
Chapter I.5

Existence, Regularity and
Invariance of Centre
Manifolds

In Sect. I.2.2.1 we introduced spectral separation for the evolution family
U(t, s) : RCR → RCR associated to a linear impulsive functional differential
equation. This results in a decomposition of the phase space as the internal
direct sum RCR = RCRs(t) ⊕ RCRc(t) ⊕ RCRu(t) of three fibre bundles,
respectively: the stable, centre and unstable fibre bundles. These can be
thought of as time-varying vector spaces, and the evolution family restricted
to these fibre bundles exhibits growth characteristics that are distinct. In the
stable fibre bundle, solutions decay exponentially to zero in forward time.
Solutions in the centre fibre bundle are defined for all time and exhibit at
most subexponential growth in forward and backward time, and solutions
in the unstable fibre bundle are also defined for all time and decay to zero
exponentially in reverse time.

For a nonlinear impulsive functional differential equation, if the evolution
family of the linearization of some equilibrium point is spectrally separated,
the invariant fibre bundles are in some sense nonlinearly distorted by the
nonlinearities in the vector field and jump map, and the result is a local stable,
centre and unstable manifold. The centre manifold in particular contains
useful information pertaining to small solutions near the equilibrium and
can for this reason be used for the detection of bifurcations. The present
chapter is devoted to several aspects of the centre manifold, including its
existence, smoothness (in both the phase space and with respect to time),
invariance, reduction principle, restricted dynamics and its approximation
by Taylor expansion. In Chap. I.7 we touch on aspects of the other classical
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invariant manifolds (although in less detail) and, in general, the dynamics of
the nonautonomous process on restriction to them.

I.5.1 Preliminaries

The local centre manifold (and, indeed, every invariant manifold we consider
in this monograph) is defined through the solution of a particular fixed-point
equation. In order to formulate this equation correctly, we need to take into
account the expected growth rates of solutions on the centre manifold, which,
as we know from linear systems theory, may exhibit subexponential growth
in both forward and reverse time. This section is devoted to the introduction
of Banach spaces that satisfy these growth rate conditions, as well as some
useful results from linear systems and substitution operators that we will later
need to define the Lyapunov–Perron operator that will define the fixed-point
equation.

I.5.1.1 Spaces of Exponentially Weighted Functions

Denote PC(R,Rn) the set of functions f : R → R
n that are continuous

everywhere except for at times t ∈ {tk : k ∈ Z} where they are continuous
from the right and have limits on the left. Define a weighted norm ||f ||η =
supt∈R

e−η|t|||φ(t)|| for functions f : R → X for Banach space X. We define
an analogous norm for sequences indexed by Z.

PCη = {φ : R → RCR : φ(t) = ft, f ∈ PC(R,Rn), ||φ||η < ∞}
Bη(R,RCR) = {f : R → RCR : ||f ||η < ∞}
PCη(R,Rn) = {f ∈ PC(R,Rn) : ||f ||η < ∞}
Bη

tk
(Z,Rn) = {f : Z → R

n : ||f ||η < ∞}.

Also, if M ⊂ R × RCR is a nonautonomous set over RCR, we define the
space PCη(R,M) of piecewise-continuous functions taking values in M by

PCη(R,M) = {f ∈ PCη : f(t) ∈ M(t)}.

If Xη is one of the above spaces, then the normed space Xη,s = (Xη, || · ||η,s)
with norm

||F ||η,s =
{

supt∈R
e−η|t−s|||F (t)||, dom(F ) = R

supk∈Z
e−η|tk−s|||F (k)||, dom(F ) = Z,

is complete. Broadly speaking, elements of these spaces will be referred to as
η-bounded.
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I.5.1.2 η-Bounded Solutions from Inhomogeneities

In this section we will characterize the η-bounded solutions of the inhomoge-
neous linear equation

x(t) = U(t, s)x(s) +

∫ t

s
U(t, μ)[χ0F (μ)]dμ+

∑
s<ti≤t

U(t, ti)[χ0Gi], −∞ < s ≤ t < ∞,

(I.5.1)

for inhomogeneous terms F and G. As defined in Definition I.1.1.6, we recall
now that RCRc(t) = R(Pc(t)), where Pc is the projection onto the centre
bundle of the linear part of (I.4.1)–(I.4.2).

Lemma I.5.1.1. Let η ∈ (0,min{−a, b}) and let H.1, H.2 and H.5 hold.
Then,

RCRc(ν) = {ϕ ∈ RCR : ∃x ∈ PCη, x(t) = U(t, s)x(s), x(ν) = ϕ} . (I.5.2)

Proof. If ϕ ∈ RCRc(ν), then Pc(ν)ϕ = ϕ and the function x(t) = U(t, ν)
Pc(ν)ϕ = Uc(t, ν)ϕ is defined for all t ∈ R, satisfies x(t) = U(t, s)x(s),
x(ν) = ϕ, x(t)(θ) = x(t + θ)(0), and by choosing ε < η, there exists K > 0
such that

e−η|t|||x(t)|| ≤ Keε|ν|e−(η−ε)|t|||ϕ|| ≤ Keε|ν|||ϕ||.
Finally, as x(t) = [U(t, s)x(s)(0)]t for all t ∈ R, we conclude x ∈ PCη.

Conversely, suppose ϕ ∈ RCR admits some x ∈ PCη such that x(t) =
U(t, s)x(s) and x(ν) = ϕ. Let ||x||η = K. We will show that Ps(ν)ϕ =
Pu(ν)ϕ = 0, from which we will conclude ϕ ∈ RCRc(ν).

By spectral separation, we have for all ρ < ν,

e−η|ρ|||Ps(ν)ϕ|| = e−η|ρ|||Us(ν, ρ)Ps(ρ)x(ρ)||
≤ e−η|ρ|Kea(ν−ρ)||Ps(ρ)|| · ||x(ρ)||
≤ KKea(ν−ρ)||Ps(ρ)||,

which implies ||Ps(ν)ϕ|| ≤ KKeaν ||Ps(ρ)|| exp(η|ρ| − aρ). Since η < −a and
ρ 	→ ||Ps(ρ)|| is bounded, taking the limit as ρ → −∞ we obtain ||Ps(ν)ϕ||| ≤
0. Similarly, for ρ > ν, we have

e−η|ρ|||Pu(ν)ϕ|| = e−η|ρ|||Uu(ν, ρ)Pu(ρ)x(ρ)||
≤ e−η|ρ|Keb(ν−ρ)||Pu(ρ)|| · ||x(ρ)||
≤ KKeb(ν−ρ)||Pu(ρ)||,

which implies ||Pu(ν)ϕ|| ≤ KKebν ||Pu(ρ)|| exp(η|ρ| − bρ). Since η <b and
ρ 	→ ||Pu(ρ)|| is bounded, taking the limit ρ → ∞ we obtain ||Pu(ν)ϕ|| ≤ 0.
Therefore, Ps(ν)ϕ = Pu(ν)ϕ = 0, and we conclude that Pc(ν)ϕ = ϕ and
ϕ ∈ RCRc(ν).
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Lemma I.5.1.2. Let conditions H.1, H.2 and H.5 be satisfied. Let h ∈
RCR(R,Rn). The integrals

∫ t

s

U(t, μ)Pc(μ)[χ0h(μ)]dμ,

∫ t

v

U(t, μ)Pu(μ)[χ0h(μ)]dμ

are well-defined as Pettis integrals for all s, t, v ∈ R, where we define
∫ a

b
fdμ =

− ∫ b

a
fdμ when a < b.

Proof. The nontrivial cases are where t ≤ s and t ≤ v. For the former,
defining H(μ) = χ0h(μ) we have the string of equalities

Uc(t, s)Pc(s)

∫ s

t

U(s, μ)H(μ)dμ = Uc(t, s)

∫ s

t

Uc(s, μ)Pc(μ)H(μ)dμ

=

∫ s

t

Uc(t, μ)Pc(μ)H(μ)dμ

=

∫ s

t

U(t, μ)Pc(μ)H(μ)dμ

= −
∫ t

s

U(t, μ)Pc(μ)H(μ)dμ.

The first integral on the left exists due to Lemma I.2.3.5 and Proposition
I.1.4.1. The subsequent equalities follow by Proposition I.2.3.5 and the defi-
nition of spectral separation. The case t ≤ v for the other integral is proven
similarly.

Define the (formal) linear operators Kη
s : PCη,s⊕Bη

tk
(Z,Rn)→Bη(R,RCR)

by the equation

Kη
s (F,G)(t) =

∫ t

s
U(t, μ)Pc(μ)[χ0F (μ)]dμ−

∫ ∞

t
U(t, μ)Pu(μ)[χ0F (μ)]dμ

+

∫ t

−∞
U(t, μ)Ps(μ)[χ0F (μ)]dμ+

t∑
s

U(t, ti)Pc(ti)[χ0Gi]dti

−
∞∑
t

U(t, ti)Pu(ti)[χ0Gi]dti +

t∑
−∞

U(t, ti)Ps(ti)[χ0Gi]dti,

(I.5.3)

indexed by s ∈ R, where the external direct sum PCη,s ⊕ Bη,s
tk

(Z,Rn) is
identified as a Banach space with norm ||(f, g)||η,s = ||f ||η,s + ||g||η,s, and
the summations are defined as follows:

b∑
a

F (ti)dti =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
a<ti≤b

F (ti), a ≤ b

−
a∑
b

F (ti)dti, b < a.

Lemma I.5.1.3. Let H.1, H.2, H.5 and H.7 hold, and let η ∈ (0,min{−a, b}).
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1. The function Kη
s : PCη,s ⊕ Bη,s

tk
(Z,Rn) → Bη,s(R,RCR) with η ∈

(0,min{−a, b}) and defined by formula (I.5.3) is linear and bounded. In
particular, the norm satisfies

||Kη
s || ≤ C

[
1

η − ε

(
1 +

e(η−ε)ξ

ξ

)
+

1

−a − η

(
1 +

2e(η−a)ξ

ξ

)
+

1

b − η

(
1 +

2e(b+η)ξ

ξ

)]

(I.5.4)

for some constants C and ε independent of s.

2. Kη
s has range in PCη,s, and v = Kη

s (F,G) is the unique solution of (I.5.1)
in PCη,s satisfying Pc(s)v(s) = 0.

3. The expression K∗(F,G)(t) = (I − Pc(t))K
0
s (F,G)(t) uniquely defines,

independent of s, a bounded linear map

K∗ : PC0 ⊕B0
tk
(Z,Rn) → PC0.

Proof. Let ε < min{min{−a, b} − η, η}. To show that Kη
s is well-defined, we

start by mentioning that all improper integrals and infinite sums appearing
on the right-hand side of (I.5.3) can be interpreted as limits of well-defined
finite integrals and sums, due to Lemma I.2.3.5, Lemma I.5.1.2 and Proposi-
tion I.1.4.1. For brevity, write

Kη
s (F,G) =

(
Ku,f

1 −Kc,F
1 +Ku,F

1

)
+
(
Ku,G

2 −Kc,G
2 +Ks,G

2

)
,

where each term corresponds to the one in (I.5.3) in order of appearance.
We start by proving the convergence of the improper integrals. Denote

I(v) =

∫ v

t

U(v, μ)Pu(μ)[χ0F (μ)]dμ,

and let vk ↗ ∞. We have, for m > n and n sufficiently large so that vm > 0,

||I(vm)− I(vn)|| ≤
∫ vm

vn

KNeb(t−μ)|F (μ)|dμ

≤
∫ vm

vn

KNeb(t−μ)eημ||F ||ηdμ

= KN ||F ||ηebt
∫ vm

vn

eμ(η−b)dμ

=
KN ||F ||η

b− η
ebt

(
e−vn(b−η) − e−vm(b−η)

)

≤ KN ||F ||η
b− η

ebte−vn(b−η).

Therefore, I(vk) ∈ RCR is Cauchy and thus converges; namely, it converges
to the improper integral Ku,F (t). One can similarly prove that Ks,F (t)
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converges. For the infinite sums, we employ similar estimates; if we denote
S =

∑
t<ti<∞ ||Uu(t, ti)[χ0Gi]|| and assume without loss of generality that

t0 = 0, a fairly crude estimate (that we will later improve) yields

S ≤
∑

t<ti<∞
KNeb(t−ti)eη|ti|||G||η

=
∑

−|t|<ti≤0

KN ||G||ηebte|ti|(b+η) +
∑

0<tk<∞
KN ||G||ηebte−(b−η)ti

≤ KNebt
( |t|

ξ
e|t|(b+η) +

1

1− e−(b−η)ξ

)
||G||η.

Thus, Ku,G(t) converges uniformly. One can show by similar means that
Ks,F (t) and Ks,G(t) both converge. Therefore, Kη

s (F,G)(t) ∈ RCR exists.
We can now unambiguously state that Kη

s is clearly linear.
Our next task is to prove that ||Kη

s (F,G)]||η,s ≤ Q||(F,G)||η,s for constant
Q satisfying the estimate of equation (I.5.4). We will prove the bounds only
for ||Ku,F ||η,s, ||Ku,G||η,s, ||Kc,F ||η,s and ||Kc,G||η,s; the others follow by
similar calculations. For t < s, we have

e−η|t−s|||Ku,F (t)||

≤ e−η|t−s|
∫ ∞

t

KNeb(t−μ)|F (μ)|dμ

≤ eη(t−s)KN

[∫ s

t

eb(t−μ)eη|μ−s|||F ||η,sdμ+

∫ ∞

s

eb(t−μ)eη|μ−s|||F ||η,sdμ
]

= eη(t−s)KN ||F ||η,s
[∫ s

t

eb(t−μ)eη(s−μ)dμ+

∫ ∞

s

eb(t−μ)eη(μ−s)dμ

]

= eη(t−s)KN ||F ||η,s
[
ebt+ηs e

−(b+η)t − e−(b+η)s

b+ η
+ ebt−ηs e

−(b−η)s

b− η

]

≤ KN ||F ||η,s 1

b− η
.

