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Abstract. In machine learning problems in general, and in classification
in particular, overfitting and inaccuracies can be obtained because of the
presence of spurious features and outliers. Unfortunately, this is a fre-
quent situation when dealing with real data. To handle outliers proneness
and achieve variable selection, we propose a robust method performing
the outright rejection of discordant observations together with the selec-
tion of relevant variables. A natural way to define the corresponding
optimization problem is to use the �0 norm and recast it as a mixed
integer optimization problem (MIO) having a unique global solution,
benefiting from algorithmic advances in integer optimization combined
with hardware improvements. We also present an empirical comparison
between the �0 norm approach, the 0–1 loss and the hinge loss classifica-
tion problems. Results on both synthetic and real data sets showed that,
the proposed approach provides high quality solutions.

Keywords: Robust classification · Sparse classification · SVM · Mixed
integer programming

1 Introduction

In support vector machine (SVM) classification, the natural way to quantify
the performance of a classifier is via the 0–1 loss. This loss is non-convex and
considered to be NP-Hard. To this end, the hinge loss, which is convex, was
introduced for the first time with [1]. Since then, it has become one of the
most popular classifiers. An important reason behind the popularity of SVM
is its significant empirical success in various applications such as data mining,
engineering and bio-informatics [2]. In Fig. 1, the difference between the hinge-
loss and the 0–1 loss is shown.

Considering training examples xi ∈ R
p with their respective labels yi ∈

{−1, 1}, i = 1, . . . , n. The main goal of SVM is to find a hyperplane (classifier)
by introducing hard margins for separable data and soft margins for linearly non-
separable data, the purpose of which is to separate data as far as possible from
the hyperplane. A decision hyperplane can be defined by an intercept term b and
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a decision hyperplane normal vector w which is perpendicular to the hyperplane.
This vector is commonly referred to, in the machine learning, literature as the
weight vector. To choose among all the hyperplanes that are perpendicular to
the normal vector, we specify the intercept term b. Because the hyperplane
is perpendicular to the normal vector, all points x on the hyperplane satisfy
wT x + b = 0. Let the margin be defined as the distance from the hyperplane
to the closest point across both classes. It can be shown that the width of the
margin is equal to 2

||w||2 , thus maximizing this width is equivalent to minimizing
the norm ||w||22 (or 1

2 ||w||22). To obtain the optimal hyperplane, one should solve
the following optimization problem:

min
w,ξ

1
2‖w‖22 + C

n∑

i=1

ξi

s.t. yi(wT x + b) ≥ 1 − ξi i = 1 . . . n
ξi ≥ 0 i = 1 . . . n

(1)

where ξ is a slack variable and C is a parameter controlling the trade-off between
a large margin and a less constrained violation. The dual problem can be for-
mulated through the use of Lagrange multipliers:

max
α

C

n∑

i=1

αi − 1
2

n∑

i=1

n∑

i=1

αiαjyiyjx
T
i xj

s.t 0 ≤ αi ≤ C i = 1, . . . , n
n∑

i=1

αiyi = 0

Both the primal and dual are convex quadratic optimization problems. Because
the dual problem has fewer decision variables, and the majority of these variables
tend to be equal to zero, it is typically the problem solved in practice [3].

While algorithmic advances in integer optimization combined with hardware
improvements have resulted in an astonishing 200 billion factor speedup in solving
Mixed Integer Optimization (MIO) problems [4], this rapid development of MIO
enabled [5] to reformulate the 0–1 loss classification problem as a mixed integer
optimization problem and use it to solve small-scale classification problems.

