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Abstract. Dynamic selection (DS) of classifiers have been explored by
researchers due to their overall ability to obtain higher accuracy on low-
sample data sets when compared majority voting. Little literature, how-
ever, has employed DS to high-dimensional data sets with substantially
more features than samples. Since, several studies have reported the ben-
efits of applying feature selection methods to high-dimensional data sets,
raised the following open research questions: 1. How DS methods perform
for such data sets? 2. Do they perform better than majority voting? and
3. Does feature selection as a pre-processing step improve their perfor-
mance? The performance of 21 DS methods was statistically compared
against the performance of majority voting on 10 high-dimensional data
sets and with a filter feature selection method. We found that majority
voting is among the best ranked classifiers and none of the DS methods
perform statistically better than it with and without feature selection.
Moreover, we demonstrated that feature selection does improve the per-
formance of DS methods.

Keywords: Ensemble learning · Dynamic integration of classifiers ·
Dynamic selection · Machine learning · Majority voting · High
dimensional data sets

1 Introduction

Over the past decades, multiple classifier systems (MCS) became a very active
area in pattern recognition. One of the most promising approaches involves
dynamic selection (DS), in which different classifiers are selected for each
unseen sample. Several authors have recently shown that dynamic selection
(DS) methods obtain high performances in terms of accuracy on low dimen-
sional datasets [7,9]. Nevertheless, many authors observed that DS techniques
are still far from the upper bound performance of the oracle, which always pre-
dicts the correct label if at least one classifier in the ensemble predicts the correct
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label. With this in mind, some authors have reported and proposed solutions to
improve the quality of the region of competence in low-dimensional datasets to
increase their performance [7,20]. Over the past decade, DS techniques have
been evaluated on low dimensional datasets and, to the best of our knowledge,
there is no comprehensive work in the literature that verifies the performance of
the state-of-art DS methods when dealing with high-dimensional small-instances
datasets. Maciel-Guerra et al. (2019) [18] studied the performance of DS methods
over a single high-dimensional protein microarray data set.

High-dimensional data sets with a small number of samples are typical in
some domains, such as biology, medicine, bioinformatics and neuroimaging.
Often in these areas data do not exist in abundance or is expensive to acquire [4].
In high dimensional data sets, many dimensions are irrelevant and/or redundant
which can directly impact the quality of the regions of competence [16,21]. Fea-
ture selection methods have been employed to remove irrelevant features and
filter methods are usually chosen due to their low computational cost [16,21].

The focus of this paper is, therefore, to evaluate how DS methods perform
on high-dimensional small-instance data sets and compare it to majority voting
which is the simplest MCS method. Despite the large number of papers published
in DS, there is no comprehensive study available verifying the use of this methods
on this specific type of data set. Following the recent study of Maciel-Guerra et
al. (2019) [18] that studied the performance of DS methods over a single small
instance high dimensional data set, we have three research questions, namely:

1. How DS methods perform in terms of accuracy?
2. Do they perform statistically better than majority voting?
3. Does feature selection as a pre-processing step improve their performance?

To answer these questions, 10 real-world benchmark data sets with a high
number of features and a low number of samples are selected. Four data sets
are text based while six are biomedical data sets relating to different types of
cancer (lung, prostate, leukemia, colon, glioma and ovarian). Twenty-one DS
methods available in the literature are compared against majority voting. The
Iman-Davenport extension of the Friedman test [14] is used to statistically verify
the performance of the classifiers over all data sets and the Bonferroni-Dunn
test [10] is used as a post-hoc test to evaluate if any of the methods outperform
statistically majority voting.

This paper is organised as follows. Section 2 provides background on the
main topics of this paper. Section 3 introduces the experiments design with the
data sets and statistical methods used. A discussion between the performance
of DS methods and other MCS methods is conducted in Sect. 4. The conclusion
and future research are given in Sect. 5.

