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Preface

With the steady increase in the consumption of electric energy worldwide and with
the increase of technological industries, dependence on fossil fuels has led to deple-
tion and high prices in addition to the harmful effects it causes to the surrounding
environment. All these effects made an urgent need for more energy sources to meet
these requirements and remedy the effects of the generation from fossil fuels. That
is why, renewable energy sources have become a solution to this dilemma because
they are inexhaustible and do not pollute the environment, and there is no way to
prevent societies from using these sources of energy. Solar photovoltaic energy was
one of the most important of these sources and now it competes with even some
traditional energies, and it has many uses that have increased its importance. With
the steady decline in the prices of solar panels, as they appeared in the year 1958 with
about $1000 to generate only 1 watt, and now in 2020, the solar panels capable of
generating 1000 watts are less than $1000.With the scientific and technical progress,
scientists have added many improvements to the generation system from solar cells,
and these studies focused on two basic methods. The first is to improve the efficiency
of the photovoltaic cells by using materials that can generate electricity with high
efficiency and the other way is to improve the efficiency of the electrical energy
extraction circuits from cells such as sun-tracking systems and maximum power
point tracking systems, cell cleaning systems from dust, etc. All of these methods to
improve the efficiency of the generation system from solar cells were highlighted in
this book.

The book introduced a study in improving the efficiency of the photovoltaic
modules using new materials and improved manufacturing technology. Moreover,
mathematical models used to create simulations of these cells were introduced. The
book also dealt with improving sun tracking systems and using inexpensive systems
that can track the sun throughout the year. Studies of automatic cleaning systems
that use robots to clean cells from dust were also presented to increase the efficiency
of a photovoltaic power generation system.

Many studies have been presented that explains the issue of partial shading on solar
cells and its harmful effects and ways to get rid of these effects, as well as explaining,
reviewing, and comparing systems that track the highest generation power of cells,
clarifying the best ones, and adding many modifications to these systems. The book
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vi Preface

also contains hybrid renewable energy generation systems and the possibility of using
them in feeding remote communities that are far from the electrical grid. The study
of the hybrid systems also includes the design and sizing of the components to build
these hybrid systems. Moreover, this book covers the use of new advanced technolo-
gies as embedded system, Internet of Thing (IoT), and blockchain technologies for
PV systems through different applications such as MPPT controller, solar tracker,
cleaning system, and monitoring system.

The book will be very useful for all undergraduate and postgraduate students, as
well as those interested in the field of generating electricity from renewable energy
sources, especially solar energy. Moreover, this book will be very interesting for the
readers who are looking for using solar modules to feed loads in isolated areas as
well as on the utility scale. It will also help them to know the photovoltaic energy
systems’ characteristics, modeling, operation, challenges, maximum power tracking,
and practical implementation. This book will help the researchers, designers, and
operators, as well as undergraduate/postgraduate students, to be familiar with the
new trends in the field of photovoltaic energy systems.
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Advanced Materials for Solar Cell
Applications: Case of Simple
and Composite Oxides

Abderrahman Abbassi

Abstract The study aims to investigate the electronic and optical properties of two
types of oxides in their stable phases (the co-doped ZnO and BiYO3, the simple
and composite compound) in order to build a new sufficient solar cell transparent
electrodes. This work may contribute to the development of solar cell electrodes by
the exploitation of the optoelectronic properties of these compounds. This study is
made with the numerical techniques ab initio based on the DFT that we will describe
in more details in this chapter. The result was found to show that the transmittance of
BiYO3 and the simple oxide treated is significant (about 90% for the simple oxide),
bandgap varies and the behavior of the conductivity is ensured by the presence of an
important concentration of electrons.

Keywords Oxides · Semiconductors · Ab initio · DFT · Optical properties ·
Electronic properties, DOS

1 Introduction

The manufacturing of solar electrodes has grown significantly in recent years; scien-
tists are working to increase the performance of solar panels, improve their yields
and other parameters related to their constructions. The use of technologies based on
Silicon is starting to have a huge change and especially by the use of other materials,
which are considered as high-performance materials compared to the old generation
of solar electrodes. This is where our idea comes from, the development of window
layers, active layers in PV applications. We focus on two types of oxides, simple and
composite. In this work, we study only the first layer in PV cells, which is called
the window or transparent layer with the capacity to collect a maximum of solar
radiation. We calculate this transmittance rate by formalisms and computer code,
which are reliable and known in materials science. A second calculation is made to
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2 A. Abbassi

estimate the conductivity of these materials. The first type of materials treated in this
chapter is the simple oxide, we will focus on the investigation of different properties
of zinc oxide doped and co-doped with various amounts of dopants as aluminum and
silicon. Several types of research have been published by many researchers in which
they investigate the properties of ZnO [1–8]. We will briefly discuss the properties
that make zinc oxide material of great importance according to his application. The
zinc oxide ZnO is a powder in the solid state; it has some advantages such as being
noncombustible, it is abundant and non-toxic. The crystallization of this compound
can be made in two different structures, hexagonal/wurtzite (Fig. 1) and cubic zinc
blend. The wurtzite form is thermo-dynamically stable more than other structures
at ambient conditions. The structural parameters of the wurtzite used in this study
are: a = 0.32495 nm and c = 0.52069 nm, with c/a ~1.60 which is close to the ideal
ratio c/a = 1.633. The unit cell positions are (0; 0; 0), and (2/3; 1/3; 1/2). Each atom
of zinc in tetrahedral site is encircling by four oxygen atoms and vice versa. The
oxygen and c bond has an important ionic character due to the high electronegativity
of the oxygen atom.

The point group of wurtzite zinc oxide is 6 mm according to the Hermann–
Mauguin notation, this point group can also be found with Schoenflies notation C6v,
P63mc and C4

6v mentioned the space group of the studied structure. ZnO bonding is
ionic (Zn2+–O2−), as in several compounds classified in groups II–VI. The radii used
is 0.140 nm (O2−) and 0.074 nm (Zn2+). This characteristic is important concerning
the formation of hexagonal structure comparing with the blend structure. ZnO has
also a significant piezoelectricity, which can be used in other different applica-
tions, especially the manufacturing of sensors. The polar Zn–O bonds make zinc
and oxygen planes electrically charged.

The second type to study in this chapter is the multiferroics compound as
composite oxide with as single phase, which present firstly two or more primary
ferroic properties. These composite materials were discovered many years ago
and are still not extensively investigated. These composite oxides present different
aspects: themagnetic and ferroelectric, the optical one is still not investigated widely.

Fig. 1 Wurtzite structure of
ZnO https://commons.wik
imedia.org/wiki/File:Wur
tzite_polyhedra.png

https://commons.wikimedia.org/wiki/File:Wurtzite_polyhedra.png
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The ferroelectric behavior is mainly due essentially to the hybridization d and p states
of its atoms. The electronic transition was observed in BaTiO3. The multiferroic
term was developed to take into consideration several properties such as ferroelas-
ticity, spontaneous electric polarization, and magnetic. Therefore, the multiferroic
materials can present simultaneously various properties of ferroelasticity, ferromag-
netism, ferroelectricity and can take antiferromagnetic or ferromagnetic aspects. The
3+ cations of atom A contribute to show the ferroelectricity aspect, however, 3d of
atom B (ABO3) contributes to show magnetic effect. Now, we focus in this chapter
on the study of the ability to use these materials in solar applications. Some recent
works report the interest of simple perovskite/composite oxides and simple co-doped
oxides example of ZnO [9–13] in these applications.

The ABO3 present in some case a coupling between the polarization andmagnetic
effect. The study will take consideration of tetragonal (Fig. 2) as a stable structure
in the calculation, we estimate that the structural parameters are a = b = 3.729A°,
c = 4.72A° and α = β = γ = 90 [14]. This family of composite oxide can be
the aim of several types of research in order to investigate their new applications
and manufacturing, especially in solar cell electrodes. BiYO3 will be treated in this
chapter, Y is the position that can take various atoms. The position Y is chosen in
order to stabilize the structure and to increase the required properties, Ywill not cause
any distortion of the tetragonal structure, Y = Fe, Zn, V, Co have approximately the
same atomic radius. The optical result of this work will be based mainly on the
transmittance rate and absorption coefficient found made by the DFT calculation.

Fig. 2 Tetragonal structure
of BiYO3 (made by Wien2K
with XCrySDen interface)
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2 Modeling Method

The Wien is a code that works on Linux, UNIX, it was developed at the Institute
of Materials Chemistry—Austria, published by Blaha et al. in 1990. In order to
improve it and make it adaptable to different calculations and to treat different phys-
ical properties of materials, Wien code has undergone several changes and every
change takes a published notation, which depends on the year of publication, e.g.
Wien93, Wien95, Wien97, WIEN2k. This work was developed and made with the
Wien2k_13.1 version that presents the best advantage in terms of calculation time and
formalism used for the calculation of the physical properties of systems, efficiency,
and reliability. This version has also a graphic interface “w2web” to access the web.
w2web means the Wien to the web. The WIEN2k code has shown efficiency in the
field of quantum chemistry and the physics of condensed matter. It is based on the
augmented plane wave method implemented within the DFT. This package is a set of
independent programs written with Fortran and calculates several physical proper-
ties such as electronic properties of materials for the study of the band structure, the
total/partial electronic density (TDOS and PDOS), and the optical properties. This
code can calculate the optical parameters such as absorption, reflectivity, refractive
index, optical conductivity, etc. It may also treat the total energy of the system and
the optimization of structures, structural properties, thermodynamic (enthalpy, etc.),
and magnetic properties (calculation of ferromagnetic and anti-ferromagnetic state
to study the magnetic stability of the systems), polarization, electric field gradients,
and hyperfine fields, etc.

The electrical and optical properties of the studied simple and composite oxides
were calculated with the first principles using DFT theory with different approaches
and approximation of the correction: GGA and modified Beak Johnson [15], using
the wien2k package.

The imaginary part of the dielectric function tensor can bewritten by the following
expression:

Im εαβ(ω) = 4πe2

m2ω2

∑

c,v

∫ dkck
∣∣Pα|Vk〉〈Vk |Pβ

∣∣ckδ(εCK − εVK − ω) (1)

And the optical conductivity can be written also by

Re σαβ(ω) = ω

4π
Im εαβ(ω) (2)

Vk and CK mentioned the wave functions, they mention respectively also VB and
BC bands, and k is the vector of the concerned waves.

In Eq. (2), σαβ is the conductivity parameter, which linked directly to the current
density Jα between VB and CB bands following α direction. This density generate
sEβ as an electric field, which follows the β (direction). The dielectric function is
written by the following expression:
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ε(ω) = ε1(ω) + iε2(ω) (3)

The parameter ε1(ω) (real part) can be found using ε2(ω).

ε1 = Re(ε(ω)) = 1 + 2

π
L

∞∫

0

ω′ε2(ω′)
ω′2 dω′ (4)

With
L(P) is the main value of the integral.
And
ε2(ω) is equal to:

ε2 =
(
4πe2

ω2m2

)∑

a,b

∫ a|M |b2 fa(1 − fb) ∗ δ(Eb − Ea − ω)d3k (5)

2.1 Electronic Properties of the Simple and Composite Oxides

For the simple oxide treated, Figs. 3 and 4 show the obtained band structure of
three different situations of ZnO, pure, doped, and the co-doped with Al and Si. An
important difference in energy levels gap energy is shown for all these cases studied.
The gap energy of the pure structure is direct and to 1.0 eV at the Γ point calculated
with Wien2k. This result will be improved with the introduction of approximation
into the calculation made, some other similar results show less than the obtained

Fig. 3 Band structure of
pure structure (a) and total
DOS (b)
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Fig. 4 Band structure of the doped and co-doped structure

result with our Code [15]. The difference between this result and the experimental
one is due to the limitation of the DFT calculation. For the result realized by the
GGA approach. Therefore, the same structure of pure ZnO has been investigated
with another approach (i.e. mBJ). The bandgap is found equal to 2.6 eV, which is
approximately in agreement with experimental works. The conduction and valence
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bandsmove away from each other for showing the bandgap. The doped and co-doped
ZnOwith the reported elements Si and Al are shownwith the band structure in Fig. 4.
The presence of Si increases the energy levels and the EF change position in the CB
band, which present totally occupied and half-occupied states. The VB of Si outdated
Zn one, so the n-type occurs as a conduction aspect. This aspect leads to electronic
transitions between bands or intra-band under excitation. It can be stated that an
increase in the concentration of Si may contribute to an increase in the probability
of free electrons entering the conduction band. The behavior of the conductivity is
still present even with the co-doping with aluminum, the structure of the ZnO doped
with 6.25% of Al and 6.25% of Si acquired a metallic behavior, CB and VB bands
are very close and almost no gap and the conductivity is ensured. It is as noticed that
the co-doping with aluminum present also energetic levels, which occur on the EF

level. This metallic behavior will arise in the curve of the density of state by a peak
that explains the electrical conductivity of the ZnO structure doped and co-doped
with both elements (i.e. Al and Si). The total density of states of pure structure is
shown in Fig. 3. The silicon gives an additional intense peak around Fermi energy,
EF, which leads to an increase of the ZnO conductivity.

The second type of oxides is also investigated, with the variation of the Y atom by
V, Mn, Zn, and Fe, we discuss in this part, the electronic properties of the composite
oxide are reported in this chapter. When Y = V, the CB contains essentially an
important electrical zone region contributed by orbital p of Bi and d of V, the gap
energy is estimated equal to zero because of the electrical peak around the EF level.
Around −11.34 eV and −12.9 eV, a band energy level occurs by s orbital of Bi (see
Fig. 5).

When Y= Zn, the VB contains two important electrical zones. The first one from
0.74 to −0.4 eV contributed by d of Zn and orbital p of oxygen. This behavior gives
a metallic aspect of BiZnO3.We not also a very strong hybridization in this electrical
zone. The second one is reported around –3 eV contributed by p of oxygen and zinc.
An energy level appears around −9 eV due to s of Bi. Finally, the CB of BiZnO3

consists of orbital p of Bi atom.
For Y=Mn, the CB is duemainly to orbital p of Bi atom in spin/up and spin/down

of the density of states and orbital d of Mn in spin/down specifically in the electrical
zone of 1.6–4.2 eV.

For this case, a metallic aspect occurs around EF, the VB consists of p-oxygen
and d-Mn, and around 5 eV, a low hybridization is shown. Y= Fe, the VB is between
−6.4 eV and 0 eV, due to spin/up of d orbital of iron and in spin/down is due to the
p-oxygen. Y=Co, many zones occur contributed by p-Bi atom. Around 4 eV, a peak
appears in the spin/down mainly contributed by d-cobalt.

Figure 6 presents the band structure of BiYO3 with Y = Z, V, Mn, Fe, and Co
[14], the illustrations are in good agreement with the analyses made for the total
density of states. When Y is substituted with V, Zn, and Mn, the gap energy is close
to zero showing a metallic aspect, which is due to d and p orbitals. For cobalt and
iron, gap energy occurs. Finally, the simulation made with Wien2k shows that with
Y= Fe and Co the composite oxide can be considered as an excellent semiconductor
material suitable for the aimed application (solar cell electrode).
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Fig. 5 Total and partial density of state of BiYO3/Y = Zn, V, Mn, Fe, Co [14]

2.2 Optical Properties of Both Simple and Composite Oxides

As shown in Fig. 7, for the pure ZnO, the average transparency is about 86% in
UV (200–400 nm) and visible (400–800 nm) regions. Thus, for wavelengths λ >
400 nm, the light is observed without absorption and consequently, the pure structure
of simple oxide treated becomes transparent. Moreover, with the incorporation of
Si, the transmittance increase until 94% and 96% for doping at 6.25% and 12.5%,
respectively, which is higher than that of pure structure in the visible zone (i.e. 400–
600 nm). Doping with 6.5 and 12.5% of Si present an unstable behavior although
the transmittance reaches its maximum value. The transparency at 6.25% amounts
of Si is stable at a wide range as shown in Fig. 5 compared with 12.5% of the same
impurity. Thus, the transparencywith 12.5% is not so significant due to the absorption
caused by Si atoms. The co-doping of the pure structure changes and increases the
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Fig. 7 Transparency of the
studied oxide (Simple oxide)
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Fig. 8 Refractive index of
the pure structure of simple
oxide
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transparency, the curve clearly shows that in the UV, the transparency is important for
Si–Al co-doping, the instability behavior of T presented by the Si at 12.5% amount
between 470 nm and 800 nm is corrected with 6.5% Al and 6.5% Si co-doping. For
example, at 600 nm, the substitution with 6.25% Si leads to a transparency of 69%,
in the case of Al–Si co-doped ZnO, the transparency is about 96%. The co-doping
with aluminum increases the transmittance compared to the doping of ZnOwith only
6.5% of Si, practically in the 363–631 nm range. The Si–Al co-doped pure structure
shows an important improvement in its properties.

ε1(0) is called the static dielectric constant calculated based on the dielectric
function, this constant leads us to have an idea of how the refractive index behaves,
it is directly linked by the following expression n(0) = √

ε1(0). The refractive index
of pure structure, substituted with Si and Al is illustrated in Fig. 8, which is extracted
using Eqs. (1) and (2). In the pure structure, the refractive index of solar radiations
(2.4 eV) is about 1.9, which is in agreement with some experimental values; n= 2.00.
n(hv) increases with increasing doping concentration. This substitution imposes a
change in the variation of n(hv). The low value of n(hv) corresponds to the high
transparency, and for radiation of 1.62 eV, the transmission is about 90%.

The second step consists of the discussion for the second type of oxides treated, the
composite one, BiYO3. In this paragraph, we focus on the variation of the absorption
and reflectivity of different elementsY in different zones throughout thewavelengths.
This calculationmay help us to deduce the interest of integrating this composite oxide
in solar electrodes.

According to the absorption illustrate in the figure above, the substitution of Y by
iron and cobalt leads to absorption which is not negligible, the increase of radiation
leads to an increase if the absorption. From 476 nm, Y = iron is considered as
a transparent material in the VL zone, an electrode TCO based on the composite
oxide. Beyond 652 nm, Y = cobalt transmits are also transparent in the VL zone,
however, this transmittance does not cover a wide zone in the visible light range. Y=
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Fig. 9 Absorption (E in xx
direction of radiation)
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Z, Mn, and V absorption of energy (hν) start from small energies, this characteristic
makes these composite materials a candidate to absorb radiation hv in VL zone.

BiYO3 is a highly and sufficient absorbent compoundbetween100nmand250nm,
in particular for Y = V. The substitution of Y atoms by Vanadium improves the
absorption, for Y substituted by zinc, the absorption becomes low comparing with
Co, Mn, and Fe.

According to the result of Fig. 10, the reflectivity is very important for Y=Mn, V,
Zn, Co in the UV rangewhereλ < 200 nm. Y= Fe and Co, the reflectivity stay stable,
the substitution with this element improves the optical characteristic of this oxide.
Figure 10 confirms the interpretation made for the previous result of absorption in
Fig. 9.

Fig. 10 Reflectivity of the
composite oxide
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3 Conclusion

We studied the optical electronic properties of two types of oxides simple and
composite. The simple oxide that is ZnO doped and co-doped with various amounts
of Si and Al shows that the electronic results found and the transparency behavior
can be exploited to manufacture a new generation of transparent electrodes as a
window layers in solar cells (transparency rate is around 90%). The same concept
can be applied for composite oxide such as BiYO3 in a stable structure. In both
cases, conductivity and transparency are ensured. But BiYO3, in some cases, can act
as active thin layers with an important absorption. Both types of oxide are suitable
and alternative candidates to exceed and replace old generations of TCO electrodes.

Special Acknowledgements I address with sadness my feelings of thanks to my father who left us
recently. Thanks for all encouragement and efforts that you gave me. May your soul rest in peace.
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A Fractional-Order Dynamic
Photovoltaic Model Parameters
Estimation Based on Chaotic
Meta-Heuristic Optimization Algorithms

Dalia Yousri, Dalia Allam, and M. B. Eteiba

Abstract Modeling of Photovoltaic (PV) solar modules is an essential target in
achieving an efficient emulation for the PV system. Recently, the dynamic PVmodels
were considered to recognize the influence of the switching circuits and load change
proprieties. The fractional-order dynamic PV model was the currently proposed
one to boost the reliability, accuracy, and efficiency of the classical dynamic PV
model. The optimal parameters of this model should be identified; therefore, in this
chapter, several Chaotic biologically-inspiringOptimization techniques are proposed
to demonstrate the most efficient one for this non-linear optimization problem. The
introduced techniques are the chaotic variants of Grasshopper Optimizer, Moth-
Flame Optimizer, and Flower Pollination Algorithm in addition to their original
versions. To assess the efficiency of the endorsed algorithm, its results are compared
to the non-linear least-squares method based on the accuracy, the convergence speed,
and thefitting of the experimental dataset.Additionally, another comparison is carried
out between the recent fractional-order dynamic PV model and its integer version
based on the same algorithm to evaluate the efficiency of using the fractional calculus
in the modeling of the PV modules. The overall results show that Chaotic Flower
Pollination Algorithm with Chebyshev and Singer chaotic maps in the case of the
fractional dynamic PV model offers the best fitting on the load current-time curve.
Moreover, the fractional-order dynamicmodel that can emulate the physical behavior
of the real system is efficient than the integer-order dynamic model.
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1 Introduction

Recently, there is a persistent need to search for alternative energy resources because
of the high price of fossil fuels and their rising rate of pollution that may threaten the
creatures’ lives. Solar energy is a dominant renewable energy resource because of
its availability and free-pollution [1]. The accurate prediction of PV system behavior
and the optimal capturing of the available energy need a robust, efficient, and attested
representation for the designed PV systems before and after the installation [2].

Several equivalent circuits have been published to present the characteristics of the
PV solar modules like the static PV models and the dynamic PV equivalent circuits.
The static PV equivalent circuits have been evolved from the ideal models to the
Single Diode Model (SDM) [3] up to the more complicated ones named the Double
Diode Model (DDM), the Modified Double Diode Model (MDDM), and the Three
Diode Model (TDM)[4]. Unfortunately, the switching operation of the inverter and
DC/DC converter, as well as the load variation, have not been taken into account
using these models [5]. Therefore, developing a novel circuit for the PV models as
the dynamic PV models has been attracted to cover the aforementioned shortcoming
of the static models [6, 7].

Lately, the fractional calculus has been utilized to increase the flexibility and
reliability of the classical dynamic PV model (Integer-Order Model (IOM)) in [6].
Thereby, a new generation of the dynamic models named the Fractional-Order
dynamic PV Model (FOM) has been created as in [7]. In [7], the FOM has been
formulated mathematically via fractionating the inductor and capacitor elements of
the integral-order model, and the effect of this fractionalization on the model effi-
ciency and flexibility have been investigated as well. Therefore, it’s expected that a
deeper vision into the physical processes of the PVmodules underlying a long-range
memory behavior may be achieved using this newly developedmodel. Consequently,
this may reflect in turn on design, control, and operation of PV system near MPP [7].

The accuracy of the identified PV models parameters has a large influence on
the accuracy of the reported PV models. These parameters are usually unknown by
manufacturer data sheets [6, 7]. Therefore, reliable and efficient techniques should
be proposed to estimate these parameters accurately which may achieve a better fit
on the experimental load current-time (I-T) curves of the dynamic PV model.

Several methods have been published to estimate the parameters of the static PV
models. These methods can be categorized as deterministic methods and stochastic
algorithms. Deterministic methods are as reported in [8, 9]. We have examples for
the stochastic algorithms like the Flower Pollination Algorithm [10] (FPA), Moth-
flame Optimization Algorithm (MFO) [4], Time-Varying Acceleration Coefficients
Particle SwarmOptimization (TVACPSO) [11], Differential Evolution [12], and Par-
ticle Swarm Optimization are proposed previously as in [13]. The marine predators
algorithm, Slime mould algorithm, atom search optimization, Political Optimizer,
Parasitism Predation algorithm as well as harris hawk optimizer and salp swarm
algorithm have been implemented in [14] to identify the parameters of simple and
detailed static PV models. The artificial ecosystem-based optimization approach has
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been proposed in [15] and self-adaptive ensemble-based differential evolution has
been recently introduced in [16], and Ibrahim et al. [17] used an adaptive wind-driven
algorithm for SDM parameters estimation process. According to the literature, the
stochastic optimization algorithms prove their efficiency and superiority in extracting
the parameters of the PV static models compared to the deterministic techniques. Up
till now, there is no wide prevalence of using meta-heuristics to extract the param-
eters of the dynamic PV models although they are powerful tools for simultaneous
estimation of the optimal parameters of several complicated models. Where the con-
ventional linear Least Squares (LS) and theNon-linear Least Squares (NLS)methods
have been reported to extract the parameters of the IOM and the FOM, respectively
[6, 7]. In the circumstance of meta-heuristic techniques, in [18], Chaotic Hetero-
geneous Comprehensive Learning Particle Swarm Optimizer variants (C-HCLPSO)
was applied to identify the dynamic parameters based on Root Mean Square Error
(RMSE) between the current-time measured and estimated curves as the first tech-
nique for this optimization problem.Thismotivates the authors of thiswork to employ
several meta-heuristic optimization techniques with utilizing another objective func-
tion on parameters extraction of the integer and the FOMs and endorse the most
suitable one for this optimization problem.

Grasshopper Optimizer (GOA),Moth-flameOptimization Algorithm (MFO), and
Flower Pollination Algorithms (FPA) are recently introduced and applied on sev-
eral non-linear complicated optimization problems [19–21]. Where these algorithms
have significant features that may improve diversification and intensification during
searching for optimal solutions. Therefore, they are selected to be used in identifica-
tion of the dynamic order PV models. According to no-free-lunch theorem, there is
no super technique that can be applied to solve all the optimization problems [22].
That’s why different algorithms should be tested to prove their validity and suitability
in a specific application. As the performances of GOA, FPA, andMFO are influenced
by their random parameters, it is necessary to introduce newly developed approaches
to modify the algorithms’ performances by controlling their random parameters to
balance between the exploration and intensification phases [23–25].

Developing stochastic optimization techniques by integrating the chaotic maps
with the original techniques to adaptively tune some of their factors is considered as
a new approach [23–25]. It’s worth mentioning that this combination improves the
balance between diversification and/or exploitation capability of the basic algorithms
depending on the randomization effectiveness of the chaos theory which may take
a turn for better quality and decaying of convergence rate of the basic techniques
[26–28].

In this chapter, the IOM and FOMmodels’ parameters are estimated using differ-
ent meta-heuristic algorithms. Three optimization techniques known as GOA, MFO,
and FPA as well as their chaotic variants are tested. The chaotic variants are obtained
by merging ten chaos maps with the original algorithms to adjust their parameters
which may improve their accuracy, consistency, and the decaying convergence rate.
The results of the three original algorithms and their chaotic variants are compared
together via an intensive statistical analysis to select the most suitable variants. sub-
sequently, the recommended variants for each model are compared to the previously
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reported techniques in literature known as the least-squares method for the integral-
order model and the non-linear least-squares method for the fractional-order model.
Moreover, another round of comparison is accomplished among the recommended
variants of the integer-order model and the fractional-order one to highlight the more
robust, reliable, and efficient model. The final outcome is that the fractional-order
PV model and its optimal parameters estimated by CFPA algorithm with Chebyshev
and Singer maps are the final recommended variant that provides the best emulation
of the physical behavior of the dynamic data. Where they achieve the least devia-
tion between the measured and the estimated load current curve with faster speed of
convergence to the optimal parameters. It is worth mentioning that more accuracy of
the selected model and its optimal parameters estimation may achieve in turn more
accurate design, control, and operation of the PV system.

The rest of the chapter is ordered as follows: the equivalent circuit of the PV
dynamic models are presented in Sect. 2. The problem definition is documented in
Sect. 3. The basic background of the applied algorithms as well as the chaos maps
equations furthermore the algorithms’ chaotic variants are explained in detail in
Sect. 4. Simulation and results are discussed in Sect. 5. At the last Sect. 6, the main
outcomes are listed.

2 PV Dynamic Equivalent Circuit

Dynamic PVmodels are accounted as recent and endorse trend dut to in thesemodels
the switching operation of the converters and inverters as well as the load variation
are recognized [6, 7]. The dynamic models have two versions integer-order dynamic
model and fractional-order one. The two dynamic models are reported in this work
as follows.

2.1 Integer-Order Dynamic PV Equivalent Circuit (IOM)

The integer-order dynamic equivalent circuit of a PV module and its connected load
has been investigated in [6] as shown in Fig. 1a where the influence of the variation
in the load and the converters/ inverters switching circuits are taken into account.
This model consists of two parts, the first one is the static part of the PV module that
is shortened to a constant voltage source Voc and a series resistance Rs as illustrated
in Fig. 1b. While the other one is the dynamic part of the model that consists of
a capacitor (C) representing the junction capacitance and (Rc) to account for the
conductance as well as a series inductance (L) to take the cabling inductance and
connection into consideration.
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To analyse the PV model in Fig. 2, the load current–voltage relationship can be
written in s-domain as in the following Eq.1 [6].

iL(s) = Voc

s

a21(s + b1) + b2(s − a11)

(s − a22)(s − a11) − a12a21
, (1)

where

(
a11 a12
a21 a22

)
=

( −1
C(Rc+Rs )

−Rs
C(Rc+Rs )

Rs
L(Rc+Rs )

−[RL Rc+Rs Rc+RL Rs ]
L(Rc+Rs )

)
, (2)

(
b1
b2

)
=

(
1

C(Rs+Rc)
Rc

L(Rc+Rs )

)
. (3)

Based on Eqs. 1 and 3, it’s obvious that the unknown parameters are (RC ,C , and L)

with knowing the parameters of the static part.
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2.2 Fractional-Order Dynamic PV Equivalent Circuit (FOM)

Lately, in [7], fractional calculus is utilized to introduce the fractional-order dynamic
PV equivalent circuit in 2018 where the capacitor and the inductor of the integral-
order PV equivalent circuit are interchanged by the fractional counterparts of orders
α and β, respectively, as illustrated in Fig. 2. Where a better mathematical model of
a system leads to a better fitting on the measured data, a better description of the
real system response, and subsequently a better emulation of the physical behavior
of the real system. This is accomplished by a novel compact fractional model of the
PVmodule that has been published recently in [7] as two more parameters are added
to the differential equation describing the transient (I-T) response of the PV module
that are the derivative orders added by fractionating the capacitor and the inductor
of the integral-order mode. These extra parameters provide in turn a better accuracy
for the fractional mathematical PV dynamic equivalent circuit over the integer one.
It should be noticed that the value of the resistor Rc will be lower than that of the
integral-order equivalent circuit due to the effect of the real frequency dependent part
of the fractional capacitor impedance that has partially replaced the series resistor
connected to it [29].

To implement the fractional-order dynamic PV equivalent circuit, the load
current–voltage relationship has been modeled in s-domain as described in the fol-
lowing Eq.4 [30]

iL(s) = Voc

s

a21(sα + b1) + b2(sα − a11)

(sβ − a22)(sα − a11) − a12a21
, (4)

where

(
a11 a12
a21 a22

)
=

( −1
Cα(Rc+Rs )

−Rs
Cα(Rc+Rs )

Rs
Lβ(Rc+Rs )

−[RL Rc+Rs Rc+RL Rs ]
Lβ(Rc+Rs )

)
, (5)

(
b1
b2

)
=

(
1

Cα(Rs+Rc)
Rc

Lβ(Rc+Rs )

)
, (6)

Cα and Lβ illustrate the fractional capacitance and fractional inductance, respectively.
α and β indicate the derivative orders, they have values that are less or greater than
1 in the fractional-order model.

Based on the equivalent circuit of the fractional-order dynamic PV equivalent
circuit and Eqs. 4–6, there are five unknown parameters should be estimated which
are (RC ,Cα, Lβ , α, and β).
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3 Problem Formulation

Identification of the unknown variables of the dynamic PV models can be described
as an optimization problem where the difference between the experimental dynamic
data of the load current and the extracted one via using the extracted parameters is
required to be minimized. The global unknown parameters are obtained by using a
fitness function known as the sum of the absolute errors between the experimental
and estimated current curves.

SAE =
m∑
i=0

| Im(ti ) − Ie(z, ti ) |, (7)

where m is the number of the experimental points. z is the vector of the variables
(RC ,C , L) for the integral-order equivalent circuit and (RC ,Cα, Lβ , α, β) for the
fractional-order dynamic PV equivalent circuit. Ie and Im show the estimated and
the measured current as functions of time (ti ).

The major target of the applied optimization algorithms is to estimate the optimal
values of the integral-order and the fractional-order dynamic PV equivalent cir-
cuits parameters z that attain less deviation between the experimental and predicted
dynamic datasets.

4 An Overview of the Used Optimization Algorithms

In this part, the basic background of the implemented techniques in identification of
the integral-order and the FOMs parameters is presented.

4.1 Grasshopper Optimization Algorithm (GOA)

Saremi et al. [21] used the features of the grasshoppers in nature as the basic idea in
the Grasshopper Optimization Algorithm (GOA). GOA is published lately in 2017
[21]. The main concept of grasshoppers’ behavior is as follows:

1. There are two phases of life of the grasshoppers, the first one is the nymph phase
while the other one is the adulthood phase. During the nymph stage, the motion of
grasshopper is in slow profile with small steps while during the adulthood phase,
the long-periodic stage and the abrupt motion are the main features of the flock
[21].

2. Seeking for the food sources is the other main aim of the grasshopper flocks [21].

Those two aforementioned features have been mathematically formulated to give the
GOA [21].
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The behavior of the grasshoppers flock can be modeled mathematically as below in
(8) [21].

Zi = Si + Gi + Ai , (8)

where Zi is the i-th grasshopper location, Si is the social interaction between
grasshoppers, Gi is the gravity force, and Ai is the wind advection [21].

The social interaction between the grasshopper can be calculated as below in Eq.9
[21].

Si =
N∑

j=1, j �=i

s(di j )d̂i j , (9)

where di j is the distance between i-th and j-th grasshopper and d̂i j is the unit vector
of the distance. di j and d̂i j are calculated as in Eq.10. The s function defines the
social forces between grasshoppers and it can be modeled as in Eq.11 [21].

di j = |z j − zi |
d̂i j = |z j − zi |

di j
,

(10)

s(r) = f e
−r
l − e−r , (11)

where f shows the intensity of attraction and l indicates the attractive length scale
[21].

Furthermore, the gravity force G and the wind advection A are written as below
in Eqs. 12 and 13 [21].

Gi = −gêg (12)

Ai = uêw, (13)

where g in Eq.12 is the gravitational constant and êg in Eq.12 is a unity vector toward
the earth center. In Eq.13, u is a constant drift and êw is a unity vector in the wind
direction.

Equation8 is accounted to be a main equation of the GOA. However, this math-
ematical formulation cannot be directly utilized to solve the optimization problems
due to the grasshoppers’ quick stuck in the local zone. Thus, the main equation Eq.8
of GOA has been upgraded as in the following Eq.14 [21].

Zd
i = c

⎛
⎝ N∑

j=1, j �=i

c
ubd − lbd

2
s
(|z j − zi |

) |z j − zi |
di j

⎞
⎠ + T̂d , (14)

where ubd and lbd are the upper and lower limits in the Dth dimension. Td is the
value of the best solution attained so far and c is a decreasing coefficient from 1 to
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zero across the iterations number, this relation
(
cmax − t

( cmax−cmin
T

))
, t is the current

iteration and T is the maximum number of iterations. cmax , cmin are 1 and 0.00001,
respectively [21].

The first term of Eq.14, c

(
N∑

j=1, j �=i
c ubd−lbd

2 s
(|z j − zi |

) |z j−zi |
di j

)
describes the rela-

tionship between the grasshoppers in nature while the second term, Td , modulates
their tendency to move toward the source of food [21].

4.2 Moth-Flame Optimizer (MFO)

MFO algorithm is based on the Moths behavior during their flying at night known as
transverse orientation [31]. Where they keep a certain angle with a very far source
of light which helping them to fly in a straight path. As the light source becomes
nearer, the moths fly around it spirally until reach to it. MFO consists of three parts.
The first one is the initialization where the random positions of moths are generated.
The second part is the main part of the algorithm in which the transverse orientation
of moths are formulated mathematically and last part is the termination part that
concern with the algorithm stop.

In MFO algorithm, both the moths and the flames are solutions, whereas they
have different features while they are modified. The moths are the agents that fly
around the search landscape while flames are the personal best location of each
candidate attained so far [31]. Moreover, The logarithmic spiral function is utilized
to describe mechanism of transverse orientation of moths around the light source.
The mathematical formula of this function is modeled as follows [31]:

S(Mi , Fj ) = Die
clcos(2πt) + Fj , (15)

where Mi is the i-th moth, Fj illustrates the j-th flame, and S indicates the spiral
function. Di is the distance of the i-th moth for the j-th flame (|Fj − Mi |). c is a
constant for describing the shape of the logarithmic spiral. l is a random number
in [d, 1] and d denotes the adaptive convergence constant that is linearly decreased
from −1 to −2 to accelerate the convergence speed.

To enhance the response of theMFO technique, the number of flames reduces over
the iterations as in Eq.16. This feature helps to balance between the diversification
and exploitation stages ofMFOwhile searching for the global solution. Accordingly,
moths modified their locations using only the location of the best flame across the
last steps of the iterations [31]:

f lame Number = round

(
M − t × M − 1

T

)
, (16)

where t is the current iteration, T is the iterations maximum number, and the M is
the maximum number of flames.
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4.3 Flower Pollination Algorithm (FPA)

The main concept of the pollination in the planets is the usage idea in the FPA
technique [19]. The mating in the plants occurs during the pollen transferred through
biotic and/or abiotic pollination processes. The biotic process is known as a cross-
pollination as the bees and butterflies transport the pollen grains across plants of
different species. For abiotic process, it is considered as a self-pollination as the
wind transports the pollen across flowers of the same species.

Yang et al. [19] used the main concept of the biotic process to implement the
global search stage of FPA as below

Zt+1
i = Zt

i + γL(λ)(g∗ − Zt
i ), (17)

where Zt
i is the pollen i (solution vector) Zi at iteration t . The global solution can

be denoted by g∗. The symbol of γ is a scaling coefficient to adjust the step size.
The symbol of L(λ) is the levy factor that is responsible for the transfer of pollens
between several species of flowers. It can be calculated as follows [19]:

L ∼ λ�(λ) sin( πλ
2 )

π

1

m1+λ
(m � mo > 0), (18)

where �(λ) is the gamma function, and this distribution is valid for large steps
m > 0. h is step size and the value of mo can be as small as 0.1.

For the local search capitiy of FPA, Yang et al. [19] considered the pollination
during the abiotic process as follows:

Zt+1
i = Zt

i + ε(Zt
j − Zt

k). (19)

where Zt
j , Z

t
k are the different pollens of same plant species. ε is drawn from a

uniform distribution ∈ [0, 1].
To switch between the global and local search capabilities of FPA, a switching

probability factor S is chosen in the interval of [0.2, 1] [19].

4.4 Chaotic Variants of GOA, MFO, and FPA Optimization
Algorithms (CGOA, CMFO, and CFPA)

Stochastic optimization techniques are randomly based techniques. This randomiza-
tion is accomplished via using the Gaussian or the uniform distribution. Currently,
a novel trend has been proposed to exchange this distribution by the chaos maps to
avail of the better characteristics of the chaoticmaps randomization. In this approach,
integration between the properties of chaotic maps and basic techniques enable them
to converge to the optimal solution accurately and rapidlywhile optimizing themulti-
modal test functions [23].
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4.5 Chaos Maps

In thiswork, ten different one-dimensional chaoticmaps are used to adjust some coef-
ficients of the standard versions of GOA, MFO, and FPA techniques. As a result, the
Chaotic Grasshopper Optimizer (CGOA), Chaotic Moth-Flame Optimizer (CMFO),
and Chaotic Flower Pollination Algorithm (CFPA) are proposed.

The selected chaos maps are listed as follows:

• Chebyshev map
xi+1 = cos(i cos−1(xi )), (20)

where xi is the i th chaotic number, i is the times of iteration, x ∈ (0, 1) under the
initial condition x0 ∈ (0, 1), thus x0 is 0.7.

• Circle
xi+1 = mod

(
xi + b −

( a

2π

)
sin(2πxk, 1)

)
, (21)

where a, and b are the control parameters of chaotic behavior and equal to 0.5 and
0.2, respectively. The inital conditions x0 is selected to be 0.7 to ensure a complete
chaotic state x ∈ (0, 1).

• Gauss/mouse

xi+1 =
{
1 xi = 0

1
mod(xi ,1)

Otherwise,
(22)

where x0 is 0.7.
• Iterative

xi+1 = sin

(
aπ

xi

)
, (23)

where a = 4 and x0 is 0.7.
• Logistic

xi+1 = axi (1 − xi ), (24)

where a = 4 and x0 is 0.7.
• Piecewise

xi+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi
P 0 <= xi < P
xi−P
0.5−P P <= xi < 0.5
1−P−xi
0.5−P 0.5 <= xi < 1 − P
1−xi
P 1 − P <= xi < 1

, (25)

where P = 0.4 and x0 is 0.7.
• Sine

xi+1 = a

4
sin(πxi ), (26)

where a = 4 and x0 is 0.7.
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• Singer
xi+1 = μ(7.86xi − 23.31x2i + 28.75x3i − 13.302875x4i ), (27)

where μ = 1.07 and x0 is 0.7.
• Sinusoidal

xi+1 = ax2i sin(πxi ), (28)

where a =2.3 and x0 is 0.7.
• Tent

xi+1 =
{

xi
0.7 xi < 0.7
10
3 (1 − xi ) xi >= 0.7

, (29)

where x0 is 0.7.

4.5.1 Chaotic Grasshopper Optimizer (CGOA) Technique

Depending on Eq.14, the GOA performance and its convergence speed for the global
optimal solution are controlled by threemain coefficients. These variables are c, f, and
l. Variable c is amain coefficient that supports the balance between the diversification
and exploitation processes. The c factor follows a linearly decreasing function from
1 to 0 across the iteration numbers. For the other coefficients f and l, they used to
manage the social interaction among the grasshoppers to avoid trapping in the local
minima. The f and l have values of 0.5 and 1.5, respectively [28]. Whereas, in the
introduced CGOA variant, the values of c, f, and l are changed according to the
patterns of the employed chaotic maps as clarified in the following Eqs. (30) and
(31)

c =
(
ci − t.

(c f − ci )

T

)
.Chaos(t); (30)

�NormChaos = �Chaos.(d − e)

b − a
+ e,

f = �NormChaos, l = �NormChaos,

(31)

where ci , c f are the initial and final values of c, they are tuned as 1 and 0.00001,
respectively. The symbols of t , and T are the current iteration and the maximum
number of iterations, respectively. �NormChaos is the normalized chaotic map. The
[a b] is the interval of chaotic maps. The [e d] is the normalization range that can
be selected as [0.3 0.7] and [1.3 1.7] for f and l, respectively.



A Fractional-Order Dynamic Photovoltaic Model Parameters Estimation … 27

4.6 Chaotic Moth-Flame Technique (CMFO)

In the standard MFO technique, there is an essential parameter named t that is con-
trolling the locations of the moths with respect to the flames position where t defines
how much the next position of the moth should be near to the flame. This parameter
trades between the diversification and the exploitation phases. This parameter has
random distribution values between [r 1] where r is linearly decreased from −1 to
−2. While in CMFO, the parameter t is modified by the chaos maps to enhance the
convergence speed of the MFO algorithm such as follows (32):

r =
(
ri + t.

(
r f − ri

)
T

)
.Chaosk;

l = (r − 1) .rand + 1

,

(32)

where ri , r f are the initial andfinal values of the deceasing function.They are adjusted
as −1, −2, respectively. The symbols of t , and T are the current iteration and the
maximum number of iterations, respectively. Chaosk is the chaotic map of index k.

4.7 Chaotic Flower Pollination Algorithm

The FPA has three important factors that govern its response while searching for the
global solution that are S, L , and ε. The symbol of S is the switching probability
between the global and local pollination. It starts from 0.2 until reaches 1. While
in CFPA, S changes from 0.2 to 1 chaotically using chaos maps as in Eq.33. The
parameter L is considered as the strength of the pollination, it has values greater
than 0 (L > 0) from the Levy distribution. In CFPA, chaos maps are merged within
the Levy distribution as in Eq.34. Moreover, in FPA, ε is drawn from the uniform
distribution in the interval of [01] while in CFPA the ε is drawn from the chaos maps
in the same interval as in Eq.35.

s =
(
si + t.

(
s f − si

)
T

)
.Chaosk; (33)

L ∼
(

λ� (λ) sin
(

πλ
2

)
π

1

m1+λ

)
.Chaosk; (34)

ε = Chaos(t); (35)
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where si , s f are the initial and final values of a that are selected as 0.2 and 1.2,
respectively. Chaosk is a chaos map of index K.

5 Simulation and Results

In this section, the quality of the proposed chaotic variants of the GOA, MFO, and
FPA (CGOA, CMFO, CFPA) as well as their original versions are tested, evaluated
and demonstrated for extracting the IOM and the FOM models’ parameters based
on an experimental dynamic dataset of the load current for a connected PV module
with resistive load (RL= 23.1 �). The PV module sybjected to an irradiance and
temperature level of 655w/m2 and 25 ◦C [6]. The module is fixed tilted at 50◦ and
the electric specification of the module are Voc = 19.6 V, Isc = 0.96 A, Vmp = 14.96
V, and Imp = 0.92 A at the irradiance and the temperature levels.

The structure of this section can be composed of two parts.

• The first part is accomplished by applying the introduced algorithms on the
IOM and FOM. Subsequently, the results of the chaotic variants are compared
with that of the corresponding standard versions to evaluate and demonstrate the
performance of these techniques and endorse the better ones. The comparison
is based on the best, mean ± and the Standard Deviation (STD) of the extracted
parameters and the corresponding fitness function as well as themean convergence
curves to reach these values of the fitness function. Moreover, to evaluate the
accuracy of the extracted parameterswith respect to that of the reported techniques,
the estimated load current curves by the proposed meta-heuristic algorithms are
compared with that of the previously published methods LS and NLS for the IOM
and the FOMs, respectively [6, 7]. Furthermore, the Absolute Error (AE) curves
between the experimental load current curves and the identified ones by all variants
are calculated and compared to that of the previous methods. For extra validation,
non-parametric statistical analysis called Wilcoxon Rank-Sum Test is carried out
among the recommend variants to endorse the most significant one.

• In the second part, the more appropriate variants’ results for the integral-order
dynamic PV model are compared with that of the fractional-order one to discuss
the importance of employing the fractional calculus for the PVmodeling as well as
to focus on the additional features of utilizing the fractional PV dynamic models.
The winner algorithm for this application is highlighted often in these successive
stages of comparisons.

For accurate comparison between the introduced techniques, each one is runwith 500
iterations and 30 population size for 20 independent runs. The upper and lower limits
of the unknown variables of integral-order dynamic PV equivalent circuit (IOM) and
fractional-order one (FOM) are set as in Table1.
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Table 1 The upper and lower ranges of models’ parameters

IOM variables Lower limit Upper limit FOM
variables

Lower limit Upper bound

Rc(�) 0 20 Rc(�) 0 20

C(F) 20e−9 600e−7 Cα(F) 20e−9 600e−7

L(H) 5e−6 100e−6 Lβ(H) 5e−6 100e−6

α 0.8 1.1

β 0.8 1.1

5.1 Discussion of the Integral-Order Dynamic PV Model
(IOM) Results

The best, the mean ± the STD values of the identified parameters of the IOM and
their corresponding fitness function (SAE) over 20 independent run times are listed
in Table2. The reported results show that the chaotic variants of the three algorithms
under test provide more accurate and consistent results than their original versions.
Where cooperating the logistic map with GOA improves the best, mean ± STD of
SAE from 5.217, 10.08 ± 9.260 × 100 to 4.629, 4.925 ± 5.304 × 10−1 , respec-
tively. Chebyshev map has a remarkable influence on the accuracy and reliability of
the MFO results as CMFO1 provides best, mean, and STD of SAE equal to 4.629,
4.629, and1.204 × 10−7 whereasMFOoffers 4.629, 5.713, and2.648 × 100 , respec-
tively. Likewise, integration of sinusoidal map with FPA improves the consistency of
its results where STD value are updated from 1.065 × 10−5 to 4.039 × 10−7, respec-
tively. Additionally, the tabulated results indicate that CFPA1 to CFPA10 especially
CFPA9 and CMFO1 have the lower best, mean, and STD values of SAE than CGOA,
CMFO2 to CMFO10 variants as well as their basic versions (MFO andGOA). There-
fore, CFPA9 and CMFO1 variants are recognized as the most endorsed variants for
identifying the parameters of the IOM accurately and with highest consistent rate.

To discuss the impact of the chaotic maps on the convergence speed of the rec-
ommended chaotic variants (CFPA9 and CMFO1), their mean convergence curves
versus the standard versions of FPA andMFO are plotted in Fig. 3. The Figures of the
convergence curves in Fig. 3a and d of CMFO1 and CFPA9, respectively, exhibit that
integrating the Chebyshev map into CMFO has noteworthy effect not only on MFO
convergence speed but also on the accuracy of the obtained fitness function over
the selected number of iterations. For the decaying rate of convergence of CFPA9
becomes lower than FPA for the first 150 iterations then basic FPA try to nearly
achieve the same mean value of the SAE at the end of the whole iterations.

To validate the accuracy of the identified parameters by the proposed chaotic
algorithms, the estimated load current curves by these variants and that of LSmethod
[6] versus the experimental one are plotted as in Fig. 3b–e. Additionally, the AE
curves between the measured load current curve and the identified ones are drawn
in Fig. 3c–f for the studied algorithms. It is illustrated from the fitting and absolute
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error curves that the meta-heuristic optimization techniques provide the better fitting
on the experimental dynamic datasets with lower AE than LS method in most of the
points on the curve especially in the transient part at the knee of the current curve.
Moreover, the Chaotic variants of the proposed algorithms achieve lower AE than
their standard variants at different points on the load current curve.

According to the results in Table2 as well as the depicted curves in Fig. 3, it’s
concluded that CMFO and CFPAwith Chebyshev, and sinusoidal maps, respectively,
provide the most accurate and consistent results with fastest convergence speed than
the other variants, respectively. Additionally, CMFO1 and CFPA9 have the first rank
in consistency of the results followed by CGOA as shown in Table2. To endorse
the best one of these variants for IOM part statistically, the Wilcoxon Rank-Sum
Test is carried out between CMFO1 and CFPA9 variants as observed from Table2.
Based on theWilcoxon Rank-Sum analysis in Table3, it’s obvious that the CFPA9 is
significantly different from the CMFO1 where the obtained p-values are less than
0.05. Therefore, depending on the obtained best, mean ± and STD values of the
computed objective function by CFPA9 as well as the Wilcoxon Rank-Sum analysis
results shown in Table3, CFPA9 is selected as the recommended algorithms for
identifying the IOM parameters with better fitting on the experimental current-time
curve, less error and faster convergence speed.

5.2 Discussion of the Fractional-Order Dynamic PV Model
(FOM)

In this part, the proposed algorithms search for five unknown parameters
(RC ,Cα, Lβ,α and β), the best mean ± STD of these parameters and the corre-
sponding fitness function are listed in Table4. The tabulated data clarifies that the
chaotic variants offer lower best, mean± STD of SAE values than their original ver-
sions especially, CGOA with Sine map, CMFO with Logistic map and CFPA with
Chebyshev and singer maps. Where CGOA7modifies the best, mean± STD of SAE
(byGOA) from3.821, 6.931± 3.233 × 100 to 2.743, 3.705± 4.962 × 10−1 , respec-
tively. Similarly, CMFO5 provides best, mean, and STD of SAE 2.740, 3.583 and
7.580 × 10−1 whileMFOexhibits 2.935, 3.745, and 1.153 × 100 , respectively. Like-
wise, CFPA1 and CFPA8 improves the accuracy and consistency of the FPA results
where best, mean, and STD values are updated from 2.881, 3.527, and 4.624 × 10−1

to (2.738, 3.128 and 3.579 × 10−1) and (2.817, 3.131 and 2.602 × 10−1), respec-
tively. It is obvious that CFPA1 and CFPA8 have the first rank in the accuracy and
consistency followed by CMFO5 and at last CGOA7.

From the obtained mean convergence curves by the endorsed variants8 (CGOA7,
CMFO5, CFPA1, and CFPA8) in Fig. 4a, d, g, respectively, it’s concluded that the
chaos maps have a remarkable influence on their convergence rate especially in case
ofGOA, asmerging the sinemap (CGOA7)modifies the convergence curve decaying
rate nearly by 50% compared to te GOA convergence curve. CMFO5 achieves SAE
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Table 3 Wilcoxon Rank-Sum test for the recommended variants for IOM

Algorithms ranksum Zval p-value h0 Winner Recommended

IOM CFPA9
versus
CMFO1

5.710e + 02 4.342 1.415e − 05 ✗ CFPA9 CFPA9

equals to 4 at 110 iterations however MFO arrives for 4.4 at the same number of
iterations. Similarly, CFPA1 and CFPA8 provide values of SAE lower than FPA at
the same number of iterations.

To discuss the accuracy of the extracted parameters by the algorithms, both of the
estimated current curves versus the measured one as well as the AE curves between
these current curves are plotted in Fig. 4b, c, e, f, h, i, respectively. The obtained
curves by the only previously published method NLS in [7] is also included on the
fitting curves and error curves for comparison. It’s observed from the figures that the
proposed variants can provide better fitting on the experimental dataset especially at
the transient part of the load current curve than NLS with lower AE values in several
points as in the drawn error curves. It is noticed that the meta-heuristic optimization
algorithms provide better performance than the conventionalmethod (NLS), whereas
CFPA1 and CFPA8 come on the top of these algorithms followed by CMFO5 and
after that the CGOA7.

As a part of the successive comparisons among the winner variants, Wilcoxon
Rank-Sum Test is carried out between the two last selected ones and the other rec-
ommended algorithms (CMFO5, and CGOA7). To determine which algorithm is the
most appropriate one for the parameters identification of FOM, the results of CFPA1
and CFPA8 are compared statistically with (CMFO5, and CGOA7) as in Table5. The
listed results in this Table indicate that the CFPA1 and CFPA8 are the most suitable
techniques for this problem where they have a significant difference with respect to
the other algorithms as well as they achieve the least best mean ± STD values of the
fitness function in addition to the best fitting with the measured data.

5.3 Comparison Between IOM and FOM

In the current subsection, the comparison is carried out between the IOM and FOM
in fitting on the experimental datasets and the accuracy of the results. It’s observed
from Tables2 and 4 that the best and mean values of SAE function between the
identified and measured load current curves are lower in case of FOM than IOM.
For more detailed investigation, the recommended algorithms for each model are
compared together. For IOM, CFPA9 is the most suitable algorithm while in case
of FOM, CFPA1, and CFPA8 are the most adequate ones. The best, mean ± STD
values by these algorithms are reported in Table6, their convergence curves and their
fitting on the experimental load current curve are plotted in Fig. 5.
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Table 5 Wilcoxon Rank-Sum test for the recommended variants for FOM
Algorithms ranksum Zval p − value h0 Winner Recommended

FOM CFPA1
versus
CGOA7

2.470e + 02 −2.750 5.966e − 03 ✗ CFPA1

CFPA1
versus
CMFO5

3.430e + 02 −1.799 7.205e − 03 ✗ CFPA1

CFPA1
versus
CFPA8

3.810e + 02 −7.709e −
01

4.407e − 01 ✓ – CFPA1

CFPA8
versus
CGOA7

2.420e + 02 −2.970 2.982e − 03 ✗ CFPA8 CFPA8

CFPA8
versus
CMFO5

3.630e + 02 −1.258 2.085e − 02 ✗ CFPA8

CMFO5
versus
CGOA7

2.880e + 02 −9.459e −
01

3.442e − 01 ✓ –

(–) No significant difference

It’s obvious from Table6 that the best and mean values of SAE are lower in
case of FOM than IOM due to the more flexibility and extra degree of freedom that
fractional calculus appended for the model. Where in FOM, techniques searching for
five unknown parameters rather than the three parameters of IOM is increasing the
search space which make the fractional model more descriptive for the real system
response. The algorithms become capable for capturing more accurate combination
between the parameters that reflected in turn on the accuracy of theSAEvalue than the
fitting of themeasured dataset. Furthermore, Fig. 5 enhances the previous observation
where the fractional-order model with the recommended variants provides a better
fitting on the experimental datasets of the current curve not only on the transient
section at the knee of the curve but also on the steady-state part as CFPA1 and CFPA8
achieve lower error values between the measured and estimated load current curves.
Moreover, from the convergence curve in Fig. 5, it’s concluded that the algorithms
in case of FOM have the flexibility and capability to converge to lower values of the
objective function where at 150 iteration CFPA1 and CFPA8 have better combination
between the unknown five parameters that may affect in turn on the accuracy of the
objective function. These results prove the superiority of the FOM in modeling of
the experimental load current curves because of its extra degrees of freedom that is
represented in the non integer derivative orders added to the model and a deep vision
into the physical processes of the PV modules underlying a long-range memory
behavior.
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Table 6 The recommended variants for IOM and FOM

Models/algorithms SAEbest,mean

IOM CFPA9 4.629e + 00, 4.629e + 00

FOM CFPA1 2.738e + 00, 3.128e + 00

CFPA 8 2.817e + 00, 3.131e + 00
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Fig. 5 Comparison between IOM and FOM based on the a Load Current curve fitting, b Absolute
error, and c Convergence curves

6 Conclusion

This chapter proposes new optimization techniques to extract the parameters of the
dynamic PV models accurately and quickly based on the experimental dynamic
dataset of the load current curve. The introduced dynamic PV models are classified
as the integral-order dynamicmodel and a newly developed fractional-order dynamic
model that may provide a better fitting on the real system response. The proposed
techniques for parameters estimation of the models are the Chaotic Grasshopper
Optimizer, the Chaotic Moth flame Optimizer, and the Chaotic Flower Pollination
Algorithm where their original versions are combined with ten different chaos maps
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for adaptive tuning of their parameters. Successive comparisons are established to
compare The chaotic variants’ results to that of the standard versions of the proposed
algorithms as well as the conventional methods published in literature (Least squares
and non-linear Least squares) to recommend the best variant that achievesmore accu-
racy, consistency, higher speed of convergence, and less deviation from experimental
data. For further investigation, Wilcoxon Rank-Sum Test is carried out between the
chaotic and basic versions of the utilized algorithms as well as between the rec-
ommended algorithms. Based on these intensive comparisons among the results of
this work and that of the previously published algorithms, it is clear that the meta-
heuristic algorithms are more efficient tools in providing more accurate results than
the conventional ones even with the lately developed more complicated models.
Moreover, the chaotic variants offer better convergence speed and consistent results
than the original algorithms. For IOM, CFPA with Sinusoidal is the most suitable
one, whereas CFPAmerged with the Chebyshev and Singer chaos maps are the most
appropriate variants in case of fractional-order PV models as they achieve better
fitting on the utilized datasets with faster decaying rate of convergence. From the
comparison between the recommended algorithms in both models, it’s concluded
that combination between the CFPA (Chebyshev and Singer chaos maps) with FOM
achieves an accurate representation for the physical behavior of the dynamic PV
system compared to the IOM one where it exhibits a better description of the real
system response not only on the transient part but also on the steady-state part as
well. For the future work, the FOMwill be employed for different PVmodules types,
moreover, novel algorithms with innovative objective function will be examined for
optimizing this model.
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Dust Accumulation and Photovoltaic
Performance in Semi-Arid Climate:
Experimental Investigation and Design
of Cleaning Robot

Alae Azouzoute, Massaab El Ydrissi, Houssain Zitouni, Charaf Hajjaj,
and Mohammed Garoum

Abstract Photovoltaic technology is still under development in many countries
around the world. However, the desert regions are still the most attractive zones in
terms of solar radiation and land use availability. On the other hand, the semi-arid and
arid climates predominate in those regionswhere dust concentration is relatively high,
which influence drastically the efficiency of the PV system. This study investigated
the effect of dust accumulation on the transmittance of the glass samples and the
overall electrical efficiency of the PV module for different cleaning frequencies. It
was found that the broadband transmittance loss of a glass sample decreases by up
to 52% after 3 months of exposure, whereas it was in the range of 6.5% after 7 days
during the dry period. The dust accumulation rate was about 5.6 g/m2 and 0.4 g/m2

after 90 days and 7 days of exposure, respectively. For the PV output performance,
dust accumulation has significantly influenced the soiling ratio of the PV systemwith
no cleaning as it reached 0.77 after 68 days of exposure and no significant impact
has been seen for the weekly cleaned PV module with a soiling ratio in the range
of 0.97 during all the period of investigation. Thereafter, a new self-guided cleaning
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robot system has been designed to optimize the cleaning schedule under the local
weather conditions.

Keywords Photovoltaic system · Dust accumulation · Transmittance · Density of
dust deposition · Cleaning robot · Semi-arid climate

1 Introduction

The photovoltaicmodule is characterized by the electrical power that it delivers when
it is conventionally subjected to the sunshine of 1000 W/m2 and a cell temperature
of 25 °C. This electrical power is determined just after the modules have been manu-
factured. However, these data are not constant over time; when the module under-
goes degradations, the electrical power decreases, as well as the other magnitudes
short-circuit current and voltage.

Today, there is a lack of information on the different modes of degradation of
photovoltaic modules in terms of frequency, rate of evolution, and degree of impact
on the life and reliability of PV modules. In recent years, research on photovoltaic
modules has rather focused on the race to develop new technologies without having
enough feedback on those that are already operational.

The meteorological parameters and the characteristics of the installation site
remain one of the drastically most influencing parameters on the performance of
photovoltaic solar panels. They can significantly reduce both the efficiency of elec-
trical performance and the capacity of the panels, knowing that most panels are
designed for proper operation for more than two decades, but this time is reduced
due to the hard environmental conditions. However, the accumulation of dust on
the photovoltaic panels remains one of the most influencing parameters on the
performance of the panels as well as their lifespan.

a. Soiling phenomena

Solar radiation is one of themost abundant clean resources existing on the planet espe-
cially in regions with desert land. MENA region and other countries in the Sunbelt
enjoy the high potential of incoming solar irradiation and the availability of area
for the development and deployment of solar power plants [1–3]. However, those
regions are known for their harsh weather conditions; hot and dry in the summer
season, and wet climate with rainy days in winter. Soiling is the main challenge
that impacts directly the efficiency of a solar power plant (concentrated solar power
or photovoltaic systems) [4–9]. Soiling on the front glass of PV modules results in
optical losses due to the area shaded by dust particles [10–14]. On the other hand, the
deposition of contaminants such as mineral dust deposit, biofilms of bacteria, algae,
lichen, mosses or fungi, plant debris or pollen, bird droppings, engine exhausts or
agricultural emissions, and industry emissions [15–19] onto the PV module surface
leads to an excessive reduction of power generation. This can be quantified by more
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than 1% power loss per day [10, 15, 20, 21]. It often makes the installation econom-
ically unreliable. To this end, the MENA region was reported to be the worst region
that exhibits dust accumulation regarding the other regions [22, 23].

Dust accumulation was found to be the most significant factor affecting the effi-
ciency of a PV module in interaction with environmental parameters as the relative
humidity, temperature, wind speed, and wind direction [8, 9, 24, 25]. On the other
hand, the accumulation rate of dust on the surface of the PV module increases over
the time of exposition [26]. For example, in Minia region, Egypt, the mass accumu-
lation rate of 150–300 mg/m2/day [27] has been reported depending on the tilting
angle, aswell inDhahran, SaudiArabia, the dust surface density has reached 6.2 g/m2

for the period from February to December (10 months) [28]. In another study, the
accumulation rate of 132 mg/m2/day in Mesa, Arizona [29], and 1–50 mg/m2/day
in Colorado [30], and from 0.01 to 0.02 mg/cm2/day has been recorded in Lahore,
Pakistan for panels with a fixed tilt angle of 30 ° [31]. In the Mediterranean climate,
in Athens, Greece, the dust loading of 0.1–1 g/m2 was recorded for a period of
exposition of 2–8 weeks [32]. This accumulation rate is strongly dependent on dust
particles concentration at the upper of the atmosphere and weather conditions of the
local site [33].

In reading the literature, several methods have been used to evaluate the effect
of soiling and especially dust deposition on the performance of PV panels. In term
of optical efficiency, the effect of dust on the transmittance of the front glass of
the PV module has been widely used to evaluate the impact of dust deposition on
the transmittance of light radiation with regard to the density of dust deposition
[9, 27, 34–36], thus, will consequently reduce the incoming light to the PV cell
and decrease the electrical output. However, the most reliable method is to assess
the direct impact of dust deposition on the surface of the PV module in terms of
the electrical parameters as the maximal power, short-circuit current, and the total
energy production (in the case of a PV system). As dust deposits tend to attenuate
short wavelengths with regards to the selective aspect of the spectral response of the
PV cell, which explains the difference between light transmission loss and power
loss [37].

Therefore, understanding the soiling mechanisms is highly crucial in order to
develop optimized cleaning scenarios for the dusty region. The next section in this
work will describe the process of the dust life cycle and the interference of different
parameters on it.

b. Dust life cycle

Recently, many research studies have been done on the processes governing the
transport and deposition of dust in solar power plants [38, 39]. All these studies have
concluded that the impact of dust on PV modules follows a cycle, which is called
the life cycle of dust. This cycle contains four main stages (generation, deposition,
adhesion, and finally removal or elimination at the level of the panel) as indicated in
Fig. 1.

Generation
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Fig. 1 The dust life cycle

The charging of the atmosphere with dust particles is mainly linked to soil erosion
due to the wind [40, 41]. The wind emission produces when the wind has enough
power to move the granular crushed material [42]; therefore the wind is the main
phenomenon that allows raising dust to the atmosphere. We can distinguish three
different modes of transport of particles by the wind speed, presented in Fig. 2 [41].

Suspension: In general, fine dust can only be carried away if it has been thrown into
the air by the impact of larger grains. Once in the turbulent layer, they can be lifted
to great heights by ascending air currents and form dust clouds reaching altitudes
of 3–4,000 meters. Their appearance can be impressive; the essential mechanism of
wind erosion remains saltation because without it such clouds could not occur.

Saltation: The initial movement of soil particles is a series of jumps. The diameter
of the saltation particles is between0.5 and1.1mm.After having jumped, the particles
fall back under the action of gravity. The descending part of the trajectory is very
inclined towards the ground and practically straight. Few particles reach an altitude
greater than 1 m and about 90% of them jump less than 30 cm. The horizontal
amplitude of a jump is generally between 0.5 m and 1 m. The saltation phenomenon
is essential to initiate wind erosion. It is the cause of two other modes of transport
of soil elements by the wind: surface crawling and air suspension.

Crawling: Larger particles roll or slide across the soil surface. Too heavy to be
lifted, their movement is triggered by the impact of saltation particles rather than by
the action of the wind. The particles that move in this way to a diameter of between
0.5 mm and 2 mm depending on their density and the wind speed.



Dust Accumulation and Photovoltaic Performance … 51

Fig. 2 Modes of transport of particles by wind speed

Deposition

Once the dust particles have been assessed and suspended in the atmosphere. Many
factors influence the deposition of dust on photovoltaic panels, two main types of
deposit can be mentioned:

• Dry deposition: The desert aerosol cycle ends with the deposition of particles on
the PVmodule surfaces, under dry or wet atmospheric conditions. Dry deposition
is mainly controlled by gravitational forces [43], which cause the particles to
sediment. The particle dry deposition depends on several variables such as wind
speed, friction speed, turbulence intensity, and atmospheric stability [44].

The sedimentation rate depends on the size of the particle. Sedimentation is a function
of particle size, with the larger particles falling first and the smaller ones last. As a
result, the larger and heavier particles will be deposited near the region of origin,
while the smaller ones will be deposited farther away. Turbulence can also play a
role, disrupting the flow of particles [45]. If the turbulence occurs near the surface,
then the particles are deposited faster.

The transfer of the dust particles to the surface of the panels is done through
different mechanical processes as shown in Fig. 3; sedimentation, Brownian
diffusion, turbulent impaction, and interception processes [46].

• Wet deposition: Wet deposition occurs when dusty air masses are mixed by
convection with moist or cloudy air masses. Mineral particles can be captured
directly by precipitation or by droplets within the cloud.



52 A. Azouzoute et al.

Fig. 3 The deposition mechanisms

The rate of wet deposition depends on the rate of precipitation and the rate of droplet
fall. Particles between 0.1 and a few μm in size have the lowest sedimentation
velocities, so they will be mostly deposited by wet deposition [38].

Adhesion

Dust is initially deposited on the surface of the photovoltaic panels, the adhesion
forces such as van der Waals forces, electrostatic forces, and capillary forces are the
active forces that cause the particles to bind to the surface. The adhesion processes
of these forces are described in Fig. 4 [47].

• Due to the strength of van derWaals, small dry dust particles stick to a dry surface.
This force is considered to be the dominant force between a solid platform and a
dry particle under dry ambient conditions. The van der Waals forces are always
present between the surface and the particles and act over a short distance since
they originate from two surfaces that are in contact with interacting dipoles.

• The capillary force depends on both the air’s humidity content (RH; relative
humidity) and the surface. Capillary forces act when two moist bodies meet. The

Fig. 4 The adhesion mechanism
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water vapor condenses into fine particles, thus enabling the gap between the dust
particles and the surface of a PV module to be bridged leading to adhesion.

• The electrostatic force causes adhesion in the presence of charges. Dust particles
tend to acquire electric charges in the atmosphere by colliding with each other,
and these charged particles tend to attract a positive charge to the surface, inducing
a coulomb force.

All adhesion forces are active almost everywhere, but the extent of their adhesion is
determined by the environmental condition and the property of the dust particles.

Removal

The elimination phase is the process of cleaning the particles from the surface.
Basically, there are two types: Natural elimination and artificial elimination. The
natural removal phase is when particles are removed by natural causes such as wind
and rain. It consists of two phases: rebound and resuspension. However, artificial
removal is done using specific tools to remove dust particles [48].

• Natural elimination: Two factors influence the natural cleaning process: the
particle properties (composition, number, and size range) and the local weather
conditions (frequency, intensity, rain, and wind duration).

The conditions taken into consideration for this process are the alteration conditions,
duration, and the angular orientation of the surfaces (angle of inclination).

Consequently, it has been found that particles with a diameter of less than 10 μm
which are the most present on the surface of the panels are eliminated by the natural
cleaning forces.

• Artificial elimination: As regards artificial cleaning, they depend mainly on the
type of contact device (brush and soft cloth), the quality of the water used
(demineralized and tap water), the water pressure, additives, and the state of the
water (liquid and vapor).

The main objective of this chapter is devised into two. The first one is to highlight
the impact of soiling on photovoltaic performance by calculating the transmittance
drop and the dust mass density by using photovoltaic glass and the soiling ratio using
photovoltaic panels, over a period of 6 months of measurement at ground level.

The second objective is to present a developed self-guided cleaning robot in order
tomaintain the performance of photovoltaic solar panels and to optimize the cleaning
cost.

2 Soiling Measurements

In this section, the results of an experimental study conducted at Green Energy Park
research facility in the mid-south of Morocco (in Benguerir city; 32.12 °N, −7.94
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Fig. 5 Glass samples were exposed in the fixed rack at the Green Energy Park research facility

°E) are presented. Glass samples with dimensions of 10 cm × 10 cm and thickness
of 3 mm were used in order to evaluate the dust effect on their transmittance values.
The samples were exposed for different periods: weekly, monthly, and 3 months in
a fixed rack tilted by 32° and 1 m above the ground facing south over the dry period
of the year from May to August 2018 (see Fig. 5). Before the exposure, reference
mass of all the samples was determined, and the amount of dust on the surface of
samples after weekly, monthly, and 3 months of exposition was measured as well
as the transmission values for each sample was measured in 3 points to solve the
non-uniformity of dust deposition on the sample surfaces. To measure the amount of
dust accumulated on the sample surface, the samples were weighted under restrained
conditions using the Kern ABT analytical balance with an accuracy of 0.1 mg. Then
the density of dust deposition was determined by dividing the difference between
the sample reference mass value (clean) and the mass of dusted sample (dirty) by the
sample surface area.

In addition, the transmission values were measured using PerkinElmer Lambda
1050 UV-Vis-NiR Spectrophotometer. The transmission loss was determined by
comparing the initial transmittance value of the clean state of the glass samples and
dirty state due to dust settlement.

Moreover, in order to assess the effect of dust deposition on the electrical perfor-
mance of the PV system, three identical PV modules were exposed for the same
period as the glass samples. The cleaning schedule was defined as daily for the refer-
ence module, weekly cleaning for the second, and the last was kept uncleaned all
the period of investigation. The drop on the electrical output was quantified by the
short-circuit current and the daily soiling ratio coefficient was obtained by dividing
the daily short-circuit currents of dirtymodules by the clean ones (referencemodule).
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2.1 Light Transmission

As mentioned above that the transmittance of PV glass samples was measured with
the spectrophotometer at day 0 (reference day before exposure), after 7 days (weekly
exposure), 30 days (monthly exposure), and 90 days (3 months of exposure). The
results of these measurements are illustrated in Fig. 6. As can be noticed from the
figure, dust settlement on glass sample tends to impact the transmittance at shorter
wavelength (below 350 nm) region as reported in other studies [49–51]. Although,
the transmittance response decreases over the period of exposure from day 0 until day
90 after 3 months of exposure. During the period of investigation, we noticed days
with different amounts of precipitation that range from 0.1 mm/day to 11.3 mm/day
(see Fig. 7). The relative humidity was varying between 63% in May and 48.6% in
August 2018. All the weather data have been collected from a meteorological station
installed next to the exposure site.

In order to describe transmittance loss due to the effect of dust accumulation on
the glass surface for the three different periods of exposition, the losses as defined
by Eq. 1.

τloss =
[
1 − τdir ty

τclean

]
× 100% (1)

where τloss is the broadband transmittance loss, τdirty, and τclean are respectively the
broadband transmittance average over the 380–1100 nm spectral range.

The broadband transmittance loss was 6.5% by day 7 (the first week of exposure).
The daily transmittance loss was in the range of 0.93%/day after 7 days of exposure,
which describes the high accumulation rate of dust during the first days of exposure,
as the glass surface intensity is high. However, the transmittance loss was in the
range of 13% after 30 days, which presents a daily transmittance loss of 0.43%/day.
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Fig. 7 Weekly accumulated precipitation all over the period of investigation from May 11th to
August 3rd, 2018

This could be explained by high relative humidity and low dust concentration (not
shown in this study) over the first 30 days. Whereas by the end of 90 days (3 months
of exposure), the loss has reached 52% with the increase of dust concentration and
the decrease of relative humidity by the end of June (after 30 days of exposure).
Despite, the rainy days noticed during this period the concentration of dust and the
cumulative dust deposition have increased the losses of the broadband transmittance
after 3 months of exposure.

To summarize, the accumulation rate of dust is high during the first days of expo-
sure with daily transmittance loss of 0.93%/day (after 7 days), whereas it decreases
to reach 0.43%/day after 30 days. In fact, the climate during the first 30 days (first
month) was with no rainfall and an average relative humidity in the range of 61%
and a daily temperature average of 18.5 °C. Thereafter, the daily transmittance loss
has increased under cumulative soiling conditions after 90 days of exposure with
0.57%/day. This increase could be attributed to a high concentration of dust from
day 30 over the period of investigation (the last 2 months) and relatively moderate
relative humidity with a daily average of 54.5% and rainy days with a maximum
amount of 1.6 mm/day. In fact, high dust concentration accompanied with light rain-
fall will increase dust settlement on the surface of the glass and therefore increase
the soiling transmittance loss.

2.2 Soil Mass

The amount of dust settled on the surface of a PV panel is strongly dependent on the
weather conditions, the aerosol concentration in the up of the atmosphere, and the
period of exposure. Table 1 presents the surface density of dust deposition ρ (g/m2)
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Table 1 The density of dust
deposition for a different
period of exposition

Time [days] 7 30 90

ρ [g/m2] 0.4 1.1 5.6

τloss [%] 6.5 13 52

on the glass sample after 7, 30, and 90 days. Once it can be noticed that the density
of dust deposition increases with the increase in the period of exposure. By day 7,
the amount of dust settled was about 0.4 g/m2; however, during the experiment, the
samples exposed for the weekly period have shown a significant amount of dust
settled on their surfaces that reached 1.6 g/m2 in the period from June 22 to June
29 (not shown in this work). Whereas by day 30, and after 90 days, the dust surface
density was 1.1 g/m2 and 5.6 g/m2, respectively. The accumulation rate of dust
particles is higher during the first days of exposition and it decreases with time until
saturation, where the daily accumulation rate was ~ 0.06 g/m2/day for the 3months of
exposure. This dust accumulation rate tends to be low in comparison to other regions
with arid climate in the Middle East and Pakistan. The authors have found a daily
dust accumulation rate of 0.14 g/m2/day for the winter season and 0.098 g/m2/day
for the summer season after 2 months of exposition in Doha, Qatar [52]. Besides, in
Islamabad, Pakistan, the authors reclaim a dust density deposition of 4.6 g/m2 after
1 month of exposure [53].

On the other hand, the surface dust density can be correlated to the broadband
transmittance loss as the amount of dust increase on the surface of the glass sample the
transmittance decrease progressively as presented in Table 1. However, as reported
in other studies [34, 35], the relationship between dust deposition and transmittance
was linearly dependent until reaching its upper limit. Thereafter, the dust deposition
load will no longer influence the transmittance coefficient.

2.3 PV Electrical Output

The accumulation of soiling and especially dust on the surface of the PV module
reduces the incoming sunlight transmitted through the glass cover to the PV cells
as described in the last two sections and, thus, the electrical output produced by
the module. In the present chapter as described above, we will present the results
of an experimental investigation for a CdTe Thin-film solar module with different
cleaning scenarios for the period from May 29 until October 5, 2018. The main
electrical parameters of the PV module used in this experiment are presented in
Table 2.

The electrical outputs of the clean and dirty modules have been analyzed and
quality checked, only data recorded between 12:00 pm and 2:00 pmhave been used in
order to remove anyoccurring disruption as cloudydays (irradiance below500W/m2)
ormissing data. The soiling impact has been evaluated by the daily soiling ratio factor
[54, 55], as described in Eq. 2.
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Table 2 Electrical
characteristics of the PV
module

Parameter Value

Nominal power, Pmax 77.5 [W]

Short circuit current, Isc 1.98 [A]

Open circuit voltage, Voc 62.5 [V]

Current at maximum power, Imp 1.68 [A]

Voltage at maximum power, Vmp 46.7 [V]

Standard test conditions, STC 1000 W/m2, 25 °C, AM 1.5

SRdaily = Isc,dir ty
Isc,clean

(2)

where Isc,dirty and Isc,clean are respectively the daily average short-circuit current
of the dirty modules (weekly and no cleaning ones) and the cleaned module (daily
cleaned as reference).

The analysis of the results from the variation of daily soiling ratio leads to some
interesting outcomes. Once it can be noticed from Fig. 8, that the soiling pattern
can drastically influence the electrical power of the PV module if no cleaning was
occurring especially for the dry period. For the no cleaned PV module, the soiling
ratio decreases progressively from ~0.99 (clean state) in day 0 to 0.77 in day 66 (from
May 29 to August 3, 2018), which explains the 23% losses in the electrical output.
The weekly cleaned PV module was less affected and the soiling ratio has reached
a limit decrease of ~0.97 during the same period as the last one (no cleaned one).
This founding affirms the influence of the frequency of the cleaning schedule even
if during the high soiling period (dry period).

In addition, for the period from August 3 to September 1, 2018, no cleaned PV
module shows an increase in term of soiling ratio of ~+12% in day 69 (August 5,
2018). This gain in electrical output was due to the rainy days (day 66 and day 68)
with total precipitation of 0.3mm accompanied with a high average relative humidity
of 68% from day 64. Thereafter, the soiling ratio decreases progressively from day
69 until day 96 (September 1, 2018), where it reaches ~0.81. Once it can be noticed
that the daily soiling loss for the first period (from day 0 to day 69) was in the range
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Fig. 9 Daily average temperature and relative humidity for the investigation period

of 0.34%/day, whereas, it was decreasing with a daily average of 0.24%/day in the
second period (from day 70 to day 96). The difference between the first period and the
second period could be explained by rainy days with a total amount of 7.8 mm in the
second period compared to 4 mm in the first period. Another reason that emphasizes
this differencewas thehighdust concentration (not shown in thiswork) during thefirst
period accompanied by low relative humidity (see Fig. 9), which increase the soiling
drop. Although the second period was enjoying days with low dust concentration
and high relative humidity, which increase the natural self-cleaning and reduce the
settlement of dust particles.

Moreover, in day 97, the no cleaned PV module has shown a significant increase
with an average daily soiling ratio that reached ~0.97, which means a gain of ~+17%
on the electrical output, which could be explained by the precipitation recorded at
the night of day 96 (0.2 mm). However, there is no conclusion about defining a rain
threshold for which a cleaning event will occur for a PV module [55], whereas in a
recently published study in Evora, Portugal, the authors have reported that a threshold
of ~2 mm has a probability of 50% to reduce the soiling ratio [56]. Therefore, it can
be concluded that the soiling ratio recovery can be highly dependent on the duration
and the intensity of the precipitation.

For the remaining investigation period from day 97 until day 129, the soiling ratio
was in the range of ~0.96, which is due to the rainy days with a total accumulation
of precipitation of 29 mm and high level of relative humidity and low temperature
(see Fig. 8 and Fig. 9).

3 Cleaning Techniques

To avoid the soiling problem, the use of cleaning systems is mandatory in order
to remove the dust accumulation on the front surface of PV panels and increase
its efficiencies. In this, since several cleaning systems have been developed like a
natural method, manual cleaning, electrostatic method, self-cleaning nanofilm, and
automatic cleaning system.
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3.1 Natural Cleaning

The natural cleaning process is a method that uses nature as its cleaning tool. Among
these natural tools, we find wind speed, rainwater as well as the earth gravitation.
The high wind speed or a water droplet can remove or roll-off the dust on the PV
panel surfaces. However, less gravitational occurs at night and early morning can
float the dust naturally onto the surface of PV panels.

Gair et al. [57] reported in their study that dust removal can be done easily if
we turn the PV panels to a vertical position during a rainy day, evening night, and
early morning. This method has advantages, low cost, and clean energy for the
environment. However, the problem of this technique is the tilting rotation of PV
plants on a large scale and not operational for high humidity climate.

3.2 Manual Cleaning

Thismethod is the same as the one used in the cleaning of high-rise buildingwindows.
Dust particles are removed by special brushes, which are equipped with bristles to
avert any scratches on the glass of the PV module. These brushes are connected with
a water supply that enables washing. The uneven movement of brushes over the PV
module surface leads to a risk of abrasive effect. This latter can be minimized soft
cleaning cloth or brush with soft bristles [58, 59]. The cleaning brush is used with a
water pressure of 100–160 bar, which allows easy manual cleaning. For high dirty
surfaces, a cleaning product is added to the water to remove easily dirt. Then the
surfaces are rinsed with demineralized water. This cleaning system is recommended
for small areas of 150–300 m2.

To clean the solar panels, we need a bucket of warm soapy water, a dry cloth, and
a rubber squeegee. The surface of the panel is washed with soap water and a cloth
to remove dust, debris, and water spots. A squeegee is used to remove excess water.
Thismethod has the advantage of being simple and less expensive. On the other hand,
it has many disadvantages: it is not suitable for large areas, it uses large quantities
of water, which is not compatible with desert areas, it leads to a degradation of the
PVmodule surface (appearance of micro-scratches under the effects of friction), and
finally, it has a direct impact on the damping time of the installation.

Manual cleaning is usually used for cleaning small facilities or domestic solar
panels [60, 61]. This cleaning method is expensive and requires skilled labor to clean
off soiling onto the PV plants. However, fully automated systems can bring flexible
cleaning. At the level of our research facility [62], we use manual cleaning since we
dispose of small scale PV plants that are dedicated to research and development.
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3.3 Electrostatic Cleaning

The electrostatic method is based on an electrostatic charge (from the electric curtain
on the PV panel) to remove dust on the surface of the PV panel. This latter has been
developed at NASA in 1967 [63]. The action of electrostatic and dielectrophoretic
forces to remove the dust has been studied by Calle et al. [64]. In order to generate
electrostatic and dielectrophoretic force, the electrodes have been used to trans-
port charged and uncharged particles on the PV module surface. Stable electrostatic
force occurs, which makes to unbalance between charged particles and surface, these
phenomena deal with the particles to create their force. This kind of force gener-
ates a movement of a dust particle on the PV module surface, which are called
dielectrophoretic forces.

3.4 Self-Cleaning Nanofilm

The self-cleaning nanofilm method is the method that uses the coating process to
add a nanofilm layer on the PV panel surface. Several coating processes have been
innovated by researchers such as chemical vapor deposition (molecular beamepitaxy,
electrostatic spray assisted vapor deposition, vapor deposition, chemical and electro-
chemical technique, physical vapor deposition, plasma spraying, roll-to-roll coating
process, spin-coating, and dip coating. This method deals to modify the normal PV
module surface by turning it to superhydrophobic surfaces and superhydrophobic
surfaces using a special nanofilm coating characterized by superhydrophobic and
superhydrophilic proprieties [65–70].

3.5 Automatic Cleaning System

Robotic systems have emerged as an attractive solution for cleaning the dirty surfaces
of the photovoltaic module [71]. Besides, the geographical land and the area of appli-
cation are highly important, where the existing solutions can be further compared
based on capital costs and performance ratio.

PV module cleaning robot comprises a mobile robot that carries the cleaning
payload and cleaning tool, which performs the cleaning work [71].

Serbot Swiss Innovations has developed a robotic cleaning system called ‘Gekko
Solar’ and ‘Gekko Solar Farm’ in order to be used for mobile deployment onto PV
plants [72]. This latter uses the rotating brush and demineralized water to clean the
PV module’s surface. The movement of this system is based on feet with vacuum
technology enabling the robot to astonishing flexible movement in every chosen
direction.
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Raybot is an eco-friendly robot designed to clean solar panels [73]. It can move
on surfaces with a slope of up to 65 degrees using suction cups without risk of
damaging them. It can clean around five solar panels per hour and in most cases, it
is enough to use it at the end of two months. The robot safely sweeps surfaces that
are often characterized by difficult access. Raybot is an eco-friendly robot designed
to clean solar panels. It can move on surfaces with a slope of up to 65 degrees using
suction cups without risk of damaging them. It can clean around five solar panels
per hour and in most cases, it is enough to use it at the end of two months. The robot
safely sweeps surfaces that are often characterized by difficult access. By sweeping,
blowing, and vacuuming, it removes the dust and dirt that naturally settles on the
solar panels. Using several sensors, Raybot mobilizes without any risk of falling.
In addition, to carry out its task, it is equipped with an interchangeable battery that
allows it to resume work without the need for a charging station.

The HYCLEANER black SOLAR allows simple, quick, and economical cleaning
[74]. This robot allows optimal cleaning with its mechanical power and low water
consumption. It works with a radio remote control, so the user does not need to walk,
whether on the roof or the solar surface. Lithium batteries guarantee electric drive,
so a power outlet near the work area is not mandatory.

Ecoppia’s E4 is a robot that operates during the night to maintain maximum
energy production at all times [75]. It operates at a cleaning rate of 54 square feet
(approximately 5 m) per 30 s. The robot moves along a rigid aluminum structure,
its wheels are covered with polyurethane to ensure that the movements are light
without carrying a load on the solar panel surface. This robot is fully autonomous
and independent of energy, it has its own solar panel for self-loading and its self-
cleaning mechanism. The robot recovers energy during its descent along with the
solar panel, which will be reused in the next cleaning cycle, which optimizes the
robot’s performance.

SOLBRIGHTdeveloped a cleaning robot that eliminates 99%of dirt andpollution
on photovoltaic panels. Tested in large solar power plants, the robots improve their
electricity production rate by 7–15%. The robot operates at night using its own
photovoltaicmodule as an energy source, without interrupting the conversion of solar
energy during the day. The cleaning robot is equipped with a roller brush, which is
not supplied with water, which helps to save energy and protect the environment.

Table 3 gives a summary of the different robotic cleaning technologies described
above.

4 New Cleaning System

4.1 Robot Design and Functionality

Basedon the investigations and theobtained results discussed in theprevious sections,
and in order to increase the PV plant efficiency by continuous cleaning activities,
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Table 3 Comparison of the presented robotic cleaning systems

Robot Gekko Raybot Hycleaner Eccopia Solbright

Tilt 45° 65° 35° Adaptable to
any
inclination

Adaptable to any
inclination

Cleaning
technology

By heated
demineralized
water and
pressurized

Dry Wet Dry Dry

Cleaning
equipment

Polyamide12
nylon brush
with a rotation
speed of
350 rpm

Brushes,
vacuum
cleaners and
fan

Brush 2 microfiber
brushes

Roller brush

Displacement
mechanism

By suction
cups

• By suction
cups

• By
lengthening
and
shrinking
his body

By strap By rail and
polyurethane
wheels

Roll along with
the chassis of the
PV panels

Moving
speeds

4 m/min – 25 m/min – 10–20 m/min

Course control
system

By remote
control

By position
sensors

By radio
control

Remote
control by
masterE4
application

Using intelligent
control software.

Yield 300–400 m2/h 5 panels/h 400–800 m2/h 600 m2/h 1800–3600 m2/h

an autonomous cleaning robot is proposed. The proposed system can maintain the
high efficiency of the solar panels by ensuring continuous cleaning without the need
for any guide or human intervention (self-guided robot). In addition, the robot can
be monitored and controlled in real-time through a web link application. Users can
easily monitor the robot status (ON or OFF), battery charge, water level, and can
also set a schedule with a specific time for cleaning. The proposed robot is designed
to be mounted and adapted to all PV systems and technologies by adjusting only the
vertical supports (over the PV system width). In addition, system flexibility is the
main advantage of the proposed system. The robot can be controlled by three modes:
a manual mode that the operator can immediately turn on/off the robot, the robot
can also move to a specific position via this mode; following, users can control the
time or frequency of cleaning using the web link application; the third mode is used
to communicate with other electronic devices by receiving a digital signal to start
the cleaning process (the user sets a default time to start cleaning when a signal is
received, 6 pm. for example). For instance, an electronic device calculates the soiling
ratio or PV efficiency. In addition, the robot is designed to be lightweight and small
to facilitate installation and maintenance and also to reduce the cost of the system



64 A. Azouzoute et al.

Fig. 10 Use case diagram of the proposed robot cleaning

by minimizing mechanical structures and motor torques. The proposed solution uses
also a low number of electronic sensors and motors to minimize even more the robot
cost and reduce its maintenance (details can be seen in Fig. 10).

4.2 Mechanical Robot Design

The mechanical design and simulation were done using CATIA V5. All the robot
components were designed and simulated in order to establish an optimal design
and to study all the mechanical aspects and uncertainties that may occur in real
working conditions. For this reason, mechanical design and modeling address to the
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following technical issues: to choose the optimal material and size for each block; to
better distribute the robot and supports mass on the solar panels; to size the electrical
motors for brush rotation and robot movement; to minimize the possibility of robot
slipping or sliding.

The proposed robot is divided into two main systems. The first system performs a
horizontal movement along the PV system length (see Fig. 11a). This system is made
up of mechanical supports and wheels grip the frame of the panels in order to avoid
any scratch on the PVP surfaces. Furthermore, the battery and water reservoir are
mounted in this frame, in which the weight is shared between the top and the bottom.
Twowindshieldwipers are used at the front and rear of the system to remove anywater
or sand that can propagate or re-deposition on previously cleaned panels. The main
advantage of this system is its flexibility, it can be adapted to any length or technology.
The second system represents the cleaning unit and ensures the vertical movement
over the entire PV system width (see Fig. 11b). It is composed of a mechanical

Fig. 11 Robot design a mainframe b second frame
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frame, which moves vertically using four wheels and contains a cylindrical brush in
the middle. The vertical movement is ensured by a belt pulley system.

To summarize, the proposed robot is made up of two systems or frames: the
mainframe used to move horizontally using wheels, which grip on the frame of the
panel. The second frame composed of one cleaning and rotating brush, moves up
and down along each PV system column. The material used for supports and frames
design is the Aluminum 7075 due to its high resistivity and good density. The weight
of the mainframe is 21 kg including wipers, motors, battery, water reservoir, and
others. The weight of the cleaning frame is 4 kg including brush, DC motor, wheels,
and belt pulley system. Therefore, the total weight of the robot is 25 kg.

4.3 Electronic Control and Powering System

The overall electronic devices are mounted inside the robot and powered by a small
PV panel. The electronic circuits developed are designed and simulated using Isis
Proteus and the Arduino software (IDE). The on-board control system uses Arduino
Mega 2560 based on ATmega2560 microcontroller. After establishing the total
energy consumption of the robot including all the electronic devices, the robot is
powered by 12 V DC, 12 Ah. For this, the appropriate PV panel is dimensioned and
fixed to a 25Wmonocrystalline panel with a PWM regulator. In addition, themotors’
torque is determined to ensure themovement of the robot and the rotation of the brush
as a function of the weight of each corresponding frame. For the mainframe (hori-
zontal movement), the Nema 11 (MS14HS1P4024) is used. Regarding the second
frame (vertical movement), the Nema 24 (MS24HS5L4420) is employed. In addi-
tion, the SPOMHNK3054 motor is used for rotating the brush. Both horizontal and
vertical movements are driven by stepper motors because of their precise positioning
and controlled by PWM based signals given by Arduino Mega 2560 board, while
a DC motor is used for rotating the brush with high speed and simply activated or
deactivated by a digital signal generated by the board. Two servo motors are used to
lift the wipers because of their ability to hold the position (DS04-NFC). Furthermore,
four high-resolution ultrasonic sensors (HC-SR04) are used to detect the real-time
current position of the robot as well as to adjust its direction and speed. These sensors
are mounted on the four corners of the robot, powered by +5 V DC, and connected
to Arduino Mega 2560 inputs. The water reservoir is also measured in real time by
the ST045 sensor. Finally, the ESP8266 integrated circuit allows the connection via
WIFI and is widely used to control devices over the Internet (a GSM module can
also be used in this sense). This integrated circuit communicates and transfers data in
real time with the web application. Users can monitor and visualize the robot status,
battery charge, water reservoir level, and can also control or schedule a cleaning time.
Figure 12 illustrates the internal block diagram of the proposed robot and describes
the interactions between blocs.
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Fig. 12 The internet block diagram of the proposed robot

4.4 Robot Movement and Cleaning Strategy

As stated above, three modes can be used to control the robot and start cleaning:
manual control; automatic control by communicating with other electronic devices
installed in the field; automatic control via weblink application allowing users to
set a scheduled time for cleaning. Figure 13 illustrates the robot movement control
algorithmand the cleaning strategy. It is essential tomention that the robot is designed
to ensure PVP cleaning in both directions (forward and backward). Therefore, the
front and rear sections of the robot are indistinguishable and the cleaning process
and the direction of movement are the same. Before starting the cleaning, the robot
is located each on the right or on the left of the PV system and mounted on metal
support appropriate to its shape and away by 0.5 m from the edges of the PVP. The
system is always waiting for control signals each from users or electronic devices.
Then, the robot checks its current position to move each in the right or left directions
with a distance of 0.5m,while the appropriatewiper is powered. Following, thewater
injection is done for 2 s and the robot again checks its current positions, but this time
its vertical position, in order to move each up or down while the brush is rotating.
When the edges of the PV system column are detected, the vertical movement ends.
Then, the robot is horizontally moved with 0.5 m and the cleaning frame goes up or
down (when the robotmoves up, the rotating brush direction is changed). This process
is repeated until the horizontal ends of the edges of the PV system are detected. The
robot prototyping is being finalized and validated at the Green Energy Park research
facility (GEP), taking into account several PV technologies and different PV systems
geometries. The proposed cleaning robot is low cost and lightweight equipment due
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Fig. 13 Flowchart illustrating the robot movement control algorithm and the cleaning strategy
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to its mechanical design, which divides the entire system into two mainframes. This
aspect allows the robot to be more efficient and stable, in particular, its mass is
well distributed on the PVP surface. Furthermore, the flexibility of the proposed
solution is the main key allowing the robot to be easily adapted to any PV system or
technology. The front and rear sides of the robot are the same, allowing the cleaning
process in two directions since the robot locates exactly its current position before
starting cleaning. In addition, users can easily monitor the robot status and control it
using the web application. This functionality is very advantageous if several cleaning
robots are installed in the same field, which facilitates monitoring and maintenance
and considerably reduces human intervention. The proposed robot architecture and
features seem to be very promising, robust, and low-cost technology.

