
Adaptive Global Optimization Using
Graphics Accelerators

Konstantin Barkalov1(B), Ilya Lebedev1, and Vassili Toropov1,2

1 Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
{konstantin.barkalov,ilya.lebedev}@itmm.unn.ru

2 Queen Mary University of London, London, UK
v.v.toropov@qmul.ac.uk

Abstract. Problems of multidimensional multiextremal optimization
and numerical methods for their solution are considered. The general
assumption is made about the function being optimized: it satisfies the
Lipschitz condition with an a priori unknown constant. Many approaches
to solving problems of this class are based on reducing the dimension
of the problem; i.e. addressing a multidimensional problem by solving
a family of problems with lower dimension. In this work, an adaptive
dimensionality reduction scheme is investigated, and its implementation
using graphic accelerators is proposed. Numerical experiments on several
hundred test problems were carried out, and they confirmed acceleration
in the developed GPU version of the algorithm.

Keywords: Global optimization · Multiextremal functions ·
Reduction of dimensionality · Peano space-filling curves · Recursive
optimization · Graphics accelerators

1 Introduction

A promising direction in the field of parallel global optimization (which, indeed,
is true in many areas related to the software implementation of time-consuming
algorithms) is the use of graphics processing units (GPUs). In the past decade,
graphics accelerators have rapidly increased performance to meet the ever-
growing demands of graphics application developers. Additionally, in the past
few years some principles for developing graphics hardware have changed, and
as a result it has become more programmable. Today, a graphics accelerator is a
flexibly programmable, massive parallel processor with high performance, which
is in demand for solving a range of computationally time-consuming problems
[14].

However, the potential for graphics accelerators to solve global optimization
problems has not yet been fully realized. Using GPUs, they basically parallelize
nature-inspired optimization algorithms, which are somehow based on the idea of
random search (see, for example, [5,7,17]). By virtue of their stochastic nature,
algorithms of this type guarantee convergence to the global minimum only in
c© Springer Nature Switzerland AG 2020
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2020, CCIS 1331, pp. 150–161, 2020.
https://doi.org/10.1007/978-3-030-64616-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64616-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-64616-5_13

Adaptive Global Optimization 151

the sense of probability, which differentiates them unfavorably from deterministic
methods.

With regard to many deterministic algorithms of Lipschitzian global opti-
mization with guaranteed convergence, parallel variants have been proposed
[4,13,19]. However, these versions of algorithms are parallelized on CPU using
shared and/or distributed memory; presently, no GPU implementations have
been made. For example, [19] describes parallelization of an algorithm based on
the ideas of the branch and boundary method using MPI and OpenMP.

Within the framework of this research, we consider the problems of capturing
the optimum, which are characterized by a lengthy period for calculating the
values of objective function in comparison with the time needed for processing
them. For example, objective function can be specified using systems of linear
algebraic equations, systems of ordinary differential equations, etc. Currently,
graphics accelerators can be used to solve problems of this type. Moreover, an
accelerator can solve several such problems at once [16]; i.e., using GPU, one
can calculate multiple function values simultaneously.

Thus, calculating the optimization criterion can be implemented on GPU,
and the role of the optimization algorithm (running on CPU) consists in the
selection of points for conducting parallel trials. This scheme of working with
the accelerator is fully consistent with the work of the parallel global search
algorithm developed at the Lobachevsky State University of Nizhni Novgorod
and presented in a series of papers [1–3,9–12].

2 Multidimensional Parallel Global Search Algorithm

Let’s consider the problem of finding the global minimum of the N -dimensional
function ϕ(y) in the hyperinterval D = {y ∈ RN : ai � xi � bi, 1 � i � N}. We
will assume that the function satisfies the Lipschitz condition with an a priori
unknown constant L.