2 Background

The quantity of data collected from multiple sources have increased greatly in the
past decade, particularly in medicine and life sciences, which brings challenges
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and opportunities. Heterogeneity, scalability, computational time and complex-
ity are some of the challenges that impede progress to extract meaningful infor-
mation from data [2,3]. High-dimensional data sets with a small number of
samples are typical in some domains, such as biology, medicine, bioinformatics
and neuroimaging [12]. We believe that approaches such as DS can improve the
classification and increase knowledge discovery in high-dimensional data.

2.1 Dynamic Selection

An important task regarding classification ensembles is the decision as to which
classifiers are required to be included to achieve high prediction accuracy. Static
Selection (SS), Dynamic Classifier Selection (DCS) and Dynamic Ensemble
Selection (DES) are the techniques commonly employed to determine the set
of classifiers within the ensemble. SS works by selecting a group of classifiers for
all new samples, while DCS and DES select a single or a group of classifiers for
each new sample, respectively. Recently, DS methods have been preferred over
static methods due to their ability to create different classifier configurations, i.e.
different groups of classifiers are experts in different local regions of the feature
space. As for many cases, different samples are associated with different classi-
fication difficulties and the ability to choose a group of classifiers can possibly
overcome static selection methods limitations [6,9,15].

Table 1. DS methods information

Name Selection criteria DS
Method

Region of
Competence

Year

Classifier Rank (CR) Ranking DCS k-NN 1993

Modified Classifier Rank
(MCR)

Ranking DCS k-NN 1997

Overall Local Accuracy
(OLA)

Accuracy DCS k-NN 1997

Local Class Accuracy (LCA) Accuracy DCS k-NN 1997

A Priori Probabilistic DCS k-NN 1999

A Posteriori Probabilistic DCS k-NN 1999

Multiple Classifier Behaviour
(MCB)

Behaviour DCS k-NN 2002

Modified Local Accuracy
(MLA)

Accuracy DCS k-NN 2002

DES - kMeans Accuracy &
Diversity

DES k-Means 2006

DES - K-Nearest Neighbour
(DES-kNN)

Accuracy &
Diveristy

DES k-NN 2006

(continued)
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Table 1. (continued)

Name Selection criteria DS
Method

Region of
Competence

Year

k-Nearest ORAcles
Elimimante (KNORA-E)

Oracle DES k-NN 2008

k-Nearest ORAcles Union
(KNORA-U)

Oracle DES k-NN 2008

DES - Exponential
(DES-EXP)

Probabilistic DES All samples 2009

DES - Randomised Reference
Classifier (DES-RRC)

Probabilistic DES All samples 2011

DES - Minimal Difference
(DES-MD)

Probabilistic DES All samples 2011

DES - Kullback-Leibler
Divergence (DES-KL)

Probabilistic DES All samples 2012

DES - Performance (DES-P) Probabilistic DES All samples 2012

k-Nearest Output Profiles
Elimiante (KNOP-E)

Behaviour DES k-NN 2013

k-Nearest Output Profiles
Union (KNOP-U)

Behaviour DES k-NN 2013

Meta-learning - DES
(Meta-DES)

Meta-learning DES k-NN 2015

Dynamic Selection on
Complexity (DSOC)

Accuracy &
Complexity

DCS k-NN 2016

For DS methods to achieve optimum recognition rates they need to select
the most competent classifiers for any given test sample, which can be done
by measuring different selection criteria depending on the technique used (accu-
racy, ranking, behaviour, diversity, probabilistic, complexity and meta-learning).
More information about each one of this different criteria can be found on the
recent review by [6,9]. A local region of the feature space surrounding the test
sample (Region of Competence) is used to estimate the competence of each clas-
sifier according to any selection criteria. The majority of DS techniques relies on
k-Nearest Neighbours (k-NN) algorithms (Table 1) and the quality of the neigh-
bourhood can have a huge impact on the performance of DS methods [6,7,9].

