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Speciation Processes in Triatominae

Marcio G. Pavan, Cristiano Lazoski, and Fernando A. Monteiro

Abstract This chapter intends to familiarize the reader with the basic concepts 
regarding speciation in insects, through the description and exemplification of the 
three most common speciation modes described in the specialized literature on the 
subject: the allopatric, parapatric, and sympatric speciation modes.

We also argue that nowadays there is, perhaps, an excess of species concepts to 
choose from. Two of those have been used more often by the Triatominae research 
community: the biological species concept and the phylogenetic species concept. 
The idea first advanced by De Queiroz (Syst Biol 56(6):879–886, 2007) that the 
proposition of a single species concept that would unify all concepts available is not 
only desirable but also essential at this point. The issue of overconservative system-
atics is considered with emphasis on the paraphyly of Triatoma. The implications of 
phenotypic plasticity in traditional triatomine taxonomy are also addressed.

How long does it take for a new species of triatomine to be formed? Early pro-
posals envisioned very short time intervals say, a few hundred years, for the process 
to be completed. Two well-studied examples are presented.

How do triatomines speciate? Vicariance and allopatric speciation seem to be the 
norm in Triatominae speciation. Three examples are discussed. Nonetheless, sym-
patric speciation has also been evoked to account for the generation of particular 
species within cryptic species complexes. Two examples are given.

Finally, a discussion toward the benefits of relying on integrative and evolution-
arily sound taxonomy approaches is offered.
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1  Toward a Unified Species Concept

The diversity of life is measured essentially in terms of number of species, even 
though there is an ongoing debate focusing on what a species is and how organisms 
speciate. The last three decades have seen prominent challenges to the current views 
of species concepts and species delimitation due to the advances in molecular biol-
ogy and genetics (Mallet 1995). The definition of a species will depend on which 
species concept you choose among the 27 available definitions (Mayden 1997; 
Wilkins 2011). By far, the most used and widespread definition is the biological 
species concept (BSC), which considers species as groups of interbreeding indi-
viduals, with boundaries defined by intrinsic barriers to gene flow that have a genetic 
basis (Mayr 1963). The main limitation of the BSC is that populations of the same 
species found at a distance from each other (allopatric populations) that could not 
be suitably treated, because they are not in contact to randomly mate. Not even the 
successful crossing of allopatric populations under laboratory conditions will prove 
conspecificity since all ecological/geographical barriers are being removed 
(Claridge et al. 1985; Mallet 1995). Moreover, different cases of bona fide species 
hybridizing at secondary contact zones [i.e., lineages that occur at least partially in 
a same geographical area (sympatry) after the speciation process] are well-known. 
For example, although the malaria vectors Anopheles gambiae, A. coluzzii, and 
A. fontenillei (Diptera: Culicidae) are valid species, introgressed genomic regions 
are found that encompass genes associated with detoxification, desiccation toler-
ance, and olfactory perception, which are the characteristics that can alter their abil-
ity as malaria vectors (Barron et al. 2018).

Beyond the practical use of the BSC, the debate over what a species is and how 
it should be defined has been a matter of a long theoretical dispute among biologists. 
Personal expertise with respect to a particular research model or taxonomic group 
of interest has contributed to a “divergent radiation” in the proposal of species con-
cepts. It is now clear that this “species definition competition” has generated more 
heat than knowledge. Recent countercurrent attempts have been made toward the 
proposal of a “unified species concept” (Table 1). Most species concepts agree in 
treating existence as separately evolving metapopulation lineage (i.e., “an inclusive 
population made up of connected subpopulations extended through time”) as the 
primary defining property of the species category, but they disagree in adopting dif-
ferent properties acquired by lineages during the course of divergence (e.g., intrinsic 
reproductive isolation, diagnosability, and monophyly) as secondary defining prop-
erties (secondary species criteria). In other words, lineages do not have to be mor-
phologically distinguishable, diagnosable, monophyletic, intrinsically reproductively 
isolated, ecologically divergent, or anything else to be considered species, but only 
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to be evolving separately from other lineages (for more information, see de Queiroz 
2007). It is time to put aside disagreements about species definition and focus on 
empirical data that can be used as evidence of lineage separation and species bound-
aries. Taxonomists have to agree that the definition of robust species concepts 
depends upon several lines of evidence, including morphological traits and ecologi-
cal and molecular data.

Table 1 Often-used contemporary species concepts and the properties upon which they are based 
(modified from de Queiroz 2007). de Queiroz’s (2007) proposal is an attempt toward the unification 
of all species concepts presented here. Properties marked with an asterisk should be viewed as 
operational criteria (lines of evidence) relevant to assessing lineage separation of a single general 
concept that defines species as separately evolving metapopulation lineages

Species concept Property(ies) Advocates/References

Biological Interbreeding (natural reproduction resulting in 
viable and fertile offspring)

Mayr (1942) and 
Dobzhansky (1950)

(reproductive) 
isolation

*Intrinsic reproductive isolation (absence of 
interbreeding between heterospecific organisms 
based on intrinsic properties, as opposed to 
extrinsic [geographic] barriers)

Mayr (1942) and 
Dobzhansky (1970)

Recognition Shared specific mate recognition or fertilization 
system (mechanisms by which conspecific 
organisms, or their gametes, recognize one 
another for mating and fertilization)

Paterson (1985) and 
Masters et al. (1987)

Ecological *Same niche or adaptive zone (all components of 
the environment with which conspecific organisms 
interact)

Van Valen (1976) and 
Andersson (1990)

Evolutionary Unique evolutionary role, tendencies, and 
historical fate

Simpson (1951), Wiley 
(1978) and Mayden 
(1997)

Cohesion Phenotypic cohesion (genetic or demographic 
exchangeability)

