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Abstract. Multi-modal medical image fusion plays a significant role in clini-
cal applications like noninvasive diagnosis and image-guided surgery. However,
designing an efficient image fusion technique is still a challenging task. In this
paper, we propose an improved multi-modal medical image fusion method to
enhance the visual quality and contrast of the fused image. To achieve this work,
the registered source images are firstly decomposed into low-frequency (LF) and
several high-frequency (HF) sub-images via non-subsampled shearlet transform
(NSST). Afterward, LF sub-images are combined using the proposed weight local
features fusion rule based on local energy and standard deviation, while HF sub-
images are fused based on the novel sum-modified-laplacien (NSML) technique.
Finally, inversed NSST is applied to reconstruct the fused image. Furthermore,
the proposed method is extended to color multi-modal image fusion that effec-
tively restrains color distortion and enhances spatial and spectral resolutions. To
evaluate the performance, various experiments conducted on different datasets of
gray-scale and color images. Experimental results show that the proposed scheme
achieves better performance than other state-of-art proposed algorithms in both
visual effects and objective criteria.
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1 Introduction

Nowadays, multi-modal medical image fusion has been emerging as a crucial area
for clinical diagnosis and analysis. The target of multi-modal image fusion is to inte-
grate complementary information ofmulti-modal source images into one comprehensive
image, with the aim to improve visual quality, preserves more content information and
decrease computational task [1]. In general, modern medical imaging modalities are
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available to guide doctors and radiologist in specific medical applications. These modal-
ities are broadly classified into structural and functional [1]. Magnetic resonance imag-
ing (MRI) and computed tomography (CT) reflect the structural information of an organ
with high spatial resolution, therefore represented structural modalities. Where, func-
tional MRI (fMRI), positron emission tomography (PET) and single-photon emission
CT (SPECT) images give functional information with low spatial resolution, so grouped
as functional modalities. Based on [1, 2], it is hard to obtain accurate information about
specified organ from a single modality. For example, MRIs provide detailed information
about pathological soft tissues, while CT images can clearly give the information of
bone structures. Likewise, PET images can be utilized for the quantitative and dynamic
detection of metabolic substances in the human body, while SPECT images show clin-
ically variations in metabolism. Therefore, we need to create an effective multi-modal
fusion method to facilitate the aided diagnosis and treatment planning. In the litera-
ture, image fusion algorithms are mainly developed at three levels: pixel [2], feature
[3] and decision [4]. Usually, pixel-level fusion is used in the medical field because
of its several advantages [2]. It is divided into spatial-domain and transform-domain.
The spatial-domain fusion methods like principal component analysis (PCA) [5] and
intensity-hue-saturation (IHS) [6] are broadly suitable for mono-modal image fusion,
but they often suffer from block or region artifacts and spectral distortion. In the trans-
form domain, different kinds of transforms have achieved great success, such as pyramid
transform [7], wavelet transform [5], curvelet transform [8], contourlet transform [9] and
shearlet transform [10]. Recently, Easley et al. [11] have proposed the NSST transform
that has been successfully adopted in the medical fusion field.

On the other hand, the design of fusion rules for decomposed coefficients is the
key factor that influences the image fusion quality. So far, a variety of fusion methods
have been proposed. In the transform domain, sparse representation (SR) [11] and fuzzy
logical [12] have successfully used for medical image fusion. In the similarity, pulse-
coupled neuronal network (PCNN) and its modified versions have been widely adopted
for medical fusion domain [13]. We have proposed a simplified PCNN model for fusing
MRI and PET images in [14]. However, the major limitation of these models is time-
consuming due to several parameters and complicated function mechanisms [14, 15].
In a similar vein, deep learning is a recent machine learning used for image fusion, but
it not been widely applied in the medical fusion field due to the high time-consuming
limitation and the significant demand for computational power [16]. Recently, sum-
modified-laplacian (SML) is one of the obvious tools that can well-reflect the feature
information about contours and edges of the image. At the beginning, Huang et al. [17]
have employed SML for multi-focus image fusion and they achieved good results. Then,
a new fusion scheme based on a novel SML (NSML) was proposed by Yin et al. [18]
and used for capturing all salient features [19].

