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Abstract. Predicting a given pixel from surrounding neighbouring pix-
els is of great interest for several image processing tasks. Previous works
focused on developing different Gaussian based models. Simultaneously,
in real-world applications, the image texture and clutter are usually
known to be non-Gaussian. In this paper, we develop a pixel prediction
framework based on a finite generalized inverted Dirichlet (GID) mixture
model that has proven its efficiency in several machine learning applica-
tions. We propose a GID optimal predictor, and we learn its parameters
using a likelihood-based approach combined with the Newton-Raphson
method. We demonstrate the efficiency of our proposed approach through
a challenging application, namely image inpainting, and we compare the
experimental results with related-work methods.

Keywords: Generalized inverted Dirichlet · Mixture models · Optimal
predictor · Image pixel prediction · Image inpainting

1 Introduction

Pixel prediction has shown to be one of the most needed tool to perform several
applications in image processing such as anomaly detection [18,31], object detec-
tion [8,17], edge detection [28], video compression [7,24], semantic segmentation
[27,36], image restoration [11,32] and keypoint prediction [37]. Meanwhile, pixel
prediction is represented by approximating the predicted pixel using its neigh-
bors. For that, it is usually represented by a linear or a non-linear combination
of the neighboring pixels plus an error value [29,38]. In this paper, inspired by
the work proposed in [20], we take the optimal predictor of xn as the conditional
expectation E

(
xij | ∀xi′j′ ∈ Ni,j

)
, where xi′j′ are the neighbors of xij within

the set of pixels Ni,j .
Exploiting the ease of analytical derivations, the authors in [40] derived opti-

mal predictors for Gaussian distribution and mixture of Gaussians. However, the
field of non-Gaussian distributions exhibited an exciting expansion in terms of
mathematical theorems [23,35]. Yet, a large number of researchers proved that
Gaussian assumption is generally inappropriate and other alternative distribu-
tions are more effective in modeling data than Gaussian distribution by unveiling
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more appropriate patterns and correlations among data features [4–6,10]. In our
recent work [19], we proved that finite inverted Dirichlet mixture model effec-
tively represents positive vectors [3,9,39]. However, it suffers from significant
drawbacks such as its minimal, strictly positive covariance structure. There-
fore, to overcome this limitation, we consider applying the generalized inverted
Dirichlet which belongs to Liouville family of distributions [22]. This distribution
provides a more decent representation of the variability of the data [12]. Indeed,
considering the fact that generalized inverted Dirichlet could be factorized into
a set of inverted Beta distributions [13], gives more flexibility for modeling data
in real-world applications.

In this work, we derive a novel optimal predictor based on generalized
inverted Dirichlet distribution which results in a linear combination of the neigh-
boring pixels. Meanwhile, we evaluate the proposed approach on image inpaint-
ing application. We choose a publicly available dataset namely Paris StreetView
to validate our approach [16]. For the purpose of proving the efficiency of our
proposed optimal predictor, we consider two types of pixel discarding. The first
pixel removal is random, whereas, in the second experiment, we discard lines
from the image. We use a 3rd order non-symmetrical half-plane casual (NSHP)
neighborhood system to compute the missing pixel [11]. Finally, we perform two
image comparison metrics to evaluate our proposed model and compare it to
other similar optimal based predictors.

The rest of the paper is organized as follows: in Sect. 2, we describe our pre-
diction model, and we derive the analytical expression of the GID optimal predic-
tor. In Sect. 3, we consider the image inpainting application on Paris StreetView
dataset with two different data masks to demonstrate the effectiveness of the
proposed predictor, and we discuss the experimental results. Finally, a summary
is provided in Sect. 4.

2 GID Prediction Model

The generalized inverted Dirichlet mixture model has shown high flexibility for
modeling and clustering positive vectors. In this section, we start by review-
ing the finite GID mixture model. Then, we introduce the parameters learning
through the EM algorithm and, later, we extend this model to the prediction.

2.1 Mixture of Generalized Inverted Dirichlet Distributions

Let X = (X1, . . . ,XN ) be a set of N d-dimensional positive vectors where
each vector Xi follows a mixture of K generalized inverted Dirichlet (GID)
distributions characterized by parameters θj = (αj ,βj) and mixing weight πj

of the jth component.

