
Fast Hyperparameter Tuning for Support
Vector Machines with Stochastic

Gradient Descent

Marcin Orchel1(B) and Johan A. K. Suykens2

1 Department of Computer Science, AGH University of Science and Technology,
Kraków, Poland

morchel@agh.edu.pl
2 ESAT-STADIUS, KU Leuven, 3001 Leuven (Heverlee), Belgium

johan.suykens@esat.kuleuven.be

Abstract. We propose a fast training procedure for the support vec-
tor machines (SVM) algorithm which returns a decision boundary with
the same coefficients for any data set, that differs only in the number
of support vectors and kernel function values. The modification is based
on the recently proposed SVM without a regularization term based on
stochastic gradient descent (SGD) with extreme early stopping in the
first epoch. We realize two goals during the first epoch: we decrease
the objective function value, and we tune the margin hyperparameter
M . Experiments show that a training procedure with validation can be
speed up substantially without affecting sparsity and generalization per-
formance.

Keywords: Support vector machines · Stochastic gradient descent

We solve a classification problem by using SVM [14]. The SVM have been
shown effective in many applications including computer vision, natural lan-
guage, bioinformatics, and finance [12]. There are three main performance mea-
sures for SVM : the generalization performance, sparsity of a decision boundary
and computational performance of learning. SVM are in the group of the most
accurate classifiers and are generally the most efficient classifiers in terms of
overall running time [16]. They may be preferable due to its simplicity com-
pared to deep learning approach for image data, especially when training data
are sparse. One of the problem in the domain of SVM is to efficiently tune two
hyperparameters: the cost C which is a trade-off between the margin and the
error term; and σ which is a parameter of a Gaussian kernel, also called the radial
basis function (RBF) kernel [14]. The grid search is the most used in practice
due to its simplicity and feasibility for SVM , where only two hyperparameters
are tuned. The generalization performance of sophisticated meta-heuristic meth-
ods for hyperparameter optimization for SVM , like genetic algorithms, particle
swarm optimization, estimation of distribution algorithms is similar to simpler

c© Springer Nature Switzerland AG 2020
G. Nicosia et al. (Eds.): LOD 2020, LNCS 12566, pp. 481–493, 2020.
https://doi.org/10.1007/978-3-030-64580-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64580-9_40&domain=pdf
http://orcid.org/0000-0002-1081-7626
http://orcid.org/0000-0002-8846-6352
https://doi.org/10.1007/978-3-030-64580-9_40

482 M. Orchel and J. A. K. Suykens

random search and grid search [9]. The random search can have some advan-
tages over grid search when more hyperparameters are considered like for neural
networks [1]. The random search still requires considerable fraction of the grid
size. The problem with a grid search method is high computational cost due to
exhaustive search of a discretized hyperparameter space.

In this article, we tackle the problem of improving performance of hyperpa-
rameter search for the cost C in terms of computational time while preserving
sparsity and generalization. In [4], authors use a general approach of checking
fewer candidates. They first use a technique for finding optimal σ value, then
they use a grid search exclusively for C with an elbow method. The potential
limitation of this method is that it still requires a grid search for C, and there
is an additional parameter, tolerance for an elbow point. In practice, the num-
ber of checked values has been reduced to 5 from 15. In [3], authors use an
analytical formula for C in terms of a jackknife estimate of the perturbation
in the eigenvalues of the kernel matrix. However, in [9] authors find that tun-
ing hyperparameters generally results in substantial improvements over default
parameter values. Usually, a cross validation is used for tuning hyperparameters
which additionally increases computational time.