Inspired by the transform-domain algorithms, we proposed a pixel-based fusion
method for multi-modal medical images. The core contribution of the proposed fusion
method is the weight local features rules implementation for approximated coefficients
based on local energies and standard deviation that significantly enhance visual appear-
ance and reduce blurring effects. Besides, NSML is used for capturing all salient features
from detailed coefficients. The proposed algorithm is further extended to color medical
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image fusion based onYIQ transformation. The rest of this paper is organized as follows.
Section 2 briefly introduces related theories of NSST. Section 3 explains the proposed
method in detail. Section 4 describes the extensive experimental results and discussions.
Finally, Sect. 5 concludes the paper.

2 Non-subsampled Shearlet Transform

The NSST is a shift-invariant version of the shearlet transforms [11]. It has several
advantages like shift-invariance, multi-directionality and computational simplicity. In
two dimensions (2D), the affine system with composite dilation defined by [11]:

ψj,k,m(x) = |det A| j
2 ψ

(
SKAjx − m

)
: j, k ∈ Z

2 (1)

A denotes the scaling matrix. S stands for the shear matrix. j, k, m are the scale,
direction and shift parameters, respectively. For each d > 0 and s ∈ R,

A =
[
d 0

0 d
1
2

]
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[
1 s
0 1

]
(2)

For any ξ = (ξ1, ξ2) ∈ R
2, ξ1 �= 0, the shearlet function is defined as:
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Where ψ
∧

is the Fourier transform of ψ, ψ1 ∈ C∞(R) and ψ2 ∈ C∞(R) are both
wavelet and suppψ1 ⊂ [−1/2,−1/16]� [1/16, 1/2, suppψ2 ⊂ [−1, 1]. This indicates
that ψ0 ∈ C∞(R) and supp ψ0 ⊂ [−1/2, 1/2]2. Subsequently, we suppose that:

∑
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|ψ
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1(2
−2jω|2 = 1, |ω| ≥ 18 (4)

For each j ≥ 0, ψ2 satisfies that:

∑2j−1

l=−2j
|ψ
∧

2(2
jω − l|2 = 1, |ω| ≤ 1 (5)

Based on several examples of ψ1 and ψ2, Eq. 4 and Eq. 5 notice that:
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(6)

The discreteNSST transform can be obtained from the different equationsmentioned
above. More theoretical background can be found in [11, 18].
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3 Proposed Fusion Method

LetA andB denote the input images. In the beginning, we confirm that image registration
is not related to the entire system. The input images are selected from a registeredmedical
source. A schematic diagram of the proposed method is illustrated in Fig. 1. First, the
input images were normalized and then decomposed up to three levels into LF and HF
sub-bands by applying the NSST to separate the principal information and the edge
details of the source image. The direction numbers from finer to coarser levels are set at
[3, 4]. The ‘maxflat’ pyramidal filter is used and the size of the shearing window is set
at 32, 32, and 16. After that, proposed fusion rules are adopted to integrate coefficients.
Finally, inversed NSST is applied to get the fused image.

NSST
HF

Sub-bands

LF
Sub-band

HF
Sub-bands

NSST

Weight Local 
Features

Weight Local
Features

Inverse
NSST

Fused Image

LF 
Fusion

HF 
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Standard
Deviation

Local 
Energy
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Standard
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Sub-band
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Fig. 1. Block diagram of the proposed fusion method.

3.1 Fusion Rule of the Low Frequency Sub-images

Approximated coefficients are very important for the visual quality of the fused image.
Traditional ways for fusing LF sub-bands are by taking the weighted average or the
maximum of the coefficient, but they directly affect the contrast and resolution of the
output image [18].Therefore, a new fusion rule is given based on local energy and
standard deviation, which are frequently used for fusing salient features [14, 19].