In addition to all benefits listed above, SVM suffers from the existence of out-
liers and the existence of irrelevant features (especially for high dimensional data
sets). Indeed, in the past three decades, the dimensionality of the data involved
in machine learning and data mining tasks has increased explosively. Data with
extremely high dimensionality has presented serious challenges to existing learn-
ing methods [3,6]. With the presence of a large number of features, a learning
model tends to overfit, resulting in their performance degenerates. Feature selec-
tion for SVM has been widely studied. For example, [7] introduced an algorithm
based upon finding the features which minimize bounds on the leave-one-out
error. The search can be efficiently performed via gradient descent. [8] proposed
an approach that takes existing theoretical bounds on the generalization error
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for SVMs instead of performing cross-validation. This is computationally faster
than k-fold cross-validation. Additionally, in general, the error bounds have a
higher bias than cross-validation in practical situations they often have a lower
variance and can thus reduce the overfitting of the wrapper algorithm. A convex
energy-based framework to jointly perform feature selection and SVM parameter
learning for linear and non-linear kernels was proposed by [9]. They also showed
the equivalence between their approach and the �1 SVM. In a recent work, [10]
developed an efficient method for sparse support vector machines with �0 norm
approximation. The proposed method approximates the �0 minimization through
solving a series of �2 optimization problems, which can be formulated with dual
variables.

Furthermore, in practical applications, training samples are often contami-
nated by noise and some even have wrong labels [11]. These are usually known
as outliers. In order to mitigate the effects of outliers, different approaches have
been proposed to improve the robustness of SVM. [12] suggested to use the dis-
tance between each training sample and its class center to calculate an adaptive
margin so as to reduce the influence of outliers. Weighted SVM (WSVM) or fuzzy
SVM was also proposed to deal with outliers [13–15]. In WSVM, different weights
are assigned to different training samples which can show their importance in
the training data set. Several weight functions have been proposed [13–15]. [16]
presented a novel combinatorial technique, which was called random gradient
descent (RGD) tree, to identify and remove outliers in SVM and developed a
new algorithm called RGD-SVM. [17] proposed the re-scaled hinge loss which is
a monotonic, bounded and non-convex loss. Introducing a Ramp Loss function
into one-class SVM optimization to reduce outliers influence was suggested by
[18]. Then the outliers are identified and removed from the training set. The
final classification surface is obtained on the remaining training samples. [19]
introduced a new robust loss function (called Lq loss) based on the concept of
quantile and correntropy, which can be seen as an improved version of quantile
loss function. To deal with label outliers, [20] introduced a variable Δyi ∈ {0, 1}
where 1 indicates that the label was incorrect and has in fact been flipped, and
0 indicates that the label was correct. They also introduced a variable Δxi to
deal with uncertainty of features. They proposed the use of mixed integer opti-
mization problems to solve the obtained problem. However, the algorithm is not
sparse.

To obtain a sparse and robust least squares support vector machines (SR-
LSSVM), [21] proposed the SR-LSSVM algorithm to obtain a sparse solution
of the robust least squares SVM (R-LSSVM) [22,23] by applying a low-rank
approximation of the kernel matrix.

Contributions:

In this paper, we address the problem of both feature selection and outlier detec-
tion using the �0 norm. We summarize our contributions in this paper below:

– We present an approach jointly performing feature selection and outlier detec-
tion for SVM classification;
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– We propose to recast the presented problem as a mixed integer optimization
problem which allows the use of efficient solvers (Gurobi) to solve it. Note that
the sub-optimality (near-optimality) of the obtained solution is guaranteed
even if we terminate the algorithm early;

– We present computational results on both real and synthetic datasets and
compare the proposed approach with the classical 0–1 loss and hinge loss
classification problems. The results show that the proposed approach provides
high quality solutions.

The remainder of the paper is organized as follows. In Sect. 2, we present our
approach for variable selection and outliers detection using the �0 norm together
with its formulation as a mixed integer optimization problem allowing to obtain
the global solution. Section 3 reports empirical evidence on synthetic data sets,
while empirical results on real data sets were presented in Sect. 4. Finally, the
paper is concluded in Sect. 5.

