2ð Þ ðB:74Þ

Φ�
2:g

h i
¼ RsT 1 ! 2ð Þ � Φ2:g

� � � Rs 1 ! 2ð Þ ðB:75Þ

Equations (B.74) and (B.75) reveal that after the coordinate system transforma-
tion is completed, the first Φ�

1:g and the second Φ�
2:g fundamental forms of the gear

tooth flank, G, in the coordinate system X2Y2Z2 are expressed in terms of the first,Φ1.

g, and the second, Φ2. g, fundamental forms initially represented in the coordinate
system X1Y1Z1. In order to do that, the corresponding fundamental form (either the
form,Φ1. g, or the form,Φ2. g) must be pre-multiplied by Rs (1! 2) and after that be
post-multiplied by RsT(1 ! 2).

Implementation of Eq. (B.74) and Eq. (B.75) significantly simplifies formulae
transformations.

Equations similar to those above Eq. (B.74) and Eq. (B.75) are valid with respect
to pinion tooth flank, P .

In case of use of the third, Φ3. g, and of the fourth, Φ4. g, fundamental forms, their
coefficients can be expressed in terms of the fundamental magnitudes of the first and
of the second order.
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Appendix C: Contact Geometry of a Gear
and a Mating Pinion’ Tooth Flanks

In the theory of gearing, the kinematics of gearing is considered as the prime element
of the gear pair. Other important elements of gearing are:

(a) The shape and the geometry of the gear tooth flank, G.
(b) The shape and the geometry of the mating pinion tooth flank, P (as well as

numerous others).

which are considered as the secondary elements of gearing. This does not mean that
the importance of the secondary elements is lower than that of the primary element.
No, this is incorrect. This just means that the most favorable parameters of the
secondary elements can be expressed in terms of the parameters of the prime
element. Ultimately, the entire gear pair can be synthesized on the premise just of
the prime element – that is, on the premise of the desirable kinematics of the gear
pair. In other words, having just the desirable kinematics of the gear pair to be
designed, it is possible to synthesize the rest of the design parameters of the gear pair.
Only the kinematics of gearing is used for the purposes of synthesizing the best
possible gear pair for transmitting the input rotation and torque.

In order to solve the problem of synthesizing the most favorable gear pair, an
appropriate analytical description of contact geometry of the gear tooth flank, G, and
the mating pinion tooth flank, P, is required. The problem of analytical description of
contact geometry between two smooth regular surfaces in the first order of tangency
is a sophisticated one.

Investigation of contact geometry of curves and surfaces can be traced back to the
eighteenth century. In considerable detail the study of the contact of curves and
surfaces has been undertaken by J.L. Lagrange14 in his Theorié des Fonctions
Analytiques (1797) and A.L. Cauchy15 in his Leçons sur les Applications du Calcul

14Joseph-Louis Lagrange (January 25, 1736–April 10, 1813), an Italian born [born Giuseppe
Lodovico (Luigi) Lagrangia] famous French mathematician and mechanician
15Augustin-Louis Cauchy (August 21, 1789–May 23, 1857), a famous French mathematician
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Infinitésimal á la Geometrie (1826). Later on, in the twentieth century, an investi-
gation in the realm of contact geometry of curves and surfaces has been undertaken
by J. Favard16 in his Course de Gèomètrie Diffèrentialle Locale (1957). A few more
names of the researchers in the field are to be mentioned.

The results of the research obtained in the field of contact geometry of two
smooth regular surfaces are widely used in the theory of gearing. The problem of
synthesizing the most favorable gear pair can be solved on the premise of the
analysis of topology of the contacting surfaces in differential vicinity of the point
of their contact.

Various methods for analytical description of contact geometry between two
smooth regular surfaces are developed by now. Latest achievements in the field
are discussed in plurality of papers and monograph available in the public domain.

An in-detail analysis of known methods of analytical description of the geometry
of contact between two smooth regular surfaces uncovered poor capability of known
methods for solving problems in the field of designing efficient gear pairs. Therefore,
an accurate method for analytical description of contact geometry between two
smooth regular surfaces, G and P , in the first order of tangency, which fits the
needs of the theory of gearing, is necessary. Such a method is worked out in this
chapter.

It is convenient to begin the discussion starting from analytical description of
local relative orientation of the gear tooth flank, G, and the mating pinion tooth flank,
P. The proposed analytical description is relevant to differential vicinity of the point
of contact, K, of the tooth flanks, G and P .

Local Relative Orientation at a Point of Contact of a Gear
and a Mating Pinion’ Tooth Flanks

When the gears rotate, a gear tooth flank, G, and the mating pinion tooth flank, P, are
in permanent tangency with one another. The contacting surfaces, G and P , can be
approximated by the corresponding quadrics as schematically illustrated in Fig. C.1.
The requirement to be permanently in tangency to each other imposes a kind of
restrictions on the relative configuration (location and orientation) of the tooth
flanks, G and P , and on their instant relative motion.

In the theory of gearing, a quantitative measure of relative orientation of the gear
tooth flank, G, and of the mating pinion tooth flank, P , is established.

Relative orientation of the point of contact of the gear tooth flank, G, and of the
mating pinion tooth flank, P , is specified by the angle, μ, of local17 relative
orientation of the surfaces. By definition, angle μ is equal to the angle that the unit

16Jean Favard (August 28, 1902–January 21, 1965), a French mathematician
17The surfaces orientation is “local” in nature because it relates only to differential vicinity of point,
K, of contact of the tooth flanks, G and P .
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tangent vector, t1. g, of the first principal direction of the gear tooth flank, G, forms
with the unit tangent vector, t1. p, of the first principal direction of the mating pinion
tooth flank, P. That same angle, μ, can also be determined as the angle that makes the
unit tangent vectors, t2. g and t2. p, of the second principal directions of the surfaces,
G and P, at contact point, K. This immediately yields equations for the calculation of
the angle, μ:

sin μ ¼j t1:g � t1:p j¼j t2:g � t2:p j , ðC:1Þ
cos μ ¼ t1:g � t1:p ¼ t2:g � t2:p, ðC:2Þ

tan μ ¼ t1:g � t1:p
�� ��
t1:g � t1:p 	 t2:g � t2:p

�� ��
t2:g � t2:p ðC:3Þ

Here the following are designated:
t1. g, t2. g

– the unit vectors of principal directions on the gear tooth flank, G , measured at
contact point, K
t1. p, t2. p

– the unit vectors of principal directions on the mating pinion tooth flank, P, at that
same contact point, K, of the tooth flanks, G and P

Directions of the unit tangent vectors, t1. g and t2. g, of the principal directions on
the gear tooth flank, G (as well as directions of the unit tangent vectors t1. p and t2. p

P

1.pR

�

1.pC

px

py

2.pCgz

gy gx

Gpz

gn

pn

2.pR

2.gR 1.gR

2.pt
Tangent plane

K

1.gC
2.pC

2.gt 1.gt

1.pt

Fig. C.1 Local configuration of two quadrics tangent to a gear tooth flank G and to a mating pinion
tooth flank P at a point K of their contact. (After S.P. Radzevich, ~2008)
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of the principal directions on the pinion tooth flank, P ) can be specified in terms of
the ratio dUg/dVg (or in terms of the ratio dUp/dVp in case of the pinion tooth flank, P
). The corresponding values of the ratio, dUg( p)/dVg( p), are calculated as roots of the

quadratic equation:

Eg pð Þ
dUg pð Þ
dVg pð Þ

þ Fg pð Þ Fg pð Þ
dUg pð Þ
dVg pð Þ

þ Gg pð Þ

Lg pð Þ
dUg pð Þ
dVg pð Þ

þМ g pð Þ М g pð Þ
dUg pð Þ
dVg pð Þ

þ Ng pð Þ

���������

���������
¼ 0 ðC:4Þ

In case of point contact of the surfaces, G and P, the actual value of the angle, μ, is
calculated at contact point, K. If the tooth flanks, G and P, are in line contact, then the
actual value of the angle, μ, can be calculated at every point within the line of
contact.18 The line of contact of the tooth flanks, G and P, is commonly referred to as
“characteristic line, E ,” or just as “characteristic, E ,” for simplicity.

Determination of the angle, μ, of local relative orientation of the tooth flanks, G
and P , of a gear and a mating pinion is illustrated in Fig. C.1.

In order to calculate an actual value of the angle, μ, of local relative orientation of
the tooth flanks, G and P, the unit vectors of the principal directions, t1. g and t1. p, are
employed.

Consider tooth flanks, G and P , in point contact, which are represented in a
common reference system. The surfaces make contact at a point, K. For further
analysis, an equation of the common tangent plane to the tooth flanks, G and P, at the
contact point, K, is necessary (see Figs. C.1 and C.2).

rtp � rK
� � � ug � vg ¼ 0 ðC:5Þ

Here:
rtp is the position vector of a point of the common tangent plane
rK is the position vector of the contact point, K
ug and vg are unit vectors that are tangent to Ug- and Vg-coordinate lines on the

gear tooth flank, G at the contact point, K
The angle ωg is the angle that is formed by the unit vectors, ug and vg. The actual

value of the angle, ωg, can be calculated from one of the following equations:

sinωg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q
ffiffiffiffiffiffiffiffiffiffiffi
EgGg

p ðC:6Þ

18It is worthy pointing out here that in a case of line contact, relative orientation of two surfaces, G
and P, is predetermined in “global” sense. However, the actual value of the angle, μ, of the surfaces
“local” relative orientation at different points of the characteristic, E, is different.
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cosωg ¼ Fgffiffiffiffiffiffiffiffiffiffiffi
EgGg

p ðC:7Þ

tanωg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q
Fg

ðC:8Þ

Equations similar to Eq. (C.6) through Eq. (C.8) are also valid for the calculation
of the angle, ωp, at a point on the pinion tooth flank, P .
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Fig. C.2 Local “relative” orientation at a point of contact of the tooth flanks of a gear, G , and a
mating pinion, P , considered in a common tangent plane
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Tangent directions, ug and, to the Ug- and Vg-coordinate lines at a point on the
gear tooth flank, G , as well as tangent directions, up and vp to the Up- and Vp-
coordinate at a point lines on the pinion tooth flank, P , are specified in terms of the
angles, θ and ε. For the calculation of actual values of the angles, θ and ε, the
following equations can be used:

cos θ ¼ ug � up ðC:9Þ
cos ε ¼ vg � vp ðC:10Þ

The angle, ξg, is the angle that the first principal direction, t1. g, on the gear tooth
surface, G, forms with the unit tangent vector, ug (see Fig. C.2). The equation for the
calculation of an actual value of the angle, ξg, is derived by Prof. S.P. Radzevich:

sin ξg ¼
ηgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηg2 � 2ηg cosωg þ 1
q sinωg ðC:11Þ

where ηg designates the ratio ηg ¼ ∂Ug

∂Vg
.