The local energy features enable us to describe the inherent texture of the image by
analyzing the grade of associated information [9]. Besides, the local texture features of
an image have a strong connection with the variation of the image coefficients, as well as
its neighborhood [14]. The variation can be depicted by the regional standard deviation.
Let CF(a, b) denotes the LF coefficient located at (a, b). The proposed fusion method is
described as follows:

CF(a, b) =
{ |CA(a, b)|, δA ≥ δB and εA ≥ εB

|CB(a, b)|, otherwise (7)

Where δμ is the weight for the standard deviation Dμ while εμ is the weight of the
local energy Eμ. A and B are the input image, and μ = A,B. They are calculated in the
3 × 3 neighborhood as follows:

δμ = Dμ(a, b)

DA(a, b) + DB(a, b)
(8)
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εμ = Eμ(a, b)

EA(a, b) + EB(a, b)
(9)

The regional standard deviation Dμ and the local energy Eμ are calculated as:

Dμ =
√∑

s∈S,t∈T ω(s, t) × [
Cμ(a + s, b + t) − Sμ(a, b)

]2 (10)

Eμ =
∑

s∈S,t∈T ω(s, t) × [
Cμ(a + s, b + t)

]2 (11)

Where the template ω =
⎧⎨
⎩
1 2 1
2 4 2
1 2 1

⎫⎬
⎭ × 1

16 , and Sμ is calculated as follows:

Sμ =
∑

s∈S,t∈T ω(s, t) × Cμ(a + s, b + t) (12)

3.2 Fusion Rule of the High Frequency Sub-images

For the fusion of detailed coefficients, the system utilizes NSML technique recently
applied by several works [18, 19]. Indeed, NSML can well-reflect the important features
and properly assesses the focused features [19]. Let Cl,k

F (i, j) stands for theHF coefficient

in the position (i, j) in the lth scale and kth direction. The fused Cl,k
F coefficients are

selected by computing and comparing NSML. The coefficient Cl,k
F (i, j) with maximum

NSML value is selected as follows:

Cl,k
F (i, j) =

{
Cl,k
A (i, j), NSMLl,k

A (i, j) ≥ NSMLl,k
B (i, j)

Cl,k
B (i, j), otherwise

(13)

The NSML is defined as:

NSMLl,k(i, j) =
∑P

m=−P

∑Q

n=−Q
w(m, n)

[
MLl,k(i + m, j + n)

]2
(14)

MLl,k(i, j) =
∣∣∣2MPl,k(i, j) − MPl,k(i − step, j) − MPl,k(i + step, j)

∣∣∣ + |2MPl,k(i, j)−
MPl,k(i, j − step) − MPl,k(i, j + step)| (15)

Where MPl,k(i, j) denotes the directional band-pass, sub-band coefficient located at
the pixel (i, j) in the lth sub-band at the kth decomposition level. While computing the
derivative, step denoted the variable spacing between pixels, typically equal to 1. P andQ
are the parameters that determine the window with a size of (2P + 1)(2Q + 1), w(m, n)
represents the weights of the MLl,k(i + m, j + n), and must satisfying the normalization
rules i.e.

∑
m

∑
n (m, n) = 1. Therefore, we choose P = Q = 1 and the same weighed

window used for fusing LF coefficients.
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3.3 Color Image Fusion

In recent years, fusion of structural and functional images has been an interesting hybrid
tool that brings an important revolution in the medical field [1]. Usually, color images
are in RGB (Red, Green, Blue) color space, which contains almost all the basic colors
that can be perceived by human vision. Nevertheless, the three colors are treated equally
and their components are strongly correlated. So, it makes the RGB color space very
difficult to determine what color of the image will be changed if a component changes.
To overcome this problem, several color transformations, such as YIQ, HSV, and IHS
are proposed. In YIQ, image data consists of three components. The first component
luminance (Y) represents the grayscale information, while the last two components hue
(I) and saturation (Q) denote the chrominance information.

