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Abstract The generated power from the photovoltaic (PV) array is a function in its
terminal voltage. The relation between the generated power and the terminal voltage
of the PV array is called the P–V curve. The point corresponding to the highest
generated power in this relation is called maximum power point (MPP). This relation
has only one peak in the case of uniformly distributed irradiance over the PV array.
Meanwhile, it has multiple peaks in the case of partial shading conditions (PSC). The
one with the highest power is called global peak (GP) and the other peaks are called
local peaks (LPs). The control system should track this point to improve the efficiency
of the PV system by extracting the maximum available power from the PV array. The
controller used to track this point is called themaximumpower point tracker (MPPT).
Traditional MPPTs such as hill-climbing or incremental conductance are adequate
to track the MPP in the case of uniform irradiance, but it may stick at one of the LPs
in the case of PSC. For this reason an unlimited number of MPPT techniques are
introduced in the literature to track this point. This chapter introduces an overview
of the PV maximum power point trackers (MPPT) techniques. The classifications
of MPPT of the PV system is introduced in detail in this chapter. The operating
principles, advantages, and disadvantages of each technique are introduced in detail
for famous and important techniques and in brief for the less famous techniques
or the techniques that are not showing good performance in tracking the MPP. A
comprehensive comparison between these techniques is presented in detail in this
chapter. Important recommendations and conclusions are introduced at the end of
this chapter to show the advantages and disadvantages of these PVMPPT techniques.
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1 Introduction

Energy is the main support for modern societies and all mankind. The excessive
depletion of fossil fuels forces the researchers to explore other sources of energy that
will not run out such as renewable energies. Solar energy is themost important source
of renewable energy sources, where its cost is reduced over time and became mature
technology. Photovoltaic (PV) energy systems are used to convert the sunlight directly
into electric energy. Very rapid growth in deploying the PV energy systems where
it is increased by 60% in Europe [1] and new annual installations in 2020 reached
142 GW, a 14% rise over the previous year [2]. Moreover, the total generation from
solar is about 570 TWh [3]. Many efforts were introduced to increase the efficiency
of the PV system which can be translated into a reduction in the cost of energy. Most
of these efforts were done on improving the efficiency of the PV cells themselves
via improving the materials used for their manufacturing, and the other efforts are
introduced to improve the power conditioning circuit used to extract the maximum
available electric power from PV systems. Moreover, much work is done in the
improvement of the integration of the PV system with an electric utility or with
integrating the PV system with renewable or conventional energy sources. One of
the most important issues used to improve the efficiency of the PV energy system
is the maximum power point tracker (MPPT) unit which will be introduced and
discussed in detail in this chapter.

Numerous research works are introduced in the literature to track the maximum
power point (MPP) of the PV systems. All these techniques have cons and pros which
should be discussed in detail in this chapter. For this reason, many review studies
were introduced to discuss these performance characteristics of these techniques.
Most of the review works of MPPT are discussing certain categories of this MPPT,
review a very limited number of techniques, and leave many other techniques not
covered. Based on the present literature, there is no comprehensive work that covers
all salient MPPT in operations, performance, implementations, and evaluation. This
chapter is introduced to fill this research gap and to shed a light on the performance
of different MPPT techniques. With the use of modern soft-computing in MPPT of
PV systems, many new algorithms are introduced and most of the authors of these
techniques claim that their technique is better than others. For this reason, a compre-
hensive review study for the most important MPPT techniques should be introduced
to help researchers for a better understanding of different MPPT techniques. One
of the most recent review works introduced a good review of the techniques that
are used to mitigate the effect of partial shading [4]. This paper [4] classified the
techniques that have been used to mitigate the partial shading effects into two cate-
gories, circuit-based techniques, and MPPT-based techniques. Circuit-based partial
shading condition (PSC) mitigation techniques (reconfiguration techniques) will not
be covered in this chapter. This paper [4] is reviewed only the MPPT in PSC as
one part of the paper and leave the other part for circuit-based PSC mitigation tech-
niques. Moreover, paper [4] classified the circuit-based MPPT techniques into four
categories, namely, conventional, soft-computing, hybrid, and other techniques. This
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paper used all soft-computing techniques as one category as well as all hybrid tech-
niques as one category which will be sub-classified more in this chapter. Another
comprehensive review research paper evaluates 17 MPPT and gives a grade for
each one [5]. This paper introduced discerptions and evaluations for 20 famous soft-
computing MPPT techniques and the evaluation of hybrid between these techniques
and traditional MPPT in terms of the convergence time and failure rate. A similar
review paper is introduced to introduce an index to evaluate these MPPT techniques
[6]. Several types of research introduced an overview of the MPPT techniques intro-
duced in literature [7–20] each one has covered a certain point of view, but there is no
one of them comprehensively covers the most important MPPT, especially in PSC.

The rest of this chapter is designed to show the modeling of PV array, and the
modeling, performance of PV systems in the case of PSC, and the mismatch losses
and generated efficiency calculations in the rest of Sect. 1. Section 2 introduced the
classifications ofMPPT techniques. Section 3 shows the traditionalMPPT techniques
discerptions and evaluations. Section 4 shows the different soft-computing PVMPPT
and details of their performance analysis and operation. Section 5 introduces the
other PV MPPT that are not classified as traditional or soft-computing techniques
such as Voltage Window Search (VWS) [21], Search–Skip–Judge (SSJ) [22], and
Maximum Power Trapezium (MPT) [23]. Section 6 introduces different types of
hybrid PVMPPT that uses two techniques to improve the overall performance of the
PV system. The lase section (Sect. 7) is introduced to summarize the conclusions,
recommendations, and future work out of this review study.

1.1 Modeling of PV Arrays

The PV array is the largest building block of the PV system which consists of
PV panels, then PV modules. The PV modules are consisting of several PV cells
connected in series and parallel to produce the required voltage and current from the
module. So, the PV cell is the basic unit of the PV systems. The PV cell is consisting
of two semiconductor materials from types P and N. The PN junction absorbs the
light from the Sun which adds energy to the electrons in this junction enabling it to
have enough energy to cross the junction and produce voltage difference between
their terminals. The voltage difference between these terminals can produce power
when they are connected through an electrical load. The amount of generated power
from PV cells depends on the voltage difference, temperature, and irradiance value.
Different kinds of semiconductor materials have been used in the fabrication of PV
cells, where crystalline silicon PV cells are the most widely used [24]. All the PV
cell technologies have the same modeling with different values of parameters that
will not affect the general modeling shown in this chapter.

Numerous research works have been introduced in the literature to mathemati-
cally model the PV cells [25–29]. The one-diode model is shown in Fig. 1 is widely
used in the modeling of most PV cells due to its simplicity and it helps in avoid-
ance of the redundancy that may occur in another modeling of PV cells that have a
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Fig. 1 Equivalent circuit of
the PV cell using a one-diode
model
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higher number of diodes. Moreover, the one-diode model parameters can be easily
determined experimentally [25, 28]. The two-diode model has also been used in
the literature [26]. This model introduced one more diode to accurately model the
PV cells, meanwhile, it will increase the model complexity. Some other researchers
introduced a three-diode model to accurately model the PV cell [30]. The one-diode
PV cell model is shown in Fig. 1 and is shown in the following equations [24, 31].
The output current generated from the PV cell is shown in (1).

IPVC = ILG − Isat ∗
[
e(

q
KT (VPVC+Rs IPVC)) − 1

]
− VPVC + Rs IPVC

Rsh
(1)

where

ILG The light-generated current for given radiation and temperature.
Isat The reverse-saturation current.
K Boltzmann’s constant.
q The electron charge.
VPVC Terminal voltage of PV cell.
IPVC Output current of PV cell.
T The current surrounding temperature.
Rs, Rsh Series and shunt resistors of PV model.

The light-generated current for given radiation and temperature can be obtained
from (2)

ILG = (ISTC + KI (Tc − Tr ))
G

Go
(2)

where

ISTC The photovoltaic current at the standard test conditions.
KI The short-circuit current coefficient.
Go The standard irradiance which is normally taken as 1000 W/m2.
G The current radiation in W/m2.
Tr The rated temperature in K°.
Tc The cell temperature.

The module voltage can be obtained by (3)

VM = VPVC ∗ NSC (3)
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where NSC is the number of series cells within the module.
The module current can be obtained by (4)

IM = IPVC ∗ NPC (4)

where NPC is the number of parallel branches within the module.
Connecting several modules in series and parallel is forming the PV array and its

voltage and current are determined from the following equations:

VPV = VPVC ∗ NSC ∗ MS (5)

IPV = IPVC ∗ NPC ∗ MP (6)

where MS is the number of modules connected in series and MP is the number of
modules in parallel.

Multiplying the terminal voltage by the output current determines the generated
power from the PV array. The relation between the terminal voltage and current in
uniform condition for different irradiances, and the relation between the terminal
voltage and output power are shown in Fig. 2. It is clear from Fig. 2 that the PV
power is directly proportional to the voltage in the regions, where the voltage less
than optimal voltage, V opt, and inversely proportional to the voltage in the region of
a voltage higher than V opt. The maximum power, Pmax, occurs at the value of optimal
voltage, V opt. The maximum power tracking techniques are used to track the MPP

Fig. 2 The I–V and P–V characteristics of PV array
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and force the PV array to work at the optimal terminal voltage, V opt. Also, it is clear
from the locus of MPP that the MPP lies in a narrow range of voltage.

1.2 Partial Shading Conditions

The partial shading occurred in PV array due to the shading of static and moving
objects such as trees, buildings, accumulation of dust on panels, or passing clouds.
The PV array characteristic is badly affected and the generated energy is considerably
reduced. As has been discussed above, the PVmodules should be connected in series
and parallel to form the PV array. Due to static or moving objects, shading may be
performed on some of these modules and it faces different irradiances than others
which are called the partial shading condition (PSC). Due to different irradiances
on series modules, the same current should follow through all series modules which
makes some modules work as a load on the unshaded modules. Due to the current
flow in the shaded PV cell higher than the generated current, the terminal voltage will
become negative. Due to this negative voltage, the temperature of the shaded module
will be increased especially with a high number of modules connected in series.
This high temperature may destroy the shaded modules based on a phenomenon
called hot-spot [32]. This condition can be dangerous where it may cause the hot-
spot phenomenon on the shaded modules which can destroy the shaded modules,
especially when too many modules are connected in series. For this reason, a parallel
diode should be attached to each module to bypass the shaded modules when their
voltage tends to be reversed to protect these modules from the hot spot phenomenon.
Also, each branch should be connected in series with a blocking diode as shown in
Fig. 3 to block the flow of current from another branch.

Many comprehensive types of research are introduced to the model, discuss,
and to remedy the PSC [33, 34]. Due to the partial shading conditions, the P–V

Fig. 3 PV array showing the
bypass and blocking diodes
connection

Bypass
diodes

Blocking 
diode



Photovoltaic Maximum Power Point Trackers: An Overview 123

Fig. 4 The I–V and P–V characteristics of the PV array under PSC

characteristics of the PV array is having multiple peaks, the one having the highest
power is called global peak (GP) and the other peaks are called the local peaks (LPs).
Figure 4 shows the I–V and P–V characteristics with a different number of peaks in
the case of PSCs.

It is clear from Figs. 2 and 4 that the generated power is varying with its terminal
voltage which forces the designers to use a DC/DC converter at the terminal of the
PV system to control this voltage and consequently control the generated power.
The control system of the DC/DC converter should ensure that the PV array works
at its MPP to increase the generated power and efficiency. The connection of the
DC/DC converter can be connected in several configurations as shown in Fig. 5. The
first configuration is done by connecting the PV array in many parallel branches and
each branch is consisting of many modules in series, which is called “centralized
configuration.” In the centralized configuration, the PV array has a single terminal
and it will be connected to a single DC/DC converter and DC/AC inverter. This
configuration is using only one MPPT tracker, meanwhile, the mismatched power
is the lowest among the configurations shown in Fig. 5. The other configuration is
called the “multistring configuration” PV system. In this system, the branches of the
PV array are divided among multiple DC/DC converters. This technique has higher
efficiency than the centralized PV system because each string is connected to one
DC/DC converter andMPPT technique which provides more freedom to eachMPPT
to work separately in tracking the maximum power available. The third configuration
is called “string connection” in which each branch is connected to its own DC/DC
converter and theMPPT techniquewhich givesmore freedom to the control system to
force each branch to work at its own maximum power which increases the generated
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Fig. 5 Different configurations are used to interface PV energy systems to the utility grid

efficiency than the two previous techniques. The DC output can be connected to a
common DC link and the inverter/inverters convert this DC power to AC or each
DC converter can be connected to a separate inverter. A smart string configuration is
introduced in [35, 36] using an interleaved boost converter. In this configuration, each
branch is connected to one branch of the boost converter as shown in Fig. 6. In this
configuration, one interleaved boost converter is used and one PSOMPPT technique
is used with swarm size equal to the number of branches of the boost converter.
The results obtained from this configuration is showing higher efficiency than the
previous configurations discussed above. The last configuration is called “Module
configuration” in which each module is connected to separate DC/DC converter and
MPPT module. This configuration is complex and expensive due to the need for the
DC/DC converter for each module, meanwhile, it provides the highest freedom to
the control system to track the GP of each module which can increase the generation
efficiency substantially. Detailed discretions of these configurations are shown in
many researches [1, 37, 38].

Constant Frequency
PWM Converter

Utility
Grid

C

LCL
Filter

PV Array

Fig. 6 String configurations used interleaved boost converter
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1.3 Mismatch Power Loss

Two different kinds of mismatch occurred in the PV array, static and dynamic
mismatch. The static mismatch occurs due to many reasons such as the different
tolerance in the module, different aging effects, and different tilt angles of modules.
The losses due to static mismatch are in the range from 0.3 to 2.5% [39].

The dynamic mismatch occurs mainly from dynamic partial shading when static
or moving objects on the PV array. As discussed before the modules should be
connected with bypass diodes and each branch should be connected with blocking
diode as shown in Fig. 3 to avoid the hot spot and the possibility of damage to shaded
modules. Due to the PSC occurrence, the generated power will not be the same in
all parts of the PV array. The generated power will be lower than the sum of the
available power that can be generated from a separate PV module even the PV array
works at the GP. The relation between the generated power from the PV system and
the sum of individual peaks from each module is called mismatch loss (MML). The
formula used to determine this relationship is shown in Eq. (7). The higher values of
MML mean that the generated power from the PV system is very near to the power
available in the PV array and vice versa. This relation is sometimes called MPPT
power efficiency (MPE) [40]. In the case of uniform irradiance and the system work
at the MPP, the MML value will be 100%.