The above inequality is also satisfied for t ≥ s, and we conclude ||Ku,F ||η,s ≤
KN(b− η)−1||(F,G)||η,s. Next, for t < s,

e−η|t−s|||Ku,G(t)||
≤ e−η|t−s| ∑

t<ti<∞
KNeb(t−ti)|Gi|

≤ eη(t−s)KN

⎡
⎣ ∑
t<ti<s

eb(t−ti)eη|ti−s|||G||η,s+
∑

s≤ti<∞
eb(t−ti)eη|ti−s|||G||η,s

⎤
⎦

≤ eη(t−s)KN ||G||η,s 1
ξ

[∫ s

t−ξ

eb(t−μ)eη(s−μ)dμ+

∫ ∞

s−ξ

eb(t−μ)eη(μ−s)dμ

]
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≤ eη(t−s)KN ||G||η,s
ξ

[
ebt+ηs e

−(b+η)(t−ξ) − e−(b+η)x

b+ η
+ ebt−ηs e

−(b−η)(s−ξ)

b− η

]

≤ 2KN ||G||η,s
ξ(b− η)

· e(b+η)ξ,

where we have made use of Lemma I.1.5.2 to estimate the sums. The same
conclusion is valid for t ≥ s, and it follows that ||Ku,G||η,s ≤ 2KNe(b+η)ξ(ξ(b−
η))−1||(F,G)||η,s. Next, for t ≤ s,

e−η|t−s|||Kc,G(t)|| ≤ eη(t−s)KN ||G||η,s
∑

t<ti≤s

eε(ti−t)eη(s−ti)

≤ eη(t−s)KN ||G||η,s
ξ

∫ t

s−ξ

eε(μ−t)eη(s−μ)dμ

= eη(t−s)KN ||G||η,s
ξ(η − ε)

(
eε(s−ξ−t)eηξ − e−η(t−s)

)

≤ KN ||G||η,s
ξ(η − ε)

e(η−ε)ξ.

This estimate continues to hold for all t, s ∈ R. To compare to the integral
term, for s ≤ t, we have

e−η|t−s|||Kc,F (t)|| ≤ e−η(t−s)KN ||F ||η,s
∫ t

s

eε(t−μ)eη(μ−s)dμ

= e−η(t−s)KN ||F ||η,s 1

η − ε

(
eη(t−s) − eε(t−s)

)

≤ KN ||F ||η,s
η − ε

,

and this estimate persists for all t, s ∈ R. Similar estimates for the other inte-
grals and sums appearing in (I.5.3) ultimately result in the bound appearing
in (I.5.4). This proves part 1.

To prove part 2, denote v = Kη
s (F,G). It is clear from the definition of

v, the orthogonality of the projection operators and Proposition I.1.4.1 that
Pc(s)v(s) = 0. Also, for all −∞ < z ≤ t < ∞, denoting F = χ0F and
Gi = χ0G, we have

U(t, z)v(z) +

∫ t

z

U(t, μ)F (μ)dμ+
t∑
z

U(t, ti)Gidti

= U(t, z)v(z) +

∫ t

z

U(t, μ)Pc(μ)F (μ)dμ−
∫ z

t

U(t, μ)Pu(μ)F (μ)dμ

+

∫ t

z

U(t, μ)Pu(μ)F (μ)dμ+
t∑
z

U(t, ti)Pc(ti)Gidti

−
z∑
t

U(t, ti)Pu(ti)Gidti +
t∑
z

U(t, ti)Pu(ti)Gidti
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=

∫ t

s

U(t, μ)Pc(μ)F (μ)dμ−
∫ ∞

t

U(t, μ)Pu(μ)F (μ)dμ+

∫ t

−∞
U(t, μ)Ps(μ)F (μ)dμ

+
t∑
s

U(t, ti)Pc(ti)Gidti −
∞∑
t

U(t, ti)Pu(ti)Gidti +
t∑

−∞
U(t, ti)Ps(ti)Gidti

= v(t),

so that t 	→ v(t) solves the integral equation (I.5.1). This also demon-
strates that v ∈ PCη. To show that it is the only solution in PCη sat-
isfying Pc(s)v(s) = 0, suppose there is another r ∈ PCη that satisfies
Pc(s)r(s) = 0. Then the function w := v − r is an element of PCη that
satisfies w(t) = U(t, z)w(z) for −∞ < z ≤ t < ∞. By Lemma I.5.1.1, we
have w(s) ∈ RCRc(s). But since Pc(s)w(s) = 0 and Pc(s) is the identity on
RCRc(s), we obtain w(s) = 0. Therefore, w(t) = U(t, s)0 = Uc(t, s)0 = 0 for
all t ∈ R, and we conclude v = r, proving the uniqueness assertion.

For assertion 3, we compute first

K∗(F,G)(t) =

∫ t

−∞
U(t, μ)Ps(μ)[χ0F (μ)]dμ−

∫ ∞

t

U(t, μ)Pu(μ)[χ0F (μ)]dμ

t∑
−∞

U(t, ti)Ps(ti)[χ0Gi]dti −
∞∑
t

U(t, ti)Pu(ti)[χ0Gi]dti.

Routine estimation using inequalities (I.1.11)–(I.1.13) together with Lemma
I.1.5.2 produces the bound

||K∗(F,G)(t)|| ≤ KN

(−1

a
+

1

b
− e−aξ

aξ
+

ebξ

bξ

)
||(F,G)||,

and as the bound is independent of t, s, the result is proven.

I.5.1.3 Substitution Operator and Modification of Non-
linearities

Let ξ : R+ → R be a C∞ bump function satisfying

i) ξ(y) = 1 for 0 ≤ y ≤ 1,

ii) 0 ≤ ξ(y) ≤ 1 for 1 ≤ y ≤ 2,

iii) ξ(y) = 0 for y ≥ 2.

We modify the nonlinearities of (I.4.1)–(I.4.2) in the centre and hyperbolic
directions separately. For δ > 0 and s ∈ R, we let

Fδ,s(t, x) = f(t, x)ξ

( ||Pc(s)x||
Nδ

)
ξ

( ||(Ps(s) + Pu(s))x||
Nδ

)
(I.5.5)

Gδ,s(k, x) = g(k, x0−)ξ

( ||Pc(s)x0− ||
Nδ

)
ξ

( ||(Ps(s) + Pu(s))x0− ||
Nδ

)
. (I.5.6)
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Notice that Gδ,s(k, x) takes the pointwise left-limit in the evaluation (I.5.6).
The proof of the following lemma and corollary will be omitted. They can
be proven by emulating the proof of Lemma 6.1 from [70] and taking into
account the uniform boundedness of the projectors Pi; see property 1 of
Definition I.1.1.6.

Lemma I.5.1.4. Let f(t, ·) and g(k, ·) be uniformly (in t ∈ R and k ∈ Z)
Lipschitz continuous on the ball BRCR(δ, 0) in RCR with mutual Lipschitz
constant L(δ), and let f(t, 0) = gk(0) = 0. The functions

Fδ,s : R×RCR → R
n, Gδ,s : Z×RCR → R

n

are globally, uniformly (in t ∈ R and k ∈ Z) Lipschitz continuous with mutual
Lipschitz constant Lδ that satisfies Lδ → 0 as δ → 0, independent of s.

Corollary I.5.1.1. The substitution operator

Rδ,s : PCη,s → PCη,s(R,Rn)⊕Bη,s
tk

(Z,Rn)

defined by Rδ,s(x)(t, k) = (Fδ,s(t, x(t)), Gδ,s(k, x(tk))) is globally Lipschitz

continuous with Lipschitz constant L̃δ that satisfies L̃δ → 0 as δ → 0. More-
over, the Lipschitz constant is independent of η, s.

Corollary I.5.1.2. ||(Fδ,s(t, x), Gδ,s(k, x))|| ≤ 4δLδ for all x ∈ RCR and
(t, k) ∈ R× Z.

Remark I.5.1.1. The explicit connection between L(δ) (the Lipschitz con-
stant for f and g) and Lδ and L̃δ is complicated and depends in part on the
choice of cutoff function ξ and the constant N .

I.5.2 Fixed-Point Equation and Existence of a
Lipschitz Centre Manifold

Let η ∈ (ε,min{−a, b}) and define a mapping Fs : PCη,s×RCRc(s) → PCη,s

by

Fs(u, ϕ) = U(·, s)ϕ+Kη
s (Rδ,s(u)). (I.5.7)

Note that by Lemma I.5.1.3 and Corollary I.5.1.1, the operator is well-defined,
Kη

s is bounded and Rδ is globally Lipschitz continuous for each δ > 0, pro-
vided H.1–H.7 hold. Choose δ small enough so that

L̃δ||Kη
s ||η <

1

2
. (I.5.8)

Notice that δ can be chosen so that (I.5.8) can be satisfied independent of s,
due to Lemma I.5.1.3. If ||ϕ|| < r/(2K), then Fs(·, ϕ) leaves B(r, 0) ⊂ PCη,s

invariant. Moreover, Fs(·, ϕ) is Lipschitz continuous with Lipschitz constant
1
2 . One may notice that r is arbitrary. We can now prove the following:
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Theorem I.5.2.1. Let conditions H.1–H.7 hold. If δ is chosen as in (I.5.8),
then there exists a globally Lipschitz continuous mapping u∗

s : RCRc(s) →
PCη,s such that us = u∗

s(ϕ) is the unique solution in PCη,s of the equation
us = Fs(us, ϕ).

Proof. The discussion preceding the statement of Theorem I.5.2.1 indicates
that Fs(·, ϕ) is a contraction mapping on B(r, 0) ⊂ PCη,s for every r >
||ϕ||2K. Since the latter is a closed subspace of the Banach space PCη,s, the
contraction mapping principle implies the existence of the function u∗

s. To
show that it is a Lipschitz continuous, we note

||u∗
s(ϕ)− u∗

s(ψ)||η,s = ||Fs(u
∗
s(ϕ), ϕ)−Fs(u

∗
s(ψ), ψ))||η,s

≤ K||ϕ− ψ||+ 1

2
||u∗

s(ϕ)− u∗
s(ψ)||η,s.

Therefore, u∗
s is Lipschitz continuous with Lipschitz constant 2K.

Definition I.5.2.1 (Lipschitz Centre Manifold). The centre manifold, Wc ⊂
R×RCR, is the nonautonomous set whose t-fibres for t ∈ R are given by

Wc(t) = Im{C(t, ·)}, (I.5.9)

where C : RCRc → RCR is the (fibrewise) Lipschitz map defined by C(t, φ) =
u∗
t (φ)(t). Its dimension is equal to dim(RCRc).

Remark I.5.2.1. The centre manifold depends non-canonically on the choice
of cutoff function from Sect. I.5.1.3. That is, the centre manifold is not
unique, so we are committing an abuse of syntax by referring to such a con-
struct generally as “the” centre manifold. One must always understand that
the definition of the centre manifold is with respect to a particular cutoff func-
tion. Also, since C(t, ·) : RCRc(t) → RCR has a dim(RCRc(t))-dimensional
domain, it is appropriate to say that the centre manifold also has this dimen-
sion.

The construction above implies the centre manifold is fibrewise Lipschitz.
We can prove a stronger result, namely that the Lipschitz constant can be
chosen independent of the given fibre.

Corollary I.5.2.1. There exists a constant L > 0 such that ||C(t, φ) −
C(t, ψ)|| ≤ L||φ− ψ|| for all t ∈ R and φ, ψ ∈ RCRc(t).

Proof. Denote uφ = ut(φ) and uψ = ut(ψ). A preliminary estimation ap-
pealing to the fixed-point equation (I.5.7) yields

||C(t, φ)− C(t, ψ)|| ≤ ||φ− ψ||+ ||(Kη
t (Rδu

φ)−Kη
t (Rδu

ψ))(t)||.
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By Corollary I.5.1.2, each ofRδu
φ andRδu

ψ is uniformly bounded, so Lemma
I.5.1.3 implies the existence of a constant c > 0 such that

||(Kη
t (Rδ,tu

φ)−Kη
t (Rδ,tu

ψ))(t)|| ≤ c||(Rδ,tu
φ −Rδ,tu

ψ)(t)||
≤ c sup

s∈R

||(Rδ,tu
φ −Rδ,tu

ψ)(s)||e−η|t−s|

≤ cL̃δ||uφ − uψ||η,t
≤ cL̃δ2K||φ− ψ||,

and in the last line, we used the Lipschitz constant from Theorem I.5.2.1.
Combining this result with the previous estimate for ||C(t, φ)−C(t, ψ)|| yields
the uniform Lipschitz constant. By Corollary I.5.1.1, the Lipschitz constant
has the claimed property.

I.5.2.1 A Remark on Centre Manifold Representations:
Graphs and Images

Our initial definition of the centre manifold was as the fibre bundle whose
t-fibres are the images of C(t, ·). However, sometimes one likes to think of the
centre manifold as being the graph of a function. To accomplish this, one can
use the hyperbolic part. Let us define the function H : RCRc → RCR by
H(t, φ) = (I−Pc(t))C(t, φ). In this way, the centre manifold can be identified
with the graph of the hyperbolic part of the centre manifold. Indeed, by part
2 of Lemma I.5.1.3, we have the decomposition C(t, φ) = φ+(I−Pc(t))C(t, φ),
so that

Wc(t) = {φ+H(t, φ) : φ ∈ RCRc(t)}
∼ {(φ,H(t, φ)) : φ ∈ RCRc(t)} = Graph(H(t, ·)).

Since RCRc(t) and its complement R(I−Pc(t)) = RCRs(t)⊕RCRu(t) have
only 0 in their intersection, this identification makes sense. When one reduces
down to ordinary differential equations, one usually thinks of precisely the
functionH as being the centre manifold. This ambiguity between the function
C : RCRc → RCR, the fibre bundle Wc, the hyperbolic part H : RCRc →
RCR and its graph can sometimes make statements about centre manifolds
imprecise. In this thesis, the term centre manifold without any additional
qualifiers will always mean the fibre bundle Wc.

I.5.3 Invariance and Smallness Properties

Recall that by Lemma I.4.1.1, there is a process (S,M) on RCR such that
t 	→ S(t, s)φ is the unique mild solution of (I.4.3) through the initial condition
(s, φ) defined on an interval [s, s+α). With this in mind, the centre manifold
is locally positively invariant with respect to S.
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Theorem I.5.3.1 (Centre Manifold: Invariance and Inclusion of Bounded
Orbits). Let conditions H.1–H.7 hold. The centre manifold Wc enjoys the
following properties.

1. Wc is locally positively invariant: if (s, φ) ∈ Wc and ||S(t, s)φ|| < δ for
t ∈ [s, T ], then (t, S(t, s)φ) ∈ Wc for t ∈ [s, T ].

2. If (s, φ) ∈ Wc, then S(t, s)φ=u∗
t (Pc(t)S(t, s)φ)(t)= C(t, Pc(t)S(t, s)φ).

3. If (s, φ) ∈ Wc, there exists a unique mild solution u ∈ PCη,s of the
semilinear system

ẋ = L(t)xt + Fδ,s(t, xt), t 
= tk

Δx = B(k)xt− +Gδ,s(k, xt−), t = tk

with the property that u(t) ∈ Wc(t) for t ∈ R, ||u||η,s ≤ δ and u(s) = φ.