Recently, an algorithm for solving SVM using SGD has been proposed [10]
with interesting properties. We call it Stochastic Gradient Descent for Sup-
port Vector Classification (SGD-SVC) for simplicity. Originally, it was called
OLLAWV. It always stops in the first epoch, which we call extreme early stop-
ping and has a related property of not using a regularization term. The SGD-SVC
is based on iterative learning. Online learning has a long tradition in machine
learning starting from a perceptron [12]. Online learning methods can be directly
used for batch learning. However, the SGD-SVC is not a true online learning
algorithm, because it uses knowledge from all examples in each iteration. The
SGD-SVC due to its iterative nature is similar to many online methods having
roots in a perceptron, like the Alma Forecaster [2] that maximizes margin. Many
perceptron-like methods have been kernelized, some of them also related to SVM
like kernel-adatron [14]. In this article, we reformulate slightly the SGDSVC by
replacing a hyperparameter C with a margin hyperparameter M . This parameter
is mentioned as a desired margin in [14], def. 4.16. The margin plays a central
role in SVM and in a statistical learning theory, especially in generalization
bounds for a soft margin SVM. The reformulation leads to simpler formulation
of a decision boundary with the same coefficients for any data set that differs
only in kernel function values and the number of support vectors which is related
to the margin M . Such simple reformulation of weights is close in spirit to the
empirical Bayes classifier, where all weights are the same. It has been inspired
by fast heuristics used by animals and humans in decision-making [6]. The idea
of replacing the C hyperparameter has been mentioned in [13] and proposed as
ν support vector classification (ν-SVC). The problem is that it leads to a dif-
ferent optimization problem and is computationally less tractable. The ν-SVC
has been also formulated as ν being a direct replacement of C = 1/(nν) in [14],
where n is the number of examples, with the same optimization problem as sup-

Fast Hyperparameter Tuning for Support Vector Machines 483

port vector classification (SVC). The margin classifier has been mentioned in
[15], however, originally it has been artificially converted to the classifier with
the regularization term. The statistical bounds for the margin classifier has been
given in [5], but without proposing a solver based on these bounds. There is
also a technique of solution/regularization path with a procedure of computing
a solution for some values of C using a piecewise linearity property. However, the
approach is complicated and requires solving a system of equations and several
checks of O(n) [7]. In the proposed method, we use one solution for a particular
M for generating all solutions for remaining values of M .

The outline of the article is as follows. First, we define a problem, then the
methods and update rules. After that, we show experiments on real world data
sets.

1 Problem

We consider a classification problem for a given sample data xi mapped respec-
tively to yi ∈ {−1, 1} for i = 1, . . . , n with the following decision boundary

f (x) ≡ w · ϕ (x) = 0, (1)

where w ∈ R
m with the feature map ϕ(·) ∈ R

m, f(·) is a decision function. We
classify data according to the sign of the left side f(x). This is the standard
decision boundary formulation used in SVM with a feature map and without a
free term b. The primal optimization problem for (C-SVC) is

Optimization problem (OP) 1.

min
w

1
2

‖w‖2 + C

n∑

i=1

max {0, 1 − yi (w · ϕ (xi))} , (2)

where C > 0, ϕ (xj) ∈ R
m.

The first term in (2) is known as a regularization term (regularizer), the
second term is an error term. The w can be written in the form

w ≡
n∑

j=1

βjϕ (xj) , (3)

where β ∈ R
n. We usually substitute (3) to a decision boundary and we get

n∑

j=1

βjϕ (xj) · ϕ (x) = 0. (4)

The optimization problem OP 1 is reformulated to find βj parameters.
The SGD procedure for finding a solution of SVM proposed in [10], called

here SGD-SVC is to update parameters βk iteratively using the following update
rule for the first epoch

βk ← −ηk

{
−Cyw(k), if 1 − yw(k)

∑k−1
j=1 βjϕ

(
xw(j)

) · ϕ
(
xw(k)

) ≥ 0
0, otherwise

, (5)

