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Abstract. Detecting damage in the early state is crucial in assessing structural
integrity. Most current vibration-based damage detection methods use frequency
shifts to assess the damage, observed as a change of the positions on which the
peaks in the spectrum are located. However, accurate estimation of the natural
frequencies can be challenging due to the raw frequency resolution obtained for
short signals. We propose in this paper a signal post-processing algorithm that
permits obtaining a spectrum with significantly enhanced resolution, without
being necessary to increase the length of the signal. The super-resolution is
obtained by overlapping numerous spectra calculated for the signal cropped
iteratively. The spectral peaks are distributed in accordance with a pseudosinc
function, which is asymmetrical, but the estimated frequencies are close to the
real one. By interpolation, we improve the estimate. Moreover, by applying a
correction term we find the true frequency. The algorithm is implemented in a
Python application that can be linked to any virtual instrument developed in
LabVIEW. The algorithm is tested for signals with known frequencies, in the
absence and presence of noise and for real-world signals. It provides accurate
results that permit observing the occurrence of damage in the very early state.

Keywords: Frequency estimation � Discrete fourier transform � Interpolation
method � Overlapped spectrum

1 Introduction

The response of a structure to an excitation allows identifying the state of the structure.
Structural health monitoring uses this advantage. Currently, there are many methods
available that conclude on the integrity of the structure based on the modifications of
the modal parameters, see for instance [1–3]. Among the modal parameters involved,
the most commonly used is the natural frequency, as it is easily measured with the basic
instrumentation [4]. Estimating the natural frequencies is typically made involving the
Discrete Fourier Transform (DFT). It consumes more resources as the Fast Fourier
Transform (FFT) but it ensures better results [5] because it permits setting the time
length of the analyzed signal and in consequence the frequency resolution [6].

The clear advantage of the DFT against the FFT is the accuracy of the frequencies
estimated, which is crucial in early state damage detection [7]. However, for short
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signals, accurate estimation of the natural frequencies becomes challenging due to the
raw frequency resolution obtained [8]. Nowadays, numerous methods to increase the
accuracy of the estimate exist. The simplest and most efficient techniques involve
interpolation to obtain a correction term [9]. With this technique, we can find the
position of the estimated frequency in an inter-bin position in the DFT spectrum. To
obtain the correction term, interpolation is made for two [10–12] or three [13–15] DFT
samples, including the maximizer found in the frequency range of interest. Even if the
estimation gain precision, we found the results still depend on the signal acquisition
strategy (i.e. the time length) [8].

In this paper, we propose an alternative approach for an accurate estimation of the
harmonic components of the vibration signal. First, we repeatedly cut two samples
from the initial signal that was attained by measurements. Next, we calculate a DFT for
each of the resulting signals. All the obtained spectra are overlaid, resulting in a dense
so-called overlapped spectrum. The largest of the individual maximizer is identified in
the frequency range of interest in the overlapped spectrum and further interpolation is
performed involving its two neighbors. Note that these two neighbors are also maxi-
mizers in the individual spectra. Because the maximizers are distributed in the over-
lapped spectrum in accordance with a pseudo-sinc function, which is asymmetric, we
introduce a correction term to improve the estimate. The algorithm is implemented
Python, resulting in an application that provides extremely precise results that can be
used to assess damage in a very early state.

2 The Algorithm and Its Theoretical Background

The signals under consideration contain one or more harmonic components that are
estimated with the proposed algorithm. The way the signals obtained from measure-
ments are treated is identical, and we can assume that the results fall within a similar
margin of error if the acquired signal has the same parameters as the generated signal.
Let us consider that the signal x[n] has a time length tS and is generated with a
frequency rate r. The number of samples necessary to create the signal is N, which can
be calculated with the mathematical relation:

