
Systematic Optimization of Image
Processing Pipelines Using GPUs

Peter Roch(B), Bijan Shahbaz Nejad, Marcus Handte, and Pedro José Marrón

University of Duisburg-Essen, Essen, Germany
peter.roch@uni-due.de

Abstract. Real-time computer vision systems require fast and efficient
image processing pipelines. Experiments have shown that GPUs are
highly suited for image processing operations, since many tasks can
be processed in parallel. However, calling GPU-accelerated functions
requires uploading the input parameters to the GPU’s memory, call-
ing the function itself, and downloading the result afterwards. In addi-
tion, since not all functions benefit from an increase in parallelism, many
pipelines cannot be implemented exclusively using GPU functions. As a
result, the optimization of pipelines requires a careful analysis of the
achievable function speedup and the cost of copying data. In this paper,
we first define a mathematical model to estimate the performance of an
image processing pipeline. Thereafter, we present a number of micro-
benchmarks gathered using OpenCV which we use to validate the model
and which quantify the cost and benefits for different classes of functions.
Our experiments show that comparing the function speedup without
considering the time for copying can overestimate the achievable perfor-
mance gain of GPU acceleration by a factor of two. Finally, we present a
tool that analyzes the possible combinations of CPU and GPU function
implementations for a given pipeline and computes the most efficient
composition. By using the tool on their target hardware, developers can
easily apply our model to optimize their application performance sys-
tematically.

Keywords: Image processing · Performance evaluation · OpenCV ·
Computer vision · CUDA · Parallel processing

1 Introduction

Computer vision systems have been applied successfully in a broad spectrum
of application areas, for example traffic surveillance [2,3], automatic attendance
management [19] or tracking of human interactions [11]. These and other similar
systems often have real-time constraints and require the image processing to run
at high frame rates. As a result, their implementation must be fast and efficient.

In most applications, the image processing logic is structured as a pipeline of
image processing functions that are executed sequentially. First, the image needs
to be captured from a camera. Thereafter, the image runs through a sequence
c© Springer Nature Switzerland AG 2020
G. Bebis et al. (Eds.): ISVC 2020, LNCS 12510, pp. 633–646, 2020.
https://doi.org/10.1007/978-3-030-64559-5_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64559-5_50&domain=pdf
https://doi.org/10.1007/978-3-030-64559-5_50


634 P. Roch et al.

of pre-processing functions, which often include filtering noise, resizing or gray-
scaling. The main task is then to extract the desired information by means of
edge detection, feature-matching or stereo-correspondence matching, to name a
few. Some applications may also require additional post-processing steps, e.g.,
to filter results or to overlay the extracted information onto the original image.

Since GPUs are capable of executing highly parallel code and since many
image processing functions can significantly benefit from a parallel implemen-
tation, they can be a powerful tool to reduce the processing time. As a result,
widely used libraries such as OpenCV [12] often provide alternative function
implementations that can leverage a dedicated graphics card.

However, calling such a GPU-accelerated function requires uploading the
input parameters to the GPU’s memory, calling the function itself, and down-
loading the result afterwards. In addition, since not all functions benefit from
an increase in parallelism, many pipelines cannot be implemented exclusively
using GPU functions. As a result, the optimization of pipelines can become a
non-trivial task which requires careful and thorough analysis of the achievable
function speedup and the cost of copying data.

To support the optimization of image processing pipelines using GPUs in a
systematic manner, this paper makes the following contributions:

1. First, the paper defines a mathematical model to compute the execution time
of arbitrary pipelines that combine CPU and GPU functions.

2. Second, the paper studies the costs of GPU-acceleration and validates the
analytical model using a number of benchmarks gathered with OpenCV.

3. Third, the paper presents a framework, which computes the optimal combi-
nation of CPU and GPU functions for a given image processing pipeline.

2 Analytical Model

NVIDIA CUDA [10] is a general purpose parallel computing platform and pro-
gramming model to make use of NVIDIA GPUs. A GPU is organized into multi-
dimensional Grids of Thread-Blocks, each containing multiple Threads. Every
Thread has access to its own local memory as well as to the shared memory of
its Thread-Block. Every Grid, and therefore every Thread-Block inside also has
access to the GPU’s global memory, often referred to as device-memory. This
architecture is illustrated in Fig. 1. A Kernel is defined as a function, which
is executed on one or more Thread-Blocks, hence each Thread inside the same
Thread-Block will execute the same Kernel.

