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Abstract. The convex hull problem has practical applications in mesh
generation, file searching, cluster analysis, collision detection, image pro-
cessing, statistics, etc. In this paper, we present a novel pruning-based
approach for finding the convex hull set for 2D and 3D datasets using
parallel algorithms. This approach, which is a combination of pruning,
divide and conquer, and parallel computing, is flexible to be employed
in a distributed computing environment. We propose the algorithm for
both CPU and GPU (CUDA) computation models. The results show that
ConcurrentHull has a performance gain as the input data size increases.
Providing an independently dividable approach, our algorithm has the
benefit of handling huge datasets as opposed to other approaches pre-
sented in this paper which failed to manage the same datasets.
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1 Introduction

Computing the convex hull of a set of points is one of the substantial problems
in computer graphics. The convex hull of a set of points P is the smallest convex
polygon/polyhedron that contains the points and is denoted by CH(P ). Imagine
using needle pins on a surface to represent the points, the convex hull can be
visualized by wrapping a rubber band around these needles [4]. Given a set of n
points in a plane, the convex hull of these points is the set of points which are
located on the perimeter of the smallest area that contains all the points. The
convex hull of a set of 3D points P is the smallest convex polyhedron containing
all points of the set P .

The complexity of the algorithms are based on the total number of points
(n) and the number of points that create the hull (h). Among these algorithms,
the most popular ones are the “Graham scan” algorithm and the “divide-and-
conquer” algorithm [9].

The O(n log n) complexity of Graham Scan algorithm is emanated from the
radial sort of the points. The algorithm starts with one of the points that is
sure to be in the convex set which is called P . For this purpose it will find the
point with the lowest y-coordinate, if there exists more than one point with the
minimum y-coordinate then it will find the one with the lowest x-coordinate.
This can be done in O(n) time. Then the rest of the nodes will be sorted by
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the angle they make with P and x-axis. The next step is figuring out if the next
point is a right turn or a left turn regarding its preceding point and P . If it is
a right turn (clockwise), then it means that p2 is not a part of the convex hull
and it will be swapped with p3 and the algorithm will proceed to the next set of
points. This process will end when it reaches the starting point P .

2 Related Work

The research on implementing parallel algorithms is scarce. In 1988, Miller et al.
introduced a parallel solution for solving the convex hull problem which given a
sorted set of points and a machine with θ(n) processors can solve it in θ(log n)
[8]. However the high amount of required processors reduces the practicality
of this algorithm. Blelloch et al. introduced a new definition and analysis of
the configuration dependence graph for the randomized incremental convex hull
algorithm and showed it is inherently parallel with O(logn) dependence depth [3].

The other approach is using GPU processing power for solving the problem.
Jurkiewicz et al. introduced a CUDA algorithm which applies quick sort on the
points and solve the problem in O(k log g). g = n

p input size of the problem
per SIMD-processor and k = n

U input size of the problem per scalar processor
[6]. GHull is a 3D CUDA-based convex hull algorithm that was proposed by
Gao et al. which is up to 10x faster than the fastest CPU convex hull software,
QuickHull [5]. CudaHull is another 3D convex hull algorithm which is based on
the QuickHull approach [10].

Hybrid GPU-CPU is another approach to the convex hull problem Tang et
al. presented a hybrid CPU-GPU algorithm to compute the convex hull of points
in three or higher dimensional spaces [11]. The GPU is used to remove the points
that do not lie on the boundary, then the CPU computes the convex hull for the
remaining points.

Here we explain our approach for 2D and 3D convex hull and for each of
them, we first describe the approach for CPU-based implementation and then
the CUDA implementation approach. We will then discuss the benchmarking
task and how our algorithm performed against other algorithms.

(a) Partitioning the
input points

(b) Grey cells are
valid partitions.

(c) Convex hull of
valid partitions.

(d) Convex hull of fi-
nalized points.

