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Abstract. Computer vision-based techniques for modal analysis and system
identification are rapidly becoming of great interest for both academic research
and engineering practice in structural engineering. For instance, this is particu-
larly relevant in fields such as bridge or tall building monitoring, where the large
size of the structure would require an expensive sensor network, and for the
characterisation of very slender, highly-flexible structural components, where
physically-attached sensors cannot be deployed without altering the mass and
stiffness of the system under investigation. This study concerns the latter case.
Here, an algorithm for the full-field, non-contact extraction and processing of
useful information from vibrational data is applied. Firstly, video acquisition is
used to capture rapidly very spatially- and temporally-dense information
regarding the vibrational behaviour of a high-aspect-ratio (HAR) prototype wing,
with high image quality and high frame rate. Video processing is then applied to
extract displacement time histories from the collected data; in turn, these are used
to perform Modal Analysis (MA) and Finite Element Model Updating (FEMU).
Results are benchmarked against the ones obtained from a single-point laser
Doppler vibrometer (LDV). The study is performed on the beam-like spar of the
wing prototype with and without the sensors attached to appreciate the disruptive
effects of sensor loading. Promising results were achieved.

Keywords: Parameter estimation � Model updating � System identification �
Video processing � Computer vision � Experimental modal analysis

1 Introduction

To perform realistic numerical simulations, a reliable predictive Finite Element Model
(FEM) is required. To achieve such a FEM, the unknown material parameters of the
corresponding real-life system need to be estimated from experimental acquisitions.
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This is generally achieved by attaching mounted sensors, such as accelerometers, to the
structure of interest. However, this classic experimental setup has at least two main
disadvantages. Firstly, it only allows a sparse, point-wise disposition of the output
channels, which limits the amount of available information. Secondly, both the addi-
tional weight of and the additional stiffness induced by the physically attached trans-
ducers and by their connection to the investigated system affect the dynamical response
of the structure-sensors ensemble. The first issue negatively affects the robustness and
reliability of the model since it is derived from relatively few recordings. Indeed, while
the global dynamic behaviour can be estimated even from few points, the lack of local
information severely hampers some more specific investigations, such as damage
localisation, where high or very high spatial density is required [1, 2]. Regarding the
latter point, the effects of the additional masses and stiffness are negligible on massive
buildings such as bridges or bell towers, yet become predominant for very lightweight,
very slender structural elements. This is especially relevant for the aeronautical
industry, where in recent years more and more efforts have been dedicated to producing
lighter and more flexible wings [3]. Thus, the recorded behaviour of the system-sensors
ensemble can diverge substantially (both locally and globally) from the one corre-
sponding to the system alone with no transducers attached.

The linear dynamics of the XB-1 high-aspect-ratio (HAR) wing [4] are the subject
of this study. Importantly, the prototype highly flexible skin is supposed to transfer all
the aerodynamic loads to the spar, making the structural behaviour of the latter the one
of greatest interest; thus, all experimental tests were performed on the spar alone.

The specific aim is to perform the FE model updating of its material parameters
(Young’s Modulus E; Poisson Ratio m; density q; and damping ratio f) in a non-contact
way, by extracting the vibrational response of the structure from video acquisitions.
These displacement time histories (THs) are compared to the one acquired by a single-
point Laser Doppler Vibrometer (LDV), showing good consistency.

The rest of this discussion is organised as follow. In Sect. 2, the basics of FEM
updating are briefly recalled. Section 3 discusses the algorithm applied for the
extraction of displacement time histories from the recorded video. In Sect. 4 the case
study of this dynamic investigation is introduced. Section 5 describes the results and
Conclusions follow in Sect. 6.

2 FE Model Updating

The concept itself of FE-based Model Updating (FEMU) has been put forward since
several decades [5]. A large variety of algorithms have been proposed for this aim at
least since the 1990s. A quite exhaustive review can be found in the relatively recent
work of Reference [6], while a comparative study is available in Reference [7].

FEMU approaches may be mainly classified as direct and indirect methods; the
members of this latter group are also known as sensitivity-based techniques [8]. In direct
methods, the individual elements in the system matrices of masses and stiffnesses are
adjusted through comparison between the initial model prediction and the experimental
data, generally without recurring to iterative algorithms. In the case of indirect tech-
niques, as the name suggests, the adjustments are applied not directly to the system
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matrices but rather to some specific physical property of themodelfinite elements. In turn,
this causes a variation of the resulting matrices and – hopefully – brings the predicted
output closer to the measured data. The interest audience may refer to the classic book of
Friswell & Mottershead [9] for further general information about the topic. A shorter yet
effective introduction to indirect techniques can be found in Reference [10].

