Green Energy and Technology

Saad Motahhir '\'
Ali M. Eltamaly Editors

Advanced
Technologies
for Solar
Photovoltaics
Energy Systems

@ Springer



Green Energy and Technology



Climate change, environmental impact and the limited natural resources urge
scientific research and novel technical solutions. The monograph series Green Energy
and Technology serves as a publishing platform for scientific and technological
approaches to “green”—i.e. environmentally friendly and sustainable—technologies.
While a focus lies on energy and power supply, it also covers “green” solutions in
industrial engineering and engineering design. Green Energy and Technology
addresses researchers, advanced students, technical consultants as well as decision
makers in industries and politics. Hence, the level of presentation spans from
instructional to highly technical.

**Indexed in Scopus®*.

More information about this series at http://www.springer.com/series/8059


http://www.springer.com/series/8059

Saad Motahhir - Ali M. Eltamaly
Editors

Advanced Technologies
for Solar Photovoltaics
Energy Systems

@ Springer



Editors

Saad Motahhir Ali M. Eltamaly

ENSA Electrical Engineering Department
Sidi Mohamed Ben Abdellah University Mansoura University

Fes, Morocco Mansoura, Egypt

ISSN 1865-3529 ISSN 1865-3537 (electronic)

Green Energy and Technology

ISBN 978-3-030-64564-9 ISBN 978-3-030-64565-6 (eBook)

https://doi.org/10.1007/978-3-030-64565-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://orcid.org/0000-0002-9831-7182
https://doi.org/10.1007/978-3-030-64565-6

Preface

With the steady increase in the consumption of electric energy worldwide and with
the increase of technological industries, dependence on fossil fuels has led to deple-
tion and high prices in addition to the harmful effects it causes to the surrounding
environment. All these effects made an urgent need for more energy sources to meet
these requirements and remedy the effects of the generation from fossil fuels. That
is why, renewable energy sources have become a solution to this dilemma because
they are inexhaustible and do not pollute the environment, and there is no way to
prevent societies from using these sources of energy. Solar photovoltaic energy was
one of the most important of these sources and now it competes with even some
traditional energies, and it has many uses that have increased its importance. With
the steady decline in the prices of solar panels, as they appeared in the year 1958 with
about $1000 to generate only 1 watt, and now in 2020, the solar panels capable of
generating 1000 watts are less than $1000. With the scientific and technical progress,
scientists have added many improvements to the generation system from solar cells,
and these studies focused on two basic methods. The first is to improve the efficiency
of the photovoltaic cells by using materials that can generate electricity with high
efficiency and the other way is to improve the efficiency of the electrical energy
extraction circuits from cells such as sun-tracking systems and maximum power
point tracking systems, cell cleaning systems from dust, etc. All of these methods to
improve the efficiency of the generation system from solar cells were highlighted in
this book.

The book introduced a study in improving the efficiency of the photovoltaic
modules using new materials and improved manufacturing technology. Moreover,
mathematical models used to create simulations of these cells were introduced. The
book also dealt with improving sun tracking systems and using inexpensive systems
that can track the sun throughout the year. Studies of automatic cleaning systems
that use robots to clean cells from dust were also presented to increase the efficiency
of a photovoltaic power generation system.

Many studies have been presented that explains the issue of partial shading on solar
cells and its harmful effects and ways to get rid of these effects, as well as explaining,
reviewing, and comparing systems that track the highest generation power of cells,
clarifying the best ones, and adding many modifications to these systems. The book
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vi Preface

also contains hybrid renewable energy generation systems and the possibility of using
them in feeding remote communities that are far from the electrical grid. The study
of the hybrid systems also includes the design and sizing of the components to build
these hybrid systems. Moreover, this book covers the use of new advanced technolo-
gies as embedded system, Internet of Thing (IoT), and blockchain technologies for
PV systems through different applications such as MPPT controller, solar tracker,
cleaning system, and monitoring system.

The book will be very useful for all undergraduate and postgraduate students, as
well as those interested in the field of generating electricity from renewable energy
sources, especially solar energy. Moreover, this book will be very interesting for the
readers who are looking for using solar modules to feed loads in isolated areas as
well as on the utility scale. It will also help them to know the photovoltaic energy
systems’ characteristics, modeling, operation, challenges, maximum power tracking,
and practical implementation. This book will help the researchers, designers, and
operators, as well as undergraduate/postgraduate students, to be familiar with the
new trends in the field of photovoltaic energy systems.

Acknowledgments

The editors of this book would like to thank the authors and reviewers for their
contributions and efforts. Moreover, we would like to thank all colleagues from
K. A. CARE Energy Research and Innovation Center, Riyadh, Saudi Arabia for their
help and efforts.

Fes, Morocco Saad Motahhir
Mansoura, Egypt Ali M. Eltamaly



Contents

Advanced Materials for Solar Cell Applications: Case of Simple
and Composite Oxides ............ ... ... ... 1
Abderrahman Abbassi

A Fractional-Order Dynamic Photovoltaic Model Parameters

Estimation Based on Chaotic Meta-Heuristic Optimization

Algorithms . ... .. . 15
Dalia Yousri, Dalia Allam, and M. B. Eteiba

Dust Accumulation and Photovoltaic Performance in Semi-Arid

Climate: Experimental Investigation and Design of Cleaning Robot .... 47
Alae Azouzoute, Massaab El Ydrissi, Houssain Zitouni, Charaf Hajjaj,

and Mohammed Garoum

Internet of Things-Based Solar Tracker System ...................... 75
Aboubakr El Hammoumi, Saad Motahhir, Abdelaziz El Ghzizal,
and Aziz Derouich

Impact on the Performance of Solar Photovoltaic System

with the Innovative Cooling Techniques ............................. 97
N. Beemkumar, S. Dinesh Kumar, A. D. Dhass, D. Yuvarajan,

and T. S. Krishna Kumar

Photovoltaic Maximum Power Point Trackers: An Overview .......... 117
Ali M. Eltamaly

A Novel Hybrid Optimization Algorithm for Maximum Power

Point Tracking of Partially Shaded Photovoltaic Systems .............. 201
Ahmed A. Zaki Diab, Mohamed A. Mohamed, Ameena Al-Sumaiti,

Hamdy Sultan, and Mahmoud Mossa

Distributed Maximum Power Point Tracking for Mismatched
Modules of Photovoltaic Array .................. .. ... ... 231
S. Berclin Jeyaprabha

vii



viii Contents

Design and Comprehensive Analysis of Maximum Power Point
Tracking Techniques in Photovoltaic Systems ........................ 253
Ali M. Eltamaly, Mohamed A. Mohamed, and Ahmed G. Abo-Khalil

Enhancement Techniques to Design a Standalone PV System
for Residential Application ................ .. ... .. ... .. ... 285
R. Ramaprabha and S. Malathy

Controlling the Hybrid PV/T System Self-heating Using Extrinsic
Cell Resistance ............ ... ittt 315
A. A. Aminou Moussavou, A. K. Raji, and M. Adonis

A Review on Vehicle-Integrated Photovoltaic Panels .................. 349
Marwa Ben Said-Romdhane and Sondes Skander-Mustapha

Improvement of the Power Quality in Single Phase Grid Connected
Photovoltaic System Supplying Nonlinear Load ...................... 371
Chiraz Khomsi, Monia Bouzid, Gérard Champenois, and Khaled Jelassi

Toward a Sustainable Agriculture in Morocco Based on Standalone
PV Pumping Systems: A Comprehensive Approach ................... 399
AA. Mana, A. Allouhi, K. Ouazzani, and A. Jamil

Embedded Implementation of Improved IFOC for Solar

Photovoltaic Water Pumping System Using dSpace ................... 435
Mustapha Errouha, Babak Nahid-Mobarakeh, Saad Motahbhir,

Quentin Combe, and Aziz Derouich

Single-Phase Grid-Connected Photovoltaic H-Bridge N-Level
Inverter Control Strategy ............. ... ... ... ... 457
Abdelaziz Fri, Rachid El Bachtiri, and Salah-Eddine Lhafdaoui

Off-Grid PV-Based Hybrid Renewable Energy Systems

for Electricity Generation in Remote Areas .......................... 483
H. El-houari, A. Allouhi, M. S. Buker, T. Kousksou, A. Jamil,

and B. El Amrani

Implementation of Blockchain-Based Security and Privacy
in Energy Management .............. ... ... ... . il 515
A.D. Dhass, S. Raj Anand, and Ram Krishna

Big Data and Deep Learning Analytics for Robust PV Power
Forecastin Smart Grids .............. ... . .. ... i 529
Yunhui Zhang, Shiyuan Wang, and Payman Dehghanian

A MicroGrid System Infrastructure Implementing IoT/Big-Data
Technologies for Efficient Energy Management in Buildings ........... 571
Abdellatif Elmouatamid, Youssef Naitmalek, Radouane Ouladsine,

Mohamed Bakhouya, Najib El kamoun, Mohammed Khaidar,

and Khalid Zine-Dine



About the Editors

Saad Motahhir (Eng., Ph.D., IEEE member) has
previous expertise acting in industry as Embedded
System Engineer at Zodiac Aerospace morocco from
2014 to 2019, and more recently became a professor at
ENSA, SMBA University, Fez, Morocco, since 2019.
He received the engineer degree in Embedded System
from ENSA Fez in 2014. He received his Ph.D. degree
in Electrical Engineering from SMBA University in
2018. He has published a good number of papers in
journals and conferences in the last few years, most of
which are related to Photovoltaic (PV) solar energy and
embedded systems. He published a number of patents
in the Morocco Patent Office. He acted as a guest editor
for different special issues and topical collections. He
is a reviewer and in the editorial board of different
journals. He was associated with more than 30 interna-
tional conferences as a Program Committee/Advisory
Board/Review Board member.

Ali M. Eltamaly (Ph.D—2000) is a full professor at
Mansoura University, Egypt, and King Saud Univer-
sity, Saudi Arabia. He received his B.Sc. and M.Sc.
degrees in electrical engineering from Al-Minia Univer-
sity, Egypt, in 1992 and 1996, respectively. He received
his Ph.D. degree in Electrical Engineering from Texas
A&M University in 2000. His current research inter-
ests include renewable energy, smart grid, power elec-
tronics, motor drives, power quality, artificial intelli-
gence, evolutionary and heuristic optimization tech-
niques, and distributed generation. He published 20 book
and book chapters and he has authored or coauthored
more than 200 refereed journal and conference papers.

ix



About the Editors

He published several patents in the USA Patent Office.
He has supervised several M.S. and Ph.D. theses worked
on several National/International technical projects. He
got a distinguish professor award for scientific excel-
lence, Egyptian Supreme Council of Universities, Egypt,
June 2017, and he has been awarded many prizes in
different universities in Egypt and Saudi Arabia. He
is participating as an editor and associate editors in
many international journals and chaired many interna-
tional conferences’ sessions. He is the chair professor of
Saudi Electricity Company Chair in power system relia-
bility and security, King Saud University, Riyadh, Saudi
Arabia.



Abbreviations

ABC
ACO
Al
ANN
APPSO
BA
BNIA
BOA
BST
CDC
CFA
CFA
COA
COA
CS
CSO
DCCS
DCLCDC
DE
DEM
EA
EOA
ESC
FFA
FLC
FOCV
FPA
FSA
FSCC
GA
GHO
GP

Artificial Bee Colony Algorithm
Ant Colony Optimization
Artificial Intelligent

Artificial Neural Network
adaptive perceptive PSO

Bat Algorithm

Bio/Natural Inspired Algorithms
Beta Optimization Algorithm
Bisection Search Technique
counts of dimension to change
Curve-fitting Algorithm
Cuttlefish Algorithm

Chaos Optimization Algorithm
Chaos optimization algorithms
Cuckoo Search

Cat Swarm Optimization

Dual Carrier Chaotic Search
DC-Link Capacitor Droop Control
Differential Evolution

Direct estimated methodology
Evolutionary Algorithms
Earthquake Optimization Algorithm
Extremum Seeking Control
Fireflies Algorithm

Fuzzy Logic Controller
Fractional Short-circuit Voltage
Flower Pollination Algorithm
Fibonacci Search Algorithm
Fractional Short-circuit Current
Genetic Algorithm

Grass Hopper Optimization
Global peak

xi



xii

GWO
HC
HMT
HPO
IMKE
InCond
JOA
LCLVM
LPs
LuT
MA
MBA
MEE
MFO
MML
MPP
MPPT
MPT
P&O
PSC
PSO
PV
PWM
RCC
SA
SCO
SC-SC
SIA
SMA
SMC
SMP
SPC
SRD
SSA
SSJ
TBM
TLA
TPBP
TSA
T-SC
T-T
VWS
WCA
WOA

Grey Wolf Optimizer

Hill-climbing

Hybrid MPPT Techniques

Human Psychology Optimization
Intelligent Monkey King Evolution
Incremental Conductance

Jaya Optimization Algorithm

Load Current or Load Voltage Maximization
Local peaks

Look-up Table

Metaheuristic Algorithms
Mathematical Based Algorithms
MPPT energy efficiency
Moth-Flame Optimization
Mismatch loss

Maximum power point

Maximum power point tracker
Maximum Power Trapezium
Perturb & observe

Partial shading condition

Particle Swarm Optimization
Photovoltaic

Pulse Width Modulation

Ripple Correlation Control
Simulated Annealing

Stepped-up Chaos Optimization
Soft-computing with soft-computing
Swarm Intelligence Algorithms
Skipping Mechanism Algorithm
Slide Mode Control

Seeking memory pool

Self-position considering

Seeking range of the selected dimension
Salp Swarm Algorizm
Search-Skip-Judge

Transient Based MPPT

Teaching Learning Algorithm
Three-point Bidirectional Perturbation
Tabu Search Algorithm

Traditional with soft-computing
Traditional with traditional MPPT Techniques
Voltage Window Search

Water Cycle Algorithm

Whale Optimization Algorithm

Abbreviations



Nomenclature

Forecast Model Implementation

Top
h
G()
K

u

unorm

uy (1)

uy (1)

Umin, Umax

Yact (t + @)
¥p (z + ﬁ)

Pearson correlation coefficient of variables « and 8

A positive integer reflecting h time steps ahead

Nonlinear mapping relationship between input and output variables
Data sample size for the forecast model

Input data array for the forecast model

Normalized input data array for the forecast model

Discrete PV power time series obtained from phase space reconstruc-
tion

Weather data array obtained from correlation analysis

Minimum and maximum values of the input data array for the forecast
model R

Observed value of the PV output power at time (t + h)

Forecast value of the PV output power at time (t + ?z)

Short-Term Memory Network

o
o(-)

tanh(-)

Cy

bfs bis bC’ bo

G

i
hy

Multiply symbol by element

Sigmoid activation function

tanh activation function

Candidate value of memory cell state at time ¢

Bias vector for the forget gate, input gate, cell memory state, output
gate

Cell memory state at time ¢

Output value of the memory cell’s forget gate at time ¢

Hidden state at time ¢

Xiii



Xiv
it7 0[

chv Wch
W, Wiy

‘/Vixv ‘/Vih

Wux’ Wah
Xt

Nomenclature

Output value of the memory cell’s input gate and output gate at time
t

Weight matrix of the cell memory state corresponding to x; and 4,
Weight matrix of the forget gate corresponding to x, and 4,
Weight matrix of the input gate corresponding to x; and %,

Weight matrix of the output gate corresponding to x; and A,

Input to the memory cell at time ¢

Nonlinear Reconstruction Technique

S (A)
AS )
At

A
e(m,N,r, 1)
2

T

A(D)
a(n)
apy (1)
H()
int(-)

Average of the statistical metric S (m, N, rj, A) of all sub-sequences

Average of the statistical metric AS(m, N, 1) of all sub-sequences
Sample interval for the time series

Number of disjoint sub-sequences from time series with length N
Correlation integral of the time series

Correlation integral of the n-th sub-sequence

Time delay of the phase space

The i-th phase point in an m-dimension phase space

The n-th point of scalar time series in phase reconstruction

The #-th point of PV power time series in phase reconstruction
Heaviside function

Taking an integer operation

Number of phase points in the phase space

Embedding dimension of the vector A(i)

Length of the time series

Number of non-zero elements in d; ()

Threshold distance

Average value of Ind; () for i

Initial distance between the i-th point A(7) and its nearest neighbor
AGD)

Distance between the i-th pair of the nearest neighbors after u
discrete time steps

Statistical metric for each sub-sequence with neighbor radius r;



Acronyms

AC
D/R
DC
EEBLab
EM
HVAC
ICT
IoE
ToS
IoT
MG
PV
RES
SG
SoC
TEG

Alternating Current

Demand/Response

Direct Current

Energy Efficient Building laboratory
Energy Management

Heating, Ventilation, and Air-Conditioning
Information and Communication Technologies
Internet of Energy

Internet of Service

Internet of Things

Micro-Grid

Photovoltaic

Renewable Energy Source

Smart Grid

State-of-Charge

Traditional Electric Grid

XV



Advanced Materials for Solar Cell )
Applications: Case of Simple oo
and Composite Oxides

Abderrahman Abbassi

Abstract The study aims to investigate the electronic and optical properties of two
types of oxides in their stable phases (the co-doped ZnO and BiYOs3, the simple
and composite compound) in order to build a new sufficient solar cell transparent
electrodes. This work may contribute to the development of solar cell electrodes by
the exploitation of the optoelectronic properties of these compounds. This study is
made with the numerical techniques ab initio based on the DFT that we will describe
in more details in this chapter. The result was found to show that the transmittance of
BiYO; and the simple oxide treated is significant (about 90% for the simple oxide),
bandgap varies and the behavior of the conductivity is ensured by the presence of an
important concentration of electrons.

Keywords Oxides + Semiconductors * Ab initio - DFT - Optical properties *
Electronic properties, DOS

1 Introduction

The manufacturing of solar electrodes has grown significantly in recent years; scien-
tists are working to increase the performance of solar panels, improve their yields
and other parameters related to their constructions. The use of technologies based on
Silicon is starting to have a huge change and especially by the use of other materials,
which are considered as high-performance materials compared to the old generation
of solar electrodes. This is where our idea comes from, the development of window
layers, active layers in PV applications. We focus on two types of oxides, simple and
composite. In this work, we study only the first layer in PV cells, which is called
the window or transparent layer with the capacity to collect a maximum of solar
radiation. We calculate this transmittance rate by formalisms and computer code,
which are reliable and known in materials science. A second calculation is made to
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2 A. Abbassi

estimate the conductivity of these materials. The first type of materials treated in this
chapter is the simple oxide, we will focus on the investigation of different properties
of zinc oxide doped and co-doped with various amounts of dopants as aluminum and
silicon. Several types of research have been published by many researchers in which
they investigate the properties of ZnO [1-8]. We will briefly discuss the properties
that make zinc oxide material of great importance according to his application. The
zinc oxide ZnO is a powder in the solid state; it has some advantages such as being
noncombustible, it is abundant and non-toxic. The crystallization of this compound
can be made in two different structures, hexagonal/wurtzite (Fig. 1) and cubic zinc
blend. The wurtzite form is thermo-dynamically stable more than other structures
at ambient conditions. The structural parameters of the wurtzite used in this study
are: a = 0.32495 nm and ¢ = 0.52069 nm, with c¢/a ~1.60 which is close to the ideal
ratio c/a = 1.633. The unit cell positions are (0; 0; 0), and (2/3; 1/3; 1/2). Each atom
of zinc in tetrahedral site is encircling by four oxygen atoms and vice versa. The
oxygen and ¢ bond has an important ionic character due to the high electronegativity
of the oxygen atom.

The point group of wurtzite zinc oxide is 6 mm according to the Hermann—
Mauguin notation, this point group can also be found with Schoenflies notation Cgy,
P6;mc and C¢, mentioned the space group of the studied structure. ZnO bonding is
ionic (Zn**-0?"), as in several compounds classified in groups II-VI. The radii used
is 0.140 nm (O%~) and 0.074 nm (Zn?*). This characteristic is important concerning
the formation of hexagonal structure comparing with the blend structure. ZnO has
also a significant piezoelectricity, which can be used in other different applica-
tions, especially the manufacturing of sensors. The polar Zn—O bonds make zinc
and oxygen planes electrically charged.

The second type to study in this chapter is the multiferroics compound as
composite oxide with as single phase, which present firstly two or more primary
ferroic properties. These composite materials were discovered many years ago
and are still not extensively investigated. These composite oxides present different
aspects: the magnetic and ferroelectric, the optical one is still not investigated widely.

Fig. 1 Wurtzite structure of
ZnO https://commons.wik
imedia.org/wiki/File:Wur
tzite_polyhedra.png
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The ferroelectric behavior is mainly due essentially to the hybridization d and p states
of its atoms. The electronic transition was observed in BaTiOs. The multiferroic
term was developed to take into consideration several properties such as ferroelas-
ticity, spontaneous electric polarization, and magnetic. Therefore, the multiferroic
materials can present simultaneously various properties of ferroelasticity, ferromag-
netism, ferroelectricity and can take antiferromagnetic or ferromagnetic aspects. The
3+ cations of atom A contribute to show the ferroelectricity aspect, however, 3d of
atom B (ABO3) contributes to show magnetic effect. Now, we focus in this chapter
on the study of the ability to use these materials in solar applications. Some recent
works report the interest of simple perovskite/composite oxides and simple co-doped
oxides example of ZnO [9-13] in these applications.

The ABO; present in some case a coupling between the polarization and magnetic
effect. The study will take consideration of tetragonal (Fig. 2) as a stable structure
in the calculation, we estimate that the structural parameters are a = b = 3.729A°,
¢ =4.72A° and a = B = y = 90 [14]. This family of composite oxide can be
the aim of several types of research in order to investigate their new applications
and manufacturing, especially in solar cell electrodes. BiYO3 will be treated in this
chapter, Y is the position that can take various atoms. The position Y is chosen in
order to stabilize the structure and to increase the required properties, Y will not cause
any distortion of the tetragonal structure, Y = Fe, Zn, V, Co have approximately the
same atomic radius. The optical result of this work will be based mainly on the
transmittance rate and absorption coefficient found made by the DFT calculation.

Fig. 2 Tetragonal structure
of BiYO3 (made by Wien2K
with XCrySDen interface)
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2 Modeling Method

The Wien is a code that works on Linux, UNIX, it was developed at the Institute
of Materials Chemistry—Austria, published by Blaha et al. in 1990. In order to
improve it and make it adaptable to different calculations and to treat different phys-
ical properties of materials, Wien code has undergone several changes and every
change takes a published notation, which depends on the year of publication, e.g.
Wien93, Wien95, Wien97, WIEN2k. This work was developed and made with the
Wien2k_13.1 version that presents the best advantage in terms of calculation time and
formalism used for the calculation of the physical properties of systems, efficiency,
and reliability. This version has also a graphic interface “w2web” to access the web.
w2web means the Wien to the web. The WIEN2k code has shown efficiency in the
field of quantum chemistry and the physics of condensed matter. It is based on the
augmented plane wave method implemented within the DFT. This package is a set of
independent programs written with Fortran and calculates several physical proper-
ties such as electronic properties of materials for the study of the band structure, the
total/partial electronic density (TDOS and PDOS), and the optical properties. This
code can calculate the optical parameters such as absorption, reflectivity, refractive
index, optical conductivity, etc. It may also treat the total energy of the system and
the optimization of structures, structural properties, thermodynamic (enthalpy, etc.),
and magnetic properties (calculation of ferromagnetic and anti-ferromagnetic state
to study the magnetic stability of the systems), polarization, electric field gradients,
and hyperfine fields, etc.

The electrical and optical properties of the studied simple and composite oxides
were calculated with the first principles using DFT theory with different approaches
and approximation of the correction: GGA and modified Beak Johnson [15], using
the wien2k package.

The imaginary part of the dielectric function tensor can be written by the following
expression:

477 &2 o 8
Im ggp(w) = W;fdkck|P Vi) (Vi PP | k8 (ece — v — ) )

And the optical conductivity can be written also by
() = —1 () (2)
Reoyg(w) = m Eqp (W
p 4 p

Vi and Cg mentioned the wave functions, they mention respectively also VB and
BC bands, and k is the vector of the concerned waves.

In Eq. (2), 04p is the conductivity parameter, which linked directly to the current
density J,, between VB and CB bands following « direction. This density generate
sEg as an electric field, which follows the 8 (direction). The dielectric function is
written by the following expression:
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g(w) = &1(w) +ie(w) 3)

The parameter ¢ (w) (real part) can be found using &, (w).

[o.¢]
2 / /
&1 = Re(e(w)) = 1 + —L/ &(zw)dw/ (4)
7 w/
0
With
L(P) is the main value of the integral.
And

&(w) is equal to:

4 e? ) 3
82:< )ZI@'M'b fa(l_fb)*S(Eb_Ea_a))dk (5)

2412
w-m
a,b

2.1 Electronic Properties of the Simple and Composite Oxides

For the simple oxide treated, Figs. 3 and 4 show the obtained band structure of
three different situations of ZnO, pure, doped, and the co-doped with Al and Si. An
important difference in energy levels gap energy is shown for all these cases studied.
The gap energy of the pure structure is direct and to 1.0 eV at the I point calculated
with Wien2k. This result will be improved with the introduction of approximation
into the calculation made, some other similar results show less than the obtained

Fig. 3 Band structure of
pure structure (a) and total
DOS (b)

—— mBJ approximation
—— GGA approximation

o 2 4 6 8 10 12
(a) Band structure (b) DOS (States/ev)
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r =z M K A r A

r = M K A r A
6.25% of Si in the studied 12.5% of Silicon in the studied
structure structure

r = M K A r A r z M K A r A

ZnO co-doped with Si at 3.125% ZnO co-doped with Si at 6.25%
and Al at 3.125%. and Al at 6.25%.

Fig. 4 Band structure of the doped and co-doped structure

result with our Code [15]. The difference between this result and the experimental
one is due to the limitation of the DFT calculation. For the result realized by the
GGA approach. Therefore, the same structure of pure ZnO has been investigated
with another approach (i.e. mBJ). The bandgap is found equal to 2.6 eV, which is
approximately in agreement with experimental works. The conduction and valence
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bands move away from each other for showing the bandgap. The doped and co-doped
ZnO with the reported elements Si and Al are shown with the band structure in Fig. 4.
The presence of Si increases the energy levels and the Er change position in the CB
band, which present totally occupied and half-occupied states. The VB of Si outdated
Zn one, so the n-type occurs as a conduction aspect. This aspect leads to electronic
transitions between bands or intra-band under excitation. It can be stated that an
increase in the concentration of Si may contribute to an increase in the probability
of free electrons entering the conduction band. The behavior of the conductivity is
still present even with the co-doping with aluminum, the structure of the ZnO doped
with 6.25% of Al and 6.25% of Si acquired a metallic behavior, CB and VB bands
are very close and almost no gap and the conductivity is ensured. It is as noticed that
the co-doping with aluminum present also energetic levels, which occur on the Eg
level. This metallic behavior will arise in the curve of the density of state by a peak
that explains the electrical conductivity of the ZnO structure doped and co-doped
with both elements (i.e. Al and Si). The total density of states of pure structure is
shown in Fig. 3. The silicon gives an additional intense peak around Fermi energy,
Eg, which leads to an increase of the ZnO conductivity.

The second type of oxides is also investigated, with the variation of the Y atom by
V, Mn, Zn, and Fe, we discuss in this part, the electronic properties of the composite
oxide are reported in this chapter. When Y = V, the CB contains essentially an
important electrical zone region contributed by orbital p of Bi and d of V, the gap
energy is estimated equal to zero because of the electrical peak around the Ef level.
Around —11.34 eV and —12.9 eV, a band energy level occurs by s orbital of Bi (see
Fig. 5).

When Y = Zn, the VB contains two important electrical zones. The first one from
0.74 to —0.4 eV contributed by d of Zn and orbital p of oxygen. This behavior gives
ametallic aspect of BiZnO3. We not also a very strong hybridization in this electrical
zone. The second one is reported around —3 eV contributed by p of oxygen and zinc.
An energy level appears around —9 eV due to s of Bi. Finally, the CB of BiZnO;
consists of orbital p of Bi atom.

For Y = Mn, the CB is due mainly to orbital p of Bi atom in spin/up and spin/down
of the density of states and orbital d of Mn in spin/down specifically in the electrical
zone of 1.6-4.2 eV.

For this case, a metallic aspect occurs around Ep, the VB consists of p-oxygen
and d-Mn, and around 5 eV, a low hybridization is shown. Y = Fe, the VB is between
—6.4 eV and 0 eV, due to spin/up of d orbital of iron and in spin/down is due to the
p-oxygen. Y = Co, many zones occur contributed by p-Bi atom. Around 4 eV, a peak
appears in the spin/down mainly contributed by d-cobalt.

Figure 6 presents the band structure of BiYOs; with Y = Z, V, Mn, Fe, and Co
[14], the illustrations are in good agreement with the analyses made for the total
density of states. When Y is substituted with V, Zn, and Mn, the gap energy is close
to zero showing a metallic aspect, which is due to d and p orbitals. For cobalt and
iron, gap energy occurs. Finally, the simulation made with Wien2k shows that with
Y = Fe and Co the composite oxide can be considered as an excellent semiconductor
material suitable for the aimed application (solar cell electrode).
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Fig. 5 Total and partial density of state of BiYO3/Y = Zn, V, Mn, Fe, Co [14]

2.2 Optical Properties of Both Simple and Composite Oxides

As shown in Fig. 7, for the pure ZnO, the average transparency is about 86% in
UV (200-400 nm) and visible (400-800 nm) regions. Thus, for wavelengths A >
400 nm, the light is observed without absorption and consequently, the pure structure
of simple oxide treated becomes transparent. Moreover, with the incorporation of
Si, the transmittance increase until 94% and 96% for doping at 6.25% and 12.5%,
respectively, which is higher than that of pure structure in the visible zone (i.e. 400—
600 nm). Doping with 6.5 and 12.5% of Si present an unstable behavior although
the transmittance reaches its maximum value. The transparency at 6.25% amounts
of Si is stable at a wide range as shown in Fig. 5 compared with 12.5% of the same
impurity. Thus, the transparency with 12.5% is not so significant due to the absorption
caused by Si atoms. The co-doping of the pure structure changes and increases the
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transparency, the curve clearly shows that in the UV, the transparency is important for
Si—Al co-doping, the instability behavior of T presented by the Si at 12.5% amount
between 470 nm and 800 nm is corrected with 6.5% Al and 6.5% Si co-doping. For
example, at 600 nm, the substitution with 6.25% Si leads to a transparency of 69%,
in the case of Al-Si co-doped ZnO, the transparency is about 96%. The co-doping
with aluminum increases the transmittance compared to the doping of ZnO with only
6.5% of Si, practically in the 363—631 nm range. The Si—Al co-doped pure structure
shows an important improvement in its properties.

£1(0) is called the static dielectric constant calculated based on the dielectric
function, this constant leads us to have an idea of how the refractive index behaves,
it is directly linked by the following expression n(0) = /£ (0). The refractive index
of pure structure, substituted with Si and Al is illustrated in Fig. 8, which is extracted
using Egs. (1) and (2). In the pure structure, the refractive index of solar radiations
(2.4eV)isabout 1.9, which is in agreement with some experimental values; n = 2.00.
n(hv) increases with increasing doping concentration. This substitution imposes a
change in the variation of n(hv). The low value of n(hv) corresponds to the high
transparency, and for radiation of 1.62 eV, the transmission is about 90%.

The second step consists of the discussion for the second type of oxides treated, the
composite one, BiYOs. In this paragraph, we focus on the variation of the absorption
and reflectivity of different elements Y in different zones throughout the wavelengths.
This calculation may help us to deduce the interest of integrating this composite oxide
in solar electrodes.

According to the absorption illustrate in the figure above, the substitution of Y by
iron and cobalt leads to absorption which is not negligible, the increase of radiation
leads to an increase if the absorption. From 476 nm, Y = iron is considered as
a transparent material in the VL zone, an electrode TCO based on the composite
oxide. Beyond 652 nm, Y = cobalt transmits are also transparent in the VL zone,
however, this transmittance does not cover a wide zone in the visible light range. Y =
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Z, Mn, and V absorption of energy (hv) start from small energies, this characteristic
makes these composite materials a candidate to absorb radiation hv in VL zone.

BiYOj; is ahighly and sufficient absorbent compound between 100 nm and 250 nm,
in particular for Y = V. The substitution of Y atoms by Vanadium improves the
absorption, for Y substituted by zinc, the absorption becomes low comparing with
Co, Mn, and Fe.

According to the result of Fig. 10, the reflectivity is very important for Y = Mn, V,
Zn, Coin the UV range where A <200 nm. Y = Fe and Co, the reflectivity stay stable,
the substitution with this element improves the optical characteristic of this oxide.
Figure 10 confirms the interpretation made for the previous result of absorption in
Fig. 9.
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3 Conclusion

We studied the optical electronic properties of two types of oxides simple and
composite. The simple oxide that is ZnO doped and co-doped with various amounts
of Si and Al shows that the electronic results found and the transparency behavior
can be exploited to manufacture a new generation of transparent electrodes as a
window layers in solar cells (transparency rate is around 90%). The same concept
can be applied for composite oxide such as BiYO; in a stable structure. In both
cases, conductivity and transparency are ensured. But BiYOs3, in some cases, can act
as active thin layers with an important absorption. Both types of oxide are suitable
and alternative candidates to exceed and replace old generations of TCO electrodes.

Special Acknowledgements I address with sadness my feelings of thanks to my father who left us
recently. Thanks for all encouragement and efforts that you gave me. May your soul rest in peace.
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Abstract Modeling of Photovoltaic (PV) solar modules is an essential target in
achieving an efficient emulation for the PV system. Recently, the dynamic PV models
were considered to recognize the influence of the switching circuits and load change
proprieties. The fractional-order dynamic PV model was the currently proposed
one to boost the reliability, accuracy, and efficiency of the classical dynamic PV
model. The optimal parameters of this model should be identified; therefore, in this
chapter, several Chaotic biologically-inspiring Optimization techniques are proposed
to demonstrate the most efficient one for this non-linear optimization problem. The
introduced techniques are the chaotic variants of Grasshopper Optimizer, Moth-
Flame Optimizer, and Flower Pollination Algorithm in addition to their original
versions. To assess the efficiency of the endorsed algorithm, its results are compared
to the non-linear least-squares method based on the accuracy, the convergence speed,
and the fitting of the experimental dataset. Additionally, another comparison is carried
out between the recent fractional-order dynamic PV model and its integer version
based on the same algorithm to evaluate the efficiency of using the fractional calculus
in the modeling of the PV modules. The overall results show that Chaotic Flower
Pollination Algorithm with Chebyshev and Singer chaotic maps in the case of the
fractional dynamic PV model offers the best fitting on the load current-time curve.
Moreover, the fractional-order dynamic model that can emulate the physical behavior
of the real system is efficient than the integer-order dynamic model.

Keywords Dynamic PV equivalent circuit * Fractional-order dynamic PV
equivalent circuit - Parameters estimation + Chaos maps + Chaotic flower
pollination algorithm

D. Yousri (<) - D. Allam - M. B. Eteiba

Faculty of Engineering, Electrical Engineering Department, Fayoum University,
Fayoum, Egypt

e-mail: day01 @fayoum.edu.eg

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 15
S. Motahhir and A. M. Eltamaly (eds.), Advanced Technologies for Solar

Photovoltaics Energy Systems, Green Energy and Technology,
https://doi.org/10.1007/978-3-030-64565-6_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64565-6_2&domain=pdf
mailto:day01@fayoum.edu.eg
https://doi.org/10.1007/978-3-030-64565-6_2

16 D. Yousri et al.

1 Introduction

Recently, there is a persistent need to search for alternative energy resources because
of the high price of fossil fuels and their rising rate of pollution that may threaten the
creatures’ lives. Solar energy is a dominant renewable energy resource because of
its availability and free-pollution [1]. The accurate prediction of PV system behavior
and the optimal capturing of the available energy need a robust, efficient, and attested
representation for the designed PV systems before and after the installation [2].

Several equivalent circuits have been published to present the characteristics of the
PV solar modules like the static PV models and the dynamic PV equivalent circuits.
The static PV equivalent circuits have been evolved from the ideal models to the
Single Diode Model (SDM) [3] up to the more complicated ones named the Double
Diode Model (DDM), the Modified Double Diode Model (MDDM), and the Three
Diode Model (TDM)[4]. Unfortunately, the switching operation of the inverter and
DC/DC converter, as well as the load variation, have not been taken into account
using these models [5]. Therefore, developing a novel circuit for the PV models as
the dynamic PV models has been attracted to cover the aforementioned shortcoming
of the static models [6, 7].

Lately, the fractional calculus has been utilized to increase the flexibility and
reliability of the classical dynamic PV model (Integer-Order Model (IOM)) in [6].
Thereby, a new generation of the dynamic models named the Fractional-Order
dynamic PV Model (FOM) has been created as in [7]. In [7], the FOM has been
formulated mathematically via fractionating the inductor and capacitor elements of
the integral-order model, and the effect of this fractionalization on the model effi-
ciency and flexibility have been investigated as well. Therefore, it’s expected that a
deeper vision into the physical processes of the PV modules underlying a long-range
memory behavior may be achieved using this newly developed model. Consequently,
this may reflect in turn on design, control, and operation of PV system near MPP [7].

The accuracy of the identified PV models parameters has a large influence on
the accuracy of the reported PV models. These parameters are usually unknown by
manufacturer data sheets [6, 7]. Therefore, reliable and efficient techniques should
be proposed to estimate these parameters accurately which may achieve a better fit
on the experimental load current-time (I-T) curves of the dynamic PV model.

Several methods have been published to estimate the parameters of the static PV
models. These methods can be categorized as deterministic methods and stochastic
algorithms. Deterministic methods are as reported in [8, 9]. We have examples for
the stochastic algorithms like the Flower Pollination Algorithm [10] (FPA), Moth-
flame Optimization Algorithm (MFO) [4], Time-Varying Acceleration Coefficients
Particle Swarm Optimization (TVACPSO) [11], Differential Evolution [12], and Par-
ticle Swarm Optimization are proposed previously as in [13]. The marine predators
algorithm, Slime mould algorithm, atom search optimization, Political Optimizer,
Parasitism Predation algorithm as well as harris hawk optimizer and salp swarm
algorithm have been implemented in [14] to identify the parameters of simple and
detailed static PV models. The artificial ecosystem-based optimization approach has
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been proposed in [15] and self-adaptive ensemble-based differential evolution has
been recently introduced in [16], and Ibrahim et al. [17] used an adaptive wind-driven
algorithm for SDM parameters estimation process. According to the literature, the
stochastic optimization algorithms prove their efficiency and superiority in extracting
the parameters of the PV static models compared to the deterministic techniques. Up
till now, there is no wide prevalence of using meta-heuristics to extract the param-
eters of the dynamic PV models although they are powerful tools for simultaneous
estimation of the optimal parameters of several complicated models. Where the con-
ventional linear Least Squares (LS) and the Non-linear Least Squares (NLS) methods
have been reported to extract the parameters of the IOM and the FOM, respectively
[6, 7]. In the circumstance of meta-heuristic techniques, in [18], Chaotic Hetero-
geneous Comprehensive Learning Particle Swarm Optimizer variants (C-HCLPSO)
was applied to identify the dynamic parameters based on Root Mean Square Error
(RMSE) between the current-time measured and estimated curves as the first tech-
nique for this optimization problem. This motivates the authors of this work to employ
several meta-heuristic optimization techniques with utilizing another objective func-
tion on parameters extraction of the integer and the FOMs and endorse the most
suitable one for this optimization problem.

Grasshopper Optimizer (GOA), Moth-flame Optimization Algorithm (MFO), and
Flower Pollination Algorithms (FPA) are recently introduced and applied on sev-
eral non-linear complicated optimization problems [19-21]. Where these algorithms
have significant features that may improve diversification and intensification during
searching for optimal solutions. Therefore, they are selected to be used in identifica-
tion of the dynamic order PV models. According to no-free-lunch theorem, there is
no super technique that can be applied to solve all the optimization problems [22].
That’s why different algorithms should be tested to prove their validity and suitability
in a specific application. As the performances of GOA, FPA, and MFO are influenced
by their random parameters, it is necessary to introduce newly developed approaches
to modify the algorithms’ performances by controlling their random parameters to
balance between the exploration and intensification phases [23-25].

Developing stochastic optimization techniques by integrating the chaotic maps
with the original techniques to adaptively tune some of their factors is considered as
a new approach [23-25]. It’s worth mentioning that this combination improves the
balance between diversification and/or exploitation capability of the basic algorithms
depending on the randomization effectiveness of the chaos theory which may take
a turn for better quality and decaying of convergence rate of the basic techniques
[26-28].

In this chapter, the IOM and FOM models’ parameters are estimated using differ-
ent meta-heuristic algorithms. Three optimization techniques known as GOA, MFO,
and FPA as well as their chaotic variants are tested. The chaotic variants are obtained
by merging ten chaos maps with the original algorithms to adjust their parameters
which may improve their accuracy, consistency, and the decaying convergence rate.
The results of the three original algorithms and their chaotic variants are compared
together via an intensive statistical analysis to select the most suitable variants. sub-
sequently, the recommended variants for each model are compared to the previously
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reported techniques in literature known as the least-squares method for the integral-
order model and the non-linear least-squares method for the fractional-order model.
Moreover, another round of comparison is accomplished among the recommended
variants of the integer-order model and the fractional-order one to highlight the more
robust, reliable, and efficient model. The final outcome is that the fractional-order
PV model and its optimal parameters estimated by CFPA algorithm with Chebyshev
and Singer maps are the final recommended variant that provides the best emulation
of the physical behavior of the dynamic data. Where they achieve the least devia-
tion between the measured and the estimated load current curve with faster speed of
convergence to the optimal parameters. It is worth mentioning that more accuracy of
the selected model and its optimal parameters estimation may achieve in turn more
accurate design, control, and operation of the PV system.

The rest of the chapter is ordered as follows: the equivalent circuit of the PV
dynamic models are presented in Sect.2. The problem definition is documented in
Sect. 3. The basic background of the applied algorithms as well as the chaos maps
equations furthermore the algorithms’ chaotic variants are explained in detail in
Sect.4. Simulation and results are discussed in Sect.5. At the last Sect. 6, the main
outcomes are listed.

2 PV Dynamic Equivalent Circuit

Dynamic PV models are accounted as recent and endorse trend dut to in these models
the switching operation of the converters and inverters as well as the load variation
are recognized [6, 7]. The dynamic models have two versions integer-order dynamic
model and fractional-order one. The two dynamic models are reported in this work
as follows.

2.1 Integer-Order Dynamic PV Equivalent Circuit (IOM)

The integer-order dynamic equivalent circuit of a PV module and its connected load
has been investigated in [6] as shown in Fig. 1a where the influence of the variation
in the load and the converters/ inverters switching circuits are taken into account.
This model consists of two parts, the first one is the static part of the PV module that
is shortened to a constant voltage source V,. and a series resistance R; as illustrated
in Fig. Ib. While the other one is the dynamic part of the model that consists of
a capacitor (C) representing the junction capacitance and (R.) to account for the
conductance as well as a series inductance (L) to take the cabling inductance and
connection into consideration.
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Fig. 2 The fractional-order dynamic PV model [7]

To analyse the PV model in Fig. 2, the load current—voltage relationship can be
written in s-domain as in the following Eq. 1 [6].

Voe a21(s +b1) + ba(s — aiy)

ir(s) = ; (1
s (s —axn)(s —an) — anay
where
~1 —R,
an a2y _ [ CRA+R) C(RAR,) 2)
a1 a = R, —[RLRA+RRARLR,] | >
21 €422 L(R.A+R,) L(R:+Ry)

1
b —_—
(b1> _ C(R;JR(.) . 3)
2 L(RA+R;)
Based on Eqgs. 1 and 3, it’s obvious that the unknown parameters are (R¢, C, and L)
with knowing the parameters of the static part.
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2.2 Fractional-Order Dynamic PV Equivalent Circuit (FOM)

Lately, in [7], fractional calculus is utilized to introduce the fractional-order dynamic
PV equivalent circuit in 2018 where the capacitor and the inductor of the integral-
order PV equivalent circuit are interchanged by the fractional counterparts of orders
« and 3, respectively, as illustrated in Fig.2. Where a better mathematical model of
a system leads to a better fitting on the measured data, a better description of the
real system response, and subsequently a better emulation of the physical behavior
of the real system. This is accomplished by a novel compact fractional model of the
PV module that has been published recently in [7] as two more parameters are added
to the differential equation describing the transient (I-T) response of the PV module
that are the derivative orders added by fractionating the capacitor and the inductor
of the integral-order mode. These extra parameters provide in turn a better accuracy
for the fractional mathematical PV dynamic equivalent circuit over the integer one.
It should be noticed that the value of the resistor R. will be lower than that of the
integral-order equivalent circuit due to the effect of the real frequency dependent part
of the fractional capacitor impedance that has partially replaced the series resistor
connected to it [29].