484 M. Orchel and J. A. K. Suykens

where ηk is a learning rate set to ηk = 1/
√

k for k = 1, . . . , n, all βk are initialized
with 0 before the first epoch. We set w(1) = 1. We always stop in the first epoch,
either when the condition in (5) is violated, or when we updated all parameters
βk. The w(k) is used for selection of an index using the worst violator technique.
It means that we look for the example among all remaining examples, with the
worst value of the condition in (5). We check the condition only for the examples
not being used in the iteration process before. The worst violators are searched
among all remaining examples, so when one wants to use this method for online
learning, it is still required to train the model in a batch for optimal performance.
We use a version of SVM without a free term b for simplicity, which does not
impact any performance measures. We update each parameter maximally one
time. Finally, only parameters βk for the fulfilled condition during the iteration
process have nonzero values. The remaining parameters βk have zero values. In
that way, we achieve sparsity of a solution. The number of iterations nc for βk

parameters with the fulfilled condition is also the number of support vectors.
The derivation of an update rule has been already given in [10]. We call the
algorithm that stops always in the first epoch as extreme early stopping.

The idea that we want to explore is to get rid of the C hyperparameter from
the update rule and from the updated term for βk (5).

2 Solution – Main Contribution

The decision boundary (4) for SGD-SVC can be written as

nc∑

k=1

Cyw(k)ηkϕ
(
xw(k)

) · ϕ (x) = 0, (6)

where nc ≤ n is the number of support vectors. In the same way, we can write
the margin boundaries

nc∑

k=1

Cyw(k)ηkϕ
(
xw(k)

) · ϕ (x) = ±1. (7)

When we divide by C, we get

nc∑

k=1

yw(k)ηkϕ
(
xw(k)

) · ϕ (x) = ±1/C. (8)

The left side is independent of C, the right side is a new margin value. The new
decision boundary can be written as

nc∑

k=1

yw(k)ηkϕ
(
xw(k)

) · ϕ (x) = 0. (9)

We propose a classifier based on a margin solving the following optimization
problem

Fast Hyperparameter Tuning for Support Vector Machines 485

OP 2.

min
w

1
2

‖w‖2 +
n∑

i=1

max {0,M − yi (w · ϕ (xi))} , (10)

where M > 0 is a desired margin – a hyperparameter that replaces the C
hyperparameter. We call it M Support Vector Classification (M-SVC). The clas-
sifier with explicitly given margin has been investigated in [14]. In our approach,
we tune a margin, unlike for standard SVM when the margin is optimized, see
[14] page 220. We have the following proposition.

Proposition 1. The OP 2 is equivalent to OP 1.

Proof. We can write (10) as

min
w

1
2

‖w‖2 + M
n∑

i=1

max
{

0, 1 − yi

(w

M
· ϕ (xi)

)}
. (11)

When we substitute w′ → w/M , we get

min
w ′

1
2

‖w′M‖2 + M
n∑

i=1

max {0, 1 − yi (w′ · ϕ (xi))} , (12)

So we get

min
w ′

1
2

‖w′‖2 +
1
M

n∑

i=1

max {0, 1 − yi (w′ · ϕ (xi))} . (13)

The M is related to C by
M = 1/C. (14)

It is a similar term as for ν-SVC classifier given in [14], where C = 1/(nν)
and ν ∈ (0, 1]. Because the optimization problems are equivalent, generally all
properties of SVM in the form OP 2 applies also for M-SVC. In [14], page 211,
authors stated an SVM version, where the margin M is automatically optimized
as an additional variable. However, they still have the constant C. From the
statistical learning theory point of view, the original bounds [14], page 211 applies
for a priori chosen M .

We can derive the update rules for M-SVC similar as for SGD-SVC. The new
update rules called (SGD-M-SVC) are

βk ← −ηk

{
−yw(k), if M − yw(k)

∑k−1
j=1 βjϕ

(
xw(j)

) · ϕ
(
xw(k)

) ≥ 0
0, otherwise

. (15)

In the proposed update rules, there is no hyperparameter in the updated value,
only in the condition, in opposite to (5). It means that for different values of
a margin M , we get solutions that differ only in the number of terms. The
corresponding values of parameters βk are the same for each M value, so the
ordering of corresponding parameters is the same. It means that we do not need

486 M. Orchel and J. A. K. Suykens

to tune values of parameters βk, only the stopping criterion and thus the number
of terms in a solution. When we have a set of M values, and we have a model for
the Mmax, we can generate solutions for all remaining M values just by removing
the last terms in the solution for Mmax. We have a correspondence between M
value and the number of support vectors nc stated as follows.