Fig. 1. A demonstration of the 2D ConcurrentHull
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3 ConcurrentHull

Our approach is based on highly parallel pruning of the interior points. The data
is partitioned into an equal sized grid. The pruning is done by the crawlers. Each
crawler can perform individually from other crawlers. A crawler starts from a
partition in a given direction and tries to find the first valid partition and then
it halts. We will discuss the implementation of the 2D and 3D ConcurrentHull
algorithm for CPU and GPU.

4 2D Convex Hull

The following steps are a high-level presentation of how we are going to find the
convex hull of 2D points:

– Loading the data and partitioning them using a grid.
– Pruning the partitions using crawlers.
– Finding convex hulls of remaining partitions and removing the points inside

their convex hulls.
– Calculating the final convex hull using the remaining point.

Figure 1 shows a demonstration of 2D ConcurrentHull algorithm.

4.1 CPU 2D Convex Hull

Calculating the convex hull for a set of 2D points starts with loading the points
and finding their extreme X and Y values. In the next step, the plane will be
divided to a k × k grid. Each grid cell is called a partition. The partition which
is located on i and j coordinates of the grid is represented by ρk×i+j . A valid
partition is a partition that we assume has at least one point in the convex hull,
but there might be no point inside a valid partition that is a part of the final
convex hull. In Fig. 1 the example set of points has been divided into a 12 × 12
grid.

In order to prune the partitions, we use crawlers. A crawler is a piece of code
which crawls from a starting point towards a defined direction with a width of
one partition. It checks if any partitions on its path have any points inside them.
It will mark the first non-empty partition that it finds as valid partition and
stops crawling. Three crawlers start from each partition of each side of the grid,
one perpendicular, the other two in the direction of the grid diagonals (Fig. 2).
The pruning is done using 12 × (k − 2) + 4 crawlers which run in parallel. Since
each corner of the grid only has one diagonal crawler, we have 3×(k−2) crawlers
for each side of the grid (excluding the corners) and 4 crawlers for the corners.
Using crawlers we will find valid partitions and the rest of the partitions will be
pruned. Figure 1b shows the sample pruned partitions, the white partitions will
be removed. Algorithm 2 shows how a crawler works.

Convex hull for each partition is computed in parallel and the points inside
the convex hull are removed. If a partition has less than four points, it will be
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Start 

Fig. 2. The figure shows the directions for three 2D crawlers of a starting point. Each
arrow represents one crawler’s direction.

left untouched as a valid partition (note that at least three points are needed
to compute a convex hull). Each partition’s points is passed to a thread and
each thread finds the CH(ρv) using the Quick Hull algorithm. Points inside the
convex hulls of the partitions can be removed as they are already surrounded by
a convex hull inside the final convex hull. Figure 1c shows the calculated convex
hull for the valid partitions. Yellow points will be removed from the set. The
final convex hull will be computed using the remaining points.

The justification for using partitions and crawlers for pruning instead of using
the Quick Hull algorithm in the first step is that the Quick Hull algorithm finds
the points that lie inside the triangle [2] by comparing all of the points with the
three lines that are created by the extreme points and although the operation is
of O(n), it is still a time-consuming task. On the other hand, to prune the points
using partitions and crawlers, we only do one comparison in each crawler’s step
(partition.points.size()>0) which is faster and in the worst case is of O(12k2)in
which k is a constant.

Lemma 1. The final convex hull points are inside the valid partitions and none
of the points from the final convex hull can be inside the pruned partitions.

Proof. We prove this lemma by contradiction. Consider a set of 2D points P
divided to k × k partitions. We denote

⋃
v CH(ρv) as CH ′. If there exists a

pruned point pp ∈ CH(P ) and Pp /∈ CH ′. This means pp is outside CH ′. If it
is outside the CH ′, crawlers have missed the partition (ρp). If there is a valid
partition on the right of ρp, because we assumed pp is outside the CH ′ there
has been a crawler crawling from left to right that picked the partition on the
right of ρp as a valid partition, but since crawlers stop when they find the first
partition with at least one point inside, it should have stopped when it reached
ρp and it is a contradiction to the crawler definition. The same case applies to
the other directions around ρp.
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Algorithm 1. Crawler2D
1: procedure Crawl
2: K ← side size
3: start i ← start point x coordinate
4: start j ← start point y coordinate
5: direction i ← direction x coordinate
6: direction j ← direction y coordinate
7: current i ← start i
8: current j ← start j
9: loop:

10: if size(partition(currenti, currentj)) > 0 then
11: validPartitions.append(partition(currenti, currentj)
12: return
13: else
14: current i ← current i + direction i
15: current j ← current j + direction j
16: if current i < K & current j < K then
17: goto loop.