To implement the fractional-order dynamic PV equivalent circuit, the load
current—voltage relationship has been modeled in s-domain as described in the fol-
lowing Eq.4 [30]

Voo a21(s“ +by) + by(s® —ayy)
s (57 —an)(s® —an) —apay’

“4)

ir(s) =

where

-1 —R,
an a2} _ [ C.(RHR,) Co(R-+R,) 5
a1 a = R —[RLR+R;R+RLRi] | » ( )
21 422 Ls(R+R,) Ls(Rc+R,)
1
by Ca(R, 1R
<b — a( Iéj c) , (6)
2 Ly(RA+R;)
C, and L g illustrate the fractional capacitance and fractional inductance, respectively.
« and 3 indicate the derivative orders, they have values that are less or greater than
1 in the fractional-order model.
Based on the equivalent circuit of the fractional-order dynamic PV equivalent

circuit and Eqgs. 4-0, there are five unknown parameters should be estimated which
are (RC’ Ca’ Lﬁa «, and ﬁ)
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3 Problem Formulation

Identification of the unknown variables of the dynamic PV models can be described
as an optimization problem where the difference between the experimental dynamic
data of the load current and the extracted one via using the extracted parameters is
required to be minimized. The global unknown parameters are obtained by using a
fitness function known as the sum of the absolute errors between the experimental
and estimated current curves.

SAE =) | Ln(t) — L(z. 1) |. @
i=0

where m is the number of the experimental points. z is the vector of the variables
(Rc, C, L) for the integral-order equivalent circuit and (R¢, C,, L3, «, 3) for the
fractional-order dynamic PV equivalent circuit. /, and [,, show the estimated and
the measured current as functions of time (¢;).

The major target of the applied optimization algorithms is to estimate the optimal
values of the integral-order and the fractional-order dynamic PV equivalent cir-
cuits parameters z that attain less deviation between the experimental and predicted
dynamic datasets.

4 An Overview of the Used Optimization Algorithms

In this part, the basic background of the implemented techniques in identification of
the integral-order and the FOMs parameters is presented.

4.1 Grasshopper Optimization Algorithm (GOA)

Saremi et al. [21] used the features of the grasshoppers in nature as the basic idea in
the Grasshopper Optimization Algorithm (GOA). GOA is published lately in 2017
[21]. The main concept of grasshoppers’ behavior is as follows:

1. There are two phases of life of the grasshoppers, the first one is the nymph phase
while the other one is the adulthood phase. During the nymph stage, the motion of
grasshopper is in slow profile with small steps while during the adulthood phase,
the long-periodic stage and the abrupt motion are the main features of the flock
[21].

2. Seeking for the food sources is the other main aim of the grasshopper flocks [21].

Those two aforementioned features have been mathematically formulated to give the
GOA [21].
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The behavior of the grasshoppers flock can be modeled mathematically as below in

(8) [21].
Z; =S8 +G;+ A, ®)

where Z; is the i-th grasshopper location, S; is the social interaction between
grasshoppers, G; is the gravity force, and A; is the wind advection [21].
The social interaction between the grasshopper can be calculated as below in Eq. 9
[21].
N —_—
Si= Yy s(dipdy, ©)

J=lj#i

where d;; is the distance between i-th and j-th grasshopper and c/l; is the unit vector
of the distance. d;; and d;; are calculated as in Eq. 10. The s function defines the
social forces between grasshoppers and it can be modeled as in Eq. 11 [21].

dij = |z; — zil
—  zj —zl (10
dl“ =,
J dz]
s(r) = fel —e ™, (11)

where f shows the intensity of attraction and 1 indicates the attractive length scale
[21].
Furthermore, the gravity force G and the wind advection A are written as below
in Egs. 12 and 13 [21].
Gi = —g¢, (12)

Ai = uéy, 13)

where g in Eq. 12 is the gravitational constant and e, in Eq. 12 is a unity vector toward
the earth center. In Eq. 13, u is a constant drift and &, is a unity vector in the wind
direction.

Equation 8 is accounted to be a main equation of the GOA. However, this math-
ematical formulation cannot be directly utilized to solve the optimization problems
due to the grasshoppers’ quick stuck in the local zone. Thus, the main equation Eq. 8
of GOA has been upgraded as in the following Eq. 14 [21].

N uby —1b lzj — zil
Z;’ =c Z 4 —"7d . (Izj —Zi|)4 + Ty, (14)
IEw P &

where ub, and [b, are the upper and lower limits in the D,; dimension. T} is the
value of the best solution attained so far and c is a decreasing coefficient from 1 to
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zero across the iterations number, this relation (Cpuqy — ¢ (247%2)), tis the current
iteration and T is the maximum number of iterations. ¢,y , Cmin are 1 and 0.00001,
respectively [21].

N

The first term of Eq. 14, ¢ ( 12‘79 C%g (|Zj - zil) %) describes the rela-
J=1j#i

tionship between the grasshoppers in nature while the second term, 7, modulates

their tendency to move toward the source of food [21].

4.2 Moth-Flame Optimizer (MFO)

MFO algorithm is based on the Moths behavior during their flying at night known as
transverse orientation [31]. Where they keep a certain angle with a very far source
of light which helping them to fly in a straight path. As the light source becomes
nearer, the moths fly around it spirally until reach to it. MFO consists of three parts.
The first one is the initialization where the random positions of moths are generated.
The second part is the main part of the algorithm in which the transverse orientation
of moths are formulated mathematically and last part is the termination part that
concern with the algorithm stop.

In MFO algorithm, both the moths and the flames are solutions, whereas they
have different features while they are modified. The moths are the agents that fly
around the search landscape while flames are the personal best location of each
candidate attained so far [31]. Moreover, The logarithmic spiral function is utilized
to describe mechanism of transverse orientation of moths around the light source.
The mathematical formula of this function is modeled as follows [31]:

S(M;, F;) = Die cos(2rt) + F;, (15)

where M; is the i-th moth, F; illustrates the j-th flame, and § indicates the spiral
function. D; is the distance of the i-th moth for the j-th flame (|F; — M;|). cis a
constant for describing the shape of the logarithmic spiral. / is a random number
in [d, 1] and d denotes the adaptive convergence constant that is linearly decreased
from —1 to —2 to accelerate the convergence speed.

To enhance the response of the MFO technique, the number of flames reduces over
the iterations as in Eq. 16. This feature helps to balance between the diversification
and exploitation stages of MFO while searching for the global solution. Accordingly,
moths modified their locations using only the location of the best flame across the
last steps of the iterations [31]:

M —1
flame Number = round <M —t X T ) , (16)

where ¢ is the current iteration, 7" is the iterations maximum number, and the M is
the maximum number of flames.
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4.3 Flower Pollination Algorithm (FPA)

The main concept of the pollination in the planets is the usage idea in the FPA
technique [19]. The mating in the plants occurs during the pollen transferred through
biotic and/or abiotic pollination processes. The biotic process is known as a cross-
pollination as the bees and butterflies transport the pollen grains across plants of
different species. For abiotic process, it is considered as a self-pollination as the
wind transports the pollen across flowers of the same species.

Yang et al. [19] used the main concept of the biotic process to implement the
global search stage of FPA as below

Z = ZE+ yL(V) (g4 — Z)D), (17

where Zlf is the pollen i (solution vector) Z; at iteration 7. The global solution can
be denoted by g.. The symbol of ~ is a scaling coefficient to adjust the step size.
The symbol of L()) is the levy factor that is responsible for the transfer of pollens
between several species of flowers. It can be calculated as follows [19]:

s (T
[~ AT(N) sin(5) 1

where I'(\) is the gamma function, and this distribution is valid for large steps
m > 0. h is step size and the value of m, can be as small as 0.1.

For the local search capitiy of FPA, Yang et al. [19] considered the pollination
during the abiotic process as follows:

ZH =7+ «(Z5 = 7). (19)

where Z;, Z; are the different pollens of same plant species. € is drawn from a
uniform distribution € [0, 1].

To switch between the global and local search capabilities of FPA, a switching
probability factor S is chosen in the interval of [0.2, 1] [19].

4.4 Chaotic Variants of GOA, MFO, and FPA Optimization
Algorithms (CGOA, CMFO, and CFPA)

Stochastic optimization techniques are randomly based techniques. This randomiza-
tion is accomplished via using the Gaussian or the uniform distribution. Currently,
a novel trend has been proposed to exchange this distribution by the chaos maps to
avail of the better characteristics of the chaotic maps randomization. In this approach,
integration between the properties of chaotic maps and basic techniques enable them
to converge to the optimal solution accurately and rapidly while optimizing the multi-
modal test functions [23].
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4.5 Chaos Maps

In this work, ten different one-dimensional chaotic maps are used to adjust some coef-
ficients of the standard versions of GOA, MFO, and FPA techniques. As a result, the
Chaotic Grasshopper Optimizer (CGOA), Chaotic Moth-Flame Optimizer (CMFO),
and Chaotic Flower Pollination Algorithm (CFPA) are proposed.

The selected chaos maps are listed as follows:

e Chebyshev map
Xip1 = cos(i cos ! (x;)), (20)

where x; is the ith chaotic number, i is the times of iteration, x € (0, 1) under the
initial condition x, € (0, 1), thus xq is 0.7.
e Circle a
Xi+1 = mod (xi +b— <§) sin(2mwxy, 1)) , 21)

where a, and b are the control parameters of chaotic behavior and equal to 0.5 and
0.2, respectively. The inital conditions x is selected to be 0.7 to ensure a complete
chaotic state x € (0, 1).

e Gauss/mouse

1 =0
Xit1 = 1 X ' )
modc  Otherwise,

where xg is 0.7.
e Iterative
. far
Xj+] = sin <—> , 23)

Xi

where a =4 and x is 0.7.

e Logistic
Xit1 = ax;(1 —x;), (24)
where a =4 and xq is 0.7.
e Piecewise
> O<=x; <P
x,'fP — .
Yoy = ?'5;}, P <=x; <05 ’ 25)
o5 05<=x,<1-P
1—x; —
- 1-P<=x;<1
where P = 0.4 and x, is 0.7.
e Sine a
Xiyl = Zsin(ﬂ'xi), (26)

where a =4 and xq is 0.7.
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e Singer
Xig1 = u(7.86x; —23.31x7 4 28.75x7 — 13.302875x}), (27)

where 4 = 1.07 and xq is 0.7.
e Sinusoidal
Xit] = ax,-2 sin(mx;), (28)

where a =2.3 and x is 0.7.
e Tent
=L x; < 0.7

7 , 29
Ra-x) x>=07 29)

Xit1 =

where xg is 0.7.

4.5.1 Chaotic Grasshopper Optimizer (CGOA) Technique

Depending on Eq. 14, the GOA performance and its convergence speed for the global
optimal solution are controlled by three main coefficients. These variables are c, f, and
1. Variable c is a main coefficient that supports the balance between the diversification
and exploitation processes. The c factor follows a linearly decreasing function from
1 to O across the iteration numbers. For the other coefficients f and 1, they used to
manage the social interaction among the grasshoppers to avoid trapping in the local
minima. The f and 1 have values of 0.5 and 1.5, respectively [28]. Whereas, in the
introduced CGOA variant, the values of c, f, and | are changed according to the
patterns of the employed chaotic maps as clarified in the following Egs. (30) and
(3D

c= (c,- - ;%) .Chaos(t): (30)

- Ch_élos.(d —e)
NormChaos = ——a +e,
—a

f= Norm?fhaos, | = Normt‘haos,

€2y

where c¢;, ¢y are the initial and final values of c, they are tuned as 1 and 0.00001,
respectively. The symbols of 7, and T are the current iteration and the maximum
number of iterations, respectively. NormChaos is the normalized chaotic map. The
[a b]is the interval of chaotic maps. The [e d] is the normalization range that can
be selected as [0.3 0.7] and [1.3 1.7] for f and 1, respectively.
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4.6 Chaotic Moth-Flame Technique (CMFO)

In the standard MFO technique, there is an essential parameter named t that is con-
trolling the locations of the moths with respect to the flames position where t defines
how much the next position of the moth should be near to the flame. This parameter
trades between the diversification and the exploitation phases. This parameter has
random distribution values between [ 1] where r is linearly decreased from —1 to
—2. While in CMFO, the parameter t is modified by the chaos maps to enhance the
convergence speed of the MFO algorithm such as follows (32):

r= (ri + t.—(rf ; ri)) .Chaosy;

l=0—=1).rand +1

(32)

’

where r;, r y are the initial and final values of the deceasing function. They are adjusted
as —1, —2, respectively. The symbols of ¢, and T are the current iteration and the
maximum number of iterations, respectively. Chaosy is the chaotic map of index k.

4.7 Chaotic Flower Pollination Algorithm

The FPA has three important factors that govern its response while searching for the
global solution that are S, L, and e. The symbol of S is the switching probability
between the global and local pollination. It starts from 0.2 until reaches 1. While
in CFPA, S changes from 0.2 to 1 chaotically using chaos maps as in Eq.33. The
parameter L is considered as the strength of the pollination, it has values greater
than 0 (L > 0) from the Levy distribution. In CFPA, chaos maps are merged within
the Levy distribution as in Eq.34. Moreover, in FPA, ¢ is drawn from the uniform
distribution in the interval of [01] while in CFPA the ¢ is drawn from the chaos maps
in the same interval as in Eq. 35.

(57 —si)
s=1s + t.T .Chaosy; (33)

T mltA

L m
L (/\F N Sm( 2 ) 1 ) .Chaosy; (34

€ = Chaos(t); (35)
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where s;, s, are the initial and final values of a that are selected as 0.2 and 1.2,
respectively. Chaosy is a chaos map of index K.

5 Simulation and Results

In this section, the quality of the proposed chaotic variants of the GOA, MFO, and
FPA (CGOA, CMFO, CFPA) as well as their original versions are tested, evaluated
and demonstrated for extracting the IOM and the FOM models’ parameters based
on an experimental dynamic dataset of the load current for a connected PV module
with resistive load (Ry= 23.1 Q). The PV module sybjected to an irradiance and
temperature level of 655 w/m? and 25°C [6]. The module is fixed tilted at 50° and
the electric specification of the module are V,. =19.6 V, I, =0.96 A, V,,, = 14.96
V, and I, = 0.92 A at the irradiance and the temperature levels.
The structure of this section can be composed of two parts.

e The first part is accomplished by applying the introduced algorithms on the
IOM and FOM. Subsequently, the results of the chaotic variants are compared
with that of the corresponding standard versions to evaluate and demonstrate the
performance of these techniques and endorse the better ones. The comparison
is based on the best, mean = and the Standard Deviation (STD) of the extracted
parameters and the corresponding fitness function as well as the mean convergence
curves to reach these values of the fitness function. Moreover, to evaluate the
accuracy of the extracted parameters with respect to that of the reported techniques,
the estimated load current curves by the proposed meta-heuristic algorithms are
compared with that of the previously published methods LS and NLS for the [OM
and the FOMs, respectively [6, 7]. Furthermore, the Absolute Error (AE) curves
between the experimental load current curves and the identified ones by all variants
are calculated and compared to that of the previous methods. For extra validation,
non-parametric statistical analysis called Wilcoxon Rank-Sum Test is carried out
among the recommend variants to endorse the most significant one.

e In the second part, the more appropriate variants’ results for the integral-order
dynamic PV model are compared with that of the fractional-order one to discuss
the importance of employing the fractional calculus for the PV modeling as well as
to focus on the additional features of utilizing the fractional PV dynamic models.
The winner algorithm for this application is highlighted often in these successive
stages of comparisons.

For accurate comparison between the introduced techniques, each one is run with 500
iterations and 30 population size for 20 independent runs. The upper and lower limits
of the unknown variables of integral-order dynamic PV equivalent circuit (IOM) and
fractional-order one (FOM) are set as in Table 1.
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Table 1 The upper and lower ranges of models’ parameters

IOM variables | Lower limit Upper limit FOM Lower limit | Upper bound
variables
R.(R) 0 20 R.(2) 0 20
C(F) 20e~° 600e~7 Co(F) 20e~? 600e~7
L(H) Se~® 100e 6 Ls(H) 5S¢0 100e 0
o 0.8 1.1
15 0.8 1.1

5.1 Discussion of the Integral-Order Dynamic PV Model
(IOM) Results

The best, the mean =+ the STD values of the identified parameters of the IOM and
their corresponding fitness function (SAE) over 20 independent run times are listed
in Table 2. The reported results show that the chaotic variants of the three algorithms
under test provide more accurate and consistent results than their original versions.
Where cooperating the logistic map with GOA improves the best, mean == STD of
SAE from 5.217, 10.08 4 9.260 x 10° to 4.629, 4.925 + 5.304 x 107!, respec-
tively. Chebyshev map has a remarkable influence on the accuracy and reliability of
the MFO results as CMFOL1 provides best, mean, and STD of SAE equal to 4.629,
4.629,and 1.204 x 10~7 whereas MFO offers 4.629,5.713,and 2.648 x 10° ,respec-
tively. Likewise, integration of sinusoidal map with FPA improves the consistency of
its results where STD value are updated from 1.065 x 107> t0 4.039 x 107, respec-
tively. Additionally, the tabulated results indicate that CFPA1 to CFPA10 especially
CFPA9 and CMFO1 have the lower best, mean, and STD values of SAE than CGOA,
CMFO2 to CMFO10 variants as well as their basic versions (MFO and GOA). There-
fore, CFPA9 and CMFO1 variants are recognized as the most endorsed variants for
identifying the parameters of the IOM accurately and with highest consistent rate.

To discuss the impact of the chaotic maps on the convergence speed of the rec-
ommended chaotic variants (CFPA9 and CMFO1), their mean convergence curves
versus the standard versions of FPA and MFO are plotted in Fig. 3. The Figures of the
convergence curves in Fig. 3a and d of CMFO1 and CFPAJY, respectively, exhibit that
integrating the Chebyshev map into CMFO has noteworthy effect not only on MFO
convergence speed but also on the accuracy of the obtained fitness function over
the selected number of iterations. For the decaying rate of convergence of CFPA9
becomes lower than FPA for the first 150 iterations then basic FPA try to nearly
achieve the same mean value of the SAE at the end of the whole iterations.

To validate the accuracy of the identified parameters by the proposed chaotic
algorithms, the estimated load current curves by these variants and that of LS method
[6] versus the experimental one are plotted as in Fig.3b—e. Additionally, the AE
curves between the measured load current curve and the identified ones are drawn
in Fig. 3c—f for the studied algorithms. It is illustrated from the fitting and absolute
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error curves that the meta-heuristic optimization techniques provide the better fitting
on the experimental dynamic datasets with lower AE than LS method in most of the
points on the curve especially in the transient part at the knee of the current curve.
Moreover, the Chaotic variants of the proposed algorithms achieve lower AE than
their standard variants at different points on the load current curve.

According to the results in Table2 as well as the depicted curves in Fig.3, it’s
concluded that CMFO and CFPA with Chebyshev, and sinusoidal maps, respectively,
provide the most accurate and consistent results with fastest convergence speed than
the other variants, respectively. Additionally, CMFO1 and CFPA9 have the first rank
in consistency of the results followed by CGOA as shown in Table2. To endorse
the best one of these variants for IOM part statistically, the Wilcoxon Rank-Sum
Test is carried out between CMFO1 and CFPA9 variants as observed from Table 2.
Based on the Wilcoxon Rank-Sum analysis in Table 3, it’s obvious that the CFPA9 is
significantly different from the CMFO1 where the obtained p-values are less than
0.05. Therefore, depending on the obtained best, mean £ and STD values of the
computed objective function by CFPA9 as well as the Wilcoxon Rank-Sum analysis
results shown in Table3, CFPA9 is selected as the recommended algorithms for
identifying the IOM parameters with better fitting on the experimental current-time
curve, less error and faster convergence speed.

5.2 Discussion of the Fractional-Order Dynamic PV Model
(FOM)

In this part, the proposed algorithms search for five unknown parameters
(Rc, Cy, Lg, a and (3), the best mean & STD of these parameters and the corre-
sponding fitness function are listed in Table4. The tabulated data clarifies that the
chaotic variants offer lower best, mean £ STD of SAE values than their original ver-
sions especially, CGOA with Sine map, CMFO with Logistic map and CFPA with
Chebyshev and singer maps. Where CGOA7 modifies the best, mean = STD of SAE
(by GOA) from 3.821,6.931 4-3.233 x 10°t02.743,3.705 £4.962 x 10~!, respec-
tively. Similarly, CMFOS5 provides best, mean, and STD of SAE 2.740, 3.583 and
7.580 x 10~! while MFO exhibits 2.935, 3.745,and 1.153 x 10° ,respectively. Like-
wise, CFPA1 and CFPAS improves the accuracy and consistency of the FPA results
where best, mean, and STD values are updated from 2.881, 3.527, and 4.624 x 107!
to (2.738, 3.128 and 3.579 x 10~") and (2.817, 3.131 and 2.602 x 10~!), respec-
tively. It is obvious that CFPA1 and CFPAS have the first rank in the accuracy and
consistency followed by CMFOS and at last CGOA7.

From the obtained mean convergence curves by the endorsed variants8 (CGOA7,
CMFOS, CFPA1, and CFPAS) in Fig.4a, d, g, respectively, it’s concluded that the
chaos maps have a remarkable influence on their convergence rate especially in case
of GOA, as merging the sine map (CGOA7) modifies the convergence curve decaying
rate nearly by 50% compared to te GOA convergence curve. CMFOS5 achieves SAE
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Table 3 Wilcoxon Rank-Sum test for the recommended variants for IOM

Algorithms ranksum Zval p-value ho Winner Recommended
IOM | CFPA9 5.710e + 02 | 4.342 1.415¢ — 05 | X CFPA9 CFPA9

versus

CMFOl1

equals to 4 at 110 iterations however MFO arrives for 4.4 at the same number of
iterations. Similarly, CFPA1 and CFPAS provide values of SAE lower than FPA at
the same number of iterations.

To discuss the accuracy of the extracted parameters by the algorithms, both of the
estimated current curves versus the measured one as well as the AE curves between
these current curves are plotted in Fig. 4b, c, e, f, h, i, respectively. The obtained
curves by the only previously published method NLS in [7] is also included on the
fitting curves and error curves for comparison. It’s observed from the figures that the
proposed variants can provide better fitting on the experimental dataset especially at
the transient part of the load current curve than NLS with lower AE values in several
points as in the drawn error curves. It is noticed that the meta-heuristic optimization
algorithms provide better performance than the conventional method (NLS), whereas
CFPA1 and CFPAS8 come on the top of these algorithms followed by CMFOS5 and
after that the CGOA7.

As a part of the successive comparisons among the winner variants, Wilcoxon
Rank-Sum Test is carried out between the two last selected ones and the other rec-
ommended algorithms (CMFOS5, and CGOA?7). To determine which algorithm is the
most appropriate one for the parameters identification of FOM, the results of CFPA1
and CFPAS8 are compared statistically with (CMFOS5, and CGOA7) as in Table 5. The
listed results in this Table indicate that the CFPA1 and CFPAS are the most suitable
techniques for this problem where they have a significant difference with respect to
the other algorithms as well as they achieve the least best mean = STD values of the
fitness function in addition to the best fitting with the measured data.

5.3 Comparison Between IOM and FOM

In the current subsection, the comparison is carried out between the IOM and FOM
in fitting on the experimental datasets and the accuracy of the results. It’s observed
from Tables2 and 4 that the best and mean values of SAE function between the
identified and measured load current curves are lower in case of FOM than IOM.
For more detailed investigation, the recommended algorithms for each model are
compared together. For IOM, CFPA9 is the most suitable algorithm while in case
of FOM, CFPA1, and CFPAS8 are the most adequate ones. The best, mean £ STD
values by these algorithms are reported in Table 6, their convergence curves and their
fitting on the experimental load current curve are plotted in Fig. 5.
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Table 5 Wilcoxon Rank-Sum test for the recommended variants for FOM

Algorithms ranksum Zval p —value | hg Winner Recommended
FOM CFPA1 2.470e + 02 | —2.750 5.966e — 03 | X CFPA1

versus

CGOA7

CFPA1 3.430¢ + 02 | —1.799 7.205¢ — 03 | X CFPALl

versus

CMFO5

CFPA1 3.810e + 02 | —7.709¢ — | 4.407¢ — 01 | V/ - CFPAI

versus 01

CFPA8

CFPA8 2.420e + 02 | —2.970 2.982¢ — 03 | X CFPA8 CFPA8

versus

CGOA7

CFPA8 3.630¢ + 02 | —1.258 2.085¢ — 02 | X CFPA8

versus

CMFO5

CMFOS5 2.880e + 02 | —9.459¢ — |3.442¢ — 01 | V/ -

versus 01

CGOA7

(=) No significant difference

It’s obvious from Table6 that the best and mean values of SAE are lower in
case of FOM than IOM due to the more flexibility and extra degree of freedom that
fractional calculus appended for the model. Where in FOM, techniques searching for
five unknown parameters rather than the three parameters of IOM is increasing the
search space which make the fractional model more descriptive for the real system
response. The algorithms become capable for capturing more accurate combination
between the parameters that reflected in turn on the accuracy of the SAE value than the
fitting of the measured dataset. Furthermore, Fig. 5 enhances the previous observation
where the fractional-order model with the recommended variants provides a better
fitting on the experimental datasets of the current curve not only on the transient
section at the knee of the curve but also on the steady-state part as CFPA1 and CFPAS
achieve lower error values between the measured and estimated load current curves.
Moreover, from the convergence curve in Fig.5, it’s concluded that the algorithms
in case of FOM have the flexibility and capability to converge to lower values of the
objective function where at 150 iteration CFPA 1 and CFPAS have better combination
between the unknown five parameters that may affect in turn on the accuracy of the
objective function. These results prove the superiority of the FOM in modeling of
the experimental load current curves because of its extra degrees of freedom that is
represented in the non integer derivative orders added to the model and a deep vision
into the physical processes of the PV modules underlying a long-range memory
behavior.
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Table 6 The recommended variants for IOM and FOM

Models/algorithms SAEpestmean

IOM CFPA9 4.629¢ + 00, 4.629¢ + 00

FOM CFPA1 2.738e + 00, 3.128¢ + 00
CFPA 8 2.817¢ + 00, 3.131e 4+ 00

o-Measured -+ CFPA9, (A CFPAL - CFPAS, | [,x CFPA9, & CFPAL - CFPAS,
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Fig. 5 Comparison between IOM and FOM based on the a Load Current curve fitting, b Absolute
error, and ¢ Convergence curves

6 Conclusion

This chapter proposes new optimization techniques to extract the parameters of the
dynamic PV models accurately and quickly based on the experimental dynamic
dataset of the load current curve. The introduced dynamic PV models are classified
as the integral-order dynamic model and a newly developed fractional-order dynamic
model that may provide a better fitting on the real system response. The proposed
techniques for parameters estimation of the models are the Chaotic Grasshopper
Optimizer, the Chaotic Moth flame Optimizer, and the Chaotic Flower Pollination
Algorithm where their original versions are combined with ten different chaos maps
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for adaptive tuning of their parameters. Successive comparisons are established to
compare The chaotic variants’ results to that of the standard versions of the proposed
algorithms as well as the conventional methods published in literature (Least squares
and non-linear Least squares) to recommend the best variant that achieves more accu-
racy, consistency, higher speed of convergence, and less deviation from experimental
data. For further investigation, Wilcoxon Rank-Sum Test is carried out between the
chaotic and basic versions of the utilized algorithms as well as between the rec-
ommended algorithms. Based on these intensive comparisons among the results of
this work and that of the previously published algorithms, it is clear that the meta-
heuristic algorithms are more efficient tools in providing more accurate results than
the conventional ones even with the lately developed more complicated models.
Moreover, the chaotic variants offer better convergence speed and consistent results
than the original algorithms. For IOM, CFPA with Sinusoidal is the most suitable
one, whereas CFPA merged with the Chebyshev and Singer chaos maps are the most
appropriate variants in case of fractional-order PV models as they achieve better
fitting on the utilized datasets with faster decaying rate of convergence. From the
comparison between the recommended algorithms in both models, it’s concluded
that combination between the CFPA (Chebyshev and Singer chaos maps) with FOM
achieves an accurate representation for the physical behavior of the dynamic PV
system compared to the IOM one where it exhibits a better description of the real
system response not only on the transient part but also on the steady-state part as
well. For the future work, the FOM will be employed for different PV modules types,
moreover, novel algorithms with innovative objective function will be examined for
optimizing this model.
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Dust Accumulation and Photovoltaic m
Performance in Semi-Arid Climate: L
Experimental Investigation and Design

of Cleaning Robot

Alae Azouzoute, Massaab El Ydrissi, Houssain Zitouni, Charaf Hajjaj,
and Mohammed Garoum

Abstract Photovoltaic technology is still under development in many countries
around the world. However, the desert regions are still the most attractive zones in
terms of solar radiation and land use availability. On the other hand, the semi-arid and
arid climates predominate in those regions where dust concentration is relatively high,
which influence drastically the efficiency of the PV system. This study investigated
the effect of dust accumulation on the transmittance of the glass samples and the
overall electrical efficiency of the PV module for different cleaning frequencies. It
was found that the broadband transmittance loss of a glass sample decreases by up
to 52% after 3 months of exposure, whereas it was in the range of 6.5% after 7 days
during the dry period. The dust accumulation rate was about 5.6 g/m? and 0.4 g/m?
after 90 days and 7 days of exposure, respectively. For the PV output performance,
dust accumulation has significantly influenced the soiling ratio of the PV system with
no cleaning as it reached 0.77 after 68 days of exposure and no significant impact
has been seen for the weekly cleaned PV module with a soiling ratio in the range
of 0.97 during all the period of investigation. Thereafter, a new self-guided cleaning
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robot system has been designed to optimize the cleaning schedule under the local
weather conditions.

Keywords Photovoltaic system * Dust accumulation - Transmittance - Density of
dust deposition - Cleaning robot - Semi-arid climate

1 Introduction

The photovoltaic module is characterized by the electrical power that it delivers when
it is conventionally subjected to the sunshine of 1000 W/m? and a cell temperature
of 25 °C. This electrical power is determined just after the modules have been manu-
factured. However, these data are not constant over time; when the module under-
goes degradations, the electrical power decreases, as well as the other magnitudes
short-circuit current and voltage.

Today, there is a lack of information on the different modes of degradation of
photovoltaic modules in terms of frequency, rate of evolution, and degree of impact
on the life and reliability of PV modules. In recent years, research on photovoltaic
modules has rather focused on the race to develop new technologies without having
enough feedback on those that are already operational.

The meteorological parameters and the characteristics of the installation site
remain one of the drastically most influencing parameters on the performance of
photovoltaic solar panels. They can significantly reduce both the efficiency of elec-
trical performance and the capacity of the panels, knowing that most panels are
designed for proper operation for more than two decades, but this time is reduced
due to the hard environmental conditions. However, the accumulation of dust on
the photovoltaic panels remains one of the most influencing parameters on the
performance of the panels as well as their lifespan.

a. Soiling phenomena

Solar radiation is one of the most abundant clean resources existing on the planet espe-
cially in regions with desert land. MENA region and other countries in the Sunbelt
enjoy the high potential of incoming solar irradiation and the availability of area
for the development and deployment of solar power plants [1-3]. However, those
regions are known for their harsh weather conditions; hot and dry in the summer
season, and wet climate with rainy days in winter. Soiling is the main challenge
that impacts directly the efficiency of a solar power plant (concentrated solar power
or photovoltaic systems) [4-9]. Soiling on the front glass of PV modules results in
optical losses due to the area shaded by dust particles [10—14]. On the other hand, the
deposition of contaminants such as mineral dust deposit, biofilms of bacteria, algae,
lichen, mosses or fungi, plant debris or pollen, bird droppings, engine exhausts or
agricultural emissions, and industry emissions [15-19] onto the PV module surface
leads to an excessive reduction of power generation. This can be quantified by more
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than 1% power loss per day [10, 15, 20, 21]. It often makes the installation econom-
ically unreliable. To this end, the MENA region was reported to be the worst region
that exhibits dust accumulation regarding the other regions [22, 23].

Dust accumulation was found to be the most significant factor affecting the effi-
ciency of a PV module in interaction with environmental parameters as the relative
humidity, temperature, wind speed, and wind direction [8, 9, 24, 25]. On the other
hand, the accumulation rate of dust on the surface of the PV module increases over
the time of exposition [26]. For example, in Minia region, Egypt, the mass accumu-
lation rate of 150-300 mg/m?/day [27] has been reported depending on the tilting
angle, as well in Dhahran, Saudi Arabia, the dust surface density has reached 6.2 g/m2
for the period from February to December (10 months) [28]. In another study, the
accumulation rate of 132 mg/m?/day in Mesa, Arizona [29], and 1-50 mg/m?/day
in Colorado [30], and from 0.01 to 0.02 mg/cmz/day has been recorded in Lahore,
Pakistan for panels with a fixed tilt angle of 30 ° [31]. In the Mediterranean climate,
in Athens, Greece, the dust loading of 0.1-1 g/m? was recorded for a period of
exposition of 2-8 weeks [32]. This accumulation rate is strongly dependent on dust
particles concentration at the upper of the atmosphere and weather conditions of the
local site [33].

In reading the literature, several methods have been used to evaluate the effect
of soiling and especially dust deposition on the performance of PV panels. In term
of optical efficiency, the effect of dust on the transmittance of the front glass of
the PV module has been widely used to evaluate the impact of dust deposition on
the transmittance of light radiation with regard to the density of dust deposition
[9, 27, 34-36], thus, will consequently reduce the incoming light to the PV cell
and decrease the electrical output. However, the most reliable method is to assess
the direct impact of dust deposition on the surface of the PV module in terms of
the electrical parameters as the maximal power, short-circuit current, and the total
energy production (in the case of a PV system). As dust deposits tend to attenuate
short wavelengths with regards to the selective aspect of the spectral response of the
PV cell, which explains the difference between light transmission loss and power
loss [37].

Therefore, understanding the soiling mechanisms is highly crucial in order to
develop optimized cleaning scenarios for the dusty region. The next section in this
work will describe the process of the dust life cycle and the interference of different
parameters on it.

b. Dust life cycle

Recently, many research studies have been done on the processes governing the
transport and deposition of dust in solar power plants [38, 39]. All these studies have
concluded that the impact of dust on PV modules follows a cycle, which is called
the life cycle of dust. This cycle contains four main stages (generation, deposition,
adhesion, and finally removal or elimination at the level of the panel) as indicated in
Fig. 1.

Generation
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Fig. 1 The dust life cycle

The charging of the atmosphere with dust particles is mainly linked to soil erosion
due to the wind [40, 41]. The wind emission produces when the wind has enough
power to move the granular crushed material [42]; therefore the wind is the main
phenomenon that allows raising dust to the atmosphere. We can distinguish three
different modes of transport of particles by the wind speed, presented in Fig. 2 [41].

Suspension: In general, fine dust can only be carried away if it has been thrown into
the air by the impact of larger grains. Once in the turbulent layer, they can be lifted
to great heights by ascending air currents and form dust clouds reaching altitudes
of 3-4,000 meters. Their appearance can be impressive; the essential mechanism of
wind erosion remains saltation because without it such clouds could not occur.

Saltation: The initial movement of soil particles is a series of jumps. The diameter
of the saltation particles is between 0.5 and 1.1 mm. After having jumped, the particles
fall back under the action of gravity. The descending part of the trajectory is very
inclined towards the ground and practically straight. Few particles reach an altitude
greater than 1 m and about 90% of them jump less than 30 cm. The horizontal
amplitude of a jump is generally between 0.5 m and 1 m. The saltation phenomenon
is essential to initiate wind erosion. It is the cause of two other modes of transport
of soil elements by the wind: surface crawling and air suspension.

Crawling: Larger particles roll or slide across the soil surface. Too heavy to be
lifted, their movement is triggered by the impact of saltation particles rather than by
the action of the wind. The particles that move in this way to a diameter of between
0.5 mm and 2 mm depending on their density and the wind speed.
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Fig. 2 Modes of transport of particles by wind speed

Deposition

Once the dust particles have been assessed and suspended in the atmosphere. Many
factors influence the deposition of dust on photovoltaic panels, two main types of
deposit can be mentioned:

® Dry deposition: The desert aerosol cycle ends with the deposition of particles on
the PV module surfaces, under dry or wet atmospheric conditions. Dry deposition
is mainly controlled by gravitational forces [43], which cause the particles to
sediment. The particle dry deposition depends on several variables such as wind
speed, friction speed, turbulence intensity, and atmospheric stability [44].

The sedimentation rate depends on the size of the particle. Sedimentation is a function
of particle size, with the larger particles falling first and the smaller ones last. As a
result, the larger and heavier particles will be deposited near the region of origin,
while the smaller ones will be deposited farther away. Turbulence can also play a
role, disrupting the flow of particles [45]. If the turbulence occurs near the surface,
then the particles are deposited faster.

The transfer of the dust particles to the surface of the panels is done through
different mechanical processes as shown in Fig. 3; sedimentation, Brownian
diffusion, turbulent impaction, and interception processes [46].

e Wet deposition: Wet deposition occurs when dusty air masses are mixed by
convection with moist or cloudy air masses. Mineral particles can be captured
directly by precipitation or by droplets within the cloud.
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Deposition mechanismes

Sedimentation Inertiel Brownian motion

Fig. 3 The deposition mechanisms

The rate of wet deposition depends on the rate of precipitation and the rate of droplet
fall. Particles between 0.1 and a few wm in size have the lowest sedimentation
velocities, so they will be mostly deposited by wet deposition [38].

Adhesion

Dust is initially deposited on the surface of the photovoltaic panels, the adhesion
forces such as van der Waals forces, electrostatic forces, and capillary forces are the
active forces that cause the particles to bind to the surface. The adhesion processes
of these forces are described in Fig. 4 [47].

e Due to the strength of van der Waals, small dry dust particles stick to a dry surface.
This force is considered to be the dominant force between a solid platform and a
dry particle under dry ambient conditions. The van der Waals forces are always
present between the surface and the particles and act over a short distance since
they originate from two surfaces that are in contact with interacting dipoles.

e The capillary force depends on both the air’s humidity content (RH; relative
humidity) and the surface. Capillary forces act when two moist bodies meet. The

Gravitational force

Capillary force Electrostatic force Van der waals force

Adhesion

Fig. 4 The adhesion mechanism
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water vapor condenses into fine particles, thus enabling the gap between the dust
particles and the surface of a PV module to be bridged leading to adhesion.

e The electrostatic force causes adhesion in the presence of charges. Dust particles
tend to acquire electric charges in the atmosphere by colliding with each other,
and these charged particles tend to attract a positive charge to the surface, inducing
a coulomb force.

All adhesion forces are active almost everywhere, but the extent of their adhesion is
determined by the environmental condition and the property of the dust particles.

Removal

The elimination phase is the process of cleaning the particles from the surface.
Basically, there are two types: Natural elimination and artificial elimination. The
natural removal phase is when particles are removed by natural causes such as wind
and rain. It consists of two phases: rebound and resuspension. However, artificial
removal is done using specific tools to remove dust particles [48].

e Natural elimination: Two factors influence the natural cleaning process: the
particle properties (composition, number, and size range) and the local weather
conditions (frequency, intensity, rain, and wind duration).

The conditions taken into consideration for this process are the alteration conditions,
duration, and the angular orientation of the surfaces (angle of inclination).

Consequently, it has been found that particles with a diameter of less than 10 pm
which are the most present on the surface of the panels are eliminated by the natural
cleaning forces.

e Artificial elimination: As regards artificial cleaning, they depend mainly on the
type of contact device (brush and soft cloth), the quality of the water used
(demineralized and tap water), the water pressure, additives, and the state of the
water (liquid and vapor).

The main objective of this chapter is devised into two. The first one is to highlight
the impact of soiling on photovoltaic performance by calculating the transmittance
drop and the dust mass density by using photovoltaic glass and the soiling ratio using
photovoltaic panels, over a period of 6 months of measurement at ground level.

The second objective is to present a developed self-guided cleaning robot in order
to maintain the performance of photovoltaic solar panels and to optimize the cleaning
cost.

2 Soiling Measurements

In this section, the results of an experimental study conducted at Green Energy Park
research facility in the mid-south of Morocco (in Benguerir city; 32.12 °N, —7.94
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Fig. 5 Glass samples were exposed in the fixed rack at the Green Energy Park research facility

°E) are presented. Glass samples with dimensions of 10 cm x 10 cm and thickness
of 3 mm were used in order to evaluate the dust effect on their transmittance values.
The samples were exposed for different periods: weekly, monthly, and 3 months in
a fixed rack tilted by 32° and 1 m above the ground facing south over the dry period
of the year from May to August 2018 (see Fig. 5). Before the exposure, reference
mass of all the samples was determined, and the amount of dust on the surface of
samples after weekly, monthly, and 3 months of exposition was measured as well
as the transmission values for each sample was measured in 3 points to solve the
non-uniformity of dust deposition on the sample surfaces. To measure the amount of
dust accumulated on the sample surface, the samples were weighted under restrained
conditions using the Kern ABT analytical balance with an accuracy of 0.1 mg. Then
the density of dust deposition was determined by dividing the difference between
the sample reference mass value (clean) and the mass of dusted sample (dirty) by the
sample surface area.

In addition, the transmission values were measured using PerkinElmer Lambda
1050 UV-Vis-NiR Spectrophotometer. The transmission loss was determined by
comparing the initial transmittance value of the clean state of the glass samples and
dirty state due to dust settlement.

Moreover, in order to assess the effect of dust deposition on the electrical perfor-
mance of the PV system, three identical PV modules were exposed for the same
period as the glass samples. The cleaning schedule was defined as daily for the refer-
ence module, weekly cleaning for the second, and the last was kept uncleaned all
the period of investigation. The drop on the electrical output was quantified by the
short-circuit current and the daily soiling ratio coefficient was obtained by dividing
the daily short-circuit currents of dirty modules by the clean ones (reference module).
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2.1 Light Transmission

As mentioned above that the transmittance of PV glass samples was measured with
the spectrophotometer at day O (reference day before exposure), after 7 days (weekly
exposure), 30 days (monthly exposure), and 90 days (3 months of exposure). The
results of these measurements are illustrated in Fig. 6. As can be noticed from the
figure, dust settlement on glass sample tends to impact the transmittance at shorter
wavelength (below 350 nm) region as reported in other studies [49-51]. Although,
the transmittance response decreases over the period of exposure from day 0 until day
90 after 3 months of exposure. During the period of investigation, we noticed days
with different amounts of precipitation that range from 0.1 mm/day to 11.3 mm/day
(see Fig. 7). The relative humidity was varying between 63% in May and 48.6% in
August 2018. All the weather data have been collected from a meteorological station
installed next to the exposure site.

In order to describe transmittance loss due to the effect of dust accumulation on
the glass surface for the three different periods of exposition, the losses as defined
by Eq. 1.

Tioss = [1 — ”—”} x 100% (1)

Tclean

where Tio is the broadband transmittance 10sS, Ty, and Teiean are respectively the
broadband transmittance average over the 380—1100 nm spectral range.

The broadband transmittance loss was 6.5% by day 7 (the first week of exposure).
The daily transmittance loss was in the range of 0.93%/day after 7 days of exposure,
which describes the high accumulation rate of dust during the first days of exposure,
as the glass surface intensity is high. However, the transmittance loss was in the
range of 13% after 30 days, which presents a daily transmittance loss of 0.43%/day.