In the event Fg ¼ 0, the following equality, tanξg ¼ ηg, is observed. Here, the
ratio, ηg, is equal to the root of the quadratic equation:

FgLg � EgMg

� �
η2g þ GgLg � EgNg

� �
ηg þ GgMg � FgNg

� � ¼ 0 ðC:12Þ

which immediately follows from the equation:

Eg dUg þ Fg dVg Fg dUg þ Gg dVg

Lg dUg þMg dVg Mg dUg þ Ng dVg

����
���� ¼ 0 ðC:13Þ

The equation for the calculation of actual value of the angle, ξg, allows for another
representation. Following chain rule, d rg can be represented in the form:

d rg ¼ Ug dUg þ Vg dVg ðC:14Þ

By definition, tan ξg ¼ sin ξg
cos ξg

. The functions, sinξg and cosξg, yield representation

as:

sin ξg ¼
j Ug � d rg j
Ug

�� ��� j d rg j ðC:15Þ

cos ξPg ¼ Ug � d rg
Ug

�� ��� j d rg j ðC:16Þ
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The last expressions yield:

tan ξg ¼
sin ξg
cos ξg

¼ j Ug � d rg j
Ug � d rg ¼ j Ug � d rg j

Ug � UgdUg þ VgdVg

� �
¼ j Ug � d rg j �dVg

Ug � UgdUg þ Ug � VgdVg
ðC:17Þ

By definition:

Ug � Ug ¼ Eg ðC:18Þ
Ug � Vg ¼ Fg ðC:19Þ

Ug � Vg

�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q
ðC:20Þ

Equation (C.14) through Eq. (C.20) yield the formula:

tan ξg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgGg � F2

g

q
ηg � Eg þ Fg

ðC:21Þ

for the calculation of actual value of the angle ξg.
Equations similar to those above Eq. (C.11) and Eq. (C.21) are also valid for the

calculation of actual value of the angle, ξp, that the first principal direction, t1. p, at a
point on the pinion tooth flank, P , forms with the unit tangent vector, up.

The performed analysis makes possible the following equations for the calcula-
tion of the unit vectors of principal directions, t1. g and t2. g:

t1:g ¼ Rt ξg, ng
� � � ug ðC:22Þ

t2:g ¼ Rt ξg þ π
2

� �
, ng

h i
� ug ðC:23Þ

for the gear tooth flank, G , and similar equations for the calculation of the unit
vectors of principal directions, t1. p and t2. p:

t1:p ¼ Rt ξp, ng
� � � up ðC:24Þ

t2:p ¼ Rt ξp þ π
2

� �
, ng

h i
� up ðC:25Þ

for the pinion tooth flank, P .
The operator of rotation Rt (φA,A0) through an angle φA about an axis A0 is

employed for the calculation of the operators of rotation in Eq. (C.22) through
Eq. (C.25).
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The Second Order Analysis: Planar Characteristic Images

For a more accurate analytical description of contact geometry of the gear tooth
flank, G, and the pinion tooth flank, P , consideration of the second order parameters
is necessary. The second order analysis incorporates elements of both the first order
and elements of the second order analysis. For performing the second order analysis,
familiarity with “Dupin indicatrix” is highly desirable.19 “Dupin indicatrix” is a
perfect start-point for consideration of the second order analysis.

Preliminary Remarks: “Dupin indicatrix”

At any point of a smooth regular gear tooth flank, G (as well as at any point of a
smooth regular pinion tooth flank, P ) a corresponding “Dupin indicatrices” can be
constructed. “Dupin indicatrix, Dup Gð Þ” at a point of a gear tooth flank, G , and
“Dupin indicatrix, Dup Pð Þ ” at a point of the pinion tooth flank, P , are planar
characteristic curves of the second order. They are used for graphical interpretation
of the distribution of normal radii of curvature of a surface in the differential vicinity
of a surface point.

“Dupin indicatrices” at a point of the tooth flank, G (as well as at a point of the
tooth flank, P), are of critical importance in the theory of gearing. Generation of this
planar characteristic curve is illustrated with a diagram shown in Fig. C.3.

A planeW through the unit normal vector, ng, to the gear tooth flank, G, at a point,
m, is rotating about the unit normal vector, ng. While rotating, the plane occupies
consecutive positions, W1, W2, W3, and others. The radii of normal curvature of the
line of intersection of the gear tooth flank, G , by normal planes, W1, W2, W3, are
equal to Rg, 1, Rg, 2, Rg, 3, and so forth. The gear tooth flank, G, is intersected by a
plane, Q. The plane, Q, is orthogonal to the unit normal vector, ng. This plane is at a
certain small distance, δ, from the point, m. When the distance, δ, approaches zero
(δ ! 0), and when the scale of the line of intersection of the gear tooth flank, G, by
the plane, Q, approaches infinity, then the line of intersection of the gear surface, G,
by the plane, Q approaches to the planar characteristic curve that is commonly
referred to as “Dupin indicatrix, Dup Gð Þ.”

In differential geometry of surfaces, a surface is construed as a zero-thickness
film. Because of this, “Dupin indicatrices” of the following five different types are
distinguished in differential geometry of surfaces (see Fig. C.4):

• Elliptic (Fig. C.4a).
• Umbilic (Fig. C.4b).
• Parabolic (Fig. C.4c).

19Pierre Charles Francois Dupin (October 6, 1784–January 18, 1873), a French mathematician
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Fig. C.3 “Dupin indicatrix” at point of smooth regular gear tooth flank, G
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Fig. C.4 Five different types of “Dupin indicatrices, Dup Gð Þ”, at a point, m, of a smooth regular
gear tooth flank, G
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• Hyperbolic (Fig. C.4d).
• Minimal (Fig. C.4e).

“Dupin indicatrix” for a plane local surface patch doesn’t exist. In the case of
plane, all points of the “Dupin indicatrix” are remote to infinity.

For local surface patches having negative full curvature (Gg < 0 ), phantom
branches (i.e., the branches that are not intersected by a plane perpendicular to the
unit normal vector, ng, to the gear tooth flank, G, at a point, m) of the characteristic
curve, Dup Gð Þ, in Fig. C.4d and in Fig. C.4e are shown in dashed lines.

An easy way to derive an equation of the characteristic curve, Dup Gð Þ , is
discussed immediately below.

“Euler formula”:

k1:g cos
2φþ k2:g sin

2φ ¼ kg ðC:26Þ

yields representation in the form:

k1:g
kg

cos 2φþ k2:g
kg

sin 2φ ¼ 1 ðC:27Þ

Transition from polar coordinates to “Cartesian coordinates” can be performed
using well-known formulae:

xg ¼ ρ cosφ ðC:28Þ
yg ¼ ρ sinφ ðC:29Þ

These formulae make it possible the following expressions for cos 2φ ¼ x2g=ρ
2

and sin 2φ ¼ y2g=ρ
2 . After substituting the last formulae into the above equation

Eq. (C.27), one can come up with the equation:

k1:g
kg

� x
2
g

ρ2
þ k2:g

kg
� y

2
g

ρ2
¼ 1: ðC:30Þ

It is convenient to designate ρ ¼
ffiffiffiffiffiffiffiffi
k�1
g

q
. Principal curvatures k1. g and k2. g are the

roots of the quadratic equation:

Lg � Egkg Mg � Fgkg

Mg � Fgkg Ng � Ggkg

����
���� ¼ 0 ðC:31Þ
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Substituting the calculated values of the principal curvatures k1. g and k2. g into
Eq. (C.30), and after performing necessary formulae transformations, an equation20

for the “Dupin indicatrix, Dup Gð Þ” can be represented in the form:

k1:g x
2
g þ k2:g y

2
g ¼ 1 ðC:32Þ

Equation (C.32) describes a particular case of the “Dupin indicatrix,” which is
represented in “Darboux frame”.21

The general form of equation of “Dupin indicatrix” at a point m of a gear tooth
flank, G, is often represented as:

Dup Gð Þ ) Lg
Eg

x2g þ
2Mgffiffiffiffiffiffiffiffiffiffiffi
EgGg

p xg yg þ
Ng

Gg
y2g ¼ 1 ðC:33Þ

In Eq. (C.33), the characteristic curve, Dup Gð Þ , is expressed in terms of the
fundamental magnitudes, Eg, Fg, and Gg of the first, Φ1. g, and in terms of the
fundamental magnitudes, Lg,Mg, and Ng, of the second order, Φ2. g, at a point of the
gear tooth flank, G.

Matrix Representation of Equation of “Dupin indicatrix”
at Point of a Gear Tooth Flank

Like any other quadratic form, equation of “Dupin indicatrix” of the gear tooth flank,
G, can be represented in matrix form:

Dup Gð Þ ) xg yg 0 0
� � �

Lg
Eg

2Mgffiffiffiffiffiffiffiffiffiffiffi
EgGg

p 0 0

2Mgffiffiffiffiffiffiffiffiffiffiffi
EgGg

p Ng

Gg
0 0

0 0 �1 0

0 0 0 1

2
6666666664

3
7777777775
�

xg

yg

0

0

2
666664

3
777775 ¼ 
1

ðC:34Þ

20The same equation of the “Dupin indicatrix” could be derived in another way. Coxeter considers
a pair of conics obtained by expanding an equation in Monge’s form z ¼ z(x, y) in a “Maclauren
series”:

z ¼ z 0, 0ð Þ þ z1xþ z2yþ 1
2 z11x21 þ 2z12xyþ z22y2
� �þ . . . ¼ 1

2 b11x2 þ 2b12xyþ b22y2ð Þ.
This gives the equation (b11x

2 + 2b12xy + b22y
2) ¼ 
 1 of the “Dupin indicatrix.”

21Jean Gaston Darboux (August 13, 1842–February 23, 1917), a French mathematician
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In “Darboux frame” this equation reduces to:

Dup Gð Þ ) xg yg 0 0
� � �

Lg Mg 0 0

Mg Ng 0 0

0 0 �1 0

0 0 0 1

2
6664

3
7775 �

xg
yg
0

0

2
6664

3
7775 ¼ 
1 ðC:35Þ

It is convenient to implement matrix representation of equation of the “Dupin
indicatrix” (see above), for instance, when investigating spatial gearings, that is,
crossed-axis gearings, when multiple coordinate system transformations are
required.

The equation of “Dupin indicatrix” can be represented in the form:

rDup φð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rg φð Þ�� ��q

� sgnΦ�1
2:g ðC:36Þ

The last equation reveals that the position vector of a point of the “Dupin
indicatrix, Dup Gð Þ ,” in any direction is equal to the square root of the radius of
curvature in that same direction.22

Degree of Conformity at Point of Contact of a Gear
and a Mating Pinion’s Tooth Flanks in the First Order
of Tangency

For an accurate analytical description of contact geometry of the gear and the mating
pinion’s tooth flanks in the first order of tangency, a higher order analysis is
necessary to be done.

The below-discussed method of a higher order analysis is targeting the develop-
ment of an analytical description of degree of conformity of the pinion tooth flank, P,
to the gear tooth flank, G, at a current point, K of their contact. The higher the degree
of conformity of the tooth flanks, G and P , the closer these surfaces to each other in
differential vicinity of the point, K. This qualitative (“intuitive”) definition of degree
of conformity of two smooth regular surfaces needs a corresponding quantitative
measure.

22Similar to “Dupin indicatrix, Dup Gð Þ ,” a planar characteristic curve of another type can be
introduced. An equation of this characteristic curve can be postulated in the form: rDup:k φð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij kg φð Þ jp � sgnΦ�1

2:g . Application of curvature indicatrix in the form, rDup. k(φ), makes possible
avoiding uncertainty in cases of plane surface. For plane surface, the characteristic curve, Dup Gð Þ,
does not exist, while, rDup. k(φ), exists. It shrinks to the point, m, on the gear tooth flank, G.
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Preliminary Remarks

Implementation of the resultant deviation, lcnf (see Fig. C.5), of two smooth regular
surfaces in contact for the analytical description of contact geometry of two surfaces
in contact is a type of straightforward solution to the problem under consideration.
This approach is proven to be computationally ineffective. However, the approach
gives an insight for how an effective method for solving the problem under consid-
eration can be developed.

