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Abstract

Artificial intelligence coupled with digitally connected technologies are becom-
ing more self-evident. These developments indicate an increasing symbiosis 
between human and machine, referring to a new phase of interaction—symbiotic 
intelligence. In this vein, the human-centred development of technologies is 
becoming more and more important. The detection of user’s mental states, such 
as cognitive processes, emotional or affective reactions, offers great potential for 
the development of intelligent and interactive machines. Neurophysiological sig-
nals provide the basis to estimate many facets of subtle mental user states, like 
attention, affect, cognitive workload and many more. This has led to extensive 
progress in brain-based interactions—Brain-Computer Interfaces (BCIs). While 
most BCI research aims at designing assistive, supportive or restorative systems 
for severely disabled persons, the current discussion focuses on neuroadaptive 
control paradigms using BCIs as a strategy to make technologies more human-
centred and also usable for non-medical applications. The primary goal of our 
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neuroadaptive technology research agenda is to consistently align the increasing 
intelligence and autonomy of machines with the needs and abilities of the 
human—a human-centred neuroadaptive technology research roadmap. Due to 
its far-reaching social implications, our research and developments do not only 
face technological but also social challenges. If neuroadaptive technologies are 
applied in non-medical areas, they must be consistently oriented to the needs and 
ethical values of the users and society.

16.1	 �The Rise of Artificial Intelligence: Technologies 
for the Interaction Between Human and Machine

Digitally connected systems, techniques and methods of artificial intelligence (AI) 
and machine learning (ML) are changing our world. Humans develop such tech-
nologies in order to satisfy intentions, thereby anticipating our needs and thus mak-
ing life easier. Computers trade our shares, we have cars that park themselves, and 
flying is almost completely automated. Virtually every area has benefited from the 
tremendous progress in digitization and AI, from military to the medical field and 
manufacturing. These progresses not only gradually transform the way we are inter-
acting with technological products and services, but also differently influences our 
sensorimotor and cognitive capacities and skills. Osiurak et al. [1] summarizes these 
gradual technological developments over time into three levels that describe human-
technology interaction with physical (affordance design), sophisticated (automation 
and interface design) and symbiotic (embodied and cognitive design) technologies. 
In the future, we will experience a massive influence on people’s everyday lives and 
working environment: the interaction with digital products and connected machines, 
technologies and services is becoming more self-evident and a core competence of 
the future requiring new modes of interaction and cognitive abilities. Future trends, 
like voice, gesture or thought operated technologies indicate an increasing symbio-
sis of human and technology, referring to a new phase of interaction called symbi-
otic intelligence [1]. The authors claim that the sophisticated technology of the 
future will ultimately become more and more unconscious to humans in order to 
maybe become one with them—the goal is the intuitive handling of technology in 
order to minimize the interaction effort with technical products.

Historically, the development and use of tools is strongly related to human evolu-
tion and intelligence. With the rise of AI and digitally connected products, we have 
access to an enormous variety of data and information. This enables us to develop 
interfaces that support us in how we think, what we know, how we decide and act. 
This transformation can be summarized under the concept of cognitive enhance-
ment or cognitive augmentation [2]. It describes a very broad spectrum of tech-
niques and approaches, such as performance-enhancing drugs, medical implants 
and prostheses and human-computer interfaces, which lead to improved abilities 
and may probably transcend our existing cognitive boundaries. Nevertheless, the 
increasing integration of technology in our everyday life and working environments 

M. Vukelić



217

entails new challenges and potential for conflicts. Often, humans with their indi-
vidual preferences, skills and needs find themselves overlooked in the development 
of future technology. The resulting solutions, while technologically advanced, may 
nevertheless offer limited gains in terms of the productivity, creativity, and health of 
the users in question.

16.2	 �Embodied and Situated Minds: How We Use, Act 
and Think with Technology

If smart and adaptive technologies that support or even expand our cognitive abili-
ties are the future, then it is essential to consider an optimal design so that such 
technologies are geared to the user’s needs and contribute to a human-centred, effi-
cient and accepted technology.

The human-centred development of technologies and interfaces for the interac-
tion between human and machines is becoming more and more important. In order 
to achieve increased productivity with a concurrent contribution to the subjective 
well-being of employees, digital equipment needs to be seamlessly and intuitively 
integrated in everyday working life [3]. Intelligent systems should support the user 
rather than hamper the interaction due to its inherent complexity. Instead of creating 
frustration, the system should motivate the user by providing a positive user experi-
ence during the interaction [4]. Positive user experiences in daily human-technology 
interactions are extremely important for both the individual person and the organi-
zation: from the human factors point of view, positive user experiences contribute to 
the subjective perception of competence, have a positive effect on mental health and 
consequently lead to motivated action, increased productivity and job satisfaction, 
which are important factors for the enterprise [5–7].