Grismer (1999, 2001), 
Templeton (1989, 1998)

Phylogenetic Heterogeneous (see next three entries) See next three entries
Hennigian Ancestor becomes extinct when lineage splits Hennig (1966), Ridley 

(1989) and Meier and 
Willmann (2000)

Monophyletic *Monophyly (consisting of an ancestor and all of 
its descendants; commonly inferred from 
possession of shared derived character states)

Rosen (1979), Donoghue 
(1985) and Mishler 
(1985)

Diagnosable *Diagnosability (qualitative, fixed difference) Nelson and Platnick 
(1981), Cracraft (1983) 
and Nixon and Wheeler 
(1990)
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2  Insect Diversity and Speciation

Insects are one of the most diverse group of multicellular organisms, being repre-
sented by at least 10–30 million species (Erwin 1982), which accounts for 60–65% 
of all living eukaryotic biodiversity (Hammond 1992). The high diversity of insect 
taxa is partially explained by their compact size, which allows for the occupation of 
small and different portions of habitats and the specialization on the use of resources 
that larger animals are unable to exploit (Bush and Butlin 2004). Insects are often 
used as model organisms in evolution research due to their relatively short genera-
tion time and the practical advantages of laboratory rearing, enabling to test specia-
tion hypotheses with proper sample sizes (Mullen and Shaw 2014).

Speciation is a subject that has intrigued investigators for centuries. The term 
was coined by the American biologist Orator F. Cook in 1906, as the process by 
which new species arise from existing ones (Cook 1906). However, knowledge 
advancement on this issue has been hampered by two main limiting factors: (1) the 
impossibility of witnessing the phenomenon unravels in real-time (with the excep-
tion of fast-evolving viruses; Meyer et al. 2016) and (2) the difficulty in reaching a 
consensus regarding the understanding of what a species is and how it should be 
delimited.

Although alternative methods to categorize the speciation process have been pro-
posed (cf. Butlin et al. 2008), the most used concepts rely on the geographical con-
text of speciation, which can be assigned to three broad categories: allopatric, 
parapatric, and sympatric speciation methods.

Allopatric speciation occurs when an ancestral population is divided into at least 
two daughter populations geographically isolated; in this context, gene flow between 
populations is absent or, if present, largely irrelevant. Thus, these populations accu-
mulate mutations independently, develop some degree of genetic divergence, and 
might become genetically isolated. A complete allopatric speciation can occur if 
populations of incipient species develop pre- or postzygotic barriers for reproduc-
tion. In the case of a possible secondary contact zone, selection against hybrids 
(reinforcement) can occur and bimodal populations (admixed local populations 
with a deficit of hybrid genotypes) are observed. If sexual barriers are not complete 
and a secondary contact zone exists between species, hybridization events occur and 
thus the allopatric speciation is considered incomplete, with unimodal populations 
(intermediate hybrid genotypes predominating).

The grasshoppers Chorthippus brunneus and C. jacobsi (Orthoptera: Acrididae) 
are found in Spain at a narrow band along the north coast and south of the Cantabrian 
Mountain, respectively. These species possibly speciated in allopatry, but have been 
in contact since the Pleistocenic post-glacial range expansion (Bridle et al. 2002). 
They can be distinguished by the number of stridulatory pegs (although there is a 
small degree of overlap) and different male-calling songs (Bailey et al. 2004). In the 
contact zone, populations with bimodal distribution are observed, with strong assor-
tative mating, based on spatial (probably associated with habitat specialization), 
seasonal, and behavioral isolation (Bailey et al. 2004). Other examples on insects 
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illustrate hybrid zones with binomial distribution, such as observed in Heliconius 
butterflies (Lepidoptera: Nymphalidae), and ground crickets of the Allonemobius 
(Orthoptera: Gryllidae), which show strong prezygotic isolation due to assortative 
mating and homogamic fertilization (gamete recognition evolves faster than mate 
recognition), respectively (Howard et al. 1998). On the other hand, populations with 
unimodal distributions were observed in pine and larch budmoth host races of 
Zeiraphera diniana (Lepidoptera: Tortricidae), defined by Bush and Diehl (1982) as 
“populations of a species that are partially reproductively isolated from other 
 conspecific populations as a direct consequence of adaptation to a specific host.” 
Behavioral and molecular studies indicate that the probability of hybridization 
between sympatric host races is around 2–3.5% (Emelianov et  al. 2003, 2004). 
When in sympatry, a strong genomic heterogeneity between host races in areas 
where hybridization occurs was observed, but no genomic heterogeneity in diver-
gent geographical populations of the same host race. These results suggested that 
the divergence with gene flow is driven by selection in sympatric regions and also 
that low hybridization rates are sufficient to homogenize much of the genetic varia-
tion in neutral genomic regions in terms of host adaptation.

Parapatric and sympatric modes of speciation are much more controversial 
among molecular biologists, since considerable interspecific gene flow hampers 
population divergence (cf. Jiggins 2006). Because there are no clear geographical 
barriers, levels of assortative mating, habitat preferences, local adaptation, and 
hybrid fitness reduction must overcome genetic homogenization mechanisms in 
order to achieve speciation. Simulation models and theoretical studies proposed that 
high population divergence indeed requires little or no gene flow (Orr 1995; Tang 
and Presgraves 2009; Nosil and Flaxman 2010). In a low gene flow scenario, it is 
possible for populations to diverge through the fixation of adaptive mutations via 
positive selection (Barrett et al. 2008; Nosil and Flaxman 2010), or simply through 
genetic drift in small populations. In those cases, natural selection can overcome 
genome homogenization (through gene flow and recombination) by maintaining 
isolated gene pools without the intervention of geographic barriers (Turelli 
et al. 2001).