As seen in Fig. C.5, three geometrical parameters are interrelated when a devia-
tion of a surface from the tangent plane is considered in differential vicinity of a
surface point. They are:

(a) The measure of the deviation, mgm�
g, of a gear tooth flank, G, from the tangent

plane, lcnf.
(b) The distance, Km�

g, of a current point, mg, from the contact point, K.
(c) Radius of normal curvature Rg of the gear tooth flank, G, at the contact point, K.

As a consequence from this relationship among the parameters, mgm�
g, Km

�
g, and

Rg, any one of them can be used for the purposes of quantitative evaluation of degree
of conformity of the contacting tooth flanks, G and P , of the gear and the mating
pinion. As it is following from Fig. C.5:

mgm
�
g ¼ Rg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
g � Km�

g

� �2
r �����

mg!K

� lcnf ðC:37Þ

gO

* 0gKm
*
gmK

gR

gm

Tangent plane

*
g g cnfm m l

gt

a

a

Fig. C.5 On transition from the resultant deviation, lcnf, of two tooth flanks to indicatrix of
conformity, Cnf G=Pð Þ, at a contact point, K, between a smooth regular tooth flanks, G and P
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Inversely, for the radius of normal curvature, Rg, at a point of the gear tooth flank,
G, the following expression is valid:

Rg ¼
mgm�

g

� �2
þ Km�

g

� �2

2 � mgm�
g

ðC:38Þ

Ultimately, one may conclude that any legitimate analytical function of normal
radii of curvature, Rg and Rp, at a point of contact of the gear tooth flank, G, and the
pinion tooth flank, P , can be used for this particular purpose.

Consider two smooth regular tooth flanks, G and P , in the first order of tangency
that make contact at a point, K. Degree of conformity of the tooth flanks, G and P ,
can be construed as a function of radii of normal curvature, Rg and Rp, of the
contacting surfaces. Radii of normal curvature, Rg and Rp, of the tooth flanks, G
and P , are taken in a common normal plane section through the point, K. For a
specified radius of normal curvature, Rg, of the tooth flank, G , the degree of
conformity of the tooth flanks depends upon the corresponding value of radius of
normal curvature, Rp, of the pinion tooth flank, P .

In most cases of gear meshing, degree of conformity at a point of contact of the
tooth flanks, G and P, is not constant, and it is changing as coordinates of the contact
point change. Degree of the surfaces conformity to one another depends on orien-
tation of the normal plane section through the contact point, K, and changes as the
normal plane section is turning about the common perpendicular, ng. This statement
immediately follows from the above-made conclusion that degree of conformity at a
point of contact of the tooth flanks, G and P, yields interpretation in terms of radii of
normal curvature, Rg and Rp.

The change of degree of conformity of a gear tooth flank, G, and a mating pinion
tooth flank, P , due to turning of the normal plane section about the common
perpendicular, ng, is illustrated in Fig. C.6. Here, in Fig. C.6, just two-dimensional
examples are shown, for which the same normal plane section of the gear tooth flank,
G, makes contact with different plane sections, P i, of the pinion tooth flank, P .

In the example shown in Fig. C.6a, radius of normal curvature, R1
p, of the convex

plane section, P 1 , of the pinion tooth flank, P , is positive (R1
p > 0). The convex

normal plane section of the pinion tooth flank, P , makes contact with the convex
normal plane section (Rg > 0) of a gear tooth flank, G. The degree of conformity of
the pinion tooth flank, P , to the gear tooth flank, G, in Fig. C.6a is relatively low as
both the contacting surfaces are convex.

Another example is shown in Fig. C.6b. The radius of normal curvature, R2
p, of the

convex plane section, P 2 , of the pinion tooth flank, P , also is positive (R2
p > 0).

However, its value exceeds the value, R1
p , of the radius of normal curvature in the

first example (R2
p > R1

p). This results in that degree of conformity of the pinion toot
flank, P , to the gear tooth flank, G (Fig. C.6b), is greater compared to that shown in
Fig. C.6a.
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In the next example depicted in Fig. C.6c, the normal plane section P 3 of the
pinion tooth flank, P, is represented with locally flatten section. The radius of normal
curvature, R3

p, of the flatten plane section, P 3, approaches infinity (R3
p ! 1). Thus,

the inequality, R3
p > R2

p > R1
p , is valid. Therefore, the degree of conformity of the

pinion tooth flank, P , to the gear tooth flank, G in Fig. C.6c, is also getting greater.
Finally, for a concave normal plane section, P 4, of the pinion tooth flank, P , that

is illustrated in Fig. C.6d, the radius of normal curvature, R4
p , is of negative value

(R4
p < 0). In this case, the degree of conformity of the pinion tooth flank, P , to the

gear tooth flank, G, is the greatest of four examples considered in Fig. C.6.
The examples shown in Fig. C.6 qualitatively illustrate what is known intuitively

regarding the different degree of conformity of two smooth regular surfaces in the
first order of tangency. Intuitively one can realize that in the examples shown in
Fig. C.6a through Fig. C.6d, the degree of conformity at a point of contact of two
tooth flanks, G and P , is gradually increased.

A similar observation is made for a given pair of the tooth flanks, G and P , when
different sections of the surfaces by a plane surface through the common perpen-
dicular, ng, are considered (see Fig. C.7a). When rotating the plane section about the

( )a ( )b

( )d( )c

1P

1
pR

gR

gn

G
K

G

2
pR

gR

gn

2P

K
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3
pR

KG

3P

gR

G

gn

gR
4
pR

4P

K

Fig. C.6 Sections of two smooth regular tooth flanks, G and P , in contact by a plane through the
common perpendicular, ng
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common perpendicular, ng, it can be observed that the degree of conformity of the
gear and the pinion tooth flanks, G and P , is different in different configurations of
the cross-sectional plane (see Fig. C.7b).

The above examples provide an intuitive understanding of what the degree of
conformity at a point of contact of two smooth regular tooth flanks, G and P, means.
The examples cannot be employed directly for the purpose to evaluate in quantities
the degree of conformity at a point of contact of two smooth regular tooth flanks, G
and P . The next necessary step to be made up is to introduce an appropriate
quantitative evaluation of the degree of conformity of two smooth regular surfaces
in the first order of tangency. In other words, how can a certain degree of conformity
of two smooth regular surfaces be described analytically?

Indicatrix of Conformity at Point of Contact of a Gear
and a Mating pinion’s Tooth Flanks

This section is aiming for the introduction of a quantitative measure of degree of
conformity at a point of contact between two smooth regular surfaces. The degree of
conformity at a point of contact of two tooth flanks, G and P , indicates how the
pinion tooth flank, P , is close to the gear tooth flank, G, in differential vicinity of a
point, K, of their contact, say how much the surface, P, is “congruent” to the surface,
G, in differential vicinity of the contact point, K. These particular types of congru-
ency between the contacting surfaces, G and P , can also be construed as the “local
congruency” of the contacting surfaces.

( )b

G

P

gR

pR

K

( )a

gn

P
G

Fig. C.7 To analytical description of contact geometry of two smooth regular tooth flanks, G and P

, of a gear and a mating pinion
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Quantitatively, the degree of conformity at a point of contact of a smooth regular
surface, P, to another surface, G, can be expressed in terms of the difference between
the corresponding radii of normal curvature of the contacting surfaces. In order to
develop a quantitative measure of the degree of conformity of the tooth flanks, G and
P , it is convenient to implement “Dupin indicatrices,” Dup Gð Þ and Dup Pð Þ ,
constructed at a point of contact of the gear tooth flank, G , and the pinion tooth
flank, P , correspondingly.

It is natural to assume that the smaller difference between the normal curvatures
of the surfaces, G and P, in a common cross-section by a plane through the common
normal vector, ng, results in the greater degree of conformity at a point of contact of
the tooth flanks, G and P .

“Dupin indicatrix, Dup Gð Þ” indicates the distribution of radii of normal curvature
at a point of the gear tooth flank, G, as it had been shown, for example, for a concave
elliptic patch of the surface, G (see Fig. C.8). For a gear tooth flank, G, equation of
this characteristic curve in polar coordinates can be represented in the form:

Dup Gð Þ ) rg φg

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j Rg φg

� � jq
ðC:39Þ

gx

( )pr �
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( , )cnfr � �

px

gy
py
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a�

c�
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Fig. C.8 To derivation of equation of indicatrix of conformity, Cnf R G=Pð Þ, at a point of contact of
a smooth regular gear tooth flank, G , and the mating pinion tooth flank, P , which are in the first
order of tangency
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where:
rg is the position vector of a point of the “Dupin indicatrix, Dup Gð Þ” at a point of

the gear tooth flank, G
φg is the polar angle of the indicatrix, Dup Gð Þ
The similar is true with respect to the “Dupin indicatrix, Dup Gð Þ” at a point of the

pinion tooth flank, P, as it had been shown, for instance, for a convex elliptical patch
of the pinion tooth flank, P (see Fig. C.8). Equation of this characteristic curve in
polar coordinates can be represented in the form:

Dup Pð Þ ) rp φp

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j Rp φp

� � jq
ðC:40Þ

where:
rp is the position vector of a point of the “Dupin indicatrix, Dup Gð Þ” at a point of

the pinion tooth flank, P
φp is the polar angle of the indicatrix, Dup Pð Þ
In the coordinate plane, xgyg, of the local reference system, xgygzg, the equalities,

φg¼ φ and φp¼ φ + μ, are valid. Therefore, in the coordinate plane, xgyg, Eq. (C.39)
and Eq. (C.40) cast into:

Dup Gð Þ ) rg φð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j Rg φð Þ j

q
ðC:41Þ

Dup Pð Þ ) rp φ, μð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j Rp φ, μð Þ j

q
ðC:42Þ

When degree of conformity at a point of contact of the gear tooth flank, G , is
greater, then the difference between the functions rg(φ) and rp(φ, μ) becomes
smaller and vice versa. The last makes valid the following conclusion:

Conclusion

The distance between the corresponding23 points of the Dupin indicatrices, Dup Gð Þ
and Dup Pð Þ, constructed at a point of contact of a gear tooth flank, G, and a mating
pinion’s tooth flank, P , can be employed for the purpose of indication of the degree
of conformity at a point of contact of the gear tooth flank, G, and of the pinion tooth
flank, P , at the contact point, K.

The equation of the “indicatrix of conformity, Cnf R G=Pð Þ” at a point of contact of
a gear tooth flank, G, and a mating pinion tooth flank, P , is defined of the following
structure:

23Corresponding points of the “Dupin indicatrices,” Dup (P) and Dup (T ), share the same straight
line through the contact point, K, of the tooth flanks, G and P, and are located at the same side of the
point, K.

510 Appendix C: Contact Geometry of a Gear and a Mating Pinion’ Tooth Flanks



Cnf R G=Pð Þ ) rcnf φ, μð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j Rg φð Þ j

q
sgnRg φð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j Rp φ, μð Þ j

q
sgnRp φ, μð Þ

¼ rg φð Þ sgnRg φð Þ þ rp φ, μð Þ sgnRp φ, μð Þ ðC:43Þ

Because the location of a point, aφ, of the “Dupin indicatrix, Dup Gð Þ” at a point
of the gear tooth flank, G, is specified by the position vector, rg(φ), and the location
of a point, bφ, of the “Dupin indicatrix, Dup Pð Þ” at a point of the pinion tooth flank,
P , is specified by the position vector, rp(φ, μ), then the location of a point, cφ (see
Fig. C.8), of the “indicatrix of conformity, Cnf R G=Pð Þ” at a point of contact, K, of
the tooth flanks, G and P , is specified by the position vector rcnf(φ, μ). Therefore,
the equality rcnf(φ, μ)¼ Kcφ is observed, and the length of the straight line segment,
Kcφ, is equal to the distance, aφ bφ.