4. If x : R → RCR is a mild solution of (I.4.3) satisfying ||x|| < δ, then
(t, x(t)) ∈ Wc for all t ∈ R.

5. R× {0} ⊂ Wc and C(t, 0) = 0 for all t ∈ R.

Proof. Let (s, φ) ∈ Wc and denote x(t) = S(t, s)φ, with ||x|| < δ. Since
(s, φ) ∈ Wc, there exists ϕ ∈ RCRc(s) such that φ = u∗

s(ϕ)(s). Define x̂ =
u∗
s(ϕ). Then, it follows that ϕ = Pc(s)φ, x̂(s) = φ = Pc(s)φ+Kη

s (R(x̂))(s),
and

x̂(t) = U(t, s)ϕ+Kη
s (Rδ(x̂))(t)

= U(t, s)ϕ+

[
U(t, s)Kη

s (Rδ,s(x̂))(s) +

∫ t

s
U(t, μ)χ0Fδ,s(μ, x̂(μ))dμ

+
∑

s<ti≤t

U(t, ti)χ0Gδ,s(i, x̂(ti))

⎤
⎦

= U(t, s)x̂(s) +

∫ t

s
U(t, μ)χ0Fδ,s(μ, x̂(μ))dμ+

∑
s<ti≤t

U(t, ti)χ0Gδ,s(i, x̂(ti))

for all t ∈ [s, T ]. But since ||x(t)|| < δ on [s, T ], uniqueness of mild solutions
(Lemma I.2.1.1 with Theorem I.2.3.1) implies that x = x̂|[s,T ].

Let v ∈ [s, T ] and define z : R → RCR by z = x̂ − U(·, v)Pc(v)x̂(v). One
can easily verify that

z(t) = U(t, v)z(v) +

∫ t

v

U(t, μ)U(t, μ)χ0Fδ,s(μ, x̂(μ))dμ

+
∑

v<ti≤t

U(t, ti)χ0Gδ,s(i, x̂(ti))

for all t ∈ [v,∞) and that Pc(v)z(v) = 0. On the other hand, since ||x̂|| < δ,
we have Rδ,s(x̂) = Rδ,v(x̂). From these two observations and Lemma I.5.1.3,
z = Kη

v(Rδ,v(x̂))|[v,∞), so that we may write

x̂ = U(·, v)Pc(v)x̂(v) +Kη
v(Rδ,v(x̂)) = u∗

v(Pc(v)x̂(v)).
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Therefore, x̂(v) = u∗
v(Pc(v)x̂(v))(v), and since x(v) = x̂(v), this proves that

(v, x(v)) ∈ Wc and, through essentially the same proof, that

x(v) = u∗
v(Pc(v)x(v))(v) = C(v, x(v))(v).

The proofs of the other three assertions of the theorem follow by similar
arguments and are omitted.

The modification of the nonlinearity Rδ results in the function u∗
s that de-

fines the centre manifold having a uniformly small hyperbolic part. Namely,
we have the following lemma.

Lemma I.5.3.1. Define P̂c : PCη → PCη(R,RCRc) by P̂cφ(t) = Pc(t)φ(t).

If δ > 0 is sufficiently small, then ||(I − P̂c)u
∗
s ||0 < δ. More precisely, it is

sufficient to chose δ > 0 small enough so that NLδ||Kη
s || < 1

4 .

Proof. Recall that u∗
s satisfies the fixed-point equation u∗

s = U(·, s)ϕ +

Kη
s (Rδ,s(u

∗
s)). Thus, with P̂h = I − P̂c,

P̂hu
∗
s = P̂h ◦ Kη

s (Rδ,s(u
∗
s))

because U(t, s) is an isomorphism ofRCRc(s) ontoRCRc(t) and ϕ∈RCRc(s).
By Corollary I.5.1.2, we have for all t ∈ R that ||Rδ,s(u

∗
s(t))|| ≤ 4δLδ, which

implies Rδ,s(u
∗
s) ∈ B0(R,Rn) ⊕ B0

tk
(Z,Rn). We obtain the claimed result

by applying the second conclusion of Lemma I.5.1.3 and taking δ sufficiently
small, recalling from Corollary I.5.1.1 that Lδ → 0 as δ → 0. The explicit
estimate for δ comes from the bound ||P̂hKη

s (Rδ,s(u
∗
s)||0 ≤ N ||Kη

s ||4δLδ.

I.5.4 Dynamics on the Centre Manifold

The centre manifold can be identified with a dim(RCRc(t))-dimensional in-
variant fibre bundle over R × RCR. A natural question to ask is how the
process (S,M) behaves when restricted to the centre manifold. We address
this now.

I.5.4.1 Integral Equation

On the centre manifold, components of mild solutions on the centre fibre
bundle are decoupled. The following lemma states how the components in
the centre fibre bundle evolve. The proof follows from Theorem I.5.3.1.

Lemma I.5.4.1 (Dynamics on the Centre Manifold: Integral Equation). Let
y : R → RCR satisfy y(t) ∈ Wc(t) with ||y|| < δ. Consider the projection of
y onto the centre fibre bundle: w(t) = Pc(t)y(t). The projection satisfies the
integral equation

w(t) = U(t, s)w(s) +

∫ t

s
U(t, μ)Pc(μ)χ0Fδ,μ(μ, C(μ,w(μ)))dμ

+
∑

s<ti≤t

U(t, ti)Pc(ti)χ0Gδ,ti (i, C(ti, w(ti))). (I.5.10)
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I.5.4.2 Abstract Ordinary Impulsive Differential Equa-
tion

Lemma I.5.4.1 describes the dynamics of the centre fibre bundle component
of the centre manifold in terms of an integral equation. With an additional
assumption on the jump map, we can extend this result to an ordinary im-
pulsive differential equation on a Banach space.

Definition I.5.4.1. A sequence of functionals J(k, ·) : RCR → R
n for k ∈ Z

satisfies the overlap condition (with respect to the sequence {tk : k ∈ Z} of
impulse times) if

lim
ε→0+

J(k, φ+ χ[θ,θ+ε)h) = J(k, φ)

for all φ ∈ RCR and h ∈ RCR, whenever θ = tj − tk ∈ [−r, 0).

The overlap condition roughly states that the jump functional does not
have observable “memory” at times in the past that happens to correspond
to impulse times. As the definition is somewhat abstract, we will give an
example.

Example I.5.4.1. Consider the scalar impulse effect defined according to

Δx = x(t− r), t = tk,

where tk = k ∈ Z are the integers. The functional associated to the above
is simply J(φ) = φ(−r). If r is a positive integer, the overlap condition will
not be satisfied because with θ = tk − tk+r = −r ∈ [−r, 0), we have

J(φ+ χ[θ,θ+ε)h) = φ(−r) + h(−r) 
= φ(−r) = J(φ)

for all ε > 0 and h ∈ RCR with h(−r) 
= 0. However, if r is not an integer,
then since any θ = tj − tk ∈ [−r, 0) must be an integer, it follows that for
ε > 0 small enough, −r /∈ [θ, θ + ε). From here, we can conclude that J
satisfies the overlap condition.

Remark I.5.4.1. The overlap condition is equivalent to the statement that
J(k, ·) admits a continuous extension to a particular closed subspace of G
([−r, 0],Rn); see later Lemma I.6.1.1.

The overlap condition is mostly important for functionals that define dis-
crete delays, since the regularization incurred from distributed delays gener-
ally forces the overlap condition to be satisfied. See Sect. I.6.4 for a more
thorough discussion. We make use of the overlap condition in proof of the
following theorem. The details are somewhat subtle, and we will spend a fair
bit more time on them in Sect. I.5.7.

Theorem I.5.4.1 (Dynamics on the Centre Manifold: Abstract Impulsive
Differential Equation). Let y ∈ RCR1(R,Rn) satisfy yt ∈ Wc(t) with ||y|| <
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δ. Consider the projection w(t) = Pc(t)yt and define the linear operators
L(t) : RCR1 → RCR and J (k) : RCR → G([−r, 0],Rn) by

L(t)φ(θ) =
{

L(t)φ, θ = 0
d+φ(θ), θ < 0

, J (k)φ(θ) =

{
B(k)φ, θ = 0
φ(θ+)− φ(θ), θ < 0

(I.5.11)

If the jump functionals B(k) and g(k, ·) satisfy the overlap condition, then w :
R → RCR1 satisfies, pointwise, the abstract impulsive differential equation

d+w(t) = L(t)w(t) + Pc(t)χ0Fδ(t, C(t, w(t))), t 
= tk (I.5.12)

Δw(tk) = J (k)w(t−k ) + Pc(tk)χ0Gδ(k, C(tk, w(tk))), t = tk, (I.5.13)

where w(t−k )(θ) := limε→0− w(tk−ε)(θ) and Δw(tk)(θ) := w(tk)(θ)−w(t−k )(θ)
for θ ∈ [−r, 0].

Proof. For brevity, denote F (μ) = Fδ,μ(μ, C(μ,w(μ))), F (μ) = χ0F (μ),
F(μ) = Pc(μ)χ0F (μ), and analogously for Gδ. We begin by noting that equa-
tion (I.5.10) allows us to write the finite difference wε(t) = w(t + ε) − w(t)
as

wε(t) = [U(t+ ε, s)− U(t, s)]w(s) + (U(t+ ε, t)− I)

∫ t

s

U(t, μ)F(μ)dμ

+ U(t+ ε, t)Pc(t)

∫ t+ε

t

U(t, μ)F (μ)dμ+ (U(t+ ε, t)− I)

×
∑

s<ti≤t

U(t, ti)G(i) + U(t+ ε, t)
∑

t<ti≤t+ε

U(t, ti)G(i).

(I.5.14)

First, we show that d+U(t, s)φ = L(t)U(t, s)φ pointwise for φ ∈ RCR. For
θ = 0, we have

1

ε
(U(t+ ε, s)φ(0)− U(t, s)φ(0)) =

1

ε

∫ t+ε

t

L(μ)U(μ, s)φdμ,

which converges to L(t)U(t, s)φ as ε → 0+. For θ < 0 and ε > 0 sufficiently
small,

1

ε
(U(t+ ε, s)φ(θ)− U(t, s)φ(θ))

=
1

ε
(φ(t+ ε+ θ − s)− φ(t+ θ − s)) −→ d+φ(t+ θ − s) = d+U(t, s)φ(θ).

Therefore, d+U(t, s)φ = L(t)U(t, s)φ pointwise, as claimed. Since U(t, t) = I,
this also proves the pointwise convergence

1

ε
(U(t+ ε, t)− I)φ → L(t)φ.
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Next, we show that

1

ε
U(t+ ε, t)Pc(t)

∫ t+ε

t

U(t, μ)F (μ)dμ → Pc(t)F (t) = F(t) (I.5.15)

pointwise as ε → 0+. We do this by first proving that the sequence

xn :=
1

εn
U(t+ εn, t)Pc(t)

∫ t+εn

t

U(t, μ)F (μ)dμ

is pointwise Cauchy for each sequence εn → 0+. Assuming without loss of
generality that εn is strictly decreasing, we have for all n ≥ m,

xn − xm =

[
1

εn
U(t+ εn, t)− 1

εm
U(t+ εm, t)

]
Pc(t)

∫ t+εn

t

U(t, μ)χ0F (μ)dμ

+
1

εm
U(t+ ε, t)

∫ t+εn

t+εm

Uc(t, μ)Pc(μ)χ0F (μ)dμ.

Both integrals can be made arbitrarily small in norm by taking n,m ≥ N
and N large enough. Since 1

εU(t+ ε, t) is pointwise convergent as ε → 0+, we
obtain that the sequence xn is pointwise Cauchy and is hence pointwise con-
vergent. Direct calculation of the limit in the pointwise sense yields (I.5.15).
Combining all of the above results with Eq. (I.5.14) gives the pointwise equal-
ity

d+w(t) = L(t)U(t, s)w(s) + L(t)
∫ t

s

U(t, μ)F(μ)dμ

+ F(t) + L(t)
∑

s<ti≤t

U(t, ti)G(i)

= L(t)w(t) + F(t),

which is equivalent to (I.5.12).
To obtain the difference equation (I.5.13), we similarly identify wε(tk)(θ)

:= w(tk)(θ)− w(tk − ε)(θ) with the decomposition
wε(tk) = [U(tk, s)− U(tk − ε, s)]w(s) +

∫ tk

tk−ε
U(t, μ)F(μ)dμ

+

∫ tk−ε

s
[U(tk, μ)− U(tk − ε, μ)]F(μ)dμ

+
∑

tk−ε<ti≤tk

U(tk, ti)G(i) +
∑

s<ti≤tk−ε

[U(tk, ti)− U(tk − ε, ti)]G(i).

Using Lemmas I.2.2.1 and I.2.3.5, the above is seen to converge pointwise as
ε → 0+, with limit

Δw(tk) = J̃ (k)U(t−k , s)w(s) + J̃ (k)

∫ tk

s

U(t−k , μ)F(μ)dμ

+G(k) + J̃ (k)
∑

s<ti<tk

U(t−k , ti)G(i), (I.5.16)
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where J̃ (k)φ(θ) = χ0(θ)B(k)φ + χ(−r,0)(θ)[φ(θ) − φ(θ−)], and we assume
without loss of generality that r > 0 is large enough so that tk − r 
= tj for
all j < k and all k ∈ Z. Let us denote

U−(t, s)φ(θ) = lim
ε→0+

U(t− ε, s)φ(θ)

the strong left-limit of the evolution family at t. This limit is well-defined
pointwise, and due to the overlap condition, we have

J̃ (k)U(t−k , ξ)φ = J (k)U−(tk, ξ)φ (I.5.17)

pointwise for all ξ < tk. Moreover, since

w(t−k ) = U−(tk, s)w(s) +
∫ tk

s

U−(tk, μ)F(μ)dμ+
∑

s<ti<tk

U−(tk, ti)G(i),

(I.5.18)

we can obtain equation (I.5.13) by substituting (I.5.17) and (I.5.18) into
(I.5.16).

We will not make much use of the abstract differential equation (I.5.12)–
(I.5.13) and have included it mostly for the purpose of comparison with anal-
ogous results for delay differential equations. As we will see, the integral
equation (I.5.10) will be more than sufficient.

I.5.4.3 A Remark on Coordinates and Terminology

It is a slight abuse of terminology to describe (I.5.12)–(I.5.13) as an impul-
sive differential equation on the centre manifold. More precisely, it is the
dynamical system associated to the projection onto the centre fibre bundle
associated to a given solution in the centre manifold. This precise description
is, however, quite verbose, and for this reason we will usually call (I.5.12)–
(I.5.13) the impulsive differential equations on the centre manifold, even if
this is not exactly what it is.