Since the GPU uses its own memory, data exchanged between the GPU and
the host system needs to be copied between the device memory and the host
memory. The operation of copying data to the device memory is commonly
referred to as uploading, whereas copying data from device memory to host
memory is called downloading. Since CUDA 6, it is possible to allocate data inside
unified memory, where the CUDA software or hardware will manage uploading
and downloading. Usually, host memory is pageable, meaning that the OS can



Image Processing Pipeline Optimization 635

GPU

Global Memory (Device-Memory)

Grid 1

Thread-Block (0,0)

Thread 1 local
memory Thread n local

memory...

Shared memory

Grid 2

Thread-Block(0,0) Thread-Block(1,0)

Thread-Block(0,1) Thread-Block(1,1)

Fig. 1. GPU architecture

allocate memory not only inside the physical RAM, but also inside a swap-file
located on the hard-drive. In contrast, page-locked memory cannot be moved to
a swap-file and has to be kept always inside the physical RAM.

The GPU cannot access pageable host memory directly. If data has to be
copied to the device memory, the CUDA driver will allocate a temporary buffer
inside page-locked memory. This additional copy operation can be avoided if host
memory is allocated as page-locked memory beforehand. However, this approach
has to be used carefully, because physical RAM is limited. If an application
allocates too much page-locked memory, the operating system is forced to use a
swap-file for other processes, which can slow down the whole system.

Since most non-trivial applications will require the sequential execution of
multiple image processing functions, we can mathematically describe the execu-
tion time of such a pipeline by summing up the processing times of all functions
and adding time required for uploading and downloading the function parame-
ters for each transition between CPU and GPU as follows:

Let P be an arbitrary pipeline containing N tasks, where Ti(pi1, pi2, . . . , pin),
noted as Ti (pij)

n
j=1, is the i-th task in P accepting n parameters, with pij being

the j-th parameter of Task i. Further, we define u(pij) and d(pij) as the time
needed to upload or download the parameter pij and t↑(pij) and t↓(pij) as the
time needed to make parameter pij available for GPU or CPU execution:

t↑(pij) =
{

0, if parameter pij is stored in device memory
u(pij), otherwise

t↓(pij) =
{

0, if parameter pij is stored in host memory
d(pij), otherwise

(1)

Moreover, we define CPU
(
Ti (pij)

n
j=1

)
and GPU

(
Ti (pij)

n
j=1

)
as the time

needed to execute the OpenCV CPU or GPU function corresponding to task
Ti (pij)

n
j=1. The processing time PT

(
Ti (pij)

n
j=1

)
of task Ti (pij)

n
j=1 is calcu-

lated as shown in Eq. 2:



636 P. Roch et al.

PT
(
Ti (pij)

n
j=1

)
=

⎧⎨
⎩

∑n
j=1 t↓(pij) + CPU

(
Ti (pij)

n
j=1

)
, CPU execution

∑n
j=1 t↑(pij) + GPU

(
Ti (pij)

n
j=1

)
, GPU execution

(2)

The execution time ET (P ) for the complete pipeline can then be deduced as
follows:

ET (P ) =
N∑
i=1

PT
(
Ti (pij)

n
j=1

)
(3)

Note that this model does not introduce restrictions on the sequence of CPU
and GPU functions. However, in most cases, we expect that the first function
(image acquisition) and the last function (usage of the results) cannot run on the
GPU. Thus, even “fully” GPU-accelerated pipelines will usually require at least
one parameter upload for the image and one download to use the final result.

3 Benchmarks and Validation

To estimate the performance of an image processing pipeline using the model
defined in Sect. 2, it is necessary to determine the time required for executing
each function on the CPU and GPU. In addition, it is also necessary to determine
the time required for uploading and downloading of their respective parameters
given a particular pipeline composition. Thus, to validate the model, we first
measure the timings for representative functions using micro-benchmarks and
then compare the model with actual measurements of two different pipelines.

3.1 Test Setup

For both, the micro-benchmarks and the validating measurements, we are using
the widely used image processing library OpenCV. While OpenCV itself is writ-
ten in C and C++, it offers bindings for Java, Python and MATLAB. Since Java
is less error-prone and has a higher productivity compared to C++ [15], we are
using OpenCV’s Java interface for all measurements. The overhead of calling
native methods from Java is provenly in the order of nanoseconds [8], so the
experimental results detailed in this paper should be comparable to other inter-
faces as well. Since the official Java interface does not support GPU functions,
we used the JavaCV [17] wrapper to invoke them.