Proposition 2. After running the SGD-M-SVC for any two values M1 and M2,
such as M1 > M2, the number of support vectors nc is bigger or equals for M1.

Proof. The nc is the number of support vectors and also the number of terms.
The stopping criterion is the opposite for the update condition (15) for the k-th
iteration. Due to the form M < ·, it is fulfilled earlier for M2. There is a special
case when stopping criterion would not be triggered for both values, then we get
the same model with n terms. Another special case is when only one condition
is triggered, then we get model for M2 and for M1 with all n terms.

3 Theoretical Analysis

The interesting property of the new update rules is that we realize two goals with
update rules: we decrease the objective function value (10) and simultaneously,
we generate solutions for a set of given different values of a hyperparameter M ,
and all is done in the first epoch. We can say, that we solve a discrete non-convex
optimization problem OP 2 where we can treat M as a discrete variable to opti-
mize. The main question that we want to address is how is it possible, that we can
effectively generate solutions for different values of M in the first epoch. First, note
due to convergence analysis of a stochastic method, we expect that we improve the
objective function value of (10) during the iteration process. We provide an argu-
ment that we are able to generate solutions for different values of M . The SVM
can be reformulated as solving a multiobjective optimization problem [11] with
two goals, a regularization term, and the error term (2). The SVM is a weighted
(linear) scalarization with the C being a scalarization parameter. For the corre-
sponding multiobjective optimization problem for OP 2, we have the M scalariza-
tion parameter instead. Due to convexity of the two goals, the set all solutions of
SVM for different values of C is a Pareto frontier for the multiobjective optimiza-
tion problem.We show that during the iteration process, we generate approximated
Pareto optimal solutions. The error term for the t-th iteration of SGD-M-SVC for
the example to be added xw(t+1) can be written as

n∑

i=1
i�=t+1

max
{
0,M − yw(i)ft

(
xw(i)

)}
+max

{
0,M − yw(t+1)ft

(
xw(t+1)

)}
, (16)

where ft(·) is a decision function of SGD-M-SVC after t-th iteration. After
adding t + 1-th parameter, we get an error term

Fast Hyperparameter Tuning for Support Vector Machines 487

n∑

i=1
i�=t+1

max

{
0, M − yw(i)ft

(
xw (i)

) − yw(i)yw(t+1)
1√

t + 1
ϕ

(
xw (t+1)

) · ϕ
(
xw (i)

)}

+ max

{
0, M − yw(t+1)ft

(
xw (t+1)

) − 1√
t + 1

}

(17)

assuming that we replace a scalar product with an RBF kernel function. The
update for the regularization term from (10) is

‖wt+1‖2 =
t+1∑

i=1

t+1∑

j=1

yw(i)yw(j)
1√
i

1√
j
ϕ

(
xw(i)

) · ϕ
(
xw(j)

)
. (18)

So we get

‖wt+1‖2 = ‖wt‖2 + 2yw(t+1)
1√

t + 1
ft

(
xw(t+1)

)
+

1√
t + 1

1√
t + 1

. (19)

The goal of analysis is to show that during the iteration process, we expect
decreasing value of an error term and increasing value of a regularization term.
It is the constraint for generating Pareto optimal solutions. Due to Proposition 2,
we are increasing value of M , which corresponds to decreased value of C due
to (14). For SVM, oppositely, we are increasing value of a regularization term,
when C is increased. We call this property a reversed scalarization for extreme
early stopping. First, we consider the error term. We compare the error term
after adding an example (17) to the error term before adding the example (16).
The second term in (17) stays the same or it has smaller value due to the update
condition for the t + 1-th iteration

M − yw(t+1)ft
(
xw(t+1)

) ≥ 0 (20)

and due to the positive 1/
√

t + 1. Moreover, the worst violator selection tech-
nique maximizes the left side of (20) among all remaining examples, so it
increases the chance of getting smaller value. Now regarding the first term in
(16). After update (17), we decrease a value of this term for examples already
processed with same class so for which yw(i) = yw(t+1) for i ≤ t. However, we
increase particular terms for remaining examples with the opposite class. The
worst violators will likely be surrounded by examples for an opposite class. So
we expect bigger similarities to the examples with the opposite class, thus we
expect ϕ

(
xw(t+1)

) · ϕ
(
xw(i)

)
to be bigger.