Parapatric speciation can be explained as an ancestral population that becomes 
two daughter species occupying contiguous ranges (while sympatric speciation 
occurs when the geographical ranges of the daughter species overlap). In both cases, 
speciation seems to be shaped by disruptive selection, as a consequence of favoring 
the evolution of specialist over generalist species through niche-partitioning or 
microhabitat preference. The stick insects Timema cristinae (Phasmatodea: 
Timematidae) is a great example of parapatric speciation on its course. This species 
inhabits southwestern North America, feeding and mating on two different host 
plant species that differ in foliage and general morphology. Host-specific popula-
tions have differences in morphology and can live in parapatry (Nosil 2007). 
Surprisingly, significantly stronger sexual isolation mechanisms seem to occur in 
parapatry, which means that there is a sign of ecological reinforcement (Nosil 2007). 
Next-generation sequencing (NGS) analysis based on thousands of Single-
nucleotide polymorphism (SNPs) revealed that host adaptation leaves subtle dif-
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ferentiation patterns across the genome. Moreover, divergent selection on traits not 
related to host use (i.e., genes not related to reproductive isolation) seems to be 
more relevant for generating genomic divergence between the populations. Under 
greater geographical separation, gradual reductions in gene flow facilitate specia-
tion (Nosil et al. 2012).

Probably the most recognized example of sympatric speciation was observed in 
the apple maggot, the tephritid fruit flies sibling species complex Rhagoletis 
pomonella (Diptera: Tephritidae). Many researchers believed that the colonization of 
a new host in a sympatric environment and the further host preferences had started 
the reproductive isolation between host races based on different diapause and eclo-
sion periods (Bush 1969; Filchak et al. 2000; Dambroski et al. 2005). From DNA 
sequence data of three nuclear loci and mtDNA, Feder et al. (2003) concluded that 
the host races became geographically isolated ~1.5 million years ago (Ma), and rare 
episodes of gene flow with inversion polymorphisms (restricting recombination) 
might have affected key diapause traits and formed adaptive clines. Therefore, these 
populations must have experienced a past allopatry in order to accumulate molecular 
changes (Xie et al. 2007) before became sympatric species. Nowadays, it is known 
that the barrier for gene flow remains incomplete (4–6% gene flow/generation), but 
most genome regions show significant geographic and host-associated variation that 
can account for by initial diapause intensity and eclosion time, which cause a tempo-
ral isolation between populations (Doellman et al. 2019). It is worth mentioning that 
sympatric populations of different host races are genetically more divergent in com-
parison to geographic populations within the races, which suggest that host races are 
being recognized as different genotypic entities in this region (Doellman et al. 2019).

The advances of molecular biology and mathematical models unveil that the geo-
graphical contextualized categories of speciation (allopatric, parapatric, and sympat-
ric) are actually interconnected and depend on the time-frame in which they have 
been analyzed. As stated by Butlin et al. (2008), “At each stage of speciation, there is 
a spatial context on the sympatry to allopatry continuum which determines the extent 
of the extrinsic isolation between diverging populations.” Geographical isolation 
reduces homogenizing gene flow and facilitates speciation events, but the evolution-
ary forces that shape variability are also tightly linked to the ecological factors and 
the mating interactions in speciation events (Fitzpatrick et al. 2009; Nosil et al. 2009).

3  Overconservative Systematics and the Paraphyly 
of Triatoma

The subfamily Triatominae is composed exclusively by hematophagous insects and 
seems to have evolved from predaceous Reduviidae bugs ~40  Ma (Hwang and 
Weirauch 2012; Ibarra-Cerdeña et al. 2014; Justi et al. 2016), which coincides with 
the invasion and diversification of caviomorph rodents and small marsupials (Flynn 
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and Wyss 1998; Poux et al. 2006; Antoine et al. 2012), and birds (Burns 1997) in 
South America.

This subfamily includes 150 extant and two extinct recognized species, which 
are classified in 16 genera and five tribes (Monteiro et al. 2018). These species occur 
mainly in the Americas including the Caribbean, but can also be found in southeast 
Australasia (Lent and Wygodzinsky 1979).

Triatoma is the most species-rich genus in the subfamily Triatominae and 
includes 73 species within the tribe Triatomini (Galvão and Paula 2014). Most of 
this diversification could be associated with cladogenetic events caused by climatic 
and geological changes occurred during the formation of the Americas (Hwang and 
Weirauch 2012; Justi et al. 2016; Monteiro et al. 2018) and can be well explained by 
vicariance.

Species of Triatoma have been clustered by several authors in different groups 
and complexes based on their external morphology and geographical distributions 
(Usinger 1944; Ryckman 1962; Usinger et al. 1966; Lent and Wygodzinsky 1979; 
Carcavallo et al. 2000). Since the beginning of the use of molecular markers to test 
evolutionary hypotheses in Triatominae, some authors have proposed rearrange-
ments for this original classification (Schofield and Galvão 2009; de la Rúa et al. 
2014; Pita et al. 2016). Some of these studies also included morphometry (de la Rúa 
et al. 2014) and chromosomal analysis by Fluorescence in situ hybridization (FISH) 
(Pita et al. 2016).

Based on new cytogenetic and morphometric data and phylogenetic results of the 
very important work by Hypša et  al. (2002) (see below), Schofield and Galvão 
(2009) proposed the currently most accepted Triatomini assemblage, which subdi-
vides species in three groups, eight complexes, and eight subcomplexes.