Table 1 shows the different DS methods found in the literature which were
presented in the most recent review by Cruz et al. [9]. More information about
each one can be found on their respective reference or on the recent reviews done
by [6,9]. These methods were chosen due to their differences in the selection
criteria and because they present the most important breakthroughs in the area
over the past three decades.
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2.2 High-Dimensional Data

Financial, risk management, computational biology, health studies are some of
the areas where high-dimensional data sets can be produced. However, in some
of these areas, such as biology and medicine, it might not be feasible to have
thousands or millions of samples due to the nature of the disease or the access to
samples [29]. DNA microarray is one example of these types of data sets where
data collected from tissue and cell samples are used to measure the levels of
gene expression. The number of genes is usually far higher than the number of
patients in cancer research for instance [4].

Data sets with a high number of features usually poses challenges that are
commonly referred as the “curse of dimensionality”. One of the main aspects of
this curse is distance concentration, which can directly affect machine learning
application, specially the ones that deal with distance metrics such as k-NN.
Concentration of distance refers to the tendency of distance to all points to
become almost equal in high-dimensional spaces [1,24,25].

For these reasons, for any classifier to be successful (have a high accuracy
level), it is usually necessary to have sufficient data to cover the feature space
during training, so it can have as much information possible on the feature space
to find the correct learning function to predict the output associated with new
inputs [4,29]. If this is not the case, researchers frequently apply different feature
selection techniques to remove unwanted (redundant, irrelevant, noisy) features
and, consequently, improve the performance of classifiers [4].

2.3 Feature Selection

In two recent reviews Bólon-Canedo et al. [4,5] reported the benefits of applying
feature selection methods to high-dimensional data sets, and highlighted the fact
that feature selection methods are considered a de facto standard in machine
learning and data analysis since its introduction.

Feature selection maps x ∈ R
d → y ∈ R

p where p < d. The reduction criteria
usually either maintains or improves the accuracy of classifiers trained with this
data, while simplifying the complexity of the model [4,5,13]. Feature selection
methods can be classified into three main groups:

1. Filter methods: perform the feature selection as a pre-processing step. It is
independent from the learning stage and relies only on the attributes of the
data [5]. Despite the lower time consumption, one of the main disadvantages
of filters is the fact that they do not interact with the learning method; which
usually leads to worse performance when compared to other methods [4].

2. Wrapper methods: use a learning algorithm as a subroutine, measuring the
usefulness of each subset of features with the prediction performance of the
learning algorithm over a validation set [5]. Although usually wrapper meth-
ods show a better performance when compared with filter methods, they have
a much higher computation cost which increases as the number of features in
the data increases [4].
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3. Embedded methods: the feature selection process is built into the learning
method, so it can use the core of the learning method to rank the features by
their importance [4,5].

Tsymbal et al. [28] and Pechenizkiy et al. [22] demonstrated the benefits of
integrating feature selection methods to the DS framework. However, the data
sets used had a sample-feature ratio higher than one. In addition, the filtering
method proposed by Almeida (2014) [20] achieved higher performances in terms
of accuracy only on datasets with less than 20 features and 3 classes. These
authors were able to show that feature selection methods incorporated to the
DS framework can improve the performance of DS methods on some data sets
and overcome some of the problems related to high-dimensional data sets. In
addition, Maciel-Guerra et al. (2019) studied a protein microarray data set to
evaluate the performance of DS methods. The authors demonstrated that for
this single data set, DS methods do not outperform majority voting.

3 Experiments

3.1 Data Sets

The experiments are conducted on 10 real-world high-dimensional data sets
(Table 2. Nine of those data sets are obtained from the Feature Selection data
sets (Arizona State University [17]) and another from the UCI machine learning
repository [11]. We considered only data sets with small sample sizes

Table 2. Data sets attributes

Data set Sample (s) Features (f) Ratio (s/f) No. of classes Distribution Type Source

Leukemia/ALLAML 72 7129 0.0101 2 65.3 - 34.7% Microarary [17]

Arcene 200 10000 0.02 2 56 - 44% Mass spectrometry [17]

Basehock 1993 4862 0.4099 2 49.9 - 50.1% Text [17]

Colon 62 2000 0.031 2 64.5 - 35.5% Microarary [17]

Dexter 600 20000 0.03 2 50 - 50% Text [11]