4.5 Cleaning Cost

The manual cleaning cost at Green Energy Park is calculated with Eq. 3:

Cm = (Pw .Q .Nb .Nn) + (P) + (L .Nn) (3)

with:

Cm: The cleaning cost per month with manual cleaning (e/month).
Pw: The price of a cubic meter of water (e/m3).
Q: The amount of water needed to clean one module per day (m3/day).
Nb: Number of modules in the string.
Nn: Number of cleaning days per month (day/month).
P: The price of cleaning equipment per month (e/month).
L: The labor for cleaning a day (e/day).

For example, the cleaning of a string composed with 23 modules (Nb = 23), the
amount of water used for cleaning a module is (Q = 0.002 m3/day) with a frequency
of eight times per month (Nn = 8 days/month), using cleaning equipment of (P =
3e/month). It is assumed that a person can clean the entire string with a salary of (L
= 5e/day).

From the previous Eq. 3, the cleaning cost of PV strings is calculated as:

Based on our first assumptions and Eq. 3, the cleaning cost Cr using the new
self-cleaning robot is calculated as:

Where, the assumed price of the self-guided cleaning robot is 500 e per unit with
a total replacement cost of 10% per year and a lifetime of 10 years.
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As noticed from the economical point of view, the amount of water used for the
cleaning and the labor cost can drastically increase the cleaning cost, and therefore,
using a cleaning robot system will reduce the cleaning cost of ≈35 e per month.

5 Conclusion

The abundant solar radiation especially in regions with semi-arid and arid climates
promotes the development and deployment of photovoltaic technology. Although the
weather conditions in those regions as soiling cause a significant degradation on the
power production and performance of the PV systems.

In this chapter, we assess the effect of dust accumulation on the optical efficiency
in terms of transmittance of glass samples and on PV modules electrical output. The
results have illustrated that the soiling phenomenon is highly significant in a region
with semi-arid climate especially for the dry period of the year. Dust accumulation
is strongly dependent on seasonal conditions, the electrical loss of the PV module
is important in periods with high dust concentration and low relative humidity. This
electrical loss can be worst if the particles of dust on the atmosphere coincide with
light rainfall, which will significantly deteriorate the PV output performance.

By investigating dust accumulation on glass samples, the broadband transmittance
loss was respectively 6.5%, 13%, and 52%, for a period of exposure of 7, 30, and
90 days. This founding was explained by the dust accumulation rate of 0.4 g/m2,
1.1 g/m2, and 5.6 g/m2 after 7, 30, and 90 days of exposure, respectively. In fact,
high dust concentration and rainy days with low amounts have increased the impact
of dust accumulation, which explains the transmittance loss of 52% after 3 months
of exposure. On the other hand, the same pattern has been illustrated for the PV
modules exposed for a weekly cleaning period and no cleaning all over the period of
investigation. The results have shown that the weekly cleaning was highly efficient
and keep the soiling ratio in the range of 0.97 all over the period of the experiment.
For the no cleaned PV module, the soiling ratio has decreased to reach 0.77 after
68 days of exposure. Thereafter, the no cleaned PVmodule has recorded an electrical
gain of 12% and 17% respectively in day 69 and day 97, which has been explained
by the rainfall event noticed during the period of exposure.

To this end and based on our previous soiling studies at the local climate condi-
tions, we have presented a self-guided cleaning robot that will be highly efficient and
flexible for different technologies and structures. Thereby, the cleaning cost will be
reduced by five times using this system instead of manual cleaning.
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Abstract Internet of Things (IoT) technologies, along with economies of scale
and advances in hardware, software, and network technologies, have accelerated
the explosion of connected objects across the Internet. A connected object can be
controlled online from an IoT platform and can send, receive, and process various
and varied data. In this chapter, we leverage some of the IoT technologies to propose
a simple and low-cost IoT solution to monitor and control a smart dual-axis solar
tracker system for performance evaluation. The solution also includes alert noti-
fications to inform a remote user through phone or mail (or both) when a sensor
has reached a certain predefined event. The solution is designed based on low-cost
and easy-to-use hardware and software and an online open-source IoT platform.
The design aspects of the IoT-based solar tracker are extensively described in this
chapter. Moreover, a prototype of the IoT-based solar tracker has been manufactured
and tested. Test results demonstrate that solar tracker data can be sent easily and
properly and can be directly monitored online, as well as the solar tracker, can take
commands from the IoT monitoring application.
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1 Introduction

The International Telecommunication Union (ITU) has defined the IoT as a global
infrastructure for the information society that enables the provision of advanced
services by connecting (physical and virtual) things, based on existing and evolving
interoperable information and communication technologies [1]. The IoT, or as it is
called the Internet of Everything (IoE), includes all devices that can communicate
with the Internet and that can collect, send and process the data they capture from
their surrounding environment using embedded sensors and processors in addition to
the communication networks [2, 3]. IoT applications are expected to equip billions
of objects with connectivity and intelligence [4]. It is already being deployed exten-
sively, in various fields, namely: wearables [5], smart buildings [6], smart cities
applications [7], health care [8], agriculture [9], industrial automation [10], solar
monitoring systems [11], etc. In this chapter, we leverage some of the IoT technolo-
gies to design and build an IoT-based solar tracker system, where an IoT application
is proposed to control and monitor this system.

To maximize the absorption of sunlight and thereby increasing energy produc-
tion, it is necessary to integrate solar tracker systems into conventional solar energy
systems, where the solar panels can be fixed on a structure that moves according
to the sun’s path. 10–50% additional output energy can be obtained by using solar
tracker systems that track the sunlight instead of conventional systems that attach at a
fixed angle [12]. Depending on the mechanisms used to orient the solar panels, solar
tracker devices can be divided into single or double axis devices. Single-axis devices
can only track sunlight by rotating around a horizontal or vertical axis, i.e. they
track the sun’s movement in one direction (toward East and West or toward South
and North). While dual-axis solar tracker devices can rotate vertically and horizon-
tally to ensure solar panels are always perpendicular to the sunlight [13]. Various
solar tracker systems have been reported in the literature and they differ according
to employed tracking methods [14]. For instance, a sensor-based solar tracker has
been proposed in our previous works, it uses light sensors to predicts the sun’s posi-
tion (intensity of light) to track the sun for maximum power generation [15, 16].
The solar tracker system detects the sun position with the help of Light Dependent
Resistor (LDR) sensors and sends the data to the controller. This latter then processes
these data to command two servomotors that rotate a photovoltaic (PV) panel, in the
optimal directions, to move toward the sunlight. For more details, authors in [17]
have categorized solar tracker systems based on five tracking methods: sensor-based
tracker method, geometric and astronomical equation-based method, open- or closed
loop-based method, artificial intelligent-based method, and a combination of two or
more of these methods. Indisputable that solar tracker systems have manifested a
high ability for increasing the efficiency of solar panels to produce more energy.
Besides, making a solar tracker device as a connected object using IoT technologies
can be more profitable and advantageous, where the user can remotely control the
device and access its data, including the electrical and environmental parameters
linked to the solar panels, from an IoT platform. These data can be used to evaluate
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the solar tracker operation, as well as to assess the PV energy potential, early detec-
tion and diagnosis of electrical faults, evaluate the weather variations, and preventive
maintenance.

However, to the authors’ knowledge, there are only a few attempts available in the
literature that deal with this subject. Authors in [18] have developed a dual-axis solar
tracker with IoT monitoring using the Ubidots IoT platform. AWiFi ESP8266 board
has been employed to connect their tracker device with the internet to communicate
with the IoT monitoring application, where its data, including voltage, current, and
power are displayed. The same WiFi board has been used by the Authors in [19],
who have elaborated a single axis solar tracker, to send the same mentioned data to
the cloud server of the ThingSpeak IoT platform so that they can be visualized in a
dashboard that preconfiguredonThingSpeak. Furthermore, amonitoring solutionof a
solar tracker using Raspberry Pi3 (RPi3) board and a personal developed cloud server
has been established in [20]. It uses socket programming using Python language to
communicate between the “client” that runs on a remote laptop and “server” that runs
on RPi3. There are two ways to design an IoT monitoring platform, either we design
it ourselves, or using one of the available IoT platforms, whichmost of them are open
source. By using the second way, the development process of an IoT project can be
done easily and as early as possible. Because IoT platforms are designed to reduce
an IoT project development time by enabling ready-made, reusable technology stack
and are compatible with and support various hardware platforms (such as Arduino
and Raspberry) [21]. To this end, IoT platforms are widely used by engineers and
researchers in their IoT projects [22–25].

This chapter aims to present a simple and low-cost IoT solution to monitor and
control a dual-axis solar tracker system. A low-cost and popular embedded board
(Arduino) is used along with LDR sensors, servomotors, and associated circuits to
control a PV panel to track the sunlight for maximum power generation. Different
sensors are employed to measure electrical output parameters (voltage, current, and
power) and environmental parameters (temperature, humidity) linked to the solar
tracker system. An Ethernet shield is used to connect the system over the Internet
and to exchange data between hardware and the cloud server usingMessage Queuing
Telemetry Transport (MQTT) protocol. Data processing and activities that occur can
be monitored online through an IoT monitoring application developed on Cayenne
IoT platform. The solar tracker can also take commands from the monitoring plat-
form. In addition, the application includes an alert system to notify the user when
a sensor has reached a certain predefined event. The hardware and software used
have been chosen to be simple and inexpensive. Arduino board is used due to its
low-cost and its easy-to-use hardware and software [26, 27]. Likewise, Cayenne IoT
platform is used due to its easy-to-use interface and protocols. It is an open-source
IoT platform that has a simple Application Programming Interface (API) to store and
retrieve data from things using the MQQT protocol over the Internet or via a Local
Area Network [28].

The rest of this chapter is structured around three sections. Section “Research
methodology” describes the architecture of the proposed IoT-based solar tracker
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system and presents the hardware and software used to develop it. Section “Results
and discussion” lists and discusses the experimental results. Finally, the main
conclusions of this chapter are drawn in Section “Conclusion”.

2 Research Methodology

2.1 System Description

The proposed IoT-based solar tracker system is depicted in Fig. 1. It is a dual-axis
solar tracker that can rotate automatically to track the sun position usingLDRsensors,
or manually by the user through the dashboard of an IoT application. The system
starts with detects the sun position (intensity of light) by LDR sensors and sends
the data to the controller (Arduino Mega board). This latter then processes these
data to command servomotors (SM1 and SM2) that hold the PV panel to rotate
toward the sun. The values of the generated PV voltage and current, temperature,
and humidity are also sent to the Arduino through associated sensors. Next, the
Ethernet shield, which is mounted with Arduino and allows it to be connected to
the Internet, will send the data that has been taking and/or processed by Arduino
to the cloud (webserver). Lastly, the solar tracker data, including LDR sensors, PV
power, temperature, and humidity, are displayed in real time in the IoT monitoring
application via pre-created Widgets. The IoT monitoring application is designed
using Cayenne myDevices platform. Once the user is connected to the internet from
his computer or smartphone, he can visualize, in the dashboard of the IoT application,
all solar tracker data in their associated widgets. Therefore, the user has the necessary
data linked to the environment and performance of the PV panel. In addition, in
the manual mode, the servomotors will take angle directions from their associated
widgets in the dashboard. Hence, the user can control his system to seek the best
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Fig. 1 Schematic of the IoT-based solar tracker system
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environmental conditions and extract the maximum energy from the PV panel. The
IoT application is also programmed to send notification alerts (SMS or Email) when
a senor reaches a predefined threshold value.

2.2 Hardware Design

As shown in Fig. 2, the IoT solar tracker system consists of the PV panel, two
servomotors, four LDR sensors, a voltage divider circuit, temperature and humidity
sensor, a Led and the Arduino Mega board.

The used PV panel is 115 by 85 mm in size with a 1.6 W output and can generate
a voltage up to 6 V [29]. Two 180° servomotors are used to motorize the solar tracker
and they are controlled by the Arduino board through PWM pins 5 and 6. The
left-right (L-R) servomotor (MG996R) rotates the solar tracker on the vertical axis
(East/West), while the Up-down (U-D) servomotor (SG90) rotates the solar tracker
on the horizontal axis (South/North).

Four LDRs (Cds GL5528) are used to sense the sun’s position and which have
been fixed in the four corners of the PV panel. The LDR sensors are connected to
the Arduino through analog pins from A0 to A3. The LDR is a resistor whose value
decreases with increasing light intensity incident on its surface. The LDR sensor is
designed as a voltage divider circuit as can be seen in Fig. 2. The output of the voltage
divider is connected to an analog input (A0 for instance) of the Arduino. Then, the
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Fig. 2 Electronic circuit of IoT-based solar tracker system
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Fig. 3 Hardware interface between Arduino and Ethernet shield

Analog to Digital Converter (ADC) of the microcontroller converts the analog value
read by A0 into a digital value between 0 and 1023 because the ADC is coded in 10
bits. The value of the series resistor in the LDR sensor circuit is 330 �.

The temperature and humidity are measured through the DHT22 sensor, which
is an ultra-low-cost sensor that is widely used in embedded projects. DHT22 has a
thermistor and a capacitive humidity sensor embedded in it to measure temperature
and relative humidity. Its temperature range is from −40 to 80 °C with < ± 0.5 °C
of accuracy, and its humidity range is from 0 to 100% with ± 2% (Max ± 5%) of
accuracy [30]. This sensor uses one signal wire to transmit data to Arduino (digital
pin 2), and two wires for power supply.

The PV voltage and current are measured through a voltage divider circuit that
acts also as a load and which consists of two series resistors of 10 Ohms. The divider
circuit output is connected to the Arduino’s analog pin A4. Furthermore, a LED,
which is connected to digital pin 3, reflects in the system circuit the mode state of
solar tracker (manual or automatic).

The Arduino Mega with ATmega2560 microcontroller is used as the embedded
controller that interacts with the Arduino Ethernet shield along with the monitoring
platform. The Ethernet shield, which is mounted above the Arduino board, must be
connected with aWi-Fi router (or PC) through an RJ45 cable as shown in Fig. 3. The
Ethernet Shield is based on theWiznet W5100 Ethernet chip that provides a network
(IP) stack for TCP and UDP protocols [31].

2.3 Prototype

Figure 4 presents the solar tracker prototype in its detached and assembled state. It
consists of the PV panel, the L-R, and U-D servomotors and LDR sensors. The panel
is attached to the U-D servomotor on one side and with a bearing on the other side to
ensure better flexibility when the solar tracker rotates around the horizontal axis. The
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Fig. 4 Solar tracker prototype in its detached and assembled state

assembly is attached to the L-R servomotor. The LDR sensors are fixed in the four
corners of the panel inside hollow cylinders. If the panel is not perpendicular to the
sun, at least one LDRwill be covered by shadow caused by the surrounding cylinder.
Hence, there will be a difference in light intensity. The best orientation is when the
light intensities are equal in all LDR sensors. Figure 5 shows the entire prototype of
the IoT-based solar tracker system, and it is clear that all reported components in the
hardware part have been used to build it.

Solar tracker 
device

DH22 sensor

LED
(Mode indicator)

USB cable

RJ45 cable

Arduino 
Mega 2560

Voltage sensor

Arduino 
Ethernet Shield

Fig. 5 IoT-based solar tracker prototype
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2.4 Software Design

a. Arduino IDE

Arduino is an open-source electronics prototyping platform with easy-to-use hard-
ware and software [32]. The Arduino platform provides an integrated development
environment (IDE), which includes support for C and C++ programming languages.
The used Arduino board in this work is programmed by the IDE that serves as a code
editor and from which the program code can be uploaded to the microcontroller
through USB cable, as can be shown in Fig. 3. The Arduino Megaboard is utilized
to implement all software requirements of the IoT-based solar tracker.

b. MyDevices Cayenne

myDevices is a company that offers IoT solutions. It offers an end-to-end platform for
the IoT. In our project, we will focus on Cayenne, one of the solutions from myDe-
vices. This tool allows developers, designers, and engineers to build prototypes of
the IoT. Cayenne uses the Message Queuing Telemetry Transport (MQTT) protocol
to connect any device with the Cayenne cloud. Once connected, the user can send
and receive data from the device to the Cayenne dashboard via the Widgets created.
MQTT is a publish–subscribe messaging protocol based on the TCP/IP protocol.
The publish–subscribe methodology uses a message agent that is responsible for
delivering messages to the client. The MQTT is the API for sending information to
the Cayenne cloud, or devices controlled by Cayenne. The messaging agent in this
connection is the cloud, it manages the different clients (sensors and actuators) that
send and receive the data.

To use MQTT with Cayenne, we need to use the Cayenne libraries. For Arduino,
the CayenneMQTT library can be installed from the IDE’s Library Manager. To
program our Cayenne IoT platform-based IoT application, we will take advantage of
the predefined functions. For example, to establish the connection between Cayenne
cloud and Arduino Mega equipped with the Ethernet module, we call the Cayen-
neMQTTEthernet librarywherewe declare our authentication information (the user-
name, password and the ClientID)which should be obtained from the CayenneDash-
board. Then, in the setup part of the program, we call Cayenne.begin () function to
establish the connectionwithCayenne dashboard. For each actuator,we create a func-
tion with an integer parameter between 0 and 31 imperatively called CAYENNE IN
(VIRTUAL CHANNEL). For each sensor, we create a function with an integer param-
eter between 0 and 31 imperatively calledCAYENNE_OUT (VIRTUAL_CHANNEL).
In the loop part of the program, we call the predefined function Cayenne.loop (), this
function itself calls the functions CAYENNE_OUT and CAYENNE_IN. The virtual
channel as its name suggests is a channel that does not physically exist, it char-
acterizes visualization or command widgets. It allows them to be linked with the
corresponding sensor or actuator.
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c. The Embedded Software Design

The embedded software is the piece that will be embedded in the Arduino Megato
interact between the Ethernet module and Cayenne cloud (see Appendix). It is
designed as follow:

(i) The IoT-based solar tracker has two function modes: manual and automatic. A
button created in the Cayenne dashboard has a role to switch between the two
modes. When it is inactive, the manual mode is selected, otherwise automatic
mode. Besides, a function is established in the Arduino code that allows recov-
ering the state of the button. The LED in the system circuit reflects the state of
this switch.

Therefore, for the controller to know the selected operating mode, we just need to
test the state of the pin in which the LED is connected. For example, if the LED state
is low, the controller will call the manual mode function to execute, otherwise, it will
call the automatic function.

(ii) If the manual mode is selected, the user can directly control the positions of
the servomotors to orient the PV panel from east to west by L-R servomotor
or from south to north by the U-D servomotor. The control is made from the
associated widgets of servomotors in the dashboard of the IoT application.

In this mode, the controller calls Cayenne.loop () function which itself calls all the
functions CAYENNE_IN, including those related to servomotors, to execute. The
Cayenne.loop () function will also call all the functions CAYENNE_OUT, linked to
the sensors, to execute. Where the data related to LDR sensors, PV current, voltage
and power, temperature and humidity would be sent to the server so that they can be
visualized in their associated widgets in the IoT application.

(iii) If the automaticmode is selected, the algorithmshown inFig. 6will be executed.
The algorithm starts by reading the analog values returned by LDR sensors.
Then, it processes these data to command servomotors that move the PV panel
toward the sun position. Considering the vertical axis-based solar trackermove-
ment, the average values of the two LDRs on the left and the two LDRs on
the right are compared and if the lefts receive more light, the PV panel will
move in that direction (clockwise) through the L-R servomotor. The latter will
stop when the difference result is between −10 and 10. This range is used
to stabilize the controller and to reduce the power consumption of servomo-
tors. Otherwise, if the right set of LDRs receives more light, the PV panel will
move in that direction (Counterclockwise) through the L-R servomotor and
will continue to rotate until the difference result is in the range [−10, 10]. The
same approach is used for the horizontal axis-based solar tracker movement
where the average values of the two LDRs on the top and the two LDRs on the
bottom are compared.
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Fig. 6 The flowchart for the automatic mode of the solar tracker

As well as in the automatic mode, the controller will also call the Cayenne.loop ()
function to send the solar tracker data to the IoT application.

For

d. Development of the IoT Monitoring Application
(i) Hardware interfacing with Cayenne IoT platform

To interface the hardware, including sensors and actuators, with the IoT platform,
we need to follow the next steps:

• Log in on Cayenne myDevice website after creating an account (Fig. 7a).
• Then, click on “Bring Your Own Things” from Cayenne API (Fig. 7b).
• Copy theMQTT credentials (username, password and client ID) fromCreate App

(Fig. 8), and paste them in Arduino source code as described previously. After
successfully compiling and uploading the entire code to Arduino Mega, open
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(a). Cayenne sign. up
(b). Select device (Cayenne API).

Cayenne API
Bring Your Own Things

Fig. 7 Cayenne IoT Platform sign up (a). Cayenne API (b)

MQTT credentials 

MQQT
Username

MQQT
Password

Client ID

Device Name
« IoT Solar Tracker » Waiting for board to connect...

Fig. 8 MQTT credentials and device connection to Cayenne

Serial Monitor in Arduino IDE to get the Cayenne log prints (Fig. 9). As soon as
our device comes online and connects to Cayenne, the previous page (Fig. 8) is
automatically updated and we will see our device in the online dashboard as can
be seen in Fig. 10.

Fig. 9 Cayenne log prints
on Serial Monitor
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Device Name

Device icon

MQQT Username

MQQT Password

Client ID 

Se ngs

Device Name

Fig. 10 Device settings

• Then, to interface sensors and actuators, i.e. create their widgets, click on “Add
new…”, select “Device/Widget” and click on “CustomWidgets” (Fig. 11). Then,
select awidget and populate all its associated settings (the channel numbermust be
the same as in code), and finally click on “AddWidget” to add it to the dashboard
of your device. For us, we chose the “value” widget for all sensors, “Button”
widget for mode switch and the “Slider” widget for servomotors.

Finally, Fig. 12 illustrates the designed IoTapplication formonitoring solar tracker
data. Once the connectionwith the solar tracker system is established, sensor data can
be visualized on their associated widgets, the tracking mode (automatic or manual)
can be selected from the switch button, as well as controlling servomotors’ angles
through their widgets. Sensor data can also be obtained in graphical form by modi-
fying the representation type in their settings, or just by clicking on the graph icon
above the widget.

Add new …

Custom
Widgets

Value

Bu on

Slider

Add Widget

Fig. 11 Cayenne custom widgets
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Fig. 12 IoT monitoring application of solar tracker system

(ii) Alerts creation

One of the most important criteria in a monitoring system is its ability to send
notification alerts to inform users when an event, related to their monitored devices,
occurs. To this end, we take advantage of one of Cayenne’s features [33] to add
alerts to our IoT application, where we can preprogram our application to send a
notification alert (SMS, Email, or both) or to perform a specified action. For example,
a temperature alert is created to send an email notification to the user (or recipients)
when the monitored temperature is reached a threshold value, as can be shown in
Fig. 13. To create an alert, click on “Add new…” and select “Trigger”, then set the
event and its action and finally click on “save” to add it to the dashboard.

Alert Name

Event 

Sensor Name Threshold value

Ac on

> or < than threshold value ?
Send Email

Custom recipient

Fig. 13 Temperature alert configuration
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3 Results and Discussion

Different tests have been carried out to examine the developed IoT-based solar tracker
prototype. The experimental setup is illustrated in Fig. 14. The Arduino board is
powered with the computer through a USB cable, which is also used to display,
in the Serial Monitor of Arduino IDE, the measured parameters and data received
from the IoT application. This will allow us to verify whether the captured data from
Arduino are correctly and in real-time sent to the IoT application or not. Whereas,
Arduino can be powered with an external DC power supply. The Ethernet shield
connects the Arduino board to the internet via RJ45 cable. Once the connection with
the IoT application is established, the data of the solar tracker system are sent to the
monitoring application, where we can view these data live and send commands to
the controller.

The system is programmed to send all data from the device regardless of the
tracker mode (manual or automatic). First, the automatic mode has been tested,
which is activated when the switch mode is in the high state; the LED (mode
indicator) in the circuit lights up. The servomotors were automatically controlled
according to intensities captured by LDR sensors. Figure 15 presents the samples
of data recorded in real time from the solar tracker system in the IoT application
during the test period. Figure 15a displays the recorded electrical measurements,
namely the current, voltage and power. While Fig. 15b displays the recorded envi-
ronmental measurements, namely the temperature, humidity and the intensity of light
(captured by the top-right LDR) with the accurate time and date. It has been verified,
by comparing the data sent from Arduino and those received on the dashboard of the

Fig. 14 The experimental
setup of the prototype
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(a) Electrical measurements. (b). Environmental measurements.

Fig. 15 Samples of data recorded in real time in the IoT application

IoT application, that all electrical and environmental measurements are sent properly
and in real-time.

To check the reliability of the monitoring application to notify the user when
an event occurs, it has been programmed to send an alert. For example, when the
monitored temperature is higher than 40 °C. Figure 16 shows the alert notification
received in our mailbox at the same time when the temperature exceeds 40° as can be
seen in Fig. 15b. Other alerts can be added to the application, such as a malfunction
of one of the sensors and/or actuators and a rapid decrease in PV power.

Moreover, the proposed IoT prototype has been tested in manual mode, which is
activated when the switch mode is in the low state; the LED in the circuit turns off.
The servomotors were controlled through their associated widgets in the dashboard.
For instance, we have set the slider linked to the L-R servomotor at the center (i.e. at
a value of 0.5) and the other slider of U-D servomotor at 0.3, which means that the
L-R and U-D motors will rotate by 90° and 30°, respectively. Also, tests have shown
that solar tracker properly and rapidly executes commands from the monitoring
platform with a time not exceeding 2 s. In the manual mode, the user can remotely
position his device in an optimal direction according to the surrounding environment
and device location. Moreover, in this mode, the power consumption of motors can
be too minimized or, where the user can intervene to position the solar tracker for
example in only one direction according to each month or season (winter, spring,
summer, and autumn) in the year. However, an amount of PV energy can be lost
due to a limitation of the solar tracker operation according to the daily movement
of the sun. The servomotor commands can be programmed beforehand without user
intervention by creating events and associated actions in the IoT application.
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Fig. 16 The received
notification alerts in the
mailbox

4 Conclusion

In this chapter, a smart prototype has been designed to monitor and control a dual-
axis solar tracker system using a simple and efficient IoT solution. The prototype has
been tested experimentally. Test results demonstrate that the developed IoT-based
solar tracker provides users with a simple monitoring application, in which users
can easily and in real-time monitor electrical and environmental parameters of the
solar tracker system for further processing and management. Other sensors could
be added, for example, solar irradiation and wind sensors to help understand more
about the PV power output as well as to test the solar tracker system on its flexibility
during high wind. Due to its simplicity, the proposed IoT solution can be employed
in various fields to connect devices or things to the internet as well as for research
or educational purposes.

Appendix

The embedded code of the IoT-based solar tracker system
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/***************************************************************
 PROJECT: IoT based solar tracker system / the embedded software
***************************************************************/

#define CAYENNE_PRINT Serial
#include <CayenneMQTTEthernet.h> //CayenneMQTT library 
#include <Servo.h> //Servo motor library 
#include <DHT.h> //DHT library 
#define DHTTYPE DHT22
#define DHTPIN 2
DHT dht(DHTPIN,DHTTYPE);

//MQTT credentials   
char username[]="498d2d00-afe2-11ea-883c-638d8ce4c23d";
char password[]="ab4a8f92d94033c01f6e18ce1d8a84d8c304c9c4";
char clientID[]="17798a40-b968-11ea-93bf-d33a96695544";

Servo servo_x;                   //up-down servomotor  
int servoh = 0;
int servohLimitHigh = 170;     
int servohLimitLow = 10;       

Servo servo_z;                   //left-right servomotor 
int servov = 0; 
int servovLimitHigh = 170;
int servovLimitLow = 10;

int topl,topr,botl,botr;
int threshold_value=10;        
float Vout;

void setup()
{ Serial.begin(9600);
  Cayenne.begin(username, password, clientID);
  servo_x.attach(5);
  servo_z.attach(6);
  dht.begin();
pinMode(3,OUTPUT);
digitalWrite(3,LOW); 

}

void loop()
{ topr= analogRead(A2);       
  topl= analogRead(A3);         
  botl= analogRead(A4);         
  botr= analogRead(A5);        
  Vout=(analogRead(A1) * 5.0) / 1023;
Serial.println(" Manual-mode");

  Cayenne.loop();

if (digitalRead(3)==HIGH){
Serial.println(" Automatic-mode");

    servoh = servo_x.read();
    servov = servo_z.read();

int avgtop = (topr + topl) / 2;     
int avgbot = (botr + botl) / 2;   
int avgright = (topr + botr) / 2;   
int avgleft = (topl + botl) / 2;    
int diffhori= avgtop - avgbot;      
int diffverti= avgleft - avgright;    

/*tracking according to horizontal axis*/
if (abs(diffhori) <= threshold_value)

    {
     servo_x.write(servoh);            //stop the servo up-down
    }else {
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if (diffhori > threshold_value)
          { Serial.println(" x - 2 ");
          servo_x.write(servoh -2);    //Clockwise rotation CW

if (servoh > servohLimitHigh)
          {
           servoh = servohLimitHigh;
          }

delay(10);
          }else {
           servo_x.write(servoh +2);   //CCW

if (servoh < servohLimitLow)
           {
           servoh = servohLimitLow;
           }

delay(10);
           }
      }      

/*tracking according to vertical axis*/
if (abs(diffverti) <= threshold_value)

    {     
     servo_z.write(servov);       //stop the servo left-right
    }else{

if (diffverti > threshold_value)
       { 
       servo_z.write(servov -2);  //CW

if (servov > servovLimitHigh) 
       { 
       servov = servovLimitHigh;
       }

delay(10);
       }else{ 
        servo_z.write(servov +2);  //CCW

if (servov < servovLimitLow) 
        {
        servov = servovLimitLow;
        }

delay(10);
        }
     }
  }
}
// Cayenne Functions
CAYENNE_IN(8){
int value = getValue.asInt();

  CAYENNE_LOG("Channel %d, pin %d, value %d", 8, 3, value);
digitalWrite(3,value);

}
CAYENNE_IN(7){ //up-down servo motor

if (digitalRead(3)==HIGH){ //Automatic_mode
  }
else{ //Manual_mode

  servo_x.write(getValue.asDouble() * 180);
  }
}
CAYENNE_IN(6){ //left-right servo motor

if (digitalRead(3)==HIGH){
  }  
else{

  servo_z.write(getValue.asDouble() * 180);
  }
}
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Serial.print("Voltage: ");
Serial.println(voltage);

}
CAYENNE_OUT(2){ //LDR Top-right
  Cayenne.virtualWrite(2, topr);
}
CAYENNE_OUT(3){ //LDR Top-left
  Cayenne.virtualWrite(3,topl);
}
CAYENNE_OUT(4){ //LDR Bot-left
  Cayenne.virtualWrite(4,botl);
}
CAYENNE_OUT(5){ //LDR Bot-right
  Cayenne.virtualWrite(5,botr);
}
CAYENNE_OUT(10) { //Power
float power = (Vout * 2 * Vout)/10 ;

  Cayenne.virtualWrite(10, power);
Serial.print("Power: ");
Serial.println(power);

}
CAYENNE_OUT(11){ //Temperature

float t = dht.readTemperature();
//int chk = dht.read(DHT11PIN);

  Cayenne.virtualWrite(11, t, TYPE_TEMPERATURE, UNIT_CELSIUS);
Serial.print("temperature: ");
Serial.println(t);

}
CAYENNE_OUT(12){ //Huidity

float h = dht.readHumidity();
//int chk = dht.read(DHT11PIN);

  Cayenne.virtualWrite(12, h);
Serial.print("  humidity: ");
Serial.println(h);

}

CAYENNE_OUT(0) { //Current
float current = Vout/10;

  Cayenne.virtualWrite(0, current);
Serial.print("Current: ");
Serial.println(current);

}
CAYENNE_OUT(1) { //Voltage
float voltage = Vout * 2;

  Cayenne.virtualWrite(1, voltage);
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Impact on the Performance of Solar
Photovoltaic System with the Innovative
Cooling Techniques

N. Beemkumar, S. Dinesh Kumar, A. D. Dhass, D. Yuvarajan,
and T. S. Krishna Kumar

Abstract The photovoltaic panel converts only some parts of solar radiation energy
into electrical energy and the rest of energy will remain as heat energy, which results
in raising the panel temperature and decreases electrical proficiency. The decrease
in PV module efficiency depends on the assortment of limitations including temper-
ature; the yield power diminishes by 0.2–0.5% per 1 K differs in the hotness of the
photovoltaic module. The PV system efficiency could be improved by providing
efficient cooling techniques like active and passing cooling system with the cooling
medium air, water, phase change material (PCM), etc. This chapter summarizes the
recent trends in PV cooling techniques and also discusses the impact of the inno-
vative cooling technique on solar PV module performance by combining PCM and
thermoelectric generators (TEG).
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1 Introduction

When exposed to a hot and dry climate, the yield of a solar-powered PV panel
changes from the yield of proportional solar oriented PV panels in chilly conditions.
Light is an alluring piece of solar-based radiation while heat is not [1]. Adjusting the
atmospheric airstream power starting is at 1–3 m/s brought down the temperature of
the panel by around 10 °C [2]. Inferable from the high surrounding temperature and
high panel temperature, machine execution was seen to a generous decrease in the
late spring. The module showed relatively superior in winter [3]. When all is said
in done, lessening the heat substance or disappointment of the solar light-based PV
cell or module and expanding the electrical presentation is troublesome. Frequently,
the ingestion of heat into the solar light-based PV module relies fundamentally upon
the type of burden associated with the power age units. The particularly lower heat
burden enthalpy, connected to the photovoltaic panel, request more power, so expel
heat from the climate or heat sink utilizing a warm siphon [4].

The various m-Si PV modules, for example, Yingli-produced m-Si, m-Si, dark
solar light-based PV panel, and fundamentally determined estimations of the para-
sitic opposition and photogenerated current of the Yingli m-Si PV module were
contrasted with assessing the effect of temperature. The discoveries recommended
that the m-Si 250-W module was amazingly temperature touchy to compute the
shunt opposition. With an ascent in temperature, such enhancements diminished
exponentially. A consistent ascent in temperature has improved the obstruction of
the individual succession [5]. Indeed, the temperature decreased by about 15.13 °C
since the balances installed at the base of the PV module increased the district’s
flow of wind current heat. Consequently, the electrical yield compared with the PV
module temperaturewas projected to be 14.39%.Moreover, when cuts weremounted
between the blades, they expanded the wind stream speed and heightened choppiness
creation, in this way expanding the balances’ cooling productivity [6].

As indicated by the exploratory investigation, the temperature drop in the focal
fragment of the Building Integrated Concentrated Photovoltaic (BICPV) system for
miniaturized scale balances finned with a PCM was found to have been diminished
by around 9.6 °C. The temperature drop in a related segment was around 11.2 °C,
due to the addition of nanoparticles to the PCM. The presentation of nanoparticles as
stood out from typical PCMmaterial prompted the expanded decrease in temperature
[7]. When using the cooling system, the usual temperature of the PV panel drops
to around 45 °C, which leads to a decrease of approximately 27% for the module
temperature. This was because of the pervasive soggy circumstance on the backside
of the device, while creation limit and execution improved separately by around 32.7
and 31.7% [8]. Radiative solar light-based cell cooling is a viable type of cooling
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to manage the temperature of solar-powered cells. However, the exemplified solar-
based cells despite everything have high outflows, proposing that more changes in
sun-oriented cells’ radiative cooling productivity are negligible. Nonetheless, note
that radiative cooling of solar-powered cells in certain conditions is without a doubt
a suitable method to cool solar energy-based cells [9].

To get an economic viewpoint, themade of a cooling system is reasonable, because
it is a free structure (the power deftly of the cleaning structure is done by the power
set aside in the battery), and it uses modest (water or sun situated refining (nursery
effect or smooth sun controlled finder)). It grants improving the electrical making of
photovoltaic modules, which prompts the decrease in the force bill. It furthermore
serves to the cleaning of PVmodules with a water seminar on the front face [10]. The
results showed that the maximum temperature drop in submerged cooling conditions
about 24 °C. This prompts a rate increment of 10.06% of the open-circuit voltage, the
most extreme force conveyed by the PV module additionally increments by 9.83%
and this adequately expands the transformation productivity of the PV module by
9.83% [11].

The underneath conditions are analyzed with the assets of sun-based cells and the
cooling necessities of the fluid chose for cooling.

(1) Great heat move execution for the fluid
(2) The ghostly reaction of sun-oriented cells ought to be coordinated by the

ingestion of the daylight by the fluids
(3) Non-poisonous and great synthetic soundness must be kept up for the fluid
(4) Economical fluids are utilized for cooling [12].

It is concluded that the effect will be a 5% decrease in productivity for increasing
10 °C in cell temperature. Consequently, further attention has been orchestrated in
the application of PV panel cooling strategies. The single principle technique to
accomplish this cooling is by consolidating the two advancements into a half breed
configuration, called photovoltaic heat (PV/T) power [13].

It was discovered that the PCM material would give positive outcomes just when
the temperature of the panel surpasses the PCM dissolving point [14]. The show of
three identical PV modules is the usage of module 1 without cooling, the cooling
of module 2 with unadulterated vapor, and the cooling of module 3 with nanofluids
(CuO–water and Al2O3–water with 0.1–0.7% wt).

In any case, the greatest discrepancy between the cooling module’s rear temper-
atures and the non-cooling module was 22.13 C at 0.6% CuO centralization, with
an electrical power extension of 12.57% [15]. PV cells are very vulnerable to shifts
in temperature, despite the eco-friendly capacity of the photovoltaic (PV) module to
generate power. This can result in a decline in skills from 0.25–0.5%/C. Scientists
and scientists are committed to increasing the performance of PV cells by rising the
working temperature to solve this issue. For this reason, the researchers have devel-
oped an easy and elite PV cooling system that can lower the working temperature of
the module [16].



100 N. Beemkumar et al.

The rectangular fins reduced the temperature of the PV module by 10.6% and
raised their performance by 14.5%. Nevertheless, the circular fins-based PV module
will resist 112% more power than the reference PV module, with the same surface
area as the rectangular fin. This indicates that the surface area of the fins is a crucial
parameter from the PV module for heat dissipation and involves careful fine design
[17].

A parametric analysis is carried out to evaluate the overall machine efficiency for
the specific operating environments and activated capability. The developed device
is also tested for two separate forms of multi-junction solar cells and three specific
coolant grades: wind, ethanol, and n-pentane Water with higher concentration ratio
capacity has been known to function stronger fluid due to higher latent moisture [18].

The strength of the refrigerated and non-cooled instruments was then contrasted.
The temperature of the cooling modules dropped to approximately 25 °C, while
the temperature of the uncooled module was 45 °C. The strongest outcomes were
obtained by cooling modules with a water video, because there were no water
splashes, and continuous surface cooling contributes to an improvement in power of
20%. The uncooled module obtained a maximum strength of 105.3W/m2, compared
with 125.5 W/m2 for its cooled equivalent during the study. Consequently, cooling
the module contributed to a capacity rise of 20.2 W /m2 [19].

The water spray cooling system used in the photovoltaic panel and its results show
that the usage of this kind of cooling has a 2% improvement in the average electrical
energy (EE) relative to the same level. They also observed that utilizing this sort of
device would decrease the temperature of the average panel from 54 to 24 °C [20].

Some structural parameters have been examined and evaluated for impact on
PV cell temperature and electrical performance. The most important parameters are
summarized on specific solar irradiation, inlet air temperature, air mass flow rate,
water mass flow rate, channel size, channel width, wind speed, fins length, fins tilt,
fins amount, the distance between successive fins, fine thickness, container width,
size of Reynolds and Prandtl numbers [21].

The purpose of this chapter, to familiarize the various types of cooling techniques
were used in PV panel surface, which includes active, passive and hybrid cooling
methods, effects of various methods on PV panel performance analysis are discussed
in detail.

2 Types of the Cooling System in PV Panels

Various developments in cooling are studied, especially gliding using the concen-
tration cooling method. Improving the appearance of solar-based panels is utilizing
phase-changing materials; solar-based panels with water-drenching cooling methods
[22]. There are two kinds of cooling strategies to boost the greatest power efficiency
and PVmodule generation: active and passive cooling.While aloof cooling strategies
include standard cooling methods for the removal of heat from the solar-powered
PV floor, general air, normal water, and PCM for Fig. 1 [23].
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PV Cooling 
Technique 

Passive 
Cooling 

Active Cooling 

Nanofluid  
Cooling 

Forced  
Air/ 
Water  
Cooling

Refrigerant  
Cooling

PCM 
Cooling 

Natural  
Air/ Water 
Cooling 

Fig. 1 Classification of PV cooling techniques based on an input source to the system [23]

The overall performance of the PV panels is greatly affected by their temperature.
The temperature development affects the electrical energy created by photovoltaic
cells [24]. Cooling advancements have developed towards increasingly complex
methodologies, which incorporate warmth sinks or blends with different systems.
The classification of cooling methods for enhancing the performance of a PV panel
based onworking fluid is given in Fig. 2. The epic, advanced field identifieswith shaft
parting (or range channel) innovation, which recognizes the frequencies utilized for
PV cells from those utilized for the heat transformation of the PVT system [25].

3 Active Cooling Methods

The net proficiency yield of a solar energy-based photovoltaic cell is delicate,
corresponding to temperature.

• For themost part, broadcasting a small film ofwater over a sun-based photovoltaic
cell reduces the rate of sensation of sun-oriented radiation and cools the sun-
oriented board to a comprehensive temperature.

• Theoretically, the water that is drained after passing into the channel stream set
may be used as a temperature resource [26].

The revealed techniques and cooling impacts of each PV module cooling strategy
with a schematic diagram are given in Fig. 3 [27]. It consists of both active and
passive methods presented in the diagram.
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Phase Change Materials based cooling (Conductive) 

Air based Cooling (Air gap, Air, Channel) 

Heat Pipe 

Heat Sink 

Cooling of PV Panel 

Liquid based (Water flow, jet impingements, Liquid immersion, 
Sub merging)

Hybrid Cooling  

Fins (Extended surfaces) 

Spectrum filter/Beam split 

Radiative Cooling 

Micro-channels 

Nano-fluid based cooling 

Refrigerant based cooling 

Thermo-electric 

Evaporative cooling 

Fig. 2 Classification of cooling methods based on working fluid [25]

Heat pipe cooling

A heatpipe is a compartment tube loaded up with the working liquid. One finish of
this cylinder (called evaporator area) is gotten warm contact with a hot point (PV
panel back surface) to be cooled. The opposite end (called condenser segment) is
associated with the dissipation point where the warmth can be dispersed (climate). A
bit of the cylinder among the evaporator and condenser is called the adiabatic area.
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Fig. 3 Schematic diagrams of cooling methods for photovoltaic modules. The cooling type (active
and/or passive) is shown in parentheses for each cooling method [27]
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Jet impingement cooling

One significant cooling procedure that has been utilized broadly in hardware is the
strategy for heat extraction by impinging planes. Impingement planes are equipped
for removing a huge amount of heat.

Airflow cooling

Normal or constrained air dissemination is a straightforward andminimal effortmode
to evacuate the warmth, yet it is less viable at low scopes, where the surrounding air
temperature is over 20o C for a long time during the year. PVT/Air systems are used in
pragmatic applications, predominantly as ease air-cooled Building Integrated Photo-
voltaics, because of the low development utilization of materials and low working
expense.

Water cooling

When deep water is used specifically in cooling, the PV panel can tend to run at a
virtually constant temperature all year round. That is because the temperature of the
surface water will not come up against a vital variation throughout the year.

PV Thermal system

A thermoelectric cooling device allows good use of excess energy for better effi-
ciency but has a poor rate of transition profitability and this innovation’s movement
is modest.

Phase change materials

Ongoing investigatation concerning uninvolved cooling of the photovoltaic panel
using phase change materials has indicated to the phase change materials can accu-
mulate a lot of warmth and while cooling the PV panel with phase change materials
it continues practically consistent warmth.

Liquid Immersion/Submerging

A passive lowered water cooling technique where the PV module is lowered in the
static water, and they examined the impact of the situation in the profundity course
on the presentation.

Passive Heating

Detached solar-driven cooling systems operate by minimizing unwanted daytime
energy benefit, providing non-mechanical airflow, exchanging warm indoor air for
colder outdoor air wherever necessary, and taking away the coolness of the night to
guide high daytime temperatures.

Microchannel

The microchannel heat sink shows the capacity to expel a lot of warmth from a
little territory, which is an attractive component for heat move improvement. Along
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these lines, specialists have indicated an expanded enthusiasm for the improvement
of small scale cooling innovation for different applications

Radiative cooling

An inspection into radiative cooling of sunlight-based cells has expanded as of late.
An ongoing report on the issue expressed exploring the impact of upgraded radiative
cooling on sun-oriented cells utilized in business PV was basic. Reenactment results
uncovered that the sunlight-based cell temperature must be diminished by 1.75 K
even in the perfect case.

A functioning of cooling strategy erstwhile structured in addition to displaying
for PV panel utilizing TEG innovation planned to get better the PV proficiency
furthermore future.

Figure 4 demonstrates the effective performance of the PV-TEC system in advance
applied at 0.12 and 0.25 s for atmospheric temperature changes, holding the solar-
oriented insolation steady at 1 kW /m2. It reveals that the PV power obtained from the
sensor for 25 °C surrounding temperature is 52 W without cooling activity, whereas
the total PV power can be raised to 54Wwith a 17 °C reduction following the cooling
mechanism [28].

For illustration, nanofluid is characterized as a mixture of particles (nanometer
sizes, 100 nm) and liquids such as H2O and ethylene glycol. The liquids have
improved the thermophysical properties of standard base liquids such as thermal
conductivity, consistency, and overlap. This is commonly used in SPV panel cooling.
So solar PV cooling is important, it diminishes the surface temperature by cooling,
so ability will improve. There are various methods for refrigerating solar-based PV
such as active and passive cooling. Efficient cooling utilizes air, water, nanofluids,
etc. for cooling purposes, goods such as paraffin wax, eutectics, natural materials,
cotton wick, etc., for passive cooling purposes [29], [30].

Fig. 4 Representation of photovoltaic thermoelectric generator under standard temperature condi-
tion. a Photovoltaic Power b Thermoelectric generator power c Thermoelectric generator Current,
d net photovoltaic power, and e Photovoltaic panel temperature [28]
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Table 1 Performance parameters in PV panel for different examined cooling [32]

Techniques Power (W) Relative
increase in
power output
(%)

Effective
increase in
power output
(%)

Temperature
(°C)

Effective
increase in
electrical
efficiency (%)

Without
cooling

35 – – 56 –

Back surface
cooling

39.9 14.0 5.4 33.7 3.6

Front surface
cooling

40.1 14.6 6.0 29.6 2.5

Simultaneous
cooling

40.7 16.3 7.7 24.1 5.9

PV-PCM structure of aluminum sheet as TCE is tested by running a check under
the clear daylight. The backside of the PV panel has a PCM and aluminum pocket
measuring 0.0361 m2. To improve the thermal conductivity of the PCM and heat
dispersal, the aluminum sheet of zone 0.036 m2 is conveniently mounted on the
back of the PV panel. The effect of panel temperature rise is tentatively verified on
Voc, Isc, and generation. The results indicate that PCM with the aluminum sheet as
backplate in the solar-centered PV panel improved the performance of the transition
by 24.4% on a normal [31].

A water spray cooling solution was proposed for different cooling situations
(systems) and was tentatively evaluated on a monocrystalline photovoltaic stand.
The best cooling solution ended up being the synchronous cooling of PV panel
surfaces at the front and back. Among the various cooling, techniques are used to
maximize the power output, simultaneous cooling of the back surface followed by
front surface cooling has exhibited better performance than compared with the other
techniques and it is given in Table 1. This produced an important 5.9% improvement
in electrical output.

4 Passive Cooling Methods

Three diverse submissive lose heat situations be statistically researched, in addition
to the majority encouraging one was where the photovoltaic module was furnished
using cuts during the frontage photovoltaic module facade bringing about a decrease
of around 4 °C. The more cases examined to end up becoming less successful with
the respected drop in temperature below 1.0 °C. The concept of modern PV panel
details products was seen as a realistic possibility [33, 34].

Passive cooling systems allude to innovations used to remove or potentially limit
heat assimilation as of photovoltaic panel lacking extra power utilization. The compo-
nent infers moving temperature anywhere it is created and dispersing it to nature.
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Wide assortments of aloof cooling alternatives are accessible, most straightforward
structures include the utilization of firms of soaring warm conductivity metals, for
example, aluminum and copper, otherwise a variety of blades before extra expelled
surfaces to upgrade heat move to the encompassing. Increasingly, unpredictable
systems include the utilization of PCMs in addition to different strategies in favor of
characteristic flow, notwithstanding the utilization of heat pipes that can move heat
proficiently through a bubbling gathering process. A portion of the effective passive
cooling systems that can limit the danger of expanding warm gains incorporates.
Strategies for Passive cooling frameworks can be classified into three sorts.

• Air aloof cooling,
• Water uninvolved cooling and
• Conductive cooling.

The distinction between air detached cooling in addition to conductive cooling is to
the aggregate character in the photovoltaic panel for the common heat move about
components. The bigger the outside of PV cell the more it is critical to the utilization
of detached cooling. Water uninvolved cooling is increasingly productive because of
the warm limit of water high [35].

5 Hybrid Cooling Techniques

Joint use of PCM and nanofluid is a more feasible strategy for PV cooling than by
sole use of PCMor nanofluid because additional PV panel heating is separated by two
extremely heat-resistant media, for example first by PCM and then by a nanofluid.
PCM fusion with nanofluid decreases PV-surface temperature as well as provides
more stability in temperature due to standardized PCM interaction with the plate.
The panel will gain improved warm vitality on the off chance that it blends both
nanofluid and nano-PCM [36].

It has been indicated that connecting a TEG to the rear of the PV cell can produce
maximum power, which can exploit solar oriented vitality. Hence, it is vital to locate
the prevailingwarmopposition of the partial illuminated system, and afterward locate
a successful answer for control of thewarm obstruction for advancement. In this area,
an affectability examination is led to thewarmprotection of the radiation, convection,
and conduction for each layer [37].

For this exploratory analysis, a number of latent cooling systems are possible
utilizing a cooling tower centered on PCM and traditional water convection. Yields
show that the cooling devicewith the rendered oil as PCMhas an exceptional capacity
to increase the panel’s effectiveness. The findings obtained indicate that the appli-
cation of Boehmite nanopowder to the composite oil decreased the hotness of the
photovoltaicmodule in accordancewith the configuration of no cooling and the usage
of the composite oil as PCM [38].



108 N. Beemkumar et al.

Graphene-water nanofluid has obtained the most remarkable performance at a
concentration of 0.1% and 40 L per minute (LPM) in general competence. Normally,
performance improved by 14.1%, 12.6%, and 10.9% at 0.1% concentration for 40,
30, and 20 LPM, respectively, in water analysis. From the tests, the combined usage
of nanofluid with PCM was assumed to offer favored device execution over the use
of PCM alone [39]. A CPV/T-driven mixture assimilation/thermoelectric cooling
system is introduced. The suggested device utilizes both warm vitality and electrical
vitality that are acquired to offer cooling from the PV/T gatherer. This was guided
to try to develop the PV board cooling monitor to explore the most intense level
of cooling. Thus, to guide the enhancement process, TEC’s COP will surpass 6.4,
which means that the validity number is 70 [40].

Heat pipe helped inert heat stockpiling system are broadly utilized in warming,
cooling, and waste heat recuperation applications because of their basic development
and fantastic thermophysical properties, for example, high warmth stockpiling limit
and capacity to move heat at a consistent temperature over significant separations.
This work concentrated on applications and the extent of crossbreed framework
(HP–PCM-based frameworks) in many building fields.

Following are the striking highlights of this examination:

• The half breed frameworks are exceptionally proficient and overpower the issues,
for example, low warm conductivity of PCM and overheating of warmth pipes
when utilized in mix.

• The crossbreed framework hinders the temperature rise and guarantees the
sheltered activity of gadgets over the more drawn out periods.

• Performance of these half and half frameworks chiefly rely upon properties of
PCM, sort of warmth funnel, and its direction in the framework.

• Heat pipe alongside metallic froth, foil, and blades are superior to traditional HP.
• Charging of PCM for the most part happens by convection heat move while

conduction assumes a significant job during releasing procedure. The expansion
of HP expands the pace of warmth move during charging and releasing [41].

In Fig. 5, the best cases in the cooling systems were tested under the appropriate solar
radiation and natural conditions and in the PV panel models finned left, right and
center (PV+B3), 12 number of TEGs and fins in PV panels (PV+E3), CaCl2H12O6

and finned left, right and center in PV panels (PV+ C2+ B3) and CaCl2H12O6 and
12 number of TEGs and fins in PV panels (PV + C2 + B3) and PV panels (PV +
C2 + B3) [42].

6 Effects on the Performance of PV Panels

The front-side temperature of the PV cell is greater than the rear temperature of
the PV cell. Through and wide, both the front and the posterior temperatures are
the same in stable conditions. In this test protocol, the influence on the execution
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Fig. 5 Surface temperature
variation in a PV panel with
different cooling systems
[42]

of the PV module on the front side temperature is higher than the consequence of
the posterior temperature. So also, on the rear during the procedure, the impact of
temperature will corrupt the fill factor esteem. The front and rear temperature of the
PVmodule impacts on fill factor as appeared in Fig. 6a, b. The found themiddle value
of PVmodule fill factor differed from the beginning and last qualities by about 22.98,
54.16 and 26.19%with the relating variety of arrived at the midpoint of front side PV
module temperature is 10.85, 11.76, and 11.42% and rear PV module temperature is
9.09, 10.76 and 12.05% separately, for the long stretch of December, January, and
February. Here fill component and front side PV variance were strong in January and
accompanied by months in February and December. Thus, in light of the climatic
changes, the working execution boundary most likely corrupts.

On account of the backside PV module temperature, deviation levels are high in
February and January andDecember months. The variations in temperature forecasts
for December, January, and February are 9.09, 10.76, and 12.05% [43].

Figure 7 delineates the month-wise temperature pace of the front and back of the
PV board at a predetermined area. The pinnacle temperature esteem 34 °C of the
front side is seen in May and June and the most reduced 28 °C is seen in December.
Additionally, the posterior temperature is 32 °C inMay and 26 °C in December [44].

The presentation reactions of the PV board in various investigations are summed
up in Table 2. The most extreme increment of 19.32% and 18.40% in electrical force
yield and effectiveness were accomplished under the illumination of 900 W/m2 by
presenting the Active phase change (APC) cooling system. In the interim, the most
extreme explicit force improvement picked up in this examination is 21.37 W/m2

[45].
Behind the effect of energy generation effectiveness is introduced in Fig. 8, the

outcomes demonstrate with the purpose of the photovoltaic and photovoltaic-phase
change materials panel make increasingly electric vitality and encompass maximize
electric effectiveness than the equivalent regular PV panel without phase change
materials layer. The most noteworthy yield was estimated throughout the midyear
months. The rise in electricity production for the PV-PCM panel varies from 4.3
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Fig. 6 a Performance Characteristics curve for PV system (Front side temperature) [43].
b Performance Characteristics curve for PV system (Back side temperature) [43]

to 8.7% and the output of vitality generation varies from 0.5 to 1%. In this way,
the yearly vitality generation proficiency of the phase change materials module was
0.8% higher than the customary PV module. Through the usage of PCM in some
circumstances, the energy efficiency of 12.2% and the electrical energy produced
of 260.17 kWh were achieved, which dislikes an annual rise of 7.3% relative to
conventional PV panels [46].
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Fig. 7 The temperature profile of the front and backside of the PV panel for the entire period of
the experiment [44]

Table 2 Different techniques of cooling [45]

Techniques Temperature
(°C)

Power
(W)

Increase in Power
Output (%)

Electrical Efficiency
(%)

Uncooled condition 62.4 21.2 – 12.94

Air cooling 55.5 22.0 3.77 13.43

APC 37.4 24.6 16.03 15.02

Fig. 8 ThegeneratedEnergy efficiency of conservative photovoltaic and photovoltaic-phase change
materials panel [46]
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Fig. 9 Equivalent electrical
output power variation of
different schemes [47]

PCM records an improvement of 25% in total skills relative to the PV module
shown in Fig. 9. Compared to the PV module, the normal warm yield for PCM is
increased by 46%. It is further discovered that PCMcan elevate the particular warmth
of thewarmPVTsystem,which quickly diminishes thewarmmisfortunes. Therefore,
the introduction of nanoparticles to the base liquid increases the presence of the
temperature exchanger regardless of the month and climate. Energy performance
figures are dramatically higher inferable from the nanofluid effect [47].

7 Conclusions and Future Outlook

The behavior of a photovoltaic (PV) panel over cooling in front and rear of different
advancements is examined. The PV board execution improved after it was cooled
by dynamic and aloof strategies. The electrical boundaries of sun-based cells
were relying upon surface temperature, which demonstrated that the cooling factor
assumes a significant job in the electrical productivity upgrade. The PCM may be a
great solution for cooling and homogenous diffusion of air. Nonetheless, PCM with
a low liquefying point (25 °C) may lower the PV board temperature more than PCM
with a high softening point (over 30 °C) for short times and trouble areas growing
to develop on the surface of the PV board. The efficiency of the PV-PCM panel is
capable of better by expanding the warmth move among the phase change materials
and the aluminum plate. In addition, the design of the PV-TEC structure has been
separately tested to include temperature advancements and solar-powered insolation
variation. The extension of the nanoparticles increases power efficiency and reduces
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the surface temperature to obvious amounts.Reference [48] is given in the list but
not cited in the text. Please cite them in text or delete them from the list.kindly delete
the mentioned reference
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Photovoltaic Maximum Power Point
Trackers: An Overview

Ali M. Eltamaly

Abstract The generated power from the photovoltaic (PV) array is a function in its
terminal voltage. The relation between the generated power and the terminal voltage
of the PV array is called the P–V curve. The point corresponding to the highest
generated power in this relation is called maximum power point (MPP). This relation
has only one peak in the case of uniformly distributed irradiance over the PV array.
Meanwhile, it has multiple peaks in the case of partial shading conditions (PSC). The
one with the highest power is called global peak (GP) and the other peaks are called
local peaks (LPs). The control system should track this point to improve the efficiency
of the PV system by extracting the maximum available power from the PV array. The
controller used to track this point is called themaximumpower point tracker (MPPT).
Traditional MPPTs such as hill-climbing or incremental conductance are adequate
to track the MPP in the case of uniform irradiance, but it may stick at one of the LPs
in the case of PSC. For this reason an unlimited number of MPPT techniques are
introduced in the literature to track this point. This chapter introduces an overview
of the PV maximum power point trackers (MPPT) techniques. The classifications
of MPPT of the PV system is introduced in detail in this chapter. The operating
principles, advantages, and disadvantages of each technique are introduced in detail
for famous and important techniques and in brief for the less famous techniques
or the techniques that are not showing good performance in tracking the MPP. A
comprehensive comparison between these techniques is presented in detail in this
chapter. Important recommendations and conclusions are introduced at the end of
this chapter to show the advantages and disadvantages of these PVMPPT techniques.
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1 Introduction

Energy is the main support for modern societies and all mankind. The excessive
depletion of fossil fuels forces the researchers to explore other sources of energy that
will not run out such as renewable energies. Solar energy is themost important source
of renewable energy sources, where its cost is reduced over time and became mature
technology. Photovoltaic (PV) energy systems are used to convert the sunlight directly
into electric energy. Very rapid growth in deploying the PV energy systems where
it is increased by 60% in Europe [1] and new annual installations in 2020 reached
142 GW, a 14% rise over the previous year [2]. Moreover, the total generation from
solar is about 570 TWh [3]. Many efforts were introduced to increase the efficiency
of the PV system which can be translated into a reduction in the cost of energy. Most
of these efforts were done on improving the efficiency of the PV cells themselves
via improving the materials used for their manufacturing, and the other efforts are
introduced to improve the power conditioning circuit used to extract the maximum
available electric power from PV systems. Moreover, much work is done in the
improvement of the integration of the PV system with an electric utility or with
integrating the PV system with renewable or conventional energy sources. One of
the most important issues used to improve the efficiency of the PV energy system
is the maximum power point tracker (MPPT) unit which will be introduced and
discussed in detail in this chapter.

Numerous research works are introduced in the literature to track the maximum
power point (MPP) of the PV systems. All these techniques have cons and pros which
should be discussed in detail in this chapter. For this reason, many review studies
were introduced to discuss these performance characteristics of these techniques.
Most of the review works of MPPT are discussing certain categories of this MPPT,
review a very limited number of techniques, and leave many other techniques not
covered. Based on the present literature, there is no comprehensive work that covers
all salient MPPT in operations, performance, implementations, and evaluation. This
chapter is introduced to fill this research gap and to shed a light on the performance
of different MPPT techniques. With the use of modern soft-computing in MPPT of
PV systems, many new algorithms are introduced and most of the authors of these
techniques claim that their technique is better than others. For this reason, a compre-
hensive review study for the most important MPPT techniques should be introduced
to help researchers for a better understanding of different MPPT techniques. One
of the most recent review works introduced a good review of the techniques that
are used to mitigate the effect of partial shading [4]. This paper [4] classified the
techniques that have been used to mitigate the partial shading effects into two cate-
gories, circuit-based techniques, and MPPT-based techniques. Circuit-based partial
shading condition (PSC) mitigation techniques (reconfiguration techniques) will not
be covered in this chapter. This paper [4] is reviewed only the MPPT in PSC as
one part of the paper and leave the other part for circuit-based PSC mitigation tech-
niques. Moreover, paper [4] classified the circuit-based MPPT techniques into four
categories, namely, conventional, soft-computing, hybrid, and other techniques. This
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paper used all soft-computing techniques as one category as well as all hybrid tech-
niques as one category which will be sub-classified more in this chapter. Another
comprehensive review research paper evaluates 17 MPPT and gives a grade for
each one [5]. This paper introduced discerptions and evaluations for 20 famous soft-
computing MPPT techniques and the evaluation of hybrid between these techniques
and traditional MPPT in terms of the convergence time and failure rate. A similar
review paper is introduced to introduce an index to evaluate these MPPT techniques
[6]. Several types of research introduced an overview of the MPPT techniques intro-
duced in literature [7–20] each one has covered a certain point of view, but there is no
one of them comprehensively covers the most important MPPT, especially in PSC.

The rest of this chapter is designed to show the modeling of PV array, and the
modeling, performance of PV systems in the case of PSC, and the mismatch losses
and generated efficiency calculations in the rest of Sect. 1. Section 2 introduced the
classifications ofMPPT techniques. Section 3 shows the traditionalMPPT techniques
discerptions and evaluations. Section 4 shows the different soft-computing PVMPPT
and details of their performance analysis and operation. Section 5 introduces the
other PV MPPT that are not classified as traditional or soft-computing techniques
such as Voltage Window Search (VWS) [21], Search–Skip–Judge (SSJ) [22], and
Maximum Power Trapezium (MPT) [23]. Section 6 introduces different types of
hybrid PVMPPT that uses two techniques to improve the overall performance of the
PV system. The lase section (Sect. 7) is introduced to summarize the conclusions,
recommendations, and future work out of this review study.

1.1 Modeling of PV Arrays

The PV array is the largest building block of the PV system which consists of
PV panels, then PV modules. The PV modules are consisting of several PV cells
connected in series and parallel to produce the required voltage and current from the
module. So, the PV cell is the basic unit of the PV systems. The PV cell is consisting
of two semiconductor materials from types P and N. The PN junction absorbs the
light from the Sun which adds energy to the electrons in this junction enabling it to
have enough energy to cross the junction and produce voltage difference between
their terminals. The voltage difference between these terminals can produce power
when they are connected through an electrical load. The amount of generated power
from PV cells depends on the voltage difference, temperature, and irradiance value.
Different kinds of semiconductor materials have been used in the fabrication of PV
cells, where crystalline silicon PV cells are the most widely used [24]. All the PV
cell technologies have the same modeling with different values of parameters that
will not affect the general modeling shown in this chapter.

Numerous research works have been introduced in the literature to mathemati-
cally model the PV cells [25–29]. The one-diode model is shown in Fig. 1 is widely
used in the modeling of most PV cells due to its simplicity and it helps in avoid-
ance of the redundancy that may occur in another modeling of PV cells that have a
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Fig. 1 Equivalent circuit of
the PV cell using a one-diode
model
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higher number of diodes. Moreover, the one-diode model parameters can be easily
determined experimentally [25, 28]. The two-diode model has also been used in
the literature [26]. This model introduced one more diode to accurately model the
PV cells, meanwhile, it will increase the model complexity. Some other researchers
introduced a three-diode model to accurately model the PV cell [30]. The one-diode
PV cell model is shown in Fig. 1 and is shown in the following equations [24, 31].
The output current generated from the PV cell is shown in (1).

IPVC = ILG − Isat ∗
[
e(

q
KT (VPVC+Rs IPVC)) − 1

]
− VPVC + Rs IPVC

Rsh
(1)

where

ILG The light-generated current for given radiation and temperature.
Isat The reverse-saturation current.
K Boltzmann’s constant.
q The electron charge.
VPVC Terminal voltage of PV cell.
IPVC Output current of PV cell.
T The current surrounding temperature.
Rs, Rsh Series and shunt resistors of PV model.

The light-generated current for given radiation and temperature can be obtained
from (2)

ILG = (ISTC + KI (Tc − Tr ))
G

Go
(2)

where

ISTC The photovoltaic current at the standard test conditions.
KI The short-circuit current coefficient.
Go The standard irradiance which is normally taken as 1000 W/m2.
G The current radiation in W/m2.
Tr The rated temperature in K°.
Tc The cell temperature.

The module voltage can be obtained by (3)

VM = VPVC ∗ NSC (3)
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where NSC is the number of series cells within the module.
The module current can be obtained by (4)

IM = IPVC ∗ NPC (4)

where NPC is the number of parallel branches within the module.
Connecting several modules in series and parallel is forming the PV array and its

voltage and current are determined from the following equations:

VPV = VPVC ∗ NSC ∗ MS (5)

IPV = IPVC ∗ NPC ∗ MP (6)

where MS is the number of modules connected in series and MP is the number of
modules in parallel.

Multiplying the terminal voltage by the output current determines the generated
power from the PV array. The relation between the terminal voltage and current in
uniform condition for different irradiances, and the relation between the terminal
voltage and output power are shown in Fig. 2. It is clear from Fig. 2 that the PV
power is directly proportional to the voltage in the regions, where the voltage less
than optimal voltage, V opt, and inversely proportional to the voltage in the region of
a voltage higher than V opt. The maximum power, Pmax, occurs at the value of optimal
voltage, V opt. The maximum power tracking techniques are used to track the MPP

Fig. 2 The I–V and P–V characteristics of PV array
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and force the PV array to work at the optimal terminal voltage, V opt. Also, it is clear
from the locus of MPP that the MPP lies in a narrow range of voltage.

1.2 Partial Shading Conditions

The partial shading occurred in PV array due to the shading of static and moving
objects such as trees, buildings, accumulation of dust on panels, or passing clouds.
The PV array characteristic is badly affected and the generated energy is considerably
reduced. As has been discussed above, the PVmodules should be connected in series
and parallel to form the PV array. Due to static or moving objects, shading may be
performed on some of these modules and it faces different irradiances than others
which are called the partial shading condition (PSC). Due to different irradiances
on series modules, the same current should follow through all series modules which
makes some modules work as a load on the unshaded modules. Due to the current
flow in the shaded PV cell higher than the generated current, the terminal voltage will
become negative. Due to this negative voltage, the temperature of the shaded module
will be increased especially with a high number of modules connected in series.
This high temperature may destroy the shaded modules based on a phenomenon
called hot-spot [32]. This condition can be dangerous where it may cause the hot-
spot phenomenon on the shaded modules which can destroy the shaded modules,
especially when too many modules are connected in series. For this reason, a parallel
diode should be attached to each module to bypass the shaded modules when their
voltage tends to be reversed to protect these modules from the hot spot phenomenon.
Also, each branch should be connected in series with a blocking diode as shown in
Fig. 3 to block the flow of current from another branch.

Many comprehensive types of research are introduced to the model, discuss,
and to remedy the PSC [33, 34]. Due to the partial shading conditions, the P–V

Fig. 3 PV array showing the
bypass and blocking diodes
connection

Bypass
diodes

Blocking 
diode
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Fig. 4 The I–V and P–V characteristics of the PV array under PSC

characteristics of the PV array is having multiple peaks, the one having the highest
power is called global peak (GP) and the other peaks are called the local peaks (LPs).
Figure 4 shows the I–V and P–V characteristics with a different number of peaks in
the case of PSCs.

It is clear from Figs. 2 and 4 that the generated power is varying with its terminal
voltage which forces the designers to use a DC/DC converter at the terminal of the
PV system to control this voltage and consequently control the generated power.
The control system of the DC/DC converter should ensure that the PV array works
at its MPP to increase the generated power and efficiency. The connection of the
DC/DC converter can be connected in several configurations as shown in Fig. 5. The
first configuration is done by connecting the PV array in many parallel branches and
each branch is consisting of many modules in series, which is called “centralized
configuration.” In the centralized configuration, the PV array has a single terminal
and it will be connected to a single DC/DC converter and DC/AC inverter. This
configuration is using only one MPPT tracker, meanwhile, the mismatched power
is the lowest among the configurations shown in Fig. 5. The other configuration is
called the “multistring configuration” PV system. In this system, the branches of the
PV array are divided among multiple DC/DC converters. This technique has higher
efficiency than the centralized PV system because each string is connected to one
DC/DC converter andMPPT technique which provides more freedom to eachMPPT
to work separately in tracking the maximum power available. The third configuration
is called “string connection” in which each branch is connected to its own DC/DC
converter and theMPPT techniquewhich givesmore freedom to the control system to
force each branch to work at its own maximum power which increases the generated
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Fig. 5 Different configurations are used to interface PV energy systems to the utility grid

efficiency than the two previous techniques. The DC output can be connected to a
common DC link and the inverter/inverters convert this DC power to AC or each
DC converter can be connected to a separate inverter. A smart string configuration is
introduced in [35, 36] using an interleaved boost converter. In this configuration, each
branch is connected to one branch of the boost converter as shown in Fig. 6. In this
configuration, one interleaved boost converter is used and one PSOMPPT technique
is used with swarm size equal to the number of branches of the boost converter.
The results obtained from this configuration is showing higher efficiency than the
previous configurations discussed above. The last configuration is called “Module
configuration” in which each module is connected to separate DC/DC converter and
MPPT module. This configuration is complex and expensive due to the need for the
DC/DC converter for each module, meanwhile, it provides the highest freedom to
the control system to track the GP of each module which can increase the generation
efficiency substantially. Detailed discretions of these configurations are shown in
many researches [1, 37, 38].

Constant Frequency
PWM Converter

Utility
Grid

C

LCL
Filter

PV Array

Fig. 6 String configurations used interleaved boost converter
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1.3 Mismatch Power Loss

Two different kinds of mismatch occurred in the PV array, static and dynamic
mismatch. The static mismatch occurs due to many reasons such as the different
tolerance in the module, different aging effects, and different tilt angles of modules.
The losses due to static mismatch are in the range from 0.3 to 2.5% [39].

The dynamic mismatch occurs mainly from dynamic partial shading when static
or moving objects on the PV array. As discussed before the modules should be
connected with bypass diodes and each branch should be connected with blocking
diode as shown in Fig. 3 to avoid the hot spot and the possibility of damage to shaded
modules. Due to the PSC occurrence, the generated power will not be the same in
all parts of the PV array. The generated power will be lower than the sum of the
available power that can be generated from a separate PV module even the PV array
works at the GP. The relation between the generated power from the PV system and
the sum of individual peaks from each module is called mismatch loss (MML). The
formula used to determine this relationship is shown in Eq. (7). The higher values of
MML mean that the generated power from the PV system is very near to the power
available in the PV array and vice versa. This relation is sometimes called MPPT
power efficiency (MPE) [40]. In the case of uniform irradiance and the system work
at the MPP, the MML value will be 100%.

MML = Maximum power of whole PV system∑N
i=1 Pmax(i)

∗ 100 (7)

where N is the total number of PV modules in the PV array.
Another evaluation parameter is used to evaluate the MPPT technique called

MPPT energy efficiency (MEE). This parameter is used to measure the percentage
of PV output energy to the maximum energy available during a certain period of time
as shown in (8) [40]:

MPE =
∫ T
t=0 P(t) dt∫ T
t=0 Pm(t) dt

∗ 100 (8)

where T is the period of time

2 Classifications of MPPT Techniques

The MPPT techniques have been classified based on different methodologies. Some
classifications are based on several variables used to track the MPP of the PV system
[41]. Most of the classifications used are based on the use of the module parame-
ters in the MPPT operation to model-based and non-model-based. The model-based
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MPPT techniques are done using the model parameters of the PV array to deter-
mine the optimal operating model. The model-based techniques are suffering from
many problems, especially the low accuracy, the high mathematical burden that
can reduce the convergence time, and introduced complexity to the implementa-
tion of these techniques. Moreover, the model-based MPPT techniques need extra
weather sensors to measure the radiation and temperature. These techniques are
not suitable to work with systems facing PSC because it is not practical to have
many weather sensors near to each PV module and it will need too much mathe-
matical operation to get the GP in the case of PSC. These techniques are sometimes
called offline techniques [41, 42]. An example of offline or model-based techniques
is the fractional open-circuit voltage, fractional short-circuit current, curve fitting-
based, and numerical calculation-based techniques. The other category of MPPT
is the online or non-model-based are included in most of the MPPT techniques.
The online-based (non-model-based) MPPT techniques can be further classified into
traditional, soft-computing, hybrid, and others. The soft-computing is further classi-
fied into chaos, artificially intelligent (sometimes called brain-inspired computing),
and metaheuristic techniques. These categories are further classified as shown in
Fig. 7.

3 Traditional MPPT Techniques

3.1 Direct Estimated Methodology (DEM)

Directly estimated methodology (DEM) is an offline MPPT methodology that uses
the module parameters and an accurate model of the PV array and determines the
optimal voltage, V opt, based on the available weather condition (Solar irradiance
and temperature) [43]. The control system used the reference value of the voltage
to force the PV array to work around this value. The main shortcoming of this
technique is the need for four sensors (voltage, current, radiation, and temperature
sensors). Moreover, an inaccurate model of PV array parameters or sensors or the
effect of degradation on the PV array can produce wrong values of the PV terminal
voltage reference V opt which can reduce the system efficiency. In addition to these
shortcomings, this technique is not able to track the GP in the case of PSC.

3.2 Fractional Open-Circuit Voltage (FOCV)

As has been shown in Fig. 2 the terminal voltage at the MPP is located around
an approximately constant voltage for all operating conditions of the uniformly
distributed irradiances. Where the optimal voltage of the PV array is proportional to
the open-circuit voltage as shown in (9). This technique can be classified as one of
the traditional MPPT techniques and mathematical-based MPPT.
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Vopt = kv ∗ Voc (9)

where kv is a proportionality factor and it has a value between 0.71 and 0.78 [44,
45]; the accurate value of kv is depending on the PV cell materials and this value
can be determined in the lab to be used in the control system. This technique is
the simplest and fastest MPPT technique. However, this technique is suffering from
many problems which make its use in modern PV systems is very rare. The problems
associatedwith this technique are the need to frequently disconnecting the PV system
to measure the open-circuit voltage, the low efficiency, especially in the case of using
the inaccurate value of kv, and the inability to work with PSC.

3.3 Fractional Short-Circuit Current (FSCC)

The locus of MPP on I–V curves shown in Fig. 2 shows that the optimal current, Iopt,
is linearly proportional to the short-circuit current. The relation between the optimal
current, Iopt, and short circuit is shown in (10). This technique can be classified as
one of the traditional MPPT techniques and mathematical-based MPPT.

Iopt = ki ∗ ISC (10)

where ki is the current proportionality constant, its value is varied between 0.78 and
0.92 depending on the PV cell materials [45].

This technique is very simple and fast (as the fractional open-circuit technique)
compared to other traditional MPPT techniques. The main shortcomings associated
with this technique are the need to isolate the PV array from the system to perform
a short-circuit on its terminals to measure the short-circuit current, the inaccurate
values of current proportional constant, the inability to work with PSC. The problem
of frequently short-circuit measures on the PV array with this technique can be a
complex operation with a very large PV array where the short-circuit current needs
special measurement tools and precautions [41].

3.4 Look-up Table (LuT)

This technique is used themodule data, weather data, to calculate the voltage required
for each operating condition and tabulate these data in a look-up table (LuT). This
is a very fast MPPT technique compared to the other traditional MPPT techniques
discussed above. The efficacy of the operation of the system is depending on the
accuracy of the module parameters, sensor accuracy, and the accuracy of the model
used to calculate the MPP. To overcome this shortcoming, the data of the look-
up table were collected experimentally [46]. This technique is not favorite in real
applications because it needs a control system with big memory size and the need
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for radiation and temperature sensors. This is one of the offline MPPT techniques
that need accurate knowledge about the PV module parameters and characteristics.
This technique cannot be used with the PSC which is one of the main shortcomings
of this technique [41].

3.5 Hill-Climbing (HC)

The most famous traditional MPPT techniques are the hill-climbing and perturb
and observe techniques. The main difference between these two techniques is the
hill-climbing is using a perturbation in the duty ratio of the DC/DC converter and
determines the change in duty ratio based on the change in power. Meanwhile, P&O
introduces a perturbation in the terminal voltage of the PV array. This is the only
difference between the operation of these two techniques, and for this reason, a
detailed comparison between their operation and performance is shown in [47]. This
technique needs only the voltage and current sensors. In the hill-climbing technique,
when there is a positive increase in the duty ratio produces an increase in power the
control system should keep an increase in duty ratio and vice versa. The flowchart of
the HCMPPT technique is shown in Fig. 8. The main shortcomings of hill-climbing
as most of the traditionalMPPT techniques are the inability to capture the GP and the
slow response to the fast change in the weather conditions. The problem of missing
the GP in the case of PSC can be avoided by hybridizing the hill-climbing technique
with other smart techniques to help HC to capture the GP at the beginning of tracking
operation and transfer the control to HC to track the maximum power around this

Fig. 8 The hill-climbing
flowchart
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GP. The problem of slow response can be avoided using the variable step size [48].
Where increased step size (ΔD) increases the convergence speed but it causes high
oscillations around the MPP which reduces the generation efficiency and instability.
Meanwhile, the low step size has the opposite effect. At the starting of the tracking
period or acute change in radiation, the control system needs high step size value
to capture the MPP swiftly but this high step size will cause oscillations around the
steady state. For this reason, a variable step size technique has been introduced to
avoid the sluggishness of the HC in starting and oscillations around the MPP. In this
case, the HC uses a high value of step size in the starting or disturbance and low step
size at steady state. An adaptive step size HC MPPT used with a boost converter is
introduced to determine the optimal step size to reduce the convergence time and
reduce the oscillations around the MPP [49].

3.6 Perturb and Observe (P&O)

Perturb and Observe (P&O) method has been used widely in the MPPT of the PV
system due to its superior performance and simple implementation. This technique
is outperforming the performance operation of HC in terms of convergence time
and oscillation around the MPP. This technique needs only the voltage and current
sensors. This technique perturbs the terminal voltage reference of the PV array and
collects the corresponding power, if the power increased it will move in the same
direction otherwise it will change the sign of the perturbation Fig. 9 shows the
operation principles of the P&O technique [50]. Many modified strategies have been

Fig. 9 The P&O flowchart
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introduced to this technique to reduce the convergence time and the oscillations
around theMPP. One of thesemodifications is done by using a variable step size [51].
This technique has goodperformance in uniformly distributed irradiance,meanwhile,
it may stick at one of the LPs in the case of PSC. For this reason, many efforts have
been introduced in the literature to improve the P&O in the case of PSC. One of
these efforts used scanning values of operating voltage and force the normal P&O to
work around the one having the highest power [52, 53]. This technique success with
a reasonable limit to capture the place of the GP in the case of partial shading but it
increases the convergence time.

Vref = V + �V
(i f V > Vold and P > Pold)
(i f V < Vold and P < Pold)

Vref = V − �V
(i f V > Vold and P < Pold)
i f V < Vold and P > Pold

(11)

3.7 Incremental Conductance (InCond)

Most of the shortcomings discussed with HC and P&O techniques are now avoided
by using the incremental conductance (InCond), where the convergence time asso-
ciated with the IncCond is considerably reduced and the dynamic performance of
the InCond with rapid change in the weather conditions is substantially improved.
Moreover, the oscillation around the MPP of the PV array is substantially reduced
too. The high tracking speed, accuracy, and low oscillations at steady state make the
InCond is one of the most widely used traditional MPPT techniques. This technique
employs the characteristics of the P–V curve of PV array to track the MPP taking
into consideration that the MPP is located at zero slopes of the curve. Moreover, the
slope of the curve is positive when the operating voltage is lower than the optimal
voltage and negative when the operating voltage is lower than the optimal voltage.
The logic used in the InCond is to determine the derivative of power concerning
voltage as shown in (12) and increment the voltage based on the sign and value
of this derivative. The results obtained from (12) can be written as shown in (13).
Equating the left-hand side of (13) by error signal e as shown in (14) and trying to
minimize this value to become zero will accelerate the convergence to the MPP. The
flowchart of InCond MPPT technique is shown in Fig. 10.

The performance of InCond can be further improved in terms of convergence time
and oscillations around the MPP by using variable step size as the one used with HC
and P&O [54]. Regarding the high failure rate of InCond with PSC, a modified
technique is employed several values of duty ratios in starting to scan the position of
GP, then transfer the control to the InCond to track theMPP around this value [52, 55].
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Fig. 10 Flowchart of
incremental conductance
MPPT technique

dP

dV
= d(V × I )

dV
= I + V

d I

dV
= 0 (12)

d I

dV
+ I

V
= I (i) − I (i − 1)

V (i) − V (i − 1)
+ I (i)

V (i)
= 0 (13)

e = I (i) − I (i − 1)

V (i) − V (i − 1)
+ I (i)

V (i)
(14)

3.8 Beta Optimization Algorithm (BOA)

This technique uses the characteristics of the PV array to determine β factor that can
capture the GP faster than most of the traditional MPPT. This technique is first intro-
duced in 2007 by Jain andAgarwal [56]. The value of beta can be obtained from (15):

β = ln

(
I

V

)
− c × V (15)

where c can be determined from (16)

c = q/(k × T × η) (16)
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where I and V are the terminal voltage and output current from the V array, respec-
tively, q is the electronic charge, k is the Boltzmann’s constant, η is the diode quality
factor, T is the ambient temperature in Kelvin.

From the PV array model or the actual measurements, the two extreme values
of beta, βmin, and βmax can be determined. The new value of the duty ratio of the
DC/DC converter is determined from (17):

D( j + 1) = D( j) + (βg − βa) N (17)

where j is the iteration number, βg is the value of β at the temperature that the PV
module will work at it most of the time and it is used to determine the reference or
duty ratio corrections, βa is the actual value of β.

A comprehensive comparison between the beta algorithm and other traditional
MPPT techniques is introduced in [57] showed that the beta algorithm has the highest
efficiency, the fastest convergence, the lowest transient in the steady state, and has
the best overall performance operation compared to the other traditional MPPT
techniques.

The beta algorithm is further improved in 2016 [58] by adopting the value of N in
(17) to be higher at transient than the steady-state conditions. In the case of a steady
state, the control will move to the P&O to reduce the transient at steady-state condi-
tions. This modification further improved the convergence speed and the transient
at the steady-state condition which can put the beta algorithm in the best traditional
MPPT techniques. The flowchart showing the modification of the beta algorithm is
shown in Fig. 11. Although the superior operating performance in capturing theMPP
in the case of uniformly distributed irradiances, meanwhile it will not have the ability
to capture the GP in the case of PSC. Moreover, this technique needs three sensors
(voltage, current, and temperature sensors) which can add a cost to the hardware
implementation of this technique.

Fig. 11 The flowchart of the
beta optimization algorithm
for the PV MPPT technique



134 A. M. Eltamaly

Fig. 12 The flowchart of
RCC PV MPPT technique

3.9 Ripple Correlation Control (RCC)

The idea used in the ripple correlation control (RCC) is to minimize the time deriva-
tive of power and current of PV array to become near to zero. The time variation of
power and current near the MPP is zero, so RCC is used the ripples in the power,
voltage, and current to becomeminimum or tend to zero to be sure the control system
work at the MPP. This technique is implemented in [59] using analog circuits and is
modified to reduce the convergence time in many other types of research. The advan-
tage of this technique is it does not need prior information about the parameters of
the PV array which enables it to work with any PV system with any performance
characteristics. This technique will not able to capture the GP in the case of PSC.
The flowchart showing the logic used in RCC is shown in Fig. 12.

3.10 DC-Link Capacitor Droop Control (DCLCDC)

This technique is designed especially for the PV systems that are integrated with
the AC utility grid. This technique depends on maximizing the output power from
the DC-link capacitor to the inverter without drooping the DC-link voltage. This
can be accomplished by controlling the duty ratio of the DC/DC converter and the
power angle andmodulation index of the inverter. This technique is used with a boost
converter and sine wave PWM inverter in [45, 60]. Like all the traditional MPPT
techniques, the DC-link capacitor droop control is not able to capture the GP in the
case of PSC.
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3.11 Load Current or Load Voltage Maximization (LCLVM)

The idea behind this technique is the capturing depending on maximizing the output
power connected to the DC-link of DC/DC converter. This technique has been used
with a voltage source and current source converter [61, 62]. In using of voltage source
converter, the control system is maximizing the output power through maximizing
the output current by controlling the modulation index and power angle as well as the
duty ratio of DC/DC converter. In the current source converter, the control system is
maximizing the output voltage which can increase the output power. This PVMPPT
will not able to capture the true GP because it is assumed that the converters are
lossless. Moreover, this technique will not able to work with the PSC because it may
stick at one of the LPs.

3.12 Three-Point Bidirectional Perturbation (TPBP)

Three-point bidirectional perturbations based on three-point disturbance observation
are utilizing three operating points that work in different duty cycles, using two points
to restore a virtual operating point which is the same PV characteristic curve as the
rest of the point. In this paper, a novel three-point disturbance observation algorithm
is presented based on three specially configured points continuously sampled from
the PV array. The points include the current operation point, a point perturbed from
the mentioned point, and another point perturbed in the opposite direction from
the operation point. The proposed operation mode reduces the losses caused by
the oscillation of running the MPPT algorithm [63]. The flowchart showing the
three-point bidirectional perturbation (TPBP) is shown in Fig. 13.

3.13 Curve-Fitting Algorithm (CFA)

Curve-fittingMPPT technique is using the PVmodule parameters andweather condi-
tions to derive third-order curve fitting polynomial as shown in (18). The first deriva-
tive of the power shown in (19) is equal to zero at theMPPof the P–Vcurve. The value
of optimal voltage, V opt, can be determined from (20) [41]. This equation produces
twovalues of optimal voltage; the real value can be easily selected. This technique can
be classified as a model-based, offline, traditional, and mathematical-based MPPT
technique. This technique also is not able to capture the GP in PSC.

P = aV 3 + bV 2 + cV + d (18)

dP

dV
= 3aV 2 + 2bV + c = 0 (19)
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Fig. 13 The Three-point
Bidirectional Perturbation
(TPBP)

Vopt = −b ± √
b2 − 3ac

3a
(20)

3.14 Bisection Search Technique (BST)

This bisection search technique is introduced in 2010 [64] to track the MPP of the
PV energy system. This technique used the well-known bisection theorem to track
the MPP of the PV system.

Assume y = ΔP/ΔD, it is required to get the duty ratio that has y = 0. Three
points are selected to start the tracking process Da = 0, Db = 0.5, Dc = 1

Then determine the values of ya, yb, and yc from the following Eqs. (21)–(23)

ya = P(Da + �D) − P(Da)

�D
(21)

yb = P(Db + �D) − P(Db)

�D
(22)
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Fig. 14 The flowchart of the Bisection search technique

yc = P(Da) − P(Da − �D)

−�D
(23)

Then check if ya*yb < 0, then Da = Da, Dc = Db, and Db = (Da + Dc)/2,
Else if yb*yc < 0, then Da = Db, Dc = Dc, and Db = (Da + Dc)/2,
Else, (This means that all of them (ya, yb, yc) have the same sign due to acute

change in the radiation, and in this case, the system should start from the beginning.
The flowchart of the BST is shown in Fig. 14. The value of ΔD should be chosen
carefully, where a large value may capture theMPP faster but it will have oscillations
around the steady state and vice versa. It is recommended to be used about ΔD =
0.01 in [64].

3.15 Slide Mode Control (SMC)

Sliding mode control theory is used in the application of PV MPPT of PV systems
[65]. This technique used �P/�V to switch on and off the DC/DC converter. The
value �P/�V can be obtained from (24) [65]. The DC/DC converter used in this
study is a buck converter. Based on the value of �P/�V , the DC/DC converter will
be switched on and off based on the condition shown in (25).

�P/�V = I + (�I/�V ) ∗ V (24)
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S =
{
0 �P/�V ≥ 0
1 �P/�V < 0

(25)

where I, V, P are the current, voltage, and power output from PV array.
Another research [65] is used a full-bridge single-phase PWM inverter to directly

track the MPP of the PV system and to convert the DC power from the PV system
directly to AC power that can be connected to the utility grid. This technique showed
a very fast convergence time but it will not have the ability to trach the MPP in the
case of PSC.

3.16 Transient-Based MPPT (TBM)

This PV MPPT is introduced in 2009 [15] by using a single-stage inverter single or
three-phase converter. In this technique, the control system determines the maximum
and minimum voltage, Vmax, Vmin, respectively. The control system samples the
change in current and, if this change is positive, it forces the voltage toVmax, otherwise
reference voltage to Vmin. This technique has very fast convergence, meanwhile,
it suffers from many disadvantages such as the high transient around steady-state
conditions and its inability to work with the PSC. A detailed discerption of this
technique is shown in [15, 41].

3.17 Current Sweep MPPT (CSM)

This technique is depending on sweeping the current of PV array through the terminal
capacitor and using these values of current to determine the voltage and power at
MPP [66]. The mathematical modeling of this technique is performed based on that,
the current function obtained from the current sweep is proportional in its derivative
as shown in (26) [41].

f (t) = k
d f (t)

dt
(26)

where k is the constant of proportionately.
Applying the above equation to determine the time derivative of power as shown

in (27).

dP(t)

dt
=
(
V (t) + k

dV (t)

dt

)
d f (t)

dt
= 0 (27)

The solution of the above differential equation is shown in the following equation:
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f (t) = Imax e
(kt) (28)

The optimal current can be determined from the above equation. The optimal
voltage can be determined from the following equation:

dP(t)

dt
=
(
V (t) + k

dV (t)

dt

)
d I (t)

dt
= 0 (29)

3.18 Comprehensive Comparison Between Traditional
MPPT Techniques

After discussing the traditional MPPT techniques in the above chapter, it has been
listed in the following Table 1 for the purpose of comparison.

Table 1 A comprehensive comparison between traditional MPPT techniques

No. MPPT
technique

Convergence
speed

Tracking
efficiency

Oscillations
at
steady-state

No of
sensors

Implementation
complexity

PSC
MPPT
ability

1 DEM High Low Low 3 Medium NO

2 FOCV High Low Low 3 Low NO

3 FSCC High Low Low 3 High NO

4 LuT High Low Low 3 High NO

5 HC Low Low High 2 Low NO

6 P&O Low Low High 2 Low NO

7 InCond High High Low 2 Medium NO

8 BOA Medium Medium Low 3 Medium NO

9 RCC Medium Medium Medium 2 Medium NO

10 DCLCDC Medium Medium Medium 2 High NO

11 LCLVM Medium Medium Medium 2 High NO

12 TPBP Medium Medium Low 2 Medium NO

13 CFA High Low Low 2 Medium NO

14 BST Low High Low 2 Low NO

15 SMC High High Low 2 Medium NO

16 TBM Medium Medium Medium 2 Medium NO

17 CSM Medium High Medium 2 High NO
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4 Soft-Computing MPPT Techniques

Soft-computing techniques are classified into three different categories as has been
shown in Fig. 7 to four different techniques. These techniques are listed in the
following points:

• Artificial Intelligent (AI)
• Metaheuristic Algorithms (MA)
• Chaos optimization algorithms (COA).

4.1 Artificial Intelligent (AI) MPPT Techniques

Two types of artificial intelligent techniques have been introduced in this chapter to
work as anMPPT of PV systems. These two techniques are the fuzzy logic controller
and an artificial neural network.

4.1.1 Fuzzy Logic Controller (FLC)

Fuzzy logic controller (FLC) is one of the soft-computing techniques that has been
used as MPPT of PV systems [67–69], as well as in the motor drive control and
renewable energy applications [69–73]. This technique is one of the most important
PV MPPT techniques because it is a very fast convergence and it has very low oscil-
lations in steady-state conditions. The fuzzy logic controller has one more advantage
where it does not need accurate inputs measure or accurate PV array modeling. The
operation of FLC is consisting of three parts, fuzzification, Aggregation, and defuzzi-
fication. In the fuzzification stage, the input variables are defined as a membership
function. Moreover, linguistic relations (rules) between input and output is intro-
duced in this part. The aggregation stage is done by combining the output fuzzy sets
of each rule to perform one output fuzzy set. The defuzzification stage is done by
defuzzifying the fuzzy set into crisp output. The use of FLC is introduced in many
studies and it has been used separately or with other MPPT as will be discussed in
the hybrid MPPT section of this chapter. The operation of PV MPPT using FLC is
done by calculating the change of power divided by the change in voltage which is
called the error signal as shown in (30). The value of change of error, ΔE is defined
as shown in (31).