Historically, the use of molecular markers to study the phylogeny of Triatoma 
(Table 2) started with one or few mitochondrial genes and few representatives of 
these species groups and complexes (Lyman et al. 1999; García et al. 2001; Monteiro 
et al. 2001), advancing over time to analyze with more markers, including nuclear 
markers (Marcilla et al. 2001, 2002), and a growing addition of more Triatomini 
species (Hypša et al. 2002; de Paula et al. 2005; Hwang and Weirauch 2012; de la 
Rúa et al. 2014; Ibarra-Cerdeña et al. 2014; Justi et al. 2014, 2016; Pita et al. 2016). 
Those first studies with limited species representing the groups and complexes 
(Lyman et  al. 1999; García et  al. 2001; Monteiro et  al. 2001); however, either 
showed weak support for the original classification based on morphological charac-
ters (Lent and Wygodzinsky 1979; Carcavallo et  al. 2000) or were inconclusive 
(Table 2).

It was only with the analysis of a larger and taxonomically more comprehensive 
set of triatomine specimens that it became clearly demonstrated that the proposed 
species groups and complexes did not comprise reciprocally monophyletic assem-
blages (Hypša et al. 2002). Phylogenetic analyses based on 12S and 16S mtDNA 
sequencing rejected the monophyly of Triatomini rearrangements and indicated the 
paraphyly of Triatoma with respect to Linshcosteus, Dipetalogaster, Eratyrus, and 
Panstrongylus (Hypša et al. 2002). Table 2 shows that the number of species used in 
phylogenetic studies (more than the chosen markers) was decisive to establish that 
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the morphological classification of groups and complexes of Triatomini was not 
correct (“weak support/inconclusive”: 9–17 species; “rejection”: 18–56 species; 
Table 2). In fact, it is known that the addition of molecular markers and taxa in phy-
logenetic analyzes should increase its accuracy (Wiens and Tiu 2012).

What followed after the important work of Hypša et al. (2002) were phylogenetic 
studies continuing to demonstrate the fragility of the initial morphological grouping 
hypotheses, but with discussions still considering at least their partial validity (de 
Paula et al. 2005; Hwang and Weirauch 2012; de la Rúa et al. 2014; Ibarra-Cerdeña 
et al. 2014; Justi et al. 2014). Further research aimed at revealing new lines of evi-
dence to help understand relationships within Triatomini.

The addition of biogeography analyzes brought a new light to an already promis-
ing integrative taxonomic scenario (Justi et  al. 2016; Monteiro et  al. 2018). In a 
recent review, Monteiro et  al. (2018) presented a new taxonomic arrangement 
hypothesis to represent the relationships between species groups and complexes of 
Triatoma. The hypothesis aimed to incorporate current evolutionary theories into 
the traditional classification scheme based on morphology (e.g., Schofield and 
Galvão 2009), by including new molecular, cytogenetic, morphometric, and biogeo-
graphical data published ever since (Monteiro et al. 2018).

In addition to the presentation of a rigorous and updated classification based on 
literature data, the authors proposed a new nomenclature consistent with the evolu-

Table 2 Molecular studies presenting results that can be used to reject or not the arrangements of 
“species groups and complexes” in Triatomini tribe. Studies were based on different markers and 
are showed in a progressive order of number of species (N) representing those Triatomini groupings 
plus markers (with a few exceptions)

Species groups and 
complexesa N Molecular marker Reference

Inconclusive or weak support 9 16S, cytb Lyman et al. (1999)
9 16S, cytb Monteiro et al. (2001)
17 12S, 16S García et al. (2001)
12 ITS-2 Marcilla et al. (2001)
15 ITS-2 Marcilla et al. (2002)
10 16S, 18S, 28S, wingless Hwang and Weirauch 

(2012)
Rejectionb 43 16S Hypša et al. (2002)

43 16S de Paula et al. (2005)
18 ITS-2 de la Rúa et al. (2014)
40 12S, 16S, COI, cytb, 18S, 

28S
Ibarra-Cerdeña et al. (2014)

27 COI, COII, cytb, 18S, 28S Justi et al. (2014)
52 16S Justi et al. (2014)
21 FISH Pita et al. (2016)
56 16S, 18S, 28S, wingless Justi et al. (2016)

aSpecies groups and complexes within the genus Triatoma in accordance with Lent and 
Wygodzinsky (1979), and Schofield and Galvão (2009)
bOccasional support for some groups does not validate the overall arrangement
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tionary scenario that relied on two main observations: (1) studies that reinforced the 
paraphyly of Triatoma also clearly supported the existence of three lineages in 
Triatomini (Justi et al. 2014, 2016; Monteiro et al. 2018) and (2) the meaning of the 
term “species complex” in triatomine systematic studies varies depending on the 
context from “subgeneric assemblages defined by morphological similarity” (e.g., 
Lent and Wygodzinsky 1979; Schofield and Galvão 2009) to “cryptic species” (i.e., 
morphologically indistinguishable species; e.g., Monteiro et al. 2003).

Therefore, Monteiro et al. (2018) proposed an arrangement for the Triatomini 
that followed an hierarchy of: (1) three major evolutionary “lineages” composed by 
Triatoma dispar, “North American,” and South American; (2) 11 “clades” within 
lineages defined by common ancestry and broad biogeographic correspondences; 
and (3) 19 “species groups” within clades, with some of these groups matching 
“species complexes” defined as closely related, morphologically similar or even 
indistinguishable species usually disclosed as a result of molecular investigations 
(Table 3 and Fig. 3 of Monteiro et al. 2018). The meaning of the term “species com-
plex” in triatomine systematic studies varies depending on the context from “subge-
neric assemblages defined by morphological similarity” (e.g., Lent and Wygodzinsky 
1979; Schofield and Galvão 2009) to “cryptic species” (i.e., morphologically indis-
tinguishable species; e.g., Monteiro et al. 2003).

Of the three lineages designation proposed by Monteiro et al. (2018), the “North 
American” lineage has the greatest morphological diversity and comprises most 
nominal genera (nine). In comparison, the South American lineage has only two 
genera: Triatoma and Eratyrus. The high morphological plasticity of Triatominae 
(Dujardin et al. 1999, 2009) can lead to misidentification and taxonomic uncertain-
ties (Pita et  al. 2016). However, most of the diversification seen in the “North 
American” lineage seems consistent with phylogenetic evidences (Galvão 
et al. 2003).