Gli85 85 22283 0.0038 2 30.6 - 69.4% Microarary [17]

Pcmac 1943 3289 0.5907 2 50.5 - 49.5% Text [17]

Prostate 102 5966 0.0171 2 49 - 51% Microarary [17]

Relathe 1427 4322 0.3302 2 54.6 - 45.4% Text [17]

Smk-Can 187 19993 0.0094 2 48.1 - 51.9% Microarary [17]

3.2 Experimental Design

All techniques are implemented using the scikit-learn [23] and the DESlib [8]
libraries in Python. The experiments are conducted using 30 replicates. For each
replicate, the data sets are randomly divided in 50% for the training set, 25%
for the Region of Competence set and 25% for the test set as suggested by Cruz
et al. [9]. These divisions are performed preserving the proportion of samples for
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each class by using the stratified k-fold cross validation function in the scikit-
learn [23] library.

The pool of classifiers is composed of 11 decision trees, as suggested by
Woloszynski et al. [31], with pruning level set to 10. The pool is generated
using the bagging technique, similarly to the methodology followed by Woloszyn-
ski in [30,31]. An odd number of classifiers is chosen to overcome decision ties.
These classifiers are used due to their instability when trained with different sets
of data, i.e., small differences on the training set can create different trees [31].
Following the recent survey on DS techniques [9], the size of the Region of
Competence K is set to 7 neighbours for all the techniques based on k-NN.
Moreover, as suggested by Cruz and Soares in [9,26,27], 30% of the base classi-
fiers are selected using accuracy and diversity for the techniques DES-kNN and
DES-kMeans. In addition, the number of clusters of DES-kMeans is set to 5.

3.3 Comparison of Techniques

The Friedman test FF with Iman-Davenport correction [14] is employed for
statistical comparison of multiple classifier system techniques as suggested by
Cruz and Demsar in [9,10]. FF ranks the algorithms for each data set separately,
i.e. the best algorithm gets ranking 1, the second best ranking 2, and so on. In
case of ties, average ranks are assigned. FF is distributed according to the X 2

F

distribution and the Iman-Davenport extension (Eq. 1) is distributed according
to the F-distribution (Eq. 2) with k−1 and (N −1)× (k−1) degrees of freedom.
The null-hypothesis states that all algorithms are equivalent and so their average
ranks should be equal.

X 2
F =

12N

k(k + 1)

[ ∑
j

R2
j − k(k + 1)2

4

]
(1)

FF =
(N − 1)X 2

F

N(k − 1) − X 2
F

(2)

where Rj is the average rank of the j-th classifier, k is the number of classifiers
and N is the number of data sets.

The rank of each method is calculated using the weighted ranking approach
proposed by Yu in [32], which considers the differences among the average per-
formance metric values between classifiers for each data set [32]. The best per-
forming algorithm is the one with the lowest average rank. Next, as suggested
by [10], to compare all classifiers against a control, we use the Bonferroni-Dunn
test with the following test equation to compare two classifiers:

z = (Ri − Rj)
/√

k(k + 1)
6N

(3)

where Ri is the rank of i-th classifier, k is the number of classifiers and N is the
number of data sets. The z value is than used to find the corresponding p-value
from the two-tailed normal distribution table, which is subsequently compared
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to an appropriate significance level α. The Bonferroni-Dunn test subsequently
divides α by k − 1 to control the family-wise error rate. The level of α = 0.05 is
considered as significance level. Hence, the level of p < 0.0022 was considered as
statistically significant.

4 Results and Discussion

Accuracy is calculated for all experiments and averaged over the 10 replications.
In addition, the rank of all classifiers for each data set is calculated according to
the weighted ranking approach proposed by Yu in [32] and averaged to measure
the Z-score to find its respective p-value. With 22 classifiers and 10 data sets,
the Friedman test is distributed according to the F distribution with 22−1 = 21
and (10−1)× (22−1) = 189 degrees of freedom. The critical value of F (21,189)
for α = 0.0001 is 2.8165.