Here, in Eq. (C.43) the following are designated:
rg ¼

ffiffiffiffiffiffiffiffiffiffiffij Rg j
p

is the position vector of a point of “Dupin indicatrix” of the gear tooth flank, G, at a
point K of contact with pinion tooth flank, P

rp ¼
ffiffiffiffiffiffiffiffiffiffiffij Rp j

p
is the position vector of a corresponding point of the “Dupin indicatrix” of the
pinion tooth flank, P

Here, in Eq. (C.43), the multipliers sgnRg(φ) and sgnRp(φ, μ) are assigned to
each of the functions, rg φð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij Rg φð Þ jp

and rp φ, μð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij Rp φ, μð Þ jp
, accord-

ingly just for the purpose to remain the corresponding sign of the functions, that is, to
remain that same sign that the radii of normal curvature, Rg(φ) and Rp(φ, μ), have.

Ultimately, one can conclude that position vector, rcnf, of a point of the “indicatrix
of conformity, Cnf R G=Pð Þ” can be expressed in terms of position vectors, rg and rp,
of the “Dupin indicatrices,” Dup Gð Þ and Dup Pð Þ.

For the calculation of a current value of the radius of normal curvature, Rg(φ), at
point of the gear tooth flank, G, the equality:

Rg φð Þ ¼ Φ1:g

Φ2:g
ðC:44Þ

can be used.
Similarly, for the calculation of the current value of the radius of normal curva-

ture, Rp(φ, μ), at point of pinion tooth flank, P , the equality:

Rp φ, μð Þ ¼ Φ1:p

Φ2:p
ðC:45Þ

can be employed.
Use of the angle, μ, of local relative orientation of the tooth flanks, G and P ,

indicates that the radii of normal curvature, Rg(φ) and Rp(φ, μ), are taken in a
common normal plane section through the contact point, K.
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Further, it is well-known that the inequalities, Φ1. g � 0 and Φ1. p � 0, are always
valid. Therefore, Eq. (C.43) can be rewritten in the following form:

rcnf ¼ rg φð Þ sgnΦ�1
2:g þ rp φ, μð Þ sgnΦ�1

2:p ðC:46Þ

For the derivation of an equation of the “ind icatrix of conformity, Cnf R G=Pð Þ,” it
is convenient to use the “Euler equation” for normal radius of curvature, Rg(φ), at a
point of the gear tooth flank, G:

Rg φð Þ ¼ R1:g � R2:g

R1:g � sin 2φþ R2:g � cos 2φ
ðC:47Þ

Here, the radii of principal curvature, R1. g and R2. g, are the roots of the quadratic
equation:

Lg � Rg � Eg Mg � Rg � Fg

Mg � Rg � Fg Ng � Rg � Gg

����
���� ¼ 0 ðC:48Þ

Recall, that the inequality, R1. g < R2. g, is always observed.
Equation (C.47) and Eq. (C.48) allow for expression of the radius of normal

curvature, Rg(φ), at a point of the gear tooth flank, G , in terms of the fundamental
magnitudes of the first order, Eg, Fg, and Gg, and of the fundamental magnitudes of
the second order, Lg, Mg, and Ng.

A similar consideration is applicable for the pinion tooth flank, P . Omitting
routing analysis, one can conclude that the radius of normal curvature, Rp(φ, μ),
at a point of the pinion tooth flank, P , can be expressed in terms of the fundamental
magnitudes of the first order, Ep, Fp, and Gp, and of the fundamental magnitudes of
the second order, Lp, Mp, and Np.

Finally, on the premise of the above-performed analysis, the following equation
for the “indicatrix of conformity, Cnf R G=Pð Þ” at a point of contact of the tooth
flanks, G and P , can be derived:

rcnf φ, μð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EgGg

LgGg cos 2φ�Mg
ffiffiffiffiffiffiffiffiffiffiffi
EgGg

p
sin 2φþ NgEg sin

2φ

�����
�����

vuut sgn Φ�1
2:g

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EpGp

LpGp cos 2 φþ μð Þ �Mp
ffiffiffiffiffiffiffiffiffiffiffi
EpGp

p
sin 2 φþ μð Þ þ NpEp sin

2 φþ μð Þ

�����
�����

vuut sgn Φ�1
2:p

ðC:49Þ

512 Appendix C: Contact Geometry of a Gear and a Mating Pinion’ Tooth Flanks



Equation (C.49) of the characteristic curve24 CnfR(P/T ) is known from the late
1970s.

Analysis of Eq. (C.49) reveals that the “indicatrix of conformity, Cnf R G=Pð Þ” at a
point of contact of a gear tooth flank, G , and the mating pinion tooth flank, P , is
represented by a planar centro-symmetrical curve of the fourth order. In particular
cases, this characteristic curve possesses also a property of mirror symmetry. Mirror
symmetry of the indicatrix of conformity is observed, for example, when the angle,
μ, of local relative orientation of the tooth flanks, G and P, is equal to μ ¼ 
 π � n/2,
where n designates an integer number.

It is important to notice here that even for the most general case of gearing, the
position vector of a point, rcnf(φ, μ), of the “indicatrix of conformity, Cnf R G=Pð Þ”
is not dependent on the fundamental magnitudes, Fg and Fp. The independence of
the “indicatrix of conformity, Cnf R G=Pð Þ” of the fundamental magnitudes, Fg and
Fp, is because of the following.

Coordinate angle, ωg, at a point of the gear tooth flank, G, can be calculated from
the formula:

ωg ¼ arccos
Fgffiffiffiffiffiffiffiffiffiffiffi
EgGg

p ðC:50Þ

It is natural that the position vector, rcnf(φ, μ), of a point of the indicatrix of
conformity, Cnf R G=Pð Þ, is not a function of the coordinate angle, ωg. Although the
position vector, rcnf(φ, μ), depends on the fundamental magnitudes, Eg, Gg and Ep,
Gp, the above analysis makes it clear why the position vector,rcnf(φ, μ), does not
depend upon the fundamental magnitudes Fg and Fp.

Two illustrative examples of the “indicatrix of conformity, Cnf R G=Pð Þ” at a point
of contact of a gear tooth flank, G, and a mating pinion tooth flank, P , are shown in
Fig. C.9. The first example (see Fig. C.9a) relates to the cases of contact of a saddle-
like local patch of the tooth surface, G, and of a convex elliptic-like local patch of
tooth surface, P. The second one (see Fig. C.9b) is for the case of contact of a convex
parabolic-like local patch of the tooth surface, G, and of a convex elliptic-like local
patch of tooth, P . For both cases (see Fig. C.9), the corresponding curvature
indicatrices Crv Gð Þ and Crv Pð Þ at the point of contact of the tooth flanks, G and
P, are depicted in Fig. C.9 as well. The imaginary (phantom) branches of the “Dupin
indicatrix, Dup Gð Þ” (not labeled in Fig. C.9a) for the saddle-like local patch of the
gear tooth flank, G, are shown in dashed line (see Fig. C.9a).

A gear tooth flank, G , and the pinion tooth flank, P , can make contact geomet-
rically; however physical conditions of their contact could be violated. Violation of
the physical condition of contact results in that the bodies those bounded by the

24Equation of this characteristic curve is known from:
(a) Pat. No.1249787, USSR, A Method of Sculptured Part Surface Machining on a Multi-Axis

NC Machine, S.P. Radzevich, B23C 3/16, Filed: December 27, 1984
(b) Pat. No.1185749, USSR, A Method of Sculptured Part Surface Machining on a Multi-Axis

NC Machine, S.P. Radzevich, B23C 3/16, Filed: October 24, 1983 (in hidden form)
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contacting surfaces, G and P , interfere into one another. Implementation of the
“indicatrix of conformity, Cnf R G=Pð Þ” immediately uncovers the surfaces interfer-
ence if there is any. Three illustrative examples of the violation of physical condition
of contact are illustrated in Fig. C.10. When correspondence between the radii of
normal curvature of the contacting tooth flanks, G and P , is inappropriate, then the
“indicatrix of conformity, Cnf R G=Pð Þ” either intersects itself (see Fig. C.10a), or all
of its diameters become negative (see Fig. C.10b, c).
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Fig. C.9 Examples of indicatrix of conformity, Cnf R G=Pð Þ, at a point of contact, K, of a smooth
regular gear tooth flank, G, and a mating pinion tooth flank, P , in the first order of tangency
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Another interpretation of satisfaction and violation of physical condition of
contact of two smooth regular tooth flanks, G and P , is illustrated in Fig. C.11.
Condition of physical contact is fulfilled when all diameters of the “indicatrix of
conformity, Cnf R G=Pð Þ” are positive. In this case, the gear tooth flank, G , and the
mating pinion tooth flank, P , may contact one another like two rigid bodies do. An
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Fig. C.10 Examples of violation of physical condition of contact of a smooth regular gear tooth
flank, G and a mating pinion tooth flank, P
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example of the “indicatrix of conformity, Cnf R G=Pð Þ” for such a case is depicted in
Fig. C.11a. In cases when this planar characteristic curve has negative diameters as it
is schematically shown in Fig. C.11b, physical contact between the tooth flanks, G
and P , is infeasible.

The value of the current diameter25 dcnf of the “indicatrix of conformity,
Cnf R G=Pð Þ ” indicates the degree of conformity to each other of the gear tooth
flank, G, and the mating pinion tooth flank, P, in a corresponding cross-section of the
surfaces by normal plane through the common perpendicular. The orientation of the
normal plane section with respect to the tooth flanks, G and P , is specified by the
corresponding central angle, ϕ.

For the orthogonally parameterized gear tooth flank, G , and the mating pinion
tooth flank, P , equation of the “Dupin indicatrices,”Dup Gð Þ and Dup Pð Þ ,
simplifies to:

Lgx
2
g þ 2Mgxgyg þ Ngy

2
g ¼ 
1 ðC:51Þ

Lpx
2
p þ 2Mpxpyp þ Npy

2
p ¼ 
1 ðC:52Þ

After being represented in a common reference system, use of Eq. (C.51) and
Eq. (C.52) makes possible a simplified equation of the “indicatrix of conformity,
Cnf R G=Pð Þ” at a point of contact of the tooth flanks, G and P :
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K

Fig. C.11 Another interpretation of satisfaction (a) and of violation (b) of condition of physical
contact of a smooth regular gear tooth flank, G, and the mating pinion tooth flank, P

25Diameter of a symmetrical that possesses a property of central symmetry, curve can be defined as
a distance between two points of the curve, measured along the corresponding straight line through
the center of symmetry of the curve.
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rcnf φ, μð Þ ¼ Lg cos
2φ�Mg sin 2φþ Ng sin

2φ
� ��0:5

sgn Φ�1
2:g

þ Lp cos
2 φþ μð Þ �Mp sin 2 φþ μð Þ þ Np sin

2 φþ μð Þ� ��0:5
sgn Φ�1

p:T

ðC:53Þ

Equation (C.53) is valid for the orthogonally parameterized tooth flanks, G and P.

Directions of Extremum Degree of Conformity at Point
of Contact of a Gear and a Mating pinion’s Tooth Flanks

The directions, those along which degree of conformity at a point of contact of a gear
tooth flank, G, and a mating pinion tooth flank, P, is extremum – that is, the degree of
conformity reaches either maximal of its value or minimal of its value – are of prime
importance for engineering applications. This issue is especially important for
synthesizing a favorable gear pair.