N ¼ r
tS

þ 1 ð1Þ

The frequency resolution Df is inversely proportional to the signal length tS, so that
their product is equal with 1. The frequency components are displayed in the spectrum
at lines k, i.e. frequencies fk ¼ k � Df are indicated. Because the single-sided spectrum
displays N/2 lines, the number of necessary spectral lines is k 2 ½0; N=2�. If the signal
has a length that does not involve an integer number of cycles for a given harmonic
component, the maximizer will be displayed on the spectral line k indicating frequency
fk closest to the true frequency fS and a value Xk smaller than the amplitude A of the
component in question will be displayed. The maximizer illustrated in Fig. 1 is located
on the spectral line k = 5 that indicate the frequency fk = 5 Hz. The true frequency is
fS = 5.31 Hz.
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Along with the maximizer, due to leakage, the spectrum displays amplitudes on
other spectral lines. The distribution of the amplitudes in the spectrum for a sinusoid
that’s frequency fS does not fit a spectral line, i.e. fS 6¼ fk, follows approximately the
sinc function rule. The way how the frequency lines and their associated amplitudes in
a DFT spectrum are calculated is well-known and not detailed here.

The idea based on which the algorithm is built is that by modifying the original
signal length, different distributions of the spectral lines are obtained. By superposing
the spectra, we obtain an overlapped spectrum with very fine resolution at which
maximizer and the neighbors are displayed at frequencies very close to the true fre-
quency. Figure 2 shows the peak of the overlapped spectrum, i.e. maximizer of the
individual spectra obtained from the signals with different time lengths.

By performing an interpolation based on the three main peaks in the overlapped
spectrum we obtain the amplitude AE and frequency fE that are even closer to the true
one as that obtained from the overlapped spectrum.

Note that in the algorithm we use amplitudes that are not adjusted with the number
of cycles N, thus for a different number of cycles different amplitudes will be obtained.

Fig. 1. Distribution of the spectral lines and the associated amplitudes

Fig. 2. Zoom on the peak of the overlapped spectrum highlighting the position of the maximizer
achieved by iteratively cropping the signal
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This permits easily associating the maximizer to the number of cycles contained in the
signal. After choosing the curve for a given number of cycles, we calculate the Power
Spectral Density (PSD) before interpolation in order to normalize the amplitudes to the
energy contained in maximizer (obtained from signals with different time lengths).

The error obtained when the same number of cycles is considered

e ¼ fS � fE
fS

ð2Þ

can be normalized with the true sinusoid’s frequency. It results in a coefficient j that is
the same irrespective to the sampling strategy. Since:

j ¼ e
fS

¼ fS � fE
f 2S

ð3Þ

the true frequency is calculated from the algebraic equation:

jf 2S � fS þ fE ¼ 0 ð4Þ

If the harmonic components are quite far from each other, the effect of the leakage
generated by one of them does not affect the other components. Therefore, we can treat
each harmonic component of the signal individually. This approach is also motivated
by the fact that each component contains an integer number of cycles for a different
signal length. In the section dedicated to testing the algorithm, we also analyze the case
where the signal has several harmonic components and show how close they can be to
allow accurate frequency estimation.

In conclusion, running the algorithm involves the following steps:

1. Import the acquired/generated original signal S_1 (it should contain at least 5
cycles for the fundamental frequency);

2. Calculate DFT_1 for this signal and extract the maximizer M_1;
3. Extract two samples from the end of the signal and perform DFT_2;
4. Extract the maximizer M_2;
5. Repeat steps 3 and 4 until the signal S_1 is shortened with 2.5 periods T calculated

for the frequency of interest. It should result j = 1…J maximizer;
6. Overlay all extracted maximizers M_j - three curves result, each for a certain

number of cycles;
7. Select a curve for which the maximum M_max has two neighbors;
8. Convert the curve from DFT to PSD; l
9. Perform interpolation to find the trendline and its maximum MAX;

10. Apply the correction coefficient to find the estimated frequency.

The algorithm is implemented as an application written in Python programming
language. The results obtained when the steps described above are performed are
illustrated in Fig. 3.

460 N. Gillich et al.



a.

b.

c.

Fig. 3. The results displayed when performing the steps described in the algorithm: (a) the DFT
calculated for the original signal with the maximizer; (b) the overlapped maximizers for the
iteratively cropped signal; (c) the overlapped maximizers for the selected number of cycles with
the identified peak.