Table 1 shows the 21 DS methods used. Nine are dynamic classifier selection
methods (the first eight and the last one based on the date the paper was pub-
lished) which select a single classifier from the pool of classifiers. The remaining
methods are dynamic ensemble selection techniques, which select an ensemble
of classifiers from the initial pool. These techniques are selected because they
incorporate all the major breakthroughs in the area of dynamic selection on the
past three decades as highlighted by Cruz et al. [9], i.e, the papers which pro-
posed different selection techniques to be incorporated into the DS framework.
We compare the average rank obtained by the majority voting method (static
selection) against the 21 DS methods.

The first experiment assesses classifier performance without feature selection.
Table 3 shows the average accuracy and standard deviation for each data set,
the average rank, Z-score and p-value results for all the classifiers that had a rank
lower than majority voting without feature selection. The FF statistic is 4.7468,
so the null-hypothesis can be rejected with 99.99% confidence. To compare all
classifiers against a control, majority voting, the Bonferroni-Dunn test is used
to measure the Z-score for each classifier. Even though there are 3 classifiers
(KNORA-U, KNOP-U and DES-P) with a better rank than majority voting,
none of them is statistically different from majority voting.

The second experiment (Table 4) employs the univariate feature selection
method. Instead of selecting a specific number of features, a p-value is computed
using the ANOVA F-test and a family wise error rate is used to select them with a
95% confidence level. For high-dimensional data sets it is necessary to compute a
feature selection method to reduce the complexity of the problem. Nonetheless,
this is not an easy task due to the “curse of dimensionality”. Therefore, the
feature selection method chosen must be fast to compute because of the large
number of features. This is the reasoning for choosing a filter method as the
feature selection approach. For this experiment, the FF statistical value was
5.6171. Aposteriori, KNORA-U and KNOP-U had a lower rank when compared
with majority voting, nevertheless, these ranks are not statistically different.

The aforementioned results show that for all the data sets we tested with more
features than samples dynamic selection methods are statistically equivalent to
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Table 3. Average accuracy, ranking, z-score and respective p-value for the classifiers
that had a lower rank when compared with majority without feature selection and the
oracle results

knop u knora u des p majority voting oracle

Allaml 0.9333 ± 0.0563 0.9296 ± 0.0573 0.9296 ± 0.0573 0.9278 ± 0.0576 1 ± 0

Arcene 0.7067 ± 0.0646 0.7173 ± 0.0667 0.704 ± 0.0576 0.71 ± 0.0586 0.996 ± 0.0095

Basehock 0.9045 ± 0.0138 0.8922 ± 0.0132 0.8923 ± 0.0132 0.8917 ± 0.0128 0.9625 ± 0.013

Colon 0.7542 ± 0.0926 0.7604 ± 0.0983 0.7417 ± 0.1067 0.7438 ± 0.0932 0.9896 ± 0.0233

Dexter 0.8789 ± 0.0357 0.8722 ± 0.0366 0.8731 ± 0.0368 0.8729 ± 0.0367 0.992 ± 0.0111

Gli 0.8136 ± 0.0678 0.8212 ± 0.0713 0.8273 ± 0.0737 0.8152 ± 0.0713 0.9924 ± 0.0169

Pcmac 0.8648 ± 0.0162 0.8582 ± 0.0158 0.8576 ± 0.016 0.8575 ± 0.016 0.9421 ± 0.0261

Prostate 0.8782 ± 0.0724 0.8833 ± 0.064 0.8821 ± 0.062 0.8821 ± 0.0688 0.9936 ± 0.0143

Relathe 0.825 ± 0.0205 0.8085 ± 0.0226 0.8121 ± 0.0228 0.8076 ± 0.0217 0.9525 ± 0.0193

Smkcan 0.6298 ± 0.0637 0.6255 ± 0.0551 0.6262 ± 0.0661 0.6135 ± 0.053 0.9986 ± 0.0053