2 Linear Binary Classification

We have n training points, where each input xi has p attributes and is in one
of two classes yi ∈ {−1, 1}. Under linear assumption, the classification function
can be expressed as f(x,w) = wT x + b. The goal is to predict the target class
ŷ ∈ {−1, 1} which is defined by:

ŷi =
{

1 f(xi, w) ≥ 0
−1 f(xi, w) < 0 (2)

The natural way to quantify the performance of a classifier is using the 0–1 loss
function: for a given instance x and a true binary label y ∈ {−1, 1}, we incur a
loss of 1 if sign(yf) < 0, and 0 otherwise, that is:

1l[y �= sign(f(x,w))] =
{

1 if y �= sign(f(x,w))
0 otherwise

(3)

The 0–1 loss classification problem can be written as

min
n∑

i=1

1l[yi �= sign(f(xi, w))] (4)

Problem (4) is non-convex, to this end it has been replaced by a convex surrogate
such as the hinge loss. However, advances in integer optimization resulted an
impressive speedup in solving mixed integer optimization problems (MIO). To
this end, [5] proposed to recast the problem of 0–1 loss classification (4) as a
mixed integer optimization problem, that is:

min
n∑

i=1

li

s.t. yi(wT xi + b) ≥ 1 − Mli
l ∈ {0, 1}n

(5)
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where M is a sufficiently large constant. Since this formulation suffers from infi-
nite number of optimal solutions and it lacks from the generalization ability, [5]
proposed a maximum margin 0–1 loss classifier defined as follows:

min
n∑

i=1

li + CwT w

s.t. yi(wT xi + b) ≥ 1 − Mli
l ∈ {0, 1}n

(6)

where C is a positive parameter, and showed the efficiency of this approach for
small-scale classification problems.
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Fig. 1. Illustration of the hinge loss which is a convex surrogate to the 0–1 loss. The
0–1 loss is shown in blue and the hinge loss is shown in red. (Color figure online)

2.1 Introducing Binary Variables

Variable selection involves the �0 norm function to count the number of useful
variables. This counting function can be represented by introducing p binary
variables zj ∈ {0, 1} such that

‖w‖0 =
p∑

j=1

zj and zj = 0 ⇔ wj = 0.

Different approaches can be used to force zj = 0 ⇔ wj = 0 into an optimization
problem, such as:

1. Replace wj by zjwj for j = 1, . . . , p,

2. Set |wj |(1 − zj) = 0 for j = 1, . . . , p or
p∑

j=1

|wj |(1 − zj) = 0,
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3. Use a big-M constraint, |wj | ≤ Mvzj for j = 1, . . . , p and for some fixed
constant Mv large enough (such as Mv ≥ maxj |w�

j |, w�
j being the solution of

the optimization problem),
4. Treat zj = 0 ⇔ wj = 0 as logical implications (also called indicator con-

straints or special ordered set SOS-1). Note that this kind of logical impli-
cation can be efficiently handled in a branch-and-bound procedure for MIO
problems.

We now discuss and give a short overview of the advantages and drawbacks
of each approach. The two first approaches involve nonlinear interaction terms
between binary and continuous variables. Their interest lies in the possibility of
obtaining interesting continuous relaxations. The main advantage of the big M
method (approach 3) is that it brings only linear inequality constraints but the
value of the M term needs to be chosen carefully since it shows a great deal
of practical influence on the solver performance. Logical implications (approach
4) have the advantage of avoiding these types of problems, as they do not rely
on a separate constant value. However, they tend to have weaker relaxations, a
condition which may lead to longer solve times in a model. In this paper we will
use the third approach for our implementation.

2.2 Our Approach

To deal with the problem of outlier detection, we propose to add a variable τ so
that Problem (1) becomes:

min
w,ξ,τ

1
2‖w‖22 + C

n∑

i=1

|ξi − τi|

s.t. yi(wT x + b) ≥ 1 − ξi i = 1 . . . n
||w||0 ≤ kv

||τ ||0 ≤ ko

ξi ≥ 0 i = 1 . . . n

(7)

where the �0 norm of a vector w counts the number of nonzeros in w. In this for-
mulation, kv represents the number of features to be selected while ko represents
the number of outliers to be detected. We note that in Problem (7), τ(i) �= 0
means that the observation “i” is an outlier. In Fig. 2 we can see the effect of an
outlier on the hinge-loss classifier. Furthermore, it can be also seen that the MIO
approach can still recover the true classifier even in the presence of the outlier.
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Fig. 2. Example of synthetically generated data in two dimensions to show the effect
of an outlier on the Hinge-loss classification. The true generating hyperplane in green,
the Hinge-loss hyperplane in blue and the MIO approach hyperplane in red. (Color
figure online)