For the points inside the partitions convex hulls, they cannot be outside the
CH(P ) because if they are outside CH(P ) they should also be outside of the
convex hull of a partition, which is a contradiction to the assumption. ��

4.2 GPU 2D Convex Hull

We apply the CPU approach for CUDA with some minor modifications. A CUDA
kernel is responsible for partitioning the points. After copying the points data to
the GPU memory, n threads assign the points to their partitions. Based on the
thread ID, each thread picks one point and assign it to its appropriate partition
using side size and extreme points values.

GPU crawlers use the same approach as the CPU crawlers. 12×k threads run
the crawler kernel, each thread crawls in its direction and marks its appropriate
valid partition.

To compute the convex hull on GPU, we modified CudaChain algorithm [7]
to fit our needs. The points data in GPU memory are shared among CudaChain
instances which helps algorithm to run faster without the need to make mul-
tiple copies of the data. After computing the convex hull of the partitions and
removing the points inside them, the remaining points will be used to calculate
the final convex hull.

5 3D Convex Hull

Applying the ConcurrentHull idea to 3D points can be done using the same
steps as the 2D problem but with minor modifications to meet the 3D problem
requirements. We will first describe the CPU algorithm and then the GPU one.
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(a) Input data
(b) Valid partitions’ points
in blue. Invalid partitions’
points in red.

(c) Convex hulls of valid
partitions

(d) Pruned points in red.
Final points in blue.

(e) Remaining final points (f) Final convex hull

Fig. 3. ConcurrentHull 3D process demonstration.

5.1 CPU 3D Convex Hull

To apply the partitioning, we project a cubic 3D grid on the input data which is
a set of 3D points. The grid bounding B is defined by the maximum of furthest
points based on X, Y, and Z coordinates. Once we found B, the grid will have
k×k×k cells each of size B

k and starts from (xs, ys, zs) where xs = min∀p∈P p.x,
ys = min∀p∈P p.y, and zs = min∀p∈P p.z.

Similar to 2D crawlers, 3D crawlers also have a starting partition and a
direction to crawl. Each of the six sides of the cubic grid has k2 partition which
are the starting partitions of the crawlers. From each starting partition, nine
crawlers will be initiated. The adjacent layer of the starting partition has nine
partitions that are neighbors of the starting partition which define the directions
from starting partitions center towards these partitions centers. In other words
we define the direction using a vector d = (u, v, z), u,v and z are corresponding
to X,Y, and Z directions. Depending on the side of the grid which the starting
partition is located on, one of the elements of d is a fixed value (1 or −1) and the
other 2 elements can be −1, 0, or 1, which means we have 32 different directions
to cover. Figure 4 shows the directions for a sample starting partition which is
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Algorithm 2. Crawler3D
1: procedure Crawl
2: K ← side size
3: start i ← start point x coordinate
4: start j ← start point y coordinate
5: start k ← start point z coordinate
6: direction i ← direction x coordinate
7: direction j ← direction y coordinate
8: direction k ← direction z coordinate
9: current i ← start i

10: current j ← start j
11: current k ← start k
12: loop:
13: if size(partition(currenti, currentj , currentk)) > 0 then
14: validPartitions.append(partition(currenti, currentj , currentk)
15: return
16: else
17: current i ← current i + direction i
18: current j ← current j + direction j
19: current k ← current k + direction k
20: if current i < K & current j < K & current k < K then
21: goto loop.