488 M. Orchel and J. A. K. Suykens

Regarding showing increasing values of (19) during the iteration process.
The third term in (19) is positive. The second term in (19) can be positive or
negative. It is closely related to the update condition (20). During the iteration
process, we expect the update condition to be improved, because, we have an
improved model. During the iteration process, the update condition starts to
improving and there is a point for which

yw(t+1)ft
(
xw(t+1)

)
> −1/

√
t + 1. (21)

Then the update for (19) becomes positive. We call this point a Pareto starter.
So we first optimize the objective function value by minimizing the regulariza-
tion term and minimizing the error term, then after Pareto starter we generate
approximated Pareto optimal solutions, while still improving the objective func-
tion value by minimizing only the error term.

3.1 Bounds for M

We bound M by finding bounds for the decision function f(·). Given σ, we can
compute the lower and upper bound for f(·) for the RBF kernel for a given
number of examples as follows

l = (−1) exp
(
0/

(−2σ2
)) n∑

i=1

1√
i
, u = exp

(
0/

(−2σ2
)) n∑

i=1

1√
i

=
n∑

i=1

1√
i
. (22)

It holds that l ≤ f(·) ≤ u. In the lower bound, we assume all examples with a
class −1. The upper bound is a harmonic number Hn,0.5. The bounds capture
cases when margin functions have all examples on the same side. For random
classes for examples (with the Rademacher distribution), the expected value of
l (with replaced −1 with classes for particular examples) is 0. We also consider
the case with one support vector with class 1 for capturing the error term close
to 0. We have the error term 1−exp

(
1/

(−2σ2
))

. Given σmax arbitrarily, we can
compute σmin assuming one support vector according to the numerical precision.
For simplicity, we can use one value, σmax for computing l2. Overall, we can
compute bounds for f(·) as the lower bound based on l2 and the upper bound
based on u. For example, for n = 100000 and σmax = 29, we get after rounding
powers to integers σmin = 2−4, Mmin = 2−19, Mmax = 210.

4 Method

The SGD-M-SVC returns the equivalent solutions as SGD-SVC. However, it
is faster for validating different values of M . First, we run a prototype solver
SGD-M-SVC with M = Mmax = 210 with provided a list of sorted Mi values
as a parameter and with particular σ value. During the iteration process in the
prototype solver, we store margin values defined as mk ≡ yw(k)fk−1

(
xw(k)

)
.

Fast Hyperparameter Tuning for Support Vector Machines 489

Algorithm 1. SGD-M-SVC for Mi

Input: Mi value to check, σ, mk values, validation errors v, a map (Mi, k) of margin
values to indices

Output: v
1: index = (Mi, k).get(Mi) //get the index k from a map (Mi, k) for Mi

2: v = vk(k) // get a validation error for the found k index from a list of vk values

Because sometimes it may happen that mk < mk−1, then we copy a value of
mk−1 to mk, so we have always a sorted sequence of mk values. The size of mk

is n − 1 at most. We also store validation errors vk that are updated in each
iteration. The size of this list is the size of a validation set. We also update the
map of Mi values to k indices during the iteration process. Then, we use a solver
returning a validation error for particular Mi as specified in Algorithm 1. Given
validation error, we can compare solutions for different hyperparameter values.