2.3 A MIO Formulation

To solve (7) exactly, we recast it as a mixed integer optimization problem. Two
binary variables z and t are introduced to control the sparsity levels for w and
τ respectively. The MIO formulation of (7) is as follows:

min
w,ξ,τ,t,z,b

1
2‖w‖22 + C

n∑

i=1

|ξi − τi|

s.t.
p∑

j=1

zj ≤ kv

|wj | ≤ zjMv j = 1 . . . p
n∑

i=1

ti ≤ ko

|τi| ≤ tiMo i = 1 . . . n
yi(w′xi + b) ≥ 1 − ξi i = 1 . . . n
ξi ≥ 0 i = 1 . . . n

(8)

where w ∈ R
p, τ, ξ ∈ R

n, t ∈ {0, 1}n, z ∈ {0, 1}p and b ∈ R.
When kv = 0 and ko = 0, no feature selection nor outlier detection are

performed, the resulting problem is the classical hinge loss classification problem.
In the above formula, Mv and Mo are two big values.

2.4 Solving the Problem Using Gurobi

To overcome the absolute value in the objective function, we introduce two new
variables α+ and α−, such that ξi − τi = α+

i − α−
i , and |ξi − τi| = α+

i + α−
i ,

where α+
i , α−

i ≥ 0 for i = 1 . . . n. Then the new obtained problem is as follows:
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min
w,ξ,τ,t,z,b

1
2‖w‖22 + C

n∑

i=1

(α+
i + α−

i )

s.t.
p∑

j=1

zj ≤ kv

|βj | ≤ zjMv j = 1 . . . p
n∑

i=1

ti ≤ ko

|τi| ≤ tiMo i = 1 . . . n
yi(w′xi + b) ≥ 1 − ξi i = 1 . . . n
ξi − τi = α+

i − α−
i i = 1 . . . n

ξi ≥ 0 i = 1 . . . n
α+

i ≥ 0 i = 1 . . . n
α−

i ≥ 0 i = 1 . . . n

(9)

2.5 Computational Cost

Fig. 3. The evolution of the MIO for the breast cancer prognostic data set with n = 194
and p = 33. The top panel shows the evolution of upper and lower bounds with time
when ko = 5%, while the bottom panel shows the evolution of upper and lower bounds
with time when ko = 2.5%. The left panel shows the evolution of upper and lower
bounds with time when kv = p, while the right panel shows the evolution of upper and
lower bounds with time when kv = 0.8p. For all panels, C = 1.

In Fig. 3, the left panel shows the evolution of upper and lower bounds with
time when kv = p, while the right panel shows this evolution when kv = 0.8p.
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By comparing the left and the right panels, we can see that the computational
time increased from 1200 s to 1800 s (top panel) and from 4 s to 8 s (bottom
panel). This means that the value of kv has an influence on the computational
cost.

Similarly, the top panel shows the evolution of upper and lower bounds with
time when ko = 5%, while the bottom panel shows this evolution when ko =
2.5%. A simple comparison between the top and the bottom panels sheds the
light on how much increasing the value of ko (percentage of outliers to detect)
will increase the time needed to certify optimality. Indeed, decreasing ko from
5% to 2.5% resulted a significant decrease of the computational cost, that is from
1200 s to only 4 s, and from 1800 s to only 8 s.

We note that optimal solutions are found in a few seconds in the top panel
examples, but it takes 20–30 min to certify optimality via the lower bounds. We
also note that the computational time depends on the value of C and the big-M
values.