Improving the Capability of Detecting Damages in the Early State 461



As one can observe in Fig. 3a, the DFT calculated for the original signal has two
points with fairly close amplitudes, which means the real frequency and amplitude are
not properly identified. Figure 3b shows all maximizers M_j found in the frequency
range 4.5–6.5 Hz when the cropped signal contains at least four and maximum seven
cycles. One can observe we obtained adequate maxima for both five and six cycles.
Finally, selecting the number of cycles six, we obtain the curve represented in Fig. 3c.
The interpolation is performed and the correction coefficient is applied, resulting the
correctly estimated frequency and amplitude.

3 Tests Performed to Improve the Method’s Accuracy

To demonstrate that the algorithm implemented in Python is feasible, we perform tests
that involve one or more sinusoids generated with known frequencies and amplitudes.
Mainly we test the accuracy and repeatability of the results and the limit at which two
harmonics with close frequencies can be detected.

3.1 The Effect of the Signal Length on the Estimation Accuracy

As we have shown in Sect. 2, the DFT calculation does not ensure the consistency of
the results, because the frequency values determined depend on the signal length used
for the calculation. Usually, the entire length of the acquired or generated signal is
used, because the general idea is that a longer signal permits estimating more accurately
the frequencies. This length is defined by the operator and usually remains unchanged
until the experiment is finalized.

In this first example we show how the frequencies are estimated if the signal length
varies in a limited range of around one period T. To this aim we generate a sinusoid
with the frequency fS = 6.33 Hz and amplitude AS = 1 mm/s2. The original signal has
N = 868 samples by a sampling rate r = 400, resulting in a time length tS = 2.1675 s.

From the original signal we repeatedly cut 2 samples, until it contains only 784
samples. For each signal thus obtained, the DFT is calculated by the standard method
and the spectral component is determined again using the PyFEST application. The
results, presented in Fig. 4, show that the values of the frequencies obtained using a
standard DFT are strongly affected by the signal length and are in general not estimated
correctly. The variation of the values obtained by the standard DFT method is framed
in respect with the frequency resolution Df, the range in which the estimated frequency
may vary being indicated with purple lines in Fig. 4. On the contrary, using PyFEST
we obtain the frequency fPy2 = 6.2999 Hz for the signal generated with even number of
samples and the exact frequency fPy1 = 6.33 Hz if the signal is generated with an odd
number of samples. Even if this effect is vanished for longer signals, we recommend
using signals containing odd number of samples.

We performed analysis involving signals with different frequencies, time lengths
and generated with different frequency rates and have obtained always accurate results
[16–18]. Therefore, we conclude the frequency estimation made with PyFEST is
accurate and can be used for demanding applications of physics or engineering.
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3.2 The Capacity to Detect Small Frequency Changes

If the signal is short, a coarse frequency resolution Df is achieved and a big gap
between two consecutive spectral lines results. This makes it impossible to observe
small frequency changes, because, if the frequency changes slightly, the DFT still
indicate the signal on the same spectral line but with different amplitude. The frequency
change is observed only if the amplitude is shifted to a neighboring spectral line. So,
for an interval ±Df/2 around a spectral line the same frequency will be read.

The question is whether, with PyFEST, we can find very fine frequency changes
even for short signals. To determine this, we generate one by one three sinusoids with
close frequencies, see Table 1. These have the amplitude AS = 1 mm/s2 and are gen-
erated with the frequency rate r = 1000 Hz. Each of the three sinusoids is considered
containing 970, 1970 and 2970 samples, respectively.

For the nine resulted signals we calculated the standard DFT and performed an
analysis with PyFEST. The frequencies obtained by the two methods are also shown in
Table 1.

Fig. 4. The frequencies estimated using the standard DFT and with PyFEST.