Day 0

Day 7

Day 30

Day 90

Transmittance [%]

0 . . . . . . . . .
300 361 423 482 543 604 665 726 788 847 908 969 1030 1091

Wavelength [nm]

Fig. 6 Transmittance variation for a wavelength range 300—1100 nm before exposition (day 0) and
for three different exposure periods
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Fig. 7 Weekly accumulated precipitation all over the period of investigation from May 11% to
August 31 2018

This could be explained by high relative humidity and low dust concentration (not
shown in this study) over the first 30 days. Whereas by the end of 90 days (3 months
of exposure), the loss has reached 52% with the increase of dust concentration and
the decrease of relative humidity by the end of June (after 30 days of exposure).
Despite, the rainy days noticed during this period the concentration of dust and the
cumulative dust deposition have increased the losses of the broadband transmittance
after 3 months of exposure.

To summarize, the accumulation rate of dust is high during the first days of expo-
sure with daily transmittance loss of 0.93%/day (after 7 days), whereas it decreases
to reach 0.43%/day after 30 days. In fact, the climate during the first 30 days (first
month) was with no rainfall and an average relative humidity in the range of 61%
and a daily temperature average of 18.5 °C. Thereafter, the daily transmittance loss
has increased under cumulative soiling conditions after 90 days of exposure with
0.57%/day. This increase could be attributed to a high concentration of dust from
day 30 over the period of investigation (the last 2 months) and relatively moderate
relative humidity with a daily average of 54.5% and rainy days with a maximum
amount of 1.6 mm/day. In fact, high dust concentration accompanied with light rain-
fall will increase dust settlement on the surface of the glass and therefore increase
the soiling transmittance loss.

2.2 Soil Mass

The amount of dust settled on the surface of a PV panel is strongly dependent on the
weather conditions, the aerosol concentration in the up of the atmosphere, and the
period of exposure. Table 1 presents the surface density of dust deposition p (g/m?)
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Table 1 The density of dust .
T d 7 30 0
deposition for a different ime [days] 2
period of exposition p [g/m?] 0.4 1.1 5.6
Tloss [%] 6.5 13 52

on the glass sample after 7, 30, and 90 days. Once it can be noticed that the density
of dust deposition increases with the increase in the period of exposure. By day 7,
the amount of dust settled was about 0.4 g/m?; however, during the experiment, the
samples exposed for the weekly period have shown a significant amount of dust
settled on their surfaces that reached 1.6 g/m? in the period from June 22 to June
29 (not shown in this work). Whereas by day 30, and after 90 days, the dust surface
density was 1.1 g/m?> and 5.6 g/m?, respectively. The accumulation rate of dust
particles is higher during the first days of exposition and it decreases with time until
saturation, where the daily accumulation rate was ~ 0.06 g/m?/day for the 3 months of
exposure. This dust accumulation rate tends to be low in comparison to other regions
with arid climate in the Middle East and Pakistan. The authors have found a daily
dust accumulation rate of 0.14 g/m?/day for the winter season and 0.098 g/m?/day
for the summer season after 2 months of exposition in Doha, Qatar [52]. Besides, in
Islamabad, Pakistan, the authors reclaim a dust density deposition of 4.6 g/m? after
1 month of exposure [53].

On the other hand, the surface dust density can be correlated to the broadband
transmittance loss as the amount of dust increase on the surface of the glass sample the
transmittance decrease progressively as presented in Table 1. However, as reported
in other studies [34, 35], the relationship between dust deposition and transmittance
was linearly dependent until reaching its upper limit. Thereafter, the dust deposition
load will no longer influence the transmittance coefficient.

2.3 PV Electrical Output

The accumulation of soiling and especially dust on the surface of the PV module
reduces the incoming sunlight transmitted through the glass cover to the PV cells
as described in the last two sections and, thus, the electrical output produced by
the module. In the present chapter as described above, we will present the results
of an experimental investigation for a CdTe Thin-film solar module with different
cleaning scenarios for the period from May 29 until October 5, 2018. The main
electrical parameters of the PV module used in this experiment are presented in
Table 2.

The electrical outputs of the clean and dirty modules have been analyzed and
quality checked, only data recorded between 12:00 pm and 2:00 pm have been used in
order to remove any occurring disruption as cloudy days (irradiance below 500 W/m?)
or missing data. The soiling impact has been evaluated by the daily soiling ratio factor
[54, 55], as described in Eq. 2.
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Table 2 Electrical Parameter Value
characteristics of the PV
module Nominal power, Prax 77.5 [W]
Short circuit current, Ig 1.98 [A]
Open circuit voltage, V¢ 62.5 [V]
Current at maximum power, Imp | 1.68 [A]
Voltage at maximum power, Vi | 46.7 [V]
Standard test conditions, STC 1000 W/m?, 25 °C, AM 1.5

Isc,dirty

SRdaily = (2)

Isc,clean

where Iy girty and I ciean are respectively the daily average short-circuit current
of the dirty modules (weekly and no cleaning ones) and the cleaned module (daily
cleaned as reference).

The analysis of the results from the variation of daily soiling ratio leads to some
interesting outcomes. Once it can be noticed from Fig. 8, that the soiling pattern
can drastically influence the electrical power of the PV module if no cleaning was
occurring especially for the dry period. For the no cleaned PV module, the soiling
ratio decreases progressively from ~0.99 (clean state) in day O to 0.77 in day 66 (from
May 29 to August 3, 2018), which explains the 23% losses in the electrical output.
The weekly cleaned PV module was less affected and the soiling ratio has reached
a limit decrease of ~0.97 during the same period as the last one (no cleaned one).
This founding affirms the influence of the frequency of the cleaning schedule even
if during the high soiling period (dry period).

In addition, for the period from August 3 to September 1, 2018, no cleaned PV
module shows an increase in term of soiling ratio of ~+12% in day 69 (August 5,
2018). This gain in electrical output was due to the rainy days (day 66 and day 68)
with total precipitation of 0.3 mm accompanied with a high average relative humidity
of 68% from day 64. Thereafter, the soiling ratio decreases progressively from day
69 until day 96 (September 1, 2018), where it reaches ~0.81. Once it can be noticed
that the daily soiling loss for the first period (from day 0 to day 69) was in the range
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Fig. 8 Soiling ratio for the PV module with weekly cleaning and PV module with no cleaning for
the period from May 29 to October 5, 2018
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Fig. 9 Daily average temperature and relative humidity for the investigation period

of 0.34%/day, whereas, it was decreasing with a daily average of 0.24%/day in the
second period (from day 70 to day 96). The difference between the first period and the
second period could be explained by rainy days with a total amount of 7.8 mm in the
second period compared to 4 mm in the first period. Another reason that emphasizes
this difference was the high dust concentration (not shown in this work) during the first
period accompanied by low relative humidity (see Fig. 9), which increase the soiling
drop. Although the second period was enjoying days with low dust concentration
and high relative humidity, which increase the natural self-cleaning and reduce the
settlement of dust particles.

Moreover, in day 97, the no cleaned PV module has shown a significant increase
with an average daily soiling ratio that reached ~0.97, which means a gain of ~+17%
on the electrical output, which could be explained by the precipitation recorded at
the night of day 96 (0.2 mm). However, there is no conclusion about defining a rain
threshold for which a cleaning event will occur for a PV module [55], whereas in a
recently published study in Evora, Portugal, the authors have reported that a threshold
of ~2 mm has a probability of 50% to reduce the soiling ratio [56]. Therefore, it can
be concluded that the soiling ratio recovery can be highly dependent on the duration
and the intensity of the precipitation.

For the remaining investigation period from day 97 until day 129, the soiling ratio
was in the range of ~0.96, which is due to the rainy days with a total accumulation
of precipitation of 29 mm and high level of relative humidity and low temperature
(see Fig. 8 and Fig. 9).

3 Cleaning Techniques

To avoid the soiling problem, the use of cleaning systems is mandatory in order
to remove the dust accumulation on the front surface of PV panels and increase
its efficiencies. In this, since several cleaning systems have been developed like a
natural method, manual cleaning, electrostatic method, self-cleaning nanofilm, and
automatic cleaning system.
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3.1 Natural Cleaning

The natural cleaning process is a method that uses nature as its cleaning tool. Among
these natural tools, we find wind speed, rainwater as well as the earth gravitation.
The high wind speed or a water droplet can remove or roll-off the dust on the PV
panel surfaces. However, less gravitational occurs at night and early morning can
float the dust naturally onto the surface of PV panels.

Gair et al. [57] reported in their study that dust removal can be done easily if
we turn the PV panels to a vertical position during a rainy day, evening night, and
early morning. This method has advantages, low cost, and clean energy for the
environment. However, the problem of this technique is the tilting rotation of PV
plants on a large scale and not operational for high humidity climate.

3.2 Manual Cleaning

This method is the same as the one used in the cleaning of high-rise building windows.
Dust particles are removed by special brushes, which are equipped with bristles to
avert any scratches on the glass of the PV module. These brushes are connected with
a water supply that enables washing. The uneven movement of brushes over the PV
module surface leads to a risk of abrasive effect. This latter can be minimized soft
cleaning cloth or brush with soft bristles [58, 59]. The cleaning brush is used with a
water pressure of 100—160 bar, which allows easy manual cleaning. For high dirty
surfaces, a cleaning product is added to the water to remove easily dirt. Then the
surfaces are rinsed with demineralized water. This cleaning system is recommended
for small areas of 150-300 m?.

To clean the solar panels, we need a bucket of warm soapy water, a dry cloth, and
a rubber squeegee. The surface of the panel is washed with soap water and a cloth
to remove dust, debris, and water spots. A squeegee is used to remove excess water.
This method has the advantage of being simple and less expensive. On the other hand,
it has many disadvantages: it is not suitable for large areas, it uses large quantities
of water, which is not compatible with desert areas, it leads to a degradation of the
PV module surface (appearance of micro-scratches under the effects of friction), and
finally, it has a direct impact on the damping time of the installation.

Manual cleaning is usually used for cleaning small facilities or domestic solar
panels [60, 61]. This cleaning method is expensive and requires skilled labor to clean
off soiling onto the PV plants. However, fully automated systems can bring flexible
cleaning. At the level of our research facility [62], we use manual cleaning since we
dispose of small scale PV plants that are dedicated to research and development.
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3.3 Electrostatic Cleaning

The electrostatic method is based on an electrostatic charge (from the electric curtain
on the PV panel) to remove dust on the surface of the PV panel. This latter has been
developed at NASA in 1967 [63]. The action of electrostatic and dielectrophoretic
forces to remove the dust has been studied by Calle et al. [64]. In order to generate
electrostatic and dielectrophoretic force, the electrodes have been used to trans-
port charged and uncharged particles on the PV module surface. Stable electrostatic
force occurs, which makes to unbalance between charged particles and surface, these
phenomena deal with the particles to create their force. This kind of force gener-
ates a movement of a dust particle on the PV module surface, which are called
dielectrophoretic forces.

3.4 Self-Cleaning Nanofilm

The self-cleaning nanofilm method is the method that uses the coating process to
add a nanofilm layer on the PV panel surface. Several coating processes have been
innovated by researchers such as chemical vapor deposition (molecular beam epitaxy,
electrostatic spray assisted vapor deposition, vapor deposition, chemical and electro-
chemical technique, physical vapor deposition, plasma spraying, roll-to-roll coating
process, spin-coating, and dip coating. This method deals to modify the normal PV
module surface by turning it to superhydrophobic surfaces and superhydrophobic
surfaces using a special nanofilm coating characterized by superhydrophobic and
superhydrophilic proprieties [65-70].

3.5 Automatic Cleaning System

Robotic systems have emerged as an attractive solution for cleaning the dirty surfaces
of the photovoltaic module [71]. Besides, the geographical land and the area of appli-
cation are highly important, where the existing solutions can be further compared
based on capital costs and performance ratio.

PV module cleaning robot comprises a mobile robot that carries the cleaning
payload and cleaning tool, which performs the cleaning work [71].

Serbot Swiss Innovations has developed a robotic cleaning system called ‘Gekko
Solar’ and ‘Gekko Solar Farm’ in order to be used for mobile deployment onto PV
plants [72]. This latter uses the rotating brush and demineralized water to clean the
PV module’s surface. The movement of this system is based on feet with vacuum
technology enabling the robot to astonishing flexible movement in every chosen
direction.
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Raybot is an eco-friendly robot designed to clean solar panels [73]. It can move
on surfaces with a slope of up to 65 degrees using suction cups without risk of
damaging them. It can clean around five solar panels per hour and in most cases, it
is enough to use it at the end of two months. The robot safely sweeps surfaces that
are often characterized by difficult access. Raybot is an eco-friendly robot designed
to clean solar panels. It can move on surfaces with a slope of up to 65 degrees using
suction cups without risk of damaging them. It can clean around five solar panels
per hour and in most cases, it is enough to use it at the end of two months. The robot
safely sweeps surfaces that are often characterized by difficult access. By sweeping,
blowing, and vacuuming, it removes the dust and dirt that naturally settles on the
solar panels. Using several sensors, Raybot mobilizes without any risk of falling.
In addition, to carry out its task, it is equipped with an interchangeable battery that
allows it to resume work without the need for a charging station.

The HYCLEANER black SOLAR allows simple, quick, and economical cleaning
[74]. This robot allows optimal cleaning with its mechanical power and low water
consumption. It works with a radio remote control, so the user does not need to walk,
whether on the roof or the solar surface. Lithium batteries guarantee electric drive,
so a power outlet near the work area is not mandatory.

Ecoppia’s E4 is a robot that operates during the night to maintain maximum
energy production at all times [75]. It operates at a cleaning rate of 54 square feet
(approximately 5 m) per 30 s. The robot moves along a rigid aluminum structure,
its wheels are covered with polyurethane to ensure that the movements are light
without carrying a load on the solar panel surface. This robot is fully autonomous
and independent of energy, it has its own solar panel for self-loading and its self-
cleaning mechanism. The robot recovers energy during its descent along with the
solar panel, which will be reused in the next cleaning cycle, which optimizes the
robot’s performance.

SOL BRIGHT developed a cleaning robot that eliminates 99% of dirt and pollution
on photovoltaic panels. Tested in large solar power plants, the robots improve their
electricity production rate by 7-15%. The robot operates at night using its own
photovoltaic module as an energy source, without interrupting the conversion of solar
energy during the day. The cleaning robot is equipped with a roller brush, which is
not supplied with water, which helps to save energy and protect the environment.

Table 3 gives a summary of the different robotic cleaning technologies described
above.

4 New Cleaning System

4.1 Robot Design and Functionality

Based on the investigations and the obtained results discussed in the previous sections,
and in order to increase the PV plant efficiency by continuous cleaning activities,
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Table 3 Comparison of the presented robotic cleaning systems

Robot Gekko Raybot Hycleaner Eccopia Solbright
Tilt 45° 65° 35° Adaptable to | Adaptable to any
any inclination
inclination
Cleaning By heated Dry Wet Dry Dry
technology demineralized
water and
pressurized
Cleaning Polyamidel12 | Brushes, Brush 2 microfiber | Roller brush
equipment nylon brush vacuum brushes
with a rotation | cleaners and
speed of fan
350 rpm
Displacement | By suction * By suction | By strap By rail and Roll along with
mechanism cups cups polyurethane | the chassis of the
* By wheels PV panels
lengthening
and
shrinking
his body
Moving 4 m/min - 25 m/min - 10-20 m/min
speeds
Course control | By remote By position By radio Remote Using intelligent
system control sensors control control by control software.
masterE4
application
Yield 300-400 m?h |5 panelsh | 400-800 m>/h | 600 m?/h 1800-3600 m?/h

an autonomous cleaning robot is proposed. The proposed system can maintain the
high efficiency of the solar panels by ensuring continuous cleaning without the need
for any guide or human intervention (self-guided robot). In addition, the robot can
be monitored and controlled in real-time through a web link application. Users can
easily monitor the robot status (ON or OFF), battery charge, water level, and can
also set a schedule with a specific time for cleaning. The proposed robot is designed
to be mounted and adapted to all PV systems and technologies by adjusting only the
vertical supports (over the PV system width). In addition, system flexibility is the
main advantage of the proposed system. The robot can be controlled by three modes:
a manual mode that the operator can immediately turn on/off the robot, the robot
can also move to a specific position via this mode; following, users can control the
time or frequency of cleaning using the web link application; the third mode is used
to communicate with other electronic devices by receiving a digital signal to start
the cleaning process (the user sets a default time to start cleaning when a signal is
received, 6 pm. for example). For instance, an electronic device calculates the soiling
ratio or PV efficiency. In addition, the robot is designed to be lightweight and small
to facilitate installation and maintenance and also to reduce the cost of the system
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Fig. 10 Use case diagram of the proposed robot cleaning

by minimizing mechanical structures and motor torques. The proposed solution uses
also a low number of electronic sensors and motors to minimize even more the robot
cost and reduce its maintenance (details can be seen in Fig. 10).

4.2 Mechanical Robot Design

The mechanical design and simulation were done using CATIA V5. All the robot
components were designed and simulated in order to establish an optimal design
and to study all the mechanical aspects and uncertainties that may occur in real
working conditions. For this reason, mechanical design and modeling address to the
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following technical issues: to choose the optimal material and size for each block; to
better distribute the robot and supports mass on the solar panels; to size the electrical
motors for brush rotation and robot movement; to minimize the possibility of robot
slipping or sliding.

The proposed robot is divided into two main systems. The first system performs a
horizontal movement along the PV system length (see Fig. 11a). This system is made
up of mechanical supports and wheels grip the frame of the panels in order to avoid
any scratch on the PVP surfaces. Furthermore, the battery and water reservoir are
mounted in this frame, in which the weight is shared between the top and the bottom.
Two windshield wipers are used at the front and rear of the system to remove any water
or sand that can propagate or re-deposition on previously cleaned panels. The main
advantage of this system is its flexibility, it can be adapted to any length or technology.
The second system represents the cleaning unit and ensures the vertical movement
over the entire PV system width (see Fig. 11b). It is composed of a mechanical

Fig. 11 Robot design a mainframe b second frame
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frame, which moves vertically using four wheels and contains a cylindrical brush in
the middle. The vertical movement is ensured by a belt pulley system.

To summarize, the proposed robot is made up of two systems or frames: the
mainframe used to move horizontally using wheels, which grip on the frame of the
panel. The second frame composed of one cleaning and rotating brush, moves up
and down along each PV system column. The material used for supports and frames
design is the Aluminum 7075 due to its high resistivity and good density. The weight
of the mainframe is 21 kg including wipers, motors, battery, water reservoir, and
others. The weight of the cleaning frame is 4 kg including brush, DC motor, wheels,
and belt pulley system. Therefore, the total weight of the robot is 25 kg.

4.3 Electronic Control and Powering System

The overall electronic devices are mounted inside the robot and powered by a small
PV panel. The electronic circuits developed are designed and simulated using Isis
Proteus and the Arduino software (IDE). The on-board control system uses Arduino
Mega 2560 based on ATmega2560 microcontroller. After establishing the total
energy consumption of the robot including all the electronic devices, the robot is
powered by 12 V DC, 12 Ah. For this, the appropriate PV panel is dimensioned and
fixed to a 25 W monocrystalline panel with a PWM regulator. In addition, the motors’
torque is determined to ensure the movement of the robot and the rotation of the brush
as a function of the weight of each corresponding frame. For the mainframe (hori-
zontal movement), the Nema 11 (MS14HS1P4024) is used. Regarding the second
frame (vertical movement), the Nema 24 (MS24HS5L.4420) is employed. In addi-
tion, the SPOMHNK3054 motor is used for rotating the brush. Both horizontal and
vertical movements are driven by stepper motors because of their precise positioning
and controlled by PWM based signals given by Arduino Mega 2560 board, while
a DC motor is used for rotating the brush with high speed and simply activated or
deactivated by a digital signal generated by the board. Two servo motors are used to
lift the wipers because of their ability to hold the position (DS04-NFC). Furthermore,
four high-resolution ultrasonic sensors (HC-SR04) are used to detect the real-time
current position of the robot as well as to adjust its direction and speed. These sensors
are mounted on the four corners of the robot, powered by +5 V DC, and connected
to Arduino Mega 2560 inputs. The water reservoir is also measured in real time by
the ST045 sensor. Finally, the ESP8266 integrated circuit allows the connection via
WIFI and is widely used to control devices over the Internet (a GSM module can
also be used in this sense). This integrated circuit communicates and transfers data in
real time with the web application. Users can monitor and visualize the robot status,
battery charge, water reservoir level, and can also control or schedule a cleaning time.
Figure 12 illustrates the internal block diagram of the proposed robot and describes
the interactions between blocs.
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Fig. 12 The internet block diagram of the proposed robot

4.4 Robot Movement and Cleaning Strategy

As stated above, three modes can be used to control the robot and start cleaning:
manual control; automatic control by communicating with other electronic devices
installed in the field; automatic control via weblink application allowing users to
set a scheduled time for cleaning. Figure 13 illustrates the robot movement control
algorithm and the cleaning strategy. It is essential to mention that the robot is designed
to ensure PVP cleaning in both directions (forward and backward). Therefore, the
front and rear sections of the robot are indistinguishable and the cleaning process
and the direction of movement are the same. Before starting the cleaning, the robot
is located each on the right or on the left of the PV system and mounted on metal
support appropriate to its shape and away by 0.5 m from the edges of the PVP. The
system is always waiting for control signals each from users or electronic devices.
Then, the robot checks its current position to move each in the right or left directions
with a distance of 0.5 m, while the appropriate wiper is powered. Following, the water
injection is done for 2 s and the robot again checks its current positions, but this time
its vertical position, in order to move each up or down while the brush is rotating.
When the edges of the PV system column are detected, the vertical movement ends.
Then, the robot is horizontally moved with 0.5 m and the cleaning frame goes up or
down (when the robot moves up, the rotating brush direction is changed). This process
is repeated until the horizontal ends of the edges of the PV system are detected. The
robot prototyping is being finalized and validated at the Green Energy Park research
facility (GEP), taking into account several PV technologies and different PV systems
geometries. The proposed cleaning robot is low cost and lightweight equipment due
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to its mechanical design, which divides the entire system into two mainframes. This
aspect allows the robot to be more efficient and stable, in particular, its mass is
well distributed on the PVP surface. Furthermore, the flexibility of the proposed
solution is the main key allowing the robot to be easily adapted to any PV system or
technology. The front and rear sides of the robot are the same, allowing the cleaning
process in two directions since the robot locates exactly its current position before
starting cleaning. In addition, users can easily monitor the robot status and control it
using the web application. This functionality is very advantageous if several cleaning
robots are installed in the same field, which facilitates monitoring and maintenance
and considerably reduces human intervention. The proposed robot architecture and
features seem to be very promising, robust, and low-cost technology.

4.5 Cleaning Cost

The manual cleaning cost at Green Energy Park is calculated with Eq. 3:
Cn = (Pw.Q .Nb .Nn) 4+ (P) + (L .Nn) 3)

with:

Ch: The cleaning cost per month with manual cleaning (€/month).
Pw: The price of a cubic meter of water (€/m>).

Q: The amount of water needed to clean one module per day (m?/day).
Nb: Number of modules in the string.

Nn: Number of cleaning days per month (day/month).

P: The price of cleaning equipment per month (€/month).

L: The labor for cleaning a day (€/day).

For example, the cleaning of a string composed with 23 modules (Nb = 23), the
amount of water used for cleaning a module is (Q = 0.002 m?/day) with a frequency
of eight times per month (Nn = 8 days/month), using cleaning equipment of (P =
3€/month). It is assumed that a person can clean the entire string with a salary of (L
= 5€/day).

From the previous Eq. 3, the cleaning cost of PV strings is calculated as:

C, = (1.23 x 0.0005 x 23 X 8) + 3 + (5 x 8) = 43.1 €/month

Based on our first assumptions and Eq. 3, the cleaning cost C; using the new
self-cleaning robot is calculated as:

Where, the assumed price of the self-guided cleaning robot is 500 € per unit with
a total replacement cost of 10% per year and a lifetime of 10 years.

C, = (1.23 x 0.0001 x 23 x 8) +8.33 4+ 0 = 8.35 €/month
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As noticed from the economical point of view, the amount of water used for the
cleaning and the labor cost can drastically increase the cleaning cost, and therefore,
using a cleaning robot system will reduce the cleaning cost of ~35 € per month.

5 Conclusion

The abundant solar radiation especially in regions with semi-arid and arid climates
promotes the development and deployment of photovoltaic technology. Although the
weather conditions in those regions as soiling cause a significant degradation on the
power production and performance of the PV systems.

In this chapter, we assess the effect of dust accumulation on the optical efficiency
in terms of transmittance of glass samples and on PV modules electrical output. The
results have illustrated that the soiling phenomenon is highly significant in a region
with semi-arid climate especially for the dry period of the year. Dust accumulation
is strongly dependent on seasonal conditions, the electrical loss of the PV module
is important in periods with high dust concentration and low relative humidity. This
electrical loss can be worst if the particles of dust on the atmosphere coincide with
light rainfall, which will significantly deteriorate the PV output performance.

By investigating dust accumulation on glass samples, the broadband transmittance
loss was respectively 6.5%, 13%, and 52%, for a period of exposure of 7, 30, and
90 days. This founding was explained by the dust accumulation rate of 0.4 g/m?,
1.1 g/m?, and 5.6 g/m? after 7, 30, and 90 days of exposure, respectively. In fact,
high dust concentration and rainy days with low amounts have increased the impact
of dust accumulation, which explains the transmittance loss of 52% after 3 months
of exposure. On the other hand, the same pattern has been illustrated for the PV
modules exposed for a weekly cleaning period and no cleaning all over the period of
investigation. The results have shown that the weekly cleaning was highly efficient
and keep the soiling ratio in the range of 0.97 all over the period of the experiment.
For the no cleaned PV module, the soiling ratio has decreased to reach 0.77 after
68 days of exposure. Thereafter, the no cleaned PV module has recorded an electrical
gain of 12% and 17% respectively in day 69 and day 97, which has been explained
by the rainfall event noticed during the period of exposure.

To this end and based on our previous soiling studies at the local climate condi-
tions, we have presented a self-guided cleaning robot that will be highly efficient and
flexible for different technologies and structures. Thereby, the cleaning cost will be
reduced by five times using this system instead of manual cleaning.
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Abstract Internet of Things (IoT) technologies, along with economies of scale
and advances in hardware, software, and network technologies, have accelerated
the explosion of connected objects across the Internet. A connected object can be
controlled online from an IoT platform and can send, receive, and process various
and varied data. In this chapter, we leverage some of the IoT technologies to propose
a simple and low-cost IoT solution to monitor and control a smart dual-axis solar
tracker system for performance evaluation. The solution also includes alert noti-
fications to inform a remote user through phone or mail (or both) when a sensor
has reached a certain predefined event. The solution is designed based on low-cost
and easy-to-use hardware and software and an online open-source IoT platform.
The design aspects of the IoT-based solar tracker are extensively described in this
chapter. Moreover, a prototype of the IoT-based solar tracker has been manufactured
and tested. Test results demonstrate that solar tracker data can be sent easily and
properly and can be directly monitored online, as well as the solar tracker, can take
commands from the IoT monitoring application.
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1 Introduction

The International Telecommunication Union (ITU) has defined the IoT as a global
infrastructure for the information society that enables the provision of advanced
services by connecting (physical and virtual) things, based on existing and evolving
interoperable information and communication technologies [1]. The IoT, or as it is
called the Internet of Everything (IoE), includes all devices that can communicate
with the Internet and that can collect, send and process the data they capture from
their surrounding environment using embedded sensors and processors in addition to
the communication networks [2, 3]. IoT applications are expected to equip billions
of objects with connectivity and intelligence [4]. It is already being deployed exten-
sively, in various fields, namely: wearables [5], smart buildings [6], smart cities
applications [7], health care [8], agriculture [9], industrial automation [10], solar
monitoring systems [11], etc. In this chapter, we leverage some of the IoT technolo-
gies to design and build an IoT-based solar tracker system, where an [oT application
is proposed to control and monitor this system.

To maximize the absorption of sunlight and thereby increasing energy produc-
tion, it is necessary to integrate solar tracker systems into conventional solar energy
systems, where the solar panels can be fixed on a structure that moves according
to the sun’s path. 10-50% additional output energy can be obtained by using solar
tracker systems that track the sunlight instead of conventional systems that attach ata
fixed angle [12]. Depending on the mechanisms used to orient the solar panels, solar
tracker devices can be divided into single or double axis devices. Single-axis devices
can only track sunlight by rotating around a horizontal or vertical axis, i.e. they
track the sun’s movement in one direction (toward East and West or toward South
and North). While dual-axis solar tracker devices can rotate vertically and horizon-
tally to ensure solar panels are always perpendicular to the sunlight [13]. Various
solar tracker systems have been reported in the literature and they differ according
to employed tracking methods [14]. For instance, a sensor-based solar tracker has
been proposed in our previous works, it uses light sensors to predicts the sun’s posi-
tion (intensity of light) to track the sun for maximum power generation [15, 16].
The solar tracker system detects the sun position with the help of Light Dependent
Resistor (LDR) sensors and sends the data to the controller. This latter then processes
these data to command two servomotors that rotate a photovoltaic (PV) panel, in the
optimal directions, to move toward the sunlight. For more details, authors in [17]
have categorized solar tracker systems based on five tracking methods: sensor-based
tracker method, geometric and astronomical equation-based method, open- or closed
loop-based method, artificial intelligent-based method, and a combination of two or
more of these methods. Indisputable that solar tracker systems have manifested a
high ability for increasing the efficiency of solar panels to produce more energy.
Besides, making a solar tracker device as a connected object using IoT technologies
can be more profitable and advantageous, where the user can remotely control the
device and access its data, including the electrical and environmental parameters
linked to the solar panels, from an IoT platform. These data can be used to evaluate
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the solar tracker operation, as well as to assess the PV energy potential, early detec-
tion and diagnosis of electrical faults, evaluate the weather variations, and preventive
maintenance.

However, to the authors’ knowledge, there are only a few attempts available in the
literature that deal with this subject. Authors in [18] have developed a dual-axis solar
tracker with IoT monitoring using the Ubidots IoT platform. A WiFi ESP8266 board
has been employed to connect their tracker device with the internet to communicate
with the IoT monitoring application, where its data, including voltage, current, and
power are displayed. The same WiFi board has been used by the Authors in [19],
who have elaborated a single axis solar tracker, to send the same mentioned data to
the cloud server of the ThingSpeak IoT platform so that they can be visualized in a
dashboard that preconfigured on ThingSpeak. Furthermore, a monitoring solution of a
solar tracker using Raspberry Pi3 (RPi3) board and a personal developed cloud server
has been established in [20]. It uses socket programming using Python language to
communicate between the “client” that runs on a remote laptop and “server” that runs
on RPi3. There are two ways to design an IoT monitoring platform, either we design
it ourselves, or using one of the available IoT platforms, which most of them are open
source. By using the second way, the development process of an IoT project can be
done easily and as early as possible. Because IoT platforms are designed to reduce
an [oT project development time by enabling ready-made, reusable technology stack
and are compatible with and support various hardware platforms (such as Arduino
and Raspberry) [21]. To this end, IoT platforms are widely used by engineers and
researchers in their IoT projects [22-25].

This chapter aims to present a simple and low-cost [oT solution to monitor and
control a dual-axis solar tracker system. A low-cost and popular embedded board
(Arduino) is used along with LDR sensors, servomotors, and associated circuits to
control a PV panel to track the sunlight for maximum power generation. Different
sensors are employed to measure electrical output parameters (voltage, current, and
power) and environmental parameters (temperature, humidity) linked to the solar
tracker system. An Ethernet shield is used to connect the system over the Internet
and to exchange data between hardware and the cloud server using Message Queuing
Telemetry Transport (MQTT) protocol. Data processing and activities that occur can
be monitored online through an IoT monitoring application developed on Cayenne
IoT platform. The solar tracker can also take commands from the monitoring plat-
form. In addition, the application includes an alert system to notify the user when
a sensor has reached a certain predefined event. The hardware and software used
have been chosen to be simple and inexpensive. Arduino board is used due to its
low-cost and its easy-to-use hardware and software [26, 27]. Likewise, Cayenne [oT
platform is used due to its easy-to-use interface and protocols. It is an open-source
IoT platform that has a simple Application Programming Interface (API) to store and
retrieve data from things using the MQQT protocol over the Internet or via a Local
Area Network [28].

The rest of this chapter is structured around three sections. Section “Research
methodology” describes the architecture of the proposed IoT-based solar tracker
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system and presents the hardware and software used to develop it. Section “Results
and discussion” lists and discusses the experimental results. Finally, the main
conclusions of this chapter are drawn in Section “Conclusion”.

2 Research Methodology

2.1 System Description

The proposed IoT-based solar tracker system is depicted in Fig. 1. It is a dual-axis
solar tracker that can rotate automatically to track the sun position using LDR sensors,
or manually by the user through the dashboard of an IoT application. The system
starts with detects the sun position (intensity of light) by LDR sensors and sends
the data to the controller (Arduino Mega board). This latter then processes these
data to command servomotors (SM1 and SM2) that hold the PV panel to rotate
toward the sun. The values of the generated PV voltage and current, temperature,
and humidity are also sent to the Arduino through associated sensors. Next, the
Ethernet shield, which is mounted with Arduino and allows it to be connected to
the Internet, will send the data that has been taking and/or processed by Arduino
to the cloud (webserver). Lastly, the solar tracker data, including LDR sensors, PV
power, temperature, and humidity, are displayed in real time in the IoT monitoring
application via pre-created Widgets. The IoT monitoring application is designed
using Cayenne myDevices platform. Once the user is connected to the internet from
his computer or smartphone, he can visualize, in the dashboard of the [oT application,
all solar tracker data in their associated widgets. Therefore, the user has the necessary
data linked to the environment and performance of the PV panel. In addition, in
the manual mode, the servomotors will take angle directions from their associated
widgets in the dashboard. Hence, the user can control his system to seek the best
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Fig. 1 Schematic of the IoT-based solar tracker system
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environmental conditions and extract the maximum energy from the PV panel. The
IoT application is also programmed to send notification alerts (SMS or Email) when
a senor reaches a predefined threshold value.

2.2 Hardware Design

As shown in Fig. 2, the IoT solar tracker system consists of the PV panel, two
servomotors, four LDR sensors, a voltage divider circuit, temperature and humidity
sensor, a Led and the Arduino Mega board.

The used PV panel is 115 by 85 mm in size with a 1.6 W output and can generate
avoltage up to 6 V [29]. Two 180° servomotors are used to motorize the solar tracker
and they are controlled by the Arduino board through PWM pins 5 and 6. The
left-right (L-R) servomotor (MG996R) rotates the solar tracker on the vertical axis
(East/West), while the Up-down (U-D) servomotor (SG90) rotates the solar tracker
on the horizontal axis (South/North).

Four LDRs (Cds GL5528) are used to sense the sun’s position and which have
been fixed in the four corners of the PV panel. The LDR sensors are connected to
the Arduino through analog pins from A0 to A3. The LDR is a resistor whose value
decreases with increasing light intensity incident on its surface. The LDR sensor is
designed as a voltage divider circuit as can be seen in Fig. 2. The output of the voltage
divider is connected to an analog input (AO for instance) of the Arduino. Then, the
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Fig. 2 Electronic circuit of IoT-based solar tracker system
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Fig. 3 Hardware interface between Arduino and Ethernet shield

Analog to Digital Converter (ADC) of the microcontroller converts the analog value
read by A0 into a digital value between 0 and 1023 because the ADC is coded in 10
bits. The value of the series resistor in the LDR sensor circuit is 330 €2.

The temperature and humidity are measured through the DHT22 sensor, which
is an ultra-low-cost sensor that is widely used in embedded projects. DHT22 has a
thermistor and a capacitive humidity sensor embedded in it to measure temperature
and relative humidity. Its temperature range is from —40 to 80 °C with < & 0.5 °C
of accuracy, and its humidity range is from 0 to 100% with + 2% (Max + 5%) of
accuracy [30]. This sensor uses one signal wire to transmit data to Arduino (digital
pin 2), and two wires for power supply.

The PV voltage and current are measured through a voltage divider circuit that
acts also as a load and which consists of two series resistors of 10 Ohms. The divider
circuit output is connected to the Arduino’s analog pin A4. Furthermore, a LED,
which is connected to digital pin 3, reflects in the system circuit the mode state of
solar tracker (manual or automatic).

The Arduino Mega with ATmega2560 microcontroller is used as the embedded
controller that interacts with the Arduino Ethernet shield along with the monitoring
platform. The Ethernet shield, which is mounted above the Arduino board, must be
connected with a Wi-Fi router (or PC) through an RJ45 cable as shown in Fig. 3. The
Ethernet Shield is based on the Wiznet W5100 Ethernet chip that provides a network
(IP) stack for TCP and UDP protocols [31].

2.3 Prototype

Figure 4 presents the solar tracker prototype in its detached and assembled state. It
consists of the PV panel, the L-R, and U-D servomotors and LDR sensors. The panel
is attached to the U-D servomotor on one side and with a bearing on the other side to
ensure better flexibility when the solar tracker rotates around the horizontal axis. The



Internet of Things-Based Solar Tracker System 81

Up-Down
‘| Servo Motor

oo |

LDR Top-Left
inside hollow
cylinder

Outputs (LDRs Left-Right
and PV panel) . Servo Motor

Fig. 4 Solar tracker prototype in its detached and assembled state

assembly is attached to the L-R servomotor. The LDR sensors are fixed in the four
corners of the panel inside hollow cylinders. If the panel is not perpendicular to the
sun, at least one LDR will be covered by shadow caused by the surrounding cylinder.
Hence, there will be a difference in light intensity. The best orientation is when the
light intensities are equal in all LDR sensors. Figure 5 shows the entire prototype of
the IoT-based solar tracker system, and it is clear that all reported components in the
hardware part have been used to build it.

Solar tracker
device

Arduino
Mega 2560

Arduino
7] Ethernet Shield

DH22 sensor

RJ45 cable
[Votogesersr]

.

LED
(Mode indicator)

Fig. 5 IoT-based solar tracker prototype
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2.4 Software Design

a. Arduino IDE

Arduino is an open-source electronics prototyping platform with easy-to-use hard-
ware and software [32]. The Arduino platform provides an integrated development
environment (IDE), which includes support for C and C++ programming languages.
The used Arduino board in this work is programmed by the IDE that serves as a code
editor and from which the program code can be uploaded to the microcontroller
through USB cable, as can be shown in Fig. 3. The Arduino Megaboard is utilized
to implement all software requirements of the IoT-based solar tracker.

b. MyDevices Cayenne

myDevices is a company that offers [oT solutions. It offers an end-to-end platform for
the IoT. In our project, we will focus on Cayenne, one of the solutions from myDe-
vices. This tool allows developers, designers, and engineers to build prototypes of
the IoT. Cayenne uses the Message Queuing Telemetry Transport (MQTT) protocol
to connect any device with the Cayenne cloud. Once connected, the user can send
and receive data from the device to the Cayenne dashboard via the Widgets created.
MQTT is a publish—subscribe messaging protocol based on the TCP/IP protocol.
The publish—subscribe methodology uses a message agent that is responsible for
delivering messages to the client. The MQTT is the API for sending information to
the Cayenne cloud, or devices controlled by Cayenne. The messaging agent in this
connection is the cloud, it manages the different clients (sensors and actuators) that
send and receive the data.

To use MQTT with Cayenne, we need to use the Cayenne libraries. For Arduino,
the CayenneMQTT library can be installed from the IDE’s Library Manager. To
program our Cayenne IoT platform-based IoT application, we will take advantage of
the predefined functions. For example, to establish the connection between Cayenne
cloud and Arduino Mega equipped with the Ethernet module, we call the Cayen-
neMQTT Ethernet library where we declare our authentication information (the user-
name, password and the ClientID) which should be obtained from the Cayenne Dash-
board. Then, in the setup part of the program, we call Cayenne.begin () function to
establish the connection with Cayenne dashboard. For each actuator, we create a func-
tion with an integer parameter between 0 and 31 imperatively called CAYENNE IN
(VIRTUAL CHANNEL). For each sensor, we create a function with an integer param-
eter between 0 and 31 imperatively called CAYENNE_OUT (VIRTUAL_CHANNEL).
In the loop part of the program, we call the predefined function Cayenne.loop (), this
function itself calls the functions CAYENNE_OUT and CAYENNE_IN. The virtual
channel as its name suggests is a channel that does not physically exist, it char-
acterizes visualization or command widgets. It allows them to be linked with the
corresponding sensor or actuator.
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c. The Embedded Software Design

The embedded software is the piece that will be embedded in the Arduino Megato
interact between the Ethernet module and Cayenne cloud (see Appendix). It is
designed as follow:

(i) The IoT-based solar tracker has two function modes: manual and automatic. A
button created in the Cayenne dashboard has a role to switch between the two
modes. When it is inactive, the manual mode is selected, otherwise automatic
mode. Besides, a function is established in the Arduino code that allows recov-
ering the state of the button. The LED in the system circuit reflects the state of
this switch.

Therefore, for the controller to know the selected operating mode, we just need to
test the state of the pin in which the LED is connected. For example, if the LED state
is low, the controller will call the manual mode function to execute, otherwise, it will
call the automatic function.

(i) If the manual mode is selected, the user can directly control the positions of
the servomotors to orient the PV panel from east to west by L-R servomotor
or from south to north by the U-D servomotor. The control is made from the
associated widgets of servomotors in the dashboard of the IoT application.

In this mode, the controller calls Cayenne.loop () function which itself calls all the
functions CAYENNE_IN, including those related to servomotors, to execute. The
Cayenne.loop () function will also call all the functions CAYENNE_OUT, linked to
the sensors, to execute. Where the data related to LDR sensors, PV current, voltage
and power, temperature and humidity would be sent to the server so that they can be
visualized in their associated widgets in the IoT application.

(iii) Ifthe automatic mode is selected, the algorithm shown in Fig. 6 will be executed.
The algorithm starts by reading the analog values returned by LDR sensors.
Then, it processes these data to command servomotors that move the PV panel
toward the sun position. Considering the vertical axis-based solar tracker move-
ment, the average values of the two LDRs on the left and the two LDRs on
the right are compared and if the lefts receive more light, the PV panel will
move in that direction (clockwise) through the L-R servomotor. The latter will
stop when the difference result is between —10 and 10. This range is used
to stabilize the controller and to reduce the power consumption of servomo-
tors. Otherwise, if the right set of LDRs receives more light, the PV panel will
move in that direction (Counterclockwise) through the L-R servomotor and
will continue to rotate until the difference result is in the range [—10, 10]. The
same approach is used for the horizontal axis-based solar tracker movement
where the average values of the two LDRs on the top and the two LDRs on the
bottom are compared.



84 A. El Hammoumi et al.
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Fig. 6 The flowchart for the automatic mode of the solar tracker

As well as in the automatic mode, the controller will also call the Cayenne.loop ()
function to send the solar tracker data to the IoT application.
For

d. Development of the IoT Monitoring Application
(i) Hardware interfacing with Cayenne loT platform

To interface the hardware, including sensors and actuators, with the IoT platform,
we need to follow the next steps:

Log in on Cayenne myDevice website after creating an account (Fig. 7a).

Then, click on “Bring Your Own Things” from Cayenne API (Fig. 7b).

Copy the MQTT credentials (username, password and client ID) from Create App
(Fig. 8), and paste them in Arduino source code as described previously. After
successfully compiling and uploading the entire code to Arduino Mega, open
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Cayenne

& & R

Cayenne API
Bring Your Own Things

(b). Select device (Cayenne API).
(a). Cayenne sign. up

Fig. 7 Cayenne IoT Platform sign up (a). Cayenne API (b)

MQTT credentials

MQQT —f
Username

v
]

MQQT — siarazdanorncotse toce
Password

Client ID — 177555b0-bb43-11ea-a3bt-

O View all SDKs on GitHub Device Name
« loT Solar Tracker » Waiting for board to connect...

Fig. 8 MQTT credentials and device connection to Cayenne

Serial Monitor in Arduino IDE to get the Cayenne log prints (Fig. 9). As soon as
our device comes online and connects to Cayenne, the previous page (Fig. 8) is

automatically updated and we will see our device in the online dashboard as can
be seen in Fig. 10.