The evolution equations (I.5.12)–(I.5.13) are quite abstract. It is an evo-
lution equation in the centre fibre bundle that, despite being (in many sit-
uations) finite-dimensional, is still rather difficult to use in practice because
the fibres RCRc(t) are not themselves constant in time. What is needed
is an appropriate coordinate system. This would in principle allow for the
derivation of an impulsive differential equation in R

p for p = dimRCRc. We
expand on precisely this idea in Sects. I.5.7 and I.6.1.

I.5.5 Reduction Principle

Given a nonhyperbolic equilibrium, one may want to study the orbit struc-
ture near this equilibrium under parameter perturbation in the vector field
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or jump map defining the impulsive functional differential equation (I.4.1)–
(I.4.2). Assuming the sufficient conditions for the existence of a centre man-
ifold are satisfied, part 2 of Theorem I.5.3.1 implies that on the centre man-
ifold, the dynamics are completely determined by those of the component in
the centre fibre bundle. Part 3 of the same theorem guarantees that the small
bounded solutions are all contained on the centre manifold. Lemma I.5.4.1
completely characterizes these dynamics in terms of an integral equation
(I.5.10). As a consequence, bifurcations can be detected by analysing this
integral equation instead, and no loss of generality occurs by looking only on
the centre manifold (at least for small perturbations of the parameter).

The next natural question is the following. If we detect a bifurcation on
the centre manifold and the branch of solutions (or union of solutions, e.g.
a torus) is stable when restricted to the centre manifold, are we guaranteed
that this solution is stable in the infinite-dimensional system provided RCRu

is trivial? The answer is yes, and the following results make this precise.
This is sometimes referred to as the centre manifold reduction. They are
inspired by similar results for ordinary differential equations in both finite-
and infinite-dimensional systems; see for instance Theorem 2.2 from Chapter
10 of Hale and Verduyn Lunel’s introductory text [58] for functional differen-
tial equations, Theorem 3.22 from Chapter 2 of [60] for ordinary differential
equations in Banach spaces and the classic text of Jack Carr [22] for finite-
dimensional ordinary differential equations, as well as some extensions to
infinite-dimensional problems. However, we will require the vector field to be
slightly more regular than previously.

Definition I.5.5.1. The functional f : R×RCR → R
n is additive composite

regulated (ACR) if for all x ∈ RCR(R,Rn), Y ∈ RCR(R,Rn×m) and z ∈
RCR(R,Rm), the function t 	→ f(t, xt+Ytz(t)) is an element of RCR(R,Rn).

Remark I.5.5.1. ACR functionals are quite common in applications. For
example, suppose f : R×RCR → R

n can be written in the form

f(t, φ) = F

(
t, A(t)φ(−d(t)),

∫ 0

−r

K(t, θ)φ(θ)dθ

)

for d ∈ RCR(R, [−r, 0]), A ∈ RCR(R,Rn×n), K : R × [−r, 0] → R
n×n

integrable in its second variable, continuous from the right in its first variable
and uniformly bounded and F : R × R

n × R
n → R

n jointly continuous from
the right in its first variable and continuous in its other variables. It is clear
that

t 	→ A(t)[xt(−d(t)) + Yt(−d(t))z(t)] = A(t)[x(t− d(t)) + Y (t− d(t))z(t)]

is an element of RCR(R,Rn). As for the integral term, the function

t 	→
∫ 0

−r

K(t, θ)[x(t+ θ) + Y (t+ θ)z(t)]dθ]
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can be seen to be an element of RCR(R,Rn) by applying the dominated con-
vergence theorem. From the assumptions on F , we conclude that f is ACR.
The same holds true for vector fields with multiple time-varying delays and
distributed delays.

Lemma I.5.5.1. Assume RCRu = {0}. Let Φt = [ φ
(1)
t · · · φ

(p)
t ] be a

row array whose elements form a basis for RCRc(t), the latter being assumed
p-dimensional for p finite, such that Φt = Uc(t, 0)Φ0. Given a mild solution
x(·) : I → RCR, write Pc(t)xt = Φtz(t) for some z ∈ R

p, so that

xt = Φtz(t) + h(t, z(t)) + ySt

with z ∈ R
p, h(t, z) := (I − Pc(t)C(t,Φtz), and ySt ∈ RCRs(t) is a remain-

der term. Assume the matrix-valued function Yc(t) defined by the equation
Pc(t)χ0 = ΦtYc(t) is continuous from the right and possesses limits on the
left. There exist positive constants ρ,C and α such that for all t ≥ s, the
remainder term satisfies

||ySt || ≤ C||ySs − h(s, z(s))||e−α(t−s),

provided ||xt|| ≤ ρ for all t ≥ s.

Proof. One can carefully verify that z(t) and ySt , respectively, satisfy the
following integral equations for all t ≥ s:

z(t) = z(s) +

∫ t

s

Yc(μ)F(μ, z(μ), ySμ )dμ+
∑

s<ti≤t

Uc(ti)G(i, z(ti), ySti),

(I.5.19)

ySt = U(t, s)[ySs − h(s, z(s))] +

∫ t

s

U(t, μ)Ps(μ)χ0[F(μ, z(μ), ySμ ) (I.5.20)

−F(μ, z(μ), 0)]dμ+
∑

s<ti≤t

U(t, ti)Ps(ti)χ0[G(i, z(ti), ySti)

− G(i, z(ti), 0)],

provided ρ < δ/N , where F(t, z, y) = Fδ,0(t,Φtz + h(t, z) + y), G(k, z, y) =
Gδ,0(k,Φtkz + h(tk, z) + y), and Yc(μ) is defined by the equation Pc(μ)χ0 =
ΦμYc(μ). Because of our assumption on Yc(μ), it follows (from the integral
equation (I.5.19)) that z is continuous from the right and possesses limits on
the left. If we remark that

ySt = (I − Pc(t))xt = xt − Φtz(t),

we can use Lemma I.1.3.7 to conclude that t 	→ ||ySt || is an element of
RCR(I,R). Using spectral separation and the Lipschitz condition on the
substitution operator, we can use (I.5.20) to get the estimate
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||ySt ||e−at ≤ Ke−as||ySs − h(s, z(s))||+
∫ t

s

KLδ||ySμ ||e−aμdμ

+
∑

s<ti≤t

KLδ||ySti ||e−ati ,

provided ||xt|| ≤ ρ for ρ sufficiently small. Next, we apply the Gronwall
Inequality (Lemma I.1.5.1) to the function t 	→ ||ySt ||e−at. After some sim-
plifications, we get

||ySt || ≤ K(1 +KLδ)||ySs − h(s, z(s))|| exp
((

a+KLδ

(
1 +

1

ξ

))
(t− s)

)
.

We can always guarantee that the exponential convergence rate is in the form
e−α(t−s) for α > 0 by taking δ sufficiently small, since a < 0 and we have
Lδ → 0 as δ → 0 by Corollary I.5.1.1. The result follows.

The continuity condition on the matrix t 	→ Yc(t) comes up in a few places
in this monograph. Most noteworthy, it is used in Sect. I.5.7 to guarantee
temporal regularity properties of the centre manifold.

Theorem I.5.5.1 (Local Attractivity of the Centre Manifold). Let the as-
sumptions of Lemma I.5.5.1 be satisfied and let f be an ACR functional.
There exists a neighbourhood V of 0 ∈ RCR and positive constants K1, α1

such that if t 	→ xt is a mild solution satisfying xt ∈ V for all t ≥ s, then
there exists ut ∈ Wc(t) with the property that

||xt − ut|| ≤ K1e
−α1(t−s)

for all t ≥ s. That is, every solution that remains close to the centre manifold
in forward time is exponentially attracted to a particular solution on the centre
manifold. More precisely, there exists u ∈ RCR([s,∞),Rn) such that t 	→
Φtu(t) satisfies the abstract integral equation (I.5.10) for the coordinate on
the centre manifold, and we have the estimates

||Pc(t)xt − Φtu(t)|| ≤ Ke−a1(t−s),

||Ps(t)xt − h(t, u(t))|| ≤ Ke−a1(t−s).

Proof. With the same setup as in the previous proof, let u(t;us) for t ≥ s
denote the solution of the integral equation

u(t) = us +

∫ t

s

Yc(μ)F(μ, u(μ), 0)dμ+
∑

s<ti≤t

Yc(ti)G(i, u(ti), 0),
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for given us ∈ R
p. Define w(t) = z(t) − u(t;us). With xt = Φtz(t) +

h(t, z(t)) + ySt , we have the following integral equations for w and ySt :

ySt = U(t, s)[ySs − h(s, w(s) + us)] +

∫ t

s

U(t, μ)Ps(μ)χ0M1(μ,w(μ)

(I.5.21)

+ u(μ;us), y
S
μ )dμ+

∑
s<ti≤t

U(t, ti)Ps(ti)χ0M2(i, w(ti) + u(ti;us), y
S
ti),

w(t) = w(s) +

∫ t

s

Yc(μ)N1(μ,w(μ), y
S
μ )dμ+

∑
s<ti≤t

Yc(ti)N2(i, w(ti), y
S
ti),

(I.5.22)

with M1, M2, N1 and N2 defined by

M1(μ, a, b) = F(μ, a, b)−F(μ, a, 0),

M2(i, a, b) = G(i, a, b)− G(i, a),
N1(μ, a, b) = F(μ, a+ u(μ;us), b)−F(μ, u(μ;us), 0),

N2(i, a, b) = G(i, a+ u(ti;us), b)− G(i, u(ti; s), 0).
The idea now is to reinterpret the integral equation for w as a fixed-point
equation parameterized by yS(·) and u(·;us). Introduce the space

X = {φ ∈ RCR([s,∞),Rp) : ||φ(t)||ea(t−s) ≤ K}
equipped with the norm ||φ|| = supt≥s ||φ(t)||ea(t−s). Define Tw by

(Tw)(t) = −
∫ ∞

t

Yc(μ)N1(μ,w(μ), y
S
μ )dμ−

∑
t<ti<∞

Yc(ti)N2(i, w(ti), y
S
ti).

(I.5.23)

If w ∈ X, then from the assumption that f is an ACR functional we can
conclude that Tw ∈ RCR(R,Rn). So we consider the nonlinear function
T : X → RCR(R,Rn). Notice that if w is a fixed point of T , then w satisfies
the integral equation (I.5.22). Working backwards, it would then follow by
Lemma I.5.5.1 that

vt := Φt[w(t) + u(t;us)] + h(t, w(t) + u(t;us)) + ySt (I.5.24)

is a solution with the property that

||Pc(t)vt − Φtu(t;us)]|| = O(e−γt),

||Ps(t)vt − h(t, u(t;us))|| = O(e−γt),

as t → ∞ (recall that if w ∈ X, then w → 0 exponentially as t → ∞, while
h(t, ·) is uniformly Lipschitz with respect to t). It is at this stage that we
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refer the reader to the proof of Theorem 2 of Carr’s book [22]. The setup
having been completed, the proof that T can be made a contraction on X
provided δ is sufficiently small is the same as Carr’s argument and is omitted.
Specifically, we have the following conclusion: for s ∈ R and any (us, y

S
s ) is

sufficiently small, T : X → X is a contraction. In particular, by making this
dependence on the fixed point explicit and writing T : (R×R

p×RCRs(s))×
X → X, one can ensure that T is a uniform contraction. In the same way
we proved that the centre manifold is (uniformly in t) Lipschitz continuous,
one can show that the fixed point S∗(s, u, yS) of T (s, u, yS) is uniformly
(with respect to s) Lipschitz continuous in R

p ×RCRs(s), and the Lipschitz
constant can be made as small as needed by taking δ sufficiently small.

Now, for a given φ ∈ RCR, define us(φ) and ySs (φ) according to

Pc(s)φ = Φsus(φ), ySs (φ) = φ− Φsus(φ)− h(s, us(φ)).

Next, define Q(s, ·, ·) : Rp ×RCRs(s) → R
p ×RCRs(s) by

Q(s, u, φ) = (u, φ) + (ΦsS
∗(s, us(φ), y

S
s (φ)), 0).

That is, Q(s, ·, ·) is a nonlinear perturbation from the identity. If we let
ψ ∈ RCR, then the function Qψ(s, ·, ·) : Rp × RCRs(s) → R

p × RCRs(s)
defined by

Qψ(s, u, φ) = (us(ψ), ψ − Φsus(ψ))− (ΦsS
∗(s, us(φ), y

S
s (φ)), 0)

satisfies the property that Q(s, u, φ) = (ψ1, ψ2) if and only if

QΦsψ1+ψ2
(s, u, φ) = (u, φ).

S∗(s, ·, ·) is (uniformly in s) Lipschitz continuous with a Lipschitz constant
that goes to zero as δ → 0. Since ψ does not factor into the nonlinear term,
Qψ can be made a uniform (with respect to s and ψ) contraction by taking
δ sufficiently small. As a consequence, every (ψ1, ψ2) ∈ R

p ×RCRs(s) is in
the range of Q(s, ·, ·) (in fact, Q(s, ·, · is a bijection).

Now, let xt defined for t ≥ s be a mild solution with ||xt|| for t ≥ s
sufficiently small. Write xs = Φsx

c
s + xS

s for xc
s ∈ R

p and xS
s ∈ RCRs(s).

Denote (vcs, v
S
s ) = Q−1(s, ·, ·)(xc

s, x
S
s ). Take note that vSs = xS

s . From the
above discussion, it follows that with u(t) = u(t; vcs), the asymptotic of the
theorem is satisfied. By restricting to a sufficiently small neighbourhood
of the origin, we can ignore the cutoffs on the vector field and jump map,
thereby obtaining results that are applicable to mild solutions of the system
without the cutoff nonlinearity. This proves the theorem.

I.5.5.1 Parameter Dependence

The following heuristic discussion of parameter-dependent centre manifolds
will be a bit imprecise. See Sect. I.8.1 for a more concrete presentation.
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Suppose the (parameter-dependent) process S(t, s; ε) : RCR → RCR is
generated by a parameter-dependent impulsive RFDE with parameter ε ∈
R

m, and at ε = 0, the equilibrium 0 is nonhyperbolic with a p-dimensional
centre manifold. One then considers the spatially extended process onRCR×
R

m defined by

(φ, ε) 	→ (S(t, s; ε)φ, ε)

0 ∈ RCR×R
m is now nonhyperbolic with a (p+m)-dimensional centre fibre

bundle, so that the function (x, ε) 	→ C(t, x, ε) defines a (p+m)-dimensional
centre manifold. The dynamics on this centre manifold are trivial in the
ε component, while those in the x component depend for each ε fixed on
x 	→ C(t, x, ε).