ϕ(y∗) = min{ϕ(y) : y ∈ D}, (1)

|ϕ(y1) − ϕ(y2)| � L‖y1 − y2‖, y1, y2 ∈ D, 0 < L < ∞. (2)

In this work we will use an approach based on the idea of reducing dimen-
sionality using the Peano space-filling curve y(x), which continuously and unam-
biguously maps a segment of the real axis [0, 1] onto an n-dimensional cube

{y ∈ RN : −2−1 � yi � 2−1, 1 � i � N} = {y(x) : 0 � x � 1}. (3)

The questions of numerical construction of approximations to Peano curve
(evolvents) and the corresponding theory are discussed in detail in [21,23]. Using
evolvents y(x) reduces the multidimensional problem (1) to a one-dimensional
problem

ϕ(y∗) = ϕ(y(x∗)) = min{ϕ(y(x)) : x ∈ [0, 1]}.

152 K. Barkalov et al.

An important property is that the relative differences of the function remain
limited: if the function ϕ(y) in the region D satisfies the Lipschitz condition, then
the function ϕ(y(x)) in the interval [0, 1] will satisfy a uniform Hölder condition

|ϕ(y(x1)) − ϕ(y(x2))| � H|x1 − x2|
1
N , x1, x2 ∈ [0, 1],

where the Hölder constant H is related to the Lipschitz constant L by the ratio
H = 2L

√
N + 3. Therefore, without limiting generality, we can consider mini-

mizing the one-dimensional function f(x) = ϕ(y(x)), x ∈ [0, 1], which satisfies
the Hölder condition.

The algorithm for solving this problem (Global Search Algorithm, GSA)
involves constructing a sequence of points xk, in which the values of objective
function zk = f(xk) are calculated. We will call the process of computing the
value of a function at a single point a trial. Assume that we have p � 1 computa-
tional elements at our disposal and p trials which are performed simultaneously
(synchronously) within a single iteration of the method. Let k(n) denote the
total number of trials performed after n parallel iterations.

At the first iteration of the method, the trial is carried out at an arbitrary
internal point x1 of the interval [0, 1]. Let n > 1 iterations of the method be
performed, during which trials were carried out at k = k(n) points xi, 1 � i � k.
Then the trial points xk+1, . . . , xk+p of the next (n+1)th iteration are determined
in accordance with the following rules.

Step 1. Renumber the points of the set Xk = {x1, . . . , xk} ∪ {0} ∪ {1}, which
includes the boundary points of the interval [0, 1], as well as the points of the
previous trials, with the lower indices in the order of their increasing coordinate
values, i.e.

0 = x0 < x1 < . . . < xk+1 = 1.

Step 2. Assuming zi = f(y(xi)), 1 � i � k, calculate the values

μ = max
1�i�k

|zi − zi−1|
Δi

, M =
{

rμ, μ > 0,
1, μ = 0,

where r > 1 is the specified parameter of the method, and Δi = (xi − xi−1)
1
N .

Step 3. For each interval (xi−1, xi), 1 � i � k +1, calculate the characteristic
in accordance with the formulas

R(1) = 2Δ1 − 4
z1
M

, R(k + 1) = 2Δk+1 − 4
zk
M

,

R(i) = Δi +
(zi − zi−1)2

M2Δi
− 2

zi + zi−1

M
, 1 < i < k + 1.

Step 4. Arrange characteristics R(i), 1 � i � k + 1, in descending order

R(t1) � R(t2) � · · · � R(tk) � R(tk+1)

and select p of the largest characteristics with interval numbers tj , 1 � j � p.

Adaptive Global Optimization 153

Step 5. Carry out new trials at the points xk+j , 1 � j � p, calculated using
the formulas

xk+j =
xtj + xtj−1

2
, tj = 1, tj = k + 1,

xk+1 =
xtj + xtj−1

2
− sign(ztj − ztj−1)

1
2r

[|ztj − ztj−1|
μ

]N

, 1 < tj < k + 1.

The algorithm stops working if the condition Δtj � ε is satisfied for at least
one number tj , 1 � j � p; here ε > 0 is the specified accuracy. As an estimate of
the globally optimal solution to the problem (1), the values are selected

f∗
k = min

1≤i≤k
f(xi), x∗

k = arg min
1≤i≤k

f(xi).

For the rationale in using this method of organizing parallel computing see [23].