Although there are still many issues within Triatomini to be clarified, the accu-
mulation of data in the literature has already shown that Triatoma is not monophy-
letic. Is it time to discuss the suitability of a taxonomic revision? Should the “North 
American” lineage retain the generic epithet “Triatoma” as it includes the type spe-
cies of the genus, Triatoma rubrofasciata?

4  Phenotypic Plasticity and Classical Taxonomy

Phenotypic variability affects traits often used in classical taxonomy including color 
patterns (Abad-Franch et al. 2009; Pavan et al. 2015) or the size and shape of bod-
ies, heads, wings (Schachter-Broide et  al. 2004; Hernández et  al. 2011; Nattero 
et  al. 2013; Sandoval et  al. 2015), and genital structures (Schofield and Galvão 
2009). Chromatic variations of single or near-sibling species can result from adap-
tive plasticity, which may confound taxonomic classification. Indeed, the discovery 
of cryptic lineages with different vector capacity(ies) and also chromatic variants of 
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single species from different micro-environments were some of the greatest achieve-
ments on the taxonomy of triatomines in the early 2000s.

Rhodnius neglectus is the most abundant Rhodnius species in the Cerrado biome. 
It inhabits various palm tree species, including those of the genera Attalea, 
Acrocomia, Mauritia, Oenocarpus, and Syagrus (Gurgel-Gonçalves et  al. 2004; 
Abad-Franch et al. 2009). This species can be misidentified as R. nasutus, particu-
larly in the nearby Caatinga biome and in Caatinga-Cerrado transitional areas (Dias 
et al. 2008; Lima and Sarquis 2008). Rhinacanthus nasutus is found predominantly 
in the Caatinga inhabiting Copernicia prunifera palms (Sarquis et  al. 2004), but 
may also be found in other palms and trees in this region (Dias et al. 2008; Lima 
et al. 2012). The high similarity between those two vector species and the lack of 
reliable diagnostic characters leads naturally to an uncertainty regarding proper 
taxonomic identification and determination of their geographical boundaries.

The identification of these species is based on morphological characters as chro-
matic patterns of body and antennae, overall body size, and male genitalia (Lent and 
Wygodzinsky 1979). However, Harry (1993b) detected no clear-cut differences in 
the male genitalia structures; in addition, important chromatic variation has been 
described in both species (Barrett 1995).

Abad-Franch et al. (2009) applied a geometric morphometrics aiming to differ-
entiate R. neglectus from R. nasutus and found wing and head shape differences 
between these species. Some specimens from Curaçá, Bahia (Brazil) collected in 
C. prunifera palms, although phenotypically similar to R. nasutus, were clustered 
within the R. neglectus group, while others from the same location were clustered 
within R. nasutus. If morphometry is able to correctly assign both species, these 
results showed that R. neglectus and R. nasutus are sympatric in the Cerrado- 
Caatinga transitional area and the former species may have chromatic forms similar 
to those observed in the latter.

Recent observations of Rhodnius insects at Caatinga and Caatinga-Cerrado 
revealed specimens with dubious chromatic patterns. Individuals collected in 
M. flexuosa palms had a dark phenotype, a similar color to the palm fibers and base 
of fronds, and with coloration and diagnostic traits of R. neglectus. However, those 
collected in C. prunifera palms displayed a lighter chromatic pattern more similar 
to that of R. nasutus (Pavan et al. 2015). Since R. neglectus and R. nasutus may 
occur in sympatry (Abad-Franch et  al. 2009), it raises the possibility of natural 
hybridization.

An alternative explanation for this observation is that R. neglectus would exhibit 
one chromatic phenotype similar to R. nasutus and different from the pattern 
described by Lent and Wygodzinsky (1979). If correct, the lighter coloration of 
R. neglectus from C. prunifera may be naturally selected. This coloration might 
have improved its chances of survival and reproduction, since they would be cam-
ouflaged with the light substrate of C. prunifera fibers. Therefore, populations with 
light phenotype increased in frequency in these palm trees, as they would be less 
conspicuous and thus less predated than the typical phenotypes.

Phenotypic variation was also observed for R. nasutus, and it seems to be gov-
erned by the microhabitat it lives in. In Ceará, Brazil, this species was collected in 
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five different palm tree species (Dias et al. 2008). The holotype of R. nasutus has a 
pale brownish-yellow coloring, with a red-like appearance and dark brown dots in 
certain regions of the body and appendices (Lent and Wygodzinsky 1979). Although 
populations inhabiting C. prunifera palms presented a reddish color, according to 
the original species description, other populations from A. intumescens, A. speciosa, 
M. flexuosa, and S. oleracea palms were chestnut-colored (Dias et  al. 2008). As 
observed for R. neglectus, body coloration of R. nasutus specimens corresponded 
exactly to the fibers and base of fronds, strengthening the hypothesis that Rhodnius 
species have genes, which provide a menu of different phenotype possibilities, and 
the environment determines the phenotypic outcome by natural selection.

5  Tempo and Mode of Triatomine Speciation

As summarized in a recent review paper on the evolution and biogeography of the 
Triatominae (Monteiro et al. 2018), most studies focusing on the existence of cryp-
tic triatomine taxa using molecular markers have often relied on two species con-
cepts: the Biological Species Concept (BSC, Mayr 1963) and the Phylogenetic 
Species Concept (PSC, Cracraft 1989). We have learned that allopatric speciation 
seems to be the rule for most Reduviids (Monteiro et al. 2018). Here, we present 
three examples of triatomine speciation that probably involved vicariance and diver-
sification with low/no gene flow among ancestral lineages. It is widely accepted that 
speciation is a process that requires very long time intervals to take place, usually 
hundreds of thousands of years (Butlin et al. 2008). With regard to the time needed 
for triatomines to speciate, two hypotheses were put forth that clearly challenged 
the tempo required for traditional insect speciation to occur (see below).

