®

Check for
updates

Shared Memory Based MPI Broadcast
Algorithms for NUMA Systems

Mikhail Kurnosov®) and Elizaveta Tokmasheva

Siberian State University of Telecommunications and Information Sciences,
Novosibirsk, Russia
{mkurnosov, eliz,tokmasheva}@sibguti .ru

Abstract. MPI _Bcast collective communication operation is used by
many scientific applications and tend to limit overall parallel applica-
tion scalability. This paper investigates the design and optimization of
broadcast operation for NUMA nodes with GNU/Linux. We describe
algorithms for MPT_Bcast that take advantage of NUMA-specific place-
ment of queues in a shared memory for message transferring. On a Xeon
Nehalem and Xeon Broadwell servers, our implementation achieves on
average 20-60% speedup over algorithms of Open MPI coll/sm and
MVAPICH.

Keywords: MPI - Broadcast - Collectives + NUMA

1 Introduction

High-performance computing systems are growing intensively in two directions:
compute node counts and number of cores per node. Many of the supercomput-
ers are built on multi-processor nodes with non-uniform memory architecture
(NUMA), it becomes increasingly important for MPI to leverage shared mem-
ory for intra-node communication.

Broadcast is an important communication operation in HPC. For a significant
number of parallel algorithms and packages of supercomputer simulation, the
performance (execution time) of broadcast operation is critical. The MPI stan-
dard defines an MPI_Bcast routine for single source non-personalized broadcast
operation, in which data available at a root process is sent to all other pro-
cesses. On shared memory systems broadcast can reduce the number of mem-
ory transfers with multiple consumers accessing a shared buffer. The most used
double-copy (copy-in/copy-out) algorithms involve a shared buffer space used
by local processes to exchange messages. The root process copies the content of
the message into the shared buffer before the receiver reads from it.

In this paper, we investigate the problem of message broadcasting from the
root process to other processes over shared memory of a NUMA machine with
GNU/Linux operating system.

This work is supported by Russian Foundation for Basic Research (project 18-07-
00624).
© Springer Nature Switzerland AG 2020

V. Voevodin and S. Sobolev (Eds.): RuSCDays 2020, CCIS 1331, pp. 473-485, 2020.
https://doi.org/10.1007/978-3-030-64616-5_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64616-5_41&domain=pdf
https://doi.org/10.1007/978-3-030-64616-5_41

474 M. Kurnosov and E. Tokmasheva,

Main contributions of this paper include: (1) NUMA-aware algorithms for
MPI Bcast operation are based on k-ary, k-nomial, chain and flat notification
trees. In contrast to other works our algorithms explicitly allocate memory for
queues from local NUMA nodes even with active linux page cache readahead sub-
system; (2) Optimal values of the size s of buffer and length s of the queue what
takes no more than b bytes and provides minimum algorithm time. On NUMA
machines with Xeon Nehalem and Xeon Broadwell processors, our implementa-
tion based on Open MPI achieves on average 20-60% speedup over algorithms
of Open MPI col1l/sm and MVAPICH (mv2_shm bcast).

The paper is organized as follows. Section 2 discusses related work. Section 3
presents an overview of our approach and describes the shared-memory
MPI_Bcast for NUMA system implemented within the Open MPI. Analyses
and experimental results are presented in Sect. 4. Section 5 summarizes and con-
cludes.

2 Related Work

Modern MPI implementations optimize intra-node collective communication in
two different ways: (1) using intra-node point to point communication and min-
imizing inter-node interactions [1,2,7-9,11,12,15]; (2) allocating a shared mem-
ory region that can be used for the communication across processes in the same
node [4-6,10,13,14]. The main part of shared memory based MPI_Bcast algo-
rithms are based on two step procedure [1-6]. At communicator creation time a
set of queues is formed in a shared memory region and a message is transferred
over queues at each call of MPT _Bcast. The root process copies fragments of the
message into the shared queue and the non-root reads from it. This approach
is called copy-in/copy-out (CICO, double-copy) and is widely used in practice
because it provides portability, and does not require additional libraries and
additional permissions from the operating system. Scalability of CICO algo-
rithms are limited by double copying of fragments and waiting for the readiness
of the data in the queue.