MML = Maximum power of whole PV system∑N
i=1 Pmax(i)

∗ 100 (7)

where N is the total number of PV modules in the PV array.
Another evaluation parameter is used to evaluate the MPPT technique called

MPPT energy efficiency (MEE). This parameter is used to measure the percentage
of PV output energy to the maximum energy available during a certain period of time
as shown in (8) [40]:

MPE =
∫ T
t=0 P(t) dt∫ T
t=0 Pm(t) dt

∗ 100 (8)

where T is the period of time

2 Classifications of MPPT Techniques

The MPPT techniques have been classified based on different methodologies. Some
classifications are based on several variables used to track the MPP of the PV system
[41]. Most of the classifications used are based on the use of the module parame-
ters in the MPPT operation to model-based and non-model-based. The model-based
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MPPT techniques are done using the model parameters of the PV array to deter-
mine the optimal operating model. The model-based techniques are suffering from
many problems, especially the low accuracy, the high mathematical burden that
can reduce the convergence time, and introduced complexity to the implementa-
tion of these techniques. Moreover, the model-based MPPT techniques need extra
weather sensors to measure the radiation and temperature. These techniques are
not suitable to work with systems facing PSC because it is not practical to have
many weather sensors near to each PV module and it will need too much mathe-
matical operation to get the GP in the case of PSC. These techniques are sometimes
called offline techniques [41, 42]. An example of offline or model-based techniques
is the fractional open-circuit voltage, fractional short-circuit current, curve fitting-
based, and numerical calculation-based techniques. The other category of MPPT
is the online or non-model-based are included in most of the MPPT techniques.
The online-based (non-model-based) MPPT techniques can be further classified into
traditional, soft-computing, hybrid, and others. The soft-computing is further classi-
fied into chaos, artificially intelligent (sometimes called brain-inspired computing),
and metaheuristic techniques. These categories are further classified as shown in
Fig. 7.

3 Traditional MPPT Techniques

3.1 Direct Estimated Methodology (DEM)

Directly estimated methodology (DEM) is an offline MPPT methodology that uses
the module parameters and an accurate model of the PV array and determines the
optimal voltage, V opt, based on the available weather condition (Solar irradiance
and temperature) [43]. The control system used the reference value of the voltage
to force the PV array to work around this value. The main shortcoming of this
technique is the need for four sensors (voltage, current, radiation, and temperature
sensors). Moreover, an inaccurate model of PV array parameters or sensors or the
effect of degradation on the PV array can produce wrong values of the PV terminal
voltage reference V opt which can reduce the system efficiency. In addition to these
shortcomings, this technique is not able to track the GP in the case of PSC.

3.2 Fractional Open-Circuit Voltage (FOCV)

As has been shown in Fig. 2 the terminal voltage at the MPP is located around
an approximately constant voltage for all operating conditions of the uniformly
distributed irradiances. Where the optimal voltage of the PV array is proportional to
the open-circuit voltage as shown in (9). This technique can be classified as one of
the traditional MPPT techniques and mathematical-based MPPT.
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Vopt = kv ∗ Voc (9)

where kv is a proportionality factor and it has a value between 0.71 and 0.78 [44,
45]; the accurate value of kv is depending on the PV cell materials and this value
can be determined in the lab to be used in the control system. This technique is
the simplest and fastest MPPT technique. However, this technique is suffering from
many problems which make its use in modern PV systems is very rare. The problems
associatedwith this technique are the need to frequently disconnecting the PV system
to measure the open-circuit voltage, the low efficiency, especially in the case of using
the inaccurate value of kv, and the inability to work with PSC.

3.3 Fractional Short-Circuit Current (FSCC)

The locus of MPP on I–V curves shown in Fig. 2 shows that the optimal current, Iopt,
is linearly proportional to the short-circuit current. The relation between the optimal
current, Iopt, and short circuit is shown in (10). This technique can be classified as
one of the traditional MPPT techniques and mathematical-based MPPT.

Iopt = ki ∗ ISC (10)

where ki is the current proportionality constant, its value is varied between 0.78 and
0.92 depending on the PV cell materials [45].

This technique is very simple and fast (as the fractional open-circuit technique)
compared to other traditional MPPT techniques. The main shortcomings associated
with this technique are the need to isolate the PV array from the system to perform
a short-circuit on its terminals to measure the short-circuit current, the inaccurate
values of current proportional constant, the inability to work with PSC. The problem
of frequently short-circuit measures on the PV array with this technique can be a
complex operation with a very large PV array where the short-circuit current needs
special measurement tools and precautions [41].

3.4 Look-up Table (LuT)

This technique is used themodule data, weather data, to calculate the voltage required
for each operating condition and tabulate these data in a look-up table (LuT). This
is a very fast MPPT technique compared to the other traditional MPPT techniques
discussed above. The efficacy of the operation of the system is depending on the
accuracy of the module parameters, sensor accuracy, and the accuracy of the model
used to calculate the MPP. To overcome this shortcoming, the data of the look-
up table were collected experimentally [46]. This technique is not favorite in real
applications because it needs a control system with big memory size and the need
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for radiation and temperature sensors. This is one of the offline MPPT techniques
that need accurate knowledge about the PV module parameters and characteristics.
This technique cannot be used with the PSC which is one of the main shortcomings
of this technique [41].

3.5 Hill-Climbing (HC)

The most famous traditional MPPT techniques are the hill-climbing and perturb
and observe techniques. The main difference between these two techniques is the
hill-climbing is using a perturbation in the duty ratio of the DC/DC converter and
determines the change in duty ratio based on the change in power. Meanwhile, P&O
introduces a perturbation in the terminal voltage of the PV array. This is the only
difference between the operation of these two techniques, and for this reason, a
detailed comparison between their operation and performance is shown in [47]. This
technique needs only the voltage and current sensors. In the hill-climbing technique,
when there is a positive increase in the duty ratio produces an increase in power the
control system should keep an increase in duty ratio and vice versa. The flowchart of
the HCMPPT technique is shown in Fig. 8. The main shortcomings of hill-climbing
as most of the traditionalMPPT techniques are the inability to capture the GP and the
slow response to the fast change in the weather conditions. The problem of missing
the GP in the case of PSC can be avoided by hybridizing the hill-climbing technique
with other smart techniques to help HC to capture the GP at the beginning of tracking
operation and transfer the control to HC to track the maximum power around this

Fig. 8 The hill-climbing
flowchart
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GP. The problem of slow response can be avoided using the variable step size [48].
Where increased step size (ΔD) increases the convergence speed but it causes high
oscillations around the MPP which reduces the generation efficiency and instability.
Meanwhile, the low step size has the opposite effect. At the starting of the tracking
period or acute change in radiation, the control system needs high step size value
to capture the MPP swiftly but this high step size will cause oscillations around the
steady state. For this reason, a variable step size technique has been introduced to
avoid the sluggishness of the HC in starting and oscillations around the MPP. In this
case, the HC uses a high value of step size in the starting or disturbance and low step
size at steady state. An adaptive step size HC MPPT used with a boost converter is
introduced to determine the optimal step size to reduce the convergence time and
reduce the oscillations around the MPP [49].

3.6 Perturb and Observe (P&O)

Perturb and Observe (P&O) method has been used widely in the MPPT of the PV
system due to its superior performance and simple implementation. This technique
is outperforming the performance operation of HC in terms of convergence time
and oscillation around the MPP. This technique needs only the voltage and current
sensors. This technique perturbs the terminal voltage reference of the PV array and
collects the corresponding power, if the power increased it will move in the same
direction otherwise it will change the sign of the perturbation Fig. 9 shows the
operation principles of the P&O technique [50]. Many modified strategies have been

Fig. 9 The P&O flowchart
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introduced to this technique to reduce the convergence time and the oscillations
around theMPP. One of thesemodifications is done by using a variable step size [51].
This technique has goodperformance in uniformly distributed irradiance,meanwhile,
it may stick at one of the LPs in the case of PSC. For this reason, many efforts have
been introduced in the literature to improve the P&O in the case of PSC. One of
these efforts used scanning values of operating voltage and force the normal P&O to
work around the one having the highest power [52, 53]. This technique success with
a reasonable limit to capture the place of the GP in the case of partial shading but it
increases the convergence time.

Vref = V + �V
(i f V > Vold and P > Pold)
(i f V < Vold and P < Pold)

Vref = V − �V
(i f V > Vold and P < Pold)
i f V < Vold and P > Pold

(11)

3.7 Incremental Conductance (InCond)

Most of the shortcomings discussed with HC and P&O techniques are now avoided
by using the incremental conductance (InCond), where the convergence time asso-
ciated with the IncCond is considerably reduced and the dynamic performance of
the InCond with rapid change in the weather conditions is substantially improved.
Moreover, the oscillation around the MPP of the PV array is substantially reduced
too. The high tracking speed, accuracy, and low oscillations at steady state make the
InCond is one of the most widely used traditional MPPT techniques. This technique
employs the characteristics of the P–V curve of PV array to track the MPP taking
into consideration that the MPP is located at zero slopes of the curve. Moreover, the
slope of the curve is positive when the operating voltage is lower than the optimal
voltage and negative when the operating voltage is lower than the optimal voltage.
The logic used in the InCond is to determine the derivative of power concerning
voltage as shown in (12) and increment the voltage based on the sign and value
of this derivative. The results obtained from (12) can be written as shown in (13).
Equating the left-hand side of (13) by error signal e as shown in (14) and trying to
minimize this value to become zero will accelerate the convergence to the MPP. The
flowchart of InCond MPPT technique is shown in Fig. 10.

The performance of InCond can be further improved in terms of convergence time
and oscillations around the MPP by using variable step size as the one used with HC
and P&O [54]. Regarding the high failure rate of InCond with PSC, a modified
technique is employed several values of duty ratios in starting to scan the position of
GP, then transfer the control to the InCond to track theMPP around this value [52, 55].
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Fig. 10 Flowchart of
incremental conductance
MPPT technique

dP

dV
= d(V × I )

dV
= I + V

d I

dV
= 0 (12)

d I

dV
+ I

V
= I (i) − I (i − 1)

V (i) − V (i − 1)
+ I (i)

V (i)
= 0 (13)

e = I (i) − I (i − 1)

V (i) − V (i − 1)
+ I (i)

V (i)
(14)

3.8 Beta Optimization Algorithm (BOA)

This technique uses the characteristics of the PV array to determine β factor that can
capture the GP faster than most of the traditional MPPT. This technique is first intro-
duced in 2007 by Jain andAgarwal [56]. The value of beta can be obtained from (15):

β = ln

(
I

V

)
− c × V (15)

where c can be determined from (16)

c = q/(k × T × η) (16)
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where I and V are the terminal voltage and output current from the V array, respec-
tively, q is the electronic charge, k is the Boltzmann’s constant, η is the diode quality
factor, T is the ambient temperature in Kelvin.

From the PV array model or the actual measurements, the two extreme values
of beta, βmin, and βmax can be determined. The new value of the duty ratio of the
DC/DC converter is determined from (17):

D( j + 1) = D( j) + (βg − βa) N (17)

where j is the iteration number, βg is the value of β at the temperature that the PV
module will work at it most of the time and it is used to determine the reference or
duty ratio corrections, βa is the actual value of β.

A comprehensive comparison between the beta algorithm and other traditional
MPPT techniques is introduced in [57] showed that the beta algorithm has the highest
efficiency, the fastest convergence, the lowest transient in the steady state, and has
the best overall performance operation compared to the other traditional MPPT
techniques.

The beta algorithm is further improved in 2016 [58] by adopting the value of N in
(17) to be higher at transient than the steady-state conditions. In the case of a steady
state, the control will move to the P&O to reduce the transient at steady-state condi-
tions. This modification further improved the convergence speed and the transient
at the steady-state condition which can put the beta algorithm in the best traditional
MPPT techniques. The flowchart showing the modification of the beta algorithm is
shown in Fig. 11. Although the superior operating performance in capturing theMPP
in the case of uniformly distributed irradiances, meanwhile it will not have the ability
to capture the GP in the case of PSC. Moreover, this technique needs three sensors
(voltage, current, and temperature sensors) which can add a cost to the hardware
implementation of this technique.

Fig. 11 The flowchart of the
beta optimization algorithm
for the PV MPPT technique
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Fig. 12 The flowchart of
RCC PV MPPT technique

3.9 Ripple Correlation Control (RCC)

The idea used in the ripple correlation control (RCC) is to minimize the time deriva-
tive of power and current of PV array to become near to zero. The time variation of
power and current near the MPP is zero, so RCC is used the ripples in the power,
voltage, and current to becomeminimum or tend to zero to be sure the control system
work at the MPP. This technique is implemented in [59] using analog circuits and is
modified to reduce the convergence time in many other types of research. The advan-
tage of this technique is it does not need prior information about the parameters of
the PV array which enables it to work with any PV system with any performance
characteristics. This technique will not able to capture the GP in the case of PSC.
The flowchart showing the logic used in RCC is shown in Fig. 12.

3.10 DC-Link Capacitor Droop Control (DCLCDC)

This technique is designed especially for the PV systems that are integrated with
the AC utility grid. This technique depends on maximizing the output power from
the DC-link capacitor to the inverter without drooping the DC-link voltage. This
can be accomplished by controlling the duty ratio of the DC/DC converter and the
power angle andmodulation index of the inverter. This technique is used with a boost
converter and sine wave PWM inverter in [45, 60]. Like all the traditional MPPT
techniques, the DC-link capacitor droop control is not able to capture the GP in the
case of PSC.
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3.11 Load Current or Load Voltage Maximization (LCLVM)

The idea behind this technique is the capturing depending on maximizing the output
power connected to the DC-link of DC/DC converter. This technique has been used
with a voltage source and current source converter [61, 62]. In using of voltage source
converter, the control system is maximizing the output power through maximizing
the output current by controlling the modulation index and power angle as well as the
duty ratio of DC/DC converter. In the current source converter, the control system is
maximizing the output voltage which can increase the output power. This PVMPPT
will not able to capture the true GP because it is assumed that the converters are
lossless. Moreover, this technique will not able to work with the PSC because it may
stick at one of the LPs.

3.12 Three-Point Bidirectional Perturbation (TPBP)

Three-point bidirectional perturbations based on three-point disturbance observation
are utilizing three operating points that work in different duty cycles, using two points
to restore a virtual operating point which is the same PV characteristic curve as the
rest of the point. In this paper, a novel three-point disturbance observation algorithm
is presented based on three specially configured points continuously sampled from
the PV array. The points include the current operation point, a point perturbed from
the mentioned point, and another point perturbed in the opposite direction from
the operation point. The proposed operation mode reduces the losses caused by
the oscillation of running the MPPT algorithm [63]. The flowchart showing the
three-point bidirectional perturbation (TPBP) is shown in Fig. 13.

3.13 Curve-Fitting Algorithm (CFA)

Curve-fittingMPPT technique is using the PVmodule parameters andweather condi-
tions to derive third-order curve fitting polynomial as shown in (18). The first deriva-
tive of the power shown in (19) is equal to zero at theMPPof the P–Vcurve. The value
of optimal voltage, V opt, can be determined from (20) [41]. This equation produces
twovalues of optimal voltage; the real value can be easily selected. This technique can
be classified as a model-based, offline, traditional, and mathematical-based MPPT
technique. This technique also is not able to capture the GP in PSC.

P = aV 3 + bV 2 + cV + d (18)

dP

dV
= 3aV 2 + 2bV + c = 0 (19)
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Fig. 13 The Three-point
Bidirectional Perturbation
(TPBP)

Vopt = −b ± √
b2 − 3ac

3a
(20)

3.14 Bisection Search Technique (BST)

This bisection search technique is introduced in 2010 [64] to track the MPP of the
PV energy system. This technique used the well-known bisection theorem to track
the MPP of the PV system.