Rank 5,60 6,49 6,82 7,47 –

z score 0,6413 0,3374 0,2220 0 –

p-value 0,5213 0,7358 0,8243 1 –

Table 4. Average accuracy, ranking, z-score and respective p-value for the classifiers
that had a lower rank when compared with majority with univariate feature selection
based on the ANOVA-F test with Family-wise Error rate and the oracle results

aposteriori knop u knora u majority voting oracle

Allaml 0.9111 ± 0.0682 0.9315 ± 0.0652 0.9333 ± 0.0664 0.9333 ± 0.0664 1 ± 0

Arcene 0.6907 ± 0.0593 0.7727 ± 0.065 0.7693 ± 0.0655 0.766 ± 0.0687 0.9913 ± 0.0123

Basehock 0.9048 ± 0.0144 0.9063 ± 0.0128 0.895 ± 0.0137 0.8929 ± 0.0136 0.9633 ± 0.0125

Colon 0.8625 ± 0.0987 0.7896 ± 0.0876 0.7896 ± 0.0876 0.7938 ± 0.0886 0.9688 ± 0.0419

Dexter 0.8949 ± 0.0262 0.9009 ± 0.0174 0.8976 ± 0.0166 0.8962 ± 0.0204 0.99 ± 0.0089

Gli 0.8864 ± 0.0721 0.8515 ± 0.0778 0.8545 ± 0.0866 0.8606 ± 0.0813 0.9924 ± 0.0169

Pcmac 0.8737 ± 0.0138 0.8684 ± 0.0186 0.8666 ± 0.0184 0.8641 ± 0.0153 0.9198 ± 0.0368

Prostate 0.8949 ± 0.0432 0.8936 ± 0.0656 0.8885 ± 0.0669 0.8897 ± 0.0657 0.9885 ± 0.0202

Relathe 0.8313 ± 0.0166 0.8274 ± 0.0204 0.8183 ± 0.0209 0.8139 ± 0.0204 0.9198 ± 0.0374

Smkcan 0.7553 ± 0.0568 0.7333 ± 0.0688 0.7369 ± 0.0685 0.7355 ± 0.074 0.9872 ± 0.0224

Rank 5,89 5,9 7,3 7,81 –

z score 0,6606 0,6585 0,1756 0 –

p-value 0,5089 0,5102 0,8606 1 –

a simple method such as majority voting. This result differs from the recent
reviews in the literature [6,9] that showcased the higher performance of DS
methods over majority voting on low-dimensions data sets. Nonetheless, the
filter feature selection method chosen was able to reduce drastically the number
of features (Table 5) and increase the performance of most classifiers over all
data sets.

The type of data sets used in our work might explain the reasons of our find-
ings. The data sets investigated have a far larger number of features compared
to the number of instances. This situation poses a problem for machine learning
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techniques for some reasons: (1) wrapper methods require a reasonable compu-
tational time to select a subset of features in a large search space, hence the
selection of a filter technique to reduce the dimensionality; (2) it is likely that
there is insufficient data to cover the entire feature space, because the reduc-
tion of dimensionality increased the performance of 97% of 22 classifiers over 10
data sets; (3) Euclidean distance does not work on high-dimensional spaces since
points are equally distance from one another.

Table 5. Number of features after applying the filter univariate feature selection based
on the ANOVA-F test with Family-wise Error rate

Data sets Features before filter Features after filter Reduction

Allaml 7129 130 98,18%

Arcene 10000 937 90,63%

Basehock 4862 286 94,12%

Colon 2000 16 99,20%

Dexter 20000 36 99,82%

Gli 22283 265 98,81%

Pcmac 3289 59 98,21%

Prostate 5966 198 96,68%

Relathe 4322 126 97,08%

Smkcan 19993 63 99,68%

We focused on demonstrating that DS methods did not have high perfor-
mance levels on data sets with high-dimensionality and low sample sizes when
compared with a simple MCS method such as majority voting. The results sug-
gest that the Euclidean distance used by most of the methods is not working and
therefore an alternative must be proposed for these types of data set. Moreover,
feature selection could be incorporate to the DS framework to select the most
important features for each sample. Although the results suggest an increase in
performance, they are still far from the oracle. This indicates that the features
selected might still not be the best subset.

