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Abstract. Distributed computing systems are widely used for the exe-
cution of loosely coupled many-task applications, such as parameter
sweeps, workflows, distributed optimization. These applications consist
of a potentially large number of computational tasks that can be exe-
cuted more or less independently. Since the application users often have
an access to multiple computing resources, it is important to provide a
convenient and efficient environment for execution of applications across
the user-defined heterogeneous resource pools. The paper discusses the
related challenges and presents an approach for solving them based on
Everest, a web-based distributed computing platform. The presented
solution supports reliable and efficient execution of many-task appli-
cations, while taking into account resource performance, adapting to
queuing delays and providing a mechanism for communication between
tasks.
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1 Introduction

Many-task applications [13] are loosely-coupled parallel applications consisting
of potentially large number of computational tasks that can be executed more
or less independently. Multiple classes of such applications are widely used in
science and technology. Bag-of-tasks applications [6], such as parameter sweeps,
Monte Carlo simulations, image rendering, have no dependencies between the
tasks. Workflows [24], which are used for automation of complex computational
and data processing pipelines, consist of multiple tasks with control or data
dependencies between them. There is also a special class of many-task appli-
cations that require cooperation between the running tasks. For example, the
distributed implementation of the branch-and-bound method [15] requires the
exchange of incumbent values between the tasks concurrently processing differ-
ent subtrees.

While many-task applications are naturally suited for execution on dis-
tributed computing resources, there exists a number of challenges related to the
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efficient execution of such applications such as management of a large number
of tasks, accounting for dependencies between tasks, implementing coordina-
tion and data exchange, use of multiple independent computing resources, task
scheduling, accounting for local resource policies and dealing with failures. Some
of these challenges were addressed by existing solutions such as meta-schedulers
[9,25], user-level frameworks [5,12], workflow management systems [24], grid
portals [10,26] and science gateways [3,11]. However, there is still a lack of
convenient tools and environments that do not require a considerable effort to
master and use them, thereby allowing users to focus on problems being solved.

In particular, this paper considers the following use case. A user has accounts
on multiple computing resources, such as an institution cluster and supercomput-
ing centers. The user wants to run some many-task application by leveraging all
available resources in a most efficient manner to obtain the results as quickly as
possible. The desired solution should support reliable execution of long-running
computations spanning multiple resources, while taking into account resource
characteristics and policies. In addition, it should not require complex deploy-
ment and configuration, while allowing the users to adapt and run their applica-
tions with a minimal effort via a convenient user interface. However, there is a
lack of solutions that meet all these requirements, which hinders their adoption
by users with less technical background in distributed computing.

In this paper, we present an approach for addressing the aforementioned
issues and requirements using Everest [1,20], a web-based distributed computing
platform. Everest implements the Platform as a Service (PaaS) model by provid-
ing its functionality via remote user and programming interfaces. The platform
allows the users to attach their computing resources, publish applications and
run them on arbitrary combinations of resources. These features enable Everest
to serve multiple distinct groups of users while satisfying the above requirements.

In particular, the paper describes the recent platform improvements and
features related to the use of multiple resources, scheduling and execution of
many-task applications. The major contributions are the resource pool mecha-
nism (Sect. 2), task scheduling improvements (Sect. 3) and a generic mechanism
for communication between tasks (Sect. 5). An experimental evaluation of pre-
sented solutions on several application cases is also included (Sect. 6).

2 Many-Task Applications and Resource Pools

Everest provides several tools for execution of many-tasks applications. A
general-purpose service for execution of bag-of-tasks applications [27] enables
users to describe parametrized computations using a declarative format. Execu-
tion of workflows is supported by external orchestration using a scripting lan-
guage or via a general-purpose service integrated into the platform [22]. Finally,
the low level programming interface enables platform clients to dynamically man-
age a set of tasks within a job by sending commands and receiving notifications
[23].
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Instead of using a dedicated computing infrastructure, Everest performs the
execution of application tasks on external resources attached by users. The plat-
form implements integration with standalone machines and clusters through a
developed agent [16]. The agent runs on a resource and acts as a mediator
between it and Everest enabling the platform to submit and manage tasks on
the resource. The platform also supports integration with grid infrastructures
[16], desktop grids [21] and clouds [28].