Assume y = ΔP/ΔD, it is required to get the duty ratio that has y = 0. Three
points are selected to start the tracking process Da = 0, Db = 0.5, Dc = 1

Then determine the values of ya, yb, and yc from the following Eqs. (21)–(23)

ya = P(Da + �D) − P(Da)

�D
(21)

yb = P(Db + �D) − P(Db)

�D
(22)
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Fig. 14 The flowchart of the Bisection search technique

yc = P(Da) − P(Da − �D)

−�D
(23)

Then check if ya*yb < 0, then Da = Da, Dc = Db, and Db = (Da + Dc)/2,
Else if yb*yc < 0, then Da = Db, Dc = Dc, and Db = (Da + Dc)/2,
Else, (This means that all of them (ya, yb, yc) have the same sign due to acute

change in the radiation, and in this case, the system should start from the beginning.
The flowchart of the BST is shown in Fig. 14. The value of ΔD should be chosen
carefully, where a large value may capture theMPP faster but it will have oscillations
around the steady state and vice versa. It is recommended to be used about ΔD =
0.01 in [64].

3.15 Slide Mode Control (SMC)

Sliding mode control theory is used in the application of PV MPPT of PV systems
[65]. This technique used �P/�V to switch on and off the DC/DC converter. The
value �P/�V can be obtained from (24) [65]. The DC/DC converter used in this
study is a buck converter. Based on the value of �P/�V , the DC/DC converter will
be switched on and off based on the condition shown in (25).

�P/�V = I + (�I/�V ) ∗ V (24)
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S =
{
0 �P/�V ≥ 0
1 �P/�V < 0

(25)

where I, V, P are the current, voltage, and power output from PV array.
Another research [65] is used a full-bridge single-phase PWM inverter to directly

track the MPP of the PV system and to convert the DC power from the PV system
directly to AC power that can be connected to the utility grid. This technique showed
a very fast convergence time but it will not have the ability to trach the MPP in the
case of PSC.

3.16 Transient-Based MPPT (TBM)

This PV MPPT is introduced in 2009 [15] by using a single-stage inverter single or
three-phase converter. In this technique, the control system determines the maximum
and minimum voltage, Vmax, Vmin, respectively. The control system samples the
change in current and, if this change is positive, it forces the voltage toVmax, otherwise
reference voltage to Vmin. This technique has very fast convergence, meanwhile,
it suffers from many disadvantages such as the high transient around steady-state
conditions and its inability to work with the PSC. A detailed discerption of this
technique is shown in [15, 41].

3.17 Current Sweep MPPT (CSM)

This technique is depending on sweeping the current of PV array through the terminal
capacitor and using these values of current to determine the voltage and power at
MPP [66]. The mathematical modeling of this technique is performed based on that,
the current function obtained from the current sweep is proportional in its derivative
as shown in (26) [41].

f (t) = k
d f (t)

dt
(26)

where k is the constant of proportionately.
Applying the above equation to determine the time derivative of power as shown

in (27).

dP(t)

dt
=
(
V (t) + k

dV (t)

dt

)
d f (t)

dt
= 0 (27)

The solution of the above differential equation is shown in the following equation:
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f (t) = Imax e
(kt) (28)

The optimal current can be determined from the above equation. The optimal
voltage can be determined from the following equation:

dP(t)

dt
=
(
V (t) + k

dV (t)

dt

)
d I (t)

dt
= 0 (29)

3.18 Comprehensive Comparison Between Traditional
MPPT Techniques

After discussing the traditional MPPT techniques in the above chapter, it has been
listed in the following Table 1 for the purpose of comparison.

Table 1 A comprehensive comparison between traditional MPPT techniques

No. MPPT
technique

Convergence
speed

Tracking
efficiency

Oscillations
at
steady-state

No of
sensors

Implementation
complexity

PSC
MPPT
ability

1 DEM High Low Low 3 Medium NO

2 FOCV High Low Low 3 Low NO

3 FSCC High Low Low 3 High NO

4 LuT High Low Low 3 High NO

5 HC Low Low High 2 Low NO

6 P&O Low Low High 2 Low NO

7 InCond High High Low 2 Medium NO

8 BOA Medium Medium Low 3 Medium NO

9 RCC Medium Medium Medium 2 Medium NO

10 DCLCDC Medium Medium Medium 2 High NO

11 LCLVM Medium Medium Medium 2 High NO

12 TPBP Medium Medium Low 2 Medium NO

13 CFA High Low Low 2 Medium NO

14 BST Low High Low 2 Low NO

15 SMC High High Low 2 Medium NO

16 TBM Medium Medium Medium 2 Medium NO

17 CSM Medium High Medium 2 High NO
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4 Soft-Computing MPPT Techniques

Soft-computing techniques are classified into three different categories as has been
shown in Fig. 7 to four different techniques. These techniques are listed in the
following points:

• Artificial Intelligent (AI)
• Metaheuristic Algorithms (MA)
• Chaos optimization algorithms (COA).

4.1 Artificial Intelligent (AI) MPPT Techniques

Two types of artificial intelligent techniques have been introduced in this chapter to
work as anMPPT of PV systems. These two techniques are the fuzzy logic controller
and an artificial neural network.

4.1.1 Fuzzy Logic Controller (FLC)

Fuzzy logic controller (FLC) is one of the soft-computing techniques that has been
used as MPPT of PV systems [67–69], as well as in the motor drive control and
renewable energy applications [69–73]. This technique is one of the most important
PV MPPT techniques because it is a very fast convergence and it has very low oscil-
lations in steady-state conditions. The fuzzy logic controller has one more advantage
where it does not need accurate inputs measure or accurate PV array modeling. The
operation of FLC is consisting of three parts, fuzzification, Aggregation, and defuzzi-
fication. In the fuzzification stage, the input variables are defined as a membership
function. Moreover, linguistic relations (rules) between input and output is intro-
duced in this part. The aggregation stage is done by combining the output fuzzy sets
of each rule to perform one output fuzzy set. The defuzzification stage is done by
defuzzifying the fuzzy set into crisp output. The use of FLC is introduced in many
studies and it has been used separately or with other MPPT as will be discussed in
the hybrid MPPT section of this chapter. The operation of PV MPPT using FLC is
done by calculating the change of power divided by the change in voltage which is
called the error signal as shown in (30). The value of change of error, ΔE is defined
as shown in (31).

E(n) = P(n) − p(n − 1)

V (n) − V (n − 1)
(30)

�E(n) = E(n) − E(n − 1) (31)

The error function and change of error that can be obtained from (30) and (31),
respectively, should be expressed based on labels such as; PB (Positive Big), PM
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(PositiveMedium), PS (Positive Small), ZE (Zero), NS (Negative Small), NM (Nega-
tive Medium), NB (Negative Big) using a basic fuzzy subset. These linguistic vari-
ables are modeled in a mathematical membership function. The error function, E,
and change of error, ΔE are two input functions in the FLC as shown in Fig. 15
[68]. In the same figure, the output will be the change in duty ratio, ΔD which will
be expressed as membership in the FLC output which will be added to the old duty
ratio to determine the new duty ratio to control the DC/DC converter. Many shapes
of membership functions can be used to express the input and output variables,
where triangle membership functions are used as shown in Fig. 17. Some researches
proportionate these variables to only five fuzzy linguistic variables as shown in [74].
Table 2 shows the linguistic variables that can be translated into 7*7 fuzzy rules that
can describe the logic of control as shown in the following:

Fig. 15 The membership functions of FLC for inputs and output variables

Table 2 FLC Rules for seven membership functions

E �E

NB NM NS ZE PS PM PB

NB NB NB NB NB NM NS ZE

NM NB NB NB NM NS ZE PS

NS NB NB NM NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PM PB PB

PM NS ZE PS PM PB PB PB

PB ZE PS PM PB PB PB PB
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Fig. 16 FLC 3D Surface function

R25 : I f E is NM and �E is PS then �D is N S

R63 : I f E is PM and �E is N S then �D is PS

. . .

R51 : I f E is PS and �E is N B then �D is NM

During the defuzzification stage, the output from the rules should be converted
to numerical values using the output membership function. This value in the output
is the change in the duty ratio, ΔD that should be added to the old duty ratio of the
DC/DC converter. The height of the defuzzification can be obtained from (32) to
determine the numerical value of change in duty ratio ΔD [69].

�D =
(

m∑
k=1

c(k) ∗ Wk

)
/

n∑
k=1

WK (32)

where c(k) is the peak value of each output membership function.
Wk = height of rule k, where is k = 1,2, …49.
The surface function 3-D drawing is a drawing representing the relation between

the inputs and the output of the fuzzy controller is shown in Fig. 16. The surface
function should be smooth to enhance the stability of the FLC.

4.1.2 Artificial Neural Network (ANN)

The artificial neural network (ANN) is a soft computing technique that has been
used in many applications. This technique models the performance operations of
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Fig. 17 The structure of the neural network

biological neural systems into amathematical system. ANN requires somany careful
training processes to enable it to learn how the system reacts to different inputs.

The ANN is used as a PV MPPT by getting accurate results including the solar
radiation and temperature as input parameters and the optimal voltage or duty ratio
as output parameters. The data can be collected mathematically from the model of
the PV array or from the use of other MPPT in actual life to collect the input and
output parameters to train the ANN and benefit from its fast response. Both data
collections are not accurate because the model may be different from the actual array
due to different tolerance and aging reasons. Also, the real-world data are taking
an effort to collect these data and time. Despite the superiority of ANN in many
applications, it is not gain the same attention when it is used as an MPPT of PV
system due to many problems inherited in this application. One of these problems is
the need for a higher number of good data and its inability to be used in PSCs. A lot
of modifications have been introduced in the literature to improve the performance
of ANN when it is used as an MPPT of the PV systems. One of these modifications
is to use the results obtained from ANN (optimal voltage or optimal duty ratio) and
after that, it will transfer the control to the InCond technique for accurately track the
MPP [75]. The structure of the neural network is shown in Fig. 17.

4.1.3 A Comprehensive Comparison Between Artificial Intelligent (AI)
MPPT Techniques

A comprehensive comparison between Artificial Intelligent (AI) MPPT Techniques
is shown in Table 3.
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Table 3 Comprehensive comparison between Artificial Intelligent (AI) MPPT techniques

No. MPPT
technique

Convergence
speed

Tracking
efficiency

Oscillations
at
steady-state

No of
sensors

Implementation
complexity

PSC
MPPT
ability

1 FLC High High Low 2 High NO

2 ANN High Medium Low 3 High NO

4.2 Metaheuristic Algorithms (MA)

Metaheuristic MPPT Techniques can be classified as shown in Fig. 7 into four
different categories which are listed in the following points

• Swarm Intelligence Algorithms (SIA)
• Bio/Natural-Inspired Algorithms (BNIA)
• Evolutionary Algorithms (EA)
• Mathematical-Based Algorithms (MBA).

4.2.1 Swarm Intelligence Algorithms (SIA)

Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) is one of the best swarm optimizations that
mimics the behavior of animals, birds, or fish in searching for their food. This tech-
nique is introduced in 1995 by Kennedy and Eberhart [76]. The PSO is a stochastic
evolutionary optimization technique that uses several searching agents to look for
optimal solutions. This technique uses the best optimal values as a social or cognitive
experience and the best value for each particle as a private best experience.

The idea behind using the PSO in tracking the MPP of the P–V curve is done
by sending a certain number of particles (swarm size) each one is having a certain
value of duty ratio of DC/DC converter one by one to the PV system and collect the
corresponding power. In many papers [77–81], the DC/DC converter used in the PV
system was a boost converter but any other type of DC/DC converters can be used.
The particle position, D, and the value, P, are used to determine the new position of
particles using the PSO equation obtained from (33) to (34). Consecutive iterations
will be used to control themovement and position to capture theGP. The new position
of particles in each iteration depends on their previous position and values and social
and private experiences. Themovement of each particle is obtained from (33) and the
new position Dk

j+1 is equal to the previous position Dk
j plus the newmovement, vkj+1.

The values of the PSO control parameters ω, cl, and cg substantially affect the
performance of PSO in terms of convergence time, failure rate, and oscillations
around the global best value. Tuning these parameters is very important to get the
best performance or by using the previous experience of previous researches [79–81].
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During the initialization of the PSOwhen it is used as anMPPT of the PV system,
the particle associated with the highest power is assigned to the global best, value,
PGbest, and position, Gbest. Moreover, the particles’ private best values, Pk

best and
positions, Dk

best are equated to the particle’s value and position of the initialization.
The initial speed is set to zero value. The flowchart showing the logic used in the use
of PSO as an MPPT of the PV system is shown in Fig. 18. The steps of the operation
of PSO as an MPPT of PV systems are introduced in detail in [77–82].

vkj+1 = ω vkj + clrl(D
k
best − Dk

j ) + cgrg(Gbest − Dk
j ) (33)

Dk
j+1 = Dk

j + vkj+1 (34)

where j is a counter representing the iteration number that states from 1 to the
maximumnumber of iterations, it.ω, cl, and cg are called the PSO control parameters,
Dk

best is the personal best position of the particle k, Gbest is the global best position,
rl and rg are random values in between [0, 1].

Despite the superiority of using PSO as an MPPT of the PV system, it has
many shortcomings and all of these shortcomings have been solved in literature.
The following points are showing these shortcomings and how they are solved in
literature. Most of these shortcomings in the PSO are occurring in most of other
swarm optimization techniques, and for this reason, it will be discussed for PSO in
detail to be as guidance for other swarm optimization techniques. The PSO also has
been used in optimal sizing and allocations of hybrid renewable energy systems and
distributed generation [83–93].

(a) The problem of long convergence time and high failure rate

There are many reasons to participate in this problem such as the random initializa-
tion of particles, this problem is solved by initializing the particles at the anticipated
position of peaks [77]. The position of the anticipated peak can be determined from
(35) [77]. Another technique is used by uniformly distribute the initial positions of
particles within the searching space as shown in (36) [79]. Initializations of particles
at positions of anticipated peaks [77] or at equal distance in the searching space [79]
reduced the convergence time by more than 50% and reduced the failure rate to zero
[79].

The swarm size can substantially affect the convergence time and failure rate,
where the high value of swarm size can prolong the convergence time and reduces
the failure rate and vice versa. This trade-off effect forces the researchers to look
for the optimal value of swarm size which has been accomplished in [94] for PSO
and BA when it is used as an MPPT of the PV system. This paper [94] introduced
the optimal value of swarm size against the number of peaks in the P–V curve for
minimum convergence time and failure rate.

Dk
0 = 1 − (k − 1 + kv)

SS
∗ Voc

VDC
(35)
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Fig. 18 The flowchart of using PSO as an MPPT of PV systems

where n is the total number of particles and i is the particle’s order.