3 Dimensionality Reduction Schemes in Global
Optimization Problems

3.1 Dimensionality Reduction Using Multiple Mappings

Reducing multidimensional problems to one-dimensional ones through the use
of evolvents has important properties such as continuity and preserving uniform
bounding of function differences with limited argument variation. However, some
information about the proximity of points in multidimensional space is lost, since
the point x ∈ [0, 1] has only left and right neighbors, and the corresponding point
y(x) ∈ RN has neighbors in 2N directions. As a result, when using evolvents,
the images y′, y′′ that are close in N -dimensional space can correspond to rather
distant preimages x′, x′′ on the interval [0, 1]. This property leads to redundant
calculations, because several limit points x′, x′′ of the sequence of the trial points
generated by the method on the segment [0, 1], can correspond to a single limit
point y in N -dimensional space.

A possible way to overcome this disadvantage is to use a set of evolvents
(multiple mappings)

YL(x) =
{
y0(x), y1(x), ..., yL(x)

}

instead of using a single Peano curve y(x) (see [22,23]). For example, each Peano
curve yi(x) from YL(x) can be obtained as a result of some shifting y(x) along
the main diagonal of the hyperinterval D. Another way is to rotate the evolvent
y(x) around the origin. The set of evolvents that have been constructed allows
us to obtain for any close images y′, y′′ close preimages x′, x′′ for some mapping
yi(x).

Using a set of mappings leads to the formation of a corresponding set of
one-dimensional multiextremal problems

min
{
ϕ(yl(x)) : x ∈ [0, 1],

}
, 0 � l � L.

154 K. Barkalov et al.

Each problem from this set can be solved independently, and any calculated
value z = ϕ(y′), y′ = yi(x′) of the function ϕ(y) in the i-th problem can be
interpreted as calculating the value z = ϕ(y′), y′ = ys(x′′) for any other s-
th problem without repeated labor-intensive calculations of the function ϕ(y).
Such informational unity makes it possible to solve the entire set of problems in
a parallel fashion. This approach was discussed in detail in [3].

3.2 Recursive Dimensionality Reduction Scheme

The recursive optimization scheme is based on the well-known relation

min ϕ(y) : y ∈ D = min
a1�y1�b1

min
a2�y2�b2

. . . min
a1�yN�bN

ϕ(y), (4)

which allows one to replace the solution of the multidimensional problem (1)
with the solution of a family of one-dimensional subproblems recursively related
to each other. Let’s introduce a set of functions

ϕN (y1, . . . , yN) = ϕ(y1, . . . , yN), (5)

ϕi(y1, . . . , yi) = min
ai+1�yi+1�bi+1

ϕi+1(y1, . . . , yi, yi+1), 1 � i � N − 1. (6)

Then, in accordance with the relation (4), the solution of the original problem
(1) is reduced to the solution of a one-dimensional problem

ϕ1(y∗
1) = min{ϕ1(y1), y1 ∈ [a, b]}. (7)

However, each calculation of the value of the one-dimensional function ϕ1(y1)
at some fixed point corresponds to the solution of a one-dimensional minimiza-
tion problem

ϕ2(y1, y∗
2) = min{ϕ(y1, y2) : y2 ∈ [a2, b2]}.

And so on, until the calculation of ϕN according to (5).
For the recursive scheme described above, a generalization (block recursive

scheme) is proposed that combines the use of evolvents and a recursive scheme
in order to efficiently parallelize computations.

Consider the vector y as a vector of block variables

y = (y1, . . . , yN) = (u1, u2, . . . , uM),

where the i-th block variable ui is a vector of sequentially taken components
of the vector y, i.e. u1 = (y1, y2, . . . , yN1),u2 = (yN1+1, yN1+2, . . . , yN1+N2),. . . ,
uM = (yN−NM+1, yN−NM+2, . . . , yN), while N1 + N2 + · · · + NM = N .

Using new variables, the main relation of the nested scheme (4) can be rewrit-
ten as

min
y∈D

ϕ(y) = min
u1∈D1

min
u2∈D2

. . . min
uM∈DM

ϕ(y), (8)

where the subdomains Di, 1 � i � M , are projections of the original search
domain D onto the subspaces corresponding to the variables u1, 1 � i � M .