For small parameters ε 
= 0, there may be small solutions in the parameter-
dependent centre manifold Wε

c defined by

Wε
c(t) = {C(t, x, ε) : x ∈ RCRc(t)}

that are locally asymptotically stable when restricted to Wε
c . There could

also be stable attractors therein—in particular (by Theorem I.5.3.1), any
small bounded solutions are contained in the centre manifold. The stability
condition in addition to continuity with respect to initial conditions (Theo-
rem I.4.2.1) and attractivity of the centre manifold (Theorem I.5.5.1) then
grants the analogous stability of such small solutions or attractors when con-
sidered in the scope of the original infinite-dimensional system (I.4.1)–(I.4.2),
provided ε is small enough and RCRu is trivial.

To summarize, when the unstable fibre bundle is trivial, the dynam-
ics on the centre manifold completely determine all nearby dynamics. Lo-
cal stability assertions associated to small solutions and attractors on the
parameter-dependent centre manifold carry over to those of the original
infinite-dimensional system. The parameter-dependent centre manifold con-
tains all such small solutions and attractors.

I.5.6 Smoothness in the State Space

In Sect. I.5.2, we proved the existence of invariant centre manifolds associ-
ated to the abstract integral equation (I.4.3). These invariant manifolds are
images of a uniformly Lipschitz continuous function C : RCRc → RCR. Our
next task is to prove that the function C inherits the smoothness from the
generating impulsive functional differential equation. To accomplish this, we
will need to introduce an additional regularity assumption on the nonlinear
parts of the vector field and jump map.

H.8 The functions cj and sequences {dj(k) : k ∈ Z} introduced in H.5 are
bounded.
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Note that H.8 is a purely nonautonomous property and is trivially satisfied
if the vector field and jump functions are autonomous. Also, we will need to
assume in this section that the centre fibre bundle is finite-dimensional.

H.9 RCRc is finite-dimensional.

I.5.6.1 Contractions on Scales of Banach Spaces

The rest of this section will utilize several techniques from the theory of
contraction mappings on scales of Banach spaces. In particular, many of
the proofs that follow are inspired by those relating to smoothness of centre
manifolds appearing in [41, 71, 144], albeit adapted somewhat so as to manage
the explicitly nonautonomous and impulsive properties of the problem. The
following lemma will be very helpful. It is taken from Section IX, Lemma 6.7
of [41], but also appears as Theorem 3 in [144].

Lemma I.5.6.1. Let Y0, Y, Y1 be Banach spaces with continuous embeddings
J0 : Y0 ↪→ Y and J : Y ↪→ Y1, and let Λ be another Banach space. Consider
the fixed-point equation y = f(y, λ) for f : Y ×Λ → Y . Suppose the following
conditions hold.

b1) The function g : Y0×Λ → Y1 defined by (y0, λ) 	→ g(y0, λ)=Jf(J0y0, λ)
is of class C1, and there exist mappings

f (1) : J0Y0 × Λ → L(Y ),

f
(1)
1 : J0Y0 × Λ → L(Y1).

such that D1g(y0, λ)ξ = Jf (1)(J0y0, λ)J0ξ for all (y0, λ, ξ) ∈ Y0×Λ×Y0

and Jf (1)(J0y0, λ)y = f
(1)
1 (J0y0, λ)Jy for all (y0, λ, y) ∈ Y0 × Λ× Y .

b2) There exists κ ∈ [0, 1) such that f(·, λ) : Y → Y is Lipschitz contin-

uous with Lipschitz constant κ, and each of f (1)(·, λ) and f
(1)
1 (·, λ) is

uniformly bounded by κ.

b3) Under the previous condition, the unique fixed point Ψ : Λ → Y satisfy-
ing the equation Ψ(λ) = f(Ψ(λ), λ) itself satisfies Ψ = J0 ◦Φ for some
continuous Φ : Λ → Y0.

b4) f0 : Y0 × Λ → Y defined by (y0, λ) 	→ f0(y0, λ) = f(J0y0, λ) has a
continuous partial derivative

D2f : Y0 × Λ → L(Λ, Y ).

b5) The mapping (y, λ) 	→ J ◦ f (1)(J0y, λ) from Y0 × Λ into L(Y, Y1) is
continuous.
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Then, the mapping J ◦Ψ is of class C1 and D(J ◦Ψ)(λ) = J ◦ A(λ) for all
λ ∈ Λ, where A = A(λ) is the unique solution of the fixed-point equation
A = f (1)(Ψ(λ), λ)A+D2f0(Φ(λ), λ).

The reason we will need this lemma is because substitution operators such
as Rδ : PCη,s → PCη,s(R,Rn) ⊕ Bη,s

tk
(Z,Rn) defined in Corollary I.5.1.1,

though Lipschitz continuous, are generally not differentiable. The surprising
result is that if one instead considers the codomain to be PCζ,s(R,Rn) ⊕
Bζ,s

tk
(Z,Rn) for some ζ > η, then the substitution operator becomes differen-

tiable. Since Xη-type spaces admit continuous embeddings J : Xη1 ↪→ Xη2

whenever η1 ≤ η2, the centre manifold itself can be considered to be embed-
ded in any appropriate weighted Banach space with high enough exponent η.
An appropriate application of Lemma I.5.6.1 applied to the defining fixed-
point equation (I.5.7) of the centre manifold will allow us to prove that a
composition of the embedding operator with the fixed point is a C1 function.
An inductive argument will ultimately get us to Cm smoothness.

I.5.6.2 Candidate Differentials of the Substitution
Operators

Recall the definition of the modified nonlinearities

Fδ,s(t, x) = f(t, x)ξ

( ||Pc(s)x||
Nδ

)
ξ

( ||(Ps(s) + Pu(s))x||
Nδ

)

Gδ,s(k, x) = g(k, x0−)ξ

( ||Pc(s)x0− ||
Nδ

)
ξ

( ||(Ps(s) + Pu(s))x0− ||
Nδ

)
.

Since s is fixed, we may assume without loss of generality that || · || is smooth
on RCRc(0) \ {0}. We introduce a symbolic modification of the fixed-point
operator;

Gη,s
δ : PCη,s ××RCRc(s) → PCη,s

defined in the same way as equation (I.5.7). The only difference here is that
wish to make the dependence on η, s and δ explicit. We denote the associated
fixed point by ũη,s, provided δ > 0 is sufficiently small.

From this point on, our attention shifts to proving the smoothness of
ũη,s : RCRc(s) → PCη,s as defined by the fixed point of (I.5.7). We begin
with some notation. Define PC∞ = ∪η>0PCη. Let

V η = {u ∈ PCη : ||(I − P̂c)u||0 < ∞},

where P̂c is the projection operator from Lemma I.5.3.1. Equipped with the
norm

||u||V η,s = ||Pcu||η,s + ||(I − Pc)u||0,
the space V η,s is complete, where the s-shifted definitions are as outlined at
the beginning of Sect. I.5.1.1.
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Let δ > 0 be chosen as in Lemma I.5.3.1, define

V η
δ = {u ∈ V η : ||(I − P̂c)u||0 < δ}

and define V η
δ (t) ⊂ RCR by V η

δ (t) = {u(t) : u ∈ V η
δ }. Also, define the set

V ∞
δ = ∪η>0V

η
δ . Set Bη = PCη(R,Rn) ⊕ Bη

tk
(Z,Rn) and B∞ = ∪η>0B

η.
Finally, the bounded p-linear maps from X1 × · · · × Xp to Y for Banach
spaces Xi and Y will be denoted as Lp(X1 × · · ·Xp, Y ). We will denote it as
Lp if there is no confusion.

By construction of the modified nonlinearity Rδ,s and the choice of δ from
Lemma I.5.3.1, the functions u 	→ Fδ,s(t, u) and u 	→ Gδ,s(k, u) are Cm on
V η
δ (t) and V η

δ (tk), respectively, for all t ∈ R and k ∈ Z. We are therefore free
to define

F̃
(p)
δ,s u(t) = DpF̃δ,s(t, u(t)), G̃

(p)
δ,su(k) = DpGδ,s(tk, u(tk)),

for 1 ≤ p ≤ m, where Dp denotes the pth Fréchet derivative with respect
to the second variable. For each u ∈ V ∞

δ , we can define a p-linear map

R̃
(p)
δ,s (u) : PC∞ × · · · × PC∞ → B∞ by the equation

R̃
(p)
δ,s (u)(v1, . . . , vp)(t, k) = (F

(p)
δ,s u(t)(v1(t), . . . , vp(t)), G

(p)
δ,su(k)(v1(tk), . . . , vp(tk))).

(I.5.25)

For p = 0, we define R̃
(0)
δ,s = Rδ,s.

I.5.6.3 Smoothness of the Modified Nonlinearity

In this section we elaborate on various properties of the substitution operator

Rδ,s and its formal derivative R̃
(p)
δ,s introduced in equation (I.5.25). The first

thing we need to do is extend condition H.5 to the modified nonlinearities.

Lemma I.5.6.2. For j = 1, . . . ,m, there exist constants c̃j , d̃j , q̃ > 0 such
that

||Dj F̃δ,s(t, φ)−Dj F̃δ,s(t, ψ)|| ≤ c̃j ||φ− ψ||, ||Dj F̃δ,s(t, φ)|| ≤ q̃c̃j φ, ψ ∈ V ∞
δ (t)

||DjG̃δ,s(k, φ)−DjG̃δ,s(k, ψ)|| ≤ d̃j ||φ−ψ||, ||DjG̃(k, φ)|| ≤ q̃d̃j φ, ψ ∈ V ∞
δ,s(tk).

Proof. We prove only the Lipschitzian property for DjFδ,s, since the bound-
edness and corresponding results for DjGδ,s are proven similarly. Denote

X(s, φ) = ξ

( ||Pc(s)φ||
Nδ

)
ξ

( ||(I − Pc(s))φ||
Nδ

)
.

When φ, ψ ∈ V ∞
δ (t), X is m-times continuously differentiable and its deriva-

tive is globally Lipschitz continuous. Moreover, the Lipschitz constant can
be chosen independent of s because of the uniform boundedness (property
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1) of the projection operators. Let LipkX denote the Lipschitz constant for
DkX(s, ·). Then,

DjF̃δ,s(t, φ)−DjF̃δ,s(t, ψ) = Dj [f(t, φ)X(s, φ)− f(t, ψ)X(s, φ)]

=
∑

N1,N2∈P2(j)

D#N1f(t, φ)D#N2X(s, φ)−D#N1f(t, ψ)D#N2X(s, ψ)

=
∑

N1,N2∈P2(j)

D#N1 [f(t, φ)− f(t, ψ)]D#N2X(s, φ)

+D#N1f(t, ψ)D#N2 [X(s, φ)−X(s, ψ)],

where P2(j) denotes the set of partitions of length two from the set {1, . . . , j}
and #Y is the cardinality of Y . Restricted to the ball B2δ(0), the Lipschitz
constants for Djf(t, ·) and the boundedness estimates from H.5 then imply
the estimate

||DjF̃δ,s(t, φ)−DjF̃δ,s(t, ψ)|| ≤
⎛
⎝ ∑

N1,N2∈P2(j)

(1 + q)c#N1
(t)Lip#N2

X

⎞
⎠ ||φ−ψ||.

As each of cj and dj are bounded, the Lipschitz constant admits an upper
bound. Outside of B2δ(0), X and all of its derivatives are identically zero.

Lemma I.5.6.3. Let 1 ≤ p ≤ m, μi > 0 for i = 1, . . . , p, μ = μ1 + · · · + μp

and η ≥ μ. Then we have R̃
(p)
δ,s (u) ∈ Lp(PCμ1 × · · · × PCμp , Bη) for all

u ∈ V ∞
δ , with

||R̃(p)
δ,s (u)||Lp ≤ sup

t∈R

||F̃ (p)
δ,s u(t)||e−(η−μ)|t| + sup

k∈Z

||G̃(p)
δ,su(k)||e−(η−μ)|tk|

= ||R̃(p)
δ,s (u)||η−μ.

Also, u 	→ R̃
(p)
δ,s (u) is continuous as a mapping R̃

(p)
δ,s : V σ

δ → Lp(PCμ1 × · · · ×
PCμp , Bη) if η > μ, for all σ > 0.

Proof. For brevity, denote R̃δ = R̃δ,s, and similarly for F̃ and G̃. It is easy

to verify that R̃
(p)
δ (u) is p-linear. For boundedness,

||R̃(p)
δ (u)||Lp = sup

t∈R,k∈Z

||v||�μ=1

||F̃ (p)
δ u(t)(v(t))||e−η|t| + ||G̃(p)

δ u(k)(v(tk))||e−η|tk|

≤ sup
t∈R

||v||�μ=1

||F̃ (p)
δ u(t)(v(t))||e−η|t| + sup

k∈Z

||w||�μ=1

||G̃(p)
δ u(k)(w(tk))||e−η|tk|

≤ sup
t∈R

||v||�μ=1

||F̃ (p)
δ u(t)|| ·

⎛
⎝∏

j

||vj(t)||
⎞
⎠e−η|t|+ sup

k∈Z

||w||�μ=1

||G̃(p)
δ u(k)|| ·

⎛
⎝∏

j

||wj(tk)||
⎞
⎠e−η|tk|

= sup
t∈R

||F̃ (p)
δ u(t)||e−(η−μ)|t| + sup

k∈Z

||G̃(p)
δ u(k)||e−(η−μ)|tk|,
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where ||v||�μ=1 is the set of all v = (v1, . . . , vp) ∈ PCμ1 × · · · × PCμp such
that ||vi||μi

= 1 for i = 1, . . . , p. The latter term in the inequality is finite
by Lemma I.5.6.2 whenever η ≥ μ. In particular, the latter lemma implies
that for all φ ∈ V ∞

δ , one has supt∈R
||DjF̃δ(t, φ(t))|| ≤ q̃c̃j , and similar for

G̃k. This uniform boundedness can then be used to prove the continuity of

u 	→ R̃
(p)
δ (u) when η > μ; the proof follows that of [Lemma 7.3 [71]] and is

omitted here.

The proofs of the following lemmas are essentially identical to the proofs
of [Corollary 7.5, Corollary 7.6, Lemma 7.7 [71]] and are omitted.

Lemma I.5.6.4. Let η2 > kη1 > 0, 1 ≤ p ≤ k. Then, R̃δ,s : V η1

δ →
Lp(PCη1 × · · · × PCη1 , Bη2) is Ck and DpR̃δ,s = R̃

(p)
δ,s .