Dk
0 = k/(SS + 1) (36)

where Dk
0 is the k-th initial particle position (duty ratio), k is the counter used to

represent the number of the particle in the swarm (k = 1,2,…SS).
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The unwise selection for PSO control parameters (ω, cl, cg) has a substantial effect
on the convergence time and failure rate. Numerous researches have been introduced
to improve the performance of PSO by modifying the values of control parameters.
One of these efforts is done by tuning the PSO control parameters for minimum
failure rate and convergence time. Another work uses linear decreasing PSO control
parameters as shown in (37)–(39) [95]. Another research used a modified PSO PV
MPPT control under PSC with a Gaussian particle swarm optimization method [96]
to improve the performance of PSO in terms of fast and reliable convergence.Another
research work used deep recurrent neural networks trained from the results obtained
from PSO to improve the performance of PSO in terms of fast and reliable conver-
gence [97]. Another work used an adaptive perceptive particle swarm optimization
(APPSO) [98] technique for the same purpose. A review of different techniques used
to improve the performance of PSO in terms of convergence time and failure rate
when it is used as an MPPT of the PV system is introduced [99].

Another technique is introduced in [80] called scanning PSO technique, in which
the control system sends a certain number of duty ratios to the PV system and collects
the corresponding power. Then the duty ratio associated with the highest value of
power will be selected to initialize the PSO particles to be around this optimal value.
After that, the PSOwill continue tracking thisMPP. Actually, this is one of the fastest
and highest reliable MPPT techniques where it captured the GP effectively within
0.4 s [80].

Another research paper is introduced to improve the performance of PSO when it
is used in tracking theMPP of the PV system in PSC by removing the randomnumber
in the acceleration parameters of the conventional PSO velocity equation and adding
a maximum allowable change in the velocity [100]. This strategy is called “The
deterministic PSO (DPSO).” This strategy captured the GP with a lower number of
particles in a short time. Moreover, it has only one parameter needs tuning which is
the inertia weight. The only shortcoming in this technique is its need for reevaluation
on different types of PSCs and systems with different numbers of peaks.

ω j = ωmax − j

Jmax
(ωmax − ωmin) (37)

cl, j = cl,max − j

Jmax

(
cl,max − cl,min

)
(38)

cg, j = cg,max − j

Jmax

(
cg,max − cg,min

)
(39)

where Jmax is the maximum number of iterations, ωmax and ωmin are the highest and
lowest value of inertia weight cl,max and cl,min.

(b) The need for reinitialization

When all the particles are concentrated at the GP, the shading pattern may change
and the GP may become in the other place. In this case, the particles will not able
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to capture the GP and they will continue around the previous GP. In this case, the
generated power will not be the maximum available power because the GP is in
another position. This problem can be avoided by reinitializing the particles when
an acute change is detected. The condition that is used to detect the acute change is
shown in (40). The predefined tolerance, ε is chosen between 5 and 10% [77–79].
In most of the papers, it is used with 5% where the lower value of the predefined
tolerance will cause a reinitialization without a need for that and higher values of the
predefined tolerance will not initialize the particles in a reasonably acute change in
shading conditions.

∣∣∣∣
Pnew − Pold

Pold

∣∣∣∣ ≥ ε (40)

wherePnew andPold are the output powers captured from the PV system in the current
and previous iterations, respectively. ε is the allowable power change limit that has
been assumed as 5% of the old power captured.

Bat Algorithm (BA)

The bat algorithm (BA) is one of the swarm techniques that imitates the performance
of bats in searching for their food. The BA is first developed in 2010 by Yang in
2010 [101].

The mechanism that the bats used in nature to track a prey are by emitting several
impulses with different frequencies and amplitudes and receives the echo of these
sound pulses and transfer these data to useful information to decide the next step
toward the prey. The time difference between the transmitted pulse sound and the
received echo represents the distance between the bat and the prey. The bats can
identify the size of the prey by measuring the intensity of the echoed sound pulses.
Moreover, bats can evaluate the moving speed and direction of the prey by tuning
the frequency difference. In nature, the bats emit short-duration sound pulses around
10–100 times per second [101]. The searching behavior of the bats has inspired the
researchers to imitate it in searching for the optimal solution for different life prob-
lems. Many generalized rules should be taken into consideration in the mathematical
modeling of the BA. The following sections explain the logic of using the BA as an
MPPT of the PV systems. The flowchart showing the logic of BA when it is used as
an MPPT of the PV system is shown in Fig. 19.

Although the superiority of the BA compared to the PSO or any other swarm
optimization techniques, it did not get its deserved weight in the MPPT of the PV
systems applications where only a couple of researches have been introduced in the
literature [102–107]. For this reason, theBAhas been discussed deeply in this chapter
with detailed performance characteristics.

BA Initializations
The initialization of bats should get their values from (35) or (36) to reduce the
convergence time and failure rate compared to the random initialization of bats in
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Fig. 19 The flowchart of the modified BA strategy used in tracking the GP of PV systems
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the conventional BA when it is used for tracking the maximum power of PV systems
[94, 108]. These results are introduced and discussed in [94, 108]When it is compared
with random initialization. The BA is used as an MPPT of the PV system by giving
the particles the initial values of duty ratios that can be obtained from (35) or (36)
with initial frequency obtained from (41).

The initial velocity v1:n0 and initial frequency f 1:n0 of all bats are set to zero (where
n is the swarm size). The initial values of pulse rate, r0, loudness, A0, and many
initialization parameters are set to different values in the state-of-the-art strategies of
BA which is discussed in detail in the simulation results section. The initial values
of bats that can be determined from (35) or (36) will be used to start the boost
converter where it will be sent to it one by one and the corresponding power P1:n

0 will
be collected after waiting for the sampling time to get the steady state from the
boost converter. The best value of maximum power is determined from as Pbest =
max

(
P1:n
0

)
and the corresponding duty ratio dbestwill be determined.

Global Peak Tracking using BA
The equations used to mimic the behaviors of bats are shown in Eqs. (41)–(43) where
the impulse frequency is shown in (41) which will be used in (42) to determine the
bats’ velocities v1:ni . The new positions of bats d1:n

i can be obtained as shown in (43)
by adding this velocity to the previous positions of bats.

f 1:ni = fmin + ( fmax − fmin)β (41)

v1:ni = ω v1:ni−1 + (
dbest − d1:n

i−1

)
f 1:ni (42)

d1:n
i = d1:n

i−1 + v1:ni (43)

where the values of f min and f max are the minimum and maximum frequency ranges,
respectively. The values have been chosen from [101] to be 0 and 2, respectively. β
is a random value, β ∈ [0, 1], as the case of PSO, the velocity of bats is multiplied by
inertia weight value, ω which is used to enhance the searching stability of particles.

After determining the new position from (43), a randomwalk around this position
should be performed to get the new position of the bats as shown in (44) [94, 108].
If the pulse emission ri less than a random number, then the duty ration position di
should be replaced with values shown in (44) which is a representation of a random
walk around the best solution.

d1:n(new)
i = dbest + εϕ

〈
A1:n
i

〉
(44)

where ε is a random number, ε ∈ [−1, 1], and φ is used to give stability or limitations
to the number walk around the best solution,

〈
A1:n
i

〉
is called the average loudness of

each bat and its value equal to the average of A constant in the previous iterations, k
from the beginning (i = 1) to the current iteration.
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The value of the loudness (Ai) of the impulse should start from high-value A0 and
should be decreased as shown in (45), where it starts at 0.999 and should be decreased
to 90% of its previous value. The value of ri is called the rate of pulse transmission.
The values of ri are started at lower value r0 = 0 and it increased exponentially to
the end value ri = 1 as shown in (46).

A1:n
i = αA1:n

i−1 (45)

r1:ni = r1:n0 [1 − e(−γ i)] (46)

where the values of α and γ have been chosen equal to 0.9 in many types of research
[94, 108].

After determining the new positions of bats d1:n
i it will be used as a duty ratio of

boost converter to control the terminal voltage. These values of duty ratio will be fed
to the boost converter one by one and wait for the sampling time between each entry.
The generated power for each duty ratio will be collected P1:n

i and the maximum
value of power Pmax and its corresponding duty ratio dbest can be determined.

The control system will send the new values of the duty ratios, d1:n
i to the PV

system and will collect the corresponding power for each duty ratio, P1:n
i . The

maximum power collected from the PV system will be compared with the global
best power to update the value of global best if the new power is greater than its
value as shown in the following:

For k = 1: n; if P1:n
i > Pmax then Pmax = Pk

i and dbest = dk
i .

BA has been used in many types of research and it shows better performance
than the PSO in terms of convergence time and failure rate. The problems of long
convergence time and high failure rate shown above in PSO are inherent in BA too
and it can be avoided with the same modifications as discussed in PSO, where the
bats’ initializations should not be random where it is better to start it with the duty
ratios at the anticipated peakswhich can be obtained from (35), or with equal distance
between the duty ratios as obtained from (36). Moreover, the need for reinitialization
discussed in PSO is also needed with the BA and has been performed with the same
condition shown in (40) [94]. The performance of BA is modified considerably by
using the scanning strategy discussed above in PSO [108], where, in the beginning,
several values of the duty ratiowill be applied to the PV system and the one associated
with the highest power will be used to initialize the bats around it.

To overcome the problem of high oscillations around the GP in the steady-state
operation associatedwithBA, a newly proposed hybrid technique is introduced [109].
In this study, the BA is used to capture the GP and once it gets it, it transfers the
tracking to one of the three traditional MPPT techniques. The traditional techniques
used in this study to improve the performance of BA are beta, P&O, and InCond
MPPT techniques. These modifications showed improvements in the performance
of BA MPPT technique in steady-state conditions, especially with the BA and beta
MPPT algorithms [109].
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Cuckoo Search (CS)

The cuckoo search (CS) optimization technique is introduced byYang andDeb [110].
Three rules should be followed to use the cuckoo’s brood parasitic behavior as an
optimization tool.

(1) each cuckoo lays one egg at a time and places it in a randomly chosen nest,
(2) the best nest with the highest quality of eggs will carry over to the next

generation, and,
(3) the number of available nests is fixed and the number of eggs that can be

discovered by the host bird maintains a probability Pa, where 0 < Pa < 1.

If the cuckoo’s eggs are discovered, the host bird can abandon its nest or destroy
cuckoos’ eggs. Either way, a new nest will be generated with a probability of Pa
for a fixed number of nests. Based on these three rules, the CS algorithm can be
summarized as in the flowchart shown in Fig. 20 [111].

Cuckoo search (CS) is an optimization algorithm, inspired by the parasitic repro-
duction strategy of cuckoo birds [111]. It is observed that several species of cuckoos
perform brood parasitism, i.e., by laying their eggs in other birds’ (host birds) nests
[111]. Usually, three types of brood parasitism are seen (1) intraspecific, (2) coop-
erative, and (3) nest takeover. Some cuckoo species such as Tapera are intelligent
enough to mimic the shape and color of the host bird to increases its reproduction
probability. It is also presented in [111] that cuckoos lay their eggs at some specific
time so that their eggs hatch earlier than the host bird’s own. After the early hatching,
cuckoos destroy some of the host bird’s eggs to increase the chance of their chicks
getting more food. It is also a common phenomenon that the host birds discover the
cuckoo’s eggs and destroy these. Sometimes they abandon their nest completely and
go elsewhere to build a new nest.

The first time that CS was used as an MPPT of the PV system was in 2013 [112].
Later, CS has been used extensively in these applications [110–117]. This algorithm
has been also used in the optimal design of hybrid renewable energy systems in [118].

In the beginning, the initial values of eggs are selected and the corresponding
power from the PV system will be sampled. Based on the values of power collected,
the best nest can be selected. To enhance the private search, a random walk should
be performed around each solution which can be provided by the Lévy flight model
as shown in (47) [119]:

Levy(λ) ≈ u = 1−λ where (1 < λ < 3) (47)

The new solution that can be determined in each iteration by the equation shown
in (48) [119].

xt+1
i = xti + a ⊕ Levy(λ) (48)

where i is the number of eggs, t is the iteration number, the product ⊕ indicates
entry-wise multiplication, and α is the step size. The value of α can considerably
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Fig. 20 The flowchart of
Cuckoo search algorithm in
PV MPPT
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affect the performance of convergence, so careful tuning for this value should be
selected. In [119], the value of α is determined by setting an initial value for it, α0,

and use the difference between two samples
(
xtj − xti

)
, as shown by Eq. (49)

α = α0 + (
xtj − xti

)
(49)

Besides the value of α0, the performance of convergence is affected also by the
fraction of worse nests, parameters for Lévy distribution, and population size. The
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Fig. 21 Leadership
pyramids with four levels of
leadership (α, β, δ, and ω)

results obtained fromusingCS as anMPPTof the PV system in [119]. showed that the
performance of this technique is having fast and reliable convergence. Meanwhile,
this technique (CS) may be easily trapped in one of the LPs in the case of an unwise
selection of control parameter values [119]. Figure 20 shows the flowchart of CS
when it is used in the MPPT of PV systems.

Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO) is one of the best swarm optimization technique
that has been used to solve several nonlinear problems like theMPPT of PV systems.
This technique is inspired by the lifestyle of the gray wolves in the purse, chasing,
attacking, and hunting prey in wildlife [120]. Ion nature, gray wolves like to live in
a group containing 5–10 wolves with four levels of leadership. They have a pyramid
leader as shown in Fig. 21 [120]. This leadership is having the high-rank leaders
called alpha (α), subleaders called beta (β), as well as gamma (γ ), and omega (ω),
where the dominance of wolves is reduced from top to bottom. Where the strong
leaders are α wolves and ω wolves are the lowest rank wolves.

Asmentioned above, graywolves encircle prey during the hunt. Themathematical
model mimicking the behavior of GWO is shown in (50) and (51) [40]:

�E =
∣∣∣ �C . �DP(t) − �D(t)

∣∣∣ (50)

�D (t + 1) = �Dp(t) − �A. �E (51)

where t represents the current iteration, �A and �C are vectors based on their values
the balance between the exploration and exploitation can be determined, �Dp is a
position vector from the wolves to the prey, and �D indicates the position vector of a
grey wolf. Equations (52) and (53) are used to determine the two position vectors �A
and �C , respectively [40]:

�A = 2�a.�r1 − �a (52)
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�C = 2.�r2 (53)

where the coefficient a is decreasing linearly from 2 to 0 and r1, r2 are randomvectors
with a value between 0 and 1.

The value of �A is considerably affecting the performance of convergence where∣∣∣ �A
∣∣∣ < 1 is enhancing the exploitation meanwhile

∣∣∣ �A
∣∣∣ > 1 enhances the exploration.

In nature, the order of the alpha wolf ( �Dα) is the highest priority to be obeyed.
Meanwhile, the rank of obeying the order is reduced in descending level for the
beta wolves ( �Dβ) and delta ( �Dγ ). This leadership hierarchy can be mimicked
mathematically using the following Eqs. (54), (55), and (56):

�Eα =
∣∣∣ �C1. �Dα − �D

∣∣∣, �Eβ =
∣∣∣ �C2. �Dβ − �D

∣∣∣, and �Eδ =
∣∣∣ �C3. �Dδ − �D

∣∣∣ (54)

�D1 = �Dα − �A1 · �Eα, �D2 = �Dβ − �A2 · �Eβ, �D3 = �Dδ − �A3 · �Eδ (55)

�D(t + 1) = �D1 + �D2 + �D3

3
(56)

The flowchart showing the use of GWO in MPPT of PV systems is shown in
Fig. 22.