E(n) = P(n) − p(n − 1)

V (n) − V (n − 1)
(30)

�E(n) = E(n) − E(n − 1) (31)

The error function and change of error that can be obtained from (30) and (31),
respectively, should be expressed based on labels such as; PB (Positive Big), PM
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(PositiveMedium), PS (Positive Small), ZE (Zero), NS (Negative Small), NM (Nega-
tive Medium), NB (Negative Big) using a basic fuzzy subset. These linguistic vari-
ables are modeled in a mathematical membership function. The error function, E,
and change of error, ΔE are two input functions in the FLC as shown in Fig. 15
[68]. In the same figure, the output will be the change in duty ratio, ΔD which will
be expressed as membership in the FLC output which will be added to the old duty
ratio to determine the new duty ratio to control the DC/DC converter. Many shapes
of membership functions can be used to express the input and output variables,
where triangle membership functions are used as shown in Fig. 17. Some researches
proportionate these variables to only five fuzzy linguistic variables as shown in [74].
Table 2 shows the linguistic variables that can be translated into 7*7 fuzzy rules that
can describe the logic of control as shown in the following:

Fig. 15 The membership functions of FLC for inputs and output variables

Table 2 FLC Rules for seven membership functions

E �E

NB NM NS ZE PS PM PB

NB NB NB NB NB NM NS ZE

NM NB NB NB NM NS ZE PS

NS NB NB NM NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PM PB PB

PM NS ZE PS PM PB PB PB

PB ZE PS PM PB PB PB PB
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Fig. 16 FLC 3D Surface function

R25 : I f E is NM and �E is PS then �D is N S

R63 : I f E is PM and �E is N S then �D is PS

. . .

R51 : I f E is PS and �E is N B then �D is NM

During the defuzzification stage, the output from the rules should be converted
to numerical values using the output membership function. This value in the output
is the change in the duty ratio, ΔD that should be added to the old duty ratio of the
DC/DC converter. The height of the defuzzification can be obtained from (32) to
determine the numerical value of change in duty ratio ΔD [69].

�D =
(

m∑
k=1

c(k) ∗ Wk

)
/

n∑
k=1

WK (32)

where c(k) is the peak value of each output membership function.
Wk = height of rule k, where is k = 1,2, …49.
The surface function 3-D drawing is a drawing representing the relation between

the inputs and the output of the fuzzy controller is shown in Fig. 16. The surface
function should be smooth to enhance the stability of the FLC.

4.1.2 Artificial Neural Network (ANN)

The artificial neural network (ANN) is a soft computing technique that has been
used in many applications. This technique models the performance operations of
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Fig. 17 The structure of the neural network

biological neural systems into amathematical system. ANN requires somany careful
training processes to enable it to learn how the system reacts to different inputs.

The ANN is used as a PV MPPT by getting accurate results including the solar
radiation and temperature as input parameters and the optimal voltage or duty ratio
as output parameters. The data can be collected mathematically from the model of
the PV array or from the use of other MPPT in actual life to collect the input and
output parameters to train the ANN and benefit from its fast response. Both data
collections are not accurate because the model may be different from the actual array
due to different tolerance and aging reasons. Also, the real-world data are taking
an effort to collect these data and time. Despite the superiority of ANN in many
applications, it is not gain the same attention when it is used as an MPPT of PV
system due to many problems inherited in this application. One of these problems is
the need for a higher number of good data and its inability to be used in PSCs. A lot
of modifications have been introduced in the literature to improve the performance
of ANN when it is used as an MPPT of the PV systems. One of these modifications
is to use the results obtained from ANN (optimal voltage or optimal duty ratio) and
after that, it will transfer the control to the InCond technique for accurately track the
MPP [75]. The structure of the neural network is shown in Fig. 17.

4.1.3 A Comprehensive Comparison Between Artificial Intelligent (AI)
MPPT Techniques

A comprehensive comparison between Artificial Intelligent (AI) MPPT Techniques
is shown in Table 3.
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Table 3 Comprehensive comparison between Artificial Intelligent (AI) MPPT techniques

No. MPPT
technique

Convergence
speed

Tracking
efficiency

Oscillations
at
steady-state

No of
sensors

Implementation
complexity

PSC
MPPT
ability

1 FLC High High Low 2 High NO

2 ANN High Medium Low 3 High NO

4.2 Metaheuristic Algorithms (MA)

Metaheuristic MPPT Techniques can be classified as shown in Fig. 7 into four
different categories which are listed in the following points

• Swarm Intelligence Algorithms (SIA)
• Bio/Natural-Inspired Algorithms (BNIA)
• Evolutionary Algorithms (EA)
• Mathematical-Based Algorithms (MBA).

4.2.1 Swarm Intelligence Algorithms (SIA)

Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) is one of the best swarm optimizations that
mimics the behavior of animals, birds, or fish in searching for their food. This tech-
nique is introduced in 1995 by Kennedy and Eberhart [76]. The PSO is a stochastic
evolutionary optimization technique that uses several searching agents to look for
optimal solutions. This technique uses the best optimal values as a social or cognitive
experience and the best value for each particle as a private best experience.

The idea behind using the PSO in tracking the MPP of the P–V curve is done
by sending a certain number of particles (swarm size) each one is having a certain
value of duty ratio of DC/DC converter one by one to the PV system and collect the
corresponding power. In many papers [77–81], the DC/DC converter used in the PV
system was a boost converter but any other type of DC/DC converters can be used.
The particle position, D, and the value, P, are used to determine the new position of
particles using the PSO equation obtained from (33) to (34). Consecutive iterations
will be used to control themovement and position to capture theGP. The new position
of particles in each iteration depends on their previous position and values and social
and private experiences. Themovement of each particle is obtained from (33) and the
new position Dk

j+1 is equal to the previous position Dk
j plus the newmovement, vkj+1.

The values of the PSO control parameters ω, cl, and cg substantially affect the
performance of PSO in terms of convergence time, failure rate, and oscillations
around the global best value. Tuning these parameters is very important to get the
best performance or by using the previous experience of previous researches [79–81].
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During the initialization of the PSOwhen it is used as anMPPT of the PV system,
the particle associated with the highest power is assigned to the global best, value,
PGbest, and position, Gbest. Moreover, the particles’ private best values, Pk

best and
positions, Dk

best are equated to the particle’s value and position of the initialization.
The initial speed is set to zero value. The flowchart showing the logic used in the use
of PSO as an MPPT of the PV system is shown in Fig. 18. The steps of the operation
of PSO as an MPPT of PV systems are introduced in detail in [77–82].

vkj+1 = ω vkj + clrl(D
k
best − Dk

j ) + cgrg(Gbest − Dk
j ) (33)

Dk
j+1 = Dk

j + vkj+1 (34)

where j is a counter representing the iteration number that states from 1 to the
maximumnumber of iterations, it.ω, cl, and cg are called the PSO control parameters,
Dk

best is the personal best position of the particle k, Gbest is the global best position,
rl and rg are random values in between [0, 1].

Despite the superiority of using PSO as an MPPT of the PV system, it has
many shortcomings and all of these shortcomings have been solved in literature.
The following points are showing these shortcomings and how they are solved in
literature. Most of these shortcomings in the PSO are occurring in most of other
swarm optimization techniques, and for this reason, it will be discussed for PSO in
detail to be as guidance for other swarm optimization techniques. The PSO also has
been used in optimal sizing and allocations of hybrid renewable energy systems and
distributed generation [83–93].

(a) The problem of long convergence time and high failure rate

There are many reasons to participate in this problem such as the random initializa-
tion of particles, this problem is solved by initializing the particles at the anticipated
position of peaks [77]. The position of the anticipated peak can be determined from
(35) [77]. Another technique is used by uniformly distribute the initial positions of
particles within the searching space as shown in (36) [79]. Initializations of particles
at positions of anticipated peaks [77] or at equal distance in the searching space [79]
reduced the convergence time by more than 50% and reduced the failure rate to zero
[79].

The swarm size can substantially affect the convergence time and failure rate,
where the high value of swarm size can prolong the convergence time and reduces
the failure rate and vice versa. This trade-off effect forces the researchers to look
for the optimal value of swarm size which has been accomplished in [94] for PSO
and BA when it is used as an MPPT of the PV system. This paper [94] introduced
the optimal value of swarm size against the number of peaks in the P–V curve for
minimum convergence time and failure rate.

Dk
0 = 1 − (k − 1 + kv)

SS
∗ Voc

VDC
(35)
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Fig. 18 The flowchart of using PSO as an MPPT of PV systems

where n is the total number of particles and i is the particle’s order.

Dk
0 = k/(SS + 1) (36)

where Dk
0 is the k-th initial particle position (duty ratio), k is the counter used to

represent the number of the particle in the swarm (k = 1,2,…SS).
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The unwise selection for PSO control parameters (ω, cl, cg) has a substantial effect
on the convergence time and failure rate. Numerous researches have been introduced
to improve the performance of PSO by modifying the values of control parameters.
One of these efforts is done by tuning the PSO control parameters for minimum
failure rate and convergence time. Another work uses linear decreasing PSO control
parameters as shown in (37)–(39) [95]. Another research used a modified PSO PV
MPPT control under PSC with a Gaussian particle swarm optimization method [96]
to improve the performance of PSO in terms of fast and reliable convergence.Another
research work used deep recurrent neural networks trained from the results obtained
from PSO to improve the performance of PSO in terms of fast and reliable conver-
gence [97]. Another work used an adaptive perceptive particle swarm optimization
(APPSO) [98] technique for the same purpose. A review of different techniques used
to improve the performance of PSO in terms of convergence time and failure rate
when it is used as an MPPT of the PV system is introduced [99].

Another technique is introduced in [80] called scanning PSO technique, in which
the control system sends a certain number of duty ratios to the PV system and collects
the corresponding power. Then the duty ratio associated with the highest value of
power will be selected to initialize the PSO particles to be around this optimal value.
After that, the PSOwill continue tracking thisMPP. Actually, this is one of the fastest
and highest reliable MPPT techniques where it captured the GP effectively within
0.4 s [80].

Another research paper is introduced to improve the performance of PSO when it
is used in tracking theMPP of the PV system in PSC by removing the randomnumber
in the acceleration parameters of the conventional PSO velocity equation and adding
a maximum allowable change in the velocity [100]. This strategy is called “The
deterministic PSO (DPSO).” This strategy captured the GP with a lower number of
particles in a short time. Moreover, it has only one parameter needs tuning which is
the inertia weight. The only shortcoming in this technique is its need for reevaluation
on different types of PSCs and systems with different numbers of peaks.

ω j = ωmax − j

Jmax
(ωmax − ωmin) (37)

cl, j = cl,max − j

Jmax

(
cl,max − cl,min

)
(38)

cg, j = cg,max − j

Jmax

(
cg,max − cg,min

)
(39)

where Jmax is the maximum number of iterations, ωmax and ωmin are the highest and
lowest value of inertia weight cl,max and cl,min.

(b) The need for reinitialization

When all the particles are concentrated at the GP, the shading pattern may change
and the GP may become in the other place. In this case, the particles will not able
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to capture the GP and they will continue around the previous GP. In this case, the
generated power will not be the maximum available power because the GP is in
another position. This problem can be avoided by reinitializing the particles when
an acute change is detected. The condition that is used to detect the acute change is
shown in (40). The predefined tolerance, ε is chosen between 5 and 10% [77–79].
In most of the papers, it is used with 5% where the lower value of the predefined
tolerance will cause a reinitialization without a need for that and higher values of the
predefined tolerance will not initialize the particles in a reasonably acute change in
shading conditions.

∣∣∣∣
Pnew − Pold

Pold

∣∣∣∣ ≥ ε (40)

wherePnew andPold are the output powers captured from the PV system in the current
and previous iterations, respectively. ε is the allowable power change limit that has
been assumed as 5% of the old power captured.

Bat Algorithm (BA)

The bat algorithm (BA) is one of the swarm techniques that imitates the performance
of bats in searching for their food. The BA is first developed in 2010 by Yang in
2010 [101].

The mechanism that the bats used in nature to track a prey are by emitting several
impulses with different frequencies and amplitudes and receives the echo of these
sound pulses and transfer these data to useful information to decide the next step
toward the prey. The time difference between the transmitted pulse sound and the
received echo represents the distance between the bat and the prey. The bats can
identify the size of the prey by measuring the intensity of the echoed sound pulses.
Moreover, bats can evaluate the moving speed and direction of the prey by tuning
the frequency difference. In nature, the bats emit short-duration sound pulses around
10–100 times per second [101]. The searching behavior of the bats has inspired the
researchers to imitate it in searching for the optimal solution for different life prob-
lems. Many generalized rules should be taken into consideration in the mathematical
modeling of the BA. The following sections explain the logic of using the BA as an
MPPT of the PV systems. The flowchart showing the logic of BA when it is used as
an MPPT of the PV system is shown in Fig. 19.

Although the superiority of the BA compared to the PSO or any other swarm
optimization techniques, it did not get its deserved weight in the MPPT of the PV
systems applications where only a couple of researches have been introduced in the
literature [102–107]. For this reason, theBAhas been discussed deeply in this chapter
with detailed performance characteristics.

BA Initializations
The initialization of bats should get their values from (35) or (36) to reduce the
convergence time and failure rate compared to the random initialization of bats in
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Fig. 19 The flowchart of the modified BA strategy used in tracking the GP of PV systems
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the conventional BA when it is used for tracking the maximum power of PV systems
[94, 108]. These results are introduced and discussed in [94, 108]When it is compared
with random initialization. The BA is used as an MPPT of the PV system by giving
the particles the initial values of duty ratios that can be obtained from (35) or (36)
with initial frequency obtained from (41).

The initial velocity v1:n0 and initial frequency f 1:n0 of all bats are set to zero (where
n is the swarm size). The initial values of pulse rate, r0, loudness, A0, and many
initialization parameters are set to different values in the state-of-the-art strategies of
BA which is discussed in detail in the simulation results section. The initial values
of bats that can be determined from (35) or (36) will be used to start the boost
converter where it will be sent to it one by one and the corresponding power P1:n

0 will
be collected after waiting for the sampling time to get the steady state from the
boost converter. The best value of maximum power is determined from as Pbest =
max

(
P1:n
0

)
and the corresponding duty ratio dbestwill be determined.

Global Peak Tracking using BA
The equations used to mimic the behaviors of bats are shown in Eqs. (41)–(43) where
the impulse frequency is shown in (41) which will be used in (42) to determine the
bats’ velocities v1:ni . The new positions of bats d1:n

i can be obtained as shown in (43)
by adding this velocity to the previous positions of bats.

f 1:ni = fmin + ( fmax − fmin)β (41)

v1:ni = ω v1:ni−1 + (
dbest − d1:n

i−1

)
f 1:ni (42)

d1:n
i = d1:n

i−1 + v1:ni (43)

where the values of f min and f max are the minimum and maximum frequency ranges,
respectively. The values have been chosen from [101] to be 0 and 2, respectively. β
is a random value, β ∈ [0, 1], as the case of PSO, the velocity of bats is multiplied by
inertia weight value, ω which is used to enhance the searching stability of particles.

After determining the new position from (43), a randomwalk around this position
should be performed to get the new position of the bats as shown in (44) [94, 108].
If the pulse emission ri less than a random number, then the duty ration position di
should be replaced with values shown in (44) which is a representation of a random
walk around the best solution.

d1:n(new)
i = dbest + εϕ

〈
A1:n
i

〉
(44)

where ε is a random number, ε ∈ [−1, 1], and φ is used to give stability or limitations
to the number walk around the best solution,

〈
A1:n
i

〉
is called the average loudness of

each bat and its value equal to the average of A constant in the previous iterations, k
from the beginning (i = 1) to the current iteration.
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The value of the loudness (Ai) of the impulse should start from high-value A0 and
should be decreased as shown in (45), where it starts at 0.999 and should be decreased
to 90% of its previous value. The value of ri is called the rate of pulse transmission.
The values of ri are started at lower value r0 = 0 and it increased exponentially to
the end value ri = 1 as shown in (46).

A1:n
i = αA1:n

i−1 (45)

r1:ni = r1:n0 [1 − e(−γ i)] (46)

where the values of α and γ have been chosen equal to 0.9 in many types of research
[94, 108].

After determining the new positions of bats d1:n
i it will be used as a duty ratio of

boost converter to control the terminal voltage. These values of duty ratio will be fed
to the boost converter one by one and wait for the sampling time between each entry.
The generated power for each duty ratio will be collected P1:n

i and the maximum
value of power Pmax and its corresponding duty ratio dbest can be determined.

The control system will send the new values of the duty ratios, d1:n
i to the PV

system and will collect the corresponding power for each duty ratio, P1:n
i . The

maximum power collected from the PV system will be compared with the global
best power to update the value of global best if the new power is greater than its
value as shown in the following:

For k = 1: n; if P1:n
i > Pmax then Pmax = Pk

i and dbest = dk
i .

BA has been used in many types of research and it shows better performance
than the PSO in terms of convergence time and failure rate. The problems of long
convergence time and high failure rate shown above in PSO are inherent in BA too
and it can be avoided with the same modifications as discussed in PSO, where the
bats’ initializations should not be random where it is better to start it with the duty
ratios at the anticipated peakswhich can be obtained from (35), or with equal distance
between the duty ratios as obtained from (36). Moreover, the need for reinitialization
discussed in PSO is also needed with the BA and has been performed with the same
condition shown in (40) [94]. The performance of BA is modified considerably by
using the scanning strategy discussed above in PSO [108], where, in the beginning,
several values of the duty ratiowill be applied to the PV system and the one associated
with the highest power will be used to initialize the bats around it.

To overcome the problem of high oscillations around the GP in the steady-state
operation associatedwithBA, a newly proposed hybrid technique is introduced [109].
In this study, the BA is used to capture the GP and once it gets it, it transfers the
tracking to one of the three traditional MPPT techniques. The traditional techniques
used in this study to improve the performance of BA are beta, P&O, and InCond
MPPT techniques. These modifications showed improvements in the performance
of BA MPPT technique in steady-state conditions, especially with the BA and beta
MPPT algorithms [109].



152 A. M. Eltamaly

Cuckoo Search (CS)

The cuckoo search (CS) optimization technique is introduced byYang andDeb [110].
Three rules should be followed to use the cuckoo’s brood parasitic behavior as an
optimization tool.

(1) each cuckoo lays one egg at a time and places it in a randomly chosen nest,
(2) the best nest with the highest quality of eggs will carry over to the next

generation, and,
(3) the number of available nests is fixed and the number of eggs that can be

discovered by the host bird maintains a probability Pa, where 0 < Pa < 1.

If the cuckoo’s eggs are discovered, the host bird can abandon its nest or destroy
cuckoos’ eggs. Either way, a new nest will be generated with a probability of Pa
for a fixed number of nests. Based on these three rules, the CS algorithm can be
summarized as in the flowchart shown in Fig. 20 [111].

Cuckoo search (CS) is an optimization algorithm, inspired by the parasitic repro-
duction strategy of cuckoo birds [111]. It is observed that several species of cuckoos
perform brood parasitism, i.e., by laying their eggs in other birds’ (host birds) nests
[111]. Usually, three types of brood parasitism are seen (1) intraspecific, (2) coop-
erative, and (3) nest takeover. Some cuckoo species such as Tapera are intelligent
enough to mimic the shape and color of the host bird to increases its reproduction
probability. It is also presented in [111] that cuckoos lay their eggs at some specific
time so that their eggs hatch earlier than the host bird’s own. After the early hatching,
cuckoos destroy some of the host bird’s eggs to increase the chance of their chicks
getting more food. It is also a common phenomenon that the host birds discover the
cuckoo’s eggs and destroy these. Sometimes they abandon their nest completely and
go elsewhere to build a new nest.

The first time that CS was used as an MPPT of the PV system was in 2013 [112].
Later, CS has been used extensively in these applications [110–117]. This algorithm
has been also used in the optimal design of hybrid renewable energy systems in [118].

In the beginning, the initial values of eggs are selected and the corresponding
power from the PV system will be sampled. Based on the values of power collected,
the best nest can be selected. To enhance the private search, a random walk should
be performed around each solution which can be provided by the Lévy flight model
as shown in (47) [119]:

Levy(λ) ≈ u = 1−λ where (1 < λ < 3) (47)

The new solution that can be determined in each iteration by the equation shown
in (48) [119].

xt+1
i = xti + a ⊕ Levy(λ) (48)

where i is the number of eggs, t is the iteration number, the product ⊕ indicates
entry-wise multiplication, and α is the step size. The value of α can considerably
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Fig. 20 The flowchart of
Cuckoo search algorithm in
PV MPPT
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affect the performance of convergence, so careful tuning for this value should be
selected. In [119], the value of α is determined by setting an initial value for it, α0,

and use the difference between two samples
(
xtj − xti

)
, as shown by Eq. (49)

α = α0 + (
xtj − xti

)
(49)

Besides the value of α0, the performance of convergence is affected also by the
fraction of worse nests, parameters for Lévy distribution, and population size. The



154 A. M. Eltamaly

Fig. 21 Leadership
pyramids with four levels of
leadership (α, β, δ, and ω)

results obtained fromusingCS as anMPPTof the PV system in [119]. showed that the
performance of this technique is having fast and reliable convergence. Meanwhile,
this technique (CS) may be easily trapped in one of the LPs in the case of an unwise
selection of control parameter values [119]. Figure 20 shows the flowchart of CS
when it is used in the MPPT of PV systems.

Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO) is one of the best swarm optimization technique
that has been used to solve several nonlinear problems like theMPPT of PV systems.
This technique is inspired by the lifestyle of the gray wolves in the purse, chasing,
attacking, and hunting prey in wildlife [120]. Ion nature, gray wolves like to live in
a group containing 5–10 wolves with four levels of leadership. They have a pyramid
leader as shown in Fig. 21 [120]. This leadership is having the high-rank leaders
called alpha (α), subleaders called beta (β), as well as gamma (γ ), and omega (ω),
where the dominance of wolves is reduced from top to bottom. Where the strong
leaders are α wolves and ω wolves are the lowest rank wolves.

Asmentioned above, graywolves encircle prey during the hunt. Themathematical
model mimicking the behavior of GWO is shown in (50) and (51) [40]:

�E =
∣∣∣ �C . �DP(t) − �D(t)

∣∣∣ (50)

�D (t + 1) = �Dp(t) − �A. �E (51)

where t represents the current iteration, �A and �C are vectors based on their values
the balance between the exploration and exploitation can be determined, �Dp is a
position vector from the wolves to the prey, and �D indicates the position vector of a
grey wolf. Equations (52) and (53) are used to determine the two position vectors �A
and �C , respectively [40]:

�A = 2�a.�r1 − �a (52)
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�C = 2.�r2 (53)

where the coefficient a is decreasing linearly from 2 to 0 and r1, r2 are randomvectors
with a value between 0 and 1.

The value of �A is considerably affecting the performance of convergence where∣∣∣ �A
∣∣∣ < 1 is enhancing the exploitation meanwhile

∣∣∣ �A
∣∣∣ > 1 enhances the exploration.

In nature, the order of the alpha wolf ( �Dα) is the highest priority to be obeyed.
Meanwhile, the rank of obeying the order is reduced in descending level for the
beta wolves ( �Dβ) and delta ( �Dγ ). This leadership hierarchy can be mimicked
mathematically using the following Eqs. (54), (55), and (56):

�Eα =
∣∣∣ �C1. �Dα − �D

∣∣∣, �Eβ =
∣∣∣ �C2. �Dβ − �D

∣∣∣, and �Eδ =
∣∣∣ �C3. �Dδ − �D

∣∣∣ (54)

�D1 = �Dα − �A1 · �Eα, �D2 = �Dβ − �A2 · �Eβ, �D3 = �Dδ − �A3 · �Eδ (55)

�D(t + 1) = �D1 + �D2 + �D3

3
(56)

The flowchart showing the use of GWO in MPPT of PV systems is shown in
Fig. 22.

Artificial Bee Colony Algorithm (ABC)

The Artificial Bee Colony (ABC) algorithm proposed by Karaboga is based on the
foraging behavior of honey bees [121]. In nature, artificial bees are divided into three
types, employed bees, unemployed or onlooker bees, and scout bees. The employed
bees function is used to search for the food and determine its place and it shares
this information with other bees in the colony. The unemployed or onlooker bees’
function is towatch the employed bees and help to find the place of the food. The scout
bees’ function is to search randomly for a new source of food. They communicate
and coordinate with each other to obtain the optimal solution in a short time. In the
algorithm, the location of a food source and the quantity of nectar denote a solution of
the optimization problem and the fitness value of the related solution, respectively.
The algorithm starts with a parameter initialization and it generates an arbitrarily
initial population (P) of SS solutions, which is the population size. Each solution xi
is an n-dimensional vector. For the initialization process, (57) is used [122].

Di, j = Dmin,i + r
(
Dmax,i − Dmin,i

)
, i = 1, 2 . . . SS, j = 1, 2, . . . , n (57)

where n is the number of optimization parameters (n = 1 in the PV MPPT because
the duty ratio is the only optimization parameter),Dmin,i andDmax,i are the minimum
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Fig. 22 The flowchart
showing the use of GWO in
MPPT of PV systems

and maximum allowable value of the duty ratio, respectively, r is a random number
between−1 and 1. In the operation of theABCalgorithm, the employed bees evaluate
the new food sources using (58) and determine the candidate food position (vi,j) from
the old value (Di) in memory [122].

Di+1, j = Di, j + rand [0, 1] (Di, j − Di, j
)

(58)

Onlooker bees that are waiting in the dancing area move closer to the position of
the employed bee where the nectar quantity is the highest [123]. This movement is
given as shown in (59).
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Fig. 23 The flowchart of the
artificial bee colony
algorithm
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Di+1 = Dh,i + r (Dmax − Dmin)
SS
2 − 1

(59)

where Dh represents the food source position with the highest nectar amount, SS is
the number of bees, r is a random number between −1, 1.

The onlooker bees select food source of the employed bee calculated on the basis
of probability connected to the food source as shown in (60) [122].

pi = P(Di )

SS∑
n=1

P(Di )

(60)

where P(Di) is the fitness function of Di.
The new value of power is compared to the old one and the new one will replace

it if it is greater than the old one. This will continue until the scout bees select a
new position of food based on Eq. (57). The logic shown for ABC has been used for
MPPT of the PV system in [123] and it has been compared to the PSO and it is found
that it has better performance than PSO in terms of convergence time and failure rate
[123, 124]. Figure 23 shows the flowchart of the artificial bee colony algorithm.

Cat Swarm Optimization (CSO)

Cat swarm optimization (CSO) is one of the swarm optimization techniques that has
been developed in 2006 [125]. CSO is divided into twomodes of operations, namely,
seeking mode and tracing mode [125]. Each cat is representing one solution and it
is used in the algorithm as a searching agent. So, depending on the optimization
variable, M, the cat is composed of M dimensions (this dimension will be only one
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MPPT of PV system because only one variable will be optimized, the duty ratio of
DC/DC converter or terminal voltage of PV array). So, in the case of using the CSO
in MPPT of the PV system the value of M will be equal to 1 which will be used
during this section.

During seeking mode, four essential factors should be defined as shown in the
following points:

SMP: SMP is standing for “Seeking Memory Pool,” that represents the seeking
memory size for each cat.
SRD: SRD is standing for “Seeking Range Dimension,” that declares the mutative
ratio for the dimensions.
CDC: CDC is standing for “Counts of Dimension to Change,” that discloses the
dimensions will be varied.
SPC: SPC is standing for “Self-Position Considering,” which is used to decides
which cat will move or stand.

The logic showing the CSO performance is shown in the following steps:

Step-1: Make j copies of the present position of catk , where j = SMP. If the value
of SPC is true, let j = (SMP-1), then retain the present position as one of the
candidates.
Step-2: For each copy, according to CDC, randomly plus or minus SRD percent
of the present values and replace the old ones.
Step-3: Calculate the fitness values (FS) of all candidate points.
Step-4: If all FS are not exactly equal, calculate the selecting probability of each
candidate point by Eq. (61), otherwise set all the selecting probability of each
candidate point to be 1.
Step-5: Randomly pick the point to move to from the candidate points, and replace
the position of catk . If the goal of the fitness function is to find the minimum
solution, FSb= FSmax, otherwise FSb= FSmin.

Pi = |FSi − FSb|
FSmax − FSmin

, where 0 < i < j (61)

Three steps are shown below that can mimic the tracing mode of cats into a
mathematical form:

Step 1: Update the velocities for each cat (vk) according to Eq. (62).
Step 2: Check the value of the velocity is within the predefined limits. If the
velocity is out of the predefined limits it will be equated with the nearest limit.
Step 3: Use Eq. (63) to determine the new position of cats.

vk = vk + r1 c1 (xbest − xk) (62)
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xbest is the position of the cat, who has the best fitness value; xk,d is the position
of catk . c1 is a constant, and r1 is a random value in the range of [0, 1].

xk = xk + vk (63)

This technique (CSO) is used as an MPPT in many types of research [126]. This
technique showed fast convergence to the MPP but it may stick at one of the LPs in
PSC.

Ant Colony Optimization (ACO)

Ant colony optimization (ACO) is one of the swarm optimization techniques that
mimic the performance of ants in their foraging behavior to be used for tracking the
optimal solutions of nonlinear problems. This technique is first introduced by Dorigo
and Gambardella [127]. Since then many modifications introduced in the literature
to improve the performance of this technique and it has been used as MPPT of PV
system [128, 129]. The use of ACO in the application of PV MPPT is done by using
the voltage value of the PV array as bee location and the output power of the PV
array is used as an objective function in the simulation [119]. The flowchart showing
the logic of ACO when it is used as a PV MPPT is shown in Fig. 24 [128].

A new ACO pheromone updating strategy to improve the convergence perfor-
mance of ACO (ACONPU MPPT) when it is used as an MPPT of the PV system is
introduced in [119]. Once the ACONPU MPPT controller is developed, several tests
are performed under standard test conditions to determine the ACO control param-
eters. The Gaussian Kernel for the ith dimension of the solution is shown in (64)
[119].

Gi(x) =
k∑

l=1

wlg
i
l(x) =

k∑
l=1

wl
1

σ i
l

√
2π

exp

(
−
(
x − μi

l

)2
2σ i2

l

)
(64)

where gli(x) is the lth sub-Gaussian function for the ith dimension of the solution;
μi
l and σi

l are the ith-dimensional mean value and the standard deviation for the ith
solution, respectively.

The formula that can be used to determine the pheromone equation, τli is shown
in (65) [119]:

τli(x) = 1

σ i
l

√
2π

exp

(
−
(
x − μi

l

)2
2σ i2

l

)
(65)

During the initial stage, the distances Di between each xi solution among the
selected solutions are determined (i = 1… m, where m is the number of ants) as
shown in (66) and the best solution xbest.
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Fig. 24 Flowchart of ACO
when it is used as an MPPT
of the PV system [131]
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Di = |xi − xbest| (66)

The Gaussian, ϕi can be determined from (67).

ϕi = e
−D2

i
2t (67)

where t is the standard deviation of the Gaussian (usually t = 0.05). The pheromone’s
value τ i is calculated as shown in (68):

τi = ϕi∑m
j=1 ϕ j

(68)

The solution vector of the i-th ant concerning the kth ant at iteration t is obtained
by (69).
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xi = xk(t − 1) + dx (69)

where dx is a random variable in the range of [−α, α], the value of dx is used to
determine the length of the jump. Based on the value of xi obtained from (69), the
value of di can be determined as shown in (70).

di (t) = 1 − xi (t)/xref (70)

The best solutions, k will be selected from all solutions (m + K). After reinitial-
izing the archive, the m best solutions will be selected and their pheromones will be
updated as shown in Eqs. (66)–(68).

The corresponding generated power from the PV system can be calculated from
(71) after sampling the voltage and current generated from the PV system.

Objective function = P = VPV × IPV (G, T ) (71)

where VPV and IPV are the terminal voltage and current of the PV array, respectively,
T is the array temperature, G is the solar radiation in W/m2

The distance between any new solution and the best solution,V best can be obtained
from (72).

Di = |Vi − Vbest| (72)

Compute a Gaussian ϕi by (73)

ϕi = e
−D2

i
2t (73)

where t is the standard deviation of the Gaussian. The pheromone’s value i is
computed as shown in (74).

τi = ϕi∑m
j=1 ϕ j

(74)

Then a perturbation of the voltage can be obtained from (75), (67).

Vi (t) = Vk(t − 1) + dx (75)

The new duty ratio of each ant i is computed as shown in (76).

di(t) = 1 − Vi(t)/Vref (76)

Different parameters can considerably affect the performance of ACO such as
the size of the archive, balance coefficient, convergence time. Tuning these values
improved the results obtained from this technique compared to the PSO and DE
MPPT techniques [119].
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Fireflies Algorithm (FFA)

The FFA is one of the best swarm optimization techniques which is introduced by
Yang [130]. Fireflies are lightning bugs that are attracted to the light in the tropical
regions. The FFA is inspired by the movement of fireflies. This light is playing an
important role in attracting mating partners and preys. The rate of flashing and the
amount of time form part of the signal system is responsible for brings both sexes
together [131].

Let p and q be two fireflies positioned at Xp and Xq, respectively. In a single-
dimensional space, the distance between these two fireflies, rpq is shown in (77).

rpq = ∥∥X p − Xq

∥∥ (77)

The distance between any two fireflies p and q is a function in a factor called the
degree of attractiveness, β that can be obtained from (78).

β(r) = β0e
−γ (rpq)

n

, n ≥ 1 (78)

where, γ is called absorption coefficient which is used to controls the light intensity
and its value varies between 0 and 10 and n = 2 [130], β0 is the initial value of the
absorption coefficient and its value is chosen by 1 to actively determine the position
of other fireflies in its neighborhood [130]. Assuming that the brightness of firefly p
is less than that of q, the new position of firefly p is given by (79).

Xt+1
p = Xt

p + β(r)
(
X p − Xq

)+ α(rand − 0.5) (79)

Here, random movement factor α is constant throughout the program and falls in
the range [0, 1]. The value of α enhancing the searching balance between exploitation
and exploration, where the high value of α enhances exploration, meanwhile small
value of α enhances exploitation [131].

The steps of the logic used with the FFA to capture the MPP of the PV system
are shown in the following points:

Step 1: Parameter Setting: Select the values of FFA control parameters, βo, γ , n,
α, population size N, and the termination criterion. In this algorithm, the position
of the firefly is taken as a duty cycle d of the DC/DC converter. The brightness of
each firefly is taken as a generated power PPV of the PV system, corresponding
to the position of this firefly.
Step 2: Initialization of Fireflies: In this step, the fireflies are positioned in the
allowable solution space between between dmin to dmax where dmin and dmax

represent the minimum and maximum values of the duty ratio of the DC/DC
converter. It is recommended to choose the starting position of the fireflies as
introduced before in Eqs. (35), or (36). The swarm size is recommended to be 6
in [131].
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Step 3: Brightness Evaluation: For each duty ratio, the corresponding PV output
power, Ppv is taken as the brightness or light intensity of the respective firefly.
This step is repeated for the position of all fireflies in the population.
Step 4: Update the Position of Fireflies: The firefly with maximum brightness
remains in its position and the remaining fireflies update their position based on
(79).
Step 5: Check if is there any acute change in the generated power which gives an
indication for a big change of the shading pattern. Acute change can be detected
using Eq. (40). If the acute change is detected go to step 2, otherwise go to the
next step.
Step 6: Check the stopping criterion, if it is valid go to step 4 otherwise go to step
3. The stopping criterion should ensure that all fireflies all work around the MPP.

The convergence time and failure rate as well as the oscillations at steady-state
are a function in the FFA control parameter values (βo, γ , n, α, population size, N).
The advantages of FFA is not highly affected by the initial values of duty ratio which
is one of the main advantages of this MPPT technique, meanwhile, the high failure
rate of this technique is counted as one of the main shortcomings [119].

Whale Optimization Algorithm (WOA)

TheWhaleOptimizationAlgorithm (WOA) is one of themodern swarmoptimization
technique which has been developed in 2016 [132]. This technique is inspired by
the WOA. This technique used for pursuing a procedure is called bubble-net feeding
strategy. Humpback whales want to chase little fishes near the surface by making
a bubble net around the prey rises along a circular path. This technique has been
used in MPPT of the PV systems in many studies in the literature [133–135]. The
mathematical formulas thatmodel this technique is shown in the following equations:

D =
∣∣∣−→C · −→

X ∗ (t) − −→
X (t)

∣∣∣ (80)

X(t + 1) = −→
X ∗ (t) − −→

A · −→
D (81)

where t is the iteration number, �A and �D are the coefficient vectors, �X∗ is a vector
used to represent the vector of the best solution, �X represents the current position
vector.

�A = 2�a · �r−�a (82)

�C = 2.�r (83)
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where �a in equations is a variable linearly decrease from 2 to 0 through the progress
of the iterations, �r is an arbitrary vector in the range of [0, 1]. The value of �r is used
to balance between exploitation and exploration.

The spiral path between the position of the whale (current position) and prey (best
solution) can be determined as shown in (84).

−→
X (t + 1) = −→

D’ · ebl · cos (2π l ) + −→
X∗(t) (84)

where
−→
D′ = −→

X∗(t) − �X(t) and demonstrates the distance between the ith whale and
the prey (best solution), b is a constant for characterizing the state of the logarithmic
spiral and its value is randomly chosen between −1 and 1.

Whales swim around the prey inside shrinking circle and along with a spiral form.
There is a probability of half to select one of two approaches as shown in (85).

�X(t + 1) =
{ −→

X∗(t) − �A · �D if p < 0.5−→
D′ · ebl · cos(2π l) + −→

X∗(t) if p ≥ 0.5
(85)

where p is a predefined value that can adjust the balance between exploration and
exploitation and it can be selected between 0 and 1 and it can be adjusted during the
progress of the iterations.

Cuttlefish Algorithm (CFA)

The cuttlefish algorithm (CFA) is one of the modern metaheuristic optimization
algorithms that is inspired by a type of fish called cuttlefish that can change their
skin color to mimic the surrounding environment to either seemingly disappear into
its environment or to produce amazing displays. This algorithm was first introduced
by Eesa et al. [134]. The algorithm undergoes the same mechanism of the cuttlefish
color-changing behavior to optimize mathematical problems. There are three cells
on the skin of Cuttlefish, namely, Chromatophores, Iridophores, and Leucophores.

The Chromatophores cell groups are having pigments to change the color of the
Cuttlefishwhen it is needed. Iridophores cell groups are used to reflect the lightwhich
can help in concealing the Cuttlefish when it is needed. The Leucophores cell groups
are responsible for the white spots occurring on some species of cuttlefish that are
used to scatter and reflect incoming light. The behavior mechanism is mainly based
on two processes which are reflection and visibility. The mathematical model of the
algorithm uses different reflection and visibility factors for each group of solutions
in an iteration to reach an optimum solution accurately and as fast as possible [136].

The mathematical formulation of the CFA is as follows. In general, the update of
the suggested solution is presented in (86), while the reflection and visibility factors
are calculated for each group using (87) and (88).

Dnew = Rni + Vni (86)
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Ri = rd ∗ (r1 − r2) + r2 (87)

Vi = rd ∗ (v1 − v2) + v2 (88)

where Dnew is the newly updated population ready to be studied in the new iteration.

Rni are the new reflected population cells for the i-th group.
Vni are the new visible population cells for the i-th group.
Ri is the reflection factor for the i-th group.
Vi is the visibility factor for the i-th group.
rd is a generated random value between 0 and 1.
r1, r2 are the upper and lower limits of the reflection factor, respectively, (r1 = 1,
r2 = −1) [137].
v1, v2 are the upper and lower limits of the visibility factor, respectively, (v1 =
0.5, v2 = −0.5) [137].

Initially, the population values (duty ratios) for each searching agentwill be initial-
ized may be randomly ….but it is recommended to initialize it based on Eqs. (35)
or (36) and divide them into the different groups equally. The population is divided
into four identical groups (Gp1, Gp2, Gp3, andGp4). Then calculate the corresponding
output power for each cell (duty ratio). The duty ratio associated with the global best
is selected to Dbest. The new reflection and visibility factors can be determined from
the following equations:

For Gp1:

Rn1 = R1 × Gp1 (89)

Vn1 = V1 × (
Dbest − Gp1

)
(90)

Gp1nw = Rn1 + Vn1 (91)

For Gp2:

Rn2 = R2 × Gp2 (92)

Vn2 = V2 × (
Dbest − Gp2

)
(93)

Gp2nw = Rn2 + Vn2 (94)

where

Rn1 and Rn2 are the arrays of the new updated reflected cells for groups 1 and 2,
respectively.
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R1 and R2 are the reflection factors set for groups 1 and 2, respectively.
Vn1 and Vn2 are the arrays of the new updated visible cells for groups 1 and 2,
respectively.
V 1 and V 2 are the visibility factor set for groups 1 and 2, respectively.
Gp1 and Gp2 are the arrays of cells in groups 1 and 2 of the population, respec-
tively.Gp1new and Gp2new are the arrays of new updated cells in groups 1 and 2 of
the population, respectively.

For Gp3 and Gp4:

Rn3 = R3 × Fbest (95)

Vn3 = V3 × (Fbest − Bav) (96)

Gp3new = Rn3 + Vn3 (97)

Gp4new = random values (98)

where

Rn3 is the array of the new updated reflected cells for group 3.
R3 is the reflection factor set for group 3.
Vn3 is the array of the new updated visible cells for group 3.
V 3 is the visibility factor set for group 3.
Gp3 is the array of cells in group 3 of the population.
Gp3new, Gp4new are the arrays of new updated cells in groups 3 and 4, respectively,
of the population.

Grass Hopper Optimization (GHO)

Grass Hopper Optimization (GHO) is one of the best swarm optimization algo-
rithms which first introduced by Saremi et al. [138]. The GHO algorithm mimics the
behavior of the grasshoppers during their life cycle. The GHO algorithm consists of
two sub-cycles, namely nymph and adult sub-cycles. In the nymph sub-cycle, the
algorithm uses it to control the movement (Jump) to enhance the exploitation search.
In the adult sub-cycle, it is characterized by fast jumps with random intervals which
can help to enhance the global exploration search. The controlled GHO parameters
are helping in the balance between the local and global explorations.

The movement of searching agents is given by Eq. (99) [139];

Xi = ω1 Si + ω2 Gi + ω3 Ai (99)

where Xi is the position of the i-th searching agent, Si is the social interaction, Gi is
the gravity factor of the i-th grasshopper, and Ai is the variable to represent the effect



Photovoltaic Maximum Power Point Trackers: An Overview 167

of wind on the movement of each particle, ω1, ω2, and ω3 are the factors to represent
the weighted social interaction, the gravity factor, and the advection, respectively.

The social interaction factor is shown in Eq. (100) is a very important factor that
controls the behavior of convergence where it enhances the exploration of the search
by sharing the information within the swarm.

Si =
N∑
j=1

s
(
di, j
)
. �di j (100)

where di,j is the distance between the i-th and j-th grasshoppers and s is the function
used to define the social forces which can be determined from Eq. (101).

s(r) = f.e− r
la − e−r (101)

where la gives the attraction length and f provides the intensity of interaction. The
function s(r) shows the impact of social interaction and is fine-tuned for an optimiza-
tion problem to maintain a balance between the exploitation and exploration of the
search task.

The gravitational factor Gi is given by Eq. (102) and wind attraction factor is
given by Eq. (103)

Gi = −g . �eg (102)

Ai = −u . �ew (103)

where �eg is a unit vector in the direction of the gravitational constant g, and �ew is a
unit vector in the direction of constant drift u which is caused by wind.

Substituting the values of social interaction parameters into Eq. (99) yields

Xi = ω1

N∑
j=1
j �=i

s
(∣∣x j − xi

∣∣) x j − xi
�di j

+ ω2.g.�eg + ω3.u.�ew (104)

The GHO converged fast using Eq. (104) and this mechanism has been improved
for fast and reliable convergence by [139] as shown in Eq. (105).

Xd
i = c

⎛
⎜⎜⎝

N∑
j=1
j �=i

c
ubd − lbd

2
s
(∣∣x j − xi

∣∣) x j − xi
�di j

+ �eg

⎞
⎟⎟⎠+ �Td (105)

c = cmax − l
cmax − cmin

L
(106)
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where c is a decreasing coefficient, ubd and lbd are upper and lower bounds in the
d-th dimension �Td is the best value of the d-th dimension of the target up to the
current iteration. L is the total number of iterations and l is the current iteration.

GHO is having twomain advantages compared to other swarmoptimizationwhich
are the fast convergence and the lowest oscillations at the steady state. In the begin-
ning, the population is better to be initialized as has been introduced before in (35)
or (36). Here, the search space represents the duty cycle of the boost converter. The
constraints are fine-tuned accordingly in the search space.

Intelligent Monkey King Evolution (IMKE)

The Intelligent Monkey King Evolution (IMKE) is a metaheuristic optimization
algorithm introduced byMeng et al. [140]. This optimization algorithm is inspired by
the behavior of monkeys in their superpower abilities under a challenging situation in
which they divided themselves into many small groups of monkeys and start working
toward the solution. After achieving the solution to the problem, another group will
report the whole situation to the monkey king.

Based on these reports, the monkey king decides the most accurate solution.
Based on the monkey king’s decision the whole swarm will move. In the start of the
operation of IMKE algorithm, the whole swarm is divided into n groups, each group
contains p monkeys and get their initial position as shown in (107). The variable Rc

represents the evaluation of the monkey king for the next movement.
Accurate selection for the value of Rc will improve the performance of IMKE

algorithm in terms of convergence time and failure rate. Due to the importance of
this factor, it has been limited by upper and lower limits [Rc,min, Rc,max] as shown in
(110). Generally this Rc,min and Rc,max lie in the range 0.1–0.9 [4, 141].

Xi =

⎡
⎢⎢⎣

xi11 xi12 . . . xi1v
xi21 xi22 . . . xi2v

. . . . . .

xip1 xip2 . . . xipv

⎤
⎥⎥⎦p ∗ v (107)

From the results obtainedwhen the positions in (107) are applied to the PV system,
the best solution can be obtained as shown in (108).

Xi
gbest = [Xi

gbest,1, Xi
gbest,2, . . . Xi

gbest,n (108)

The best solution should be updated as shown in (109).

Xi+1
gbest = Xi+1

gbest + Rc ∗ Xdiff (109)

Rc = Rc,min + Rc,max − Rc,min

i
∗ rand (110)
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Fig. 25 a Salp as single and
b a group of salps (salp
chain) [146]

Salp Swarm Algorism (SSA)

The salp is a sea creature that has a transparent body like jellyfishes with a barrel-
like shape. Salps move in seawater through suction and propulsion the water through
their barrel body. The salps move in a group called chain as shown in Fig. 25. The
shape of salps is barrel-shaped and it has a transparent body. The salps tissues are like
jellyfishes. Like a jellyfish, the salps are moving and it moves forward by pushing
the water through the body like propulsion. Figure 25 shows the shape of the salp
chain [142]. The salp chain formation is used to improve their movement and to help
them in foraging. This movement inspired the researchers to use this chain to solve
nonlinear optimization problems. One of the real-world applications of SSA is PV
MPPT [143].

The swarm of salps is divided into two subgroups called leaders and followers
[142, 143], The leader subgroup is responsible for guiding the swarm, meanwhile,
the followers obey the leaders’ orders. The swarm is distributed in searching space
in n dimensions. First, the leader takes their positions based on the formula shown
in Eq. (111).

X1
j =

{
Fj + c1

((
ub j − lb j

)
c2 + lb j

)
c3 ≥ 0

Fj − c1
((
ub j − lb j

)
c2 + lb j

)
c3 < 0

(111)

where X1
j are the leaders’ positions, Fj are the food sources, ubj and lbj are the upper

and lower limit, respectively, c1, c2, and c3 are random numbers. As shown in Eq.
(111), the position of the leader is updated about the food source. c1 is an important
parameter that can determine the exploitation and exploration performances and its
value can be determined from Eq. (112).

c1 = 2 e−( 4l
L )

2

(112)
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Fig. 26 The flowchart of the salp swarm MPPT technique

where L is the maximum iteration number, l is the current iteration number. c2 and
c3 are generated randomly between [0, 1]. The follower position can be determined
as shown in (113).

Xi
j = 1

2
at2 + Vo t (113)

where Xi
j are the followers’ positions, Vo is the initial velocity, a = Vfinal/Vo, and V

= x − xo/t. Equation (113) is altered. The new position of salps chain is shown in
Eq. (114).

Xi
j = 1

2

(
Xi

j + Xi−1
j

)
(114)

Application of SSA in the PV MPPT is done by equating the initial positions of
salps by the duty ratio of the boost converter and use the above Eqs. (111)–(114)
to keep tracking the GP of PV arrays. The flowchart of SSA when it is used as an
MPPT of the PV system is shown in Fig. 26 [144].
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Fig. 27 Spiral flight of a
moth around its
corresponding flame

Moth–Flame Optimization (MFO)

Moths are types of insects similar to butterflies. There are two main milestones
in their lifetime namely, larvae and adults. They have a special night navigation
mechanism called transverse orientation, where they fly in a straight line having a
fixed angle to the moon. In the case of the light source is switched off, they fly in
a spiral shape around the previous source of light and it can capture it after a few
corrections. The spiral flight of a moth around its corresponding flame is shown in
Fig. 27 [145]. This flight mechanism is translated into mathematical formulas to
perform the searching mechanism to capture the solution in nonlinear optimization
problems. In the MFO algorithm, every moth representing a searching agent that is
required to fly around a certain source of light to enhance the exploration search and
a lower probability of local optima stagnation. Therefore, a set of sources of light
locations can be represented in a matrix with the same dimensions to represent the
moth positions. Both the moths and the lights are representing solutions. The moths
and light are treated and updated in different ways During the progress of MFO.
Each moth is representing a search agent which can fly the search area to get the
global best solution. The lights are representing the best solutions that the moths
have captured so far. In other words, flames can be considered as flags or pins that
are dropped by moths when exploring a search space. Each moth searches around a
flame and updates it in the case of finding a better solution. With this mechanism, a
moth never loses its best solution.

The moth position can be updated using the following equation:

Mi = S
(
Mi , Fj

)
(115)

where Mi indicates the i-th moth, Fj indicates the j-th flame, and S is the spiral
function. The characteristics of the spiral function is listed in the following points:
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• The initial point of a spiral is the initial moth position.
• The source of light location is the final point of a spiral and it represents the best

position of the moth.
• The predefined range of the spiral should be within the searching area.

Taking the previous points into considerations, the mathematical model of the
spiral function is shown in Eqs. (116) and (117).

S
(
Mi , Fj

) = Di · ebt · cos(2π t) + Fj (116)

Di = ∣∣ Fj − Mi

∣∣ (117)

whereDi represents the distance between the positions of i-th moth and the j-th light,
b is a constant represents the shape of the spiral, and t is a random number in [r, 1],
where r is a constant that linearly decreasing with iterations from −1 to −2 and is
called the adaptive convergence constant.

A strategy was introduced to enhance the exploitation search of the MFO by
decreasing the number of flams as shown in Eq. (118).

f lame number = round

(
N − l

N − 1

L

)
(118)

where l is the current iteration number, N is the maximum number of flames, and L
indicates the maximum number of iterations.

This mechanism introduced in (118) enhances the balance performance between
the exploration and exploitation in a solution area. The MFO has been used as an
MPPT of the PV system by initializing the Moths (duty ratios) as has been shown
in (38) or (39), in the beginning, the moths’ positions are selected to be as a flam
position. During the iterations, the flame positions will be equal to the best solutions
of Moths. This searching mechanism provides a good balance between exploration
and exploitation which makes MFO is a superior choice for MPPT of PV systems.
In the case of acute change in the output power as has been discussed in Eq. (40),
the Moths and flame positions should be updated.

A Comprehensive Comparison Between Swarm Intelligence Algorithms
MPPT Techniques

The performance of all swarm techniques introduced above is tabulated in the
following Table 4 shows the difference between them in many important factors.
Based on the experience from using these techniques, BA is the fastest convergence
but it has higher oscillations in steady-state conditions.
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4.2.2 Bio/Natural-Inspired Algorithms (BNIA)

Earthquake Optimization Algorithm (EOA)

The earthquake optimization algorithm (EOA) is one of the nature algorithms and
sometimes it is called (geo-inspired) [146]. This technique is inspired by the behavior
of P and S waves which can be generated from earthquakes. This optimization tech-
nique is introduced in 2018 and it has been used in the control of the electric machine
[147]. The first time to be used as anMPPT of the PV systemwas in 2020 byMendez
[148].

The mathematical formulae that can model the velocities of P and S waveforms
are shown in (119) and (120), respectively [148].

vp =
√

λ + 2μ

ρ
(119)

vs =
√

μ

ρ
(120)

where vp and vs are the velocities of waves, λ and μ are called the Lamé parameters,
and ρ the density of the material. The optimal relation for the Lamé parameters was
found to be 1.5, consequently [148]:

λ = μ = 1.5 GPa (121)

The densities of thematerialρ are chosen randomly between 2200 and 3300 kg/m3

[148]. It is important to define an operating range for the S-wave or S-range, Sr to
decide whether to use vp or vs. Searching flag (Sflag) is performed to be sure that the
best duty cycle is within the searching positions.

The main difference between the modification shown in [148] and the original
EOA is it returns to the global best duty ratio after evaluating an epicenter to have
a faster reaction against irradiation changes. Figure 28 shows the flowchart of the
earthquake optimization algorithm (EOA) MPPT algorithm [148].

Simulated Annealing (SA)

Simulated annealing (SA) is a metaheuristic optimization technique inspired by the
annealing process that is used in nature to produce high-quality crystals. This tech-
nique uses the temperature, final temperature, and nominal cooling rate for searching
the optimal solution of nonlinear optimization problems. This technique was first
developed in 1970 by Pincus [149]. This technique is used in the MPPT of the PV
system by many research studies [5, 135]. Many improvements were introduced
to SA which improved its performance in tracking the MPP in uniform irradiance



Photovoltaic Maximum Power Point Trackers: An Overview 175

Initialize the EOA 

Sample V, I and compute P=V*I

f=Ne

Flag_ant>=M
Update Gbest and xbest

Upload d=xbest

Sflag=0

Wait Tp

Same irradianceNo Yes

Update Gbest, f=1

Calculate vs and x

Upload d=xj

j=j+1

Sflag=1

Fig. 28 The flowchart showing the logic of using the Earthquake Optimization Algorithm (EOA)
as a PV MPPT algorithm [152]

and the PSC [7]. In normal operation of the SA, a random number of solutions are
initialized but here in the MPPT of PV systems, it is better to initiate the duty ratio
of DC/DC converter to be as stated before in Eqs. (35) or (36). The initial values
of power corresponding to each duty ratio will be determined. By the neighborhood
mathematical structure, the new position of particles will be determined. If the new
operating point has greater power, then it will be accepted as the new operating
power.

The operating point can be accepted if its new point has less power than the
reference operating point based on the acceptance property shown in (122) [5]:

Pr = exp

[
Pk − Pi

Tk

]
(122)

where Pk is the power of the current point, Pi is the power at the previous best
operating point, and Tk is the current temperature of the system.

The cooling mechanism used in the SA can be either static or adaptive as shown
in (123).
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Fig. 29 Flowchart of SA
based GMPPT under PSC

Tk = αTk−1 (123)

where Tk is the temperature for step k, Tk-1 is the temperature at step k – 1 and α is
a constant always less than 1.

The SA algorithm has been used for tracking the MPP of the PV system in PSC in
[135]. The results obtained from this study showed the superiority of theSAcompared
to famousMPPT techniques like PSOandP&O in terms of convergence speed, failure
rate, and generation efficiency. As the PSO, the SA needs reinitialization when an
acute change in power is detected as has been discussed before and shown in Eq. (40).
Figure 29 shows the flowchart SA-based GP under PSC.

Human Psychology Optimization (HPO)

Human psychology optimization (HPO) is one of the metaheuristic techniques
inspired by the manner of thinking of humans for improving his/her situation and
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taking decisions in the real world. The person gets experience from his own learning
and the experience of other persons which is the logic used in this technique. The first
time to use HPO as an MPPT of PV systems is done in 2017 by Kumar et al. [150].
In this study, the performance evaluation of the HPO algorithm has been compared
with two different PSO strategies in tracking theMPP of partially shaded PV systems
using a single sensor to measure the current feeding a battery in the DC-link. The
advantage of the HPOwhen it is used as anMPPT of the PV system is its fast conver-
gence rate and the lower failure rate. Moreover, its performance does not depend on
the initial value and the dependency on the algorithm specified parameter is very less
[150]. The searching mechanism of this technique has four stages that are listed in
the following points:

• Excitement: In this stage, the searching agents take values of duty ratios that can
be determined from Eqs. (35) or (36). It gives an initial move and tries to build
confidence.

• Self -motivation: It is a self-encouraging process that depends on the person’s own
experiences and achievements in which it enhances the local exploitation ability,
which increases the rate of convergence.

• Inspiration: In this stage, the person is inspired by the experience of a successful
person to follow his creative idea for success. This stage enhances global
exploration ability.

• Lesson: The previous fail experiences learned from the person’s own experience
and other persons should be avoided in the future decision. This stage helps in
avoiding the searching to be trapped in one of the LPs.

The results presented in the use of HPO in the MPPT of the PV system show its
superiority in terms of convergence time and failure rate compared to other states
of the art PSO strategies [150]. Moreover, the use of a single sensor to measure the
battery current reduces the implementation cost of this system.

Flower Pollination Algorithm (FPA)

Flower pollination algorithm (FPA) is a metaheuristic optimization technique
inspired by the flower pollination process in the plants. Two types of pollination,
namely, self-pollination and cross-pollination. The self-pollination takes place when
the same flower is pollinated internally which represents the private search of the
FPA,whereas cross-pollination occurswhen pollenmoves fromone flower to another
which represents the global search of the FPA. The abiotic pollination occurs when
the pollen is transferred via wind, whereas the biotic pollination occurred when the
pollen transferred from the flower of male plants to the female through the insects.

The FPA has four steps which are summarized in the following points:

• The global pollination occurred in the two types of pollinations when the pollen
carrying pollinators transferred in Lévy flights shape.

• The biotic and self-pollinations represent the local pollination.
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• Reproduction probability is representing the flower constancy which is propor-
tional to the similarity of two flowers involved;

• The local and global pollination has been controlled and switched via switch
probability P∈ [0, 1].

The concepts shown in the above points are converted to a mathematical model as
shown in the following equations. The position of the pollinators that moves using
Lévy flights shape can be obtained as shown in (124).

xk+1
i = xki + γL(λ)

(
g∗ − xki

)
(124)

where xti is the solution vector xiat iteration t and g is the best solution (duty cycle)
of boost converter duty cycle. γ is a scaling factor that used for controlling the step
size, L(λ) are the Lévy flights-based step size that can be obtained from the following
equation [5, 151]:

L ≈ λΓ (λ) sin
(

Πλ
2

)

Π

1

S1+λ
(S ≥ S0 > 0) (125)

where Π(λ) represents the gamma function.
FPA has been used as anMPPT of PV system and it showed superior performance

in terms of convergence time and failure rate compared to many MPPT techniques
like PSO and P&O techniques [152]. The FPA required only control parameter (γ)
which makes it very easy to be tuned for better performance.

Teaching Learning Algorithm (TLA)

The TLA is one of the modern metaheuristic optimization algorithms that inspired
by the influence of a teacher on learners or students and it has two phases; first,
the teacher phase which means leaning from the teacher; second, the learner phase
which means learning by the interaction between students (cooperation). This tech-
nique uses candidate solutions (Duty ratio) asmany othermetaheuristic techniques to
track the optimal solution (MPP in PV applications). The teacher phase uses the expe-
rience of the teacher to improve the students’ level of knowledge. The learner phase
is performed through the teacher and interaction between the learners to increase
their knowledge. A learner interacts randomly with other learners through group
discussions, presentations, formal communications, etc. A learner learns new infor-
mation when the other learner has more information than him. A detailed discerption
of using this technique as anMPPT of the PV system is introduced in literature [153,
154]. The results obtained from these studies showed superior performance of TLA
compared to other optimization techniques in terms of convergence time and failure
rate.
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Water Cycle Algorithm (WCA)

The water cycle algorithm is a meta-heuristic optimization technique that imitates
the flowing of streams and rivers into the sea and its idea is derived by observing the
water cycle in nature. Hydrologic cycle begins when water in the river, lakes, and
streams is evaporated and also plants releasewater during the photosynthesis process.
The evaporated water is carried out into the colder layer of the atmosphere to create
clouds that condense and releasing water back to the earth. The initial population of
WCA is called raindrops. The best raindrop is chosen as a sea, the number of good
raindrops is chosen as a river and the rest of the raindrops are considered as streams.
The water cycle algorithm has been used in many fields such as water resources, civil
engineering, mechanical engineering, andmathematics. In thewater cycle algorithm,
the variables are called Raindrops for a single solution [155]. This technique showed
a fast convergence and low failure rate compared to many states of the art MPPT
techniques.

4.2.3 Evolutionary Algorithms (EA)

Differential Evolution (DE)

The use of differential evaluation theory was developed by Tajuddin et al. [156],
in which the optimization problem will be solved by using a different formula for
the evolution of candidate solutions. The solutions that have the best fitness are
allowed to remain in the population and the other solutions will be removed from
the population. Four DE operations, namely, initialization, mutation, crossover, and
selection are required to track the optimal solution of the optimization problem. The
duty cycle represents a member of the population where its value can be determined
from (126).

Di ( j) = DiL + r (DiH − DiL) (126)

where DiL, DiH are the lower and the higher limit of the duty ratios, respectively, r
is a random number between 0 and 1, j is representing the iteration number, and i
represents the number of the searching agent (duty ratio) inside the population, N.

In each iteration, the individuals of the current population become the target
vectors. For each target vector, the mutation operation produces a mutant vector, by
adding the weighted difference between two randomly chosen vectors as shown in
(127) [157].

Di,G+1 = Dr1.GX + F
(
Dr2,G − Dr3,G

)
(127)

Then the crossover operation generates a new vector, called trial vectorDi,G. This
is obtained by mixing the parameters of the mutant vector Di,G with those of the
target vector Di,G which is used with the PV system to get the corresponding power.
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Fig. 30 The flowchart of
differential Evaluation. [163]
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Mutation

Constraint handling

Evaluation
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If the trial vector obtains a better fitness value than the target vector, then the trial
vector replaces the target vector in the next generation. This process will be repeated
through iterations until an acute change is detectedwhich forces theDE to reinitialize
again as has been introduced before with PSO and show in Eq. (40).

Differential evaluation is reasonably it has fast convergence performance but it
has high oscillations, especially in fast-changing conditions. Many modifications are
introduced in the literature to further improve the performance of DE [158–160].
The flowchart of the DE is shown in Fig. 30 [159].

Genetic Algorithm (GA)

The genetic algorithm is one of the evolutionary techniques which is used to capture
accurate solutions for optimization problems. This technique (GA) is inspired by
biological genetics based on three operators namely, mutation, crossover, and selec-
tion.This technique is developedbasedon the concept ofDarwin’s theoryof evolution
in which the children having the highest fitness value means that they are powerful
enough to have a higher chance for production. The GA optimization algorithm is
one of the metaheuristic optimization techniques that use the generation, systematic
evaluation, and enhancement of potential design solutions. The mutation operator
is used to maintain the genetic diversity from one generation to the next one which
can permit a stochastic variability of GA which can reduce the convergence time
considerably [161].

In using the GA as an MPPT of PV systems, the duty ratio or terminal voltage
is used to initially set the chromosomes to follow the GA performance for tracking
the GP. These chromosomes are encoded in the form of a binary code which is
used to determine the chromosome population. The mutation and crossover will be
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Fig. 31 The following part
in GA from [166] Initialize the population

Calculate the fitness

Sellection

Crossover

Mutation

Check Convergence

performed in the execution of the algorithm to produce the new generation. The new
generation will be determined using the fitness function which can be obtained from
the PV system. The algorithmwill be repeated keeping the highest fitness value as the
best solution [8]. A detailed comparison between using the GA and other traditional
PVMPPT techniques is introduced in [162]. The GA has been used also to determine
the optimal configuration of hybrid renewable energy systems [163]. The flowchart
of the GA is shown in Fig. 31 [162].

4.2.4 Mathematical Based Algorithms (MBA)

These techniques are soft-computing-based techniques that use mathematical
formulas in searching for the optimum solutions without imitating any natural,
biological, or physical evolution. Some of these techniques when they are used as an
MPPT of PV systems are shown in the following sections:

Fibonacci Search Algorithm (FSA)

Fibonacci search (FSA) is counted as one of the soft-computing MPPT techniques
[164]. This technique is using samples derived from Fibonacci series as shown in
(128):

Fn = Fn−1 + Fn−2, where F0 = F1 = 1 and n = 2, 3, 4 . . . (128)

In this case, the first 10 FS numbers are shown in the following Table:
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n 0 1 2 3 4 5 6 7 8 9 10

Fn 1 1 2 3 5 8 13 21 34 55 89

The value of Fn is determining the accuracy of the solution, where the higher the
value of Fn the higher the accuracy. The relation between the value of Fn and the
accuracy of the results as a ratio of the exact solution is given from the following
condition (129).

Fn ≥ 1

2ε
(129)

where ε is the acceptable tolerance, as an example if it is required the accuracy of the
solution to be 0.01 from the value of the exact solution, then Fn ≥ 50, the n should
be equal to 9 as shown in the above table. Then Fn = 55;

Four samples will be generated as x1, x2, x3, x4, where x3 and x4 are selected as the
lower and upper and lower limits of searching values, and x1 and x2 are chosen to be
in between x3 and x4 [165]. The relation between the duty ratio and the samples xi is
used as shown in (130). These values of duty ratios will be applied to the PV system
one by one and the corresponding power will be collected. The sample corresponding
to the highest power is called the best sample. Based on the results obtained from the
first iteration, the two conditions are shown in (131) and (132) will be determined
[166].

Di = xi
256 − 1

(130)

If P(x1) > P(x2), then

xi+1
4 = xi2, x

i+1
3 = xi3, x

i+1
2 = xi1, x

i+1
1 = xi+1

2 − Fn (131)

If P(x1) < P(x2), then

xi+1
4 = xi4, x

i+1
3 = xi1, x

i+1
1 = xi2, x

i+1
2 = xi+1

1 − Fn (132)

Modified equations are introduced in [167] to reduce the convergence time as
shown in (133) and (134).

If P(x1) > P(x2), then

xi+1
4 = xi2, x

i+1
3 = xi3, x

i+1
2 = xi1, x

i+1
1 = xi1 + Fn−1

Fn

(
xi4 − xi3

)
(133)

If P(x1) < P(x2), then

xi+1
4 = xi4, x

i+1
3 = xi1, x

i+1
1 = xi2, x

i+1
2 = xi2 + Fn−1

Fn

(
xi4 − xi3

)
(134)
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Fig. 32 Fibonacci Search
Flowchart

 Input data
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The flowchart showing the Fibonacci Search is shown in Fig. 32. The main short-
coming of FS is its limitation to capture the GP in the case of PSC. Moreover, the
complexity of the implementation of this technique which makes it not favorite to
be used as an MPPT of the PV system.

Jaya Optimization Algorithm (JOA)

The generic Jaya algorithm is one of the soft-computing, mathematical-based opti-
mization technique introduced in 2016 by Rao [168]. The operating principle of
the Jaya algorithm is to iteratively update solutions for a given problem by moving
them toward the best solution and away from the worst solution. Jaya algorithm
does not require controlled parameters which makes Jaya is an attractive option for
tracking the MPP of the PV system. Two random numbers generated from uniform
distribution are used to update the candidate solutions to the optimization problem.
Jaya algorithm has been used as an MPPT of partially shaded PV systems in 2017
[169]. The results obtained by this technique have been compared to two different
PSO strategies. The results showed better convergence performance for the Jaya
algorithm compared to the PSO in tracking the MPP of the partially shaded PV
system.

The use of the Jaya algorithm in the MPPT of the PV system is done in [169] by
initializing n candidate solutions and use these values to collect the corresponding
power associate with each solution (Voltage). Then the best solution and worst solu-
tion can be determined and their corresponding voltage is selected as V 0

best, and V
0
worst,

respectively. And use these values to determine the new generation of solutions. Use
the voltage to determine the corresponding power from the PV system. If the newly
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generated power is greater than the one in the previous iteration, then keep the new
one otherwise keep the one in the previous iteration for the same particle. The iter-
ations should be repeated again until the system detects an acute change in power
which forces the Jaya algorithm to reinitialize again.

V l+1
k = V l

k + rand1
(
V l
best −

∣∣V l
m,n

∣∣)− rand2
(
V l
worst −

∣∣V l
m,n

∣∣) (135)

V l+1
k =

{
V l+1
k i f P

(
V l+1
k

)
> P

(
V l
k

)
V l
k otherwise

(136)

where V l
k is a candidate solution (PV terminal voltage) of particle k in iteration l. V l

best
and V l

worst are the voltages of the best and worst solutions in iteration l, respectively.
rand1 and rand2 are random numbers between 0 and 1.

To enhance theMPPT performance of PV systems in terms of faster convergence,
lower oscillation, and higher efficiency, a natural cubic spline-based prediction
model is incorporated into the iterative solution update of the Jaya algorithm is
introduced in [170]. The utilization of the natural cubic spline model in the iterative
process of the S-Jaya algorithm can avoid worse updates and thereby improves the
MPPT performance. Simultaneously, the natural cubic spline model can be renewed
online to maintain its prediction accuracy and produce correct decisions of updating
solutions [170].

Tabu Search Algorithm (TSA)

The Tabu search algorithm (TSA) is one of the mathematical-based Algorithms
(MBA) that can be used to solve nonlinear optimization problems. It is using many
other optimization algorithms such as linear programming and heuristics in adaptive
procedures to avoid their limitations such as their high failure rates. The TSA is
one of the metaheuristics optimization techniques and it has been created in 1986
by Glover [171]. By relaxing TSA’s basic rule, the TSA enhances its local search
performance. First, at each step worsening moves can be accepted if no improving
move is available. In addition, prohibitions are introduced to discourage the search
from coming back to previously seen solutions.

The implementation of the Tabu search uses memory structures that describe the
visited solutions or user-provided sets of rules. In the case of the solution that has
been previously seen within a short-term period, The TSA will mark these solutions
candidates to avoid the possibility to look at it again. TSA has been used in used
as MPPT of the PV system in [172], where it has been divided into three sub-
strategies, namely diversification search, local search, and intensification search.
The diversification search is performed first by scanning the whole range of the PV
array voltage for the detection of the promising voltage area. Then the hill-climbing
method with a relatively large step size is employed as the local search to explore
the detected promising area. These two search strategies are assembled to compose
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the main loop of TSA-MPPT and are repeated until the termination conditions are
satisfied. Moreover, the tabu list which records the explored regions is used during
the loops to avoid returning to the already visited voltage areas. Finally, after the
loops are terminated, the hill-climbing method with a small step size is applied as
the intensification search to refine the MPP visited so far for a more accurate result.
These searches are applied in such a way that they give the TSA-MPPT method a
better chance to explore among the PV array voltage range, thus avoiding the risk of
trapping into the local MPP. The terms used in TSA-MPPT are illustrated first. Then
the detailed procedure is described [172].

Extremum Seeking Control (ESC)

The extremum seeking control (ESC) is a nearly model-free self-optimizing control
strategy that can search for the unknown and/or time-varying optimal input param-
eter regarding a given performance index of a nonlinear plant process. The MPPT
is achieved by driving the obtained gradient by closing the search loop with an inte-
grator. In this study, we have followed an alternative path of ESC for PVMPPT, based
on the dither–demodulation framework described in [173]. Such an ESC scheme
relies on the use of a pair of dither and demodulation signals, along with high-pass
and low-pass filters, to extract gradient information. Similar to the method in [173],
closing the control loop with an integrator can drive the gradient towards zero in
steady state, which achieves the optimality. As the gradient information is locked
to the particular dither frequency, this ESC scheme is more robust to the process
noise and temporal variation of the performance map, compared to the classic ESC
methods without dithering signals. This ESC method has successful applications in
various systems such as axial flow compressors, jet engines, combustion, HVAC,
wind turbine among others [173]. For the dither–demodulation scheme, one advan-
tage is that the gradient information is carried by the dither harmonic, with which it
is more robust against measurement noise and change in performance map. Another
advantage is that particular dither action such as square wave provides transient
information that can be used for fault detection [173].

4.3 Chaos Optimization Algorithm (COA)

4.3.1 Stepped-Up Chaos Optimization (SCO)

Chaos optimization Algorithm (SCO) is a very attractive technique in optimal solu-
tions of nonlinear problems due to their ability to escape from local solutions. Many
modifications are introduced to the traditional chaos optimization search techniques
to improve its ability to become faster in capturing the global solution. One of these
modifications is the stepped-up chaos optimization (SCO) [174] which has been used
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in MPPT of PV systems in order to improve its efficiency and reduce the conver-
gence time. Also, Zhou et al. [175] proposed a dual-carrier chaotic strategy in which
it selects two different chaos generations to produce chaos variables. This tech-
nique exhibits robust and accurate tracking performance when it is used in MPPT of
PV system. Another strategy introduced in [174] called stepped-up SCO in which
applies chaos theory and the iteration formula to produce random and ergodic chaos
variables, which can be used to capture the best solution in a continuous variable
searching area. Chaos mapping is shown in Eq. (137):

xn+1 = μ sin(πxn), n = 1, 2, 3, . . . , (137)

whereμ is a control parameter. Settingμ = 2, Eq. (137) is completely in chaos condi-
tion, and xn is ergodic within [−2, 2]. The optimization function can be described as
follows [174]:

f = f
(
x∗
i

) = max f (xi ), i = 1, 2, 3, . . . N xi ∈ [ci , di ] (138)

where xi is representing the optimization variables and it can represent the duty ratio
of DC/DC converter or the terminal voltage of PV array in the PVMPPT application.
ci and di are the lower and upper limits of xi; f (xi) is the fitness function that represents
the output power in the PV MPPT application. f

(
x∗
i

)
is the maximum output power

of the PV array, and x∗
i is the duty ratio or the output voltage of the PV array at

the MPP. Two stepped-up SCO strategy is introduced to improve the performance
of SCO in tracking the GP of PV MPPT. In this strategy, two searching strategies
are implemented, namely, rough search and fine search. The rough search strategy is
used to improve the performance of SCO during transient conditions meanwhile the
fine search is used to reduce the search space of optimized variables and improve the
convergence speed [174]. The results obtained from this work showed the superior
performance of this technique in terms of convergence time and failure rate as well
as the low oscillations at the steady-state condition.

4.3.2 Dual-Carrier Chaotic Search (DCCS)

The dual-carrier chaotic search (DCCS) is a modification to the traditional chaotic
technique. This modification is done by using different mapping techniques than
traditional chaotic techniques. In this case, if iteration continues, any variable in the
optimization space can be obtained in the iterative sequence of logistic mapping. The
probability distribution of the chaos point set When the logistic equation is in chaos
condition, the theoretical probability distribution of the chaos point set xn meets

Chebyshev distribution as shown in (139) [175]:

p(x) = 1

π
√
x(1 − x)

, (139)



Photovoltaic Maximum Power Point Trackers: An Overview 187

This distribution characteristic of the chaos sequence is uniform in the middle and
dense in the two ends. The probability density of xi is given by Eq. (140)

p(xi ) = 1

π
√
xi (1 − xi )

(140)

According to the Perron–Frobenious equation, defined as shown in (141).

p(x) =
∑

(yi= f −1(x))

p(yi )

f ′(yi )
(141)

When μ = 2, and yi ∈ [0, 0.5], then

∣∣ f ′(x)
∣∣ = 2π cos(πx), yi = arcsin(x/2)

π
(142)

From (141) and (142),

p(x) =
∑

(yi= f −1(x))

p(yi )

2π cos(πy)
=

p
(
arcsin(x/2)

π

)

π
√
4 − y2

(143)

Then, p(x) = 1

π

√
x
(
4 − x2

) (144)

From (144), xn+1 = μ (πyn), the mapping chaos point set xn mainly centralizes
in the middle and uniformly distributes in the two ends. So, this technique combines
the two chaos mappings to make sure that the search is sufficient.

The results obtained from this technique shows its superiority in tracking theMPP
in the case of PSC in terms of convergence time and failure rate.

5 Other Non-Model-Based Techniques

5.1 Skipping Mechanism Algorithm (SMA)

Modern techniques have been introduced recently to the field of PV MPPT called
skipping mechanism technique [23, 176, 177]. This technique is working based on
avoiding certain intervals from the searching space of P–V curve in which for sure
the MPP does not exist. The rest of the searching area will be reduced which reduces
the convergence time and increase the convergence speed of this technique. Different
strategies used the same idea is introduced in literature are shown in the following
points:
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• Voltage Window Search (VWS) [21]
• Search–Skip–Judge (SSJ) [22]
• Maximum Power Trapezium (MPT) [23].

6 Hybrid MPPT Techniques (HMT)

The performance of MPPT is characterized using three main issues as shown in the
following points:

The failure Rate: This is the factor that gives the percentage of attempts that
converge to LPs with respect to the total number of attempts. This factor is very
important because the convergence at the LPs reduces the generated power from the
PV system considerably. So, this factor should be minimized or even become zero
to have the highest generated efficiency.

The Convergence Time: The convergence time is the time required for the MPPT
to reach the steady-state condition. This factor is very important especially in the
case of fast change weather conditions. This factor should be minimized to improve
the stability of the PV system and increase the generated efficiency.

The oscillation around steady state: This factor should be minimized to improve
the stability of the PV system and to reduce the losses at a steady state.

The above three factors should be minimized to improve the performance of the
PV system. These three factors have trade-off performancewhichmeans if theMPPT
techniques tried to reduce one of these factors the other two may be increased. So,
the idea here is to hybridize two or more MPPT techniques to work together to get
the benefits of these techniques to reduce these three factors at the same time. This
means that, in the transient state or fast-changing weather conditions, an accurate
convergence to GP and avoidance of convergence at the LPs is required. Moreover, a
fast MPPT technique (low convergence time) is required to capture the GP in a short
time to improve system stability and increase the generated efficiency. Also, in the
case of a steady state, it is required to have low oscillations. The idea in most of these
hybrid MPPT techniques is to have a very fast and reliable convergence technique
in the transient and lower oscillation technique at the steady state. The hybridizing
between these techniques can be classified into four different categories as shown in
the following points:

• Traditional with traditional MPPTs (T–T MPPT).
• Traditional with soft-computing MPPT (T–SC hybrid MPPT).
• Soft-computing with soft-computing (SC–SC hybrid MPPT).

These techniques are listed in the following sections:
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6.1 Traditional with Traditional MPPTs (T–T Hybrid MPPT)

In this technique, the hybrid system will use two traditional techniques to work
together to capture the GP very fast and reliable in the transient state and the other
traditional technique is providing low oscillations at the steady-state condition. A
list of these techniques are shown below:

• Beta with P&O [58]
• P&O with InCond [178]
• Fractional short-circuit current with P&O [179]
• Fractional open-circuit voltage with P & O [44].

6.2 Traditional with Soft-Computing MPPT (T–SC Hybrid
MPPT)

Most of the hybrid MPPT techniques lie in this category where the soft-computing
technique is used in transient to reliably capture the GP in a very short convergence
time and switch the control after that to the traditional MPPT technique to reduce
the oscillations at the steady-state conditions. A list of these techniques is shown in
the following points:

• ACO with P&O [180]
• ANN with P&O [181–183]
• ANN with InCond [75, 184]
• BA with Beta [109]
• BA with P&O [109]
• BA with InCond [109]
• GWO with P&O, [185]
• PSO with Sliding mode controller (SMC) [186]
• PSO with P&O [187, 188]
• PSO with INC [189]
• SSA with P&O [190]
• GWO and P&O.

6.3 Soft-Computing with Soft-Computing (SC–SC Hybrid
MPPT)

• ACO with FLC [191]
• CS with FLC [192]
• DE with ANN [193]
• GWO with FLC my paper [40]
• GWO-CSA [194]
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• PSO with ANN [195]
• PSO with FLC [196]
• Quasi Oppositional Chaotic with GWO [197]
• Binary chaotic with CSA (BCCSO) [198]
• FLC with ANN [199, 200]
• DE with PSO [201]
• Lagrange interpolation with PSO [202]
• WOA with DE [203]
• Jaya with DE [204].

7 Conclusions and Recommendations

The MPPT techniques are very important to improve the efficiency of PV systems
and increase the generated power. Three main factors are required from the MPPT
which are, low failure rate, low convergence time, and low oscillations around the
steady-state conditions. All these factors should be achieved with minimal cost and
hardware complications. The uniform irradiance of the PV array generates only one
peak in the P–V curve of the PV array. Meanwhile, in partial shading conditions,
multiple peaks in the P–V curve will be generated the one with the highest generated
power is called the global peak (GP), and the rest is called the local peaks (LPs).Most
of the traditional MPPT techniques are able to track the peak in the uniform irradi-
ance condition but it may be trapped in one of the LPs in the case of partial shading
conditions. For this reason, soft-computing techniques are introduced to avoid this
limitation of the traditional techniques. Most of the soft-computing techniques will
be able to capture the GP in PSC but with a longer convergence time compared to
the traditional MPPT technique. Moreover, most of the soft-computing techniques,
especially swarm techniques cannot capture the GP in the case of shading pattern
changes. Several improvement strategies are introduced to improve the performance
of soft-computing techniques. This problem is avoided by reinitializing the searching
agents if there is an acute change in generated power is detected. Another improve-
ment strategy is introduced by initializing the searching agents at the position of
anticipated peaks or at an equal distance between each searching agent. This strategy
reduced the failure rate to zero and reduced the convergence time considerably. The
evaluation of the proposed techniques showed that the swarm technique is reliable and
fast when their control parameters are accurately tuned. From the simulation results
shown in many papers reviewed in this study, the BA is recommended as one of the
best MPPT technique where it can converge in less than 1 s with 0.05-s sampling
time. This convergence can be reduced to less than half of the scanning criteria that
have been used with the BA. The main problem of most of the soft-computing tech-
niques is that the improvement of convergence time will increase the failure rate and
oscillations at steady state. For this reason, hybrid MPPT techniques are introduced
in the literature to use the fast and reliable technique in the transient state and use the
techniques that have low oscillations after that like traditional techniques and fuzzy
logic controllers.
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Abstract A novel hybrid optimization technique (WOA–SSA) combines whale
optimization (WOA) and salp swarm (SSA) algorithms are presented. The proposed
technique is designed to gather the benefits and features of SSA and WOA algo-
rithms. The proposed technique is applied for tracking the global maximum power
point (GMPP) and improve the performance of photovoltaic (PV) plants during
the conditions of partial shading (PSC). The evaluation of the performance of the
proposed technique is performed via MATLAB/SIMULINK. Moreover, a compar-
ative analysis is exhibited to confirm the performance of the planned WOA–SSA
technique against the conventional SSA and WOA, separately. The obtained results
show the superiority of the designedWOA–SSA technique considering tracking effi-
ciency. Moreover, the proposed WOA–SSA algorithm reaches the best solution in
less time and with a better convergence speed compared to SSA and WOA. The
statistical results confirm that the success rate has been enhanced from 76.6667%
and 73.333%, respectively, with WOA and SSA to 95% with the proposed hybrid
algorithm. Furthermore, the value of the standard deviation of 2.7877 and 2.5329
based onWOA and SSA is reduced to 0.3320 in the case of the proposedWOA–SSA.
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1 Introduction

These days, research is directed toward the field of renewable energy sources (RES)
and focusing on incubating energy with minimum cost [1–3]. As an example, in [1,
2, 4–10], hybrid configurations of various RES have been developed which combine
solar energy, wind energy, and/or fuel cells [2, 4, 11, 12]. With the growing utiliza-
tion of solar energy, many experts are intensified on evolving MPPT methods [4–
7]. Because it is well known that the efficiency of generating electricity from PV
systems is low as it is highly dependent on weather conditions [6, 13, 14]. Moreover,
the nonlinear properties of a PV unit cause the output energy to be affected by solar
radiation and temperature [11–13]. Also, the variation of the connected load has its
effect [15–17]. Therefore, catching the MPP of PV plants is considered an essen-
tial solution to increase the PV system efficiency. To ensure the efficient operation
of PV systems and to save the cost of generated energy, the MPP tracking of the
electrical system considering the normal and irregular circumstances is a key idea of
investigation [18–23].

The constructed PV systems using multi-string arrangements are a good choice
considering the higher efficiency among the other configurations [24]. Moreover,
parallel bypass diodes have been coupled with the PV module. These diodes are
unable to affect the system considering the normal circumstances. Although with
the conditions of shading effects, the bypass diodes are biased forward and flow the
current instead of the PV module. For this reason, the power–voltage properties of
the PV plant considering the PSC have several local peak power points while the
global peak is the only one that must be cached. Therefore, this extreme global point
is necessary to be tracked. Accordingly, the success of out-of-dateMPPT approaches
under PSC is reduced. The traditional MPPT algorithms, for instance, hill-climbing,
incremental-resistance (INR), perturb and observe, and incremental conductance
(INC) can only extract the local MPP and cannot separate the global and local power
points. The artificial intelligence-based methods, for instance, fuzzy logic (FL) and
neural network (NN) cannot separate between the global and local peaks [24–26].
References [24–26] introduced a mathematical analysis of MPPT algorithms such
as P&O and INC to validate their performance during dynamic and steady-state
conditions. Moreover, a neuro-fuzzy (NF) method has been implemented for the
MPPT of the PV unit [7, 24]. The described problem of extracting the MPP under
shading effects primes to reducing the efficiency of tracking the global MPP [27].

In recent years, several recent MPPT techniques considering optimization
methods are developed to fix global MPP. The primary purpose of all such algo-
rithms is to improve the efficiency of the PV system considering the PSC opera-
tion. Optimization techniques as a genetic algorithm (GA) [28] and particle swarm
optimization (PSO) technique [29] have been used for following the MPP with the
consideration of PSC. Other soft-computing techniques such as ant colony opti-
mization [30] and cuckoo search [22] have been introduced for the same purpose
to extract the global MPP. Additionally, recent optimization algorithms have also
been applied with an acceptable performance such as a novel PSO algorithm that
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has been presented and improved the dynamic change partial shading PV MPPT [3,
31]. Moreover, the bat method is also used for tracking the MPP, considering the
partial shading [32, 33]. In Ref. [34], the scanning method has been implemented
to resolve the problem of PSC of the PV system. Dynamic PSO algorithm has been
applied for MPPT with a battery charging system from partial shaded PV [35]. In
Ref. [36], a hybrid optimization algorithm is introduced to moderate the problem of
the PSC in MPPT of PV systems. The authors in [37] introduced a comprehensive
analysis of many optimization techniques, which have been applied for MPPT under
different partial shading patterns. A review of recent soft computing methods that are
utilized to extract the MPP under different weather conditions is presented in [2, 12,
24, 36]. However, the applied algorithms, especially those which are based on one
optimization algorithm, may fail to reach the MPP under some reported cases with
the variation of the weather conditions [12, 36]. Therefore, more effective algorithms
have to be developed and utilized for MPPT in order to improve the efficiency of
PV systems considering various operation conditions, especially with PSC. Conse-
quently, themain contribution in this chapter is to present a novel hybrid optimization
algorithm for MPPT in order to improve the accuracy of power extraction as well as
the efficiency of PV system.

In the present chapter, a hybridWOA–SSAmethod has been developed to enhance
PV system effectiveness tacking the conditions of PSC into consideration. The
main purpose of the presented method is to catch and separate the global MPP
from the numerous local peaks of power. Moreover, the tracking performances
of trackers are evaluated and compared under different partial shading patterns
using MATLAB/SIMULINK package. Furthermore, a statistical evaluation of the
established algorithm is introduced.

2 PV System Under PSC

The performance of PV is tested under PSC (i.e., 4S1P configuration). The system
consists of four panels, guaranteed by three modules per string. The module contains
72 series multi-crystalline silicon cells with a top capacity of 51 W. The production
capacity of such a configuration is 204 Wp (i.e., 4*51 W). To determine the effect
of PSC on the PV system power, five arbitrary patterns of irradiance distribution are
executed besides the normal irradiance, as referred to in Table 1. G1 refers to the
radiation in the first series branch, while G2 represents the radiation of the second
series branch and so on. The Simulink model of the PV configuration tested for
the design of the shadow patterns has been illustrated in Fig. 1. Figure 2 shows the
PV configuration characteristics under uniform (i.e., 1 kW/m2) and various partial
shading patterns of irradiances.Moreover, theMPP details for each pattern are shown
in Table 1.
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Table 1 The considered PSC patterns and MPP details for each pattern

Irradiance
(W/m2)

MPP Irradiance
(W/m2)

MPP

Uniform
irradiance

1000 Pmax = 203.2 W
V = 67.7 V

PSC Pattern
#4

1000 Pmax = 82.01 W
V = 33.02 V1000 800

1000 400

1000 200

PSC
Pattern #2

1000 Pmax = 172 W
V = 69.49 V

PSC Pattern
#5

1000 Pmax = 110.6 W
V = 71.06 V1000 1000

800 500

800 500

PSC
Pattern #3

1000 Pmax = 130.2 W
V = 51.67 V

PSC Pattern
#6

1000 Pmax = 99.49 W
V = 52.62 V1000 800

800 600

400 400

3 Brief Description of Whale Optimization Algorithm

The whale optimization algorithm (WOA) is a stable and robust method that can
solve engineering optimization problems [38, 39].WOA considers the whale hunting
mechanism. This is pursuing an approach termed the bubble-net feeding stratagem. In
this strategy, the Humpback whales need to chase small fishes swimming near to the
water surface by producing a bubble net that surrounds prey and grows dramatically
in a circular track. This approach has been illustrated in Fig. 3. The mathematical
representation may be described as the following [38]:

D =
∣
∣
∣ �C · �X∗(t) − �X(t)

∣
∣
∣ (1)

X(t + 1) = �X∗(t) − �A. �D (2)

−→
A = 2−→a · −→r −−→a (3)

−→
C = 2 · −→r (4)

where t represents the current iteration, and �X denotes the position vector which
represents the position of the duty cycle. �A and �D denote coefficients vectors, �X∗
denotes the position vector of the finest solution and represents the optimum duty
cycle solution. This position will be varied each time with iterations with the best
one. �r is an arbitrary random vector in [0, 1], and �a is linearly limited from 2 to 0 with
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Fig. 1 The PV configuration model considering various shadow patterns

the iteration number. To describe the whole process considering the investigation
stage as well as the exploitation stage; the following mathematical descriptions will
be presented [39].

3.1 Mathematical Description of Exploitation Phase

This phase can be done through one of the following descriptions of air bubble net.



206 A. A. Z. Diab et al.

0 20 40 60 80

PV Voltage (V)

150

0

50

100

200

250

PV
 P

ow
er

 (W
)

Pattern #1 Pattern #2

Pattern #3 Pattern #4

Pattern #5 Pattern #6

0 20 40 60 80

PV Voltage (V)

0

1

2

3

4

PV
 C

ur
re

nt
 (A

)

Fig. 2 The characteristics of the configurated PV

3.1.1 Shrinking Circling System

This approach is described using Eq. (3). The fluctuation scope of �A maybe deter-
mined in the range of [−a, a]. �A is considered in the range of [−1.0, 1.0], while the
new location of �A is estimated among the first agent location and the current finest
agent location. Figure 3a displays the possible locations from the position of (X, Y)
in the path of (X∗, Y ∗), which is described by 0 ≤ A ≤ 1 in a 2D space.

3.1.2 Spiral Updating Position

This method is described as exposed in Fig. 3b. The considered strategy is based
on defining the distance among the whale situated at the position of (X, Y) and the
prey situated at the location of (X∗, Y ∗). The spiral track among the two locations of
whale and prey is denoted as [40]

�X(t + 1) = −→
D′ · ebl · cos(2πl) + −→

X∗(t) (5)
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Fig. 3 Search process of the
WOA technique: a shrinking
encircling process; b spiral
updating position process

where
−→
D′ = −→

X∗(t) − �X(t) validates the separation of the ith whale position to the
prey (finest solution). While l stands a random number in the region of [−1, 1].
Moreover, b denotes a constant for characterizing the state of the logarithmic spiral.
Whales swim around the prey inside the shrinking circle and alongwith a spiral form.
Additionally, a likelihood of half to indicate one of the two methods can be written
as

�X(t + 1) =
{ �X∗(t) − �A · �D i f p < 0.5−→
D′ · ebl · cos(2πl) + −→

X∗(t) i f p ≥ 0.5
(6)

where p denotes an arbitrary number in the range of [0 and 1].
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3.2 Mathematical Description of the Investigation Phase

Whales track randomly as the location of each further. Therefore, �A is exploited
with arbitrary numbers, which are not in the range of [−1]–[1]. This phase ensures
to increase the range of searching process in order to investigate possible solutions
far from the current finest position for the duty cycle. This phase, which considers the

value of
∣
∣
∣ �A

∣
∣
∣ > 1, improves the search about the global pursuit. The mathematical

description of this phase can be represented as in [20]:

D =
∣
∣
∣ �C · �Xrand − �X

∣
∣
∣ (7)

�X(t + 1) = �Xrand − �A · �D (8)

Figure 4 illustrates the flowchart of the full mathematical description of theWOA
procedure.

4 Salp Swarm Algorithm

The principle motivation of the salp swarm algorithm (SSA) has the same behavior
as swarming conduct of salps when exploring and scavenging in oceans [41–43].
The state of a salp has been appeared in Fig. 5a. In deep oceans, salps frequently
structure a swarm termed salp chain, as outlined in Fig. 5b.

To scientifically describe the salp chains, the populations will be alienated into
two groups. The first group is the leader, while the other one are the followers. The
leaders are at the front of the chain. Although the other salps are the followers. The
location of salps has been characterized in an n-dimensional search space. Wherever
n denotes the number of variables of a studied problem. Consequently, the locations
of all salps remain kept in a two-dimensional matrix named x, which represents the
duty cycle. Additionally, there is a food source F in the search space as the swarm’s
objective, which represents the power of the tested PV. The update process of the
slaps can be performed as

x1j =
{

Fj + c1
((

ub j − lb j
)

c2 + lb j
)

, c3 ≥ 0

Fj − c1
((

ub j − lb j
)

c2 + lb j
)

, c3 < 0
(9)

where x1j illustrates the position of the first salp (leader) in the j-th dimension. While
the ub j , lb j indicates both the upper and lower bound of j-th dimension, respectively.
Moreover, Fj denotes the location of the food source in the j-th dimension; while
c1, c2, and c3 stands for random numbers. Equation (9) displays the update process
of the leader location, considering the food source. The coefficient c1 denotes the
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Start
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END
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current search agent by 
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Update the position of 
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No

Yes
Yes

No

No

Is p<0.5?