P (Xi|Θ) =
K∑

j=1

πjP (Xi|θj) (1)
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where Θ = (θ1, . . . ,θK , π1, . . . , πK) represents the GID mixture model parame-
ters and P (Xi|θj) is the generalized inverted Dirichlet distribution, which has
the following form [26]:

P (Xi|θj) =
d∏

l=1

Γ(αjl + βjl)
Γ(αjl)Γ(βjl)

X
αjl−1
j

(1 +
∑l

s=1 Xis)γjl

(2)

where γjl = βjl + αjl − βjl+1, for l = 1, . . . , d (βjd+1 = 1). It is to be noted that
the GID is reduced to the inverted Dirichlet distribution when the parameter
γjl is set to zero (γj1 = · · · = γjd = 0).

The flexibility of the generalized inverted Dirichlet is by dint of the concept
of “Force of mortality” of the population where we introduce, here, a doubly
non-central Y independent-variables defined as

Yi1 = 1, Yjl =
Xil

Til−1
, l > 1 (3)

where Til = 1 + Xi1 + Xi2 + · · · + Xil−1, l = 1, . . . , d
The characteristic function underlying the Y = (Y 1, . . . ,Y N ) independent

variables follows a product of 2-parameters inverted Beta distribution, where
θl = (αl, βl)

P (Y i|θ) =
d∏

l=1

PIBeta(Yil|θl) (4)

In which the probability of inverted Beta is given by:

PIBeta(Yil|θl) =
Γ(αl + βl)
Γ(αl)Γ(βl)

Y αl

il

(1 + Yil)αl+βl
(5)

Many characteristics of the distribution are defined in [30]. We mention some
interesting statistics for this distribution.

First, the mixed moments such as the nth moment is given by:

E(Y n) =
Γ(α + β)Γ(β − n)

Γ(α)Γ(β)
(6)

where β − n is positive.
Then, the covariance between two variable Y1 and Y2 is defined as:

COV (Y1, Y2) =
(α1 − 1)(α2 − 1)

(α1α2 − 1)(β1 − 1)(β2 − 1)
(7)

The covariance between two features for inverted Beta is always positive, which
means that both they tend to increase or decrease together.

Finally, the variance of a variable Y is conveyed by:

V AR(Y ) =
(α − 1)(α + β − 2)

(β − 1)2(β − 2)
(8)
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2.2 Likelihood-Based Learning

Theoretically, a plethora of literature agrees on the effectiveness of the likelihood-
based approach for estimating the mixture parameters. One of the well-known
methodologies is the Expectation-Maximization technique [15], beginning with
a tuned initialization for the set of parameters to the expectation step where the
posterior is inferred (named often as “responsibilities”), then the iterations are
proceeded to update the required variables until convergence. The heart of the
matter comes with estimating the parameters based on the second derivative of
the log-likelihood function with regards to each parameter. First, we introduce
the log-likelihood as follows:

log P (Y|Θ) =
N∑

i=1

log
[ K∑

j=1

πj

d∏

l=1

PIBeta(Yil|θjl)
]

(9)

Initializing Process. As a first step, an unsupervised-method, namely
“K-means,” is applied to obtain the initial K clusters. Consequently, for each
cluster, the method-of-moments is implemented to get the initial αj and βj

parameters of each component j. The mixing weight is set in the initial phase as
the number of elements in each cluster divided by the total number of vectors.
As mentioned earlier, with conditionally independent features, the GID is con-
verted by the inverted Beta distribution factorization. Thus, given the moments
of inverted Beta distribution [2], the initial αjl0 and βjl0 are deduced by

αjl0 =
μ2

jl(1 + μjl) + μjlσ
2
jl

σ2
jl

(10)

βjl0 =
μjl(1 + μjl) + 2σ2

jl

σ2
jl

(11)

where μjl is the mean and σjl is the standard-deviation, j = 1, . . . ,K, l =
1, . . . , D.