The directions of extremal degree of conformity of the contacting smooth regular
tooth flanks, G and P , that is, the directions pointed along the extremal diameters,
dmin
cnf and dmax

cnf , of the “indicatrix of conformity, Cnf R G=Pð Þ,” can be found from the
equation of the “indicatrix of conformity, Cnf R G=Pð Þ .” For the reader’s conve-
nience, the equation of this characteristic curve is transformed and is represented in
the form:

rcnf φ, μð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j r1:g cos 2φþ r2:g sin

2φ j
q

sgnΦ�1
2:g

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j r1:p cos 2 φþ μð Þ þ r2:p sin

2 φþ μð Þ j
q

sgnΦ�1
2:p ðC:54Þ

Two directions within the common tangent plane are specified by the angles, φmin

and φmax. These directions feature an extremum degree of conformity of the pinion
tooth flank, P , to the gear tooth flank, G . Actually, the angles are the roots of
equation:

∂
∂φ

rcnf φ, μð Þ ¼ 0: ðC:55Þ

It can be easily proved that in general case of contact of two smooth regular tooth
flanks, G and P , the difference between the angles, φmin and φmax, is not equal to
0.5π. This means that the equality

φmin � φmax ¼ 
0:5πn ðC:56Þ
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is not always observed, and in most cases the relationship:

φmin � φmax 6¼ 
0:5πn ðC:57Þ

is valid (here n is an integer number). The condition [see Eq. (C.56)]
φmin ¼ φmax 
 0.5π n is fulfilled only in cases when the angle, μ, of local relative
orientation of the contacting surfaces, G and P, is equal to μ¼ 
 0.5πn, and thus the
principal directions, t1. g and t2. g, of the gear tooth flank, G , and the principal
directions, t1. p and t2. p, of the mating pinion tooth flank, P , either aligned to each
other or they are directed oppositely.

This enables one making the following statement:
Statement C.1. In general case of contact of two smooth regular tooth flanks, the

directions along which degree of conformity of the tooth flanks, G and P, is extremal
are not orthogonal to one another.

This statement is important for engineering applications.
The solution to equation, ∂ rrel(φ)/∂φ ¼ 0, returns two extremal angles, φmin and

φmax ¼ φmin + 90∘ [here rrel(φ) denotes position vector of a point of “Dupin
indicatrix” at point of the surface of relative curvature]. Eq. (C.55) allows for two
solutions, φ�

min and φ�
max. Therefore, the extremal difference:

Δφmin ¼ φmin � φ�
min ðC:58Þ

as well as the extremal difference:

Δφmax ¼ φmax � φ�
max ðC:59Þ

can be easily calculated.
Generally speaking, neither the extremal difference, Δφmin, nor the extremal

difference, Δφmax, is equal to zero. They are equal to zero only in particular cases,
say when the angle, μ, of local relative orientation of the surfaces, G and P , fulfills
the relationship μ ¼ 
 0.5π n.

Let us consider an example that illustrates the Statement C.1.
Example. As an illustrative example, let us describe analytically contact geometry

of two convex parabolic patches of the contacting tooth flanks, G and P (see
Fig. C.12). The example pertains to finishing a helical involute gear by a disk-type
shaving cutter. In the example under consideration, the design parameters of the gear
and of the shaving cutter, along with the specified gear and shaving cutter config-
uration, yield the following numerical data for the calculation. At the point, K, of the
tooth flanks contact, principal curvatures of the gear tooth flank, G, are equal to k1.
g¼ 4mm�1 and k2. g¼ 0. Principal curvatures of the mating pinion tooth flank, P, are
equal to k1. p ¼ 1mm�1 and k2. p ¼ 0. The angle, μ, of local relative orientation of the
tooth flanks, G and P , is equal to μ ¼ 45∘.

Two approaches can be implemented for the analytical description of the contact
geometry of the tooth flanks, G and P . The first one is based on implementation of
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“Dupin indicatrix” of the surface of relative curvature. The second one is based on
the application of the “indicatrix of conformity, Cnf R G=Pð Þ” constructed at a contact
point, K, of the interacting tooth flaks, G and P .

The first approach. In the case under consideration, normal curvature kR of the
surface of relative curvature, R, can be analytically expressed as:

kR ¼ k1:g cos
2φ� k1:p cos

2 φþ μð Þ ðC:60Þ

Therefore, the following equality:

∂kR
∂φ

¼ �2k1:g sinφ cosφþ 2k1:p sin φþ μð Þ cos φþ μð Þ ¼ 0 ðC:61Þ

is valid for the directions of the extremum degree of conformity of the tooth flaks, G
and P , at every point of their contact.

For the directions of the extremal degree of conformity at the point of contact of
the gear tooth flank, G, and the mating pinion tooth flank, P , Eq. (C.61) yields the
calculation of the extremal values φmin ¼ 7∘ and φmax ¼ φmin + 90∘ ¼ 97∘ of the
angles φmin and φmax.

The direction that is specified by the angle φmin ¼ 7∘ indicates the direction of the
minimal diameter of the “Dupin indicatrix” of the surface of relative curvature. That
same direction corresponds to the maximal degree of conformity at the point of
contact of the tooth flanks, G and P . Another direction, that is specified by the angle

2
p

min
cnfd

1ϕ

1ϕΔ

2ϕΔ( / )im
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Fig. C.12 Example 5.1: Determination of the optimum instant kinematics for a gear shaving
operation
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φmax ¼ 97∘, indicates the direction of the minimum degree of conformity of the
contacting tooth flanks, G and P , at that same contact point.

The second approach. For the case under consideration, use of Eq. (C.49) of the
“indicatrix of conformity, Cnf R G=Pð Þ” at a point of contact of the gear tooth flank, G
, and the mating pinion tooth flank, P , makes it possible the calculation of the

extremal angles φ�
min ¼ 19∘ and φ�

max ¼ 118∘.
Imaginary branches of the “indicatrix of conformity, Cnf R G=Pð Þ” at the point of

contact of the tooth flanks, G and P , in Fig. C.12 are depicted in dashed line.
It is important to stress the readers’ attention here onto two issues.
First, the extremal angles, φmin and φmax, that are calculated using the first

approach, are not equal to the corresponding extremal angles, φ�
min and φ�

max , that
are calculated using the second approach. The relationships, φmin 6¼ φ�

min and
φmax 6¼ φ�

max, are generally observed.
Second, the difference, Δφ�, between the extremal angles, φ�

min and φ�
max, is not

equal to half of π. Therefore, the relationship, φ�
max � φ�

min ≢90∘, between the
extremal angles, φ�

min and φ�
max , is observed. In general case of contact of two

sculptured surfaces, the directions of the extremal degree of conformity of the gear
tooth flank, G , and the mating pinion tooth flank, P , are not orthogonal to one
another.

The discussed example reveals that in general cases of contact of two smooth
regular tooth flanks, the “indicatrix of conformity, Cnf R G=Pð Þ” can be implemented
for the purpose of accurate analytical description of the contact geometry of the
surfaces. The “Dupin indicatrix” of the surface of relative curvature can be
implemented for this purpose only in particular cases of the surfaces, G and P ,
relative orientation. Application of the “Dupin indicatrix” of the surface of relative
curvature enables only approximate analytical description of the geometry of contact
of the surfaces. The “Dupin indicatrix” of the surface of relative curvature could be
equivalent to the indicatrix of conformity only in degenerate cases of contact of the
surfaces. Advantages of the indicatrix of conformity over the “Dupin indicatrix” of
the surface of relative curvature are due to the characteristic curve, Cnf R G=Pð Þ ,
which is a curve of the fourth order.

Important Properties of Indicatrix of Conformity Cnf R G=Pð Þ
at Point of Contact of a Gear and a Mating pinion’s Tooth
Flanks

The performed analysis of Eq. (C.49) of the “indicatrix of conformity, Cnf R G=Pð Þ”
at a point of contact of a gear tooth flank and a mating pinion tooth flank reveals that
this characteristic curve possesses the following important properties:

1. “Indicatrix of conformity, Cnf R G=Pð Þ” at a point of contact of the tooth flanks, G
and P, is a planar characteristic curve of the fourth order. It possesses the property
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of central symmetry, and, in particular cases, it also possesses the property of
mirror symmetry.

2. “Indicatrix of conformity, Cnf R G=Pð Þ” is closely related to the surfaces’, G and P

, second fundamental forms, Φ2. g and Φ2. p. This characteristic curve is invariant

with respect to the kind of parameterization of the tooth flanks, G and P , but its
equation does. A change in the surfaces’, G and P , parameterization leads to a
change in the equation of the “indicatrix of conformity, Cnf R G=Pð Þ,” while the
shape and parameters of this characteristic curve remained unchanged.

3. The characteristic curve, Cnf R G=Pð Þ, is independent of the actual value of the
coordinate angle, ωg, that forms the coordinate lines, Ug and Vg, on the gear tooth
flank, G. It is also independent on the actual value of the coordinate angle, ωp, that
forms the coordinate lines, Up and Vp, on the mating pinion tooth flank, P .
However, parameters of the “indicatrix of conformity, Cnf R G=Pð Þ” are depending
upon the angle, μ, of local relative orientation of the tooth flanks, G and P .
Therefore, for a given pair of the tooth flanks, G and P , the degree of conformity
of the surface varies correspondingly to variation of the angle, μ, while the pinion
tooth flank, P , is spinning around the unit vector of the common perpendicular.

More properties of the “indicatrix of conformity, Cnf R G=Pð Þ” at a point of contact
of a gear tooth flank, G, and a mating pinion tooth flank, P , can be outlined.

Converse Indicatrix of Conformity at Point of Contact of a
Gear and a Mating pinion’s Tooth Flanks in the First Order
of Tangency

For the “Dupin indicatrix, Dup G=Pð Þ” at a point of the surface of relative curvature,
R, there exists a corresponding inverse “Dupin indicatrix, Dupk G=Pð Þ.” Similarly,
for the indicatrix of conformity, Cnf R G=Pð Þ, at a point of contact of the tooth flanks,
G and P , there exists a corresponding “converse indicatrix of conformity,
Cnf k G=Pð Þ .” This characteristic curve can be expressed directly in terms of the
surfaces’, G and P , normal curvatures, kg and kp:

Cnf k G=Pð Þ ) rcnvcnf φ, μð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j kg φð Þ j

q
� sgnΦ�1

2:g �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j kp φ, μð Þ j

q
� sgnΦ�1

2:p

ðC:62Þ

For derivation of an equation of the “converse indicatrix of conformity,
Cnf k G=Pð Þ ,” the “Euler formula” for a surface normal curvature is used in the
following representation:

kg φð Þ ¼ k1:g cos
2φþ k2:g sin

2φ ðC:63Þ
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kp φ, μð Þ ¼ k1:p cos
2 φþ μð Þ þ k2:p sin

2 φþ μð Þ ðC:64Þ

Here in Eq. (C.63) and Eq. (C.64), the principal curvatures of the gear tooth flank,
G , are designated as k1. g and k2. g, while k1. p and k2. p designate the principal
curvatures of the mating pinion tooth flank, P .

After substituting Eq. (C.63) and Eq. (C.64) into Eq. (C.62), one can come up
with the equation:

rcnvcnf φ, μð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j k1:g cos 2φþ k2:g sin

2φ j
q

sgnΦ�1
2:g

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j k1:p cos 2 φþ μð Þ þ k2:p sin

2 φþ μð Þ j
q

sgnΦ�1
2:p ðC:65Þ

for the “converse indicatrix of conformity, Cnf k G=Pð Þ” at a point of contact of the
tooth flanks G and P in the first order of tangency.