Along with the CICO method in many MPI implementations a zero-copy
approach is used. Zero-copy algorithms perform one copying of each fragment
without using of an intermediate buffer. They use special possibilities of operat-
ing system to copy of a data from address space of one process into another. Well
known examples are KNEM [13], XPMEM and linux Cross Memory Attach. In
[6,13,14] a process distance-aware adaptive collective communication framework
based on KNEM is proposed. Kernel-assisted collective algorithms do not use
intermediate queues in a shared memory segment. This paper addresses problems
of CICO algorithms with queues in a shared memory region.

In MVAPICH [3] processes create a shared memory segment with a cyclic
queue of w = 128 slots for each process. Each slot contains a buffer to store a
fragment of f = 8192 bytes and an operation number psn. The root process uses
flat tree and psn to notify other processes about data readiness. If the queue
is full, the root process waits on the barrier until all processes have finished

Shared Memory Based MPI Broadcast Algorithms for NUMA Systems 475

copying. The total size of the shared memory segment is O(pwf), and an each
process requires an O(pw) bytes of memory.

In the paper [4] authors proposed to use p cyclic queues in a shared memory.
The queue includes w buffers and is divided into ¢ = 2 sets (banks) of memory
with each set having several buffers. When the last buffer in the set is used, a
non-blocking barrier is initiated. Multiple sets are used to allow the non-blocking
barrier to complete while another set is in use reducing the synchronization
costs. The root process uses a complete k-ary tree for message transferring and
notifications. Algorithm is implemented in coll/sm component of the Open
MPI. The total size of the shared memory segment is O(pwf) and an each
process requires O(w + pk) bytes of memory.

In [5] authors use a single queue divided into w = 4 buffers and two synchro-
nization flags per process. An each buffer occupies f = 8192 bytes of memory.
One of the synchronization flags is used when a process copies its data to the
shared buffer, to notify that new data is available. The other flag is used when
a process copies the data out of the shared buffer, to signal that it has read the
contents of the buffer and the buffer can be reused. A broadcast is implemented
using a release followed by a gather step. During the release step, the parent
copies the message into the shared queue and updates the children’s release
flag. Child processes wait on the shared release flag and copy out the data from
the buffer. After the release step, in the gather step the children processes sig-
nal the parent that they have completed copying the data. Authors use k-ary
and k-nomial trees for notifications. The size of the shared memory segment is
O(p+wf).

Algorithms in MVAPICH, Open MPI and in [5] allocate memory pages for
queues without explicit binding to local NUMA nodes. This can lead to allocating
of memory pages for queues from a NUMA node of the master-process which
created shared-segment. As a consequence, the amount of inter-socket exchanges
can increase. Our approach takes advantage of NUMA-specific placement of
queues in a shared memory and tries to minimize a volume of inter-socket traffic.

3 Bcast Algorithms

The developed algorithms include two stages. At communicator creation time
they form a set of queues in a shared memory region for inter-process commu-
nications. After that, on each call of MPTI_Bcast a message is transferred from
the root process over its queue to others processes.

3.1 Shared Memory Segment Structure

At MPI communicator creation time (including MPI_COMM_-WORLD) all processes
form a shared memory segment. The POSIX-compatible system call mmap is
used for this purpose. Process 0 allocates memory in shared region and other
processes attach it to its address space. The size of the allocated segment and

476 M. Kurnosov and E. Tokmasheva,

individual blocks is a multiple of a memory page. The reason is that NUMA
memory binding is controlled by linux kernel at the level of memory pages.