Adaptive Global Optimization 155

The formulas that determine the method for solving problem (1) based on
relations (8) generally coincide with the recursive scheme (5)–(7). One need only
replace the original variables yi, 1 � i � N , with block variables u1, 1 � i � M .
In this case, the fundamental difference from the original scheme is the fact that
the block scheme has nested subproblems

ϕi(u1, . . . , ui) = min
ui+1∈Di+1

ϕi+1(u1, . . . , ui, ui+1), 1 � i � M − 1, (9)

which are multidimensional, and to solve them a method of reducing dimension-
ality based on Peano curves can be applied.

3.3 Adaptive Dimensionality Reduction Scheme

Solving the resulting set of subproblems (9) can be organized in various ways.
The obvious method (elaborated in detail in [11] for the nested optimization
scheme and in [1] for the block nested optimization scheme) is based on solving
subproblems in accordance with the recursive order of their generation. However,
in this case there is a significant loss of information about the target function.

Another approach is an adaptive scheme in which all subproblems are solved
simultaneously, which makes it possible to more fully take into account informa-
tion about a multidimensional problem and thereby to speed up the process of
solving it. In the case of one-dimensional subproblems, this approach was theo-
retically substantiated and tested in [10,12], and in the paper [2] a generalization
of the adaptive scheme for multidimensional subproblems was proposed.

The adaptive dimensionality reduction scheme changes the order in which
subproblems are solved: they will be solved not one by one (in accordance with
their hierarchy in the task tree), but simultaneously, i.e., there will be a number
of subproblems that are in the process of being solved. Under the new scheme:

– to calculate the value of the function of the i-th level from (9), a new (i+1)th
level problem is generated in which trials are carried out, after which a new
generated problem is included in the set of existing problems to be solved;

– the iteration of the global search consists in choosing p (the most promising)
problems from the set of existing problems in which trials are carried out;
points for new trials are determined in accordance with the parallel global
search algorithm from Section 2;

– the minimum values of functions from (9) are their current estimates based
on the accumulated search information.

A brief description of the main steps of a block adaptive dimensionality reduc-
tion scheme is as follows. Let the nested subproblems in the form (9) be solved
using the global search algorithm described in Section 2. Then each subproblem
(9) can be assigned a numerical value called the characteristic of this problem.
As such, we can take the maximum characteristic R(t) of the intervals formed
in this problem. In accordance with the rule for calculating characteristics, the
higher the value of the characteristic, the more promising the subproblem is in
the continued search for the global minimum of the original problem (1).

156 K. Barkalov et al.

Fig. 1. Scheme of information exchanges in the GPU algorithm

Therefore, at each iteration, subproblems with the maximum characteristic
are selected for conducting the next trial. The trial either leads to the calculation
of the value of the objective function ϕ1(y) (if the selected subproblem belonged
to the level j = M), or generates new subproblems according to (9) for j � M−1.
In the latter case, the newly generated problems are added to the current set of
problems, their characteristics are calculated, and the process is repeated. The
optimization process is completed when the root problem satisfies the condition
for stopping the algorithm that solves this problem. Some results pointing in
this direction are presented in [2].

4 GPU Implementation

4.1 General Scheme

In relation to global optimization methods, an operation that can be efficiently
implemented on GPU is the parallel calculation of many values of the objective
function at once. Naturally, this requires implementing a procedure for calculat-
ing the value of a function on GPU. Data transfers from CPU to GPU will be
minimal: one need only transfer the coordinates of the trial points to GPU, and
get back the function values at these points. Functions that determine the pro-
cessing of trial results in accordance with the algorithm, and require work with
large amount of accumulated search information, can be efficiently implemented
on CPU.

The general scheme for organizing calculations using GPU is shown in Fig. 1.
In accordance with this scheme, steps 1–4 of the parallel global search algorithm
are performed on CPU. The coordinates of the p trial points calculated in step 4
of the algorithm are accumulated in the intermediate buffer and then transmitted
to GPU. On GPU the function values are calculated at these points, after which
the trial results (again through the intermediate buffer) are transferred to CPU.