As input data for the measurements, we use a skyscraper image of [5] and the
left image of a stereo image pair of [18], showing a motorcycle, and resize them
to different resolutions. To minimize timer effects during bench-marking, each
measurement represents the total time taken by 100 executions of the respective
function. Since we cannot control the OS scheduling, we repeat each measure-
ment 100 times and we report the average processing time time in milliseconds
as well as the standard deviation σ. To study the effects of different hardware,
we repeat all measurements on three different computer system configurations:

– L: A high-end laptop with an Intel R© CoreTM i7-9750H CPU, an NVIDIA
GeForce RTX 2070 with Max-Q Design GPU and 16 GB RAM



Image Processing Pipeline Optimization 637

(a) Desktop PC Upload & Download Times (b) Paged & Page-locked Upload Speedup

Fig. 2. Comparison of upload and download functions on different hardware

– GPC: A high-end gaming PC with an Intel R© CoreTM i7-7800X CPU, an
NVIDIA GeForce GTX 1080 Ti GPU and 32 GB RAM

– DPC: A desktop PC with an Intel R© CoreTM i5-7500 CPU, an NVIDIA
GeForce GTX 1050 Ti GPU and 8 GB RAM.

3.2 Micro-benchmarks for Uploading and Downloading

In OpenCV, larger parameter values, including images, are represented as
instances of the class cv::Mat (i.e., matrix). The complementary GPU represen-
tation of this class is cv::cuda::GpuMat. OpenCV’s implementation of GpuMat
does not use the unified memory feature introduced in CUDA 6, so the program-
mer has to take care of uploading and downloading the data manually. This
is done by the functions GpuMat.upload(Mat) and GpuMat.download(Mat),
respectively.

Figure 2 shows the results of micro-benchmarks for uploading and down-
loading Mat parameters representing images of varying size using paged and
page-locked memory. Figure 2a shows the timings of executing 100 operations
per measurement on the desktop PC. The x-axis shows the number of pixels,
whereas the y-axis denotes the processing time in ms. The average standard
deviation σ across these measurements is 5% of the average processing time.
The maximum is 20%.

As depicted in Fig. 2a, page-locked memory solely affects the upload opera-
tion and the remaining operations exhibit a similar overhead. Since this result
is identical for the laptop and the gaming PC, we omit their figures for the sake
of brevity. Instead, we focus on the difference between paged and page-locked
uploads for all hardware configurations in Fig. 2b.

Interestingly, the laptop’s i7-9750H processor shows only little benefit of page-
locked memory, while the i5-7500 processor has the highest benefit of page-locked
memory. This is probably due to internal memory handling of the different pro-
cessor types. Furthermore, both i7 processors seem to have an approximately



638 P. Roch et al.

constant acceleration, whereas the i5’s acceleration factor increases with increas-
ing parameter sizes.

3.3 Micro-benchmarks of OpenCV Functions

Since OpenCV is implementing more than 2500 functions, it is not practical to
report on every single one. Instead, we group them into different classes depend-
ing on their structure and measure a small number of representative functions
for each group. The intuition is that the functions belonging to the same class
are likely to behave similarly. Table 1 shows the test results with input images
of different resolutions: 350 × 232, 1482 × 1000 and 3705 × 2500. The faster
implementation of each CPU-GPU pair is highlighted.

Table 1. Micro-benchmarks for OpenCV Functions (100 Operations in ms)