Everest users can flexibly bind their resources to applications. In particular,
a user can specify multiple resources, possibly of different type, for running an
application, which is especially important for many-tasks applications. In this
case, the platform performs a dynamic scheduling of application tasks across
the specified resources However, when submitting such jobs, the user had to
manually form a list of used resources. In addition, there was no way to pass the
user preferences for the use of individual resources. This complicated the use of
Everest for running applications on multiple resources.

To solve the aforementioned problems, a concept of resource pool has been
introduced and implemented in Everest. A resource pool is a virtual resource
comprised of several regular resources. The user can configure the set of resources
included in the pool, as well as the priorities of individual resources. The pri-
orities may correspond to user preferences, relative performance or cost of the
corresponding resources. These priorities are used by the platform during the
task scheduling as described in Sect. 3. The user can also temporary forbid run-
ning tasks on a resource by setting its priority to zero. The changes of pool
configuration made during the application execution are automatically picked
up by the scheduler allowing the user to manually control the execution.

The resource pool can be used in the same way as regular resources when
starting jobs and configuring applications. The pool owner can also configure a
list of users and groups that are allowed to use the pool. This enabled Everest
users to flexibly configure and conveniently use personal and collective computing
infrastructures consisting of several resources for their computations.

3 Task Scheduling

Everest implements a flexible multi-level approach for scheduling jobs, corre-
sponding to application runs, and individual tasks with jobs. The global job
scheduler, which is periodically invoked with information about current jobs and
resource states, fairly distributes the available resource slots among the jobs.
Each job encapsulates an application-level task scheduler, which is invoked to
select the tasks for running on the resources offered by the job scheduler. Finally,
a complex resource, such as the one representing a grid or a cloud infrastructure,
implements an internal resource-level task scheduler that is used to distribute the
tasks assigned to the resource among a pool of dynamically allocated machines.

The same approach has been used to implement the scheduling of tasks
assigned to resource pools. If a pool is specified as a resource for running a job,
then the platform distributes the job tasks among the pool resources using the
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newly developed resource-level scheduler associated with the pool. By default,
this scheduler assigns the tasks to resources with idle slots in the order of user-
defined priorities specified in the pool configuration.

However, the relative resource performance often depends on an application,
and the provided priorities may not allow for efficient task distribution. Also,
for non-dedicated resources shared among many users, such as supercomputers,
the presence of idle slots does not guarantee that the scheduled task will start
immediately. In practice, the tasks can be arbitrary delayed in the resource
queues and blocked by the pending reservations, which complicates the task
scheduling and may negatively impact the application execution time. These
issues are addressed by the following task scheduling improvements.

The relative performance of resources for a given many-task application can
be taken into account in runtime by collecting the execution times of completed
tasks. Since these tasks are different, this is not a real benchmarking. However,
many-task applications are often comprised of one or several groups of tasks
with similar characteristics, which justifies the use of this approach. The mean
of execution times of completed tasks on a given resource is used as an estimate
of a task execution time during the task scheduling. The mean is computed on a
subset of recent measurements (10 latest values currently) to better account for
the applications that consist of several “waves” of tasks, which characteristics
differ between the waves, and for the variation of resource performance in time.

Another possible approach is to run an application-specific benchmark on
all resources prior to the application execution and use the results to compute
the resource priorities. However this approach requires more time and effort
from the user, while not solving completely the problem of task execution time
estimation and not taking into account the variation of resource performance
in time. A more promising approach, which can be used to improve the current
implementation, is to use the information on task execution collected during the
previous application runs, as was previously demonstrated for workflows in [22].

To account for the wait times in resource queues, a similar approach is used
to estimate the task wait time on a given resource during the scheduling. The
wait times of completed tasks are collected during the application execution.
Note that this information is not specific for a given application and is collected
and shared across all jobs using the particular resource. A mean of recent mea-
surements (10 latest values currently) is used as an estimate of a task wait time
on a given resource during the task scheduling.