4.2 Organization of Parallel Computing

To organize parallel calculations, we will use a set of evolvents and a block
adaptive dimensionality reduction scheme. We take a small number of nesting

Adaptive Global Optimization 157

Fig. 2. Diagram of parallel computing on a cluster

levels, in which the original large dimensionality problem is divided into 2–3
nested lower dimensional subproblems. We will use multiple evolvents only at
the upper level of nesting, corresponding to the variable u1. This subproblem will
be reduced to a set of one-dimensional problems that will be solved in parallel,
each in a separate process. Trial results at point x obtained for the problem
solved by a specific processor are interpreted as the trial results in the remaining
problems (at the corresponding points u1

1, ..., u
s
1). Then, applying an adaptive

scheme to solve the nested subproblems (9), we get a parallel algorithm with a
wide degree of variability.

Figure 2 shows the general scheme of organizing computations using several
cluster nodes and several GPUs. In accordance with this scheme, nested sub-
problems ϕi(u1, ..., ui) = min

ui+1∈Di+1
ϕi+1(u1, ..., ui, ui+1) with i = 1, . . . , M − 2

are solved using CPU only. The values of the function are not calculated directly
in these subproblems: the calculation the function value ϕi(u1, ..., ui) is a solu-
tion to the minimization problem at the next level. The subproblem of the last
(M − 1)-th level

ϕM−1(u1, ..., uM−1) = min
uM∈DM

ϕM (u1, ..., uM)

differs from all the previous subproblems; it calculates the values of the objective
function, since ϕM (u1, ..., uM) = ϕ(y1, ..., yN). This subproblem transfers data
between CPU and GPU.

5 Numerical Experiments

The numerical experiments were carried out using the Lomonosov supercom-
puter (Lomonosov Moscow State University). Each supercomputer node included
two quad-core processors Intel Xeon X5570, two NVIDIA Tesla X2070 and 12

158 K. Barkalov et al.

Table 1. Average number of iterations kav

N Problem class DIRECT DIRECTl GSA

4 Simple >47282(4) 18983 11953

Hard >95708(7) 68754 25263

5 Simple >16057(1) 16758 15920

Hard >217215(16) >269064(4) >148342(4)

Gb RAM. To build the program for running on the Lomonosov supercomputer,
the GCC 4.3.0 compiler, CUDA 6.5 and Intel MPI 2017 were used.

Note that well-known test problems from the field of multidimensional global
optimization are characterized by a short time of calculating the values of the
objective function. Therefore, in order to simulate the computational complexity
inherent in applied optimization problems [18], the calculation of the objective
function in all experiments was complicated by additional calculations that do
not change the form of the function and the location of its minima (summing
the segment of the Taylor series). In the experiments carried out the average
time for calculating the function values was 0.01 s, which exceeds the latency of
the network or the data transfer time between CPU and GPU.

In the paper [8] a GKLS generator is described that allows one to gener-
ate multiextremal optimization problems with previously known properties: the
number of local minima, the size of their regions of attraction, the global mini-
mum point, the value of the function in it, etc.

Below are the results of a numerical comparison of three sequential algo-
rithms: DIRECT [15], DIRECTl [6] and Global Search Algorithm (GSA) from
Section 2. A numerical comparison was carried out on the Simple and Hard
function classes of dimension 4 and 5 from [8]. The global minimum y∗ was con-
sidered found if the algorithm generated a trial point yk in the δ-neighborhood
of the global minimum, i.e.

∥∥yk − y∗∥∥ � δ. The size of the neighborhood was
chosen (in accordance with [20]) as δ = ‖b − a‖ N

√
Δ, here N is the dimension of

the problem to be solved, a and b are the boundaries of the search domain D,
the parameter Δ = 10−6 for N = 4 and Δ = 10−7 for N = 5. When using the
GSA method for the Simple class, the parameter r = 4.5 was selected, for the
Hard class r = 5.6; the parameter for constructing the Peano curve was m = 10.
The maximum number of iterations allowed was Kmax = 106.

Table 1 shows the average number of iterations, kav, that the method per-
formed when solving a series of problems from these classes. The symbol “ > ”
reflects a situation where not all problems of the class were solved by any
method whatsoever. This means that the algorithm was halted because the max-
imum allowed number of Kmax iterations was reached. In this case, the value
Kmax = 106 was used to calculate the average value of the number of iterations,
kav, which corresponds to the lower estimate of this average value. The number
of unsolved problems is indicated in parentheses.