Gray Fused
Image

PET/SPECT

MRI Color Fused 
Image

Proposed Fusion Method IYIQ

Y

I

Q

YIQ

Fig. 2. Block diagram of the proposed color fusion scheme.

In this study, the color inputs are transformed from RGB to YIQ, which provides
better spectral and spatial characteristics and reduces color distortion. The proposed
scheme for color image fusion is illustrated in Fig. 2 and described as follows: First, the
input PET/SPECT image perfectly registered and normalized in advance is transformed
into the YIQ independent components. Second, the proposed gray fusion method is
applied. The final output is obtained using the inversed YIQ by exploiting the new
intensity and the original I and Q components of the color image.

4 Experimental Results and Discussion

To determine the overall performance of the proposed fusion method, extensive experi-
ments are conducted on different types of pre-registered dataset images. All used images
were frequently taken from theWebsite ofMedical School of Harvard University “http://
www.med.harvard.edu/AANLIB/” and from the fusion website “http://www.imagefusi
on.org”. In this study, five objective image quality metrics are adopted [20]: (i) Entropy
(E) that evaluates the quantity of information in the fused image. (ii) Feature Mutual
Information (FMI) that measures the amount of feature information. (iii) Fusion Quality
index (QAB/F) that gives valuable information about edge preservation. (iv) Standard
Deviation (SD) that reflects the contrast information in the fused images. (v) Structural
Similarity Index Measure (SSIM), which determines the structural similarity between
two images.

http://www.med.harvard.edu/AANLIB/
http://www.imagefusion.org
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4.1 Experiment-1: Gray-Scale Image Fusion

For the first section of experiments, four different datasets of CT and MRI images of the
size 256× 256 are selected as shown in Fig. 3. To verify the effectiveness of the proposed
approach, the following existing state-of-art fusion methods are considered: Method.1
[12], Method.2 [21], Method.3 [18], Method.4 [13], Method.5 [22] and Method.6 [19].

Visual Analysis. Fusion results produced by the above techniques are shown in Fig. 4.
Images (a) in every set are clearly noted blurred and having brightness issues and high
noise. From images (b) and (c), a loss of contours and edges information can easily be
noted as compared to images (g). The implementation of the modified MPCNN model
in the MSVD domain gives better results, as can be shown by images (d). Method.5
provided clear results (see images (e)), but due to direct averaging of the LF coefficients,
it gives less distinction or low contrast in some superposed positions. Hence, Method.6
produces superior results with good contrast.Moreover, by comparing all these images at
once, it can easily notice that the images obtained from the proposed method are clearer
(see images (g)), almost all the salient features are clearly visible. This is mainly because
of the NSST decomposition because of the advantage of high computational efficiency.
Where, the good contrast and high resolution are preserved due to the proposed fusion
rule for LF coefficients and the utilization of NSML for focusing and capturing high
features from the HF coefficients.

dataset-1 dataset-2 dataset-3 dataset-4

Fig. 3. Multi-modal source images. (a) dataset-1. top: MRI, bottom: CT (b) dataset-2. top: MRI-
T2, bottom: MRI-T1 (c) dataset-3. top: MRI-T2, bottom: MRI-GAD (d) dataset-4. top: MRI-PD,
bottom: CT.

Quantitative Analysis. Table 1, 2, 3, 4 provide quantitative performance. It should be
noted that a larger measure implies better quality. First, through the significant results
obtained for E given in Table 1, it can be clearly concluded that the proposed method
gains the highest E for almost all the datasets, which shows that maximum structural
information is present in the fused image. Second, the FMI results listed in Table 2 shows
that the proposed method gives higher FMI for all datasets. It shows that maximum
information about the edge strength, texture and contrast from the source images is
retained in the fused image. Third, almost all datasets preserved the highest values of the
QAB/F (Table 3) except for dataset-1 inMethod. 6, which indicates that more edge details
are provided by our algorithm. Finally, results obtained for SD are given Table 4. The
proposed technique produces higher contrast for all sets except dataSet-1 in Method.6.
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Fig. 4. Comparative visual results obtained from different fusion methods applied to multi-modal
images. (a) Method.1, (b) Method.2, (c) Method.3, (d) Method.4, (e) Method.5, (f) Method.6, (g)
Proposed.