3 Experiments on Synthetic Data Sets

To report the robustness of the proposed approach, we evaluated its performance
on synthetically generated data sets. In these experiments, we run the classical
hinge-loss classifier and the MIO approach to recover the separating hyperplane
classifier.

3.1 Experimental Setup

The experiment uses data in R
2. The data are generated synthetically as follows:

1. Twenty-five points are generated as multivariate random normal, N(3.5e, I)
where e is the vector of ones and I is the identity matrix. These points are
given the label +1.

2. Twenty-five points are generated as multivariate random normal,
N(−3.5e, I). These points are given the label −1.

3. Ten outlier points are introduced as multivariate random normal N(0, 3I),
where 0 is the vector of zeros. The labels are randomly generated as either
−1 or +1.

We split the data 75%/25% into training and validation sets, which we used to
tune the parameters for both methods. To create the test set, we generated 1000
points in the same way as items 1 and 2 above.

An example of a data set generated according to this procedure is shown in
Fig. 4. By the symmetry of this data generation process, we can see that the true
hyperplane separating the two clusters of points is given by eT x = 0. The goal
of the experiment is to show how closely the two methods can recover the truth
in the data. We are interested in the following two measures:
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Fig. 4. Example of synthetically generated data in two dimensions alongside the true
generating hyperplane

– Accuracy: We measure and evaluate the out-of sample accuracy of the trained
classifiers on the test set, defined by:

Accuracy =
TP + TN

TP + FP + TN + FN

where TP and TN represent the quantity of correct positive and correct neg-
ative samples, respectively; FN and FP respectively represent the number of
misclassification negative and positive samples. The higher the values of the
Accuracy, the better the model is.

– Similarity: To evaluate the ability of each method to recover the truth in the
data, we measure the cosine of the angle between the separating hyperplane
generated by the methods and the true hyperplane.

We recall that the cosine of the angle α between two vectors u and v is given by:

cos(α) =
u.v

||u|| × ||v||

3.2 Results

Table 1. Performance results for synthetic data experiments

Accuracy Similarity

Hinge loss 96.93 0.9428

MIO approach 97.85 0.9813
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This experiment was repeated 1000 times. We present the means of the two
measures for each method in Table 1. The results show that the MIO approach
improved the performance of classification. In fact, the accuracy increased by
about 1% and that it recovered the truth better than the classical hinge loss
classifier (cosine value closer to 1 means smaller angle between hyperplanes and
thus better recovery).

4 Experiments on Real Data Sets

To evaluate the effectiveness of the proposed method, we carry out numeri-
cal simulations on twelve real-world data sets from the University of California
Irvine (UCI) Machine Learning Repository. All experiments are implemented
using MATLAB-Gurobi interface. The experiment environment is: PC with Intel
Core i7 4700MQ (2.40 GHz) with 8 GB memory. We note that for each problem
instance, we used a time limit of 15 min for Gurobi to optimize the classification
problem.

We recall that to obtain: the hinge-loss classification problem solution we
solved Problem (1), the 0–1 loss problem solution we solved Problem (6). The
solution of the MIO approach was found by solving Problem (7).

4.1 Experimental Setup

To evaluate the performance of the proposed approach, we considered two sce-
narios:

1. In the first scenario, 10% of the training and validation sets labels were ran-
domly flipped. The aim is to study the robustness of the mixed integer pro-
gramming approach.

2. In the second scenario, we wanted to mimic real-world setting, hence data
sets were not modified.

For both scenarios, each data set was normalized using the min-max scaling and
was split randomly into three parts: the training set (60%), the validation set
(20%), and the testing set (20%). The training set was used to train each clas-
sifier for a variety of combinations of input parameters. For each combination
of parameters, the accuracy on the validation set was calculated, and this was
used to select the best combination of parameters for each classifier. Finally, the
classifier was trained by using these best parameters on the combined training
and validation sets, before reporting the out-of-sample accuracy on the test-
ing set. All methods were trained, validated, and tested on the same random
splits, and computational experiments were repeated five times for each data set
with different splits. For each data set and classification method, we report the
average out-of-sample accuracy across all five splits. C was chosen from the set
[10−4, 10−3, . . . , 104], kv was set to kv = p for the first scenario, and chosen from
the set [p, 0.8p, 0.6p] for the second scenario that is no feature selection was per-
formed, 80% and 60% of features are selected respectively. ko was chosen from
the set [0.025n, 0.05n, 0.1n] that is 2.5%, 5% and 10% of outliers to be detected
respectively.
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Table 2. Out of sample accuracy averaged across five seeds for each classification
method on all data sets. (first scenario)