Adaptive Global Optimization 159

Table 2. Speedup on CPU

Iteration speedup Time speedup

N = 4 N = 5 N = 4 N = 5

Simple Hard Simple Hard Simple Hard Simple Hard

p = 2 6,6 3,2 2,1 6,6 3,2 1,5 0,7 2,1

p = 4 21,5 10,0 6,9 19,2 5,2 2,4 0,9 2,3

Table 3. Speedup on one GPU

Iteration speedup Time speedup

N = 4 N = 5 N = 4 N = 5

Simple Hard Simple Hard Simple Hard Simple Hard

p = 64 5,1 3,9 1,2 9,3 2,2 1,9 0,5 4,0

p = 256 19,9 15,0 11,9 39,6 8,3 6,9 3,4 11,0

p = 1024 15,6 52,9 22,1 105,7 5,2 20,0 2,2 10,2

Table 4. Speedup on two GPUs

Iteration speedup Time speedup

N = 4 N = 5 N = 4 N = 5

Simple Hard Simple Hard Simple Hard Simple Hard

p = 64 11,3 6,8 8,2 19,8 2,4 1,6 1,3 3,2

p = 256 39,0 31,5 25,4 57,1 8,0 7,0 2,3 2,4

p = 1024 128,4 83,5 98,4 267,9 20,4 11,0 2,8 5,2

As can be seen from Table 1, the sequential GSA surpasses DIRECT and
DIRECTl methods in all classes of problems in terms of the average number of
iterations. At the same time, in the 5-Hard class, none of the methods solved
all the problems: DIRECT failed to solve 16 problems, DIRECTl and GSA – 4
problems each.

Let us now evaluate the acceleration achieved using parallel GSA using an
adaptive dimensionality reduction scheme based on the number p of cores used.
Table 2 shows the speedup of the algorithm that combines multiple evolvents
and an adaptive scheme for solving a series of problems on CPU, compared
to the sequential launch of the GSA method. Two evolvents and, accordingly,
two processes were used; each process used p threads, and calculations were
performed on a single cluster node.

Table 3 shows the speedup obtained when solving a series of problems on one
GPU using an adaptive scheme compared to a similar launch on CPU using 4
threads. Table 4 shows the speedup of the algorithm combining multiple evol-
vents and an adaptive scheme when solving a series of problems on two GPUs

160 K. Barkalov et al.

Table 5. Speedup on six GPUs

Iteration speedup Time speedup

p = 64 30,8 1,9

p = 256 92,7 1,5

p = 1024 597,0 2,5

compared to an adaptive scheme on CPU using 4 threads. Two evolvents and,
accordingly, two processes were used; each process used p threads on each GPU;
all computations were performed on a single cluster node.

The last series of experiments has been carried out on 20 six-dimensional
problems from the GKLS Simple class. Table 5 shows the speedup of the algo-
rithm combining multiple evolvents and the adaptive scheme when solving the
problems on 3 cluster nodes (using 2 GPUs per node, 6144 GPU threads in all)
compared to the adaptive scheme on CPU using 4 threads.

6 Conclusion

In summary, we observe that the use of graphics processors to solve global opti-
mization problems shows noteworthy promise, because high performance in mod-
ern supercomputers is achieved (mainly) through the use of accelerators.

In this paper, we consider a parallel algorithm for solving multidimensional
multiextremal optimization problems and its implementation on GPU. In order
to experimentally confirm the theoretical properties of the parallel algorithm
under consideration, computational experiments were carried out on a series of
several hundred test problems of different dimensions. The parallel algorithm
demonstrates good speedup, both in the GPU and CPU versions.

Acknowledgments. This study was supported by the Russian Science Foundation,
project No. 16-11-10150.