Each of the first ¢ memory pages contains two shared counters shm_op
and shm_nreaders (by default ¢ = 2). They are used to synchronize access
of processes to shared queues during the MPI_Bcast operation. The addresses
of the counters are aligned to a cache line boundary to reduce possible false
sharing. Further, the shared memory region contains for each of p processes a
cyclic queue of s buffers (shm_queue[rank][s]) and an array of s control blocks
(shm_controls[rank][s]). Each buffer has f bytes length and occupies minimum
number of memory pages. A size of control block is one page length. By default
we use s = 8 and f = 8192 bytes. Figure 1 shows an example of shared memory
segment structure for p = 8 processes running on two NUMA nodes (two quad
core processors). In general, the size of a shared segment depends linearly on the
number p of processes and queue length s and occupies O(qw + ps(f +w)) bytes
of memory, where w is the memory page size. In practice, the queue’s length
s and buffer size f should be chosen taking into account the available memory
size. For example, at p = 64 processes and s = 1024, f = 8192 the memory
segment will occupy 384 MB.

After calling mmap, each process initializes areas of the segment with its data
structures: it zeroes control blocks and the first byte of each page of all queue
buffers. This ensures that physical memory pages are allocated from its local
NUMA node (using the first touch policy of the linux kernel). Memory pages
with shared counters shm_op and shm_nreaders are initialized by the process 0.
Overall initialization time linearly depends on the number p of processes, queue
length s and the number ¢ of sets.

According to default linux memory policy, the first access to any address addr
on the segment will allocate a physical memory page from the local NUMA node
of the process and a certain number of pages for the following addresses will be
allocated from the same NUMA node. This is done by page caching subsystem
(linux page cache readahead) which speculatively sequentially reading memory-
mapped file (shared region) into the page cache. Default behavior of readahead
subsystem may cause incorrect allocation of memory pages for queues and control
blocks of processes 1,2, ..., p—1 from NUMA node of the process 0 (it performs
a first modification of the shared region). Algorithms of Open MPI coll/sm
and MVAPICH ignore NUMA topology — pages for shared data structures are
allocated from NUMA node of process 0. This increases MPI_Bcast operation
time due to the increased number of accesses to remote NUMA nodes. In our
algorithms to establish correct allocation of memory pages from NUMA nodes
we temporarily disable sequential readahead immediately after mmap by calling
madvise (seg, segsize, MADV_RANDOM). This ensures correct allocation
of memory pages for queues and control blocks from local NUMA nodes.

Control blocks are used by the root process to notify other processes about
data readiness in the queue. The root copies the fragment i of a message to his
queue shm_queue([root|[i] and notifies processes rank by writing fragment size
to their control blocks shm_controls[rank][i]. Each non-root process spin waits

Shared Memory Based MPI Broadcast Algorithms for NUMA Systems 477

Process | byt Block Content Size | NUMA- NUMA-node 0 NUMA-node 1
owner node i i

A foleiolo}
0 shm_nreaders 0 4KB 0 3 ' i '
S 3 1 10IGIHOIO)
0 shm_nreaders 0 4KB v i ' i '

0 shm_controls(s] 8- 4KB o | Tt tmmmmmmomoeooes
shm_fi [s] 8- 8KB
1 shm_controls[s] 8- 4KB 1
shm_fi [s] 8- 8KB
5 shm_controls[s] 8-4KB 0
shm_fragments[s) 8- 8KB
shm_controls(s] 8-4KB

shm_firagments[s] 8- 8KB

Fig. 1. Shared memory segment structure: p = 8 processes on two NUMA nodes;
memory page size w = 4KB; queue length s = 8, number of sets per queue q = 2,
buffer size f = 8 KB (total segment size is 776 KB).

on its own control block until the value becomes positive. We have implemented
four algorithms using various trees to propagate notification from the root pro-
cess to others: completed k-ary tree, k-nomial tree, chain tree and flat (linear)
tree (Fig. 2).

root root root

@ chain
tree

Fig. 2. Notification trees: p = 8, root = 0.

At communicator creation time the root process of MPI_Bcast operation is
unknown. For this reason each process generates a fragment of a tree to all p
possible values of root. A process stores information only about his parent and
children nodes, it requires O(p) bytes per process.