Update the position of 
current search agent  by 

Eq. (1)

i=i+1Is i<n?

Fig. 4 The flowchart of the WOA technique

most substantial parameter in SSA. This coefficient confirms the required balance
between the phases of exploration and exploitation phases. The coefficient c1 can be
calculated as

c1 = 2 · e−( 4l
L )

2

(10)
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Fig. 5 a The state of a salp b swarm of salps

where l denotes the present iteration, while L denotes the maximum number of
iterations. The parameters c2 and c3 are consistently produced in the interim of
[0, 1]. Actually, the parameters c2 and c3 are directly controlled in the following
position in the j-th is to positive limitlessness or negative interminability just as
the progression estimate. Furthermore, the position of the followers will be updated
considering Newton’s law of motion:

xij = 1

2
· a · t2 + vt0 (11)

where i ≥2, xij represents the position of i-th follower salp in j-th dimension, while
t denotes time and v0 denotes the initial speed, and a = vfinal

v0
, where v = x−x0

t .
Since the time in the optimization process mainly is iterative, the contradic-

tion among iterations has been equivalent to 1, the v0 = 0, and the mathematical
description is as follows:

xij = 1

2

(

xij + xi−1
j

)

(12)

The SSA algorithm has many advantages that enable it to resolve the objective
optimization problems considering the obscure search spaces. Furthermore, the adap-
tivemechanismof this algorithmpermits local solutions to be evaded and ultimately a
precise assessment of the top solution obtained throughout the optimization process.
The flowchart of the SSA algorithm has been shown in Fig. 6.
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Fig. 6 The main steps of SSA

5 Hybrid WOA-SSA

The two phases of the search process for meta-heuristic optimization techniques
are known as exploration and exploitation [12, 38–44]. The exploration phase is to
search for global optima. Moreover, this phase is to move the search positions of the
next generation as randomly as possible. On the other hand, the exploitation phase
is a detailed investigating of the promising area(s) of the search space. Furthermore,
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the exploitation anxieties to the capability of the optimization algorithm for the local
search in the region around that initiated in the exploration. The main task is to find
a balance between the two phases.

The presented results in [38] showed that the WOA algorithm features the right
balance of exploration and exploitation that supports the WOA technique to decide
the global bests. On the other hand, the introduced results demonstrated that the
WOA flops to resolve a number of the presented problems. The characteristics of the
WOA technique are determined from Eq. (8) for exploration capability through the
random movement of whales. Also, Eq. (6) shows that the WOA algorithm has the
exploitation phase. This equation shows that the WOA permits the whales to move
toward the best solution found so far. The reported results prove the power of the
WOA algorithm against many techniques such as PSO and GSA.

The displayed consequences in [41] demonstrated that SSA first investigates
the hunt space and afterward misuses it. Besides, SSA profoundly advances abuse
utilizing the c1 parameter in the final ventures of optimization as decided from
Eq. (10). Also, the outcomes demonstrated that SSA could test various areas of
the hunt space in all respects adequately by coving promising locales of the inquiry
space. It has been indicated that SSA can improve the nature of a lot of random
solutions. At long last, the outcomes and discourse demonstrated that the exactness
of the approximated global optimum is improved by SSA. This demonstrates that
the SSA has an appropriate parity of investigation/local optima turning away and
exploitation/convergence.

The hybrid WOA–SSA technique is proposed for the MPPT of partially shaded
PV plants in this chapter in order to benefit from the advantages of both algorithms.
In the hybrid WOA–SSA algorithm, to update the position of the followers which
represents the duty cycle, two passes have been taken, and the average between them
has been taken as the position of the next iteration. The first pass is as in the WOA
algorithm as in Eqs. (1)–(8). At the same time, the second pass is as in the SSA
technique considering Eqs. (9)–(11). The flowchart of the WOA–SSA technique has
been illustrated in Fig. 7.

Qualitative outcomes are, for the most part, obtained from the distinctive visual-
ization apparatuses. The furthermostwell-knownqualitative outcomes in the reported
work are the convergence curves. Academics often record the finest result acquired
so far in every iteration. The qualitative outcomes are exhibited in Appendix A.
The qualitative outcomes are search chronicles of search agents in SSA, WOA,
WOA–SSA algorithms through the span of iteration. The outcomes demonstrated
that WOA–SSA can test various areas of the search space in all respects adequately
by coving promising locales of the search space. Likewise, WOA–SSA is equipped
for enhancing the quality of a lot of arbitrary results for studied issues. At long last,
the outcomes demonstrated that the exactness of the approached global optimal is
expanded with the WOA–SSA, which affirms the need for the proposed algorithm.
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Fig. 7 The flowchart of the proposed hybrid WOA-SSA algorithm

6 Results and Discussions

The validation of the WOA–SSA technique for catching the global MPP of PV
systems under PSC has been performed. The simulation of PV configuration consid-
ering various PSC patterns using the developed WOA–SSA based tracker has been
performed through MATLAB/SIMULINK package. Moreover, a comprehensive
comparison between the tracking performance and the efficiency of WOA–SSA-
based tracker against the traditional WOA and SSA techniques have been analyzed
using different PSC. This system involves LA361K51S PV panel, DC/DC boost
converter with a switching frequency of 30 kHz in a continuously conducted current
mode. Moreover, the input inductance is with the value of 1mH while the value of
the output capacitor is taken as 47µF. Furthermore, a 60 � resistive load has been
considered. The Simulink model of the PV system combined withWOA–SSA-based
MPPT has been visualized in Fig. 8.

Case 1: Under this case study, the performance of the three algorithms have been
evaluated and compared under a uniform irradiance ofG= 1000W/m2 and a temper-
ature of T = 25 °C. Figure 9 illustrates the performance of the developedWOA–SSA
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Fig. 8 The proposed configuration of PV combined with MPP tracker
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Fig. 9 a P–V curves b Duty cycle considering the uniform irradiance

algorithm against the conventionalWOA and SSA algorithms. It is obvious from this
figure that the three algorithms have the ability to catch the MPPT efficiently and
approximately reached the same value of the maximum power. The extracted power
from the PV with the three optimization algorithms is 203.2 which equals the listed
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one for the specified value in Table 1. The main difference among the three tech-
niques is in the value of the convergence speed of each one to reach the MPP as
exposed in Fig. 9. The speeds of convergence of the SSA, WOA, and WOA–SSA
are 2, 8, and 5 iterations, respectively. The simulation results have been displayed
in Fig. 10. In this figure, the duty cycle, PV power, PV voltage, and PV current of
the different methods have been shown. From the figure, it is shown that the needed
time of the SSA, WOA, and WOA–SSA to reach the MPP is 0.6, 0.15, and 0.1 s,
respectively. Finally, it may be concluded that for the uniform irradiance case, the
three algorithms can track the local MPP while the hybrid one is the best considering
the required time to reach the MPP.

Case 2: For further investigation, the second case assumes the first partial shading
pattern. FromFig. 2, the globalMPP is at the second point on the P–V curve from two
points of peaks. The ability of the optimization algorithms to determine the global
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Fig. 10 Performance of PV considering the uniform irradiance
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Fig. 11 a P–V curves b Duty cycle considering second partial shading patterns

point and to not fails in the local one is a critical task in this case of study. The perfor-
mance of the three algorithms has been displayed in Fig. 11. Figure 11 demonstrates
that the three algorithms can extract the MPP of 172w, which is indicated from the
characteristics of Fig. 2 and Table 1. From this figure, the required iterations to reach
the MPP are 10, 8, and 5 for WOA, SSA, WOA–SSA-based trackers, respectively.
This confirms for the second time, the enhancement of the speed convergence of the
hybridWOA–SSA optimization algorithm over theWOA and SSA algorithms. Also,
the simulation results are pictured in Fig. 12. From the figure, the WOA–SSA can
locate the global MPP within the best time of 0.2 s. The introduced results confirm
that the WOA–SSA has the lead of speed convergence in order to reach the global
MPP.

Case 3: The third partial shading pattern is assumed in this case. Furthermore,
the global MPP is at the second point on the P-V curve from three points of peaks,
as shown in Fig. 2. The performance of three algorithms has been shown in Figs. 13
and 14. It is obvious from these figures that the three algorithms can track the MPP
with reasonable accuracy. However, the other essential point is the time to reach the
MPP that can be considered to judge the performance of the three algorithms. As the
figures indicate, the convergence speeds are 6, 2, and 6 iterations for WOA, SSA,
and WOA–SSA algorithms, respectively.

Case 4: Another case study has been considered to evaluate the performance of
the three algorithms further. The fourth partial shaded pattern has been assumed.
The global MPP is at the first point on the P–V curve from three points of peaks, as
displayed in Fig. 2. The results of this case under study are shown in Figs. 15 and
16. The three algorithms have the ability to track the MPP, while the main difference
is in the speed of convergence. The convergence speeds of the three methods are 13,
11, and 10 iterations for WOA, SSA, and WOA–SSA-based trackers, respectively.

Case 5: The fifth partial shaded pattern is assumed in this case. The global MPP
is at the second point on the P–V curve from the two points of peaks, as exposed
in Fig. 2. The results of this case under study are shown in Figs. 17 and 18. The
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Fig. 12 Performance of PV considering the second shading pattern

convergence speeds are 14 iterations for the techniques of WOA and WOA–SSA-
based trackers. From the figure, it is obvious that the SSA tracker did not catch
the MPP. The WOA alone, in this case, can track the MPP, while the SSA fails to
discriminate between the local and global MPPs. So, the hybridization between the
two algorithms enhances tracking efficiency.

Case 6: The sixth partial shaded pattern is considered to study. The global MPP is
at the third point on the P–V curve from three points of peaks as visualized in Fig. 2.
The simulation results of this case under testing have been discovered in Figs. 19
and 20. The convergence speeds of the three trackers are 6, 9, and 5 iterations for
WOA, SSA and WOA–SSA-based trackers, respectively. Also, this time, the hybrid
algorithmproves its self as the best algorithmamong the other investigated algorithms
in this study. It is almost timeless in reaching the MPP than those other algorithms.
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Fig. 14 Performance of the
PV, considering the third
shading pattern

0 0.1 0.2 0.3 0.4
0.35

0.4

0.45

D
ut

y 
C

yc
el

SSA WOA WOA-SSA

0 0.1 0.2 0.3 0.4
0

100

200

PV
 P

ow
er

(W
)

0 0.1 0.2 0.3 0.4
0

50

PV
 V

ol
ag

e(
V)

0 0.1 0.2 0.3 0.4

Time (sec)

0

2

PV
 C

ur
re

nt
(A

)



A Novel Hybrid Optimization Algorithm for Maximum Power … 219

(a) (b)

2 4 6 8 10 12 14

Iterations

60

70

80

90

PV
 P

ow
er

(W
)

SSA
WOA
WOA-SSA

2 4 6 8 10 12 14

Iterations

0.4

0.45

0.5

0.55

0.6

D
ut

y 
C

yc
el

Fig. 15 a P–V curve b Duty Cycle considering the fourth partial shading patterns

Fig. 16 Performance of the
PV system considering forth
shading pattern
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Fig. 17 a P–V curves b Duty cycle considering the fifth partial shading patterns
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Fig. 18 Performance of the PV, considering the fifth shading pattern
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Fig. 19 a P–V curve b Duty cycle considering the sixth partial shading patterns

Fig. 20 Performance of the
PV considering the sixth
shading pattern
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For more visualization, the PV power of WOA, SSA, and WOA–SSA algorithms
under different partial shading patterns is shown in Figs. 21 and 22 besides the
PV characteristics of each pattern. These figures showed that all the investigated
algorithms can track the global MPP with high tracking efficiency for most of the
cases under study. However, in case 5, the SSA algorithm could not catch the MPP.
In most of the cases, the convergence speed of the presented WOA–SSA technique
is better than that with WOA.

Fig. 21 a P–V curves b the PV output power for WOA, SSA, and WOA–SSA algorithms with
respect to uniform patterns and Patterns #2 and 3

Fig. 22 a P–V curves b the PV output power for WOA, SSA, and WOA–SSA algorithms with
respect to the Patterns #4, 5, and 6
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For assessing the features of algorithms, the speed of convergence and efficiency
of each algorithm to catch the MPP are assumed as the main criteria. The detailed
results of the criteria have been displayed in Table 2. The outcomes from this table
showed the priority of the WOA–SSA technique corresponding to the efficiency of
tracking the maximum power. The average time and the convergence speed to track
confirm the superiority of the WOA–SSA-based trackers.

7 Statistical Evaluation of the Presented Algorithms

To evaluate and validate the effectiveness of the studied algorithms, it is essential to
select a set of metrics to introduce a statistical evaluation of the obtained results and
therefore provide a good validation of the proposed hybridization. Table 3 shows
numerous quality metrics to estimate the features of the studied algorithms. Such
indices include variance, standard deviation (STD), and success rate. The latter refers
to the attempts to extract the MPP. These metrics measure the true PV power (PPVt)
gotten from the SIMULINK model shown in Fig. 1, and the PV power (PPVe) found
from the optimization algorithms. The parameters for the three trackers of WOA,
SSA, and WOA–SSA have been established as the maximum number of iterations
of (15) and population of (3). Also, each technique is performed ten times for each
pattern (60 runs for each algorithm).

The performance of each algorithm for the MPP is shown in Fig. 23. From the
figure, the SSA algorithm failed to discover the MPP from the PV for 16 runs for all
patterns. Alternatively, theWOA technique failed to reach theMPP for the PV system
for 14 runs for all patterns. Moreover, the proposed hybrid WOA–SSA algorithm
failed to reach the MPP for only three runs for all patterns. The results of the figure
display that the projected hybrid WOA–SSA is better than the other two techniques.

Tables 4, 5 and6 show theperformance evaluation forWOA,SSA, andWOA–SSA
algorithms for different patterns. These tables showed that the hybrid WOA–SSA
algorithm has an acceptable lower variance than the variance of WOA or SSA. Also,
the STD confirmed that no change in the extracted maximum power at each run from
the other, which designated the stability and the priority of theWOA–SSA algorithm.

The comparison among the obtained results of the three techniques has been
recorded in Table 7 and Fig. 24. The indicated results of success rate, STD, and vari-
ance have been emphasized. From this table, it has been detected that theWOA–SSA
techniquehas the lowest value of the variance.Moreover, the value ofSTDproved that
the values of MPP did not change along the iterative process. All these results prove
the stability of the WOA–SSA techniques over the algorithms of SSA and WOA.
The STD is 2.7877, 2.5329, and 0.3320 for WOA, SSA, and WOA–SSA, respec-
tively. The success rate indicates the percentage of numbers of successful tracking of
the correct global MPP concerning the whole number of runs. The success rates for
WOA, SSA, and WOA–SSA algorithms are 76.6667, 73.333, and 95, respectively.
The superiority of the hybrid WOA–SSA has been proved from the table as well as
the whole presented results.
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Table 3 Indexes applied to assess the performance of the studied techniques

Metric Abbreviation Formulation

Variance Variance
σ 2 =

∑nr
i=1(PPVe,i−P̄pvt )

2

nr

Standard deviation SD
√

∑nr
i=1(Ppvt−P̄pvt )

nr

Successful rate Suc. Rate No.of runswhichextracttheMPP
nr

∗ 100%

Fig. 23 The PV system output power for WOA, SSA, and WOA–SSA algorithms for 10 runs of
operation under all patterns

Table 4 The performance of WOA under different shadow patterns

Cases WOA

Best MPP Worst MPP Average
MPP

Median
MPP

STD C Suc. Rate
%

Patterns 1 204.146 203.814 204.112 204.145 0.105 0.0109 90

Patterns 2 172.779 172.255 172.723 172.774 0.164 0.0269 90

Patterns 3 130.750 130.385 130.678 130.749 0.151 0.0227 80

Patterns 4 82.380 68.168 78.077 82.317 6.824 46.571 70

Patterns 5 111.049 96.776 108.167 111.019 6.003 36.0431 80

Patterns 6 99.902 93.038 96.308 95.675 3.479 12.1036 50

Average 2.7877 15.7964 76.6667
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Table 5 The performance of SSA under different shadow patterns

Cases SSA

Best MPP Worst MPP Average
MPP

Median
MPP

STD Variance Suc. Rate

Patterns 1 204.146 200.822 203.718 204.119 1.0315 1.064 70

Patterns 2 172.779 167.907 172.289 172.777 1.539 2.369 90

Patterns 3 130.7507 126.010 129.893 130.750 1.818 3.308 80

Patterns 4 82.387 68.214 79.867 82.313 4.435 19.671 60

Patterns 5 111.060 97.216 109.441 110.959 4.305 18.535 90

Patterns 6 99.908 93.133 98.806 99.532 2.069 4.2828 50

Average 2.5329 8.2050 73.333

Table 6 The performance of WOA–SSA under different shadow patterns

Cases WOA–SSA

Best MPP Worst MPP Average
MPP

Median
MPP

STD Variance Suc. Rate

Patterns 1 204.148 204.144 204.145 204.144 0.0013 1.847e-6 100

Patterns 2 172.779 172.285 172.743 172.774 0.122 0.014 100

Patterns 3 130.750 129.835 130.658 130.749 0.288 0.083 90

Patterns 4 82.399 77.925 81.898 82.325 1.396 1.949 90

Patterns 5 111.062 111.019 111.035 111.031 0.0173 0.0003 100

Patterns 6 99.913 99.365 99.840 99.888 0.1674 0.0280 90

Average 0.3320 0.3457 95

Table 7 Comparison results
between WOA, SSA, and
WOA–SSA algorithms

STD Variance Suc. Rate

WOA 2.7877 15.7964 76.6667

SSA 2.5329 8.2050 73.333

WOA–SSA 0.3320 0.3457 95

8 Conclusion

In this chapter, a novel hybrid WOA–SSA optimization technique has been devel-
oped and utilized as one of the meta-heuristic optimization algorithms. The core
goal of the WOA–SSA is to enhance the efficiency of the PV system, considering
the PSC. The proposed algorithm is utilized to determine the global MPPT from
the multiple local peaks. Two other algorithms, WOA and SSA, had been imple-
mented for the evaluation and comparison purposes with the hybrid WOA–SSA
algorithm. The comprehensive evaluation of the three trackers is approved with
MATLAB/SIMULINK package. The obtained results displayed the superiority of
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the WOA–SSA in terms of the success rate. Moreover, the results proved that the
features of the WOA–SSA are faster than the other techniques considering conver-
gence speed. Moreover, the statistical results of 10 individual run for each algorithm
show that the STD is 2.7877, 2.5329, and 0.3320 for WOA, SSA, and WOA–SSA
respectively, while the success rate of WOA, SSA, and WOA–SSA techniques are
76.6667, 73.333, and 95, respectively. Future work can consider the application of
the presented hybrid algorithm and other recent algorithms with the grid-connected
PV systems.
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Fig. 24 Comparison results between WOA, SSA, and WOA–SSA techniques

Fig. A1 WOA–SSA convergence curve for 16 test functions
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Appendix A

See Fig. A1.
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Distributed Maximum Power Point
Tracking for Mismatched Modules
of Photovoltaic Array

S. Berclin Jeyaprabha

Abstract The multiple peaks in the output P-V characteristics of the photovoltaic
(PV) module and the complete loss of shaded module’s generation due to the
existing bypass diode-based scheme are eliminated through the implementation of
proven distributedmaximumpower point tracking (DMPPT).Considering the unique
behavior of each PV Module, the artificial neural network is used in the DMPPT
algorithm to track the MPP at every instant by learning the unique behavior of each
PV module in this chapter. This eliminates the effect of manufacturing dispersion.
Though the uniqueMPP is identified, the inability of the DMPPT algorithm in main-
taining the PV modules in its own MPP is eliminated by the compensator circuits
which are introduced in the array configuration alongwith theDMPPT in this chapter.
These compensators enabled the maintenance of each PV module in its own MPP
by providing the deficient current of each module and the deficient voltage of each
string. So, this configuration increases the output power by including the generation
of shadedmodules instead of bypassing it. The results show that the proposed config-
uration avoids the multiple peak condition in P-V characteristics and improves the
efficiency of the PV array under partially shaded conditions.

Keywords Distributed maximum power point tracking · Partial shading ·
Compensators · PV module · Artificial neural network · Photovoltaic

1 Introduction

The growing energy demand due to the growing need of the world population,
push everyone to search for an alternate energy source. Considering the environ-
mental safety and comfort, all nations are moving toward the self-sustainable source
called renewable energy system (RES). Though the governments and the industries
are investing in RES to become independent, the technical problems faced by the
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investors are more. These problems include the higher curtailment rate of output
from RES due to its fluctuating nature, losses due to the mismatch or manufacturing
dispersion, partial shading from the nearby buildings, clouds, bird droppings, dust,
the distribution poles, etc. Though the governments are working on the policies for
the reduction of renewable power curtailment rate, the daily losses occurred due
to the partial shading condition or the mismatch due to the manufacturing disper-
sion are huge. The researchers around the world claim that the losses under the
partial shading and the mismatched condition varies from 10 to 70% [1]. The nearby
structures may not be present during the initial days of renewable energy plants but
built or installed after a few years. This uneven shading causes the difference in
the output of PV modules which are connected in series. Similarly, the PV modules
connected together may be of the same manufacturer with the same rating. But there
are mismatches in the output due to the manufacturing dispersion. These differences
add complications in the control of the RES which resulted in reduced yield. So,
under these conditions, the investors are interested to find a solution for this sudden
decrease in yield.

Generally, the RES is equipped with the higher-end power converters with inbuilt
maximum power point tracker (MPPT) facilities. The MPPT is used to track the
maximum power point of the P-V characteristics of the PV array at every instant to
extract the highest power from the PV array. The number of peaks in the module’s P-
V characteristic is decided by the operating temperature, insolation, shading pattern,
and the array configuration [2]. Under partial shading conditions, the PV character-
istics have more peaks as the entire PV array is not able to receive the uniform solar
radiation [3–6]. The conventional MPPT algorithms fail to identify the global peak
or the maximum power point among the multiple peaks under the rapidly varying
environments. Though the partial shading phenomena could not be predicted or
avoided, the researchers around the world are working for a better MPPT algo-
rithm which finds the highest peak at every instant among the multiple peaks to get
better yield even under partially shaded conditions. The conventional MPPT algo-
rithms like Perturb and Observe method, Incremental Conductance method, Open-
Circuit Voltage method, Short Circuit Current method, Sliding Control, etc., are
performing well under normal working condition of PV system but, they fail to track
the maximum power point under partial shading condition due to their inability to
differentiate the local and global peaks [7]. Though the soft computing approaches
are able to track the maximum power point under randomly changing environments,
the losses occurred in the photovoltaic (PV) module-level during the partial shading
condition are more due to the unique behavior and circuit configuration. These losses
are explained in this chapter. To avoid these losses, the module-level MPPT imple-
mentation and the utilization of compensating circuits are considered in this chapter.
The compensating circuits are used to satisfy the requirements of the series and
the parallel connections of PV modules which will enhance the operation of PV
modules in their actual operating point. The proposedmethodwill enhance the overall
performance of the PV array by enabling the other healthy or unshaded modules to
perform normally. The characteristics of a PV module, the MPPT algorithms, and
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their working at shaded, unshaded conditions, and the proposed solution for reducing
the losses are explained in the following sections.

2 Effect of Partial Shading and Mismatch in PV Array

Initially, to understand the characteristics of the PV array, the structure of the same
is given in detail. The fundamental PV element called solar cells or PV cells is
connected together to form a PV module or a PV panel. As an example, a PV panel
that can give an open-circuit voltage VOC of 21 V and a short circuit current ISC of
3.74 A is built by connecting 36 solar cells in series. To satisfy the required voltage
and the current rating of the PV system, many such PV modules are connected in
series and parallel. The series connection of many PV modules creates a PV string.
Also, the parallel connection of these PV strings together forms a PV array. If the
required output voltage is 210 V, then, ten such PV modules are connected in series
and forming a string. So, each string is rated for an open-circuit voltage VOC of 210V
and a short circuit current ISC of 3.74 A. Similarly, if the required current rating is
187 A, then 50 such strings are connected in parallel to form an array. So, the array
is rated for 39.27 kW or an open-circuit voltage of VOC of 210 V and a short circuit
current ISC of 187 A. The PV array with ten modules in each string and 50 strings
in parallel is given in Fig. 1.

The PVarray is partially shaded in the above condition. The shading is not uniform
throughout the array, because of its uneven coverage among all the strings of the array.
Based on the shading pattern, the strings are divided into different groups named G1,
G2, and G3. The shading pattern is given in Table 1. The G1 consists of 20 strings
in parallel. All the 20 strings of G1 are having the same shading pattern. In G1,
each string has four shaded modules and six unshaded modules connected in series.
The G2 consists of 18 strings in parallel and each string have three shaded modules
and seven unshaded modules. Similarly, in G3, there are 12 parallel strings and each
string consists of one shadedmodule and nine unshadedmodules. The characteristics
of the PV array are drawnwith the assumption that the shadedmodules and unshaded
modules are receiving the solar insolation of 400W/m2 and 1000W/m2, respectively.
In Fig. 2a, b the I-V and P-V characteristics of the unshaded PV array are given. The
P-V characteristics of the unshaded array have a single peak power point. Similarly in
Fig. 2c, d, the I-V and P-V characteristics of the shaded PV array are given. The P-V
characteristics given in Fig. 2d have multiple peaks due to shading. These multiple
peaks complicate the MPPT. Even, in partial shading, there are two types. They are
called as static shading and dynamic shading. If the shade on the PV array stays for
a long time in the same position, then it is called as static shading. If the shade is
moving fast due to the wind then it is called dynamic shading. Under this dynamic
shading the maximum power point PMPP varies randomly.

Generally, the PV modules are equipped with parallel-connected bypass diodes
to avoid the hotspot problem under the shaded or mismatched condition as shown
in Fig. 3. The role of bypass diode is to divert the current out of the shaded module
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Fig. 1 Configuration of PV array with shading

Table 1 Shading pattern and the configuration of PV array

Group No. of shaded modules in
string

No. of unshaded modules in
string

No. of strings in group

G1 4 6 20

G2 3 7 18

G3 1 9 12

when it is getting activated by the different shading patterns. The modules under
normal solar insolation generate more current than the shaded modules. To avoid the
loading effect in shaded modules, the bypass diodes which are connected across the
shaded modules are activated and diverting the current through unshaded modules
and bypass diodes. When the bypass diodes are activated, the shaded modules are
shorted and their generation is completely lost.
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Fig. 2 a I-V characteristics
of array without shading
b P-V characteristics of
array without shading c I-V
characteristics of array with
shading d P-V characteristics
of array with shading

(a)

 (b)        

(c)
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Fig. 2 (continued) (d)         

Though the hotspot problem is eliminated due to the usage of bypass diodes
and reverse current flow due to the blocking diode, the overall output is drastically
reduced and also there are multiple peaks in the P-V characteristics under the shaded
condition [8]. As the conventional MPPT algorithms fail with multiple peaks, there
are three different approaches considered. They are,

Fig. 3 Configuration of PV array with bypass and blocking diode
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• Including additional power electronic circuits along with the existing converter
or inverter to extract the power from partially shaded modules.

• ModifiedMPPT algorithm for the central inverter to work efficiently under partial
shading conditions.

• Using a separate converter across each module of a PV array to implement its
own MPPT.

Though the first type had shown limited improvement in the output, the additional
investment on costly hardware which has to be fitted with the existing system, the
related technical work, and the limitation of the technical expertise made the scheme
less preferable. Though the second approach is attractive with respect to the cost
and ease of implementation, the outputs of shaded modules are lost and not utilized.
Due to the limitations of the first two approaches, the third approach is preferred
by the investors though, the system is large and the initial cost is a little high. It is
providingmore yield even under partially shaded conditions by including the reduced
generation from the shaded modules [9]. So, the third approach which is otherwise
called a distributed maximum power point tracking (DMPPT) is considered in this
chapter.

3 Distributed Maximum Power Point Tracking

As the conventional MPPT fails to track the maximum power point of the overall PV
array under this multiple peak condition, the necessity of individual module-level
MPPT becomes inevitable. To operate each module in its own MPP for maximum
output, the module-level MPPT is used. This is called a distributed maximum power
point tracking (DMPPT). The configuration of the PV array with DMPPT is given
in Fig. 4. In DMPPT, each module is connected across its own DC-DC converter
with the MPPT feature. Generally, the buck, boost, Cuk, and buck-boost converters
are considered as suitable topologies for module integrated converters. Among the
different DC-DC converter topologies, the buck-boost and Cuk converter had shown
flexibility in voltage level. But, their operating efficiencies are very poor along with
higher costs [10]. The boost converter is used as the best topology for DMPPT due
to its promising solution [11]. In DMPPT, the module integrated DC-DC converter
is controlled by the MPPT algorithms.

The conventional MPPT algorithms like perturb and observe (P&O), Incremental
Conductance (IC), etc., are used for DMPPT due to the simple characteristics of each
module. Considering the high performance, simplicity, and the low-cost implemen-
tation, the P&O algorithm is mostly used in DMPPT. The output from the algorithm
isV ref which is used to fix the operating voltage of the PVmodule which is connected
across the DC-DC converter in the respective VMPP. Once the MPPT algorithm can
find the peak power, the V ref is given to the control circuit which will control the duty
cycle of the boost converter. The duty cycle will adjust the input side voltage of the
DC-DC converter which is the output voltage of the PV module due to their parallel
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Fig. 4 Configuration of PV array with DMPPT

connection. The converter’s input voltage is adjusted through the variation of the
duty cycle by maintaining the output voltage of the PV panel in the same value. Due
to this variation of PV Module’s operating voltage to the VMPP, the power produced
will be PMPP or Pmax. So, the PV module will be forced to operate in its maximum
power point (MPP) for that instant. In this way, the PVmodule is operated at its MPP
and higher output is generated from each module at every instant. The control circuit
which is used to maintain the DMPPT is given in Fig. 5. The instantaneous voltage
and the current of the PV module are measured and given to the MPPT algorithm
which decides the reference voltage V ref. The control circuit decides the duty cycle
of the device which is used in the converter based on the output of the MPPT.

Fig. 5 Control circuit of DC-DC converter used in DMPPT
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3.1 ANN Controlled DMPPT

In the rapidly changing environments, the characteristics of the PV module change
due to their dependency on the environmental factors like solar insolation, the
surrounding temperature, shading condition, and the array configuration [12].
Though the conventional algorithms are talented to identify the MPP in slow-
changing environments, they fail at randomly varying conditions due to their iterative
procedure. So, the iteration free artificial neural network (ANN) controlled tracking
procedure is chosen here. The ANN is a replica of the human brain and it is designed
in the way in which the brain performs the task though, the actual ability of the
human brain is far greater.

Artificial Neural Networks or ANN is an information processing paradigm that is inspired
by the way the biological nervous system such as brain process information. It is composed
of a large number of highly interconnected processing elements (neurons) working in unison
to solve a specific problem.

The ANN accumulates knowledge through the training or learning process and
saves the same knowledge in the interneuron connection weights like our human
brain. These connection weights are otherwise called as synaptic. Though there are
many ANN controlled MPPT algorithms [13], the newmethodology is implemented
here. The advantage of using this ANN controlled MPPT in this chapter is that there
is no need for costly sensors for measuring the solar insolation as the proposed algo-
rithm is independent of the solar insolation. The existing current and voltage sensors
along with the rear side temperature sensor give the inputs for the ANN controlled
algorithm. In DMPPT, the ANN is used to track theMPP of each PVmodule in every
instant. So, to train the ANN of individual modules, initially, the P-V characteris-
tics of each module are measured in different environments. The characteristics of
the individual module are measured and used for the training process to include the
unique behavior or the character of each module due to the manufacturing disper-
sion. The accuracy of the MPP value which is predicted through the ANN is based
on the size of the training data set and also the randomness of the environmental
condition during which the measurements are taken. The data set corresponding to
each of the characteristics contains the current variation from zero to short circuit
current ISC , voltage variation from zero to open-circuit voltage VOC , the temperature
of the rear surface during the instant of measurement, peak power PMPP or Pmax,

and the corresponding VMPP or Vmax. The data set consists of 50 equally spaced
voltage values from zero to VOC and their corresponding current values. Also, each
characteristic has a single PMPP and VMPP to indicate the highest power received and
the corresponding voltage of the PV module. In this example, 85 sets of data are
collected for each PV module. The schematic diagram of ANN controlled DMPPT
implementation is given in Fig. 6. To track the MPP, the ANN collects inputs like the
instantaneous module voltage V, module current I, and the backside module temper-
ature T. The voltage sensor which is used for the voltage measurement is connected
across the output terminals of the PV module, the current sensor is connected in
series with the positive terminal of the PV module and the temperature sensor is
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Fig. 6 Schematic diagram of ANN controlled DMPPT

fixed on the backside of the module. The temperature sensor is fixed in the backside
instead of fixing it at the top of the PV module to avoid the shading effect. It is also
proved that the temperature difference is negligible when the sensor is connected to
the backside of the PV module [14].

The ANN is initially trained and tested for its accuracy before being used in the
PV array. The accuracy of the ANN controlled tracking is based on the training.
So, the ANN of each module is trained with the respective module’s data sets of 70
characteristics which were measured during different conditions. The remaining 15
data sets are kept for testing purposes. TheANN adjusts its weight during the training
based on the given inputs and outputs. The structure of theANN is given in Fig. 7. The
ANN consists of three layers called the input layer, hidden layer, and the output layer.
The input layer consists of three neurons to accept the inputs like module voltage
V, module current I, and the backside temperature of module T, respectively. The
hidden layer consists of five neurons. The output consists of one neuron to provide
VMPP value for the converter control. The “tansig” and the “purelin” functions are
used as the activation function in the input layer and the output layer, respectively,
to calculate its output. So, there are three variables given as input to ANN and one
variable is taken as the output.

The input variables are the instantaneousmodule voltageV, instantaneousmodule
current I, and the rear side module temperature T to track the MPP at every instant.
The output which is taken from the ANN is V ref. Initially during the training, from
each measured characteristic, the 50 sample values of voltage, current, temperature,
and the VMPP values are given to the ANN. Due to the single value of VMPP for
the entire characteristics of the 50 samples of a single characteristic, the same VMPP

value will be used as the output value for the training process against all the 50 sets
of inputs from the same characteristics. Though there are different types of ANN,
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Fig. 7 Structure of ANN used for DMPPT

the backpropagation neural network (BPNN) is used due to its powerful learning
process.

The steps for the ANN training is given below.

• Step 1: Build the network and initialize the network weights with randomly
generated value

• Step 2: Apply the input data sets
• Step 3: Set the parameters of the ANN
• Step 4: Train the network and calculate the output from ANN
• Step 5: Calculate the error between the required output and the actual output of

ANN
• Step6:Adjust theweights ofANNand reduce the error until the requiredminimum

error value is attained by repeating the steps from 3 to 5
• Step 7: Stop the training process once the error value becomes lesser than the

acceptable minimum value
• Step 8: Save the trained ANN

The trained ANN adjusted its weight and learned the correlation between the
input and output from the data set of the specific PV module using the Levenberg–
Marquardt (LM) learning algorithm. To validate the ANN and its performance, the
inputs from the remaining data sets corresponding to the same PV module is used.
The output is predicted using ANN and the error is calculated. The performance is
accessed by the root-mean-square (RMSE) error value as given in Eq. 1.

RMSE = 1

2

[
ΣpΣi

(
tip − Oip

)2] 1
2

(1)
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Table 2 Prediction results of ANN controlled DMPPT

Module voltage (V) Module current
(A)

Temperature
(◦C)

Predicted VMPP
(V)

Actual VMPP
(V)

17.4 3.04 32 18.86 18.79

18.5 2.76 36 17.98 18.01

15.67 3.32 40 19.12 19.11

where, p is the number of input sets, i is the specific node, t is the desired output or
target, and O is the actual predicted output of a network. The trained ANN is used
as an MPPT algorithm for that specific PV module as shown in Fig. 6. At every
minute the ANN collects the values of module voltage V, module current I, and the
backside module temperature T from the respective sensors of a PV module and
predicts the V ref to control the operation of DC-DC converter connected across the
PV module. This V ref is used to vary the duty cycle of the converter to adjust the
output voltage of the PV module or the input voltage of the DC-DC converter. So,
the PV module is forced to operate at its VMPP to produce the highest power PMPP

or Pmax of that instant. The output of the ANN algorithm for a specific module at
different environmental conditions are given in Table 2.

The output of theANN controlled algorithm is very close to the actualVMPP value.
So, the ANN can predict the voltage value corresponding to the maximum power
with a lesser number of sensors. Due to the iteration free operation of the ANN
algorithm, the effectiveness of the ANN controlled DMPPT is high at randomly
varying environmental conditions.

4 Current Compensation for DMPPT

In the PV array, each string consists of many PV modules in series. Though the
series-connected modules are of the same rating and from the same manufacturer,
due tomanufacturing dispersion, somemodules may generate higher current than the
other modules. Similarly, when few of the PV modules in the string get shaded, the
unshadedmodules produce higher current than the shadedmodules. Due to the series
connection of all these shaded and unshaded modules in the string, the path allows
only the lower current which is generated by the shaded modules. This low current
forces the other unshaded modules to generate the same lower current though they
can generate more current based on the received solar insolation. When the healthy
modules are forced to operate in lower current, their power point is also shifted due
to the change in current and voltage. This downgrades the other healthy modules in
series and reduces the yield from the complete string. The bypass diodes are used to
avoid this condition. But, the usage of bypass diodes makes the P-V characteristic
curve multimodal.
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Though, the DMPPT estimates the maximum peak and tried to maintain the
module in VMPP corresponding to the MPP, the law of equal voltage across the
parallel-connected strings and the law of the same current in series-connected
modules does not allow the module to operate in its own MPP at the mismatched
condition. At, mismatched condition, the output of each module varies. The current
mismatch in the shaded and unshaded modules of string1 is shown in Fig. 8. Though
the manufacturing dispersion is not considered in these characteristics, due to the
difference in solar isolation under shading conditions, the current from shaded
modules reduced drastically. But the unshaded modules can generate high current.
As these modules are serially connected, the current in the series string is equal to
the current of the shaded PV module. This condition makes the unshaded module to
move from its peak performance. To solve the problem of the current mismatch in a
series string under mismatched condition, each module is equipped with a dedicated
current compensator [15]. So, the modules can operate at its own MPP irrespec-
tive of the current mismatch. The DC-DC converter which is connected across each
module to maintain the module in MPP in the DMPPT scheme is used as a current
compensator. This avoids the extra compensation equipment for each module.

Also, this compensator increases the output by enabling the shaded and unshaded
modules to operate in its actualMPP, by providing a compensating or deficient current
for the module with low current generation in its own MPP. This maintains the same
current in the series-connected string. So, the string current is equal to the operating
current of the healthy module. Whereas, the conventional scheme which consists

Fig. 8 Current mismatch among the series-connected PV modules due to shading



244 S. B. Jeyaprabha

of bypass diode completely short the shaded module to maintain the string current
equal to the current of healthy modules and lost the generation of shaded modules.

Though, the compensation scheme or the DMPPT consumes power for the DC-
DC converters, the energy consumption is negligible compared to the yield or the
profit due to the inclusion of generation from multiple shaded modules [15]. The
DC-DC converters which are used as current compensators are the “compensation
power DC-DC converters instead of the full power DC-DC converters” [15]. So the
power consumption is proportional to the amount of compensation provided by the
converter. The current flow in the string due to the implementation of the current
compensator is shown in Fig. 9.

To maintain the current of Istr(1) which is equal to the current IMPP of the healthy
module in the same string, the current compensator which is connected across the

Fig. 9 Configuration of PV
array with current
compensator
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shaded PV module provides the lacking current Icomp. The current supplied by the
compensator is provided as Eq. 2.

Icomp(i,1) = Istr(i) − IMPP(i,1) (2)

where, Icomp(i,1) is the current provided by the compensator connected across the first
module of ith string. Istr(i) is the current flowing through ith string and IMPP(i,1) is
the current of the first PV module in ith string which is working in its own MPP.
The power consumed by the current compensator during compensation is given by
Eq. 1.3.

Pcomp(i,1) = Var × Iconv(i,1) (1.3)

where, Pcomp(i,1) is the power consumed by the current compensator connected across
the first module of ith string during compensation, Var is the output voltage of PV
array which is the input voltage of DC-DC converter and Iconv(i,1) is the current
consumed by the compensator or converter.

The input supply for the compensator is given by the PV array. The power loss is
drastically reduced due to the lesser power consumption of the DC-DC converters
during their compensation mode. The suitable design of the DC-DC converter results
in reduced no-load losses. So, the parallel-connected current compensator is used to

• Maintain the PV module’s voltage at VMPP through MPPT algorithm
• Supply the deficient current for the shaded module to equalize the string current

with the normal current of a healthy module.

5 Voltage Compensation for DMPPT

Though the implementation of current compensation aid the power output by
including the generation from the shaded modules, the modules in the string will
move itself away from the VMPP under the condition of voltage mismatch between
the parallel-connected strings due to the law of same voltage across the parallel-
connected strings. Under shading conditions, the voltage corresponding to the
maximum power of each module varies as shown in Fig. 10. The operating voltage
Vmax corresponding to the Pmax of the healthy module is around 95 V. But, the oper-
ating voltage Vmax of the shaded module is 60 V. The number of shaded modules is
different in different strings.

Due to the difference in the operating voltage of each module in the string, the
string voltage which is the summation of all the module voltages will differ from
other string voltages. But, all the strings of PV array are connected in parallel. As
per the law of parallel circuits, the voltages across all the parallel branches should
be the same. To satisfy this law, the string with the highest voltage or the string with
more unshaded or healthy modules tries to reduce its voltage to the lowest string
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Fig. 10 Voltage mismatch among the series-connected modules of string

voltage of the array. Due to this condition, all the healthy modules in the healthy
string will reduce its actual operating voltage Vmax and generates lesser power. To
avoid this loss, there is a need for additional voltage sources in series with the weak
string. So, to equalize the voltages of strings under the mismatched condition and to
enable the modules to operate in its own MPP the series compensator is connected
in each string. The role of a single voltage compensator which is connected for each
string is to provide the compensating voltage for the string to equalize the string
voltage with the voltage of a healthy string of the PV array. The DC-DC converter
is used as a voltage compensator. Though, the current compensation does not need
any additional DC-DC converter in the DMPPT scheme, the voltage compensation
needs a single DC-DC converter in addition for each string. The configuration of
the string with voltage and current compensators are given in Fig. 11. The voltage
and the current supplied by the voltage compensator is given in Eq. 4 and Eq. 5,
respectively.

Vcomp(i,n+1) = Vstr( j) − Vstr(i) (4)

Icomp(i,n+1) = Istr(i) (5)

where, V comp(i,n+1) is the compensating voltage supplied by the additional (n + 1)th
DC-DC converter for the ith string, V str(j) is the voltage of healthy string in the same
PV array, V str(i) is the voltage of the ith string for which compensation is provided,
Icomp(i,n+1) is the current flowing through the voltage compensator and Istr(i) is the
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Fig. 11 Configuration of
string with voltage and
current compensator

current flowing through the ith string. The configuration of a string with voltage
compensator given in Fig. 11 shows that the current flowing through the voltage
compensator is the same as the string current. This is also equal to the current of
the healthy module in the same string. But the voltage provided by the voltage
compensator is equal to the difference between the voltage of healthy jth string
in the array and the ith string for which the voltage compensation is provided. If
jth string is the healthy string of PV array, due to the higher voltage output from
jth string, all the other parallel-connected strings work to meet the voltage level of
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healthy jth string to satisfy the law of equal voltage by combining the voltage of
voltage compensator. This allows all the modules of healthy strings and unhealthy
strings to work in its actual VMPP or Vmax. The power consumption of this voltage
compensator will be proportional to the voltage supplied by the compensator. The
power loss due to the inclusion of voltage compensator is negligible when it is
compared with the maintenance of actual MPP in the series-connected multiple
modules. Also, the power consumption of individual series voltage compensators
is almost zero in healthy strings. So, the serially connected voltage compensator is
used to

• Supply the deficient voltage for the string to equalize its voltage with the voltage
of the healthy string

• Maintain the PV module’s voltage at VMPP through MPPT algorithm and control
circuit

The PSIM-based simulation results of the 2 × 2 array which have two strings
and two modules in each string are given in Figs. 12 and 13. The solar insolations
received in the modules of the first string are 400 W/m2, 1000 W/m2 and the second
strings are 800 W/m2, 800 W/m2, respectively. The currents developed by the solar
modules of string1 are 0.661 A and 0.769 A, respectively. Similarly, the currents
from the PV modules of string2 are 1.13 A and 1.13 A, respectively. To maintain
the current flow of 0.769 A in string1, the current compensator which is connected
across the shaded module of string1 provides a compensation current of 0.11 A. But
the compensator which is connected across the healthy module produces a current of
0.005Awhich is negligible. The current compensators connected in string2 produces
negligible current due to the healthy condition of all modules which are connected
in series.

In Fig. 13, the PV modules in string1 are kept at their VMPP values of 10.789 V
and 19 V, respectively, due to the shading of the first module. The PV modules of the
second string are maintained in their VMPP values of 16.8 V and 16.8 V, respectively,
due to the same insolation condition. The second string generated a total voltage of
33.6 V. But the string1 is able to produce only 29.78 V. To compensate for the voltage
deficiency, the voltage compensator of string1 provides a voltage of 3.8 V. But the
voltage compensator of string2 provides a negligible voltage of 64 mV which can
be considered as zero. This enables all the PV modules to operate in its own MPP
irrespective of the parallel connections. As the shaded module’s generation is not
shorted like the bypass diode scheme, the power generation from the array increases
and it improves the efficiency. To prove the effectiveness of the proposed method, the
results of the proposed method are compared with the other DMPPT methodology
which was proposed for the partially shaded condition and known as the TEODI
MPPT technique [16]. The comparison is shown in Table 3. Though, the modified
TEODI MPPT method had shown improved performance under normal and shaded
condition, the overall output power was lesser due to the limitation of this MPPT
method in maintaining the PV modules in their actual MPP. Also, the computation
time was more than the proposed ANN controlled method. So, the proposed ANN
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Fig. 12 Current compensation provided by the current compensators of 2 × 2 PV array

controlled method is proved as an effective method at the partially shaded and the
mismatched condition of PV modules.

6 Conclusion

This chapter presented the distributedmaximumpower point tracking of PVmodules.
This reduced the problem of multiple peaks in the P-V characteristics of the PV
module at partial shading and mismatched condition. The ANN controlled DMPPT
was implemented and its performance was validated at rapidly changing conditions
with a lesser number of sensors. But, to maintain each module in its own MPP
according to the output of ANN controlled DMPPT, the current and voltage compen-
sation schemes were implemented across each module and in series with each string,
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Fig. 13 Voltage compensation provided by the voltage compensators of 2 × 2 PV array

Table 3 Comparison of the proposed method with other DMPPT method

MPPT Control circuit
complexity

Speed Efficiency (%)

Proposed method with
compensators

Less High due to the trained
ANN

72.337

Modified TEODI DMPPT More Less compared to ANN 67.879
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respectively. This utilizes the power generated by the shaded modules instead of
losing it across the bypass diode. This improves the overall output of the PV array
even under the partially shaded condition as compared to the conventional MPPT
scheme and its implementation.
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Design and Comprehensive Analysis
of Maximum Power Point Tracking
Techniques in Photovoltaic Systems

Ali M. Eltamaly, Mohamed A. Mohamed, and Ahmed G. Abo-Khalil

Abstract In this chapter the performance of various maximum power point tracking
techniques for Photovoltaic (PV) systems has been presented, under uniform and
non-uniform irradiance conditions. Under uniform irradiance conditions, the power-
voltage curve of PV systems is nonlinear and contains one peak point whose location
appertains to the irradiation and surface temperature of the PV system. Partial shading
on PV modules reduces the generated power than the maximum power generated
from each module separately. The traditional techniques of tracking the maximum
power point are designed to track the global peak but they always failed to capture the
exact point. In this chapter, different techniques of maximum power point tracking
have been introduced, analyzed, and simulated. MATLAB, SIMULINK, and PSIM
software have been utilized to simulate the PV systems under various shading condi-
tions. Furthermore, the response of the different techniques of maximum power point
trackers has been evaluated under different weather conditions.
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1 Introduction

The solar PV technology is currently progressing and appearing the capability of
being utilized in isolated and grid-connected applications [1, 2]. The limitations that
have kept the exceptionally expansive scale use of PV so far are the initial high
costs requirement and low efficiency [3]. Although, with late advances, the cost is
descending by utilizing advanced technology in the manufacture of PV modules
[4]. Proficiency is enhancing by utilizing multilayers of PV solar cells [5]. Current
research is coordinated on progressing existing modules, for example, the thin-film
and new material for crystalline cell technologies [6, 7]. Figure 1 appearing and
anticipated capital expense of sun-oriented photovoltaics. Figure 2 demonstrates the
world total establishment from 2004 to 2014. Before the finish of 2017, the global-
introduced PV capacity hops to 303 GW [8]. Utilizing PV in Hybrid Renewable
Energy Systems (HRES) is a decent choice where the sensible cost of the PV system
and the great connection between the generation and the load [9]. This will diminish
the extent of the storage system utilized in HRES particularly if the ideas of the smart
grid are considered [10].

Solar power is converted into electricity by photovoltaic (PV) technology as shown
in Fig. 3, or concentrating solar power (CSP) as shown in Fig. 4. The following
sections introduce a brief review of these technologies:

A. The Technology of Solar Photovoltaic (PV)

In the late 1880s the photovoltaic technology was discovered but did not gain signif-
icance until 1954 when it was rediscovered by Bell Telephone [12]. Fundamentally,
the PV technology employs silicon and some othermaterials device to entrap sunlight
known as photons that will hit the free electrons in the silicon device to produce an
electric voltage by a process referred to as the photovoltaic effect. This process
produces direct current (DC) electricity power. The PV system produced power is a

Fig. 1 The historical and projected capital cost of solar photovoltaics [9]
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Fig. 2 World cumulative installation from 2004 to 2014 [7]

Fig. 3 Photovoltaic energy system [10]
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Fig. 4 Concentrated solar power tower plant [11]

function of the output voltage as shown in Fig. 5. The research literature has produced
several mathematical models of the PV cell. Some aspects of the literature will be
discussed in the chapters to come. Figure 5 shows the output power versus terminal
voltage relation under various radiation and temperature. This figure shows that there
is a maximum power point (MPP) located for each terminal voltage [13]. This is the
reasonwhy there aremany variations inMPP trackers (MPPT) as introduced inmany
research publications [14].

Many types of materials are utilized to design the PV-cells and they are different
in their characteristics. The most popularly used PV-cells are the crystalline silicon
[15]. PV-cells from crystalline silicon have been in use for a long time and it is now a
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matured technology in the manufacturing technology with its price becoming lower
and lowers especially in the presence of mass-fraction production. As a result, this
chapter will concentrate more on the crystalline silicon PV-cells. PV-cells of other
types have a similar analysis but with dissimilar performance characteristics [14].
The converter efficiency of PV-cell ranges from 10 to 25% subject to the materials
being used in the fabrication of the PV-cells [16]. Besides, PV module’s power is
determined by PV modules to tilt angle and temperature [17]. The presence of dust
can reduce the efficiency of the PV systems and it should be cleaned frequently using
different technologies [18].

The PV system’ DC-generated power is used to charge a battery or be converted
into alternating current (AC) employing power electronics inverter forACappliances.
The PV system can be used as a standalone or part of a hybrid system to support
remote loads far away from the electric utility or may be interconnected with the
electric utility [19].

In a grid-intertie system, the PV configuration is tied directly to the electric
network using DC/AC inverter. If the PV system generates power over its local
load requirement, the extra generated power is transferred to the electric utility. If
the PV local load has a deficiency in power from the PV system, the load can absorb
extra power from the electric utility [20]. The grid-intertie with battery backup is
an extended version of the former with the inclusion of battery to store power for
periods when the grid is not available.

The isolated or grid-independent solar systems are utilized in decentralized appli-
cations and remote areas away from the network [21]. These systems require storage
batteries facilities, DC/AC inverters, and charge controllers. The isolated HRES is
usually utilized in hybrid systems where diesel generators can be used as an auxiliary
when the generated power from HRES is lower than the demand requirements [22].
The following are the configurations used to mount the PV modules:

1. Flat-Plate Modules

The PV systems can be used as a flat-plate configuration which requires a large
number of cells and larger land areas. The flat plate should face the sun in the best
way as possible and there is a compromise between this need with the cost. The best
tilt angle for the PV modules is the site’s latitude angle. Other systems continuously
change the module’s tilt angle to a monthly or seasonal best tilt angle. Another
alternative is to use a solar tracking system to track the sun using one-axis or two-axis
tracking systems but this comes with an increase in cost. Hence, a careful analysis of
the compromise between the cost of the tracking system and the increase of energy
due to using sun trackers must be analyzed in detail. The different configurations
used to mount the PV modules are listed in the following points:

• Fixed tilt angle arrays
• Systems adjusted to the monthly best tilt angle
• Systems adjusted to the seasonally best tilt angle
• One-axis tracking
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Fig. 6 Fixed tilt angle, FTA photovoltaic system [24]

• Two-axis tracking
• Concentrator arrays

2. Fixed Tilt Angle Arrays

In this method, the modules are fixed facing north in the southern hemisphere at a
tilt angle comparable to the site’s latitude [14, 23]. The best tilt angle approximately
equals the latitude of the site facing the equator in the north and south of the earth
[24]. Figure 6 shows a Fixed Tilt Angle (FTA) photovoltaic system.

3. Monthly Adjusted Tilting

An alternative to using a fixed tilt angle of the photovoltaic array is to vary the
tilt monthly depending on the monthly optimum tilt angle. The literature approxi-
mate 8% [24] increase in energy captured by the photovoltaic compared to the fixed
optimum tilt angle. The optimum tilt angle is either adjusted manually or by using an
electromechanical system. Literature concluded that the adjustment to the tilt angles
every three months increases the annual energy production by about 5% [25]. This
increase may not be economically beneficial, considering the cost of implementa-
tion. In monthly adjusted tilted arrays, the monthly best tilt angle can be estimated
for the site, and then the array’s monthly angle can be adjusted. This method has no
complexity and yields increased efficiency. Figure 7 shows Adjustable Tilt Angle,
ATA photovoltaic system with monthly adjusted tilting.

4. One-Axis Tracking

One-axis tracking is used to actively track the sun during the day time. The tracking
is done each hour or in a lower period. This system changes the angle concerning
the vertical axis and the tracking starts in the morning where the array faces the



Design and Comprehensive Analysis of Maximum Power … 259

Fig. 7 Adjustable tilt angle, ATA photovoltaic system [25]

east and at the end of the day when it faces the west. Output can be increased
considerably concerning the previous techniques. One-axis tracking can increase the
energy captured by 20–30% in comparison with the optimum fixed tilt angle [25] as
discussed above. A single-axis tracking array, SAST photovoltaic system is shown
in Fig. 8. The system installation and maintenance cost could be higher than the
increase in energy captured and this is the reason why it is not recommended to use
this system in commercial photovoltaic energy systems.

5. Two-Axis Tracking

In this configuration, the output energy can be increased higher than the previous
techniques. Nearly 30% insolation improvement relative to an optimum fixed tilt
array is achievable. However, both the capital and maintenance costs are high hence
only a few large systems are presently installed. Also, it needs more space to freely

Fig. 8 SAST concentrator solar cell array [26]
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Fig. 9 TAST concentrator solar cell array [25]

move the two-axis systems. The two-axis tracking system, TASTphotovoltaic system
is shown in Fig. 9. By mounting the array on a two-axis sun tracking, from 30% [24]
to 40% [25] more solar energy can be collected over the year than in fixed tilt
installation. Furthermore, the gain is mostly in the early morning and late evening,
when it is particularly valuable in meeting peak loads.

6. Concentrator PV Arrays

The concentrator PV arrays utilize optical lenses or mirrors to focus the solar radi-
ation on high-efficiency PV arrays. Precise tracking of the sun is required for these
systems, principally when the concentration ratio is high. Tracking increases the
intercepted insolation but with concentrators, the trade-off is the ability to access
only the direct fraction. The overall outcome depends on the clarity of the sky at the
site. The concentrators will only use the direct beam light; the diffuse light cannot be
implemented. To increase total annual energy output the concentrators will require
tracking devices. Although the expenses will increase, the increase in annual energy
output is up to 30% in comparison to the increase by using just the tracking devices.
Another additional advantage of using concentrators is that it uses a reduced number
of solar cells and hence the area needed for installation. There are many types of
concentrators as mentioned below [27]:

(a) Parabolic troughs: Silvered glass and polished aluminized flexible film are
used in reflective materials. This type is shown in Fig. 10a.

(b) The ordinary lens: Glass lens collects the sunlight in the small solar cell area.
This type is shown in Fig. 10b.

(c) Fresnel lens: Fresnel lens similarly diffracts the sunrays as would be done
by a conventional lens. The advantage of a fresnel lens is that; it is much
thinner and lighter than a conventional lens. The fresnel lens and parabolic
trough concentrator have received themost attention for use in the photovoltaic
system. This type is shown in Fig. 10c.
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Fig. 10 Types of concentrator [27]

(d) Plan booster concentrator: This is the simplest form of flat-plate concentrator
or booster. The solar cell output can be improved by about 50% [27]. This
type of concentrator is proposed to be used with a space-satellite photovoltaic
generation station. This type is shown in Fig. 10d.
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(e) Compound parabolic concentrator: This was proposed by Winston proposes
in 1974 [28]. This concentrator referred to as a Winston collector, is formed
with two parabolic cups that satisfy two conditions. This type is shown in
Fig. 10e.

(f) Parabolic Dish: Parabolic dish requires two axes sun tracking system and
provides a very high concentration ratio. This type is shown in Fig. 10f.

(g) Central receiver concentrator: The total mirror surface in one module can
collect from tens of kilowatts to tens of megawatts. The concentrator solar cell
systems trade the added costs of the optical concentrator for the cost of solar
cells since a concentrator system uses a much smaller quantity of solar cells
than flat-plate systems of the same capacity. This type is shown in Fig. 10g.

B. The Technology of Concentrating Solar Power (CSP)

The main types of CSP are power tower systems, linear concentrators, and
dish/engine CSP systems. The CSP systems are rarely utilized in isolated hybrid
energy systems. Most of the applications of CSP are utility integration systems
because it is economically to install it in large central power plants.

Solar energy is becoming more attractive and it is counted as future energy. Solar
thermal energy or CSP is the most important option of renewable energies to provide
clean electric energy shortly [26].

The operation of CSP plants depends on concentrating the sun’s energy by using
solar mirrors to increase the heat on a boiler which can be used to produce super
steam to hit a blade of a steam turbine to convert heat energy into mechanical energy
and then into electric energy using electric generators. Heat storage can store heat
in the day time to be converted later to electricity at night or cloudy days. Active
researchers have used certain oil; some salts materials, some types of sand as heat
storage. The need for heat storage is not an important issue in the utility integration
of CSP because of the correlation between most of the loads and the power generated
from the sunwhichmakes it preferable to be direct feeds the loads through the electric
grid.

Many techniques havebeenused in the generation of electricity fromCSPsystems.
Four main technologies can be used to generate electric power from solar thermal
plants. These techniques are briefly discussed and shown in the following sections:

1. Trough Systems

A trough-shaped mirror is used to reflect the solar radiation in a tube in the focus
of mirrors. The pipe in the center of the trough mirror is called “absorber pipe,” or
“heat collection element.” Figure 11 shows the trough system as a part of the solar
thermal system. Most of the trough systems use a axis sun tracker system to ensure
that the mirrors reflect the sun’s rays on the receiver all time.

2. Solar Tower Systems

Solar tower systems also called central receivers in which many flat heliostats
(mirrors) are used to reflect the sun rays onto a tower called a receiver as shown
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Fig. 11 Trough system [26]

in Fig. 12 [21]. The heliostats rotate with two-axis control systems that can track
the sun’s movement one axis to capture the sun during the day and the other one is
to track it through the year. The mirrors are focusing on the receiver located at top
of the tower to heat the fluid, such as molten salt, as hot as 1,050°F. The electricity
generation can be achieved by direct use of the hot fluid or the heat can be stored in

Fig. 12 Scheme of a solar tower concentrating system for electricity generation [21]



264 A. M. Eltamaly et al.

Fig. 13 Solar Dish/Engine power plant illustration [22]

heat storage for later use at night or on cloudy days. The idea behind using molten
salt is its ability to store heat for a longer time than any other materials in a very
efficient way. Due to the higher temperature associated with the solar tower system,
it has higher efficiency, and better use of the energy storage system.

3. Dish Engine Systems

Figure 13 [22] shows a schematic for the dish engine system. The dish should track
the sun motion to capture the maximum possible energy. The receiver is attached
to a special combustion engine through tubes containing hydrogen or helium gas
that can drive a special engine to generate mechanical power. The mechanical power
generated from the engine is used to generate the electric power.

4. Linear Fresnel Collectors (LFCs)

LFCs utilizes a series of long flat, or slightly curved, mirrors positioned at various
angles to focus sunlight on both sides of the fixed receiver [19]. A schematic for the
linear Fresnel reflector power plant is shown in Fig. 14 [23].

2 MPPT of PV Systems

Much research is developed to mathematically implement the PV-cell model. The
two-diode model has been utilized in numerous literature [29–31] as appeared in
Fig. 15 and Eq. (1).

I = IPH − Isat1 ∗
[
e(

q
KT (V+Rs I )) − 1

]
− Isat2 ∗

[
e(

q
2KT (V+Rs I )) − 1

]
− V + Rs I

Rsh
(1)
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Fig. 14 A linear Fresnel reflector power plant [23]

Fig. 15 The two-diode
model
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The model of one-diode is more extensively utilized than the model of two-
diode for simulation due to its effortlessness with satisfactory exactness. Moreover,
its parameter can be gotten tentatively with basic and exact procedures [32, 33].
Therefore thismodelwill be utilized in this chapter. Thismodel of PV-cell is appeared
in Fig. 16 and Eq. (2).

I = IPH − Isat1 ∗
[
e(

q
KT (V+Rs I )) − 1

]
− V + Rs I

Rsh
(2)

MPPT needs a quick and intelligent controller to neutralize the rapid changes in
weather and load.MPPT comprises the dc-dc converter and its controller as appeared
in Fig. 17. Numerous approaches are acquainted with determining the MPP of PV
systems as detailed in [29, 34–38].

Fig. 16 The one-diode
model
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Fig. 17 The MPPT within the PV energy system [1]

1. Constant Ratio Technique

From the P-V curve, it is clear that the ratio of the maximum voltage of the array
energy, Vmp, to the open-circuit voltage, Voc, is approximately constant. Therefore,
the PV array can be forced to act as a ratio of open-circuit voltage. The literature
indicates a 73 to 80% achievement of Voc [39]. Also, the relationship between the
short circuit current and the current connection to themaximumpower (MP) is almost
constant. Therefore, it is possible to use the constant current MPPT algorithm that
approximates the current MPP as a fixed ratio of short circuit current [40, 41]. The
instantaneous infiltration of continuous voltage or current can be avoided by using a
pilot cell [42].

2. Perturb and Observe (P&O) Technique

Perturb and observe (P&O) is one of the most popular techniques used in MPP
tracking. This process is performed by periodically disrupting the system by
increasing the array operation voltage and observing its effect on the output power
of the array. Due to a fixed step-width, the system will experience high fluctuations,
especially under unstable environmental conditions, resulting in loss of power in the
PV system. This technique suffers from the wrong process, especially if multiple
local maxima may occur in the case of partial shading [43, 44].

As appeared in Fig. 5 if the operating voltage of the PV module changes and the
power increase the control system moves the point of operation of the PV module
in that direction; otherwise the operating point is moved in the opposite direction.
The flowchart appears in Fig. 18 and the simulation is included in the PSIM software
package as appeared inFig. 19.Acommonproblemwith this technique is that thefinal
voltage of the PV unit is confused with each MPPT cycle. Therefore, when the MPP
is reached, the output power oscillates around the maximum, which leads to power
loss in the PV system. A modified P&O technique was introduced in [45] to solve
this problem by multiplying the change in charge ratio (DR) by a dynamic constant
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Fig. 18 State-flowchart of P&O MPPT

based on the previous change in the energy extracted as shown in Eq. (3). Another
technique [46] ANN was used to predict this fixed multiplier. These technologies
complicate the system andmay lead tomore fluctuations in stable weather conditions
[29]. Several amendments were made to this technique in literature [47–49].

The adjusting factor for the change in DR of the modified P&O technique can be
obtained from the following equation:

M = |�D|
|�P| (3)

Where ΔP is the change of output power, ΔD is the change in DR.

3. Incremental Conductance Technique (INC)

Auxiliary conductivity technology is widely used due to its high tracking accuracy
instability and being able to adapt well to rapidly changing weather conditions [50].
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Fig. 19 P&O MPPT control with PSIM [13]

Incremental conductivity (IncCond) is based on a comparison of the instantaneous
conductivity of the plate with the additional conductivity of the plate. The input
impedance of the DC-DC adapter is matched with the optimum impedance of the
PV board. The PV module derivative is given as in Eq. (4), the error equation (e) is
the same as in Eq. (5) [51–53].

dP

dV
= d(V × I )

dV
= I + V

d I

dV
= 0 (4)

e = I (i) − I (i − 1)

V (i) − V (i − 1)
+ I (i)

V (i)
(5)

Therefore, MPP tracking requires the following procedure as shown in Fig. 20.
It can be implemented by a simple integration unit with an error signal (e) which is
the input and the scaling factor k. The function k is to adjust the error signal e to
an appropriate range before the full compensator. Since the error signal e becomes
smaller as the operating point approaches MPP. Therefore, smooth tracking and
adaptation can be achieved [51].

A dynamic step-by-step change in volume was introduced for INC to effectively
improve MPPT speed and accuracy simultaneously [50]. This technology improves
the performance of INC technology but increases the complexity of the control
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Fig. 20 State-flowchart of INC MPPT [13]

system. The INC flow chart is shown in Fig. 20 and simulation included in the PSIM
software package as shown in Fig. 21.

4. Hill Climbing Technique (HC)

HC technique utilizes a boost converter duty cycle as the judging parameter [54,
55]. The flow diagram of the HC technique is shown in Fig. 22. This technique was
incorporated and emulated into the PSIM software as appeared in Fig. 23.

Fig. 21 INC MPPT control with PSIM [13]
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Fig. 23 HC-MPPT Control with PSIM

3 The Performance of MPPT of PV Systems Under Partial
Shading Conditions

Partial shading occurs when one or more of the PV-cells in the PV array are
introduced to different radiations [56–58]. When this happens, the photovoltaic
cell shading will work with the current higher than the generated current and act
as a load for the other photovoltaic cells. Due to the increased current flow in the
shaded PV-cell higher than the generated current, the voltage ends in negative on
this PV-cell as shown in Fig. 24 of PV-cells in the series with 500 and 1000 W/m2.
Figure 25 shows the relationship between the forces generated by two series of
cells and the resulting PV voltage along with the shaded photocell radiation. The
relationship between the shaded photoelectric cell forces of two PV series systems
with a variety of their final potential with this cell radiation is shown in Fig. 26
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Fig. 25 The two P-V cells
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[59, 60]. Figure 27 demonstrates the variety-generated power of 20 series PV-cells
with the terminal voltage and radiation on the shaded PV cell when other cells
are exposed to 1000 W/m2 radiation. Figure 28 demonstrates the power of shaded
PV cell among 20 series PV-cells along with its terminal voltage and the radiation
of these cells where the rest of PV-cells is 1000 W/m2. It is clear from the above
discourse that, the hotspot can be increasingly risky for a higher number of series
PV cells. A few kinds of literature work in the optimum number of PV-cells on
series to prevent its damage due to the hotspot [59, 60].
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Fig. 26 The shaded cell
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Fig. 27 Total power of 20
series with one shaded
PV-cells

A wide range of literature has been produced to treat the influence of PV hotspots
[61, 62]. One of the best ways is to include the side diode next to each PV-cell or
it can be associated with a certain number of photovoltaics to reduce the cost of
photovoltaics and reduce the losses of the PV system. In the case of two series of
photovoltaic cells with bypass diodes, the relationship between the terminal voltage
and the output energy of these two photovoltaic cells with radiation of 1000 and
500 W/m2 is shown in Fig. 29. Figure 30 shows the relationship between the output
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Fig. 28 The power of
shaded PV-cell among 20
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Fig. 29 The output power
and terminal voltage relation
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energy and the terminal voltage of two series of bypass photovoltaic cells in a different
shading state when the radiation of the other photovoltaic cells is 1000 W/m2.

In the case of 20 series of diode-connected photovoltaic cells connected to each of
them, the total form of the energy generated by the different radiation of the shaded
photovoltaic cells is shown in Fig. 31 The rest of the radiation in other PV-cells is
1000 W/m2. It is clear from this figure that the shaded PV-cell begins to operate
when the terminal voltage forces the shaded PV-cell voltage to be positive. Figure 32
shows the relationship between the energy output of shaded photovoltaic cells and
their voltage for multiple radiations for this cell.

There are threeMPP showed up in Fig. 33, the global peak (GP) is the one relating
to point#2. TheMPPT systemought to pursue the globalMPPwhich is #2 as appeared
in Fig. 33.
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Fig. 30 The output power
and terminal voltage relation
for two series PV-cells with
bypass diodes under various
irradiances

Fig. 31 The total generated
power along with terminal
voltage for different
radiation of shaded PV-cell
in case of 20 series PV-cells
with bypass diodes
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Fig. 32 The relation between the output power of shaded PV-cell and its voltage for different
radiation of this cell

Fig. 33 The relation between the generated power and terminal voltage in case of three series
PV-cells at radiation of 1000, 700, 300 W/m2

A. Mismatch Power Loss

The relationship between the peak strength and the sum of the peaks is called a
mismatch loss (MML) and can be calculated mathematically as shown in Eq. (6).
Along these lines, the more MML, the more energy is generated from the photoelec-
tric system and vice versa. If the entire photovoltaic cells had the same radiation and
the entire photovoltaic system worked in the MPP and each cell operated in its MPP,
then the MML factor would be 100%. The value of the MML factor can be obtained
from the accompanying equation:
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MML = Maximum power of whole PV system
N∑
i=1

Pmax(i)

∗ 100 (6)

where N is the total number of PV-cells in the PV system.

B. Fuzzy Controller MPPT Technique

Initially, the Fuzzy Logic Control (FLC) has been in focus since 1920 [63]. By
1965 another exploration [64] had introduced FLC as a console for real applications.
Since that time FLC has been applied to many applications in various fields of
science [65]. FLC can be effectively implemented in various digital devices, for
example, microcontrollers [43, 66] digital signal processors, DSP [67] and field-
programmable gate group, FPGA, [43, 68] and end up developing Innovation in
industrial applications. One of the valuable uses for FLC is theMPPT for PV systems.

C. PSO MPPT Technique

PSO is one of Swarm Intelligence techniques that use randomized population-based
variables to solve optimization problems. This technology was first introduced by
Eberhart and Kennedy (1995) [69]. The first PSO work was used in MPPT from PV
systems implemented in 2004 [70]. PSO is inspired by the behavior of social swarm
from school education or bird rising. An evolutionary PSO process, potential solu-
tions, called particles; move around the multidimensional search space by following
and tracking the best current particle position in a swarm. The PSO process can be
illustrated in the following [71]:

Every particle in the swarm has two variables: position vector xi(t) and velocity
vector vi(t) as appeared in Eq. (7). Therefore, every particle xi(t) is described by a
vector [xi1(t), xi2(t),…,xiD(t)], as i is the index number of every particle, D is the
dimension of the search space and t is iteration number.

xi (t + 1) = xi (t) + vi (t + 1) (7)

xi(t), vi(t), and the global best position Gi(t) are utilized to set the new position
of the particle by calculating the velocity as follows:

vi (t + 1) = ω(t)v(t)︸ ︷︷ ︸
Inertial parameters

+ c1r1(Pi (t) − xi (t))︸ ︷︷ ︸
Personal best velocity components

+ c2r2(Gi (t) − xi (t))︸ ︷︷ ︸
Global best velocity component

(8)

where, ω(t) is the inertia weight factor that controls the search space exploration.
The value of ω(t) can be chosen as a constant value equal to 0.5 or as a variable value
for the obtained GP acceleration [72]. c1 and c2 are acceleration constants, which
provide weight to individual and social GP components, individually. Where c1 is
self-confidence; Range: 1.5–2; and c2 is swarm confidence. Range: 2–2.5 [73].
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A modified PSO technology named deterministic PSO (DPSO) [74] was used to
improve MPPT performance under a partial shading component. Also, hill climbing
(HC-MPPT) has been used in the uniform distribution of insolation on the PV system
but DPSO will be used in the case of PSC. The authors used three parallel branches
and four PV units in the series [74]. Another research [75] has suggested a great idea
to use some particles to locate the LP and some other particles to find a global peak
(GP).

A modified PSO (MPSO) technique [76] was used to adjust the weight of inertia,
using the principles of a genetic algorithm (GA) to improve its strength while
searching for a GP. The adjusted inertial weight ω can be obtained from the Eq. (9)
which uses the main GA principles by increasing the inertial weight value ω at the
beginning (in the global research phase) and reducing it to a precise increase at the
end of the improvement when the particles approach the optimal solution.

ω(k) = ωs − (ωs − ωe)(Tm − k)/Tm (9)

wheres is the initial inertia weight, ωe is the inertia weight when reaching maximum
inertia times, and Tm is the maximum inertia times.

D. Simulation of Proposed Systems

Asimulationmodel of three PVunits and a boost transformer used in FLC andMPSO
is shown in Fig. 34. The simulation model for the system proposed in SIMULINK
is shown in Fig. 35. The simulation parameters for the PV unit are shown in Table 1.

The results of MPSO and FLC simulation are shown in Fig. 36. The response of
different MPPT techniques is evaluated in rapidly changing weather conditions. The
simulation time shown in this figure is divided into six periods of about two seconds
each. Every two seconds, the radiation will be changed in two PV units out of three
and the first will be stationary (1000W/m2) throughout the simulation time (Fig. 37).

Fig. 34 The simulation model for PV modules and boost converter
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Table 1 Simulation parameters of each PV Module in PSIM [54]
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Fig. 36 The simulation results of MPSO and FLC

4 Conclusion

In this chapter, various techniques for tracking, analyzing, simulating, and comparing
maximum power points are demonstrated. MATLAB/SIMULINK/PSIM is used to
model the photoelectric system under partial shading conditions. Moreover, the
response of various power point tracking techniques in rapidly changing weather
conditions is evaluated.
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Enhancement Techniques to Design
a Standalone PV System for Residential
Application

R. Ramaprabha and S. Malathy

Abstract Standard design procedures are available to design a standalone solar
photovoltaic (SSPV) system. However, it does not include the impact of partial
shading on the PV array. The harvested powermay reduce appreciably if the PV array
is partly or completely shaded. The reduction is to be compensated by increasing the
size of the PV array and this increases the overall cost of the system. It is therefore
necessary to devise techniques to mitigate the impact of partial shading and enhance
the power generation under such conditions. This chapter introduces and explains
various strategies (shade resilient arrangement, global peak detecting algorithm, and
reduced device count inverters) to incorporate along with the standard design proce-
dures to increase the power generated by the SSPV system. Enhanced performance
reduces the return on investment (ROI) period, thereby making the standalone PV
system more attractive.

Keywords Photovoltaic · Partial shading · Shade tolerant configuration ·
GMPPT · Multilevel inverter

1 Introduction

The unrelenting focus among the countries on diversifying their energy mix away
from imported oil and fossil fuels has widened the market for power generation using
renewable energy sources. Power generation byphotovoltaic (PV) systemshas gained
much attention than other renewable energy sources due to its abundant availability
and nonpolluting nature. Further, the subsidies/incentives offered by the government
and the technological advancements which have reduced the cost per watt have
significantly increased the reach of PV technology among the general population.
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The large-scale commercial installations are installed in shade-free areas. But, the
small-scale residential SSPV systems are installed on the rooftops or facades of the
buildings that are susceptible to shades due to space limitations. The shade is often
caused by nearby buildings or structures in the same building.

Partial shading is a condition where all the panels in a PV array do not receive
the same amount of irradiation. Clouds, bird litters, nearby buildings, or structures
in the same building as chimneys and overhead tanks may cast their shade on the
PV panels. When a PV array is shaded partially, the shaded panels generate lesser
photon current and impose a current limitation on the other serially connected non-
shaded panels. If this limitation is violated, the shaded panels get reverse biased, and
hot spots may develop due to increased thermal stress. Bypass diodes prevent hot
spot development by offering an alternate path for the current flow [1]. However,
the shaded panel is completely bypassed and the residual power generated by the
panel remains uncollected. The net power generated is significantly reduced under
such circumstances and to meet the desired specifications, the size of the PV array is
to be increased. This in turn increases the ROI that makes power generation by PV
systems less attractive.

It is evident that partial shading is the major issue that needs to be addressed
in an SSPV system. The simple solution is to provide bypass diodes to prevent
the panels from getting damaged. However, the inclusion of bypass diodes causes
multiple power peaks in the voltage-power characteristic curve, and to address this
issue global maximum peak tracking (GMPPT) algorithms are to be included in the
system. These algorithms track the global peak and make sure that maximum power
is transferred from the array to the load under all environmental conditions. GMPPT
algorithms based on soft computing techniques, artificial intelligence, and other
search methodologies have been reported in the literature [2–5]. Some algorithms
require advanced processors to do complex computations, while others require huge
data set to train. The choice of theGMPPT algorithm relies on the user’s requirements
and availability of resources.

Further, the reduction in output power of partially shaded PV array is not directly
proportional to the shade intensity but relies highly on the number and configuration
of bypass diodes embedded in the panels, shade pattern and the interconnection
scheme adopted in the array. The reduction in power is mainly due to mismatch in
currents and it can be reduced to a greater extent by shade dispersion or irradiation
equivalence [6]. Many schemes based on algorithms (online and offline) and puzzle
patterns like Sudoku, magic square, and Latin square [7–9] have been proposed in the
literature to equalize the irradiation. The underlying principle in all these strategies
is to disperse the shade evenly all over the PV array to reduce the mismatch in
currents among the serially connected panels. The online algorithms are dynamic
and involve several sensors to assess the prevailing shading conditions [10–12]. The
switches provided with each of the panels are then triggered appropriately to change
the interconnectivity between the panels in the array. The offline algorithms are static
and adopt puzzle patterns or thumb rules to fix the position of the individual panels
in the array.
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These two strategies (irradiation equivalence and global peak detecting) are
discussed and analyzed separately by most of the researchers to address partial
shading issues.

This chapter tends to unify these strategies into the standard design procedure to
enhance the power generation under partially shaded conditions and to utilize the
installed PV system efficiently.

The standard design procedure calculates the size of the array and the rating of
other components to be included in the system. It does not take into account the impact
of partial shading. The efficiency of the SSPV system can be enhanced appreciably
if the irradiance equivalence algorithm is incorporated in the design stage to fix
the location of panels within the array. One such strategy is discussed in Sect. 4.
The irradiation cannot be equalized perfectly for all the shading conditions and in
such cases; the electrical characteristics showmultiple peaks. Several peak detecting
algorithms are reported in the literature and two such algorithms are discussed in
Sect. 5. The PV inverter failure rate is higher compared to the other components in
the PV system and Sect. 6 discusses the strategy that can be adopted to improve the
reliability. The design of an SSPV system for a residential unit is considered in this
chapter to demonstrate the significance of improvisation strategies.

2 Standalone PV System

A standalone PV system has a PV array that is sized to meet the load requirements.
The schematic of the typical SSPV system is depicted in Fig. 1.

The major components of the system include PV array, maximum power point
tracking (MPPT) controller, battery bank, and inverter. The output power of the
PV array is not constant and it depends greatly on the prevailing environmental

Fig. 1 Schematic of SSPV system
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conditions. The MPPT controller operates the PV array at its optimal power point
and ensures the transfer of maximum power from the source to the load under all
environmental conditions. Most of the residential load operates on ac and hence an
inverter is integrated into the standalone PV system. Commercial inverters have an
inbuilt conventional MPPT controller. However, the conventional controller can’t
track the peak effectively under partially shaded conditions as it can’t differentiate
between global and local peaks, and consequently, the power extracted from the PV
source is significantly less. The battery bank is essential in the SSPV system to enable
the operation of the loads during night times. The battery bank size is determined
considering the load requirements and days of autonomy.

Nowadays, batteryless systems are gaining popularity given the cost, size, and
limited lifetime of the battery besides the impacts on the environment. Hence, in
this work, the SSPV system that is directly connected to the residential load during
the day (with a minimal battery bank to support short time mandatory loads) and
connected to the grid during the night is considered.

As a design example, a residential unit located in Chennai, India is considered.
The residential building is a single-family home with two floors and a built-up area
of 1900 square feet. The photovoltaic power potential for the location is 4 kWh/kWp

(daily) and 1461 kWh/kWp (yearly sum) [13] inclusive of the power conversion
losses and losses due to dirt. Also, the power plant availability is assumed to be
100%. The design is given below.

• After efficiency improvements, the annual energy demand for the building is
determined to be 12780 kWh/year. That is, E = 12780 kWh/year.

(Note: Energy demand can be calculated by considering either all possible loads
of the residential building or the average annual energy consumed by the residential
building from its electricity bill)

• Considering the solar energy resource for the location as 5.5 kWh/m2/day, the
average annual sunlight hours is calculated to be 2008 (5.5 × 365 = 2007.5) full
sun hours.

• Required PV panel wattage rating = (12780 kWh/2008 h) = 6.365 kW.
• Considering 25% loss, PV Panel wattage = 6.365 kW/0.75 ≈ 8488 W.
• Considering 250Wp panel with 31.5 V and 7.94A at peak point, number of panels

required = 8488/250 = 33.95 ≈ 35 panels.
• Number of panels in series = 7 (to meet the 220/230 V requirement).
• Number of strings in parallel = 5 (7 × 5 = 35).
• Voltage and current of 7 × 5 array are 220.5 V and 39.7 A (at max. power).
• Maximum power produced by 7 × 5 array ≈ 8750 W.

Appropriate power converter (power conditioning unit—PCU) can be introduced
between the PV array and load to regulate voltage and current.

These calculations are done assuming standard test conditions (STC). But, the
energy yield of the PV array may significantly fall if the array is shaded partially or
completely. The PV array is usually installed on the rooftop (flat roof) and it is likely
to be shaded partially by the parapet wall, overhead water tanks, antenna, cables, and
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Fig. 2 Enhancement strategies for SSPV system

trees and nearby buildings beside the shading by bird litters and dirt accumulation.
These shading conditions are caused by fixed objects/structures and hence can be
categorized as fixed shadings.

Shading/partial shading is unavoidable andwill prevail for a considerable duration
inmost of the urban residential installations. This results in reduced power generation
and, to meet the load, the PV array is to be upsized and that is not a favorable option.
This issue can be addressed by arranging the PV array in a shade resilient (SR)
configuration where the shade tolerance of the PV array is enhanced by dispersing
the shade uniformly all over the array. If the shaded geometry is short and narrow as
in most of the cases, the voltage-power (V-P) characteristics of the SR PV array may
exhibit multiple peaks, and incorporation of the global peak detecting algorithm will
track and operate the PV array at its optimal power point. Further, the reliability of
the SSPV system can be enhanced by employing a multilevel inverter with reduced
device count (RDMLI) instead of the conventional inverter. The performance of the
residential SSPV system can be enhanced with these three enhancement strategies
(SR arrangement, GMPPT, and RD MLI). The enhancement strategies proposed in
this chapter for the SSPV system are depicted in Fig. 2.

3 PV Array and Interconnection Schemes

The study considers a 7× 5 array of 250Wp panels. The mathematical model (single
diode PV model) of the panel is developed based on the standard equations [14] to
assess the power generation under partially shaded conditions. The specifications of
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Table 1 Specifications of the
250 Wp PV Panel

Specifications Values

Open circuit voltage (Voc) 37.8 V

Short circuit current (Isc) 8.7 A

Max. power (Pm) 250 W

Voltage at Pm (Vm) 31.5 V

Current at Pm (Im) 7.94 A

the panel are presented in Table 1. The simulated electrical characteristics (voltage-
power and voltage-current) of the 250 Wp panel are presented in Fig. 3. The peak or
the maximum power is 250 W at standard conditions.

The peak power falls with irradiation as shown in Fig. 4. However, the voltage
(Vm) at which the maximum power occurs varies slightly with irradiation. It is often
neglected to ease calculations.

The panels in the PV array are connected in series and parallel to meet the voltage
and current specifications. Series and parallel are the basic interconnection schemes
and it has been proved in the literature that the parallel scheme results in optimal
output under all environmental conditions [15]. However, higher array current and
lower array voltage resulting from the parallel configuration are not desirable. Hence,
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new interconnection schemes like the honey comb (HC), bridge link (BL), and total
cross-tied (TCT) are derived from the basic schemes with the inclusion of cross-ties.
The basic and derived interconnection schemes for the 7 × 5 PV array are presented
in Fig. 5.

The simulated electrical characteristics of the 7 × 5 array for various intercon-
nection schemes are presented in Fig. 6. The characteristics are simulated under
standard test conditions. The series configuration results in a lesser array current at
higher voltage levels. It is due to the fact that the array current is equal to the panel
current in series connection. In the parallel configuration, the array current is equal to
the sum of all the PV panel currents and this results in higher current at low voltage
levels. In the case of the derived configurations, the array voltage depends on the
number of panels connected in series, and the array current depends on the number
of panels connected in parallel. The voltage and current levels of the array remain
the same for the derived interconnection schemes under full irradiation conditions
as shown in the current-voltage characteristics of Fig. 6. The peak power of the 7 ×
5 array is the same for both the basic and derived interconnection schemes as shown
in the power-voltage characteristics of Fig. 6.

It can be seen from the figure that all the derived schemes resulted in a similar
characteristic curve at STC. However, the characteristics differ much under shaded
or partial shaded conditions due to the difference in the count and location of the
cross-ties [16]. The impact of partial shading on various interconnection schemes of
the 7 × 5 array is assessed by the utilization factor. The ratio between the maximum
power generated by the PV array and the sum of the maximum power generated by
the individual PV modules is defined as the utilization factor (UF).

UF = maximum power generated by PV array

sum of maximum power generated by individual panels
(1)

The basic and derived configurations are analyzed under various test shading
conditions (short, narrow, long, wide, and diagonal shade patterns) that mimic the
real world shading scenario and the corresponding utilization factor is depicted in
Fig. 7.
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Fig. 5 Interconnection schemes of PV panels
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Fig. 6 Characteristics of 7
× 5 PV array under various
interconnection schemes
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The presence of more cross-ties in the TCT scheme reduces the shading losses
and hence it is the preferred scheme. The utilization factor can further be improved
by making the PV array shade tolerant and this strategy is explained in the following
section.

4 Shade Resilient PV Array (Strategy 1)

The 7 × 5 array can generate 8750 W at STC. The array is subjected to the shading
pattern shown in Fig. 8 where the shade is concentrated at the corner of the array. The
shade dispersion is not uniform and causes four different row currents. The first four
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Fig. 8 a. Test shade pattern b. characteristics with and without shade dispersion

rows could generate a current of 5Im (considering Im to be the current at maximum
power point). The currents generated by the fourth, fifth, and sixth rows are 4.3Im,
3.6Im, and 2.9Im, respectively.

The array generates a maximum power Pm of 6758 W. If the shade is uniformly
dispersed all over the array, the losses due tomismatching rowcurrents can be reduced
to a greater extent. All the rows will have one shaded panel and generate a current
of 4.3Im. The maximum generated power, in that case, will be 7853 W. Thus it is
possible to enhance the power generation by dispersing the shade uniformly all over
the array. This can be achieved by planning the placement of the panels within the
array by shade resilient algorithm.

The arrangement of panels in a conventional TCT array is shown in Fig. 9. Each
of the panels is identified by a two-digit number. The index represents the row and
column numbers. For example, the index 53 points to the panel that is located in
the fifth row and third column. In the conventional TCT arrangement, the panels are
arranged sequentially. For example, the panels 11, 12, 13, 14, and 15 are placed next
to each other in a row and are connected in parallel. The seven such paralleled strings
are connected in series to form the TCT array.

The shade resilient PV array (SR PVA) places each of its panels in predetermined
locations to disperse the shade uniformly all over the array. The location of the panels
in the 7× 5 array is determined according to the SR algorithm [17]. The SR algorithm
is an offline algorithm and it uses the size of the array to calculate the displacement
between the panels. The arrangement is presented in Fig. 10.

In the SR TCT arrangement, the panels that are to be physically placed in the first
row are determined based on the displacement factor (DPF). The way the DPF is
calculated leads to various SR arrangements [18]. One way to calculate the DPF is
to divide the number of rows in the array by 2 and round it off to the floor (3 in this
case).

The panel with index 11 is placed in the first row, the first column. The second
panel to be physically placed next to it in the same row is determined by adding the
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Fig. 9 The conventional
arrangement of PV panels in
7 × 5 array

Fig. 10 Arrangement of
panels in SR TCT
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Table 2 Determination of
panel location in SR TCT

Column number Row number Panel index

1 1 11

2 1 + 3 = 4 42

3 4 + 3 = 7 73

4 7 + 3 = 10; 10 > 7; Hence,
10−7 = 3;

34

5 3 + 4 = 6 65

DPF with the row number of the previous panel (1 + 3 = 4). This panel is to be
placed in the first row, the second column, and hence the index is 42. The next panel
to be placed in the first row, the third column is 73 (4 + 3 = 7). The next panel to be
placed in the fourth column of the first row is 10 (7 + 3 = 10) and as 10 is greater
than the array row number, 7 is subtracted from 10 (10−7 = 3). The resulting panel
index is 34. The panel in the last column of the first row is 65 (3 + 3 = 6). The
calculation is tabulated in Table 2.

The other rows are arranged sequentially as shown in Fig. 10. The panels 11, 12,
13, 14, and 15 are placed in different rows as highlighted and they are electrically
connected in parallel. Thus, in SRarrangement, the five panels that electrically belong
to a row (parallel string) are physically placed in different positions in five rows. The
shade dispersion in the conventional arrangement and the SR TCT arrangement are
analyzed under test shade patterns to assess the possible enhancement in power
extraction.

The fixed shading is classified based on its geometry as long, short, narrow, and
wide. The PV array is installed on the rooftop of residential units after careful inspec-
tion and, usually, they are shaded by parapet walls or structures on the rooftop. The
most common shading pattern is short and/or narrow. The TCT and SR TCT arrays
are assessed under three such fixed shading conditions.

The first shading pattern has seven shaded panels (400 W/m2) and the shade is
concentrated in four of the seven rows. The shade dispersion in conventional and SR
arrangement is shown in Fig. 11a.

In the conventional arrangement, three rows are not shaded, one row has one
shaded panel and three of the rows have two shaded panels each. This results in three
different row currents (5Im, 4.4Im, and 3.8Im) and hence the V-P curve exhibits three
peaks. The maximum power that can be extracted is 7020 W as shown in Fig. 11b.
The shade is dispersed in SR TCT arrangements and each of the rows has one shaded
panel. The shade dispersion is uniform and each row generates a similar current (4.4
Im). The shade dispersion and the resulting V-P curve with a single peak are shown
in Fig. 11. The maximum power generated by the SR TCT array is 7671 W. The
enhancement is 40 W and would be significant under heavy shading conditions.

The second shading case is shown in Fig. 12 is a short onewith four shaded panels.
This type of shading is commonly caused by overhead structures.
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Fig. 11 Shade pattern 1 a. shade dispersion in TCT and SR TCT b. characteristics

In conventional TCT, five rows are not shaded and two rows have shaded panels.
The first five rows generate a current of 5Im, the sixth row generates a current of 4.2Im
and the seventh row generates a current of 4Im. The three different row currents result
in three peaks in the V-P curve. The maximum power generated by the conventional
TCT array is 7620W. The shade is dispersed in SRTCT and dispersion is not uniform
as the shade is too short. The rows 1, 4, and 5 generate a current of 5Im, rows 2, 3, and
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6 generate a current of 4.6Im and the seventh row generates a current of 4.4Im. The
V-P curve exhibits three peaks due to three different row currents. The peak power
generated by the SR TCT array is 8112 W. The enhancement is significant in this
case (492 W).

In the third case, all the five last row panels are shaded at 500 W/m2 as shown in
Fig. 13. This type of shade pattern is commonly caused by the parapet walls and the
shading intensity remains uniform.
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Fig. 13 Shade pattern 3 a. shade dispersion in TCT and SR TCT b. characteristics
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Fig. 14 Power generated by
TCT and SR TCT

The conventional TCT array generates two different row currents. The first six
rows generate a current of 5Im and the last shaded row generates 2.5Im. The shaded
row limits the PV array current and results in two power peaks in its V-P curve. The
peak power generated by the TCT arrangement is 7468 W.

The shade is dispersed in the SR TCT arrangement as shown in Fig. 13a. Uniform
shade dispersion is not possible as the shade is narrow. Five of the seven rows have
one shaded panel and two rows are shade-free. Rows 1 and 4 generate a current of 5
Im and the other rows (2, 3, 5, 6 and 7) generate a current of 4.5 Im. The V-P curve
exhibits two peaks. The peak power generated by the SR TCT is 8000 W which is
significantly higher than the conventional TCT arrangement (532 W).

The peak power generated by the conventional TCT and the SRTCT arrays for the
three shading conditions are compared in Fig. 14. The shade patterns considered for
assessment and comparison belong to the short and narrow category as this type of
shading is predominant in the residential PV system. The shade that is concentrated
in a conventional arrangement is dispersed all over the array when arranged in SR
TCT.

It can be inferred from Fig. 14 that the shade tolerance is better in SR TCT
arrangement due to better shade dispersion. The power generation is thus enhanced
under partially shaded conditions by this irradiation equivalence strategy. This is
an offline strategy that does not involve switches and sensors and hence it can be
adopted in residential installations without any additional cost.

This is the first strategy suggested to enhance the performance of the residential
SSPV system under all environmental conditions. The SR TCT arrangement tends to
disperse the shade all over the array.However, uniformdispersion is not possible if the
shade is too short and/or narrow. Yet, the SR TCT arrangement enhances the output
under such conditions, but multiple peaks in the V-P curve are often unavoidable.
This demands the inclusion of a fast global peak detecting algorithm (GMPPT) that
can discard local peaks and identify the global peak in the system.
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5 Global Peak Detecting Algorithm (Strategy 2)

The commercial PV inverter has an inbuilt MPPT algorithm that can operate the
PV array at its optimal power point. These algorithms are mostly conventional and
cannot differentiate between the local and global peaks. The presence of multiple
peaks in the V-P curve due to partial shading requires more sophisticated algorithms
that can identify the global maximum.