In the case of this study, an input-output procedure has been applied as an iterative
and indirect technique operating in the frequency domain. This approach belongs to the
broad family of the response function methods (RFM) [11]. The process is quite
straightforward: by taking the recorded inputs and outputs, one or more experimental
Frequency Response Functions (FRFs) which define the linear system under exam are
compared with the results from the numerical simulations at the same points. This is
done here by computing the Normalised Mean Square Error (NMSE) between the
numerical and the experimental data in a short frequency range around the first natural
frequency. This can be carried out at any output channel of interest, thus allowing a
Single-Input Multi-Output (SIMO) characterisation of the investigated system. The
iterative algorithm is sketched in the flowchart of Fig. 1.

Fig. 1. Flowchart of the iterative FEMU algorithm.
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The minimization of the error function was performed on MatLab ® using the
patternsearch() function, which implements a variant of the generalised pattern search
(GPS) algorithm [12]. Convergence was set to occur accordingly to three requirements:

1. cumulative NMSE of all the M output channels considered below an arbitrary limit
set to e ¼ 0:01 �M;

2. change in NMSE less than 0.001 respect to the previous iteration;
3. change in pattern search mesh size less than 10−6 respect to the previous iteration.

The FE model of the wing spar (Fig. 2), recently used for some related works [13]
is made up by 400 8-noded quadratic shell elements, for a total of 1369 nodes, with 6
degrees of freedom per node. The input was applied as a harmonic acceleration to the
clamped base, while the output THs were computed at all nodes corresponding to the
LDV point of application and close-by investigated cross-sections.

3 Video Acquisition Algorithm

The Virtual Video Vibrometer (VVV) technique, firstly proposed by the Authors in
[14], has been utilised here to extract the displacement THs from the video recordings
at the cross-sections of interest. The basic concept is that the moving wing edge profile
produces a sharp change in the pixel brightness respect to the background, which in
turn can be easily detected at any frame. The results are pixel-wise time series of
displacements referred to the targeted wing cross-sections, similar to what can be
achieved with a Laser Doppler Vibrometer aimed at the same points. As for the LDV,
the implicit assumption of this approach is that the trajectory of the transverse motion
can be approximated by a straight line. While this assumption may not hold true for
larger transverse deflections [15], this is not an issue when the output amplitude of

Fig. 2. The geometry of the FE model to be calibrated. The input harmonic excitation was
applied to the elements coloured in light grey. The closest node to the LDV dot is highlighted in
cyan.
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motion is relatively low, as commonly done for the task of system identification (SI) of
structure behaving linearly at low energy levels.

The VVV procedure is very straightforward and can be summarised as follow (all
the steps are depicted in Fig. 3). Firstly, the original video sequence is converted frame-
by-frame to a greyscale image and a frame slice of interest is selected, with arbitrary
narrow width, here set at 6 pixels (indicated by the green lines in the top left image of
Fig. 3). This selection is then isolated (Fig. 3, step i) and its brightness is defined at any
pixel as 8-bit unsigned integers, thus spanning in a range from a minimum of 0 to a
maximum of 256 (step ii). A mean brightness profile is then defined over the six-pixel
columns (step iii). The 2-mm-long thickness of the wing spar is noticeable, while the
laser dot is revealed by the peak in brightness. Through any nonlinear detrending
algorithm, it is then possible to remove the illumination gradient on the background
panel (step iv). Here, a Savitzky-Golay sliding polynomial filter [16] of order 3 and
window width 27 was applied. This step is also useful to remove any unrelated object
included in the frame as long as it is not moving during the recording. At this point, the
moving (local or global) maximum can be targeted utilising a peak picking method.
The final result is the framewise profile of a Brightness Index (BI). This index is
defined as the signed deviation of the brightness respect to the background trend. By
following any BI peak of interest frame after frame, the THs of vertical displacement
are thus obtained for any given cross-section. While this can be more easily imple-
mented for the most prominent peak, the approach is not limited to it, allowing to select
the spar intrados or extrados as well (as long as they are distinguishable from the
background at any frame). These THs are finally converted from pixels to millimetres.