3.2 MPI_Bcast

The root process implements a pipelined message transferring. It divides the
message into [m/f] fragments and copies them through the queue in a shared
memory. The root copies the current fragment index into the next available
buffer in the queue shm_queue[root][index] and notifies children processes in the
tree — updates their control blocks shm_controls[rank][index] with the current
fragment size (Fig.3). Non-root process rank waits on its control block until
the value becomes positive, then notifies its children processes (propagates the

478 M.

while sent_size < m do
set = op % g; oOp++
wait_for (shm_nreaders[set]

Kurnosov and E. Tokmasheva

—= 0

shm_nreaders[set] = p - 1
shm_op[set] = op - 1
i=set « (s / q);

while i < (set + 1) * (s / gq) and

sent_size < m do
// Copy to the queue
frag = get_next_frag(m,
copy (frag,
frag_size)
write_memory_barrier ()
// Notify children

sent_size)
shm_queue[root] [i],

for each child in children[root] do

shm_controls[child] [1i]

end for
sent_size += frag_size
i++

= frag_size

while sent_size < m do

o

set = op % g

wait_for (shm_op[set] == op)
op++
i =set x (s / q);

while i < (set + 1) =«
sent_size < m do
// Wait for a data
wait_for (shm_controls[rank] [i] > 0)
frag_size = shm_controls[rank] [1i]
shm_controls|[rank] [i] = 0
// Notify children
for each child in children[root] do
shm_controls([child] [i] = frag_size
end for
// Copy data from the queue
frag = get_next_frag(m, sent_size)
copy (shm_queue [root] [i1], frag,
frag_size)
sent_size += frag_size
i++
end while
write_memory_barrier ()

(s / q) and

end while
end while

atomic_dec (shm_nreaders[set])
end while

Fig. 3. Root process. Fig. 4. Non-root process.

signal down the tree) and copies out the fragment from the root’s queue to the
output buffer (Fig.4).

If the queue is full, the root process waits on the barrier until all processes
have finished copying from the buffers (shm_nreaders = 0). Non-root process
starts to wait on control blocks only when its value of op counter is equal to
the value of shared counter shm_op. The queue is divided into ¢ sets to allow
the non-blocking barrier to complete while another set (part of queue) is in use,
reducing the synchronization costs [4]. For example, in the case of 12 fragments
and the queue of s = 8 buffers is divided into ¢ = 2 sets, the root process fills
the first four buffers (the first set) and without blocking starts to copying data
into next four buffers (the second set).

Proposed algorithms are implemented within the Open MPI code base
(v4.0.x) as a separate collective component. Wait_for operation is imple-
mented by spin waiting with periodic calling of the Open MPI’s progress engine.
The correctness of the page allocation from NUMA nodes is checked by the
move_pages () linux system call.

4 Analysis of Algorithms

4.1 Theoretical Analysis

In general, the algorithm execution time is determined by the time of leaf pro-
cesses in the notification tree. Figure 5 shows time diagrams for the root and leaf
process in a flat tree. Let us consider three important cases.

Shared Memory Based MPI Broadcast Algorithms for NUMA Systems 479

root [WS[SO[CL [N| WS _[SO[C2 [N] WS [SO[C3 |[N| WS [SO[C& [N] s=1

@

leaf [wo 1w T arTapd _w_ [@ Jawd _w] e [Awd __w] c& [4]

root [WS[SO[€T [N] €2 [N] €3 [N| C& [N| Ws [so] €5 [N] C6 [N] 7 [N[&® [N] s=4,q=1

®)

leaf [Wo] _w_ [il W[C2 [W] C3 | W] C& [4Awd__W__| C5 W] C6 [W] C7 W] C8 4]

root [wsso] ¢l [N] 2 [N] &3 [N] ¢4 [N[ws[so] C5 [N] C6 [N] €7 [N] C8 [N] s=8,q=2

©

leaf [wo [w [ci [w[c2 [W] C3 [W] C4 [4wdw] C5 [wW][C6 |[W[CI_| W] C8 [4]

t

Fig.5. Time diagrams of the algorithm (WS — waiting for a set in the root, SO —
setting the shm_op counter, C'k — copying of the fragment k, N — notifying the child
process, WO — waiting for a set in the leaf, W — waiting for a notification from the
root, A — atomic decrement of shm_nreaders counter): a) single buffer queue (s = 1),
m = 4f; b) queue of s = 4 buffers and one set (¢ = 1), m = 8f; ¢) queue of s = 8
buffers and two sets (¢ = 2), m = 8.