In this study, two-line-search (golden section search and dichotomous search)-
based GMPPT algorithms are analyzed and compared [19, 20]. These algorithms
employ two stages. The first stage locates the region of the global peak by shrinking
the search interval and the later stage identifies the global peak accurately. The first
stage of both algorithms is based on the conventional fractional voltage algorithm
(FVA). The fractional voltage algorithm searches for a peak at the voltage kVoc. The
value of k depends on environmental conditions and usually varies between 0.7 and
0.85 [21].

Partial shaded conditions are characterized by multiple peaks and hence the
GMPPT algorithm has to search the entire range (0 to mVoc) for the global peak.
Searching each point in the search interval for the possible location of the global
peak is time-consuming. To speed up the process, the first stage of the GMPPT algo-
rithm which is based on the FVA, searches the entire search interval only at strategic
voltage points (kVoc, 2kVoc, 3kVoc… 7kVoc) for possible global peaks as shown in
Fig. 15.

The powers at the strategic voltage points are compared and the region of the
global peak is identified. The second stage of the algorithm has to locate the global
peak accurately with lesser iteration by adopting ‘split and remove strategy’ around
the region identified by the first stage. Two-line search algorithms (golden section
search and dichotomous search) are assessed in this section for the 7 × 5 SR TCT
array. The pseudo-codes of the two GMPPT algorithms are presented in Table 3.

Fig. 15 First stage of
GMPPT algorithm
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Table 3 Pseudo-code of GMPPT algorithms

Algorithm 1 GS GMPPT Algorithm 2 DS GMPPT

Measure PV array power and compute the change in power �P
If �P > Pc, initiate new tracking; Pc - critical power
Stage 1
Initialize search interval (0, 7 × 31.5)
Set Vi = 0.83 × 31.5 and measure power (pi)
Apply voltage perturbation
Vi+1 = 2 × 0.83 × 31.5 and measure Power (Pi+1)
Vref- = Vi; if Pi > Pi+1 else Vref- = Vi +1
Continue measuring power till i = 7;

Stage 2
Fix search interval around Vref-
Fix search points x1j = b-Lj* and x2j = a + Lj*
Lj* = Lo/γj;
Lo - initial search range; γ - golden ratio
Measure corresponding powers P1 and P2
If (P1 − P2) > �,
If P1 > P2, discard right side section;
Else discard left
Fix new searching interval and probe points
Measure Powers
End
Else
GMPP located
End of stage 2

Fix search interval around Vref-
Fix midpoint c and search points x1 = c- ε, x2
= c +ε; ε - tolerance value,
Measure corresponding powers P1 and P2
If (P1 − P2) > �,
If P1 > P2, discard right side section;
Else discard left
Fix new searching interval and probe points
Measure Powers
End
Else
GMPP located
End of stage 2

TheGSGMPPT algorithm is based on the golden ratio and hence the name golden
section search. This algorithm can detect the peak of unimodal function accurately
and hence it is employed in the second stage. The initial search interval (a, b) is fixed
around the region identified by the first stage. The search points x1 and x2 that are
determined based on the golden ratio divides the search interval into three regions
(a, x1), (x1, x2), and (x2, b). The corresponding powers P1 and P2 are measured and
compared. If the power P1 is lesser than P2, the region (a, x1) is rejected. The search
interval is reduced from (a, b) to (x1, b). The search continues with the new search
interval as depicted in Fig. 16a and at the end of the iteration, the search interval
shrinks further. The search continues until the global peak is identified.

In case of the DS GMPPT algorithm also, the search interval is fixed based on the
first stage. The midpoint ‘c’ of the interval is fixed and the search points x1 and x2 are
introduced on either side of ‘c’. The corresponding powers P1 and P2 are measured
and compared. If the power P2 is greater than P1, the region (a, x1) is rejected. The
search interval is reduced from (a, b) to (x1, b). The search continues with the new
search interval as depicted in Fig. 16b and at the end of the iteration, the search
interval shrinks further. The search continues until the global peak is identified.

The second shading pattern is shown in Fig. 12 of the 7 × 5 array is considered to
assess the performance of the two GMPPT algorithms. Both the algorithms generate
the reference voltages as shown in Fig. 17 and the controller ensures accurate tracking
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a. GS GMPPT b. DS GMPPT

Fig. 16 a. The second stage of the GMPPT algorithm a. GS GMPPT b. DS GMPPT

of the global peak. The reference voltage is compared with the actual PV array
voltage. The resulting error signal is fed to the controller, which in turn adjusts the
duty cycle of the power converter so as to match the source and the load impedances.
When the impedances match, maximum power is extracted from the PV array.

Both the algorithms effectively tracked the global peak of 8112 W and the array
is operated at 220.4 V as depicted in Fig. 17. The GMPPT algorithm waits for
a significant change in power (power changes with a change in environmental or
shading conditions). If the change is greater than the critical value, the algorithm
initiates a new search. The first and second stages of the GMPPT algorithms then
track down the global peak.

The DS GMPPT converges faster as nearly half of the search interval is discarded
at the end of each of the iterations. It is quantified by a factor called the rejection
ratio. The reduction ratio is defined as

RR = Ln

Lo
(2)
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Fig. 17 Simulated results of the GMPPT algorithms a. GS GMPPT b. DS GMPPT
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where Ln is the length of uncertainty after n experiments and Lo is the length of the
initial interval of uncertainty. The reduction ratio of GS GMPPT is 0.618n−1 and that
of DS GMPPT is (20.5n)−1 where n is the number of iterations. Stage one of both
the algorithms locate the region of the global peak in 7 iterations. The second stage
requires 14 iterations (GSGMPPT) and12 iterations (DSGMPPT) to convergewithin
±1% of error tolerance. Hence, the DS GMPPT algorithm tracks down the global
peak with 19 iterations while the GS GMPPT requires 21 iterations to converge.

Thus, with the appropriate GMPPT algorithm, the global peak of the PV array
can be detected under all shading conditions and maximum power can be extracted
from the 7 × 5 SR TCT PV array under shaded and partially shaded conditions. The
extracted power is stored in a battery bank and fed to inverters to run the load in case
of battery-based systems. In the case of the batteryless system, the extracted power
is directly fed to the inverter.

6 Reduced Device Multilevel Inverter (Strategy 3)

The dc power extracted from the PV array is to be converted to ac to operate the
utilities in the residential unit. The battery bank can be connected to the RDC MLI
to convert the stored dc power to ac in the case of a battery-based system. In the
batteryless system, the PV array directly feeds theMLI. The way the PV inverters are
fed has led to the classification as central, string, multi-string, and micro-inverters.
The central inverter has single MPPT and the output of the PV array is fed to it.
If the inverter fails, the entire system shuts down. This drawback is addressed in
the later developed architectures like string and multi-string structures that tend to
decentralize. These structures include a dedicated MPPT for each of its strings.
The provision of dedicated MPPT per string will not only improve the reliability of
the system considerably but also the SSPV system’s efficiency under shaded/partly
shaded conditions. The arrangement is flexible and scalable as it is easy to integrate
additional modules. The latest development is micro-inverters or ACModules where
the inverter is an integrated part of the PV-module. The mismatch losses and hot spot
risks are totally eliminated resulting in better efficiency. The modular structure also
enables easy enlargement of the system. But, the cost involved is higher than the
other architectures. Generally, string/multi-string inverters are preferred over central
inverters as they offer better reliability, efficiency, and scalability.

The PV inverters thus play a vital role in the PV system and often inverter failure
is the major reason for the system failure. Replacing the failed inverters adds to the
capital cost of the overall system and in turn, increases the return on investment
period which is undesirable. It is therefore necessary to enhance the reliability of the
PV inverter and in turn the reliability of the SSPV system. Reliability is assessed by
counting the number of parts involved or by computing the stress on the parts. Hence,
the reliability can be improved either by reducing the number of parts involved in a
circuit or by reducing the stress across it.
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Most of the commercial inverters adopt conventional two-level inverter or five-
level inverter. The multilevel inverters have been reported as a possible solution for
PV systems, with several inherent benefits, such as high efficiency, low distortion
ac waveforms, and low leakage currents [22]. Additionally, in high power applica-
tions, the ac power can be synthesized from several low-level cells, i.e., low voltage
semiconductors could be employed. The modular, scalable, and simpler structure of
cascadedMLI (CMLI) topologymakes it a preferred structure over the other conven-
tional MLI structures like neutral point MLI and flying capacitor MLI for interfacing
with the renewable sources. The major disadvantage of CMLI structure is the use
of more number of semiconductor switches which reduces the reliability of the PV
inverter.

Many MLI topologies that use a lesser number of switches have been proposed
in the literature [23] and employing one such topology may not only improve the
reliability of the inverter but also improves the spectral quality.

In this section, one such RDC MLI that has cascaded basic units and a full-
bridge inverter as shown in Fig. 18 is considered. The basic unit has a dc source,
a unidirectional switch, and a diode. This unit can generate one positive level +V1

when the switch S1 is closed. When the stitch is opened, the source is disconnected
from the rest of the circuit. Several basic units are cascaded to generate the desired
number of voltage steps at the output.

The cascaded structure is connected to a full-bridge (FB) inverter circuit to
generate both positive and negative levels. The FB circuit generates a positive level
if the switches T1 and T3 are turned on. It generates a negative level if switches T2

and T4 are turned on. The number of voltage levels or steps at the output is more if
the inverter operates in asymmetric mode. The metrics of the RD MLI are tabulated
in Table 4.

Fig. 18 RDC MLI a. basic unit b. H bridge c. Generalized topology
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Table 4 Metrics of the RD
MLI presented in Fig. 18

RD MLI

Basic units N

Levels generated 2n + 1; Symmetric mode
2n+1−1; Asymmetric mode

Switches required n + 4

Voltage sources N

Magnitudes of dc sources Vdc; Symmetric mode
2n−1Vdc; Asymmetric mode

Maximum Vout n Vdc; Symmetric mode
2n−1Vdc; Asymmetric mode

Driver circuits required n + 4

The conventional CMLI can be operated in two asymmetric modes (binary and
trinary) and the trinary mode generates more voltage steps at the output. Hence,
the level to switch ratio is better for that mode. The RD MLI (asymmetric mode)
suggested in this section is compared with that of the CMLI in the trinary mode as
in Table 5.

The RD MLI can generate 31 voltage levels with 8 switches whereas; the CMLI
(trinary mode) can generate only 9 levels. The level to switch ratio of the RD MLI
is relatively higher than that of the CMLI in trinary mode.

A 15-level inverter with a reduced number of devices is presented in Fig. 19. It
has three cascaded basic units and a FB inverter unit. The circuit uses seven switches,
three sources, and three diodes. The source V1 is connected to the FB when switch
S1 is turned on. The sources V1 and V2 add up and appear across the FB by switching

Table 5 Comparison of RD
MLI presented in Fig. 18 and
CMLI

RD MLI
(Asymmetric)

CMLI (Trinary)

Basic units n N

Levels generated 2n+1−1 3n

Switches required n + 4 4n

Voltage sources
required

n n

Magnitudes of dc
sources

2n−1Vdc;
Asymmetric mode

3n−1 Vdc

Maximum Vout 2n−1Vdc;
Asymmetric mode

(3n−1)/2 Vdc

Driver circuits
required

n + 4 4n

Level to switch
ratio

2n+1−1/n + 4 3n/4n
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Fig. 19 15-level RD MLI

on S1 and S2. The voltage across the load is positive if switches T1 and T3 are turned
on and it is negative if the other two switches are turned on.

Themagnitudes of the dc sources are chosen to be Vdc, 2Vdc, and 4Vdc. Capacitors
can also be used to split the voltage from the source. The required gating pulses are
generated by a fundamental frequency modulation strategy called half-height PWM
scheme [24] which determines the instant at which the switches are to be triggered.
The switches are triggered sequentially as presented in Table 6.

The simulated output voltage [25] and the harmonic profile of the 15-level RD
MLI are presented in Fig. 20. The output voltage waveform shows 15 distinct voltage
steps and the % THD is found to be 1.88%without using filters. The Spectral quality
improves with the number of voltage steps. The more the number of levels, the more
the output waveform gets closer to the sine wave. But, the number of switches and
the allied circuit increases with the levels and it, in turn, will affect the reliability of
the inverter due to increased part count. The 15-level RD MLI presented in Fig. 19
has produced a stepped voltage waveform with a lesser harmonic distortion (1.88%)
that is within the desirable limits. Hence, it is not required to extend the number of
levels further compromising reliability.

The conventional cascaded MLI can generate 15 voltage levels when operated
in binary mode. The CMLI cannot generate 15 levels in trinary mode. Hence, the
metrics of the RDMLI presented in Fig. 19 are compared with CMLI (binary mode)
in Table 7.

The 15-level RDMLI has used only 7 switches as compared to 12 in conventional
CMLI (Binary) to generate 15 unique voltage steps at the output. The%THD (1.88%)



Enhancement Techniques to Design a Standalone PV System … 309

Table 6 Status of switches and the output voltage

States Status of switches Output Voltage

S1 S2 S3 T1 T2 T3 T4

1 � � 0

2 � � � Vdc

3 � � � 2Vdc

4 � � � � 3Vdc

5 � � � 4Vdc

6 � � � � 5Vdc

7 �� � � � 6Vdc

8 � � � � � 7Vdc

9 �� � � −Vdc

10 � � � −2Vdc

11 � � � � −3Vdc

12 � � � −4Vdc

13 � � � � −5Vdc

14 � � � � −6Vdc

15 � � � � � −7Vdc

Fig. 20 Simulated output
and harmonic profile of the
15-level RD MLI
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Table 7 Comparison
between CMLI (B) and RD
MLI in Fig. 19

CMLI (Binary) RD MLI

Number of levels 15 15

Number of switches 12 7

Number of dc sources 3 3

Magnitudes of dc
sources

Vdc, 2Vdc, 4 Vdc Vdc, 2Vdc, 4 Vdc

Maximum Vout 7 Vdc 7 Vdc

Number of gate driver
circuits

12 7

Level to switch ratio 1.25 2.14

is alsowell within the desirable limits. The reduction in the switches involved reduces
the driver circuit requirements and it in turn reduces the overall part count. Reliability
can be assessed based on the number of components involved. As this RD MLI
adopts fewer components than the conventional topology, the reliability is much
better. Further, the number of switches that are turned on at any given instant is
less compared to the conventional topologies and hence the losses involved are also
reduced.

Thus, the performance of the SSPV system can be improved by incorporating
all three enhancement strategies, SR TCT, GMPPT, and RD MLI along with the
standard design procedure. The enhanced SSPV system is depicted in Fig. 21.

Fig. 21 Enhanced SSPV system
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The power extracted from the PV array can be enhanced by improving equal-
izing the irradiation received by the panels. This is achieved by arranging the panels
according to the SR algorithm and adopting TCT interconnection. This arrangement
enhances the output under all environmental conditions by minimizing the mismatch
losses due to shading/partial shading. Incorporating a fast and accurate GMPPT algo-
rithm operates the PV array at its optimal point and ensures the transfer of maximum
power from the source to the load. The reliability of the inverter and in turn the SSPV
system can be improved by employing RD MLI.

7 Conclusion

This chapter has elaborately explained the impact of partial shading on the perfor-
mance of the PV array and has suggested three strategies to improve the power
generation under such conditions. The SSPV system is designed for a residential
unit using standard procedures and the suggested strategies are demonstrated in the
design. The role of interconnection schemes of a partially shaded PV array is assessed
in terms of UF and it is suggested that the TCT scheme is a better option. Further,
shade resilience is included in the TCT PV array by adopting the irradiation equiv-
alence strategy. The panels are arranged according to an offline algorithm in SR
TCT array and this arrangement tends to disperse the shade evenly among the rows.
The mismatch in row currents is thus reduced and the power generation is enhanced
without additional cost. This strategy is best suited for small residential installations.
Shade dispersion may not be uniform if the shade is short and narrow as in most of
the practical cases and results in multiple peaks in the V-P curve. Many algorithms
are reported in the literature and the selection depends on the requirements and the
availability of resources. This chapter has suggested two-line-search-based GMPPT
algorithms (GSS and DS) that can detect the global peak accurately and quickly. The
DS GMPPT algorithm is faster compared to the GSS algorithm as the search interval
is almost reduced to half at the end of each of the iterations. RD MLI is suggested
as the third strategy to improve the reliability of the system. Reduced device count
improves reliability, as the part count is reduced. A 15-level inverter is developed
based on the suggested topology and its working is explained in detail. Many new
topologies are reported in the literature and appropriate structure can be selected
based on the requirements and size of the PV array and/or battery bank. All three
suggested strategies can be considered while designing an SSPV system to enhance
its performance under all environmental conditions.
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Controlling the Hybrid PV/T System
Self-heating Using Extrinsic Cell
Resistance

A. A. Aminou Moussavou, A. K. Raji, and M. Adonis

Abstract Water and space heating represent major energy consumption in a
domestic residence. The heating system is supplied from different energy sources
such as electrical heating systems, biomass, kerosene, propane, fuel oil, and natural
gas. These energy sources are expensive, diminishing, and often pollute the envi-
ronment. Hybrid PV/T systems have proven to be economical and utilize renewable
energy for space heating and domestic hot water applications. However, one of its
limitations is the low thermal efficiency. This study presents an innovative means
of merging the photovoltaic module and solar collector (PV/T) system. Emphasis is
placed on the solar energy conversion strategy tomodulate the ratio of thermal to elec-
trical produced from the PV panel, which balances the energy (electrical and thermal)
based on the user requirement. Analysis of electrical power and thermal performance
of photovoltaic is carried out to highlight the critical parameters influencing the PV
system behavior usingMATLAB/Simulink. The simulation results show an effective
balance of thermal and electrical power. When varying the extrinsic cell resistance,
the PV cell temperature ranges from 45 to 62 °C in the PV/T system while propor-
tionally generating 2800 to 110W to the load. The PV cell can produce electricity and
may also be useful for domestic hot water preheating and space heating applications.

Keywords Efficiency · Photovoltaic systems · Solar thermal · Modeling and
simulation · Power production · Thermal energy · Electrical energy

1 Introduction

The use of hot water and space heating in residential sectors represents the primary
energy consumed in most countries [1, 2]. This energy comes from different sources,
such as electrical heating systems, propane, fuel oil, and natural gas. For economic
reasons, the hybrid PV/T system can be utilized to cover the demand of the useful heat
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(for hot water and space heating) and electricity [3–7]. However, this system presents
some limitations [8]. For instance, flat-plate PV/T collectors warmworking liquids to
a minimum temperature above surrounding temperatures, relying upon the structure
and the number of the glass cover. However, more than three glass covers may not
be used, because their electrical efficiency is extremely low due to triple glazing
cover and low transmittance [8, 9]. Kostic et al. studied the reflection efficiency
of a flat plate composed of an aluminum sheet and aluminum foil collectors and
found that both materials have the same total reflectance, but the specular reflector
was dominated by the aluminum foil concentrator, increasing the solar radiation
intensity. The energy produced by a c-PV/T collector using aluminum foil is higher
than the energy produced using an aluminum sheet [10]. Budihardjo and Morrison
studied the properties of glass cooling tubes for solar water heaters such as optical
and thermal losses, comparing the effects of flat solar collectors to solar panels. It
was reported that the evacuated tube collector array generally has lower thermal
performance than the two flat-plate PV/T in the domestic water heating. Solar water
heaters with vacuum tubes in the glass were the largest and the most widely used
form of vacuum tube collector due to the high thermal efficiency [11].

PV/T systems are integrated into buildings and offer a multi-power generation
[12]. Some researchers developed an air-based PV/T system on a building facade
to determine the thermal performance and radiation gain factors. However, it was
complicated to estimate the convective heat transfer coefficient due to parameters
such as natural flow convection, laminar and turbulent flow, and internal and external
wind load on the plates [13]. Vokas et al. analyzed the theoretical performance of
air-based PV/T collector for domestic heating and cooling. However, the results
show that the solar PV/T hybrid air collector had an efficiency of 9% lower than the
standard solar thermal collector. The solar collector with selective absorber had the
highest thermal efficiency (about 75%) [14].

Theoretical and experimental evaluation studies of natural and mechanical venti-
lation of solar air-based PV/T collector at steady-state have been proposed [3]. The
evaluation shows that the new recovery of thermal energy allows about an 18%
improvement in the overall performance of air-based PV/T collector. Chow et al.
developed awater-basedPV/T simulationmodel for building integratedPV (BIPV/T)
and heating systems, and then analyzed the annual energy performance of the water-
based PV/T system in natural and forced circulation modes. Both operation modes
presented a thermal transmission efficiency reduction of 72% and 71%, respectively
[15].

A study had analyzed PV/T systems associated with two water channels in which
water flows through the upper channel and returns through the lower channel. This
system has high thermal efficiency; however, the geometric complexity makes it
difficult to manufacture [16, 17]. Another part of the design transfers heat from the
water layer to the glass plate on top of the water channel that has been analyzed by
Xu et al. and Musallam et al. [18, 19]. However, each glass cover creates additional
reflections, decreasing substantial electricity efficiency in thePV/T collector [19, 20].

Some authors proposed the heat pipe-based PV/T, consisting of three parts (an
evaporator, an adiabatic, and a condenser) as a viable solution for removing and
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transferring heat [21–23]. However, one of the difficulties of high-temperature heat
pipes is the corrosion from the incompatibility between the working fluid and the
shell material. This incompatibility results in a chemical reaction, producing non-
condensable gases, which considerably affect the thermal performance of the heat
pipe [24].

Numerous studies have been conducted on PV/T systems with limited informa-
tion and without parameters such as weather conditions and geographic location.
Excepted for the annual performances of the PV/T system that are available [25, 26].
A statistical study conducted by Brottier and Brennacer addressed the shortage of
reliable PV/T system thermal performance data. This study was achieved by evalu-
ating the efficiency of 28 PV/T system installations in-ground, fitted with new non-
overglazed PV/T systems in Western Europe. The robustness of the non-overglazed
PV/T was highlighted, and the irregularity on PV/T system thermal performance
was considerable [27]. Simulation models have also been developed in TRNSYS
software to study the losses occurring in the PV/T for hot water. It has been indicated
that up to 52 °C of thermal losses are from the total energy, and the circulation system
is affected by the return temperature [28].

Valuable studies on the optimization techniques using maximum power point
tracker (MPPT) have been published in PV systems like [29, 30]; but this is not
discussed here.

In view of these PV/T system limitations, it appears that the improvement of
energy production is needed. Therefore, it is an essential topic for new research
perspectives and technological development. The novelty of this research study is
in the solar energy conversion strategy to modulate the ratio of thermal to electrical
produced from the PV panel to preheat domestic hot water systems. Although, the
PV/T systems mainly prioritize electrical efficiency. This study proposes a control-
lable self-heating (useful heat) of the PV cell using an external parameter that
balances the energy (electrical and thermal) produced according to the need. This
focuses on the thermal behavior of a photovoltaic cell, and the heat transfer via radi-
ation, convection, and particularly conduction (useful heat). The modeling is based
on the calculation of the heat balance, heat transfer occurring in the PV cell, the
temperature within the PV cell, thermal and electrical power, and other efficiencies
that will be accessed using the following parameters. A comprehensive review of the
performance characteristics of PV modules with an emphasis on temperature effects
is conducted in this study. Also, the development of a method to optimize combined
photovoltaic and thermal efficiency by controlling the heat flow is undertaken.

2 Photovoltaic Modules

Photovoltaic modules are devices that are made to transform the sun’s rays into
electricity and are characterized by their peak power under certain conditions in the
laboratory. The PVmodule performance is associated with its operating temperature.
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Generally, the generated electricity decreases when the temperature increases above
the threshold value [31].

The solar module converts photons of various wavelengths into electrical energy
following its spectral response (SR). SR is defined based on its bandgap, cell width,
and transport properties of the carriers in the material. The amount of current gener-
ated by a module depends on the wavelength of the spectral response to the provided
input energy in the form of illumination. The spectral response defines a short-
circuit current that is obtained at the wavelength of the photovoltaic modules, and
it is calculated in watts per square meter per nanometre (W·m−2·nm−1). The short-
circuit current depends on the bandgap of the PVmodule, which is determined by the
PV cell technology used. The short-circuit current (Isc) of the photovoltaic module is
calculated through the integral product of the external SR and the required spectrum
[32, 33].

2.1 Photovoltaic Module Performance Parameters

A photovoltaic module is a semiconductor device that can be approached by a simple
dark diode equation, obtained from the current–voltage (I–V ) characteristic curve.
It allows the current to flow in the direction of forward-bias and blocks any reverse
current flowing in the circuit, or so-called reverse bias, as shown in Eq. 1.

ID = I0

(
e

q(V j)
nkT − 1

)
(1)

where: I0 is knownas the saturation current of the diode, (A);n represents the ideal the
diode’s factor;q is equal to 1,602 × 10−19C, the absolute value of electron charge;k
represents the Boltzmann constant, equivalent to 1.38 × 10−23 J/K; T stands for the
temperature of the device in Kelvin (K); and Vj stands for the voltage across the
diode junction, (V).

Adiode equation has a significant influence on the circuit, as it affects the operation
of the diode. The junction voltage is represented by the following equation:

Vj = V + I Rs (2)

The diode is a good correspondent of the photovoltaic cell. Figure 1 shows the
photovoltaic cell model: the current source in the circuit shows the photon-current,
IL. However, when considering a practical device, it has some limitations. This
modification entails expressions by adding parallel and series resistance:

I = IL − I0

(
e

q(V j)
nkT − 1

)
− Vj

Rsh
(3)
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Fig. 1 PV cell model

IDIL ISH
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The fill factor (FF) represents the ratio between the maximum power of the PV
module (Pmp) and the ideal power (Isc · Voc). FF can provide information about
efficiency and can be used as an indicator of the module quality. Also, it shows the
effect of parasitic resistance on the PV module. The Pmp is a state of voltage and
current specific to the power of the solar cell and reaches a maximum when the
derivative of the power is equivalent to zero. The equation is given as follows:

FF = Vm Im
Voc Isc

(4)

where: Vm is the voltage at the maximum power point, (V); Im is the current at
the maximum power point, (A); Isc is the short-circuit current, (A); Voc is the open
voltage (V).

The conversion efficiency of the module is the ratio of maximum power transfer
of the PV module and the incident of the solar radiation on the surface of the photo-
voltaic module given by Eq. 5. It is determined under standard test conditions (STC):
1000 W/m2 irradiance; air mass 1.5; the module temperature 25 °C; and an incident
angle 0 °C. Under these conditions, the power of the module is referred to as peak
power (Wp). The equation is given as follows:

n = Voc IscFF

AG
(5)

where: A is the surface of the module, (m2); G is the irradiance falling on the surface
of the module (W/m2).

2.2 Influence of the Operating Temperature of the PV
Module

The PVmodule performance is mainly determined by ambient temperature and solar
radiation. The temperature range depends heavily on the local wind speed, the PV
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Fig. 2 The PV array
characteristic under various
temperatures and an
irradiation intensity of
1000 W/m2 [40]

material, and the structure of the photovoltaicmodule, such as glazing-cover transmit-
tance and absorbance [34, 35]. A photovoltaic module is directly affected by temper-
ature as it reduces the open-circuit voltage (Voc) and consequently, the maximum
power (Pmp). High temperatures reduce the effectiveness of the module bandgap [36,
37]. When the temperature increases due to the formation of electron-holes which
require less energy, the open-circuit voltage, and bandgap decreases, and the dark
current saturation increases [38, 39]. Photovoltaic performance is characterized by
the I–V characteristic curve shown in Fig. 2.

The curve is used to obtain PV parameters, such as Isc, Voc, FF, and efficiency.
Figure 2 shows that when the temperature increases, the Voc of the photovoltaic
module decreases, with a small rise in Isc [41–43]. As temperature varies, the effect
on the Isc is marginal, while the impact on Voc is substantial [38, 39]. The equation
is given as follows:

Voc = nkT

q
ln

(
IL
Io

)
(6)

2.3 Losses Due to Extrinsic and Intrinsic in a Solar Cell

The power losses in the solar cell have been reported and classified according to
extrinsic and intrinsic losses, optical and electrical losses [44, 45]. These are shown
in Fig. 3.

Extrinsic losses are due to external factors and attributed to reflection, shading,
series resistance, incomplete collection of generated photocarriers, absorption in the
window layer, and non-radiative recombination.

Intrinsic losses are due to two factors:
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Fig. 3 Different sources of losses [44]

• The inability of the single-junction solar cell to respond efficiently to all wave-
lengths of the solar spectrum. The solar cell becomes transparent for photons
whose energy is less than the energy of the forbidden band of the semiconductor
whenEph<Eg. On the other hand, provided that the photons have an energy greater
than the forbidden band when Eph> Eg, the extra energy is dissipated in the form
of heat.

• The second type is a result of radiative recombination in the solar cell.

2.3.1 The Recombination Loss

Recombination is defined as the reverse mechanism of generation. It engages a loss
of energy; excess carriers disappear by restoring their thermodynamic equilibrium.
A disturbed semiconductor restores its thermodynamic equilibrium through several
possible mechanisms:

• Radiative recombination: direct bandgapmaterials are often restricted by radiative
recombination;

• Indirect or assisted recombination: SHR constrains solar cell with low material
quality;

• Auger recombination: solar cells with high Voc are regularly restricted by Auger
recombination; and

• Surface recombination.
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Fig. 4 Diagram of the main
recombination processes in a
semiconductor [44]

The radiative and the Auger recombination are intrinsic processes. In contrast,
SRH and surface recombination are extrinsic processes assisted by a defect level
in the bandgap and therefore are at the origin of heating during their realization.
Figure 4 presents the primary recombination process in a semiconductor.

2.3.2 Radiative Recombination

This mechanism is dominant in pure semiconductors, with a direct gap structure
such as GaAs. Radiative recombination is described as the reverse mechanism of
optical absorption; an electron from the conduction band combines with a hole in the
valence band. The energy of the emitted photon will correspond to the gap energy of
the forbidden band of the material. This phenomenon is characterized by the short
life of the minority carriers. The spontaneous radiative recombination is shown in
Fig. 5.

The rate of total recombination is relative to the concentration in the material. In
the absence of a generation phenomenon, the overall recombination rate is calculated
by the following formula [46]:

Urad = B(np − n2i ) (7)

where: B is a constant that depends on the semiconductor used; ni the intrinsic
concentration; n and p represent the concentrations of electrons and holes at
equilibrium.
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Fig. 5 Radiation
recombination

2.3.3 Indirect or Assisted Recombination (SHR)

TheShockley–Read–Hall (SRH) recombination process relies on thematerial quality
and imperfections of the material. Assisted recombination occurs in indirect gap
semiconductors. This mechanism introduces a step in the transition between the
conduction and valence (the depletion zone). This is located in a trap zone in the
forbidden band, as seen in Fig. 6.

Fig. 6 SRH recombination
process
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The defect comes from impurities or the structure of the network.
The indirect recombination rate for Nt defect concentration located at an energy

level and in the forbidden band is represented by the Shockley–Read–Hall formula
[46]:

USHR = σp · σn · Vth · Nt · (np − n2i )

σn · (n + n1) + σp · (p + p1)
(8)

It has been diminished using watchful creation strategies that reduce surrenders
in the semiconductor precious stone. The equation is given as follows:

n1 = ni · exp
(
Et − Ei

kT

)
(9)

p1 = pi · exp
(
Et − Ei

kT

)
(10)

where: Nt : is the concentration of defects; σp, σn sections of effective capture by the
hole and the electron; Vth is the thermal speed; Ei is the intrinsic Fermi level; and
USHR >> is given in free carriers, cm−3. s−1.

2.3.4 Surface Recombination

The surface of the semiconductor has many defections after being treated during
polishing and etching. The local oxide increases in a matter of minutes over several
tens of angstroms in the environment, interfering with the crystalline structure near
the surface. When the material is uniformly illuminated, the recombination of the
surface results in an excess carrier concentration on the surface rather than in the
volume. Figure 7 shows the surface recombination through one gap state within
defect density.

The equation is given as the following [47]:
For the material of type P:

Jsurface = q · Sp · (n − pn0) (11)

For the material of type N:

Jsurface = q · Sp · (np − nn0) (12)

where: S is the surface recombination rate (cm/s).
The recombination of the surface is documented here as a significant parameter in

solar cell research, influencing the saturation of the current and quantum efficiency
of the cells. The velocity depends on the properties of the semiconductor material
used. The velocity is high for the direct gap of semiconductors. Some semiconductor
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Fig. 7 Surface
recombination

materials are stimulated to reduce their recombination rate. For instance, in the silicon
cells, an oxide layer is added, and the GaAs cell increases the window layer using
the AlGaAs layer, thereby reducing the surface recombination rate, which represents
the surface layer recombination rate.

2.3.5 Auger Recombination

The Auger recombination is the mechanism that occurs during a high concentration
of free carriers, as in the indirect gap semiconductors [48]. The energy released by
recombination transfers an electron to a greater level of the conduction band or a
hole at a deeper level of the valence band. The Auger recombination is illustrated in
Fig. 8.

The total recombination rate is calculated by the following formula [44]:

UAuger = (Cp0 + Cn0)(np − n2i ) (13)

where: Cp0,Cn0 are Auger capture coefficients of the hole and the electron.

2.3.6 Joule Effect

Concerning the influence of Joule, it is reasonable to consider the heat dissipation due
to the passage of the charge carriers in a resistivity material. It is used to determine
the thermoelectric phenomenon found when charge carriers pass through an electric
field. Joule heating losses associated with the internal series resistance of the module
depends on the electrical properties of the metals used. Figure 9 illustrates the power
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Fig. 8 Auger recombination

Fig. 9 Combined loss due to Joule heating phenomenon

lost through the cable due to Joule heating. The combined loss in cable resistance,
the contact resistance in the terminals, fuses, connectors, shunt resistance, and the
diode voltage drop in the array.

The equation of the Joule effect leads to Eq. 14 [49]:

Q(x) = −→
I L(x) · −→E (x) (14)

In n-typematerial, the charge distribution function of Fermi–Dirac statistic reveals
that there are electrons in the conduction band in larger quantities than in the case of
p-type material and that in thermal models, and, all these electrons do not have the
same energy.
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In the case where the diode is in direct polarization, the electrons of the n-doped
zone move toward the p-doped region under the effect of the electron concentration
gradient between these two zones. This natural movement is due to the gradient as
opposed to the potential barrier born from thePN junction.Among the electrons, only
those with enough energy will be able to cross the potential barrier and conserve the
electronic distribution of the doped material. These will repopulate the high energy
levels and therefore maintain the electronic balance of the dopedmaterial. In the case
of a photovoltaic cell in direct polarization, the photo-generated minority carriers are
injected into the zone where they become the majority. During this transfer, they give
up some of the energy they carry in thermal form by emitting photons. This process
induces a release of energy, heating the cell.

2.3.7 Peltier Effect

As the current flows through the metal-semiconductor interface, the difference in
potential between theworking output level of themetal and the valence or conduction
band induces heating. It is essential to observe that despite the simplicity of the
metal-semiconductor interface, the amount of energy loss in the model under the
Peltier effect is the loss in real contact in thermal form. Even with a more extensive
interface, the semiconductor Fermi level in the surface is alignedwith the outputwork
of the metal. Therefore, the charge carriers move between the semiconductor and the
metal. This charge will always lose energy between the valence or conduction band
and which results in a thermal form, in the Peltier effect, or by Joule effect, provided
that the surface of the semiconductor is highly doped, or by tunnel resistance. If the
interface is a tunnel diode and no longer a metal-semiconductor interface without
defect [50].

2.3.8 Parasite Resistances

Practically, photovoltaic modules are not perfect; they have extra parasitic resistance
(series resistance, Rs and parallel resistance, Rp). Both high series resistance value
and low parallel resistance value influence the fill factor of the solar module. The
solar cell efficiency is susceptible to parasitic resistance parameter, by dissipating
the solar cell power, so their effect varies depending on the geometry of the solar cell
and the manufacturing technology. Both resistors have a substantial impact on solar
cell characteristics and performance [51].
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(1) Series resistance

The series resistance (Rs) in a PV module represents the resistance in front, rear, and
terminal contacts and cell resistivity of the PVmodule interconnection; caused by the
impedance of the cathodes (gate metallization and the back face) and the deficient
doping in the relatively neutral regions (emitter-base). The low estimation of the
series resistance does not influence the short-circuit current and the open-circuit
voltage, but slightly diminishes the value of the shape factor. On an excellent cell
quality, Rs must be less than 1 �. The influence of the series resistance is noticeable
in the I–V characteristic curve, with Rs diminishing the short-circuit current without
influencing the open-circuit voltage. The transmitter and the upper grid of the solar
cell characterize themain factors of loss due to the series resistance. The optimization
is achieved by reducing the thickness of the emitter and the metal-semiconductor
contact area, which will reduce the resistivity of the material [51, 52].

(2) Parallel resistance, Rp

Manufacturing defects commonly cause losses due to parallel resistance (Rp), occur-
ring when the diffusion of high-temperature metals that puncture the transmitter,
insufficient materials for photovoltaic modules, or the resistance between the termi-
nals and the path of the PV unit not passing through the junction. This relates to the
intersection resistance, which becomes significant when the PN junction is placed
close to the surface. Likewise, it restricts the separation distance between grid lines
in thin-film solar [51, 52].

3 Mathematical Model and Thermal Performance of PV
Array

The numerical analysis of thermal and electrical energy from the PV array is
presented in this section. The PV array is assumed to lay perfectly flat on the
Earth’s surface and receive full solar radiation. The solar radiation is converted to
electrical/thermal energy by the PV array.

To simplify the physical structure of the proposed PV array, the following
assumptions should be ensured when configuring the model:

• The overall efficiency of the system is in a quasi-steady-state condition.
• All surfaces of layers incorporate uniform temperature.
• The temperature of the gradient around the tube is considered insignificant.
• Heat dissipation is one dimensional.
• Edge loss is considered insignificant because of insulation.
• Due to the high resistance to heat, the heat loss through the insulation is low.
• The PV module is in a horizontal orientation upward, with solar radiation

perpendicular to the module.
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The design and numerical equations are given in this study may not necessarily
be the most well-defined due to the assumptions. However, they are generally used
in the literature and are straightforward to apply and acceptable for most design
calculations.

3.1 Thermal Modeling

Duffie andBeckman [54] described the equation of the energy balance in solar energy
thermal processes.

The useful energy Qu is extracted under conditions of stability, proportional to
the useful energy absorbed by the collector, minus the amount lost by the collector,
and it is expressed as follows equation [54]:

Qu = Qin − Qloss (15)

where: Qu , Qin , and Qloss are respectively the useful energy, the absorbed energy,
and the energy losses.

The solar cell energy increases when the solar radiation reaches the absorber
plate surface. Energy gained by the absorber is the active optical fraction of the solar
radiation; the following equation expresses the amount of solar radiation received by
the solar cell [54]:

Qin = (ατ) ∗ G ∗ Ac (16)

where: G is the intensity of the solar radiation, (W/m2). Ac is the surface area of the
solar cell, (m2). τ is the transmission coefficient of the glazing; and α is the energy
absorbed in a fraction. The amount of incoming radiation absorbed is given by ατ .

The mode of loss—convection, radiation, and conduction—is dependent on the
temperature difference between the solar cell, the environment, and the geometry of
the solar cell. The formula is given in the following equation:

Qloss = Qconv + Qrad (17)

Qconv is the heat convection to the external environment. The convective exchange
losses depend on the linear wind speed function and the environment temperature.
These losses are proportional to the ambient and the solar cell temperature, and is
provided by the following equation [54]:

Qconv = A × h × (Text − Ts) (18)

where: Ts is the temperature surface, Text is the external temperature, and h is the
heat transfer coefficient.
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Most of these coefficients a, b, and n are in the form of the following equation:

h = a + b × vn (19)

Thus, this is proposed as the most used equation to study the relationship between
flat solar collectors:

h = 5.7 + 3.8 × vn (20)

This transfer mode occurs through the emission, and electromagnetic absorption
between objects at different temperatures is called thermal radiation. The perfect
emitter of blackbody emission power or thermal radiation, given by Stefan–Boltz-
mann, is proportional to the fourth power of its temperature. This is described by
Eq. 4.7 [54, 55]:

Qrad = σ · A · T 4 (21)

The completion of the radiation between the surfaces involves losses from surface
radiation and lost into the environment. This is affected by the physical and geometric
properties of the surface. And it is quantified by the parameters known as the shape
factor. To exchange radiation between the two surfaces 1 and 2, the net heat energy
of surface 1 can be approximately transferred to surface 2, in the following equation
[54, 55]:

q1↔2
r = −q1↔2

r = σ · (
T 4
1 − T 4

2

)
1−ε1
ε1·A1

+ 1
A1·F12 + (1−ε2)

ε2·A1

(22)

The general form of the radiation heat transfer coefficient between surfaces is:

hr = σ · (
T 4
1 − T 4

2

)
(T1 + T2)

1−ε1
ε1

+ 1
F12

+ (1−ε2)A1
ε2A2

(23)

The radiation exchange between two surfaces (convex objects and large shells) is
applicable when a sizeable concave surface surrounds a curved object. Under these
circumstances, A1/A2→ 0, and mainly no reflection of the radiation is emitted by
the object, F12 → 1. The rate of radiation heat loss is proportionally related to the
emittance of the surface and the temperature difference in the power of four. The
equation is given as follows [54, 55]:

Qrad = σ · ε1 · A1 · (
T 4
1 − T 4

2

)
(24)

hr = σ · ε1 · (
T 2
1 + T 2

2

)
(T1 + T2) (25)
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The expression is used in the case of coverage of a solar cell surface at a tempera-
ture (T ). Therefore, the equation concerning the ambient temperature (Ta) is rewritten
in the following:

hrc−s = σ · εc ·
(
T 4
c + T 4

sky

)
(Tc − Ta)

(26)

The accumulated heat in the solar collector is transmitted to the atmosphere
through convection and radiation. The collector heat loss coefficient (UL ) explains
how much of the energy is lost to the environment by the top with excellent backing
insulation. The rate of heat loss depends on the overall heat transfer coefficient of
the collector, as in the following equation:

Qout = hcv · (Tc − Ta) + ε · σ · (T 4
c − T 4

s ) (27)

where: Qout is the heat loss (W); UL is the heat loss coefficient, W/(m2·K); Tc is the
average temperature of the collector (°C), and Ta is the ambient temperature (°C).

3.2 Modeling of Temperature Effects on PV Array

ThePVarray only converts a part of the solar radiation into electrical energy, but at the
same time, the rest is transformed into heat. The PV module operating temperature
has a significant impact on its performance. However, this depends on many factors
such as the semiconductor material used, the manufacturer of the PV module, and
the installation on site. The effect of temperature on the PV module in this section,
including the factors that affect the PV cell operating temperature and their results,
is discussed.

3.2.1 Effect of the Operating Temperature of the Solar Cell

The solar cell temperature increases while functioning adversely affecting its perfor-
mance. The equations governing the PV cell performance depend on parameters
such as temperature, bandgap, diffusion coefficient, integral voltage, intrinsic carrier
concentration, a width of the depletion zone, and the limitations of models used. The
temperature affects Voc as described by Eq. 28 [39, 56].

Voc = n · k · T
q

ln

(
Isc
I0

+ 1

)
= Vt · ln

(
Isc
I0

+ 1

)
(28)
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where: Voc is logarithmically proportional to the ISC (V); I0 the inverse of the
saturation current (A); q is electron charge (C), and k is the Boltzmann constant.

Regarding the temperature effect, theV oc changes linearly and is inversely propor-
tional to the temperature.Under PVcell operating conditions, the short-circuit current
is relatively independent of the temperature. When electrons are excited by the
thermal effect rather than the electrical properties of the semiconductor, V oc and
FF are reduced. The temperature tends to decrease the performance of a PV cell by
decreasing V oc.

However, the saturation current varieswith temperature.Also, the bandgap energy,
Eg , of a semiconductor cell decreases as the temperature rises, and is modeled as
follows [39, 56]:

Eg(T ) = Eg(0) − αT 2

T + β
(29)

where: Eg(0) refers to the bandgap value at zero Kelvin, Eg(T ) is the bandgap
of a semiconductor at temperature (T ), and α and β are specific constants of the
semiconductors.

Due to the improvement of absorption and photocurrent, the decrease in the
bandgap causes a slight increase in the Isc. However, the heating has an undesir-
able effect on the V oc. From PV materials, it is observed that the linear decrease in
V oc and a linear increase in Isc, slightly offset FF.

3.2.2 Calculation of Temperature of PV Cells

Most of the formulas consider the linear character of thePVcell performance to repro-
duce its temperature dependence and based on its efficiency or its maximum power.
The widely used expression which relates the efficiency of a cell to its operating
temperature is given in the following formula [39]:

ηc = ηTref · [1 − βref · (Tc − Tref)] (30)

where: ηTref is the efficiency of the cell (or module) at the reference temperature; Tref
is the reference temperature of 1000 W/m2; Tc represents the operating temperature
of the module; and βref represents the temperature coefficient.

The coefficients βref and ηTref are dependent on the properties of the material,
representing the linear variation of the yield as a function of the PV cell temperature.

The linear equations equivalent to those proposed equations above can be applied
when calculating the power loss of the PV module as a function of its operating
temperature.Again, very fewmodels consider elements that aid in cooling themodule
(power gain) by convection such as wind or fluid that passes to the back of the PV
module.
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3.2.3 Consideration of Temperature in Commercial PV Models

STCs are used to compare the performance of different cells or modules but are
not representative of the real-world operation of a PV module. A high operating
temperature is a factor that detracts the PV module performance.

A more complex and energy rating model, which considers the effect of the
spectral disagreement and the angle of incidence of the light rays, has been developed
by the National Renewable Energy Laboratory (NREL). Isc and V oc are defined in
Eqs. 31 and 32, respectively.

Isc = G

Gref
× ISCref × [1 + α(Tc − Tref)] (31)

Voc = Voc,ref × [1 + β.Gref(Tc − Tref)] ×
[
1 + δ(Tc). ln

(
G

Gref

)]
(32)

where α, β, and δ are the temperature coefficients for the current, the voltage, and the
luminous intensity, respectively. Moreover, G is the light intensity (W/m2) [53, 54].

The index refers to STC, Eq. 32 takes into account the temperature dependence
of the module and solar radiation. The models rely on the empirical coefficients such
as α, β, and δ and, are generally more reliable than models that determine power or
efficiency from solar radiation, environmental temperature, and in some cases, wind
speed. However, the influence of the solar spectrum distribution and thermal effects
depends on the location and might be responsible for a difference of 10% losses.

The thermal losses are determined by an energy balance between the ambient
temperature and the solar cell temperature in the following equation:

U (Tc − Ta) = αG(1 − ηc) (33)

where:α represents the absorption coefficient of the solar radiation of the PVmodule;
this coefficient is usually set at 0.9, andU represents the thermal exchange by natural
convection of the module with its external environment W/(m2·K).

The energy balance per unit area of the PV module, which is cooled by a loss due
to the external environment, can be expressed as follows:

τ · α · GT = ηc · GT +UL · (Tc − Ta) (34)

where: τ represents the transmittance of any cover that may be over the cells, α refers
to the fraction of the incident radiation absorbed on the surface of the cell, and ηc is
the efficiency of the module for converting the incident.

Nominal operating cell temperature (NOCT) is determined as a module temper-
ature under the conditions as listed below [57]: solar radiation of 800 W/m2; wind
speed 1 m/s; ambient temperature of 20 °C; and no-load operation (ηc = 0).

The solar cell is exploited using the linear radiation or a high circular concentrator
to define the loss coefficient. The loss coefficient includes convection and radiation
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from the top and bottom of the module, mounting frame losses at any ambient
temperature, Ta.

To determine the τα
UL

ratio, the PV cell temperature, ambient temperature, and
solar radiation can be used in Eq. 35, which is expressed as follows [54, 57]:

τ · α

UL
=

(
Tc,NOCT − Ta

)
GT,NOCT

(35)

Assuming that the temperature under any other condition is constant, Tc can be
obtained from the following Eq. 36:

Tc = Ta +
(
GT · τ · α

UL

)(
1 − ηc

τ · α

)
(36)

The factor τα in Eq. 36 is generally unknown but is estimated to be 0.9, and there
are no serious errors in using this value because the term τα

UL
is smaller than unity.

3.3 Influence of Extrinsic Cell Resistance on PV
Performance

This section explores the impact of extrinsic cell resistance on PV cell performance.
The internal series resistance of the PV cells is an important parameter influencing
the maximum power and the FF. It is also a parameter demonstrating the quality of
the device.

There are several resistivity losses in a PV cell (Fig. 10). The thick black line
represents the metallic strip, and the slender black stripes represent the grid conduc-
tors. The pink color represents the PV cell emitter, and the ground is a pale blue
colour. The symbols L, H, W, and tE denote the length, the height, the space between
grid conductors, and the emitter width, respectively. Figure 10a presents the view
from the top of the solar cell, while Fig. 10b presents the current flow. The grey lines
and the arrows show the appropriate path and direction of the current flow.

Fig. 10 Resistive losses in solar cells [58]
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There are several ways to evaluate the internal series resistance of a PV cell
from the I–V characteristic curve. As the temperature of the PV cell increases, the
resistance of most materials also increases. Therefore, when optimizing the design
of a PV cell, it is essential to consider the loss due to the resistance at the expected
operating temperature.

The Rsi of a PV cell is composed of a variety of internal resistances such as
contact resistance (Rc), the resistance of the bus bars (Rb), grid resistance (Rg), and
(Re) lateral conduction in the emitter, (Remitter). This includes back conductor loss,
internal and emitter loss, front and back contact loss, front grid conductor, busbar
loss, and bias point loss. The total extrinsic series resistance, Rt of the photovoltaic
cell [58] is as follows:

Rsi = Re + Rb + Rg + Rc + Ra (37)

where: Re represents the sum of the emitter series resistance, including accounts for
the resistive losses inside of the transparent conducting layers (TCL) and emitter
layers; Rb presents the bus bar resistance, including any resistive loss from the
terminal contact pad to the grid electrodes; Rg presents grid electrode resistance,
including the resistive losses caused by the grid electrodes; Rc represents a contact
resistance, including the resistive losses between the grid electrodes and the front
lateral conducting layers (LCL); and Ra is semiconductor resistance, including any
resistive losses between the emitter and the back contact.

4 Simulation Results and Discussion

The simulation will study several parameter models such as the ambient tempera-
ture, solar irradiance, convective heat coefficient, extrinsic cell resistance, and also
to predict the thermal behavior, the power generated, and the efficiency of PV cell
models. The total power dissipated by the PV cell model composed of a diode (repre-
senting the semiconductor material of the PV cell), an internal series resistance
(formed of contact resistance, the busbars resistance, grid resistance, and lateral
conduction in the emitter) as given by Rsi, and an internal series resistance (repre-
senting the emitter at the edge of the cells, cracks, recombination sites at the cell
edge, Schottky-type shunts below grid lines, scratches, and aluminum particles at
the surface), as given by Rpi.

Energy analysis is essential to evaluate the electro-thermal performance of a PV
system and to assess the energies generated. It is viable to determine themagnitude of
thermal losses and the energy principle in terms of the second law of thermodynamics
(Akyuz et al. 2012). The internal heat generated in the photovoltaic cell is ascertained
depending on a mathematical equation, as well as the sum of the I 2 · R losses for
each of the resistance and the losses in each of the diodes.
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Fig. 11 Heat transfer characteristic of the PV system

(A) Simulation setup

It should be noted that during the simulation time, non-cloudy periods occurred,
preventing the PV cell from reaching a high air temperature at the exit of the absorber
duct. For the simulation of a physical phenomenon like the problem of heat transfer
in Simulink/Simscape, there is a need to develop all the equations of the heat transfer
phenomenon in this study. Figure 11 depicts the heat transfer characterization of the
PV system.

The main objective of this section is to assess the distribution of power dissipation
caused by Rse. The study further highlights the thermal behavior of photovoltaic
cells. For this, the electro-thermo-radiative behavior of PV for different values of
Rse has been modeled, keeping the rest of the parameters fixed (for example, solar
radiation at 1000 W/m2, ambient temperature at 20 °C, and convective heat transfer
of 20 W/(m2·K)). Electrical power, heat loss, efficiency, and thermal were measured
for different extrinsic cell resistance values from 0 to 100 �.

In this section, a set of values defining extrinsic cell resistance (Rse) values is
added to the existed internal series resistance of the PV cell, as shown in Fig. 12.
The performance of the PV cell was evaluated through calibration of the Rse value;
this, however, dissipates power that is in the form of heat, thus creating useful heat
energy.

IDIL

VD

Rsi Rse

ISH

RPi RL

Fig. 12 Evaluation of PV performance under extrinsic cell resistance
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Table 1 PV module parameters

Component Parameter Value

PV modules Cell type Mono-crystalline

Packing factor 0.91

Conversion efficiency 16%

Module peak power 3.25 kW

Maximum voltage, Vm 255 V

Maximum current, Im 12.4 A

Open-circuit voltage, Voc 310 V

Short-circuit current, Isc 14.64 A

Internal Series resistance Rsi/cell 0.0042 �

Parallel resistance Rpi/cell 10.1 �

Table 2 Optical parameters of PV cells

Absorbance α Emissivity 1 Thermal
conductivity

Thickness δ Temperature
coefficient

Energy
gap EG

PV
module
type

0.8 0.75 840 0.003 0.000905 1.11

(B) Design parameters of the PV array

The photovoltaic is selected from Simscape, and it offers a solar cell model with a
thermal option, which is made up of thermal mass. This allows for heat flow and
displays the internally generated heat from the PVmodels. A PVmodule is generally
made of solar cells connected in series (for example, 36 or 72 cells connected in
series). The PV modules parameters appear in Tables 1 and 2.

The entire system consists of two PV arrays assumed to perform identically and
in a parallel configuration; the system has a capacity of 3.24 kWp at 1000 W/m2

(Fig. 13).

4.1 PV Cell Power Dissipation as a Function of Rse

The performance evaluation of the PV cell composed of the diode, Rsi, and Rpi based
on the influence of varying Rse was conducted. Figure 14 shows a logarithmic growth
curve of the total power dissipated (Pd) of the PV cell, which increases from 990 to
3490W, asRse increases.Rsi marginally increases,whileRpi remains almost the same.
Much of the total power dissipated is attributed to the diode (due to recombination
current of the semiconductor material property used to produce the PV cell). The
model in the PV cell ranges from 750 to 3480W, Rpi and Rsi resistivity losses reduce
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Fig. 13 PV module voltage-power characteristic curve

as less current flow through them. This power dissipated in the PV cells is due to a
large reverse current across the PV cell, there is low current flow in the cell, the overall
current becomes limited because of the power dissipated in the PV cell in the form of
heat. The power dissipation occurring in a PV cell leads to local overheating, which
in turn results in heat conduction. The thermal resistance of the PV cell depends on
the thickness of the material and its thermal resistivity.

At the point when a photon is absorbed by a PV cell, it produces an electron and a
hole pair, with an energy below the bandgap which hypothetically contributes to the
current. However, the reverse process occurs when the carriers recombine with no
net contribution to cell current and emit the energy as heat or as a photon. Any energy
lost in a PV cell is turned into heat, so any inefficiency in the cell increases the PV
cell temperature when it is placed in solar radiation. Relatively a photon contribution
to several of the mechanisms that contribute to the total heat dissipation in a solar
cell. The rate of recombination loss changes with the variation of Rse.

The following phenomenon can be explained as: an Rse assistant controls the PV
self-generated useful heat by partially converting the output of the PV cell into useful
thermal energy (dissipating power in the form of useful heat), thereby reducing the
output power generated.
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Fig. 14 Dissipated power by PV cell versus Rse

This study concentrates on the internal heat generation and electrical power gener-
ated from the PV cell based on the Rse. The method relies on the linear regression
equation curve to model the behavior of different types of power as a function of
Rse in the PV cell being studied. The subsection below presents the linear regression
equation calculation of figures as a function of extrinsic cell resistance. By means
of the linear regression equation, a graphical model can be derived; including the
goodness of the fit and the confidence interval of the coefficients for the derived
equation.

4.1.1 Estimation of Heat Generated by the PV Cell

Figure 15 presents the heat generated by Qcond within the PV cell. Qcond increases
from 425 to 1715 W (in magnitude) as Rse moves from 0 to 100 �. This heat was
attributed to the electrical power dissipated in the PV cell in Fig. 16, and part of the
power dissipated turns to useful energy within the PV cell. However, the temperature
differential is the main impetus behind the conductive flow of heat in a material with
a given thermal resistance, and the Fourier law governs the transfer. The estimation
graph related to useful heat by conduction is described in the following equation:
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Fig. 15 Conduction heat transfer versus Rse

Qcond(Rse) = p1 · R4
se + p2 · R3

se + p3 · R2
se + p4 · Rse + p5 (38)

where: p1, p2, p3, p4, and p5 are coefficients;Qcond is the thermal transfer coefficient
by conduction (W); Rse is the extrinsic cell resistance (�).

Table 3 introduces a polynomial interpretation of heat generated by conduction
simulation results in Fig. 15; the coefficient of determination (R2) is 0.9996. R2 is
a marker to pass judgment on the nature of linear regression. The sum of squared
errors (SSE) is 2313 and presents the deviations predicted from the actual simulation
data. Root Mean Square Error (RMSE) is a good indicator of how accurately the
model predicts the response, and it is determined to be 6.37.

Figure 16 presents a continuous increase of Qconv from 3100 to 5300 W when
the Rse goes from 0 to 100 �, as the heat is taken away to the environment. The
thermal effect on the photovoltaic cell is due to the high generated electrical power
dissipation of Rse, and by the heat lost by conduction occurring in the PV cell. The

Table 3 Linear model Poly4 of Fig. 15

Description of Eq. 38 Goodness of fit

Qcond(Rse) =p1 · R4
se + p2 · R3

se + p3 · R2
se+

p4 · Rse + p5

Coefficients (with 95% confidence bounds):

p1 = 3.547e-05 (3.232e-05, 3.863e-05)

p2 = −0.009531( − 0.01016, − 0.008902)

p3 = 0.9784(0.9375, 1.019)

p4 = −50.36( − 51.32, − 49.41)

p5 = −461.2( − 467.8, − 454.6)

SSE: 2313

R-square: 0.9996

Adjusted R-square: 0.9996

RMSE: 6.37
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Fig. 16 Convection heat transfer versus Rse

thermal loss byQconv increases faster when Rse varies between 0 and 50 �; however,
it slows down and closes to saturation when Rse was above 50 �.

Figure 17 presents the incremental change of Qrad from 350 to 660 W when Rse

goes from 0 to 100 �. This shows a radiative thermal transfer to the high emissivity
of the PV cell, and the free carriers increase with the Rse. The PV cell emits radiation
based on its temperature. Also, the losses depend on the absorptivity of the covering
glass.

The outline of these results is presented in Figs. 15, 16, and 17, exhibiting that
the development of heat loss byQconv is more noticeable than that inQrad. Both were
measured as a positive value indicating that they are taken away into the surrounding
environment. In contrast, the Qcond is measured negative and transferred to the back

Fig. 17 Radiation heat transfer versus Rse
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of the PV cell. Comparing the heat transfer occurring at the PV cell, Qconv, Qcond,

and Qrad, were 2200 W, 1290 W, and 310 W, respectively, as a function of Rse.

4.1.2 Estimation of Generated Power as a Function of Rse

It can be seen in Fig. 18 that the generated PV power decreases as Rse increases. The
power rapidly falls exponentially from 2800 to 260 W when Rse increases from 0 to
50 �, and beyond 50 �, the power decreases more slowly from 255 to 110 W. The
power degradation of PV cell is due to recombination accordingly to Rse variation,
leading to electrical power dissipation in the form of heat by conduction. Therefore,
the generated electrical power decreases proportionally to the increase in power
dissipated in the PV cell as Rse varies in Fig. 14. The estimation graph is expressed
by Eq. 42.

PPV(Rse) = p21 · R4
se + p22 · R3

se + p23 · R2
se + p24 · Rse + p25 (42)

where: p21, p22, p23, p24, and p25 are coefficients; PPV is the generated PV power;
Rse is the extrinsic cell resistance (�).

Table 4 presents a polynomial interpretation of generated electrical power as
varying Rse in Fig. 18, the computation of the coefficient of determination (R2) is
determined to be 9564; it was a marker to assess the accuracy of the linear regression.
SSE is 7510 and represents the deviations anticipated from the simulation exploratory
data. RMSE is described as 40.96 and is a good measure of how correctly the model
predicts the response.

Fig. 18 PV power versus Rse
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Table 4 Linear model Poly4 of Fig. 18

Description of Eq. 42 Goodness of fit

PPV(Rse) =p21 · R4
se + p22 · R3

se + p23 · R2
se

+p24 · Rse + p25

Coefficients (with 95% confidence bounds):

p21 = 0.0001633(0.000143, 0.0001835)

p22 = −0.04122( − 0.04527, − 0.03718)

p23 = 3.788(3.525, 4.05)

p24 = −155.5( − 161.7, − 149.4)

p25 = 2738(2695, 2780)

SSE: 9.564e+04

R-square: 0.9964

Adjusted R-square: 0.9962

RMSE: 40.96

4.1.3 The PV Cell Temperature as a Function of Rse

Figure 19 shows a logarithmic growth of cell temperature as a function of Rse. An
increase in the Rse from 0 to 50 �, brings about an increase in Tc for temperature
from 45 to 59 °C. While increasing the Rse value from 50 to 100 �, brings about
an increase in Tc for temperature from 59 to 62 °C. The increase in the temperature
is a result of built-up electrical power dissipated in the form of heat in Fig. 14. The
output of the PV cell can be turned partially to a heat source and provide additional
heat to the PV/T system. The PV cell reached up to 62 °C may potentially perform
better than the flat PV/T system, once the solar thermal plant is attached to the rear
of the PV cell.

Fig. 19 PV cell temperature versus Rse
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5 Conclusion

This study developed a model of a hybrid PV/T system that employed innovative
energy balancing to produce thermal and electrical energy to suit end-user require-
ments. This technique employed thePVcell’s self-heating properties using a variation
of the extrinsic cell resistance to obtain the PV/T hybrid model.

Design and modeling of a PV cell system were developed in MATLAB/Simulink
to validate the heat transfer occurring in the PV cell model, which converts the
radiation solar into electricity as well as the heat. This partially converts the output of
the internal heat generation of the PVcell into useful thermal energy (for domestic hot
water, for space heating). A variation of Rse could be an effective way of controlling
the amount of thermal and electrical energy. The method depends on the linear
regression equation curve to model the behavior of different types of power as a
function of Rse, including the goodness of the fit and the confidence interval of the
coefficients for the derived equation.

The results obtained in this study are useful for domestic water heating applica-
tions.Rse can be adjusted to generate auxiliary heat while the working fluid transports
the generated heat to the load. Thework demonstrated in this study that the usefulness
of a PV cell can be extended such that it can be used to generate not only electricity
but can be additionally applied for domestic hot water preheating and space heating.
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A Review on Vehicle-Integrated
Photovoltaic Panels

Marwa Ben Said-Romdhane and Sondes Skander-Mustapha

Abstract Vehicular transport is considered as themost important origin of air pollu-
tion in cities. However, despite the commercial growing achievement of electric
vehicles, there had been no detectable reduction in energy consumption and CO2

emission, at least in a short-term scenario. Solar vehicles can be considered as an
alternative to this problem. Indeed, they are considered as a restricted, but promising
technology and they are slowly gaining the interest of several automotive companies
and researchers. This is due to several factors such as the rapid rise of photovoltaic
technologies due to decreasing cost and improvement of their efficiency in addition
to the increasing development of electric vehicles considering their environmental
friendliness and their reduced dependence on fossil fuels. This manuscript highlights
various aspects, challenges, and problems for solar vehicle development. In fact, this
chapter widely reviews vehicle-integrated photovoltaic panels where different power
train architectures are highlighted. In addition, a review of different power struc-
tures of vehicle-integrated PV is exposed. Also, energy storage system solutions are
detailed with possible recommendations. Furthermore, energy management systems
for vehicle-integrated photovoltaic panels are discussed and evaluated.
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1 Introduction

The automotive sector has been developed and prospered thanks to abundant, cheap,
and energy-efficient oil. For more than a century, its domination was unchallenged.
Likewise, for decades, the rise in the power of vehicles was made without taking into
account the environmental dimension [1, 2].

Then the tide turned. The time of scarcity and the high price of raw materials
has arrived, due to an uninterrupted rise in world demand and the realization that
reserves may be depleted. The time to take environmental protection into account
has also come, putting oil and its discharges on the spot [3, 4, 5].

It was, therefore, necessary to innovate and find solutions. Subject to increasingly
stringent regulations, manufacturers have improved the performance of thermal vehi-
cles, reducing fuel consumption and polluting emissions. At the same time, the auto-
motive industry has invested in developing new engines like hybrid cars and 100%
electric cars [2, 6, 7].

Since the invention of photovoltaic cells, engineers around the world have started
to explore various prototypes of solar cars. These electric cars use batteries that can
be recharged by natural light. When there is insufficient natural light, the car uses the
energy stored in the batteries [8]. They are based on the concept that an integrated PV
system supplies an electric power train. The electrical energy extracted from solar
energy is transformed on motion, so there is no need for the combustion process
[7, 9, 10, 11].

One of the biggest hurdles that need to be addressed is the current power of cars,
which is limited by the efficiency of photovoltaic cells. The ability of batteries to
store a large amount of energy causes also problems. For the vast majority of solar
cars, manufacturers prefer to circumvent these problems by reducing the energy
requirements of the vehicles, using lightweight materials to reduce weight, as well as
an aerodynamic design to achieve less air resistance when in motion [12, 13, 14, 15].

This chapter highlights various aspects, challenges, and problems for solar vehicle
development. It is organized as follows, first, in Sect. 2, the electrical vehicle’s
classification and terminologies are presented. Then, in Sect. 3, the challenges of
solar vehicles including emission reduction, as well as the problems of the elec-
tric vehicle charging station are detailed. Section 4 present the issues that affect
the solar vehicle’s performance. These issues are mainly the fast irradiance vari-
ability and partial shading of the PV cells, the limited surface area for PV panels,
the operating requirements, and the driving constraints in urban traffic. Section 5
describes the vehicle-integrated PV powertrain architecture which is mainly divided
into two groups: all-electric architecture and hybrid electric architecture. The most
used hybrid electric vehicles are parallel hybrid, series hybrid, series-parallel hybrid,
and complex hybrid. Section 6 presents the global power structure of the vehicle’s
integrated photovoltaic panels. It includes the electric vehicle drives, the power
converters in addition to the energy storage system. Finally, Sect. 7 reviews the control
strategies and the energy management systems for electric vehicle applications.
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2 Electrical Vehicles Classification and Terminologies

The vehicle-integrated PV (VIPV) are vehicles that incorporate PV cells on the roof
and body of the vehicle with additional power converters to charge batteries. The
PV system is considered as the main source and batteries as an auxiliary source.
Based on the classification of electric vehicles (EV) presented in [7], a classification
of Vehicle-integrated PV is presented in Fig. 1. Indeed, VIPV can be classified into
two groups: hybrid electric vehicles (HEV) and all-electric vehicles (AEV).

• The group of HEV incorporates several propulsion motors (internal combustion
and electrical motors [16]) and includes plug-in hybrid electric vehicles (PHEV)
which incorporate batteries and plugs for external charging and Hydrogen fuel
cell plug-in hybrid vehicles.

• The group of AEV comprises fuel cell electric vehicles (FCEV) and battery
electric vehicles (BEV).

PV integrated with EV can be used in varying degrees depending on installation
characteristics; it can be just useful for supplying vehicle auxiliary devices such as
fan, audio players, etc., or feeding air conditioning systems. But the final object is to
charge batteries, this can be done while parking or driving as exposed in Fig. 2 [7,
12, 16]. There are several challenges of VIPV, such as CO2 emission reduction, no
longer need batteries charging stations, etc. But VIPV also faces several problems
such as the fast irradiance variability and partial shading of the PV cells, the limited
surface area for PV panels, as will be detailed in the next section.

Vehicle-integrated PV 
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Car Train

Lorry

Bus

Motorcycle
Scooter

Battery electric 
vehicles (BEV) 

Hybrid electric vehicle 
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Plug-in hybrid electric 
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……….

Fuel Cell electric 
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Hydrogen fuel cell 
plug-in

 hybrid vehicles

All  electric vehicle 
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Fig. 1 Classification of vehicle-integrated PV
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Fig. 2 Use of PV energy in VIPV

3 Challenges of Solar Vehicles

3.1 Emissions Reduction

This challenge concerns environmental pollution taking into account the vehicle’s
CO2 emission. In 2015, the transport sector has delivered about 22.9% of total world
CO2 emission [17], in 2018, about 24% [18], and with current circumstances, it is
expected to increase to 60% by 2050 [18]. EVs are developed to take the place of the
conventional ones gradually, due to their energy-savings and emissions reduction
[3]. However, despite their growing commercial achievement, there had been no
detectable reduction in CO2 emission, at least in a short-term scenario [19]. The
VIPV presents a long term solution for this issue [20]. The results presented in [21]
confirm that the combination generator battery diminishes the environmental effect
of the medium-sized ship, and in [4] the authors confirm the necessity to introduce
renewable energy to achieve the actual reduction of CO2.

3.2 Bypassing the Problems of the EV Charging Station

EV charging stations present several problems. Indeed, they amplify the electric
load. Consequently, potentially intensify the peak load or produce other peaks.More-
over, EV charging stations can boost load side uncertainties, overload distribution
grid devices which reduce their lifetime, augment power loss, and induce important
voltage deviations compared to their nominal value [5, 22, 23, 24]. Integrating PV
panels in the vehicle will allow the charging battery autonomously. This means no
longer needing charging stations or at least reducing their use as much as possible.
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4 Issues Affecting Solar Vehicles Performance

4.1 The Fast Irradiance Variability and Partial Shading
of the PV Cells

The fact that vehicles are in continuous motion generates variable irradiance, mainly
caused by the partial shading of the photovoltaic panels [6] due to the structures
close to the road such as poles, chimneys, raised buildings, etc. Consequently, a
large changeability in the DC voltage of the solar panel is recorded and PV array
efficiency is decreased [8, 16].

4.2 Limited Surface Area for PV Panels

The variable solar irradiance added to the vehicle’s curved shape has a big influence
on the resulting energy. To overcome this problem, it is imperative to measure and
model solar irradiance for the vehicle. Some studies suggest applying the correction
of the curved surface of the PV modules in order to take into account the random
distribution of shading things and vehicle direction. In [13], the authors propose
to install five pyranometers in different axes during one year to deduce the solar
irradiance model.

4.3 Operating Requirements

The weight, cooling process, and power conversion are fundamental points to be
considered when integrating PV structure in vehicles. Alternative carbon-fiber-
reinforced plastic structures were investigated in [25] by finite elements using static
and modal analyses, to evaluate numerous proposed approaches considering these
criteria: natural frequencies, deformations, flexural stiffness, torsional stiffness, and
heat exchange plane. A roof section was tested to verify the theoretical model. An
important enhancement compared to the pre-existing solar roof was noticed. Light
composites are a good option for solar cars, because the lighter the vehicle, the
less energy is used to overcome inertia [26]. In [27, 28, 29], authors investigate a
composite monocoque chassis in order to ensure lightweight solar car, for example,
in [27] the authors propose an iterative finite element analysis process.
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4.4 Driving Constraints in Urban Traffic

Urban driving is characterized by transient traffic situations. Which induces frequent
starts and stops [30, 31]. Consequently, the electric vehicle presents a significantly
random and fluctuant current. The element most concerned with this problem is the
storage item. Indeed, it must be able to follow these fluctuations and adapt to this
behavior [32, 33]. This problem is, therefore, not specific to VIPV but it concerns
EV in general. But it must be taken into account for VIPV especially if the battery
charge source is limited to PV modules.

5 Vehicle-Integrated PV Powertrain Architectures

5.1 All-Electric Vehicle

The all-electric VIPV powertrain architecture is presented in Fig. 3. As it is shown
in this figure, this kind of vehicle employs electric power as the only source to move
the vehicle.

5.2 Hybrid Electric Vehicle

Nowadays, the most common hybrid VIPV architecture includes the electric motor
and the internal combustion engines (ICE). The combination of these energy
converters allows to have several possible configurations of the powertrain. The
most used ones are parallel hybrid, series hybrid, series-parallel hybrid, and complex
hybrid as shown in Fig. 4 [34–37].
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Fig. 3 All-electric vehicle powertrain architecture
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Fig. 4 Hybrid VIPV powertrain architecture classification

5.2.1 Series Hybrid VIPV

The series hybrid VIPV (SHVIPV) powertrain configuration (Fig. 5) is composed of
an ICE, a generator, and an electric motor [38]. In this configuration, the SHVIPV is
powered solely by the electric motor which can be supplied either from the battery
or from the ICE generator unit, or even both. In this case, the ICE can’t directly
power the vehicle since it has no mechanical link with the traction load. The electric
current produced by the ICE can be either provided to the electric motor or stored in
the batteries. In case more power is needed, the electric motor acquires energy from
both the ICE and the batteries. The advantages of the series configuration are: (i)
Increased flexibility due to no common interaction between ICE and electrical motor
[16]; (ii) efficiency in driving cycles that require frequent stops and start [39]. The
shortcomings of the SHVIPV powertrain configurations are: (i) high losses [16]; (ii)
expensive configuration due to the need for a generator [39, 40].
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5.2.2 Parallel Hybrid VIPV

The parallel hybrid powertrain configuration (Fig. 6) is composed of an ICE and
an electric motor [7, 40]. The electric motor and the ICE are coupled together by
a mechanical device. Consequently, during low traction power demand, they can
individually propel the vehicle and during high power demand, they jointly propel it.
Moreover, this configuration has an electric traction motor that rolls the wheels and
can recover part of the braking energy, in order to recharge the batteries (regenerative
braking) or to help the ICE in the conditions of acceleration. This configurationmakes
it possible to reduce the size of the ICE and the electric motor. This helps reduce
consumption while maintaining good performance [36].

5.2.3 Series-Parallel Hybrid VIPV

The series-parallel hybrid powertrain architecture (Fig. 7) joins the advantages of
both series and parallel architectures. In fact, the ICE can supply the electrical motor
and thanks to a generator it can also charge the battery. Although this configuration
combines the advantages of series and parallel configurations, it is relatively expen-
sive and more complicated and requires a very complex control system [7, 39, 41].
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5.2.4 Complex Hybrid VIPV

The complex hybrid powertrain configuration (Fig. 8) is similar to a series-parallel
powertrain configuration. The difference is that it uses more complicated architec-
tures ofmanymotors and generators. Thismakes this configurationmore controllable
and reliable than the other configurations [7, 39].

6 Global Power Structure

6.1 Electric Vehicle Drives

The most essential component in the Electric vehicle is, of course, the motor. Its
fundamental characteristics are as follows [42]:

• High torque and power density to pull the load;
• Large speed range;
• High efficiency for a wide variation of torque and speed;
• Extensive ability to work in constant-power;
• Wide ability of the torque for electric startup and raised area climbing;
• Elevated alternating overload ability for overtaking;
• Small acoustic noise

Many classifications of EV drives are given in literature [2, 37, 42, 43]. The
main two groups are AC and DC motors including a large variety as Brushless DC
Motor (BLDCM) [6, 20, 44, 45], regenerative brushless DC motor [9], permanent
magnet brushless DC motor drives (PMBDCM) [20, 44], Induction motor (IM) [2],
switched reluctance motors (SRM) [45], permanent magnet synchronous motors
(PMSM) [45], and permanent magnet hybrid motor drives [2]. Among these, PMSM
is appropriate in terms of power density, reliability, and efficiency [20]. BLDCM
is frequently included in EV due to their elevated efficiency and power density in
addition to their great starting torque, and their better performance regarding noise
[45]. As to SRM, they are considered as an attractive option due to their reduced
material costs, high efficiency, and simple control algorithm [46]. The structures
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integrating two types of motors are also present on the market, such as HEV driven
by an Internal Combustion Engine and a PMSM for this structure PV system and
energy storage devices supply the PMSM [47]. Furthermore, research regarding EV
drives is very diverse. In [48], the authors focus on the EV driving range parameters.
In [49], the authors investigate the use of just one electric machine which switches
between the two modes: motor and generator. In [50], the issue is to resolve the
straight-line driving stability question.

6.2 Power Converter Structures

Highly developed technology of power converters has an important impact on VIPV
advancement in terms of energy-saving and control efficiency. The general configu-
ration of VIPV incorporates twomajor power converters units which are DC-DC and
DC-AC converters. In fact, AC motors used in VIPV are fed by DC-AC converters
which are fed by DC-DC converters. Figure 9 presents a classification of the DC-AC
and DC-DC power converters integrated with the VIPV.

6.2.1 DC-AC Converter Topologies

The bidirectional DC-AC converter is an essential element for VIPV. It is used to
convert the DC power from the supercapacitors, the fuel cell, the battery, or their
combination into AC power that will be provided to the electric motor. The most
used DC-AC converters topologies in VIPV are impedance source converter (ZSI),
current source inverter (CSI), andvoltage source inverter (VSI). TheZSI is considered

Power converters 
for VIPV

Impedance source converter (ZSI)

DC-AC
converters

DC-DC
converters

Current source inverter (CSI)

Buck-Boost converter

Full bridge converter

Interleaved DC-DC converter

Isolated DC-DC converter

Voltage source inverter (VSI)

Fig. 9 Vehicle-integrated PV power converters classification
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to be one of the most promising power electronics converter topologies suitable for
motor drive applications. For VIPV, the CSI is employed for the speed control of
AC motors, and the VSI is characterized by its multiple motor controls, as well as
its good speed range [2, 10].

6.2.2 DC-DC Converter Topologies

The different VIPV powertrain architectures include at least one DC-DC converter.
This converter is employed in order to interface between the supercapacitors, the fuel
cell, the battery, or their combination to the DC-link. This converter is an electric
circuit used to convert a source of direct current (DC) from one voltage level to
another. It can be unidirectional or bidirectional. The bidirectional DC-DC converter
is very useful for vehicles mainly in regenerative braking since it can move power in
either direction. For VIPV, several types of DC-DC converters have been proposed in
the literature. Among which, we can cite: boost, buck, full-bridge, isolated DC-DC
converter, interleaved DC-DC converter, etc. [10, 51].

Buck-Boost Converter

A buck-Boost converter (Fig. 10) is a power converter which produces a DC voltage
that can be either higher or lower than the input voltage [52, 53].

Full Bridge Converter

The full-bridge converter (Fig. 11) is composed of three stages: a DC-AC converter,
a high-frequency transformer, and an AC-DC converter [52, 54]. This converter is
employed to overcome the drawbacks of the boost converter which are mainly the
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high voltage and current ripples, no electrical isolation, as well as the great weight
and volume [55–57].

Isolated DC-DC Converter

In this converter, a high-frequency transformer is employed in order to ensure that
the output is completely isolated from the input [52, 58, 59]. Many studies propose
this converter for electrical vehicle applications. In [60], a high-frequency isolated
bidirectional DC-DC converter is suggested. The proposed converter is based on
the grouping of an H-bridge, a three-level half-bridge, and a three-phase full-bridge
topology, the voltage rise from 24 V DC to 144 V DC. In [61], the authors suggest
using GaN in an isolated step-down DC-DC converter, and the voltage rises from
13.6 to 200 V.

Interleaved DC-DC Converter

The interleaved DC-DC converter (Fig. 12) is a good option to interface the low
voltage of the ESS with the DC high voltage of the VIPV. It allows reducing
voltage stress, as well as the size of the input filter. However, its elevated number of
magnetic cores presents an obstacle for VIPV application given the size constraints.
Some researchers suggest a modified configuration of this converter to overcome
this problem, for example, in [62], an integrated interleaved ultra-high step-up DC-
DC converter incorporating dual coupled-inductors is proposed. In literature, many
configurations of the interleaved DC-DC converter are proposed. In [63], the authors
propose a system based on three-phase interleaved topology, and in [64], a two legs
topology is proposed.
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6.3 Energy Storage System Solution

The energy storage system (ESS) presents a key component for VIPV. To select an
adequate solution, many items should be checked, such as the safety, the size, the
cost, as well as the management system, etc. Nowadays EVs are mostly supplied by
lithium-ion batteries which have the greatest grouping of best properties concerning
energy density and cycle life [65–67]. Nevertheless, the solution to mixing several
storage devices like batteries, supercapacitors, and fuel cells presents a promising
solution for VIPV. Figure 13 exposes the most used ESS for EV, indeed batteries,
supercapacitors, and fuel cells, as well as hybrid solutions are frequently adopted for
EV [68].

Based on the spider diagram of different ESS characteristics given by [69] a
comparative graphic is exposed in Fig. 14. Such a plot will permit the identification
of the strengths and weaknesses of some ESS.

6.3.1 Batteries

The use of batteries for EVs has evolved from lead-acid to nickel and presently
to lithium, seeking in all this to reach high specific energy, less chemical leakage,
and better temperature performance [68, 70–72]. The preference of lithium batteries
for EV is due to their elevated energy efficiency and power density, in addition to
their fast charging ability and small self-discharge rate [20]. On the other hand, they
have a wide range of working temperatures, as well as a compact and lighter weight
[65–67]. It is to note that, lithium battery encompasses an extensive variety of chem-
ical substances (LiFePO, Li–titanate, Li–S…) [68, 70, 71]. Safety worry is a major
difficulty that encounters manufacturers and users. In fact, the largest detriment of
lithium-ion batteries is thermal runaway [66]. The Li-Ion are also characterized by
major battery aging factors [69, 73]. Authors in [74] propose some recommendations
to reach the maturity of lithium batteries. They suggest optimizing the lithium elec-
trode material to enhance the management expertise while taking into account the
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cost, the maintenance in addition to the life cycle. It should also reduce the memory
effect and promote second-hand battery employment.

6.3.2 Hybrid Energy Storage System

For VIPV, to get the best from each storage device, hybrid ESS can be considered
as an excellent alternative. This solution requires among others an adequate energy
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management system (EMS) to maximize PV power and simultaneously respect the
dynamic of each storage element. Frequency separation technique is themost popular
method to ensure this purpose [46, 75, 76].

Hybrid ESS Based on Batteries and Supercapacitors

Concerning the load mission, the vehicle presents a specific profile. Indeed the peak
current can reach 6 to 10 times the nominal current during each startup [77]. Super-
capacitors (SC) are specified by their higher power density and lower energy density.
These characteristics are complementary to those of batteries. Which supports the
solution of the energy storage system based on the association of batteries and SCs
[44, 71, 78]. For hybrid ESS, the function of the SC is to smooth out the energy
supplied by batteries. The battery supplies steady-state energy and SC supplies the
peak power [77, 78] which boost the efficiency of regeneration and support the
EV acceleration [71, 78]. Consequently, it reduces battery current fluctuation and
increases its lifetime, and leads to meet the limit space and weight restrictions, in
addition to better vehicle dynamic [69]. Figure 15 presents an example of the integra-
tion of hybrid ESS for VIPV [44, 71]. As demonstrated in [44], the hybrid ESS based
on batteries and supercapacitors monitored by an appropriate energy management
algorithm is able to reduce the losses of the EV DC motor starter, further, a total
disconnection of the batteries is possible for the duration of the regenerative braking.

Hybrid ESS Based on Batteries and FC and Eventually SCs

FCs present several variants, such as proton exchange membrane FC (PEMFC),
alkaline FC, and solid oxide FC. Themore suitable variety for automotive propulsion
applications is the PEMFC [2]. This does not alter the fact that the PEMFC presents
a major disadvantage, indeed they have slow responses to ensure the power demand
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of vehicles [46, 79, 80] To overcome this, in general, FC is associated with other
types of storage devices. The use of hybrid ESS based on batteries, FC, and SCs
has been investigated with accomplishment in several areas of automobile sector
research and it is expected to be valuable as an onboard power generation for EV
in the near prospect [69, 81–83]. For VIPV, PV system and FC are considered as
primary power sources, and batteries with SCs are considered as secondary sources.
Figure 16 presents an example of hybrid ESS that power VIPV, all storage devices
are connected to the DC bus in parallel via their DC-DC converter, The motor is
connected to the same bus via a DC-AC converter, This design presents additional
flexibility in the control of the DC bus voltage that must be preserved stable during
function [47, 69]. According to [84], the general objective for vehicles including
PEMFC is to reach the cost, the durability, and the performance of conventional
automobiles. Authors confirm that both performance and durability of the main FC
stack components are considerably enhanced in the previous decade and it is currently
possible that the cost and the sustainability purposes will be achieved during the
upcoming decade.

7 VIPV Control and Energy Management System

For the VIPV application, the energy management system (EMS) is introduced to
meet all power requirements while making themost of the PV panels. The EMS takes
into account many other constraints such as reducing the overall weight of the vehicle
and extending the life of energy storage devices. Fixed targets and constraints depend
mainly on the adopted storage technologies. The EMS is based on several control
levels with a wide variety of algorithms [85]. In literature, diverse control strategies
are exposed, but in general nonlinear controllers have better performances, because
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these controllers take into account the model parameters variation which enlarges
the operation range and guarantees the system overall stability [86]. For example,
fuzzy techniques added to artificial intelligence are commonly proposed for EV [87].
Results presented in [88] demonstrate a reduction of fuel consumption from 0.46%
to 3.39% when applying EMS based on the fuzzy technique. Lyapunov and sliding
mode controllers are also proposed in the literature [86]. Moreover, many studies
propose predictive algorithms for VIPV. In [89], deadbeat predictive controllers are
investigated to control a bidirectional three-level cascaded converter connected to
the used hybrid energy storage system. The control ensures the power management
between PV and energy storage devices in addition to control the DC bus voltage. In
[90], the MPC predictive controllers are used, authors propose a hierarchical control
process through the virtual droop control.On another side, theMaximumPower Point
Tracking (MPPT) algorithm including its different varieties is typically used for this
application [91]. Indeed, the VIPV presents a continuous moving partial shading
situation which includes a rapid variation of the irradiation applied to the vehicle
solar panels. In [11], the authors investigate a modified incremental conductance
MPPT process in order to better follow quick-shifting irradiation parameters. In [14],
a fast MPPT algorithm is proposed and then compared to conventional P&O MPPT
one [75]. In [15], a fuzzy logic based MPPT approach is considered. In [92], the
authors propose the MPPT technique to control the proton exchange membrane fuel
cell integrated into the EV. The proposed control is based on a radial basis function
network algorithm. Furthermore, the Bandwidth allocation technique (Fig. 17) is
commonly used to synchronize the hybrid power supply of the electrical vehicle [47,
93, 79]. This technique is based on the principle of respecting the specific dynamics of
each component. In general, supercapacitors are dedicated to supply pulse demand,
fuel cell and batteries provide the rest according to the adopted strategy.
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Fig. 17 Example of Frequency separation technique applied to VIPV
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8 Conclusion

With the rapid expansion of theworld’s population, production, and consumption, the
demand for transport has registered significant growth. Then, driving in city traffic
induces repeated starts and stops which causes additional consumption of fuel and
consequently less efficiency. In addition to gas emission, theVIPVpresents a solution
to all these problems. Actually, the attention of car manufacturers for vehicles incor-
porating photovoltaic panels remains ambiguous and still does not respond to large
production. They are facing several obstacles as global size reduction, batteries loca-
tion, luggage compartment, the variability of PV power, etc. But with the scientific
and industrial developments in PV panels, control algorithms, and storage system
devices, the VIPVs are expected to grow rapidly in the coming years.
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Improvement of the Power Quality
in Single Phase Grid Connected
Photovoltaic System Supplying Nonlinear
Load

Chiraz Khomsi, Monia Bouzid, Gérard Champenois, and Khaled Jelassi

Abstract This chapter is focused on the improvement of the grid current quality
at the Point of Common Coupling (PCC) of a Single-Phase Grid-Connected Photo-
voltaic System (GCPVS) supplying the nonlinear load. Thus, with the implemen-
tation of a specific control strategy applied to the PV inverter which is used essen-
tially to inject the solar power into the grid, the compensation of the disturbing
current introduced by the nonlinear load can be performed. Furthermore, the effi-
ciency of this control strategy is related to an algorithm aimed to extract the correct
disturbing currents and to the performance of the used current controllers. Conse-
quently, two methods of control strategy of the PV inverter are investigated and
compared in this chapter. The first method comes from those found in the bibliog-
raphy and the second is original due to use simple PI controllers. The effectiveness of
each control strategy is verified by simulation using Matlab/Simulink and validated
experimentally through an experimental platform. Therefore, basing on simulation
and experimental results, the comparative study shows better performances of the
second proposed methods.
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1 Introduction

Continuously rising demand for electric power in the world and environmental pollu-
tion problems of fossil energy has been conducted to increasing the penetration of
renewable energy sources (RES) into power distribution systems [1]. The Photo-
voltaic (PV) source is one of the RES that provides a reliable, sustainable, and clean
energy supply [2]. Nowadays, due to their cost-effective application, the PV systems
are largely operated as connected to the grid. Single-phase Grid-Connected Photo-
voltaic systems (GCPVS) are widely used since they can be installed on the building
roofs to supply residential loads and inject the surplus of the PV generated power to
the grid. However, with the intensive use of nonlinear loads, different disturbances
caused by the injection of harmonic and reactive current affect the grid current quality
at the Point of Common Coupling (PCC). This introduces negative effects on the effi-
ciency of the power distribution system. Therefore, Power Quality (PQ) problems
caused by these disturbing currents appear as important as environmental problems
of fossil sources. Consequently, it ismandatory to limit the injection of this disturbing
current as well as their negative effects.

Therefore, to cancel the disturbing grid current in the PCC, and in the aim to
ensure a better optimization, several proposed works are focused on the use of the
PV inverter as a shunt active filter in addition to its main role of power injection.
This is can be achieved due to a specific control strategy applied to the PV inverter
[3, 4].

The efficiencyof this control strategy tomitigate disturbinggrid current introduced
by a nonlinear load is related to the algorithm used to extract this correct disturbing
current. Several algorithms are proposed in the literature. Due to their efficiency and
simplicity, Instantaneous Reactive Power (IRP) theory [5, 6] and the Synchronous
ReferenceFrame (SRF) theory [7, 8] are themostwidely used since theywere adapted
to be applied in single-phase systems by including some proposed techniques able to
produce an imaginary axis in order to obtain a virtual orthogonal frame. This solution
has a problem with a significant delay time which can affect the dynamic response
of the system.

Many adaptive techniques are also proposed for disturbing current compensation
such as the LMS (Least Mean Square) method [9], the LMMN (Least Mean Mixed-
Norm) method [10], the DNLMS method (Decorrelation Normalized Least Mean
Square) [11]. Although these techniques are efficient for estimating the grid current
harmonics, their concepts remain complicated and require significant computing
time. In [12], an improved method for harmonic identification based on the adaptive
noise cancellation principle is proposed. This technique using a variable step is able
to overcome the problem of traditional adaptive techniques which is the conflict
between the steady-state accuracy and the convergence speed.

Some of Phase-Locked Loop (PLL) techniques are also extended to detect
harmonic current components. Authors of [13] are used a cascaded association of a
Second Order Generalized Integrators (SOGI) and a Synchronous Reference Frame
PLL (SRF-PLL) structure to identify current harmonics to subtract them from the
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total grid current. This detection technique can be used for both single and three-phase
systems to compensate selected highest harmonic current components.

Consequently, in this chapter, two new algorithms aimed to extract the correct
disturbing currents are exposed and their performances are compared. Therefore, the
first algorithm is based on the use of the FFT technique to detect the fundamental grid
current component which is subtracted subsequently from the total grid current [12].
The Proportional-Resonant (PR) controller is used to control the detected current
[4, 10, 13]. On the other hand, the principle of the mitigation of the disturbing
current in the second algorithm is based on the extraction of the most predominant
disturbing grid current by identifying, each active and reactive grid current amplitude
to be regulated then to a null signal using a PI controller. In this case, the use of
simple PI controllers is sufficient since reference signals are dc components. The
effectiveness of these two control strategies is verified through the good simulation
results obtained using Matlab/Simulink and validated experimentally through an
experimental platform. Then, a comparative study between these two methods will
be presented in this chapter to highlight the originality of the algorithm of the second
method comparing to the first method which is based on the use of multiple PR
controllers. This control method is frequently used in recent various algorithms and
techniques of literature such as in [12, 13], which employs multiple PR controllers
to control the extracted harmonic current components [4, 10, 13].

2 Description of the Grid Connected Photovoltaic System
(GCPVS)

The global structure of the GCPVS considered in this work is illustrated in Fig. 1. It
consists of a PV generator connected to a single-phase grid-tied inverter via a dc-dc
boost converter. The connection of the PV inverter to the grid is performed by the
intermediate of an inductive filter LF to eliminate the high-frequency grid current
components.

To guarantee the operation of the PV generator at its maximum power point, the
dc-dc boost inverter is controlled by the Maximum Power Point Tracking (MPPT)
algorithm based on the Perturb and Observe (P&O) method due to its simplicity and
its ability to reach the exact point of maximum power in a short time [14–16].

The dc-link between the boost converter and the PV inverter is performed through
the capacitorCdcwhich is used to create a constant voltage source useful for supplying
the photovoltaic inverter and controlling the power flow between the grid and the
photovoltaic system.

The considered GCPVS is simulated according to the parameters showed in
Table 1.

As it is presented in Fig. 1, the nonlinear load LNL is modeled as a single-phase
full wave rectifier L1 connected in parallel to an inductive load L2 to conceive a load
with spectral content rich in harmonics. The GCPVS is simulated with two cases of
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Fig. 1 General structure of the considered Grid Connected PV System (GCPVS)

Table 1 Parameters of the
simulated grid-connected
photovoltaic system
(GCPVS)

Parameters Values

Grid phase voltage (rms) Ug = 180 V

Grid frequency f = 50 Hz

Boost input capacitor Cb = 4700 µF

Boost inductance Lb = 0.625 mH

dc-bus capacitor Cdc = 4450 µF

dc-bus voltage (average) Vdc = 350 V

Switching frequency of the PV inverter f sw = 10 kHz

Inductive filter LF = 20 mH

Inductive load (L2) L = 0.5 H, R = 2�

load (LNL1 and LNL2) composed by (L11, L2) and (L12, L2) respectively, to investigate
the impact of the load variation. Each rectifier (L11 and L12) supplies an inductive
load (LR1, RR1) and (LR2, RR2) respectively. The active and reactive powers of the
simulated loads (LNL1 and LNL2) are presented in Table 2.

The frequency spectra of the conceived nonlinear loads are also observed in order
to investigate their effect on the spectral content of the grid current. As it is depicted in

Table 2 Active and reactive
powers of the simulated
nonlinear loads

Loads LNL1 LNL2

Active power (W) 650 480

Reactive power (VAR) 360 310
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Fig. 2, for the two cases of the nonlinear loads, the absorbed currents are significantly
distorted. They present an important level of THD equal to 32.33% with the load
LNL1 and 29.05% with the load LNL2. In addition, the frequency representations of
these two load currents are composed of odd harmonic components of which the
most dominant components are limited to the 13th order as it is shown in Fig. 2.