Here, in Eq. (C.65), principal curvatures k1. g, k2. g and k1. p, k2. p can be expressed
in terms of the corresponding fundamental magnitudes Eg, Fg, and Gg of the first and
Lg, Mg, and Ng of the second order of the gear tooth flank, G , and in terms of the
corresponding fundamental magnitudes Ep, Fp, andGp of the first and Lp,Mp, and Np

of the second order of the mating pinion tooth flank P . Following this way,
Eq. (C.65) of the “converse indicatrix of conformity, Cnf k G=Pð Þ” can be cast to
the form that is similar to Eq. (C.49) of the ordinary “indicatrix of conformity,
Cnf R G=Pð Þ” at a point of contact of the tooth flanks, G and P .

It can be shown that similar to the “indicatrix of conformity, Cnf R G=Pð Þ,” the
characteristic curve Cnf k G=Pð Þ also possesses the property of central symmetry. In
particular cases of the surfaces contact, it also possesses the property of mirror
symmetry. The directions of the extremal degree conformity of the gear tooth
flank, G , and the mating pinion tooth flank, P , are orthogonal to one another only
in degenerate cases of the surfaces contact.

Equation (C.65) of the “converse indicatrix of conformity, Cnf k G=Pð Þ” is con-
venient for implementation when:

(a) The gear tooth flank G.
(b) The mating pinion tooth flank P .
(c) Both of them.

feature point(s) or line(s) of inflection. In the point(s) or (line(s)) of inflection, radii
of normal curvature, Rg( p) of the surface, G and P , are equal to infinity. Points/lines
of inflection cause indefiniteness when calculating the position vector, rcnf(φ, μ), of
a point of the characteristic curve, Cnf R G=Pð Þ. Eq. (C.65) of the “converse indicatrix
of conformity, Cnf k G=Pð Þ” is free of the disadvantages of such kind, and therefore it
is recommended for practical applications.
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Appendix D: Closest Distance of Approach
between a Gear and a Mating Pinion’s Tooth
Flanks

Generally, the problem of the calculation of the closest distance of approach between
two smooth regular surfaces is a sophisticated and challenging. Per the author’s
knowledge, no general solution to the problem of calculation of the closest distance
of approach between two smooth regular surfaces is available in the public domain.
For the purpose of calculation of the deviation, δg, of the actual gear tooth flank, G ac

, with respect to the desired (nominal) gear tooth flank, G nom , the problem under

consideration can be reduced to the problem of computation of the closest distance of
approach between two torus surfaces, Trg and Trp.

Consider a gear tooth flank, G, and mating pinion tooth flank, P , that initially are
given in a common coordinate system, XhYhZh, associated with the gear housing, as
illustrated in Fig. D.1. The tooth flanks, G and P , are locally approximated by
portions of torus surfaces, Trg and Trp, respectively. Again, not all points of the torus
surfaces, Trg and Trp, can be used for the local approximation of the gear and the
pinion tooth flanks, G and P . Only points that are located either within the biggest
meridian or within the smallest meridian of the torus surface are employed for this
purpose.

The points, Kg and K�
p, are chosen as the first guess points on the torus surfaces,

Trg and Trp. For the analysis below, it is convenient to relabel the points, Kg and K�
p,

to gi and pi accordingly.
For a given configuration of the torus surfaces, Trg and Trp, the closest distance of

approach between these surfaces can be used as a first approximation to the closest
distance of approach between the original gear and the pinion tooth flanks, G and P .

The closest distance of approach between the torus surfaces, Trg and Trp, is
measured along the common perpendicular to these surfaces. The following equations
can be composed on the premises of this property of the closest distance of approach.

Unit normal vector, nTr. g, to the torus surface, Trg, is located within a plane
through the axis of rotation of the surface, Trg. In the coordinate system Xtr. gYtr. gZtr.
g that is associated with the torus surface, TrP, the equation of a plane through the
axis of rotation of the torus surface, Trg, can be expressed in the form:
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rτg � r 0ð Þ
tr:g

h i
� ktr:g � Rtr:g ¼ 0 ðD:1Þ

where the following are designated:
rτg is the position vector of point of the plane through the axis of rotation of the

torus, Trg.
r 0ð Þ
tr:g is the position vector of point within the plane, rτg (it is assumed below that

this point coincides with the origin of the coordinate system, Xtr. gYtr. gZtr. g).
ktr. g is the unit vector of the Ztr. g-axis.
Equation (D.1) is expressed in terms of the radius,Rtr. g. This indicates that the set

of all planes through the fixed Ztr. g-axis forms a pencil of planes. The equation of the
pencil of planes, rτg, in the common coordinate system, XhYhZh, can be represented
in the form:
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tr gθ

( )
.
i
tr pθ

gn

GgTr ip

pn
pv

pu

P

pTr

it

gu

1ip +

1ig +

hZ

hY

hX.tr pO

.tr gO

gv

Fig. D.1 Computation of
the closest distance of
approach of a gear tooth
flank, G, and a mating
pinion tooth flank, P
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rτg Ztr:g, V τr:g, θtr:g
� � ¼ Rs Trg � h

� � �
Vtr:g � cos θtr:g
Vtr:g � sin θtr:g

Ztr:g

1

2
6664

3
7775 ðD:2Þ

The unit normal vector, nTr. p, to the torus surface, Trp, is located within a plane
through the axis of rotation of the surface, Trp. In the coordinate system, Xtr. pYtr. pZtr.
p, that is associated with the surface, Trp, the equation of a plane through the axis of
rotation of the torus surface, Trp, can be represented in the form:

rτp � r 0ð Þ
tr:p

h i
� ktr:p � Rtr:p ¼ 0 ðD:3Þ

Here the following are designated:
rτp is the position vector of point of the plane through the torus, Trp, axis of

rotation.
r 0ð Þ
tr:p is the position vector of point within the plane, rτp (it is assumed below that

this point coincides with the origin of the coordinate system, Xtr. pYtr. pZtr. p).
ktr. p is the unit vector of the Ztr. p-axis.
Equation (D.3) is expressed in terms of the radius,Rtr. p. This indicates that the set

of all planes through the fixed Ztr. p-axis forms a pencil of planes. The equation of
this pencil of planes, rτp, in the common coordinate system, XhYhZh, can be
represented in the form:

rτp Ztr:p, Vtr:p, θtr:p
� � ¼ Rs Trp � h

� � �
Vtr:p � cos θtr:p
Vtr:p � sin θtr:p

Ztr:p

1

2
6664

3
7775 ðD:4Þ

A straight line through the points, d ið Þ
g and d ið Þ

p , along which the shortest distance
of approach, dmin

gp , of the torus surfaces, Trg and Trp, is measured, is the line of
intersection of the planes, rτg and rτp. Therefore, this line, d

min
gp , must be aligned with

both unit normal vectors, ntr. g and ntr. p.
In the coordinate system, XhYhZh, the equation for the unit normal vector, ntr. g, to

the torus surface, Trg, yields representation in matrix form:

ntr:g ¼ Rs Trg � h
� � �

Ctr:g þ cosφtr:g

� � � cosφtr:g � cos θtr:g
Ctr:g þ cosφtr:g

� � � cosφtr:g � sin θtr:g
Ctr:g þ cosφtr:g

� � � sinφtr:g

1

2
66664

3
77775 ðD:5Þ

where Ctr. g designates the parameter Ctr:g ¼ 1� R2:g

R1:g
.
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Similarly, in the coordinate system, XhYhZh, the equation for the unit normal
vector, ntr. p, to the torus surface, Trp, yields matrix representation in the form:

ntr:p ¼ Rs Trp � h
� � �

Ctr:p þ cosφtr:p

� � � cosφtr:p � cos θtr:p
Ctr:p þ cosφtr:p

� � � cosφtr:p � sin θtr:p
Ctr:p þ cosφtr:p

� � � sinφtr:p

1

2
66664

3
77775 ðD:6Þ

where Ctr. p designates the parameter Ctr:p ¼ 1� R2:p

R1:p
.

Evidently, the points Otr. g,Otr. p, d
ið Þ
g , and d

ið Þ
p (see Fig. D.1) are located within the

straight line through the centers, Otr. g and Otr. p. The position vector, rcd, of this
straight line can be calculated from the equation:

rcd � rcg
� �� rcp � rcg

� � ¼ 0 ðD:7Þ

where the following are designated:
rcg

is the position vector of a point on the circle of a radius, Rtr. g.
rcp

is the position vector of a point on the circle of a radius, Rtr. p.
It is necessary that the straight line, rcd, be along the unit normal vectors, ntg and

ntp, to the torus surfaces, Trg and Trp.
Considered together, Eq. (D.2), Eq. (D.4), and Eq. (D.7) make possible the

calculation of the closest distance of approach between the torus surfaces, Trg and
Trp. Then, the straight line, dmin

gp , intersects the part surface, G , and the generating
surface, P , of the form cutting tool at the points, gi + 1 and pi + 1, correspondingly.
The points, gi + 1 and pi + 1, serve as the second guess to the closest distance of
approach between the surfaces, G and P .

The cycle of the recursive calculations is repeated as many times as necessary for
making the deviation of the calculation of the closest distance of approach between
the surfaces, G and P , smaller than the maximal permissible value.

There is an alternative approach for the calculation of the closest distance of
approach between two torus surfaces. The direction of the unit normal vector to an
offset surface to, Trg, is identical to the direction of the unit normal vector, ntr. g, to
the torus surface, Trg. This statement is also valid for the unit normal vector ntr. T to
the torus surface, Trp. This property of the unit normal vectors, ntr. g and ntr. p, can be
used for the modification of the method of calculation of the closest distance of
approach between two torus surfaces.

526 Appendix D: Closest Distance of Approach between a Gear and a Mating. . .



The equation of the circle of radius, Rtr. g, yields matrix representation:

rcg θtr:g
� � ¼ Rs G� hð Þ �

Rtr:g � cos θtr:g
Rtr:g � sin θtr:g

0

1

2
6664

3
7775 ðD:8Þ

The equation of the circle of radius, Rtr. p, can be analytically described in the
similar way:

rcp θtr:p
� � ¼ Rs P � hð Þ �

Rtr:p � cos θtr:p
Rtr:p � sin θtr:p

0

1

2
6664

3
7775 ðD:9Þ

The distance, dgp, between two arbitrary points on the circles, rcg(θtr. g) and
rcp(θtr. p), equals:

dgp θtr:g, θtr:p
� � ¼j rcg θtr:g

� �� rcp θtr:p
� � j ðD:10Þ

The distance, dgp, is minimal for a specific (optimal) combination of the param-
eters, θtr. g and θtr. p. The favorable values of the parameters, θtr. g and θtr. p, can be
calculated on solution of the set of two equations:

∂
∂θtr:g

rcg θtr:g
� � ¼ 0 ðD:11Þ

∂
∂θtr:p

rcp θtr:p
� � ¼ 0 ðD:12Þ

On the solution of Eq. (D.11) and Eq. (D.12), the optimal values, θ optð Þ
tr:g and θ optð Þ

tr:p ,
can be determined. These angels specify the direction of the closest distance of
approach of the torus surfaces, Trg and Trp.

Following this method, the three-dimensional problem of calculation of the
closest distance of approach of two torus surfaces is reduced to the problem of
calculation of the closest distance of approach between two circles. Under a certain
scenario, the last approach could possess an advantage over the previous approach.