5.1  Fast or Slow Diversification?

 Triatoma rubrofasciata and Old World Triatominae

The first hypothesis was advanced in an attempt to account for the occurrence of the 
six Linshcosteus and seven Triatoma species found in the Old World. It was sug-
gested that they all descend from T. rubrofasciata, as a result of merchant shipping 
between the Americas and Asia during the sixteenth to seventeenth centuries, per-
haps as a consequence of very fast (300  years) adaptive radiation processes 
(Schofield 1988; Gorla et  al. 1997; Patterson et  al. 2001; Schofield and Galvão 
2009; Dujardin et  al. 2015a, b). It is now well established that all Old World 
Triatominae are monophyletic and likely derive from a successful founding event 
that occurred approximately 20 Ma, with ancestral triatomine populations crossing 
the Bering land bridge, likely benefiting from the association with rodents, ulti-
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mately reaching Eurasia (Hypša et  al. (2002); Patterson and Gaunt 2010; Justi 
et al. 2016).

 The Origin of Rhodnius prolixus

The second hypothesis suggested that R. prolixus, the most important Chagas vector 
in Venezuela, Colombia and parts of Central America, is a domestically adapted 
“derivative” of a sylvatic R. robustus lineage, and that speciation was the  consequence 
of a “discrete event in Venezuela at some time after the establishment of European 
settlements in the 16th century” (Schofield and Dujardin 1999). This hypothesis 
was proposed based on morphometric (Dujardin et al. 1998, 1999) and genetic evi-
dence (allozymes and mtDNA; Harry et al. 1992, Stothard et al. 1998, respectively), 
available at the time, which pointed to a lack of phenotypic and genetic variability 
in R. prolixus populations. Further research relying on better sampling of both wild 
and domestic R. prolixus populations collected from six Venezuelan states and ana-
lyzed for mtDNA and microsatellites have challenged this view by revealing high 
levels of genetic variation (Fitzpatrick et al. 2008).

5.2  Vicariance and Allopatric Speciation of Triatomines

 Rhodnius robustus and the Refugium Theory

For many years, the taxonomic status of R. robustus was questioned due to a com-
bination of three factors: morphological similarity, loose diagnosis, and poor sam-
pling (cf. Monteiro et al. 2003; Pavan and Monteiro 2007). Although indistinguishable 
according to morphological and isozymic analyses (Harry 1993a, 1994), these spe-
cies play very different epidemiological roles—R. prolixus is an efficient domestic 
vector, whereas R. robustus populations are entirely sylvatic. Monteiro et al. (2003) 
put an end to the controversy of the validity of R. robustus as a bona fide species 
through the analysis of DNA sequences of mitochondrial and nuclear markers (663- 
bp fragment of cytochrome b (cytb) and the D2 variable region of the 28S nuclear 
RNA), revealing that R. robustus is not only a valid species separated from R. pro-
lixus, but also represents a paraphyletic complex of at least four cryptic lineages 
(R. robustus I, II, III, IV). Pavan et al. (2013) further confirmed the paraphyletic 
assemblage of R. robustus with respect to R. prolixus through the analysis of another 
nuclear marker, the fourth intron of the transmembrane protein 165 (TP165) gene. 
The separation of R. prolixus and R. robustus was further corroborated by a behav-
ior study showing that nymphs of R. prolixus and R. robustus II display different 
locomotor activity patterns on an automated recording system (Pavan et al. 2016).

The first attempt to associate triatomine phylogeographic patterns with possible 
vicariant events based on molecular clock time-estimates was published in 2003 by 
Monteiro and collaborators. A particular and notorious example of vicariant specia-
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tion is that of the refugium theory, advanced to account for the pattern of diversifica-
tion seen in the Amazon region. The view that diversification of the Amazonian 
biota was caused by glaciation cycles during the Pleistocene was first introduced by 
Haffer (1969). The theory attempts to explain the latest of the series of differentia-
tion events beginning in the Cenozoic that contributed to the development of the 
modern biota of the Amazon basin. In short, it is based on the premise that climatic 
changes during the Pleistocene caused rain forests to contract into isolated pockets 
separated by savannah. This would have confined small populations and favored 
their divergence by genetic drift, which would have facilitated allopatric speciation 
(Monteiro et al. 2003). The authors used in their phylogeographic inferences the 
value of 2.3% of sequence divergence per million years estimated for recently 
diverged arthropod taxa (Brower 1994). They concluded that all estimates between 
the clades within both Amazon and Orinoco regions are compatible with a 
Pleistocene origin and are consisted with the refugium theory (Monteiro et al. 2003).

 Triatoma rubida and the Baja California Peninsula

Triatoma rubida was initially described as five morphologically distinguishably 
allopatric subspecies based mainly on chromatic differences in markings along the 
conexivum, distributed in Mexico and the USA: T. rubida rubida from the Cape 
region, Baja California Sur, T. rubida cochimiensis from Central Baja California 
peninsula, T. rubida jaegeri from Pond Island, Gulf of California, and T. rubida 
sonoriana from Sonora (all strictly Mexican subspecies); and T. rubida uhleri from 
Veracruz, Mexico, and Southwestern USA (Usinger 1944; Ryckman 1967). The 
“five subspecies” proposition was, however, later challenged in the 1979 revision of 
Lent and Wygodzinsky, who stated: “Although specimens seem to cluster around 
the phenotypes mentioned, not all fall easily into the categories listed above; there 
does seem to be a prevalence of comparatively light-colored, large-sized forms in 
the north and of smaller, more intensely pigmented forms in the southern part of the 
total range of the species. Much more abundant material than that examined by us, 
especially from Mexico, combined with rearing experiments, is needed for an 
understanding of the biosystematics of Triatoma rubida.”