n p Hinge loss 0–1 loss MIO approach

Arrythmia 68 280 52.31 64.62 64.62

Breast cancer coimbra 116 9 65.22 60.87 72.17

Breast cancer prognostic 194 33 63.16 78.42 84.74

Connections bench sonar 208 60 65.17 72.20 75.61

Fertility 100 9 64.00 78.00 86.00

Ionosphere 351 33 63.71 84.86 85.43

Monks-1 124 6 65.83 72.50 71.67

Monks-2 169 6 65.45 63.03 60.51

Monks-3 122 6 82.50 77.21 83.33

Pima 768 8 56.60 68.37 76.73

Spect heart 80 22 65.00 72.50 75.92

Spectf heart 80 44 78.75 79.25 81.25

Table 3. Out of sample accuracy averaged across five seeds for each classification
method on all data sets. (second scenario)

n p Hinge loss 0–1 loss MIO approach

Arrythmia 68 280 70.76 69.23 81.53

Breast cancer coimbra 116 9 73.04 70.43 70.43

Breast cancer prognostic 194 33 76.84 78.94 81.05

Connections bench sonar 208 60 72.19 76.58 76.58

Fertility 100 9 86.00 86.00 88.00

Ionosphere 351 33 84.28 82.57 85.14

Monks-1 124 6 62.50 67.51 64.98

Monks-2 169 6 61.21 59.79 61.21

Monks-3 122 6 79.16 82.50 82.78

Pima 768 8 78.30 78.21 78.82

Spect heart 80 22 63.75 67.50 70.83

Spectf heart 80 44 70.00 71.25 77.50

4.2 Results and Discussion

Tables 2 and 3 present the means of the accuracy for each method. We note that
n stands for training points and p for attributes. The robustness of the proposed
approach is shown in Table 2. In fact, it had a superior performance on 9 data
sets, and a tie for one data set, when 10% of labels were flipped. An important
remark is that no variable selection was performed during this scenario so the
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comparison between the MIO approach and the hinge-loss classification is based
only on the robustness of the MIO approach. This side by side comparison sheds
the light on the significant improvement obtained with the MIO approach.

The second scenario is closer to the real world setting. The data sets are taken
without any change or modification. From Table 3, it is clear that the predic-
tion accuracy of our approach is higher than those of the compared algorithms
for almost all datasets. We can remark a significant accuracy improvement for
some datasets. For example, we obtained about 11% improvement for Arryth-
mia dataset. In general, it can be seen that the proposed approach provides high
quality solutions. We also note that the pairwise comparison of the 0–1 classi-
fication against the hinge loss classification shows that none of the two losses
dominates the other. Indeed each loss showed better results on six data sets,
while a tie was obtained for one data set. An important caveat to emphasize
upfront is that the �0 robust regression algorithm was given 15 min time limit
per problem instance per subset size. This practical restriction may have caused
this algorithm to under perform in some cases.

5 Conclusion

In this paper, we propose a method for support vector machine which solves the
underlying optimization problem that handles both feature selection and outlier
detection. We formulate the problem as a mixed integer optimization problem
and use an efficient commercial solver (Gurobi) to solve it. Furthermore, we
present an empirical comparison between this method, the classical hinge-loss
and the 0–1 loss classification methods. The experimental results have verified
the superior performance of the proposed method. In terms of computational
efficiency, the MIO solution can already be adopted for relatively small data
sets. For the high dimensional case, a screening procedure would be suggested
to reduce the computational cost.
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