References

1. Barkalov, K., Gergel, V.: Multilevel scheme of dimensionality reduction for parallel
global search algorithms. In: OPT-i 2014–1st International Conference on Engi-
neering and Applied Sciences Optimization, Proceedings, pp. 2111–2124 (2014)

2. Barkalov, K., Lebedev, I.: Adaptive global optimization based on nested dimen-
sionality reduction. Adv. Intel. Syst. Comput. 991, 48–57 (2020)

3. Barkalov, K., Lebedev, I., Sovrasov, V.: Comparison of dimensionality reduction
schemes for parallel global optimization algorithms. Commun. Comput. Inform.
Sci. 965, 50–62 (2019)

4. Evtushenko, Y., Malkova, V., Stanevichyus, A.A.: Parallel global optimization of
functions of several variables. Comput. Math. Math. Phys. 49(2), 246–260 (2009)

Adaptive Global Optimization 161

5. Ferreiro, A., Garcia, J., Lopez-Salas, J., Vazquez, C.: An efficient implementation
of parallel simulated annealing algorithm in GPUs. J. Glob. Optim. 57(3), 863–890
(2013)

6. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J.
Glob. Optim. 21(1), 27–37 (2001)

7. Garcia-Martinez, J., Garzon, E., Ortigosa, P.: A GPU implementation of a hybrid
evolutionary algorithm: GPuEGO. J. Supercomput. 70(2), 684–695 (2014)

8. Gaviano, M., Kvasov, D., Lera, D., Sergeyev, Y.: Software for generation of classes
of test functions with known local and global minima for global optimization. ACM
Trans. Math. Softw. 29(4), 469–480 (2003)

9. Gergel, V., Barkalov, K., Sysoyev, A.: A novel supercomputer software system
for solving time-consuming global optimization problems. Numer. Algebra Control
Optim. 8(1), 47–62 (2018)

10. Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for
multidimensional global search. J. Glob. Optim. 66(1), 35–51 (2016)

11. Gergel, V., Grishagin, V., Israfilov, R.: Local tuning in nested scheme of global
optimization. Procedia Comput. Sci. 51(1), 865–874 (2015)

12. Grishagin, V., Israfilov, R., Sergeyev, Y.: Convergence conditions and numeri-
cal comparison of global optimization methods based on dimensionality reduction
schemes. Appl. Math. Comput. 318, 270–280 (2018)

13. He, J., Verstak, A., Watson, L., Sosonkina, M.: Design and implementation of
a massively parallel version of DIRECT. Comput. Optim. Appl. 40(2), 217–245
(2008)

14. Hwu, W.: GPU Computing Gems, Emerald edn. Morgan Kaufmann, San Francisco
(2011)

15. Jones, D.R.: The DIRECT global optimization algorithm. In: The Encyclopedia of
Optimization, pp. 725–735. Springer, Heidelberg (2009)

16. Kindratenko, V. (ed.): Numerical Computations with GPUs. Springer, New York
(2014)

17. Langdon, W.: Graphics processing units and genetic programming: an overview.
Soft Comput. 15(8), 1657–1669 (2011)

18. Modorskii, V., Gaynutdinova, D., Gergel, V., Barkalov, K.: Optimization in design
of scientific products for purposes of cavitation problems. In: AIP Conference Pro-
ceedings 1738 (2016)

19. Paulavičius, R., Žilinskas, J., Grothey, A.: Parallel branch and bound for global
optimization with combination of lipschitz bounds. Optim. Method. Softw. 26(3),
487–498 (2011)

20. Sergeyev, Y., Kvasov, D.: Global search based on efficient diagonal partitions and
a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

21. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization
Exploiting Space-filling Curves. Springer Briefs in Optimization, Springer, New
York (2013)

22. Strongin, R.: Algorithms for multiextremal mathematical programming problems
employing the set of joint space-filling curves. J. Glob. Optim. 2, 357–378 (1992)

23. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints
Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

	Adaptive Global Optimization Using Graphics Accelerators
	1 Introduction
	2 Multidimensional Parallel Global Search Algorithm
	3 Dimensionality Reduction Schemes in Global Optimization Problems
	3.1 Dimensionality Reduction Using Multiple Mappings
	3.2 Recursive Dimensionality Reduction Scheme
	3.3 Adaptive Dimensionality Reduction Scheme

	4 GPU Implementation
	4.1 General Scheme
	4.2 Organization of Parallel Computing

	5 Numerical Experiments
	6 Conclusion
	References