A Single Buffer Queue. In the case of single buffer queue (s = 1) a pipelined
message transmission is not possible (Fig. 5a). The root and leaf processes per-
form [m/f] copies of fragments over the single shared buffer. On the first step
the root process waits for the readiness of the set (WW.S) because a buffer may be
occupied by non-root processes that complete the previous call of MPT Bcast.
After that, the root notifies child about beginning of operation (SO) and starts
a loop of fragments copying. A leaf process waits for the readiness of the set
(WO) for two time and starts copying fragments from the root’s queue. The
leaf process receives notification for the readiness of the first buffer no sooner
then the root copies it (C1) for a t¢ time. To receive a notification from the root
process (W), ty units of time are required, it depends on the notification tree
structure and the number of processes p. Thus, the copying of the first fragment
by the leaf process is finished at the time two +tc +tw +tc. After copying, the
leaf notifies the root with an atomic operation (A) for a t4 time about releasing
of the set. The root process begins to re-fill the buffers. The time t¢ of copying
the fragment is mt, where ¢ is the time for reading/writing one byte. Thus, the
overall runtime of the algorithm is

t(m) = [m/fl(two +ta) + [m/fltw + 2mt. (1)

A Queue of s Buffers. If the message size is larger than the buffer size, then the
message is transferred in a pipeline mode (m > f,s > 1, Fig. 5b). The presence
of s buffers allows the root process to copy s fragments to the queue without
waiting. Copying of the fragment k by the root is performed simultaneously with
copying of fragment k— 1 by the leaf (child) process. After filling all s buffers the
root process waits for the completion of copying by all processes, which requires
at least t¢ +ta time units (second step WS, Fig.5b). A total number of barrier
synchronizations (WO) is [m/b], where b = fs is the total queue size in bytes.

480 M. Kurnosov and E. Tokmasheva,

The overall runtime of the algorithm for the case of s buffers is
t(m,s) = [m/bl(two +tc +ta) + [m/fltw + mt. (2)

As a consequence of the expression (2), the total synchronization cost is s times
less than in the case of a single buffer queue (2). Theoretically, at zero costs on
waiting (WO, W, A) the queue of s buffers reduces the overall time by a factor of
two: t(m)/t(m,s) < 2. In practice, the ratio may be greater because the waiting
time ty depends on the notification tree structure and the runtime is influenced
by the process placement and copying from local/remote NUMA nodes.

A Queue Divided into g Sets. When the last buffer in the queue is used
(m > b), a barrier is initiated (W.S) and the root process waits for the time
to+t 4 for notifications from the child processes. The waiting cost can be reduced
by time t¢ if we split s buffers into ¢ sets (Fig. 5c). This allows the root process
to start filling the buffers of the next set while the child processes finish copying
the fragments from the buffers of the previous set. The runtime of the algorithm:

t(m,s,q) = q[m/bl(two +ta) + tc + [m/ fltw + mt. (3)

4.2 Experimental Results

Experiments were conducted on Intel Xeon Broadwell and Intel Xeon Nehalem
dual-processor servers. Intel Xeon Broadwell server has two Intel Xeon E5-
2620 v4 processor sockets (8 cores, HyperThreading disabled, L1 cache 32 KB,
L2 256 KB, L3 20MB) and 64 GB of RAM (2 NUMA nodes); linux 4.18.0-
80.11.2.e18_0.x86_64, gcc 8.2.1. Intel Xeon Nehalem has two Intel Xeon E5620
processor sockets (4 cores, HyperThreading disabled, L1 256 KB cache, L2 1 MB,
L3 12MB) and 24 GB of RAM (2 NUMA nodes); linux kernel 4.16.3-301.x86_64,
gee 8.2.1.