Fig. 9 Cayenne log prints
on Serial Monitor coms8

|
[0] MAC: FE-31-7E-8-72-R9
[5706] IP: 192.168.1.15

[5707] Connecting to mgtt.mydevices.com:1883
[6063] Connected
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Cayenne Y rp——— i
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Device Name ' “tuere  Device icon
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17TH40- 8- 1100, ’_I(f 54 Client ID
==

Fig. 10 Device settings

e Then, to interface sensors and actuators, i.e. create their widgets, click on “Add
new...”, select “Device/Widget” and click on “Custom Widgets” (Fig. 11). Then,
select a widget and populate all its associated settings (the channel number must be
the same as in code), and finally click on “Add Widget” to add it to the dashboard
of your device. For us, we chose the “value” widget for all sensors, “Button”
widget for mode switch and the “Slider” widget for servomotors.

Finally, Fig. 12 illustrates the designed [oT application for monitoring solar tracker
data. Once the connection with the solar tracker system is established, sensor data can
be visualized on their associated widgets, the tracking mode (automatic or manual)
can be selected from the switch button, as well as controlling servomotors’ angles
through their widgets. Sensor data can also be obtained in graphical form by modi-
fying the representation type in their settings, or just by clicking on the graph icon
above the widget.

| 874 |— Value
e p74°
| #
Custom [ Button -
Widgets _—————
1 1| Add Widget
[ oo [

Fig. 11 Cayenne custom widgets
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Fig. 12 IoT monitoring application of solar tracker system

(i) Alerts creation

One of the most important criteria in a monitoring system is its ability to send
notification alerts to inform users when an event, related to their monitored devices,
occurs. To this end, we take advantage of one of Cayenne’s features [33] to add
alerts to our IoT application, where we can preprogram our application to send a
notification alert (SMS, Email, or both) or to perform a specified action. For example,
a temperature alert is created to send an email notification to the user (or recipients)
when the monitored temperature is reached a threshold value, as can be shown in
Fig. 13. To create an alert, click on “Add new...” and select “Trigger”, then set the
event and its action and finally click on “save” to add it to the dashboard.

e
. " Alert Name Ve |
o L
;' A/Event Action
if (2 10T Solar Tracke then roti,

Trmparatre

Badd rustom recipient

Custom recipient
sboutals phammoumiumbe g ma
Sensor Name 0 ALhreshoId value

8 Semaar above 8 <ont e 4— S€Nd EMail
ansar below > or < than threshold value ?

Fig. 13 Temperature alert configuration
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3 Results and Discussion

Different tests have been carried out to examine the developed loT-based solar tracker
prototype. The experimental setup is illustrated in Fig. 14. The Arduino board is
powered with the computer through a USB cable, which is also used to display,
in the Serial Monitor of Arduino IDE, the measured parameters and data received
from the IoT application. This will allow us to verify whether the captured data from
Arduino are correctly and in real-time sent to the IoT application or not. Whereas,
Arduino can be powered with an external DC power supply. The Ethernet shield
connects the Arduino board to the internet via RJ45 cable. Once the connection with
the IoT application is established, the data of the solar tracker system are sent to the
monitoring application, where we can view these data live and send commands to
the controller.

The system is programmed to send all data from the device regardless of the
tracker mode (manual or automatic). First, the automatic mode has been tested,
which is activated when the switch mode is in the high state; the LED (mode
indicator) in the circuit lights up. The servomotors were automatically controlled
according to intensities captured by LDR sensors. Figure 15 presents the samples
of data recorded in real time from the solar tracker system in the IoT application
during the test period. Figure 15a displays the recorded electrical measurements,
namely the current, voltage and power. While Fig. 15b displays the recorded envi-
ronmental measurements, namely the temperature, humidity and the intensity of light
(captured by the top-right LDR) with the accurate time and date. It has been verified,
by comparing the data sent from Arduino and those received on the dashboard of the

Fig. 14 The experimental
setup of the prototype
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(a) Electrical measurements. (b). Environmental measurements.

Fig. 15 Samples of data recorded in real time in the IoT application

IoT application, that all electrical and environmental measurements are sent properly
and in real-time.

To check the reliability of the monitoring application to notify the user when
an event occurs, it has been programmed to send an alert. For example, when the
monitored temperature is higher than 40 °C. Figure 16 shows the alert notification
received in our mailbox at the same time when the temperature exceeds 40° as can be
seen in Fig. 15b. Other alerts can be added to the application, such as a malfunction
of one of the sensors and/or actuators and a rapid decrease in PV power.

Moreover, the proposed IoT prototype has been tested in manual mode, which is
activated when the switch mode is in the low state; the LED in the circuit turns off.
The servomotors were controlled through their associated widgets in the dashboard.
For instance, we have set the slider linked to the L-R servomotor at the center (i.e. at
a value of 0.5) and the other slider of U-D servomotor at 0.3, which means that the
L-R and U-D motors will rotate by 90° and 30°, respectively. Also, tests have shown
that solar tracker properly and rapidly executes commands from the monitoring
platform with a time not exceeding 2 s. In the manual mode, the user can remotely
position his device in an optimal direction according to the surrounding environment
and device location. Moreover, in this mode, the power consumption of motors can
be too minimized or, where the user can intervene to position the solar tracker for
example in only one direction according to each month or season (winter, spring,
summer, and autumn) in the year. However, an amount of PV energy can be lost
due to a limitation of the solar tracker operation according to the daily movement
of the sun. The servomotor commands can be programmed beforehand without user
intervention by creating events and associated actions in the IoT application.
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Fig. 16 The received
notification alerts in the Cayenne 1503
mailbox tome ~

From Cayenne * no-reply@mydevices.com

o aboubakr.elhammoumi@usmba.ac.ma
Date 30 Jun 2020, 15:03

8 Standard encryption (TLS).

See security details

Cayenne

| Aboubakr El Hammoumi Aboubakr

Channel 11

40

This Is connected to loT Solar Tracker.

4 Conclusion

In this chapter, a smart prototype has been designed to monitor and control a dual-
axis solar tracker system using a simple and efficient IoT solution. The prototype has
been tested experimentally. Test results demonstrate that the developed IoT-based
solar tracker provides users with a simple monitoring application, in which users
can easily and in real-time monitor electrical and environmental parameters of the
solar tracker system for further processing and management. Other sensors could
be added, for example, solar irradiation and wind sensors to help understand more
about the PV power output as well as to test the solar tracker system on its flexibility
during high wind. Due to its simplicity, the proposed IoT solution can be employed
in various fields to connect devices or things to the internet as well as for research
or educational purposes.

Appendix

The embedded code of the IoT-based solar tracker system
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#define CAYENNE_PRINT Serial

#include <CayenneMQTTEthernet.h> //CayenneMQTT library
#include <Servo.h> //Servo motor library
#include <DHT.h> //DHT library

#define DHTTYPE DHT22
#define DHTPIN 2
DHT dht (DHTPIN, DHTTYPE) ;

//MQTT credentials

char username[]="498d2d00-afe2-11ea-883c-638d8ce4c23d";
char password[]="ab4a8f92d94033c01f6el18celd8a84d8c304c9c4";
char clientID[]="17798a40-b968-11ea-93bf-d33a96695544";

Servo servo_x; //up-down servomotor
int servoh = 0;

int servohLimitHigh = 170;

int servohLimitLow = 10;

Servo servo_z; //left-right servomotor
int servov = 0;

int servovLimitHigh = 170;

int servovLimitLow = 10;

int topl,topr,botl,botr;
int threshold value=10;
float Vout;

void setup()
{ Serial.begin(9600);
Cayenne.begin (username, password, clientID);
servo_x.attach(5);
servo_z.attach(6);
dht.begin();
pinMode (3, OUTPUT) ;
digitalWrite (3, LOW) ;
}

void loop ()

{ topr= analogRead(A2);
topl= analogRead (A3);
botl= analogRead (A4);
botr= analogRead (A5);
Vout=(analogRead (Al) * 5.0) / 1023;
Serial.println(" Manual-mode");
Cayenne.loop();

if (digitalRead(3)==HIGH) {
Serial.println(" Automatic-mode");

servoh = servo_x.read();

servov = servo_z.read();

int avgtop = (topr + topl) / 2;
int avgbot = (botr + botl) / 2;
int avgright = (topr + botr) / 2;
int avgleft = (topl + botl) / 2;

int diffhori= avgtop - avgbot;
int diffverti= avgleft - avgright;

/*tracking according to horizontal axis*/
if (abs(diffhori) <= threshold value)
{
servo x.write (servoh); //stop the servo up-down
lelse {
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if (diffhori > threshold value)
{ Serial.println(" x - 2 ");
servo x.write(servoh -2); //Clockwise rotation CW
if (servoh > servohLimitHigh)
{
servoh = servohLimitHigh;
}
delay (10);
telse {
servo x.write(servoh +2); //CCW
if (servoh < servohLimitLow)
{
servoh = servohLimitLow;
}
delay(10);
}
}
tracking according tc ertical axis
if (abs(diffverti) <= threshold_value)
{
servo_z.write (servov); //stop the servo left-right
telse(
if (diffverti > threshold value)
{
servo z.write(servov -2); //CW
if (servov > servovLimitHigh)

{

servov = servovLimitHigh;
}

delay(10);

telse(

servo z.write(servov +2); //CCW
if (servov < servovLimitLow)

{

servov = servovLimitLow;

}

delay(10);

}

}
}
// Cayenne Functions
CAYENNE_IN(8) {
int value = getValue.asInt();
CAYENNE_LOG ("Channel %d, pin %d, value %d", 8, 3, value);
digitalWrite(3,value);
}
CAYENNE IN(7){ //up-down servo motor
if (digitalRead(3)==HIGH){ //Automatic mode
}
else{ //Manual_mode
servo_x.write (getValue.asDouble() * 180);
}
}
CAYENNE IN(6){ //left-right servo motor
if (digitalRead(3)==HIGH) {
}
else{
servo_z.write (getValue.asDouble () * 180);

}
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CAYENNE_OUT (0) { //Current
float current = Vout/10;
Cayenne.virtualWrite (0, current);
Serial.print ("Current: ");
Serial.println(current);

}

CAYENNE_OUT (1) { //Voltage
float voltage = Vout * 2;
Cayenne.virtualWrite (1, voltage);
Serial.print ("Voltage: ");
Serial.println(voltage);

}

CAYENNE _OUT (2) { //LDR Top-right
Cayenne.virtualWrite (2, topr);

}

CAYENNE_OUT (3) { //LDR Top-left
Cayenne.virtualWrite (3, topl);

}

CAYENNE_OUT (4) { //LDR Bot-left
Cayenne.virtualWrite (4,botl);

}

CAYENNE_OUT (5) { //LDR Bot-right
Cayenne.virtualWrite (5,botr);

}

CAYENNE_OUT (10) { //Power
float power = (Vout * 2 * Vout)/10 ;
Cayenne.virtualWrite (10, power);
Serial.print ("Power: ");
Serial.println (power) ;

}

CAYENNE_OUT (11){ //Temperature
float t = dht.readTemperature();
//int chk = dht.read (DHT11PIN) ;
Cayenne.virtualWrite (11, t, TYPE TEMPERATURE, UNIT_ CELSIUS);
Serial.print ("temperature: ");
Serial.println(t):;

}

CAYENNE_OUT (12) { //Huidity
float h = dht.readHumidity();
//int chk = dht.read (DHT11PIN) ;
Cayenne.virtualWrite (12, h);
Serial.print (" humidity: ");
Serial.println(h);
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Impact on the Performance of Solar m
Photovoltaic System with the Innovative oo
Cooling Techniques

N. Beemkumar, S. Dinesh Kumar, A. D. Dhass, D. Yuvarajan,
and T. S. Krishna Kumar

Abstract The photovoltaic panel converts only some parts of solar radiation energy
into electrical energy and the rest of energy will remain as heat energy, which results
in raising the panel temperature and decreases electrical proficiency. The decrease
in PV module efficiency depends on the assortment of limitations including temper-
ature; the yield power diminishes by 0.2—-0.5% per 1 K differs in the hotness of the
photovoltaic module. The PV system efficiency could be improved by providing
efficient cooling techniques like active and passing cooling system with the cooling
medium air, water, phase change material (PCM), etc. This chapter summarizes the
recent trends in PV cooling techniques and also discusses the impact of the inno-
vative cooling technique on solar PV module performance by combining PCM and
thermoelectric generators (TEG).

N. Beemkumar ()

Department of Mechanical Engineering, Faculty of Engineering and Technology,
Jain (Deemed-to-be University), Bengaluru 562112, India

e-mail: beem4u@gmail.com

S. Dinesh Kumar

Department of Mechanical Engineering, Karpaga Vinayaga College of Engineering
and Technology, Kanchipuram, India

e-mail: softdin@gmail.com

A. D. Dhass

Department of Mechanical Engineering, Indus Institute of Technology and Engineering, Indus
University, Gujarat 382115, India

e-mail: dasaradhan.ad @ gmail.com

D. Yuvarajan

Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai
602105, India

e-mail: dyuvarajan2 @ gmail.com

T. S. Krishna Kumar

Department of Automobile Engineering, VNR Vignana Jyothi Institute of Engineering
and Technology, Hyderabad, India

e-mail: krishnakumar_ts@vnrvjiet.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 97
S. Motahhir and A. M. Eltamaly (eds.), Advanced Technologies for Solar

Photovoltaics Energy Systems, Green Energy and Technology,
https://doi.org/10.1007/978-3-030-64565-6_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64565-6_5&domain=pdf
mailto:beem4u@gmail.com
mailto:softdin@gmail.com
mailto:dasaradhan.ad@gmail.com
mailto:dyuvarajan2@gmail.com
mailto:krishnakumar_ts@vnrvjiet.in
https://doi.org/10.1007/978-3-030-64565-6_5

98 N. Beemkumar et al.

Keywords Photovoltaic panel - Heat energy - Efficiency + PCM - Active cooling -
Passive cooling

1 Introduction

When exposed to a hot and dry climate, the yield of a solar-powered PV panel
changes from the yield of proportional solar oriented PV panels in chilly conditions.
Light is an alluring piece of solar-based radiation while heat is not [1]. Adjusting the
atmospheric airstream power starting is at 1-3 m/s brought down the temperature of
the panel by around 10 °C [2]. Inferable from the high surrounding temperature and
high panel temperature, machine execution was seen to a generous decrease in the
late spring. The module showed relatively superior in winter [3]. When all is said
in done, lessening the heat substance or disappointment of the solar light-based PV
cell or module and expanding the electrical presentation is troublesome. Frequently,
the ingestion of heat into the solar light-based PV module relies fundamentally upon
the type of burden associated with the power age units. The particularly lower heat
burden enthalpy, connected to the photovoltaic panel, request more power, so expel
heat from the climate or heat sink utilizing a warm siphon [4].

The various m-Si PV modules, for example, Yingli-produced m-Si, m-Si, dark
solar light-based PV panel, and fundamentally determined estimations of the para-
sitic opposition and photogenerated current of the Yingli m-Si PV module were
contrasted with assessing the effect of temperature. The discoveries recommended
that the m-Si 250-W module was amazingly temperature touchy to compute the
shunt opposition. With an ascent in temperature, such enhancements diminished
exponentially. A consistent ascent in temperature has improved the obstruction of
the individual succession [5]. Indeed, the temperature decreased by about 15.13 °C
since the balances installed at the base of the PV module increased the district’s
flow of wind current heat. Consequently, the electrical yield compared with the PV
module temperature was projected to be 14.39%. Moreover, when cuts were mounted
between the blades, they expanded the wind stream speed and heightened choppiness
creation, in this way expanding the balances’ cooling productivity [6].

As indicated by the exploratory investigation, the temperature drop in the focal
fragment of the Building Integrated Concentrated Photovoltaic (BICPV) system for
miniaturized scale balances finned with a PCM was found to have been diminished
by around 9.6 °C. The temperature drop in a related segment was around 11.2 °C,
due to the addition of nanoparticles to the PCM. The presentation of nanoparticles as
stood out from typical PCM material prompted the expanded decrease in temperature
[7]. When using the cooling system, the usual temperature of the PV panel drops
to around 45 °C, which leads to a decrease of approximately 27% for the module
temperature. This was because of the pervasive soggy circumstance on the backside
of the device, while creation limit and execution improved separately by around 32.7
and 31.7% [8]. Radiative solar light-based cell cooling is a viable type of cooling
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to manage the temperature of solar-powered cells. However, the exemplified solar-
based cells despite everything have high outflows, proposing that more changes in
sun-oriented cells’ radiative cooling productivity are negligible. Nonetheless, note
that radiative cooling of solar-powered cells in certain conditions is without a doubt
a suitable method to cool solar energy-based cells [9].

To get an economic viewpoint, the made of a cooling system is reasonable, because
it is a free structure (the power deftly of the cleaning structure is done by the power
set aside in the battery), and it uses modest (water or sun situated refining (nursery
effect or smooth sun controlled finder)). It grants improving the electrical making of
photovoltaic modules, which prompts the decrease in the force bill. It furthermore
serves to the cleaning of PV modules with a water seminar on the front face [10]. The
results showed that the maximum temperature drop in submerged cooling conditions
about 24 °C. This prompts a rate increment of 10.06% of the open-circuit voltage, the
most extreme force conveyed by the PV module additionally increments by 9.83%
and this adequately expands the transformation productivity of the PV module by
9.83% [11].

The underneath conditions are analyzed with the assets of sun-based cells and the
cooling necessities of the fluid chose for cooling.

(1) Great heat move execution for the fluid

(2) The ghostly reaction of sun-oriented cells ought to be coordinated by the
ingestion of the daylight by the fluids

(3) Non-poisonous and great synthetic soundness must be kept up for the fluid

(4) Economical fluids are utilized for cooling [12].

It is concluded that the effect will be a 5% decrease in productivity for increasing
10 °C in cell temperature. Consequently, further attention has been orchestrated in
the application of PV panel cooling strategies. The single principle technique to
accomplish this cooling is by consolidating the two advancements into a half breed
configuration, called photovoltaic heat (PV/T) power [13].

It was discovered that the PCM material would give positive outcomes just when
the temperature of the panel surpasses the PCM dissolving point [14]. The show of
three identical PV modules is the usage of module 1 without cooling, the cooling
of module 2 with unadulterated vapor, and the cooling of module 3 with nanofluids
(CuO-water and Al,Os;—water with 0.1-0.7% wt).

In any case, the greatest discrepancy between the cooling module’s rear temper-
atures and the non-cooling module was 22.13 C at 0.6% CuO centralization, with
an electrical power extension of 12.57% [15]. PV cells are very vulnerable to shifts
in temperature, despite the eco-friendly capacity of the photovoltaic (PV) module to
generate power. This can result in a decline in skills from 0.25-0.5%/C. Scientists
and scientists are committed to increasing the performance of PV cells by rising the
working temperature to solve this issue. For this reason, the researchers have devel-
oped an easy and elite PV cooling system that can lower the working temperature of
the module [16].
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The rectangular fins reduced the temperature of the PV module by 10.6% and
raised their performance by 14.5%. Nevertheless, the circular fins-based PV module
will resist 112% more power than the reference PV module, with the same surface
area as the rectangular fin. This indicates that the surface area of the fins is a crucial
parameter from the PV module for heat dissipation and involves careful fine design
[17].

A parametric analysis is carried out to evaluate the overall machine efficiency for
the specific operating environments and activated capability. The developed device
is also tested for two separate forms of multi-junction solar cells and three specific
coolant grades: wind, ethanol, and n-pentane Water with higher concentration ratio
capacity has been known to function stronger fluid due to higher latent moisture [18].

The strength of the refrigerated and non-cooled instruments was then contrasted.
The temperature of the cooling modules dropped to approximately 25 °C, while
the temperature of the uncooled module was 45 °C. The strongest outcomes were
obtained by cooling modules with a water video, because there were no water
splashes, and continuous surface cooling contributes to an improvement in power of
20%. The uncooled module obtained a maximum strength of 105.3 W/m?, compared
with 125.5 W/m? for its cooled equivalent during the study. Consequently, cooling
the module contributed to a capacity rise of 20.2 W /m? [19].

The water spray cooling system used in the photovoltaic panel and its results show
that the usage of this kind of cooling has a 2% improvement in the average electrical
energy (EE) relative to the same level. They also observed that utilizing this sort of
device would decrease the temperature of the average panel from 54 to 24 °C [20].

Some structural parameters have been examined and evaluated for impact on
PV cell temperature and electrical performance. The most important parameters are
summarized on specific solar irradiation, inlet air temperature, air mass flow rate,
water mass flow rate, channel size, channel width, wind speed, fins length, fins tilt,
fins amount, the distance between successive fins, fine thickness, container width,
size of Reynolds and Prandtl numbers [21].

The purpose of this chapter, to familiarize the various types of cooling techniques
were used in PV panel surface, which includes active, passive and hybrid cooling
methods, effects of various methods on PV panel performance analysis are discussed
in detail.

2 Types of the Cooling System in PV Panels

Various developments in cooling are studied, especially gliding using the concen-
tration cooling method. Improving the appearance of solar-based panels is utilizing
phase-changing materials; solar-based panels with water-drenching cooling methods
[22]. There are two kinds of cooling strategies to boost the greatest power efficiency
and PV module generation: active and passive cooling. While aloof cooling strategies
include standard cooling methods for the removal of heat from the solar-powered
PV floor, general air, normal water, and PCM for Fig. 1 [23].
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PV Cooling
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Active Cooling Passive
Cooling

[ ! } | !

Forced Nanofluid Refrigerant Natural PCM
Air/ Cooling Cooling Air/ Water Cooling
Water Cooling

Cooling

Fig. 1 Classification of PV cooling techniques based on an input source to the system [23]

The overall performance of the PV panels is greatly affected by their temperature.
The temperature development affects the electrical energy created by photovoltaic
cells [24]. Cooling advancements have developed towards increasingly complex
methodologies, which incorporate warmth sinks or blends with different systems.
The classification of cooling methods for enhancing the performance of a PV panel
based on working fluid is given in Fig. 2. The epic, advanced field identifies with shaft
parting (or range channel) innovation, which recognizes the frequencies utilized for
PV cells from those utilized for the heat transformation of the PVT system [25].

3 Active Cooling Methods

The net proficiency yield of a solar energy-based photovoltaic cell is delicate,
corresponding to temperature.

e For the most part, broadcasting a small film of water over a sun-based photovoltaic
cell reduces the rate of sensation of sun-oriented radiation and cools the sun-
oriented board to a comprehensive temperature.

e Theoretically, the water that is drained after passing into the channel stream set
may be used as a temperature resource [26].

The revealed techniques and cooling impacts of each PV module cooling strategy
with a schematic diagram are given in Fig. 3 [27]. It consists of both active and
passive methods presented in the diagram.
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A 4

Nano-fluid based cooling

Refrigerant based cooling

Thermo-electric

A 4

> Evaporative cooling
> Spectrum filter/Beam split
» Hybrid Cooling

Fig. 2 Classification of cooling methods based on working fluid [25]

Heat pipe cooling

A heatpipe is a compartment tube loaded up with the working liquid. One finish of
this cylinder (called evaporator area) is gotten warm contact with a hot point (PV
panel back surface) to be cooled. The opposite end (called condenser segment) is
associated with the dissipation point where the warmth can be dispersed (climate). A
bit of the cylinder among the evaporator and condenser is called the adiabatic area.



Impact on the Performance of Solar Photovoltaic System ... 103

»/Sobaricel Working fluid
= T
> o
-
Heating i ! Cooling
(Evaporation) Wick ' (Condensation)

a) Heat pipe cooling (active/passive

v |

Cold fluid Hot fluid
(Heat energy)

(&) PV(CPV)YThermal system (active)

Dielectric liquid

N

Microchannel 4;

heat sink /ﬁ

Fluid _Mn:rm‘h annel

(i) Microchannel (active)

v v W

— S
? Fluid %}

e

(b) Jet impingement cooling (active)

Water flow

Pipe
(In pipe) (On cell surface)

Water cooling (activ

Temperature

Solid | 1135€ | quid

() Phase change material (PCM) (passive)

Heat spreader

& LD S

(h) Passive heatsink (passive)

Outer space
8-14 pn\

Atmospheric

Sky radmm;; = window
Thcrmal
radiation

-- Spectral selective
surface

(i) Radiative cooling (passive)

Fig.3 Schematic diagrams of cooling methods for photovoltaic modules. The cooling type (active
and/or passive) is shown in parentheses for each cooling method [27]
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Jet impingement cooling

One significant cooling procedure that has been utilized broadly in hardware is the
strategy for heat extraction by impinging planes. Impingement planes are equipped
for removing a huge amount of heat.

Airflow cooling

Normal or constrained air dissemination is a straightforward and minimal effort mode
to evacuate the warmth, yet it is less viable at low scopes, where the surrounding air
temperature is over 20° C for a long time during the year. PVT/Air systems are used in
pragmatic applications, predominantly as ease air-cooled Building Integrated Photo-
voltaics, because of the low development utilization of materials and low working
expense.

Water cooling

When deep water is used specifically in cooling, the PV panel can tend to run at a
virtually constant temperature all year round. That is because the temperature of the
surface water will not come up against a vital variation throughout the year.

PV Thermal system

A thermoelectric cooling device allows good use of excess energy for better effi-
ciency but has a poor rate of transition profitability and this innovation’s movement
is modest.

Phase change materials

Ongoing investigatation concerning uninvolved cooling of the photovoltaic panel
using phase change materials has indicated to the phase change materials can accu-
mulate a lot of warmth and while cooling the PV panel with phase change materials
it continues practically consistent warmth.

Liquid Immersion/Submerging

A passive lowered water cooling technique where the PV module is lowered in the
static water, and they examined the impact of the situation in the profundity course
on the presentation.

Passive Heating

Detached solar-driven cooling systems operate by minimizing unwanted daytime
energy benefit, providing non-mechanical airflow, exchanging warm indoor air for
colder outdoor air wherever necessary, and taking away the coolness of the night to
guide high daytime temperatures.

Microchannel

The microchannel heat sink shows the capacity to expel a lot of warmth from a
little territory, which is an attractive component for heat move improvement. Along
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these lines, specialists have indicated an expanded enthusiasm for the improvement
of small scale cooling innovation for different applications

Radiative cooling

An inspection into radiative cooling of sunlight-based cells has expanded as of late.
An ongoing report on the issue expressed exploring the impact of upgraded radiative
cooling on sun-oriented cells utilized in business PV was basic. Reenactment results
uncovered that the sunlight-based cell temperature must be diminished by 1.75 K
even in the perfect case.

A functioning of cooling strategy erstwhile structured in addition to displaying
for PV panel utilizing TEG innovation planned to get better the PV proficiency
furthermore future.

Figure 4 demonstrates the effective performance of the PV-TEC system in advance
applied at 0.12 and 0.25 s for atmospheric temperature changes, holding the solar-
oriented insolation steady at 1 kW /m?. It reveals that the PV power obtained from the
sensor for 25 °C surrounding temperature is 52 W without cooling activity, whereas
the total PV power can be raised to 54 W with a 17 °C reduction following the cooling
mechanism [28].

For illustration, nanofluid is characterized as a mixture of particles (nanometer
sizes, 100 nm) and liquids such as H,O and ethylene glycol. The liquids have
improved the thermophysical properties of standard base liquids such as thermal
conductivity, consistency, and overlap. This is commonly used in SPV panel cooling.
So solar PV cooling is important, it diminishes the surface temperature by cooling,
so ability will improve. There are various methods for refrigerating solar-based PV
such as active and passive cooling. Efficient cooling utilizes air, water, nanofluids,
etc. for cooling purposes, goods such as paraffin wax, eutectics, natural materials,
cotton wick, etc., for passive cooling purposes [29], [30].
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Fig. 4 Representation of photovoltaic thermoelectric generator under standard temperature condi-
tion. a Photovoltaic Power b Thermoelectric generator power ¢ Thermoelectric generator Current,
d net photovoltaic power, and e Photovoltaic panel temperature [28]
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Table 1 Performance parameters in PV panel for different examined cooling [32]

Techniques Power (W) | Relative Effective Temperature | Effective
increase in increase in °C) increase in
power output | power output electrical
(%) (%) efficiency (%)

Without 35 - - 56 -

cooling

Back surface | 39.9 14.0 54 33.7 3.6

cooling

Front surface | 40.1 14.6 6.0 29.6 2.5

cooling

Simultaneous | 40.7 16.3 7.7 24.1 5.9

cooling

PV-PCM structure of aluminum sheet as TCE is tested by running a check under
the clear daylight. The backside of the PV panel has a PCM and aluminum pocket
measuring 0.0361 m?. To improve the thermal conductivity of the PCM and heat
dispersal, the aluminum sheet of zone 0.036 m? is conveniently mounted on the
back of the PV panel. The effect of panel temperature rise is tentatively verified on
Voc, Isc, and generation. The results indicate that PCM with the aluminum sheet as
backplate in the solar-centered PV panel improved the performance of the transition
by 24.4% on a normal [31].

A water spray cooling solution was proposed for different cooling situations
(systems) and was tentatively evaluated on a monocrystalline photovoltaic stand.
The best cooling solution ended up being the synchronous cooling of PV panel
surfaces at the front and back. Among the various cooling, techniques are used to
maximize the power output, simultaneous cooling of the back surface followed by
front surface cooling has exhibited better performance than compared with the other
techniques and it is given in Table 1. This produced an important 5.9% improvement
in electrical output.

4 Passive Cooling Methods

Three diverse submissive lose heat situations be statistically researched, in addition
to the majority encouraging one was where the photovoltaic module was furnished
using cuts during the frontage photovoltaic module facade bringing about a decrease
of around 4 °C. The more cases examined to end up becoming less successful with
the respected drop in temperature below 1.0 °C. The concept of modern PV panel
details products was seen as a realistic possibility [33, 34].

Passive cooling systems allude to innovations used to remove or potentially limit
heat assimilation as of photovoltaic panel lacking extra power utilization. The compo-
nent infers moving temperature anywhere it is created and dispersing it to nature.
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Wide assortments of aloof cooling alternatives are accessible, most straightforward
structures include the utilization of firms of soaring warm conductivity metals, for
example, aluminum and copper, otherwise a variety of blades before extra expelled
surfaces to upgrade heat move to the encompassing. Increasingly, unpredictable
systems include the utilization of PCMs in addition to different strategies in favor of
characteristic flow, notwithstanding the utilization of heat pipes that can move heat
proficiently through a bubbling gathering process. A portion of the effective passive
cooling systems that can limit the danger of expanding warm gains incorporates.
Strategies for Passive cooling frameworks can be classified into three sorts.

¢ Air aloof cooling,
e Water uninvolved cooling and
e Conductive cooling.

The distinction between air detached cooling in addition to conductive cooling is to
the aggregate character in the photovoltaic panel for the common heat move about
components. The bigger the outside of PV cell the more it is critical to the utilization
of detached cooling. Water uninvolved cooling is increasingly productive because of
the warm limit of water high [35].

S Hybrid Cooling Techniques

Joint use of PCM and nanofluid is a more feasible strategy for PV cooling than by
sole use of PCM or nanofluid because additional PV panel heating is separated by two
extremely heat-resistant media, for example first by PCM and then by a nanofluid.
PCM fusion with nanofluid decreases PV-surface temperature as well as provides
more stability in temperature due to standardized PCM interaction with the plate.
The panel will gain improved warm vitality on the off chance that it blends both
nanofluid and nano-PCM [36].

It has been indicated that connecting a TEG to the rear of the PV cell can produce
maximum power, which can exploit solar oriented vitality. Hence, it is vital to locate
the prevailing warm opposition of the partial illuminated system, and afterward locate
a successful answer for control of the warm obstruction for advancement. In this area,
an affectability examination is led to the warm protection of the radiation, convection,
and conduction for each layer [37].

For this exploratory analysis, a number of latent cooling systems are possible
utilizing a cooling tower centered on PCM and traditional water convection. Yields
show that the cooling device with the rendered oil as PCM has an exceptional capacity
to increase the panel’s effectiveness. The findings obtained indicate that the appli-
cation of Boehmite nanopowder to the composite oil decreased the hotness of the
photovoltaic module in accordance with the configuration of no cooling and the usage
of the composite oil as PCM [38].
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Graphene-water nanofluid has obtained the most remarkable performance at a
concentration of 0.1% and 40 L per minute (LPM) in general competence. Normally,
performance improved by 14.1%, 12.6%, and 10.9% at 0.1% concentration for 40,
30, and 20 LPM, respectively, in water analysis. From the tests, the combined usage
of nanofluid with PCM was assumed to offer favored device execution over the use
of PCM alone [39]. A CPV/T-driven mixture assimilation/thermoelectric cooling
system is introduced. The suggested device utilizes both warm vitality and electrical
vitality that are acquired to offer cooling from the PV/T gatherer. This was guided
to try to develop the PV board cooling monitor to explore the most intense level
of cooling. Thus, to guide the enhancement process, TEC’s COP will surpass 6.4,
which means that the validity number is 70 [40].

Heat pipe helped inert heat stockpiling system are broadly utilized in warming,
cooling, and waste heat recuperation applications because of their basic development
and fantastic thermophysical properties, for example, high warmth stockpiling limit
and capacity to move heat at a consistent temperature over significant separations.
This work concentrated on applications and the extent of crossbreed framework
(HP-PCM-based frameworks) in many building fields.

Following are the striking highlights of this examination:

e The half breed frameworks are exceptionally proficient and overpower the issues,
for example, low warm conductivity of PCM and overheating of warmth pipes
when utilized in mix.

e The crossbreed framework hinders the temperature rise and guarantees the
sheltered activity of gadgets over the more drawn out periods.

e Performance of these half and half frameworks chiefly rely upon properties of
PCM, sort of warmth funnel, and its direction in the framework.

e Heat pipe alongside metallic froth, foil, and blades are superior to traditional HP.

e Charging of PCM for the most part happens by convection heat move while
conduction assumes a significant job during releasing procedure. The expansion
of HP expands the pace of warmth move during charging and releasing [41].

In Fig. 5, the best cases in the cooling systems were tested under the appropriate solar
radiation and natural conditions and in the PV panel models finned left, right and
center (PV + B3), 12 number of TEGs and fins in PV panels (PV + E3), CaCl,H;,0¢
and finned left, right and center in PV panels (PV + C2 + B3) and CaCl,H;,0¢ and
12 number of TEGs and fins in PV panels (PV + C2 + B3) and PV panels (PV +
C2 4 B3) [42].

6 Effects on the Performance of PV Panels

The front-side temperature of the PV cell is greater than the rear temperature of
the PV cell. Through and wide, both the front and the posterior temperatures are
the same in stable conditions. In this test protocol, the influence on the execution
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of the PV module on the front side temperature is higher than the consequence of
the posterior temperature. So also, on the rear during the procedure, the impact of
temperature will corrupt the fill factor esteem. The front and rear temperature of the
PV module impacts on fill factor as appeared in Fig. 6a, b. The found the middle value
of PV module fill factor differed from the beginning and last qualities by about 22.98,
54.16 and 26.19% with the relating variety of arrived at the midpoint of front side PV
module temperature is 10.85, 11.76, and 11.42% and rear PV module temperature is
9.09, 10.76 and 12.05% separately, for the long stretch of December, January, and
February. Here fill component and front side PV variance were strong in January and
accompanied by months in February and December. Thus, in light of the climatic
changes, the working execution boundary most likely corrupts.

On account of the backside PV module temperature, deviation levels are high in
February and January and December months. The variations in temperature forecasts
for December, January, and February are 9.09, 10.76, and 12.05% [43].

Figure 7 delineates the month-wise temperature pace of the front and back of the
PV board at a predetermined area. The pinnacle temperature esteem 34 °C of the
front side is seen in May and June and the most reduced 28 °C is seen in December.
Additionally, the posterior temperature is 32 °C in May and 26 °C in December [44].

The presentation reactions of the PV board in various investigations are summed
up in Table 2. The most extreme increment of 19.32% and 18.40% in electrical force
yield and effectiveness were accomplished under the illumination of 900 W/m? by
presenting the Active phase change (APC) cooling system. In the interim, the most
extreme explicit force improvement picked up in this examination is 21.37 W/m?
[45].

Behind the effect of energy generation effectiveness is introduced in Fig. 8, the
outcomes demonstrate with the purpose of the photovoltaic and photovoltaic-phase
change materials panel make increasingly electric vitality and encompass maximize
electric effectiveness than the equivalent regular PV panel without phase change
materials layer. The most noteworthy yield was estimated throughout the midyear
months. The rise in electricity production for the PV-PCM panel varies from 4.3



110 N. Beemkumar et al.

a
g
%0 % 8
80 ;5 E
B £
z 70 34 E
é 60 I
1
g 50 2 g
) a g
i -
E 0 g
0 n B
£
10 B g
-]
0 7 B
9AM 10AM 11AM 12PM 13PM 147M 15PM 16PM «5
# - Fillfactor (%) for Dec » = Fillfactor (%) for Jan
seespees Fillfactor (%) for Feb ® 47V panel Front side Temperature{oC) for Dec
~#— PV pane| Front side Temperature{oC) for Jan #V panel Front side Temperature(oC) for Feb
b 2
e
2
90 35 8
a
L * 5
g70 33 &
£ 60 3232
s 3
=50 31 8
S 40 30°g
(7]
30 29 8
@ >
o
2 20 28 s
10 27 &
o
0 26 3
9AM 10AM 11AM 12PM 13PM 14PM 15PM 16PM <
o ¥ o Fillfactor (%) for Dec @ <A =®Fillfactor (%) for Jan
=i Fillfactor (%) for Feb e=ll PV panel Backside Temperature(oC) for Dec
)& PV panel Back side Temperature(oC) for Jan  ==@= PV panel Back side Temperature(oC)

Fig. 6 a Performance Characteristics curve for PV system (Front side temperature) [43].
b Performance Characteristics curve for PV system (Back side temperature) [43]

to 8.7% and the output of vitality generation varies from 0.5 to 1%. In this way,
the yearly vitality generation proficiency of the phase change materials module was
0.8% higher than the customary PV module. Through the usage of PCM in some
circumstances, the energy efficiency of 12.2% and the electrical energy produced
of 260.17 kWh were achieved, which dislikes an annual rise of 7.3% relative to
conventional PV panels [46].
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Table 2 Different techniques of cooling [45]

Techniques Temperature | Power | Increase in Power | Electrical Efficiency
(°C) (W) Output (%) (%)

Uncooled condition | 62.4 21.2 - 12.94

Air cooling 55.5 22.0 3.77 13.43

APC 374 24.6 16.03 15.02
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Fig. 9 Equivalent electrical
output power variation of
different schemes [47]

PCM records an improvement of 25% in total skills relative to the PV module
shown in Fig. 9. Compared to the PV module, the normal warm yield for PCM is
increased by 46%. It is further discovered that PCM can elevate the particular warmth
of the warm PVT system, which quickly diminishes the warm misfortunes. Therefore,
the introduction of nanoparticles to the base liquid increases the presence of the
temperature exchanger regardless of the month and climate. Energy performance
figures are dramatically higher inferable from the nanofluid effect [47].

7 Conclusions and Future Outlook

The behavior of a photovoltaic (PV) panel over cooling in front and rear of different
advancements is examined. The PV board execution improved after it was cooled
by dynamic and aloof strategies. The electrical boundaries of sun-based cells
were relying upon surface temperature, which demonstrated that the cooling factor
assumes a significant job in the electrical productivity upgrade. The PCM may be a
great solution for cooling and homogenous diffusion of air. Nonetheless, PCM with
a low liquefying point (25 °C) may lower the PV board temperature more than PCM
with a high softening point (over 30 °C) for short times and trouble areas growing
to develop on the surface of the PV board. The efficiency of the PV-PCM panel is
capable of better by expanding the warmth move among the phase change materials
and the aluminum plate. In addition, the design of the PV-TEC structure has been
separately tested to include temperature advancements and solar-powered insolation
variation. The extension of the nanoparticles increases power efficiency and reduces
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the surface temperature to obvious amounts.Reference [48] is given in the list but
not cited in the text. Please cite them in text or delete them from the list.kindly delete
the mentioned reference
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Photovoltaic Maximum Power Point )
Trackers: An Overview L

Ali M. Eltamaly

Abstract The generated power from the photovoltaic (PV) array is a function in its
terminal voltage. The relation between the generated power and the terminal voltage
of the PV array is called the P-V curve. The point corresponding to the highest
generated power in this relation is called maximum power point (MPP). This relation
has only one peak in the case of uniformly distributed irradiance over the PV array.
Meanwhile, it has multiple peaks in the case of partial shading conditions (PSC). The
one with the highest power is called global peak (GP) and the other peaks are called
local peaks (LPs). The control system should track this point to improve the efficiency
of the PV system by extracting the maximum available power from the PV array. The
controller used to track this point is called the maximum power point tracker (MPPT).
Traditional MPPTs such as hill-climbing or incremental conductance are adequate
to track the MPP in the case of uniform irradiance, but it may stick at one of the LPs
in the case of PSC. For this reason an unlimited number of MPPT techniques are
introduced in the literature to track this point. This chapter introduces an overview
of the PV maximum power point trackers (MPPT) techniques. The classifications
of MPPT of the PV system is introduced in detail in this chapter. The operating
principles, advantages, and disadvantages of each technique are introduced in detail
for famous and important techniques and in brief for the less famous techniques
or the techniques that are not showing good performance in tracking the MPP. A
comprehensive comparison between these techniques is presented in detail in this
chapter. Important recommendations and conclusions are introduced at the end of
this chapter to show the advantages and disadvantages of these PV MPPT techniques.
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1 Introduction

Energy is the main support for modern societies and all mankind. The excessive
depletion of fossil fuels forces the researchers to explore other sources of energy that
will not run out such as renewable energies. Solar energy is the most important source
of renewable energy sources, where its cost is reduced over time and became mature
technology. Photovoltaic (PV) energy systems are used to convert the sunlight directly
into electric energy. Very rapid growth in deploying the PV energy systems where
it is increased by 60% in Europe [1] and new annual installations in 2020 reached
142 GW, a 14% rise over the previous year [2]. Moreover, the total generation from
solar is about 570 TWh [3]. Many efforts were introduced to increase the efficiency
of the PV system which can be translated into a reduction in the cost of energy. Most
of these efforts were done on improving the efficiency of the PV cells themselves
via improving the materials used for their manufacturing, and the other efforts are
introduced to improve the power conditioning circuit used to extract the maximum
available electric power from PV systems. Moreover, much work is done in the
improvement of the integration of the PV system with an electric utility or with
integrating the PV system with renewable or conventional energy sources. One of
the most important issues used to improve the efficiency of the PV energy system
is the maximum power point tracker (MPPT) unit which will be introduced and
discussed in detail in this chapter.

Numerous research works are introduced in the literature to track the maximum
power point (MPP) of the PV systems. All these techniques have cons and pros which
should be discussed in detail in this chapter. For this reason, many review studies
were introduced to discuss these performance characteristics of these techniques.
Most of the review works of MPPT are discussing certain categories of this MPPT,
review a very limited number of techniques, and leave many other techniques not
covered. Based on the present literature, there is no comprehensive work that covers
all salient MPPT in operations, performance, implementations, and evaluation. This
chapter is introduced to fill this research gap and to shed a light on the performance
of different MPPT techniques. With the use of modern soft-computing in MPPT of
PV systems, many new algorithms are introduced and most of the authors of these
techniques claim that their technique is better than others. For this reason, a compre-
hensive review study for the most important MPPT techniques should be introduced
to help researchers for a better understanding of different MPPT techniques. One
of the most recent review works introduced a good review of the techniques that
are used to mitigate the effect of partial shading [4]. This paper [4] classified the
techniques that have been used to mitigate the partial shading effects into two cate-
gories, circuit-based techniques, and MPPT-based techniques. Circuit-based partial
shading condition (PSC) mitigation techniques (reconfiguration techniques) will not
be covered in this chapter. This paper [4] is reviewed only the MPPT in PSC as
one part of the paper and leave the other part for circuit-based PSC mitigation tech-
niques. Moreover, paper [4] classified the circuit-based MPPT techniques into four
categories, namely, conventional, soft-computing, hybrid, and other techniques. This
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paper used all soft-computing techniques as one category as well as all hybrid tech-
niques as one category which will be sub-classified more in this chapter. Another
comprehensive review research paper evaluates 17 MPPT and gives a grade for
each one [5]. This paper introduced discerptions and evaluations for 20 famous soft-
computing MPPT techniques and the evaluation of hybrid between these techniques
and traditional MPPT in terms of the convergence time and failure rate. A similar
review paper is introduced to introduce an index to evaluate these MPPT techniques
[6]. Several types of research introduced an overview of the MPPT techniques intro-
duced in literature [7-20] each one has covered a certain point of view, but there is no
one of them comprehensively covers the most important MPPT, especially in PSC.