Fig. 4. 3D crawler directions for a sample starting point

located on the bottom of the grid. Overall, 54 × k2 crawlers will be working on
the grid to find the valid partitions.

After finding the partitions, 3D quick hull will be used to find the partitions’
convex hulls and the same as the 2D algorithm, the points inside the convex
hulls will be removed. Note that the partitions with less than four points will
also be considered valid partitions. Using the remaining points, the final convex
hull for the input problem will be calculated.

Lemma 2. The final convex hull points are inside the valid partitions and none
of the points from the final convex hull can be among the pruned points.

Proof. The proof is the same as 2D proof. ��
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(a) Input data
(Stanford Bunny)

(b) Valid partitions (c) Convex hulls of
valid partitions

(d) Pruned points of
each partition (red
points)

(e) All pruned points
(red points)

(f) Remaining points (g) Convex hull of
the remaining points

(h) Final convex hull

Fig. 5. Finding the convex hull of the Stanford Bunny using ConcurrentHull

5.2 GPU 3D Convex Hull

To partition the input data on the GPU, CPU 3D convex hull partitioning
logic is used with the same approach as the 2D partitioning kernel. Each thread
is responsible for partitioning one point. Each crawler uses one thread to find
its valid partition. The points data is shared among the threads. After finding
the valid partitions, gHull [5] will be used to calculate the convex hull of the
partitions. Figure 3 shows an example of the 3D algorithm process on a ball
dataset and Fig. 5 shows the process for the Stanford bunny.

6 Benchmark

Both Synthetic data and real-world data were used to perform the benchmark
tests. We performed the benchmarks for CPU 2D, CPU 3D, GPU 2D, and GPU
3D algorithms. The real-world benchmarks are performed for the 3D data as
well as the synthetic data. Synthetic benchmarks are performed for the 2D algo-
rithms. Further, the benchmarks for different values of k are plotted. The average
values for the synthetic benchmarks are available in Table 1 and Fig. 7 shows
plots of the average synthetic benchmarks. For each dataset or k value the bench-
marks are performed three times and are averaged to minimize the errors in
measurements.
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(a) Cube with uni-
form distribution

(b) Ball with uni-
form distribution

(c) Sphere with
thickness of 1%

(d) Gaussian distri-
bution

Fig. 6. Four different synthetic shapes used for 3D benchmark testings.

6.1 2D Benchmark

Synthetic. Four distribution of synthetic data were generated: Square with a
thickness of 1%, Square uniform distribution, Circle with a thickness of 1%, Disk
uniform distribution.

6.2 3D Benchmark

Synthetic. Four distribution of synthetic data were generated (Fig. 6): Cube
with uniform distribution, Ball with uniform distribution, Sphere with thickness
of 1%, Gaussian distribution.

Real-World. The data for the 3D real-world benchmarks were gathered from
LiDAR scans of the Robotic 3D Scan Repository [1].

Table 1. Benchmark numeric results for synthetic data (time in seconds)

2D CPU 2D GPU 3D CPU 3D GPU

# Points2D CPUQHull Speedup2D GPU CudaChainSpeedup3D CPU Qhull Speedup3D GPU gHull Speedup

105 0.00863 0.007130.83 0.90207 0.08673 0.1 0.17111 0.0192 0.11 0.41251 0.328550.8

106 0.01897 0.099825.26 0.95632 0.1122 0.12 0.62744 0.25563 0.41 0.56696 1.554922.74

107 0.06121 0.9919616.21 1.21163 0.44502 0.37 2.93851 1.95294 0.66 1.19895 9.945958.3

108 0.31915 13.647 42.76 2.20155 3.38867 1.54 12.9138726.943042.09 6.85567 OOM

109 6.65961 OOM 12.03245OOM 39.34611OOM 11.99615OOM
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0
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15
ConcurrentHull

Qhull

(a) CPU 2D

105 106 107 108 109
0

5

10

ConcurrentHull
CudaChain

(b) GPU 2D

102 104 106 108
0

20

40
ConcurrentHull

Qhull

(c) CPU 3D

105 106 107 108 109
0

10

20

30 ConcurrentHull
gHull

(d) GPU 3D

Fig. 7. Average benchmark times (seconds) for different input sizes.
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(a) Cube uniform distribution

(b) Ball uniform distribution

(c) Sphere with thickness of 10%

(d) Gaussian distribution

Fig. 8. Effect of k value for 108 3D points
with different distributions using Concur-
rentHull CPU 3D. The X axis shows side
size for partitioning. qh stands for qhull
times.