The performance measurements were taken using Intel MPI Benchmarks
(IMB 2019 Update 2). We run one rank per core. For all the figures we use
time of the slowest process (t_max). An each experiment was run 5 times, dis-
card the slowest and fastest runs, and we average the other 3. The IMB were
run with parameters:

IMB-MPI1 Bcast -off_cache 20,64 -iter 5000,250 -msglog 6:24
-sync 1 -imb_barrier 1 -root_shift 0 -zero_size 0

In our evaluation we used MVAPICH 2.3.2 and the Open MPI 4.0.x. Both
libraries are built with optimizations (CFLAGS=-03 CXXFLAGS=-03). Figure 6
presents the performance comparison of different queue lengths s on Xeon Broad-
well and Xeon Haswell servers. It shows normalized time to the single buffer
queue (s = 1). From the formula ¢(m, s) it follows that the algorithm execution
time depends linearly on the message size m, inversely proportional to the queue
length s and its size b = sf in bytes. If the messages size m is less then the buffer
length f then pipelining is not possible. In Fig. 6 such situation is presented for
messages less then buffer size (8 KB).

Shared Memory Based MPI Broadcast Algorithms for NUMA Systems 481

1

§=32 —*— $=2048 ——

Time normalized to s:

Fig. 6. Latencies of MPI_Bcast for different queue lengths s (time normalized to s = 1;
one set ¢ = 1, buffer size f = 8192, p = 8, one NUMA node, flat notification tree): a)
Intel Xeon Broadwell server; b) Intel Xeon Haswell server.

For messages larger then 8 KB the root process fills s/q buffers without wait-
ing of non-root processes. For example, queue of two buffers (s = 2) allows to
transfer messages up to 16 KB without blocking of the root and it reduces the
runtime by 30% relative to s = 1. Similarly, the queue of four buffer reduces
the runtime by 40-46%. As noted above, synchronization costs do not allow to
reach speedup by a factor of two. Also, the significant size of the shared mem-
ory segment limits the use of long queues. Experiments have shown that queues
of 32-64 buffers provide good performance. Our results show that a binary or
ternary notification trees provide, in most cases, the best performance.

4.3 Optimizing Queue Parameters

Let us find the size s of buffer and length s of the queue, what takes no more
than b bytes and provides minimum algorithm time. For example, for a given
MPI application it is necessary to determine the optimal configuration of the
queue, which fits in 1% of the memory per core. We denote tc = tf and assume
that m is divided by f without remainder. Let find the optimal value of s:

t(m,s) = [m/bl(two +ta) + [m/b] ft + m/f - tw + mt, (4)
%‘ = —mtw /f*+ [m/b]t =0, (5)
fr=+m/[m/b] - tw/t = \/b-tw/t, s =b/f*=\/b-t/tw. (6

In t(m,s) two terms depend on f as f increases, the time [m/b]ft also
increases linearly, but the total time [m/f|tw decreases inversely with f.
Figure 7 illustrates minimum point of ¢(m, s) — intersection point of [m/b] ft
and [m/f|tw. Figure8 shows MPI_Bcast latency on Nehalem and Broadwell
servers as the function of a fragment size f. The minimum time has been reached
at the buffer sizes of 8 KB and 12 KB bytes, which corresponds to the obtained
f* and s*.

Considering that ¢y > t, it is practical to use buffers of size f > v/b, rounded
up to the nearest multiple of a page size. Consider the choice of the queue
parameters for different cases.

482 M. Kurnosov and E. Tokmasheva,

17300 — 500
o 17200 b
Z17100 |
17000 g
£16900 [\bos
&
16800 |\

16700 &Ll Toeeveeee 0

2 Tm/bfe | 3

4096
16 384
T 28672

Fig. 7. Algorithm runtime (model, left
axis) and terms [m/b]ft, [m/fltw
(right axis): m = 16MB, b = 4MB,
s=0b/f,q=1,t=10""s,two = 100t,
ta = 10t, tw = 50t).

Nehalem Broadwell —+—

&

T T T
S amaaasas SUY

a\

Time (usec)
N WL
r ®
.

[*)
=]
T

o

L L L L
® © o
2 ¢ 8 & <

Buffer size (KB)

L L
o v o
—

Fig. 8. Latency of MPI_Bcast: m =
64KB,b=4MB, s=b/f,q=1, cham
tree, Nehalem (p = 8), Broadwell (p =
16).