From these results, it can be observed that the proposed method provides an efficient
fusion tool compared with other mainstream algorithms.

Table 1. Entropy (E) comparison of different fusion methods

Data Method.1 Method.2 Method.3 Method.4 Method.5 Method.6 Method.7

Set-1 6.3252 6.2564 6.4575 6.7454 6.4179 6.6257 6.9276

Set-2 5.2372 5.1190 5.2354 4.5308 5.3299 5.3810 5.6103

Set-3 4.5448 3.9737 4.2431 4.3084 4.2951 4.7046 5.2872

Set-4 5.6420 5.2750 5.1542 4.7685 5.9869 5.8250 5.8601

Table 2. Feature Mutual Information (FMI) comparison of different fusion methods

Data Method.1 Method.2 Method.3 Method.4 Method.5 Method.6 Method.7

Set-1 0.9665 0.8758 0.9031 0.8869 0.8973 0.9157 0.9689

Set-2 0.8630 0.7812 0.8619 0.8581 0.8565 0.8752 0.8774

Set-3 0.8425 0.8342 0.8452 0.8659 0.8459 0.8794 0.8845

Set-4 0.8500 0.8792 0.8298 0.8607 0.8612 0.8679 0.8805
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Table 3. Quality Index (QAB/F) comparison of different fusion methods

Data Method.1 Method.2 Method.3 Method.4 Method.5 Method.6 Method.7

Set-1 0.8805 0.7051 0.7275 0.6771 0.6585 0.6890 0.6795

Set-2 0.4893 0.6527 0.4984 0.5110 0.5112 0.5196 0.6053

Set-3 0.4979 0.6285 0.4949 0.5267 0.5179 0.5415 0.6137

Set-4 0.4699 0.5288 0.4590 0.4827 0.5216 0.5586 0.5609

Table 4. Standard Deviation (SD) comparison of different fusion methods

Data Method.1 Method.2 Method.3 Method.4 Method.5 Method.6 Method.7

Set-1 62.5335 56.6646 64.5731 61.2030 53.2106 70.8927 69.0667

Set-2 57.6196 69.3992 64.8471 72.2113 67.1220 77.6339 78.8540

Set-3 59.3623 71.5558 61.5954 74.7389 63.6425 69.3794 72.6415

Set-4 55.5056 61.1031 59.9547 76.7698 61.6975 68.3625 72.0792

4.2 Experiment-2: Color Image Fusion

For this section of experiments, five data-sets of MRI, PET and SPECT images having
a size of 256 × 256 are selected as shown in Fig. 5.The following state-of-art schemes
are selected to verify the effectiveness of the proposed color fusion method: Scheme.1
[12], Scheme.2 [15], Scheme.3 [23], Scheme.4 [14] and Scheme.5 [19].

Visual Analysis. Fused results are given in Fig. 6. Images (a) produced by Scheme.1
preserve both structural and functional information, but the approach works in grayscale
space. From images (b), it can be observed thatmost of the information of brain structures
in the non-functional area is lost. Furthermore, these images suffer from color distortion
and contrast reduction. We expect more satisfactory results from Scheme.3 (see images
(c)) because of the advantages of implementing fusion rules on every channel separately
after each local Laplacian filtering (LLF) decomposition level. Although, the images
obtained through this scheme contain some noise and are showing deficiency in edge
strength. In general, more visual superiority is retained by Scheme.4 and Scheme.5,
where the fused outputs have good resolution and contrast as well (see images (d)) and
images (e)). Compare to these existingmethods, it can be easily recognized in the images
obtained by the proposed scheme (see images (f)) that problem of color and contrast
reduction is highly improved.