The described estimates for task execution and wait times are used during
the task scheduling to compute the estimated task finish time for each resource
in the pool. A task is assigned to a resource that provides the earliest task finish
time. In the beginning of application execution, when these estimates are not
available, the user-specified resource priorities are used as described above.

The presented approach allows to take into account the heterogeneous and
dynamic characteristics of resources within a pool by using the available infor-
mation and adapting to changes. However, after being scheduled, a task may
still stuck in the resource queue or run extremely slowly on a malfunctioning
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machine, thereby severely delaying the application finish time. The so called
“long tail” or “stragglers” problem is often observed for many-task applications,
when the finish time is determined by the “slow” resources computing the several
remaining tasks. While the previously described approach can partially allevi-
ate this problem, it cannot eliminate it completely due to the dynamic nature
of the execution environment. Therefore an additional mechanism is needed to
reschedule the stuck tasks if it will improve the application finish time.

To address this issue, a task migration mechanism has been implemented
inside the pool task scheduler. It periodically checks all tasks in a pool and
cancels a task if it is waiting on a resource and there is another idle resource
with a better estimate of the task finish time. The cancelled tasks are then
rescheduled using the previously described approach. The migration of already
running tasks is not enabled by default since it can lead to a bouncing of long-
running tasks between resources. A user can optionally enable it when running
an application with uniformly sized tasks, to protect against the slowly running
machines. Besides, the task execution and wait time statistics are updated for
the original resource if the cancelled task experienced longer wait or execution
times than was expected, to better account for a sudden resource degradation.
Finally, in the case of resource failure, Everest performs the rescheduling of tasks
assigned to the resource, which can be considered as a special migration case.

The adaptive task scheduling and migration have been previously studied
and implemented in the context of grid computing [4,9]. However, while the pre-
vious work was mostly focused on detecting the performance degradation and on
opportunistic migration, the presented approach takes into account the resource
queuing delays and leverages the recent execution history. Another approach
widely used in grids is “pilot jobs” [14], which dynamically deploys the execu-
tion agents on the resource nodes as regular jobs and then directly assigns tasks
to the agents bypassing the resource queues. While this approach allows to avoid
the queuing delays, it requires a direct connection from the resource nodes to the
external scheduler, which is often restricted on shared HPC resources and com-
plicates the deployment. Also, this approach has an inevitable trade-off between
stopping an idle agent and wasting the occupied resources. Another remedy for
varying queuing delays is to simultaneously submit the same task to multiple
resources [7], however this would complicate the task dispatching and introduce
an additional load on the resource queues.

4 Supporting Communication Between Tasks

As described in Sect. 2, Everest supports execution of different types of many-
task applications. In many cases, such as parameter sweep experiments, these
tasks are executed completely independently of each other. In the case of work-
flows, the dependencies between the tasks correspond only to the use of the
results of one task when starting another task. Therefore, there is no communi-
cation between the running tasks in the aforementioned cases.



Running Many-Task Applications Across Multiple Resources 639

However, there exist important cases of many-task applications that require
coordination and data exchange between the tasks in the process of their exe-
cution. These are not only traditional tightly coupled parallel applications, such
as MPI programs, but also loosely coupled applications, which permit non-
simultaneous execution of tasks and have moderate communication require-
ments. The former applications are suited for running inside a single HPC system
and their support in Everest has been described in previous work [17]. Here we
focus on the latter applications that allow execution across multiple resources.

A typical example of a loosely coupled many-task application is a parallel
version of the branch and bound method for solving optimization problems, in
which the tasks process different subtrees of the whole search tree. In this case,
it is necessary to implement the exchange of the best found solutions (incubment
values) between the tasks to speed up the search process. Note that the tasks
need not to be started and executed simultaneously, they can start upon the
resource availability and can also fail independently. However, upon the startup
a task should be able to obtain the current best incumbent value. This calls for
a reliable storage of such values independent of the tasks.