1. The message size m is known or the upper bound for it (for example after
application profiling). The best choice is to get f and s such that f < m < fs.
Let be f = /m and rounds up obtained f to the nearest multiply of a page

size; s =m/f.

2. The buffer size f is given, we need to find the queue length s. Let m,qz
denote the upper bound of message size, then s = [Munaq/f]-
3. The queue length s is given, we need to get the buffer size f. Let b = mypqz

and apply (6): f = \/Mmaz-

4.4 NUMA-Aware Queues Placement

Much of the algorithms time is spent copying from the input buffer into
root’s queue. For this reason it is important to store the input buffer and
root’s queue on a same NUMA node. In our algorithms we temporarily disable
sequential readahead by calling madvise (seg, segsize, MADV_RANDOM).

readahead on —=—

readahead off —<—

Normalized time

16KB -
32KB |
64KB

128KB

256KB

512KB
IMB
2MB
4MB [
8MB -
16MB

Message size (bytes)

Fig. 9. MPI Bcast normalized time: s = 64, f = 8192, ¢ = 1, binary tree, p = 16, two
NUMA nodes Xeon Broadwell, IMB -root_shift on.

Shared Memory Based MPI Broadcast Algorithms for NUMA Systems 483

This ensures correct allocation of memory pages from local NUMA nodes within

the first touch policy.

MVAPICH —=—SHMBcast —*—
1.04 T T T T T T T T T T

0.96 b
0.88 | 7
08 [7
072 T
0.64 | 7

Normalized time

0.56
m

Fig. 10. Normalized time of the devel-
oped algorithm (SHMBcast) and MVA-
PICH (f = 8192,s = 128): s = 64,
f =8192, g = 1, binary tree, p = 8, two
NUMA nodes of Intel Xeon Nehalem,
IMB -root_shift on.

OMPI coll/sm —=— SHMBcast —*—
1.1 T T T T T T T T T T

Q
£
3|
]
Q
N
E
S
Z . -
0’% N AN I S SN S S E I E—
ggggeggggeeeee
Message size (bytes)

Fig. 11. Normalized time of the devel-
oped algorithm (SHMBcast) and Open
MPI coll/sm (f = 8192,s = 8):
s = 64, f = 8192, ¢ = 1, binary tree,
p = 16, two NUMA nodes of Intel Xeon
Broadwell, IMB -root_shift on.

Figure 9 shows the proposed algorithm’s runtime in the “readahead on” mode
and without it (“readahead off”, madvise (MADV_RANDOM)). To estimate over-
head due to remote NUMA node access we have run IMB with -root_shift
on option to cyclically change root on each iteration of measurements. Clearly,
as the message size increases, the time for copying fragments to remote NUMA
node also increases. Our approach with explicit placement of queues on NUMA
nodes (readahead off) allows to reduce inter-socket communications. Similarly,
MVAPICH allocates memory for the queues without taking into account a topol-
ogy of NUMA node (Fig. 10). The Open MPI col1l/sm algorithm implements a
partial binding of buffers to the NUMA nodes, but it is influenced by the reada-
head subsystem and allocates significant amounts of pages from the NUMA node
of the process 0 (Fig. 11). Our algorithms SHMBcast achieve on average 20-40%
speedup over Open MPI coll/sm and 20-60% over MVAPICH.

5 Conclusion

In this paper we have examined the benefits of NUMA-aware placing of shared
queues for optimizing MPI _Bcast operation. Proposed algorithms use k-ary, k-
nomial, chain and flat trees to propagate notifications from the root process to
others. On a Xeon Nehalem and Xeon Broadwell servers, our implementation
achieves on average 20-60% speedup over algorithms of Open MPI coll/sm

484 M. Kurnosov and E. Tokmasheva,

and MVAPICH. We find that a binary or ternary trees provides, in most cases,
the best performance.

The same approach could be used to optimize other algorithms of collective
operations. Future work will include the use of huge memory pages and opti-
mizing of zero-copy approach to the MPI derived datatypes. Also, we plan to
conduct experiments on new platforms and architectures (AMD EPYC, Intel
Skylake-SP with UPI and Sub-NUMA Clusters, ARMv8).