Task PC 350 × 232 1482 × 1000 3705 × 2500

CPU GPU CPU GPU CPU GPU

time σ time σ time σ time σ time σ time σ

T L < 0.1 <0.1 4.9 2.2 2.1 0.4 5.3 0.9 54.8 3.1 9.7 1.3

GPC < 0.1 <0.1 3.7 0.5 3.0 0.6 4.5 0.5 40.7 1.2 9.1 0.4

DPC < 0.1 <0.1 4.2 0.5 2.1 0.3 8.0 1.2 153.7 2.5 27.8 1.7

G L 3.0 <0.1 4.1 0.4 12.9 1.1 6.9 1.1 135.8 2.9 24.0 1.5

GPC 3.0 <0.1 3.3 0.4 11.8 1.9 7.9 0.4 98.3 2.1 17.2 0.5

DPC 3.0 <0.1 4.8 1.2 16.7 0.9 14.4 1.4 286.4 1.5 66.2 1.0

MF L 259.6 4.8 155.4 11.0 4342.6 15.8 2086.7 3.0 26211.4 26.0 12170.8 13.7

GPC 255.4 2.5 210.8 4.7 4349.1 18.8 2913.5 13.6 26281.9 63.7 17366.4 2.7

DPC 274.4 1.0 390.2 4.0 4663.4 21.1 4075.8 9.1 28074.4 42.6 22189.4 2.6

GF L 9.5 1.2 8.5 0.5 59.2 2.5 21.2 1.0 325.9 10.3 98.8 0.8

GPC 8.9 2.4 11.9 0.8 67.8 3.2 101.2 1.5 294.3 8.7 524.5 1.0

DPC 11.7 0.8 13.5 2.0 87.7 1.3 106.3 2.0 474.9 3.8 577.8 0.9

DIL L 9.1 0.3 25.2 3.8 52.0 1.7 171.1 1.2 310.5 1.6 934.5 1.7

GPC 9.2 1.6 80.6 2.3 51.3 0.7 849.9 1.8 353.6 6.6 4775.9 2.0

DPC 10.0 <0.1 105.2 3.6 54.4 0.9 1112.7 2.6 351.4 1.9 6401.5 0.9

ERO L 9.1 0.3 24.0 0.1 51.0 1.6 171.8 1.2 310.9 2.1 929.8 0.9

GPC 9.0 0.1 80.2 1.0 51.7 2.5 859.0 1.4 352.4 6.2 4778.0 1.9

DPC 10.0 <0.1 105.4 2.3 53.8 0.6 1119.3 3.5 351.3 3.5 6421.9 0.8

CAN L 70.6 0.8 46.4 9.7 472.1 2.5 85.5 5.9 1717.1 16.0 328.2 2.8

GPC 50.6 4.3 54.4 1.6 369.6 3.7 85.9 3.3 1693.5 16.3 297.5 3.3

DPC 57.9 0.3 54.1 4.8 706.8 2.3 245.6 7.7 3050.3 10.1 1108.6 3.0

SKY L 245.1 6.9 666.2 77.9 2341.0 6.6 1191.1 15.5 6436.7 9.3 1982.1 62.4

GPC 234.6 3.1 661.2 95.6 3505.6 105.1 1611.7 22.6 8629.4 51.6 3423.1 30.3

DPC 248.4 1.0 727.0 73.2 2463.6 9.6 1523.4 13.3 7366.0 10.7 3840.0 24.9

MOT L 296.2 4.2 723.2 74.4 1975.5 5.0 1187.3 3.8 6712.7 16.4 1987.3 55.4

GPC 287.4 2.0 895.5 18.1 2791.8 88.8 1611.4 11.4 8962.9 67.7 3562.7 50.1

DPC 305.2 1.2 791.3 34.0 2092.2 3.6 1519.9 11.9 7643.2 10.4 3943.4 99.5

STR L 173.8 2.8 121.0 11.3 4248.0 25.8 895.2 6.5 25060.6 213.9 5710.3 12.7

GPC 168.4 4.4 241.1 12.5 4222.8 28.1 711.0 5.4 23213.5 207.6 3889.5 50.5

DPC 183.0 1.3 264.5 7.3 5649.1 24.5 2619.5 8.7 40224.3 198.7 18217.0 1.6



Image Processing Pipeline Optimization 639

Pixel-Wise Operations. These operations need to perform some function on
every single pixel in the image. As a result, the image content does not affect
the processing time for the task, instead the time is primarily determined by the
image size. As representative functions for this category, we select thresholding
(“T”) and gray-scaling (“G”). Thresholding low resolution images is faster when
executed on the CPU, with the GPU being faster only with higher resolution
images as input. The same holds for gray-scaling. With small input images, these
functions cannot be parallelized sufficiently to be accelerated by the GPU.

Kernel Operations. Kernel operations are functions which need to manipulate
each pixel of the image by taking into account the pixel’s neighborhood. The
kernel can have any shape or size and is scanned over the whole image. The new
value of the kernels anchor point is determined by a function applied to every
pixel inside the kernels area. Kernel operations can be further categorized into
two sub-categories: filtering and morphological operations.

To evaluate filtering operations, we use median filter (“MF”) and gaussian
filter (“GF”). The median filter is fundamentally slower than the gaussian filter.
However, it can be accelerated by its GPU implementation on all tested hard-
ware. The gaussian filter, while speeded up on the laptops graphics card, is slower
on both other GPUs. We believe that this is caused by hardware differences.