Research from the cognitive neurosciences on embodied intelligence shows that 
intelligence cannot be assigned purely to brain functions without regarding the 
human in its situated surroundings. Thus, intelligent behaviour and decision-making 
develop primarily from the interaction between brain, body and environment [8]. 
We use our entire environment, including integrated technologies, as an extended 
mind or memory storage [9], for example to facilitate knowledge retrieval and to 
reduce the cognitive demands of a task. Familiar technical aids include our fingers 
for counting, GPS devices for navigation, or the use of the internet for knowledge 
retrieval. We use such technical aids to either simplify or surrender tasks completely. 
Hence, we are permanently engaged in what can be called cognitive offloading [10].

16.3	 �Connecting Brain and Machine: 
Brain-Computer Interfaces

From a technological perspective, computers and machines are increasingly capa-
ble of learning, communicating and making decisions. Thus, the interaction 
between humans and technology gains additional dynamics. Speech or gesture 
and mimic recognition are increasingly replacing former input devices such as a 
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mouse and keyboard. There is steady progress in the development of measure-
ment techniques, sensor technologies and miniaturization of techniques for 
recording neurophysiological activity coupled with advanced signal processing, 
statistics and machine learning. Based on these developments, we gathered a tre-
mendous understanding of cognitive functions and emotional processes underly-
ing human behaviour, decision-making and social interactions over the last 
decades. Thus, brain and physiological signals allow us to derive many facets of 
subtle mental user states, like attention, affect, movement intention, cognitive 
workload and many more. One key invention for researching brain-based interac-
tions between humans and machines is called Brain-Computer Interfaces (BCIs) 
[11, 12]. The BCI is currently the most direct form of an interface for the interac-
tion between a user and a technical system.

16.4	 �Measurement Technologies and Applications 
of Brain-Computer Interfaces

The backbone of BCIs is technology for the real-time recording of neurophysiologi-
cal activity that can be divided into invasive and non-invasive measurement tech-
niques. Invasive recording techniques require brain surgery to implant electrodes 
directly into the brain. These recordings are further subdivided into brain-surface 
electrodes, like e.g. electrocorticography (ECoG) and brain-penetrating microelec-
trodes (for a comprehensive overview, see Thakor [13]). Non-invasive recordings 
for BCIs are subdivided into (a) portable measurement techniques, like electroen-
cephalography (EEG) and functional near-infrared spectroscopy (fNIRS) and (b) 
stationary systems like magnetoencephalography (MEG) and functional magnetic 
resonance imaging (fMRI). EEG and MEG allow measuring the electromagnetic 
activity of multiple cortical neurons directly by recording voltage fluctuations via 
electrodes on the scalp (EEG) or by using very sensitive superconducting sensors 
(so-called SQUIDs, superconducting quantum interference device in MEG) [14, 
15]. Both fMRI and fNIRS measure neuronal activity indirectly. These techniques 
record metabolic processes related to neuronal activity by capturing hemodynamic 
changes in the blood flow. Hence, they enable the precise localization of the activa-
tion and deactivation of certain brain regions [16, 17].

Since its beginnings in the 1970s [18], BCI research focussed primarily on clini-
cal and medical applications. The main purpose was to provide users that have 
physical or perceptual limitations with a communication tool or to allow them to 
control a technical device, for example for locked-in or stroke patients. In such 
applications, certain mental states that the user voluntarily generated are decoded 
while circumventing any muscular activity [19–24]. BCIs enable the development 
of assistive and restorative technologies to control wheelchairs [25], orthoses [26–
28], prostheses [29], service robots [30] and web-applications [31]. Besides active 
control for users with motor impairments, BCIs are also applicable for neurofeed-
back training, for example to treat patients with psychiatric disorders such as depres-
sion, schizophrenia or attentional deficits [32–36]. Advances in these fields have led 
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to a boost in mobile technologies and sophisticated machine-learning algorithms 
that can be further exploited for monitoring healthy users and laying the basis for 
non-medical applications of BCIs [11, 12, 37, 38].