References

1. Li, S., Hoefler, T., Snir, M.: NUMA-aware shared memory collective communica-
tion for MPI. In: Proceedings of the International Symposium on High-Performance
Parallel and Distributed computing, pp. 85-96 (2013)

2. Wu, M., Kendall, R., Aluru, S.: Exploring collective communications on a cluster
of SMPs. In: Proceeedings of the HPCAsia, pp. 114-117 (2004)

3. MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE.
http://mvapich.cse.ohio-state.edu/

4. Graham, R.L., Shipman, G.: MPI support for multi-core architectures: optimized
shared memory collectives. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.)
EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 130-140. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87475-1_21

5. Jain, S., et al.: Framework for scalable intra-node collective operations using shared
memory. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC 2018), pp. 374-385 (2018)

6. Ma, T., Herault, T., Bosilca, G., Dongarra, J.J.: Process distance-aware adaptive
MPI collective communications. In: Proceedings of the 2011 IEEE International
Conference on Cluster Computing, pp. 196-204 (2011)

7. Bienz, A., Olson, L., Gropp, W.: Node-aware improvements to allreduce. In: Pro-
ceedings of ExaMPI 2019: Workshop on Exascale MPI (SC 2019), pp. 19-28 (2019)

8. Li, S., Hoefler, T., Hu, C., Snir, M.: Improved MPI collectives for MPI processes
in shared address spaces. Cluster Comput. 17(4), 1139-1155 (2014). https://doi.
org/10.1007/s10586-014-0361-4

9. Graham, R., et al.: Cheetah: a framework for scalable hierarchical collective oper-
ations. In: Proceedings of IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, pp. 73-83 (2011)

10. Chakraborty, S., Subramoni, H., Panda, D.K.: Contention-aware kernel-assisted
MPI collectives for multi-/many-core systems. In: Proceedings of IEEE Interna-
tional Conference on Cluster Computing, pp. 13-24 (2017)

11. Luo, X., Wu, W., Bosilca, G., Patinyasakdikul, T., Wang, L., Dongarra, J.J.:
ADAPT: an event-based adaptive collective communication framework. In: Pro-
ceedings of International Symposium on High-Performance Parallel and Dis-
tributed Computing, pp. 118-130 (2018)

12. Traff, J.L., Rougier, A.: MPI collectives and datatypes for hierarchical all-to-all
communication. In: Proceedings of EuroMPI/ASIA, pp. 27-32 (2014)

13. Goglin, B., Moreaud, S.: KNEM: a generic and scalable kernel-assisted intra-
node MPI communication framework. J. Parallel Distrib. Comput. 73(2), 176-188
(2013)

http://mvapich.cse.ohio-state.edu/
https://doi.org/10.1007/978-3-540-87475-1_21
https://doi.org/10.1007/s10586-014-0361-4
https://doi.org/10.1007/s10586-014-0361-4

14.

15.

Shared Memory Based MPI Broadcast Algorithms for NUMA Systems 485

Ma, T., Bosilca, G., Bouteiller, A., Dongarra, J.: HierKNEM: an adaptive frame-
work for kernel-assisted and topology-aware collective communications on many-
core clusters. In: Proceedings of Parallel and Distributed Processing Symposium,
pp. 970-982 (2012)

Tu, B., Zou, M., Zhan, J., Zhao, X., Fan, J.: Multi-core aware optimization for MPI
collectives. In: Proceedings of International Conference on Cluster Computing, pp.
322-325 (2008)

	Shared Memory Based MPI Broadcast Algorithms for NUMA Systems
	1 Introduction
	2 Related Work
	3 Bcast Algorithms
	3.1 Shared Memory Segment Structure
	3.2 MPI_Bcast

	4 Analysis of Algorithms
	4.1 Theoretical Analysis
	4.2 Experimental Results
	4.3 Optimizing Queue Parameters
	4.4 NUMA-Aware Queues Placement

	5 Conclusion
	References