Expecting the Responsibilities. The responsibilities or posterior probabili-
ties play an essential role in the likelihood-based estimation technique. It affects
the update of the parameters in the next following step using the current
parameter value.

P (j|Y i) =
πjP (Y i|θj)

∑K
m=1 πmP (Y i|θm)

(12)

Maximizing and Upgrading the GID Parameters. At the beginning, we
set the gradient of log-likelihood function with respect to the mixing weight
parameter equals to zero:

∂ log P (Y,Θ)
∂πj

= 0 (13)
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Then, we obtain the update formula for πj , for j = 1, . . . ,K as

πj =
1
N

N∑

i=1

P (j|Y i) (14)

where P (j|Y i) is the posterior computed in the E-step.
To learn the parameters αj and βj , the Fisher scoring algorithm [25] is

used. Thus, we need to calculate the first and the second derivatives of the
log-likelihood function based on the following update [1]:

αt+1
jl = αt

jl −
( ∂2

∂α2
jl

log P (Y,Θ)
)−1

× ∂

∂αjl
log P (Y,Θ) (15)

βt+1
jl = βt

jl −
( ∂2

∂β2
jl

log P (Y,Θ)
)−1

× ∂

∂βjl
log P (Y,Θ) (16)

The first derivatives of log P (Y,Θ) are given by:

∂

∂αjl
log P (Y,Θ) =

N∑

i=1

P (j|Y i)
(
PIBeta(Yil|θjl)[Ψ(αjl + βjl) − Ψ(αjl) + log Yil

− log(1 + Yil)]
)
, (17)

∂

∂βjl
log P (Y, Θ) =

N∑

i=1

P (j|Y i)
(
PIBeta(Yil|θjl)[Ψ(αjl + βjl)−Ψ(αjl)− log(1 + Yil)]

)
(18)

The second derivative with respect to αjl is given by:

∂2

∂2αjl
log P (Y, Θ) =

N∑

i=1

P (j|Y i)
(∂PIBeta(Yil|θjl)

∂αjl
[Ψ(αjl + βjl) − Ψ(αjl)

− log(1 + Yil)] + PIBeta(Yil|θjl)[Ψ′(αjl + βjl) − Ψ′(αjl)]
)
, (19)

The second derivative w.r.t βjl is obtained through the same development.

2.3 GID Optimal Predictor

In this section, we present our novel non-linear optimal predictor method based
on generalized inverted Dirichlet distribution. We consider the conditional expec-
tation property to predict one random variable from the other neighboring
variables.

We consider p data points (Xi,Xi+1, . . . , Xi+p−1), knowing their values, we
predict the neighboring data point X̂i+p on the base of minimizing the mean
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squared error (MSE). Therefore, we model the joint density of Xi+p and its
neighbors using the generalized inverted Dirichlet. We take i = 0 and we derive
the equations.

X ∼ GID(θ) (20)

Considering generalized inverted Dirichlet properties [22], the conditional
random variable Yp follows an inverted Beta distribution:

Yp =
Xp

Tp−1
|Xp−1, . . . , X1,X0 ∼ IB(αp, βp) (21)

Consequently, the conditional probability density function of Xp is

Xp | Xp−1, . . . , X0 ∼ Tp−1 IB(αp, βp) (22)

where Tp−1 = 1 +
∑p−1

k=1 Xk.
Hence, the conditional expectation expression of Xp is expressed as follows.

E(Xp | Xp−1,X1, . . . , X0) = Tp−1
αp

βp − 1
(23)

In the case of mixture models, the optimal predictor expression can be derived
directly by following steps defined in [19] (more details are in [40]):

X̂p = E
(
Xp | Xp−1, . . . , X0) (24)

X̂p =
∫

Xp P (Xp | Xp−1, . . . , X0) dXp

=
K∑

j=1

π′
jEj

(
Xj | Xj−1, . . . , X0) (25)

where

π′
j = πj

∫
Pj(Xp , . . . , X0) dXp∫
P (Xp , . . . , X0) dXp

(26)

π′
j = πj

Pj(Xp−1 , . . . , X0)
∑K

j=1 πjPj(Xp−1 , . . . , X0)
(27)