Artificial Bee Colony Algorithm (ABC)

The Artificial Bee Colony (ABC) algorithm proposed by Karaboga is based on the
foraging behavior of honey bees [121]. In nature, artificial bees are divided into three
types, employed bees, unemployed or onlooker bees, and scout bees. The employed
bees function is used to search for the food and determine its place and it shares
this information with other bees in the colony. The unemployed or onlooker bees’
function is towatch the employed bees and help to find the place of the food. The scout
bees’ function is to search randomly for a new source of food. They communicate
and coordinate with each other to obtain the optimal solution in a short time. In the
algorithm, the location of a food source and the quantity of nectar denote a solution of
the optimization problem and the fitness value of the related solution, respectively.
The algorithm starts with a parameter initialization and it generates an arbitrarily
initial population (P) of SS solutions, which is the population size. Each solution xi
is an n-dimensional vector. For the initialization process, (57) is used [122].

Di, j = Dmin,i + r
(
Dmax,i − Dmin,i

)
, i = 1, 2 . . . SS, j = 1, 2, . . . , n (57)

where n is the number of optimization parameters (n = 1 in the PV MPPT because
the duty ratio is the only optimization parameter),Dmin,i andDmax,i are the minimum
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Fig. 22 The flowchart
showing the use of GWO in
MPPT of PV systems

and maximum allowable value of the duty ratio, respectively, r is a random number
between−1 and 1. In the operation of theABCalgorithm, the employed bees evaluate
the new food sources using (58) and determine the candidate food position (vi,j) from
the old value (Di) in memory [122].

Di+1, j = Di, j + rand [0, 1] (Di, j − Di, j
)

(58)

Onlooker bees that are waiting in the dancing area move closer to the position of
the employed bee where the nectar quantity is the highest [123]. This movement is
given as shown in (59).
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Fig. 23 The flowchart of the
artificial bee colony
algorithm
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SS
2 − 1

(59)

where Dh represents the food source position with the highest nectar amount, SS is
the number of bees, r is a random number between −1, 1.

The onlooker bees select food source of the employed bee calculated on the basis
of probability connected to the food source as shown in (60) [122].

pi = P(Di )

SS∑
n=1

P(Di )

(60)

where P(Di) is the fitness function of Di.
The new value of power is compared to the old one and the new one will replace

it if it is greater than the old one. This will continue until the scout bees select a
new position of food based on Eq. (57). The logic shown for ABC has been used for
MPPT of the PV system in [123] and it has been compared to the PSO and it is found
that it has better performance than PSO in terms of convergence time and failure rate
[123, 124]. Figure 23 shows the flowchart of the artificial bee colony algorithm.

Cat Swarm Optimization (CSO)

Cat swarm optimization (CSO) is one of the swarm optimization techniques that has
been developed in 2006 [125]. CSO is divided into twomodes of operations, namely,
seeking mode and tracing mode [125]. Each cat is representing one solution and it
is used in the algorithm as a searching agent. So, depending on the optimization
variable, M, the cat is composed of M dimensions (this dimension will be only one
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MPPT of PV system because only one variable will be optimized, the duty ratio of
DC/DC converter or terminal voltage of PV array). So, in the case of using the CSO
in MPPT of the PV system the value of M will be equal to 1 which will be used
during this section.

During seeking mode, four essential factors should be defined as shown in the
following points:

SMP: SMP is standing for “Seeking Memory Pool,” that represents the seeking
memory size for each cat.
SRD: SRD is standing for “Seeking Range Dimension,” that declares the mutative
ratio for the dimensions.
CDC: CDC is standing for “Counts of Dimension to Change,” that discloses the
dimensions will be varied.
SPC: SPC is standing for “Self-Position Considering,” which is used to decides
which cat will move or stand.

The logic showing the CSO performance is shown in the following steps:

Step-1: Make j copies of the present position of catk , where j = SMP. If the value
of SPC is true, let j = (SMP-1), then retain the present position as one of the
candidates.
Step-2: For each copy, according to CDC, randomly plus or minus SRD percent
of the present values and replace the old ones.
Step-3: Calculate the fitness values (FS) of all candidate points.
Step-4: If all FS are not exactly equal, calculate the selecting probability of each
candidate point by Eq. (61), otherwise set all the selecting probability of each
candidate point to be 1.
Step-5: Randomly pick the point to move to from the candidate points, and replace
the position of catk . If the goal of the fitness function is to find the minimum
solution, FSb= FSmax, otherwise FSb= FSmin.

Pi = |FSi − FSb|
FSmax − FSmin

, where 0 < i < j (61)

Three steps are shown below that can mimic the tracing mode of cats into a
mathematical form:

Step 1: Update the velocities for each cat (vk) according to Eq. (62).
Step 2: Check the value of the velocity is within the predefined limits. If the
velocity is out of the predefined limits it will be equated with the nearest limit.
Step 3: Use Eq. (63) to determine the new position of cats.

vk = vk + r1 c1 (xbest − xk) (62)
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xbest is the position of the cat, who has the best fitness value; xk,d is the position
of catk . c1 is a constant, and r1 is a random value in the range of [0, 1].

xk = xk + vk (63)

This technique (CSO) is used as an MPPT in many types of research [126]. This
technique showed fast convergence to the MPP but it may stick at one of the LPs in
PSC.

Ant Colony Optimization (ACO)

Ant colony optimization (ACO) is one of the swarm optimization techniques that
mimic the performance of ants in their foraging behavior to be used for tracking the
optimal solutions of nonlinear problems. This technique is first introduced by Dorigo
and Gambardella [127]. Since then many modifications introduced in the literature
to improve the performance of this technique and it has been used as MPPT of PV
system [128, 129]. The use of ACO in the application of PV MPPT is done by using
the voltage value of the PV array as bee location and the output power of the PV
array is used as an objective function in the simulation [119]. The flowchart showing
the logic of ACO when it is used as a PV MPPT is shown in Fig. 24 [128].

A new ACO pheromone updating strategy to improve the convergence perfor-
mance of ACO (ACONPU MPPT) when it is used as an MPPT of the PV system is
introduced in [119]. Once the ACONPU MPPT controller is developed, several tests
are performed under standard test conditions to determine the ACO control param-
eters. The Gaussian Kernel for the ith dimension of the solution is shown in (64)
[119].

Gi(x) =
k∑

l=1

wlg
i
l(x) =

k∑
l=1

wl
1

σ i
l

√
2π

exp

(
−
(
x − μi

l

)2
2σ i2

l

)
(64)

where gli(x) is the lth sub-Gaussian function for the ith dimension of the solution;
μi
l and σi

l are the ith-dimensional mean value and the standard deviation for the ith
solution, respectively.

The formula that can be used to determine the pheromone equation, τli is shown
in (65) [119]:

τli(x) = 1

σ i
l

√
2π

exp

(
−
(
x − μi

l

)2
2σ i2

l

)
(65)

During the initial stage, the distances Di between each xi solution among the
selected solutions are determined (i = 1… m, where m is the number of ants) as
shown in (66) and the best solution xbest.
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Fig. 24 Flowchart of ACO
when it is used as an MPPT
of the PV system [131]
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Di = |xi − xbest| (66)

The Gaussian, ϕi can be determined from (67).

ϕi = e
−D2

i
2t (67)

where t is the standard deviation of the Gaussian (usually t = 0.05). The pheromone’s
value τ i is calculated as shown in (68):

τi = ϕi∑m
j=1 ϕ j

(68)

The solution vector of the i-th ant concerning the kth ant at iteration t is obtained
by (69).
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xi = xk(t − 1) + dx (69)

where dx is a random variable in the range of [−α, α], the value of dx is used to
determine the length of the jump. Based on the value of xi obtained from (69), the
value of di can be determined as shown in (70).

di (t) = 1 − xi (t)/xref (70)

The best solutions, k will be selected from all solutions (m + K). After reinitial-
izing the archive, the m best solutions will be selected and their pheromones will be
updated as shown in Eqs. (66)–(68).

The corresponding generated power from the PV system can be calculated from
(71) after sampling the voltage and current generated from the PV system.

Objective function = P = VPV × IPV (G, T ) (71)

where VPV and IPV are the terminal voltage and current of the PV array, respectively,
T is the array temperature, G is the solar radiation in W/m2

The distance between any new solution and the best solution,V best can be obtained
from (72).

Di = |Vi − Vbest| (72)

Compute a Gaussian ϕi by (73)

ϕi = e
−D2

i
2t (73)

where t is the standard deviation of the Gaussian. The pheromone’s value i is
computed as shown in (74).

τi = ϕi∑m
j=1 ϕ j

(74)

Then a perturbation of the voltage can be obtained from (75), (67).

Vi (t) = Vk(t − 1) + dx (75)

The new duty ratio of each ant i is computed as shown in (76).

di(t) = 1 − Vi(t)/Vref (76)

Different parameters can considerably affect the performance of ACO such as
the size of the archive, balance coefficient, convergence time. Tuning these values
improved the results obtained from this technique compared to the PSO and DE
MPPT techniques [119].
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Fireflies Algorithm (FFA)

The FFA is one of the best swarm optimization techniques which is introduced by
Yang [130]. Fireflies are lightning bugs that are attracted to the light in the tropical
regions. The FFA is inspired by the movement of fireflies. This light is playing an
important role in attracting mating partners and preys. The rate of flashing and the
amount of time form part of the signal system is responsible for brings both sexes
together [131].

Let p and q be two fireflies positioned at Xp and Xq, respectively. In a single-
dimensional space, the distance between these two fireflies, rpq is shown in (77).

rpq = ∥∥X p − Xq

∥∥ (77)

The distance between any two fireflies p and q is a function in a factor called the
degree of attractiveness, β that can be obtained from (78).

β(r) = β0e
−γ (rpq)

n

, n ≥ 1 (78)

where, γ is called absorption coefficient which is used to controls the light intensity
and its value varies between 0 and 10 and n = 2 [130], β0 is the initial value of the
absorption coefficient and its value is chosen by 1 to actively determine the position
of other fireflies in its neighborhood [130]. Assuming that the brightness of firefly p
is less than that of q, the new position of firefly p is given by (79).

Xt+1
p = Xt

p + β(r)
(
X p − Xq

)+ α(rand − 0.5) (79)

Here, random movement factor α is constant throughout the program and falls in
the range [0, 1]. The value of α enhancing the searching balance between exploitation
and exploration, where the high value of α enhances exploration, meanwhile small
value of α enhances exploitation [131].

The steps of the logic used with the FFA to capture the MPP of the PV system
are shown in the following points:

Step 1: Parameter Setting: Select the values of FFA control parameters, βo, γ , n,
α, population size N, and the termination criterion. In this algorithm, the position
of the firefly is taken as a duty cycle d of the DC/DC converter. The brightness of
each firefly is taken as a generated power PPV of the PV system, corresponding
to the position of this firefly.
Step 2: Initialization of Fireflies: In this step, the fireflies are positioned in the
allowable solution space between between dmin to dmax where dmin and dmax

represent the minimum and maximum values of the duty ratio of the DC/DC
converter. It is recommended to choose the starting position of the fireflies as
introduced before in Eqs. (35), or (36). The swarm size is recommended to be 6
in [131].



Photovoltaic Maximum Power Point Trackers: An Overview 163

Step 3: Brightness Evaluation: For each duty ratio, the corresponding PV output
power, Ppv is taken as the brightness or light intensity of the respective firefly.
This step is repeated for the position of all fireflies in the population.
Step 4: Update the Position of Fireflies: The firefly with maximum brightness
remains in its position and the remaining fireflies update their position based on
(79).
Step 5: Check if is there any acute change in the generated power which gives an
indication for a big change of the shading pattern. Acute change can be detected
using Eq. (40). If the acute change is detected go to step 2, otherwise go to the
next step.
Step 6: Check the stopping criterion, if it is valid go to step 4 otherwise go to step
3. The stopping criterion should ensure that all fireflies all work around the MPP.

The convergence time and failure rate as well as the oscillations at steady-state
are a function in the FFA control parameter values (βo, γ , n, α, population size, N).
The advantages of FFA is not highly affected by the initial values of duty ratio which
is one of the main advantages of this MPPT technique, meanwhile, the high failure
rate of this technique is counted as one of the main shortcomings [119].

Whale Optimization Algorithm (WOA)

TheWhaleOptimizationAlgorithm (WOA) is one of themodern swarmoptimization
technique which has been developed in 2016 [132]. This technique is inspired by
the WOA. This technique used for pursuing a procedure is called bubble-net feeding
strategy. Humpback whales want to chase little fishes near the surface by making
a bubble net around the prey rises along a circular path. This technique has been
used in MPPT of the PV systems in many studies in the literature [133–135]. The
mathematical formulas thatmodel this technique is shown in the following equations:

D =
∣∣∣−→C · −→

X ∗ (t) − −→
X (t)

∣∣∣ (80)

X(t + 1) = −→
X ∗ (t) − −→

A · −→
D (81)

where t is the iteration number, �A and �D are the coefficient vectors, �X∗ is a vector
used to represent the vector of the best solution, �X represents the current position
vector.

�A = 2�a · �r−�a (82)

�C = 2.�r (83)
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where �a in equations is a variable linearly decrease from 2 to 0 through the progress
of the iterations, �r is an arbitrary vector in the range of [0, 1]. The value of �r is used
to balance between exploitation and exploration.

The spiral path between the position of the whale (current position) and prey (best
solution) can be determined as shown in (84).

−→
X (t + 1) = −→

D’ · ebl · cos (2π l ) + −→
X∗(t) (84)

where
−→
D′ = −→

X∗(t) − �X(t) and demonstrates the distance between the ith whale and
the prey (best solution), b is a constant for characterizing the state of the logarithmic
spiral and its value is randomly chosen between −1 and 1.

Whales swim around the prey inside shrinking circle and along with a spiral form.
There is a probability of half to select one of two approaches as shown in (85).

�X(t + 1) =
{ −→

X∗(t) − �A · �D if p < 0.5−→
D′ · ebl · cos(2π l) + −→

X∗(t) if p ≥ 0.5
(85)

where p is a predefined value that can adjust the balance between exploration and
exploitation and it can be selected between 0 and 1 and it can be adjusted during the
progress of the iterations.

Cuttlefish Algorithm (CFA)

The cuttlefish algorithm (CFA) is one of the modern metaheuristic optimization
algorithms that is inspired by a type of fish called cuttlefish that can change their
skin color to mimic the surrounding environment to either seemingly disappear into
its environment or to produce amazing displays. This algorithm was first introduced
by Eesa et al. [134]. The algorithm undergoes the same mechanism of the cuttlefish
color-changing behavior to optimize mathematical problems. There are three cells
on the skin of Cuttlefish, namely, Chromatophores, Iridophores, and Leucophores.