The rest of this chapter is designed to show the modeling of PV array, and the
modeling, performance of PV systems in the case of PSC, and the mismatch losses
and generated efficiency calculations in the rest of Sect. 1. Section 2 introduced the
classifications of MPPT techniques. Section 3 shows the traditional MPPT techniques
discerptions and evaluations. Section 4 shows the different soft-computing PV MPPT
and details of their performance analysis and operation. Section 5 introduces the
other PV MPPT that are not classified as traditional or soft-computing techniques
such as Voltage Window Search (VWS) [21], Search—Skip—Judge (SSJ) [22], and
Maximum Power Trapezium (MPT) [23]. Section 6 introduces different types of
hybrid PV MPPT that uses two techniques to improve the overall performance of the
PV system. The lase section (Sect. 7) is introduced to summarize the conclusions,
recommendations, and future work out of this review study.

1.1 Modeling of PV Arrays

The PV array is the largest building block of the PV system which consists of
PV panels, then PV modules. The PV modules are consisting of several PV cells
connected in series and parallel to produce the required voltage and current from the
module. So, the PV cell is the basic unit of the PV systems. The PV cell is consisting
of two semiconductor materials from types P and N. The PN junction absorbs the
light from the Sun which adds energy to the electrons in this junction enabling it to
have enough energy to cross the junction and produce voltage difference between
their terminals. The voltage difference between these terminals can produce power
when they are connected through an electrical load. The amount of generated power
from PV cells depends on the voltage difference, temperature, and irradiance value.
Different kinds of semiconductor materials have been used in the fabrication of PV
cells, where crystalline silicon PV cells are the most widely used [24]. All the PV
cell technologies have the same modeling with different values of parameters that
will not affect the general modeling shown in this chapter.

Numerous research works have been introduced in the literature to mathemati-
cally model the PV cells [25-29]. The one-diode model is shown in Fig. 1 is widely
used in the modeling of most PV cells due to its simplicity and it helps in avoid-
ance of the redundancy that may occur in another modeling of PV cells that have a
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Fig. 1 Equivalent circuit of
the PV cell using a one-diode Iy, Iy
model

ILG

higher number of diodes. Moreover, the one-diode model parameters can be easily
determined experimentally [25, 28]. The two-diode model has also been used in
the literature [26]. This model introduced one more diode to accurately model the
PV cells, meanwhile, it will increase the model complexity. Some other researchers
introduced a three-diode model to accurately model the PV cell [30]. The one-diode
PV cell model is shown in Fig. 1 and is shown in the following equations [24, 31].
The output current generated from the PV cell is shown in (1).

Veve + R
Ipve = Iig — Lsar * [E(%WPVC*R""VC)) - 1] e T Sve (1)
Rsh
where
I The light-generated current for given radiation and temperature.
Lot The reverse-saturation current.
K Boltzmann’s constant.
q The electron charge.

Veve Terminal voltage of PV cell.

Ipyc Output current of PV cell.

T The current surrounding temperature.
R,, Ry, Series and shunt resistors of PV model.

The light-generated current for given radiation and temperature can be obtained
from (2)

G
It = (Istc + K (T — Tr))G— )

o

where

Istc  The photovoltaic current at the standard test conditions.
K; The short-circuit current coefficient.

G, The standard irradiance which is normally taken as 1000 W/m?.
G The current radiation in W/m?.
T, The rated temperature in K'.

Tc The cell temperature.

The module voltage can be obtained by (3)

Vu = Vpvc * Nsc 3)
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where Ngc¢ is the number of series cells within the module.
The module current can be obtained by (4)

Iyy = Ipyc * Npc “)

where N p¢ is the number of parallel branches within the module.
Connecting several modules in series and parallel is forming the PV array and its
voltage and current are determined from the following equations:

Vpv = Vpvc * Nsc * M )

Ipy = Ipvc * Npc * Mp (6)

where My is the number of modules connected in series and Mp is the number of
modules in parallel.

Multiplying the terminal voltage by the output current determines the generated
power from the PV array. The relation between the terminal voltage and current in
uniform condition for different irradiances, and the relation between the terminal
voltage and output power are shown in Fig. 2. It is clear from Fig. 2 that the PV
power is directly proportional to the voltage in the regions, where the voltage less
than optimal voltage, V oy, and inversely proportional to the voltage in the region of
a voltage higher than V . The maximum power, Pp,x, occurs at the value of optimal
voltage, Vop. The maximum power tracking techniques are used to track the MPP

120 T
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Fig. 2 The I-V and P-V characteristics of PV array
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and force the PV array to work at the optimal terminal voltage, V. Also, it is clear
from the locus of MPP that the MPP lies in a narrow range of voltage.

1.2 Partial Shading Conditions

The partial shading occurred in PV array due to the shading of static and moving
objects such as trees, buildings, accumulation of dust on panels, or passing clouds.
The PV array characteristic is badly affected and the generated energy is considerably
reduced. As has been discussed above, the PV modules should be connected in series
and parallel to form the PV array. Due to static or moving objects, shading may be
performed on some of these modules and it faces different irradiances than others
which are called the partial shading condition (PSC). Due to different irradiances
on series modules, the same current should follow through all series modules which
makes some modules work as a load on the unshaded modules. Due to the current
flow in the shaded PV cell higher than the generated current, the terminal voltage will
become negative. Due to this negative voltage, the temperature of the shaded module
will be increased especially with a high number of modules connected in series.
This high temperature may destroy the shaded modules based on a phenomenon
called hot-spot [32]. This condition can be dangerous where it may cause the hot-
spot phenomenon on the shaded modules which can destroy the shaded modules,
especially when too many modules are connected in series. For this reason, a parallel
diode should be attached to each module to bypass the shaded modules when their
voltage tends to be reversed to protect these modules from the hot spot phenomenon.
Also, each branch should be connected in series with a blocking diode as shown in
Fig. 3 to block the flow of current from another branch.

Many comprehensive types of research are introduced to the model, discuss,
and to remedy the PSC [33, 34]. Due to the partial shading conditions, the P-V

Fig. 3 PV array showing the
bypass and blocking diodes
connection
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Fig. 4 The I-V and P-V characteristics of the PV array under PSC

characteristics of the PV array is having multiple peaks, the one having the highest
power is called global peak (GP) and the other peaks are called the local peaks (LPs).
Figure 4 shows the I-V and P—V characteristics with a different number of peaks in
the case of PSCs.

It is clear from Figs. 2 and 4 that the generated power is varying with its terminal
voltage which forces the designers to use a DC/DC converter at the terminal of the
PV system to control this voltage and consequently control the generated power.
The control system of the DC/DC converter should ensure that the PV array works
at its MPP to increase the generated power and efficiency. The connection of the
DC/DC converter can be connected in several configurations as shown in Fig. 5. The
first configuration is done by connecting the PV array in many parallel branches and
each branch is consisting of many modules in series, which is called “centralized
configuration.” In the centralized configuration, the PV array has a single terminal
and it will be connected to a single DC/DC converter and DC/AC inverter. This

configuration is using only one MPPT tracker, meanwhile, the mismatched power
is the lowest among the configurations shown in Fig. 5. The other configuration is
called the “multistring configuration” PV system. In this system, the branches of the
PV array are divided among multiple DC/DC converters. This technique has higher
efficiency than the centralized PV system because each string is connected to one
DC/DC converter and MPPT technique which provides more freedom to each MPPT
to work separately in tracking the maximum power available. The third configuration

is called “string connection” in which each branch is connected to its own DC/DC

converter and the MPPT technique which gives more freedom to the control system to
force each branch to work at its own maximum power which increases the generated
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Fig. 5 Different configurations are used to interface PV energy systems to the utility grid

efficiency than the two previous techniques. The DC output can be connected to a
common DC link and the inverter/inverters convert this DC power to AC or each
DC converter can be connected to a separate inverter. A smart string configuration is
introduced in [35, 36] using an interleaved boost converter. In this configuration, each
branch is connected to one branch of the boost converter as shown in Fig. 6. In this
configuration, one interleaved boost converter is used and one PSO MPPT technique
is used with swarm size equal to the number of branches of the boost converter.
The results obtained from this configuration is showing higher efficiency than the
previous configurations discussed above. The last configuration is called “Module
configuration” in which each module is connected to separate DC/DC converter and
MPPT module. This configuration is complex and expensive due to the need for the
DC/DC converter for each module, meanwhile, it provides the highest freedom to
the control system to track the GP of each module which can increase the generation
efficiency substantially. Detailed discretions of these configurations are shown in
many researches [1, 37, 38].

Constant Frequency

PWM Converter
————— | LCL - yiility

Filter

A
J
a

Fig. 6 String configurations used interleaved boost converter
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1.3 Mismatch Power Loss

Two different kinds of mismatch occurred in the PV array, static and dynamic
mismatch. The static mismatch occurs due to many reasons such as the different
tolerance in the module, different aging effects, and different tilt angles of modules.
The losses due to static mismatch are in the range from 0.3 to 2.5% [39].

The dynamic mismatch occurs mainly from dynamic partial shading when static
or moving objects on the PV array. As discussed before the modules should be
connected with bypass diodes and each branch should be connected with blocking
diode as shown in Fig. 3 to avoid the hot spot and the possibility of damage to shaded
modules. Due to the PSC occurrence, the generated power will not be the same in
all parts of the PV array. The generated power will be lower than the sum of the
available power that can be generated from a separate PV module even the PV array
works at the GP. The relation between the generated power from the PV system and
the sum of individual peaks from each module is called mismatch loss (MML). The
formula used to determine this relationship is shown in Eq. (7). The higher values of
MML mean that the generated power from the PV system is very near to the power
available in the PV array and vice versa. This relation is sometimes called MPPT
power efficiency (MPE) [40]. In the case of uniform irradiance and the system work
at the MPP, the MML value will be 100%.

Maximum power of whole PV system

MML = =
> iy Pmax(i)

* 100 @)

where N is the total number of PV modules in the PV array.

Another evaluation parameter is used to evaluate the MPPT technique called
MPPT energy efficiency (MEE). This parameter is used to measure the percentage
of PV output energy to the maximum energy available during a certain period of time
as shown in (8) [40]:

T
P(t)dt
M*mo

MPE = =&
Jio Pu(t)dt

®)

where T is the period of time

2 Classifications of MPPT Techniques

The MPPT techniques have been classified based on different methodologies. Some
classifications are based on several variables used to track the MPP of the PV system
[41]. Most of the classifications used are based on the use of the module parame-
ters in the MPPT operation to model-based and non-model-based. The model-based
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MPPT techniques are done using the model parameters of the PV array to deter-
mine the optimal operating model. The model-based techniques are suffering from
many problems, especially the low accuracy, the high mathematical burden that
can reduce the convergence time, and introduced complexity to the implementa-
tion of these techniques. Moreover, the model-based MPPT techniques need extra
weather sensors to measure the radiation and temperature. These techniques are
not suitable to work with systems facing PSC because it is not practical to have
many weather sensors near to each PV module and it will need too much mathe-
matical operation to get the GP in the case of PSC. These techniques are sometimes
called offline techniques [41, 42]. An example of offline or model-based techniques
is the fractional open-circuit voltage, fractional short-circuit current, curve fitting-
based, and numerical calculation-based techniques. The other category of MPPT
is the online or non-model-based are included in most of the MPPT techniques.
The online-based (non-model-based) MPPT techniques can be further classified into
traditional, soft-computing, hybrid, and others. The soft-computing is further classi-
fied into chaos, artificially intelligent (sometimes called brain-inspired computing),
and metaheuristic techniques. These categories are further classified as shown in
Fig. 7.

3 Traditional MPPT Techniques

3.1 Direct Estimated Methodology (DEM)

Directly estimated methodology (DEM) is an offline MPPT methodology that uses
the module parameters and an accurate model of the PV array and determines the
optimal voltage, Vp, based on the available weather condition (Solar irradiance
and temperature) [43]. The control system used the reference value of the voltage
to force the PV array to work around this value. The main shortcoming of this
technique is the need for four sensors (voltage, current, radiation, and temperature
sensors). Moreover, an inaccurate model of PV array parameters or sensors or the
effect of degradation on the PV array can produce wrong values of the PV terminal
voltage reference Vo, which can reduce the system efficiency. In addition to these
shortcomings, this technique is not able to track the GP in the case of PSC.

3.2 Fractional Open-Circuit Voltage (FOCYV)

As has been shown in Fig. 2 the terminal voltage at the MPP is located around
an approximately constant voltage for all operating conditions of the uniformly
distributed irradiances. Where the optimal voltage of the PV array is proportional to
the open-circuit voltage as shown in (9). This technique can be classified as one of
the traditional MPPT techniques and mathematical-based MPPT.
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Vopl =k, * Vo &)

where k, is a proportionality factor and it has a value between 0.71 and 0.78 [44,
45]; the accurate value of k, is depending on the PV cell materials and this value
can be determined in the lab to be used in the control system. This technique is
the simplest and fastest MPPT technique. However, this technique is suffering from
many problems which make its use in modern PV systems is very rare. The problems
associated with this technique are the need to frequently disconnecting the PV system
to measure the open-circuit voltage, the low efficiency, especially in the case of using
the inaccurate value of k,, and the inability to work with PSC.

3.3 Fractional Short-Circuit Current (FSCC)

The locus of MPP on I-V curves shown in Fig. 2 shows that the optimal current, /oy,
is linearly proportional to the short-circuit current. The relation between the optimal
current, Iy, and short circuit is shown in (10). This technique can be classified as
one of the traditional MPPT techniques and mathematical-based MPPT.

Iopt =k; * Isc (10)

where k; is the current proportionality constant, its value is varied between 0.78 and
0.92 depending on the PV cell materials [45].

This technique is very simple and fast (as the fractional open-circuit technique)
compared to other traditional MPPT techniques. The main shortcomings associated
with this technique are the need to isolate the PV array from the system to perform
a short-circuit on its terminals to measure the short-circuit current, the inaccurate
values of current proportional constant, the inability to work with PSC. The problem
of frequently short-circuit measures on the PV array with this technique can be a
complex operation with a very large PV array where the short-circuit current needs
special measurement tools and precautions [41].

3.4 Look-up Table (LuT)

This technique is used the module data, weather data, to calculate the voltage required
for each operating condition and tabulate these data in a look-up table (LuT). This
is a very fast MPPT technique compared to the other traditional MPPT techniques
discussed above. The efficacy of the operation of the system is depending on the
accuracy of the module parameters, sensor accuracy, and the accuracy of the model
used to calculate the MPP. To overcome this shortcoming, the data of the look-
up table were collected experimentally [46]. This technique is not favorite in real
applications because it needs a control system with big memory size and the need
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for radiation and temperature sensors. This is one of the offline MPPT techniques
that need accurate knowledge about the PV module parameters and characteristics.
This technique cannot be used with the PSC which is one of the main shortcomings
of this technique [41].

3.5 Hill-Climbing (HC)

The most famous traditional MPPT techniques are the hill-climbing and perturb
and observe techniques. The main difference between these two techniques is the
hill-climbing is using a perturbation in the duty ratio of the DC/DC converter and
determines the change in duty ratio based on the change in power. Meanwhile, P&O
introduces a perturbation in the terminal voltage of the PV array. This is the only
difference between the operation of these two techniques, and for this reason, a
detailed comparison between their operation and performance is shown in [47]. This
technique needs only the voltage and current sensors. In the hill-climbing technique,
when there is a positive increase in the duty ratio produces an increase in power the
control system should keep an increase in duty ratio and vice versa. The flowchart of
the HC MPPT technique is shown in Fig. 8. The main shortcomings of hill-climbing
as most of the traditional MPPT techniques are the inability to capture the GP and the
slow response to the fast change in the weather conditions. The problem of missing
the GP in the case of PSC can be avoided by hybridizing the hill-climbing technique
with other smart techniques to help HC to capture the GP at the beginning of tracking
operation and transfer the control to HC to track the maximum power around this

Fig. 8 The hill-climbing
flowchart Sample V(k), I(k)

P(k)= V(k)*I(K)

| D=D+AD | | D=D-AD |
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GP. The problem of slow response can be avoided using the variable step size [48].
Where increased step size (AD) increases the convergence speed but it causes high
oscillations around the MPP which reduces the generation efficiency and instability.
Meanwhile, the low step size has the opposite effect. At the starting of the tracking
period or acute change in radiation, the control system needs high step size value
to capture the MPP swiftly but this high step size will cause oscillations around the
steady state. For this reason, a variable step size technique has been introduced to
avoid the sluggishness of the HC in starting and oscillations around the MPP. In this
case, the HC uses a high value of step size in the starting or disturbance and low step
size at steady state. An adaptive step size HC MPPT used with a boost converter is
introduced to determine the optimal step size to reduce the convergence time and
reduce the oscillations around the MPP [49].

3.6 Perturb and Observe (P&0O)

Perturb and Observe (P&O) method has been used widely in the MPPT of the PV
system due to its superior performance and simple implementation. This technique
is outperforming the performance operation of HC in terms of convergence time
and oscillation around the MPP. This technique needs only the voltage and current
sensors. This technique perturbs the terminal voltage reference of the PV array and
collects the corresponding power, if the power increased it will move in the same
direction otherwise it will change the sign of the perturbation Fig. 9 shows the
operation principles of the P&O technique [50]. Many modified strategies have been

Fig. 9 The P&O flowchart

Sample V(k), I(k)

|

P(k)= V(k)*I(k)

Vref=V(k)-AV |Vref=V+AV l |Vref=V(k)—AV |
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introduced to this technique to reduce the convergence time and the oscillations
around the MPP. One of these modifications is done by using a variable step size [51].
This technique has good performance in uniformly distributed irradiance, meanwhile,
it may stick at one of the LPs in the case of PSC. For this reason, many efforts have
been introduced in the literature to improve the P&O in the case of PSC. One of
these efforts used scanning values of operating voltage and force the normal P&O to
work around the one having the highest power [52, 53]. This technique success with
a reasonable limit to capture the place of the GP in the case of partial shading but it
increases the convergence time.

(if V > Vold and P > Pold)
(if V < Vold and P < Pold)

if V > Voq and P < Pygq)
lf V < Vold and P > Pold

Vet =V + AV

Vg =V — AV (11)

3.7 Incremental Conductance (InCond)

Most of the shortcomings discussed with HC and P&O techniques are now avoided
by using the incremental conductance (InCond), where the convergence time asso-
ciated with the IncCond is considerably reduced and the dynamic performance of
the InCond with rapid change in the weather conditions is substantially improved.
Moreover, the oscillation around the MPP of the PV array is substantially reduced
too. The high tracking speed, accuracy, and low oscillations at steady state make the
InCond is one of the most widely used traditional MPPT techniques. This technique
employs the characteristics of the P-V curve of PV array to track the MPP taking
into consideration that the MPP is located at zero slopes of the curve. Moreover, the
slope of the curve is positive when the operating voltage is lower than the optimal
voltage and negative when the operating voltage is lower than the optimal voltage.
The logic used in the InCond is to determine the derivative of power concerning
voltage as shown in (12) and increment the voltage based on the sign and value
of this derivative. The results obtained from (12) can be written as shown in (13).
Equating the left-hand side of (13) by error signal e as shown in (14) and trying to
minimize this value to become zero will accelerate the convergence to the MPP. The
flowchart of InCond MPPT technique is shown in Fig. 10.

The performance of InCond can be further improved in terms of convergence time
and oscillations around the MPP by using variable step size as the one used with HC
and P&O [54]. Regarding the high failure rate of InCond with PSC, a modified
technique is employed several values of duty ratios in starting to scan the position of
GP, then transfer the control to the InCond to track the MPP around this value [52, 55].
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Fig. 10 Flowchart of [ Sample V(k), (k) |
incremental conductance sample (8. 18
MPPT technique AV=V(k)-V(k-1)

AI=1(k)-1(k-1)

Vref=V(k)+AV | Vref=V-AV | | Vref=V(k)+AV |

l—‘—\

| Next k
dpP d(V xI) dl
= T _JTi1V—=0 12
dv dv + dv (12)

ar 1 IO —1G—1)  1G)

— = — . == (13)
av. vV V@ =VGi-1) V(@)

IO -I1G-1) 1)
TVOH-Vvi-1 V0

(14)

3.8 Beta Optimization Algorithm (BOA)

This technique uses the characteristics of the PV array to determine f factor that can
capture the GP faster than most of the traditional MPPT. This technique is first intro-
duced in 2007 by Jain and Agarwal [56]. The value of beta can be obtained from (15):

B = ln(é> —cxV (15)

where c can be determined from (16)

c=q/(k xT xn) (16)
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where I and V are the terminal voltage and output current from the V array, respec-
tively, g is the electronic charge, k is the Boltzmann’s constant, 7 is the diode quality
factor, T is the ambient temperature in Kelvin.

From the PV array model or the actual measurements, the two extreme values
of beta, Bmin, and Bmax can be determined. The new value of the duty ratio of the
DC/DC converter is determined from (17):

D@+ 1)=D@)+ (B = Ba) N a7)

where j is the iteration number, 8, is the value of B at the temperature that the PV
module will work at it most of the time and it is used to determine the reference or
duty ratio corrections, f, is the actual value of .

A comprehensive comparison between the beta algorithm and other traditional
MPPT techniques is introduced in [57] showed that the beta algorithm has the highest
efficiency, the fastest convergence, the lowest transient in the steady state, and has
the best overall performance operation compared to the other traditional MPPT
techniques.

The beta algorithm is further improved in 2016 [58] by adopting the value of N in
(17) to be higher at transient than the steady-state conditions. In the case of a steady
state, the control will move to the P&O to reduce the transient at steady-state condi-
tions. This modification further improved the convergence speed and the transient
at the steady-state condition which can put the beta algorithm in the best traditional
MPPT techniques. The flowchart showing the modification of the beta algorithm is
shown in Fig. 11. Although the superior operating performance in capturing the MPP
in the case of uniformly distributed irradiances, meanwhile it will not have the ability
to capture the GP in the case of PSC. Moreover, this technique needs three sensors
(voltage, current, and temperature sensors) which can add a cost to the hardware
implementation of this technique.

Fig. 11 The flowchart of the
beta optimization algorithm
for the PV MPPT technique

Transient

Switch to P&O

,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,

D(j+1)=D(j)+AD
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Fig. 12 The flowchart of

RCC PV MPPT technique Sample V and |
v

|  Calculate dP/dtand dV/dt |

Broin < B < P

| Close Switch | Open Switch

| T ‘

3.9 Ripple Correlation Control (RCC)

The idea used in the ripple correlation control (RCC) is to minimize the time deriva-
tive of power and current of PV array to become near to zero. The time variation of
power and current near the MPP is zero, so RCC is used the ripples in the power,
voltage, and current to become minimum or tend to zero to be sure the control system
work at the MPP. This technique is implemented in [59] using analog circuits and is
modified to reduce the convergence time in many other types of research. The advan-
tage of this technique is it does not need prior information about the parameters of
the PV array which enables it to work with any PV system with any performance
characteristics. This technique will not able to capture the GP in the case of PSC.
The flowchart showing the logic used in RCC is shown in Fig. 12.

3.10 DC-Link Capacitor Droop Control (DCLCDC)

This technique is designed especially for the PV systems that are integrated with
the AC utility grid. This technique depends on maximizing the output power from
the DC-link capacitor to the inverter without drooping the DC-link voltage. This
can be accomplished by controlling the duty ratio of the DC/DC converter and the
power angle and modulation index of the inverter. This technique is used with a boost
converter and sine wave PWM inverter in [45, 60]. Like all the traditional MPPT
techniques, the DC-link capacitor droop control is not able to capture the GP in the
case of PSC.
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3.11 Load Current or Load Voltage Maximization (LCLVM)

The idea behind this technique is the capturing depending on maximizing the output
power connected to the DC-link of DC/DC converter. This technique has been used
with a voltage source and current source converter [61, 62]. In using of voltage source
converter, the control system is maximizing the output power through maximizing
the output current by controlling the modulation index and power angle as well as the
duty ratio of DC/DC converter. In the current source converter, the control system is
maximizing the output voltage which can increase the output power. This PV MPPT
will not able to capture the true GP because it is assumed that the converters are
lossless. Moreover, this technique will not able to work with the PSC because it may
stick at one of the LPs.

3.12 Three-Point Bidirectional Perturbation (TPBP)

Three-point bidirectional perturbations based on three-point disturbance observation
are utilizing three operating points that work in different duty cycles, using two points
to restore a virtual operating point which is the same PV characteristic curve as the
rest of the point. In this paper, a novel three-point disturbance observation algorithm
is presented based on three specially configured points continuously sampled from
the PV array. The points include the current operation point, a point perturbed from
the mentioned point, and another point perturbed in the opposite direction from
the operation point. The proposed operation mode reduces the losses caused by
the oscillation of running the MPPT algorithm [63]. The flowchart showing the
three-point bidirectional perturbation (TPBP) is shown in Fig. 13.

3.13 Curve-Fitting Algorithm (CFA)

Curve-fitting MPPT technique is using the PV module parameters and weather condi-
tions to derive third-order curve fitting polynomial as shown in (18). The first deriva-
tive of the power shown in (19) is equal to zero at the MPP of the P—V curve. The value
of optimal voltage, Vp, can be determined from (20) [41]. This equation produces
two values of optimal voltage; the real value can be easily selected. This technique can
be classified as a model-based, offline, traditional, and mathematical-based MPPT
technique. This technique also is not able to capture the GP in PSC.

P=aV?+bV>+cV+d (18)

ap =3aV>4+2bV +¢c=0 (19)
dV_ a C =
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Fig. 13 The Three-point
Bidirectional Perturbation
(TPBP)
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3.14 Bisection Search Technique (BST)

This bisection search technique is introduced in 2010 [64] to track the MPP of the
PV energy system. This technique used the well-known bisection theorem to track
the MPP of the PV system.

Assume y = AP/AD, it is required to get the duty ratio that has y = 0. Three
points are selected to start the tracking process D, =0, D, = 0.5, D, = 1

Then determine the values of y,, y;, and y. from the following Eqgs. (21)—(23)

P(D,+ AD) — P(D,)

L= 21
y AD 21

P(Dy + AD) — P(Dp)
AD

(22)

b
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[p=0,D~05 D=1 ¢

¥
_P(D,+AD)-P(D,)
Y,
_ P(Dh+AD)_P(Dh)
b AD
_P(D,)-P(D,~AD)
< —AD

Dn:Dm Dc:Dln
Dy-Doi Dy

Du:Dbs Dc:Dca
Dy-Dy+D.y2

Fig. 14 The flowchart of the Bisection search technique

_ P(Du) - P(Da - AD)
N —AD

c (23)

Then check if y,*y, <0, then D, = D,, D. = Dy, and D, = (D, + D.)/2,

Else if y, *y. <0, then D, = Dy, D, = D, and D;, = (D, + D.)/2,

Else, (This means that all of them (y,, y5, y.) have the same sign due to acute
change in the radiation, and in this case, the system should start from the beginning.
The flowchart of the BST is shown in Fig. 14. The value of AD should be chosen
carefully, where a large value may capture the MPP faster but it will have oscillations

around the steady state and vice versa. It is recommended to be used about AD =
0.01 in [64].

3.15 Slide Mode Control (SMC)

Sliding mode control theory is used in the application of PV MPPT of PV systems
[65]. This technique used AP /AYV to switch on and off the DC/DC converter. The
value AP/AV can be obtained from (24) [65]. The DC/DC converter used in this
study is a buck converter. Based on the value of AP/AV, the DC/DC converter will
be switched on and off based on the condition shown in (25).

AP/AV =1+ (AI/AV) %V 4)
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_ 0 AP/AV =0 (25)
1 AP/AV <0

where I, V, P are the current, voltage, and power output from PV array.

Another research [65] is used a full-bridge single-phase PWM inverter to directly
track the MPP of the PV system and to convert the DC power from the PV system
directly to AC power that can be connected to the utility grid. This technique showed
a very fast convergence time but it will not have the ability to trach the MPP in the
case of PSC.

3.16 Transient-Based MPPT (TBM)

This PV MPPT is introduced in 2009 [15] by using a single-stage inverter single or
three-phase converter. In this technique, the control system determines the maximum
and minimum voltage, Vax, Vmin, respectively. The control system samples the
change in current and, if this change is positive, it forces the voltage to V. otherwise
reference voltage to Vi, This technique has very fast convergence, meanwhile,
it suffers from many disadvantages such as the high transient around steady-state
conditions and its inability to work with the PSC. A detailed discerption of this
technique is shown in [15, 41].

3.17 Current Sweep MPPT (CSM)

This technique is depending on sweeping the current of PV array through the terminal
capacitor and using these values of current to determine the voltage and power at
MPP [66]. The mathematical modeling of this technique is performed based on that,
the current function obtained from the current sweep is proportional in its derivative
as shown in (26) [41].

df(r)
dt

f@) =k (26)
where k is the constant of proportionately.

Applying the above equation to determine the time derivative of power as shown
in (27).

0 27

dpP(r) dv()\df@)
dt <V(I)+k dt ) dt

The solution of the above differential equation is shown in the following equation:



Photovoltaic Maximum Power Point Trackers: An Overview 139
J@) = Ipaye™” (28)

The optimal current can be determined from the above equation. The optimal
voltage can be determined from the following equation:

dP(t)
I (V(t) +k

0 (29)

dv()\dl(@)
dt ) dt

3.18 Comprehensive Comparison Between Traditional
MPPT Techniques

After discussing the traditional MPPT techniques in the above chapter, it has been
listed in the following Table 1 for the purpose of comparison.

Table 1 A comprehensive comparison between traditional MPPT techniques

No. | MPPT Convergence | Tracking | Oscillations | No of | Implementation | PSC
technique | speed efficiency | at sensors | complexity MPPT
steady-state ability
1 |DEM High Low Low 3 Medium NO
2 |FOCV High Low Low 3 Low NO
3 |FSCC High Low Low 3 High NO
4 |LuT High Low Low 3 High NO
5 |HC Low Low High 2 Low NO
6 |P&O Low Low High 2 Low NO
7 | InCond High High Low 2 Medium NO
8 |BOA Medium Medium | Low 3 Medium NO
9 |RCC Medium Medium | Medium 2 Medium NO
10 | DCLCDC | Medium Medium | Medium 2 High NO
11 |LCLVM | Medium Medium | Medium 2 High NO
12 | TPBP Medium Medium | Low 2 Medium NO
13 |CFA High Low Low 2 Medium NO
14 |BST Low High Low 2 Low NO
15 | SMC High High Low 2 Medium NO
16 |TBM Medium Medium | Medium 2 Medium NO
17 |CSM Medium High Medium 2 High NO
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4 Soft-Computing MPPT Techniques

Soft-computing techniques are classified into three different categories as has been
shown in Fig. 7 to four different techniques. These techniques are listed in the
following points:

e Artificial Intelligent (AI)
e Metaheuristic Algorithms (MA)
e Chaos optimization algorithms (COA).

4.1 Artificial Intelligent (AI) MPPT Techniques

Two types of artificial intelligent techniques have been introduced in this chapter to
work as an MPPT of PV systems. These two techniques are the fuzzy logic controller
and an artificial neural network.

4.1.1 Fuzzy Logic Controller (FLC)

Fuzzy logic controller (FLC) is one of the soft-computing techniques that has been
used as MPPT of PV systems [67-69], as well as in the motor drive control and
renewable energy applications [69—73]. This technique is one of the most important
PV MPPT techniques because it is a very fast convergence and it has very low oscil-
lations in steady-state conditions. The fuzzy logic controller has one more advantage
where it does not need accurate inputs measure or accurate PV array modeling. The
operation of FLC is consisting of three parts, fuzzification, Aggregation, and defuzzi-
fication. In the fuzzification stage, the input variables are defined as a membership
function. Moreover, linguistic relations (rules) between input and output is intro-
duced in this part. The aggregation stage is done by combining the output fuzzy sets
of each rule to perform one output fuzzy set. The defuzzification stage is done by
defuzzifying the fuzzy set into crisp output. The use of FLC is introduced in many
studies and it has been used separately or with other MPPT as will be discussed in
the hybrid MPPT section of this chapter. The operation of PV MPPT using FLC is
done by calculating the change of power divided by the change in voltage which is
called the error signal as shown in (30). The value of change of error, AFE is defined
as shown in (31).

P —p—1)

Em = —ve—n

(30)

AE(n) = E(n)— E®n —1) (31)

The error function and change of error that can be obtained from (30) and (31),
respectively, should be expressed based on labels such as; PB (Positive Big), PM
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(Positive Medium), PS (Positive Small), ZE (Zero), NS (Negative Small), NM (Nega-
tive Medium), NB (Negative Big) using a basic fuzzy subset. These linguistic vari-
ables are modeled in a mathematical membership function. The error function, E,
and change of error, AE are two input functions in the FLC as shown in Fig. 15
[68]. In the same figure, the output will be the change in duty ratio, AD which will
be expressed as membership in the FLC output which will be added to the old duty
ratio to determine the new duty ratio to control the DC/DC converter. Many shapes
of membership functions can be used to express the input and output variables,
where triangle membership functions are used as shown in Fig. 17. Some researches
proportionate these variables to only five fuzzy linguistic variables as shown in [74].
Table 2 shows the linguistic variables that can be translated into 7*7 fuzzy rules that
can describe the logic of control as shown in the following:

NB NM NS ZE PS PM PB
Error, E
MFs
NB NM NS ZE PS PM PB
Change of
Error,
MFs
PS PM PB
Change in
Duty Ratio
MFs
Fig. 15 The membership functions of FLC for inputs and output variables
Table 2 FLC Rules for seven membership functions
E AE
NB NM NS ZE PS PM PB
NB NB NB NB NB NM NS ZE
NM NB NB NB NM NS ZE PS
NS NB NB NM NS ZE PS PM
ZE NB NM NS ZE PS PM PB
PS NM NS ZE PS PM PB PB
PM NS ZE PS PM PB PB PB
PB ZE PS PM PB PB PB PB
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Fig. 16 FLC 3D Surface function

Rys: If Eis NM and AE is PS then AD is NS
Res: If Eis PM and AE is NS then AD is PS

Rsy: If Eis PS and AE is NB then AD is NM

During the defuzzification stage, the output from the rules should be converted
to numerical values using the output membership function. This value in the output
is the change in the duty ratio, AD that should be added to the old duty ratio of the
DC/DC converter. The height of the defuzzification can be obtained from (32) to
determine the numerical value of change in duty ratio AD [69].

m

AD = (Y ck) = W, /XH:WK (32)

k=1 k=1

where c(k) is the peak value of each output membership function.

W, = height of rule k, where is k = 1,2, ...49.

The surface function 3-D drawing is a drawing representing the relation between
the inputs and the output of the fuzzy controller is shown in Fig. 16. The surface
function should be smooth to enhance the stability of the FLC.

4.1.2 Artificial Neural Network (ANN)

The artificial neural network (ANN) is a soft computing technique that has been
used in many applications. This technique models the performance operations of
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Intput Parameters
—_——
Output Parameters

Input Layer N— Output L
Hidden Layer Hiput Layer

Fig. 17 The structure of the neural network

biological neural systems into a mathematical system. ANN requires so many careful
training processes to enable it to learn how the system reacts to different inputs.

The ANN is used as a PV MPPT by getting accurate results including the solar
radiation and temperature as input parameters and the optimal voltage or duty ratio
as output parameters. The data can be collected mathematically from the model of
the PV array or from the use of other MPPT in actual life to collect the input and
output parameters to train the ANN and benefit from its fast response. Both data
collections are not accurate because the model may be different from the actual array
due to different tolerance and aging reasons. Also, the real-world data are taking
an effort to collect these data and time. Despite the superiority of ANN in many
applications, it is not gain the same attention when it is used as an MPPT of PV
system due to many problems inherited in this application. One of these problems is
the need for a higher number of good data and its inability to be used in PSCs. A lot
of modifications have been introduced in the literature to improve the performance
of ANN when it is used as an MPPT of the PV systems. One of these modifications
is to use the results obtained from ANN (optimal voltage or optimal duty ratio) and
after that, it will transfer the control to the InCond technique for accurately track the
MPP [75]. The structure of the neural network is shown in Fig. 17.

4.1.3 A Comprehensive Comparison Between Artificial Intelligent (AI)
MPPT Techniques

A comprehensive comparison between Artificial Intelligent (AT) MPPT Techniques
is shown in Table 3.
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Table 3 Comprehensive comparison between Artificial Intelligent (AI) MPPT techniques

No. | MPPT Convergence | Tracking | Oscillations | No of | Implementation | PSC
technique | speed efficiency | at sensors | complexity MPPT
steady-state ability
FLC High High Low 2 High NO
2 ANN High Medium | Low 3 High NO

4.2 Metaheuristic Algorithms (MA)

Metaheuristic MPPT Techniques can be classified as shown in Fig. 7 into four
different categories which are listed in the following points

e Swarm Intelligence Algorithms (SIA)

e Bio/Natural-Inspired Algorithms (BNIA)
¢ Evolutionary Algorithms (EA)

e Mathematical-Based Algorithms (MBA).

4.2.1 Swarm Intelligence Algorithms (SIA)
Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) is one of the best swarm optimizations that
mimics the behavior of animals, birds, or fish in searching for their food. This tech-
nique is introduced in 1995 by Kennedy and Eberhart [76]. The PSO is a stochastic
evolutionary optimization technique that uses several searching agents to look for
optimal solutions. This technique uses the best optimal values as a social or cognitive
experience and the best value for each particle as a private best experience.

The idea behind using the PSO in tracking the MPP of the P-V curve is done
by sending a certain number of particles (swarm size) each one is having a certain
value of duty ratio of DC/DC converter one by one to the PV system and collect the
corresponding power. In many papers [77-81], the DC/DC converter used in the PV
system was a boost converter but any other type of DC/DC converters can be used.
The particle position, D, and the value, P, are used to determine the new position of
particles using the PSO equation obtained from (33) to (34). Consecutive iterations
will be used to control the movement and position to capture the GP. The new position
of particles in each iteration depends on their previous position and values and social
and private experiences. The movement of each particle is obtained from (33) and the
new position D’; +1 is equal to the previous position Dj? plus the new movement, v’; 1

The values of the PSO control parameters w, ¢;, and ¢, substantially affect the
performance of PSO in terms of convergence time, failure rate, and oscillations
around the global best value. Tuning these parameters is very important to get the
best performance or by using the previous experience of previous researches [79-81].
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During the initialization of the PSO when it is used as an MPPT of the PV system,
the particle associated with the highest power is assigned to the global best, value,
PGy, and position, Gyesi. Moreover, the particles’ private best values, Plfest and
positions, Dﬁest are equated to the particle’s value and position of the initialization.
The initial speed is set to zero value. The flowchart showing the logic used in the use
of PSO as an MPPT of the PV system is shown in Fig. 18. The steps of the operation

of PSO as an MPPT of PV systems are introduced in detail in [77-82].

Vi = oVE + (Do — DY) + 47y (Gres — DY) (33)
Dy =Dj+ v, (34)

where j is a counter representing the iteration number that states from 1 to the
maximum number of iterations, it. w, ¢; and c, are called the PSO control parameters,
Df ., is the personal best position of the particle k, Gpes is the global best position,
r; and r, are random values in between [0, 1].

Despite the superiority of using PSO as an MPPT of the PV system, it has
many shortcomings and all of these shortcomings have been solved in literature.
The following points are showing these shortcomings and how they are solved in
literature. Most of these shortcomings in the PSO are occurring in most of other
swarm optimization techniques, and for this reason, it will be discussed for PSO in
detail to be as guidance for other swarm optimization techniques. The PSO also has
been used in optimal sizing and allocations of hybrid renewable energy systems and
distributed generation [83-93].

(a) The problem of long convergence time and high failure rate

There are many reasons to participate in this problem such as the random initializa-
tion of particles, this problem is solved by initializing the particles at the anticipated
position of peaks [77]. The position of the anticipated peak can be determined from
(35) [77]. Another technique is used by uniformly distribute the initial positions of
particles within the searching space as shown in (36) [79]. Initializations of particles
at positions of anticipated peaks [77] or at equal distance in the searching space [79]
reduced the convergence time by more than 50% and reduced the failure rate to zero
[79].

The swarm size can substantially affect the convergence time and failure rate,
where the high value of swarm size can prolong the convergence time and reduces
the failure rate and vice versa. This trade-off effect forces the researchers to look
for the optimal value of swarm size which has been accomplished in [94] for PSO
and BA when it is used as an MPPT of the PV system. This paper [94] introduced
the optimal value of swarm size against the number of peaks in the P-V curve for
minimum convergence time and failure rate.

(k -1 + kv) Voc
*

Df=1-
SS Ve

(35)
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Fig. 18 The flowchart of using PSO as an MPPT of PV systems

where n is the total number of particles and i is the particle’s order.

D{ =k/(SS+1)

(36)

where Dé is the k-th initial particle position (duty ratio), k is the counter used to

represent the number of the particle in the swarm (k = 1,2,...SS).
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The unwise selection for PSO control parameters (w, ¢;, ¢,) has a substantial effect
on the convergence time and failure rate. Numerous researches have been introduced
to improve the performance of PSO by modifying the values of control parameters.
One of these efforts is done by tuning the PSO control parameters for minimum
failure rate and convergence time. Another work uses linear decreasing PSO control
parameters as shown in (37)—(39) [95]. Another research used a modified PSO PV
MPPT control under PSC with a Gaussian particle swarm optimization method [96]
to improve the performance of PSO in terms of fast and reliable convergence. Another
research work used deep recurrent neural networks trained from the results obtained
from PSO to improve the performance of PSO in terms of fast and reliable conver-
gence [97]. Another work used an adaptive perceptive particle swarm optimization
(APPSO) [98] technique for the same purpose. A review of different techniques used
to improve the performance of PSO in terms of convergence time and failure rate
when it is used as an MPPT of the PV system is introduced [99].

Another technique is introduced in [80] called scanning PSO technique, in which
the control system sends a certain number of duty ratios to the PV system and collects
the corresponding power. Then the duty ratio associated with the highest value of
power will be selected to initialize the PSO particles to be around this optimal value.
After that, the PSO will continue tracking this MPP. Actually, this is one of the fastest
and highest reliable MPPT techniques where it captured the GP effectively within
0.4 s [80].

Another research paper is introduced to improve the performance of PSO when it
isused in tracking the MPP of the PV system in PSC by removing the random number
in the acceleration parameters of the conventional PSO velocity equation and adding
a maximum allowable change in the velocity [100]. This strategy is called “The
deterministic PSO (DPSO).” This strategy captured the GP with a lower number of
particles in a short time. Moreover, it has only one parameter needs tuning which is
the inertia weight. The only shortcoming in this technique is its need for reevaluation
on different types of PSCs and systems with different numbers of peaks.

J
Wj = Wmax — _(a)max - a)min) (37)
max
J
Cl,j = Clmax — _(Cl,max - Cl,min) (38)
max
J
o = s = (e~ Crm) 2
max

where J .« is the maximum number of iterations, wnyax and wp;, are the highest and
lowest value of inertia weight ¢; max and ¢; min-

(b) The need for reinitialization

When all the particles are concentrated at the GP, the shading pattern may change
and the GP may become in the other place. In this case, the particles will not able
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to capture the GP and they will continue around the previous GP. In this case, the
generated power will not be the maximum available power because the GP is in
another position. This problem can be avoided by reinitializing the particles when
an acute change is detected. The condition that is used to detect the acute change is
shown in (40). The predefined tolerance, ¢ is chosen between 5 and 10% [77-79].
In most of the papers, it is used with 5% where the lower value of the predefined
tolerance will cause a reinitialization without a need for that and higher values of the
predefined tolerance will not initialize the particles in a reasonably acute change in
shading conditions.

‘Pnew_Pold > ¢ (40)

Poid

where Py and Pq are the output powers captured from the PV system in the current
and previous iterations, respectively. ¢ is the allowable power change limit that has
been assumed as 5% of the old power captured.

Bat Algorithm (BA)

The bat algorithm (BA) is one of the swarm techniques that imitates the performance
of bats in searching for their food. The BA is first developed in 2010 by Yang in
2010 [101].