Both morphological operations, dilation (“DIL”) and erosion (“ERO”), need
approximately the same amount of time. Interestingly, their GPU implementa-
tion is considerably slower. The CUDA implementation of OpenCV’s morpho-
logical operations uses the NVIDIA Performance Primitives (NPP), which has a
time complexity of O(npq), with n image pixels and a rectangular kernel of size
p ∗ q, according to [21]. This makes the NPP implementation comparably slow.
The authors describe a parallel implementation of the van Herk/Gil-Werman
(vHGW) algorithm [4,7] using CUDA, which is significantly more efficient.

Geometric Information Retrieval Operations. Functions of this category
extract geometric information out of the image. Common algorithms falling into
this category are Canny edge detection, Hough line transform or Hough circle
transform. To evaluate geometric information retrieval operations, we use the
Canny edge detection function (“CAN”), since it has a broad range of appli-
cations. The laptop and gaming PC perform similar, while the desktop PC is
notably slower. The GPU implementation is faster on all three systems.

Feature-Based Operations. Feature-based operations are functions which
are used to compare two images. A feature is defined as some point in an image
with information describing that point. A feature extractor can find points dis-
tinguishable from other points in the image and compute descriptors describing
these points. A feature matcher can compare descriptors of different features and
match corresponding features found in different images. A special case of feature
detection and matching is stereo matching, where a stereo matcher has to find



640 P. Roch et al.

corresponding points in two images in horizontal lines in order to compute a
disparity value, which in turn can be used to compute the physical distance to
the observed objects.

From this category, we measure feature detection, feature matching and
stereo matching. To test feature detection, we resize the skyscraper image
(“SKY”) and the motorcycle image (“MOT”) to have the same resolutions.
Despite the fact that the motorcycle image is more suitable for feature detec-
tion, the results show similar processing times on both images. Again, the GPU
accelerates the feature detection process depending on the images resolution. For
stereo matching (“STR”) two horizontally aligned images from the same scene
are needed. For this, we use a second image of the motorcycle, taken from a
different perspective. Similar to feature detection, stereo matching is also accel-
erated by the GPU at higher resolutions.

Feature matching does not operate on images, but instead uses the computed
descriptors to identify matches. Hence, the time required to match two images
depends on the number of features rather than their resolution. Thus, instead of
varying the image size, we vary the number of features when comparing feature
matching implementations. Figure 3 shows the resulting GPU speedup.

Fig. 3. Speedup of GPU-based feature matching

Structural Analysis Operations. Operations of this category are used to
analyze structures in images. This covers different functions such as finding con-
tours, finding the convex hull of an object or polygon approximation. Such oper-
ations are often unsuited for parallel programming, because parts of the image
need to be analyzed in connection with other parts.

Typical OpenCV functions of this category like findContours,convexHull
or approxPolyDP are only implemented using the CPU. Therefore, we don’t



Image Processing Pipeline Optimization 641

discuss their timings. However, for a systematic optimization, the presence of
such functions must be considered, since pipelines that include them will have to
switch from GPU to CPU (and back), which can change the optimal composition.

3.4 Experimental Validation of the Analytical Model

To validate the model defined in Sect. 2, we discuss experiments with two image
processing pipelines. The first pipeline performs edge detection and involves
gray-scaling, noise reduction using a Gaussian filter and finally a Canny edge
detector. The second pipeline computes a disparity map and it involves gray-
scaling, a Gaussian filter as well as stereo-matching. For each pipeline, we create
a CPU- and a GPU-based implementation and measure their execution time for
different image sizes. Then, we use the analytical model described in Sect. 2 and
the results of the micro-benchmarks to compute an estimate for the execution
time, with and without considering the overhead for data transfer among GPU
and CPU. Figure 4a shows the results for the lowest resolution and Fig. 4b shows
the results for the highest resolution.

(a) Low Resolution Pipeline Times (b) High Resolution Pipeline Times

Fig. 4. Comparison of model estimates and measurements for different pipelines

When comparing the measurements with the estimate gathered from apply-
ing the analytical model, we find that, in general, the model is able provide an
estimate that lies within 10–20% of the measured time. Given that the micro-
benchmarks used to compute the estimate are not perfect and given the fact
that they cannot completely capture all effects such as caching, for example,
we would argue that this result is sufficiently accurate. When simply compar-
ing the time required to execute the CPU and GPU functions, as done when
ignoring the time for uploading and downloading, the computed estimations get
significantly worse. In fact, in all cases, this results in an overestimation of the
speedup achievable by a GPU implementation and depending on the pipeline,
the resulting error can become fairly large. For example, when looking at the
edge detector pipeline with a resolution of 3705× 2500, the actual time required



642 P. Roch et al.

by the GPU implementation exceeds the estimate by a factor of more than 2.
This clearly indicates that the model presented in Sect. 2 is a more realistic and
thus, better basis for performance optimizations.