16.5	 �Neuroadaptive Technology and Its Potential for Future 
Human-Computer Interaction Applications

In our everyday life, technical systems are becoming more and more prominent and 
serve the purpose of supporting us in our daily routines. Interactive machines and 
adaptive systems obtain information from the user’s interaction behaviour [39] 
through integrated sensors (e.g. smartphones) or environmental sensors (e.g. cam-
eras) [40–42]. Such intelligent systems are summarized under the term context-
aware systems [43, 44]. Context-aware systems are able to adapt the interaction 
based on the current context information (including information about the purpose 
of use, objective to be achieved, and tasks), thus making machines sensitive to phys-
ical environments, locations and situations. Examples range from very simple adap-
tations such as screen brightness to the current time of day and ambient lighting; 
lane-keeping and distance assistants in (autonomous) vehicles; and cooperating 
industrial robots and service robots for domestic use for the elderly.

However, the user with her individual preferences, skills and abilities receives 
less attention. In order to provide an optimal interaction between user and adaptive 
and autonomous technologies, it is important to take not only environmental and 
contextual conditions, but also the current user state (with her preferences and inten-
tions) into account appropriately. Thus, machines need an understanding of the user, 
information about the user that goes beyond the bare necessities for controlling the 
machine. Therefore, it is a major prerequisite that technology reacts sensitively and 
promptly to its users, to create a collaborative and assistive interaction. Over the last 
years, the use of machine-learning algorithms for computational user modelling has 
increased substantially [45–47]. The basic idea is that computational user models 
represent more fine-graded aspects of the user, such as skills, preferences and cogni-
tive abilities, as well as contextual changes such as selective attention, working 
memory load and the current emotional state and mood. It allows system adaptation 
to complex situations without inflexible dependence on predetermined programs 
[48, 49] and provides the basis for a symbiotic interaction between user and machine 
to collaborate and cooperate in making collective decisions.

For a long time, clinical and medical applications have been the primary goals of 
BCI research. In classical approaches, active control-based BCIs consider decoding 
brain activity to map it to commands that can drive an application that is running on a 
computer or a device. Examples for assistive or restorative BCIs are the P300 speller 
[50] that uses an event-related potential correlating with attentional resources, menu 
selection and exoskeleton control using Steady-State-Visual-Evoked-Potential 
(SSVEP) paradigms that are natural responses to visual stimuli at specific frequencies 
[51, 52], or binary selection through motor imagery paradigms that are produced by 
voluntarily modulating certain oscillatory sensorimotor rhythms [20, 26–28].
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The introduction of passive BCIs [53] as a new concept coupled with new mobile 
and deployable sensor technologies for EEG and fNIRS [54–56] and advanced sig-
nal processing and machine-learning algorithms [37, 38, 57–60] for artefact correc-
tion and classification of cognitive and emotional states makes BCIs ready for 
non-clinical usage [11, 12, 61–63]. In classical BCIs, the machine-learning algo-
rithms that are used focus mainly on the number of bits transmitted per minute and 
the successful classification rates of extracted brain patterns. In the passive BCI 
concept, the bit transmission rate is not the primary interest, but rather to focus on 
augmenting human-computer interaction. Hence, users do not need to carry out any 
mental actions actively to produce brain patterns that are translated to computer 
action. To the contrary, the passive BCI concept is envisioned as a continuous brain-
monitoring process that is used to stratify the user according to his/her cognitive or 
emotional state. This provides the basis for extended computational user models in 
a human-machine control loop. Furthermore, this loop requires a precise knowledge 
of the psychological processes and corresponding neurophysiological correlates on 
which the adaptive computer system depends. Open-loop EEG or fNIRS-based pas-
sive BCIs to monitor psychological processes such as user engagement, user inten-
tion, selective attention, emotional engagement and workload in students, drivers, 
pilots or air traffic controllers have already been introduced [64–73]. Affective reac-
tions such as valence and arousal are another source of user information that can 
serve as possible input to adaptive computer systems [61–63, 74, 75]. In a closed-
loop human-computer interaction paradigm, this information enriches a user model 
to enable not only a concrete command, but also an adequate system adaptation to 
the user’s preferences, skills and abilities. With the help of sophisticated signal pro-
cessing and machine-learning techniques, neurophysiological signals can be inter-
preted in the sense of a continuous representation of the user’s condition and provide 
information about psychological processes such as cognition, emotion and motiva-
tion. In a control loop, the estimated user model serves as an input variable in order 
to optimally support the goal of user interaction and certain user needs by intelligent 
system adaptation.