The mechanism that the bats used in nature to track a prey are by emitting several
impulses with different frequencies and amplitudes and receives the echo of these
sound pulses and transfer these data to useful information to decide the next step
toward the prey. The time difference between the transmitted pulse sound and the
received echo represents the distance between the bat and the prey. The bats can
identify the size of the prey by measuring the intensity of the echoed sound pulses.
Moreover, bats can evaluate the moving speed and direction of the prey by tuning
the frequency difference. In nature, the bats emit short-duration sound pulses around
10-100 times per second [101]. The searching behavior of the bats has inspired the
researchers to imitate it in searching for the optimal solution for different life prob-
lems. Many generalized rules should be taken into consideration in the mathematical
modeling of the BA. The following sections explain the logic of using the BA as an
MPPT of the PV systems. The flowchart showing the logic of BA when it is used as
an MPPT of the PV system is shown in Fig. 19.

Although the superiority of the BA compared to the PSO or any other swarm
optimization techniques, it did not get its deserved weight in the MPPT of the PV
systems applications where only a couple of researches have been introduced in the
literature [102—107]. For this reason, the BA has been discussed deeply in this chapter
with detailed performance characteristics.

BA Initializations
The initialization of bats should get their values from (35) or (36) to reduce the
convergence time and failure rate compared to the random initialization of bats in
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the conventional BA when it is used for tracking the maximum power of PV systems
[94, 108]. These results are introduced and discussed in [94, 108] When it is compared
with random initialization. The BA is used as an MPPT of the PV system by giving
the particles the initial values of duty ratios that can be obtained from (35) or (36)
with initial frequency obtained from (41).

The initial velocity v(l):” and initial frequency folz" of all bats are set to zero (where
n is the swarm size). The initial values of pulse rate, ry, loudness, Ap, and many
initialization parameters are set to different values in the state-of-the-art strategies of
BA which is discussed in detail in the simulation results section. The initial values
of bats that can be determined from (35) or (36) will be used to start the boost
converter where it will be sent to it one by one and the corresponding power Py " will
be collected after waiting for the sampling time to get the steady state from the
boost converter. The best value of maximum power is determined from as Ppes; =
max(PO]:”) and the corresponding duty ratio dpeswill be determined.

Global Peak Tracking using BA

The equations used to mimic the behaviors of bats are shown in Egs. (41)-(43) where
the impulse frequency is shown in (41) which will be used in (42) to determine the
bats’ velocities vl.”’. The new positions of bats di”’ can be obtained as shown in (43)
by adding this velocity to the previous positions of bats.

f,‘lzn = fmin + (fmax - fmin)ﬂ (41)
vl_l:n — wvilzzl 4 (dbesl _ dilinl)fil:n (42)
dil:n — dil;nl + Vilzn (43)

where the values of f i, and f .« are the minimum and maximum frequency ranges,
respectively. The values have been chosen from [101] to be 0 and 2, respectively. 8
is arandom value, 8 € [0, 1], as the case of PSO, the velocity of bats is multiplied by
inertia weight value, w which is used to enhance the searching stability of particles.
After determining the new position from (43), arandom walk around this position
should be performed to get the new position of the bats as shown in (44) [94, 108].
If the pulse emission r; less than a random number, then the duty ration position d;
should be replaced with values shown in (44) which is a representation of a random
walk around the best solution.
dil:n(new) — dbest + 8(,0<Al~1:n> (44)
where ¢ is arandom number, ¢ € [—1, 1], and ¢ is used to give stability or limitations
to the number walk around the best solution, (A}") is called the average loudness of
each bat and its value equal to the average of A constant in the previous iterations, k
from the beginning (i = 1) to the current iteration.
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The value of the loudness (A;) of the impulse should start from high-value Ay and
should be decreased as shown in (45), where it starts at 0.999 and should be decreased
to 90% of its previous value. The value of r; is called the rate of pulse transmission.
The values of r; are started at lower value ryp = 0 and it increased exponentially to
the end value ; = 1 as shown in (46).

A" = A" (45)

ril:n — ré:n [1— e(—Vi)] (46)
where the values of & and y have been chosen equal to 0.9 in many types of research
[94, 108].

After determining the new positions of bats d;™ it will be used as a duty ratio of
boost converter to control the terminal voltage. These values of duty ratio will be fed
to the boost converter one by one and wait for the sampling time between each entry.
The generated power for each duty ratio will be collected Pi“’ and the maximum
value of power P, and its corresponding duty ratio dpes can be determined.

The control system will send the new values of the duty ratios, di':” to the PV
system and will collect the corresponding power for each duty ratio, P,"". The
maximum power collected from the PV system will be compared with the global
best power to update the value of global best if the new power is greater than its
value as shown in the following:

For k = 1: n; if Pil:” > Ppax then Ppa = Pl.k and dpeq = dl.k.

BA has been used in many types of research and it shows better performance
than the PSO in terms of convergence time and failure rate. The problems of long
convergence time and high failure rate shown above in PSO are inherent in BA too
and it can be avoided with the same modifications as discussed in PSO, where the
bats’ initializations should not be random where it is better to start it with the duty
ratios at the anticipated peaks which can be obtained from (35), or with equal distance
between the duty ratios as obtained from (36). Moreover, the need for reinitialization
discussed in PSO is also needed with the BA and has been performed with the same
condition shown in (40) [94]. The performance of BA is modified considerably by
using the scanning strategy discussed above in PSO [108], where, in the beginning,
several values of the duty ratio will be applied to the PV system and the one associated
with the highest power will be used to initialize the bats around it.

To overcome the problem of high oscillations around the GP in the steady-state
operation associated with BA, anewly proposed hybrid technique is introduced [ 109].
In this study, the BA is used to capture the GP and once it gets it, it transfers the
tracking to one of the three traditional MPPT techniques. The traditional techniques
used in this study to improve the performance of BA are beta, P&O, and InCond
MPPT techniques. These modifications showed improvements in the performance
of BA MPPT technique in steady-state conditions, especially with the BA and beta
MPPT algorithms [109].
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Cuckoo Search (CS)

The cuckoo search (CS) optimization technique is introduced by Yang and Deb [110].
Three rules should be followed to use the cuckoo’s brood parasitic behavior as an
optimization tool.

(1) each cuckoo lays one egg at a time and places it in a randomly chosen nest,

(2) the best nest with the highest quality of eggs will carry over to the next
generation, and,

(3) the number of available nests is fixed and the number of eggs that can be
discovered by the host bird maintains a probability P,, where 0 < P, < 1.

If the cuckoo’s eggs are discovered, the host bird can abandon its nest or destroy
cuckoos’ eggs. Either way, a new nest will be generated with a probability of Pa
for a fixed number of nests. Based on these three rules, the CS algorithm can be
summarized as in the flowchart shown in Fig. 20 [111].

Cuckoo search (CS) is an optimization algorithm, inspired by the parasitic repro-
duction strategy of cuckoo birds [111]. It is observed that several species of cuckoos
perform brood parasitism, i.e., by laying their eggs in other birds’ (host birds) nests
[111]. Usually, three types of brood parasitism are seen (1) intraspecific, (2) coop-
erative, and (3) nest takeover. Some cuckoo species such as Tapera are intelligent
enough to mimic the shape and color of the host bird to increases its reproduction
probability. It is also presented in [111] that cuckoos lay their eggs at some specific
time so that their eggs hatch earlier than the host bird’s own. After the early hatching,
cuckoos destroy some of the host bird’s eggs to increase the chance of their chicks
getting more food. It is also a common phenomenon that the host birds discover the
cuckoo’s eggs and destroy these. Sometimes they abandon their nest completely and
go elsewhere to build a new nest.

The first time that CS was used as an MPPT of the PV system was in 2013 [112].
Later, CS has been used extensively in these applications [110-117]. This algorithm
has been also used in the optimal design of hybrid renewable energy systems in [118].

In the beginning, the initial values of eggs are selected and the corresponding
power from the PV system will be sampled. Based on the values of power collected,
the best nest can be selected. To enhance the private search, a random walk should
be performed around each solution which can be provided by the Lévy flight model
as shown in (47) [119]:

Levy(A) ~u = 1"where (1l < A < 3) 47)

The new solution that can be determined in each iteration by the equation shown
in (48) [119].

X =x' +a@Levy(L) (48)

where i is the number of eggs, ¢ is the iteration number, the product & indicates
entry-wise multiplication, and « is the step size. The value of o can considerably
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affect the performance of convergence, so careful tuning for this value should be
selected. In [119], the value of a is determined by setting an initial value for it, oy,

and use the difference between two samples (x; — xf ), as shown by Eq. (49)

a =0+ (x; —x}) (49)

Besides the value of «, the performance of convergence is affected also by the
fraction of worse nests, parameters for Lévy distribution, and population size. The
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Fig. 21 Leadership
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results obtained from using CS as an MPPT of the PV system in [ 119]. showed that the
performance of this technique is having fast and reliable convergence. Meanwhile,
this technique (CS) may be easily trapped in one of the LPs in the case of an unwise
selection of control parameter values [119]. Figure 20 shows the flowchart of CS
when it is used in the MPPT of PV systems.

Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO) is one of the best swarm optimization technique
that has been used to solve several nonlinear problems like the MPPT of PV systems.
This technique is inspired by the lifestyle of the gray wolves in the purse, chasing,
attacking, and hunting prey in wildlife [120]. Ion nature, gray wolves like to live in
a group containing 5-10 wolves with four levels of leadership. They have a pyramid
leader as shown in Fig. 21 [120]. This leadership is having the high-rank leaders
called alpha (&), subleaders called beta (8), as well as gamma (y), and omega (w),
where the dominance of wolves is reduced from top to bottom. Where the strong
leaders are o wolves and w wolves are the lowest rank wolves.

As mentioned above, gray wolves encircle prey during the hunt. The mathematical
model mimicking the behavior of GWO is shown in (50) and (51) [40]:

E=|C.Dp(t) — D(1) (50)

D(t+1)=D,t)—A.E (51)

where ¢ represents the current iteration, A and C are vectors based on theirﬂvalues
the balance between the exploration and exploitation can be determined, D, is a
position vector from the wolves to the prey, and D indicates the position vector of a
grey wolf. Equations (52) and (53) are used to determine the two position vectors A
and C, respectively [40]:

A=2a7 —a (52)
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C =27 (53)

where the coefficient a is decreasing linearly from 2 to 0 and r, r, are random vectors
with a value between 0 and 1.
The value of A is considerably affecting the performance of convergence where

‘X‘ < 1 is enhancing the exploitation meanwhile ‘A) > | enhances the exploration.

In nature, the order of the alpha wolf (50,) is the highest priority to be obeyed.
Meanwhile, the rank of obeying the order is reduced in descending level for the
beta wolves (Dg) and delta (f)y). This leadership hierarchy can be mimicked
mathematically using the following Egs. (54), (55), and (56):

>

E, =

>

C,.D, — D

Eg = ‘52.55 -D

and By = ’63.5,; _ 13‘ (54)

> -

1:Da_Al'Eaal_jZZBﬂ_AZ'EBaﬁ3:55_AS'ES (55)

O

. D+ Dy+D
Die+1)= % (56)
The flowchart showing the use of GWO in MPPT of PV systems is shown in
Fig. 22.

Artificial Bee Colony Algorithm (ABC)

The Atrtificial Bee Colony (ABC) algorithm proposed by Karaboga is based on the
foraging behavior of honey bees [121]. In nature, artificial bees are divided into three
types, employed bees, unemployed or onlooker bees, and scout bees. The employed
bees function is used to search for the food and determine its place and it shares
this information with other bees in the colony. The unemployed or onlooker bees’
function is to watch the employed bees and help to find the place of the food. The scout
bees’ function is to search randomly for a new source of food. They communicate
and coordinate with each other to obtain the optimal solution in a short time. In the
algorithm, the location of a food source and the quantity of nectar denote a solution of
the optimization problem and the fitness value of the related solution, respectively.
The algorithm starts with a parameter initialization and it generates an arbitrarily
initial population (P) of SS solutions, which is the population size. Each solution x;
is an n-dimensional vector. For the initialization process, (57) is used [122].

Di,j = Duini +7 (Dmax,i - Dmin,i)ai =1,2...85 j=L2,...,n (57)

where n is the number of optimization parameters (n = 1 in the PV MPPT because
the duty ratio is the only optimization parameter), Dpn ; and Dy, ; are the minimum
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and maximum allowable value of the duty ratio, respectively, r is a random number
between —1 and 1. In the operation of the ABC algorithm, the employed bees evaluate
the new food sources using (58) and determine the candidate food position (v;;) from
the old value (D;) in memory [122].

Dy, ;= Dij+rand[0,11(D;; — D; ;) (58)
Onlooker bees that are waiting in the dancing area move closer to the position of

the employed bee where the nectar quantity is the highest [123]. This movement is
given as shown in (59).
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where D, represents the food source position with the highest nectar amount, SS is
the number of bees, r is a random number between —1, 1.

The onlooker bees select food source of the employed bee calculated on the basis
of probability connected to the food source as shown in (60) [122].

P(D;
pi = # (60)

SS
> P(Dy)
n=1

where P(D;) is the fitness function of D;.

The new value of power is compared to the old one and the new one will replace
it if it is greater than the old one. This will continue until the scout bees select a
new position of food based on Eq. (57). The logic shown for ABC has been used for
MPPT of the PV system in [123] and it has been compared to the PSO and it is found
that it has better performance than PSO in terms of convergence time and failure rate
[123, 124]. Figure 23 shows the flowchart of the artificial bee colony algorithm.

Cat Swarm Optimization (CSO)

Cat swarm optimization (CSO) is one of the swarm optimization techniques that has
been developed in 2006 [125]. CSO is divided into two modes of operations, namely,
seeking mode and tracing mode [125]. Each cat is representing one solution and it
is used in the algorithm as a searching agent. So, depending on the optimization
variable, M, the cat is composed of M dimensions (this dimension will be only one
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MPPT of PV system because only one variable will be optimized, the duty ratio of
DC/DC converter or terminal voltage of PV array). So, in the case of using the CSO
in MPPT of the PV system the value of M will be equal to 1 which will be used
during this section.

During seeking mode, four essential factors should be defined as shown in the
following points:

SMP: SMP is standing for “Seeking Memory Pool,” that represents the seeking
memory size for each cat.

SRD: SRD is standing for “Seeking Range Dimension,” that declares the mutative
ratio for the dimensions.

CDC: CDC is standing for “Counts of Dimension to Change,” that discloses the
dimensions will be varied.

SPC: SPC is standing for “Self-Position Considering,” which is used to decides
which cat will move or stand.

The logic showing the CSO performance is shown in the following steps:

Step-1: Make j copies of the present position of cat, where j = SMP. If the value
of SPC is true, let j = (SMP-1), then retain the present position as one of the
candidates.

Step-2: For each copy, according to CDC, randomly plus or minus SRD percent
of the present values and replace the old ones.

Step-3: Calculate the fitness values (FS) of all candidate points.

Step-4: If all FS are not exactly equal, calculate the selecting probability of each
candidate point by Eq. (61), otherwise set all the selecting probability of each
candidate point to be 1.

Step-5: Randomly pick the point to move to from the candidate points, and replace
the position of caty. If the goal of the fitness function is to find the minimum
solution, F'S,= FS.x, otherwise FS,= FSmin.

FS;, — F§
P, = M, where 0 <i < j 61)
FSmax_FSmin

Three steps are shown below that can mimic the tracing mode of cats into a
mathematical form:

Step 1: Update the velocities for each cat (v;) according to Eq. (62).

Step 2: Check the value of the velocity is within the predefined limits. If the
velocity is out of the predefined limits it will be equated with the nearest limit.
Step 3: Use Eq. (63) to determine the new position of cats.

Vi = Vi + 71 €1 (Xpest — X&) (62)
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Xpest 15 the position of the cat, who has the best fitness value; x; 4 is the position
of caty. ¢ is a constant, and r is a random value in the range of [0, 1].

Xp = Xk + Vi (63)

This technique (CSO) is used as an MPPT in many types of research [126]. This
technique showed fast convergence to the MPP but it may stick at one of the LPs in
PSC.

Ant Colony Optimization (ACO)

Ant colony optimization (ACO) is one of the swarm optimization techniques that
mimic the performance of ants in their foraging behavior to be used for tracking the
optimal solutions of nonlinear problems. This technique is first introduced by Dorigo
and Gambardella [127]. Since then many modifications introduced in the literature
to improve the performance of this technique and it has been used as MPPT of PV
system [128, 129]. The use of ACO in the application of PV MPPT is done by using
the voltage value of the PV array as bee location and the output power of the PV
array is used as an objective function in the simulation [119]. The flowchart showing
the logic of ACO when it is used as a PV MPPT is shown in Fig. 24 [128].

A new ACO pheromone updating strategy to improve the convergence perfor-
mance of ACO (ACOnpy MPPT) when it is used as an MPPT of the PV system is
introduced in [119]. Once the ACOnpy MPPT controller is developed, several tests
are performed under standard test conditions to determine the ACO control param-
eters. The Gaussian Kernel for the ith dimension of the solution is shown in (64)
[119].

Kk k N2
. 1 (x — ,u})
Gi(x) = wig (X)) = W] — exp| — : (64)
w_here g{(x) is the Ith sub-Gaussian function for the ith dimension of the solution;
w; and o] are the ith-dimensional mean value and the standard deviation for the ith
solution, respectively.

The formula that can be used to determine the pheromone equation, tj; is shown

in (65) [119]:
P (x — )’
(X)) = o mexp <— —20112 (65)

During the initial stage, the distances D; between each x; solution among the
selected solutions are determined (i = 1... m, where m is the number of ants) as
shown in (66) and the best solution xpeg;.
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Fig. 24 Flowchart of ACO Initialize the solutions in the
when it is used as an MPPT archive, set ACO parameters
of the PV system [131] N|

Sample V, I and compute the power
P=V*]

'

Flag ant=Flag_ant+1, store
power for each ant, generate
a new solution

Rank M+K solutions and keep best k
solutions in the archive;
Flag_iter=Flag_iter+1,

Flag_ant=Flag 1,

Flag_iter>=MaxIter?
Or power remains unchange?

Acute change in power?

Di = |xi _xbest| (66)

The Gaussian, ¢; can be determined from (67).

-p?
i

pi=¢er (67)

where ¢ is the standard deviation of the Gaussian (usually # = 0.05). The pheromone’s
value t; is calculated as shown in (68):

%

ij=1 ®j

The solution vector of the i-th ant concerning the kth ant at iteration 7 is obtained
by (69).

T =

(68)
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xi =x(t —1)+dx (69)

where dx is a random variable in the range of [—a, o], the value of dx is used to
determine the length of the jump. Based on the value of x; obtained from (69), the
value of di can be determined as shown in (70).

di(t) =1 — x; (1) / Xref (70)

The best solutions, k will be selected from all solutions (m + K). After reinitial-
izing the archive, the m best solutions will be selected and their pheromones will be
updated as shown in Egs. (66)—(68).

The corresponding generated power from the PV system can be calculated from
(71) after sampling the voltage and current generated from the PV system.

Objective function = P = Vpy X Ipy (G, T) 71)

where Vpy and I py are the terminal voltage and current of the PV array, respectively,
T is the array temperature, G is the solar radiation in W/m?

The distance between any new solution and the best solution, Vs can be obtained
from (72).

D; = |Vz - Vbesll (72)

Compute a Gaussian ¢; by (73)

-p?
1

i =ex (73)

where ¢ is the standard deviation of the Gaussian. The pheromone’s value i is
computed as shown in (74).

7 = % (74)
Then a perturbation of the voltage can be obtained from (75), (67).
Vi(t) = Vit = 1) + d, (75
The new duty ratio of each ant i is computed as shown in (76).
di(t) =1 = Vi()/Vier (76)

Different parameters can considerably affect the performance of ACO such as
the size of the archive, balance coefficient, convergence time. Tuning these values
improved the results obtained from this technique compared to the PSO and DE
MPPT techniques [119].
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Fireflies Algorithm (FFA)

The FFA is one of the best swarm optimization techniques which is introduced by
Yang [130]. Fireflies are lightning bugs that are attracted to the light in the tropical
regions. The FFA is inspired by the movement of fireflies. This light is playing an
important role in attracting mating partners and preys. The rate of flashing and the
amount of time form part of the signal system is responsible for brings both sexes
together [131].

Let p and g be two fireflies positioned at X, and X, respectively. In a single-
dimensional space, the distance between these two fireflies, r,, is shown in (77).

rog = | X — X4 (77)

The distance between any two fireflies p and ¢ is a function in a factor called the
degree of attractiveness, § that can be obtained from (78).

B(r) = Poe ) n>1 (78)

where, y is called absorption coefficient which is used to controls the light intensity
and its value varies between 0 and 10 and n = 2 [130], By is the initial value of the
absorption coefficient and its value is chosen by 1 to actively determine the position
of other fireflies in its neighborhood [130]. Assuming that the brightness of firefly p
is less than that of ¢, the new position of firefly p is given by (79).

X;;Fl = X!+ B(r) (X, — X,) + a(rand — 0.5) (79)

Here, random movement factor « is constant throughout the program and falls in
the range [0, 1]. The value of @ enhancing the searching balance between exploitation
and exploration, where the high value of o enhances exploration, meanwhile small
value of o enhances exploitation [131].

The steps of the logic used with the FFA to capture the MPP of the PV system
are shown in the following points:

Step I: Parameter Setting: Select the values of FFA control parameters, 8,, y, n,
o, population size N, and the termination criterion. In this algorithm, the position
of the firefly is taken as a duty cycle d of the DC/DC converter. The brightness of
each firefly is taken as a generated power Ppy of the PV system, corresponding
to the position of this firefly.

Step 2: Initialization of Fireflies: In this step, the fireflies are positioned in the
allowable solution space between between dpin t0 dmax Where dpin and diax
represent the minimum and maximum values of the duty ratio of the DC/DC
converter. It is recommended to choose the starting position of the fireflies as
introduced before in Egs. (35), or (36). The swarm size is recommended to be 6
in [131].
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Step 3: Brightness Evaluation: For each duty ratio, the corresponding PV output
power, P,, is taken as the brightness or light intensity of the respective firefly.
This step is repeated for the position of all fireflies in the population.

Step 4: Update the Position of Fireflies: The firefly with maximum brightness
remains in its position and the remaining fireflies update their position based on
(79).

Step 5: Check if is there any acute change in the generated power which gives an
indication for a big change of the shading pattern. Acute change can be detected
using Eq. (40). If the acute change is detected go to step 2, otherwise go to the
next step.

Step 6: Check the stopping criterion, if it is valid go to step 4 otherwise go to step
3. The stopping criterion should ensure that all fireflies all work around the MPP.

The convergence time and failure rate as well as the oscillations at steady-state
are a function in the FFA control parameter values (8,, v, n, «, population size, N).
The advantages of FFA is not highly affected by the initial values of duty ratio which
is one of the main advantages of this MPPT technique, meanwhile, the high failure
rate of this technique is counted as one of the main shortcomings [119].

Whale Optimization Algorithm (WOA)

The Whale Optimization Algorithm (WOA) is one of the modern swarm optimization
technique which has been developed in 2016 [132]. This technique is inspired by
the WOA. This technique used for pursuing a procedure is called bubble-net feeding
strategy. Humpback whales want to chase little fishes near the surface by making
a bubble net around the prey rises along a circular path. This technique has been
used in MPPT of the PV systems in many studies in the literature [133—135]. The
mathematical formulas that model this technique is shown in the following equations:

- = -
D=[C - Xx(t)— X (80)

— - -
Xt+D)=X*{t)— A -D 81

where ¢ is the iteration number, A and D are the coefficient vectors, X™* is a vector
used to represent the vector of the best solution, X represents the current position
vector.

A=2d 7-a (82)

C=27 (83)
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where 2 in equations is a variable linearly decrease from 2 to 0 through the progress
of the iterations, 7 is an arbitrary vector in the range of [0, 1]. The value of Fis used
to balance between exploitation and exploration.

The spiral path between the position of the whale (current position) and prey (best
solution) can be determined as shown in (84).

< = bl <
Xt +1)=D"-¢e" -cos 2ml) + X*(t) (84)

where B)’ = )?k(t) - X () and demonstrates the distance between the i whale and
the prey (best solution), b is a constant for characterizing the state of the logarithmic
spiral and its value is randomly chosen between —1 and 1.

Whales swim around the prey inside shrinking circle and along with a spiral form.
There is a probability of half to select one of two approaches as shown in (85).

— > o

2 X*t)—A-D if 0.5
Xt+h=1_ © , P= (85)
D' e’ . cos(2ml) + X*(t) if p > 0.5

where p is a predefined value that can adjust the balance between exploration and
exploitation and it can be selected between 0 and 1 and it can be adjusted during the
progress of the iterations.

Cuttlefish Algorithm (CFA)

The cuttlefish algorithm (CFA) is one of the modern metaheuristic optimization
algorithms that is inspired by a type of fish called cuttlefish that can change their
skin color to mimic the surrounding environment to either seemingly disappear into
its environment or to produce amazing displays. This algorithm was first introduced
by Eesa et al. [134]. The algorithm undergoes the same mechanism of the cuttlefish
color-changing behavior to optimize mathematical problems. There are three cells
on the skin of Cuttlefish, namely, Chromatophores, Iridophores, and Leucophores.

The Chromatophores cell groups are having pigments to change the color of the
Cuttlefish when it is needed. Iridophores cell groups are used to reflect the light which
can help in concealing the Cuttlefish when it is needed. The Leucophores cell groups
are responsible for the white spots occurring on some species of cuttlefish that are
used to scatter and reflect incoming light. The behavior mechanism is mainly based
on two processes which are reflection and visibility. The mathematical model of the
algorithm uses different reflection and visibility factors for each group of solutions
in an iteration to reach an optimum solution accurately and as fast as possible [136].

The mathematical formulation of the CFA is as follows. In general, the update of
the suggested solution is presented in (86), while the reflection and visibility factors
are calculated for each group using (87) and (88).

Dnew = Rn[ + vni (86)
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R,~=rd*(r1—r2)+r2 (87)

Vi=rd* (i —v)+wn (88)

where D, is the newly updated population ready to be studied in the new iteration.

R,; are the new reflected population cells for the i-th group.

Vi are the new visible population cells for the i-th group.

R; is the reflection factor for the i-th group.

V; is the visibility factor for the i-th group.

rd is a generated random value between 0 and 1.

r1, o are the upper and lower limits of the reflection factor, respectively, (r; = 1,
rp =—1)[137].

vy, vo are the upper and lower limits of the visibility factor, respectively, (v =
0.5, v, = —=0.5) [137].

Initially, the population values (duty ratios) for each searching agent will be initial-
ized may be randomly ....but it is recommended to initialize it based on Egs. (35)
or (36) and divide them into the different groups equally. The population is divided
into four identical groups (G,1, G2, Gp3, and Gp4). Then calculate the corresponding
output power for each cell (duty ratio). The duty ratio associated with the global best
is selected to Dyt The new reflection and visibility factors can be determined from
the following equations:

For G,1:
Ry =Ry x Gy (39)
Vi =V x (Dbest - Gpl) (90)
Gplnw = Ry + Vu (91)

For G;:
an = R2 X sz (92)
Vo=V x (Dbest - Gp2) (93)
Gp2nw =R+ Va2 (94)

where

R, and R, are the arrays of the new updated reflected cells for groups 1 and 2,
respectively.
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R, and R; are the reflection factors set for groups 1 and 2, respectively.

V.1 and V,, are the arrays of the new updated visible cells for groups 1 and 2,
respectively.

V1 and V, are the visibility factor set for groups 1 and 2, respectively.

G,1 and Gy are the arrays of cells in groups 1 and 2 of the population, respec-
tively.Gpnew and Gy, are the arrays of new updated cells in groups 1 and 2 of
the population, respectively.

For Gp3 and Gpy:

Ry3 = R3 X Fpeg 95)

Vi3 = V3 X (Fpest — Bay) (96)
G p3new = Rz + Vi3 (C))

G panew = random values (98)

where

R, is the array of the new updated reflected cells for group 3.

Rj is the reflection factor set for group 3.

V3 is the array of the new updated visible cells for group 3.

V3 is the visibility factor set for group 3.

G, is the array of cells in group 3 of the population.

Gp3news Gpanew are the arrays of new updated cells in groups 3 and 4, respectively,
of the population.

Grass Hopper Optimization (GHO)

Grass Hopper Optimization (GHO) is one of the best swarm optimization algo-
rithms which first introduced by Saremi et al. [138]. The GHO algorithm mimics the
behavior of the grasshoppers during their life cycle. The GHO algorithm consists of
two sub-cycles, namely nymph and adult sub-cycles. In the nymph sub-cycle, the
algorithm uses it to control the movement (Jump) to enhance the exploitation search.
In the adult sub-cycle, it is characterized by fast jumps with random intervals which
can help to enhance the global exploration search. The controlled GHO parameters
are helping in the balance between the local and global explorations.
The movement of searching agents is given by Eq. (99) [139];

Xi=w1 S +wG; + w3 A; 99

where X; is the position of the i-th searching agent, S; is the social interaction, G; is
the gravity factor of the i-th grasshopper, and A; is the variable to represent the effect
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of wind on the movement of each particle, ;, w; and w3 are the factors to represent
the weighted social interaction, the gravity factor, and the advection, respectively.

The social interaction factor is shown in Eq. (100) is a very important factor that
controls the behavior of convergence where it enhances the exploration of the search
by sharing the information within the swarm.

N
S = s(dij)dy (100)

Jj=1

where d;; is the distance between the i-th and j-th grasshoppers and s is the function
used to define the social forces which can be determined from Eq. (101).

s(r)y= feli —e" (101)

where la gives the attraction length and f provides the intensity of interaction. The
function s(r) shows the impact of social interaction and is fine-tuned for an optimiza-
tion problem to maintain a balance between the exploitation and exploration of the
search task.

The gravitational factor G; is given by Eq. (102) and wind attraction factor is
given by Eq. (103)

Gi=—g.¢, (102)

A= —u.2, (103)

where €, is a unit vector in the direction of the gravitational constant g, and é,, is a
unit vector in the direction of constant drift # which is caused by wind.
Substituting the values of social interaction parameters into Eq. (99) yields

s(‘xj —x,-ijC{.xi + wr.8.€, + w3.U.8,, (104)
i=1 ij

M=

X =w

.
Il

The GHO converged fast using Eq. (104) and this mechanism has been improved
for fast and reliable convergence by [139] as shown in Eq. (105).

N
uby — lby Xj— X - 2,
X{=c ;CTS(W - xi) ]‘_jij +eg [+ T (105)
J#
Cmax — Cmin
€ = Copgy — 1520~ Cmin (106)

L
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where c is a decreasing coefficient, ub,; and lb; are upper and lower bounds in the
d-th dimension f‘d is the best value of the d-th dimension of the target up to the
current iteration. L is the total number of iterations and / is the current iteration.

GHO is having two main advantages compared to other swarm optimization which
are the fast convergence and the lowest oscillations at the steady state. In the begin-
ning, the population is better to be initialized as has been introduced before in (35)
or (36). Here, the search space represents the duty cycle of the boost converter. The
constraints are fine-tuned accordingly in the search space.

Intelligent Monkey King Evolution (IMKE)

The Intelligent Monkey King Evolution (IMKE) is a metaheuristic optimization
algorithm introduced by Meng et al. [140]. This optimization algorithm is inspired by
the behavior of monkeys in their superpower abilities under a challenging situation in
which they divided themselves into many small groups of monkeys and start working
toward the solution. After achieving the solution to the problem, another group will
report the whole situation to the monkey king.

Based on these reports, the monkey king decides the most accurate solution.
Based on the monkey king’s decision the whole swarm will move. In the start of the
operation of IMKE algorithm, the whole swarm is divided into n groups, each group
contains p monkeys and get their initial position as shown in (107). The variable R,
represents the evaluation of the monkey king for the next movement.

Accurate selection for the value of R, will improve the performance of IMKE
algorithm in terms of convergence time and failure rate. Due to the importance of
this factor, it has been limited by upper and lower limits [R; min, Remax] @s shown in
(110). Generally this R min and R max lie in the range 0.1-0.9 [4, 141].

X1y X1, ...xiv

i i i
Xop Xpp Xy,

pxv (107)

From the results obtained when the positions in (107) are applied to the PV system,
the best solution can be obtained as shown in (108).

Xébest = [Xébest,l ’ Xébest.l’ s Xébest,n (108)
The best solution should be updated as shown in (109).
Xé-trelsl = X;_elst + Re * Xaitr (109)
Rc,max - Rc,min

Re = Repin + —22 M0 o rand (110)
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Fig. 25 a Salp as single and
b a group of salps (salp A
chain) [146] S TP 17

()

Salp Swarm Algorism (SSA)

The salp is a sea creature that has a transparent body like jellyfishes with a barrel-
like shape. Salps move in seawater through suction and propulsion the water through
their barrel body. The salps move in a group called chain as shown in Fig. 25. The
shape of salps is barrel-shaped and it has a transparent body. The salps tissues are like
jellyfishes. Like a jellyfish, the salps are moving and it moves forward by pushing
the water through the body like propulsion. Figure 25 shows the shape of the salp
chain [142]. The salp chain formation is used to improve their movement and to help
them in foraging. This movement inspired the researchers to use this chain to solve
nonlinear optimization problems. One of the real-world applications of SSA is PV
MPPT [143].

The swarm of salps is divided into two subgroups called leaders and followers
[142, 143], The leader subgroup is responsible for guiding the swarm, meanwhile,
the followers obey the leaders’ orders. The swarm is distributed in searching space
in n dimensions. First, the leader takes their positions based on the formula shown
in Eq. (111).

x! =

! {Fj+61((ubj—lbj)62+lbj) c3>0 (111)

Fj — C]((Mbj — lbj)Cz —|—le) c3 < 0

where X 11 are the leaders’ positions, F; are the food sources, ub; and Ib; are the upper
and lower limit, respectively, ¢, ¢3, and c3 are random numbers. As shown in Eq.
(111), the position of the leader is updated about the food source. c; is an important
parameter that can determine the exploitation and exploration performances and its
value can be determined from Eq. (112).

o =20 (1) (112)
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Fig. 26 The flowchart of the salp swarm MPPT technique

where L is the maximum iteration number, / is the current iteration number. ¢, and
c3 are generated randomly between [0, 1]. The follower position can be determined
as shown in (113).

i 1 2
X = zar* +V,1 (113)

where X ’j are the followers’ positions, V,, is the initial velocity, a = Vgpa/V,, and V
= x — x,/t. Equation (113) is altered. The new position of salps chain is shown in
Eq. (114).

i 1 i i—1
Xf:i(x-f+xf ) (114)

Application of SSA in the PV MPPT is done by equating the initial positions of
salps by the duty ratio of the boost converter and use the above Eqgs. (111)—(114)
to keep tracking the GP of PV arrays. The flowchart of SSA when it is used as an
MPPT of the PV system is shown in Fig. 26 [144].
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Fig. 27 Spiral flight of a
moth around its
corresponding flame

Mr.n’ 0.5

Moth-Flame Optimization (MFO)

Moths are types of insects similar to butterflies. There are two main milestones
in their lifetime namely, larvae and adults. They have a special night navigation
mechanism called transverse orientation, where they fly in a straight line having a
fixed angle to the moon. In the case of the light source is switched off, they fly in
a spiral shape around the previous source of light and it can capture it after a few
corrections. The spiral flight of a moth around its corresponding flame is shown in
Fig. 27 [145]. This flight mechanism is translated into mathematical formulas to
perform the searching mechanism to capture the solution in nonlinear optimization
problems. In the MFO algorithm, every moth representing a searching agent that is
required to fly around a certain source of light to enhance the exploration search and
a lower probability of local optima stagnation. Therefore, a set of sources of light
locations can be represented in a matrix with the same dimensions to represent the
moth positions. Both the moths and the lights are representing solutions. The moths
and light are treated and updated in different ways During the progress of MFO.
Each moth is representing a search agent which can fly the search area to get the
global best solution. The lights are representing the best solutions that the moths
have captured so far. In other words, flames can be considered as flags or pins that
are dropped by moths when exploring a search space. Each moth searches around a
flame and updates it in the case of finding a better solution. With this mechanism, a
moth never loses its best solution.
The moth position can be updated using the following equation:

M; = S(M;, Fj) (115)

where M; indicates the i-th moth, F; indicates the j-th flame, and § is the spiral
function. The characteristics of the spiral function is listed in the following points:
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e The initial point of a spiral is the initial moth position.

e The source of light location is the final point of a spiral and it represents the best
position of the moth.

e The predefined range of the spiral should be within the searching area.

Taking the previous points into considerations, the mathematical model of the
spiral function is shown in Egs. (116) and (117).

S(M;, F;) = D; - " - cos2t) + F; (116)

D; =|F; — M| (117)

where D; represents the distance between the positions of i-th moth and the j-th light,
b is a constant represents the shape of the spiral, and 7 is a random number in [r, 1],
where r is a constant that linearly decreasing with iterations from —1 to —2 and is
called the adaptive convergence constant.

A strategy was introduced to enhance the exploitation search of the MFO by
decreasing the number of flams as shown in Eq. (118).

N -1
flame number = r0und<N — lT) (118)

where [ is the current iteration number, N is the maximum number of flames, and L
indicates the maximum number of iterations.

This mechanism introduced in (118) enhances the balance performance between
the exploration and exploitation in a solution area. The MFO has been used as an
MPPT of the PV system by initializing the Moths (duty ratios) as has been shown
in (38) or (39), in the beginning, the moths’ positions are selected to be as a flam
position. During the iterations, the flame positions will be equal to the best solutions
of Moths. This searching mechanism provides a good balance between exploration
and exploitation which makes MFO is a superior choice for MPPT of PV systems.
In the case of acute change in the output power as has been discussed in Eq. (40),
the Moths and flame positions should be updated.

A Comprehensive Comparison Between Swarm Intelligence Algorithms
MPPT Techniques

The performance of all swarm techniques introduced above is tabulated in the
following Table 4 shows the difference between them in many important factors.
Based on the experience from using these techniques, BA is the fastest convergence
but it has higher oscillations in steady-state conditions.
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4.2.2 Bio/Natural-Inspired Algorithms (BNIA)
Earthquake Optimization Algorithm (EOA)

The earthquake optimization algorithm (EOA) is one of the nature algorithms and
sometimes it is called (geo-inspired) [ 146]. This technique is inspired by the behavior
of P and S waves which can be generated from earthquakes. This optimization tech-
nique is introduced in 2018 and it has been used in the control of the electric machine
[147]. The first time to be used as an MPPT of the PV system was in 2020 by Mendez
[148].

The mathematical formulae that can model the velocities of P and S waveforms
are shown in (119) and (120), respectively [148].

At 2
b, = [AFER (119)

(120)

Vs =

I s

where v, and vy are the velocities of waves, A and p are called the Lamé parameters,
and p the density of the material. The optimal relation for the Lamé parameters was
found to be 1.5, consequently [148]:

A=un=15 GPa (121)

The densities of the material p are chosen randomly between 2200 and 3300 kg/m?
[148]. It is important to define an operating range for the S-wave or S-range, S, to
decide whether to use v, or vy. Searching flag (Sgag) is performed to be sure that the
best duty cycle is within the searching positions.

The main difference between the modification shown in [148] and the original
EOA is it returns to the global best duty ratio after evaluating an epicenter to have
a faster reaction against irradiation changes. Figure 28 shows the flowchart of the
earthquake optimization algorithm (EOA) MPPT algorithm [148].

Simulated Annealing (SA)

Simulated annealing (SA) is a metaheuristic optimization technique inspired by the
annealing process that is used in nature to produce high-quality crystals. This tech-
nique uses the temperature, final temperature, and nominal cooling rate for searching
the optimal solution of nonlinear optimization problems. This technique was first
developed in 1970 by Pincus [149]. This technique is used in the MPPT of the PV
system by many research studies [5, 135]. Many improvements were introduced
to SA which improved its performance in tracking the MPP in uniform irradiance
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Fig. 28 The flowchart showing the logic of using the Earthquake Optimization Algorithm (EOA)
as a PV MPPT algorithm [152]

and the PSC [7]. In normal operation of the SA, a random number of solutions are
initialized but here in the MPPT of PV systems, it is better to initiate the duty ratio
of DC/DC converter to be as stated before in Eqgs. (35) or (36). The initial values
of power corresponding to each duty ratio will be determined. By the neighborhood
mathematical structure, the new position of particles will be determined. If the new
operating point has greater power, then it will be accepted as the new operating
power.

The operating point can be accepted if its new point has less power than the
reference operating point based on the acceptance property shown in (122) [5]:

P — P
P. = exp[T} (122)
k

where Pj is the power of the current point, P; is the power at the previous best
operating point, and 7T’ is the current temperature of the system.

The cooling mechanism used in the SA can be either static or adaptive as shown
in (123).
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Fig. 29 Flowchart of SA
based GMPPT under PSC
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where T is the temperature for step k, Ty_; is the temperature at step k — 1 and « is
a constant always less than 1.

The SA algorithm has been used for tracking the MPP of the PV system in PSC in
[135]. The results obtained from this study showed the superiority of the SA compared
to famous MPPT techniques like PSO and P&O in terms of convergence speed, failure
rate, and generation efficiency. As the PSO, the SA needs reinitialization when an
acute change in power is detected as has been discussed before and shown in Eq. (40).
Figure 29 shows the flowchart SA-based GP under PSC.

Human Psychology Optimization (HPO)

Human psychology optimization (HPO) is one of the metaheuristic techniques
inspired by the manner of thinking of humans for improving his/her situation and



Photovoltaic Maximum Power Point Trackers: An Overview 177

taking decisions in the real world. The person gets experience from his own learning
and the experience of other persons which is the logic used in this technique. The first
time to use HPO as an MPPT of PV systems is done in 2017 by Kumar et al. [150].
In this study, the performance evaluation of the HPO algorithm has been compared
with two different PSO strategies in tracking the MPP of partially shaded PV systems
using a single sensor to measure the current feeding a battery in the DC-link. The
advantage of the HPO when it is used as an MPPT of the PV system is its fast conver-
gence rate and the lower failure rate. Moreover, its performance does not depend on
the initial value and the dependency on the algorithm specified parameter is very less
[150]. The searching mechanism of this technique has four stages that are listed in
the following points:

e [Excitement: In this stage, the searching agents take values of duty ratios that can
be determined from Eqgs. (35) or (36). It gives an initial move and tries to build
confidence.

e Self-motivation: It is a self-encouraging process that depends on the person’s own
experiences and achievements in which it enhances the local exploitation ability,
which increases the rate of convergence.

e [nspiration: In this stage, the person is inspired by the experience of a successful
person to follow his creative idea for success. This stage enhances global
exploration ability.

e Lesson: The previous fail experiences learned from the person’s own experience
and other persons should be avoided in the future decision. This stage helps in
avoiding the searching to be trapped in one of the LPs.

The results presented in the use of HPO in the MPPT of the PV system show its
superiority in terms of convergence time and failure rate compared to other states
of the art PSO strategies [150]. Moreover, the use of a single sensor to measure the
battery current reduces the implementation cost of this system.

Flower Pollination Algorithm (FPA)

Flower pollination algorithm (FPA) is a metaheuristic optimization technique
inspired by the flower pollination process in the plants. Two types of pollination,
namely, self-pollination and cross-pollination. The self-pollination takes place when
the same flower is pollinated internally which represents the private search of the
FPA, whereas cross-pollination occurs when pollen moves from one flower to another
which represents the global search of the FPA. The abiotic pollination occurs when
the pollen is transferred via wind, whereas the biotic pollination occurred when the
pollen transferred from the flower of male plants to the female through the insects.
The FPA has four steps which are summarized in the following points:

e The global pollination occurred in the two types of pollinations when the pollen
carrying pollinators transferred in Lévy flights shape.
e The biotic and self-pollinations represent the local pollination.
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e Reproduction probability is representing the flower constancy which is propor-
tional to the similarity of two flowers involved;

e The local and global pollination has been controlled and switched via switch
probability Pe [0, 1].

The concepts shown in the above points are converted to a mathematical model as
shown in the following equations. The position of the pollinators that moves using
Lévy flights shape can be obtained as shown in (124).

X = xk 4 yLW)(g, —x) (124)

where x! is the solution vector x;at iteration ¢ and g is the best solution (duty cycle)
of boost converter duty cycle. v is a scaling factor that used for controlling the step
size, L(A) are the Lévy flights-based step size that can be obtained from the following
equation [5, 151]:

2
Il S1+A

: I\
L~ M Wsin(F) 1 (S =Sy >0) (125)

where IT(A) represents the gamma function.