4 Optimization Framework

Although the model presented in Sect. 2 is fairly simple, applying it in prac-
tice can be cumbersome. Since many functions can be executed on the GPU
or CPU interchangeably, the number of possible pipeline compositions usually
grows exponentially with its length. In addition, since the upload and download
effort depends on the location of parameters, it is necessary to track the param-
eter location for each possible pipeline composition. Last but not least, as shown
in Fig. 2 and Table 1, the effort for the individual components of the model can
vary significantly based on the hardware configuration.

To mitigate these problems and to simplify the practical use of the model,
we have developed an optimization framework that takes care of finding the
optimal pipeline composition for a given hardware configuration. To use the
framework, a developer specifies the processing pipeline together with its input
parameters. The framework then measures and compares the processing time
of the specified CPU functions and their GPU counterparts. Additionally, the
framework tracks necessary uploads and downloads of parameters and evaluates
them by running benchmarks. This information is used to build a graph, where
every node represents a single test result. The optimal combination of CPU and
GPU functions is determined by finding the shortest path through the graph.

Code 1.1. Example Code for Defining a Pipeline of OpenCV Functions

1 TestUtils <Mat > utils = new TestUtils <>();

2 utils.setCommandPipeline(mat -> {

3 Mat image = mat.get();

4 Mat edges = new Mat();

5 Imgproc.cvtColor(image , image ,

6 Imgproc.COLOR_BGR2GRAY);

7 Imgproc.medianBlur(image , image , 15);

8 Imgproc.Canny(image , edges , 15, 45);

9 });

10 utils.setInput(new MatInput(theImage));

11 utils.initializeCommands(true);

12 utils.warmup (20);

13 utils.runTests (25);

14 utils.evaluate ();

Code 1.1 shows exemplary usage of our framework. First, a TestUtils object
has to be instantiated. The type argument specifies the type of the input
parameter. The method setCommandPipeline(Consumer<Input<T>>) defines
the pipeline which shall be evaluated. Inside the lambda expression, normal
OpenCV function calls are made, except that the import statement should be
changed. We implemented custom classes and methods matching the signatures



Image Processing Pipeline Optimization 643

of common OpenCV functions, but instead of computing something, they track
invocations.

The remaining interaction is simple. The method setInput(Input<T>) sets
the input parameter used for the command pipeline. Useful implementations for
a single Mat, a 2-tuple of Mats, or an array of Mats are available, while custom
implementations can be added. The method initializeCommands(boolean)
initializes the pipeline and tracks method invocations. The boolean flag indicates
whether all possible combinations of functions or only an efficient subset of
them should be evaluated. It is likely that GPU functions are faster than their
CPU counterparts. If the flag is set to false, the framework only compares paths
with as few uploads and downloads as possible, which accelerates the testing
time. Methods warmup(int) and runTests(int) are used to set the number
of iterations, which are used to warm up the system and test every function,
respectively. The method evaluate() starts the actual evaluation.

For this specific pipeline, 8 paths have to be evaluated. There are 3 different
functions, each of them can be executed as a CPU or GPU function, which results
in 8 different combinations. If the flag in initializeCommands(boolean) is set
to false, only 2 paths (all functions only run on CPU or GPU) will be evaluated,
which can significantly speed up the evaluation. The resulting graph is shown in
Fig. 5. Rounded rectangles represent a single step in the pipeline, either as a CPU
function or a GPU function. Circles represent the Mat parameters. The transition
between CPU functions can be executed immediately. Paths switching between
CPU and GPU functions need to upload or download the respective parameters,
which increases the processing time. Uploading and downloading transitions are
indicated by red or blue arrows, respectively. Based on previous experiments
the fastest path would be either CPU-only execution or GPU-only execution,
depending on the resolution of the input image.

cvtColor (GPU)

cvtColor (CPU)

medianBlur (GPU)

medianBlur (CPU)

Canny (GPU)

Canny (CPU)image

edges

Normal
transition Input Upload

transition
Download
transition

Fig. 5. The graph corresponding to the pipeline shown in Code 1.1

Internally, functions register implementations of the interface Task in ashared
list. Every task can be converted to a CpuTask or a GpuTask, which will run the



644 P. Roch et al.

corresponding OpenCV function on the CPU or GPU, accordingly. A description
is used to describe the task in the final output. The list of Tasks can be traversed
to evaluate every combination of CPU and GPU functions. Necessary uploads
and downloads of Mats are tracked and connected with the functions where they
occurred.