4.1 Computational Performance

The computational complexity of SGD-SVC based on update rules (5) is O(ncn),
when nc is the number of iterations. It is also the number of support vectors. So
sparsity influences directly computational performance of training. The require-
ment for computing the update rule for each parameter is a linear time. The
update rules (5) are computed in each iteration in a constant time. However, a
linear time is needed for updating values of a decision function for all remaining
examples. The procedure of finding two hyperparameter values σ and C using
the cross validation, a grid search method and SGD-SVC has the complexity
O(nc(n − n/v)v|C||σ| + ncn|C||σ|) for v-fold cross validation, where |C| is the
number of C values to check, |σ| is the number of σ values to check, nc is the
average number of support vectors. For each fold, we train a separate model. The
first term is related to training a model. The second term is related to computing
a validation error. The complexity of SGD-M-SVC is

O(nc,p(n − n/v)v|σ| + nc,pn|σ|), (23)

where nc,p is the number of support vectors for a prototype solver. We removed
a multiplier |C| from the first term, that is related to the training complexity,
and from the second term, that is related to the computation of a validation
error.

5 Experiments

The M-SVC returns equivalent solutions to C-SVC. However, it is faster for
validating different values of M . We validate equally distributed powers of 2

490 M. Orchel and J. A. K. Suykens

as M values from 2−19 to 210 for integer powers, based on the analysis in the
Sect. 3.1. We use our own implementation of both SGD-SVC and SGD-MSVC.
We compare performance of both methods for real world data sets for binary
classification. More details about data sets are on the LibSVM site ([8]). We
selected all data sets from this site for binary classification. For all data sets,
we scaled every feature linearly to [0, 1]. We use the RBF kernel in a form
K(x,z) = exp(−‖x − z‖2 /(2σ2)). The number of hyperparameters to tune is 2,
σ and M for SGD-M-SVC, and σ and C for SGD-SVC. For all hyperparameters,
we use a grid search method for finding the best values. The σ values are integer
powers of 2 from 2−4 to 29. We use the procedure similar to repeated double cross
validation for performance comparison. For the outer loop, we run a modified
k-fold cross validation for k = 15, with the optimal training set size set to 80%
of all examples with maximal training set size equal to 1000 examples. We limit
a test data set to 1000 examples. We limit all read data to 35000. When it is not
possible to create the next fold, we shuffle data and start from the beginning.
We use the 5-fold cross validation for the inner loop for finding optimal values
of the hyperparameters. After that, we run the method on training data, and we
report results on a test set.

The observations based on experimental results are as follows. The proposed
method SGD-M-SVC is about 7.6 times faster SGD-SVC (see Table 1) for binary
classification, with the same generalization performance and the number of sup-
port vectors. We have 30 values of M to tune. Some authors tune value of C
with fewer values. Then the effect of this speed improvement may be smaller. We
generally expect the accuracy performance to degrade slowly for smaller number
of values of M . We also implemented the method for multiclass classification
with similar results, however we do not report it here due to space constraints.
We validated also theoretical results. We check Pareto frontier every 10 itera-
tions. The results is that the approximated Pareto frontier is generated from
almost the beginning of a data set after processing 0.05% examples on average
(column pS in Table 1). Approximated Pareto frontier is generated perfectly for
some data sets (1.0 in a column pU), on average in 75% updates. While we
check Pareto updates every 10 iterations, it may be worth to check them only
for selected solutions for given M , which are distributed differently. From the
practical point of view, we recommend to use SGD-M-SVC instead of SGD-SVC
due to speed performance benefits.

Fast Hyperparameter Tuning for Support Vector Machines 491

Table 1. Experiment 1. The numbers in descriptions of the columns mean the methods:
1 - SGD-SVC, 2- SGD-M-SVC. Column descriptions: dn – data set, size – the number
of all examples, dim – dimension of the data set, err – misclassification error, sv – the
number of support vectors, t – average training time per outer fold in seconds, the best
time is in bold (last row is a sum), pU – Pareto optimal solutions ratio (last row is an
average), pS – Pareto starter ratio (last row is an average).