The study of the simulated system consists to evaluate the quality of the grid
current under load condition variation (two considered nonlinear loads) and under
different cases of the generated PV power which depends on the climatic conditions.
Therefore, three levels of the PV inverter power (Pinv) have been fixed according
to a chosen solar irradiance (G) profile presented in Fig. 3. Thus three modes are
considered. Mode 1 corresponds to solar irradiance (G) equal to 100 W/m2 for a
period of time “t” between 0 s and 2 s. In mode 2, G increases to 230 W/m2 for “t”
between 2 s and 4 s and in mode 3, G decreases to 170 W/m2 when “t” is between
4 s and 6 s.

In this chapter, a detailed comparative study of the grid current quality without
andwith the implementation of the two proposed harmonic compensating algorithms
is performed. This comparative study is aimed to evaluate the effectiveness of the

(a)

(b)

Fig. 2 Spectrum of the load current iL (a) in the case of LNL1
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Fig. 3 Simulated profile of the solar irradiance (G)

two proposed algorithms to improve the grid current quality which is affected by
nonlinear load. Thereafter, the following part of this paragraph will be focused on
the investigation of the quality of the grid current simulated without the proposed
algorithms. Consequently, the time and the frequency representations as well as the
THD index of the grid current simulated without the two proposed algorithms for the
two loads under the three levels of thefixed solar irradiance (G) are presented inFig. 4.
It is worth noting that without a harmonic compensating algorithm, the grid current
simulated with each considered nonlinear load is highly distorted for the three levels
of the solar irradiance (G). This explains the significant THD obtained in any case of
operatingmode (mode 1, 2, or 3) of the photovoltaic system. Comparing Fig. 2, 3 and
4, for a specific nonlinear load, the obtained spectra of the grid current under the three

(a)

(e)(d)

(c)(b)

(f)

Fig. 4 Time and frequency representations of the simulated grid current (ig) without the proposed
algorithm (a) in mode 1 with the load LNL1, (b) in mode 2 with the load LNL1 (c) in mode 3 with
the load LNL1, (d) in mode 1 with the load LNL2, (e) in mode 2 with the load LNL2, (f) in mode 3
with the load LNL2
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chosen solar irradiance (G) are constituted of the same harmonic content. They have
the same orders of harmonic. The most dominants of these harmonic components are
limited to the 13th order. Thus, it can be concluded that the harmonic components
of the grid current are provided from the used load current.

Furthermore, it can be noted from Fig. 4a–f that for each case of the simulated
load, the magnitudes of the harmonic components remain unchanged under the three
chosen levels of the solar irradiance (G), but it is only the fundamental components
which are affected by the variation of G. Consequently, for a specific nonlinear load,
the variation of the THD of the grid current is basically due to the variation of the
fundamental component magnitude. If the magnitude of the fundamental component
decreases, the THD value will increases, and vice versa.

Thereafter, a detailed theoretical study on the principle of the PV inverter control
strategy based on disturbing grid current extraction methods will be presented.

3 Proposed Methods Used for the Improvement
of the Power Quality at the PCC of the GCPVS

The grid-tied inverter which is a single-phase voltage source inverter is used in the
PV system mainly to control the power flow between the PV system, the utility grid,
and the nonlinear load connected to the PCC. In addition to this main function, the
PV inverter is used as a shunt active filter in order to attenuate disturbing grid currents
introduced by nonlinear loads and then guarantee a grid current with a sinusoidal
form and low THD value.

To perform these two functions, the PV inverter is properly controlled. The prin-
ciple of the control scheme of the PV inverter is shown in Fig. 5. It is based on two
parallel control loops aimed to generate two signals c1 and c2. The sum of these
signals represents the reference signal useful to generate the PWM signal to control
the switched devices of the PV inverter. The first loop is aimed to create the first
signal c1 representing the dc voltage loop. This loop has the task to maintain the dc
voltage to the desired value equal to 350 V in this work. To do that, a PI regulator is
used since the input signal is a continuous one. Furthermore, the output signal of the
PI regulator will be multiplied by a unitary sinusoidal signal which is synchronized
with the frequency of the grid voltage. To obtain this frequency, the PLL technique
was then applied.

On the other hand, as it is showed in Fig. 5, the second loop aims to control the
disturbing grid currentwhich is obtained from the disturbing current extraction block.
This is performed by comparing the extracted disturbing grid currents introduced by
the nonlinear load to a zero signal to cancel them from the total grid current to
obtain a sinusoidal form with good quality. According to Fig. 5, the current control
loop is composed of two main blocks. The first one is the disturbing grid current
extracting blockwhich consists of the proposed algorithm useful to extract accurately



378 C. Khomsi et al.

Fig. 5 The considered control scheme of the PV inverter

the disturbing current and the second block represents the disturbing grid current
controller.

In this chapter, we propose twomethods for controlling the disturbing grid current.
Each method is specified by its own disturbing-current extraction algorithm and
disturbing-current controller.

3.1 Investigation of the First Proposed Method of the PV
Inverter Control

This paragraph is focused on the investigation of the first algorithm proposed to
improve the grid current quality affected by the nonlinear load. The PV inverter
control scheme based on the first method is presented in Fig. 6. The principle of each
block of the current controller will be explained in the following subsections.
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Fig. 6 The first proposed control strategy of the PV inverter

3.1.1 The Proposed Algorithm for the Extraction of the Disturbing
Grid Current with the First Method

With the first method, the principle of the proposed algorithm is demonstrated as
follows.

The distorted grid current expressed by (1) is composed of the sum of the
fundamental component ig1 and harmonic components igh according to (2) and (3).

ig(t) =
∞∑

h=1

Igh sin(hωt + θh) (1)

ig(t) = Ig1 sin(ωt + θ1) +
∞∑

h=2

Igh sin(hωt + θh) (2)

ig(t) = i g1(t) + igh(t) (3)

On the other hand, according to (4), the fundamental component of the grid current
can be expressed as the sum of the active and reactive components.
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Fig. 7 Principe of harmonic grid current (igd ) extraction block

ig1(t) = i g1a(t) + ig1r (t) (4)

Therefore, (3) can be expressed as follows.

ig(t) = i g1a(t) + i gd(t) (5)

where i gd(t) is the disturbing grid current which represents the sum of the reactive
fundamental component and harmonic components of the grid current as indicated
by (6).

igd(t) = i g1r (t) + igh(t) (6)

Consequently, referring to (5), the disturbing grid current i gd(t) can be obtained by
subtracting the total grid current i g(t) from the active grid current i1ga(t). Based on
this principle, the algorithm for the extraction of the disturbing grid current illustrated
in Fig. 7 was implemented. This algorithm is then based on the calculation of the
active grid current to subtract it thereafter from the total grid current.

From Eq. (7) which illustrates the expression of the fundamental grid current
i g1(t), the active grid current i g1a(t) and reactive grid current i g1r (t) can be identified
according to (8) and (9).

ig1(t) = Ig1 sin(ωt + θ1)

= Ig1 cos(θ1) sin(ωt) + Ig1 sin(θ1) cos(ωt) (7)

ig1a(t) = Ig1 cos(θ1) sin(ωt) (8)

ig1r (t) = Ig1 sin(θ1) cos(ωt) (9)
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Basing on (8), the active grid current i g1a(t) is then calculated. It requires the
amplitude I g1 and the phase angle θ1 of the fundamental grid current. To extract
them, the FFT method was applied on the grid current at the fundamental frequency
of the grid using the PLL technique as it is showed in Fig. 7.

3.1.2 Description of the Current Regulation Loop

As it has beenmentioned above, the disturbing grid current is regulated by comparing
it to a zero signal. In this work, the Proportional Resonant (PR) controller is then
used to set the error of this comparison to zero. Consequently, the PV inverter is able
to force the disturbing grid current to zero.

The choice of the PR controller is explained by its effectiveness to track a refer-
ence signal having a sinusoidal form. Therefore, by implementing several blocks of
cascading PR controllers adjusted to the low frequencies of the harmonic components
of the current, selective harmonic compensation can be obtained since the disturbing
current is considered as the sum of sinusoidal currents with different frequencies. In
this work, the transfer function implemented by the PR controller which is expressed
by (10), is designed to attenuate the harmonic components of the grid current of
order 2–13. The choice of 13th order is explained by the fact that the order harmonic
components of the nonlinear load current considered in this work are limited to 13
as it is explained in the previous paragraph.

GS(s) =
h=1∑

13

2Kihωcut s

s2 + 2ωcut s + (hω0)
2

(10)

where,ωcut is the cutoff frequency,ω0 is the grid angular frequency, h is the harmonic
order of the grid current to be controlled, Kih is a constant gain.

Figure 8 shows the implemented structure of the multiple PR controllers in this
work.

3.1.3 Simulation Results Obtained Using the First Method

The considered GCPVS was simulated using the proposed first method under the
two considered nonlinear loads (LNL1 and LNL2) and with the chosen solar irradiance
(G) profile presented in Fig. 3. The transfer of the power flow between the three main
elements of the considered PV system: the PV inverter, the grid, and the user load
are investigated in order to study the behavior of the considered GCPVS.

Figure 9a, b show the active power of these three elements simulated with the
loads LNL1 and LNL2 respectively, under the three operating modes given by the solar
irradiance (G) profile. In each mode, Table 3 represents the values of the three active
powers. It can be noted from the corresponding power flow that with the two used
loads, the sum of the PV inverter and the grid active powers represent the load active
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Fig. 8 Structure of the multiple PR controllers implemented in the first method

(a) (b)

Fig. 9 Active grid power (Pg), active load power (PNL1 and PNL2), and active PV inverter power
(Pinv) simulated in the three operating modes of the PV (a) with LNL1 and (b) with LNL2

Table 3 Simulated active powers of the grid, the PV inverter and the two used loads LNL1 and LNL2
with the first method

Solar Irradiance (W/m2) 100 230 170

PV inverter power (W) 227 540 397

LNL1 Grid power (W) 427 118 260

Load power (W) 650 650 650

LNL2 Grid power (W) 253 −60 83

Load power (W) 480 480 480
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power for any case of the used load and the operating mode of the PV system. This
means that the supply of each load is correctly ensured by both the utility grid and
the PV inverter.

After verifying the operation of the designed GCPVS with the proposed first
method, the quality of the grid current was then evaluated for the two cases of load
conditions considering the solar irradiance (G) profile shown in Fig. 3. Therefore,
the time and the frequency representations of the grid current as well as the THD
simulated in the three operationmodes of the PV inverter with two cases of load (LNL1

and LNL2) are presented in Fig. 10. The values of the obtained THD are indicated in
Table 4.

Comparing Fig. 10 that shows the simulated grid current with the proposed algo-
rithm to Fig. 4, the quality of the waveform of the grid current was significantly
improved and the THD values were attenuated in any case of operating mode of the
GCPVS and under the two cases of nonlinear loads. It is worth noting that for the
three cases of (Fig. 10b, e, f), although the simulated grid current has undergone

(d) (f)(e)

(a) (c)(b)

Fig. 10 Time and frequency spectrum representations of the simulated grid current (ig) with the
first proposed algorithm (a) in mode 1 with the load LNL1, (b) in mode 2 with the load LNL1, (c) in
mode 3 with the load LNL1, (d) in mode 1 with the load LNL2, (e) in mode 2 with the load LNL2,
(f) in mode 3 with the load LNL2

Table 4 THD values obtained with the first method and without improvement

Solar Irradiance (W/m2) 100 230 170

THD (%) LNL1 without improvement 36 141.98 66.02

LNL1 with first method 3.31 14 5.67

LNL2 without improvement 45.71 164.69 136.74

LNL2 with first method 4.33 26 16.06
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an important attenuation of the THD, the waveform is yet distorted. However, the
quality of the grid current remains acceptable since the amplitude of the fundamental
component is low.

Comparing the simulation results to those obtained without the proposed algo-
rithm, we can conclude that the proposed technique is efficient to compensate the
harmonic current introduced by the nonlinear load and to obtain a grid current with
a low THD even under a variation of the PV power and the load conditions (see
Table 4).

3.2 Investigation of the Second Proposed Method of the PV
Inverter Control

The control strategy of the PV inverter based on the second method of disturbing
current control is showed in Fig. 11.

3.2.1 Proposed Algorithm in the Second Method for the Extraction
of the Disturbing Grid Current

The principle of the second algorithm aimed to extract the disturbing grid current
is essentially based on the extraction of each active and reactive disturbing current

Fig. 11 The second proposed control strategy of the PV inverter
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vector from the total grid current, except the vector of the active component of the
fundamental current. Referring to (8) and (9), the amplitudes of active Ig1a and reac-
tive Ig1r grid currents of the fundamental component can be expressed respectively
by (11) and (12).

Ig1a = Ig1 cos(θ1) (11)

Ig1r = Ig1 sin(θ1) (12)

Similarly, each harmonic component of the grid current can be decomposed on
active and reactive components as showed by (13) and (14). The expressions of the
active Igna and reactive Ignr harmonic components of the grid current of order n are
defined respectively by (15) and (16).

igh(t) =
∞∑

n=2

[
Ign. cos(θn). sin(nωt) + Ign. sin(θn). cos(nωt)

]
(13)

igh(t) =
∞∑

n=2

[
igna(t) + ignr (t)

]
(14)

With

Igna = Ign cos(θn) (15)

Ignr = Ign sin(θn) (16)

Therefore, the disturbing grid current igd(t) expressed by (6) can be reformulated
as follows

igd(t) = ig1r (t) + igh(t)

= ig1r (t) +
∞∑

n=2

[
igna(t) + ignr (t)

]

=
∞∑

n=2

Igna sin(nθ) +
∞∑

n=1

Ignr cos(nθ)

= iga−d(t) + igr−d(t) (17)

Thus, according to (5), to obtain a grid current with a sinusoidal form composed
only by the active current i g1a(t), the disturbing grid current igd(t) must be set to
zero. This means that the amplitudes of all disturbing components of the grid current
(Ig1r , Igna , Ignr ) expressed by (12), (14) and (16) must be set to zero using a current
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regulation loop. In this aim, the amplitudes (Ig2a, …, Igna) and (Ig1r ,…, Ignr) of
different disturbing grid current components must be extracted.

In this work, an efficient algorithm having the task to extract the amplitudes
of active and reactive disturbing components of the grid current is proposed. The
principle of this method is illustrated in Fig. 12. As showed in this figure, to
extract an amplitude of a component with order “n” among the different reactive
components (Ig1r ,…, Ignr) or the different active components (Ig2a,…, Igna) of the
total grid current, the grid current expressed by (2) is multiplied respectively by
yn(t) = cos(nθ)(for Ig1r ,…, Ignr extraction) or xn(t) = sin(nθ) (for Ig2a,…, Igna
extraction) with a phase angle which has the same order “n” of the extracted consid-
ered component. As a result, a corresponding dc component equal to Ig1r /2,…, Ignr /2
(for Ig1r ,…, Ignr extraction) and Ig2a/2,…, Igna/2 (for Ig2a,…, Igna extraction) are
obtained as well as a variable term. This result is demonstrated by (18) and (19) to

Fig. 12 Second algorithm scheme used to extract the amplitudes of different active and reactive
components of the harmonic grid currents
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extract respectively the amplitude of the reactive current component and the active
current component of order 2.

ig(t). sin(2ωt) =Ig1 sin(ωt + θ1). sin(2ωt) + Ig2 sin(2ωt + θ2). sin(2ωt))

+
∞∑

n=3

(Ign sin(nωt + θn). sin(2ωt))

= Ig2
2

. cos(θ2) − Ig2
2

. cos(4ωt + θ2) + Ig1 sin(ωt + θ1) × sin(2ωt)

+
∞∑

n=3

(Ign . sin(nωt + θn). sin(2ωt))

= Ig2a
2

− Ig2
2

. cos(4ωt + θ2) + Ig1 sin(ωt + θ1) × sin(2ωt)

+
∞∑

n=3

(Ign . sin(nωt + θn). sin(2ωt)) (18)

ig(t). cos(ωt) = Ig1. sin(ωt + θ1). cos(ωt) +
∞∑

n=2

(Ign sin(nωt + θn). cos(ωt))

= Ig1
2

. sin(θ1) + Ig1
2

.(sin(2ωt + θ1)

+
∞∑

n=2

(Ign sin(nωt + θn) × cos(ωt))

= Ig1r
2

+
[
Ig1
2

. sin(2ωt + θ1) +
∞∑

n=2

(Ign sin(nωt + θn) × cos(ωt))

]

(19)

Consequently, to extract each dc component Ig1r /2,…, Ignr /2 and Ig2a/2,…, Igna/2,
a low pass filter is used. This leads to obtaining each amplitude of the reactive
components Ig1r ,…, Ignr, and the active components Ig1a,…, Igna after multiplying
the output component of the low pass filter by again equal to 2.

3.2.2 Description of the Current Regulation Loop Used in the Second
Method

As it is mentioned, to improve the grid current quality at the PCC of the considered
GCPVS, the active current must be isolated from the total grid current. This is
performed by canceling all the dominant components of the disturbing grid current.
In this work, once the amplitudes of these components Ig1r ,…, Ignr and Ig1a,…, Igna
are extracted using the appropriate algorithm described above, they are compared
to a reference signal equal to zero. To regulate each amplitude to zero, the result of
each comparison is then presented to a PI regulator, as shown in Fig. 13. The choice
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Fig. 13 The current control block scheme used for the cancellation of selected harmonic
components

of the PI regulator is justified by the fact that it is more efficient and gives a zero
steady-state error in case of dc component regulation. Thereafter, each output signal
of the PI regulator is multiplied by yn(t) = cos(nθ) in case of the control of (Ig1r ,…,
Ignr) and xn(t) = sin(nθ) case of the control of (Ig2a,…, Igna), having a phase angle
with the same order “n” of the controlled considered component. The sum of the
obtained signals represents the reference signal c2 generated by the current control
loops as illustrated in Fig. 13.

3.2.3 Simulation Results Obtained Using the Second Method

The secondproposedmethodwas implementedwith theGCPVSsimulated according
to the parameters presented in Table 1, in order to investigate its effectiveness for
disturbing grid current compensation using the second algorithm. Furthermore, the
two nonlinear loads (LNL1 and LNL2) as well as the solar irradiance (G) profile
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presented in Fig. 3 are considered to compare the performances of the proposed
first and second methods.

As mentioned, to examine the behavior of the simulated GCPVS system, the
power flow between the PV inverter, the utility grid, and each used load must be
investigated. Thus, the active power of each element is simulated with the second
proposedmethod and showed in Fig. 14a, b. Comparing this simulation curves to that
obtained with the first proposed method, it can be noted that the dynamic response of
these elements is slower since the active power of each element takes an important
time to reach its steady-state. On the other hand, referring to Table 5 indicating the
values of their steady-state active power, the GCPVS has the same behavior as in the
case of the first method. This proves the good operation of the GCPVs system with
the second proposed method but with rather significant response time.

Now, to evaluate the performance of the second proposed method for the grid
current quality improvement, the time and the frequency representations, as well as
the THD of the grid current obtained for the three levels of solar irradiation (G) and
under the two nonlinear load conditions, are shown in Fig. 15. Comparing this figure
to Fig. 10, it can be noted that the quality of the grid current was improved with
the second proposed method since the waveform of the grid current has a sinusoidal
shape for any case of operating mode of the GCPVS. In addition, from the THD

(a) (b)

Fig. 14 Active grid power (Pg), active load power (PNL1 and PNL2) and active PV inverter power
(Pinv) simulated in the three operating modes of the PV (a) with (a) and (b) in the case of LNL2

Table 5 Active powers of the grid, the PV inverter and the two used loads LNL1 and LNL2 simulated
with the second method

Solar Irradiance (W/m2) 100 230 170

PV inverter power (W) 227 540 397

LNL1 Grid power (W) 427 118 260

Load power (W) 650 650 650

LNL2 Grid power (W) 253 −60 83

Load power (W) 480 480 480
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Fig. 15 Time representation and frequency spectrum of the simulated grid current (ig) with the
second proposed algorithm (a) in mode 1 with the load LNL1, (b) in mode 2 with the load LNL1,
(c) in mode 3 with the load LNL1, (d) in mode 1 with the load LNL2, (e) in mode 2 with the load
LNL2, (f) in mode 3 with the load LNL2

values obtained with the first and the second methods in the three operating modes
of the GCPVS using the two cases of loads (LNL1 and LNL2), we can conclude that
the second control method is more efficient for disturbing grid current mitigation
than the first method. The THD values are lower than those obtained with the first
method. Therefore, for any case of GCPVS operating mode, with the secondmethod,
the THD value did not exceed 8% contrary to the first method in which the THD
value remains important and the waveform of the grid current has not a sinusoidal
form in some cases (Fig. 10b, e, f).

Furthermore, referring to Fig. 16 that shows the THD curves as a function of
fundamental grid current for the two proposed methods and with the two used loads,
note that the THD value decreases when the fundamental grid current increases. This
is explained by the fact that the harmonic components have the same amplitudes for
any case of the operating mode of the PV systemwith the same nonlinear load. Then,
it can be concluded that the THD value is related only to the fundamental grid current
amplitude for a considered load.

We can conclude then, that the proposed second algorithm is more efficient than
the first algorithm since it has successfully compensated the disturbing grid current at
any operating point of the PV system even under the variation of the load conditions.
But it has a slower dynamic response and requires more computing time.
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Fig. 16 Simulated THD as a function of the fundamental grid current obtained with the two
proposed methods

3.3 Experimental Results of the Two Used Methods

To validate the obtained simulation results of the two proposed algorithms, exper-
imental tests have been achieved on a testbed presented in Fig. 17. This testbed is
composed of a Chroma 62020H-150 s programmable power supply used to model
the PV generator and thus to provide a variable power to a dc-dc boost converter
which is connected then to a voltage inverter. This voltage inverter is connected to an
autotransformer via an inductive filter LF equal to 20 mH to deliver a single-phase
voltage with an amplitude equal to 260 V. On the other hand, two parallel loads
having the task to cause a problem of power quality are installed at the PCC. The
first load is a single phase full wave rectifier supplying a variable inductive load with
a maximum power P equal to 656 W. Therefore, two values of this loaded power
were considered during the experimental tests. The first one is equal to PL1 = 656W
while the second value is equal to PL2 = 492 W. On the other hand, the second load
is considered as an inductive load with R = 2 � and L = 0.5 H.

Furthermore, the P&Oalgorithmwhich is used to control the dc-dc boost converter
and the two proposed algorithms to compensate disturbing current introduced by
nonlinear load were implemented on the dSPACE card under the Simulink/Matlab
environment.

During all the experimental tests of the control algorithms, samples of voltage
and current are acquired with a sample step of 1.1e-4 s.
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Fig. 17 Experimental testbed

3.3.1 Experimental Results During the P&O Algorithm Test

As first step, the P&O algorithm which is aimed to control the dc-dc boost converter
was tested and validated. Table 6 presents the electrical power parameters of a PV
module at the Standard Test Conditions (STC), which are fixed using the Chroma
62020H-150 s graphic interface. Consequently, the two characteristics of IPV−VPV

and PPV−VPV are obtained by the Chroma 62020H-150 s programmable power
supply as showed in Fig. 18. This PPV -VPV curve represents a maximum power
point equal to Pmpp = 335,3 W corresponding to an optimum voltage equal to Vmpp

= 144,31 V. While the corresponding optimum current is equal to Impp = 2.324A,
referring to the IPV−VPV curve shown in Fig. 18.

To validate the two proposed control algorithms of the voltage inverter with vari-
able power, theChroma62020H-150 s programmable power supplywas programmed
to generate a sequential three levels of optimal maximum power (Pmpp). Figure 19

Table 6 Electrical
parameters of a PV module
set in the Chroma
62020H-150 s programmable
power supply

Parameters Values

Short circuit current: Isc (A) 2.494

Open circuit voltage: VSC (V) 169.1

Voltage at MPP: Vmpp (V) 143.4

Current at MPP: Impp (A) 2.34

Power at MPP: Pmpp (W) 335.7
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Fig. 18 IPV -VPV and PPV -VPV caracteristics programed in the Chroma 62020H-150 s
programmable power supply

Fig. 19 Experimental active power of the PV inverter

illustrates the three cases of the active power injected by the voltage inverter called
as the three experimental modes. In experimental mode 1 (Mode1exp), the active
power of the voltage inverter P1 is equal to 165 W. Then, in the second experimental
model 2 (Mode2exp), P2 is raised to 500 W, while in the third experimental mode 3
(Mode3exp), the power is decreased to P3 equal to 335 W.
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3.3.2 Experimental Results During the Two Proposed Algorithms Test

The performances of the two proposed control algorithms are verified experimentally
using the same testbed presented in Fig. 17. The time and the frequency represen-
tations obtained with the two proposed algorithms according to the experimental
PV inverter power showed in Fig. 19 and under the two considered load conditions
(LNL1_exp and LNL2_exp) are presented in Fig. 20 (for the first method) and 21 (for the
second method). Consequently, it can be noted that for each case of both the inverter
power and the used experimental load, the grid current represents a sinusoidal form
with a low THD value between 3.5 and 11.6% for the first method and 1.88 and
6.94% for the second method. In addition, Fig. 22 presents the experimental THD
curves as a function of the fundamental grid current. As can be noticed from simula-
tion results, the THD level raises when the fundamental grid current decreases for a
used nonlinear load. This proves that the THD depend only on the fundamental grid
current. Moreover, compared to simulation results, the second control method is also
more efficient for disturbing grid current compensation since the experimental THD
values are lower, for all fundamental grid current than the first method. Therefore,
the experimental results validate the obtained simulated results and prove that the
proposed second method is more efficient to ensure good grid current quality for
different PV inverter power even with the presence of a nonlinear load.

(b)

(d) (e) (f)

(c)(a)

Fig. 20 Time and frequency representations of the grid current with the first control method in
(a) Mode1exp with the load LNL1_exp, (b) Mode2exp with the load LLN1_exp, (c) Mode3exp with
the load LNL1_exp, (d) Mode1exp with the load LNL2_exp, (e) Mode2exp with the load LNL2_exp,
(c) Mode3exp with the load LNL2_exp
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(f) (e) 

(a) (b) (c) 

(d) 

Fig. 21 Time and frequency representations of the grid current with the second control method
in (a) Mode1exp with the load LNL1_exp, (b) Mode2exp with the load LLN1_exp, (c) Mode3exp with
the load LNL1_exp, (d) Mode1exp with the load LNL2_exp, (e) Mode2exp with the load LNL2_exp,
(c) Mode3exp with the load LNL2_exp

Fig. 22 Experimental THD as a function of fundamental grid current obtained with the two
proposed methods
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4 Conclusion

In this chapter, two new efficient current control techniques are proposed for the
control strategy of the voltage inverter connected in a single-phase grid-connected
PV system supplying nonlinear load. Each technique is based on a novel algorithm
aimed to extract the disturbing grid current introduced by a nonlinear load at the
point of common coupling. To cancel the disturbing current, the resonant controller
is used in the first method while the second method is based on the use of several
PI controllers. The performances of the two proposed techniques were studied by
simulation for two different load cases andwith a variable PV inverter power. Thus, it
has been proved thatwith the twoproposed techniques, the PV inverter is able to inject
the solar power into the grid and to improve the grid current quality simultaneously,
even under the variation of the load and climatic conditions. The effectiveness of the
two proposed methods have also been verified and validated experimentally on an
experimental platform. It has been shown from the simulation and the experimental
results that the second algorithm is more efficient in improving the quality of the grid
current.

References

1. Srinivas VL, Singh B, Mishra S (2019) Fault ride-through strategy for two-stage GPV system
enabling load compensation capabilities using EKF algorithm. IEEE Trans Industr Electron
66(11):8913–8924

2. Hassaine L, OLias E, Quintero J, Salas V (2014) Overview of power inverter topologies and
control structures for grid connected photovoltaic systems. Renew Sustain Energy Rev 30:796–
807

3. Singh Y, Hussain I, Singh B, Mishra S (2017) Single-phase solar grid interfaced system with
active filtering using adaptive linear combiner filter-based control scheme. IET Gener Transm
Distrib 11(8):1976–1984

4. Eltamaly AM (2009) Harmonics reduction techniques in renewable energy interfacing
converters. In: Renew Energy. Intechweb

5. Herrera RS, Salmeron P, Kim H (2008) Instantaneous reactive power theory applied to active
power filter compensation: different approaches, assessment, and experimental results. IEEE
Trans Ind Electron 55(1):184–196

6. Akagi H, Watanabe E, Aredes M (2007) Instantaneous power theory and applications to power
conditioning. Wiley-IEEE Press, NewYork, NY

7. Wu L, Zhao Z, Liu J (2007) A single-stage three-phase grid-connected photovoltaic system
with modified MPPT method and reactive power compensation. IEEE Trans Energy Convers
22(4):881–886

8. Kesler M, Ozdemir E (2011) Synchronous-reference-frame-based control method for UPQC
under unbalanced and distorted load conditions. IEEE Trans Industr Electron 58(9):3967–3975

9. Abhijit K, Vinod J (2013)Mitigation of lower order harmonics in a grid connected single phase
PV inverter. IEEE Trans Power Electron 28(11):5024–5037

10. Chilipi R, Al Sayari N, Alsawalhi J (2020) Control of single-phase solar power generation
system with universal active power filter capabilities using least mean mixed-norm (LMMN)-
based adaptive filtering method. IEEE Trans Sustain Energy 11(2):879–893

11. Pradhan S, Hussain I, Singh B, Panigrahi BK (2019) Performance improvement of grid-
integrated solar PV system usingDNLMS control algorithm. IEEETrans IndAppl 55(1):78–91



Improvement of the Power Quality in Single Phase Grid … 397

12. Li Z, Wang L, Wang Y, Li G (2020) Harmonic detection method based on adaptive noise
cancellation and its application in photovoltaic—active power filter system. Electric Power
Syst Res 184

13. PereiraHA, daMataGLE,Xavier LS, CupertinoAF (2019) Flexible harmonic current compen-
sation strategy applied in single and three-phase photovoltaic inverters. Electrical Power Energy
Syst 104:358–369

14. Agarwal S, Jamil M (2015) A comparison of photovoltaic maximum power point techniques.
In: 2015 annual IEEE India conference (INDICON), pp 1–6, 17–20 December 2015

15. Tampubolon M, Purnama I, Chi PC, Lin JY, Hsieh YC, Chiu HJ (2015) A DSP-Based differ-
ential boost inverter with maximum power point tracking. In: 9th international conference on
power electronics-ECCE Asia, pp 309–314, 1–5 June 2015

16. Eltamaly AM (2018) Performance of MPPT techniques of photovoltaic systems under normal
and partial shading conditions. In: Advances in renewable energies and power technologies,
pp 115–161. Elsevier



Toward a Sustainable Agriculture
in Morocco Based on Standalone PV
Pumping Systems: A Comprehensive
Approach

AA. Mana, A. Allouhi, K. Ouazzani, and A. Jamil

Abstract This paper involves a multi-level perspective to capture potential drivers
and barriers of the solar water pumping inMoroccan agriculture. The effective design
of such systems should considermany parameters, including the local climatic condi-
tions, crops water requirements, and the suitable system configuration. Orderly, to
gain an in-depth understanding of the conditions influencing the sector’s transi-
tion toward the best energy management, three investigations are carried out: (i) a
case study analysis, (ii) a comparative cost analysis, and (iii) a Strength-weakness-
opportunities-treats analysis (SWOT).Ageneral procedure for designing solar photo-
voltaicwater pumping systems (SPVWP) is presented. Tooperationalize the followed
theoretical approach, technical requirements, pumpflow, produced energy losses, and
monthly performances are estimated. Then, the simulation and non-linearity between
water flow and radiation were tested to find the well-adapted system on a small scale.
Illustratively, this work is strengthened through a case study to properly establish the
relevance of photovoltaic systems and their performance under different utilization
scenarios. The results show that an increase of 30% in annual performance and a
decrease of 10% of system losses are observed when using MPPT DC converter
for medium-sized crops. In terms of water use efficiency, the use of drip irrigation
coupled with the direct coupling; the selected configuration is the best method to
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save energy and manage water, especially for small crops like tomatoes. Besides,
cost comparative analysis revealed that levelized cost of water (LCOW) of SPVWP
is significant, approximately in the range of 0.08US/ m3, which is very competitive
comparing to other sources.

Keywords Solar pumps · Sustainability · Water · Agriculture · Energy · SWOT
analysis · LCOW

1 Introduction

Over the last decade, climate change has been the topic of interest. Currently, it is
considered an evident reality and impacts greatly agriculture, water supply, and our
ecological sphere [1, 2]. In fact, the impacts are strongly related and agriculture is
situated at the heart of this challenge [3]. Agriculture is also the world’s largest driver
of global warming [4] and, at the same time, the most affected by these changes [5].
Thus, a global agricultural transition is urgently needed to overcome the linearity of
conventional evaluation methodologies that perceive farms as factories and counts
plants and animals as industrial units [6]. This energy transition is the key step to
rely on energy efficiency and restores social metabolism [7]. The challenge is further
complicated by the need not only to produce more but also to sustain the entire food
supply chainmuchmore efficiently and reducewastewhich has reached unacceptable
proportions (estimated at 30%) [8].

Generally, recent studies reveal that intensive agriculture transforms landscapes,
degrades biodiversity, and boosts genetic erosion. It pollutes the air, hydraulic
sources, and puts human and animal health at peril [9, 10]. In this sense, sustainable
agriculture is the result of an equilibrated solution tomany productive, technological,
environmental, and economic issues [11]. Among these, improving energy efficiency
and reducing greenhouse gas emissions is vital. As agriculture becomes an energy-
intensive consumer, an emergency call must be launched to attain a circular economy
and sustainable goals [12]. Interestingly, sustainable agriculture has the unique poten-
tial to mitigate global warming and fortify the resilience of renewable solutions to
face the impacts of climate change. Furthermore, several international organizations
and initiatives are monitoring food security by creating the infrastructure for separate
groups of stakeholders to come together to address economic, social, and environ-
mental synergies [13, 14]. Agriculture in developing countries depends strongly on
rain and is negatively affected if the water is insufficient. Thus, to improve water
management, groundwater is pumped to reduce this dependency. Irrigation and rural
water supply mainly use classic pumping systems; however, the unavailability or
erroneous supply and high cost of diesel pumping remain the main problems that
require special attention [15]. Closely, water use efficiency in agriculture will require
an increase in crop water productivity and a reduction in water losses and pollution
[16].Many favorable policies for obtainingwater use efficiency (WUE) are available.
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These include suitable integrated water management practices such as efficient
recycling of agricultural wastewater, bio-fertilizers, and solar irrigation [17]. Farmers
can choosemanyhabits to progress their sustainability by local resources to guarantee
long-term farm effectiveness, environmental management, and improved quality of
life [18]. Water conservation has become an important part of agricultural steward-
ship [19]. Solar pumping systems can be the most profitable answer when they are
designed and sized accurately [20]. Moreover, they can be easily installed without
needing long pipelines, and they are highly environmentally friendly [21]. Despite
this fact, SPVWP systems currently have a shorter life cycle cost compared to diesel
systems [22].

Solar water pumps are often viewed as an expensive technology, unable to pump
enoughwater and sustainably throughout the year. InMorocco, Photovoltaic systems
are the symbol of renewable energies and play a driving role in the energy transition.
In 2020, renewable energies are expected to account for 42% of the energy consumed
in Morocco and 52% in 2030. However, agriculture remains the biggest forgotten
part of this transition since COP22. It depends largely on the rains and is affected
by successive droughts. Poverty, famines, and power shortages remain the major
problem in remote areas of the country. Subsidized butane water pumping systems
are used mostly in Morocco for irrigation and pumping groundwater.

In the same context, the use of fossil-based irrigation methods infects and over-
exploits the groundwater in an abusive manner, which explains the unavailability of
water in this country.

The accelerated socio-economic development has resulted in increasing pressure
on resources in water. Following the unprecedented increase in water needs in the
agricultural sector, creating regional disparities and the emergence of acute pollution
problems of water.

Although some researchers in the MENA countries have focused on solar irri-
gation and underlined SPVWP as an appropriate solution for a sustainable agricul-
ture sector, few examinations have been carried out under the Moroccan context
for the development of SPVWP. To fill this research gap, the study seeks to
examine the potential of a local area under regional meteorological conditions to
integrate SPVWP. However, pumping of photovoltaic water wins importance in
recent years compared to conventional pumping systems. In addition, the pumping
of water usually depends on conventional electricity or electricity produced with
diesel and especially in African countries [23]. Solar water pumping minimizes
reliance on costly and polluting conventional sources. Solar pumping systems are
environmentally friendly and reduce maintenance costs and increasing fuel costs
[24].

The use of SPVWP can contribute to socio-economic development [25]. It is the
nominated solution for the present energy crisis for Moroccan farmers. This system
conserves electricity by reducing the usage of conventional methods and conserves
water by reducing water losses [26]. The proposed model ensures to work for small
and medium irrigation needs to take advantage of the power produced by the system.
Optimizing this type of PV irrigation involves considering both PV subsystems and
irrigation requirements [27].



402 AA. Mana et al.

To sum up, a conceptual framework is proposed to figure out the most adapted
SPVWP system for poor farmers and small and medium scales applications. There-
fore, the purpose of this article is to introduce a detailed approach for the design,
technical and economic evaluation of SPVWP systems and to give a guideline to
local installers and decision-makers for integrating renewable sources in Moroccan
agriculture. A first case study dealing with the irrigation of tomatoes and their water
supply, to consolidate family agriculture is investigated. In addition, a second case
study focuses on the irrigation of medium-sized crops (6 ha in olive trees) using the
drip method to improve the performance of SPVWP systems. A complete perfor-
mance analysis based on dynamic simulations is developed to highlight the most
viable coupling configuration for local irrigation. In this regard, we adopted a SWOT
approach to investigate the internal strengths and weaknesses, as well as the external
opportunities and threats for PV solar pump development in Morocco.

This new advanced regional study will make a decisive contribution to the
economic and social development of the country, through the enhancement of water
potential and resources, the mobilization of various local actors, and participation in
the development and implementation of structuring projects, and the strengthening
of agricultural attractiveness.”

Finally, based on the obtained results and according to available energy resources,
this work revealed a significant contribution in the selected region to hold more than
17,000 solar pumps with capacities between 0.6 up to 40 kW, and the possibility to
convert more than 80%of existing butane-powered pumps to PVWP. This proves that
solar pumping must be widely considered as the most suitable solution to manage
water and reduce almost agricultural CO2 emissions.

2 Solar Photovoltaic Water Pumping System

Several works affirm that the PV pumping system has some leads to saving oper-
ating costs and reducing CO2 emissions in comparison to conventional methods.
Also, the investment payback period is found to be 4–6 years [28], when the energy
is from the sunlight. Apparently, photovoltaic is one of the main applications of
the autonomous pumping systems [29]. It consists of a water pump driven by an
electric DC motor and powered directly by solar panels through an MPPT system.
PV pumping systems are widely used in areas for agricultural purposes. However,
there are many disadvantages of PV systems [30]. They have high costs, unreliable
operation, and maintenance which are considerably higher if the batteries are used
[31–33]. Recent works have focused on system modeling for optimum management
of energy to store the monthly irrigation needs [34]. SPVWP systems can include
a water tank [35], or electrical storage of energy [36, 37]. Most of the studies dealt
with remote-controlled water storage [38]. In these studies, valid areas for the imple-
mentation of SPVWPwere evaluated through the processing of local spatial datasets.
Many kinds of research on the sizing of the photovoltaic pumping system have been
published [39, 40]. These studies are centered on the simulation of the functioning of
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Fig. 1 Schematic diagram of PV water pumping [41]

each component of these SPVWP systems. However, the design of any cost-effective
solar energy system requires experimental data that are not willingly available. The
widely proposed system consists of the use of the directly coupled system to produce
electricity. For more flexible irrigation planning, the system can supply water to a
reservoir or a collection basin, then water runs from the basin to the crops through
a drip irrigation facility. The direct-coupled solar water pumping system to supply
water for drip irrigation is shown in Fig. 1.

The PVmodules are linked in series and parallel for the working of a pump motor
subsystem that will demand power to generate a certain total of pressure and water
flow. The pump speed depends strongly on the solar radiation received by the PV
generator.

One should state that, if an MPPT is used, the electrical energy delivered to the
motor is nearly stable. DC or AC motors generally use the centrifugal pumps in
PV pumping systems, which have generally a long-term reliability and hydraulic
efficiency differing from 25 to 35% [42].

Direct-coupled DC solar pumps are simple and consistent [43], but cannot run at
the maximum power point of the PV generator as the solar radiation varies during
the day [44]. It is increasingly evident that SPVWP systems are a key criterion for
water efficiency in Agriculture. Many researchers have investigated those systems
in the MENA and sub-Saharan region, but little literature analyzed the case of
Morocco. To reviewmore subsequent literature, Table 1 gives a summary of regional
investigations.

It has been concluded that SPVWP systems can be used efficiently for irrigation in
agriculture and rural areas. The price of the water pumped by those systems is much
less classic methods. Conventionally, almost all studies related to solar pumping
systems reported positive impacts on their widespread integration.
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Table 1 Summary of SPVWP performance investigation in MENA and sub-Saharan region

Ref. Location System specifications Outcome

[45] Nigeria Pumping rate: 2.6 m3/h
Pv array: 1.6 kWp
Borehole: 30 m

– Solar pumps can replace
conventional AC pumps

– Solar pumps can meet the water
demand of 20 m3/day at the average
solar radiation level of 5
kWh/m2/day

[46] Africa 39 cases studied
Medium Heads: 50 m
Power range: 0.7–4 kWp

– Due to their technical ability and
their cost-effectiveness, solar PVP
system can replace the diesel
engines for drinking water supply
system and irrigation in Africa and
rural areas

– Average price 30cents/m3

[47] Algeria Pv array: 2.4 kWp
Pumping head: 0–120 m
Flow rate: 0–30 m3/h

Multistage centrifugal solar PV pumps
coupled to DC motors show significant
efficiency for high head applications
(40~70 m)

[48] Algeria Pumping head: 12.5~13.5 m
Tomato needs: 1012 mm/day

PVWP used efficiently for water
pumping in agricultural sectors.
Ensuring Suitability for small-scale
irrigation (2 ha)

[49] Tunisia Pv array: 85 m2 (100Wc, 24 V)
Pump system efficiency: 45(%)
Water pumped: 40 m3/ha/day

– Studied the economic viability of
SPVWPS to satisfy water
requirement in Tunisia desert

– Cost of water: 0.18 $/m3

[50] Egypt water head = 40, 80, 120 m
water flow: 15 m3/feddan/day (for drip
irrigation)

– The cost of the water unit pumped
by PV systems (0.11~0.33$/m3) is
much less than that pumped using
diesel systems (0.51~0.94$/m3)

– The water cost is more sensitive to
the PV cell’s prices than the life
time periods

[51] S.Arabia Batteries: two batteries of 12 V
Pv: 2 panels (35 V generated)

This study presents the usage of
photovoltaic electricity in an
automated irrigation system, which
optimize water requirement

[52] Algeria Pv array: 1.5 kWp
Pump capacity: 80 l/min
Head: 33 m
Moto-pump efficiency: 30%

– The system runs without battery and
complex electronic control, as a
result the initial cost is low and
Maintenance, costs are saved

– Directly coupled photovoltaic water
pumping systems are suitable for
low head applications

[53] Algeria _ – It is proposed to integrate an
intelligent control method for
MPPT of PV systems, to ensure
high flexibility.
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3 National Background and Target Area

Morocco is situated in theMaghreb region of North Africa, separates by theMediter-
ranean Sea from Spain to the north. Recent global warming studies confirmed that
Morocco is among the countries more menaced by climatic change [54]; in 2008 the
Moroccan government announced an agricultural strategy called “Plan Maroc Vert”
[55]. The objective of this strategy is to promote the productivity of agriculture by
addressing climate change as well as over-exploitation of groundwater, and poverty
[56]. In Morocco, irrigation is very water-intensive; it is estimated that about 83%
of available resources are used by agriculture with an efficiency of less than 50%.
Morocco is a dependent nation on agriculture as it is responsible for 20% of the
Gross Domestic Product. This sector plays an important role in food security and
sustainable development. According to the Ministry of Agriculture and Maritime
Fisheries data, the total area of Morocco is 71.085 million hectares. Agricultural,
pastoral, and forest lands represent 38.7 million hectares or 54.4% of the total area.
The UAA lands cover almost 9 million hectares, forest occupies 5.8 million, and
rangelands represent 21 million hectares. Irrigated agriculture in Morocco occupies
only 19% of the UAA, as illustrated in Fig. 2.

The agricultural activity is exemplified in the SebouRiver,which is responsible for
half ofMorocco’s sugar production, as well asmost of the country’s olive production.
Themost fertile part of the Sebou is the Saiss Basin (Fig. 3). It holds about a quarter of
Morocco’s arable land but only uses a little of the national water reserve. Moreover,
this water is often overexploited and poorly managed. The potential region under
investigation Saiss (Fez-Meknes) has a strategic geographical position. Given the
beneficial climatic conditions formost crops, the region of Fez-Meknes knows a great
diversity of plant and animal production, in addition to the existence of significant
activity of the food industry. Fortunately, the Fes-Meknes Region covers an area of
40,075 km2, representing 5.7% of the Kingdom’s surface area (i.e., 14% of soluble

Fig. 2 Part of irrigated agriculture in moroccoa. aaccording to annual reports of the Ministry for
agriculture (http://www.agriculture.gov.ma/)

http://www.agriculture.gov.ma/
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Fig. 3 Boundaries of the Sebou basin, and Sais’s region [57]

soils). The land use is relatively varied with a dominance of cereals (60%), the rest
is occupied by fruit plants (14.4%), legumes (6.6%), industrial crops, beet and sugar
(4.2%), oilseed crops (3.6%), vegetable crops (3.1%), and fodder crops (1.7%).

4 Objective and Research Inputs

The objective of thiswork is to present a low-cost solution and assess the performance
of photovoltaic pumping to power small-scale activities to consolidate familial agri-
culture in Morocco. The solar radiation data were collected from local databases and
then imported to PVsys software database using its meteorological tool [58]. The
Irrigation water requirements were evaluated using the software Cropwat [59].

It is designed as a useful tool for carrying out estimations of reference evapotran-
spiration, crop water, and more explicitly the design and management of irrigation.
Calculations of crop water requirements and irrigation needs are generated with
inputs of climate data, crops, soils, and local geographic data. It provides recom-
mendations for improving irrigation practices, planning irrigation schedules under
changing water supply conditions, and valuing production under a scarcity of rainfall
[60].

This paper represents the theoretical design and computer simulations analysis, as
a method for optimizing direct coupling systems and evaluating their performance.
The life cycle cost analysis is also carried out. Generally, optimal sizing methods
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use “the worst month” or average values. Consequently, systems can be oversized
or undersized. In analytical methods, mathematical equations are used for the sizing
of the system, but those methods are limited and less exact. In contrast, numerical
methods are most applied due to their accurate dynamic simulations.

A new contribution of this work includes an assessment of configurations
according to the system of the regulator of the installation of pumping:

• Direct coupling,
• MPPT DC-DC regulation.

In this study, two systems in different locations were considered to deliver a daily
need of 36 and 134 m3/day with good depth in the range of 20–50 m. For external
environmental data, it must be used as input during water needs calculation as well
as SPVWP design.

Thus, the work follows an observation of regional meteorological data before the
use of METEONORM [61]. The Saiss region is characterized by the diversity of its
soils where three main types of soils can be identified. It should be noted that Saiss
is characterized by rich soils and is full of important agricultural potentialities.

In terms of precipitations, the region is characterized by a continental climate in
the north, cold and humid in themountains, and a semi-arid climate in theMissourian
highlands. This variability of climate leads to a diversity of cultures that adapt better
to the specificities of this region. The average annual precipitation is 520 mm, which
places the zone in a favorable market. It should be noted, however, those inter-annual
variations can be very important. The rainy period extends from November to April.
The biologically dry period lasts 5 months (May to September) as shown in Fig. 4.

While Fig. 5 shows the temperature profile observed in the period 2000–2018with
the uncertainty of yearly values T = 0.3 °C. Locally, the average annual temperature
is 18 °C.

The annual averages of minimum and maximum temperatures are 11.3 °C and
26.5 °C, respectively. The coldest month is January, followed by December and
February. The average temperature of the coldest month is 11 °C and the minimum
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temperature is 5.5 °C. The hottest month is August, followed by July. The mean
exceptionally high temperature of the warmest month is 38.5 °C. It coincides with
the high radiation registered in the region. Figure 6 shows the monthly distribution
of global irradiance, the global solar radiation is maximum during the dry season
(May to August) and distributed from 9 to 16 am of the day, which particularly fits
the irrigation period.

To summarize observations during the year 2016, Table 2 gives an overlook of
climatic parameters that can influence directly or indirectly solar pumping systems.
It provides illustrations of detailed weather data for the area of Fes-Meknes tempera-
ture, the predictable number of sunny days, evapotranspiration, and rainfall status to

Fig. 6 Irradiance GHI calculated (W/m2) for the Saiss region
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Table 2 Monthly climate parameters in Saiss regiona

Month T max (°C) Humidity (%) Wind (km/day) Sun (Hours) ETo (mm/day)

January 20.0 74 233 6.7 2.06

February 18.0 67 311 7.3 2.74

March 19.0 64 294 8.0 3.35

April 23.0 67 302 8.9 4.23

May 27.0 64 294 9.6 5.27

June 33.0 52 328 12.1 7.52

July 38.0 49 294 12.1 8.37

August 38.0 50 302 11.9 8.23

September 33.0 58 277 10.7 6.09

October 29.0 62 294 8.9 4.58

November 20.0 66 302 7.7 2.80

December 18.0 72 233 6.8 1.87

aOwn estimations by comparing METEONORM and local data from different sources

lead more researches in this region. The literal data for water pumping requirements
were examined, measured, then compared and presented in the results section.

5 Conceptual Framework

In this section, a brief description of the sizing process and conventionalmathematical
model are reported. The performance and economic indices are also carried out.

5.1 Sizing Procedure

• Water requirements

The assessment of crop water requirements is a critical step to sizing every irrigation
system since it depends on climatic and crop parameters [62]. In theory, the water
requirements are precisely defined as the difference between the amount of rainfall
and the cultural evapotranspiration (ETP) [63].

Theoretical methods can be used (e.g., the Blaney–Criddle method) to determine
the reference crop evapotranspiration (ETo) [64], especially under “extreme” condi-
tions, the ETo is undervalued (up to 60%), while in calm, humid, clouded areas,
the ETo is overrated (up to 40%) [65]. There are many other equations more or less
simple, in our case, evapotranspiration can be estimated from several years weather
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data from the nearest meteorological station or through the maximum temperature
(Tmax) using the regression following equation, [66]:

ETo = 0.16Tmax + 0.14 (1)

The evapotranspiration is calculated from ETo taking into consideration a specific
cultural coefficient Kc dependent on the type of crop and growing phase [67].

ETc = ETo.Kc (2)

The net requirement CWR and the gross requirement IWR are calculated by the
following equations, respectively, [68]:

CW R = (ETc − Pu) (3)

IW R = CW R

ηr
(4)

with Pu represents 60% of the total monthly rainfall, and ηr is the overall irrigation
efficiency (for Drip irrigation, ηr ∼= 95%).

Referring to local authorities, carrying out on-site interviews with farmers and
monitoring chronological archives of water demand are usually the main means of
validating the calculated demand for water [69].

• Selection of the pump motor

For the application of PV water pumping, there are two main types of pump tech-
nologies: Pumps positive displacement and centrifugal. Positive displacement pumps
are used in low volumes and cost-effective systems. Centrifugal pumps are generally
exploited for applications with photovoltaic energy because of their feeble initial
couple drive, and it runs with very low sunshine, for medium and high flows [70].

The daily hydraulic energy of the pump and its efficiency can be expressed by the
following equations:

Ehyd = ρ.g.H.IW R (5)

ηp = Phyd
Pmec

(6)

where Ehyd the hydraulic and H is the total head.
The hourly rate is calculated by the following formula:

φh = IW R

�t
(7)
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The global system efficiency ηg is equal to the product of the PV array efficiency
and the subsystem (motor and pump) efficiency ηsys and given by the following
expression:

ηg = ηpvηsys (8)

where ηpv is the efficiency of the PV array under running conditions, given as
following:

ηpv = fm[1 − α(Tc − Tr )].ηpr (9)

where fm is the matching factor ( fm = 0.90), ηpr is the efficiency of the PV array at
a reference temperature Tr . Factor α is the temperature coefficient for cell efficiency.

• Photovoltaic field

Two procedures are handled for sizing pumping systems: Analytical method and
the graphical method [71]. The sizing of the photovoltaic field proper is the series-
parallel arrangement of the panelswhich is determined in conjunctionwith the choice
of the pump to ensure compatibility between supply and energy requirements [72].
The effective area of the modules can be found by following:

Apv = (ρgHφ)

Gtηg
(10)

where Gt is the solar radiation received, and global system efficiency ηg.

The peak power Pc regarding hydraulic power efficiency can be expressed by the
following equation:

Pc = ηr Apv (11)

with ηr overall efficiency of the PV system, assuming 20% losses due to temperature.
And Apv is the total PV array.

The total number of modules Npv constituting the Generator PV is calculated by
the following formula [73]

N pv = Pc
P pv

(12)

with Ppv is the power of one PV module.
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5.2 Examined Configurations and Simulation Process

The purpose of this section is to examine the optimal configuration of the PV system
able of providing a submersible solar pump to meet the needs of remote crops.

Consequently, two approaches are supported in search of an optimal design
according to the size of the plots, the energy and hydraulic needs, and the depth
of the wells.

Firstly, the direct coupling configuration, which is most common in small-scale
practices because of its technological simplicity. Secondly, an improved configura-
tion with a DC-DC converter equipped with an MPPT regulation assisting as a linear
current booster.

Indeed, to perform the PV system, PVSYST was used. It is designed to consider
all the parameters and the avoidance of the losses of the system and the calculation
of its performance.

5.2.1 Performances Parameters

The performance of PVWP systems is evaluated on a monthly basis using many
significant parameters including energy output at the pump, system array and system
energy losses, system efficiencies, and especially performance ratio which represents
the ratio of the energy produced compared to the energy that would be produced by
a system under standard conditions [74]. To calculate the performance ratio, two
critical parameters are calculated, the system’s final yield Yf and reference yield Yr

as expressed, respectively, in the following equations:

Y f = Enet

Po
(13)

with Enet is net energy output in kWh and Po the Installed PV array in kW. For PVWP,
the system yield is the effective energy at Pump.

Yr = Hi

Gr
(14)

with Hi is Total plane irradiance in kWh/m2 and Gr is PV reference irradiance in
kW/m2.

The PR is the important factor to evaluate the performance of PVWPs and their
continual guarantee and it is stated as a percentage [75].

PR% = Y f

Yr
100 (15)
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Fig. 7 Location of farms, the village of Kasbah Hartal (33.930342, −0.60077°)

5.2.2 Field Survey and Cost Analysis

In Saiss region, the investigation shows that groundwater depth is between 9 and
19 m, it is s decreasing with an acceptable average of 0.5 m/year; which represents
an opportunity for solar pumps and smart irrigation to replace classic and abusive
methods. The investment and operating costs can be very different for the same type
of energy used. This study focused on small and medium-sized plots of 1–6 ha to
encourage the use of the PVWP systems for familial agriculture. This investigation
helps to underline the most adapted system for the region. Crops selected are near to
farmers and their homes (Fig. 7). For a long-term performance for pumping systems
so they can pump water for trees and animals, dry ailments, and generate electricity
for locals.

In order to acquire the necessary information, the approach used does not seek
to compare farms with each other, but comparison for one potential farm. Informa-
tion is analyzed and evaluated using triangulation. It is a method of analysis where
potentially opposing results from multiple sources are compared to find valid data.

Investment and operating costs would be compared according to different energy
systems for estimating the cost of 1 m3 of water. The cost of installing a solar power
system was evaluated from PVSYST and compared with market prices. It is used
to calculate installation costs, from several operating parameters such as flow and
well depth or borehole. The software determines the number and cost of solar panels
and the cost of the electric pump and the drive to install [76]. Maintenance costs
were estimated from the farmers surveyed. The cost of installing an electrical energy
system includes the cost of installing and the cost of the connection. The latter
was therefore not considered in the investment calculations because it depends on
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the distance from the electricity network. The operating cost is the cost of using
energy, by the farmer, for pumping irrigation water over an average rainfall year. It
is estimated by the following formula:

OC = β.Q.t (16)

where β is the hourly pumping cost per cubic meter, with t = 1700 h/year estimated
for the region; And Q is the hourly flow rate.

The economic feasibility focuses on the levelized cost of water as an economic
parameter to evaluate the cost-effectiveness of the designed SPVWP system.

• Levelized cost of water (LCOW) in $/m3 can be calculated as [77]:

LCOW = Annual operating costs

365 × Q
(17)

6 Cases Studies Analysis

The purpose of this paper is to develop a decision-making approach for optimum
implementation of solar pumps in the country within various regions. Thus, the
reflectivemethodology is applied for two scenarios using twopossible configurations.
The main aim is to prove the opportunity for reliable integration of PV systems. In
this regard, the first case corresponds to 1 ha of tomatoes adapted for small farmers.
The field survey in the region shows that most farmers involved in market gardening
have small plots. 70% have farms that do not exceed 6 ha. The second case concerns
the irrigation of 6 ha of olive trees in Meknes-Fes, which is the emblematic region
of olives in Morocco.

6.1 Comparison of Two Configurations for Seasonal
Irrigations and Small Crops

• Determination of the water requirements

It was experimentally investigated that tomatoes need an average of 145 days to
produce. It can be grown 2 times even 3 times in the year. However, it is necessary to
study the worst case when the tomato is planted in May, for the development phase
coincides with the dry season.

The assessment of irrigation needs remains a critical step before modeling
pumping systems. For this reason, ET0 estimation and water requirements for
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vegetable crops with accurate meteorological information were imported and calcu-
lated using the CROPWAT tool, then compared to the analytical calculation for the
region studied.

According to the results, the reference evapotranspiration (ET0) is higher from
May to September and highest in August with 9 mm/day (Fig. 8a). This coincides
with a decrease in precipitation (Fig. 8b). Using the information provided in (Fig. 4)
and the calculation of evapotranspiration, the effective rainfall is estimated at 80%
of the total monthly rainfall.

Notably, (ET0) is maximal with an average of 7 mm/day at the time of the year
when the higher values of irradiance were recorded and the scarcity of rainfalls.

It is well known that irrigation needs depend on many parameters: climatic condi-
tions, type of plantation, and irrigation technology. As necessary and critical to
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determining specific cultural coefficient (Kc) during the entire cultivation phase. As
shown in Fig. 9, for tomatoes planted in May, Kc varied between 0.6 and 1.57.

Additionally, the monthly average water requirements for growing tomatoes and
the trend of specific evapotranspiration are presented in Fig. 10. The water demand
registered the peak value in August when the evapotranspiration is maximal too.
Thus, to reach efficient irrigation, it is necessary to determine the water requirement
per decade.

Drip irrigation is suggested to ensure the needs of tomatoes. As shown, the applied
model and calculations estimate the daily average water demand for tomatoes at
36.8 m3/ha/day. As an example of the first decade of September, in which irrigation
requirement is in the order of 100 mm/dec, an average of 10 mm/day, also 100 m3/
day.
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Table 3 Water requirements in Sais region

Crops Practical (m3/ha/day) Calculated (m3/ha/day)

Olive 17–20 22

Vegetable 30–70 60

Forage plant 20–60 50

Cereals 20–40 15–30

Table 3 presents the calculated water requirements for the most frequent crops
compared to practical water needs. Furthermore, there is not much difference are
observed which confirms the feasibility of current calculations.

• PV Sizing results

Results reveal that to cover such needs, it is proposed to use a solar pump of about
2.9 kW, with a peak power of 3.7 kWp of the surface PV and 20% of accepted
missing. The characteristics of the pump and PV module to be installed for this case
are presented in Table 4.

Considering the daily need in peak months. The pump selected was tested without
regulation for many depths. The results show the performance of the direct coupling
for low heads (34 and 43 m). As shown in Fig. 11, for example at 43 m deep well
the system can attend 320 m3/decade, with a daily flow of 34 m3/day, at the average
power of 1.5 kW and with hours of daily irrigation variably are between 3 and 6 h.

At reference conditions of Total Irradiance = 1000 W/m2, Cell temp = 25 C,
the nominal efficiency of the module is about 13.23% with a maximal power of
169.970 W, where the max power voltage is 23 V and the max power current is
7.4 amps and the short circuit current is 8.1 amps as shown in Fig. 12. The system
proposed can provide an average of 8 m3/h when using an MPPT converter. Under
usual conditions in the region, it is possible to attain 26 m3/ day. The system was
examined through the whole year with dynamic simulation in order to estimate
hourly outputs. It can be obviously realized from Fig. 13 that for the system with an
MPPT/DC converter, the pump starts to operate with a minimum of 180 W, and the
flow rate increase until the input power reaches 1.4 kW.

Table 4 The main characteristics of the system to be installed

Component Characteristics

Centrifugal pump Model PS4000 C-SJ8-15, Lorentz Pump Technology Centrifugal Multistage
Deep well pump Motor DC motor, brushless Associated or Integrated MPPT
converter with voltage range 220–340 V

PV Array PV module Si-poly Model YL175P-23b Manufacturer Yingli Solar

PV modules Coupling 15 PV modules, with a total area of 19.5 m2

Pipe and well The length of pipe was estimated at 40 m with 3 elbows, it is a pipe of 6/
8 mm in diameter. The well depth is 37 m

Well The well depth is about 37 m
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Fig. 12 PV electric characteristics

For both configuration direct coupling andMPPT/DC, the hourly flow in the func-
tion of available energy at the pump are illustrated in Fig. 14. The system equipped
with the MPPT DC converter is capable to provide water for low pump effective
energy as faced to the direct coupling configuration. This could actually justify that
configuration with MPPT DC converter starts to pump water at lower radiation and
can also reach a high flow during the day.
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• Overall system performance

The comparison of configurations analyzed predicts the performance of systemswith
MPPT/DC. Figure 15 illustrates the monthly energy available at the pump and the
losses of the system for both configurations. The numerical results indicate that the
monthly valueswere expressively better, and the losses are reduced for the installation
using a DC MPPT converter. In the dry season, they were generally less than 4.2
kWh/kWp/day for the direct-coupled installation and greater than 5 kWh/kWp/day
for the regulated.

Based on the conducted analysis, the PR gives a monthly review of whole system
efficiency, it includes PV array losses, module quality, mismatch, cabling, etc.), and
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system losses (Solar pump, controller efficiency or storage/ battery/standby losses,
etc.). Clearly, in Fig. 16, it can be seen a significant variability of the PR for both
configurations. The PR diverged between 58 and 73% in the dry season for theMPPT
structure. While it varies between 40 and 55% for the direct coupling design.
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7 Configuration with MPPT Coupled to Drip Irrigation
for Olives

In this section, the results are substantially better when regarding requirements,
assumptions and olives characteristics. The choice of olive was taken by considera-
tion, to give an opportunity for the symbolic tree in all MENA countries. Through
a real case study, the operation of coupling drip irrigation was underlined as
the most favorable with SPVWP with MPPT/DC. Considering this, it minimizes
evapotranspiration, waste of water, and assure reasoned irrigation (Fig. 17).

• Water needs

However, even better results are achievedwhen using photovoltaic and drip irrigation,
coupled as a smart and reliable solution for smalls and Medium crops. The second
case selected in the area investigated is about 6 ha of olive trees. For reasons of
optimization, it is proposed to divide the crop into 4 sectors of irrigation. The trees
and the lines are separated by 5 m, which explains a density of 400 trees/ha. Each
shaft is irrigated by 4 drippers of 2(l/h) at a pressure of 1 bar; for 7–9 h a day, and
4 days a week. Therefore, the hourly flow of the area of the exploitation will be the
product of the number of the tree by the flow rate of the drippers/trees, which equals
19.200 L/ h equivalent to 134400 L/ day. Tus, the daily flow is 134.4 m3/ day. A
pump with a flow rate of 20 m3, immersed at 20 meters depth. Optionally, the water
storage tank allows containing a certain amount of water, in case of bad weather. For
a plot of 6 Ha, consuming 134 m3 per day, for a period of 2 days, this gives 268 m3.

• Solar Pump and water pumped

The analytical method shows that a solar pump of about 2.7 kW is required to cover
such requirements; with a peak power of 3.75 kW of the PV surface. In another hand,
numerical analysis underlines a solar pump of about 3.2 kW, with a peak power of
4.1 kW of the surface PV with 20% accepted missing. The use of a submersible
pump can be coupled to an MPPT-DC regulation. For the simulation, it was decided

Fig. 17 Drip irrigation for Olives in Morocco
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Fig. 18 The non-linearity of water pumped with daily effective global irradiation

that the pump was placed at a depth of 20 m in a well with water at a depth of 17 m,
with no variation during the year. The pumped water is injected at the top of a tank,
at 1 m of soil. The length of the pipe was estimated at 26 m with 3 elbows, it is
a pipe of 12 mm in diameter. The main constraint is the ability to pump enough
quantity of water. The flow depends strongly on solar radiation. Therefore, in the
local condition, the average daily water pumped is 127 m3, in terms of daily effective
global irradiation (5.5 kWh/m2). The output power of the PV system has a linear
relationship with solar radiation as shown in Fig. 18. Practically, the system starts to
pump water from 0.5 to 1 kWh/m2. In optimal conditions, the flow rate can attain
18 m3/h.

As shown in Fig. 19, with drip irrigation, unused energy is more considerable.
Solar pumps assure the autonomyofwater, approximately 50%of the energy is stored
as water. During the dry period it is concentrated the highest values of produced
electrical energy and during the rainy period was registered the lowest values with
a little decline in the performance ratio. Generally, PR illustration shows how close
a system approaches ideal performance. The system shows its performance in the
dry season with an average of 61% (Fig. 20). The performance of the present system
varies from 54 to 62%, which is very significant for medium crops, comparing to
accepted performance in literature.

Considering the obtained results and field exigencies, the next table resumes
many simulation studies and verification for many scenarios in the main region. To
underline the well-adapted system, MMPT regulation is always recommended with
direct coupling, considerably to optimize the system while operation and reduce the
PV array, as shown in Table 5.
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Table 5 Capacity and land distribution by farm size

Land (ha) Total head Ppump(kW) % area Proposed coupling

1–5 17–50 0.15–4.5 25 D. Coupling/ MPPT-DC

5–10 25–50 4.5–12.5 45 MPPT-DC

Up to 10 25–50 12.5≤ 30 MPPT-DC/AC

From technical viewpoint, the MMPT configuration is the most suitable solution
to pump water for agriculture. For economic analysis, the next section gathers to
compare solar systems and classic methods.
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8 Summary of Cost Analysis

According to calculations and the Benchmarking, photovoltaic systems prove its
priority, due to the absence of operating and low maintenance costs (Fig. 21). Prac-
tically, the comparative analysis of solar pumps with diesel pumps and electrified
pumps revealed that LCOW of photovoltaic water is significant, it is approximately
in the range of 0.08US/ m3 (Fig. 22).

Considering the first scenario to irrigate tomatoes in the main region selected;
Fig. 23 shows the result of the after-tax cash-flow of the SPVWP system for 25 years.
It is clear the system is profitable from the third year. Thus, considering long-term
benefits and the high performance in the dry season, photovoltaic systems must be
considered as the first choice for farmers in the Sais region to replace unsustainable
pumps.
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9 Discussions on the SWOT Analysis of PVSWP

Based on the analysis of the case studies, the comparative cost analysis, and the local
regularities, a summary of the attractiveness ofwater pumping projects in agriculture,
can be presented in a SWOT analysis. As is well known, the objective of any SWOT
analysis is to classify themain internal and external issues that are critical for attaining
the given goals. It a large strategic challenge for governments and policymakers to
promote solar water pumping implementation. The outline of the SWOT analysis is
given in the form of a quadrant map regarding the water solar pumping development
in morocco. The section progresses in comprehensive discussions on those aspects.
It should be noticed that such a SWOT analysis may comprehend more elements that
are not considered in this work. However, the elements considered are all relevant
for constituting preferential decision-making.

9.1 Strength Analysis

a. Rich natural resources in the region studies: The agricultural activity is
exemplified in the Sebou River. The most fertile part of the Sebou is the Saiss
Basin. It holds about a quarter of Morocco’s arable land but only uses a little
of the national water reserve. This region is characterized by the diversity of
soils and their fertility. Additionally, it holds an important solar potential with
average sunshine of 3000 h/year and a yearly average solar radiation of about
5 kWh/m2/day. The disposal water resources are stocked in the region with a
total head of fewer than 30 m.
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Generally, in Saiss region the total head varies between 9 and 20 m depth,
fortunately, due to the disponibility of precipitations with an annual average of
520 mm which places the zone in the favorable market.

b. Environment-friendly: Among all other forms of renewable technologies, solar
energy has the lowest GHG emissions ranging. Likewise, SPVWP that substi-
tutes a fossil-based system will avoid about 1 kg of CO2 per kilowatt-hour of
energy output.
Practically, SPVWP can offer benefits with respect to air pollution and human
health compared to fossil fuels.

c. Minimum O&M and LCOE/W costs: The operating and maintenance costs
increase because of the substitution of materials. The inverters are warranted
for 10 years, the periodic maintenance and the cleaning are done twice a year.
Notably, For the SPVWP, LCOE/W is very competitive. Moreover, the current
comparative analysis of solar pumps with diesel pumps and electrified pumps
revealed that LCOW of photovoltaic water is significant, it is approximately in
the range of 0.08 US/ m3.

d. Simplified system design: As proven before, direct coupling remains as the
possible and most cost-effective solution for small and medium-scale appli-
cations. Otherwise, to provide more flexibility to the SPVWP system and to
make it more autonomous, a simple controller and tank full of sensors could be
introduced, which is still cheaper and less complicated than an inverter for AC
motors.

9.2 Weaknesses

a. High initial investment: The high investment cost is the major obstacle in
the development of SPVWP in rural areas. It is the first limitation of the use
of SPVWP applications. While the reduction of LCOE can be controlled if
the balance of system costs were individually reduced. But generally, SPVWP
systems are still a cost-effective application for the remote population in
morocco.

b. Lack of cooperation and materials: For the defensible development of the
solar energy DC systems need to be imported and developed comparing to
AC devices. As well as the performance of DC Systems is developed, public
recognition will grow toward a large-scale use of Nevertheless, the lack of
coordination and structuration is still a real weakness in rural areas.

c. The poverty of rural population: The fundamental human needs are food,
water, health care, hygiene, sanitation, and education. All these conditions
are linked to pure water. The solar pumping systems could guarantee an
unceasing water supply and outstanding agricultural production. But, in almost
all Moroccan rural communities, drinking water is still the major problem for
most groups, thus the solar systems have not attained a noticeable success yet.
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9.3 Opportunities

a. Grid parity achievement: All over the world, PV module costs are falling
swiftly to such an extent that some of them had already achieved solar grid
parity i.e., the price of electricity from solar PV is equal to or lower than the
conventional fossil fuel-based electricity. The opportunity of achieving grid
parity also lies in the mitigation of the cost of solar supportive components like
solar inverters and installation costs.

b. Increasing efficiency of solar pumping configuration: With the rising effi-
ciency of the PV materials, prices of DC pumps and PV panels are rapidly
decreasing. In morocco, direct coupling with MPPT regulation showed their
efficiency especially by using more efficient materials and drip irrigation. Those
configurations offer a cost-effective opportunity to solar energy development in
the region.

c. Financing for the solar system: The “Credit Agricole Maroc” developed the
program financing around 3000 solar pumping systems off-grid. Moreover,
new financing instruments are presented by the Moroccan Sustainable Energy
Financing Facility for rural communities (BERD).

9.4 Threats

a. Conventional technologies: Among themost ferocious threats to any renewable
project, still remains fossil-based technologies as the real obstacle. For the reason
that they produce energy at low prices, as they have enormous experienced
experts, operators, and technical staff, looked to renewable energy which is still
slightly integrated at a large-scale.

b. Lack of balance of systems: A second major threat to the development of solar
energy is the absence of support products in the Moroccan market. Products
such as regulators, inverters, and DC terminal devices.

Following our SWOT analysis, it is possible to transform weaknesses into
strengths and convert threats into opportunities. On the other hand, strengths and
opportunities must be combined to optimize water resources and properly integrate
solar energy into agricultural practices. The Summary of the SWOT analysis of solar
energy is given in Fig. 24.

As a source of renewable energy and opportunities for rural and remote popula-
tions, solar irrigation offers a potential solution to agriculture and small businesses
to resize rural metabolism. This strategic intent puts citizens, farmers, factories, and
laboratories at the heart of this multifaceted transition. It gives a new perspective to
our society and a key model for MENA countries and African agriculture.

Under theMoroccan sun, irrigation is needed for most of the year, but irrigation is
expensive for many farmers. Solar energy pumps offer an environmentally friendly,
economical, and robust solution; there is a growing interest in photovoltaic water.
An effective way to reduce costs in agriculture is to use renewable energy.
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Fig. 24 SWOT analysis summary

Based on our empirical results, we developed recommendations that would allow
the positive effects of solar pumping and validate direct coupling systems as being
suitable for small and medium-sized crops. In this study, drip irrigation costs little
maintenance. However, direct-coupled solar systems need to be integratedwith solar-
based MPPT and electronic control systems and other climate variability data to
improve system performance.

In general, for small-scale irrigation, direct linkage with MMPT regulation seems
most appropriate for family farming and the investment capacity of farmers.

Solar pumps havemany benefits and can have a significant impact on rural society.
This is the first application to familiarize farmers with renewable energies and to
reorient agriculture toward sustainability for more renewable energy integrations.

Then a solar pump can provide lighting, irrigation, livestock; or water to agricul-
tural biomass. The hybrid system should be seen as the next step in transforming
farms into self-sufficiency and surplus production.

As the results show, the unused energy accounts for almost 50% of the total energy
produced at the pump. That can be stored electrically and used to illuminate and raise
animals, or used to provide water to a biomass plant. The results of the simulation
include a large amount of significant data and quantify losses at all levels of the
system, which helps identify weaknesses in system design. The recorded CO2 is also
produced and calculated using the PVSYST digital tool.

In both cases study, PVSPWs show their annual performance, the analysis of
losses, It’s necessary to indicate that head losses such as head loss due to pipe
elbows, tank entrance and exit losses, and the head loss across banks of collectors
in series shall also be included in the system head loss. Consequently, researchers
should be aware of that fact.

Some limitations might be related to collecting our data, like the absence and the
omission of some important variables.
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National interest was accorded with a colossal nation investment through Green
Plan Morocco to cover Initial costs. But, it seems familial agriculture suffer the poor
infrastructure and weak management of water and matter.

Moreover, socio-economic development varies from one country to another, even
in the same country. Although an appropriate technical solution in one regionmay not
be appropriate in another. In developed countries, SPVWPs are generally intended for
livestock and holiday homes, but in developing countries, applications are severely
limited to drinking water and micro-irrigation applications. Thus, photovoltaic solar
water pumping is a cost-effective application in remote areas. The reliability of solar
pumps makes them the best choice for pumping agricultural water in developing
countries.

In future works, big interest will be accorded to biomass and hybrid systems
to consolidate the part of Green technologies in Moroccan agriculture. This makes
clear that sustainable agriculture is the first key stage to assess “Industrial ecology
and Social metabolism.”

The links between agriculture and industrial ecology is the energy future of
Morocco, while reasoned irrigation can raise questions and establish the objectives
of biomass and energy vegetation (colza, corn…).

Furthermore, Green technologies have the ability to familiarize and integrate rural
populations and educate their children. Moreover, agriculture can teach urban sphere
ways on how to conserve water and energy.

10 Conclusion

As a source of renewable energy and opportunity for rural and remote populations,
solar irrigation offers a potential solution to agriculture and small businesses to
resize rural metabolism. Under the Moroccan sun, irrigation is needed for most of
the year, but irrigation is expensive for many farmers. Solar energy pumps offer an
environmentally friendly, economical, and robust solution. The results derived from
a series of simulations reveal that an increase of 30% in annual performance and a
decrease of 10% of system losses are observed when using an MPPT DC converter
for small and medium-sized crops. In addition, cost comparative analysis revealed
that LCOW of SPVWP is significant, approximately in the range of 0.08US/m3,
which is very competitive compared to other sources.

Based on empirical results, the author recommendations may allow the positive
effects of solar pumping and validate direct coupling systems as being suitable for
small and medium-sized crops. Moreover, direct-coupled solar systems need to be
cohesive with solar-based MPPT and electronic control systems to improve system
performance. In general, for small-scale irrigation, DC with MPPT regulation seems
most appropriate for family farming and the investment capacity of farmers.
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Globally, this work revealed a significant potential of the agro-pole Meknes-Fez
to hold more than 17,000 solar pumps with capacities between 0.6 up to 40 kW. This
proves that solar pumping must be widely considered as the most suitable solution
to manage water and reduce almost agricultural CO2 emissions.

Solar pumps havemany benefits and can have a significant impact on rural society.
It is the first step to familiarize Moroccan farmers with renewable energies and to
reorient agriculture toward sustainability. Froman economic and environmental point
of view, those systems prove to be a key answer to develop one of the most ambitious
renewable energy suppliers for water pumping inMorocco and especially to promote
the main economic sector which is agriculture. The projected approach can fulfil as
a reference for evaluation studies of water management in Morocco, in particular for
ambitious social and agro-economic development programs in remote areas.
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Abstract In this chapter, a proposed indirect field oriented control (IFOC) based
induction motor drive for solar PV water pumping system (SPVWPS) powered by
the two-level inverter is presented. The proposed scheme aimed at enhancing the
performance and the dynamic response of the PV system. It consists of operating
the induction motor at optimal reference flux which leads to improve the overall
efficiency of the SPVWPS. The proposed IFOC scheme will be investigated experi-
mental implementation using the dSpace DS1005 board. The proposed SPVWPS is
evaluated and compared with the conventional IFOC under reel climatic conditions.
Experimental results illustrate the effectiveness of the suggested control strategy in
terms of pumped water, minimization of absorbed current, and overall efficiency.
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1 Introduction

Renewable energy sources based water pumping system are being used increas-
ingly because they reduce the CO2 emissions and environmental pollution. Among
these renewable energy sources, solar photovoltaic, solar thermal, wind, biomass and
hybrid forms of energy [1, 2]. The use of solar photovoltaic can be considered as the
best way to feed the water pumping system because it is boundless, clean, and freely
available [3, 4].

Generally, two categories of motors are used for the water pumping system: DC
and AC motors. Each one has its pros and cons [5, 6]. AC motor, especially the
induction motor (IM) is often utilized due to its robustness and low cost [7, 8].
Several control strategies have been suggested in the literature to drive the IM [9–
11]. Indirect field oriented control (IFOC) is the most used technique to control the
IM because of its robustness and faster response [12]. Therefore, several studies have
been developed and investigated by many researchers to improve the IFOC [13, 14].

Tir et al. [15] introduced a fuzzy logic controller to enhance the performance of
the IFOC. Son t Nguyen et al. [16] proposed IFOC incorporating the artificial neural
network. Boujoudi et al. [17] proposed indirect field oriented control with the sliding
mode control. El Bourhichi et al. [18] integrated multilevel inverter to enhance the
performance of the IM controlled by IFOC. In this chapter, an optimal operation
design of a solar PV water pumping system using an induction motor is proposed.
Most of the previous studies use a constant value of reference flux [19, 20]; however,
this constant value doesn’t provide the optimal operating of the system. Therefore, a
proposed technique which consists of selecting the optimal reference flux based on
the copper losses to improve the efficiency of the SVPWPS.

Then, a hardware implementation is effectuated to prove the real-time perfor-
mance of the proposed PV system. Different controllers can be used to validate
the efficacy of the control system [21, 22]. Many authors used DSP TMS320F2812
and FPGA to implement their developed control strategies [23–25]. However, soft-
ware programming must be developed by the users, which requires time-consuming
process. In this work, an embedded implementation based on dSpace 1005 board
without any developed complex coding is effectuated. The dSpace DS1005 board
and MATLAB/Simulink tools allow us to generate the control algorithm. Moreover,
the programming task becomes simpler using the library blocksets. Then, the gener-
ated code can be loaded directly to the dSpace 1005 board for the real-time hardware
process.

2 Design of the Proposed Solar Photovoltaic Water
Pumping System

The configuration of the proposed solar PV water pumping system is illustrated in
Fig. 1. An inductionmotorwhich its parameters are provided in Table 1 is selected for
experimental validation. The design of the PV system values is grouped in Table 2.
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Fig. 1 Block scheme of the proposed SPVWPS

Table 1 Motor parameters Stator resistance Rs and inductance ls 1.8 [�] and 0.104 [H]

Rotor resistance Rr and inductance lr 2.227 [�] and 0.104 [H]

Inertia J 0.0588 [Kg.m2]

Mutual inductance M 0.0959 [H]

Number of pole pairs p 4

Viscous Friction f v 0.1352 [N.m.s/rad]

Table 2 Parameters design
of PV system

Component Symbols Expression

DC link voltage V ∗
dc V ∗

dc = 2
√
2√
3
VLL

DC link capacitor Cdc Cdc = 6aVLL It[
V ∗2
dc −V 2

dc

]

Duty ratio α α = Vdc−Vmp
Vdc

Inductance of the boost converter L pv L pv = αVmp
�I fs
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3 Control Strategies for Proposed PV System

3.1 Indirect Field Oriented Control

When the indirect field oriented control is used, the flux is not regulated. This is
given by the setpoint value and oriented from the angle θs which is obtained from the
stator pulsation ωs. Hence, this method eliminates the use of the sensor or observer.

In the synchronous reference frame, the equations of the stator and rotor voltages
of the induction machine can be expressed by [15]:

{
Vds = Rsi ds + d

dt φds − wsφqs

V qs = Rsi qs + d
dt φqs + wsφds

(1)

{
0 = Rr i dr + d

dt φdr + wsrφqr

0 = Rr i qr + d
dt φqr + wsrφdr

(2)

The implementation of rotor flux-oriented vector control is based on the orienta-
tion of the rotating coordinate system of axes d-q, such that the axis d is coincident
with the direction of φr (Fig. 2).

This means that the flux component is oriented on the d-axis, that implies [26]:

{
φdr = φr

φqr = 0
(3)

Therefore, the rotor voltages are expressed by:

Fig. 2 Vector diagram in stationary and rotating reference frame
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{
0 = Rr i dr + d

dt φdr

0 = Rr i qr + wsrφdr
(4)

And the components of flux are given by:

{
φds = l sσ i ds + M

lr
φdr

φqs = l sσ i qs
(5)

Hence, the stator voltages are expressed by:

{
Vds = Rsi ds + σ l s d

dt i ds + M
lr

d
dt φdr − wsσ l s i qs

V qs = Rsi qs + σ l s d
dt i qs + ws

M
l r

φdr + wsσ l s i ds
(6)

3.1.1 Estimation of ws and θ s

In this control strategy, the stator pulsation is determined indirectly from the
measurement of the mechanical speed as follows:

wsr = M
Tr

iqs
φdr

(7)

Therefore, we obtain:

ws = pΩ + M
Tr

iqs
φdr

(8)

We can note that the appearance of the rotor time constant (Tr ) influences on the
performance of this control strategy.

The position of stator flux is given by:

θ s = ∫wsdt (9)

3.1.2 Electromagnetic Torque

The expression of the torque becomes [27]:

Tem = p
M
Lr

φ r i qs (10)
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Equation (10) shows that by applying the indirect field oriented control, the
electromagnetic torque can be controlled with q-axis stator current.

The equations of the IM can be expressed as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vds =
(
Rs + Rr

M2

l2r

)
i ds + σ l s d

dt i ds − M
l2r
Rrφdr − wsσ l s i qs

V qs =
(
Rs + Rr

M2

l2r

)
i qs + σ l s d

dt i qs + M
lr
wφdr + wsσ l s i ds

ws = pΩ + M
Tr

iqs
φdr

T r
d
dt φdr + φdr = Mids
T em = p Lm

Lr
φ r i qs

J dΩ
dt = Tem − T l − f vΩ

(11)

The equations of the IM can be also written by considering φqr = 0 as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

di ds
d t = − 1

σ l s

(
Rs + Rr

M2

l2r

)
i ds + wsi qs + 1

σ l s

(
M
l2r
Rr

)
φdr + 1

σ l s
V ds

diqs
d t = −wsi ds − 1

σ l s

(
Rs + Rr

M2

l2r

)
i qs − 1

σ l s

(
M
lr

)
wφdr + 1

σ l s
V qs

dφdr
d t = M

lr
Rr i ds − Rr

lr
φdr

J dΩ
dt = Tem − T l − f vΩ

(12)

From Eq (12), it can be seen that the stator voltages Vds and Vqs depend on both
current components ids and iqs which leads to an influence on the flux and the torque.
Therefore, a decoupling process must be introduced

3.1.3 Decoupling Controller

Different decoupling techniques are proposed in the literature. In this paper, the
decoupling compensator technique is used. Therefore, Eq (6) can be written as
follows [28]:

{
Vds = (Rs + sσ l s) i ds − wsσ l s i qs

V qs = (Rs + sσ l s)i qs + ws
M
lr

φr + wsσ l s i ds
(13)

where:
s is the derivative operator
The decoupling is achieved by choosing voltage commands such that:

{
V ∗

ds = (Rs + sσ l s) i ds = Vds + wsσ l s i qs = Vds + eds
V ∗

qs = (Rs + sσ l s) i qs = Vqs −
(
ws

M
lr

φ r + wsσ l s i ds
)

= Vqs − eqs
(14)
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Fig. 3 The obtained controls

Inverter
+

Induction 
motor

+ +

+
-

Fig. 4 Reconstruction of Vsd and Vsq

Hence, the actions on the (d, q) axis are decoupled and illustrated in the figure
(Fig. 3).

The voltages Vsd and Vsq are obtained from the voltages Vsd * and Vsq* (Fig. 4).

3.2 Global Scheme of IFOC

The global control scheme of IFOC is shown in Fig. 5. It’s composed of:

• Coordinate transformations
• PWM algorithm
• Current controllers
• Speed regulation loop using PI controller.
• An association of VSI-IM.
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Fig. 5 The global control scheme of indirect field oriented control

3.3 Pulse Width Modulation (PWM)

3.3.1 The 3-Phase Inverter

The scheme of a two-level voltage source inverter is shown in Fig. 6, where Va , Vb,
Vc are the voltages applied to the star-connected motor windings, and Vdc presents
the continuous inverter input voltage.

n

a b c

a ‘ c’

Fig. 6 Two-level VSI
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The two-level VSI is composed of six switches that can be BJT, GTO, IGBT…
depending on the used system and the operating of these devices must respect the
following conditions:

• Three switches must all-time be ON and three all-time OFF.
• In order to avoid the vertical conduction and to guarantee that there is no overlap

in the power switch transitions, the upper and the lower switches located in the
same leg is controlled by two complementary pulsed signals.

Different PWM methods have been elaborated to control the VSI. The choice of
the technique depends on several parameters such as the type of machine that will
be controlled, the semiconductors used in the inverter, the value of the power.

Figure 7 illustrates the inverter voltage vectors (V0–V7) [29].

Fig. 7 The eight inverter voltage vectors (V0–V7)
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Fig. 8 PWM method

3.3.2 Sinusoidal PWM (SPWM)

To obtain the required control signals, we use the technique based on a comparison
between a sine wave at low frequency (modulation signal) and a high-frequency
carrier triangle signal (Fig. 9). The output control signal is equal to 1 when the
modulation signal is greater than the carrier signal and zero otherwise (Fig. 8) [30]:

This sinusoidal PWM process is shown in Fig. 8.
The use of the SPWM technique is characterized by its simplicity and allows it

to eliminate specific harmonics (Fig. 9).

3.4 Proposed Control Strategy

The proposed method consists of operating the PV water pumping system at the
optimal reference flux. This is achieved by minimizing the losses of the induction
motor. In this paper, based on the copper losses of the IM, the efficiency optimization
is obtained. The equivalent circuit of the IM in (d, q) frame is illustrated in Fig. 10.
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Fig. 9 SPWM technique

M

Fig. 10 Equivalent circuit in of IM

Based on the stator and rotor currents, the copper losses can be expressed as:

Pc = Psc + Prc = Rsi2s + Rr i2r (15)

The expression of the stator copper losses can be written as follows:

Psc = Rs(i2ds + i2qs) (16)
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The expression of the rotor copper losses can be written as follows:

Prc = Rr(i2dr + i2qr) (17)

The rotor currents in terms of rotor flux and components of stator current are given
by:

i dr = 1

Lr
φr − M

Lr
i ds (18)

i qr = M
Lr

iqs (19)

Therefore, the expression of the rotor copper losses is given by

Pcur = Rr

(
M
Lr

)2

i2qs (20)

On the other hand, the stator current components can be expressed by:

i ds = φ r

M
(21)

i qs = Tem
Lr

Mpφ r
(22)

Hence, the total copper losses are given by:

Pc = Rsi2ds +
(

(Rr

(
M
Lr

)2

+ Rs

)(
Tem

Lr

pM2 i ds

)2

(23)

d Pc

di ds
= 0 (24)

By solving the Eq. (24), the direct current ensuring the optimal flux is expressed
by eq (25)

I dsopt = Kopt i qs (25)

where

Kopt =
√

1 +
(
M
Lr

)2 Rr

Rs
(26)
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4 dSpace 1005 Controller

4.1 Overview

An experimental implementation is conducted to validate the proposed technique
based on real-time interface using dSpace 1005 board. The bloc diagram of dSpace
card DS1005 is illustrated in Fig. 11. It contains a PowerPC 750GX processor
operating at 480 MHz and has 128 MByte SDRAM global memory (64 MB for
the PowerPC separately arbitrated), 16 MByte Flash memory (1 MB reserved for
booting) and 1 MByte, level 2 external cache memory. The dSpace controller
provides also an interrupt handling. Moreover, three timers are provided to the
PowerPC 750GX. The data transmission between the dSpace 1005 and host-PC
can be effectuated by using the ISA port or PCI via an adapter.

The dSpace system incorporating the used test bench includes other boards to
ensure the control of the proposed PV system (Fig. 12).

The DS2102 board ensures the D/A conversion to control the actuators. It consists
of:

– 6 parallel D/A converters
– 16-bit resolution
– ±5 V, ±10 V or 0 … +10 V output voltage range (programmable)

Fig. 11 Bloc diagram of dSpace 1005 board



448 M. Errouha et al.

Computer 
(MATLAB/Simulink) 

dSpace 
D1005

DS2102 D/A

DS2004 A/D

Plant 

Voltage 
amplifier

Signal
Condi oner

Fig. 12 Configuration diagram of the dSpace controller with SPVWPS

The DS2004 board is utilized in dSpace modular to ensure the A/D conversion at
high sample rates. It consists of:

– 16 A/D input channels (differential)
– 16-bit resolution
– ±5 V or ±10 V input voltage range (programmable for each channel)

The DS5101 board is used to produce PWM signals. It consists of:

– Time resolution of 25 ns.
– 16 PWM outputs

The DS3002 speed board is introduced for incremental encoders. It consists of:

– 6 input channels

4.2 RTI Library

The dSpace 1005 controller board must be connected with the simulation model
for completing the control processes. Therefore, a control system block is simu-
lated using real-time interface (RTI) library of DS 1005 card (i.e., rtilib1005). This
library contains the RTI blocks to obtain the I/O functions which allow to determine
configurations of the hardware for real-time processes.Moreover, rtilib1005 provides
required information, additional RTI blocks, and demo models (Fig. 13).

4.3 ControlDesk

ControlDesk software is used as a real-time interface and data storing the tool. This
software provides the user with a working environment during all experimentation
process and executes all required tasks. To validate the simulation program realized in
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Fig. 13 RTI board library

Matlab/Simulink, the control part of the simulation is incorporated into ControlDesk
to carry out the experimental part using the real-time dSpace 1005 applications
(Fig. 14). To create the ControlDesk graphical user interface, online help can be
used.

Fig. 14 ControlDesk interface
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5 Experimental Validation

A prototype test bench is developed in the laboratory in order to test the proposed
control strategy. It is composed of a solar simulator to produce the programmable
characteristics of PV panels, a DC-DC converter, a VSI, IM, and dSpace 1005
controller board to execute the control and MPPT algorithms. The hall effect current
and voltage sensors are also utilized to sense the required currents and voltages. A
DC generator and resistance load are employed to emulate the characteristics of the
pump. The dSpace board also gives the gating pulses to the power converters. IGBTs
drivers function according toCMOS logic (0–15V)while the digital I/Oof the dSpace
controller operate according to TTL logic (0–5 V), therefore, the optocouplers are
introduced to ensure the isolation and adaptation. An emulated irradiance profile
(Fig. 15) using PV emulator is utilized to evaluate the behavior of the proposed
SPVWPS. Perturb &Observe technique is employed to provide the duty cycle which
ensures themaximumpower. During this experience, the proposedmethod and IFOC
are compared.

Figures 16 and 17 illustrate the extracted power and the rotor speed of the IM,
respectively. Figures 18a and 19a show the mechanical power of the induction motor
for both techniques. According to Fig. 19.a the power mechanical is higher using the
proposedmethodwhich proves theminimization of themotor losses. Figures 18b and
19b show the direct and quadratic stator currents (isd, isq). The direct stator current
is reduced using the proposed technique which leads to reduce the flux, therefore,
the copper losses is minimized and energy saving. Contrary to IFOC, the direct
current remains constant in all operating process. Figures 18c and 19c show the
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Table 3 Performance comparison

Publication Control strategy Direct Stator current
(reference flux)

Loss minimization

[15] Fuzzy logic controller Fixed value No

[16] Artificial neural network Fixed value No

[17] Sliding mode Fixed value No

[18] Multilevel inverter Fixed value No

Proposed method Improved IFOC Variable value
(optimal reference)

Yes

overall efficiency of the solar PV water pumping system calculated using Eq (27).
Using IFOC, the efficiency of the SPVWPS attains 30%. Contrary to the proposed
technique, the efficiency of the SPVWPS reaches 40%which proves the robustness of
the proposed control strategy. Table 3 illustrates a comparison between the proposed
method and other techniques used to improve the IFOC.

