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Abstract. Information about exact material properties may be of great impor-
tance in many areas where CAD/CAE software is used. It is also a key com-
ponent of properly operating model-based SHM systems. Unfortunately,
composite laminates producers are not providing sufficient and/or precise
enough materials data sheets to meet such requirements. This is the reason why
material properties identification techniques are attracting considerable interest.
This paper presents a new, non-destructive elastic constants identification

technique based on Lamb wave phenomenon. Experimental dispersion curves
are obtained by 3D Fourier transform of full wavefield time responses registered
in a tested sample by scanning laser Doppler vibrometer. Numerical dispersion
curves, generated by a semi-analytical element model, are optimized to match
experimental dispersion curves. By minimizing the discrepancies between two
sets of data, the elastic constants are identified.
Two approaches are tested, where the Genetic Algorithm is used to fit dis-

persion curves in the wavenumber-frequency domain for chosen propagation
angles or angular profiles in the wavenumber-angle domain for chosen fre-
quencies. The direct approach was used in which C-tensor components where
optimized.

Keywords: Lamb waves � Elastic constants identification � Optimization
techniques

1 Introduction

Elastic constants are of great importance in the process of designing a structure. For
isotropic materials, they have been assessed by destructive testing methods [1] or by
minimizing the differences between the theoretical and experimental natural frequen-
cies [2]. For anisotropic materials, destructive testing requires specials cube-cutting to
determine all elastic constants [3] which makes it more complex and expensive.

Ultrasonic methods for the determination of elastic constants of composite lami-
nates have been recently enhanced by the utilization of the ultrasonic polar scan method
[4]. An alternative approach is based on signals of propagating Lamb waves. Ong et al.
[5] proposed a method in which experimental and numerical signals acquired along
lines corresponding to selected angles of propagation are used. Measurements are taken
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on the upper and bottom surface of the plate so that symmetric and antisymmetric
modes can be separated. Signals are processed by using a 2D Fourier transform in order
to obtain dispersion curve patterns. Correlation between numerical and experimental
dispersion curve patterns is considered in the objective function. However, measure-
ments taken along a line may cause problems of the contribution of reflected waves
from the boundaries of the plate.

Therefore, we propose to utilize the full wavefield of propagating waves in the
construction of the objective function as in paper [6]. Full wavefield data is transformed
with 3D Fourier transform to the wavenumber-frequency domain where it is sliced at
chosen propagation angles or at chosen frequencies to create dispersion curves or
angular profiles correspondingly. Elastic constants are estimated by minimizing the
error between experimental and numerical data.

2 Semi-analytical Spectral Element Method

Dispersion curves were calculated using the semi-analytical spectral element (SASE)
method, which is a modification of the semi-analytical finite element (SAFE) method
proposed by Bartoli et al. [7]. The modification includes the application of spectral
elements instead of classic finite elements through the thickness of a laminate, pre-
serving wave equation in the propagation direction. Moreover, dispersion curves
equations are defined in a way that allows for solving at any propagation angle b. The
wavevector k is defined as [8]:

k ¼ k cos bð Þx̂� k sin bð Þŷ; ð1Þ

where x̂ and ŷ are unit vectors.
The general wave equation has a form of eigenvalue problem:

A� x2M
� �

U ¼ 0; ð2Þ

where x is the angular frequency, M is the mass matrix, U is the nodal displacement
vector. Matrix A is defined as:

A ¼ k2 s2K22 þ c2K33 � csK23 � csK32ð Þ
þ ikTT �cK13 � sK21 þ sK12 þ cK31ð ÞTþK11;

ð3Þ

where s ¼ sin b, c ¼ cos b, and b is the Lamb wave propagation angle. Stiffness
matrices Kmn depend on elastic constants of a specimen and the relations between
displacements and strains. For element (eÞ these matrices are defined as follows
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Ke
mn ¼

Z

eð Þ
BT
mC

e
hBndz; ð4Þ

where B is the matrix relating displacements and strains, Ce
h is the elastic tensor.

In order to solve Eq. (2) two various numerical approaches may be used:

• solving standard eigenvalue problem x kð Þ
• solving second-order polynomial eigenvalue problem k xð Þ

The matrix of elastic constants C of an orthotropic linear elastic material with
known layer orientation may be defined as:

C ¼

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

2
6666664

3
7777775
: ð5Þ

This gives 9 independent coefficients to be determined in the optimization process.

3 Experimental Measurements

3.1 Specimen

To verify the proposed elastic constants identification technique a 1200 � 1200 �
2.85 mm3 CFRP plated was tested. This specimen was composed of 40 layers of
ThinPregTM NTPT 736LT prepregs stacked in one direction (90°).