The separation of the Baja California Peninsula from mainland Mexico during 
the formation of the Gulf of California 5–8 Ma is believed to be the vicariant event 
that caused the geographic isolation of ancestral T. rubida populations and gave rise 
to T. rubida cochimiensis (Baja peninsula) and T. rubida sonoriana (Sonora). Pfeiler 
et al. (2006) used this geological event to calibrate the first mtDNA molecular clock 
for triatomines: 1.1–1.8% pairwise sequence divergence per million years (lower 
than the 2.3% divergence for mtDNA generally applied to insects; Brower 1994).
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 Triatoma dimidiata and the Isthmus of Tehuantepec

The T. dimidiata cryptic species complex was first recognized by Marcilla et  al. 
(2001) based on ITS-2 sequence divergence between bugs from Yucatan and speci-
mens from elsewhere in Mexico and from Central and South America. Following 
studies based on cytogenetics and genome size (Panzera et al. 2006) and mtDNA 
(Dorn et al. 2009; Monteiro et al. 2013) corroborated these observations. Relying on 
mtDNA markers (cytb and ND4), Monteiro et al. (2013) described five genetically 
well-differentiated, monophyletic groups (named groups I–IV plus T. hegneri). 
Their results revealed that mtDNA groups I, II, and III match, respectively, ITS-2 
groups 1, 2, and 3. Group IV represented cave-dwelling Belize specimens. As 
pointed out by Bargues et  al. (2008) and Monteiro et  al. (2013), some of these 
genetically divergent groups clearly deserved specific status. In accordance with 
these orientations, the two genetically most divergent groups III and IV were 
recently raised to the specific level and formally described as T. mopan and T. hue-
huetenanguensis, respectively (Dorn et al. 2018; Lima-Cordón et al. 2019).

With regard to Groups I and II (and based on their present distribution), as the 
Isthmus of Tehuantepec is known to represent an important recent geological barrier 
for a number of sister taxa of birds, mammals, and butterflies, Monteiro et al. (2013) 
have suggested that the Isthmus of Tehuantepec orogeny (15–5  Ma) might have 
been the vicariant event responsible for the splitting of the ancestral population that 
led to their origin. Although groups I and II still have a subspecies status, we argue 
that they merit specific status.

5.3  Parapatric/Sympatric Triatomine Speciation

 Triatoma brasiliensis Complex and the Homoploid Hybridization 
Hypothesis

Organisms may also speciate quite rapidly via polyploidy (Lukhtanov et al. 2015). 
Polyploidy (or hybrid speciation) is the term given to a set of processes whereby 
two species hybridize and instantly generate a third new species. They can be clas-
sified as allopolyploidy (i.e., involving a genome-doubling event that provides 
reproductively isolation); or homoploid hybrid speciation that occurs without an 
increase in ploidy (Coyne and Orr 2004).

The northeastern Brazil Chagas species complex Triatoma brasiliensis was com-
prised of three subspecies—T. b. brasiliensis, T. b. macromelasoma, and T. b. melan-
ica—defined based on chromatic differences of the pronotum, legs, and hemelytra 
(Galvão 1956). These subspecies were, however, synonymized by Lent and 
Wygodzinsky (1979), who argued that intermediate forms could be found in nature. 
Further allozyme-based analyses showed the three subspecies were real evolution-
ary lineages, and yet another form was later discovered (juazeiro form; Costa et al. 
1997). Monteiro et al. (2004) confirmed the existence of the four forms based on 
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mtDNA cytb phylogenetic analysis of specimens collected from the whole distribu-
tion area of the species. Juazeiro and melanica forms were raised to the specific 
level and formally described as T. melanica (Costa et al. 2006) and T. juazeirensis 
(Costa and Felix 2007). Kimura-2-parameter distances based on mtDNA evidence 
that bona fide sister Triatoma species diverge in more than 7.5% (K2P > 0.075) (cf. 
Monteiro et al. 2004), while intraspecific variation does not exceed 2%. Genetically 
less divergent sister forms brasiliensis and macromelasoma diverged in more than 
2% (K2P = 0.027), and thus, were given subspecific ranks (Costa et al. 2013).

Costa et al. (2009) have analyzed morphometric, morphological, ecological, and 
geographic distribution data to advance the hypothesis that T. brasiliensis 
macromelasoma is a product of hybridization between the subspecies T. b. brasil-
iensis and T. juazeirensis. Authors acknowledge, however, that the evidence 
 presented is not yet conclusive and that further studies are required to strengthen 
their claim (Costa et al. 2009). The subject has been recently revisited in a study 
based on chromosomal analysis, and band sizes of an ITS-1 PCR-amplified frag-
ment (Guerra et al. 2019). Those authors also sequenced DNA from the three taxa 
for a fragment of the ND1 mitochondrial gene, which gave unexpectedly low pair-
wise genetic distances (Tamura-Nei < 0.006), pointing to a possible problem with 
the taxonomic identification of the specimens themselves (Guerra et al. 2019). It is 
well established that this magnitude of differentiation characterizes within-popula-
tion or, at most, within-species levels of variation (Monteiro et al. 2004). Not sur-
prisingly, all species showed the same cytogenetic characteristics (Guerra 
et al. 2019).