Lemma I.5.6.5. Let 1 ≤ p ≤ m, μi > 0 for i = 1, . . . , p, μ = μ1 + · · · + μp

and η ≥ μ. Then, R̃
(p)
δ,s : V σ

δ → Lp(PCμ1 × · · · × Πμp , Bη) is Ck−p provided
η > μ+ (k − p)σ.

Lemma I.5.6.6. Let 1 ≤ p ≤ k, μi > 0 for i = 1, . . . , p, μ = μ1 + · · ·μp

and η > μ + σ for some σ > 0. Let X : RCRc(s) → V σ
δ be C1. Then,

R̃
(p)
δ,s ◦X : RCRc(s) → Lp(PCμ1 × · · · ×Πμp , Bη) is C1 and

D
(
R̃

(p)
δ,s ◦X

)
(φ)(v1, . . . , vp, ψ) = R̃

(p+1)
δ,s (X(φ))(v1, . . . , vp, X

′(φ)ψ).

I.5.6.4 Proof of Smoothness of the Centre Manifold

With our preparations complete, we can formulate and prove the statement
concerning the smoothness of the centre manifold.

Theorem I.5.6.1. Let J η2,η1
s : PCη1,s → PCη2,s denote the (continuous)

embedding operator for η1 ≤ η2. Let [η̃, η] ⊂ (0,min{−a, b}) be such that
mη̃ < η. Then, for each p ∈ {1, . . . ,m} and η ∈ (pη̃, η], the mapping Jηη̃

s ◦
ũη̃,s : RCRc(s) → PCη,s is of class Cp provided δ > 0 is sufficiently small.

Proof. The proof here follows the same lines as Theorem 7.7 from Section
IX of [41]. To begin, we choose δ > 0 small enough so that Lemma I.5.3.1
is satisfied in addition to having NLδ||Kη

s || < 1
4 for all η ∈ [η̃, η]. Remark

that this condition ensures that the centre manifold has range in V η. By
Lemma I.5.1.3 and Corollary I.5.1.1, this can always be done in such a way
that the inequality holds for all s ∈ R.

We proceed by induction on k. For p = 1 = k, we let η ∈ (η̃, η] and show
that Lemma I.5.6.1 applies with

Y0 = V
η̃,s
δ , Y = PCη̃,s

, Y1 = PCη,s
, Λ = RCRc(s)

f(u, ϕ) = G̃η̃,s
δ (u, ϕ), f

(1)
(u, ϕ) = Kη̃

s ◦ R̃
(1)
δ,s(u), f

(1)
1 (u, ϕ) = Kη

s ◦ R̃
(1)
δ,s(u),
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with embeddings J = J ηη̃
s and J0 : V η̃,s

δ ↪→ PCη̃,s. To check condition b1,
we must first verify the C1 smoothness of

V η̃,s
δ ×RCRc(s) � (u, ϕ) 	→ g(u, ϕ) = J ηη̃

s

(
U(·, s)ϕ+Kη̃

s ◦ R̃δ,s(J0u)
)
.

The embedding operator J ηη̃
s is itself C1, as is ϕ 	→ U(·, s)ϕ and J0u 	→

R̃δ,s(J0u), the latter due to Lemma I.5.6.4. C1 smoothness of g then fol-
lows by continuity of the linear embedding J0. Verification of the equali-

ties D1g(u, ϕ)ξ = Jf (1)(J0u, ϕ)J0ξ and Jf (1)(J0u, ϕ)ξ = f
(1)
1 (J0u, ϕ)Jξ is

straightforward. Condition b2 follows by boundedness of the embedding op-
erators and the small Lipschitz constant for G̃η̃,s

δ,s . For condition b3, the fixed

point is ũη̃,s : RCRc(s) → PCη̃,s, and we may factor it as ũη̃,s = J0 ◦ Φ with

Φ : RCRc(s) → V η̃,s
δ defined by Φ(ϕ) = ũη̃,s(ϕ); the latter is continuous

by Theorem I.5.2.1, and the factorization is justified by Lemma I.5.3.1. To
check condition b4, we must verify that

V η̃,s
δ ×RCRc(s) � (u, ϕ) 	→ f0(u, ϕ) = G̃η̃,s

δ,s (J0u, ϕ)

has a continuous partial derivative in its second variable—this is clear since
f0 is linear in ϕ. Finally, condition b5 requires us to verify that the map

(u, ϕ) 	→ J ηη̃
s ◦ Kη̃

s ◦ R̃
(1)
δ,s (J0u) is continuous from V η̃,s

δ × RCRc(s) into
L(RCRc(s),PCη,s), but this once again follows by the continuity of the em-
bedding operators and the smoothness of R̃δ,s from Lemma I.5.6.4.

The conditions of Lemma I.5.6.1 are satisfied, and we conclude that J ηη̃ ◦
ũη̃,s is of class C1 and that the derivative D(J ηη̃ ◦ ũη̃,s(ϕ)) ∈ L(RCRc(s),
PCη,s) is the unique solution w(1) of the equation

w(1) = Kη̃
s ◦ R̃(1)

δ,s (ũ
η̃
s(ϕ))w

(1) + U(·, s) := F1(w
(1), ϕ). (I.5.26)

The mapping F1 : L(RCRc(s),PCη,s) × RCRc(s) → L(RCRc(s),PCη,s) is
a uniform contraction for η ∈ [η̃, η]—indeed, F1(·, ϕ) is Lipschitz continuous
with Lipschitz constant L̃δ · ||Kη

s || < 1
4 ; this follows from Lemma I.5.6.3 and is

independent of s. Thus, ũ
(1)
s (ϕ) ∈ L(RCRc(s),PCη̃,s) ↪→ L(RCRc(s),PCη,s)

for η ≥ η̃. Moreover, ũ
(1)
s : RCRc(s) → L(RCRc(s),PCη,s) is continuous if

η ∈ (η̃, η].
Now, let 1 ≤ p ≤ k for k ≥ 1 and suppose that for all q ∈ {1, . . . , p} and

all η ∈ (qη̃, η], the mapping

J ηη̃
s ◦ ũη̃,s : RCRc(s) → PCη,s

is of class Cq with Dq(J ηη̃
s ◦ ũη̃

s) = J ηη̃
s ◦ ũ

(q)
η̃,s and ũ

(q)
η̃,s(ϕ) ∈ Lq(RCRc(s),

PCqη̃,s) for each ϕ ∈ RCRc(s), such that the mapping

J ηη̃
s ◦ ũ(q)

η̃,s : RCRc(s) → Lq(RCRc(s),PCη,s)
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is continuous for η ∈ (qη̃, η]. Suppose additionally that ũ
(q)
η̃,s(ϕ) is the unique

solution w(p) of an equation

w(p) = Kη̃p
s ◦ R̃(1)

δ,s (ũη̃,s(ϕ))w
(p) +H

(p)
η̃ (ϕ) := F

(p)
η̃ (w(p), ϕ), (I.5.27)

with H1 = U(·, s), and H
(p)
x (ϕ) for p ≥ 2 is a finite sum of terms of the form

Kpx
s ◦ R̃(q)

δ,s(ũη̃,s(ϕ))(ũ
(r1)
η̃,s (ϕ), · · · , ũ(rq)

η̃,s (ϕ))

with 2 ≤ q ≤ p, 1 ≤ ri < p for i = 1, . . . , q, such that r1 + · · · + rq =

p. Under such assumptions, the mapping F
(p)
η̃ : Lp(RCRc(s),PCη,s) ×

RCRc(s) → Lp(RCRc(s),PCη,s) is a uniform contraction for all η ∈ [pη̃, η];
see Lemma I.5.6.3.

Next, choose some η ∈ ((p+1)η̃, η], σ ∈ (η̃, η/(p+1)] and μ ∈ ((p+1)σ, η).
We will verify the conditions of Lemma I.5.6.1 with the spaces and functions

Y0 = Lp(RCRc(s),PCpσ,s), Y = Lp(RCRc(s),PCμ,s),

[3pt]Y1 = Lp(RCRc(s),PCη,s)

f(u, ϕ) = Kμ
s ◦ R̃(1)

δ,s (ũη̃,s(ϕ))u+H
(p)
μ/p(ϕ), Λ = RCRc(s),

f (1)(u, ϕ) = Kμ
s ◦ R̃(1)

δ,s (ũη̃,s(ϕ)) ∈ L(Y ),

f
(1)
1 (u, ϕ) = Kη

s ◦ R̃(1)
δ,s (ũη̃,s(ϕ)) ∈ L(Y1).

We begin with the verification of condition b1. We must check that

Lp(RCRc(s),PCpσ,s)×RCRc(s) � (u, ϕ) �→ J ημ ◦ Kμ
s ◦ R̃(1)

δ,s (ũη̃,s(ϕ))u+J ημ ◦H(p)
μ/p

(ϕ)

is of class C1, where now J η2η1 : Lp(RCRc(s),PCη1,s) ↪→ Lp(RCRc(s),
PCη2,s). The above mapping is C1 with respect to u ∈ Lp(RCRc(s),PCpσ,s)
since it is linear in this variable. With respect to ϕ ∈ RCRc(s), we have

that ϕ 	→ J ημKμ
s ◦ R̃

(1)
δ,s (ũη̃,s(ϕ)) is C1: this follows by Lemma I.5.6.6 with

μ > (p + 1)σ and the C1 smoothness of ϕ 	→ J ση̃ ◦ ũη̃,s(ϕ) with σ > η̃. For

the C1 smoothness of the portion ϕ 	→ J ημH
(p)
μ/p(ϕ), we get differentiability

from Lemma I.5.6.6; we have that the derivative of ϕ 	→ H
(p)
μ/p(ϕ) is a sum of

terms of the form

Kμ
s ◦R̃(q+1)

δ,s (ũη̃,s(ϕ))(ũ
(r1)
η̃,s (ϕ), . . . , ũ

(rq)
η̃,s (ϕ))

+

q∑
j=1

Kμ
s ◦ R̃(q)

δ,s(ũη̃,s(ϕ))(ũ
(r1)
η̃,s (ϕ), . . . , ũ

(rj+1)
η̃,s (ϕ), . . . , ũ

(rq)
η̃,s (ϕ)),

and each ũ
(j)
η̃,s is understood as a map into PCjσ,s. Applying Lemma I.5.6.3

with μ > (p + 1)σ grants continuity of DH
(p)
μ/p(ϕ) and, subsequently, to
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J ημDH
(p)
μ/p(ϕ). The other embedding properties of condition b1 are easily

checked. Condition b4 can be proven similarly.
The Lipschitz condition and boundedness of b2 follow by the choice of

δ > 0 at the beginning and the uniform contractivity of Hp described above.
Condition b3 is proven by writing

J ημ ◦ Kμ
s ◦ R̃(1)

δ,s (ũη̃,s)(ϕ)) = Kη
s ◦ R̃(1)

δ,s (ũη̃,s(ϕ))

and applying Lemma I.5.6.3 together with the C1 smoothness of ũη̃,s to

obtain the continuity of ϕ 	→ R̃
(1)
δ,s (ũη̃,s) ∈ L(Y, Y1). This also proves the

final condition b5 of Lemma I.5.6.1, and we conclude that ũ
(p)
η̃,s : RCRc(s) →

Lp(RCRc(s),PCη,s) is of class C1 with ũ
(p+1)
η̃,μ = Dũ

(p)
η̃,s ∈ L(p+1)(RCRc(s),

PCη,μ) given by the unique solution w(p+1) of the equation

w(p+1) = Kμ
s ◦ R̃(1)

δ,s (ũη̃,s(ϕ))w
(p+1) +H

(p+1)
μ/(p+1)(ϕ), (I.5.28)

where H
(p+1)
μ/(p+1)(ϕ) = Kμ

s ◦ R̃(2)
δ,s (ũη̃,s(ϕ))(ũ

(p)
η̃,s(ϕ), ũ

(1)
η̃,s(ϕ)) +DH

(p)
μ/p(ϕ). Sim-

ilar arguments to the proof of the case k = 1 show that the fixed point
w(p+1) is also contained in L(p+1)(RCRc(s),PCη̃(p+1),s), and the proof is
complete.

Corollary I.5.6.1. C : RCRc → RCR is Cm and tangent at the origin to
the centre bundle RCRc. More precisely, C(t, ·) : RCRc(t) → RCR is Cm

and DC(t, 0)φ = φ for all φ ∈ RCRc(t).

Proof. Let η̃, η be as in the proof of Theorem I.5.6.1. Define the evaluation
map evt : PCη → RCR by evt(f) = f(t). Since we can decompose the centre
manifold as

C(t, φ) = evt(ũt(φ)) = evt(J ηη̃
t ũt(φ)),

boundedness of the linear evaluation map on the space PCη,t then implies
the Ck smoothness of C(t, ·). To obtain the tangent property, we remark that

DC(t, 0)φ = evt

(
D

(
J ηη̃
t ◦ ũt(0)

)
φ
)
= evt

(
ũ
(1)
η,t(0)φ

)
.

From equation (I.5.26) and Theorem I.5.3.1, we obtain ũ
(1)
η,t(0) = U(·, t), from

which it follows that DC(t, 0)φ = φ, as claimed.

As a secondary corollary, we can prove that each derivative of the centre
manifold is uniformly Lipschitz continuous. The proof is similar to that of
Corollary I.5.2.1 if one takes into account the representation of the derivatives

ũ
(p)
η̃,s as solutions of the fixed-point equations (I.5.28), whose right-hand side

is a contraction with Lipschitz constant independent of s.
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Corollary I.5.6.2. For each p ∈ {1, . . . , k}, there exists a constant L(p) > 0
such that the centre manifold satisfies ||DpC(t, φ)−DpC(t, ψ)|| ≤ L(p)||φ−ψ||
for all t ∈ R and φ, ψ ∈ RCRc(t).

Additionally, each of the Taylor coefficients of the centre manifold is in
fact bounded. This observation will be important in later chapters.

Corollary I.5.6.3. There exist constants γ0, . . . , γm such that the Cm centre
manifold satisfies ||DjC(t, 0)|| ≤ γj for all t ∈ R. If the centre manifold is
Cm+1, the Taylor remainder

Rm(t, φ) = C(t, φ)−
m∑
j=1

DjC(t, 0)φj

admits an estimate of the form ||Rm(t, φ)|| ≤ γ(m)||φ||m+1 for φ ∈ Bδ(0) ∩
RCRc(t). The constants γ(m) and δ can be chosen independent of t.

Proof. From equation (I.5.28), the jth Taylor coefficient is given by

DjC(t, 0) = evt

(
H

(j+1)
μ/(j+1)(0)

)
.