(a) Square with a thickness of 1%

(b) Square uniform distribution

(c) Circle with a thickness of 1%

(d) Disk uniform distribution

Fig. 9. Effect of k value for 108 2D points
with different distributions using Concur-
rentHull CPU 2D. The X axis shows side
size for partitioning. qh stands for qhull
times.

7 Results

We used a computer with a Core i7 (i7-8700K) CPU, 32GB of RAM, and a
NVIDIA GTX 1080 Ti GPU with 11 GB GDDR5X memory to run the bench-
marks.

For 2D and 3D comparisons, the input points are randomly distributed point
sets generated on a square and a cube respectively. To evaluate the performance
of ConcurrentHull for 2D and 3D CPU algorithms, inputs are benchmarked
against Qhull. For GPU tests, 2D inputs are benchmarked against CudaChain,
while 3D inputs are benchmarked against gHull. Convex hull execution time was
used as the benchmark measure. Figure 7 shows the benchmark results.
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(a) Average times for thermobremen
dataset.

(b) Average times for andreasgart dataset.

(c) Average times for zagreb dataset.

(d) Average times for wue city dataset.

Fig. 10. Real world 3D data CPU algo-
rithm. qh stands for qHull times.

(a) Average times for thermobremen
dataset.

(b) Average times for andreasgart dataset.

(c) Average times for zagreb dataset.

(d) Average times for wue city dataset.

Fig. 11. Real world 3D data GPU algo-
rithm. gh stands for gHull times.

As the results show, on large inputs our approach performs much faster than
other approaches, while for a small number of inputs, our approach does not show
an improvement. This behavior is the result of partitioning overhead for a small
number of points, whereas for a large number of points the overhead is negligible
and the partitioning and pruning significantly improves the performance.

The other noteworthy outcome is that for huge input sizes (>108), all three
other algorithms could not produce results due to memory management issues.
Since our method first removes the unnecessary points, it can handle much larger
input point sets.

The effect of changing the value of k is demonstrated in Figs. 8 and 9 for
multiple distributions of 2D and 3D datasets. In the charts, k = 0 means using
gHull directly. As results the suggest, increasing k will reduce the execution time
up to a point (optimal k), after that the performance will deteriorate.
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7.1 Limitations and Future work

One of the disadvantages of partitioning is that we do not know the optimum
size for the grid (k). If we choose a small grid size, it can be ineffective because
all of the points will end up in the valid partitions if we choose a large grid size
we can end up with too many partitions which can compromise the performance.
Partition pruning can underperform if invalid partitions are all empty or have a
small number of points in them (Figs. 10 and 11).

For future work, we would like to investigate the application of partitioning
and crawlers on the dynamic convex hull problem. Moreover, utilizing convex
hull merging algorithms might help ConcurrentHull to achieve a better perfor-
mance. In this case, instead of calculating the convex hull for the aggregated valid
partitions pruned points, the already calculated convex hull of each partition can
be merged with the others. Finding optimal k requires further investigation of
the problem which is an opportunity for future work.

8 Conclusions

This paper introduces ConcurrentHull, a fast convex hull computation technique
based on pruning. The results show that the ConcurrentHull algorithm can out-
perform other algorithms on large enough set of points. For instance, on an input
of 108 2D points, our approach outperformed Qhull by a speedup of 42 times
on synthetic data. This approach benefits from discarding of the points which
certainly are not a part of the convex hull using a highly parallel algorithm. Fur-
ther, the inherent attributes of crawlers help ConcurrentHull achieving a better
memory management on large sets of points (>108).
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