The speciation process of the T. brasiliensis complex probably involves ecologi-
cal and/or temporal barriers (sympatric areas in the present may represent second-
ary contact zones of parapatric/allopatric populations), since they still have not 
evolved either pre- or post-mating barriers, as revealed by successful hybridizations 
in laboratory conditions (Almeida et al. 2012). New studies on ecology and genom-
ics focusing on possible ecological selection (which would prevent backcrossing), 
behavioral changes (e.g., different periods of activity), or even chromosomal 
arrangements are still needed to clarify this issue.

 The Rhodnius pallescens—R. colombiensis: A Case of Sympatric 
Speciation?

The Rhodnius pallescens complex is composed by three recognized species that 
occur in the trans-Andean region (Pacific area of South and Central 
America)—R. pallescens, R. colombiensis, and R. ecuadoriensis. Rhodnius. ecua-
doriensis is restricted to southern Ecuador and northern Peru, occupying Phytelephas 
aequatorialis palms (Abad-Franch et al. 2009). This species is isolated from the 
others of this complex by geographical barriers, the Andean mountains, and proba-
bly speciated through allopatry (Galvão et  al. 2003; Abad-Franch et  al. 2009). 
Rhodnius. pallescens is widely distributed across Central America and Colombia in 
different ecological zones, inhabiting Attalea butyracea and Cocos nucifera palm 
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trees (Díaz et al. 2014). Rhodnius. colombiensis seems to be restricted to the Andean 
Valley of Magdalena River in central Colombia (Moreno et al. 1999). Although this 
species inhabits the same ecoregion and same palm tree species as R. pallescens, 
natural hybrids had not been reported (Díaz et al. 2014).

Laboratory crosses reveals the existence of both pre-zygotic and post-zygotic 
reproductive barriers. Female R. pallescens I and male R. colombiensis do not pro-
duce progeny, while female R. colombiensis and male R. pallescens I produce infer-
tile F1 hybrids (Gómez-Palacio et  al. 2012). Cytogenetics analyses reveal that 
R. colombiensis structural chromosomes suffered rearrangements and DNA loss in 
comparison to the other species of the complex (Panzera et al. 2007; Gómez-Palacio 
et al. 2012; Díaz et al. 2014). A clear demarcation of the biogeographical distribu-
tion of the four lineages of the complex and additional analyses within and between 
R. pallescens lineages using different molecular markers are still needed for a better 
knowledge on the evolutionary trends, geographical dispersion, and signs of possi-
ble adaptive radiation.

6  Toward an Integrative and Evolutionarily Sound 
Taxonomy

We emphasize the importance of integrating morphological, ecological, behavioral, 
and molecular tools to elucidate epidemiological and taxonomic unresolved ques-
tions in triatomines. Abad-Franch et al. (2013) performed an integrative taxonomic 
analysis to describe Rhodnius barretti as a new species of triatomine. They evalu-
ated traditional morphological traits, morphometric data, and molecular phyloge-
netics using a fragment of cytb. This species is difficult to distinguish phenotypically 
from those of the R. robustus lineage, with the exception of the sympatric R. robus-
tus II that presents chromatic (lighter coloration) and size (larger individuals) differ-
ences. However, R. barretti differs from R. robustus s.l. in the shape of both head 
and wings, and also in length ratios of certain anatomical structures. Moreover, 
phylogenetic reconstructions showed that this species is a basal member of the 
“R. robustus lineage,” which encompasses R. nasutus, R. neglectus, R. prolixus, and 
the other five members of the R. robustus complex (Abad-Franch et al. 2013).

Besides the R. prolixus genome (Mesquita et  al. 2015), the mitochondrial 
genomes of T. dimidiata and T. infestans are already available (Dotson and Beard 
2001; Pita et al. 2017). As genome-sequencing is increasingly employed for non-
model organisms, the ability to evaluate the taxonomic identity or status of a par-
ticular triatomine species via transcriptomes, proteomes, or metabolomes is now 
possible. These approaches have recently begun to be applied to triatomines, includ-
ing T. brasiliensis (Marchant et al. 2015), T. dimidiata (Kato et al. 2010), R. prolixus 
(Ribeiro et al. 2014), and T. infestans (Traverso et al. 2016; Gonçalves et al. 2017). 
Genomic data were also useful for the identification of parasite, vector, and the 
microbiota present in T. dimidiata (Orantes et  al. 2018). In the context of near- 
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sibling species and varieties of single species, Brito et al. (2019) recently synony-
mized Rhodnius montenegrensis as R. robustus. Most likely, the upcoming years of 
triatomine research will present us with the gathering of increasingly large datasets 
that contain separate lines of evidence from independent loci.

An alternative approach for generating genomic data at a lower cost for popula-
tion genetics studies and phylogenetic analyses of closely related species is the 
double-digested restriction-site-associated DNA sequencing (ddRAD-seq) method. 
This technique was first employed as a population genomics study to infer the struc-
turing of R. ecuadoriensis populations in Ecuador (Hernandez-Castro et al. 2017). 
This method increases the coverage of different regions of the genome and recovers 
reliable microsatellite and SNP data (Davey and Blaxter 2011; Kai et al. 2014).

An overlooked issue in population studies of triatomines is the difficulty of infes-
tation foci detection, especially when colonies are small and occupy structurally 
complex ecotopes (Abad-Franch et  al. 2010, 2014; Valença-Barbosa et  al. 2014; 
Pavan et al. 2015). A comprehensive approach must include genetic and ecological 
data of triatomine species to better understand the adaptive nature of plasticity 
(whether is heritable and ontogenetic), and detailed frequencies of different chro-
matic variations in the environment (Murren et al. 2015).

New genomic tools can help explore adaptive plasticity and the following 
approaches deserve further attention: (1) the “omic” basis behind it, (2) comparative 
genomics of near-sibling species to understand its evolution, and (3) epigenetic 
components of inheritance that may influence plastic responses (Richards et  al. 
2010; Glastad et al. 2011; Zhang et al. 2013; Murren et al. 2015).
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