The framework includes a range of implementations of the Task interface
for a representative subset of the OpenCV functions, including thresholding,
color conversion, resizing, morphology operations and some image filters. Cus-
tom implementations can be used to test any other function. If a GPU imple-
mentation is not available for a given function, the framework only tests the CPU
implementation and automatically detects which Mats have to be downloaded.

Given the available task implementations, the extensible nature of the frame-
work, and the algorithms to compute the optimal pipeline composition, we are
convinced that the framework can serve as a solid basis to support the systematic
optimization of image processing pipelines.

5 Related Work

There have been many different attempts to accelerate sophisticated algorithms
by using hardware suited for parallel programming, such as GPUs or FPGAs. For
instance, the performance of different random number generation algorithms [20]
or image processing algorithms [1] was compared on such hardware. Two other
algorithms, the push-relabel algorithm [13] and the “Vector Coherence Mapping”
algorithm [14] were implemented using CUDA. Compared to equivalent CPU
implementations, both are substantially faster, the former 15, the latter 22 times.

A micro-benchmark suite for OpenCL is presented in [22]. OpenCL is a
vendor independent framework for computing on heterogeneous platforms. The
authors compare the performance of different GPUs and CPUs in regards to the
presented micro-benchmarks.

OpenCV includes modules supporting the usage of general-purpose comput-
ing on graphics processing units (GPGPUs), which are already used by previous
research. The authors of [9] explain the theoretical background of many tasks
related to computer vision. They also give an introduction into OpenCVs GPU
module and its performance. In addition to that, the authors of [16] evaluated
different functions of OpenCV and compared their processing time if run on the
CPU or on the GPU. Another performance comparison between OpenCV’s CPU
and GPU functions is presented in [6]. The authors compare the processing time
of different common OpenCV functions with varying image sizes.

While both papers give an insight on the performance gain when using the
GPU module, they don’t provide much information on uploading and download-
ing the data. The authors of [16] mention that programmers need to copy data
between CPU and GPU and also explain some design considerations, but don’t
quantify the time needed to do so.

This paper not only quantifies the time needed to upload and download
images, but also presents a mathematical model to estimate the execution time



Image Processing Pipeline Optimization 645

of any image processing pipeline. As shown, it is not sufficient to compare the
processing time of functions themselves. Instead, it is necessary to take uploading
and downloading of the data into consideration. Additionally, image processing
functions are seldom executed in isolation. As more functions are added to the
pipeline, the underlying model gains complexity, handled by the optimization
framework. Developers can use it to compute the optimal combination of CPU
and GPU functions.

6 Conclusion and Future Work

Computer vision systems require fast image processing pipelines. One way to
reduce the execution time is to leverage the parallelism of modern GPUs to
speed up individual image processing functions. However, since not all func-
tions can benefit from a parallel execution and due to the fact that transitions
between GPU and CPU code introduce overhead for uploading and download-
ing, optimizing the performance of image processing pipelines requires a careful
analysis.

In this paper, we introduced a mathematical model that captures the rele-
vant relationships as basis for the systematic optimization of image processing
pipelines. Using micro-benchmarks collected with OpenCV, we analyzed differ-
ent classes of image processing functions. The measurements show that not all
of them will benefit equally. In addition, for simple filtering functions, functions
with a sub-optimal implementation or applications operating on low resolution
images, moving the computation from CPU to GPU can even increase the total
execution time. As indicated by our validation, it is essential to account for
the upload and download time when estimating the time required to execute a
particular pipeline composition, since negligence can easily yield an estimation
error that exceeds a factor of two. We hope that the model, measurements and
optimization framework presented in this paper will help developers to find the
optimal configuration for their application.

At the present time, we are currently analyzing the effects of asynchronous
GPU calls which are supported by the class cv::cuda::Stream. Asynchronous
calls can potentially increase the parallelism. However, when using streams for
asynchronous calls it is necessary to allocate matrices in page-locked memory.
In addition, some operations cannot be parallelized in all cases.