Convergence of the disclosed algorithms for the computation of the closest
distance of approach between two smooth regular surfaces is illustrated in
Fig. D.2. The computation procedure is convergent regardless of the actual location
of the first guess points on the surfaces, G and P .
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It is instructive to draw attention here to the similarities between the disclosed
iterative method for the computation of the closest distance of approach between two
smooth regular surfaces, and between the “Newton-Raphson’s method,” the iterative
method of chords, and so forth. Many similarities can be found out on this
comparison.
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Fig. D.2 Convergence of the methods of computation of the closest distance of approach of a gear
tooth flank, G, and a mating pinion tooth flank, P
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Appendix E: On Inadequacy of the Terms
“Wildhaber-Novikov Gearing” and “W-N
Gearing”

“Wildhaber Helical Gearing” (US Patent 1,601,750, 1923) and “Novikov Gearing”
(S.U. Patent No. 109,113, 1956) are briefly discussed below aiming to illustrate
inadequacy of the terms “Wildhaber-Novikov Gearing” and “W-N Gearing.” As it
follows from the discussion, helical gearing proposed by Dr. E. Wildhaber must be
referred to as “Wildhaber Helical Gearing,” or so. Helical gearing proposed by
Dr. M. Novikov must be referred to as “Novikov Gearing,” or so. The extensively
used terms “Wildhaber-Novikov Gearing” and “W-N Gearing” are meaningless, and
commonly are used by poorly knowledgeable people.

The “Wildhaber Helical Gearing”

Helical gearing with circular arc tooth profile (US Patent 1,601,750) targets an
improved power capacity of the gear pair. The invention relates to the tooth shape
of gears, which run on parallel axes, and may be applied to helical gears, such as
single helical gears and double helical gears or herringbone gears.

The purpose of the invention is threefold:

1. To provide helical gearing with an improved tooth contact, so as to lessen surface
stresses and wear.

2. To provide helical gearing, which is capable of rapid and accurate production,
and which may be ground without difficulty, if so desired.

3. To provide accurate gearing of circular tooth profile.

The invention is illustratively exemplified in the accompanying drawings, in
which Fig. E.1a is a side elevational view of the proposed gear showing parts thereof
in section; Fig. E.1d is a normal sectional view if Fig. E.1a, is taken on the lines 2–2
of the latter figure; Fig. E.1g is a side elevational view of a pair of gears constructed
in accordance with the invention; Fig. E.1h is a sectional view taken through a pair of
gears; Fig. E.1b and E.1c are sectional views of milling cutters used in the
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manufacture of gear of the proposed design; Fig. E.1e and E.1f are elevational views
of corresponding tools of rack shape, to be used in reciprocating machines for cutting
helical gears in accordance with the invention; Fig. E.1k and E.1l are side elevational
views of the improved gear showing a pair of grinding wheels in different operating

Fig. E.1 Helical Gearing. (After E. Wildhaber., US Patent 1,601,750, Patented: October 5, 1926,
Filed: November 2, 1923)
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Fig. E.1 (continued)
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positions, the wheels being set to grind opposite tooth surfaces; Fig. E.1m is a view
of a gear taken in normal section and showing the grinding wheels in operation
position; Fig. E.1n is a view of a mate pinion showing the grinding wheels in
operating position; Fig. E.1o is a view of modified form of gear made in accordance
with the invention; Fig. E.1j is a sectional view taken through an internal gear and its
pinion; Fig. E.1 is a normal section through helical teeth of composite outline,
constructed from the invention; Fig. E.1p is a view of reciprocating tool of rack
shape in operating position; and Fig. E.1s is a view of a modified type of recipro-
cating tools, in position to start a cut on a herringbone gear.

Referring to the drawings, and particularly to Fig. E.1a and E.1d, 1 denotes a
helical gear having teeth 2 in contact with the teeth 3 of a mating pinion 4. In order to
clearly illustrate the degree of contact between the teeth of the gear and pinion, the
tooth 4 is shown in section in Fig. E.1a.

It is customary to analyze helical gearing with reference to a normal section, that
is, line 2–2 of Fig. E.1a, line 2–2 being normal to the helix of the pitch circle.
Fig. E.1d illustrates the said normal sect. 2–2 for both pinion 4 and gear 1.

It has been assumed as an example that the tooth profiles 6 of gear 1 are circular
arcs of radii 7 and centers 8, in the shown normal section. Centers 8 are situated close
to the pitch circle 9 of the gear.26 The corresponding teeth of pinion 4 are so shaped
as to allow rolling of the pitch circles 9 and 10 on each other, as well known to those
skilled in the art.

When the gear tooth 2 is in the position shown, in Fig. E.1a and E.1d, and its
center at 8, then it contacts with tooth 3 at point 11, which may be determined by a
perpendicular to tooth 2 through point 12, point 12 being the contact point between
the two pitch circles 9 and 10. The said perpendicular is in the present case the
connecting line between point 12 and center 8 of the tooth profile.

Another position 20 of the gear tooth and 30 of the corresponding pinion tooth are
shown in dotted lines in Fig. E.1d. The tooth profiles contact here at a point 110,
which can be determined like point 11. It will be noted that the contact point has
traveled from 11 to 110 during a small angular motion of the gears.27 The contact
point has passed practically over the whole active profile during a turning angle 13 of
the gear, which angle corresponds to a fraction only of the normal pitch14, 140. The
said normal pitch equals the circle pitch of the shown normal section.

In gearing now in use, however, the tooth outline and the tooth proportions are so
selected that the contact of corresponding normal profiles lasts for an angle, which,
as a rule, corresponds to more than one full pitch.

26Centers 8 need to be situated along the line of action, LA, that is a must. Otherwise, the condition
of contact (n � VΣ ¼ 0) is violated.
27Once the contact point has traveled from 11 to 110 during a small angular motion of the gears, this
immediately reveals that the transverse contact ratio, mp, in the “Wildhaber’s Helical Gearing” is
greater than 0, that is, mp > 0, which is not permissible.
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In gearing according to the invention, the contact point between two normal
profiles passes over the whole active profile during a turning angle, which corre-
sponds to less than one half the normal pitch, and usually to much less than that.

Gearing, designed according to the invention, allows the teeth to come into better
contact with each other, inasmuch as the tooth surfaces remain much closer to each
in a direction perpendicular to the contact line between two mating gears. This is
illustrated by a section taken in direction of lines 15, 150 of Fig. E.1d. In Fig. E.1a the
lateral profile 16 of tooth 3 and profile 17 of tooth 2 of said section are shown to
contact at point 11, and to remain close to each other on their whole length. The same
holds true for other sections, taken parallel to section 15, 150.

Close contact between teeth is well known to reduce wear and to improve the
efficiency of the gears.

Although a circular arc is shown as the normal tooth profile of gear 1, in Fig. E.1d,
it will be understood that this is not the only shape to affect the stated purpose, of
increasing the speed, at which the contact point travels over the tooth profile of a
normal section. As a rule, however, the shape can be approximated by a circle,
whose center is close to the pitch center.

The gearing according to the present invention is strictly a gearing for helical
teeth. It would not be advisable on straight teeth, on account of the explained short
duration of contact between tooth profiles. This would cause intermittent action,
whereas on helical gears similar parts of the teeth are always in contact, on account
of the twisted nature of the tooth surfaces.

Figure E.1g may be considered as a view taken in the direction of the axes of a
pair of gears. The tooth profiles are the circles in a section, which is perpendicular to
the axes. The gear is provided with helical teeth, with working faces below the pitch
circle 20, while the pinion teeth have working faces above the pitch circle 21 only.
The working profiles 22 of the gear are concave and circular, and their centers are
substantially situated on the pitch circle 20. The convex working profiles 23 of the
pinion are also of circular shape. Their radii 24 are substantially the same as the radii
25 of the mate profiles. The centers 26, 260, 2600 are similarly situated on pitch circle
21. Profile centers 27, 270, 2700 of pitch circle 20 and profile centers 26, 260, 2600 of
pitch circle 21 correspond to each other. They coincide during the mesh, which takes
place on the whole tooth profile at once.

Figure E.1g may also be considered as a section perpendicular to the helical teeth
and shows then the normal tooth profiles.

Figure E.1h shows a refinement of the preferred embodiments of the invention. It
is a normal section through the helical teeth, but can also be considered as a section
perpendicular to the axes. Corresponding profiles 30 and 31 are circular, as in
Fig. E.1g, but in this case the radius of the concave circular profile 30 is made a
trifle larger than the radius of the convex circular profile 31. Consequently, the
profile centers 32 and 33 do not exactly coincide during the mesh. The radii 34 and
35 of the circles 36 and 37, constituted by the profile centers 32 and 33 respectively,
are not accurately identical with the pitch radii 38 and 39 of the two gears. The sum
of the radii 34 and 35 is a trifle larger than the sum of the pitch radii. The radii 34 and
35 are so selected that the main tooth pressure runs about in a direction 33, 40.
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The slight difference of the radii of profiles 30 and 31 facilitates the tooth contact
and allows for small errors in making and assembling.

Figure E.1b and E.1c show a pair of milling cutters for milling gear teeth. The
cutter may be applied in the usual manner, their axis being inclined in correspon-
dence with the tooth inclination, that is, with the helix angle of teeth. It will be found
that the cutters to be inclined for an angle, which is a trifle smaller than the helix
angle in the pitch circle, for producing most accurate results.

In Fig. E.1e and E.1f a pair of rack-shaped cutters is shown.28 These cutters are
for use in a reciprocating machine. The teeth of these tools are relieved inwardly, in
the usual manner, as evident by the dotted lines.

The convex grinding wheels shown in Fig. E.1k are illustrated in their operating
positions, in a view which is taken perpendicular to the axis of the gear blank as well
as to the axis of the grinding wheels, that is, in a view along the gear radii 41, 410 of
Fig. E.1m. The wheels which are to produce concave circular teeth profiles in a
normal section are of convex circular profile, its radius 42 being the same as the
radius of the concave circular profile. The grinding wheels are inclined for an angle
43, which equals the helix angle of the teeth, in the pitch circle. The wheels grind
along their profiles indicated in dotted lines 44 and 440, which are located in a normal
section. As shown in Fig. E.1k, the two grinding wheels are coaxially arranged with
respect to each other.

The device shown in Fig. E.1l corresponds to that shown in Fig. E.1k, with the
exception that the grinding wheels 45 and 46 are not coaxially arranged. Although
the arrangement shown in Fig. E.1k imposes certain restrictions on the tooth design,
it is frequently preferred. The arrangement of Fig. E.1l is advantageous, when
grinding wheels are not free to run out, for instance, when they must clear against
a shoulder, or in the case of herringbone teeth.

Referring particularly to Fig. E.1m, a normal section is illustrated and taken along
lines N, N0 of Fig. E.1k. In this view, the axis of the coaxially arranged grinding
wheels is situated in the said normal section. The wheels grind along the profiles
44 and 440 of the shown normal section, while the blank performs a translator motion
in the direction of its axis, and, in timed relation thereto, a turning motion about its
axis. In other words, the blank is screwed past the grinding wheels.

Figure E.1n discloses a normal section through the teeth of the mating gear or
pinion. Grinding wheels 50 and 500 are provided with concave circular profiles
52 and 520 with which they grind the convex gear teeth.

It will be understood that milling cutters might be used instead of the grinding
wheels shown in Fig. E.1k through Fig. E.1n and also that grinding wheels of a shape
shown in Fig. E.1b and E.1c might be used, if so desired.