Efficiency = Mechanical Power
PV Power

(27)

6 Conclusion

In this chapter, the optimization of an indirect field oriented based IMdrive in terms of
absorbed current reduction and energy consumption is performed. Thus, the proposed
method is designed for SPVWPS applications. In addition, an embedded implemen-
tation using dSpace 1005 board is effectuated. Experimental results illustrate that
the proposed IFOC gives a good dynamic response, minimizes the motor losses, and
improves efficiency.Moreover, during all the operating of the SPVWPS, the proposed
method keeps searching the optimal flux which ensures the efficiency improvement.
Therefore, the proposed optimal IFOC can be utilized successfully in SPVWPS
applications in remote areas.
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Single-Phase Grid-Connected
Photovoltaic H-Bridge N-Level Inverter
Control Strategy

Abdelaziz Fri, Rachid El Bachtiri, and Salah-Eddine Lhafdaoui

Abstract In this chapter, we present a novel control strategy for a single-phase
cascaded H-bridge multilevel inverter in a grid-connected solar PV system. Unlike
the known grid-connected inverters controls using a DC/DC converter for the MPPT
pursuit, our control technique offers an MPPT algorithm for each PV module by
handling its corresponding inverter only. The inverter connection of the grid is made
through an LCL filter due to its ability to reduce harmonics instead of a simple
inductance filter. To relieve the resonance phenomenon through the capacitors and
inductors, a passive damping resistor is connected in series with the capacitor. We
have used both controllers PI and PR, respectively, on the synchronous reference
frame dq and the stationary reference frame αβ. The main purpose is to eliminate
significant harmonics (3rd, 5th, and 7th) using our novel controller in order to improve
the quality of the injected energy into the grid. By controlling the active and reactive
power, we have proved that the PI controllers cannot track the sinusoidal references
without a steady error in the synchronous reference frame dq. Furthermore, the PR
controller has better performances and is more interesting for controlling the DC/AC
converters. Indeed, in the stationary reference frame αβ, the PR controller gives
a static error near zero for sinusoidal currents. Moreover, injected current quality
improvement due to the most dominant odd harmonics elimination (3rd, 5th, and
7th) is insured by the HC. The adequate drive pulses are generated by a proportional
modulator algorithm.
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1 Introduction

Electrical production from photovoltaic panels (PV) gives DC voltage. So, the use of
inverters is a compelling solution to convert the output voltage to the alternative form.
The increase of the electric power, in stand-alone or grid-connected PV systems,
leads to increase in the switched current. That’s why, the increase in voltage is often
privileged, to improve the performance of the installation. In all cases, it’s difficult
to handle semiconductors who undergo deterioration of their dynamic and static
performances [1–3].

The use of conventional inverters with two levels and high switching frequencies
is limited due to the large switching lasses in the devices. In addition, the inverter
voltage waveform has a significant distortion, which requires harmonic filtering. To
overcome this problem, multilevel inverters in medium and high powers applications
is suggested by several studies [4–6].

Multilevel inverters reduce stress on the power switches of the structure on one
hand and improve waveforms (harmonic spectrum) of the output voltage. On the
other hand, concerning the quality of the output multilevel inverters voltage, some
works, comparing different topologies, have shown that H-bridge inverter is the most
suitable for photovoltaic systems [4–7].

Active and reactive power of a grid-connected multilevel inverter could be
controlled by acting on the voltage at the point of common coupling PCC (Voltage-
mode control) or on the inverter output current (Current-mode control). In the last
case, iin current is influenced by vin voltage (Fig. 1). Actually, power is controlled
by the phase angle and the current magnitude in regard to the voltage vg at the PCC.

Fig. 1 PV system with a grid-connected multilevel H-bridge inverter
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Thus, the inverter is protected against overloads finks regulation of the current. In
addition, this control mode has more advantages such as stoutness toward the PV
system and the grid parameters, advanced dynamic performances, and high control
precision [8, 9].

In this chapter, we present a novel control strategy for a cascaded H-bridge multi-
level inverter for grid-connected PV systems. It is the multicarrier pulse width modu-
lation strategies (MCSPWM), a proportional method (Fig. 5). Unlike the known
grid-connected inverters control based on the DC/DC converter between the inverter
and the PV module for the MPPT pursuit, our command mode offers for an MPPT
algorithm using the H-bridge inverter only.

Otherwise, the main motivations of choosing an LCL filter instead of a simple
inductance are mentioned in Sect. 2. The resonance (of the capacity) of the
electromagnetic interference filter is passively amortized due to a resistor [10, 11].

We have used PI and PR controllers to drive a multilevel inverter, respectively, on
the synchronous reference frame dq and the stationary reference frame αβ. The main
purpose is to eliminate significant harmonics (3rd, 5th and 7th) using the phase-
shifted carrier PWM (PSCPWM) technic to improve the energy quality [12–14].
Indexmodulation for each inverter cell is generated as the ratio between the produced
power by the corresponding PV panel PPVi (PPVi; i = 1..C) and the PV total power
PT.

The remaining of the presentation proceeds as the second section presents the
modeling and frequency analysis of the LCL filter. The third section shows the
global structure of the suggested system in this work. The fourth section details the
control strategy proposed for injecting current into the grid: Firstly, we introduce
the expression of the dynamic modeling for de current control. Secondly, we present
the current control in the dq reference frame and in the stationary reference frame
αβ, respectively. Based on the quality of the resonant proportional PR controller,
we win detail in our design position of an adaptive PR controller. Finally, processes
the DC bus voltage control at the input of each H-bridge celli. The last section is a
representation of our design PSCPWM proportional modulator. Finally, we will give
our conclusions and remarks.

2 The LCL Filter

We have used a passive filter to connect the inverter to the grid. This LCL filter was
designed in order to:

• Allow the current dynamic regulation, defined as:

∂ig(t)

∂t
= ∂iref(t)

∂t
(1)
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• Stop the harmonics generated by the switching, in the grid.

LCL filter can easily decrease the switching harmonics caused by the MCSPWM
controller. However, the filter frequency response presents a resonance peak (Fig. 4).
The passive filter design depends on how a reduction rate is needed in the line current
harmonics.

According the international standard IEC-1000-3-4 related to current harmonics,
we have used our filter to reduce harmonics above 33rd rank under 0.6% of rated
current [10, 11].

2.1 Modeling and Transfer Function

To design the LCL filter we have taken into consideration the current ripple, the
reduction of the size, the attenuation of the switching effect, and the reactive power
diminution [11]. A resonance frequency peak could lead to an unstable operation
due to capacitor Cf (Fig. 4). Therefore, a resistor Rd is connected in series with the
capacitor for passive damping.

Figures 2 and 3 show, respectively, the electrical circuit and the block diagram of
the LCL filter.

Based on the Kirchhoff laws, the filter model can be expressed as follows:

iin − ic − ig = 0 (2)

Fig. 2 Electrical circuit of
the LCL filter

Fig. 3 Block diagram of the
LCL filter
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vin − vc = iin(sLi + Ri ) (3)

vc − vg = ig
(
sLg + Rg

)
(4)

vc = ic

(
1

sC f
+ Rd

)
(5)

The transfer function of the LCL filter HLCL(s) is:

HLC L(s) = ig(s)

vin(s)
(6)

To calculate HLCL(s), some mathematical calculations are required. Vg voltage is
assumed to sinusoidal, and it can be short-circuited for harmonics. In this case since
Vg = 0, we have from Eqs. (4) and (5):

ig
(
sLg + Rg

) = ic

(
1

sC f
+ Rd

)
⇒ ic = ig

sC f Rg + s2C f Lg

1 + sC f Rd
(7)

Inserting Eqs. (4), (5) and (7) in Eq. (3), the inverter output voltage can be written
as follows:

vin = ig
(
sLg + Rg

) + (
ig + ic

)(
sLi + Ri

) = ig
(
sLg + Rg

)

+
(

ig + ig
sC f Rg + s2C f Lg

1 + sC f Rd

)
(
Ri + sLi

) (8)

⇒ vin = ig(Ri + Rg + s
(
Li + Lg

) +
(

(sLi + Ri )
(
sC f Rg + s2C f Lg

)

1 + sC f Rd

)

(9)

Considering Eq. (7), the transfer function can be given as:

HLC L (s)

= s Rd C f + 1

s3Li LgC f + s2C f
(
Lg

(
Rd + Ri

) + Li
(
Rd + Rg

)) + s
(
Li + Lg + C f

(
Rd Ri + Rd Rg + Ri Rg

)) + Ri + Rg

(10)

If we neglected the inductor’s resistances, HLCL(s) becomes:

H ′
LC L(s) = s RdC f + 1

s3Li LgC f + s2C f Rd
(
Li + Lg

) + s
(
Li + Lg

) (11)

If we neglect also the damping resistor Rd then H’LCL(s) becomes:
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H ′′
LC L(s) =

1
LgC f

sLi

(
s2 + Li +Lg

Li LgC f

) =
1

LgC f

sLi
(
s2 + ω2

res

) (12)

ωres is the resonance pulse.

ω2
res = Li + Lg

Li LgC f
⇒ fres = 1

2π

√
Li + Lg

Li LgC f
(13)

2.2 Frequency Analysis

The frequency transfer function of the filter is gathered by replacing s with jnω in
Eq. (14), n is the harmonic rank. The modulus of the transfer function is written as
follows:

∣∣H ′′
LC L( jnω)

∣∣ =
∣∣∣∣

ig( jnω)

vin( jnω)

∣∣∣∣ =
1

Li LgC f

nω
(
−(nω)2 + Li +Lg

Li LgC f

) (14)

According to the Bode diagram (Fig. 4), if the damping resistor Rd increases, the
admittancemagnitude decreases, so, the filter impedance increases. A highly damped
filter is able to reduce high-rank harmonics and stop them to spread in the grid. The
filter output current can be used as a control variable, implying that the LCL filter is
properly damped.

3 Grid-Connected H-Bridge Multilevel Inverter Control

Figure 5 shows the general structure of the suggested system in thiswork. It represents
the blocks and loops for the control of a grid-connected multilevel inverter:

• MPPT blocks;
• Grid synchronization and dq values calculator block (Grid observer);
• DCi voltage regulation loop;
• Current control loop;
• PSCPWM proportional modulator.

Based on each PV voltage and currentmeasurements, the PPVi power is calculated,
and consequently the total power PT is determined. The ratio αi = PPVi

PT
depends on

the modulation index Mi of the matched H-bridge celli. The MPPT blocks generate
references voltages Vrefi that matches the MPPi in the power control external loop.
The current regulation block provides the control law of the grid-injected current.
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Fig. 4 Bode diagram with and without the damping resistor

Fig. 5 Global scheme of the system control

Figure 6 presents our novel input power control strategy of the system without
using the DC/DC converter. The power downstream correction is one of the new
features in this proposition [15].
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4 Control of the Injected Current into the Grid

Two types of controllerswill be detailed in this section.API controller in synchronous
reference frame dq rotating at the speed ωg whose θg = ωg.t is the rotation angle,
and a proportional resonant controller in the stationary reference frame αβ. Our
contribution is based on the last one, eliminating the 3rd, 5th, and the 7th current
harmonics [16].

4.1 Dynamic Modeling for the Current Control

Some simplifications must be taken into account to establish the current controller.
For example, the LCL filter can be considered as an inductor L = Li + Lg in series
with R = Ri+ Rg, while neglecting the damping resistor and capacitor. The inverter
output voltage is:

vin = L
∂ig

∂t
+ Rig + vg (15)

⇒ ∂ig

∂t
= 1

L
vin − R

L
ig − 1

L
vg (16)

An approach often adopted for the analysis of the electrical system uses the
synchronous reference frame dq or the stationary reference frame αβ [6].

Considering that specific feature of the dq reference frame is that the space vectors
have constant magnitude parameters rotate at the same speed as the reference frame.
Then ωgigd and ωgigq must be added to the dynamic currents igd and igq.

The mathematical model in the dq reference frame for the pulse ωg is given as
follows:

{
∂igd
∂t = 1

L (vind − Rigd − vgd ) + ωgigq
∂igq

∂t = 1
L (vinq − Rigq − vgq ) − ωgigd

(17)

The matrix form of the multilevel inverter’s output voltage is:

(
vind

vinq

)
= R

(
igd

igq

)
+ L

∂

∂t

(
igd

igq

)
+ Lωg

(−igq

igd

)
+

(
vgd

vgq

)
(18)

The PI controller block diagram of a grid-connected inverter in the dq reference
frame is shown in Fig. 7.

The mathematical model of the αβ reference frame is:
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Fig. 7 Current control at the
dq reference frame

{
∂igα

∂t = 1
L (vinα

− Rigα
− vgα

)
∂igβ

∂t = 1
L (vinβ

− Rigβ
− vgβ

)
(19)

The PR+HC controller block diagram of a grid-connected inverter in the αβ

reference frame is shown in Fig. 8.
The transfer matrix from the dq reference frame to the αβ reference frame is:

Fig. 8 Current control in the
αβ reference frame
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(
vgα

vg

)
=

(
cos(θg) −sin(θg)

sin
(
θg

)
cos

(
θg

)
)

.

(
vgd

vgq

)
(20)

4.2 Reference Current Generation

The input power control enables the generation of the reference maximal direct
current Îg,refd.While neglecting the inverter internal losses and theLCLfilter inductors
stored energy, the total instant power provided by the PV panels is the sum of all the
instant powers gathered by the capacitors and sent to the grid.

PT =
C∑

i=1

VPVi × IPVi =
C∑

i=1

pci + Pg (21)

Pg = PT −
C∑

i=1

pci = √
2 × Vg × Îg,re fd (22)

We assume a unity power factor (cos(φ) = 1), the reference current is calculated
by:

⇒ Îg,re fd = PT√
2 × Vg

− Îd (23)

The second term of Eq. (23) presents the stored power inside the capacitors Ci.
Those variations are due to theMPPTblocks expressed by a direct current Î d , Eq. (23)
can be written as follows:

⇒ Îg,re fd = Î ∗
g,re fd

− Îd (24)

We use the synchronization angle θ ˜ delivered by the PLL block, the inverter
reference current ig,refd (Eq. 23)

ig,re f = Îg,re fd × sin
(
θ̃
)

(25)
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Fig. 9 Current control loop

4.3 Direct Control of the Grid-Injected Current

The direct current control (Fig. 9), needs both the magnitude and the phase of the
injected current. This type of controllers does not allow the reactive power control
because the reference current is considered indecomposable [7].

4.4 Current Control in the Dq Reference Frame

We consider the command strategy given in Fig. 7, where the reference current
ig,refd and ig,refq gathered from the external control loop, the current ig,refq is chosen
to be zero to eliminate the reactive power injected into the grid.

In the ideal case, where the PV system generator provides active power only, the
control loops d and q have the same dynamic. The proportional and the integral gains
(Kp and Ki) settings of the current adjustment are done for the d axis considering
the q axis ones are the same. Thus, the current control loop in the dq reference frame
is given as follows (Fig. 10).

The transfer functions of the block diagram above are:

• PI controller transfer function:

CP I (s) = K p + Ki

s
(26)

• Transfer function of calculation time:
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Fig. 10 The direct current control loop by the PI controller

Gcal(s) = 1

1 + sTs
(27)

Ts = 1
fs
and fs = 2.5 kHz is the breakdown frequency.

• Inverter’s transfer function:

Gond(s) = 1

1 + 0.5sTdec
(28)

Tdec = 1
fdec

and fdec = 2.5 kHz is the breakdown frequency.

• Filter block transfer function (only inductors and parasitic resistors are consid-
ered):

Glcl(s) = 1

R + sL
(29)

Glcl(s) ≈ Hlcl(s), L = Li + Lget R = Ri + Rg

• Low-pass filter transfer function:

G Filter (s) = 1

1 + 0.5sTdec
(30)

Thus, the open-loop transfer function is given as follows:

G O Lc = CP I Ccal Gond Glcl G Filter (31)
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4.4.1 PI Factors Determination

From Eqs. (26), (27), (28), (29), and (30), the overall transfer function of the current
loop G O Lc can be written as follows:

G O Lc(s) = Ki + sK p

s
× 1

1 + sT∑ × Ke

1 + sTe
(32)

where Ke = 1/R, Tc = L/R et T∑ = Ts + 0.5Tdec + 0.5Tdec

If we take factor Ki = K p

Tc
, the current open-loop transfer function becomes:

G O Lc(s) = K p

sTe
× Ke

1 + sT∑ (33)

And the current closed-loop transfer function is:

GC Lc = K p Ke

K p Ke + sTe + s2TcT∑ (34)

Using the modulus optimum criteria described in [8], the closed-loop gain GBF(s)
= 1, implies that |GBF(jω)| = 1.

The square of this gain gives:

|GC L(jω)|2 = (K p Ke)
2

(K p Ke − ω2TeT∑)2 + (ωKe)2

= (K p Ke)
2

(K p Ke)2 + ω2(T 2
e − 2K p KeTeT∑) − ω4(TeT∑)2

(35)

|GC L(jω)|2 = 1for a low values of ω, ω4(TeT∑)2 ≈ 0

⇒ |GC L(jω)|2 = 1 for T 2
C − 2K P KC TΣ = 0 (36)

The PI controller parameters are:

{
K p = Te

2Ke TΣ
= L

2TΣ
= 4.625

Ki = K p

Te
= 125

(37)

These values are used to start the analysis using the Matlab/Simulink Tool, PID
Tuner. We consider some requirements for the controller design:

• Gainmargin upper than 6 dBand a phasemargin upper than 45°, to ensure stability.
• minimum bandwidth of 500 rad/s
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Figures 11 and 12 give, respectively, the step response and the Bode diagram of
the function GBF(jω).

Fig. 11 Step response of the current loop and PI controller factors

Fig. 12 Bode diagram of the current loop
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The PI controller correction factors (Kp = 4.158 and Ki = 39.681) are selected
for: a damping factor of ξ = 0.7; a bandwidth of 545.3 rad/s; a phase margin of 67.1°;
and a gain margin of 15.3 dB.

4.5 Current Control in the Stationary Reference Frame αβ

The proportional resonant controller (PR) is suggested for the current control in the
stationary reference frame αβ. Figure 13 gives the current control block diagram
based on the PR controller with harmonics compensation.

4.5.1 Proportional-Resonant Controller: PR

The main advantage of the PR controllers is its infinite gain at the grid frequency,
i.e., a unity gain in the closed-loop. This unity gain guarantees a good sinusoidal
reference tracking.

The transfer function of the PR controller is:

CP R(s) = K p + Kr .s

s2 + ω2
(38)

Figure 14 shows the PR controller bode diagram for different integral gains and
a resonant frequency of 50 Hz.

We can note that the PR controller gets a high gain in thin frequency band around
50 Hz. The band width depends on the factor Kr, a low Kr leads to a thinner band
while a high value of Kr leads to a larger band.

Fig. 13 Current loop based on the PR controller with harmonics compensation
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Fig. 14 PR controller Bode diagram. a For different Kr values b More details closer to 48 and
52 Hz

4.5.2 Adaptive Proportional-Resonant Controller

In the case of grid frequency variation, the PR controller performances are signifi-
cantly reduced. Indeed, thePRcontroller uses a static resonance frequency and cannot
remove the steady-state error in such case of operation. In addition, the harmonics
compensation (HC) related to the PR controller based on the fundamental frequency
is more sensitive to the grid frequency variation.

Normally, HC uses the multiples of the nominal grid pulse ωg, thus, in case of
grid frequency variation, the PR and HC performances are reduced. To rectify this
issue, we suggest a controller improvement using a pulse provided by a PLL block
to maintain the PR and HC performances (Fig. 15).

4.6 Harmonics Compensator

The harmonics compensation is defined by:

CHC(s) =
∑

h=3,5,7,..

Kih .s

s2 + (ω.h)2
(39)

Themost important harmonics in the current spectrum are the 3rd, 5th, and the 7th
ones. Thus, the harmonics compensator is designed to compensate those harmonics.
Figure 16 shows the compensator gains at the frequency of the harmonics we want
to eliminate.
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Fig. 15 PR controller with frequency adaptation

Fig. 16 PR + HC controllers with harmonics compensator

4.7 PR Controller Performances

Using the root locus method, proportional gains and resonant factors are selected to
have a dominant poles damping factor of 0.7.
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Fig. 17 Open loop system performances settings with Kp and Kr factors choice

As Fig. 17 shows, with a Kp value of 3555, the resonant poles damping reaches
the value of 0.719. An integral factor Kr of 884.5 is chosen for its good dynamic and
noise rejection. The zero-pole location and the bode diagram of the current control
open loop are shown in Fig. 17.

The step response in the resonant regulator based closed-loop system is given in
Fig. 18. The selected performances are: The response time 29 ms; the bandwidth;
579 rad/s; phasemargin of 66.4° which involves the system stability; and gainmargin
15.7 dB.

4.8 Voltage VDC Control Loop

The DC bus voltage VDC of each H-bridge cell is influenced by the current variations
iPVi corresponding the solar panel (paneli), and depends on theMPPT and on external
conditions (T°, illumination intensity…). This voltage can also be increased in the
case of injection of current saturation (voltage dip). In this study, we are interested
in normal operation state when the current stays between acceptable limits. When a
short circuit happens in the grid side, the voltage vg falls, so the injected power Pg
falls likewise. However the PV panels keep providing the same constant power PT,
the difference between the input and the output power is stored in the capacitors Ci

causing an overvoltage.
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Fig. 18 Current loop step
response based on a resonant
controller

For this reason, DC voltages increase sometimes until exceeding the admissible
limits. After the fault elimination, the powers balance and the voltages stabilize at
high values. Therefore, a control loop must be added to adjust these voltages. The
control concept of the voltages vDCi is to discharge the residual power to reduce vDCi
as shown in Fig. 19.

This voltage control is carried out by supplying or absorbing active power from
the grid. This voltage adjustment must be done by adding the fundamental active
current to the reference current.

The transfer functions of the block diagram are shown in the Fig. 20.

• PI controller:

C(s) = K pti + Kiti

s
(40)

• GBF internal current loop is assumed to be equal to 1;
• The loops Gcal et GFiltre are the same as the current;
• The function 1

Ci .s
represents the bus capacitor impedance;

• The voltage transfer function of the opened-loop is:
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Fig. 19 Voltage control loop (for each DC bus)

Fig. 20 Loop blocks diagram for each busi voltage control

G BOT (s) = C(s).Gcal .G B F .
1

Ci .s
.G Filter (41)

We use the control system designer tool in Matlab/Simulink (Fig. 21), pole-zero
location in opened-loop allows the PI controller factors adjustment (Kpti= 78.58e−03

and Kiti= 4.64e−03) for the following performances: a time response of 0.744 s; a
bandwidth of 11.46 Hz. to ensure a good stability a gain margin of 6.23; a phase
margin equal to 88.4°.

The step response of the voltage closed-loop is given in Fig. 22.

5 PSCPWM Proportional Modulator

The main modulator task is the inverter input voltage synthesis. Due to cells series
connection, it is verified that:
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Fig. 21 PI controller factors adjustment

Fig. 22 Step response of the DCi voltage loop

vin =
C∑

i=1

vHi (42)

Defining the proportional factors as the ratio between the individual voltage vHi

and the total voltage vin:
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αi = vHi

vin
(i = 1, 2, . . . , C) (43)

For this inverter, each celli has the same current iin. Therefore, the output voltage
is proportional to the power, verifying then the following formula:

iin = PPVi

vHi

⇒ PPVi

vHi

= PPV1

vH1

= PPV2

vH2

= · · · = PPVn

vHn

(44)

⇒ PPVi

PT
= vHi

vin
= αi (i = 1, 2, . . . , C) (45)

The PSCPWMmodulator, of (N-1) one signal carriers Am and a common modu-
lation index M for all the cells, and adapted to the control pulse generation. Our
suggestion is to implement a PSCPWM proportional modulator, according to the
power of the PVi module, the duty cycle di and then the modulation index Mi of the
corresponding celli and proportional to the ratios

PPVi
PT

and
vHi
vin

(Fig. 23).
Considering that PSCPWM modulator is linear for a modulation index less than

the unit [9], the duty cycle of each cell can be calculated as follows:

di = vHi

vDCi

⇒ di = vin

vDCi

× αi (i = 1, 2, . . . , C) (46)

Fig. 23 Suggested
PSCPWM proportional
modulator
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6 Conclusion

In this chapter, we have suggested a novel control strategy of a multilevel H-bridge
inverter. The inverter connected to the grid is made through an LCL filter due to
its ability to reduce harmonics (−60 dB/dec). For this reason, we have chosen it
instead of a simple inductance filter. To rectify the resonance phenomenon through
the capacitors and inductors, we have connected a passive damping resistor in series
with the capacitor.

By controlling active and reactive powers in current mode, we have proved that
the PI controller cannot track sinusoidal reference with the elimination of the static
error in the synchronous reference frame dq. Therefore, a PR controller is obviously
necessary every timewewant to control sinusoidal current. In the stationary reference
frameαβ, the PRcontroller shows its effectiveness to control sinusoidal current (static
error remains almost null). Moreover, we have added a harmonics compensator HC
that improves the current quality by eliminating dominant odd harmonics (3rd, 5th,
and 7th).

To have a simple DC voltage for each H-bridge celli, we have used a local PI
controller. Furthermore, we have suggested a proportional modulator to generate the
drive pulses. This generation is made according to the rate of each module and the
total power.
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Off-Grid PV-Based Hybrid Renewable
Energy Systems for Electricity
Generation in Remote Areas

H. El-houari, A. Allouhi, M. S. Buker, T. Kousksou, A. Jamil,
and B. El Amrani

Abstract Wind, solar, biomass, and geothermal energy are renewable energy
sources known as promising alternatives for electricity generation, especially with
the depletion of fossil fuels. Renewable energy sources are present, with huge quan-
tities, free access, and without a negative impact on the environment. The electricity
produced by renewable energies is gradually becoming economically and techni-
cally advantageous. In most cases, integrating a single source of renewable energy
can lead to over-sizing and therefore a very expensive implementation. To remedy
this, systems consisting of one or numerous renewable energy sources are adopted in
order to guarantee maximum electricity production as well as practical reliability at
encouraging costs. In addition, the electricity generated by renewable energy sources
such as wind turbines, solar, biomass, geothermal energy … has a particular interest
in isolated spaces. This chapter provides an updated literature review about Off-grid
PV-Based Hybrid Renewable Energy System for electricity generation in remote
areas. First, after the introduction, a presentation of the world energy situation was
discussed in order to see the progress of the implementation of renewable energies
on a global scale. Secondly, a section was reserved for renewable energy alternatives
in order to discuss each source separately, before starting the part devoted to off-grid
hybrid renewable energy structures. These structures have been examined in a large
number of researchesworkswith the aim of electrifying remote areas in several coun-
tries of the world. Finally, a detailed presentation of the main reliability, economic,
and environmental performance indices is given for the evaluation of these systems.
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Keywords Hybrid renewable energy systems (HRESs) · PV · Isolated areas ·
Performance indexes

1 Introduction

A growing number of the world population, development of civilization, progress in
the technological fields, and other factors contribute to growing energy needs in order
to increase welfare on all scales. Electricity is a fundamental factor for economic
development, urbanization, and industry in countries [1–3]. Production of electricity
originates mostly from burning large quantities of fossil fuels. This excessive use of
fossil fuels causes its exhaustion and consequently destroy the environment through
greenhouse gas emissions, which has led to negative climate change experienced
today [4, 5].

Under the current status of high energy demand, it is very necessary to seek other
types of energy sources to be able to meet the energy demand in big cities also
in isolated and remote regions. These sources should be environmentally friendly,
with good performances at competitive costs [6]. The worldwide population without
access to electricity is around 1.2 billion and 48% of them are located in the devel-
oping countries of Sub-Saharan Africa [7]. The adoption of multiple renewable
energy is a good way to produce clean electricity and can be tailored for each
geographic zone with respect to its renewable energy potential [8–11]. Furthermore,
the overall efficiency and economic performance presented by these off-grid Hybrid
Renewable Energy Systems (HRESs) were proven to be encouraging as highlighted
by several studies [12–14]. Solar power generations including photovoltaics (PV)
and Concentrating Solar Power (CSP), hydroelectric (small and large), wind turbines
(onshore and offshore), biogas, and biomass have experienced a particular interest
in recent years [15–17].

The main shortcoming of standalone renewable energy sources is that such
systems produce electricity intermittently. Hybridization solves this problem since
two or more technologies complement each other to avoid intermittency of energy
supply [18, 19]. In this context, the HRESs can be exploited in two different ways
either grid-connected; or operating autonomouslywith the storage systems. The latter
option is more suitable for villages, regions, areas, and isolated islands. In the case of
energy surplus, the excess energy can be stored for later use when the hybrid system
cannot satisfy the energy demand.

In the case of HRES connected to the network in cities, towns, universities, facto-
ries, etc., the excess energy can be directly injected into the electrical network. In this
method, the cost of electricity produced by the HRES is lower than the autonomous
system [20].

Therefore, several studies suggested thatHRESwith storage implement in isolated
zones requires a specific regulation as well as an adequate policy to accompany
such standalone systems [21, 22]. These regulations must be diverged from already-
adopted ones for HRES connected to the network andmust support standaloneHRES
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to face technical, regulatory, and financial challenges and constraints [23, 24]. These
regulations and policies should in addition, respect and agree with the local and
national conditions of each country [25, 26]. Having acknowledged these challenges
and ensuring that standaloneHybrid Renewable Energy Systems can offer significant
advantages socially (sustainable development and reductionof poverty), environmen-
tally (reduction of greenhouse gases), and economically (predictable energy price).
All these can satisfy the energy demand without a network with easy integration and
simple installation of the system [20, 27].

Since the optimal design of HRES is a primary factor with likely combinations,
therefore, several studies have already been carried out by using various software.
The evaluation of HRESs is performed based on numerous criteria for looking into
the sizing problem comprehensively [13, 28, 29].

This chapter focuses on standalone PV-based HRES for power generation in rural
areas, villages, and remote islands by reviewing variousHRESs architectures, formu-
lating basic mathematical background for modeling multiple energy source systems,
and proposing key performance indicators for the techno-economic assessment of
such systems. Although there are numerous studies about the hybrid renewable tech-
nologies in the existing literature, the sizing procedures regarding various renewable
systems with energy storage are not investigated extensively. Therefore, the novelty
of this article is to present a comprehensive discussion about various HRES config-
urations with energy storage and demonstrate detailed reliability, economic, and
environmental performance indices of the evaluated systems. In line with the objec-
tives, this manuscript is structured as follows: Sect. 2 provides an overview of the
global renewable energy sector; Sect. 3 presents the modeling of the subsystems.
Section 4 details various combinations of the standalone hybrid renewable energy
systems, as well as multi-criteria performance indexes, are discussed in Sect. 5.

2 Overview of the Worldwide Renewable Energy Sector

The sector of renewable energy (RE) as well as their widespread use is at the top
of the worldwide energy policy, especially for the many environmental and energy
outcomes they are providing [30–32]. The whole world needs to increase the share of
renewable energies for electricity production, especially with the increase in popu-
lation and industrialization, the exhaustion of fossil fuels, and the environmental
damage they have caused.

Keeping in mind these considerations, several countries adopted national energy
strategies in order to accompany the world energy transition. In recent years, renew-
able energies have experienced rapid development and growth, taking profit from
reduced production costs of technologies (especially wind turbines and photovoltaic
panels) as well as the adopted policies and strategies.
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Table 1 Production growth
achieved by each technology
in 2018 and average annual
growth 2018–2030

Renewable
technologies

Production growth
achieved in 2018
(%)

Average annual
growth 2018–2030
(%)

Solar PV 31 16

Onshore Wind 12 7

Offshore Wind 20 –

Hydropower 3 2.5

Bioenergy 5 6

Concentrating solar
power (CSP)

17 26

Geothermal 5 10

Ocean power 16 24

According to the International Energy Agency, electricity which comes from
renewable energies represents 1/5 of the world’s energy needs.

Moreover, on a global scale, 2018 saw 26% of global electricity production via
renewable energies, which indicates an increment of 7% compared to the year 2017
[33]. It is interesting to highlight that the production of WT, solar, and hydroelectric
represents 90% of the electricity originating from the total renewable energy in 2018
[34].

To reach the objective for the Sustainable Development Scenario 2000–2030, it is
necessary to ensure that there is a global growth of 7% of production via renewable
energies. The following Table 1 shows the production growth achieved by each
technology in 2018 [34], as well as the average annual growth that each of these
technologies will reach between 2018 and 2030 so that at the end, the annual growth
of 7% can be achieved.

However, this growth in renewable energies is not uniform across the world.
Today, it is in Europe that renewable energies represent the most important part
of energy consumption, with 17% on average according to the International Energy
Agency. South America is also doingwell with its large hydroelectric infrastructures:
in Brazil, for example, 42% of energy consumption is from renewable sources. But
this is not the case in all the countries of the region, some of which still have an
energy mix with a very poor share of renewable energy.

For the United States, only 10% of the energy consumption is obtained from
renewable energies. China and India are capped at 10 and 11%, respectively.

Morocco is one of the countries that have acceded to international conventions
to fight global climate change. It was the organizer of the Conference Of the Parties
(COP22) in 2016 inMarrakech. Since 2009,Morocco has adopted an energy strategy
to improve the effectiveness of its power sector. The ambitious strategy adopted had a
challenge of increasing the production of electricity by exploiting renewable energies
to reach 42% at the end of 2020 and 52% by 2030 as shown in Fig. 1 [35].
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Fig. 1 Increase in the Moroccan energy mix between 2009 and 2030

According to the Ministry of Energy of Morocco, in 2018 the country has already
installed power of 3700 MW of renewable energy which represents a rate of 34% of
the national need for electricity.

3 Renewable Energy Alternatives

For modeling the various subsystems of an HRESs, there are several methods used
by researchers. The most widely and simple modeling approaches are treated in the
next section.

3.1 Photovoltaic

The power generated PPV (kW) by a PV panel is illustrated in the equation [36–39].
The PV panel contains cells placed in parallel and in series with each other to produce
the required power. The energy produced is dependent on solar radiation and the cell
temperature:

PPV (t) = Prated × YPV ×
(

G

Gref

)
× [

1 + KT
(
Tc − Tref

)]
(1)
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Prated is the estimated power that the PV panel can generate under standard
conditions, YPV (-) means the derating factor of the Photovoltaic panels, G

(
w
m2

)
and

Gref
(
1000
m2

)
means the incident solar radiations and the conditions of the test standards

respectively, KT is taken around 0.4 and 0.6% according to [40] is the Photovoltaic
temperature factor; Tc(C) is the temperature of the cells that make up the PV panel
and Tref (25 ◦C) means their temperature under the conditions of the test.

3.2 Wind Turbine

Multiple mathematical models of the wind energy production process have been
employed by the research community. The power produced by a WT is influenced
by three parameters which are the wind speed, the hub height, and the power curve of
the wind turbine. The estimate of the power generated by the wind turbine PWT (kW )

is explained as follows [41]:

PWT =

⎧⎪⎨
⎪⎩
0 V < Vcut−in and V ≥ Vcut−out
Pr(V−Vcut−in)

(V−Vcut−in)
Vcut−in ≤ V < Vr

Pr V ≤ V < Vcut−out

. (2)

Or

PWT =
(

ϕ

ϕ0

)
× PWT ,STP (3)

where Vr and Pr represent the nominal wind speed and the nominal power, respec-
tively. VCut−in and VCut−out means the speed in and out, respectively. PWT ,STP means
the estimated power of the wind turbine under standard conditions (kW), ϕ and ϕ0

represents the real density of the air and the density of the air in the test conditions
(1.225 kg/m3).

3.3 CSP

CSP referring to concentrated solar power, is a power plant that concentrates the
rays of the incident sun using mirrors in order to heat a heat transfer fluid which
generally makes it possible to produce electricity via a thermodynamic cycle. This
type of power plant allows, by storing this fluid in a tank, to prolong the operation
of the power plant for several hours beyond sunset.
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3.4 Hydropower

Hydroelectricity is the conversion of hydraulic energy into electricity. The kinetic
energy of the water current, natural or generated by the level difference, is trans-
formed into mechanical energy by a hydraulic turbine, then into electrical energy
by a synchronous electric generator. The hydroelectricity power Phydro(kW ) can be
calculated by the following equation.

Phydro = ηhydro × ϕwater × Qturbine × g × Hnet

1000W/kW
(4)

where ηhydro(%) is the turbine efficiency, Qturbine represents the nominal water flow
of the turbine (l/s), ϕwater means the water density (1000 kg/m3), g means the
acceleration due to universal gravitation (9.81 m/s2), and Hnet(m) represents the
net height.

3.5 Biomass

The generation of electrical energy from biomass can be carried out according to two
mechanisms either by the thermochemical process (pyrolysis or direct combustion,
gasification) or using the biochemical mechanism (anaerobic digestion or gasifica-
tion). At the end of the two mechanisms, there is a recovery of a fuel which can be
either in the gaseous state or in the liquid state [42]. The gasifier transforms biomass
(solid) into fuel (gas), the output power of the biomass generator Pge,bio is illustrated
in the following equation [43–46].

Pge,bio = ηge,bio × Qge,bio(t) × LHVbio (5)

where ηge,bio (%) is the electrical conversion efficiency, Qge,bio (m3/h) represents the
flow rate of the fuel consumed LHVbio (kWh/m3) means the low calorific value of
the biogas.

4 Off-Grid Hybrid Renewable Energy Structures

HRESs are generally divided into two broad categories: on-grid and standalone. The
second category is the main focus of this study in order to design an optimal system
for the electrical needs of remote areas. As hybrid renewable energy systems are the
combination of two or more energy sources, at least two essential elements must be
taken into account to structure a hybrid renewable energy system. The first criterion
is the existence or absence of a storage system. Storage systems will store energy
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Fig. 2 General classification of hybrid renewable energy systems

during excess production and reusewhen needed. The second criterion is the structure
of the HRES, comprising various renewable technologies (PV, Wind, Hydro, etc.).
Figure 2 shows the general classification of HRESs.

To successfully satisfy the energy demand, the configuration of the proposed
system is key. It should be carefully tailored considering available energy sources
and the capacity of the system as well as the specifications of the storage system.
Thus, the cost of energy will be reduced, CO2 emissions will be minimized and
energy requirements will be met. Given the number of configurations for HRESs
(see Fig. 3) and their complexity, the palpable approach is the optimization of these
systems [28]. Favorably, several algorithms and software have been developed [47]
to help to optimize the energy systems.

Fig. 3 Renewable hybrid energy system with n sources
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4.1 Hybrid System with Two Renewable Energy Source
and Storage System

4.1.1 Off-Grid PV/Wind

The PV–Wind off-grid system is a mixture of a wind turbine, solar panels, converter,
and storage system, as shown in Fig. 4. Photovoltaic solar is considered to be a
random and variable power [48], the solar radiation is variable during the day and
all seasons. On the other hand, the wind turbine is considered a reliable source of
energy taking into account the presence of constant wind blows during day and night
despite the variation in wind speed [49]. In detail, electricity production is obtained
mainly from PV panels during the day and from windmills during the night [50].
Hence, this PV–WT combination is massively adopted given the complementary
energy production through this configuration, its reliability, and adaptability in any
weather condition [51–53]. Moreover, the energy storage system will store excess
energy production from hybrid PV–WT combination and meet the energy demand
when electricity supply through the system is insufficient.

A significant number of studies have been carried out in the literature concerning
these configurations including PV–Wind, PV, and Wind with a storage system. In
[54, 55], the system that combines the two technologies (PV–Wind with a storage
system) is the most profitable for isolated areas. Another study is conducted aiming
to optimize the number of wind power units, PV panels, and batteries in order to
reduce the capital cost of the system while securing the reliability of the hybrid
renewable system [56]. Ghorbani et al. [57] presented a specific optimization and
analysis process for a wind–solar system in isolated areas in the south of Brazil,
with the aim of reducing the initial costs of the system. Store et al. [58] studied
two energy management methods for a standaloneWind–PV system for a residential
site in Denmark. Custom models have been set up as well as the actual renewable
sources have been used. Papadopoulos et al. [59] have shown that the use factor of the
electrolyzer is influenced by the configuration containing renewable energy sources,

Fig. 4 Standalone PV–WT hybrid system
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for this purpose several combinations of PV–Wind and storage technologies have
been developed. Belouda et al. [60] presented a study focused on optimal design of
the PV–Wind–Batterymulti-objective system to satisfy the electrical load of a remote
area. The two optimization points discussed are the loss of power supply probability
(LPSP) and the general cost of the systemusing amulti-objectiveNSGA-II algorithm.
Zhang et al. [61] have carried out a study on a PV–Wind–Battery system by adopting
NSGA-II genetic algorithm which has as the objective of determining the number
of PV, wind, and battery as well as the LPSP and general cost of the system for an
isolated island. The system was tested under four scenarios of weather conditions.
A study on a system composed of PV, wind turbines, and batteries for an island of
Jeju was carried out by [62]. The study showed that LCC and LCOE equal to 84.3
BUSD and 0.42 $/kWh, respectively. Samy et al. [63] have set out a study of three
combinations of a PV–FC, PV–Wind–FC, and Wind–FC hybrid system in Remote
district, Beni-Suef, Egypt. The study showed the PV–Wind–FC system is the best
combinationwith an energy cost worth 0.47 $/kWh.Another studywhichwas carried
out by [64] to satisfy the energy demand of Makadi Bay, Red Sea, Hurgada, Egypt in
the presence of PV,Wind, and battery aswell as a comparisonwas performed between
PV–Wind–Battery and PV only and Wind only scenarios. The results showed that
the PV–Wind–Battery system is the best configuration in terms of installation cost
of the three systems. Benavente et al. [65] presented a modeling and simulation of
a PV–Battery system for a rural area containing a school, household, and a health
center in the highlands of the Bolivian Altiplano. The simulation was carried out on
the basis of real consumption data as well as meteorological data, the results found
that to avoid the SD effect and ensure that system is profitable, it is necessary to have
a greater power of the PV field rather than increasing the battery capacity.

4.1.2 Off-Grid PV/Biomass

The second off-gridHRESs configuration is the PV,Biomass, converter, and a storage
system as shown in Fig. 5. The proposed configuration is a promising alternative for

Fig. 5 Standalone PV–Biomass hybrid system
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electricity generation, especially in remote areas. In most rural areas there is the
abundant presence of an animal, agricultural, municipal waste, etc. [66] can be well
utilized as a fuel for biomass generator. The advantage is that biomass is controllable
(present when needed) which is considered to be the 4th biggest source of energy
total in 8.5% of global energy consumption. The drawback of biomass is that when
the fuel is not available, it must be somewhat purchased [67]. In operation, anaerobic
digestion is considered to be one of the best-known techniques of energy extraction.
Moreover, biogas is considered to be one of the end products that is used to generate
electricity [68–70] using a biogas generator [43, 71].

To name a few recent studies about PV, Biomass, converter, and a storage system
configurations, Shahzad et al. [72] represented a technical-economic study of a
sytem composed of PV–Biomass–Battery for a small village (farm and residential)
in Pakistan. The optimal configuration obtained in the results is 10 kW of PV, 8 kW
of biogas generator, 12 kW for the converter, and 32 unit of batteries the recovery
period was estimated to be 9.5 years and the cost of electricity was found to be equal
to 5.51 PKR/kWh. Ganthia et al. [73] carried out a study on energy demand of the
Khalardda village located in Odisha and the system chosen for this objective is PV–
Biomass. Kohsri et al. [74] analyzed a PV–Biomass–Battery system in a rural area of
an educational institute in Thailand. The results showed that optimal configuration
comprises three converters each with a capacity of 12 kW, a biomass generator with
a capacity of 33.7 kW, battery with a capacity of 60.9 kWh, 12,285 kW of PV, and
13.8 kW of three BDIs. Heydari and Askarzadeh [45] have designed an off-grid PV–
Biomass system to meet the electrical needs of agricultural wells located in Bardsir,
Iran. As several scenarios were analyzed, the PV–Biomass system was found to be
better in comparison to PV alone or biomass alone system. The cost of electricity
was estimated at 0.1855 $/kWh and the capacity of the Biomass and PV system was
found to be 180 kW and 75.2 kW respectively. Singh and Baredar [75] presented
an off-grid system composing Biomass–PV–FC–Battery at Maulana Azad National
Institute of Technology, Bhopal in India. The simulationswere carried out viaHomer,
the cost of electricity and the NPCwere found equal to 15.064 Rs/kWh and 51,89003
Rs, respectively. Eteiba et al. [76] used three algorithms to find an optimal solution
for the standalone biomass, PV, and battery system for a Monshaet Taher village in
Egypt. The results pointed out that the system must include 200 kW of biomass,
131.04 kW of PV, and 298 batteries. Ghenai and Janajreh [77] presented a system
composed of Biomass–PV to satisfy the need for electricity in the city of Sharjah
in the United Emirates. The COE found equal to 0.328 $/kWh. Pradhan et al. [78]
analyzed the performance of a standalone Biomass–PV–Battery system to satisfy the
electrical charge of around 20 kWh/day for a house located in a remote area. Chowd-
hury et al. [79] developed an autonomous mini-network made of Biomass–PV for a
remote area of Ashuganj, in Bangladesh to be able to meet the annual energy demand
of 14,161 MWh. Analysis showed that the return on investment period was found to
be 6.9 years as well as the amount of CO2 avoided is approximately 3.81 tons/year.
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4.1.3 PV/Hydro

In this section off-grid, PV–Hydro hybrid renewable systemwill be analyzed to meet
the energyneeds for isolated areas.The combination comprises photovoltaic solar and
hydropower (see Fig. 6). Since PV panels are highly affected by ambient conditions,
hydroelectricity is, on the other hand, a more flexible, stable, and adjustable sort
of energy source [80, 81]. This is another complementary system as there is less
solar irradiation but a high level of water during the winter and there is a risk of dry
dams but abundant solar irradiation during the summer. Recently, the price of the PV
system has dropped drastically, therefore the PV–hydro system seems economically
feasible [82].

Yibo and Honghua [82] fitted out a study on a standalone PV–hydro system in
Yushu in China, the structure of the PV panels belongs to the MW class as well as
the battery of the DC bus. Das and Akella [83] presented a PV–hydro–battery hybrid
systemwith amanagement control strategy and simulated usingMATLAB/Simulink.
The results found show that the battery life will be extended once the SOC is born
between its limits. Singh [84] developed an autonomous PV–Hydro system to meet
the energy needs of remote areas. In this study, a VSC control model was proposed.
Kougias et al. [85] presented an optimization algorithm to ensure complementarity
between the two renewable technologies of PV–Hydro. Also, the proposed strategy
was tested in a case study. Shan et al. [86] performed a study regarding the comple-
mentary between PV and hydroelectric in California Independent System Operator
(CAISO). The results showed that when the share of electricity production of PV
increases by 1%, on the other side hydroelectricity increases between 0.01% and
0.06% this correlation is important to meet peak energy needs. Silvério et al. [87]
studied a technical-economic design approach for PV–Hydro hybrid systems, as well
as a case study of the São Francisco hydroelectric station in Brazil which suffers from
intense drought. The results showed that PV panels should have been tilted at 3° and
the proposed system can be generated from electricity at low cost.

Fig. 6 Off-grid PV–Hydropower hybrid system
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4.1.4 CSP/PV

The fourth combination to study is the CSP/PV hybrid standalone renewable energy
system. This is the combination of two different technologies fed by the same energy
source as shown in Fig. 7. The CSP technology is still immature compared to PV
technologies, worldwide the capacity of the installed CSP does not exceed 5.5 GW
until the end of 2018 [88]. The common preference of the two technologies is
the abundance of solar radiation. The electrical conversion efficiency by these two
technologies is greatly influenced by dirt, clogging, and the deposit of dust [89, 90].

CSP is suggested as a continuous and stable power generation technology in
parallel with a thermal storage system [88]. But so far CSP was among the least
deployed technologies compared to other solar technologies as the installed capacity
ofCSPby theworld in 2018was around5.5GW[91]. The cost of electricity generated
via CSP is higher than that of conventional sources, on the other hand, PV is in
the same range [92]. The PV–CSP combination has several advantages as a whole,
especially in terms of the cost of electricity [93] and also the large capacities provided
through these two technologies. This combination has been tested in the Atacama
desert in Chile, the results showed that the capacity generated by this system can
exceed 85% and have a reduced LCOE compared to CSP-only power plant [94–96].

In another study about off-grid PV–CSP–battery system [97] an optimal config-
uration was proposed for two sites in Italy and Morocco based on the analysis of
several strategies. Also, a parametric study has been done in [98] on a large scale of
a hybrid CSP–PV system with two types of BESS storage implemented in working
operation. Also, Zhai et al. [99] optimized a PV–CSP system in order to achieve
the lowest possible cost of electricity by integrating a small capacity battery and
improving its use. Zurita et al. [88] conducted a study to assess the effect of time
resolution on the modeling of the PV–CSP systemwith thermal storage and batteries
for two sites in Carrera Pinto and Santiago in Chile. Hernández-Moro and Martinez-
Duart [100] developed a mathematical method for estimating the cost of energy
produced by the PV–CSP system on the basis of other inputs. Aguilar-Jiménez et al.
[101] presented a technical-economic study of a PV–CSP system for a remote area of

Fig. 7 Off-grid PV–CSP hybrid system



496 H. El-houari et al.

Puertecitos in Mexico. The cost of electricity generated by this system is estimated
as 0.524 USD/kWh. Technical and economic analysis of a PV–CSP system by [102]
was carried out in three different sites Tabuk, Majmaah, and Najran in Saudi Arabia.
The system was designed at the same power output of 100 MW. The results showed
that the cost of electricity by the hybrid system is estimated to be 0.105 $/kWh,
0.110 $/kWh, and 0.1 $/kWh for Najran, Majmaah, and Tabuk, respectively. Table 2
summarizes some of the recent research works.

4.2 Hybrid System with Three and More Renewable Energy
Sources and a Storage System

4.2.1 PV/WT/Hydro

Another scenario is an off-grid system, constituted of PV–Wind–Hydro energy with
a storage system. Solar technology and wind power are naturally intermittent due to
depending on the weather conditions. However, as hydroelectricity is controllable,
this increases the level of reliability and stability of this configuration. This type of
HRESs has been a special focus in the existing research literature as it offers certain
advantages including higher electric power supply, high profitability, and efficiency
comparing the mono source systems [106].

Bekele and Tadesse [107] treated a feasibility study of a system composed of PV–
Wind–Hydro in the district of Dejen, Ethiopia as the study concerned 23 different
villages. In the Taba region the price of electricity was found equal to 0.16 $/kWh.
Zhang et al. [108] proposed an estimation-simulation approach in order to mark the
uncertainties of the systems tester on three optimal short-termoperatingmodel aswell
as the estimation of the probability density function of the operatingmechanism.Wei
et al. [109] presented a study of a PV–Wind–Hydro system in southwest China with
the integration of deep neural networks, the findings showed that the performance of
the hybrid plant must be improved. Ye et al. [110] proposed a feasibility study and
a simulation of the PV–Hydro–Wind system in the EMTP/ATP platform.

4.2.2 PV/WT/Biomass

This section presents an off-grid system composed of Biomass–Wind–PV sources.
Biomass is an energy source that has become very popular especially in remote areas
[111]. The combination of these three technologies with storage system is robust in
terms of high power output.

In literature, Balamurugan et al. [112] presented a hybrid system composed of
Biomass–PV–Wind for remote areas in India, a feasibility and economy analysis was
provided by the authors. Dhass and Santhanam [113] quantified a Biomass–Wind–
PV system for electrified remote areas on the basis of the life cycle price. Rahman
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et al. [114] proposed a design using Homer software of a Biomass–Wind–PV system
for a site in Bangladesh. Singh et al. [111] proposed a hybrid Biomass–Wind–PV
sizing system with a system to satisfy the electrical charge of a narrow area. The
authors used an artificial bee colony (ABC) algorithm to size the components of the
central hybrid. The results obtained were compared with those found by Homer and
with the particle swarm optimization algorithm.

5 Performance Indexes

Intensive capacity can increase the initial cost of an HRESs. Nevertheless, it is very
complex to supply reliability. Therefore, it is very essential to optimize and adjust
the capacity of the system to ensure the load [30, 115].

First is to have the design of the HRESs, choosing the right type of renewable
energy sources to integrate, is crucial. The second step is to model the subsystem
taking into account all the subsystems. Objective functions must be traced. Then, a
design of dimensioning is chosen correlating the constraints and specificity of the
problems. Finally, the right capacity scheme taking into account the objectives is
set. The objective functions are managed by multiple indicators, which have a very
great impact on the system. In general, the reliability of the system, the economic
and environmental indices are considered. These indicators will be dealt with in the
subsections.

5.1 Reliability Index

The electricity production of HRESs systems is very much influenced by weather
conditions and the climate, which does not leave the electrical supply considered to
be reliable and safe. Reliability indices were taken into account in order to examine
the capacity of the integrated system to meet the desired electrical charge.

The reliability indices essentially include the Possibility of Failling Power Supply
(PFSP), Possibility of Failing Load (PFL), Hoped Energy not Provided (HEP),
Possibility Lack of Power Supply (PLPS), Loss of Load Desired (LLD).

5.1.1 Possibility of Falling Power Supply (PFSP)

PFSP is determined to be an electricity supplymargin which is not taken into account
to meet the electrical demand [116]. This indicator is considered one of the most
important factors for measuring the reliability of the HRESs. There are two ways to
calculate this index either based on the chronological simulation, which is difficult
on the computer scale because it requires temporary data or by a commitment to
apply technical probabilities based on the instability of the energy and charge [117,
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118]. The following equation [118, 119] has been used to optimize the capacity of a
system not connected to the network in Iran [120].

PFSP =
∑T

t=1 DE(t)∑T
t=1 Pload (t)�t

(6)

PFSP =
∑T

t Power Failure Time(Psupplied (t) < Pload (t))

T
(7)

where DE(t) means the energy-efficient at date t (kWh), Psupplied (t) is the energy
produced by the hybrid power plant at date t (kW), Pload (t) is the load requested at
date t (kW), �t is the time margin (h), T is the total number of periods in specific
calculation time.

5.1.2 Possibility of Falling Load (PFL)

PFL is the division of global energy insufficiency and the need for global electrical
charge during a well-defined period [116], it can be measured by the following
equation [117, 121]:

PFL =
∑8760

t=1 ES(t)∑8760
t=1 LD(t)

(8)

where ES(t) means the electricity failure at time t (kWh), LD(t) represents the
electrical requirement at t hour (kWh).

5.1.3 Hoped Energy not Provided (HEP)

HEP is the desired energy which is not delivered to the electrical demand under
state when demand exceeds available power generation capacity [55, 122, 123], as
mentioned in [117, 122]:

HEP =
8760∑
t=1

Enot−delivered (t) (9)

EIR = 1 − HEP

E0
(10)

where Enot−delivered (t) is the energy that will not be used at t hour over the full year
(kWh); E0 means the overall energy load of the system (kWh); EIR represents the
energy index agreement.



504 H. El-houari et al.

5.1.4 Possibility Lack of Power Supply (PLPS)

The PLPS is determined as the division between the totalities of values LPS (lack
of power supply) on the summation of load requirements for a specific period, and
this describes the contingency of a missing power supply situation when the HRESs
cannot satisfy the electrical demand [122] as mentioned in [117, 121].

PLPS =
∑T

t=1 LPS(t)∑T
t=1 LD(t)

(11)

LPS =
T∑
t=1

LD(t) − Esist(t) (12)

with LPS (lack of electrical supply) represents a frequent element when the central
hybrid cannot satisfy the electrical load, Esist(t) means supplied with energy by the
central hybrid at t hour (kWh/year).

5.1.5 Loss of Load Desired (LLD)

LLD indicates the sum of hours in a full year where the load exceeds the electricity
production available in the year (h/year) [117, 121]:

LLD =
H∑
h=1

∑
iεS

Ti × Pi (13)

where S means the total loss of the states of charge of the system,H is the number of
hours in the year 8760 h, Ti represents the time of a charge exceeds the production
(hour), Pi means the probability of the system meeting state i.

5.2 Economic Indexes

The economic order is embodied in the concept of HRESs, taking into account the
installation of the system, its maintenance, and operating phases of the HRESs.

The improvement of the HRESs requires finding the relationship between the
cost and the optimal yield of the system. Therefore, economic indices considering
the initial cost, maintenance costs, operating cost, and other system costs have
become paramount indicators to study the feasibility of HRESs. The most widely
used economic indices are the annual global cost (AGC), the annualized cost of the
HRESs (ACHRES), (COE), life cycle cost (LCC), LCOE, NPV, etc., are discussed
below.
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5.2.1 Annual Global Cost (AGC)

AGC is the addition of capital cost, maintenance, and annual cost of the HRESs [124,
125] reported in [124] as below:

TGC = Cacap + Camain (14)

withCacap means the annual fundamental cost of HRESs;Camain is the annual HRESs
maintenance cost.

5.2.2 Annualized Cost of the HRESs

Annualized cost of the HRESs (ACHRESs) is the summation of the annual
replacement cost, the annual capital cost, and the annual maintenance cost of the
HRESs.

ACHRES = Cacap + Camain + Carep (15)

with Carep means the annual replacement cost of the HRESs.

5.2.3 Cost of Energy

Thecost of energy (COE) is the divisionof the annualized cost of the hybrid renewable
energy system (ACHRESs) on the annual overall energy production (AOEP). It sets
out the cost per unit of energy produced by HRESs [121]:

COE =
∑n

i=1 ACHRES∑n
i=1 AOEPi

(16)

5.2.4 Net Present Value (NPV)

The net present value can be estimated by adding the values of all the costs of the
discounted revenues including capital cost, maintenance, and operating expenses by
subtracting the current revenues during the lifetime of the HRESs that it can earn
[116, 126, 127].

NPV =
∑

NPVend − Cinvestment −
∑

NPVOM −
∑

NPVr (17)

with NPVend is the currently discounted reward of income from the residual value of
the subsystems at the end of the life of the HRESs; Cinvestment is the initial investment
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cost;NPVOM is the present value of future exploitation andmaintenance costs during
the life of the HRESs; NPVr represents the present value of future replacement costs
to replace components during the lifetime of the system.

5.2.5 Levelized Cost of Energy (LCOE)

LCOE corresponds, for a givenHRESs installation, to the sum of the updated costs of
energy production divided by the amount of energy produced by this system, which
is also updated. It is typically expressed in $/kWh (or other currency).

LCOE =
∑n

t=1
Ct

(1+r)t∑n
t=1

Et

(1+r)t
(18)

where n is the life of the HRESs, Ct represents all the costs, Et is the annual clean
energy production by the HRESs and r the annual discount rate.

5.2.6 Life Cycle Cost (LCC)

The LCC is determined as the addition of the NPVs for the total cost of the HRESs
expenses such as investment expenses, operating andmaintenance expenses, replace-
ment expenses, etc., minus the net present value of the revenue value SNPV [116,
117].

LCC = C + OMNPV + RNPV − SNPV (20)

where C is the total cost of HRESs; OMNPV represents the net present value of
maintenance and operation; RNPV means the replacement net present value.

5.3 Environmental Index

The environmental index is an indicator for assessing the state of the environment.
However, conventional energies generate pollution through the rejection of green-
house gas emissions, mainly CO2. As a result, the development of Renewable Ener-
gies appease the global energy disturbance, reduce environmental pollution, and
enhance sustainable development. Therefore, environmental indices should occupy
a significant place in the concept of optimization of HRESs [30].

In this context, the approach to assess themitigation of the amount of CO2 avoided
admits that each kWh of electricity generated by HRESs replaces each kWh of
electricity generated by conventional systems. Thus, the CO2 emission rates deviated
by the capacity of the installed system can be estimated.
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6 Conclusion

This chapter aims to shed light on standalone PV-based hybrid renewable energy
systems for power generation in rural areas, villages, and remote islands by
reviewing various HRESs architectures, formulating basicmathematical background
for modeling multiple energy source systems and proposing key performance indi-
cators for the techno-economic assessment of such systems. The use of renew-
able resources to supply electricity where the grid connection is not technically
or economically viable remains a challenge, especially for remote areas. Various
configurations of PV hybridization with other renewable resources such as wind,
biomass, hydroelectricity, and CSP in off-grid areas have been discussed and the
physical modeling of each system is presented. Finally, the indexed performances
were expressed including the reliability indexes, the economic indexes, and the envi-
ronmental indexes. Based on the analysis of various HRES configurations, the main
concluding remarks can be outlined as follows;

To successfully satisfy the energy demand, the system configuration is key. It
should be carefully tailored by considering available energy sources, the capacity of
the system as well as the specifications of the storage. In this way, the cost of energy
will be reduced, CO2 emissions will be minimized and energy requirements will be
met.

In PV/Wind configuration, electricity production is obtained mainly from PV
panels during the day and from windmill during the night. Hence, this combination
is massively adopted given the complementary energy production, its reliability, and
adaptability in anyweather condition.Moreover, the energy storage systemwill store
excess energy production from hybrid PV–WT combination and meet the energy
demand when electricity supply through the system is insufficient.

PV/Biomass configuration is a promising alternative for electricity generation,
especially in remote areas where there is an abundant presence of an animal, agri-
cultural, municipal waste, etc. The advantage is that biomass is controllable (present
when needed). On the other hand, when the fuel is not available, it must be somewhat
purchased which is a standing drawback.

In PV/Hydro configuration, as PV panels are highly affected by ambient condi-
tions, hydroelectricity is, on the other hand, a more flexible, stable, and adjustable
sort of energy source. This is another complementary system as there is less solar
irradiation but a high level of water during the winter and there is a risk of dry dams
but abundant solar irradiation during the summer.

In PV/CSP configuration, there are two different technologies fed by the same
energy source. This combination has several advantages as a whole, especially in
terms of the cost of electricity and also the large capacities can be provided through
these two technologies.

In HRES with three renewable energy sources, and a storage system, PV–Wind–
Hydro stands out as a reliable configuration. Although solar and wind power are
naturally intermittent due to dependence on the weather condition, hydroelectric,
however, is a controllable and stable source. Therefore, this configuration offers
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certain advantages including higher electric power supply, high profitability, and
efficiency comparing the mono source systems.

PV–Wind–Biomass is also popular in remote areas. Even for large capacities,
biomass is known for its profitability. The combination of these three technologies
with storage system is robust in terms of high power output.

In order to increase the reliability of these systems and create a better balance
between supply and demand, such systems require controlling approaches, and
storage systems should be adapted to geographical requirements for a continuous
supply. Therefore, the integration of storage systems may be of great interest in the
design of hybrid renewable energy systems.
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Implementation of Blockchain-Based
Security and Privacy in Energy
Management

A. D. Dhass, S. Raj Anand, and Ram Krishna

Abstract Digital infrastructure can be used to help communities tomeet their energy
needs by exploiting the community-based power generation network. The present
scenario of power generation can be seen in industries, educational establishments,
and other organizations, where these installations are using industrial solar panels in
their buildings. The ability to control access of energy with two or more resources
has not been convinced by authentication. Commonly, the implementation of an indi-
vidual solar panel system in each resource is very sensitive and expensive. Hence, it
is very important to provide accuracy of the grid environment for social communities,
so that they can be benefited with minimal cost for accessing the shared distributed
energy and authenticating the access control. Each energy resource is authenticated
by the consensusmechanism using the proof ofwork once connected to the first block
as a genesis block. Such energy resource supportsweb chained database architectures
and links to encrypt the large volumes of energy-driven data with blockchain-based
distributed cloud storage design. This chapter aims to examine the significance of
blockchain technology in accessing its role to date in enhancing energy protection
and performance based on its technological advantages. The blockchain technology
will be implemented in energy management to secure and understand the consump-
tion and utilization of energy levels to reduce the overburden and waste. In addition,
a case study based on energy resource management in educational institutions is
provided to demonstrate how well implementation of blockchain technology can be
offered alternatives for community-oriented energy security to increase the quality
of service.
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Keywords Blockchain · Consensus · Smart contract · Proof of work (POW) ·
Quality of service (QOS)

1 Introduction

Sustainable energy sources have undergone monstrous improvement since the incep-
tion, which has been empowered by privatization, the unbundling of the energy divi-
sion, and motivating the activities through budgetary encouragement and energy
strategy [1]. The energy area has a characteristic—power is hard to store for a huge
scope as a physical product. The principle issue is that power should be generated on a
scale that all individuals need. In any case, this is perfect and it is important to know
in advance how much power individuals can accomplish it [2]. The producers of
sustainable energy source systems have begun to bring down the expenses for gener-
ating power with proficient systems by expanding the financial intensity of sustain-
able power source assets. Most of the decentralized energy reserves are sustainable
power sources which are discontinuous, rendering it hard to predict their capacity
yield [3–6]. Throughout the customary power industry, there is a proximity of funda-
mental lattice to which both the distribution lines and small matrices are associated.
The energy stream occurs in one way and the exchange takes place in the other
way of the energy stream, demonstrating that the system is brought together. The
latest measure for the unified power system is the idea of transactive energy, where
the disseminated vitality is regulated directly by its creator. The Distributed Energy
Exchange Model is a part of this transactive vitality component [7]. In addition, in
this paradigm, residents and partners are progressively becoming a partner in the
so-called sustainable power source networks and are partaking in the energy change
by investing resources through, creating, selling, and conveying a sustainable power
source [8].

Blockchain’s invention continues with Bitcoin, standing in as the basis for the
cash issuance and flow. The idea of Bitcoin is a disseminated and decentralized
accounting innovation dependent on cryptography, with the plan to take care of the
decentralization accord issue in the computerized world. Numerous ventures are
dealing with how to adapt blockchain technology to their own organizations [9].
Blockchain technology additionally has an essential role in managing energy supply,
transportation, storage, usage, and power, including validation of carbon outflow
rights, the security of the digital-physical framework, sharing of virtual power assets,
and preparation of amulti-energy systemnetwork. In any case, the set up focal admin-
istrator can be expected to guarantee confidence in the direct prosumer-to-prosumer
exchange models. The blockchain stores information obtained from savvy meters
and exchanges, while increments are ultimately performed consequently utilizing
keen agreements [10]. Moreover, it will likewise encourage the capacity of vitality
buyers to monetize their abundance vitality which may have originated from either
age or vitality investment funds [11].



Implementation of Blockchain-Based Security … 517

Fig. 1 Conventional and blockchain-based applied systems [12]

Blockchain innovation likewise called conveyed record innovation, is an admin-
istration system for the common check, endorsement, control, and sharing of the
substance of exchange records among hubs dispersed at numerous center points on
a PC arrange, as shown in Fig. 1 [12, 13]. As an independent and solid system inno-
vation, blockchain has significant hypothetical and reasonable worth. It is a safe and
self-governing shared system to work and guarantee the successful transmission of
energy internet esteems. A settlement strategy is put in place to help with the last
reviews and to improve the believability of exchanges, such as the power install-
ment. The framework guarantees the security and validity of Internet of Things
(IoT) gadgets and information from source to information sharing, underpins the
improvement of vitality internet account, and recognizes the capacity of information
on network exchanges dependent on blockchain [14].

Blockchain-based vitality involves exchanging the market stage for private
networks with the goal of diminishing by and large network top interest and family
power bills. Keen homes inside the network place vitality offer for its accessible,
appropriated vitality assets (DERs) for each discrete exchanging period during day,
and a twofold closeout instrument is utilized to clear the market and process the
market-clearing value (MCP) [15]. Because of blockchain innovation, unalterable
information age is conceivable and is for all intents and purposes illustrated. This
safe and solid information as a keen agreement, P2P exchange, clean vitality endorse-
ments, service bills without a dispersion system can bring a factor of trust among
prosumers and customers [16]. The energy area is an undeniable case of an industry
with the possibility to incorporate blockchain innovation and related technology.
Power is led at the speed of light and is difficult to follow between two focuses in a
power arrangement. Therefore, powermarkets canbebrought together on exchanging
stages like stock trades [17].

Decentralized vitality frameworks have been broadly examined in the scholarly
community. It is also essential to talk about further progress in the dissemination of
frameworks that blockchain innovation may encourage. Figure 2 shows the simpli-
fied approach to centralized and decentralized move in power and data streams are
emerging. It brought together frameworks where the cause of a partner intended
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Fig. 2 Simplified model of a Centralized, b Decentralized, c Distributed energy systems with
microgrids and Peer-to-Peer (P2P) networks

for the progression of power from high voltage to low voltage downstream loads.
Microgrids have progressively added to the decentralized vitality frameworks, with
the development of a private, small, and medium-scale sustainable power source age.
Power makers, prosumers, and customers can easily purchase and sell power with
each other in P2P systems, for which blockchain plays a key role in the development
and empowerment of the power distribution innovation depicted in Fig. 2b, c. A
few creators likewise suggest power-sharing by the microgrids in multi-microgrid
network systems [18].

In fact, the diverse agreement systems are additionally utilized for the approval
of squares and after accord, the square turns into the piece of the chain. The
characteristics of various blockchain types are listed in Table 1.

Table 1 Types of blockchain and its characteristics [19]

Category Directness Decentralization Write Read

Open Any person Absolute Any person Everybody

Personal Individuals In part Specific Specific

Group Specific In part Specific Any person
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The base of every other sort of agreement systems is Proof of Work (POW).
Today’s blockchain technology is utilized in various ideal models such as well-being
checking, information sharing, customer criticism, decentralized exchange. To limit
the odds of single point disappointment, unapproved people are not part of the system
to forestall pernicious assaults [19]. Although wireless local area networks (WLAN)
and Zigbee technologies are sufficient to manage home area network (HAN) and
home automation, large power line accessmust be used for charging electric vehicles,
grid operation, and automatic meter reading.

In an Internet of Energy (IoE) network, electricity delivery among nodes (elec-
tric cars, microgrid, smart grid, and smart homes) includes electricity consumption
payment bills that are further used for services such as demand estimation, dynamic
price estimation, and optimum energy use scheduling [20]. The routing, which satis-
fies the permission verification criteria and decreases the service center load; when
storing the data in the blockchain data system, the hash pointer is used to maintain
data access validity and complexity, and database protection is achieved [21]. The
blockchain technology was operated by the P2P network, and each node is defined
using a public key (PK). Node transfers are authenticated using PKs, and then sent
to the network. That node is able to validate the source of the transaction through
its digital signature [22]. The central smart contract is responsible for naming the
participants and maintaining all the required data relevant to all purchases, P2P
smart contract is responsible for handling local market exchange and the P2 G smart
contract handles grid energy purchases for the prosumer [23]. Blockchain has been
a competitive and quick increasing field of study as a groundbreaking technology.
Now, this technology became a lucrative and fast-growing area since it incorpo-
rates centralized data management, peer-to-peer sharing, consensus processes, and
encryption algorithms to allow verifiable documentation of data and transactions
[24].

Key findings from the aforementioned studies have shown that blockchain tech-
nology provides secured information of energy data stored and it is expected to be
used not only in cryptocurrency and fintech but also in the power and energy system
fields. This is revealed that it examines the significance of blockchain technology in
accessing its role to date in enhancing energy protection and performance in energy
management based on its technological advantages.

2 Blockchain Technology

Blockchain technology is a decentralized process of a distributed ledger. It produces
a set of rules for making mutual understanding between the producer and consumer
called a smart contract. A smart contract can be applied in many industries, educa-
tional institutions, and other organizations for marketing the products and reflecting
the information irrespective of buying and selling the procedures. This is an automatic
process until it is stored in the blockchain. Each process will be verified by the tech-
niques called a consensus mechanism. When a number of resources are added to the
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current chain, the POW mechanism has confirmed the authentication. No resources
can alter and tamper, once it has been updated in the shared ledger.

Blockchain creates trust because every resource confidently makes a transac-
tion to authorized resources. Hence, it increases confidentiality, authentication, and
integrity to improve efficiency and transparency. Proof of Stake (POS) and Proof of
Authority (POA) in the consensus technique could be authorized without tampering
any transaction data. In the recent scenario, blockchain and photovoltaic are both
popular cutting-edge sectors for industries, agriculture, and other organizations. It is
optimized the existing security mechanism and produce the combination of a new
energy revolution. A decentralized sharing peer-to-peer blockchain-based network to
share the energy andparticularly it is eliminating themiddleman that is the centralized
distribution system. Hence, blockchain technology is a very emerging technology to
store the accuracy of data and efficiency.

3 Blockchain Architecture

The proposed blockchain technology model used with the photovoltaic system
consists of three categories: blockchain smart contracts, consensus, and energy
storage in the cloud using a peer-to-peer network. The decentralization of the overall
architecture of the blockchain is shown in Fig. 3. In the primary building of educa-
tional institutions, the photovoltaic panel should become a genesis block. The smart
contracts should be executed automatically formaking themutual agreement between
prosumer and consumer. Here, the first block, the genesis block is acted as a prosumer
when the new resources are connected with the primary building. Each resource acts
as a consumer to consume energy levels locally.

The verification will be approached to each consumer when connecting to a
new building with the existing energy level transaction by a consensus mechanism.
Each individual consumer is verified the authentication process is called proof of
work (POW). In Fig. 3, the photovoltaic panel resets the energy transmission to the
maximum value for other buildings. Then the energy process verified in blockchain
consensus mechanism to consumer 1 whether it is authenticated or not by POW. This
sequence is processed for each consumer (i.e., consumer 2, consumer 3…consumer
n). Then the subsystem of the peer-to-peer network has consumed the energy from
the respective consumers either in a centralized or decentralized network. Consump-
tion of power in terms of voltage is stored in the cloud. The data is stored rapidly
to the cloud for the utilization of total threshold values. Overall efficiency will be
monitored in mobile devices through a connected network. It also controls the access
of energy between prosumer and consumer which is described in Fig. 3.
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Fig. 3 Performance of blockchain using smart contracts in the photovoltaic panels

4 Energy Management and Blockchain Technology
for Educational Institutions

In recent trends, the solar energy level is very popular and common to implement
in day-to-day life. It helps the community to implement in the rural sectors. Many
educational institutions are facing difficulty in utilizing the electricity in particular
transmission time. Moreover, power failures are causing the education of all the
students’ communities to deny the concentration in order to improve their knowledge.

Therefore, in this portfolio, the entire educational institution will be switched over
to the photovoltaic panel to implement the acquisition of more energy consumed
throughout the buildings. In order to focus on the solar energy system, the advent of
blockchain technology has dramatically increased the capacity of power utilization
when the number of buildings in the institutions is increased. This technology can
improve the security and authentication of decentralized network connections estab-
lished in all buildings. This process attempts to clarify the Quality of Service (QoS)
to all classrooms without the intervention of any learning methodologies. The solar
system will drastically change the power process of all the educational institutions
that have emerged in rural sectors. The consumption of energy is much lower in cost
and reduces the power discrepancies.
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Fig. 4 Block diagram of prosumer and consumer agreement for smart contracts and a consensus
mechanism
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Figure 4 shows the simple block diagram of blockchain technology that could be
adopted in a photovoltaic panel using smart contracts and a consensus mechanism.
It shows that the genesis block will be built in the main building of the institution.
The photovoltaic panel will then be installed in the main building of the institution
for sharing the energy with other buildings. If the number of buildings is connected
to the primary block, it should first be authenticated by a consensus mechanism.
The POW only verifies all buildings for the accumulation of energy by those blocks.
Using the smart contract system of blockchain, the prosumer shares energy to all
consumers. Each consumer has to store the energy level in the cloud database.

This mechanism is very sustainable for the collection of a large number of
energy levels. Other accessories utilize the power to communicate with peer-to-
peer networks. The rural community people could implement these techniques by
using blockchain technology to improve electrical energy efficiency and reduce the
electricity utilization cost. However, peer-to-peer network sharing is controlled by
mobile phones to monitor how power is to be used between the buildings.

India has a milestone in achieving the 20GW power capacity trading target for
another two years in the year 2022. The survey of solar power capacity has been
shown in Fig. 5, to be established at 6 MW in the year 2009. Then the solar power
installed capacity has been increased every year. In Fig. 5, it is described 20 MW
capacity of energy power is identified in India in the year 2018. In view of this,
the Government of India has planned to implement the solar panel capacity to be
implemented with 20GW instead of MW in 2022. Security is also a major factor in
the implementation of the solar panel in all industries and other organizations.

Fig. 5 Survey of solar installation in India [25]
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Fig. 6 Energy market size during the Period (2019–2027) using blockchain technology [26]

Figure 6 has depicted how blockchain technology has improved every year for
producing security and privacy in the energy market. The survey mentioned in
Fig. 6 revealed the energy level using the blockchain at a rate of 76%. There will be
a greater manufacturing rate of up to 10 years (2018–2027). Hence, from both the
Figs. 5 and 6, the market survey of blockchain technology using solar energy would
be more scalable.

In worldwide business, blockchain technology has been implemented smoothly
for decentralized mechanisms. The various activities carried out by the businesses,
industries, and educational institutions are registered. Figure 7 illustrates the various
aspects of security level research behind the blockchain technology. For automa-
tion and asset management, peer-to-peer activities will be validated using the energy
level consensus algorithms through peer-to-peer transformation, wherever informa-
tion has been made publicly available such as Proof of Authority (POA), Proof of
Capacity (POC), and so on. In Fig. 7, the proof of work (POW) is defined as a major
concentration for the verification of all the peer-to-peer network connections with
security level up to 55% for the accumulation of solar energy to be connected to
other buildings or locations. It is used to verify when a block has been created. At
the same time, POA and POC have been establishing the transactions with 13% and
2%, respectively. In order to view Fig. 7, the scalability of every transaction would
be increased by using the blockchain technology.

Figure 8 has demonstrated that the plan of action taken to consider every trans-
action in the business activities. The measurement of the percentage in IoT, smart
devices, automation, and asset management by 11% and 19% of the total use of
cryptocurrency cases for making the transactions, but 33% will be generated in the



Implementation of Blockchain-Based Security … 525

Fig. 7 Security of blockchain using POW in Solar Energy

Fig. 8 Percentage level of decentralized energy trading using smart contracts [27]

case of decentralized energy trading. The purpose of this mechanism has been to
provide a more secure transaction for various asset management activities. Hence,
blockchain is more powerful than a centralized system for producing more accuracy
in a decentralized network.
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5 Conclusion and Future Outlook

Blockchain technology allows for more efficient and secure data storage while
addressing the energy needs of emerging cities. Thus, the scalability of photovoltaic
energy levels can be utilized efficiently with blockchain technology using consensus
and smart contract mechanisms. Based on the above survey, this technology benefits
the rural communities from a peer-to-peer network system with decentralized access
to all the energy levels. Such communities will use electricity without any mind to
raise electricity costs. The significance of blockchain technology in accessing its
role to date in enhancing energy protection and performance in educational institu-
tions on the basis of its technological advancement. It ensures that this technology is
more powerful in order to protect energy consumption for the production of quality
of service. Moreover, energy production using a photovoltaic panel in the future
from all educational institutions, industries, and other organizations would be very
scalable to reduce the cost of electricity usage.
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8. Svetec E, Na -d L, Pašičko R, Pavlin B (2019) Blockchain application in renewable energy
microgrids: an overview of existing technology towards creating climate-resilient and energy
independent communities. In: 2019 16th international conference on the European Energy
Market (EEM), pp 1–7. IEEE

9. Cao Y (2019) Energy Internet blockchain technology. In: The energy Internet, pp 45–64.
Woodhead Publishing

10. Brilliantova V, Thurner TW (2019) Blockchain and the future of energy. Technol Soc 57:38–45
11. Khatoon A, Verma P, Southernwood J, Massey B, Corcoran P (2019) Blockchain in energy

efficiency: potential applications and benefits. Energies 12(17):3317
12. Hitachi Ltd. Blockchain. https://www.hitachi.co.jp/products/it/finance/innovation/blockchain/

(in Japanese)

https://doi.org/10.1109/AIEEE48629.2019.8977128
https://doi.org/10.1109/ICICCS48265.2020.9121050
https://www.hitachi.co.jp/products/it/finance/innovation/blockchain/


Implementation of Blockchain-Based Security … 527

13. Sawa T (2019) Blockchain technology outline and its application to field of power and energy
system. Electric Eng Jpn 206(2):11–15

14. Zhu X (2019) Research on key technologies and applications of energy Internet blockchain.
In: E3S web of conferences, vol 118, p 01003. EDP Sciences.

15. Saxena S, Farag H, Brookson A, Turesson H, Kim H (2019) Design and field implementa-
tion of blockchain based renewable energy trading in residential communities. In: 2019 2nd
international conference on smart grid and renewable energy (SGRE), pp 1–6. IEEE.

16. Khan MSA (2019) Scope of blockchain technology in energy sector.
17. Arslan-Ayaydin Ö, Shrestha P, Thewissen J (2020) Blockchain as a technology backbone for

an open energy market. In: Regulations in the energy industry, pp 65–84. Springer, Cham
18. Ahl A, YarimeM, Tanaka K, Sagawa D (2019) Review of blockchain-based distributed energy:

Implications for institutional development. Renew Sustain Energy Rev 107:200–211
19. Zahid M, Ali I, Khan RJUH, Noshad Z, Javaid A, Javaid N (2019) Blockchain based balancing

of electricity demand and supply. In: International conference on broadband and wireless
computing, communication and applications, pp 185–198. Springer, Cham

20. Miglani A, Kumar N, Chamola V, Zeadally S (2020) Blockchain for Internet of energy
management: review, solutions, and challenges. Comput Commun 151:395–418

21. Rui H, Huan L, Yang H, YunHao Z (2020) Research on secure transmission and storage of
energy IoT information based on Blockchain. Peer-To-Peer Netw Appl

22. Li Y, Hu B (2020) A consortium blockchain-enabled secure and privacy-preserving optimized
charging and discharging trading scheme for electric vehicles. IEEE Trans Ind Inf

23. Khalid R, Javaid N, Javaid S, Imran M, Naseer N (2020) A blockchain-based decentralized
energymanagement in a P2P trading system. In: ICC2020–2020 IEEE international conference
on communications (ICC), pp 1–6. IEEE.

24. Guan Z, Lu X, Wang N, Wu J, Du X, Guizani M (2020) Towards secure and efficient energy
trading in IIoT-enabled energy Internet: a blockchain approach. Future Generat Comput Syst
110:686–695

25. https://www.greenomicsworld.com/india-achieves-20gw-solar-capacity-milestone/. Access
on 10 July 2020

26. https://www.researchnester.com/reports/blockchain-terminology-in-energy-market/1402.
Access on 10 July 2020

27. AndoniaM,RobuaV, FlynnaD (2019)Blockchain technology in the energy sector: a systematic
review of challenges and opportunities. Renew Sustain Energy Rev 100:143–174

https://www.greenomicsworld.com/india-achieves-20gw-solar-capacity-milestone/
https://www.researchnester.com/reports/blockchain-terminology-in-energy-market/1402


Big Data and Deep Learning Analytics
for Robust PV Power Forecast in Smart
Grids

Yunhui Zhang, Shiyuan Wang, and Payman Dehghanian

Abstract Photovoltaic (PV) power generation is intermittent and volatile in nature,
rendering its large-scale deployment a challenge for the smart electricity grid’s oper-
ation safety, stability, and economic efficiency. Ultra-fast and accurate prediction of
PV power helps effectively adjusting the dispatch schedules during different oper-
ating states the power gridmay undergo. This chapter proposes a deep learning-based
PV power forecasting approach, the so-called Chaotic-LSTM, which ensembles the
principles of the long short-term memory (LSTM) neural network and chaos theory.
The LSTM neural network is used to construct a nonlinear mapping between input
and output variables, while the phase space reconstruction technology in chaos theory
is used to analyze the nonlinear time series of PV power generation, and extract the
intrinsic dynamic characteristics of the PV arrays. Finally, a correlation analysis is
applied to extract the external factors influencing the PV arrays. The effectiveness
of the Chaotic-LSTM technology is demonstrated by comparing with three state-of-
the-art neural network models: back-propagation, radial basis function, and simple
recursive Elman neural networks. The accuracy of the proposedmethodwas assessed
using four different forecasting time horizons (i.e., one-hour, four-hour, one-day, and
four-day-ahead) and three evaluation metrics. Additional tests are conducted with
seven levels of signal-noise ratio to provide a measure of model robustness and
effectiveness. Numerical results will demonstrate that the proposed Chaotic-LSTM
method can significantly improve the prediction accuracy of the short-term PVpower
generation.
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1 Introduction

Renewable energy developments and technology deployments have recently gained
increasing attention. With the rapid growth of photovoltaic (PV) power generation
globally, solar energy plays an important role in the generation portfolio of modern
smart power systems. However, solar irradiance and PV power generation are char-
acterized by deep intermittency and volatility in short time intervals, making it a
challenge to coordinate the operation and control of the large-scale PV power plants
connected to the electric power grid [1]. Accurate forecast of the PV power is, there-
fore, of significant importance in ensuring an appropriate dispatch of the PV power
generation in smart grids, thereby resulting in system economic efficiency, enhanced
safety, and improved stability in day-to-day operations [2].

1.1 Background

Numerous PV power forecasting techniques in different forecast horizons have been
extensively studied in the literature. Even if there is not any widely agreed-upon
classification criterion, such techniques can generally fall into one of the following
four categories [3–6], which are summarized in Fig. 1.

1. Very Short-Term Forecasting (0–4-h-ahead): The output of such forecasts
can be used for PV and energy storage control, real-time dispatch and control,
and power quality assessment.

2. Short-Term Forecasting (4-hour–one-week ahead): The output of such fore-
casts is generally used for power balance and day-ahead economic dispatch, unit
commitment, power market transactions, transient stability assessment, etc.

Fig. 1 Forecasting horizons and the corresponding applications in smart grids
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3. Medium-Term Forecasting (one-week–one-month ahead): It is commonly
used for maintenance scheduling of PV plants, unit commitment, and mid-term
dispatch of the power grid.

4. Long-Term Forecasting (one-month–one-year ahead): The output of such
forecasts is commonly used for PV plant planning, long-term solar energy
assessments, and operation management.

From the perspective of smart grid energy management and operation, short-
term prediction of solar power is particularly of importance and urgency for opera-
tional security and economic dispatch decisions. Therefore, many studies [5, 6] have
focused on developing advanced short-term PV power forecast models. Meanwhile,
the state-of-the-art techniques for PV power forecasting are typically classified into
the following three categories [7]: (i) physical methods, (ii) statistical methods, and
(iii) hybrid methods. Physical methods concern with analyses of the physical photo-
electric conversion processes using physical equations for prediction [8, 9]. In phys-
ical methods, a large amount of historical data are not required, but accurate weather
data and detailed power plant geographic information are requisite. Additionally, the
physical formulas may not be accurate, altogether resulting in poor anti-interference
ability and low robustness of such models. Statistical methods analyze the historical
data to find out the underlying relationships for accurate solar prediction, with no
consideration of the complex photoelectric conversion processes. Therefore, while
offering simple modeling advantages compared to the physical methods, they often
require the collection and processing of large amounts of historical data, making the
required data acquisition and processing computationally intensive. There are two
types of statistical methods: traditional statistical methods and artificial intelligence-
aided algorithms. Traditional statistical methods include Auto-Regression Moving
Average [10, 11], Gaussian Process Regression [12–16], Seasonal Auto-Regressive
Integrate Moving Average Model [17–19], etc. Traditional statistical methods are
usually characterized by poor self-learning characteristics and are only suitable for
stationary time series with small data variations. For time series with large, and often
sudden, changes in PV power, the traditional statistical methods reveal a large predic-
tion error, thereby, a compromised prediction accuracy. Artificial intelligence (AI)
methods, however, do not need to characterize the specific expressions between the
inputs and the forecast outputs. By training theAImodels using the historical dataset,
the nonlinear mapping between the inputs and the output is established effectively,
which is then used to predict the PV output power. Among AI algorithms, traditional
neural networks [20–27], deep learning [28–30], support vector machine (SVM)
[31–34], and fuzzy inference models [35, 36] are commonly used in PV power fore-
casting. A large amount of historical data are required in these methods, and they
feature levels of self-learning and self-adaptive capabilities. However, SVM cannot
easily choose suitable kernel functions and can hardly cope with large-scale training
samples; traditional neural networkmethods suffer from the over-learning challenges
and can easily fall into the local minimum; single long short-term memory (LSTM)
methods can capture the dependencies in the time series, while the choice of input
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variables can hardly reveal the intrinsic dynamic characteristics of PV arrays. Convo-
lutional neural network (CNN) reduces the complexity of the network because of
its local sensing and weight sharing characteristics. However, the pooling layer will
lose a lot of valuable information and ignore the correlation between the partial and
the entire set.

To improve the prediction accuracy, multiple methods can be integrated in order
to synergistically take advantage of their competing potentials. Compared with the
single methods, the prediction improvements provided by a hybrid of these methods
mainly include: (i) capturing the underlying knowledge in the field data to create
features that can unlock the full potential of the forecast model; (ii) optimizing the
model training parameters and structure; and (iii) improving the model learning
speed and accelerating the algorithm convergence. Among the state-of-the-art tech-
niques, a hybrid model for day-ahead hourly solar forecast using weather data is
proposed in [37], where the self-organizing map and learning vector quantization
networks are employed to classify the historical PV power dataset, support vector
regression is applied to train pairs of input and output data, and the fuzzy inference
method is applied to select a trained model for an accurate forecast. References [38–
40] focused on the short-term solar power forecasting with the time horizon from
five minutes to several days. Their suggested approach includes (i) utilizing a back-
propagation neural network (BPNN) as the forecasting model and (ii) implementing
a genetic algorithm (GA) to optimize the thresholds and weights of the BPNN. The
integration of the two methods could reduce the calculation burden and improve the
prediction accuracy of PV power generation. In [41], a combined model is proposed,
which implements the global fast search function of particle swarm optimization
(PSO) and the local search ability of the BPNN. Application results show that the
prediction error of the forecast model is less than 20%. Reference [42] proposed a
hybrid forecasting model for PV power generation. In this model, a random forest
method is used to select the feature sets, improved grey ideal value approximation is
used to select similar days, complementary ensemble empirical mode decomposition
is used to decompose the original power time series, and particle swarm optimization
algorithm is used to optimize the BPNNparameters. The effectiveness of this method
is verified on a real-world photovoltaic power station. In [43], a hybrid method is
proposed to predict one-day-ahead hourly PV power generation. The key points of
the method are as follows: (i) The historical data of daily PV power generation is
classified into various weather types by the fuzzy K-means algorithm; (ii) Training
models for different weather types are constructed using radial basis function neural
networks (RBFNN); (iii) Fuzzy inference is used to select an appropriate prediction
model from the trained models. The results demonstrated that this method provides
promising forecasting results than state-of-the-art techniques. Reference [44] uses
the fuzzy c-means (FCM) clustering method to divide historical daily samples into
several categories and uses historical data with weather conditions similar to the fore-
cast day to build an RBFNN prediction model. The input of the neural network is
the most similar two-day data and the current daily average radiation, and the output
is the hourly output power prediction. The results proved the acceptable predic-
tion accuracy of the model in practical applications. In [45], historical PV power
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and external variables are used as the input of the Adaptive Network-based Fuzzy
Inference System (ANFIS) model to obtain the initial prediction, and GA is used
to optimize the parameters of the ANFIS prediction model; the output of the model
together with other variables are used as the input of the FFNN model to obtain
the final prediction output. In [46], an ANFIS model is proposed for short-term PV
power prediction. Thismodel takes advantage of the neural networks and fuzzy infer-
ence system. Through the forecast of one-week PV power generation in the Indian
electricity market, the ANFIS model shows significantly improved accuracy. Refer-
ence [47] proposed a GA-PSO-ANFIS hybrid approach to forecasting a day-ahead
hourly PV power generation. In order to enhance the efficiency of the PV power
forecaster, a binary GA is utilized to determine a suitable set of prediction variables.
An integrated optimization framework that combines GA and PSO algorithms is
finally employed to optimize the ANFIS-based forecast model. This method benefits
from the simplicity and effectiveness of the PSO algorithm and the strong global
searching capability of the GA to optimize the relatively complex ANFIS structure.
A hybrid deep learning model is proposed for PV power generation prediction in
[48]. The model uses a wavelet packet decomposition method to decompose the PV
power generation time series into four sub-sequences. Then, the predictionmodels of
four sub-sequences are established by LSTM. Finally, the linear weighting method is
used to reconstruct the output of the four LSTMmodels to obtain the final prediction.
Reference [49] proposes a combined algorithm, which uses grey relational analysis
to select similar hours from historical datasets, and uses LSTM neural network to
map the nonlinear relationship between the input and the output. The results show
that the algorithm offers promising robustness. A hybrid model based on LSTM and
attention mechanism for short-term PV power generation prediction is proposed in
[50]. It uses LSTM to extract features from the time series of PV power genera-
tion data. The trained attention mechanism is applied to LSTM neural network to
process the extracted features, so as to improve the original prediction ability of the
LSTM neural network. Reference [51] presents a day-ahead prediction model for
PV power. The model uses grey theory to pre-process the data and uses a deep belief
network (DBN) to learn the high-level abstraction of historical power data. DBN
is composed of multiple RBMs, and a feedforward network (FFN) is used in the
last layer. The training process of the RBM network can be regarded as the initial-
ization of the weight parameters of FFN; hence, DBN overcomes the shortcomings
of the FNN network as the latter easily falls into the local optima and is featured
with a long training time due to the random initialization of the weight parameters.
Taking different weather types into account, the CNN regressionmodel is established
in [52], and each model parameter is optimized via the SALP group algorithm. The
model is verified on a 500kwp photovoltaic power generation system revealing a
good performance. In [53], a combined forecasting model for PV power genera-
tion is proposed. The input of the model is determined by the correlation coefficient
method, and the parameters of the extreme learning machine are optimized by the
improved chicken swarm optimization algorithm, resulting in satisfactory prediction
performance. In [54], a hybrid deep neural network model is suggested to forecast
the PV power output. This model takes weather parameters and the historical PV
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power as inputs and combines the advantages of CNN for high-dimensional data
and LSTM for long-term dependence. It demonstrates superior performance over
commonly used forecast models. In [55], a hybrid method based on a deep CNN
is proposed for hour-ahead PV power forecasting. First, variational mode decom-
position (VMD) is applied to decompose different frequency components from the
historical time series of PV power. All components can be constructed into a two-
dimensional form for the deep training of a CNN. From simulations, it can be seen
that this method can improve the accuracy of short-term PV power forecasting.

1.2 Challenges and the Proposed Solution

The aforementioned artificial intelligence methods and combined forecasting tech-
niques commonly adopt “black-box” forecasting methodologies. However, these
models are knownwith some drawbacks such as the need for a large amount of histor-
ical data, certain assumptions on the data distribution, and the difficulty to explain
the relationship between the input features and the output prediction. To overcome
these shortcomings, a hybrid deep learning-aided approach that adopts and inte-
grates the promising features and complementary benefits of the chaos theory and
LSTM neural network is proposed. The introduced deep learning-aided approach,
hereafter called the Chaotic-LSTM method, offers improved precision and compu-
tational performance in short-term PV power forecasting. In particular, this chapter
highlights the following key features and contributions:

1. The phase space reconstruction in chaos theory is introduced for nonlinear time
series analysis of PV power, which reveals the inherent dynamic characteristics
of PV arrays, and lays the foundation for establishing an effective prediction
model.

2. With a unique design structure, the LSTM neural network is suitable for time
series prediction. The LSTM is approached to map the nonlinear relationship of
the phase point evolution in the chaotic phase space. The chaotic characteristics
are used to process the data samples and the input nodes of the neural network.
Combining the chaos theory with LSTM neural network, the PV output power
forecast model is established.