The Chromatophores cell groups are having pigments to change the color of the
Cuttlefishwhen it is needed. Iridophores cell groups are used to reflect the lightwhich
can help in concealing the Cuttlefish when it is needed. The Leucophores cell groups
are responsible for the white spots occurring on some species of cuttlefish that are
used to scatter and reflect incoming light. The behavior mechanism is mainly based
on two processes which are reflection and visibility. The mathematical model of the
algorithm uses different reflection and visibility factors for each group of solutions
in an iteration to reach an optimum solution accurately and as fast as possible [136].

The mathematical formulation of the CFA is as follows. In general, the update of
the suggested solution is presented in (86), while the reflection and visibility factors
are calculated for each group using (87) and (88).

Dnew = Rni + Vni (86)
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Ri = rd ∗ (r1 − r2) + r2 (87)

Vi = rd ∗ (v1 − v2) + v2 (88)

where Dnew is the newly updated population ready to be studied in the new iteration.

Rni are the new reflected population cells for the i-th group.
Vni are the new visible population cells for the i-th group.
Ri is the reflection factor for the i-th group.
Vi is the visibility factor for the i-th group.
rd is a generated random value between 0 and 1.
r1, r2 are the upper and lower limits of the reflection factor, respectively, (r1 = 1,
r2 = −1) [137].
v1, v2 are the upper and lower limits of the visibility factor, respectively, (v1 =
0.5, v2 = −0.5) [137].

Initially, the population values (duty ratios) for each searching agentwill be initial-
ized may be randomly ….but it is recommended to initialize it based on Eqs. (35)
or (36) and divide them into the different groups equally. The population is divided
into four identical groups (Gp1, Gp2, Gp3, andGp4). Then calculate the corresponding
output power for each cell (duty ratio). The duty ratio associated with the global best
is selected to Dbest. The new reflection and visibility factors can be determined from
the following equations:

For Gp1:

Rn1 = R1 × Gp1 (89)

Vn1 = V1 × (
Dbest − Gp1

)
(90)

Gp1nw = Rn1 + Vn1 (91)

For Gp2:

Rn2 = R2 × Gp2 (92)

Vn2 = V2 × (
Dbest − Gp2

)
(93)

Gp2nw = Rn2 + Vn2 (94)

where

Rn1 and Rn2 are the arrays of the new updated reflected cells for groups 1 and 2,
respectively.
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R1 and R2 are the reflection factors set for groups 1 and 2, respectively.
Vn1 and Vn2 are the arrays of the new updated visible cells for groups 1 and 2,
respectively.
V 1 and V 2 are the visibility factor set for groups 1 and 2, respectively.
Gp1 and Gp2 are the arrays of cells in groups 1 and 2 of the population, respec-
tively.Gp1new and Gp2new are the arrays of new updated cells in groups 1 and 2 of
the population, respectively.

For Gp3 and Gp4:

Rn3 = R3 × Fbest (95)

Vn3 = V3 × (Fbest − Bav) (96)

Gp3new = Rn3 + Vn3 (97)

Gp4new = random values (98)

where

Rn3 is the array of the new updated reflected cells for group 3.
R3 is the reflection factor set for group 3.
Vn3 is the array of the new updated visible cells for group 3.
V 3 is the visibility factor set for group 3.
Gp3 is the array of cells in group 3 of the population.
Gp3new, Gp4new are the arrays of new updated cells in groups 3 and 4, respectively,
of the population.

Grass Hopper Optimization (GHO)

Grass Hopper Optimization (GHO) is one of the best swarm optimization algo-
rithms which first introduced by Saremi et al. [138]. The GHO algorithm mimics the
behavior of the grasshoppers during their life cycle. The GHO algorithm consists of
two sub-cycles, namely nymph and adult sub-cycles. In the nymph sub-cycle, the
algorithm uses it to control the movement (Jump) to enhance the exploitation search.
In the adult sub-cycle, it is characterized by fast jumps with random intervals which
can help to enhance the global exploration search. The controlled GHO parameters
are helping in the balance between the local and global explorations.

The movement of searching agents is given by Eq. (99) [139];

Xi = ω1 Si + ω2 Gi + ω3 Ai (99)

where Xi is the position of the i-th searching agent, Si is the social interaction, Gi is
the gravity factor of the i-th grasshopper, and Ai is the variable to represent the effect
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of wind on the movement of each particle, ω1, ω2, and ω3 are the factors to represent
the weighted social interaction, the gravity factor, and the advection, respectively.

The social interaction factor is shown in Eq. (100) is a very important factor that
controls the behavior of convergence where it enhances the exploration of the search
by sharing the information within the swarm.

Si =
N∑
j=1

s
(
di, j
)
. �di j (100)

where di,j is the distance between the i-th and j-th grasshoppers and s is the function
used to define the social forces which can be determined from Eq. (101).

s(r) = f.e− r
la − e−r (101)

where la gives the attraction length and f provides the intensity of interaction. The
function s(r) shows the impact of social interaction and is fine-tuned for an optimiza-
tion problem to maintain a balance between the exploitation and exploration of the
search task.

The gravitational factor Gi is given by Eq. (102) and wind attraction factor is
given by Eq. (103)

Gi = −g . �eg (102)

Ai = −u . �ew (103)

where �eg is a unit vector in the direction of the gravitational constant g, and �ew is a
unit vector in the direction of constant drift u which is caused by wind.

Substituting the values of social interaction parameters into Eq. (99) yields

Xi = ω1

N∑
j=1
j �=i

s
(∣∣x j − xi

∣∣) x j − xi
�di j

+ ω2.g.�eg + ω3.u.�ew (104)

The GHO converged fast using Eq. (104) and this mechanism has been improved
for fast and reliable convergence by [139] as shown in Eq. (105).

Xd
i = c

⎛
⎜⎜⎝

N∑
j=1
j �=i

c
ubd − lbd

2
s
(∣∣x j − xi

∣∣) x j − xi
�di j

+ �eg

⎞
⎟⎟⎠+ �Td (105)

c = cmax − l
cmax − cmin

L
(106)
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where c is a decreasing coefficient, ubd and lbd are upper and lower bounds in the
d-th dimension �Td is the best value of the d-th dimension of the target up to the
current iteration. L is the total number of iterations and l is the current iteration.

GHO is having twomain advantages compared to other swarmoptimizationwhich
are the fast convergence and the lowest oscillations at the steady state. In the begin-
ning, the population is better to be initialized as has been introduced before in (35)
or (36). Here, the search space represents the duty cycle of the boost converter. The
constraints are fine-tuned accordingly in the search space.

Intelligent Monkey King Evolution (IMKE)

The Intelligent Monkey King Evolution (IMKE) is a metaheuristic optimization
algorithm introduced byMeng et al. [140]. This optimization algorithm is inspired by
the behavior of monkeys in their superpower abilities under a challenging situation in
which they divided themselves into many small groups of monkeys and start working
toward the solution. After achieving the solution to the problem, another group will
report the whole situation to the monkey king.

Based on these reports, the monkey king decides the most accurate solution.
Based on the monkey king’s decision the whole swarm will move. In the start of the
operation of IMKE algorithm, the whole swarm is divided into n groups, each group
contains p monkeys and get their initial position as shown in (107). The variable Rc

represents the evaluation of the monkey king for the next movement.
Accurate selection for the value of Rc will improve the performance of IMKE

algorithm in terms of convergence time and failure rate. Due to the importance of
this factor, it has been limited by upper and lower limits [Rc,min, Rc,max] as shown in
(110). Generally this Rc,min and Rc,max lie in the range 0.1–0.9 [4, 141].

Xi =

⎡
⎢⎢⎣

xi11 xi12 . . . xi1v
xi21 xi22 . . . xi2v

. . . . . .

xip1 xip2 . . . xipv

⎤
⎥⎥⎦p ∗ v (107)

From the results obtainedwhen the positions in (107) are applied to the PV system,
the best solution can be obtained as shown in (108).

Xi
gbest = [Xi

gbest,1, Xi
gbest,2, . . . Xi

gbest,n (108)

The best solution should be updated as shown in (109).

Xi+1
gbest = Xi+1

gbest + Rc ∗ Xdiff (109)

Rc = Rc,min + Rc,max − Rc,min

i
∗ rand (110)
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Fig. 25 a Salp as single and
b a group of salps (salp
chain) [146]

Salp Swarm Algorism (SSA)

The salp is a sea creature that has a transparent body like jellyfishes with a barrel-
like shape. Salps move in seawater through suction and propulsion the water through
their barrel body. The salps move in a group called chain as shown in Fig. 25. The
shape of salps is barrel-shaped and it has a transparent body. The salps tissues are like
jellyfishes. Like a jellyfish, the salps are moving and it moves forward by pushing
the water through the body like propulsion. Figure 25 shows the shape of the salp
chain [142]. The salp chain formation is used to improve their movement and to help
them in foraging. This movement inspired the researchers to use this chain to solve
nonlinear optimization problems. One of the real-world applications of SSA is PV
MPPT [143].

The swarm of salps is divided into two subgroups called leaders and followers
[142, 143], The leader subgroup is responsible for guiding the swarm, meanwhile,
the followers obey the leaders’ orders. The swarm is distributed in searching space
in n dimensions. First, the leader takes their positions based on the formula shown
in Eq. (111).

X1
j =

{
Fj + c1

((
ub j − lb j

)
c2 + lb j

)
c3 ≥ 0

Fj − c1
((
ub j − lb j

)
c2 + lb j

)
c3 < 0

(111)

where X1
j are the leaders’ positions, Fj are the food sources, ubj and lbj are the upper

and lower limit, respectively, c1, c2, and c3 are random numbers. As shown in Eq.
(111), the position of the leader is updated about the food source. c1 is an important
parameter that can determine the exploitation and exploration performances and its
value can be determined from Eq. (112).

c1 = 2 e−( 4l
L )

2

(112)
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SS Initialization

For k=1

Initialize the duty ratio, sample V,
I, and evaluate the power, P=V*I

P(i)>P(i-1)
Is 

Update Pmax,i=P(i-1)

Update 
Pmax,i=P(i)

Yes

No

Is
Pmax< Salp fitness

Yes

No

Update Salp 
fitness

No

Is
All the searching agents 

Evaluated? 
Yes

No Next salp
k=k+1

Update c1

Is
i= =1?

Yes

No

Update the position 
of follower salp

Calculate fitness for 
each agent

Is convergence 
criterion met?

end

Yes

Next iteration
i=i+1

Update the position 
of the leading salp

Start

Fig. 26 The flowchart of the salp swarm MPPT technique

where L is the maximum iteration number, l is the current iteration number. c2 and
c3 are generated randomly between [0, 1]. The follower position can be determined
as shown in (113).

Xi
j = 1

2
at2 + Vo t (113)

where Xi
j are the followers’ positions, Vo is the initial velocity, a = Vfinal/Vo, and V

= x − xo/t. Equation (113) is altered. The new position of salps chain is shown in
Eq. (114).

Xi
j = 1

2

(
Xi

j + Xi−1
j

)
(114)

Application of SSA in the PV MPPT is done by equating the initial positions of
salps by the duty ratio of the boost converter and use the above Eqs. (111)–(114)
to keep tracking the GP of PV arrays. The flowchart of SSA when it is used as an
MPPT of the PV system is shown in Fig. 26 [144].
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Fig. 27 Spiral flight of a
moth around its
corresponding flame

Moth–Flame Optimization (MFO)

Moths are types of insects similar to butterflies. There are two main milestones
in their lifetime namely, larvae and adults. They have a special night navigation
mechanism called transverse orientation, where they fly in a straight line having a
fixed angle to the moon. In the case of the light source is switched off, they fly in
a spiral shape around the previous source of light and it can capture it after a few
corrections. The spiral flight of a moth around its corresponding flame is shown in
Fig. 27 [145]. This flight mechanism is translated into mathematical formulas to
perform the searching mechanism to capture the solution in nonlinear optimization
problems. In the MFO algorithm, every moth representing a searching agent that is
required to fly around a certain source of light to enhance the exploration search and
a lower probability of local optima stagnation. Therefore, a set of sources of light
locations can be represented in a matrix with the same dimensions to represent the
moth positions. Both the moths and the lights are representing solutions. The moths
and light are treated and updated in different ways During the progress of MFO.
Each moth is representing a search agent which can fly the search area to get the
global best solution. The lights are representing the best solutions that the moths
have captured so far. In other words, flames can be considered as flags or pins that
are dropped by moths when exploring a search space. Each moth searches around a
flame and updates it in the case of finding a better solution. With this mechanism, a
moth never loses its best solution.

The moth position can be updated using the following equation:

Mi = S
(
Mi , Fj

)
(115)

where Mi indicates the i-th moth, Fj indicates the j-th flame, and S is the spiral
function. The characteristics of the spiral function is listed in the following points:
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• The initial point of a spiral is the initial moth position.
• The source of light location is the final point of a spiral and it represents the best

position of the moth.
• The predefined range of the spiral should be within the searching area.

Taking the previous points into considerations, the mathematical model of the
spiral function is shown in Eqs. (116) and (117).

S
(
Mi , Fj

) = Di · ebt · cos(2π t) + Fj (116)

Di = ∣∣ Fj − Mi

∣∣ (117)

whereDi represents the distance between the positions of i-th moth and the j-th light,
b is a constant represents the shape of the spiral, and t is a random number in [r, 1],
where r is a constant that linearly decreasing with iterations from −1 to −2 and is
called the adaptive convergence constant.

A strategy was introduced to enhance the exploitation search of the MFO by
decreasing the number of flams as shown in Eq. (118).

f lame number = round

(
N − l

N − 1

L

)
(118)

where l is the current iteration number, N is the maximum number of flames, and L
indicates the maximum number of iterations.

This mechanism introduced in (118) enhances the balance performance between
the exploration and exploitation in a solution area. The MFO has been used as an
MPPT of the PV system by initializing the Moths (duty ratios) as has been shown
in (38) or (39), in the beginning, the moths’ positions are selected to be as a flam
position. During the iterations, the flame positions will be equal to the best solutions
of Moths. This searching mechanism provides a good balance between exploration
and exploitation which makes MFO is a superior choice for MPPT of PV systems.
In the case of acute change in the output power as has been discussed in Eq. (40),
the Moths and flame positions should be updated.

A Comprehensive Comparison Between Swarm Intelligence Algorithms
MPPT Techniques

The performance of all swarm techniques introduced above is tabulated in the
following Table 4 shows the difference between them in many important factors.
Based on the experience from using these techniques, BA is the fastest convergence
but it has higher oscillations in steady-state conditions.
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4.2.2 Bio/Natural-Inspired Algorithms (BNIA)

Earthquake Optimization Algorithm (EOA)

The earthquake optimization algorithm (EOA) is one of the nature algorithms and
sometimes it is called (geo-inspired) [146]. This technique is inspired by the behavior
of P and S waves which can be generated from earthquakes. This optimization tech-
nique is introduced in 2018 and it has been used in the control of the electric machine
[147]. The first time to be used as anMPPT of the PV systemwas in 2020 byMendez
[148].