The required interaction between the tasks can be implemented by the appli-
cation developer in ad-hoc manner. However, this involves a solution of a number
of difficult technical problems. For example, when the tasks are executed on mul-
tiple resources, it may not be possible to establish a direct connection between
the tasks. Also, as was exemplified before, it may be necessary to reliably store
and forward the previously transmitted data to the newly started tasks. Solving
such problems requires the implementation and deployment of a rather complex
separate component for organizing the data exchange between the tasks.

To simplify the implementation of the considered class of applications on
Everest, a general-purpose mechanism for communication between the tasks was
implemented at the platform level. The implemented mechanism is based on a
two-way message exchange between the tasks and the platform through the
Everest agent running on the resource and managing local tasks. When the task
starts, the agent passes through the environment variable the port number of the
local socket, by connecting to which the task can send and receive messages. The
agent forwards the messages received from the task including the task identifier
to the platform via the WebSocket connection. Similarly, the platform can send
the messages back to the running tasks through the corresponding agents.

Using the messaging support, the following lightweight model for communi-
cation between tasks based on shared variables is implemented. Tasks can write
and read the values of arbitrary named variables by sending special messages
VAR SET and VAR GET. The current values of the variables are stored on the
platform side and represent an analogue of the shared memory available to all
tasks within a job. The variables belonging to different jobs are stored separately,
such that the tasks of different jobs cannot share the data. When the value of
a variable is changed, the new value is sent to all tasks of the job. Thus, this
mechanism combines the shared memory and publish-subscribe models.
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In addition to the basic operations for reading and writing the values of the
variables, the conditional write operations VAR SET MI and VAR SET MD are
implemented. These operations atomically change the value of the variable only
if the passed value is greater or less than the current one. These operations, guar-
anteeing a monotonous increase or decrease of the variable values in the presence
of concurrent updates, are used to exchange the incumbent values between the
tasks in a distributed implementation of the branch and bound method [15]. In
the future, the set of supported operations can be expanded. For example, an
atomic compare and swap operation can be implemented in a similar way.

5 Experimental Evaluation and Applications

In this section we present experiments performed to evaluate the described
results and demonstrate the use of Everest for running many-task applications
across a pool of multiple HPC resources.

The following resources were used in the experiments:

– HSE: Supercomputing complex of NRU Higher School of Economics,
– HPC4: HPC-4 cluster at NRC Kurchatov Institute,
– Lomonosov: Lomonosov-1 supercomputer at Lomonosov Moscow State Uni-

versity,
– Govorun: Govorun supercomputer at Joint Institute for Nuclear Research.

5.1 Parameter Sweep Applications

The computational workload was represented by two real-world parameter sweep
applications consisting of a large number of independent tasks. The first appli-
cation is from the life sciences domain and represents the virtual screening of
1000 ligand molecules against the same protein using the molecular docking
program Autodock Vina. The second application is from the geophysics domain
and consists of 670 tasks performing tabulation of a complicated multidimen-
sional function for solving an inverse problem. Both applications were run via the
generic Parameter Sweep service [27] implemented on Everest. The experiments
for each application were run in succession with a minimal interval between the
runs in order to have the similar conditions on the resources. The number of
simultaneously running tasks on each resource was limited as follows: HSE - 88,
HPC4 - 64, Lomonosov - 32, Govorun - 32.

Figure 1 (top) displays the number of running tasks across the used resources
during the execution of the virtual screening application without using the new
resource pool functionality and task scheduler. The platform managed to reach
the specified limits on allocated resources given their availability. The periodic
drops of utilization are due to the completion of task batches and the queuing
delays. However, it can be seen that the application run time suffers from the
mentioned “tail problem” - the last batch of tasks was processed very slowly
on Govorun. Actually this resource was the fastest one in terms of the task
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Fig. 1. Executions of the virtual screening application (top - no optimizations, bottom
- with optimizations)

execution time, but the task wait times were very high in comparison to the
other resources, which explains the observed slow progress.

Figure 1 (bottom) displays the execution of the same application using the
new resource pool scheduler. The “tail” has been largely eliminated by both
taking into account the collected task wait and execution times during the task
scheduling and by migrating 14 tasks from Govorun to HSE (the second fastest
resource) in the end of the computations. These optimizations reduced the appli-
cation execution time from 1288 to 1001 s.