FPA has been used as an MPPT of PV system and it showed superior performance
in terms of convergence time and failure rate compared to many MPPT techniques
like PSO and P&O techniques [152]. The FPA required only control parameter (y)
which makes it very easy to be tuned for better performance.

Teaching Learning Algorithm (TLA)

The TLA is one of the modern metaheuristic optimization algorithms that inspired
by the influence of a teacher on learners or students and it has two phases; first,
the teacher phase which means leaning from the teacher; second, the learner phase
which means learning by the interaction between students (cooperation). This tech-
nique uses candidate solutions (Duty ratio) as many other metaheuristic techniques to
track the optimal solution (MPP in PV applications). The teacher phase uses the expe-
rience of the teacher to improve the students’ level of knowledge. The learner phase
is performed through the teacher and interaction between the learners to increase
their knowledge. A learner interacts randomly with other learners through group
discussions, presentations, formal communications, etc. A learner learns new infor-
mation when the other learner has more information than him. A detailed discerption
of using this technique as an MPPT of the PV system is introduced in literature [153,
154]. The results obtained from these studies showed superior performance of TLA
compared to other optimization techniques in terms of convergence time and failure
rate.
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Water Cycle Algorithm (WCA)

The water cycle algorithm is a meta-heuristic optimization technique that imitates
the flowing of streams and rivers into the sea and its idea is derived by observing the
water cycle in nature. Hydrologic cycle begins when water in the river, lakes, and
streams is evaporated and also plants release water during the photosynthesis process.
The evaporated water is carried out into the colder layer of the atmosphere to create
clouds that condense and releasing water back to the earth. The initial population of
WCA is called raindrops. The best raindrop is chosen as a sea, the number of good
raindrops is chosen as a river and the rest of the raindrops are considered as streams.
The water cycle algorithm has been used in many fields such as water resources, civil
engineering, mechanical engineering, and mathematics. In the water cycle algorithm,
the variables are called Raindrops for a single solution [155]. This technique showed
a fast convergence and low failure rate compared to many states of the art MPPT
techniques.

4.2.3 Evolutionary Algorithms (EA)
Differential Evolution (DE)

The use of differential evaluation theory was developed by Tajuddin et al. [156],
in which the optimization problem will be solved by using a different formula for
the evolution of candidate solutions. The solutions that have the best fitness are
allowed to remain in the population and the other solutions will be removed from
the population. Four DE operations, namely, initialization, mutation, crossover, and
selection are required to track the optimal solution of the optimization problem. The
duty cycle represents a member of the population where its value can be determined
from (126).

D;(j) = Dip +r (Diy — D;1) (126)

where D;;, D;y are the lower and the higher limit of the duty ratios, respectively, r
is a random number between 0 and 1, j is representing the iteration number, and i
represents the number of the searching agent (duty ratio) inside the population, N.

In each iteration, the individuals of the current population become the target
vectors. For each target vector, the mutation operation produces a mutant vector, by
adding the weighted difference between two randomly chosen vectors as shown in
(127) [157].

DiG+1 = Dyigx + F (Dr2.g — Dy3c) (127)
Then the crossover operation generates a new vector, called trial vector D; . This

is obtained by mixing the parameters of the mutant vector D, with those of the
target vector D; ¢ which is used with the PV system to get the corresponding power.
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Fig. 30 The flowchart of
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If the trial vector obtains a better fitness value than the target vector, then the trial
vector replaces the target vector in the next generation. This process will be repeated
through iterations until an acute change is detected which forces the DE to reinitialize
again as has been introduced before with PSO and show in Eq. (40).

Differential evaluation is reasonably it has fast convergence performance but it
has high oscillations, especially in fast-changing conditions. Many modifications are
introduced in the literature to further improve the performance of DE [158—160].
The flowchart of the DE is shown in Fig. 30 [159].

Genetic Algorithm (GA)

The genetic algorithm is one of the evolutionary techniques which is used to capture
accurate solutions for optimization problems. This technique (GA) is inspired by
biological genetics based on three operators namely, mutation, crossover, and selec-
tion. This technique is developed based on the concept of Darwin’s theory of evolution
in which the children having the highest fitness value means that they are powerful
enough to have a higher chance for production. The GA optimization algorithm is
one of the metaheuristic optimization techniques that use the generation, systematic
evaluation, and enhancement of potential design solutions. The mutation operator
is used to maintain the genetic diversity from one generation to the next one which
can permit a stochastic variability of GA which can reduce the convergence time
considerably [161].

In using the GA as an MPPT of PV systems, the duty ratio or terminal voltage
is used to initially set the chromosomes to follow the GA performance for tracking
the GP. These chromosomes are encoded in the form of a binary code which is
used to determine the chromosome population. The mutation and crossover will be
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performed in the execution of the algorithm to produce the new generation. The new
generation will be determined using the fitness function which can be obtained from
the PV system. The algorithm will be repeated keeping the highest fitness value as the
best solution [8]. A detailed comparison between using the GA and other traditional
PV MPPT techniques is introduced in [ 162]. The GA has been used also to determine
the optimal configuration of hybrid renewable energy systems [163]. The flowchart
of the GA is shown in Fig. 31 [162].

4.2.4 Mathematical Based Algorithms (MBA)

These techniques are soft-computing-based techniques that use mathematical
formulas in searching for the optimum solutions without imitating any natural,
biological, or physical evolution. Some of these techniques when they are used as an
MPPT of PV systems are shown in the following sections:

Fibonacci Search Algorithm (FSA)

Fibonacci search (FSA) is counted as one of the soft-computing MPPT techniques
[164]. This technique is using samples derived from Fibonacci series as shown in
(128):

F,=F,_1+ F,_,, where Fp = F; =1landn=2,3,4... (128)

In this case, the first 10 FS numbers are shown in the following Table:
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n 0 1 2 3 4 5 6 7 8 9 10
F, 1 1 2 3 5 8 13 21 34 55 89

The value of F,, is determining the accuracy of the solution, where the higher the
value of F, the higher the accuracy. The relation between the value of F,, and the
accuracy of the results as a ratio of the exact solution is given from the following
condition (129).

F, (129)

1
>
- 2¢
where ¢ is the acceptable tolerance, as an example if it is required the accuracy of the
solution to be 0.01 from the value of the exact solution, then F,, > 50, the n should
be equal to 9 as shown in the above table. Then F, = 55;

Four samples will be generated as x;, x2, x3, x4 where x3 and x4 are selected as the
lower and upper and lower limits of searching values, and x; and x; are chosen to be
in between x; and x4 [165]. The relation between the duty ratio and the samples x; is
used as shown in (130). These values of duty ratios will be applied to the PV system
one by one and the corresponding power will be collected. The sample corresponding
to the highest power is called the best sample. Based on the results obtained from the
first iteration, the two conditions are shown in (131) and (132) will be determined
[166].

D= 25(?—1 (130

If P(x;) > P(x,), then
xi“ = xé,xé“ = xé,xé“ = xi,xi“ = xé“ - F, (131)

If P(x;) < P(xy), then
xi“ = xi, xé“ =xi, x{t =, xé“ =xit' — F, (132)

Modified equations are introduced in [167] to reduce the convergence time as
shown in (133) and (134).
If P(x;) > P(x»), then

xi“ = xé,xé“ = xé,x{“ = xi, xi“ =x|+ 7 (xf1 — xé) (133)
n
If P(x;) < P(x,), then
TR NN R e U S & SN S & S Foo1 i 134
X, =X, Xy =X, X =X5,X% =X, + (x4 — x5) (134)
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Fig. 32 Fibonacci Search
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The flowchart showing the Fibonacci Search is shown in Fig. 32. The main short-
coming of FS is its limitation to capture the GP in the case of PSC. Moreover, the
complexity of the implementation of this technique which makes it not favorite to
be used as an MPPT of the PV system.

Jaya Optimization Algorithm (JOA)

The generic Jaya algorithm is one of the soft-computing, mathematical-based opti-
mization technique introduced in 2016 by Rao [168]. The operating principle of
the Jaya algorithm is to iteratively update solutions for a given problem by moving
them toward the best solution and away from the worst solution. Jaya algorithm
does not require controlled parameters which makes Jaya is an attractive option for
tracking the MPP of the PV system. Two random numbers generated from uniform
distribution are used to update the candidate solutions to the optimization problem.
Jaya algorithm has been used as an MPPT of partially shaded PV systems in 2017
[169]. The results obtained by this technique have been compared to two different
PSO strategies. The results showed better convergence performance for the Jaya
algorithm compared to the PSO in tracking the MPP of the partially shaded PV
system.

The use of the Jaya algorithm in the MPPT of the PV system is done in [169] by
initializing n candidate solutions and use these values to collect the corresponding
power associate with each solution (Voltage). Then the best solution and worst solu-
tion can be determined and their corresponding voltage is selected as V2, and VO,
respectively. And use these values to determine the new generation of solutions. Use
the voltage to determine the corresponding power from the PV system. If the newly
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generated power is greater than the one in the previous iteration, then keep the new
one otherwise keep the one in the previous iteration for the same particle. The iter-
ations should be repeated again until the system detects an acute change in power
which forces the Jaya algorithm to reinitialize again.

Vl<l+l = Vkl + rand, (Vlfest - ’Vn]1n|) - randz(v\ilorst - ‘Vritn‘) (135)
v+ = v if P(V{™") > P(V{) (136)
k v/ otherwise

where V/ is a candidate solution (PV terminal voltage) of particle k in iteration . V..,
and V[ are the voltages of the best and worst solutions in iteration /, respectively.
rand, and rand, are random numbers between 0 and 1.

To enhance the MPPT performance of PV systems in terms of faster convergence,
lower oscillation, and higher efficiency, a natural cubic spline-based prediction
model is incorporated into the iterative solution update of the Jaya algorithm is
introduced in [170]. The utilization of the natural cubic spline model in the iterative
process of the S-Jaya algorithm can avoid worse updates and thereby improves the
MPPT performance. Simultaneously, the natural cubic spline model can be renewed
online to maintain its prediction accuracy and produce correct decisions of updating
solutions [170].

Tabu Search Algorithm (TSA)

The Tabu search algorithm (TSA) is one of the mathematical-based Algorithms
(MBA) that can be used to solve nonlinear optimization problems. It is using many
other optimization algorithms such as linear programming and heuristics in adaptive
procedures to avoid their limitations such as their high failure rates. The TSA is
one of the metaheuristics optimization techniques and it has been created in 1986
by Glover [171]. By relaxing TSA’s basic rule, the TSA enhances its local search
performance. First, at each step worsening moves can be accepted if no improving
move is available. In addition, prohibitions are introduced to discourage the search
from coming back to previously seen solutions.

The implementation of the Tabu search uses memory structures that describe the
visited solutions or user-provided sets of rules. In the case of the solution that has
been previously seen within a short-term period, The TSA will mark these solutions
candidates to avoid the possibility to look at it again. TSA has been used in used
as MPPT of the PV system in [172], where it has been divided into three sub-
strategies, namely diversification search, local search, and intensification search.
The diversification search is performed first by scanning the whole range of the PV
array voltage for the detection of the promising voltage area. Then the hill-climbing
method with a relatively large step size is employed as the local search to explore
the detected promising area. These two search strategies are assembled to compose
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the main loop of TSA-MPPT and are repeated until the termination conditions are
satisfied. Moreover, the tabu list which records the explored regions is used during
the loops to avoid returning to the already visited voltage areas. Finally, after the
loops are terminated, the hill-climbing method with a small step size is applied as
the intensification search to refine the MPP visited so far for a more accurate result.
These searches are applied in such a way that they give the TSA-MPPT method a
better chance to explore among the PV array voltage range, thus avoiding the risk of
trapping into the local MPP. The terms used in TSA-MPPT are illustrated first. Then
the detailed procedure is described [172].

Extremum Seeking Control (ESC)

The extremum seeking control (ESC) is a nearly model-free self-optimizing control
strategy that can search for the unknown and/or time-varying optimal input param-
eter regarding a given performance index of a nonlinear plant process. The MPPT
is achieved by driving the obtained gradient by closing the search loop with an inte-
grator. In this study, we have followed an alternative path of ESC for PV MPPT, based
on the dither—demodulation framework described in [173]. Such an ESC scheme
relies on the use of a pair of dither and demodulation signals, along with high-pass
and low-pass filters, to extract gradient information. Similar to the method in [173],
closing the control loop with an integrator can drive the gradient towards zero in
steady state, which achieves the optimality. As the gradient information is locked
to the particular dither frequency, this ESC scheme is more robust to the process
noise and temporal variation of the performance map, compared to the classic ESC
methods without dithering signals. This ESC method has successful applications in
various systems such as axial flow compressors, jet engines, combustion, HVAC,
wind turbine among others [173]. For the dither—-demodulation scheme, one advan-
tage is that the gradient information is carried by the dither harmonic, with which it
is more robust against measurement noise and change in performance map. Another
advantage is that particular dither action such as square wave provides transient
information that can be used for fault detection [173].

4.3 Chaos Optimization Algorithm (COA)

4.3.1 Stepped-Up Chaos Optimization (SCO)

Chaos optimization Algorithm (SCO) is a very attractive technique in optimal solu-
tions of nonlinear problems due to their ability to escape from local solutions. Many
modifications are introduced to the traditional chaos optimization search techniques
to improve its ability to become faster in capturing the global solution. One of these
modifications is the stepped-up chaos optimization (SCO) [174] which has been used
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in MPPT of PV systems in order to improve its efficiency and reduce the conver-
gence time. Also, Zhou et al. [175] proposed a dual-carrier chaotic strategy in which
it selects two different chaos generations to produce chaos variables. This tech-
nique exhibits robust and accurate tracking performance when it is used in MPPT of
PV system. Another strategy introduced in [174] called stepped-up SCO in which
applies chaos theory and the iteration formula to produce random and ergodic chaos
variables, which can be used to capture the best solution in a continuous variable
searching area. Chaos mapping is shown in Eq. (137):

X, =msin(wx,), n=1,2,3,..., (137)

where u is a control parameter. Setting u = 2, Eq. (137) is completely in chaos condi-
tion, and x,, is ergodic within [—2, 2]. The optimization function can be described as
follows [174]:

f=f(xf)=max f(x), i=1,2,3,...N x; €[ci, di] (138)

where x; is representing the optimization variables and it can represent the duty ratio
of DC/DC converter or the terminal voltage of PV array in the PV MPPT application.
c¢; and d; are the lower and upper limits of x;; f (x;) is the fitness function that represents
the output power in the PV MPPT application. f (xl*) is the maximum output power
of the PV array, and x} is the duty ratio or the output voltage of the PV array at
the MPP. Two stepped-up SCO strategy is introduced to improve the performance
of SCO in tracking the GP of PV MPPT. In this strategy, two searching strategies
are implemented, namely, rough search and fine search. The rough search strategy is
used to improve the performance of SCO during transient conditions meanwhile the
fine search is used to reduce the search space of optimized variables and improve the
convergence speed [174]. The results obtained from this work showed the superior
performance of this technique in terms of convergence time and failure rate as well
as the low oscillations at the steady-state condition.

4.3.2 Dual-Carrier Chaotic Search (DCCS)

The dual-carrier chaotic search (DCCS) is a modification to the traditional chaotic

technique. This modification is done by using different mapping techniques than

traditional chaotic techniques. In this case, if iteration continues, any variable in the

optimization space can be obtained in the iterative sequence of logistic mapping. The

probability distribution of the chaos point set When the logistic equation is in chaos

condition, the theoretical probability distribution of the chaos point set x,, meets
Chebyshev distribution as shown in (139) [175]:

1

px) = m, (139)



Photovoltaic Maximum Power Point Trackers: An Overview 187

This distribution characteristic of the chaos sequence is uniform in the middle and
dense in the two ends. The probability density of x; is given by Eq. (140)

1
X)) = —— 140
According to the Perron-Frobenious equation, defined as shown in (141).
p(yi)
P =Y o0 (141)
=) "
When u =2, and y; € [0, 0.5], then
i 2
|£/(x)] = 27 cos(x). yi = aresin(x/2) (142)
T
From (141) and (142),
arcsin(x /2)
) P ﬂ
=Y 2nlcjoz(rry) - ( - 2) (143)
(i=F") TVETY
1
Then, p(x) = ——— (144)

m\/x (4 —x2)

From (144), x,+1 = p (;ryn), the mapping chaos point set x,, mainly centralizes
in the middle and uniformly distributes in the two ends. So, this technique combines
the two chaos mappings to make sure that the search is sufficient.

The results obtained from this technique shows its superiority in tracking the MPP
in the case of PSC in terms of convergence time and failure rate.

5 Other Non-Model-Based Techniques

5.1 Skipping Mechanism Algorithm (SMA)

Modern techniques have been introduced recently to the field of PV MPPT called
skipping mechanism technique [23, 176, 177]. This technique is working based on
avoiding certain intervals from the searching space of P-V curve in which for sure
the MPP does not exist. The rest of the searching area will be reduced which reduces
the convergence time and increase the convergence speed of this technique. Different
strategies used the same idea is introduced in literature are shown in the following
points:
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Voltage Window Search (VWS) [21]
Search—Skip—Judge (SSJ) [22]
Maximum Power Trapezium (MPT) [23].

6 Hybrid MPPT Techniques (HMT)

The performance of MPPT is characterized using three main issues as shown in the
following points:

The failure Rate: This is the factor that gives the percentage of attempts that
converge to LPs with respect to the total number of attempts. This factor is very
important because the convergence at the LPs reduces the generated power from the
PV system considerably. So, this factor should be minimized or even become zero
to have the highest generated efficiency.

The Convergence Time: The convergence time is the time required for the MPPT
to reach the steady-state condition. This factor is very important especially in the
case of fast change weather conditions. This factor should be minimized to improve
the stability of the PV system and increase the generated efficiency.

The oscillation around steady state: This factor should be minimized to improve
the stability of the PV system and to reduce the losses at a steady state.

The above three factors should be minimized to improve the performance of the
PV system. These three factors have trade-off performance which means if the MPPT
techniques tried to reduce one of these factors the other two may be increased. So,
the idea here is to hybridize two or more MPPT techniques to work together to get
the benefits of these techniques to reduce these three factors at the same time. This
means that, in the transient state or fast-changing weather conditions, an accurate
convergence to GP and avoidance of convergence at the LPs is required. Moreover, a
fast MPPT technique (low convergence time) is required to capture the GP in a short
time to improve system stability and increase the generated efficiency. Also, in the
case of a steady state, it is required to have low oscillations. The idea in most of these
hybrid MPPT techniques is to have a very fast and reliable convergence technique
in the transient and lower oscillation technique at the steady state. The hybridizing
between these techniques can be classified into four different categories as shown in
the following points:

e Traditional with traditional MPPTs (T-T MPPT).
e Traditional with soft-computing MPPT (T-SC hybrid MPPT).
e Soft-computing with soft-computing (SC-SC hybrid MPPT).

These techniques are listed in the following sections:
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6.1 Traditional with Traditional MPPTs (T-T Hybrid MPPT)

In this technique, the hybrid system will use two traditional techniques to work
together to capture the GP very fast and reliable in the transient state and the other
traditional technique is providing low oscillations at the steady-state condition. A
list of these techniques are shown below:

Beta with P&O [58]

P&O with InCond [178]

Fractional short-circuit current with P&O [179]
Fractional open-circuit voltage with P & O [44].

6.2 Traditional with Soft-Computing MPPT (T-SC Hybrid
MPPT)

Most of the hybrid MPPT techniques lie in this category where the soft-computing
technique is used in transient to reliably capture the GP in a very short convergence
time and switch the control after that to the traditional MPPT technique to reduce
the oscillations at the steady-state conditions. A list of these techniques is shown in
the following points:

ACO with P&O [180]

ANN with P&O [181-183]
ANN with InCond [75, 184]
BA with Beta [109]

BA with P&O [109]

BA with InCond [109]
GWO with P&O, [185]
PSO with Sliding mode controller (SMC) [186]
PSO with P&O [187, 188]
PSO with INC [189]

SSA with P&O [190]

GWO and P&O.

6.3 Soft-Computing with Soft-Computing (SC-SC Hybrid
MPPT)

ACO with FLC [191]

CS with FLC [192]

DE with ANN [193]

GWO with FLC my paper [40]
GWO-CSA [194]
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PSO with ANN [195]

PSO with FLC [196]

Quasi Oppositional Chaotic with GWO [197]
Binary chaotic with CSA (BCCSO) [198]
FLC with ANN [199, 200]

DE with PSO [201]

Lagrange interpolation with PSO [202]
WOA with DE [203]

Jaya with DE [204].

7 Conclusions and Recommendations

The MPPT techniques are very important to improve the efficiency of PV systems
and increase the generated power. Three main factors are required from the MPPT
which are, low failure rate, low convergence time, and low oscillations around the
steady-state conditions. All these factors should be achieved with minimal cost and
hardware complications. The uniform irradiance of the PV array generates only one
peak in the P-V curve of the PV array. Meanwhile, in partial shading conditions,
multiple peaks in the P-V curve will be generated the one with the highest generated
power is called the global peak (GP), and the rest is called the local peaks (LPs). Most
of the traditional MPPT techniques are able to track the peak in the uniform irradi-
ance condition but it may be trapped in one of the LPs in the case of partial shading
conditions. For this reason, soft-computing techniques are introduced to avoid this
limitation of the traditional techniques. Most of the soft-computing techniques will
be able to capture the GP in PSC but with a longer convergence time compared to
the traditional MPPT technique. Moreover, most of the soft-computing techniques,
especially swarm techniques cannot capture the GP in the case of shading pattern
changes. Several improvement strategies are introduced to improve the performance
of soft-computing techniques. This problem is avoided by reinitializing the searching
agents if there is an acute change in generated power is detected. Another improve-
ment strategy is introduced by initializing the searching agents at the position of
anticipated peaks or at an equal distance between each searching agent. This strategy
reduced the failure rate to zero and reduced the convergence time considerably. The
evaluation of the proposed techniques showed that the swarm technique is reliable and
fast when their control parameters are accurately tuned. From the simulation results
shown in many papers reviewed in this study, the BA is recommended as one of the
best MPPT technique where it can converge in less than 1 s with 0.05-s sampling
time. This convergence can be reduced to less than half of the scanning criteria that
have been used with the BA. The main problem of most of the soft-computing tech-
niques is that the improvement of convergence time will increase the failure rate and
oscillations at steady state. For this reason, hybrid MPPT techniques are introduced
in the literature to use the fast and reliable technique in the transient state and use the
techniques that have low oscillations after that like traditional techniques and fuzzy
logic controllers.
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Abstract A novel hybrid optimization technique (WOA—-SSA) combines whale
optimization (WOA) and salp swarm (SSA) algorithms are presented. The proposed
technique is designed to gather the benefits and features of SSA and WOA algo-
rithms. The proposed technique is applied for tracking the global maximum power
point (GMPP) and improve the performance of photovoltaic (PV) plants during
the conditions of partial shading (PSC). The evaluation of the performance of the
proposed technique is performed via MATLAB/SIMULINK. Moreover, a compar-
ative analysis is exhibited to confirm the performance of the planned WOA-SSA
technique against the conventional SSA and WOA, separately. The obtained results
show the superiority of the designed WOA—SSA technique considering tracking effi-
ciency. Moreover, the proposed WOA-SSA algorithm reaches the best solution in
less time and with a better convergence speed compared to SSA and WOA. The
statistical results confirm that the success rate has been enhanced from 76.6667%
and 73.333%, respectively, with WOA and SSA to 95% with the proposed hybrid
algorithm. Furthermore, the value of the standard deviation of 2.7877 and 2.5329
based on WOA and SSA is reduced to 0.3320 in the case of the proposed WOA-SSA.
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1 Introduction

These days, research is directed toward the field of renewable energy sources (RES)
and focusing on incubating energy with minimum cost [1-3]. As an example, in [1,
2,4-10], hybrid configurations of various RES have been developed which combine
solar energy, wind energy, and/or fuel cells [2, 4, 11, 12]. With the growing utiliza-
tion of solar energy, many experts are intensified on evolving MPPT methods [4—
7]. Because it is well known that the efficiency of generating electricity from PV
systems is low as it is highly dependent on weather conditions [6, 13, 14]. Moreover,
the nonlinear properties of a PV unit cause the output energy to be affected by solar
radiation and temperature [11-13]. Also, the variation of the connected load has its
effect [15-17]. Therefore, catching the MPP of PV plants is considered an essen-
tial solution to increase the PV system efficiency. To ensure the efficient operation
of PV systems and to save the cost of generated energy, the MPP tracking of the
electrical system considering the normal and irregular circumstances is a key idea of
investigation [18-23].

The constructed PV systems using multi-string arrangements are a good choice
considering the higher efficiency among the other configurations [24]. Moreover,
parallel bypass diodes have been coupled with the PV module. These diodes are
unable to affect the system considering the normal circumstances. Although with
the conditions of shading effects, the bypass diodes are biased forward and flow the
current instead of the PV module. For this reason, the power—voltage properties of
the PV plant considering the PSC have several local peak power points while the
global peak is the only one that must be cached. Therefore, this extreme global point
is necessary to be tracked. Accordingly, the success of out-of-date MPPT approaches
under PSC is reduced. The traditional MPPT algorithms, for instance, hill-climbing,
incremental-resistance (INR), perturb and observe, and incremental conductance
(INC) can only extract the local MPP and cannot separate the global and local power
points. The artificial intelligence-based methods, for instance, fuzzy logic (FL) and
neural network (NN) cannot separate between the global and local peaks [24-26].
References [24-26] introduced a mathematical analysis of MPPT algorithms such
as P&O and INC to validate their performance during dynamic and steady-state
conditions. Moreover, a neuro-fuzzy (NF) method has been implemented for the
MPPT of the PV unit [7, 24]. The described problem of extracting the MPP under
shading effects primes to reducing the efficiency of tracking the global MPP [27].

In recent years, several recent MPPT techniques considering optimization
methods are developed to fix global MPP. The primary purpose of all such algo-
rithms is to improve the efficiency of the PV system considering the PSC opera-
tion. Optimization techniques as a genetic algorithm (GA) [28] and particle swarm
optimization (PSO) technique [29] have been used for following the MPP with the
consideration of PSC. Other soft-computing techniques such as ant colony opti-
mization [30] and cuckoo search [22] have been introduced for the same purpose
to extract the global MPP. Additionally, recent optimization algorithms have also
been applied with an acceptable performance such as a novel PSO algorithm that



A Novel Hybrid Optimization Algorithm for Maximum Power ... 203

has been presented and improved the dynamic change partial shading PV MPPT [3,
31]. Moreover, the bat method is also used for tracking the MPP, considering the
partial shading [32, 33]. In Ref. [34], the scanning method has been implemented
to resolve the problem of PSC of the PV system. Dynamic PSO algorithm has been
applied for MPPT with a battery charging system from partial shaded PV [35]. In
Ref. [36], a hybrid optimization algorithm is introduced to moderate the problem of
the PSC in MPPT of PV systems. The authors in [37] introduced a comprehensive
analysis of many optimization techniques, which have been applied for MPPT under
different partial shading patterns. A review of recent soft computing methods that are
utilized to extract the MPP under different weather conditions is presented in [2, 12,
24, 36]. However, the applied algorithms, especially those which are based on one
optimization algorithm, may fail to reach the MPP under some reported cases with
the variation of the weather conditions [12, 36]. Therefore, more effective algorithms
have to be developed and utilized for MPPT in order to improve the efficiency of
PV systems considering various operation conditions, especially with PSC. Conse-
quently, the main contribution in this chapter is to present a novel hybrid optimization
algorithm for MPPT in order to improve the accuracy of power extraction as well as
the efficiency of PV system.

In the present chapter, a hybrid WOA—-SS A method has been developed to enhance
PV system effectiveness tacking the conditions of PSC into consideration. The
main purpose of the presented method is to catch and separate the global MPP
from the numerous local peaks of power. Moreover, the tracking performances
of trackers are evaluated and compared under different partial shading patterns
using MATLAB/SIMULINK package. Furthermore, a statistical evaluation of the
established algorithm is introduced.

2 PV System Under PSC

The performance of PV is tested under PSC (i.e., 4S1P configuration). The system
consists of four panels, guaranteed by three modules per string. The module contains
72 series multi-crystalline silicon cells with a top capacity of 51 W. The production
capacity of such a configuration is 204 Wp (i.e., 4*51 W). To determine the effect
of PSC on the PV system power, five arbitrary patterns of irradiance distribution are
executed besides the normal irradiance, as referred to in Table 1. G refers to the
radiation in the first series branch, while G, represents the radiation of the second
series branch and so on. The Simulink model of the PV configuration tested for
the design of the shadow patterns has been illustrated in Fig. 1. Figure 2 shows the
PV configuration characteristics under uniform (i.e., 1 kW/m?) and various partial
shading patterns of irradiances. Moreover, the MPP details for each pattern are shown
in Table 1.
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Table 1 The considered PSC patterns and MPP details for each pattern

Irradiance | MPP Irradiance | MPP
(W/m?) (W/m?)
Uniform 1000 Pmax = 203.2 W | PSC Pattern | 1000 Pmax = 82.01 W
irradiance | 100 V=677V #4 800 V=3302V
1000 400
1000 200
PSC 1000 Pnax = 172 W PSC Pattern | 1000 Pmax = 110.6 W
Pattern #2 1000 V=6949V #5 1000 V=71.06V
800 500
800 500
PSC 1000 Pmax = 1302 W | PSC Pattern | 1000 Pmax = 99.49 W
Pattern #3 | |00 V=51.67V #6 800 V=5262V
800 600
400 400

3 Brief Description of Whale Optimization Algorithm

The whale optimization algorithm (WOA) is a stable and robust method that can
solve engineering optimization problems [38, 39]. WOA considers the whale hunting
mechanism. This is pursuing an approach termed the bubble-net feeding stratagem. In
this strategy, the Humpback whales need to chase small fishes swimming near to the
water surface by producing a bubble net that surrounds prey and grows dramatically
in a circular track. This approach has been illustrated in Fig. 3. The mathematical
representation may be described as the following [38]:

D=|C -X*(t) — Xt (1)
X(t+1) = X*(t)— A.D )
R =27 - 7-7 3)
C=2.7 )

where 7 represents the current iteration, and X denotes the position vector which
represents the position of the duty cycle. A and D denote coefficients vectors, X*
denotes the position vector of the finest solution and represents the optimum duty
cycle solution. This position will be varied each time with iterations with the best
one. T is an arbitrary random vector in [0, 1], and a is linearly limited from 2 to 0 with
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Fig.1 The PV configuration model considering various shadow patterns

the iteration number. To describe the whole process considering the investigation
stage as well as the exploitation stage; the following mathematical descriptions will
be presented [39].

3.1 Mathematical Description of Exploitation Phase

This phase can be done through one of the following descriptions of air bubble net.
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Fig. 2 The characteristics of the configurated PV

3.1.1 Shrinking Circling System

This approach is described using Eq. (3). The fluctuation scope of A maybe deter-
mined in the range of [—a, a]. A is considered in the range of [—1.0, 1.0], while the
new location of A is estimated among the first agent location and the current finest
agent location. Figure 3a displays the possible locations from the position of (X, Y)
in the path of (X*, Y*), which is described by 0 < A < 1 in a 2D space.

3.1.2 Spiral Updating Position
This method is described as exposed in Fig. 3b. The considered strategy is based
on defining the distance among the whale situated at the position of (X, Y) and the

prey situated at the location of (X*, Y*). The spiral track among the two locations of
whale and prey is denoted as [40]

- — —
X(t+1)=D"-e" cos@nl) + X* (1) (5)
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where 5)’ = ?k(t) - X (#) validates the separation of the ith whale position to the
prey (finest solution). While / stands a random number in the region of [—1, 1].
Moreover, b denotes a constant for characterizing the state of the logarithmic spiral.
Whales swim around the prey inside the shrinking circle and along with a spiral form.
Additionally, a likelihood of half to indicate one of the two methods can be written
as

X*(t)—A-D ifp <05

bl Yooy ; (6)
D’ -e” -cosrl)+ X*(t) ifp > 0.5

ia+n={

where p denotes an arbitrary number in the range of [0 and 1].
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3.2 Mathematical Description of the Investigation Phase

Whales track randomly as the location of each further. Therefore, A is exploited
with arbitrary numbers, which are not in the range of [—1]-[1]. This phase ensures
to increase the range of searching process in order to investigate possible solutions
far from the current finest position for the duty cycle. This phase, which considers the

value of ‘A’ > 1, improves the search about the global pursuit. The mathematical
description of this phase can be represented as in [20]:

D=|C-Xoana— X (7)

-

X(t‘}_l):)?rand_A'ﬁ ®)
Figure 4 illustrates the flowchart of the full mathematical description of the WOA
procedure.

4 Salp Swarm Algorithm

The principle motivation of the salp swarm algorithm (SSA) has the same behavior
as swarming conduct of salps when exploring and scavenging in oceans [41-43].
The state of a salp has been appeared in Fig. 5a. In deep oceans, salps frequently
structure a swarm termed salp chain, as outlined in Fig. 5b.

To scientifically describe the salp chains, the populations will be alienated into
two groups. The first group is the leader, while the other one are the followers. The
leaders are at the front of the chain. Although the other salps are the followers. The
location of salps has been characterized in an n-dimensional search space. Wherever
n denotes the number of variables of a studied problem. Consequently, the locations
of all salps remain kept in a two-dimensional matrix named X, which represents the
duty cycle. Additionally, there is a food source F in the search space as the swarm’s
objective, which represents the power of the tested PV. The update process of the
slaps can be performed as

. Fj+C1((ubj—lbj)C2+lbj), c3>0 ©)
I F; —cl((ubj —lbj)cz—i—lbj), 3 <0

where x} illustrates the position of the first salp (leader) in the j-th dimension. While
the ub;, Ib; indicates both the upper and lower bound of j-th dimension, respectively.
Moreover, F; denotes the location of the food source in the j-th dimension; while
¢y, €3, and c3 stands for random numbers. Equation (9) displays the update process
of the leader location, considering the food source. The coefficient ¢; denotes the
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Fig. 4 The flowchart of the WOA technique

most substantial parameter in SSA. This coefficient confirms the required balance
between the phases of exploration and exploitation phases. The coefficient c; can be
calculated as

=2 (1) (10)
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where [ denotes the present iteration, while L denotes the maximum number of
iterations. The parameters ¢, and c3 are consistently produced in the interim of
[0, 1]. Actually, the parameters ¢, and c3 are directly controlled in the following
position in the j-th is to positive limitlessness or negative interminability just as
the progression estimate. Furthermore, the position of the followers will be updated
considering Newton’s law of motion:

1

1 2
Xj=g-at + v (11)

where i >2, x; represents the position of i-th follower salp in j-th dimension, while
t denotes time and vy denotes the initial speed, and a = v‘:—o‘, where v = ===

Since the time in the optimization process mainly is iterative, the contradic-
tion among iterations has been equivalent to 1, the vo = 0, and the mathematical

description is as follows:

i_ L i1
xj=§<xj+xj ) (12)

The SSA algorithm has many advantages that enable it to resolve the objective
optimization problems considering the obscure search spaces. Furthermore, the adap-
tive mechanism of this algorithm permits local solutions to be evaded and ultimately a
precise assessment of the top solution obtained throughout the optimization process.
The flowchart of the SSA algorithm has been shown in Fig. 6.
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Fig. 6 The main steps of SSA

5 Hybrid WOA-SSA

The two phases of the search process for meta-heuristic optimization techniques
are known as exploration and exploitation [12, 38—44]. The exploration phase is to
search for global optima. Moreover, this phase is to move the search positions of the
next generation as randomly as possible. On the other hand, the exploitation phase
is a detailed investigating of the promising area(s) of the search space. Furthermore,
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the exploitation anxieties to the capability of the optimization algorithm for the local
search in the region around that initiated in the exploration. The main task is to find
a balance between the two phases.

The presented results in [38] showed that the WOA algorithm features the right
balance of exploration and exploitation that supports the WOA technique to decide
the global bests. On the other hand, the introduced results demonstrated that the
WOA flops to resolve a number of the presented problems. The characteristics of the
WOA technique are determined from Eq. (8) for exploration capability through the
random movement of whales. Also, Eq. (6) shows that the WOA algorithm has the
exploitation phase. This equation shows that the WOA permits the whales to move
toward the best solution found so far. The reported results prove the power of the
WOA algorithm against many techniques such as PSO and GSA.

The displayed consequences in [41] demonstrated that SSA first investigates
the hunt space and afterward misuses it. Besides, SSA profoundly advances abuse
utilizing the c; parameter in the final ventures of optimization as decided from
Eq. (10). Also, the outcomes demonstrated that SSA could test various areas of
the hunt space in all respects adequately by coving promising locales of the inquiry
space. It has been indicated that SSA can improve the nature of a lot of random
solutions. At long last, the outcomes and discourse demonstrated that the exactness
of the approximated global optimum is improved by SSA. This demonstrates that
the SSA has an appropriate parity of investigation/local optima turning away and
exploitation/convergence.

The hybrid WOA-SSA technique is proposed for the MPPT of partially shaded
PV plants in this chapter in order to benefit from the advantages of both algorithms.
In the hybrid WOA-SSA algorithm, to update the position of the followers which
represents the duty cycle, two passes have been taken, and the average between them
has been taken as the position of the next iteration. The first pass is as in the WOA
algorithm as in Egs. (1)—(8). At the same time, the second pass is as in the SSA
technique considering Eqgs. (9)—(11). The flowchart of the WOA—-SSA technique has
been illustrated in Fig. 7.

Qualitative outcomes are, for the most part, obtained from the distinctive visual-
ization apparatuses. The furthermost well-known qualitative outcomes in the reported
work are the convergence curves. Academics often record the finest result acquired
so far in every iteration. The qualitative outcomes are exhibited in Appendix A.
The qualitative outcomes are search chronicles of search agents in SSA, WOA,
WOA-SSA algorithms through the span of iteration. The outcomes demonstrated
that WOA-SSA can test various areas of the search space in all respects adequately
by coving promising locales of the search space. Likewise, WOA—SSA is equipped
for enhancing the quality of a lot of arbitrary results for studied issues. At long last,
the outcomes demonstrated that the exactness of the approached global optimal is
expanded with the WOA-SSA, which affirms the need for the proposed algorithm.
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Fig. 7 The flowchart of the proposed hybrid WOA-SSA algorithm

6 Results and Discussions

The validation of the WOA-SSA technique for catching the global MPP of PV
systems under PSC has been performed. The simulation of PV configuration consid-
ering various PSC patterns using the developed WOA—-SSA based tracker has been
performed through MATLAB/SIMULINK package. Moreover, a comprehensive
comparison between the tracking performance and the efficiency of WOA-SSA-
based tracker against the traditional WOA and SSA techniques have been analyzed
using different PSC. This system involves LA361K51S PV panel, DC/DC boost
converter with a switching frequency of 30 kHz in a continuously conducted current
mode. Moreover, the input inductance is with the value of ImH while the value of
the output capacitor is taken as 47 F. Furthermore, a 60 €2 resistive load has been
considered. The Simulink model of the PV system combined with WOA—-SSA-based
MPPT has been visualized in Fig. 8.

Case 1: Under this case study, the performance of the three algorithms have been
evaluated and compared under a uniform irradiance of G = 1000 W/m? and a temper-
ature of 7' =25 °C. Figure 9 illustrates the performance of the developed WOA-SSA
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algorithm against the conventional WOA and SSA algorithms. It is obvious from this
figure that the three algorithms have the ability to catch the MPPT efficiently and
approximately reached the same value of the maximum power. The extracted power
from the PV with the three optimization algorithms is 203.2 which equals the listed
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one for the specified value in Table 1. The main difference among the three tech-
niques is in the value of the convergence speed of each one to reach the MPP as
exposed in Fig. 9. The speeds of convergence of the SSA, WOA, and WOA-SSA
are 2, 8, and 5 iterations, respectively. The simulation results have been displayed
in Fig. 10. In this figure, the duty cycle, PV power, PV voltage, and PV current of
the different methods have been shown. From the figure, it is shown that the needed
time of the SSA, WOA, and WOA-SSA to reach the MPP is 0.6, 0.15, and 0.1 s,
respectively. Finally, it may be concluded that for the uniform irradiance case, the
three algorithms can track the local MPP while the hybrid one is the best considering
the required time to reach the MPP.

Case 2: For further investigation, the second case assumes the first partial shading
pattern. From Fig. 2, the global MPP is at the second point on the P-V curve from two
points of peaks. The ability of the optimization algorithms to determine the global
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Fig. 10 Performance of PV considering the uniform irradiance
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point and to not fails in the local one is a critical task in this case of study. The perfor-
mance of the three algorithms has been displayed in Fig. 11. Figure 11 demonstrates
that the three algorithms can extract the MPP of 172w, which is indicated from the
characteristics of Fig. 2 and Table 1. From this figure, the required iterations to reach
the MPP are 10, 8, and 5 for WOA, SSA, WOA-SSA-based trackers, respectively.
This confirms for the second time, the enhancement of the speed convergence of the
hybrid WOA-SSA optimization algorithm over the WOA and SSA algorithms. Also,
the simulation results are pictured in Fig. 12. From the figure, the WOA—SSA can
locate the global MPP within the best time of 0.2 s. The introduced results confirm
that the WOA—-SSA has the lead of speed convergence in order to reach the global
MPP.

Case 3: The third partial shading pattern is assumed in this case. Furthermore,
the global MPP is at the second point on the P-V curve from three points of peaks,
as shown in Fig. 2. The performance of three algorithms has been shown in Figs. 13
and 14. It is obvious from these figures that the three algorithms can track the MPP
with reasonable accuracy. However, the other essential point is the time to reach the
MPP that can be considered to judge the performance of the three algorithms. As the
figures indicate, the convergence speeds are 6, 2, and 6 iterations for WOA, SSA,
and WOA-SSA algorithms, respectively.

Case 4: Another case study has been considered to evaluate the performance of
the three algorithms further. The fourth partial shaded pattern has been assumed.
The global MPP is at the first point on the P-V curve from three points of peaks, as
displayed in Fig. 2. The results of this case under study are shown in Figs. 15 and
16. The three algorithms have the ability to track the MPP, while the main difference
is in the speed of convergence. The convergence speeds of the three methods are 13,
11, and 10 iterations for WOA, SSA, and WOA-SSA-based trackers, respectively.

Case 5: The fifth partial shaded pattern is assumed in this case. The global MPP
is at the second point on the P-V curve from the two points of peaks, as exposed
in Fig. 2. The results of this case under study are shown in Figs. 17 and 18. The
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convergence speeds are 14 iterations for the techniques of WOA and WOA-SSA-
based trackers. From the figure, it is obvious that the SSA tracker did not catch
the MPP. The WOA alone, in this case, can track the MPP, while the SSA fails to
discriminate between the local and global MPPs. So, the hybridization between the
two algorithms enhances tracking efficiency.

Case 6: The sixth partial shaded pattern is considered to study. The global MPP is
at the third point on the P-V curve from three points of peaks as visualized in Fig. 2.
The simulation results of this case under testing have been discovered in Figs. 19
and 20. The convergence speeds of the three trackers are 6, 9, and 5 iterations for
WOA, SSA and WOA-SSA-based trackers, respectively. Also, this time, the hybrid
algorithm proves its self as the best algorithm among the other investigated algorithms
in this study. It is almost timeless in reaching the MPP than those other algorithms.
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For more visualization, the PV power of WOA, SSA, and WOA-SSA algorithms
under different partial shading patterns is shown in Figs. 21 and 22 besides the
PV characteristics of each pattern. These figures showed that all the investigated
algorithms can track the global MPP with high tracking efficiency for most of the
cases under study. However, in case 5, the SSA algorithm could not catch the MPP.
In most of the cases, the convergence speed of the presented WOA—-SSA technique
is better than that with WOA.
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For assessing the features of algorithms, the speed of convergence and efficiency
of each algorithm to catch the MPP are assumed as the main criteria. The detailed
results of the criteria have been displayed in Table 2. The outcomes from this table
showed the priority of the WOA—-SSA technique corresponding to the efficiency of
tracking the maximum power. The average time and the convergence speed to track
confirm the superiority of the WOA—-SSA-based trackers.