Table 1. Comparison of the results obtained with the standard DFT and involving PyFEST

Generated signal

N (-) 970 1970 2970

r (Hz) 1000
na (-) 12 24 37

fS (Hz) 12.66 12.68 12.70 12.66 12.68 12.70 12.66 12.68 12.70
AS (mm/s2) 1 1 1 1 1 1 1 1 1
Estimation with standard DFT

fDFT (Hz) 12.3839 12.3839 12.3839 12.6968 12.6968 12.6968 12.7989 12.7989 12.7989
ADFT (mm/s2) 0.8769 0.8613 0.8447 0.9952 0.9970 0.9990 0.7536 0.8178 0.8742

Estimation with PyFEST
fPy (Hz) 12.6599 12.6799 12.7 12.66 12.68 12.7 12.66 12.68 12.7
APy (mm/s2) 1.0009 1.0015 1.002 1.0004 1.0009 1.0005 1.0002 1.0003 1.0001
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One can observe from Table 1 that the results obtained with the standard DFT do
not allow detecting the frequency change, the same values being estimated for a given
number of cycles. Conversely, PyFEST allows detection of frequency change with high
accuracy, which has an important role in early-state detection of physical or engi-
neering systems.

3.3 Frequency Estimation for an Acquired Signal

In this example we show how the natural frequencies of a beam in the intact state and
with a complex-shaped crack are found from measured signals. The specimen is a
carbon steel cantilever beam fixed in a machine vise at the left end, as shown in the
schematic of the experimental stand, see Fig. 5. The beam has the active length
L = 1 m and the rectangular cross-section has the width B = 50 mm and thickness
H = 5 mm. In Fig. 5, the equipment used for excitation and acquisition is indicated and
detailed information about the experimental setup is presented in [19].

The target was to find the natural frequencies for the out-of-plain vibration modes
of the intact and damaged beam. In the case of damage, this has the depth 0.5 mm and
is produced by electro-erosion with a wire of 2 mm diameter. The location of the crack
is 225 mm from the fixed end. The two modes are analyzed independently, this
meaning a tailored excitation was applied involving the sound speaker when the
acquisition system was activated, followed by post-processing of the acquired signal.

Fig. 5. Schematic of the experimental stand.
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We exemplify the case of modes four and five, for which the excitation was applied
involving a sound speaker with a frequency close to that of the targeted vibration mode.
The excitation time was, tE = 1…5 s. This kind of excitation was made to ensure a
bigger amplitude for the targeted mode in comparison to all other modes.

The subsequent acquisition was made after a time tP = 0…3 s measured from the
moment the excitation has stopped. The acquisition time was set to achieve at least 20
cycles in the signal. This strategy permitted the selection of response signals with
different amplitudes, which was necessary to test the robustness and repeatability of the
results. Obviously, PyFEST was used for signal post-processing. The estimations
results are presented in Table 2.

Analyzing Table 2, we can observe that the achieved frequencies are not the same
as we obtain when involving DFT, but the differences are less than 0.01%. On the other
hand, small frequency changes due to incipient crack is observable and the shift is
certainly quantifiable, permitting to assess damage. This demonstrates the excitation
method and the post-processing algorithm are feasible and permit observing the fre-
quencies with accuracy, and, if the frequencies are altered, the change is observable.

4 Conclusion

We propose estimating the natural frequencies of a beam by an interpolation method
performed on DFT samples belonging to spectra obtained for different time lengths.
The method is proved reliable and errors less than 1% are obtained. The precision
increases with the time signal’s length becoming negligible when considering
numerous cycles in the original signal.

We improved the frequency estimates by taking for interpolation PSD samples and
applying a correction coefficient which we have determined for all combinations of
frequencies, sampling rates and time lengths. Using the PSD has the advantage that, for
the different cropped signals, the effect of the time length is suppressed by normal-
ization. The results are significantly improved compared with the case when we use the
DFT samples, especially for a small number of cycles.

Table 2. Estimation results for the measured signals for modes two to five

Intact beam:
Mode 4

Damaged beam:
Mode 4

Intact beam:
Mode 5

Damaged beam:
Mode 5

Freq. Ampl. Freq. Ampl. Freq. Ampl. Freq. Ampl.

136.9767 0.2532 136.9017 0.5255 226.8998 2.3408 226.7112 2.3408
136.9842 0.166 136.9103 0.6986 226.9186 1.1823 226.6924 1.1823
136.9849 0.3523 136.9214 0.621 226.9197 0.9275 226.7024 0.9275
136.9856 0.4347 136.9109 0.7106 226.9098 1.3734 226.7123 1.3734
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