The execution of the geophysics application (see Fig. 2) has been similarly
improved. In this case, the “tail” was caused by several factors - the long pro-
cessing of a batch of tasks by the slowest resource (HPC4) and the high wait
times on Govorun and Lomonosov. The improved task scheduling and migration
of tasks from these resources to HSE helped to eliminate the problem and reduce
the application execution time from 2987 to 2514 s.

The following subsections present other application use cases that are cur-
rently leveraging the described implementation to perform computations on the
pools of HPC resources.

5.2 Coarse-Grained Parallelization of Branch-and-Bound

The first use case, where the integration of muliple resources via Everest can help
to solve the hard optimization problems, concerns the so called coarse-grained
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Fig. 2. Executions of the geophysics application (top - no optimizations, bottom - with
optimizations)

parallelization of the branch-and-bound (BnB) algorithm [15,18,29]. Here the
original problem is decomposed into sub-problems by some decomposition of
its feasible domain. Then these sub-problems can be solved in parallel by a
pool of existing general-purpose BnB-solvers running on multiple machines and
exchanging the incumbent values they found via the communication mechanism
described in Sect. 4. In addition to the decomposition, the concurrent approach
can be used where the same sub-problems are being solved by multiple BnB-
solvers with different algorithm options [18]. The developed Everest application
DDBNB1 (Domian Decomposition BnB) enables to combine the “decomposi-
tion” and “concurrent” modes of operation. The current implementation is based
on SCIP solver [8].

Figure 3 displays the execution of tasks during a DDBNB run on two
resources for solving the following instance of the Traveling Salesman Prob-
lem (TSP) from the TSPLIB2 collection: ch150 (150 cities), 64 subsets of the
feasible domain and 7 sets of the solver options (448 tasks in total). The used
limits on the number of simultaneously running tasks: HSE - 88 tasks, HPC4
- 48 tasks. On the top graph, each task corresponds to a horizontal line from
the task submission time to the task completion time. The tasks are colored
according to the used resource, the intense color corresponds to the actual task

1 https://everest.distcomp.org/apps/ssmir/DDBNB.
2 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp.

https://everest.distcomp.org/apps/ssmir/DDBNB
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp
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execution. It can be seen that the task execution times vary greatly due to the
different complexity of the corresponding sub-problems.

5.3 Balanced Identification of Mathematical Models

The second use case relates to the method of balanced identification with reg-
ularization of mathematical models by experimental datasets. This method is
also called the SvF-technology [19] and is based on the bi-level optimization
with a set of independent mathematical programming problems to be solved at
the lower level. All these problems (can be hundreds in practice) can be solved
by the general-purpose solvers in parallel, and Everest provides the capabilities
to do this on multiple resources. Currently the following solvers are supported:
IPOPT [30], to find a local optimum in nonlinear optimization problems; SCIP
if a global optimum is needed. The current implementation of SvF-technology is
based on the Everest application SSOP3 (Solve Set of Optimization Problems),
which solves a batch of independent problems in parallel by using the available
computing resources.

Fig. 3. Execution of DDBNB application for solving a TSP instance on HSE and HPC4
clusters (top - task executions in time, bottom - number of running tasks)

3 https://optmod.distcomp.org/apps/vladimirv/solve-set-opt-probs.

https://optmod.distcomp.org/apps/vladimirv/solve-set-opt-probs
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6 Conclusion and Future Work

The paper presented a ready-to-use solution for performing computations across
the user-defined resource pools consisting of separate HPC resources. The pre-
sented solution supports reliable and efficient execution of many-task appli-
cations, while taking into account resource performance, adapting to queuing
delays and providing a mechanism for communication between tasks. In con-
trast to related work, the presented solution is built on a web-based platform
and does not require complex deployment and configuration, while allowing the
users to adapt and run their applications with a minimal effort via a convenient
user interface. The public instance of the platform [1] is available online for all
interested users. Future work will focus on improving and extending the pre-
sented functionality. We also plan to conduct and report extended large-scale
experiments for the mentioned application use cases.
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