7 Statistical Evaluation of the Presented Algorithms

To evaluate and validate the effectiveness of the studied algorithms, it is essential to
select a set of metrics to introduce a statistical evaluation of the obtained results and
therefore provide a good validation of the proposed hybridization. Table 3 shows
numerous quality metrics to estimate the features of the studied algorithms. Such
indices include variance, standard deviation (STD), and success rate. The latter refers
to the attempts to extract the MPP. These metrics measure the true PV power (Ppyy
gotten from the SIMULINK model shown in Fig. 1, and the PV power (Ppv.) found
from the optimization algorithms. The parameters for the three trackers of WOA,
SSA, and WOA-SSA have been established as the maximum number of iterations
of (15) and population of (3). Also, each technique is performed ten times for each
pattern (60 runs for each algorithm).

The performance of each algorithm for the MPP is shown in Fig. 23. From the
figure, the SSA algorithm failed to discover the MPP from the PV for 16 runs for all
patterns. Alternatively, the WOA technique failed to reach the MPP for the PV system
for 14 runs for all patterns. Moreover, the proposed hybrid WOA-SSA algorithm
failed to reach the MPP for only three runs for all patterns. The results of the figure
display that the projected hybrid WOA—-SSA is better than the other two techniques.

Tables 4, 5 and 6 show the performance evaluation for WOA, SSA, and WOA-SSA
algorithms for different patterns. These tables showed that the hybrid WOA-SSA
algorithm has an acceptable lower variance than the variance of WOA or SSA. Also,
the STD confirmed that no change in the extracted maximum power at each run from
the other, which designated the stability and the priority of the WOA—SSA algorithm.

The comparison among the obtained results of the three techniques has been
recorded in Table 7 and Fig. 24. The indicated results of success rate, STD, and vari-
ance have been emphasized. From this table, it has been detected that the WOA—-SSA
technique has the lowest value of the variance. Moreover, the value of STD proved that
the values of MPP did not change along the iterative process. All these results prove
the stability of the WOA-SSA techniques over the algorithms of SSA and WOA.
The STD is 2.7877, 2.5329, and 0.3320 for WOA, SSA, and WOA-SSA, respec-
tively. The success rate indicates the percentage of numbers of successful tracking of
the correct global MPP concerning the whole number of runs. The success rates for
WOA, SSA, and WOA-SSA algorithms are 76.6667, 73.333, and 95, respectively.
The superiority of the hybrid WOA—-SSA has been proved from the table as well as
the whole presented results.
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Table 3 Indexes applied to assess the performance of the studied techniques
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Fig. 23 The PV system output power for WOA, SSA, and WOA-SSA algorithms for 10 runs of
operation under all patterns

Table 4 The performance of WOA under different shadow patterns

Cases WOA
Best MPP | Worst MPP | Average | Median | STD C Suc. Rate
MPP MPP %
Patterns 1 | 204.146 203.814 204.112 |204.145 |0.105 0.0109 |90
Patterns 2 | 172.779 172.255 172723 | 172.774 | 0.164 0.0269 |90
Patterns 3 | 130.750 130.385 130.678 |130.749 |0.151 0.0227 |80
Patterns 4 | 82.380 68.168 78.077 | 82317 |6.824 |46.571 |70
Patterns 5 | 111.049 96.776 108.167 |111.019 |6.003 |36.0431 |80
Patterns 6 | 99.902 93.038 96.308 | 95.675 |3.479 |12.1036 |50
Average 27877 |15.7964 |76.6667
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Table 5 The performance of SSA under different shadow patterns

Cases SSA
Best MPP | Worst MPP | Average | Median |STD Variance | Suc. Rate
MPP MPP

Patterns 1 | 204.146 200.822 203.718 | 204.119 |1.0315 | 1.064 70
Patterns 2 | 172.779 167.907 172.289 | 172.777 |1.539 2.369 90
Patterns 3 | 130.7507 | 126.010 129.893 | 130.750 |1.818 3.308 80
Patterns 4 | 82.387 68.214 79.867 | 82313 |4435 |19.671 60
Patterns 5 | 111.060 97.216 109.441 |110.959 |4.305 |18.535 90
Patterns 6 | 99.908 93.133 98.806 | 99.532 |2.069 42828 |50
Average 2.5329 | 8.2050 |73.333

Table 6 The performance of WOA—-SSA under different shadow patterns

Cases WOA-SSA
Best MPP | Worst MPP | Average | Median | STD Variance | Suc. Rate
MPP MPP
Patterns 1 | 204.148 204.144 204.145 |204.144 |0.0013 |1.847e-6 | 100
Patterns 2 | 172.779 172.285 172.743 | 172.774 |0.122 | 0.014 100
Patterns 3 | 130.750 129.835 130.658 |130.749 |0.288 |0.083 90
Patterns 4 | 82.399 77.925 81.898 82.325 |1.396 1.949 90
Patterns 5 | 111.062 111.019 111.035 |111.031 |0.0173 |0.0003 100
Patterns 6 | 99.913 99.365 99.840 | 99.888 |0.1674 |0.0280 90
Average 0.3320 |0.3457 95
E;E;ZZH \S/(())rz{)asrlsszr’l ;cusiults STD Variance Suc. Rate
WOA-SSA algorithms WOA 2.7877 15.7964 76.6667
SSA 2.5329 8.2050 73.333
WOA-SSA 0.3320 0.3457 95

8 Conclusion

In this chapter, a novel hybrid WOA-SSA optimization technique has been devel-
oped and utilized as one of the meta-heuristic optimization algorithms. The core
goal of the WOA-SSA is to enhance the efficiency of the PV system, considering
the PSC. The proposed algorithm is utilized to determine the global MPPT from
the multiple local peaks. Two other algorithms, WOA and SSA, had been imple-
mented for the evaluation and comparison purposes with the hybrid WOA-SSA
algorithm. The comprehensive evaluation of the three trackers is approved with
MATLAB/SIMULINK package. The obtained results displayed the superiority of
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the WOA-SSA in terms of the success rate. Moreover, the results proved that the
features of the WOA—-SSA are faster than the other techniques considering conver-
gence speed. Moreover, the statistical results of 10 individual run for each algorithm
show that the STD is 2.7877, 2.5329, and 0.3320 for WOA, SSA, and WOA-SSA
respectively, while the success rate of WOA, SSA, and WOA-SSA techniques are
76.6667, 73.333, and 95, respectively. Future work can consider the application of
the presented hybrid algorithm and other recent algorithms with the grid-connected
PV systems.
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Fig. 24 Comparison results between WOA, SSA, and WOA-SSA techniques
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Appendix A

See Fig. Al.

References

10.

12.

14.

. Diab AAZ, Sultan HM, Mohamed IS, Kuznetsov ON, Do TD (2019) Application of different

optimization algorithms for optimal sizing of PV/wind/diesel/battery storage stand-alone
hybrid microgrid. IEEE Access 7:119223-119245

. Eltamaly AM, Abdelaziz AY (2019) Modern maximum power point tracking techniques for

photovoltaic energy systems. Springer

. Eltamaly AM, Farh HM, Abokhalil AG (2020) A novel PSO strategy for improving dynamic

change partial shading photovoltaic maximum power point tracker. In: Energy sources, part a:
recovery, utilization, and environmental effects, pp 1-15

. Diab AAZ, El-ajmi SI, Sultan HM, Hassan YB (2019) Modified farmland fertility optimization

algorithm for optimal design of a grid-connected hybrid renewable energy system with fuel
cell storage: case study of Ataka, Egypt. Int J] Adv Comput Sci Appl 10(8)

. Diab AAZ, Sultan HM, Kuznetsov ON (2019) Optimal sizing of hybrid

solar/wind/hydroelectric pumped storage energy system in Egypt based on different
meta-heuristic techniques. Environ Sci Pollut Res 1-23

. Motahhir et al (2020) Optimal energy harvesting from a multistrings PV generator based on

Artificial Bee Colony Algorithm. IEEE Syst J

. Narasipuram RP (2018) Optimal design and analysis of hybrid photovoltaic-fuel cell power

generation system for an advanced converter technologies. Int J Math Model Numer Optim
8(3):245-276

. Kuznetsov ON, Sultan HM, Aljendy RI, Diab AAZ (2019) Economic feasibility analysis

of PV/Wind/Diesel/Battery isolated microgrid for rural electrification in south egypt. In:
2019 IEEE conference of Russian young researchers in electrical and electronic engineering
(EIConRus). IEEE, pp 1001-1006

. Sultan HM, Kuznetsov ON, Menesy AS, Kamel S (2020) Optimal configuration of a grid-

connected hybrid PV/Wind/hydro-pumped storage power system based on a novel optimization
algorithm. In: 2020 international youth conference on radio electronics, electrical and power
engineering (REEPE). IEEE, pp 1-7

Saad Al-Sumaiti A, Kavousi-Fard A, Salama M, Pourbehzadi M, Reddy S, Rasheed MB (2020)
Economic assessment of distributed generation technologies: a feasibility study and comparison
with the literature. Energies 13(11), p 2764

. Al-Sumaiti AS, Salama M, Konda SR, Kavousi-Fard A (2019) A guided procedure for

governance institutions to regulate funding requirements of solar PV projects. IEEE Access
7:54203-54217

Diab AAZ, Rezk H (2017) Global MPPT based on flower pollination and differential evolution
algorithms to mitigate partial shading in building integrated PV system. Solar Energy 157:171—
186

. Kirli MS, Fahrioglu M (2019) Sustainable development of Turkey: deployment of geothermal

resources for carbon capture, utilization, and storage. Energy Sourc Part A Recover Utilizat
Environ Effects 41(14):1739-1751

Shahid H, Kamran M, Mehmood Z, Saleem MY, Mudassar M, Haider K (2018) Implementation
of the novel temperature controller and incremental conductance MPPT algorithm for indoor
photovoltaic system. Solar Energy 163:235-242

. Mohamed MA, Diab AAZ, Rezk H (2019) Partial shading mitigation of PV systems via different

meta-heuristic techniques. Renew Energy 130:1159-1175



A Novel Hybrid Optimization Algorithm for Maximum Power ... 229

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

Mirza AF, Ling Q, Javed MY, Mansoor M (2019) Novel MPPT techniques for photovoltaic
systems under uniform irradiance and partial shading. Solar Energy 184:628-648

Terki A, Moussi A, Betka A, Terki N (2012) An improved efficiency of fuzzy logic control of
PMBLDC for PV pumping system. Appl Math Model 36(3):934-944

Dhimish M (2019) Assessing MPPT techniques on hot-spotted and partially shaded photo-
voltaic modules: comprehensive review based on experimental data. IEEE Trans Electron Dev
66(3):1132-1144

Reddy J, Natarajan S (2018) Control and analysis of MPPT techniques for standalone PV
system with high voltage gain interleaved boost converter. Gazi Univ J Sci 31(2)

Dolara A, Grimaccia F, Mussetta M, Ogliari E, Leva S (2018) An evolutionary-based MPPT
algorithm for photovoltaic systems under dynamic partial shading. Appl Sci 8(4):558
Mohamed MA, Eltamaly AM (2018) Modeling and simulation of smart grid integrated with
hybrid renewable energy systems. Springer

Ahmed J, Salam Z (2014) A maximum power point tracking (MPPT) for PV system using
Cuckoo search with partial shading capability. Appl Energy 119:118-130

Al-Sumaiti AS, Ahmed MH, Rivera S, El Moursi MS, Salama MMA, Alsumaiti T (2019)
Stochastic PV model for power system planning applications. IET Renew Power Gener
13(16):3168-3179

Motahhir S, El Hammoumi A, El Ghzizal A (2020) The most used MPPT algorithms: Review
and the suitable low-cost embedded board for each algorithm. J Cleaner Product 246:118983
Rezk H, Eltamaly AM (2015) A comprehensive comparison of different MPPT techniques for
photovoltaic systems. Solar Energy 112:1-11

Narasipuram RP, Somu C, Yadlapalli RT, Simhadri LS (2018) Efficiency analysis of maximum
power point tracking techniques for photovoltaic systems under variable conditions. Int J Innov
Comput Appl 9(4):230-240

Tey KS, Mekhilef S, Yang H-T, Chuang M-K (2014) A differential evolution based MPPT
method for photovoltaic modules under partial shading conditions. Int J Photoenergy
Daraban S, Petreus D, Morel C (2013) A novel global MPPT based on genetic algorithms
for photovoltaic systems under the influence of partial shading. In: IECON 2013-39th annual
conference of the IEEE industrial electronics society. IEEE, pp 1490-1495

Phimmasone V, Kondo Y, Kamejima T, Miyatake M (2010) Evaluation of extracted energy
from PV with PSO-based MPPT against various types of solar irradiation changes. In: 2010
International conference on electrical machines and systems. IEEE, pp 487492

Jiang LL, Maskell DL, Patra JC (2013) A novel ant colony optimization-based maximum
power point tracking for photovoltaic systems under partially shaded conditions. Energy Build
58:227-236

Eltamaly AM, Al-Saud M, Abo-Khalil A (2020) Performance improvement of PV systems’
maximum power point tracker based on a scanning PSO particle strategy. Sustainability
12(3):1185

Eltamaly AM, Al-Saud M, Abokhalil AG (2020) A novel scanning bat algorithm strategy for
maximum power point tracker of partially shaded photovoltaic energy systems. Ain Shams
EngJ

Eltamaly AM, Al-Saud M, Abokhalil AG (2020) A novel bat algorithm strategy for maximum
power point tracker of photovoltaic energy systems under dynamic partial shading. IEEE Access
8:10048-10060

Chalh A, Motahhir S, Ghzizal AE, Hammoumi AE, Derouich A (2020) Global MPPT of
photovoltaic system based on scanning method under partial shading condition. SN Appl Sci
2:1-5

Obukhov S, Ibrahim A, Diab AAZ, Al-Sumaiti AS, Aboelsaud R (2020) Optimal performance
of dynamic particle swarm optimization based maximum power trackers for stand-alone PV
system under partial shading conditions. IEEE Access 8:20770-20785

Diab AAZ (2020) MPPT of PV system under partial shading conditions based on hybrid
whale optimization-simulated annealing algorithm (WOSA). In: Modern maximum power
point tracking techniques for photovoltaic energy systems. Springer, pp. 355-378



230

37.

38.

39.

40.

41.

42.

43.

44.

A. A.Z.Diab et al.

Eltamaly AM, Farh HM, Al-Saud MS (2019) Grade point average assessment for metaheuristic
GMPP techniques of partial shaded PV systems. IET Renew Power Gener 13(8):1215-1231
Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51-67
Kumar N, Hussain I, Singh B, Panigrahi BK (2017) MPPT in dynamic condition of partially
shaded PV system by using WODE technique. IEEE Trans Sustain Energy 8(3):1204-1214
Hasanien HM (2017) Whale optimisation algorithm for automatic generation control of inter-
connected modern power systems including renewable energy sources. IET Gener Transmission
Distrib 12(3):607-614

Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm
Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163—
191

Sutherland KR, Madin LP (2010) Comparative jet wake structure and swimming performance
of salps. J Exper Biol 213(17):2967-2975

Hussien AG, Hassanien AE, Houssein EH (2017) Swarming behaviour of salps algorithm for
predicting chemical compound activities. In: 2017 eighth international conference on intelligent
computing and information systems (ICICIS). IEEE, pp 315-320

Belhachat F, Larbes C (2018) A review of global maximum power point tracking techniques of
photovoltaic system under partial shading conditions. Renew Sustain Energy Rev 92:513-553



Distributed Maximum Power Point )
Tracking for Mismatched Modules e
of Photovoltaic Array

S. Berclin Jeyaprabha

Abstract The multiple peaks in the output P-V characteristics of the photovoltaic
(PV) module and the complete loss of shaded module’s generation due to the
existing bypass diode-based scheme are eliminated through the implementation of
proven distributed maximum power point tracking (DMPPT). Considering the unique
behavior of each PV Module, the artificial neural network is used in the DMPPT
algorithm to track the MPP at every instant by learning the unique behavior of each
PV module in this chapter. This eliminates the effect of manufacturing dispersion.
Though the unique MPP is identified, the inability of the DMPPT algorithm in main-
taining the PV modules in its own MPP is eliminated by the compensator circuits
which are introduced in the array configuration along with the DMPPT in this chapter.
These compensators enabled the maintenance of each PV module in its own MPP
by providing the deficient current of each module and the deficient voltage of each
string. So, this configuration increases the output power by including the generation
of shaded modules instead of bypassing it. The results show that the proposed config-
uration avoids the multiple peak condition in P-V characteristics and improves the
efficiency of the PV array under partially shaded conditions.

Keywords Distributed maximum power point tracking « Partial shading -
Compensators - PV module - Artificial neural network - Photovoltaic

1 Introduction

The growing energy demand due to the growing need of the world population,
push everyone to search for an alternate energy source. Considering the environ-
mental safety and comfort, all nations are moving toward the self-sustainable source
called renewable energy system (RES). Though the governments and the industries
are investing in RES to become independent, the technical problems faced by the
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investors are more. These problems include the higher curtailment rate of output
from RES due to its fluctuating nature, losses due to the mismatch or manufacturing
dispersion, partial shading from the nearby buildings, clouds, bird droppings, dust,
the distribution poles, etc. Though the governments are working on the policies for
the reduction of renewable power curtailment rate, the daily losses occurred due
to the partial shading condition or the mismatch due to the manufacturing disper-
sion are huge. The researchers around the world claim that the losses under the
partial shading and the mismatched condition varies from 10 to 70% [1]. The nearby
structures may not be present during the initial days of renewable energy plants but
built or installed after a few years. This uneven shading causes the difference in
the output of PV modules which are connected in series. Similarly, the PV modules
connected together may be of the same manufacturer with the same rating. But there
are mismatches in the output due to the manufacturing dispersion. These differences
add complications in the control of the RES which resulted in reduced yield. So,
under these conditions, the investors are interested to find a solution for this sudden
decrease in yield.

Generally, the RES is equipped with the higher-end power converters with inbuilt
maximum power point tracker (MPPT) facilities. The MPPT is used to track the
maximum power point of the P-V characteristics of the PV array at every instant to
extract the highest power from the PV array. The number of peaks in the module’s P-
V characteristic is decided by the operating temperature, insolation, shading pattern,
and the array configuration [2]. Under partial shading conditions, the PV character-
istics have more peaks as the entire PV array is not able to receive the uniform solar
radiation [3-6]. The conventional MPPT algorithms fail to identify the global peak
or the maximum power point among the multiple peaks under the rapidly varying
environments. Though the partial shading phenomena could not be predicted or
avoided, the researchers around the world are working for a better MPPT algo-
rithm which finds the highest peak at every instant among the multiple peaks to get
better yield even under partially shaded conditions. The conventional MPPT algo-
rithms like Perturb and Observe method, Incremental Conductance method, Open-
Circuit Voltage method, Short Circuit Current method, Sliding Control, etc., are
performing well under normal working condition of PV system but, they fail to track
the maximum power point under partial shading condition due to their inability to
differentiate the local and global peaks [7]. Though the soft computing approaches
are able to track the maximum power point under randomly changing environments,
the losses occurred in the photovoltaic (PV) module-level during the partial shading
condition are more due to the unique behavior and circuit configuration. These losses
are explained in this chapter. To avoid these losses, the module-level MPPT imple-
mentation and the utilization of compensating circuits are considered in this chapter.
The compensating circuits are used to satisfy the requirements of the series and
the parallel connections of PV modules which will enhance the operation of PV
modules in their actual operating point. The proposed method will enhance the overall
performance of the PV array by enabling the other healthy or unshaded modules to
perform normally. The characteristics of a PV module, the MPPT algorithms, and
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their working at shaded, unshaded conditions, and the proposed solution for reducing
the losses are explained in the following sections.

2 Effect of Partial Shading and Mismatch in PV Array

Initially, to understand the characteristics of the PV array, the structure of the same
is given in detail. The fundamental PV element called solar cells or PV cells is
connected together to form a PV module or a PV panel. As an example, a PV panel
that can give an open-circuit voltage V¢ of 21 V and a short circuit current /¢ of
3.74 A is built by connecting 36 solar cells in series. To satisfy the required voltage
and the current rating of the PV system, many such PV modules are connected in
series and parallel. The series connection of many PV modules creates a PV string.
Also, the parallel connection of these PV strings together forms a PV array. If the
required output voltage is 210 V, then, ten such PV modules are connected in series
and forming a string. So, each string is rated for an open-circuit voltage V¢ of 210 V
and a short circuit current /5¢c of 3.74 A. Similarly, if the required current rating is
187 A, then 50 such strings are connected in parallel to form an array. So, the array
is rated for 39.27 kW or an open-circuit voltage of V¢ of 210 V and a short circuit
current /¢ of 187 A. The PV array with ten modules in each string and 50 strings
in parallel is given in Fig. 1.

The PV array is partially shaded in the above condition. The shading is not uniform
throughout the array, because of its uneven coverage among all the strings of the array.
Based on the shading pattern, the strings are divided into different groups named G1,
G2, and G3. The shading pattern is given in Table 1. The G1 consists of 20 strings
in parallel. All the 20 strings of G1 are having the same shading pattern. In G1,
each string has four shaded modules and six unshaded modules connected in series.
The G2 consists of 18 strings in parallel and each string have three shaded modules
and seven unshaded modules. Similarly, in G3, there are 12 parallel strings and each
string consists of one shaded module and nine unshaded modules. The characteristics
of the PV array are drawn with the assumption that the shaded modules and unshaded
modules are receiving the solar insolation of 400 W/m? and 1000 W/m?, respectively.
In Fig. 2a, b the I-V and P-V characteristics of the unshaded PV array are given. The
P-V characteristics of the unshaded array have a single peak power point. Similarly in
Fig. 2¢c, d, the I-V and P-V characteristics of the shaded PV array are given. The P-V
characteristics given in Fig. 2d have multiple peaks due to shading. These multiple
peaks complicate the MPPT. Even, in partial shading, there are two types. They are
called as static shading and dynamic shading. If the shade on the PV array stays for
a long time in the same position, then it is called as static shading. If the shade is
moving fast due to the wind then it is called dynamic shading. Under this dynamic
shading the maximum power point Pypp varies randomly.

Generally, the PV modules are equipped with parallel-connected bypass diodes
to avoid the hotspot problem under the shaded or mismatched condition as shown
in Fig. 3. The role of bypass diode is to divert the current out of the shaded module
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Table 1 Shading pattern and the configuration of PV array

Shade

Group | No. of shaded modules in | No. of unshaded modules in | No. of strings in group
string string

Gl 4 6 20

G2 3 7 18

G3 1 9 12

when it is getting activated by the different shading patterns. The modules under
normal solar insolation generate more current than the shaded modules. To avoid the
loading effect in shaded modules, the bypass diodes which are connected across the
shaded modules are activated and diverting the current through unshaded modules
and bypass diodes. When the bypass diodes are activated, the shaded modules are
shorted and their generation is completely lost.
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Fig. 2 (continued) (6]
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Though the hotspot problem is eliminated due to the usage of bypass diodes
and reverse current flow due to the blocking diode, the overall output is drastically
reduced and also there are multiple peaks in the P-V characteristics under the shaded
condition [8]. As the conventional MPPT algorithms fail with multiple peaks, there
are three different approaches considered. They are,
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Fig. 3 Configuration of PV array with bypass and blocking diode
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¢ Including additional power electronic circuits along with the existing converter
or inverter to extract the power from partially shaded modules.

e Modified MPPT algorithm for the central inverter to work efficiently under partial
shading conditions.

e Using a separate converter across each module of a PV array to implement its
own MPPT.

Though the first type had shown limited improvement in the output, the additional
investment on costly hardware which has to be fitted with the existing system, the
related technical work, and the limitation of the technical expertise made the scheme
less preferable. Though the second approach is attractive with respect to the cost
and ease of implementation, the outputs of shaded modules are lost and not utilized.
Due to the limitations of the first two approaches, the third approach is preferred
by the investors though, the system is large and the initial cost is a little high. It is
providing more yield even under partially shaded conditions by including the reduced
generation from the shaded modules [9]. So, the third approach which is otherwise
called a distributed maximum power point tracking (DMPPT) is considered in this
chapter.

3 Distributed Maximum Power Point Tracking

As the conventional MPPT fails to track the maximum power point of the overall PV
array under this multiple peak condition, the necessity of individual module-level
MPPT becomes inevitable. To operate each module in its own MPP for maximum
output, the module-level MPPT is used. This is called a distributed maximum power
point tracking (DMPPT). The configuration of the PV array with DMPPT is given
in Fig. 4. In DMPPT, each module is connected across its own DC-DC converter
with the MPPT feature. Generally, the buck, boost, Cuk, and buck-boost converters
are considered as suitable topologies for module integrated converters. Among the
different DC-DC converter topologies, the buck-boost and Cuk converter had shown
flexibility in voltage level. But, their operating efficiencies are very poor along with
higher costs [10]. The boost converter is used as the best topology for DMPPT due
to its promising solution [11]. In DMPPT, the module integrated DC-DC converter
is controlled by the MPPT algorithms.

The conventional MPPT algorithms like perturb and observe (P&O), Incremental
Conductance (IC), etc., are used for DMPPT due to the simple characteristics of each
module. Considering the high performance, simplicity, and the low-cost implemen-
tation, the P&O algorithm is mostly used in DMPPT. The output from the algorithm
is Vi which is used to fix the operating voltage of the PV module which is connected
across the DC-DC converter in the respective Vypp. Once the MPPT algorithm can
find the peak power, the V. is given to the control circuit which will control the duty
cycle of the boost converter. The duty cycle will adjust the input side voltage of the
DC-DC converter which is the output voltage of the PV module due to their parallel
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connection. The converter’s input voltage is adjusted through the variation of the
duty cycle by maintaining the output voltage of the PV panel in the same value. Due
to this variation of PV Module’s operating voltage to the Vypp, the power produced
will be Pyipp or Prax. So, the PV module will be forced to operate in its maximum
power point (MPP) for that instant. In this way, the PV module is operated at its MPP
and higher output is generated from each module at every instant. The control circuit
which is used to maintain the DMPPT is given in Fig. 5. The instantaneous voltage
and the current of the PV module are measured and given to the MPPT algorithm
which decides the reference voltage V.t. The control circuit decides the duty cycle
of the device which is used in the converter based on the output of the MPPT.

1A DC-DC

Y CONVERTER
E Vioap
¥ pu S

Linear Duty
Control Limit
i

Fig. 5 Control circuit of DC-DC converter used in DMPPT
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3.1 ANN Controlled DMPPT

In the rapidly changing environments, the characteristics of the PV module change
due to their dependency on the environmental factors like solar insolation, the
surrounding temperature, shading condition, and the array configuration [12].
Though the conventional algorithms are talented to identify the MPP in slow-
changing environments, they fail at randomly varying conditions due to their iterative
procedure. So, the iteration free artificial neural network (ANN) controlled tracking
procedure is chosen here. The ANN is a replica of the human brain and it is designed
in the way in which the brain performs the task though, the actual ability of the
human brain is far greater.

Artificial Neural Networks or ANN is an information processing paradigm that is inspired
by the way the biological nervous system such as brain process information. It is composed
of a large number of highly interconnected processing elements (neurons) working in unison
to solve a specific problem.

The ANN accumulates knowledge through the training or learning process and
saves the same knowledge in the interneuron connection weights like our human
brain. These connection weights are otherwise called as synaptic. Though there are
many ANN controlled MPPT algorithms [13], the new methodology is implemented
here. The advantage of using this ANN controlled MPPT in this chapter is that there
is no need for costly sensors for measuring the solar insolation as the proposed algo-
rithm is independent of the solar insolation. The existing current and voltage sensors
along with the rear side temperature sensor give the inputs for the ANN controlled
algorithm. In DMPPT, the ANN is used to track the MPP of each PV module in every
instant. So, to train the ANN of individual modules, initially, the P-V characteris-
tics of each module are measured in different environments. The characteristics of
the individual module are measured and used for the training process to include the
unique behavior or the character of each module due to the manufacturing disper-
sion. The accuracy of the MPP value which is predicted through the ANN is based
on the size of the training data set and also the randomness of the environmental
condition during which the measurements are taken. The data set corresponding to
each of the characteristics contains the current variation from zero to short circuit
current /s¢, voltage variation from zero to open-circuit voltage V¢, the temperature
of the rear surface during the instant of measurement, peak power Pypp OF Ppyax,
and the corresponding Vypp or V. The data set consists of 50 equally spaced
voltage values from zero to V¢ and their corresponding current values. Also, each
characteristic has a single Pypp and Vpp to indicate the highest power received and
the corresponding voltage of the PV module. In this example, 85 sets of data are
collected for each PV module. The schematic diagram of ANN controlled DMPPT
implementation is given in Fig. 6. To track the MPP, the ANN collects inputs like the
instantaneous module voltage V, module current /, and the backside module temper-
ature T. The voltage sensor which is used for the voltage measurement is connected
across the output terminals of the PV module, the current sensor is connected in
series with the positive terminal of the PV module and the temperature sensor is
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Fig. 6 Schematic diagram of ANN controlled DMPPT

fixed on the backside of the module. The temperature sensor is fixed in the backside
instead of fixing it at the top of the PV module to avoid the shading effect. It is also
proved that the temperature difference is negligible when the sensor is connected to
the backside of the PV module [14].

The ANN is initially trained and tested for its accuracy before being used in the
PV array. The accuracy of the ANN controlled tracking is based on the training.
So, the ANN of each module is trained with the respective module’s data sets of 70
characteristics which were measured during different conditions. The remaining 15
data sets are kept for testing purposes. The ANN adjusts its weight during the training
based on the given inputs and outputs. The structure of the ANN is given in Fig. 7. The
ANN consists of three layers called the input layer, hidden layer, and the output layer.
The input layer consists of three neurons to accept the inputs like module voltage
V, module current /, and the backside temperature of module 7, respectively. The
hidden layer consists of five neurons. The output consists of one neuron to provide
Vumpp value for the converter control. The “tansig” and the “purelin” functions are
used as the activation function in the input layer and the output layer, respectively,
to calculate its output. So, there are three variables given as input to ANN and one
variable is taken as the output.

The input variables are the instantaneous module voltage V, instantaneous module
current /, and the rear side module temperature 7 to track the MPP at every instant.
The output which is taken from the ANN is V. Initially during the training, from
each measured characteristic, the 50 sample values of voltage, current, temperature,
and the Vypp values are given to the ANN. Due to the single value of Vypp for
the entire characteristics of the 50 samples of a single characteristic, the same Vypp
value will be used as the output value for the training process against all the 50 sets
of inputs from the same characteristics. Though there are different types of ANN,
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the backpropagation neural network (BPNN) is used due to its powerful learning
process.

The steps for the ANN training is given below.

Step 1: Build the network and initialize the network weights with randomly
generated value

Step 2: Apply the input data sets

Step 3: Set the parameters of the ANN

Step 4: Train the network and calculate the output from ANN

Step 5: Calculate the error between the required output and the actual output of
ANN

Step 6: Adjust the weights of ANN and reduce the error until the required minimum
error value is attained by repeating the steps from 3 to 5

Step 7: Stop the training process once the error value becomes lesser than the
acceptable minimum value

Step 8: Save the trained ANN

The trained ANN adjusted its weight and learned the correlation between the

input and output from the data set of the specific PV module using the Levenberg—
Marquardt (LM) learning algorithm. To validate the ANN and its performance, the
inputs from the remaining data sets corresponding to the same PV module is used.
The output is predicted using ANN and the error is calculated. The performance is
accessed by the root-mean-square (RMSE) error value as given in Eq. 1.

1
2

1 2
RMSE = E[zpz,» (5 — 00)’] (1)
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Table 2 Prediction results of ANN controlled DMPPT

Module voltage (V) Module current Temperature Predicted Vvpp Actual Vyipp
(A) °C) V) (V)

17.4 3.04 32 18.86 18.79

18.5 2.76 36 17.98 18.01

15.67 3.32 40 19.12 19.11

where, p is the number of input sets, i is the specific node, # is the desired output or
target, and O is the actual predicted output of a network. The trained ANN is used
as an MPPT algorithm for that specific PV module as shown in Fig. 6. At every
minute the ANN collects the values of module voltage V, module current /, and the
backside module temperature T from the respective sensors of a PV module and
predicts the V¢ to control the operation of DC-DC converter connected across the
PV module. This V. is used to vary the duty cycle of the converter to adjust the
output voltage of the PV module or the input voltage of the DC-DC converter. So,
the PV module is forced to operate at its Vypp to produce the highest power Pypp
or P,y of that instant. The output of the ANN algorithm for a specific module at
different environmental conditions are given in Table 2.

The output of the ANN controlled algorithm is very close to the actual Vypp value.
So, the ANN can predict the voltage value corresponding to the maximum power
with a lesser number of sensors. Due to the iteration free operation of the ANN
algorithm, the effectiveness of the ANN controlled DMPPT is high at randomly
varying environmental conditions.

4 Current Compensation for DMPPT

In the PV array, each string consists of many PV modules in series. Though the
series-connected modules are of the same rating and from the same manufacturer,
due to manufacturing dispersion, some modules may generate higher current than the
other modules. Similarly, when few of the PV modules in the string get shaded, the
unshaded modules produce higher current than the shaded modules. Due to the series
connection of all these shaded and unshaded modules in the string, the path allows
only the lower current which is generated by the shaded modules. This low current
forces the other unshaded modules to generate the same lower current though they
can generate more current based on the received solar insolation. When the healthy
modules are forced to operate in lower current, their power point is also shifted due
to the change in current and voltage. This downgrades the other healthy modules in
series and reduces the yield from the complete string. The bypass diodes are used to
avoid this condition. But, the usage of bypass diodes makes the P-V characteristic
curve multimodal.
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Though, the DMPPT estimates the maximum peak and tried to maintain the
module in Vypp corresponding to the MPP, the law of equal voltage across the
parallel-connected strings and the law of the same current in series-connected
modules does not allow the module to operate in its own MPP at the mismatched
condition. At, mismatched condition, the output of each module varies. The current
mismatch in the shaded and unshaded modules of string1 is shown in Fig. 8. Though
the manufacturing dispersion is not considered in these characteristics, due to the
difference in solar isolation under shading conditions, the current from shaded
modules reduced drastically. But the unshaded modules can generate high current.
As these modules are serially connected, the current in the series string is equal to
the current of the shaded PV module. This condition makes the unshaded module to
move from its peak performance. To solve the problem of the current mismatch in a
series string under mismatched condition, each module is equipped with a dedicated
current compensator [15]. So, the modules can operate at its own MPP irrespec-
tive of the current mismatch. The DC-DC converter which is connected across each
module to maintain the module in MPP in the DMPPT scheme is used as a current
compensator. This avoids the extra compensation equipment for each module.

Also, this compensator increases the output by enabling the shaded and unshaded
modules to operate in its actual MPP, by providing a compensating or deficient current
for the module with low current generation in its own MPP. This maintains the same
current in the series-connected string. So, the string current is equal to the operating
current of the healthy module. Whereas, the conventional scheme which consists

3!\_/ characteristics of shaded and unshaded PV modules of string
Unshaded module
Shaded module

25

current of unshaded module

low current from shaded module

o

Current (A)
&

0 . I . .
0 20 40 60 80 100 120 140

Voltage (V)

Fig. 8 Current mismatch among the series-connected PV modules due to shading
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of bypass diode completely short the shaded module to maintain the string current
equal to the current of healthy modules and lost the generation of shaded modules.

Though, the compensation scheme or the DMPPT consumes power for the DC-
DC converters, the energy consumption is negligible compared to the yield or the
profit due to the inclusion of generation from multiple shaded modules [15]. The
DC-DC converters which are used as current compensators are the “compensation
power DC-DC converters instead of the full power DC-DC converters” [15]. So the
power consumption is proportional to the amount of compensation provided by the
converter. The current flow in the string due to the implementation of the current
compensator is shown in Fig. 9.

To maintain the current of /y;) which is equal to the current /ypp of the healthy
module in the same string, the current compensator which is connected across the

Fig. 9 Configuration of PV O
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shaded PV module provides the lacking current /¢omp. The current supplied by the
compensator is provided as Eq. 2.

Leompii,1) = Iswy — Ivppi,1) 2)

where, I comp(i 1) 1S the current provided by the compensator connected across the first
module of ith string. Iy is the current flowing through ith string and Ivpp(; ;) is
the current of the first PV module in ith string which is working in its own MPP.
The power consumed by the current compensator during compensation is given by
Eq. 1.3.

Pcomp(i,l) = Var X Iconv(i,l) (13)

where, Pcomp(i 1) is the power consumed by the current compensator connected across
the first module of ith string during compensation, V,, is the output voltage of PV
array which is the input voltage of DC-DC converter and Icony; ;) 1S the current
consumed by the compensator or converter.

The input supply for the compensator is given by the PV array. The power loss is
drastically reduced due to the lesser power consumption of the DC-DC converters
during their compensation mode. The suitable design of the DC-DC converter results
in reduced no-load losses. So, the parallel-connected current compensator is used to

e Maintain the PV module’s voltage at Vypp through MPPT algorithm
e Supply the deficient current for the shaded module to equalize the string current
with the normal current of a healthy module.

5 YVoltage Compensation for DMPPT

Though the implementation of current compensation aid the power output by
including the generation from the shaded modules, the modules in the string will
move itself away from the Vypp under the condition of voltage mismatch between
the parallel-connected strings due to the law of same voltage across the parallel-
connected strings. Under shading conditions, the voltage corresponding to the
maximum power of each module varies as shown in Fig. 10. The operating voltage
V max corresponding to the Py,.x of the healthy module is around 95 V. But, the oper-
ating voltage V. of the shaded module is 60 V. The number of shaded modules is
different in different strings.

Due to the difference in the operating voltage of each module in the string, the
string voltage which is the summation of all the module voltages will differ from
other string voltages. But, all the strings of PV array are connected in parallel. As
per the law of parallel circuits, the voltages across all the parallel branches should
be the same. To satisfy this law, the string with the highest voltage or the string with
more unshaded or healthy modules tries to reduce its voltage to the lowest string
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Fig. 10 Voltage mismatch among the series-connected modules of string

voltage of the array. Due to this condition, all the healthy modules in the healthy
string will reduce its actual operating voltage V,,x and generates lesser power. To
avoid this loss, there is a need for additional voltage sources in series with the weak
string. So, to equalize the voltages of strings under the mismatched condition and to
enable the modules to operate in its own MPP the series compensator is connected
in each string. The role of a single voltage compensator which is connected for each
string is to provide the compensating voltage for the string to equalize the string
voltage with the voltage of a healthy string of the PV array. The DC-DC converter
is used as a voltage compensator. Though, the current compensation does not need
any additional DC-DC converter in the DMPPT scheme, the voltage compensation
needs a single DC-DC converter in addition for each string. The configuration of
the string with voltage and current compensators are given in Fig. 11. The voltage
and the current supplied by the voltage compensator is given in Eq. 4 and Eq. 5,
respectively.

Veomp@i,nt1) = V() — Vi) 4

Icomp(i,nJrl) = [str(i) (5)

where, Vomp(in+1) is the compensating voltage supplied by the additional (n + 1)th
DC-DC converter for the ith string, V) is the voltage of healthy string in the same
PV array, V) is the voltage of the ith string for which compensation is provided,
I comp(in+1) 18 the current flowing through the voltage compensator and /) is the



Distributed Maximum Power Point Tracking ... 247
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current flowing through the ith string. The configuration of a string with voltage
compensator given in Fig. 11 shows that the current flowing through the voltage
compensator is the same as the string current. This is also equal to the current of
the healthy module in the same string. But the voltage provided by the voltage
compensator is equal to the difference between the voltage of healthy jth string
in the array and the ith string for which the voltage compensation is provided. If
Jjth string is the healthy string of PV array, due to the higher voltage output from
Jjth string, all the other parallel-connected strings work to meet the voltage level of
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healthy jth string to satisfy the law of equal voltage by combining the voltage of
voltage compensator. This allows all the modules of healthy strings and unhealthy
strings to work in its actual Vypp or Vy.x. The power consumption of this voltage
compensator will be proportional to the voltage supplied by the compensator. The
power loss due to the inclusion of voltage compensator is negligible when it is
compared with the maintenance of actual MPP in the series-connected multiple
modules. Also, the power consumption of individual series voltage compensators
is almost zero in healthy strings. So, the serially connected voltage compensator is
used to

e Supply the deficient voltage for the string to equalize its voltage with the voltage
of the healthy string

e Maintain the PV module’s voltage at Vipp through MPPT algorithm and control
circuit

The PSIM-based simulation results of the 2 x 2 array which have two strings
and two modules in each string are given in Figs. 12 and 13. The solar insolations
received in the modules of the first string are 400 W/m?2, 1000 W/m? and the second
strings are 800 W/m?, 800 W/m?, respectively. The currents developed by the solar
modules of stringl are 0.661 A and 0.769 A, respectively. Similarly, the currents
from the PV modules of string2 are 1.13 A and 1.13 A, respectively. To maintain
the current flow of 0.769 A in stringl, the current compensator which is connected
across the shaded module of string1 provides a compensation current of 0.11 A. But
the compensator which is connected across the healthy module produces a current of
0.005 A which is negligible. The current compensators connected in string2 produces
negligible current due to the healthy condition of all modules which are connected
in series.

In Fig. 13, the PV modules in stringl are kept at their Vypp values of 10.789 V
and 19V, respectively, due to the shading of the first module. The PV modules of the
second string are maintained in their Vypp values of 16.8 V and 16.8 V, respectively,
due to the same insolation condition. The second string generated a total voltage of
33.6 V. But the string] is able to produce only 29.78 V. To compensate for the voltage
deficiency, the voltage compensator of stringl provides a voltage of 3.8 V. But the
voltage compensator of string2 provides a negligible voltage of 64 mV which can
be considered as zero. This enables all the PV modules to operate in its own MPP
irrespective of the parallel connections. As the shaded module’s generation is not
shorted like the bypass diode scheme, the power generation from the array increases
and it improves the efficiency. To prove the effectiveness of the proposed method, the
results of the proposed method are compared with the other DMPPT methodology
which was proposed for the partially shaded condition and known as the TEODI
MPPT technique [16]. The comparison is shown in Table 3. Though, the modified
TEODI MPPT method had shown improved performance under normal and shaded
condition, the overall output power was lesser due to the limitation of this MPPT
method in maintaining the PV modules in their actual MPP. Also, the computation
time was more than the proposed ANN controlled method. So, the proposed ANN
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Fig. 12 Current compensation provided by the current compensators of 2 x 2 PV array

controlled method is proved as an effective method at the partially shaded and the
mismatched condition of PV modules.

6 Conclusion

This chapter presented the distributed maximum power point tracking of PV modules.
This reduced the problem of multiple peaks in the P-V characteristics of the PV
module at partial shading and mismatched condition. The ANN controlled DMPPT
was implemented and its performance was validated at rapidly changing conditions
with a lesser number of sensors. But, to maintain each module in its own MPP
according to the output of ANN controlled DMPPT, the current and voltage compen-
sation schemes were implemented across each module and in series with each string,
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Fig. 13 Voltage compensation provided by the voltage compensators of 2 x 2 PV array

Table 3 Comparison of the proposed method with other DMPPT method

MPPT Control circuit Speed Efficiency (%)
complexity

Proposed method with Less High due to the trained 72.337

compensators ANN

Modified TEODI DMPPT | More Less compared to ANN 67.879
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respectively. This utilizes the power generated by the shaded modules instead of
losing it across the bypass diode. This improves the overall output of the PV array
even under the partially shaded condition as compared to the conventional MPPT
scheme and its implementation.
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Design and Comprehensive Analysis m
of Maximum Power Point Tracking i
Techniques in Photovoltaic Systems

Ali M. Eltamaly, Mohamed A. Mohamed, and Ahmed G. Abo-Khalil

Abstract In this chapter the performance of various maximum power point tracking
techniques for Photovoltaic (PV) systems has been presented, under uniform and
non-uniform irradiance conditions. Under uniform irradiance conditions, the power-
voltage curve of PV systems is nonlinear and contains one peak point whose location
appertains to the irradiation and surface temperature of the PV system. Partial shading
on PV modules reduces the generated power than the maximum power generated
from each module separately. The traditional techniques of tracking the maximum
power point are designed to track the global peak but they always failed to capture the
exact point. In this chapter, different techniques of maximum power point tracking
have been introduced, analyzed, and 