3.2 Experimental Set-up

Lamb waves were excited by a 10 mm round piezoelectric disk (PZT) attached to the
specimen’s back surface. Chirp signal with the frequency range 0–500 kHz lasting
200 µs was generated every 10 ms and applied to the PZT element through the signal
amplifier.

The specimen central area of 455 � 455 mm was measured in 499 � 499 points
using a scanning laser Doppler vibrometer. In every measurement point, 1024 time
samples were registered with a sampling frequency of 1.28 MHz. The response
recording in every measurement point was repeated 20 times and averaged to improve
the signal to noise ratio. The experimental set-up is shown in Fig. 1.
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Fig. 1. Experimental set-up.

4 Optimization with Genetic Algorithm

To determine elastic constants (nine C-tensor components) of the tested CFRP plate,
the genetic algorithm toolbox [9] was used to find the best fit between numerical and
experimental dispersion curves or angular profiles.

Numerical data have a form of discrete curves determined for specific propagation
angle kb xð Þ or specific frequency kx bð Þ for a given set of material properties in which
elastic constants C are used as tuning parameters. Experimental data from full wave-
field measurement is in 3-dimensional form. To be able to assess agreement between
numerical and experimental data, numerical dispersion curves, and angular profiles
were transform into binary images by assigning 1 to the pixels containing any curve
and zero otherwise. Experimental data was cut along particular propagation angles or
particular frequency to create a set of 7 images. Taking this into account, the objective
functions for those two optimization problems may be defined as:

min
j

X
b
kSASEb x;C jð Þ

� �
� kEXPb xð Þ; ð6Þ

min
j

X
x
kSASEx b;C jð Þ

� �
� kEXPx bð Þ: ð7Þ

In both cases, 70 generations were calculated with 100 individuals per population.
Chromosomes of 10% of the best-fitted individuals were used to create the next gen-
eration. The convergence of GA was obtained after about 40 generations.

5 Results

Registered full wavefield data (presented in Fig. 2) was transformed from the space-
space-time domain (x-y-t) into the wavenumber-wavenumber-frequency (kx-ky-f) using
3D Fourier transform.
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Two approaches were used to project 3-dimensional experimental data into a set of
2D images:

• Slicing 3D data at chosen propagation angles - creating a set of dispersion curves
(Fig. 3).

• Slicing 3D data at chosen frequencies - creating a set of angular profiles (Fig. 4).

Fig. 2. Full wavefield data in the space-space-time domain for chosen time frames.

Fig. 3. Wavenumber-wavenumber-frequency data sliced at 45° and 90° of wave propagation
angles.
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For dispersion curves optimization process seven various propagation angles b
were used, namely: 0°, 15°, 30°, 45° 60°, 75°, and 90°. Final dispersion curves drawn
on experimental data with white lines for chosen propagation angles are presented in
Fig. 5.

Fig. 4. Wavenumber-wavenumber-frequency data sliced at two chosen frequencies.

Fig. 5. Dispersion curves for chosen propagation angles.
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Very good agreement between experimental and numerical dispersion curves have
been observed for all tested propagation angles.

In the second proposed approach in which numerical angular profiles where opti-
mized to match experimental data, seven various frequencies were used, namely: 48.85,
98.94, 149.04, 199.14, 249.24, 299.33, and 349.43 kHz. Final numerical angular
profiles after the optimization process are drawn with white lines on experimental data
and presented for chosen frequencies in Fig. 6. Very good agreement between
numerical and experimental data has been achieved for all modes at all tested
frequencies.

Due to symmetry in the wave propagation, only the area corresponding to positive
wavenumbers was used in both optimization processes.

Elastic constants estimated for the same CFRP sample with two presented tech-
niques are given in Table 1. Similar results were obtained for most elastic constants

Fig. 6. Angular profiles for chosen frequencies.
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beside C33 and C66. The difference of around 10% is non-negligible, and without
additional tests with other techniques, it is impossible to determine which results are
closer to the real specimens elastic constants. Further verification tests are planned in
future.

6 Conclusions

In this work, a technique for elastic constants identification based on Lamb wave
propagation measurement is presented. Two approaches for the optimization are pro-
posed. SASE model and full wavefield measurements along with the genetic algorithm
are used in the optimization process. In both cases, a very good agreement between
numerical and experimental data has been reached. However, the optimization of
dispersion curves was computationally more efficient than the optimization of angular
profiles. The time needed for a single genetic algorithm run was about ten times shorter
for the former. It should be noted that estimated elastic constants for the same specimen
using both approaches have some discrepancies and additional testing with another
technique should be used to determine which results were closer to the real values.
Such studies are planned in the future.
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