The mathematical formulae that can model the velocities of P and S waveforms
are shown in (119) and (120), respectively [148].

vp =
√

λ + 2μ

ρ
(119)

vs =
√

μ

ρ
(120)

where vp and vs are the velocities of waves, λ and μ are called the Lamé parameters,
and ρ the density of the material. The optimal relation for the Lamé parameters was
found to be 1.5, consequently [148]:

λ = μ = 1.5 GPa (121)

The densities of thematerialρ are chosen randomly between 2200 and 3300 kg/m3

[148]. It is important to define an operating range for the S-wave or S-range, Sr to
decide whether to use vp or vs. Searching flag (Sflag) is performed to be sure that the
best duty cycle is within the searching positions.

The main difference between the modification shown in [148] and the original
EOA is it returns to the global best duty ratio after evaluating an epicenter to have
a faster reaction against irradiation changes. Figure 28 shows the flowchart of the
earthquake optimization algorithm (EOA) MPPT algorithm [148].

Simulated Annealing (SA)

Simulated annealing (SA) is a metaheuristic optimization technique inspired by the
annealing process that is used in nature to produce high-quality crystals. This tech-
nique uses the temperature, final temperature, and nominal cooling rate for searching
the optimal solution of nonlinear optimization problems. This technique was first
developed in 1970 by Pincus [149]. This technique is used in the MPPT of the PV
system by many research studies [5, 135]. Many improvements were introduced
to SA which improved its performance in tracking the MPP in uniform irradiance
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Initialize the EOA 

Sample V, I and compute P=V*I

f=Ne

Flag_ant>=M
Update Gbest and xbest

Upload d=xbest

Sflag=0

Wait Tp

Same irradianceNo Yes

Update Gbest, f=1

Calculate vs and x

Upload d=xj

j=j+1

Sflag=1

Fig. 28 The flowchart showing the logic of using the Earthquake Optimization Algorithm (EOA)
as a PV MPPT algorithm [152]

and the PSC [7]. In normal operation of the SA, a random number of solutions are
initialized but here in the MPPT of PV systems, it is better to initiate the duty ratio
of DC/DC converter to be as stated before in Eqs. (35) or (36). The initial values
of power corresponding to each duty ratio will be determined. By the neighborhood
mathematical structure, the new position of particles will be determined. If the new
operating point has greater power, then it will be accepted as the new operating
power.

The operating point can be accepted if its new point has less power than the
reference operating point based on the acceptance property shown in (122) [5]:

Pr = exp

[
Pk − Pi

Tk

]
(122)

where Pk is the power of the current point, Pi is the power at the previous best
operating point, and Tk is the current temperature of the system.

The cooling mechanism used in the SA can be either static or adaptive as shown
in (123).
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Fig. 29 Flowchart of SA
based GMPPT under PSC

Tk = αTk−1 (123)

where Tk is the temperature for step k, Tk-1 is the temperature at step k – 1 and α is
a constant always less than 1.

The SA algorithm has been used for tracking the MPP of the PV system in PSC in
[135]. The results obtained from this study showed the superiority of theSAcompared
to famousMPPT techniques like PSOandP&O in terms of convergence speed, failure
rate, and generation efficiency. As the PSO, the SA needs reinitialization when an
acute change in power is detected as has been discussed before and shown in Eq. (40).
Figure 29 shows the flowchart SA-based GP under PSC.

Human Psychology Optimization (HPO)

Human psychology optimization (HPO) is one of the metaheuristic techniques
inspired by the manner of thinking of humans for improving his/her situation and
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taking decisions in the real world. The person gets experience from his own learning
and the experience of other persons which is the logic used in this technique. The first
time to use HPO as an MPPT of PV systems is done in 2017 by Kumar et al. [150].
In this study, the performance evaluation of the HPO algorithm has been compared
with two different PSO strategies in tracking theMPP of partially shaded PV systems
using a single sensor to measure the current feeding a battery in the DC-link. The
advantage of the HPOwhen it is used as anMPPT of the PV system is its fast conver-
gence rate and the lower failure rate. Moreover, its performance does not depend on
the initial value and the dependency on the algorithm specified parameter is very less
[150]. The searching mechanism of this technique has four stages that are listed in
the following points:

• Excitement: In this stage, the searching agents take values of duty ratios that can
be determined from Eqs. (35) or (36). It gives an initial move and tries to build
confidence.

• Self -motivation: It is a self-encouraging process that depends on the person’s own
experiences and achievements in which it enhances the local exploitation ability,
which increases the rate of convergence.

• Inspiration: In this stage, the person is inspired by the experience of a successful
person to follow his creative idea for success. This stage enhances global
exploration ability.

• Lesson: The previous fail experiences learned from the person’s own experience
and other persons should be avoided in the future decision. This stage helps in
avoiding the searching to be trapped in one of the LPs.

The results presented in the use of HPO in the MPPT of the PV system show its
superiority in terms of convergence time and failure rate compared to other states
of the art PSO strategies [150]. Moreover, the use of a single sensor to measure the
battery current reduces the implementation cost of this system.

Flower Pollination Algorithm (FPA)

Flower pollination algorithm (FPA) is a metaheuristic optimization technique
inspired by the flower pollination process in the plants. Two types of pollination,
namely, self-pollination and cross-pollination. The self-pollination takes place when
the same flower is pollinated internally which represents the private search of the
FPA,whereas cross-pollination occurswhen pollenmoves fromone flower to another
which represents the global search of the FPA. The abiotic pollination occurs when
the pollen is transferred via wind, whereas the biotic pollination occurred when the
pollen transferred from the flower of male plants to the female through the insects.

The FPA has four steps which are summarized in the following points:

• The global pollination occurred in the two types of pollinations when the pollen
carrying pollinators transferred in Lévy flights shape.

• The biotic and self-pollinations represent the local pollination.
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• Reproduction probability is representing the flower constancy which is propor-
tional to the similarity of two flowers involved;

• The local and global pollination has been controlled and switched via switch
probability P∈ [0, 1].

The concepts shown in the above points are converted to a mathematical model as
shown in the following equations. The position of the pollinators that moves using
Lévy flights shape can be obtained as shown in (124).

xk+1
i = xki + γL(λ)

(
g∗ − xki

)
(124)

where xti is the solution vector xiat iteration t and g is the best solution (duty cycle)
of boost converter duty cycle. γ is a scaling factor that used for controlling the step
size, L(λ) are the Lévy flights-based step size that can be obtained from the following
equation [5, 151]:

L ≈ λΓ (λ) sin
(

Πλ
2

)

Π

1

S1+λ
(S ≥ S0 > 0) (125)

where Π(λ) represents the gamma function.
FPA has been used as anMPPT of PV system and it showed superior performance

in terms of convergence time and failure rate compared to many MPPT techniques
like PSO and P&O techniques [152]. The FPA required only control parameter (γ)
which makes it very easy to be tuned for better performance.

Teaching Learning Algorithm (TLA)

The TLA is one of the modern metaheuristic optimization algorithms that inspired
by the influence of a teacher on learners or students and it has two phases; first,
the teacher phase which means leaning from the teacher; second, the learner phase
which means learning by the interaction between students (cooperation). This tech-
nique uses candidate solutions (Duty ratio) asmany othermetaheuristic techniques to
track the optimal solution (MPP in PV applications). The teacher phase uses the expe-
rience of the teacher to improve the students’ level of knowledge. The learner phase
is performed through the teacher and interaction between the learners to increase
their knowledge. A learner interacts randomly with other learners through group
discussions, presentations, formal communications, etc. A learner learns new infor-
mation when the other learner has more information than him. A detailed discerption
of using this technique as anMPPT of the PV system is introduced in literature [153,
154]. The results obtained from these studies showed superior performance of TLA
compared to other optimization techniques in terms of convergence time and failure
rate.
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Water Cycle Algorithm (WCA)

The water cycle algorithm is a meta-heuristic optimization technique that imitates
the flowing of streams and rivers into the sea and its idea is derived by observing the
water cycle in nature. Hydrologic cycle begins when water in the river, lakes, and
streams is evaporated and also plants releasewater during the photosynthesis process.
The evaporated water is carried out into the colder layer of the atmosphere to create
clouds that condense and releasing water back to the earth. The initial population of
WCA is called raindrops. The best raindrop is chosen as a sea, the number of good
raindrops is chosen as a river and the rest of the raindrops are considered as streams.
The water cycle algorithm has been used in many fields such as water resources, civil
engineering, mechanical engineering, andmathematics. In thewater cycle algorithm,
the variables are called Raindrops for a single solution [155]. This technique showed
a fast convergence and low failure rate compared to many states of the art MPPT
techniques.

4.2.3 Evolutionary Algorithms (EA)

Differential Evolution (DE)

The use of differential evaluation theory was developed by Tajuddin et al. [156],
in which the optimization problem will be solved by using a different formula for
the evolution of candidate solutions. The solutions that have the best fitness are
allowed to remain in the population and the other solutions will be removed from
the population. Four DE operations, namely, initialization, mutation, crossover, and
selection are required to track the optimal solution of the optimization problem. The
duty cycle represents a member of the population where its value can be determined
from (126).

Di ( j) = DiL + r (DiH − DiL) (126)

where DiL, DiH are the lower and the higher limit of the duty ratios, respectively, r
is a random number between 0 and 1, j is representing the iteration number, and i
represents the number of the searching agent (duty ratio) inside the population, N.

In each iteration, the individuals of the current population become the target
vectors. For each target vector, the mutation operation produces a mutant vector, by
adding the weighted difference between two randomly chosen vectors as shown in
(127) [157].

Di,G+1 = Dr1.GX + F
(
Dr2,G − Dr3,G

)
(127)

Then the crossover operation generates a new vector, called trial vectorDi,G. This
is obtained by mixing the parameters of the mutant vector Di,G with those of the
target vector Di,G which is used with the PV system to get the corresponding power.
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Fig. 30 The flowchart of
differential Evaluation. [163]
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If the trial vector obtains a better fitness value than the target vector, then the trial
vector replaces the target vector in the next generation. This process will be repeated
through iterations until an acute change is detectedwhich forces theDE to reinitialize
again as has been introduced before with PSO and show in Eq. (40).

Differential evaluation is reasonably it has fast convergence performance but it
has high oscillations, especially in fast-changing conditions. Many modifications are
introduced in the literature to further improve the performance of DE [158–160].
The flowchart of the DE is shown in Fig. 30 [159].

Genetic Algorithm (GA)

The genetic algorithm is one of the evolutionary techniques which is used to capture
accurate solutions for optimization problems. This technique (GA) is inspired by
biological genetics based on three operators namely, mutation, crossover, and selec-
tion.This technique is developedbasedon the concept ofDarwin’s theoryof evolution
in which the children having the highest fitness value means that they are powerful
enough to have a higher chance for production. The GA optimization algorithm is
one of the metaheuristic optimization techniques that use the generation, systematic
evaluation, and enhancement of potential design solutions. The mutation operator
is used to maintain the genetic diversity from one generation to the next one which
can permit a stochastic variability of GA which can reduce the convergence time
considerably [161].

In using the GA as an MPPT of PV systems, the duty ratio or terminal voltage
is used to initially set the chromosomes to follow the GA performance for tracking
the GP. These chromosomes are encoded in the form of a binary code which is
used to determine the chromosome population. The mutation and crossover will be
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Fig. 31 The following part
in GA from [166] Initialize the population

Calculate the fitness

Sellection

Crossover

Mutation

Check Convergence

performed in the execution of the algorithm to produce the new generation. The new
generation will be determined using the fitness function which can be obtained from
the PV system. The algorithmwill be repeated keeping the highest fitness value as the
best solution [8]. A detailed comparison between using the GA and other traditional
PVMPPT techniques is introduced in [162]. The GA has been used also to determine
the optimal configuration of hybrid renewable energy systems [163]. The flowchart
of the GA is shown in Fig. 31 [162].

4.2.4 Mathematical Based Algorithms (MBA)

These techniques are soft-computing-based techniques that use mathematical
formulas in searching for the optimum solutions without imitating any natural,
biological, or physical evolution. Some of these techniques when they are used as an
MPPT of PV systems are shown in the following sections:

Fibonacci Search Algorithm (FSA)

Fibonacci search (FSA) is counted as one of the soft-computing MPPT techniques
[164]. This technique is using samples derived from Fibonacci series as shown in
(128):

Fn = Fn−1 + Fn−2, where F0 = F1 = 1 and n = 2, 3, 4 . . . (128)

In this case, the first 10 FS numbers are shown in the following Table:
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n 0 1 2 3 4 5 6 7 8 9 10

Fn 1 1 2 3 5 8 13 21 34 55 89

The value of Fn is determining the accuracy of the solution, where the higher the
value of Fn the higher the accuracy. The relation between the value of Fn and the
accuracy of the results as a ratio of the exact solution is given from the following
condition (129).

Fn ≥ 1

2ε
(129)

where ε is the acceptable tolerance, as an example if it is required the accuracy of the
solution to be 0.01 from the value of the exact solution, then Fn ≥ 50, the n should
be equal to 9 as shown in the above table. Then Fn = 55;

Four samples will be generated as x1, x2, x3, x4, where x3 and x4 are selected as the
lower and upper and lower limits of searching values, and x1 and x2 are chosen to be
in between x3 and x4 [165]. The relation between the duty ratio and the samples xi is
used as shown in (130). These values of duty ratios will be applied to the PV system
one by one and the corresponding power will be collected. The sample corresponding
to the highest power is called the best sample. Based on the results obtained from the
first iteration, the two conditions are shown in (131) and (132) will be determined
[166].

Di = xi
256 − 1

(130)

If P(x1) > P(x2), then

xi+1
4 = xi2, x

i+1
3 = xi3, x

i+1
2 = xi1, x

i+1
1 = xi+1

2 − Fn (131)

If P(x1) < P(x2), then

xi+1
4 = xi4, x

i+1
3 = xi1, x

i+1
1 = xi2, x

i+1
2 = xi+1

1 − Fn (132)

Modified equations are introduced in [167] to reduce the convergence time as
shown in (133) and (134).

If P(x1) > P(x2), then

xi+1
4 = xi2, x

i+1
3 = xi3, x

i+1
2 = xi1, x

i+1
1 = xi1 + Fn−1

Fn

(
xi4 − xi3

)
(133)

If P(x1) < P(x2), then

xi+1
4 = xi4, x

i+1
3 = xi1, x

i+1
1 = xi2, x

i+1
2 = xi2 + Fn−1

Fn

(
xi4 − xi3

)
(134)
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Fig. 32 Fibonacci Search
Flowchart
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The flowchart showing the Fibonacci Search is shown in Fig. 32. The main short-
coming of FS is its limitation to capture the GP in the case of PSC. Moreover, the
complexity of the implementation of this technique which makes it not favorite to
be used as an MPPT of the PV system.

Jaya Optimization Algorithm (JOA)

The generic Jaya algorithm is one of the soft-computing, mathematical-based opti-
mization technique introduced in 2016 by Rao [168]. The operating principle of
the Jaya algorithm is to iteratively update solutions for a given problem by moving
them toward the best solution and away from the worst solution. Jaya algorithm
does not require controlled parameters which makes Jaya is an attractive option for
tracking the MPP of the PV system. Two random numbers generated from uniform
distribution are used to update the candidate solutions to the optimization problem.
Jaya algorithm has been used as an MPPT of partially shaded PV systems in 2017
[169]. The results obtained by this technique have been compared to two different
PSO strategies. The results showed better convergence performance for the Jaya
algorithm compared to the PSO in tracking the MPP of the partially shaded PV
system.