dn size dim err1 err2 sv1 sv2 t1 t2 pU pS

aa 34858 123 0.149 0.149 333 333 98 9 0.59 0.02

australian 690 14 0.146 0.146 219 219 35 3 0.55 0.08

avazu-app 35000 25619 0.133 0.133 673 673 90 10 0.57 0.01

avazu-site 35000 27344 0.211 0.211 444 444 100 10 0.44 0.02

cod-rna 35000 8 0.063 0.063 356 356 104 8 0.72 0.04

colon-cancer 62 2000 0.19 0.19 27 27 0 0 1.0 0.21

covtype 35000 54 0.292 0.292 672 672 121 9 0.77 0.01

criteo.kaggle2014 35000 662923 0.222 0.222 581 581 108 11 0.65 0.01

diabetes 768 8 0.236 0.236 334 334 40 3 0.42 0.06

duke 44 7129 0.222 0.222 21 21 0 0 0.87 0.31

epsilon normalized 35000 2000 0.269 0.269 716 716 133 11 0.65 0.02

fourclass 862 2 0.001 0.001 556 556 46 4 1.0 0.01

german.numer 1000 24 0.257 0.257 411 411 67 6 0.55 0.03

gisette scale 7000 4971 0.039 0.039 414 414 130 17 1.0 0.01

heart 270 13 0.17 0.17 100 100 6 0 0.76 0.12

HIGGS 35000 28 0.448 0.448 890 890 129 10 0.54 0.01

ijcnn1 35000 22 0.09 0.09 235 235 64 9 0.72 0.05

ionosphere scale 350 33 0.081 0.082 92 89 8 0 0.8 0.13

kdd12 35000 54686452 0.04 0.04 819 819 74 10 0.39 0.01

kdda 35000 20216664 0.145 0.145 639 639 100 12 0.77 0.01

kddb 35000 29890095 0.144 0.144 849 849 97 12 0.97 0.0

kddb-raw-libsvm 35000 1163024 0.144 0.144 789 789 89 10 0.6 0.01

leu 72 7129 0.062 0.062 22 22 0 0 1.0 0.24

liver-disorders 341 5 0.394 0.394 202 202 10 0 0.34 0.07

madelon 2600 500 0.332 0.332 963 963 132 10 1.0 0.0

mushrooms 8124 112 0.001 0.001 842 842 103 8 1.0 0.01

news20.binary 19273 1354343 0.151 0.151 760 760 196 52 0.83 0.01

phishing 5772 68 0.059 0.059 346 346 111 9 0.96 0.03

rcv1.binary 35000 46672 0.064 0.064 608 608 129 13 0.87 0.01

real-sim 35000 20958 0.103 0.103 435 435 112 12 0.68 0.02

skin nonskin 35000 3 0.011 0.011 132 132 89 8 0.99 0.05

sonar scale 208 60 0.122 0.122 97 97 3 0 0.98 0.03

splice 2989 60 0.12 0.12 674 674 120 9 0.99 0.0

SUSY 35000 18 0.281 0.281 630 630 123 9 0.42 0.03

svmguide1 6910 4 0.04 0.04 173 173 97 8 0.87 0.08

svmguide3 1243 21 0.186 0.186 383 383 90 9 0.51 0.04

url combined 35000 3230439 0.044 0.044 302 302 112 10 0.8 0.04

wa 34686 300 0.02 0.02 348 348 72 9 0.88 0.05

websam trigram 35000 680715 0.044 0.044 201 201 502 155 0.75 0.05

websam unigram 35000 138 0.07 0.07 260 260 101 8 0.71 0.03

All 3767 495 0.75 0.05

492 M. Orchel and J. A. K. Suykens

6 Conclusion

We proposed a novel method for SVC based on tuning margin M instead of C,
with an algorithm SGD-M-SVC which improves substantially tuning time for
the margin M hyperparameter compared to tuning the cost C in SGD-SVC. We
provided theoretical analysis of an approximated Pareto frontier for this solver,
which confirms the ability to generate solutions for different values of M during
the first epoch.