Fig. 3. A pictorial description of the VVV algorithm (steps i–iv).
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Respect to the classic LDV acquisitions, this video-based method has both benefits
and drawbacks. The main limitation is in terms of spatial resolution, as the accuracy is
limited by the pixel dimension and thus depends on the distance of the camera from the
target structure (here, the focal length was about 240 mm). This can be improved by
several techniques for subpixel resolution and/or by interpolating, for which numerous
algorithms exist in the literature. Motion magnification techniques have been proposed
in recent years [17], which can be used directly or combined with techniques such as
the one described here to obtain displacement THs. Yet, the actual resolution will be
inferior respect to the LDV one in most of the cases. On the other hand, the video
processing procedure can be applied to any slice of the frame, thus capturing multiple
THs from a single experiment. This can be otherwise achieved only employing multi-
point LDV, which is much more expensive and difficult to use than single-point LDV
or high-speed HD cameras. Moreover, the VVV technique directly measures the dis-
placement of a point, without the need of numerical integration (even if a conversion
step from pixel to SI units is still required and can introduce error in the inferred
quantities). Another technical issue derives from the internal memory capacity, which
is limited and inversely proportional to the pixel density and the frame rate set. In the
case of this study, with 1280 � 1024 pixels per frame (width x height), the storage
capacity was limited to 4897 frames.

4 Experimental Setup

The whole experimental setup is shown in Fig. 4. The studies were performed in the
facilities of Cranfield University. The instrumentation is the same as appeared in
Reference [18, 19], and [20]; in detail, an Olympus® I-speed 3™ video camera and a
Polytec® OFV-505 Sensor Head™ LDV were utilised. More details can be found in
Table 2 of Reference [18]. The geometric details of the investigated wing spar are
reported in Table 1. The characterisation has been performed via harmonic analysis, by
dwelling the spar at its first natural frequency, and with an input acceleration of 0.01 g,
low enough to ensure the linearity of the response. The input was applied to the
clamped base with a Data Physics® Signal Force™ shaker and directly recorded from
its DP760 close-loop™ control software. The camera was set to acquire 2000 frame per
second (fps), the same sampling frequency as the laser vibrometer, for better compa-
rability. Thus, the resulting available recording duration is 2.4485 s.

The corresponding frequency resolution is therefore limited to 0.4084 Hz, which is
relatively coarse yet proved sufficient for the aim of updating the spar FE model. The
camera was aimed at the spar trailing edge and the focus was adjusted consequently;
the very short focal length can be seen in Fig. 4.c. Points on this edge are considered
representative of the behaviour of the whole spar at that cross-section (i.e., torsion
effects are neglected). This is still viable with negligible effects at very low input
amplitudes if the flapwise deflections are the only motion of interest.
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5 Results

Eleven equally spaced cross-sections, represented in Fig. 5 and enlisted in Table 2,
were considered. The resulting 11 time series, as well as the derived FRFs of dis-
placement per unit of applied acceleration, are reported in Fig. 6 and Fig. 7, respec-
tively. Convergence according to the requirements expressed in Sect. 2 was reached
after circa 100 iterations, even if the NMSE Cost Function was already relatively low
and almost plateauing after the first 70 iterations. The results are enlisted in Table 3 for
the four parameters considered. The values guessed as a first attempt are also reported.

Fig. 4. The experimental setup. (a) top view of the wing spar clamped to the modal shaker.
(b) the whole apparatus: the high-speed camera [A] with its acquisition user interface [B], the
shaker utilised to apply the input [C], the LDV [D] and the light source [E]. (c) close distance
acquisition.

Table 1. Geometrical properties of the wing spar.

Parameter Value
Measurement 

unit
Free length (clamp to tip) tipl 706.00 mm

Thickness t 2.00 mm

Max width at clamped section maxb 180.00 mm

Mid-length width at the section of 
changing tampering ( 258l mm)  258lb 56.10 mm

Min width at the tip section minb 17.04 mm
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For completeness, an early estimation of the parameters, as reported in [18], is included
as well. The relatively large divergence in Young’s Modulus can be explained by both
the relatively imprecise first estimation and by the non-negligible differences in the
experimental setup, especially in the exact position of the clamped cross-section and
clamp load. The resulting FRFs are reported in Fig. 8. As a validation of the obtained
results, it can be seen that the numerically simulated behaviour matches well the
experimental results obtained from the LDV acquisition (bottom right corner of Fig. 8).