References

1. Asano, S., Maruyama, T., Yamaguchi, Y.: Performance comparison of FPGA, GPU
and CPU in image processing. In: 2009 FPL, pp. 126–131, August 2009

2. Beymer, D., McLauchlan, P., Coifman, B., Malik, J.: A real-time computer vision
system for measuring traffic parameters. In: Proceedings of IEEE CVPR, pp. 495–
501, June 1997

3. Coifman, B., Beymer, D., McLauchlan, P., Malik, J.: A real-time computer vision
system for vehicle tracking and traffic surveillance. Transp. Res. Part C Emerg.
Technol. 6(4), 271–288 (1998)



646 P. Roch et al.

4. Gil, J., Werman, M.: Computing 2-d min, median, and max filters. IEEE PAMI
15(5), 504–507 (1993)

5. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007,
unpublished). https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001

6. Hangün, B., Eyecioğlu, Ö.: Performance comparison between OpenCV built in
CPU and GPU functions on image processing operations. IJESA 1, 34–41 (2017)

7. van Herk, M.: A fast algorithm for local minimum and maximum filters on rect-
angular and octagonal kernels. Pattern Recognit. Lett. 13(7), 517–521 (1992)

8. Kurzyniec, D., Sunderam, V.: Efficient cooperation between Java and native codes
- JNI performance benchmark. In: 2001 PDPTA (2001)

9. Marengoni, M., Stringhini, D.: High level computer vision using OpenCV. In: 2011
24th SIBGRAPI Conference on Graphics, Patterns, and Images Tutorials, pp. 11–
24, August 2011

10. NVIDIA Corporation: CUDA C++ programming guide (2020). https://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html. Accessed 22 Sept 2020

11. Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for
modeling human interactions. IEEE PAMI 22(8), 831–843 (2000)

12. OpenCV team: OpenCV (2020). https://opencv.org/. Accessed 28 Feb 2020
13. Park, S.I., Ponce, S.P., Huang, J., Cao, Y., Quek, F.: Low-cost, high-speed com-

puter vision using NVIDIA’s CUDA architecture. In: 2008 37th IEEE AIPR Work-
shop, pp. 1–7, October 2008

14. Park, S.I., Ponce, S.P., Huang, J., Cao, Y., Quek, F.: Low-cost, high-speed com-
puter vision using NVIDIA’s CUDA architecture. In: 2008 37th IEEE AIPR Work-
shop, pp. 1–7, October 2008

15. Phipps, G.: Comparing observed bug and productivity rates for Java and C++.
Softw. Pract. Exper. 29(4), 345–358 (1999)

16. Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision
with OpenCV. Commun. ACM 55(6), 61–69 (2012)

17. Samuel Audet: Java interface to OpenCV, FFmpeg, and more (2020). https://
github.com/bytedeco/javacv. Accessed 28 Feb 2020

18. Scharstein, D., et al.: High-resolution stereo datasets with subpixel-accurate ground
truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753,
pp. 31–42. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2 3

19. Shehu, V., Dika, A.: Using real time computer vision algorithms in automatic
attendance management systems. Proc. ITI 2010, 397–402 (2010)

20. Thomas, D.B., Howes, L., Luk, W.: A comparison of CPUs, GPUs, FPGAs, and
massively parallel processor arrays for random number generation. In: Proceedings
of the ACM/SIGDA FPGA, FPGA 2009, pp. 63–72. Association for Computing
Machinery, New York (2009)

21. Thurley, M.J., Danell, V.: Fast morphological image processing open-source exten-
sions for GPU processing with CUDA. IEEE JSTSP 6(7), 849–855 (2012)

22. Yan, X., Shi, X., Wang, L., Yang, H.: An OpenCL micro-benchmark suite for GPUs
and CPUs. J. Supercomput. 69(2), 693–713 (2014)

https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://opencv.org/
https://github.com/bytedeco/javacv
https://github.com/bytedeco/javacv
https://doi.org/10.1007/978-3-319-11752-2_3

	Systematic Optimization of Image Processing Pipelines Using GPUs
	1 Introduction
	2 Analytical Model
	3 Benchmarks and Validation
	3.1 Test Setup
	3.2 Micro-benchmarks for Uploading and Downloading
	3.3 Micro-benchmarks of OpenCV Functions
	3.4 Experimental Validation of the Analytical Model

	4 Optimization Framework
	5 Related Work
	6 Conclusion and Future Work
	References