Acknowledgments. The theoretical analysis of the method is supported by the
National Science Centre in Poland, project id 289884, UMO-2015/17/D/ST6/04010,
titled “Development of Models and Methods for Incorporating Knowledge to Support
Vector Machines” and the data driven method is supported by the European Research
Council under the European Union’s Seventh Framework Programme. Johan Suykens
acknowledges support by ERC Advanced Grant E-DUALITY (787960), KU Leuven
C1, FWO G0A4917N. This paper reflects only the authors’ views, the Union is not
liable for any use that may be made of the contained information.

References

1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

2. Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge Univer-
sity Press (2006). https://doi.org/10.1017/CBO9780511546921

3. Chang, C., Chou, S.: Tuning of the hyperparameters for l2-loss svms with the
RBF kernel by the maximum-margin principle and the jackknife technique. Pattern
Recognition 48(12), 3983–3992 (2015). https://doi.org/10.1016/j.patcog.2015.06.
017

4. Chen, G., Florero-Salinas, W., Li, D.: Simple, fast and accurate hyper-parameter
tuning in gaussian-kernel SVM. In: 2017 International Joint Conference on Neu-
ral Networks, IJCNN 2017, Anchorage, AK, USA, May 14–19, 2017, pp. 348–355
(2017). https://doi.org/10.1109/IJCNN.2017.7965875

5. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines : and
other kernel-based learning methods. Cambridge University Press, 1 edn. (March
2000)

6. Gigerenzer, G., Todd, P., Group, A.R.: Simple Heuristics that Make Us Smart.
Oxford University Press, Evolution and cognition (1999)

7. Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for
the support vector machine. J. Mach. Learn. Res. 5, 1391–1415 (2004)

8. Libsvm data sets (2011). www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
9. Mantovani, R.G., Rossi, A.L.D., Vanschoren, J., Bischl, B., de Carvalho,

A.C.P.L.F.: Effectiveness of random search in SVM hyper-parameter tuning. In:
2015 International Joint Conference on Neural Networks, IJCNN 2015, Killarney,
Ireland, July 12–17, 2015. pp. 1–8 (2015). https://doi.org/10.1109/IJCNN.2015.
7280664

10. Melki, G., Kecman, V., Ventura, S., Cano, A.: OLLAWV: online learning algorithm
using worst-violators. Appl. Soft Comput. 66, 384–393 (2018)

https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.1016/j.patcog.2015.06.017
https://doi.org/10.1016/j.patcog.2015.06.017
https://doi.org/10.1109/IJCNN.2017.7965875
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://doi.org/10.1109/IJCNN.2015.7280664
https://doi.org/10.1109/IJCNN.2015.7280664

Fast Hyperparameter Tuning for Support Vector Machines 493

11. Orchel, M.: Knowledge-uncertainty axiomatized framework with support vector
machines for sparse hyperparameter optimization. In: 2018 International Joint
Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8–13,
2018, pp. 1–8 (2018). https://doi.org/10.1109/IJCNN.2018.8489144

12. Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Min-
ing. Springer (2017). https://doi.org/10.1007/978-1-4899-7687-1

13. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

14. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge
University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511809682

15. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, September 1998
16. Zhang, C., Liu, C., Zhang, X., Almpanidis, G.: An up-to-date comparison of state-

of-the-art classification algorithms. Expert Syst. Appl. 82, 128–150 (2017). https://
doi.org/10.1016/j.eswa.2017.04.003

https://doi.org/10.1109/IJCNN.2018.8489144
https://doi.org/10.1007/978-1-4899-7687-1
https://doi.org/10.1017/CBO9780511809682
https://doi.org/10.1016/j.eswa.2017.04.003
https://doi.org/10.1016/j.eswa.2017.04.003

	Fast Hyperparameter Tuning for Support Vector Machines with Stochastic Gradient Descent
	1 Problem
	2 Solution – Main Contribution
	3 Theoretical Analysis
	3.1 Bounds for M

	4 Method
	4.1 Computational Performance

	5 Experiments
	6 Conclusion
	References