The developments in brain-based interactions enable the design of a neuroadap-
tive system loop [61–63, 76–78]. These loops are currently being discussed as a 
strategy to make adaptive and autonomous technologies more user-oriented and 
augment human-computer interaction. Possible future neuroadaptive applications, 
among others, are for example:

–– Intelligent vehicles that dynamically adapt the level of automation of the driving 
task to the current intention, attentional or workload level of the driver [67, 79–82].

–– Interactive e-learning programs that adapt speed and difficulty to the cognitive 
abilities of the user [73, 83].

–– Neurofeedback-based interfaces to promote subjective well-being by training 
concentration and relaxation [84].

–– Personalized internet applications that capture affective user reaction to adapt 
their content, presentation and interaction mechanisms to individual needs and 
preferences [61–63].
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–– Collaborative robots that react sensitively to user intentions, emotions and atten-
tional levels [85–88].

There are two main benefits of implicit user interaction via a neuroadaptive con-
trol loop for personalized system applications. (1) Complementarity: There is no 
interference with other activities in the interaction cycle. The neuroadaptive control 
loop expands the communication between human and machine and thereby contrib-
utes to the self-learning process of the system towards individual user abilities, 
skills and preferences. (2) Assistance for automation: The neuroadaptive system 
can help to increase the situation-awareness of the user towards automated system 
behaviour. A transparent system behaviour develops by considering implicit user 
reactions during longer periods of interaction. Consequently, the user is expected to 
experience feelings of control over and trust in the automated system. Future 
research will reveal the extent to which these expectations are correct.

The increasing research interest in the still very young field of neuroadaptive 
technologies can also be observed at human factor engineering1 and affective com-
puting2 conferences and newly emerging, popular conferences such as neuroergo-
nomics3 and neuroadaptive technology.4 Innovation-friendly companies, e.g. from 
the automobile industry, already use brain and physiological methods for their con-
sumer research. Furthermore, technology companies from Silicon Valley, like 
Facebook5 or Elon Musk—founded NeuraLink6—invest in research on invasive 
closed-loop neuroadaptive technologies.

Although the use and advantages of neuroadaptive interaction are indisputable, 
there are still some major gaps and challenges to overcome before they can be 
applied outside of lab conditions. (1) Understanding brain functions out of the lab: 
There is still a significant lack of basic knowledge on human brain functions in 
complex real-world situations where individuals perform activities in natural envi-
ronments and social contexts. In such environments, signal analysis and machine-
learning interpretation is still very challenging. Robust algorithms to deal with 
real-world artefacts that strongly exceed the signals of interest are still needed. (2) 
Integration of context information: Neurophysiological signals cannot be 
interpreted in isolation, but must be analysed and classified in a given context of 
application. While context is controlled and known in the lab, real-life applications 
require the combination of context information to adapt technical systems to user 
states and social situations under real-world conditions.

1 https://www.ahfe2019.org/, accessed 29th July 2019.
2 http://acii-conf.org/2019/, accessed 29th July 2019.
3 http://www.biomed.drexel.edu/neuroergonomics/, accessed 29th July 2019.
4 http://neuroadaptive.org/conference, accessed 29th July 2019.
5 https://www.scientificamerican.com/article/facebook-launches-moon-shot-effort-to-decode-
speech-direct-from-the-brain/, accessed 29th July 2019.
6 https://www.wsj.com/articles/elon-musk-launches-neuralink-to-connect-brains-with-comput-
ers-1490642652, accessed 29th July 2019.
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Consequently, considerable research effort is needed to realize closed-loop solu-
tions based on brain signals robust enough to deal with the high complexity of real-
life applications [11, 12, 89].

The primary goal of a future neuroadaptive technology research agenda is to 
consistently align the increasing intelligence and autonomy of technical assistive 
systems with the emotional needs and cognitive abilities of the human—a 
human-centred neuroadaptive technology research roadmap. By their individual 
adaptability, neuroadaptive technologies contribute significantly to a human-
centred, efficient and acceptable technology. The applied research in this field 
and the possible transfer into real-life applications requires a strong transdisci-
plinary research agenda. Due to its far-reaching social implications, research and 
developments does not only have to face technological, but also social chal-
lenges, like including questions about cognitive liberty, mental privacy, mental 
integrity and psychological integrity. In addition to computer science and neuro-
science, the integration of further disciplines is needed, such as positive psychol-
ogy that aims to foster human flourishing and well-being by researching positive 
emotions and its influences during human-technology interaction as well as eth-
ics and social sciences. If neuroadaptive technologies are applied in non-medical 
areas, they must be consistently oriented to the needs and ethical values of the 
users and society.
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