QuantitativeAnalysis. In order to support the visual quality of the proposed scheme, the
quantitative matrices FMI, QAB/F, SSIM and SD for the previously mentioned schemes
are also computed. Results obtained from these matrices for all the five sets are plotted in
Fig. 7, 8, 9, 10. In general, the proposed scheme gives the highest values for almost every
set. Furthermore, our fused images show more visual superiority and effectiveness in
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Set-1 Set-2 Set-3 Set-4 Set-5

Fig. 5. Multi-modal color source images. Set-1, Set-2& Set-3.top: MRI, bottom: PET. Set-4 &
Set-5.top: MRI, bottom: SPECT. (Color figure online)

Fig. 6. Comparative visual results obtained fromdifferent fusion schemes applied to color images.
(a) Scheme.1, (b) Scheme.2, (c) Scheme.3, (d) Scheme.4, (e) Scheme.5, (f) Proposed. (Color figure
online)

contrast with excellent spatial and spectral resolutions. Hence, from the visual and quan-
titative analysis, we conclude that the proposed algorithm has successfully injected the
anatomical information of the high-resolutionMRI image into themetabolic information
of the PET/SPECT image.

Computational Efficiency. In pursuit of the clear comparison, time costs of the com-
pared algorithms are illustrated in Table 5. It can be observed that methods [21] and
[14] consume lot more time (83 s and 180 s) compare to others. This is because these
methods are based on learning algorithms like SR and PCNN. The method [23] pro-
vides advantageous results, but it was taking also important time 135 s due to the LLF
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Fig. 7. FMI comparisons of color images, for the existing fusion schemes results. (Color figure
online)
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Fig. 8. QAB/F comparisons of color images, for the existing fusion schemes results. (Color figure
online)

decomposition process. The proposed method is taking less time about 6 s to produce
one fusion image of size 256× 256 from two input images on the platform implemented
in Matlab2018b on a PC with Intel core2 Duo CPU and 4 GB of RAM. To conclude,
the proposed fusion method is light-weight and efficient. Thus it can be dedicated to
real time-aided diagnosis and treatment planning systems without consuming too many
computational resources.
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Fig. 9. SSIM comparisons of color images, for the existing fusion schemes results. (Color figure
online)
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Fig. 10. SD comparisons of color images, for the existing fusion schemes results. (Color figure
online)

Table 5. Time cost comparison (Time unit: second)

Algorithm [12] [21] [13] [22] [23] [14] [19] Proposed

Time cost 20 83 12 16 135 180 40 6
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Although the proposed method achieves better performance, it has two limitations.
Firstly, the proposed method is designed to fuse the pre-registered images, thus adding
an image registration module might enable the proposed system to deal with the unreg-
istered datasets. Second, the proposed fusion method needs more ground truth data to
prove more efficiency for large databases. In future works, the proposed method can be
extended to other medical aided diagnostic applications like segmentation and classifica-
tion. Specifically, it will be dedicated for classifying low-grade and high-grade gliomas
based on radiomics analysis [24]. Indeed, glioma classification before surgery is of the
utmost important in clinical decision making and prognosis prediction. Therefore, an
aided diagnosis framework composed of two parts, fusion and classification, will be
proposed to assist radiologists in glioma classification.

5 Conclusion

The purpose of this study was to propose a multi-modal image fusion method based on
an adopted weight local features and NSML fusion rules in the NSST domain. First,
NSST has been applied on pre-registered source images. Subsequently, we design an
adapted weight local features fusion rule for fusing the approximated sub-images, while
detailed coefficients are combined via NSML technique. Furthermore, the proposed
method is extended for functional and anatomical image fusion by transforming color
images to YIQ color space, which produces fused images with high spatial and spectral
resolutions. Overall, extensive experiment results have proved the effectiveness of the
proposed method. In future work, the proposed fusion method will be adopted for an
accurate glioma classification based on radiomics analysis.
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