Finally, the GID optimal predictor is resumed in the following linear combination
of Xp neighbors:

X̂p =
K∑

j=1

π′
j

(

1 +
p−1∑

k=1

Xk

)
αp

βp − 1
(28)
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3 Experimental Results

Image inpainting is the process of restoring deteriorating, damaged or missing
parts of an image to produce a complete picture. It is an active area of image pro-
cessing research [32–34] where machine learning has exciting results comparable
to artists’ results. Mainly, in this process, we will be completing a missing pixel
by an approximated value that depends on its neighborhood. In our work, we use
the 3rd order non-symmetrical half-plane casual neighborhood system [19,21].
We apply the model on a publicly available dataset; Paris StreetView [16]. Then,
we compare it with the widely used mixture of Gaussian predictor, generalized
Dirichlet mixture predictor and inverted Dirichlet mixture predictor. We are not
trying to restore the ground-truth image, our goal is to get an output image
that is close enough or similar to the ground-truth. Therefore, we use the struc-
tural similarity index (SSIM) [11] to gauge the differences between the predicted
images and the original ones. We also perform signal to noise ratio (PSNR) [14]
to evaluate the performance of the models.

We reduce the size of the original images to 256 × 256 to minimize the com-
plexity of computing the model’s parameters. We train the model on 70% of the
database and we test on the rest. We apply two types of masks. The first one is
randomly distributed as shown in Fig. 1a. And, for the second one, we discard
lines of the images, as in Fig. 1b. Finally, we compute the SSIM and PSNR of
each test image with its corresponding ground-truth, and we average all over the
test set.

(a) Random mask (b) Line mask

Fig. 1. Types of image mask

As we mentioned earlier, we discard around 15% of the pixels randomly.
Figure 2 reveals that the difference between models’ prediction is undetectable
visually. Moreover, Table 1 shows that the difference between the models is not
significant. There is a slight advantage for the use of GIDM model compared
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Fig. 2. Models’ performance on random masked images. 1st column is for the ground
truth images, 2nd column is for the masked images, 3rd column is for the GM prediction,
4th column is for the DM prediction, 5th column is for the IDM prediction, 6th column
is for the GIDM prediction

to the others. Thus, we conclude that this approach of models’ evaluation is
not appropriate. For that, we decide to remove slightly thick lines of pixels and
re-evaluate the models.

To evaluate the models’ performance, we used TensorFlow to calculate the
PSNR and Skimage python package for the SSIM metric.

After discarding lines from the images, we are able to generate back again
the missing pixels, and Fig. 3 demonstrates that GIDM is the most efficient
model among all the others. This is also clear in Table 2, where we can notice
in the chosen images that GIDM is the most accurate re-generator of discarded
pixels. Therefore, our work has shown that image data is better represented by

Table 1. Models’ evaluation for the randomly masked images.

PSNR SSIM

GM 21.832 0.853

DM 25.963 0.878

IDM 25.672 0.875

GIDM 26.126 0.887
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Fig. 3. Models’ performance on line masked images. 1st column is for the ground truth
images, 2nd column is for the masked images, 3rd column is for the GM prediction, 4th

column is for the DM prediction, 5th column is for the IDM prediction, 6th column is
for the GIDM prediction

Table 2. Models’ evaluation for the line masked images.

PSNR SSIM

GM 20.366 0.833

DM 25.851 0.856

IDM 27.673 0.868

GIDM 29.398 0.891

generalized inverted Dirichlet. It is noteworthy to mention that these models’
performance is hugely dependent on the size of the masks, the hyper-parameters,
the type and order of the neighbouring system.

4 Conclusion

In this paper, we have developed a new optimal predictor based on finite gener-
alized inverted Dirichlet mixtures. The GID demonstrates its efficiency in repre-
senting positive vectors due to its statistical characteristics through its covariance
structure.
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We learnt the model parameters using MLE approach with Newton Raphson
method, and we considered the NSHP neighbouring system to compute the pre-
dicted pixel. We evaluated the GID optimal predictor on image inpainting and
we compared the proposed model to other similar related works. The experimen-
tal results demonstrate its capability that offers reliable prediction and modeling
potential.
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