The first two coefficients (j = 0 and j = 1) are zero and the identity, re-
spectively. These are bounded. A straightforward inductive argument on
the form of the maps H then grants the uniform boundedness of DjC(t, 0).
The claimed bound on the remainder term then follows from the uniform
boundedness of Dm+1C(t, 0) and the Lipschitz constant L(j+1) from Corol-
lary I.5.6.2.

We readily obtain the smoothness of the centre manifold in the case where
the semilinear equation is periodic. In particular, in such a situation some of
the assumptions H.1–H.8 are satisfied automatically and can be ignored.

Corollary I.5.6.4. Suppose the semilinear equation (I.4.1)–(I.4.2) satisfies
the following conditions.

P.1 The equation is periodic with period T and c impulses per period. That
is, L(t+ T ) = L(t) and f(t+ T, ·) = f(t) for all t ∈ R, and B(k+ c) =
B(k) , g(k + c, ·) = g(k, ·) and tk+c = tk + T for all k ∈ Z.

P.2 Conditions H.1–H.3 and H.5–H.6 are satisfied.

Then, the conclusions of Corollaries I.5.6.1 and I.5.6.2 hold.

I.5.6.5 Periodic Centre Manifold

In this section we will prove that the centre manifold is itself a periodic
function, provided the conditions P.1–P.2 of Corollary I.5.6.4 are satisfied.
We begin with a preparatory lemma.
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Lemma I.5.6.7. Define the operator Ns : RCRc(s) → RCRc(s) by

Ns(φ) = Pc(s)S(s+ T, s)C(s, φ).
This operator is well-defined and invertible in a neighbourhood of 0∈RCRc(s).
Moreover, the neighbourhood can be written U ∩ RCRc(s) for some open
neighbourhood U ⊂ RCR of 0 ∈ RCR, independent of s.

Proof. To show that Ns is invertible in a neighbourhood of the origin, we will
use the inverse function theorem. The Fréchet derivative of Ns at 0 is given
by

DNs(0)φ = Pc(s) ◦DS(s+ T, s)(0) ◦DC(s, 0)φ
= Pc(s+ T ) ◦ U(s+ T, s)φ

= Uc(s+ T, s)φ,

where we used Corollary I.5.6.1 to calculate DC(s, 0) and Theorem I.4.2.1
to calculate DS(s + T, s)(0). Since U(s + T, s) is an isomorphism (The-
orem I.3.1.3) of RCRc(s) with RCRc(s + T ) = RCRc(s), we obtain the
claimed local invertibility.

To show that the neighbourhood may be written as claimed, we remark
that DNs(x) is uniformly convergent (in the variable s) as x → 0 to DNs(0).
Indeed, we have the estimate

||DNs(x)−DNs(0)|| ≤ ||Uc(s+ T, s)Pc(s)|| · ||DC(s, x)−DC(s, 0)||,
and the Lipschitz property of Corollary I.5.6.2 together with uniform bound-
edness of the projector Pc(s) and centre monodromy operator Uc(s + T, s)
grants the uniform convergence as x → 0. As a consequence, the implicit
function may be defined on a neighbourhood that does not depend on s.

Theorem I.5.6.2. There exists δ > 0 such that C(s+ T, φ) = C(s, φ) for all
s ∈ R whenever ||φ|| ≤ δ.

Proof. By Lemma I.5.6.7, there exists δ > 0 such that if ||φ|| ≤ δ, we can write
φ = Ns(ψ) for some ψ ∈ RCRc(s). By Theorem I.5.3.1 and the periodicity
condition P.1,

C(s+ T, φ) = C(s+ T,Ns(ψ))

= C(s+ T, Pc(s+ T )S(s+ T, s)C(s, ψ))
= S(s+ T, s)C(s, ψ)
= S(s, s− T )C(s, ψ)
= C(s, Pc(s)S(s, s− T )C(s, ψ))
= C(s, Pc(s)S(s+ T, s)C(s, ψ))
= C(s,Ns(ψ)) = C(s, φ),

where the identity S(s + T, s) = S(s, s − T ) follows due to periodicity and
Lemma I.4.1.1.
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I.5.7 Regularity of Centre Manifolds with
Respect to Time

In the previous section we were concerned with the smoothness of φ 	→ C(t, φ).
To contrast, in this section we are interested in to what degree the function
t 	→ DkC(t, φ) is differentiable, for each k = 1, . . . ,m. We should generally not
expect this function to be differentiable; indeed, it would be very surprising
if this were true given that the process U(t, s) associated to the linearization
is generally discontinuous everywhere (recall the discussion of Sect. I.2.2.2).

Perhaps it is better to motivate our ideas on regularity in time by explain-
ing how we will be using the centre manifold in applications. From Taylor’s
theorem, C(t, φ) admits an expansion of the form

C(t, φ) = DC(t, 0)φ+
1

2
D2C(t, 0)[φ]2 + · · ·+ 1

m!
DmC(t, 0)[φ]m +O(||φ||m+1),

where [φ]k = [φ, . . . , φ] with k factors, and the O(||φ||m+1) terms generally
depend on t. By Theorem I.5.6.2, under periodicity assumptions these terms
will be uniformly bounded in t for ||φ|| sufficiently small. This expansion
can in principle be used in the dynamics equation (I.5.12)–(I.5.13) on the
centre manifold or its integral version (I.5.10), which will permit us to classify
bifurcations in impulsive RFDE. In later sections we will want to make these
dynamics equations concrete—that is, to pose them in a concrete vector space
such as Rp for some p ∈ N. By analogy with ordinary and delay differential
equations, this should also allow us to obtain a partial differential equation
for the Taylor coefficients DjC(t, 0). As these coefficients are time-varying,
we should suspect this PDE to contain derivatives in time as well.

In summary, we need to consider the differentiability of the function t 	→
DjC(t, 0) for j = 1, . . . ,m. Since we suspect that this function will not
actually be differentiable, we might consider instead the differentiability of

t 	→ DjC(t, 0)[φ1, . . . , φj ](θ)

for each θ ∈ [−r, 0] and j-tuples φ1, . . . , φj . While a more realistic goal, even
this is too strong a condition. The first differential DC(t, 0) : RCRc(t) →
RCR of the centre manifold has a different domain for each t. As a con-
sequence, we cannot even define the derivative of t 	→ DC(t, 0)φ(θ), since
we must have φ ∈ RCRc(t) for the right-hand side to be well-defined. This
problem is apparent for all higher differentials.

I.5.7.1 A Coordinate System and Pointwise PC1,m-
Regularity

To address the issue, the centre manifold having a “time-varying domain”, let
us first assume thatRCRc is finite-dimensional—that is, H.9 is satisfied. Note
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if we fix a sufficiently well-behaved coordinate system in RCRc(t)—for exam-
ple, let φ1, . . . , φp be a basis for RCRc(0) and define φi(t) = Uc(t, 0)φi for i =
1, . . . , p to be a basis for RCRc(t)—then the function w(t) of Lemma I.5.4.1
and Theorem I.5.4.1 can be written as w(t) = Φtz(t) for z ∈ R

p, where
Φt = [ φ1(t) · · · φp(t) ]. This motivates us to consider instead a centre
manifold in these coordinates.

Definition I.5.7.1. The function C : R× R
p → RCR defined by

C(t, z) = C(t,Φtz) (I.5.29)

is the centre manifold in terms of the basis array Φ.

If C(t, ·) is Cm-smooth, the chain rule implies the same is true for C(t, ·).
It follows that

C(t, w(t)) = DC(t, 0)z(t) +
1

2
D2C(t, 0)[z(t), z(t)] + · · ·

+
1

m!
DmC(t, 0)[z(t)]m +O(||w(t)||m+1),

so insofar as dynamics on the centre manifold are concerned, it is enough
to study the differentiability of t 	→ DjC(t, 0)[z1, . . . , zp](θ) for p-tuples
z1, . . . , zp ∈ R

p. Specifically, the temporal regularity we will attempt to
prove is given in the following definition.

Definition I.5.7.2. A function F : R × R
p → RCR is pointwise PC1,m-

regular at zero if it satisfies the following conditions:

• x 	→ F (t, x) is Cm in a neighbourhood of 0 ∈ R
p, uniformly in t;

• for j = 0, . . . ,m, DjF (t, 0)[z1, . . . , zj ](θ) is differentiable from the right
with limits on the left separately with respect to t and θ, for all z1, . . . , zj
∈ R

p.

With this in mind, the result we will prove is as follows.

Theorem I.5.7.1. Let φ1, . . . , φp be a basis for RCRc(0), and define

Φt = [ Uc(t, 0)φ1 · · · Uc(t, 0)φp ].

If the centre manifold C : RCRc → RCR is (fibrewise) Cm, then the centre
manifold in terms of the basis array Φ is pointwise PC1,m-regular at zero
provided certain technical conditions are met (assumption H.10). Moreover,
if θ ∈ RCR(R, [−r, 0]), then t 	→ C(t, z)(θ(t)) is continuous from the right
with limits on the left for all z ∈ R

p, and z 	→ C(t, z) is Lipschitz continuous,
uniformly for t ∈ R.

The technical condition will be introduced in Sect. I.5.7.3.



102 CHAPTER I.5. EXISTENCE, REGULARITY AND. . .

I.5.7.2 Reformulation of the Fixed-Point Equation

Given that C(t, z) = C(t,Φtz), we can equivalently write C(t, z) = vt(z)(t)
with vt : R

p → PCη,t the unique fixed point of the equation

vt(z) = Φ(·)z +Kη
t (Rδ,t(vt(z))) (I.5.30)

for each |z| small enough, where Kη
t is as defined in Eq. (I.5.3) and Rδ,t is the

substitution operator from Sect. I.5.1.3. Notice also that the nonlinear oper-
ator defining the right-hand side of the equation admits the same Lipschitz
constant as original fixed-point operator G from Eq. (I.5.7). Up to an ap-

propriate embedding, the jth differential v
(j)
t satisfies for j ≥ 2 a fixed-point

equation of the form

v
(j)
t = Kη

t ◦R(1)
δ,t (vt)v

(j)
t +Kη

t ◦H(j)(vt, v
(1)
t , . . . , v

(j−1)
t ), (I.5.31)

with the right-hand side defining a uniform contraction in v
(j)
t . H(j) can be

written as a finite linear combination of terms of the form

R
(q)
δ,t (vt)[v

(r1)
t , . . . , v

(rq)
t ],

for q ∈ {2, . . . , j}, such that r1 + · · · + rq = j. All of this follows from (the
proof of) Theorem I.5.6.1. Explicitly,

H(j) = −R
(1)
δ,t (vt)v

(j)
t +Dj

z[Rδ,t(vt(z))],

and one can verify by induction on j that H(j) contains no term of the form

R(1)(vt)v
(j)
t and that the coefficients in the aforementioned linear combination

are independent of t. To compare, for j = 0 and j = 1, we can compute
directly from the definition of the fixed point and by using Corollary I.5.6.1
and the chain rule that

vt(0)(·) = 0, (I.5.32)

v
(1)
t (0)(·) = Φ(·). (I.5.33)

The assumption Df(t, 0) = Dg(k, 0) = 0 implies R
(1)
δ (0) = 0, so the fixed-

point equation (I.5.31) implies

v
(j)
t (0)(μ) =

[
Kη

t ◦H(j)(0,Φ(·), v
(2)
t (0)(·), . . . , v(j−1)

t (0)(·))
]
(μ) (I.5.34)

for j ≥ 2. By definition of the basis array Φ, the following lemma is proven.

Lemma I.5.7.1. If the centre manifold is C1, then the centre manifold in
terms of the basis array Φ is pointwise PC1,1-regular at zero. If the centre
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manifold is Cm, then the centre manifold in terms of the basis array Φ is
pointwise PC1,m-regular at zero provided

t 	→
[
Kη

t ◦H(j)(0,Φ(·), v
(2)
t (0)(·), . . . , v(j−1)

t (0)(t))
]
(t)[z1, . . . , zj ](θ),

θ 	→
[
Kη

t ◦H(j)(0,Φ(·), v
(2)
t (0)(·), . . . , v(j−1)

t (0)(t))
]
(t)[z1, . . . , zj ](θ)

are each, for j = 2, . . . ,m differentiable from the right with limits on the left,
for all z1, . . . , zj ∈ R

p.

I.5.7.3 A Technical Assumption on the Projections Pc(t)
and Pu(t)

By definition of the bounded linear mapKη
t from (I.5.3), it will be necessary to

differentiate (in t) integrals involving terms of the form μ 	→ U(t, μ)Ps(μ)χ0

and μ 	→U(t, μ)Pu(μ)χ0. Generally, if we assumeRCRu(0) to be q-dimensional
(guaranteed by Theorem I.3.1.3 if the linearization is periodic, for example),
then we can fix a basis ψ1, . . . , ψq for RCRu(0) and construct a basis array

Ψt = [ Uu(t, 0)ψ1 · · · Uu(t, 0)ψq ]

for RCRu(t) that is formally analogous to the basis array Φt for the centre
fibre bundle. Under spectral separation assumptions, Uu(t, s) : RCRu(s) →
RCRu(t) and Uc(t, s) : RCRc(s) → RCRc(t) are topological isomorphisms,
from which it follows that there exist unique Yc(t) ∈ R

p×n and Yu(t) ∈ R
q×n

such that

Pc(t)χ0 = ΦtYc(t),

Pu(t)χ0 = ΨtYu(t).
(I.5.35)

Recall p = dim(RCRc). Even under periodicity conditions, computing the
action of these projections on the functional χ0 ∈ RCR([−r, 0],Rn×n) is
quite nontrivial and requires computing the abstract contour integral (I.3.4).
Though this can in principle be done numerically by discretizing the mon-
odromy operator, there is little in the way of theoretical results guaranteeing,
for example, that the matrix functions t 	→ Yc(t) and t 	→ Yu(t) are, respec-
tively, elements of RCR(R,Rp×n) and RCR(R,Rq×n). Such a result would
make the differentiation of the integrals appearing in the definition of Kη

t

much more reasonable. We therefore introduce another hypothesis. We will
discuss it in a bit more detail in Sect. I.5.7.7.

****

H.10 There are (finite) basis arrays Φ and Ψ for RCRc and RCRu, respec-
tively, for which the matrix functions t 	→ Yc(t) and t 	→ Yu(t) from
equation (I.5.35) are continuous from the right and possess limits on
the left.
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I.5.7.4 Proof of PC1,m-Regularity at Zero

We deal first with the continuity of t 	→ C(t, z)(θ(t)) from the right and
the existence of its left-limits. Since C(·, z) = vt(z)(·) ∈ PCη,t, it can be
identified with a history function t 	→ ct for some c ∈ RCR(R,Rn). But
this implies C(t, z)(θ(t)) = ct(θ(t)) = c(t + θ(t)). The conclusion follows
because c ∈ RCR(R,Rn) and θ ∈ RCR(R, [−r, 0]), and right-continuity and
limits respect composition. As for the Lipschitzian claim, it follows by similar
arguments to the proof of the original centre manifold Theorem I.5.2.1 and
Corollary I.5.2.1.