The use of the Jaya algorithm in the MPPT of the PV system is done in [169] by
initializing n candidate solutions and use these values to collect the corresponding
power associate with each solution (Voltage). Then the best solution and worst solu-
tion can be determined and their corresponding voltage is selected as V 0

best, and V
0
worst,

respectively. And use these values to determine the new generation of solutions. Use
the voltage to determine the corresponding power from the PV system. If the newly
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generated power is greater than the one in the previous iteration, then keep the new
one otherwise keep the one in the previous iteration for the same particle. The iter-
ations should be repeated again until the system detects an acute change in power
which forces the Jaya algorithm to reinitialize again.

V l+1
k = V l

k + rand1
(
V l
best −

∣∣V l
m,n

∣∣)− rand2
(
V l
worst −

∣∣V l
m,n

∣∣) (135)

V l+1
k =

{
V l+1
k i f P

(
V l+1
k

)
> P

(
V l
k

)
V l
k otherwise

(136)

where V l
k is a candidate solution (PV terminal voltage) of particle k in iteration l. V l

best
and V l

worst are the voltages of the best and worst solutions in iteration l, respectively.
rand1 and rand2 are random numbers between 0 and 1.

To enhance theMPPT performance of PV systems in terms of faster convergence,
lower oscillation, and higher efficiency, a natural cubic spline-based prediction
model is incorporated into the iterative solution update of the Jaya algorithm is
introduced in [170]. The utilization of the natural cubic spline model in the iterative
process of the S-Jaya algorithm can avoid worse updates and thereby improves the
MPPT performance. Simultaneously, the natural cubic spline model can be renewed
online to maintain its prediction accuracy and produce correct decisions of updating
solutions [170].

Tabu Search Algorithm (TSA)

The Tabu search algorithm (TSA) is one of the mathematical-based Algorithms
(MBA) that can be used to solve nonlinear optimization problems. It is using many
other optimization algorithms such as linear programming and heuristics in adaptive
procedures to avoid their limitations such as their high failure rates. The TSA is
one of the metaheuristics optimization techniques and it has been created in 1986
by Glover [171]. By relaxing TSA’s basic rule, the TSA enhances its local search
performance. First, at each step worsening moves can be accepted if no improving
move is available. In addition, prohibitions are introduced to discourage the search
from coming back to previously seen solutions.

The implementation of the Tabu search uses memory structures that describe the
visited solutions or user-provided sets of rules. In the case of the solution that has
been previously seen within a short-term period, The TSA will mark these solutions
candidates to avoid the possibility to look at it again. TSA has been used in used
as MPPT of the PV system in [172], where it has been divided into three sub-
strategies, namely diversification search, local search, and intensification search.
The diversification search is performed first by scanning the whole range of the PV
array voltage for the detection of the promising voltage area. Then the hill-climbing
method with a relatively large step size is employed as the local search to explore
the detected promising area. These two search strategies are assembled to compose
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the main loop of TSA-MPPT and are repeated until the termination conditions are
satisfied. Moreover, the tabu list which records the explored regions is used during
the loops to avoid returning to the already visited voltage areas. Finally, after the
loops are terminated, the hill-climbing method with a small step size is applied as
the intensification search to refine the MPP visited so far for a more accurate result.
These searches are applied in such a way that they give the TSA-MPPT method a
better chance to explore among the PV array voltage range, thus avoiding the risk of
trapping into the local MPP. The terms used in TSA-MPPT are illustrated first. Then
the detailed procedure is described [172].

Extremum Seeking Control (ESC)

The extremum seeking control (ESC) is a nearly model-free self-optimizing control
strategy that can search for the unknown and/or time-varying optimal input param-
eter regarding a given performance index of a nonlinear plant process. The MPPT
is achieved by driving the obtained gradient by closing the search loop with an inte-
grator. In this study, we have followed an alternative path of ESC for PVMPPT, based
on the dither–demodulation framework described in [173]. Such an ESC scheme
relies on the use of a pair of dither and demodulation signals, along with high-pass
and low-pass filters, to extract gradient information. Similar to the method in [173],
closing the control loop with an integrator can drive the gradient towards zero in
steady state, which achieves the optimality. As the gradient information is locked
to the particular dither frequency, this ESC scheme is more robust to the process
noise and temporal variation of the performance map, compared to the classic ESC
methods without dithering signals. This ESC method has successful applications in
various systems such as axial flow compressors, jet engines, combustion, HVAC,
wind turbine among others [173]. For the dither–demodulation scheme, one advan-
tage is that the gradient information is carried by the dither harmonic, with which it
is more robust against measurement noise and change in performance map. Another
advantage is that particular dither action such as square wave provides transient
information that can be used for fault detection [173].

4.3 Chaos Optimization Algorithm (COA)

4.3.1 Stepped-Up Chaos Optimization (SCO)

Chaos optimization Algorithm (SCO) is a very attractive technique in optimal solu-
tions of nonlinear problems due to their ability to escape from local solutions. Many
modifications are introduced to the traditional chaos optimization search techniques
to improve its ability to become faster in capturing the global solution. One of these
modifications is the stepped-up chaos optimization (SCO) [174] which has been used
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in MPPT of PV systems in order to improve its efficiency and reduce the conver-
gence time. Also, Zhou et al. [175] proposed a dual-carrier chaotic strategy in which
it selects two different chaos generations to produce chaos variables. This tech-
nique exhibits robust and accurate tracking performance when it is used in MPPT of
PV system. Another strategy introduced in [174] called stepped-up SCO in which
applies chaos theory and the iteration formula to produce random and ergodic chaos
variables, which can be used to capture the best solution in a continuous variable
searching area. Chaos mapping is shown in Eq. (137):

xn+1 = μ sin(πxn), n = 1, 2, 3, . . . , (137)

whereμ is a control parameter. Settingμ = 2, Eq. (137) is completely in chaos condi-
tion, and xn is ergodic within [−2, 2]. The optimization function can be described as
follows [174]:

f = f
(
x∗
i

) = max f (xi ), i = 1, 2, 3, . . . N xi ∈ [ci , di ] (138)

where xi is representing the optimization variables and it can represent the duty ratio
of DC/DC converter or the terminal voltage of PV array in the PVMPPT application.
ci and di are the lower and upper limits of xi; f (xi) is the fitness function that represents
the output power in the PV MPPT application. f

(
x∗
i

)
is the maximum output power

of the PV array, and x∗
i is the duty ratio or the output voltage of the PV array at

the MPP. Two stepped-up SCO strategy is introduced to improve the performance
of SCO in tracking the GP of PV MPPT. In this strategy, two searching strategies
are implemented, namely, rough search and fine search. The rough search strategy is
used to improve the performance of SCO during transient conditions meanwhile the
fine search is used to reduce the search space of optimized variables and improve the
convergence speed [174]. The results obtained from this work showed the superior
performance of this technique in terms of convergence time and failure rate as well
as the low oscillations at the steady-state condition.

4.3.2 Dual-Carrier Chaotic Search (DCCS)

The dual-carrier chaotic search (DCCS) is a modification to the traditional chaotic
technique. This modification is done by using different mapping techniques than
traditional chaotic techniques. In this case, if iteration continues, any variable in the
optimization space can be obtained in the iterative sequence of logistic mapping. The
probability distribution of the chaos point set When the logistic equation is in chaos
condition, the theoretical probability distribution of the chaos point set xn meets

Chebyshev distribution as shown in (139) [175]:

p(x) = 1

π
√
x(1 − x)

, (139)
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This distribution characteristic of the chaos sequence is uniform in the middle and
dense in the two ends. The probability density of xi is given by Eq. (140)

p(xi ) = 1

π
√
xi (1 − xi )

(140)

According to the Perron–Frobenious equation, defined as shown in (141).

p(x) =
∑

(yi= f −1(x))

p(yi )

f ′(yi )
(141)

When μ = 2, and yi ∈ [0, 0.5], then

∣∣ f ′(x)
∣∣ = 2π cos(πx), yi = arcsin(x/2)

π
(142)

From (141) and (142),

p(x) =
∑

(yi= f −1(x))

p(yi )

2π cos(πy)
=

p
(
arcsin(x/2)

π

)

π
√
4 − y2

(143)

Then, p(x) = 1

π

√
x
(
4 − x2

) (144)

From (144), xn+1 = μ (πyn), the mapping chaos point set xn mainly centralizes
in the middle and uniformly distributes in the two ends. So, this technique combines
the two chaos mappings to make sure that the search is sufficient.

The results obtained from this technique shows its superiority in tracking theMPP
in the case of PSC in terms of convergence time and failure rate.

5 Other Non-Model-Based Techniques

5.1 Skipping Mechanism Algorithm (SMA)

Modern techniques have been introduced recently to the field of PV MPPT called
skipping mechanism technique [23, 176, 177]. This technique is working based on
avoiding certain intervals from the searching space of P–V curve in which for sure
the MPP does not exist. The rest of the searching area will be reduced which reduces
the convergence time and increase the convergence speed of this technique. Different
strategies used the same idea is introduced in literature are shown in the following
points:
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• Voltage Window Search (VWS) [21]
• Search–Skip–Judge (SSJ) [22]
• Maximum Power Trapezium (MPT) [23].

6 Hybrid MPPT Techniques (HMT)

The performance of MPPT is characterized using three main issues as shown in the
following points:

The failure Rate: This is the factor that gives the percentage of attempts that
converge to LPs with respect to the total number of attempts. This factor is very
important because the convergence at the LPs reduces the generated power from the
PV system considerably. So, this factor should be minimized or even become zero
to have the highest generated efficiency.

The Convergence Time: The convergence time is the time required for the MPPT
to reach the steady-state condition. This factor is very important especially in the
case of fast change weather conditions. This factor should be minimized to improve
the stability of the PV system and increase the generated efficiency.

The oscillation around steady state: This factor should be minimized to improve
the stability of the PV system and to reduce the losses at a steady state.

The above three factors should be minimized to improve the performance of the
PV system. These three factors have trade-off performancewhichmeans if theMPPT
techniques tried to reduce one of these factors the other two may be increased. So,
the idea here is to hybridize two or more MPPT techniques to work together to get
the benefits of these techniques to reduce these three factors at the same time. This
means that, in the transient state or fast-changing weather conditions, an accurate
convergence to GP and avoidance of convergence at the LPs is required. Moreover, a
fast MPPT technique (low convergence time) is required to capture the GP in a short
time to improve system stability and increase the generated efficiency. Also, in the
case of a steady state, it is required to have low oscillations. The idea in most of these
hybrid MPPT techniques is to have a very fast and reliable convergence technique
in the transient and lower oscillation technique at the steady state. The hybridizing
between these techniques can be classified into four different categories as shown in
the following points:

• Traditional with traditional MPPTs (T–T MPPT).
• Traditional with soft-computing MPPT (T–SC hybrid MPPT).
• Soft-computing with soft-computing (SC–SC hybrid MPPT).

These techniques are listed in the following sections:



Photovoltaic Maximum Power Point Trackers: An Overview 189

6.1 Traditional with Traditional MPPTs (T–T Hybrid MPPT)

In this technique, the hybrid system will use two traditional techniques to work
together to capture the GP very fast and reliable in the transient state and the other
traditional technique is providing low oscillations at the steady-state condition. A
list of these techniques are shown below:

• Beta with P&O [58]
• P&O with InCond [178]
• Fractional short-circuit current with P&O [179]
• Fractional open-circuit voltage with P & O [44].

6.2 Traditional with Soft-Computing MPPT (T–SC Hybrid
MPPT)

Most of the hybrid MPPT techniques lie in this category where the soft-computing
technique is used in transient to reliably capture the GP in a very short convergence
time and switch the control after that to the traditional MPPT technique to reduce
the oscillations at the steady-state conditions. A list of these techniques is shown in
the following points:

• ACO with P&O [180]
• ANN with P&O [181–183]
• ANN with InCond [75, 184]
• BA with Beta [109]
• BA with P&O [109]
• BA with InCond [109]
• GWO with P&O, [185]
• PSO with Sliding mode controller (SMC) [186]
• PSO with P&O [187, 188]
• PSO with INC [189]
• SSA with P&O [190]
• GWO and P&O.

6.3 Soft-Computing with Soft-Computing (SC–SC Hybrid
MPPT)

• ACO with FLC [191]
• CS with FLC [192]
• DE with ANN [193]
• GWO with FLC my paper [40]
• GWO-CSA [194]
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• PSO with ANN [195]
• PSO with FLC [196]
• Quasi Oppositional Chaotic with GWO [197]
• Binary chaotic with CSA (BCCSO) [198]
• FLC with ANN [199, 200]
• DE with PSO [201]
• Lagrange interpolation with PSO [202]
• WOA with DE [203]
• Jaya with DE [204].

7 Conclusions and Recommendations

The MPPT techniques are very important to improve the efficiency of PV systems
and increase the generated power. Three main factors are required from the MPPT
which are, low failure rate, low convergence time, and low oscillations around the
steady-state conditions. All these factors should be achieved with minimal cost and
hardware complications. The uniform irradiance of the PV array generates only one
peak in the P–V curve of the PV array. Meanwhile, in partial shading conditions,
multiple peaks in the P–V curve will be generated the one with the highest generated
power is called the global peak (GP), and the rest is called the local peaks (LPs).Most
of the traditional MPPT techniques are able to track the peak in the uniform irradi-
ance condition but it may be trapped in one of the LPs in the case of partial shading
conditions. For this reason, soft-computing techniques are introduced to avoid this
limitation of the traditional techniques. Most of the soft-computing techniques will
be able to capture the GP in PSC but with a longer convergence time compared to
the traditional MPPT technique. Moreover, most of the soft-computing techniques,
especially swarm techniques cannot capture the GP in the case of shading pattern
changes. Several improvement strategies are introduced to improve the performance
of soft-computing techniques. This problem is avoided by reinitializing the searching
agents if there is an acute change in generated power is detected. Another improve-
ment strategy is introduced by initializing the searching agents at the position of
anticipated peaks or at an equal distance between each searching agent. This strategy
reduced the failure rate to zero and reduced the convergence time considerably. The
evaluation of the proposed techniques showed that the swarm technique is reliable and
fast when their control parameters are accurately tuned. From the simulation results
shown in many papers reviewed in this study, the BA is recommended as one of the
best MPPT technique where it can converge in less than 1 s with 0.05-s sampling
time. This convergence can be reduced to less than half of the scanning criteria that
have been used with the BA. The main problem of most of the soft-computing tech-
niques is that the improvement of convergence time will increase the failure rate and
oscillations at steady state. For this reason, hybrid MPPT techniques are introduced
in the literature to use the fast and reliable technique in the transient state and use the
techniques that have low oscillations after that like traditional techniques and fuzzy
logic controllers.
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