In addition, due to the properties of high-dimensional spaces, clusters can
be masked [21]; and a phenomena called local feature relevance happens, i.e.,
different subsets of features are relevant for different clusters [16]. This might
explain the reason why the accuracy after feature selection was still further apart
from the oracle and further investigations must be conducted to overcome this
issue and improve even further the results.

5 Conclusions

In this paper, we investigated how DS methods perform on high dimensional data
sets, more specifically those with a sample-feature ratio below one. We compared
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21 DS methods against the majority voting method. Our approach used the
Friedman test with the Iman-Davenport correction to compare the averaged
weighted ranking of each classifier for all data sets. If the null-hypothesis is
rejected, the Bonferroni-Dunn test is used as a post-hoc test to compare all
classifiers against a control (majority voting). Experiments with and without
feature selection were performed and showed that for high dimensional data
sets the DS methods are statistically equivalent to the majority voting. For
both studies, with and without feature selection, the null-hypothesis of the FF

statistic was reject with a confidence of 99.99%. Moreover, on both studies,
the Bonferroni-Dunn test showed that none of the best ranked classifiers are
statistically different from the majority voting classifier, which contradicts most
of the results in the literature. This paper extends the research done by Maciel-
Guerra et al. (2019) [18] by using a more comprehensive list of data sets. Our
results indicate that modifications to the traditional DS framework could be
beneficial.

The future work will extend the study of DS methods on high dimensional
data sets with modifications proposed to the way the region of competence works.
As suggested by Aggarwal et al. [1], the use of L1 norm and the natural exten-
sion the authors provide is more preferable for high dimensional spaces when
compared with Euclidean distance. Therefore, it would be important to investi-
gate whether different distance metrics can improve the region of competence.
As suggested by Maciel-Guerra et al. (2020) [19], we will focus on subspace clus-
tering which localise their search not only in terms of samples but in terms of
features as well to overcome the issues presented by k-NN on high-dimensional
data sets.
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rera, F.: A review of microarray datasets and applied feature selection methods.
Inf. Sci. 282, 111–135 (2014). https://doi.org/10.1016/j.ins.2014.05.042

5. Bolón-Canedo, V., Sánchez-Marono, N., Alonso-Betanzos, A.: Feature selection for
high-dimensional data. Prog. Artif. Intell. 5(2), 65–75 (2016). https://doi.org/10.
1007/s13748-015-0080-y

6. Britto Jr., A.S., Sabourin, R., Oliveira, L.E.S.: Dynamic selection of classifiers -
a comprehensive review. Pattern Recogn. 47(11), 3665–3680 (2014). https://doi.
org/10.1016/j.patcog.2014.05.003

https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/10.1109/WCICA.2016.7578244
https://doi.org/10.1109/WCICA.2016.7578244
https://doi.org/10.1016/j.ins.2014.05.042
https://doi.org/10.1007/s13748-015-0080-y
https://doi.org/10.1007/s13748-015-0080-y
https://doi.org/10.1016/j.patcog.2014.05.003
https://doi.org/10.1016/j.patcog.2014.05.003


648 A. Maciel-Guerra et al.

7. Cruz, R.M., Zakane, H.H., Sabourin, R., Cavalcanti, G.D.: Dynamic ensemble selec-
tion vs k-NN: why and when dynamic selection obtains higher classification per-
formance? In: The Seventh International Conference on Image Processing Theory,
Tools and Applications (IPTA), Montreal, Canada (2017)

8. Cruz, R.M.O., Hafemann, L.G., Sabourin, R., Cavalcanti, G.D.C.: DESlib: A
Dynamic ensemble selection library in Python. arXiv preprint arXiv:1802.04967
(2018)

9. Cruz, R.M., Sabourin, R., Cavalcanti, G.D.: Dynamic classifier selection: recent
advances and perspectives. Inf. Fusion 41(Supplement C), 195–216 (2018). https://
doi.org/10.1016/j.inffus.2017.09.010
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