The results of the modal analysis run on the calibrated model are then compared to
the experimental findings reported of Pontillo et al. [4] in Table 4. It must be remarked
that the slight difference is again due to the different experimental setup. In that study, a

Fig. 5. (a) Zoom on the laser dot emanated by the LDV, clearly visible and highlighted in the
video recordings. (b) the eleven points investigated along the trailing edge.

Table 2. Location (in pixels) of the selected 6-pixels-wide cross-sections.

Distance from
the left border

[pixels]
Marker

Distance from
the left border

[pixels]
Marker

Distance from
the left border

[pixels]
Marker

106-111 506-511 906-911

206-211 606-611 1006-1011

306-311 706-711 1106-1111

406-411 806-811
LDV:

X = 710
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single vibrometer was applied, thus torsional modes went undetected. The neigh-
bouring 4th flexural flapwise and 1st torsional mode generated some unclear response
in their range of frequencies. An unclear result at circa 202 Hz may again be due to
imperfectly detected torsion or flection in the chord direction.

Fig. 6. Resulting time histories (pixels amplitude along time expressed in terms of frames). The
magnified portion is highlighted in red. The colour scheme reflects the positions highlighted in
Fig. 5 and Table 2.

Fig. 7. The frequency response function between these displacement outputs and the
acceleration input. The colour scheme reflects the positions highlighted in Fig. 5 and Table 2.
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The experimental investigation of Pontillo et al. was upper bounded to 300 Hz, so
the 7th flexural flapwise mode most probably fell out of the range. It is noteworthy how
the FE Model, while calibrated only on the first mode, can provide a relatively good
estimation of all the higher modes for which the comparison with the experimental data
is feasible. This proves the reliability of the FE Model, even if it is a very basic and
simple approximation of the target plate-like structure. It is important to remark that, as
it can be seen from Fig. 8, the video-extracted vibrational information is strongly
redundant. This is very useful for Model Updating. On one hand, the overdetermination
of the problem means that more parameters can be calibrated. On the other hand, if few
parameters have to be estimated, as in this case, extrapolating information from an
arbitrarily large amount of closely spaced output channels also makes the resulting
system identification more robust than in the case of a single-point LDV.

Table 3. Estimated and Updated mechanical parameters.

Parameter
Early estimates 

[18]
First attempt 
assumptions

Final updated 
values

Young’s modulus [MPa]
373.1000·10 369.1000·10 359.0162·10

Density [ 3/kg m ] 2850.000 2850.000 2893.0649

Damping ratio [%] - 0.1000 0.8634

Poisson’s ratio [-] 0.3300 0.3300 0.2616

490 M. Civera et al.



Fig. 8. Results of the fitting procedure at convergence. Numerical FRFs reported as dashed red
lines superposed to experimental data from video. Experimental data from the LDV shown for
comparison in the bottom right corner.

Table 4. First ten vibrational modes.

ID # Mode
Experimental
values ([4])

[Hz]

Video
acquisition

[Hz]

Calibrated
FE Model

[Hz]
1 1st flexural flapwise 5.12 5.40 5.49
2 2nd flexural flapwise 22.02 Out of range 23.16
3 3rd flexural flapwise 55.30 Out of range 55.80
4 4th flexural flapwise 110.10 Out of range 103.99
5 1st torsional - Out of range 125.11
6 5th flexural flapwise 174.10 Out of range 172.09
7 1st flexural chordwise 202.20 Out of range 189.15
8 2nd torsional - Out of range 219.90
9 6th flexural flapwise 259.10 Out of range 255.62
10 7th flexural flapwise Out of range Out of range 333.89
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6 Conclusions

The work presented here detailed a simple yet effective video-based FEMU procedure.
The object of this experimental investigation was the spar of a very flexible and HAR
wing prototype. This target system was proven in previous studies to be highly affected
by the local and global changes in mass due to sensor loading. Therefore, the main
difficulty for its dynamical characterisation lies in the invasiveness of the acquisition
procedure. Non-contact approaches are very useful from this point of view.

Acknowledgements. The authors would like to thank dr Mudassir Lone for kindly providing
the high-speed camera and the wing prototype, and dr Ivan Petrunin and dr Alessandro Pontillo
for their help with the experimental setup.
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