Using the definition of the linear map Kη
t in (I.5.3) and equation (I.5.34),

we can explicitly write v
(j)
t (0)(t) as

v
(j)
t (0)(t) =

∫ t

−∞
U(t, μ)[I − Pc(μ)− Pu(μ)]χ0Ĥ

(j)
1 (μ)dμ

−
∫ ∞

t

U(t, μ)Pu(μ)χ0Ĥ
(j)
1 (μ)dμ

+
t∑

−∞
U(t, ti)[I − Pc(ti)− Pu(ti)]χ0Ĥ

(j)
2 (ti)dti

−
∞∑
t

U(t, ti)Pu(ti)χ0Ĥ
(j)
2 (ti)dti,

where each of Ĥ
(j)
1 (μ) and Ĥ

(j)
2 (ti) and H(j) are related by the equations

H(j) =
∑
i

ciR
(ri)
δ,t (0)[Φ

di,1

(·) , [v
(2)
t (0)(t)]di,2 , . . . , [v

(j−1)
t (0)(t)]di,j−1 ]

Ĥ
(j)
1 (μ) =

∑
i

ciD
rif(μ, 0)[Φdi,1

μ , [v
(2)
t (0)(μ)]di,2 , . . . , [v

(j−1)
t (0)(μ)]di,j−1 ]

Ĥ
(j)
2 (tk) =

∑
i

ciD
rig(k, 0)[Φ

di,1

tk
, [v

(2)
t (0)(tk)]

di,2 , . . . , [v
(j−1)
t (0)(tk)]

di,j−1 ].

The first line follows from the definition of H(j), while the other two come
from the definition of the substitution operator. Note also that we have

suppressed the inputs z1, . . . , zj ; technically, each of Ĥ
(j)
1 (μ) and Ĥ

(j)
2 (μ) are

j-linear maps from R
p to RCR. Using assumption H.10, we can equivalently

write v
(j)
t (0)(t) as

v
(j)
t (0)(t) =

∫ t

−∞
[U(t, μ)χ0 − ΦtYc(μ)−ΨtYu(μ)]Ĥ

(j)
1 (μ)dμ

−
∫ ∞

t

ΨtYu(μ)Ĥ
(j)
1 (μ)dμ
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+

t∑
−∞

[U(t, ti)χ0 − ΦtYc(ti)−ΨtYu(ti)]Ĥ
(j)
2 (ti)dti

−
∞∑
t

ΨtYu(ti)Ĥ
(j)
2 (ti)dti. (I.5.36)

At this stage, we remark that Theorem I.5.6.1 implies v
(i)
t (0)(·)[z1, . . . , zi] ∈

PC∞ for i = 1, . . . , j − 1, while Φt is pointwise differentiable from the
right by its very definition. With these details and assumption H.3, μ 	→
Ĥ

(j)
1 (μ)[z1, . . . , zj ] is an element of RCR(R,Rn) for every tuple z1, . . . , zj ∈

R
p. From assumption H.10, v

(j)
t (0)(t) is pointwise differentiable from the

right if and only if the limit

lim
ε→0+

1

ε

∫ t+ε

t

U(t+ ε, μ)χ0Ĥ
(j)
1 (μ)dμ

exists pointwise. From Eq. (I.2.15) and Lemma I.2.3.5, we can equivalently
write the integral above in terms of the fundamental matrix solution:

∫ t+ε

t

U(t+ ε, μ)χ0Ĥ
(j)
1 (μ)dμ

=

∫ t+ε

t

χ(−∞,t+ε+θ](μ)

(
I +

∫ t+ε+θ

μ

L(ζ)Vζ(·, μ)dζ
)
Ĥ

(j)
1 (μ)dμ.

If θ < 0, then the integrand vanishes when ε < −θ. Since μ 	→ Ĥ
(j)
1 (μ) is

continuous from the right, we conclude that

lim
ε→0+

1

ε

∫ t+ε

t

U(t, μ)χ0Ĥ
(j)
1 (μ)dμ = χ0Ĥ

(j)
1 (t),

so that t 	→ v
(j)
t (0)(t) is differentiable from the right (for θ fixed), as claimed.

The proof of existence of limits on the left is similar and omitted.
To get the analogous result for θ, it is worth recalling that from the fixed-

point formulation, v
(j)
t (0) is a j-linear map from R

p to PCη,t. As a conse-
quence, for all t ∈ R, θ ∈ [−r, 0] and z1, . . . , zj ∈ R

p the equation

v
(j)
t (0)(t)[z1, . . . , zj ](θ) = v

(j)
t (0)(t+ θ)[z1, . . . , zj ](0)

is satisfied. The analogous differentiability and limit results for θ therefore
follow from those of t, completing the proof.

I.5.7.5 The Hyperbolic Part Is Pointwise PC1,m-Regular
at Zero

Later we will need to also consider the Taylor expansions of the hyperbolic
part H : R× R

p → RCR of the centre manifold in terms of a basis array Φ,
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defined by

H(t, z) = (I − Pc(t))C(t, z). (I.5.37)

The hyperbolic part is guaranteed to be Cm-smooth in z, since (I − Pc(t))
is linear. To show that it is pointwise PC1,m-regular at zero, we notice that
H(t, z) = ht(z)(t), where ht(z) can be written as

ht(z) = (I − Pc(t))Φ(·)z +K∗ ◦Rδ,t(vt(z))

in PC0. However, since (I−Pc(t)) is uniformly bounded, K∗ = (I−Pc(t))Kη
t

is well-defined as a map from η-bounded inhomogeneities into PCη,t. Setting
z = 0, it follows that

ht(0) = 0,

h
(1)
t (0)(t) = 0

h
(j)
t (0)(t) = K∗ ◦H(j)(0,Φ(·), v

(2)
t (0)(·), . . . , v(j−1)

t (0)(·)).
On the other hand, for z 
= 0 we have

ht(z)(t) = K∗ ◦Rδ,t(vt(z))(t).

By the same argument as in the proof of Theorem I.5.7.1, we can make the
following conclusion.

Corollary I.5.7.1. The hyperbolic part H(t, z) = (I − Pc(t))C(t, z) of the
centre manifold in terms of the basis array Φ is pointwise PC1,m-regular at
zero. Moreover, if θ ∈ RCR(R, [−r, 0]), then t 	→ H(t, z)(θ(t)) is continuous
from the right and has limits on the left for all z ∈ R

p, and z 	→ H(t, z) is
Lipschitz continuous uniformly for t ∈ R.

I.5.7.6 Uniqueness of the Taylor Coefficients

Theorem I.5.7.1 guarantees that the coefficients in the Taylor expansion

C(t, z) = DC(t, 0)z +
1

2
D2C(t, 0)[z, z] + · · ·+ 1

m!
CmC(t, 0)[z, . . . , z] +O(||z||m+1)

are pointwise differentiable from the right and have limits on the left. How-
ever, the centre manifold C : RCRc → RCR used to define the representation
in terms of the basis array Φ depends non-canonically on the choice of cutoff
function used to define the substitution operator Rδ,t. However, this cut-
off function does not actually factor into the coefficients DjC(t, 0). Indeed,

each of μ 	→ v
(j)
t (0)(μ) is a sum of improper integrals and convergent series

that depend only the lower-order terms v
(i)
t (0)(·) for i < j—see equation

(I.5.36)—and is independent of the cutoff function. By induction, we can see
from (I.5.32)–(I.5.34) that, in fact, none of these lower-order terms depend on
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the cutoff function. The same arguments apply to the hyperbolic part. Since
this is the only non-canonical element in the definition of the centre manifold
(indeed, the renorming is only relevant outside of a small neighbourhood of
0 ∈ RCR and so does not affect Taylor expansions), the following corollary
is proven.

Corollary I.5.7.2. Let Φ be a basis array for RCRc. Let C1 and C2 be two
distinct centre manifolds, and let C1 and C2, respectively, be the centre man-
ifolds with respect to the basis array Φ. Also, let H1 and H2 be the respective
hyperbolic parts. Then, for j = 1, . . . ,m, we have DjC1(t, 0) = DjC2(t, 0)
and DjH1(t, 0) = DjH2(t, 0). That is, the Maclaurin series expansion of
the centre manifold in terms of the basis array Φ is unique, as is that of the
hyperbolic part.

I.5.7.7 A Discussion on the Regularity of the Matrices
t 	→ Yj(t)

Hypothesis H.10 introduces a technical assumption on the matrices appear-
ing in the decomposition (I.5.35). It is our goal in this section to formally
demonstrate that there is reason to suspect that this hypothesis holds gen-
erally, although proving this result would likely be difficult. We will consider
only t 	→ Yc(t), since the discussion for t 	→ Yu(t) is the same.

When the linearization “has no delayed terms” and is spectrally separated
as a finite-dimensional system, t 	→ Yc(t) is automatically continuous from
the right with limits on the left. Abstractly, having no delayed terms means
that the functionals defining the linearization have support in the subspace
RCR0 = {χ0ξ : ξ ∈ R

n}. Let us prove the claim. Let X(t, s) denote the
Cauchy matrix associated to the linearization

ẋ = L(t)x(t), t 
= tk (I.5.38)

Δx = B(k)x(t−), t = tk. (I.5.39)

The projection Pc(t) onto the associated centre fibre bundle satisfies the
equation

X(t, s)Pc(s) = Pc(t)X(t, s)

for all t ≥ s. However, since X−1(t, s) exists for all t, s ∈ R—see Chap. II.2 or
the monograph [9] for the relevant background on linear impulsive differential
equations in finite-dimensional spaces—we have Pc(t) = X(t, 0)Pc(0)X

−1(t, 0)
for all t ∈ R. Moreover, t 	→ X(t, 0) is continuous from the right and has
limits on the left, from which it follows that the same is true for Pc(t). Sim-
ilarly, each of Ps(t) and Pu(t) is an element of RCR(R,Rn×n). If we write
Pc(t) = Φ(t)Yc(t) for Φ(t) = X(t, 0)Φ(0) a matrix whose columns form a
basis for RCRc(t), then the observation that the columns of Φ(t) are linearly
independent implies we can write

Yc(t) = Φ+(t)Pc(t),
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where Φ+(t) is the left-inverse of Φ(t). Since the rank of t 	→ Φ(t) is constant,
t 	→ Φ+(t) is continuous from the right and has limits on the left. It follows
that t 	→ Yc(t) is an element of RCR(R,Rp×n). If (I.5.38)–(I.5.39) is now
considered as an impulsive RFDE with phase space RCR([−r, 0],Rn) for
some r > 0, then we can write

U(t, s)φ(θ) =

{
X(t+ θ, s)φ(0), t+ θ ≥ s
φ(t+ θ − s), t+ θ < s.

If one defines Pj(t) : RCR → RCR by

Pj(t)φ(θ) = X(t+ θ, t)Pj(t)φ(0),

one can verify directly U(t, s) : RCR → RCR is spectrally separated with
the triple of projectors (Ps,Pc,Pu). But then,

Pc(t)χ0(θ) = X(t+ θ, t)Pc(t) = X(t+ θ, t)Φ(t)Yc(t) = Φ(t+ θ)Yc(t) = Φt(θ)Yc(t).

We already know that t 	→ Yc(t) is an element of RCR(R,Rp×n), and since
this same matrix satisfies the decomposition Pc(t)χ0 = ΦtYc(t), we are done.

In the general case, the situation is far more subtle since the projector t 	→
Pc(t) is not even pointwise continuous. Consider the periodic case. RCRc(t)
is the invariant subspace of the monodromy operator Vt that contains, in
particular, nontrivial elements φ ∈ RCR(t) with the property that ||Vtφ|| =
||φ||. However, since Vt = U(t+T, t), any such element of RCRc(t) will have
discontinuities on the set Dt = {θ ∈ [−r, 0] : t+ θ ∈ {tk : k ∈ Z}}. Generally,
Dt is nonempty and nonconstant; the discontinuities move by translation to
the left as t increases. Consequently, the discontinuities of Pc(t)φ for fixed
φ ∈ RCR are nonconstant in t, so t 	→ ||Pc(t)φ|| is generally discontinuous
(from the right and left) at any t ∈ R such that Dt is nonempty. As such,
one cannot take advantage of any regularity properties of t 	→ Pc(t) even in
the pointwise sense.

I.5.8 Comments

Some of the content of this chapter appears in the two papers Smooth cen-
tre manifolds for impulsive delay differential equations and Computation of
centre manifolds and some codimension-one bifurcations for impulsive delay
differential equations by Church and Liu, published in Journal of Differential
Equations [31, 33] in 2018 and 2019, respectively. Some improvements have
been made in the present monograph, however. For example, in the first of
the two publications, smoothness of the centre manifold was only proven in
the periodic case. The second of the two publications considers only discrete
delays.

Some early results on the existence of invariant manifolds for impulsive
differential equations in the infinite-dimensional context are due to Bainov
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et al. [11, 12], where they prove the existence of integral manifolds (subsets
of the phase space consisting of entire solutions) identified as perturbations
of linear invariant subspaces. Centre manifolds are not considered, however,
and in this context, the linear dynamics on a given Banach space are assumed
to be reversible, so in particular the restriction to the stable subspace defines
an all-time process. Exponential trichotomy is assumed on the dynamics
of the linear part, which is similar to what we have assumed in this chap-
ter. Aside from these and related investigations into stable manifolds under
weaker notions of hyperbolicity than exponential dichotomy—see [16] and the
references cited therein—and some recent results on Lipschitz-smooth stable
manifolds for impulsive delay differential equations [8], there has not been
much investigation in this area.

Our proof of smoothness of the centre manifold uses formal differentiation
in conjunction with Lemma I.5.6.1 on fixed points of contractions on a scale
of Banach spaces. The latter technique as it applies to proving the smooth-
ness of centre manifolds was introduced in 1987 by Vanderbauwhede and Van
Gils [144]. See [44, 70, 71, 107] for a few other applications. Regularity in
time of the coefficients in the Taylor expansion of the centre manifold for
nonautonomous systems seems to not be as well-studied. See Theorem A.1
of [116] by Potzschë and Rasmussen for a regularity result for invariant man-
ifolds for nonautonomous ordinary differential equations, and the references
cited therein for relevant proof methodologies.
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