3. The proposed framework features not only the learning ability of the internal
characteristics but also the adaptability to external meteorological conditions.
With the prevailing randomness in the meteorological conditions and the
resulting intermittency in the PV output power, the proposed Chaotic-LSTM
approach applies the correlation analysis to capture the external random vari-
ations; it takes the meteorological conditions (obtained from the numerical
weather prediction data) as the input and feeds the extracted variables into
the LSTM for accurate PV power prediction.
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Fig. 2 Big picture architecture of the proposed deep learning-aided PV power prediction model

The remainder of the chapter is organized as follows. A detailed description of
the proposed analytics is presented in Sect. 2. Section 3 presents case studies and
discusses the numerical results. Finally, Sect. 4 sets forth a summary of the findings
and concludes the chapter.
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2 Proposed Deep Learning-Aided PV Power Prediction
Model

Figure 2 demonstrates the proposed deep learning-aided model implementation
procedure for the PV power forecast. The model implementation procedure can
be summarized as follows:

1. Data Collection: Historical data of PV power generation and the corresponding
weather conditions are collected.

2. Data Preparation: The collected data must be prepossessed before building the
prediction model to ensure acceptable reliability and accuracy of the algorithm.
Here, the phase space reconstruction technology in chaos theory is used to
analyze the nonlinear time series of PV power generation data, so as to extract
the inherent dynamic characteristics of the PV arrays. Correlation analysis is
applied to extract the external factors influencing the PV arrays.

3. Training and Testing: The original dataset is divided into testing, training,
and validation datasets. The training and validation datasets are used to build
and train the proposed deep learning-aided PV power prediction model. By
checking if the termination criteria are satisfied, one can judge whether addi-
tional model training efforts are required, or the model is ready for verification
through the testing dataset. If the model performance is satisfactory during the
testing process, the mapping relationship between the input variables and the
output variable can be obtained by the proposed model.

2.1 Nonlinear Reconstruction Technique Applied to Chaotic
Time Series

According to the chaos theory, the inaccurate prediction of a dynamic system in a
long run is not driven by the influence of random factors; it is, instead, determined by
the inherent dynamic characteristics of the system. The sensitivity of the system to the
initial conditions makes the long-term prediction impossible or inaccurate. However,
the systemmotion orbital divergence would be small in shorter time periods, making
it feasible to harness the observed data for short-term forecasting. The nonlinear
reconstruction of the chaotic time series focuses on excavating the laws hidden in
the system, thereby helps in predicting the future trends and behavior of the dynamic
system. It is very suitable for complex systems that show deterministic behavior
globally, but with some degree of randomness locally.

Phase Space Reconstruction method [56, 57], proposed by Farmer. D. J and laid
a solid mathematical foundation by Packard, provides a new mechanism for time
series prediction. For a complex dynamic system with many influencing factors, its
dynamic behavior can be described by its trajectory in phase space. In [56], it is
proved that the phase space reconstruction of a dynamic system can be carried out
according to a single-variable time series since the time series itself contains valuable
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information about all variables involved in the operation of the system. As long as the
time delay and the embedding dimension are selected appropriately, a phase space
that is topologically equivalent to the original dynamic system can be reconstructed
from the one-dimensional chaotic time series.

2.1.1 Phase Space Reconstruction

The phase space reconstruction for the time series {a(n), n = 1, 2, . . . , N} is as
follows:

A(i) = [a(i), a(i + τ), · · · , a(i + (m − 1)τ )], i = 1, 2, · · · , M ; M = N − (m − 1)τ , (1)

where the elements of A(i) include one-time series element a(i) itself and its time-
shifted elements. Phase points in the phase space are given as follows:

⎡
⎢⎢⎢⎣

a(1) a(1 + τ) · · · a(1 + (m − 1)τ )

a(2) a(2 + τ) · · · a(2 + (m − 1)τ )
...

...
. . .

...

a(N − (m − 1)τ ) a(N − (m − 2)τ ) · · · a(N )

⎤
⎥⎥⎥⎦ (2)

The embedding dimension m and the optimal time delay τ are determined by the
reconstruction of the phase space. Each row of (2), which is represented by vector
A(i), stands for a phase point in an m-dimension phase space and the connection
between the phase points describes the system evolutionary trajectory in this phase
space.

2.1.2 Time Delay and Embedding Dimension Selection

The time delay τ and the embedding dimension m are the key factors to an effective
reconstruction of the phase space. Once these two parameters are selected properly,
the reconstructed phase space has the same geometric property and information as the
actual dynamic system, where it retains all the critical features of the real phase space
[56, 57]. There are two common paradigms on how to select time delay τ and the
embedding dimension m. One paradigm assumes that τ and m are independent and
can be independently selected. There are many methods to estimate τ , such as Auto-
correlation [58], information entropy [59], and mutual information [60]. Saturated
correlation dimension method [61] and the false nearest neighbor method [62] are
effective methods to estimate m. Another paradigm primarily assumes that τ and m
are not independent of each other and that they can be assessed simultaneously. A
large number of experiments [63–65] show that embedding windowwidth τw derives
the correlation between τ and m characterized as τw= (m − 1)τ . For a specific time
series, τw is relatively fixed, and improper pairing of τ and m will directly affect



538 Y. Zhang et al.

the equivalent relationship between the reconstructed phase space and the original
dynamic system; hence, joint algorithms for τ andm are generated accordingly, such
as C-C method suggested in [66] and time windowmethod in [65],. The C-C method
is relatively simple and easy to implement; it has been widely used owing to its
promising performance in practical applications. Therefore, in this chapter, the C-C
method is chosen to simultaneously estimate the time delay τ and the embedding
window width τw.

As mentioned earlier in Eq. (2), the phase space of the time series {a(n), n = 1,
2, . . . , N} is reconstructed using the time delay τ and the embedding dimension m.
The C-C method is accordingly described as follows [66]: The correlation integral
ε(m, N , r, τ) of the time series is first described, which represents the probability
that the distance between any two points in the phase space is less than r:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε(m, N , r, τ) = 2

M (M − 1)

M∑
i, j=1

H (r − dij),

r > 0, dij = ‖A(i) − A(j)‖,
H (ω) =

{
0,
1,

ω < 0
ω > 0

,

(3)

where 1
2M (M − 1) denotes the number of all phase point pairs in the phase space.

Then the time series {a(n), n = 1, 2, . . . , N} is utilized to build several newmatrices,
each of which has λ rows, where each row represents a disjoint sub-sequence with
the length int(N/λ); here, int(·) means taking an integer. The size of the matrices
changes depending on the values of λ. For a given λ, the matrix would be expressed
as in the following:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(1) a(1 + λ) a(1 + 2λ) a(1 + 3λ) · · ·
a(2) a(2 + λ) a(2 + 2λ) a(2 + 3λ) · · ·

...
...

...
...

...

a(n) a(n + λ) a(n + 2λ) a(n + 3λ) · · ·
...

...
...

...
...

a(λ) a(λ + λ) a(λ + 2λ) a(λ + 3λ) · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

The statistical measures are then evaluated for each sub-sequence as follows:

S(m, N , r, λ) = 1

λ

λ∑
η=1

(
εη

(
m,

N

λ
, r, λ

)
− εη

(
1,

N

λ
, r, λ

)m)
(5)

For λ = 1, there is only one-time sequence {a(n), n = 1, 2, . . . , N} at this time;
then the following holds
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S(m, N , r, 1) = ε1(m, N , r, 1) − ε1(1, N , r, 1)m. (6)

For λ = 2, there are two disjoint time series with the lengthN/2, i.e., {a(1), a(3),
a(5), . . . , a(N − 1)}and {a(2), a(4), a(6), . . . , a(N )}, we then have

S(m, N , r, 2)

= 1

2

[
ε1(m, N/2, r, 2) − ε1(1, N/2, r, 2)m + ε2(m, N/2, r, 2) − ε2(1, N/2, r, 2)m

]
.

(7)

We define �S(m, N , λ) as:

�S(m, N , λ) = max(S(m, N , ri, λ)) − min
(
S
(
m, N , rj, λ

))
, i �= j, (8)

where ri and rj are different neighborhood radii.�S(m, N , λ) indicates themaximum
deviation of S(m, N , r, λ) for all radii. The values of m and the optimal time delay
τ can be estimated properly according to the Brock-Dechert-Scheinkman (BDS)
statistics [67] for N = 3000, m = 2, 3, 4, 5, and r = σs

2 ∼ 2σs. σs is standard
deviation of the time series. The average values of the evaluated quantities are as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S̄(λ) = 1

16

5∑
m=2

4∑
j=2

S
(
m, N , rj, λ

)

�S̄(λ) = 1

4

5∑
m=2

S(m, N , λ)

Scor(λ) = �S̄(λ) + ∣∣S̄(λ)
∣∣

(9)

�
The first local minimum of �S(λ) is taken as the optimal time delay g of the time

series. Using the global minimum value of Scor(λ) as the embedding window width
(m − 1)τ of the time series, the embedding dimension m can be then obtained.

2.1.3 Calculation of the Largest Lyapunov Exponent

Lyapunov exponents reflect the average exponential rate of separation or convergence
of the nearby orbits in phase space. If the largest Lyapunov exponent is greater than
0, it means that the adjacent points will eventually be separated corresponding to the
local instability of the orbit, which indicates that the system has chaotic behavior,
and the chaotic sequence prediction method can be applied. The largest Lyapunov
exponent can be calculated by applying the small data sets algorithm [68].

Given the time series {a(n), n = 1, 2, . . . , N}, the phase space is reconstructed
according to (2). Next, the small data sets algorithm is used to determine the nearest
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neighbor of each point on the trajectory. By searching for the point with the smallest
distance from a specific point A(i), we can get its nearest neighbor A(i), which can
be expressed as follows:

di(0) = min
î

∥∥∥A(i) − A
(
î
)∥∥∥. (10)

After μ discrete time steps, the distance between the i-th pair of the nearest
neighbors is

di(μ) =
∥∥∥A(i + μ) − A

(
î + μ

)∥∥∥, μ = 1, 2, · · · , min
(
M − i, M − î

)
. (11)

For each μ discrete time step, the average value of ln di(μ) is evaluated for i:

y(μ) = 1

q�t

q∑
i=1

ln di(μ). (12)

The largest Lyapunov exponent can be approximately obtained using a least square
fit to the curve y(μ) ∼ μ, corresponding to the slope of the regression line.

2.2 Correlation Coefficient Analysis

Pearson correlation coefficient [69] is here employed for correlation analysis. Given
the paired data {(α1, β1), . . . , (αK , βK )}, consisting of K number of pairs, we have

rαβ =

K∑
i=1

(αi − ᾱ)
(
βi − β̄

)
√

K∑
i=1

(αi − ᾱ)2

√
K∑
i=1

(
βi − β̄

)2
. (13)

α = 1
K

K∑
i=1

αi is the samplemean for variableα and analogously for variableβ. The

Pearson correlation coefficient reflects the strength of the linear correlation between
variable α and variable β. The value of rαβ falls within the range of [− 1, 1]. The
greater the rαβ , the greater the correlation between the two variables α and β. When
rαβ > 0, it indicates a positive correlation between these two variables. That is, when
the value of one variable increases, the value of the other variable increases. When
rαβ < 0, it indicates a negative correlation between these two variables. That is, when
the value of one variable increases, the value of the other variable decreases. When
rαβ= 0, this shows that there is no linear correlation between these two variables.
rαβ= 1 and−1 indicate that for any positive (negative) increase in one variable, there
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is a positive (negative) increase of a fixed proportion in the other. When 0 < |rαβ |
< 1, it indicates that there are different degrees of linear correlations: |rαβ | ≤ 0.3
indicates that there is no linear correlation between two variables; 0.3 < |rαβ | ≤ 0.5
indicates that there is a small linear correlation between two variables; 0.5 < |rαβ |
≤ 0.8 indicates a significant linear correlation between two variables; and rαβ≥ 0.8
indicates the two variables are highly linearly correlated.

2.3 Long Short-Term Memory (LSTM) Network

Long short-term memory (LSTM) network—a class of recurrent neural network
(RNN) models within the general theme of deep learning analytics [70]—features
learning long-termdependencies,which is instrumental for certain types of prediction
missions that require the network to retain information over long time periods. This
is, however, challenging to be achieved in traditional RNNs [71]. The vanishing
gradient problem—i.e., how to decide when the neural network stops learning due to
the fact that the update rates to the variousweightswithin a given neural network keep
decreasing—restricts the memory capabilities of the traditional RNNs by adding too
many time steps. LSTM provides a solution to the vanishing and exploding gradient
problems and works extremely well in various practical applications [72–74].

LSTM solves the problem of traditional RNNs with only short-termmemory. The
general architecture of the LSTM neural network is shown in Fig. 3, which can be
expressed as a time-expansion chain structure. In Fig. 3, S represents an LSTM unit,
and each unit is associated with a time instance.

A common LSTM unit is composed of a cell, and three gates—forget gate, output
gate, and input gate [75]. Each gate behaves like a switch that regulates the informa-
tion flowing into and out of the cell. The forget gate selectively forgets the information
in the memory cell state. The output gate selects and outputs the necessary infor-
mation and decides whether the memory cell state affects other neurons. The input
gate selectively controls new information into the cell state. At the bottom of Fig. 3,
a detailed structure of an LSTM unit is illustrated. Variables (Ct−1, ht−1, xt) are the
inputs to each LSTM cell. On the output side of each LSTM cell at time t, there
are two states (Ct , ht) that are transferred to the next cell. The forward calculation
formula of the LSTM network is as follows:

ft = σ
(
Wfxxt + Wfhht−1 + bf

)
(14)

it = σ(Wixxt + Wihht−1 + bi) (15)

ot = σ(Woxxt + Wohht−1 + bo) (16)
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Fig. 3 A generic LSTM neural network architecture

c̃t = σ(Wcxxt + Wchht−1 + bc) (17)

ct = ft ◦ ct−1 + it ◦ c̃t (18)

ht = ot ◦ tanh(ct). (19)

3 Numerical Case Studies

PV power forecasting is here described as a regression forecast modeling problem,
as expressed in the following formula:

yp
(
t + ĥ

)
= G(u(t)). (20)

In (20), u(t) denotes input variables, and yp
(
t + ĥ

)
is the output variable, which

represents the output of the proposedPVpower forecastingmodel at the time
(
t + ĥ

)
.

PV power is affected by many factors such as the weather, meteorological, as well
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as geographical environment, which in turn results in random fluctuations and inter-
mittency. These factors can be classified into two categories: (i) the internal factors
related to the PV arrays (e.g., installation position, installation angle, type of PV
modules and the temperature of PV modules, and aging); (ii) the external factors
affecting PVarrays (e.g., season, atmospheric temperature, irradiation intensity,wind
speed, irradiance angle, and day type). In the case studies, the phase reconstruction
technique of the chaotic time series and the correlation analysis are implemented to
pre-process the raw data and obtain the input u(t) in (20) for the forecasting model.
The nonlinear reconstruction technique is used to extract the internal dynamics of
the PV arrays, which is achieved by considering the PV power variation driven by
the internal factors. When dealing with external random factors (the second cate-
gory), we extract the main influencing factors through correlation analysis. Once
the data is prepared, the deep learning forecasting model is developed to learn the
nonlinear relationship between the input and output variables. In each case study, a
back-propagation (BP) neural network, radial basis function (RBF) neural network,
and simple recurrent Elman neural network are used as benchmarks for performance
comparison of the proposed Chaotic-LSTMmethodology. Four different forecasting
time horizons (i.e., one-hour, four-hour, one-day, and four-day-ahead) and three eval-
uation metrics—Normalized Root Mean Square Error (NRMSE), Mean Absolute
Error (MAE), andMeanAbsolute PercentageError (MAPE)—are utilized to evaluate
the accuracy of the proposed approach. The simulations are carried out in MATLAB
2019 a programming environment on a PC system with Intel® Core™ i7-7500U
CPU @2.70 GHz, and 8 GB RAM.

3.1 Data Collection

Two cases are studied in this Section. The data used in Case I are obtained from the
Yulara Solar Power System [76]. The system is located near the iconic Uluru (Ayers
Rock) in Australia, with a total capacity of 1.82 MW, distributed in five locations—
see Fig. 4. The data covers a time period from January 2018 to the end of 2018.

Fig. 4 Location of the Yulara solar system in Uluru, Australia: Case I
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Fig. 5 Location of the desert knowledge Australia solar centre in Alice Springs, Australia: Case II

The data used in Case II are obtained from the desert knowledge Australia solar
centre (DKASC) [77]. DKASC is a small town located in Alice Springs, as shown in
Fig. 5. The total output power of all sites is 263 kW. The Case II data covers a time
period from January 2019 to the end of 2019. In addition to the PV power genera-
tion, meteorological data (weather temperature, wind speed, wind direction, weather
relative humidity, diffuse horizontal radiation, and global horizontal radiation) are
also provided. The data resolution is 15 min.

Figure 6a, b, respectively, presents the daily trends of the generated PV power
throughout the year for Case I and Case II. It can be observed that the PV power
generation reaches its peak at noon and drops to zero at night. Figure 7a, b, respec-
tively, represents the monthly distribution of the generated PV power from 7:00
am-7:00 pm for Case I and Case II. From Fig. 7a, it can be seen in Case I that the PV
power generation is relatively low from May to October, and relatively high from
December to March. In Case II, the annual fluctuation of the PV power generation
is relatively small, which can be seen in Fig. 7b.

Fig. 6 PV power data for the studied Case I [76] and Case II [77]
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Fig. 7 Monthly distribution of PV power generation in the studied Case I and Case II

3.2 Data Preparation

Once the data is collected, the next step is to consider how to prepare and organize
the data in a form ready to be harnessed by the developed forecast engine. As high-
quality data can generate better models, data pre-processing becomes more andmore
important and has become a basic step of the machine learning algorithms. In this
chapter, the pre-processing includes data cleaning, the phase space reconstruction,
correlation analysis of the input data, and the data reshape processes.

3.2.1 Data Cleaning

Datacleaningmainly includes removing irrelevant and/or duplicate data in the original
dataset, as well as dealing with missing and/or abnormal values.

1. Missing Values: In order to improve the data quality, two methods are generally
used to process the missing entries:

• Data Deletion: When there is a large amount of data or multiple fields in a
record are missing and it is not convenient to fill in the missing entries, one
common approach is to delete the missing values.

• Data Imputation: It is necessary to estimate the missing values if discarding
them is not desired. Generally, the following methods are used to fill the
missing values: (i) replacing the missing value by the value (or average
value) of the adjacent records; (ii) filling in the missing value with the value
on another similar record with the missing value; (iii) building a statistical
model for predicting the missing values by estimating the model parameters.

2. Outlier Values: For the treatment of the outliers, one common approach is
to use the single-variable scatter plot or box plot, where the points far away
from the normal range are regarded as outliers. The processing of outliers
includes removing the observations with outliers, treating them as missing
values, correcting the average values, and discarding them from the processes.
When processing the outliers, one should first analyze the possible causes
creating such outliers, and then judge whether the outliers should be discarded.
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3.2.2 Phase Space Reconstruction of the Chaotic Time Series

Asmentioned earlier in Sect. 2.1.2, since the single-variable time series itself contains
valuable information on all variables in the dynamic system, the phase space of the
dynamic system can be reconstructed according to the single-variable time series.
Accordingly, phase reconstruction technology is here applied to the PV power time
series {aPV (t), t = 1, 2, .., N } to excavate the intrinsic dynamic characteristics of
PV arrays, serving as the foundation for establishing a forecasting model.

The choice of time delay and embedding dimension is critical for phase space
reconstruction. In this chapter, the phase space reconstruction is performed through
the C-Cmethod. As mentioned in Sect. 2.1.2, three statistical measures S(λ),�S(λ),
and Scor(λ) are evaluated to obtain the optimal values for the time delay τ and
the embedding dimension m. The relationships between the time delay and three
statistical metrics S(λ), �S(λ), and Scor(λ) are, respectively, illustrated in Fig. 8a,
b for Case I and Case II. The X-axis represents λ, i.e., different time delays, while
the Y-axis reflects the above three statistical metrics. For Case I (Fig. 8a), it can be
observed that �S(λ) achieves the first local minimum value when λ= 5, which is
corresponding to the optimal time delay τ . The optimal embedding window width
is (m − 1)τ= 35, corresponding to the global minimum value of Scor(λ). The value
of the embedding dimension m is then obtained, which is equal to 8. Similarly, in
Case II (Fig. 8b), it can be observed that �S(λ) achieves the first local minimum
value when λ= 5, which is corresponding to the optimal time delay τ . The optimal
embedding window width is (m − 1)τ= 37, corresponding to the global minimum
value of Scor(λ). Therefore, the embedding dimension is obtained as m= 9.

To detect whether the PV data time series has chaotic behavior, the small data sets
algorithm is applied to calculate the largest Lyapunov exponent in this chapter. The
largest Lyapunov exponent is positive, revealing that the time series of PV power
generation has chaotic characteristics, which provides the possibility for short-term
prediction of PV power generation. In Sect. 2.1.3, Eqs. (10)–(12) described the
detailed evaluation method. With the evaluations performed in Case I, the largest
Lyapunov exponent is found to be 1.25 × 10 − 3, while that of Case II is assessed to
be 5 × 10− 4.

Fig. 8 C-C method applied to derive the optimal values for time delay and embedding dimension
in the studied Case I and Case II
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3.2.3 Correlation Analysis of the Input Data

Various external factors influencing the PV arrays are mutually interdependent. The
factors with higher correlation are selected as the characteristic information of the
PV power, which is an important reference for sample selection and input node
characterization of the PV power forecast model. The correlation between the PV
output power and the influencing factors will be extensively analyzed in this Section.

The dataset parameters include the PV output power, weather temperature,
weather relative humidity, wind speed, diffuse horizontal radiation, global horizontal
radiation, and wind direction. The matrix rαβ is then evaluated according to Eq. (13),
which represents the relationships between each pair of variables in the dataset.
The scatter plot matrices for Case I and Case II analyses are shown in Fig. 9 and
Fig. 10, respectively, and demonstrated the correlations between multiple variables.
The distribution of individual variables can be seen from the histogram on the matrix
diagonal entries, while the scatter plot on the upper and lower triangles shows the
relationship between every two variables. One can see that the PV power is positively
correlated with weather temperature, diffuse horizontal radiation, global horizontal
radiation, and wind speed, which indicates that as these variables increase, the PV
output power increases. Similarly, PV power is negatively correlatedwithwind direc-
tion andweather relative humidity, which indicates that the increase in these variables
will decrease the PV power output.

The heat-maps of the correlation matrices in Case I and II are demonstrated in
Fig. 11a, b, respectively, to illustrate the correlation coefficient matrix between vari-
ables. From the result in Case I (Fig. 11a), it can be observed that the variations
in weather temperature, diffuse horizontal radiation, and global horizontal radiation
can significantly influence the PV power. Hence, these three variables are introduced
to the proposed Chaotic-LSTM neural network model as the external input variables.

Fig. 9 Scatter plot of the correlation matrix (Case I)
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Fig. 10 Scatter plot of the correlation matrix (Case II)

Fig. 11 Heat-map of the correlation matrix for PV power data in Case I and case II

From the result presented in Case II (Fig. 11b), it can be observed that the varia-
tions in wind speed, diffuse horizontal radiation, and global horizontal radiation can
significantly influence the PV output power. Hence, these variables are introduced to
the proposed Chaotic-LSTM neural network model as the external input variables.

3.2.4 Data Reshape

Based on the phase space reconstruction and correlation analyses, two parts of the
input variables for u(t) in (20) are achieved, i.e., u1(t) and u2(t). u1(t) is a discrete
PV power time series u1(t) obtained from the phase space reconstruction, and u2(t)
is weather data array obtained from the correlation analyses. The input u(t) to the
forecast engine can be then formed as follows:

u(t) = [u1(t), u2(t)]. (21)
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Table 1 Input variables of the proposed Chaotic-LSTM network (case I)

PV power data u1(t) Weather data u2(t)

aPV (t − (m − 1)τ ), aPV (t − (m − 2)τ ), Diffuse horizontal radiation at time (t + ĥ)

· · · , aPV (t − τ), aPV (t) Global horizontal radiation at time (t + ĥ)

with τ = 5, m = 8 Weather temperature at time (t + ĥ)

Table 2 Input variables of the proposed Chaotic-LSTM network (Case II)

PV power data u1(t) Weather data u2(t)

aPV (t − (m − 1)τ ), aPV (t − (m − 2)τ ), Diffuse horizontal radiation at the time (t + ĥ)

· · · , aPV (t − τ), aPV (t) Global horizontal radiation at the time (t + ĥ)

with τ = 5, m = 9 Wind speed at the time (t + ĥ)

In Case I, u1(t) = [
aPV (t − (m − 1)τ ), aPV (t − (m − 2)τ ), . . . , aPV(t − τ),

aPV(t)
]
u2(t); includes diffuse horizontal radiation, global horizontal radiation,

and weather temperature at the time
(
t + ĥ

)
. Here, the embedding dimension

of PV power time series m equals to 8, and the time delay τ equals to 5; aPV(t)
represents the PV output power at time t; aPV(t − (m − 1)τ ) corresponds to the PV
output power at the time (t − 35). As the sampling resolution is 15 min/sample,
(t − τ) corresponds to the PV power data at 75 min before time t, and (t − 35)
corresponds to the PV power data at 525 min before time t. The input vari-
ables of the proposed Chaotic-LSTM network are listed in Table 1. In Case
II,u1(t) = [aPV(t − (m − 1)τ ), aPV(t − (m − 2)τ ), . . . , aPV(t − τ), aPV(t)]; u2(t)
includes diffuse horizontal radiation, global horizontal radiation, and wind speed at

the time
(
t + ĥ

)
. The embedding dimension is set asm = 9 and the time delay is τ=

5. The input variables of the proposed Chaotic-LSTM network are shown in Table 2;
aPV. thus corresponds to the PV power at time (t − 40). As the sampling interval is
15 min/sample, (t− 40) corresponds to the PV power data at 600 min before time t.

The pre-processed data may contain attributes with a mixture of scales for various
quantities such as PV power, temperature, and radiation among others. In order to
eliminate the impacts of various influencing factors on PV output power due to
different scales, data normalization is performed, which is achieved through re-
scaling the data so that all values range within 0 and 1. The normalization process is
described as follows:

unorm = u − umin
umax − umin

(22)
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3.3 Forecast Model Training

The training process of the LSTM model typically includes splitting the dataset,
determining the model parameters, and finally deriving a mapping relationship G (·)
between the input and the output variables by checking if the termination criteria
are satisfied. To derive G, the data is pre-processed as described in Sect. 3.2.3, and
then divided into training, testing, and validation datasets. The training samples
include 50% of the total number of samples, while the other datasets (for testing
and validation) each share 25% of the samples. These three datasets are used to first
train the forecast engine parameters, then validate the model’s state and convergence
during the training process, and finally evaluate the generalization ability of the
model. The time windows for datasets are shown in Table 3. The training dataset is
employed to train the proposed forecast model parameters, and the validation dataset
is employed to validate the model parameters. In the training process of Case I and
Case II, the network configuration and the training parameters are given in Table 4.
In Case I, the input dimension is (m + 3), which is equal to 11. In Case II, the input

Table 3 Dataset for the
proposed Chaotic-LSTM
network in Case I and Case II

Dataset Time window

Case I Case II

Training Dataset 2018/2/20
00:00-2018/8/20
00:00

2019/1/1
00:00-2019/7/1
00:00

Testing Dataset 2018/1/1
00:00-2018/2/20
00:00
2018/11/20
00:00-2018/12/31
00:00

2019/7/1
00:00-2019/10/1
00:00

Validation Dataset 2018/8/20
00:00-2018/11/20
00:00

2019/10/1
00:00-2019/12/31
00:00:00

Table 4 Training parameters
for the proposed
Chaotic-LSTM network Case
I and Case II

Parameters Values

Case I Case II

Input Dimension 11 12

Output Dimension 1 1

LSTM Layers 1 1

Learning Rate 0.0625 0.0550

Hidden Units 38 30

Number of Training Epochs 1200 1000

Optimization Method Adam Adam
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Table 5 Comparison of the prediction accuracy for different forecast models (Case I)

Forecast Time Horizon Method MAE( kW) MAPE(×100%) NRMSE

One-hour-ahead Chaotic-LSTM 64.9432 0.0361 0.0740

BP 134.3621 0.0746 0.1184

ELMAN 77.7157 0.0432 0.0771

RBF 110.5939 0.0614 0.1050

Four-hour-ahead Chaotic-LSTM 81.0317 0.0450 0.0852

BP 146.9321 0.0816 0.1376

ELMAN 134.4136 0.0747 0.1259

RBF 151.8208 0.0843 0.1237

One-day-ahead Chaotic-LSTM 84.7732 0.0471 0.0871

BP 161.8418 0.0899 0.1537

ELMAN 87.2336 0.0485 0.0893

RBF 115.8590 0.0644 0.1005

Four-day-ahead Chaotic-LSTM 100.2353 0.0557 0.1010

BP 219.5905 0.1220 0.2067

ELMAN 108.6843 0.0604 0.1049

RBF 131.4470 0.0730 0.1120

dimension is (m + 3), which is equal to 12. In tuning the neural network, manual
adjustment of the hyperparameters is very time-consuming and impractical. Two
common methods in searching for optimal hyperparameters are commonly used:

1. Grid Search: This is an exhaustive approach to list all different parameter
combinations and to determine the structure with the best performance.

2. Random Search: This is to extract a certain number of candidate combinations
from a parameter space with a specific distribution. Commonly used random
search algorithms include simulated annealing algorithm, genetic algorithm,
evolution strategy, etc.

In this chapter, since the number of network hyperparameters is small, the grid
search approach is used to determine the combination of hyperparameters. When
the number of hyperparameters increases, the computational complexity of the grid
search will increase exponentially, which might lead to a recommendation on the use
of the random search instead. Through grid search, it can be observed that for Case
I, when the number of hidden layers is 1, the number of hidden layer units is 38, the
number of training iterations is 1200, and the initial learning rate is 0.0625; hence,
the proposed Chaotic-LSTM model can achieve desirable prediction accuracy. For
Case II, it can be seen that the prediction accuracy of the proposed Chaotic-LSTM
model is better when the number of hidden layers is 1, the number of hidden layer
units is 30, the number of training iterations is 1000, and the initial learning rate
is 0.055. Three evaluation metrics are used to estimate the accuracy of the trained
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Chaotic-LSTM model compared with the state-of-the-art models of BP, RBF, and
ELMAN Neural Networks.

The three evaluation metrics are the normalized root mean squared error
(NRMSE), the mean absolute error (MAE), and mean absolute percentage error
(MAPE), expressed in the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NRMSE =
√√√√ 1

K

K∑
t−1

(
yact(t + h) − yp(t + h)

yact(t + h)

)2

MAE = 1

K

K∑
t−1

∣∣yact(t + h) − yp(t + h)
∣∣

MAPE = 1

K

K∑
t−1

∣∣yact(t + h) − yp(t + h)
∣∣

yact(t + h)
× 100%

(23)

where NRMSEmeasures the deviation between the actual and the forecasted values,
while MAE determines the model accuracy. MAPE is the average percentage error
(0%–100%), which is used to evaluate whether the forecast value is higher or lower
than the actual value.

3.4 Simulations and Analysis: Case I

Following the training process of the proposed PV power forecast model based on
Chaotic-LSTM, different forecast time horizons are studied on the testing dataset. In
the following analyses, the sample interval for testing the data is selected as 15 min,
and the test dataset covers 8 days of PV power time series (from 4:30:00 on Jan 22,
2018 to 4:30:00 on Jan 30, 2018). The PVpower forecast results from the four studied
methods are illustrated in Figs. 12, 13, 14 and 15, where the forecast time horizon is,
respectively, one-hour, one-day, four-hour, and four-day-ahead. In each figure, (a)–
(d), respectively, represented the forecast outcome of the proposed Chaotic-LSTM
method, BP network, Elman network, and RBF network. Table 5 reports the three
evaluation metrics of NRMSE, MAE, MAPE utilized to assess the performance of
the proposed Chaotic-LSTM method compared to the other three methods.

From Figs. 12, 13, 14 and 15, the following observations are made:

1. For comparison, test samples cover four days in each figure. One-hour, one-day,
four-hour, and four-day-ahead PV output power predictions for the tested period
are shown in Figs. 12, 13, 14 and 15, respectively. The corresponding realized
PV output power curves used for comparison with the prediction results are also
different due to the different forecast time horizons. For instance, the observed
curve covers the PV power data from 5:30:00 on Jan 22, 2018 to 5:30:00 on Jan
26, 2018 in Fig. 12, and covers from 8:30:00 on Jan 22, 2018 to 8:30:00 on Jan
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Fig. 12 One-hour-ahead PV power forecast results of different forecast models (Case I)

Fig. 13 Four-hour-ahead PV power forecast results of different forecast models (Case I)

26, 2018 in Fig. 13. In Fig. 15, the observed and forecast curve covers the PV
power data from 4:30:00 on Jan 26, 2018 to 4:30:00 on Jan 30, 2018.

2. In Figs. 12, 13, 14 and 15, the output of the PV power forecast model versus
the realized PV output power are, respectively, highlighted with red and black
lines.

3. From Fig. 12, when the proposed Chaotic-LSTM model is applied, the predic-
tion follows the black line almost perfectly, highlighting the fact that the
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Fig. 14 One-day-ahead PV power forecast results of different forecast models (Case I)

Fig. 15 Four-day-ahead PV power forecast results of different forecast models (Case I)

proposed model outperforms the other three models for one-hour-ahead PV
output power forecast. The Elman network can also achieve a promising perfor-
mance, while the BP network reveals the worst performance on tracking the
peaks in the actual observation curve.When the actual observation value slightly
changes, the RBF prediction curve reveals a large fluctuation.

4. FromFig. 13, the proposedChaotic-LSTMmodel still offers a promising predic-
tion, while its accuracy is a bit lower than the one observed for one-hour-ahead
prediction. The other methods can track the overall trend of the observed curve
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while presenting poor tracking ability when the observed PV power drastically
changes. The RBF network, in particular, has a poor tracking ability when the
curve slightly changes where its prediction reflects a large deviation compared
to the observed data.

5. FromFig. 14 to 15, the PVoutput power of the proposedChaotic-LSTMforecast
model is closer to the observed PV power data curve. The BP network model
has the worst performance mainly due to its inability to track large and drastic
changes in the curve.

From Table 5, the following observations are made:

1. Table 5 presents and compares the NRMSE, MAE, and MAPE metrics corre-
sponding to the four forecast models over different time horizons. When the
forecast time horizon is set to one-hour-ahead, the proposed Chaotic-LSTM
model shows an obvious advantage over the other models with the best NRMSE
of 0.0740, MAE of 64.9432 kW, and MAPE of 3.61%. The worst performance
is attributed to the BP method, whose NRMSE is found to be 0.1184 with MAE
of 134.3621 kW and MAPE of 7.46%.

2. When the forecast time horizon is set to four-hour-ahead, the RBF method
reveals the largest NRMSE of 0.1237, MAE of 151.8208 kW, and MAPE of
8.43%. Compared with the other three models, the proposed Chaotic-LSTM
model has the lowest NRMSE, MAE, and MAPE values, with the quantified
values of 0.0852, 81.0317 kW, and 4.50% for NRMSE, MAE, and MAPE,
respectively.

3. With the expansion of the forecast time horizon, the NRMSE,MAE, andMAPE
metrics for each forecast model are found larger than those for the one-hour-
ahead forecast. The suggested Chaotic-LSTM approach could achieve the best
results of the four forecast models, and the corresponding NRMSE, MAE, and
MAPE metrics are the lowest. Therefore, the forecast results provided by the
proposed Chaotic-LSTM model are the closest to the actual realized PV output
power values.

Based on the conducted tests and numerical analyses, one can conclude the
following:

• Under the same forecast time horizon, the proposed Chaotic-LSTM model offers
the best performance of the four forecast methods at generalizing the data. The
Chaotic-LSTM method can successfully follow the observed PV output power,
revealing the minimum values of the NRMSE, MAE, and MAPE metrics.

• With the expansion of the forecast time horizon, the forecast curves corresponding
to each model gradually deviate from the actual curve, and the NRMSE, MAE,
and MAPE metrics increase consequently. The proposed Chaotic-LSTM model
relatively outperforms the other three models, especially when the observed
data significantly fluctuates, while the BP and RBF neural network models
demonstrated poor tracking performances.
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3.5 Simulations and Analysis: Case II

To further demonstrate the effectiveness and robustness of the proposed Chaotic-
LSTM forecast engine, a second case study is reported herein in Case II. Similar to
Case I, four different forecast time horizons are considered on the testing dataset. The
performance of the proposedChaotic-LSTMmodel is comparedwith those of the BP,
RBF, and Elman neural networks. With the PV power forecast from 7:00:00 on Sep
16, 2019 to 7:00:00 onSep 25, 2019 implemented, the results on the four forecast time
horizons for the above four methods are illustrated in Figs. 16, 17, 18 and 19, where
the forecast time horizon is, respectively, one-hour, one-day, four-hour, and four-day-
ahead. In each figure, (a)–(d), respectively, represented the forecast outcome of the
proposed Chaotic-LSTM method, BP network, Elman network, and RBF network.
The realized PV output power versus the output of the PV power forecast model
are, respectively, highlighted with black and red lines. Table 6 reports the three
evaluation metrics of NRMSE, MAE, and MAPE utilized to assess the performance
of the proposed Chaotic-LSTM method compared to the other three methods.

For comparison, test samples cover nine days in each figure. One-hour, one-
day, four-hour, and four-day-ahead PV power predictions for the tested period are,
respectively, shown in Figs. 16, 17, 18 and 19. The following observations are made
from the presented results:

1. From Figs. 16 to 17, when the proposed Chaotic-LSTM model is applied, the
prediction follows the black line almost perfectly. Other methods can also
achieve promising performance, but it can be seen that the prediction curves
reveal some fluctuations for other methods when the actual output power
changes rapidly (from 9/20 morning to 9/22 morning and 9/23 morning to 9/24
morning), indicating that the proposed model is superior to the others.

Fig. 16 One-hour-ahead PV output power forecast results of different forecast models (Case II)



Big Data and Deep Learning Analytics for Robust PV Power … 557

Fig. 17 Four-hour-ahead PV output power forecast results of different forecast models (Case II)

Fig. 18 One-day-ahead PV output power forecast results of different forecast models (Case II)

2. From Fig. 18 to 19, the proposed Chaotic-LSTM model offers a promising
prediction. The other methods can track the overall trend of the observed curve
while presenting poor tracking ability when the observed PV power drastically
changes for the ELMAN network and RBF network. The BP network also
reflects a slight deviation compared to the observed data, such as in Fig. 17b at
9/18, 9/21, 9/22 noon and Fig. 18b on 9/25 afternoon.

3. Focusing on the ELMANandRBFNetworks, the forecasted PVpower is always
found to be nonzero, while the actual PV power is zero at times. Similarly, for
the BP network under a four-day-ahead forecast horizon (Fig. 19b), the nonzero
forecast can be observed in 9/27. However, the proposed Chaotic-LSTMmodel
could follow the observed curve accurately.
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Fig. 19 Four-day-ahead PV output power forecast results of different forecast models (Case II)

Table 6 Comparison of the prediction accuracy for different forecast models (Case II)

Forecast time horizon method MAE (kW) MAPE (×100%) NRMSE

One-hour-ahead Chaotic-LSTM 1.3070 0.0242 0.0743

BP 2.3218 0.0515 0.1343

ELMAN 2.5250 0.0917 0.1613

RBF 2.0155 0.1013 0.2789

Four-hour-ahead Chaotic-LSTM 1.7946 0.0292 0.0803

BP 3.0513 0.0560 0.1271

ELMAN 2.9385 0.1420 0.3020

RBF 3.0346 0.0887 0.2014

One-hour-ahead Chaotic-LSTM 2.4450 0.0462 0.1111

BP 2.6616 0.0540 0.1530

ELMAN 3.2117 0.0945 0.2440

RBF 3.2319 0.1457 0.3565

Four-hour-ahead Chaotic-LSTM 2.8726 0.0486 0.1169

BP 3.3549 0.0811 0.1955

ELMAN 3.5924 0.1335 0.3590

RBF 4.1966 0.1443 0.4120

From Table 6, the following observations are made:

1. Table 6 presents and compares the NRMSE, MAE, and MAPE metrics corre-
sponding to the four forecast models over different time horizons. For the same
forecast time horizon, the proposed Chaotic-LSTM model shows an obvious
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advantage over the other models. When the forecast time horizon is set to one-
hour-ahead, the best NRMSE of 0.0743, MAE of 1.307 kW, and MAPE of
2.42% are reported for the proposed Chaotic-LSTM model.

2. With the expansion of the forecast time horizon, the NRMSE,MAE, andMAPE
metrics for the proposed Chaotic-LSTMmodel gradually increase compared to
those for the one-hour-ahead forecast. The suggested Chaotic-LSTM approach
can still achieve the best results of the four forecast models, and the corre-
spondingNRMSE,MAE, andMAPEmetrics are the lowest. For example, when
the forecast time horizon is set to four-day-ahead, the RBF method reveals the
largest NRMSE of 0.4120, MAE of 4.1966 kW, and MAPE of 14.43%; on
the other hand, the NRMSE, MAE, and MAPE values corresponding to the
proposed Chaotic-LSTMmodel are the lowest among the four models, with the
quantified values of 0.1169, 2.8726 kW, 4.86% for NRMSE, MAE, andMAPE,
respectively.

Based on the conducted tests and numerical analysis, one can conclude the
following:

• Under the same forecast time horizon, the proposed Chaotic-LSTM model offers
the best performance of the four forecast methods at generalizing the data. The
Chaotic-LSTM method can successfully follow the observed PV output power,
revealing the minimum values of the NRMSE, MAE, and MAPE metrics.

• With the expansion of the forecast time horizon, the NRMSE, MAE, and MAPE
metrics increase, for all four forecasting methods.

• The proposed Chaotic-LSTM model relatively maintains the highest forecasting
accuracy and outperforms the other three models, especially when the observed
data significantly fluctuates.

3.6 Robustness Test

To assess the effectiveness and predictability of the proposed approach, a robustness
test is performed. The test is to assess whether the proposedmodel and the other three
can provide forecast results that can still well fit the actual PV power generation data,
under the conditions that the input dataset are polluted with undesired interferences.
In this Section, white Gaussian noises are added to the input dataset. The signal-noise
ratio (SNR) of the polluted input dataset ranges from 10 dB to 60 dB. The robustness
test period covers an interval from 8:00 on Sep 17, 2019 to 18:00 on Sep, 26, 2019.
For instance, the robustness test results—in terms of the error plots representing the
forecast deviation from the observed actual PV power output—under a 10 dB SNR
condition are illustrated in Fig. 20. The noise is added from 8:00 on Sep, 18, 2019 to
18:00 on Sep 19, 2019, which falls within the area enclosed by the red dotted line in
each figure. For comparison, one-hour, one-day, four-hour, and four-day-ahead PV
power deviations from the observed value are, respectively, shown in Fig. 20a–d.

The following observations can be made:
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Fig. 20 Forecast error: robustness test under a 10 dB interference scenario

1. From Fig. 20a, all curves show the one-hour-ahead PV power deviations from
the observed values during the interfered period. When the 10 dB noise is
added to the raw PV power data and one hour after 8:00 on 9/18, it can be seen
that there are obvious deviations in the prediction error curves of PV power
generation by BP, Elman, and RBF methods. In particular, from 8:00 on 9/18
to 19:00 on 9/19, the deviations for the BP method and the RBF method reveal
significant distortions, where the maximum deviation reaches about 200 kW for
the BPmethod. This indicates that the BPmethod has theworst anti-interference
ability. The maximum deviation reaches about 200 kW for the BP method. On
the other hand, compared to other methods, the proposed Chaotic-LSTMmodel
offers the least deviation around the observed values during the entire test period,
indicating that it has the best forecast accuracy. Also, once the interfered interval
is passed, the deviations for other methods are found still larger than those of
the proposed Chaotic-LSTM.

2. From Fig. 20b, all curves show the four-hour-ahead PV power output deviations
from the observed values when the 10 dB noise is added from 8:00 on 9/18
to 18:00 on 9/19. It can be observed that the PV power forecast error of the
proposed Chaotic-LSTMmodel has the least value than other models, reflecting
its high accuracy. Meanwhile, it can be seen that the prediction curves reveal
some fluctuations for other methods (for instance from 8:00 on 9/19 to 18:00
on 9/19). Once the noise is removed, one can see that from 18:00 on 9/19 to
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8:00 on 9/26, there are larger deviations reported for other methods, driven by
the effects of their short-term memory characteristics. However, the suggested
Chaotic-LSTM method still reveals the best performance as it can memorize
long and short-term information on PV power data and effectively processes
the intrinsic dynamic characteristics of PV arrays.

3. From Fig. 20c, all curves show the one-day-ahead PV power output deviations
from the observed values when the noise is added from 8:00 on 9/18 to 18:00 on
9/19. One day following the 8:00 on 9/18, 2019, it can be seen that there are large
deviations between the observed and the forecasted values for the BP and RBF
methods. The maximum deviation reaches about 200 kW for the BP method,
and above 100 kW for the RBF method. Once the interference disappears, there
are still larger deviations for other methods, while the proposed Chaotic-LSTM
model has the least deviation around the observed values.

4. Fig. 20d shows that in a four-day-ahead forecast, all PV power forecast outputs
deviate from the actual observed values about 4 days (around 10:00 on 9/22)
following the interference impacts on 9/18. Also, it can be seen that there are
larger deviations between the forecasted and observed values for the other three
methods. The maximum deviation reaches about 200 kW for BP, about 100 kW
for RBF, and about 50 kW for ELMAN methods. During the entire testing
period, however, the forecast results provided by the proposed Chaotic-LSTM
model are still the closest to the actual PV output power values.

Figure 21 and Table 7 present 7 SNR scenarios and correspondingly report the
three evaluation metrics of NRMSE, MAE, and MAPE. Figure 21a–c presents the
three metrics of MAE, MAPE, and RMSE, respectively, for four forecast models
under four different forecast horizons and different SNR scenarios. From the results
presented in Fig. 21, the following observations are made:

1. Under the same forecast horizon (one-hour-ahead) in Fig. 21a andSNR= 60 dB,
the proposed Chaotic-LSTM method offers the lowest NRMSE, MAE, and
MAPE. As the SNR decreases, the three evaluation metrics degrade for the BP,
ELMAN, and RBF networks, similar to the suggested Chaotic-LSTM method.
The proposed method, however, outperforms the others. The RBF model has
the worst performance mainly due to its inability to resist SNR.

2. When the forecast time horizon increases to four-day-ahead, the proposed
Chaotic-LSTM model still offers the lowest NRMSE, MAE, and MAPE, while
the corresponding values for the RBF network reach significantly higher values
compared to the other methods.

3. Under the same forecast time horizon and when SNR = 0 dB across all the
forecast models, the NRMSE, MAE, and MAPE values are significantly higher
than those of the other SNR values; that is, lower SNR can compromise the
forecast accuracy.

From Table 7, the following observations are made:

1. With the expansion of the forecast horizon, the evaluation metrics vary under
the same SNR scenario for each forecasting method.
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Fig. 21 Evaluation metrics comparison: robustness tests under different SNR scenarios

2. Under the same forecast time horizon, as the SNR increases, the evaluation
metrics of NRMSE, MAE, and MAPE decrease consistently across all studied
models. For example, the results for the one-hour-ahead forecast time horizon
is further elaborated here. When a noise of SNR = 0 dB is added to the raw PV
power data, the evaluationmetrics ofNRMSE,MAE, andMAPEon theChaotic-
LSTM method are, respectively, recorded to be 0.204, 3.405 kW, and 8.37%.
Analogously, when a noise of SNR = 60 dB is added to the raw PV power data,
the three metrics of NRMSE, MAE, and MAPE on the Chaotic-LSTM method
are observed to be 0.1486, 1.9758 kW, and 5.53%, respectively. For the RBF
method, three metrics of NRMSE, MAE, and MAPE are, respectively, 3.2797,
10.8993 kW, and 105.31%when SNR= 0 dB; and the threemetrics of NRMSE,
MAE, andMAPE are found to be 0.3657, 3.2983 kW, and 14.56%, respectively,
when SNR = 60 dB.

3. Under the same forecast time horizon and the same SNR scenario, the proposed
Chaotic-LSTM method demonstrates a performance with the lowest NRMSE,
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MAE, and MAPE metrics, outperforming the other methods. The worst perfor-
mance is attributed to the RBF method with the largest NRMSE, MAE, and
MAPE metrics. For instance, when a noise of SNR = 0 dB is added to the raw
PV power data, the RBF method applied to a four-day-ahead forecast scenario
has resulted in the evaluation metrics of NRMSE, MAE, and MAPE equal to
3.6892, 12.4848 kW, and 124.63%, respectively.

Based on the conducted tests and numerical analyses, one can conclude the
following:

• Overall, the proposed Chaotic-LSTM model can forecast the PV power output
with promising performance and accuracywhen compared to the observed values.

• Under the same data quality but with different forecast time horizons, the
proposedChaotic-LSTMmodel has the least deviation around the observed values
compared to the other three models.

• Under the same forecast time horizon and a lower SNR scenario, the forecast
performance would be compromised consistently across all the forecast models,
but the proposed Chaotic-LSTMmethodwas able to provide the forecast outcome
that could follow the observed values. When the large disturbance disappears,
the proposed approach provides a fairly smooth transition to quickly provide
outstanding forecast results.

• With the expansion of the forecast time horizon, the deviation between the fore-
casted and observed values varies, so do the three evaluation metrics of NRMSE,
MAE, andMAPE. The proposed Chaotic-LSTMmodel significantly outperforms
the other three models, especially when the SNR is low.

4 Conclusion

This chapter proposed a deep learning-aided PVpower forecastmodel, which ensem-
bles the chaos theory and the LSTM network. The phase space reconstruction tech-
nology from the chaos theory reveals the intrinsic dynamic characteristics of the
PV power variations; meanwhile, the correlation analysis was applied to extract
the external factors influencing the PV arrays. With the phase space reconstruc-
tion and correlation analysis applied, the most relevant features for the PV output
power forecast were extracted from the dataset and selected as the input variables
of the proposed forecast model. The LSTM neural network is used to achieve a
nonlinear mapping between the input variables and the output variable (PV power).
The proposed Chaotic-LSTM algorithm revealed a promising learning ability of the
internal characteristics, while was simultaneously adaptive to the influences engen-
dered from the external meteorological conditions. Real-world data was utilized to
test and verify the performance of the proposed approach. With extensive numerical
analyses and comparisons with the Elman, BP, and RBF network models through
evaluation metrics (MAE, MAPE, and NRMSE), the proposed model consistently
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demonstrated an outstanding performance with improved prediction accuracy under
four different forecast time horizons. Furthermore, a robustness test was taken as
an evaluation approach to demonstrate the effectiveness and predictability of the
proposed method. Under different forecast horizons, the proposed Chaotic-LSTM
satisfactorily revealed excellent robustness.
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Abstract Recent studies showed that energy consumption in buildings could be
efficiently reduced by including recent IoT (Internet of Things) and Big-Data tech-
nologies into microgrid systems. In fact, three major aspects could be further consid-
ered for reducing energy consumption while maintaining a suitable occupants’
comfort, (i) integrating renewable energy sources and storage devices, (ii) integrating
programmable and less-energy-consuming equipment, and (iii) deploying innova-
tive information and communication technologies. These aspects might contribute
substantially to the improvement of winning and saving energy toward smart and
energy-efficient buildings. In this chapter, a microgrid system infrastructure is devel-
oped together with a platform for data gathering, monitoring, and processing.We put
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more emphasis onmicrogrid systems as crucial infrastructures for leveraging energy-
efficient and smart buildings by developing and deploying a holistic IoT/Big-Data
platform in which sensing and actuation tasks are performed according to the actual
contextual changes. Scenarios are presented in order to show the usefulness of this
holistic platform for monitoring, data processing, and control in energy-efficient
buildings.

Keywords Energy-efficient buildings ·Microgrid system · Energy management ·
Renewable energy sources and storage devices · IoT and Big-data technologies ·
Predictive and context-driven control

Acronyms

AC Alternating Current
D/R Demand/Response
DC Direct Current
EEBLab Energy Efficient Building laboratory
EM Energy Management
HVAC Heating Ventilation and Air-Conditioning
ICT Information and Communication Technologies
IoE Internet of Energy
IoS Internet of Service
IoT Internet of Things
MG Micro-Grid
PV Photovoltaic
RES Renewable Energy Source
SG Smart Grid
SoC State-of-Charge
TEG Traditional Electric Grid

1 Introduction

Buildings are responsible for about 40% of energy consumption and more than 40%
of greenhouse gas emissions [1]. Reducing energy consumption and subsequently,
CO2 emissions are highly required since buildings frequently use more energy than
anticipated or desired. This need for energy requires the integration of clean energy
sources in order to reduce the consumption from TEG, which is generally based
on polluted sources (e.g., coal plant, a nuclear plant). Usually, three major aspects
could be considered for reducing energy consumption from TEG, (i) integrating RES
with efficient energy control and management, (ii) reducing energy consumption by
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integrating programmable and less-energy-consuming equipment while keeping a
good occupants’ comfort (e.g., HVAC, lighting), and (iii) reducing energy consump-
tion by integrating innovative ICT concepts for efficient EM of buildings services.
These aspects might contribute substantially to the improvement of winning and
energy-saving toward smart and energy-efficient buildings [2].

However, buildings have become a producer of electricity due to the RES inte-
gration together with the possibility to store and consume locally the electricity
without expansion needs for electricity transport and distribution. This integration
of distributed generators requires efficient management of energy in order to bring
additional benefits for reducing energy consumption and, consequently, CO2 emis-
sions. In addition, buildings could be capable to control its own energy, from the
sources to the end-services, by managing the installed RESs and energy storage
systems together with the deployed active/passive equipment (e.g., HVAC, lighting)
[3, 4].Consequently, a platform for data gathering,monitoring, andprocessing should
be installed together with the electrical system making the building “Smart.” This
new smart building structure presents a main factor for smart grid development, as
depicted in Fig. 1. In fact, the controls, automation, and ICTs combined together
with the bidirectional communication way with the TEG could be able to make
the building components capable to adapt and balance digitally the continuous D/R
changes. Additionally, consumers should have the opportunity to anticipate the elec-
tricity market and control their electricity consumption accordingly [5, 6]. However,
the decentralization of energy production makes the electrical system more complex
and more difficult to control in order to keep a suitable electricity balance (i.e., D/R).
Consequently, the transition from unidirectional to bidirectional interconnection and
from centralized to decentralized energy production requires the use of smart equip-
ment (e.g., smart metering, smart inverter, smart transformer) [7]. This equipment
should be able to interact with different building’s services taking into consideration

Fig. 1 Global architecture: From smart Grid to smart microgrid
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its surrounding environment. The aim is to minimize the usage of electricity while
keeping suitable occupants’ comfort as well. In this context, anMG system is defined
as an “intelligent building” that can produce, consume, and store locally the electrical
energy. The MG, via a well-established ICT-based infrastructure, can interact with
consumers, with neighboring MGs, and with the TEG.

The main objective of such systems is to connect efficiently the producers and
consumers of electricity with a high level of security, stability, and continuity of
energy supply (the increase of services quality). As a result, the MG can smoothen
the electrical peaks demand in the electrical network, which represents a major chal-
lenge for the TEG. It also allows for managing the electricity flows by considering
economic and environmental constraints. Accordingly, the electricity bill can be
minimized by avoiding peak demands and, therefore, the consumption can be maxi-
mized from RESs while minimizing subsequently the carbon impact. Therefore, as
state above, the interaction of different buildings’ components needs to integrate ICT-
based infrastructures for data collection, analysis, and processing. This integration
of ICT together with RES and storage has enabled the emergence of “Micro-Grid”
(MG) systems [8]. As depicted in Fig. 1, MG systems remain important and neces-
sary building blocks for the development of smart grid systems as well as smart city
applications and services [9].

In this chapter, a new holistic architecture of smart buildings is presented by
improving the main layers of MG systems. This architecture is proposed in order
to integrate all buildings’ aspects with the main trade-off is to minimize energy
consumptionwhilemaintaining a suitable occupants’ comfort. In fact, anMG system
is structured into three layers following the proposed holistic architecture. More
precisely, we shed more light on the MG system’s components by putting more
emphasis on the integration of recent IoT/Big-Data technologies for data gathering,
processing, and control. Several scenarios are presented to show the usefulness of
this holistic architecture and its direct relationship with smart microgrids.

The remainder of this chapter is structured as follows. In Sect. 2, the MG system
is presented as a part of the “Smart Grid.” The operational MG modes together
with international standards are detailed in Sect. 3. In Sect. 4, the concept of smart
buildings and its relationship with MG systems is introduced by focusing on EM,
automation, and control systems.Moreover, an experimentalMG system is presented
in Sect. 5 by highlighting the main MG components (e.g., ICTs layer, energy layer)
and presenting a set of deployed scenarios. In Sect. 6, conclusions and perspectives
are presented.

2 Smart Microgrid Systems

The integration of RESs for large-scale production of electrical energy has recently
accelerated because of evident climate change, insufficiency of fossil resources, and
greenhouse gas emissions. RES are clean and eco-friendly sources and their abun-
dance and renewable nature are among themost important factors for their integration
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into smart grid networks. However, these green energy sources come with new chal-
lenges, mainly their seamless integration with existing electrical networks. In addi-
tion, another important challenge for this new electricity infrastructure is real-time
monitoring and data processing, which requires new ICT-based infrastructures. The
main aim is to ensure sustainable and reliable renewable energy generation systems
[10, 11]. Therefore, this integration of ICTs, energy distribution systems, as well
as distributed energy generation systems (e.g., RESs), creates what is commonly
named “Smart Grid” (SG). In fact, SG represents the new smart electrical network,
since it brings the flexibility to integrate new electrical services, such as electrical
vehicles, and enables consumers to be energy producers by integrating RESs using
bidirectional communication network [12]. This dependsmainly on the fast advances
in ICT-based infrastructures covering then all aspects of the electricity grid and its
associated services. In fact, due to the development of IoT infrastructures (Internet of
Things) and their related intelligent services, the electricity grid has new capabilities
to monitor, manage, and control its components and then takes advantage of sophis-
ticated bidirectional interactions. Moreover, the ICTs integration enables various
smart and automatic services, such as smart metering infrastructure, smart control,
and management for D/R balance, advanced electricity marketing, and intelligent
energy storage for electrical vehicles integration.

However, despite this progress, some research work stated that the SG is experi-
encing new issues.Mainly, it is able tomanage only electrical energy neglecting other
existing types of energy (e.g., thermal, chemical, and electrochemical). In addition,
the SG is based on the actual infrastructures of power distribution grids, which are
limited by the unidirectional exchange of the electricity [11, 13]. Therefore, face to
these challenges, other concepts have been developed together with the revolution
of SG, such as the internet of energy (IoE), the internet of things (IoT), and the
internet of services (IoS), as mentioned in Fig. 2 [14]. Especially, the development
and the emergence of smart MG (microgrid) systems could resolve some of the
abovementioned SG challenges. MG could simplify the management of electrical

Fig. 2 Smart Grid and smart MG presented as a combination of IoE, IoT, and IoS
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energy, from centralized to distributed EM. In addition, in MG systems, different
types of energy can be managed locally with the possibility to interconnect different
MGs in a distributed manner.

Depending on the scale of the system, numerous definitions for MG systems have
been proposed. For two European projects, named “Microgrids” and “More Micro-
grids,” the MG system is considered as a basic feature of future active distribution
networks and it is composed of more than one building [15]. For instance, in Greece,
the “Kythnos Island Microgrid” is composed of 12 houses connected to solar PV
plant and battery bank. The PV plant comprises10 kW of PVs for energy generation,
a nominal 53-kWh for the battery bank, and a 5-kW diesel generation. A second PV
plant of about 2 kW,mounted on the roof of the control system building, is connected
to 32-kWh of the battery bank in order to provide power for monitoring and commu-
nication [16]. Another system in Germany for “More Microgrids” project, named
“MVV Residential Demonstration,” is installed at Mannheim-Wallstadt. The project
prepares about 20 families for a continuous long-term field test site that is considered
as one MG. In fact, the first goal of the experiment is to involve customers in load
management. For that, a total of 30 kW of PV are already installed. Based on PV
power availability information from their neighborhood, the families shifted their
consumption when it is possible to use directly solar energy. As a result, partici-
pating families shifted their consumption significantly from the typical residential
evening peak toward hours with the higher solar insolation, and from cloudy days
toward sunny days [16, 17].

In the United States, there are many projects in universities and military bases
already developed with an estimated global market rise from about 3.2 GW in 2019
to 15.8 GW by 2027 (including all types of MG systems, as it is depicted in Fig. 3),
where only the United States accounted for almost 35% of this market in 2018 [18].
The most well-known researches and development project, named “Consortium for
Electric Reliability Technology Solutions” (CERTS), is developed for the power
system reliability of emerging technology in MG systems. The project is provided
for relatively small sites (~<2 MW at the peak) and it is delivered for a research
platform, which is considered as an MG installed in a laboratory at the University of
Wisconsin, Madison [19]. Another interesting international standard is Japan, which
sets ambitious targets for increasing the contribution of RESs in MG systems. In
fact, the research funding and management agencies of the Ministry of Economy,
Trade, and Industry have started different MG projects. Mainly, a recent project
named “Integrating renewables into the Japanese power grid by 2030” is involved.
In this project, Japan’s Renewable Energy Institute (REI) and “Agora Energiewende”
attempt to integrate renewables energy into Japan’s power grids without endangering
grid stability, the study also promotes data transparency. International experience has
shown, however, that several technical measures, not yet widespread in Japan, can
be safely implemented to improve the grid stability [20].

All these research projects consider large-scale buildings and RESs plants as MG
systems. For instance, according to the MG operation mode, different types of MG
systems are classified as depicted in Fig. 3.a. Similarly, by considering the applica-
tions and the objectives [21], another classification is presented in Fig. 3.b. Other
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Fig. 3 MG system types and benefits

academic researches present the MG system as a single building, which integrates
ICTs infrastructure, RESs, and energy storage with the electrical power grids. For
instance, in [22, 23], the MG systems are defined as smart power systems that are
grouped within a limited geographic area. They include loads, distributed genera-
tion units, and energy storage systems (batteries, electric vehicles, hydraulic storage,
etc.). The main advantage of MG is to enable customers to have both a bidirec-
tional communication platform and control devices to manage their energy needs
and excesses. In addition, with an adequate communication structure, it is possible
to shape the users’ load demand curves by means of D/R strategies.

Other works present the MG as a systematic and efficient approach for managing
the power system by integrating all the distributed generating sources into a micro-
power system [24, 25]. For example, in [24] authors defined the MG system as
a low-voltage power network with distributed energy generation (e.g., PV arrays,
micro-wind turbines, fuel cell, energy storage), which offers better control capability
over network operation. It is considered as a solution tomeet the local energy demand
by connecting distributed power generation to distribution networks, such as local
substations without further expansion of costly centralized utility grids. In addition,
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the United States Department of Energy (DOE) defines anMG as follows: “AnMG is
a group of interconnected loads and distributed energy sources within clearly defined
electrical boundaries that acts as a single controllable entity with respect to the grid”
[26].

3 MG System Architectures

3.1 Operational Modes

MG systems are designed to operate efficiently and resiliently since they are not only
dedicated to a high penetration level of RESs and storage systems but also due to
their capability to operate in isolated mode when RESs can satisfy the demand or
during the faults, which occur in themain electrical network. Therefore,MG systems
offer greater reliability and efficiency for the electrical network system, especially
by locally controlling the generated power while improving the energy quality, as
well as smoothing the power curve by the deployed storage devices. In addition, the
losses of energy, which are caused by the transport and distribution system to the
end-consumer, are reduced and, consequently, the blackouts of electricity, created
by the peak demand, can be avoided.

However, MG systems are operated, as shown in Fig. 4, into two distinctive
modes: grid-connected and islanded modes [21, 26]. Other literature works consider
another mode, named self-consumption mode, by controlling buildings’ services,
i.e., identifying those that can be connected to the main grid [27]. For isolated mode,
named standalone mode, the RESs production and storage devices are dimensioned
in order to satisfy totally the demand. Generally, another source is integrated, such as
dieselmotors, to satisfy the demandduring the lowor the absence ofRESs generation.
This mode is useful in critical applications, such as the isolated site that requires a
high cost for electricity transport and distribution. For isolated sites, it is necessary
and practical that the hybrid system has total autonomy requiring the use of storage
systems not only to smooth the variable nature of RESs but also to ensure the power

Fig. 4 The MG system operating modes
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availability and the continuous supply of energy. However, energy storage represents
a very significant part of the cost and maintenance of the MG installation, and the
lifetime of storage devices is much lower than PV panels, the wind turbine, and the
converters. For that, good strategies are required for sizing the storage devices and
the RESs generation. Several works are presented in the literature to dimension the
optimal configuration for isolated sites by studying the weather conditions including
technical and economic characteristics of all specific MG components [28–31]. In
addition, the island mode is studied in various research projects of MG systems [32,
33]. The specific standards IEEE Std 1547.4-2011 is the only international reference
for MG systems, which are operating in island mode [34].

Unlike isolated mode, the grid-connected mode is considered as the major key
for RESs integration in buildings in order to develop the concept of “Smart Grid”
and consequently the MG systems. A real MG system is connected to the electrical
network to increase the reliability of the production system and to realize the main
objective of such systems. This mode offers a high benefit for both energy and
financial cost by reducing the size of the installation (e.g., battery capacity, number of
PV panels) on the one hand, and by integrating the cost of energy in the management
strategies on the other hand. In fact, the majority of hybrid systems, connected to
the electrical grid, have a limited capacity of energy storage systems that are used to
reinforce the power quality and to smooth the RESs generation. In this case, they are
dimensioned to ensure the power during the failure of TEG or during the perturbed
RESs production periods, and as results in minimizing the size of storage devices.
However, the architecture ofMG connectedmode necessitates certainly the inclusion
of inverters, both to convert, when necessary, from direct to alternating currents and
to provide some level of frequency and voltage control as well. Principally, the
inverter is the interface that provides the interconnection to the electrical network by
respecting the norms of power quality (e.g., frequency, voltage) and by deploying the
EM strategy. Moreover, the inverter supplies the power to the loads offering then the
possibility to charge the storage systems, to extract or inject the electricity from/to
the electrical network, and to serve potentially heterogeneous sources without loss
of synchronization, propagation of harmonics, or loss of system stability. It is worth
noting that we have considered the connected mode of MG systems as the main
architecture of our deployed MG system. This mode is more adaptable for the actual
structure of buildings by offering the possibility to develop the actual building as an
MG system. This issue is studied by a set of research projects and several test sites
are deployed by considering the connected mode of MG systems [18, 35–37].

Another mode, named self-consumption, depends strongly on the concept of
“internet of services” in buildings by coupling the two other operating modes. It
requires a high integration of ICTs and IoT/Big-Data technologies to predict and
control efficiently the different components and services of the system. In fact, by
deploying machine-learning algorithms, the internal and external parameters can be
forecasted to control and manage powerfully the power system (i.e., production,
consumption) while keeping a high comfort for building’s occupants. Mainly, in
MG systems, the services can be decomposed into three main categories: (i) perma-
nent end-user services, its energetic assignment plan covers the whole time range;
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generally, these services produce directly comfort to occupants; (ii) temporary end-
user services, the time range of this services can be modified by the EM system
deployed inMG system (e.g., modification of the starting time of a washing machine
service, cooking service); (iii) intermediate services, which produce electrical power
to the whole end-users by managing the previous end-user services with the energy
production services (e.g., RES, storage devices, grid).

Therefore, the self-consumption mode modifies the starting time of temporary
end-user services (e.g., electrical vehicle charge/discharge,washingmachine service,
cooking service) and the buildings can be supplied by electricity from both RESs
and electrical network at the same time. In addition, in a given situation, the control
strategy can switch some services that consume a high level of energy to the electrical
network while keeping the RESs connected only to defined building’s loads. This
operating mode is more useful to ensure a continuous supply of electricity to some
principal services that are not designed to support the cut of electricity (e.g., data-
center, networking equipment, IoT/Big-Data platforms). Data centers are considered
to be one of the best examples of an industry with relatively established plans for the
blackouts of electricity. For example, the Great East Japan Earthquake on March 11,
2011 killed more than 15 000 people, destroyed 4 nuclear generation plants, and left
several million people without electricity and no critical damage to data centers was
reported [38]. Furthermore, by coupling the IoT, IoE, and IoS concepts, the household
equipment can interact with EM strategies in order to minimize the cost of energy
while avoiding the cut of electricity during the failure of the energy sources. For
example, by considering the electrical vehicle as a service in the building, the control
strategy can use its battery as a source of energy during the night by considering that
the electrical vehicle is a smart service, which can communicate its SoC and its
targets to the communicated system [39]. Different literature works are realized to
develop this new concept of service control in buildings [10, 14, 40, 41].

3.2 International MG Standards

The MG concept is relatively new and the regulatory framework is still under
development. It should be standardized for being integrated into the existing elec-
trical grid network. In this way, several research groups within the International
Electro-technical Commission (CEI) are working on the question of standardizing
systems that use renewable energies. The standards consider the power quality (e.g.,
frequency, voltage, harmonic noise), the components (e.g., inverters, converters), the
architecture and design ofMG, and the size of the integrated renewable sources (e.g.,
generated power, low-voltage, medium-voltage). In addition, theMG systems should
respect the existing electrical norms and their deployments. Especially, for MG that
are connected to the electrical network, the inverter should ensure the electricity
quality avoiding then the injection of noise in the utility grid.
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Table 1 Voltage-level standards in DC and AC bus of MG

MicroGrid buses Normalized voltage
levels (V)

Micro-grid applications Principal standards

DC 48 Standalone systems IEC 60038 and IEEE
2030.10

380–400 Grid-connected systems
Commercial and industrial
buildings

IEC 60038

1500 V Commercial and industrial
buildings

IEEE Std 1709

AC 230 and 400 MG connected to the
traditional electrical grid

IEEE 1547

However, realizing specific technical standards is difficult and the standards
concerning RESs integration have some differences in different worldwide loca-
tions due to the different operational methods, the EM strategies, and the different
penetration levels and types of RESs and storage devices. For instance, in the United
States, the IEEE 1547 series of standards covers all aspects related to the interconnec-
tion of distributed energy resources with the electrical grid. These standards impose
requirements on the quality of the energy produced in terms of voltage, frequency,
and harmonics. It provides requirements relevant to the interconnection and interop-
erability performance, operation, testing, safety, maintenance, and security consid-
erations. The first revision of 1547 assembles several participants whose investor
affiliations, manufacturers and integrators, test labs, research groups, and academia.
The Full revision of 1547 issues, concerns, and updates are being coordinated with
corresponding standards and codes, such as the Nippon Denki (NEC) and Under-
writers Laboratories (UL) safety standards. This full revision included participants
from various states, covering all United States regions and some other regions, such
as theUnitedKingdom,Canada, and Japan [42–44]. Therefore, depending on theMG
topologies, buses, and electricity architectures, different standards are considered, as
presented in [45, 46] (Table 1).

Alike United States, several works in European Renewable Energy Council
(EREC) are urged to improve new integration standards of distributed energy
resources. The standardization of the system helps the power system operators to
share experiences with manufacturers and developers in order to internationalize
their items and consequently normalize the system for future deployment while
avoiding the alteration between electricity participants. ThemainEuropean standards
applicable to MG systems are EN 50160 and IEC 61000.

These standards describe and specify the main characteristics of the voltage
supplied by a low-voltage, medium-voltage, and high-voltage AC public network
under normal operating conditions. They describe the limits and levels of the voltage
characteristics that can be expected at each delivery point of the public network
[47–49]. Table 2 summarizes the United States and European standards that are
appropriate to the deployment of MG systems.
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Table 2 International standards for distributed energy integration in MG systems

Standards Description Standards specifications

IEEE-1547 (US) Requirements on power quality and
distributed energy sources integration in
the electrical grid

● Integration, protection system design
and operation of distributed system
● Control/monitoring and application
guide
● Interconnection requirement for
distributed system higher than 10 MVA
● Testing and measurement techniques
● Rules and guidelines regarding the
connection with secondary distribution
networks [48]
● Studies on the impact of DES
interconnection
● Recommended practice for establishing
procedures and methods
● Ideal grid–consumer connection
configurations
● Supply methods and loads
considerations
● Time tags and synchronization
applications
● Verification methods of standards
compatibility with measurements
● Phasor Synchronised definition and
measurement unit methods
● Specify the main voltage characteristics
at the PCC in low, medium and high
voltages during steady-state operation
● Determine the power frequency,
harmonics, voltage unbalance, voltage
variation and flicker limits at PCC
● Describe the indicative values for some
power quality events
● Electromagnetic compatibility levels
● Integrity requirements and safety
functions
● Requirements for safety and protection
● Short interruptions, voltage sags and
voltage variation protection tests
● Mitigation methods and installation
guidelines
● Progress on constructing
high-performance buildings (near-zero
energy buildings)
● Regulations to define the concept of
(NZEB) Net Zero Energy Building

IEEE-1547.4 (US) It includes the planning and operation of
the MG systems (IEEE Standards
Coordinating Committee 21) [50]. The
SCC21 develops a guide to help the
operators, the specialists, and the
manufacturers to use the technical aspects
of the MG operation and implementation

IEC-61850-7-420
IEC-61968-9
EN-13757-4 & 5

This series of standards concerns:
Communications for distributed energy
resources, meter reading and control,
radio mesh meter bus, wireless meter bus

IEC 60364-1 Recommendations for human safety,
guaranteeing the safety of persons against
life dangers, verification of electrical
installation of Nominal-Voltages

IEC 61851 Electrical vehicle integration in MG,
charging station regulations for
single-phase (levels up to 250 V) and
three-phase (levels up to 480 V)

(continued)
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Table 2 (continued)

Standards Description Standards specifications

IEEE-C37.95 (US) It is a guide for grid-consumer
interconnection with a number of
different protective information. It covers
applications involving service to a
consumer that normally requires a
transformation between the utility’s
supply voltage and the consumer’s
utilization voltage

IEEE-C37.118 (US) Standard for Phasor Synchronization with
power system and data transformation for
the grid system operating and
interconnection

IEEE 2030.10 DC energy providers for off-grid system,
communication protocols,
recommendation for low DC voltage
designated to standalone systems

IEEE 2030.7 EM system, control level associated to the
proper operation, configuration, and
regardless topology

IEEE Std 1709 Power quality recommendation and
voltage tolerances for Medium-Voltage
DC bus

IEEE Std 115 Electromagnetic compatibility and
regulations about power quality
limitations for AC and DC buses

EN-50160 (Europe) It describes and specifies the main
characteristics of the voltage supplied by
AC public network under normal
operating conditions of distribution
systems

IEC-61000 (Europe) It contains specifications for
Electromagnetic compatibility (emission
standards, immunity, installation, testing
and measurement techniques), it is
required to keep interference between
electronic devices under control to reduce
disturbance and improve immunity in
residential, industrial, and commercial
environments

ISO 52000-1
ISO 52003-1
ISO 52010-1
ISO 52018-1

Standard for energy performance of
buildings, which establishes a systematic
and comprehensive structure for assessing
building energy performance

ISO 52016-1 Efficient thermal energy in MG, important
response time for HVAC to respect
building thermal-zone standards, such as
the estimation of energy needed for
heating and cooling
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However, despite this progress in deployingMGsystems and advancing standards,
still their integration into existing and smart buildings requires efficient and holistic
management platforms. Especially, the integration of recent IoT/Big-data technolo-
gies for real-time monitoring and data processing in order to develop new predictive
control approaches, which allow ensuring the sustainability and the reliability of
these new energy generation systems.

4 Smart Buildings as MicroGrid Systems

MG systems for smart buildings can be seen as socio-technical systems that inte-
grate different heterogeneous entities (e.g., sensors, actuators, lighting, HVAC, occu-
pants, RES, storages), which could interact dynamically and in a collective manner
to balance between energy efficiency, occupants’ comfort, sustainability, and the
adaptability. More precisely, making buildings more energy-efficient while ensuring
occupants’ comfort require incorporating mechanisms and techniques, which allow
entities interacting in order to perform suitable actions (e.g., turning On/Off HVAC
and lighting, balancing the fluctuation between power production and consumption)
as shown in Fig. 5. As stated in [51–53], systems operating in dynamic environ-
ments with these capabilities are qualified as socio-technical Collective Adaptive
Systems (CAS). These systems should learn and evolve by performing distributed
decisions at different temporal and spatial scales while self-organize when entities
join or leave the collective (e.g., occupants’ number and presence). For instance,
platforms for buildings’ EM could react to the dynamic changes (e.g., buildings

Fig. 5 Energy efficiency and occupants’ comfort metrics [51]
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occupants’ preference, number, presence) for lowering energy consumption while
making occupants’ life more comfortable and consequently, increasing the energy
efficiency in buildings.

Mainly, one of the most important factors that define the “Smart Buildings” is
the adaptability. It is defined as the characteristic of buildings to use information
gathered from a range of sources to prepare the building for a particular event before
that event has happened (e.g., predictive control, occupants forecasting) [54]. The
adaptability allows the differentiation between previous generations of buildings and
Smart Buildings. In fact, using IoT/Big-Data technologies, the buildings gather data
externally (e.g., weather conditions, RES production) and internally (e.g., occupancy,
loads consumption) to adapt its operations depending on the context-awareness prin-
ciples. The collected data is used to develop machine-learning algorithms that are
used to forecast the actions, which are required to perform and operate different
buildings’ services. For example, the forecast of weather conditions can be used to
predict the RESs production, which allows flexible management of energy D/R. In
addition, by measuring the energy production/consumption and by forecasting the
occupant’s activities, the adaptive buildings modify the starting time of temporary
end-user services (e.g., washing machine service, cooking service).

However, these abovementioned aspects represent the main factors to develop
the concept of “Micro-Grid” systems. It is due to the capabilities of recent ICTs
techniques (e.g., machine learning) to forecast future events, which are required to
develop efficient EMapproaches. The next section introduces ourMGsystem’s archi-
tecture. In this way, we have designed and deployed an MG system for conducting
experiments in real-sitting scenarios. In particular, we highlighted the necessity of
integrating recent IoT/Big-Data technologies for gathering external and internal data,
which have been used to generate predictive actions (e.g., regulating the room temper-
ature by forecasting building’s occupancy, ventilation speed variation according to
the forecasted CO2, intelligent and predictive control of energy flows management
using forecasted power production, consumption and battery state of charge).

5 The Experimental Platform of MG Systems

As shown in Fig. 6, our MG system is structured into three horizontal layers: passive
building layer (e.g., building envelope and insulation, architecture design), active
building systems layer (e.g., HVAC system, Lighting), and RESs system layer (e.g.,
PV, wind, storage). These layers are monitored by one vertical layer for communi-
cation and ICTs integration. This layer integrates mainly an IoT/Big-Data platform
in order to measure, analyze, predict, and forecast actions depending on the actual
and predicted context.

In particular, our MG system is a smart and active building that combines
ICTs/Big-data infrastructure, RESs/storage systems, EM/control strategies, and elec-
trical power grids. This new concept of a building is more interactive for both
consumers and energy producers. In fact, consumers will reduce the cost of their
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Fig. 6 The main MG system’s layers for smart and energy-efficient buildings

energy consumption based on the used control approaches, which take into account
the real-time cost of the power and the predictive power generation, for efficient D/R
management [55]. In addition, the household equipment (e.g., refrigerators, washing
machines, microwaves, lighting) are becoming intelligent devices, which may be
actively controlled using IoT devices, as well as adjusted and controlled by inter-
acting with the other systems (e.g., power generation, EM system). Moreover, this
MG structure offers the possibility to integrate new buildings’ services, such as elec-
trical vehicles, which can be used as a storage device to compensate for the energy
in the building by integrating the “Grid-to-Vehicle & Vehicle-to-Grid” techniques.

The rest of this section is dedicated to the description of the deployedMG systems
together with the deployed scenarios. The aimwas to develop a research test site inte-
grating the different components of anMG system, which is used to test and integrate
control strategies for predicting, estimating, and controlling the interaction between
power production, storage, and building’s demands. As shown in Fig. 7, the system
integrates PV panels, wind turbines, batteries, and the TEG connected together in
order to supply electricity to the building’s services according to actual contexts. The
system is monitored by an IoT/Big-Data platform, which is used to collect, analyze,
and store the data for EM and control strategies development. Moreover, several
scenarios are deployed in order to develop a research platform that considers the
concept of MG systems with the different components of the different layers.
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Fig. 7 The holistic model of the deployed MG system

5.1 IoT and Big-Data Platform for Data
Monitoring/Processing

Real-time and context-awareness information could be exploited for developing
predictive and adaptive context-driven control approaches using recent IoT and
Big-data technologies together with real-time and machine-learning algorithms [56,
57]. A platform that uses context-driven technologies, as well as complex-event
processing technologies, is deployed for data monitoring and processing in order
to develop intelligent and predictive control strategies for EM in MG systems. The
platform is composed of four main layers, sensors/actuators layer, data acquisition,
data processing, and data visualization/storage together with further services and
applications for context-driven control (Fig. 8).

The MG is mainly equipped with a component for measuring the different neces-
sary parameters (e.g., current, voltage, temperature, wind speed), for interacting with
the passive and the active equipment, for regulating the comfort for the occupancy,
and for managing the power production and consumption. In fact, a set of sensors
is installed depending on the desired scenarios. In addition, the first layer includes
the actuators that are used to receive and to execute different commands, which
are generated by the control strategies for EM or equipment and services control.
Regarding the data acquisition layer, a Kaa application is developed (i.e., IoT tech-
nique) [59], which is used to receive data from deployed sensors. We have also used
MQTT (Message Queue Telemetry Transport), which is a publish-subscribe-based
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Fig. 8 IoT/Big-Data platform architecture [58]

protocol for IoT applications. For data processing and storage, Storm [60] services are
used. Mainly a topology composed of Spouts and Bolts was designed and developed
to allow receiving and processing streaming data from sensors. The spouts receive
the data from the Kaa application, and then transmit it to the Bolts for processing
and storage into the database (e.g., MongoDB) for further in-depth analysis. The
services layer includes real-time visualization and storage together with the control
of active equipment and RESs power production and consumption monitoring and
management.

The platform was used for data gathering and processing of internal and external
building’s context. For instance, it was used to build occupant information (e.g.,
number, presence, behavior, activities), since is a major input for control approaches
in energy-efficient buildings (e.g., active systems control). In fact, comprehensive
fine-grained occupancy information could be integrated to improve the performance
of occupancy-driven control of HVAC, lighting, and ventilation systems. A plat-
form for real-time detection of occupants’ is deployed (Fig. 9). The platform was
adopted by including real-time machine-learning component with the main aim is to
analyze, explore, and predict the occupancy information in buildings [54]. However,
these predicted values are then used for efficient control of active equipment and for
predicting the electricity consumption behavior, which is used for EM.

Regarding the external context, we have deployed a weather station. In fact, for
several scenarios, we need to gather internal and external context data. We have built
a weather station near to the wind turbine and PVs in order to have as precisely
as possible the data concerning wind speed, direction, irradiation, temperature, and
humidity. The weather station was deployed and used to collect the data for real-
time visualization and processing for further usage by other building’s services and
applications. All these data are gathered and processed in real-time using our IoT
and Big-data platform, as depicted in Fig. 10.

Weather data are collected in order to validate the results obtained from simula-
tions and experimentations by using the same input parameters. For example, radi-
ance and temperature are measured together with the PV power during the same
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Fig. 9 The architecture for occupants’ presence detection/prediction and experimental results [56]

Fig. 10 a Internal/external temperature, bWeather monitoring

day. Radiance and temperature are used as input parameters to the mathematical PV
model,which is developed for conducting simulations and validate experimentations’
results using similar contextual data.

5.2 Building Envelope

This part concerns the passive layer (Fig. 6), which allows reducing energy consump-
tion by developing less-energy-consuming equipment and materials in buildings.
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Fig. 11 Thermal treatment of the front wall and the temperature sensors positioning [61]

Emerging devices, which use natural forces without using electricity, such as natural
lighting, room relocation, natural ventilation, could be used to increase insulation
(Fig. 11). In fact, the architecture design, buildings envelope, and orientations can
influence energy reduction. Therefore, the passive design must be considered in the
phase of construction in order to reduce the final energy use of the building.

As part of our studies, a work is realized by focusing on the thermo-mechanical
characterization of our EEBLab, which mainly consists of galvanized steel, of which
expanded polyurethane is injected into the walls and the roof. As well as two types
of internal insulation are adapted, namely chipboard for the floor and polyurethane
for the roof. The main aim is to thermally study the behavior of the EEBLab, in order
to propose good materiel for the insulation and consequently minimizing the use of
the HVAC system for heating and cooling [61].

5.3 Active/Passive Equipment Control

This part concerns the MG system active layer (Fig. 6) that allows the deployment of
context-driven control approaches in order to improve energy consumption. In this
layer, the electrical energy can beminimized by optimizing the operation times of the
active equipment (e.g., HVAC, ventilation systems), while maintaining occupants’
comfort within a good air quality and suitable thermal comfort [62, 63]. In fact, the
ventilation systems are normally installed in buildings to improve the air quality by
injecting fresher air from outside into inside buildings. These systems automatically
act on behalf of occupants by ensuring good indoor air quality, especially in cold or
hot periods, or when there are nowindows. In fact, the ventilation controller performs
this task by adjusting fresh air asmuch as needed based on actual indoor CO2 concen-
tration. The aim is to improve the optimal balance between energy efficiency and
indoor air quality. For that, a ventilation control system was deployed, as presented
in Fig. 12, which maintains the indoor CO2 concentration at the comfort set-point
with an efficient and minimal ventilation rate and energy consumption [64, 65].
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Fig. 12 Context-driven control card and active equipment control [65]

Another study puts more emphasis on developing efficient control approaches in
order to deliver acceptable occupants’ comfort while maintaining optimal energy
consumption. Control approaches are investigated for controlling the deployed
HVAC system in our EEBLab [66]. A control card is deployed as illustrated in
Fig. 13 in order to interface between all HVAC components and the control device.
It allows the regulation of temperature and ON/OFF control of the HVAC system
by adjusting the inside ventilator and the compressor based on the desired schedules
(heating, conditioning, or only ventilation). The deployed IoT/Big-Data platform is
used to measure the hourly electricity consumption of the HVAC system, which is
used in our study as a load to test the EM control strategies.

Generally, the HVAC is the most used system for thermal comfort regulation
in buildings and is considered as the highest electricity consumer. For that, renew-
able sources of thermal energy are required to minimize the electricity mainly used
for heating, cooling, and air conditioning. In this perspective, we have deployed a
geothermal platform [67], an earth-to-air heat exchanger system that could be used
for building cooling and heating. In fact, this clean and sustainable source can be
deployed and used to minimize the usage of HVAC systems. As illustrated in Fig. 13,

Fig. 13 Geothermal installation in the EEBLab [67]
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the system is installed to extract heat from the ground for either cooling or heating
purposes. It is basically a buried pipe, deployed at a certain depth in the ground,
where air exchanges heat with soil. This system is deployed in the side area of our
EEBLab and the pipelines are installed inside a trench of 5m in length, 2mwidth, and
1.5 depth. Different sensors are installed as well in order to measure and control the
temperature exchange in order to investigate the performance and the effectiveness
of the system in terms of power consumption and comfort.

5.4 RES Integration and Storage Devices

The work focused on this layer (Fig. 6) concerns the deployment of control strategies
for EM.After the deployment of thewhole components of theMGsystem, this simple
hybrid system, however, needs to be automatically controlled accordingly. In fact,
D/R control approaches are therefore required for balancing the intermittent RES
generation and the delay might occur between the power production and the actual
building’s consumption. Themain aim is to develop a control card to test the different
studied control strategies for EM. Unlike existing systems, which are used as a black-
box to collect and manage the energy in MG, the deployed control card allows us to
measure, monitor, manage and deploy our algorithms [68, 69]. In fact, the developed
card can be seen as an embedded EM system for optimal energy usage according
to the actual context (Fig. 14). Therefore, different objective functions can be taken
into account when optimizing and designing a control strategy, like the smoothing
of the production, the continuity of the power generated to the consumer, the energy
cost, and the charge/discharge cycle of the batteries [70]. For that, a control strategy
should be deployed to satisfy the constraints designed by the optimization functions.
The main communication infrastructure is employed for total energy measurement
and management purposes. This infrastructure provides the autonomous operation
with the required measurements, decisions, and controls by collecting data through
the sensors and producing the commands for the Hw/Sw card, which is connected
to the control switches used in the hybrid system [71].

However, a set of current and voltage sensors is installed for power measurement,
as shown in Fig. 14. The system contains actuators controlled by an Arduino, which
allows collecting the data from different sensors. Furthermore, the system contains
a micro-computer (Raspberry pi) for collecting data from different sensors. The
sensors transmit analog signals to the microcontroller, which converts them into
numerical data. For example, a voltage sensor is used to measure the output PV
voltage with an accurate range, which varies from zero to 140 V. For that, a tension
divider bridge is used to convert the values from zero to 5 V, which is the Arduino
accurate range. In fact, the Arduino program converts obtained values to tension data.
Moreover, the Arduino transmits these data to the Raspberry for activating the right
action according to the deployed control algorithm. Data are then transmitted to the
IoT/Big-data platform for visualization, storage, and further data analytics.
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Fig. 14 a Schematic view of the control card, b the deployed Hw/Sw control card [71]

Acase study is presented inwhich the developed control card and the IoT/Big-Data
platform are used to measure and store the data collected by the deployed current and
voltage sensors. As shown in Fig. 15, the green curve presents the power generated
from a PV panel for 24 h. This power is calculated by measuring the PV current and
voltage variability during the day, which depends on the weather conditions (e.g.,
temperature, irradiance) changeability.At the same time, the batterySoC is calculated
using our battery characterization system installed in the MG system. Moreover, the
power consumption is measured and stored for the same period. These parameters
are the main input for the EM strategy.

Furthermore, as described above, the use of storage devices in the MG system
is motivated by the intermittent nature of RESs and the need to regulate the power
quality (e.g., frequency, voltage) generated by these generators. The main aim is
to store the surplus of the produced power during the peak production for possible
usage when there is no production and keeping, at the same time, a maximum state
of the health for the storage devices. Therefore, a set of batteries are installed in
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Fig. 15 Power measurement scenario in our deployed MG system platform

our deployed MG system due to their benefits (e.g., fast response, modularity, and
good energy efficiency). For that, a platform to study, model, and experiment the
batteries is required. This platform offers the possibility to monitor the used battery
for better SoC estimation. These parameters are required to develop and deploy
control strategies for EM in MG systems. In fact, a battery model is designed to
estimate and predict the batteries’ performance and behavior because the SoC is
used as a critical parameter for our control strategy.

Electrical-circuit models (e.g., the first-order RC model, the second-order RC
model) are commonly used for batteries’ behavior estimation. These models are
composed of a voltage source, resistors, and capacitors, which can simulate its
dynamic behavior. They become more and more accurate when the model’s order
increases (i.e., RC networks). Moreover, for the accurate SoC estimation of the
battery, several methods and algorithms are reported in the literature, such as the
directmeasurementmethods, the artificial intelligencemethods, and themodel-based
methods. The direct measurement methods (e.g., Coulomb counting method, Elec-
trochemical method, open-circuit voltage method) use the dynamic measurement
of the battery characteristics in order to estimate the battery’s SoC. The artificial
intelligence algorithms, such as the Neural Network and the Fuzzy logic, can also
estimate the battery’s SoC with more precision but they are more complex and diffi-
cult to deploy for embedded and real-time MG control. Mainly, in our deployed MG
system, the model-based methods (e.g., Coulomb counting method, Sliding mode
observer, Kalman filter) have been used to estimate the SoC of the battery with more
precision and accuracy (Fig. 16) [72, 73].
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Fig. 16 The deployed battery modeling

In order to determine the battery characteristics, an instrumentation platform
is first developed using recent sensing/actuating equipment for gathering impor-
tant battery’s parameters, which are then used for building a model for the battery
deployed in our EEBLab (Fig. 17). It is composed of a Lead-acid battery and a set
of sensors to extract the battery’s voltage and current. The sensors are connected to
an acquisition board (e.g., Arduino) used to collect the data, and then send them
to a cluster for processing and storage. The developed platform provides other
information about the estimation of the battery’s SoC by the Coulomb Counting
method.

After validating the batterymodel, it is integrated into ourMG for simulations and
experiments. As shown in Fig. 18, the blue curve presents the battery SoC variability
estimated using the measured battery voltage (orange curve). During this scenario,
the battery charge/discharge current and voltage are measured and collected using
our deployed IoT/Big-Data platform. The measured parameters are used to estimate

Fig. 17 Battery characterization system [72]
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Fig. 18 The battery SoC estimation using the measured voltage by our deployed platform

the SoC variability. Therefore, the SoC is a key parameter for the EM strategies in the
MG systems. In fact, as depicted in Fig. 18, from 11:00 AM to around 07:00 PM, the
battery is charged by the surplus generated from the RESs. During the night, from
07:00 PM to around 04:00 AM, the battery generates the power to the load because
the PV generation is unavailable. However, the battery is at rest from 04:00 AM to
around 08:00 AM because the SoC reaches the regulated threshold value, which is
fixed by the EM strategy, in order to avoid a deep-discharge of the battery.

Therefore, the proposed IoT/Big-Data platform could be used tomeasure different
parameters in the MG system. Depending on the studied scenario, suitable sensors
are selected and can be connected to this platform for data collection, monitoring,
and processing.

6 Conclusions and Perspectives

The main aim of the work presented in this chapter is to shed more light on the
usefulness of developing an integrated platform in order to enable the deployment
of smart MG systems in energy-efficient buildings. The MG platform connects the
building’s components using sensing/actuating, IoT, and Big Data technologies in
order to leverage real-time gathering, data processing, and predictive control. The
platform was deployed and several scenarios have been tested and evaluated and
preliminary results showed the usefulness of the platform for efficient management
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of buildings components. The platform will be further enhanced by developing other
ongoing scenarios. It will be used for validating the proposed models and results
mainly by investigating, (i) the efficient connection, integration, and themanagement
of different RES and storage devices, (ii) the suitable dimensions for energy produc-
tion and storage devises, (iii) different possible demands/responses and predictive
algorithms, (iv) charged and discharged operations on the state-of-health of deployed
batteries as well as PV corrosions fault diagnosis, (v) context-aware driven control
of deployed equipment, e.g., lighting and HVAC systems. Methods that allow smart
management with predictive analytics are still need to be integrated into the platform
prototype to handle this type of complex systems. This paves the way to approaches
in which an antifragile platform learns and adapts which strategy/action to enact.
We envision that future ambient control systems (ACS) will require more and more
intelligence as well as the ability to monitor and learn from the experiences, thus
realizing an antifragile ACS. Future work shall investigate how to practically realize
such an ACS in energy-efficient buildings [51].
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