The teeth ground according to Fig. E.1k, E.1m, and E.1n are preferably so
designed that the centers of opposite tooth arcs 44 and 440 and 52 and 520,

28Conformal gears cannot be cut by rack cutters, and, more generally, they cannot be machined in
any gear generating process.
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respectively, in Fig. E.1n coincide. In Fig. E.1m and E.1n, the tooth arcs of every
third tooth side have a common center.

The tooth arcs of every fifth tooth side have a common center in the normal
section shown in Fig. E.1o.

In Fig. E.1m the common center of opposite tooth arcs of alternate teeth is
situated on the centerline of the intermediate tooth. The corresponding pinion
shows convex circular profiles, of which opposite tooth sides of adjacent teeth
have common centers in the middle of the intermediate tooth space.

The normal section shown in Fig. E.1j shows an internal gear and its mate pinion,
constructed in accord ace with the concave tooth profiles. In external gears similarly
preference is given to providing the larger gear with concave tooth profiles.

The normal section through a pair of helical gears shown in Fig. E.1q discloses
opposite tooth profiles, the addendum being convex and the dedendum concave.

A rack-shaped planing tool is illustrated in operating position in Fig. E.1p. Tools
of this kind have been shown in another view in Fig. E.1e and E.1f. The
reciprocatory tool 60 moves in the direction 61, at an inclination, which equals the
helix angle of the teeth. Gear 62, with its axis 63, is shown in dotted and dash lines.
In order to cut the proper tooth shape, gear blank 62 after every cut is slightly fed in a
rolling generating motion with respect to a rack which is embodied by tool 60.

Another reciprocatory tool 64 is shown in Fig. E.1s, the tool in this case being
provided with stepped teeth 65, 650, 6500 which allow it to clear shoulders, and
herringbone teeth. The tool moves in the direction 66 of the helical teeth, which cuts.

Other ways of producing gearing according to the invention, that is, hobbing,
planing with a pinion cutter, rolling, and casting, may be contemplated, but it is not
deemed necessary at this time to give a detailed explanation of the mechanism used
in connection therewith.

Briefly stated, the invention consists in providing helical gearing of such profile
that the tooth contact passes rapidly over the normal profile of the teeth. This has
been found to result in close contact between helical mate teeth. In a direction at right
angles to the contact line, the mate teeth recede from each other only slightly, and
thus provide a tooth contact, which is not very far from surface contact.

It is claimed29 the “Wildhaber’s gearing” features a non-zero transverse contact
ratio (mp > 0) and a non-zero face contact ratio mF > 0. The total contact ratio, mt, is
greater than one (mt 	 mp + mF > 1).

The “Wildhaber’s gearing” (see Fig. E.1) does not meet the condition of contact.
The condition of conjugacy of the tooth flanks and the condition of equality of the
base pitches of the gear and the pinion to the operating base pitch are not fulfilled in
this design of gearing. This immediately yields a conclusion that “Wildhaber’s
gearing” is not workable at all.

Tons of the research papers and book on “Wildhaber’s gearing” are available in
the public domain.

29Wildhaber, E., Helical Gearing, US Patent 1,601,750, Patented: October 5, 1926, Filed:
November 2, 1923
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The “Novikov Gearing”

“Novikov Gearing” is an example of conformal helical gearing. For a long while
Novikov’s patent (S.U. Patent No. 109,113, 1956) was not available to most of the
gear experts.

Known designs of gearing, those featuring point system of meshing, feature low
contact strength and are not widely used in practice.

The contact strength of known designs of gearing with a line system of meshing,
including the widely used involute gearing, is limited.

The proposed gearing30 (S.U. Patent No. 109,113) features higher contact
strength due to favorable curvatures of the interacting tooth flanks. Under equivalent
contact stress, similar dimensions, and comparable remaining design parameters,
greater circular forces are permissible by the proposed gearing. Lower sensitivity to
manufacturing errors and to deflections under the load is the other advantage of the
proposed gearing.

The proposed gearing can be designed either with parallel, intersecting, or
crossing axes of rotations of the gears. External gearing as well as internal gearing
of the proposed system of meshing is possible. The tooth ratio of the proposed
gearing can be either of constant value or it can be variable, and time dependent. The
proposed concept of gearing can be utilized in the design of cam mechanisms.

In Fig. E.2, possible tooth profiles in the cross-section of tooth flanks by a plane
that is perpendicular to the instant axis of relative rotation through the current point
of contact are illustrated.

Here, the point of intersection of the planar cross-section by the axis of instant
relative rotation is denoted by P.

O1 and O2 are the points of intersection of the planar cross-section by the axes of
the gear and the pinion.

A is the point of meshing (in its current location).
PA denotes the line of action.
ДАД is the circle centered at point P which corresponds to the limit case of the

tooth profiles (in the case the profiles are aligned to each other).
Several curves, BAB, represent examples of the tooth profiles of one of the mating

gears. The curves BAB are arbitrary smooth curves, which are located inside of the
circular arc ДАД (i.e., the arcs are located within the bodily side of the limit tooth
flank of one of the gears). The curves BAB are located close to the circular arc ДАД,
and they feature high degree of conformity to the circular arc.

Several curves, CAC, represent examples of the tooth profiles of the second of the
mating gears. The curves CAC are arbitrary smooth curves, which are located
outside of the circular arc ДАД (i.e., the arcs are located within the bodily side of
the limit tooth flank of another of two gears). The curves CAC are also located close

30Pat. No. 109,113, (USSR). Gear Pairs and Cam Mechanisms Having Point System of Meshing. /
M.L. Novikov, National Classification 47 h, 6; Filed: April 19, 1956, published in Bull. of
Inventions No.10, 1957
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to the circular arc ДАД, and they feature high degree of conformity to the
circular arc.

The entity of the invention is disclosed below in detail.
The location and orientation either of a straight path of contact or a smooth curved

path of contact is specified in space in which the location and orientation of the axes
of rotations of the gear and the pinion are given. The path of contact is located
reasonably close to the axis of instant relative rotation of the gears. Either constant or
time-dependent (smoothly varying in time) speed of motion of the contact point
along the path of contact is assigned. A coordinate system is associated with the gear,
and a corresponding coordinate system is associated with the pinion. In the coordi-
nate systems the moving contact point traces the so-called contact lines.31 One of the
“paths of contact” is associated with the gear and another one is associated with the
pinion. Certain smooth regular surfaces through the “pseudo-paths of contact” can
be used as the tooth flanks of the gear and the pinion. The following requirements
should be fulfilled in order for the surfaces to be used as the tooth flanks:

• At every location of the contact point, the tooth flanks should have a common
perpendicular, and thus the requirements of the main theorem of meshing should
be satisfied.
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Fig. E.2 Helical gearing (After Dr. M. Novikov, Pat. No. 109,113, (USSR). Gear Pairs and Cam
Mechanisms Having Point System of Meshing. / National Classification 47 h, 6; Filed: April
19, 1956, published in Bull. of Inventions No.10, 1957.)

31The “contact line” is a term used by Dr. M.L. Novikov. Actually, the “contact line” is the
“pseudo-path of contact.”
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• The curvatures of the tooth profiles should correspond to each other.
• No tooth flanks interference occurs within the working portions of the surfaces.

The proposed tooth flanks fulfill the above-listed requirements and allow for high
contact strength of the gear teeth.

Consider a plane through the current contact point, which is perpendicular to the
instant axis of relative rotation. Then, two circular arcs are constructed. The circular
arcs are centered at points within the straight line through the pitch point and the
contact point. The arcs centers are located close to the pitch point. The constructed
circular arcs can be considered an example of the tooth profiles of the gear and the
pinion. The tooth flanks are generated as loci of the tooth profiles constructed for all
possible locations of the contact point. The working portion of one of two tooth
flanks is convex, while the working portion of another tooth flank is concave (in the
direction toward the axis of instant relative rotation). In a particular case, the radii of
tooth profiles could be of the same magnitude and equal to the distance from the
contact point to the axis of instant relative rotation. The centers of both profiles in
this particular case are located at the axis of instant relative rotation. Under such a
scenario, point meshing reduces to a special line meshing. This would require an
extremely high accuracy of the center distance and independence of it from operation
conditions, which is impractical. Point meshing is preferred when designing tooth
profiles. A small difference between the radii of curvature of the tooth profiles is
desirable. It should be kept in mind that during run-in period of time, point meshing
of the gear teeth will transform to the abovementioned locally line meshing of the
tooth profiles. However, the theoretical point contact of the tooth flanks will be
retained.

Tooth profiles can differ from the circular arcs. However, the tooth profiles of
other geometries (those always passing through the contact point) should be located
(for one gear) within the interior of the abovementioned circular arc profile that
centers at the point within the axis of instant relative rotation as shown in Fig. E.2.
For another gear, the tooth profile should be located outside the circular arc.

The law of motion of the contact point (i.e., speed of the point and its trajectory)
should be chosen so as to minimize the friction and wear loses. The friction and wear
lose are proportional to the relative sliding velocity in the gear mesh. Therefore, it is
desirable to reduce the sliding velocity as much as possible. For this purpose, the
path of contact should be located not far from the axis of instant relative rotation. On
the other hand, a too-close location of the path of contact to the axis of instant
relative rotation is also not desirable as that reduces the contact strength of the gear
tooth flanks. In addition, it is recommended to ensure favorable angles between the
common perpendicular (along which the tooth flanks of one of the gears act against
the tooth flank of another gear) and between the axes of rotations of the gears.

Opposite sides of tooth profiles are designed in a similar manner to that just
discussed. Tooth thicknesses and angular pitch are assigned to ensure the required
bending tooth strength.

The face width of the gear or the length of the gear teeth should correlate to their
pitch to ensure the required value of the face contact ratio. Gear pairs can feature
either one point of contact (when working portions of the tooth flank contact each
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other just in one point, excluding the phases of the teeth re-engagement), or they can
feature multiple contact points when the tooth flanks contact each other at several
points simultaneously.

For parallel axis gear pairs, it is preferred to use a straight line as the path of
contact, which is parallel to the axes of rotations of the gear and the pinion. The
speed of the contact point along the straight path of contact can be of constant value.
In this particular case, the radii of curvature of the tooth profiles in all cross-sections
by planes are equal to each other. Tooth flanks in this case are regular screw surfaces.
Gears that feature tooth flanks of such the geometry are easy for manufacture, and
they can be cut on machine tools available on the market.

An example of parallel axis gearing with limit geometry of the tooth profiles is
illustrated in Fig. E.2. Point contact of the tooth flanks in this particular case is
transformed to almost line contact of the tooth flanks. The curved contact line is
located across the tooth profile. When axial thrust in the gear pair is strongly
undesirable, herringbone gears can be used instead.

“Novikov gearing” (see Fig. E.2) meets the condition of contact, as well as it
meets the condition of conjugacy of the tooth surfaces, and the condition of equality of
the base pitches of the gear and the pinion to the operating base pitch. “Novikov
gearing” is a type of perfect gearing.32 “Novikov gearing” is the only feasible type of
gearing with point contact of the tooth flanks that is capable of transmitting a rotation
smoothly. As it is clear now, “Novikov gearing” is a reduced type of involute gearing.

The invention by Novikov got no expansive investigation, as “Wildhaber Gear-
ing” did. The inadequacy of the terms “Wildhaber-Novikov Gearing” and “W-N
Gearing” is disclosed in several scientific papers and monographs “Novikov Gear-
ing,” available in the public domain.
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