
Chapter I.2

General Linear Systems

In this chapter we will be primarily interested in the linear impulsive RFDE

ẋ = L(t)xt + h(t), t �= tk (I.2.1)

Δx = B(k)xt− + rk, t = tk. (I.2.2)

The following assumptions will be needed throughout:

H.1 The representation

L(t)φ =

∫ 0

−r

[dθη(t, θ)]φ(θ)

holds, where the integral is taken in the Lebesgue–Stieltjes sense, the
function η : R× [−r, 0] → R

n×n is jointly measurable and is of bounded
variation and right-continuous on [−r, 0] for each t ∈ R, such that
|L(t)φ| ≤ �(t)||φ|| for some � : R → R locally integrable.

H.2 The sequence tk is monotonically increasing with |tk| → ∞ as |k| → ∞,
and the representation

B(k)φ =

∫ 0

−r

[dθγk(θ)]φ(θ)

holds for k ∈ Z for functions γk : [−r, 0] → R
n×n of bounded variation

and right-continuous, such that |B(k)| ≤ b(k).
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Remark I.2.0.1. Assumption H.1 includes the case of discrete time-varying
delays: for example, the linear differential-difference equation

ẋ =

m∑
k=1

Ak(t)x(t− rk(t))

with rk continuous, is associated with a linear operator satisfying condition
H.1 with η(t, θ) =

∑
Ak(t)H−rk(t)(θ), where Hz(θ) = 1 if θ ≥ z and zero

otherwise. It also obviously includes a large class of distributed delays, such
as those appearing in the differential equation

ẋ =

∫ 0

−τ

K(t, θ)x(t+ θ)dθ.

Similar results apply for the jump function B(k) and assumption H.2. More-
over, each of L(t) and B(k) is well-defined on RCR; see Theorem 2.23 from
Chapter 3 of [66].

I.2.1 Existence and Uniqueness of Solutions

Definition I.2.1.1. Let (s, φ) ∈ R × RCR. A function x ∈ RCR([s −
r, α),Rn) for some α > s is an integrated solution of the linear impulsive
RFDE (I.2.1)–(I.2.2) satisfying the initial condition (s, φ) if it satisfies xs = φ
and the integral equation

x(t) =

{
φ(0) +

∫ t

s
[L(μ)xμ + h(μ)]dμ+

∑
s<ti≤t[B(i)x

t−i
+ ri], t > s

φ(t− s), s− r ≤ t ≤ s.

(I.2.3)

Lemma I.2.1.1. Let h ∈ RCR(R,Rn), let {rk : k ∈ Z} ⊂ R
n and let hy-

potheses H.1–H.2 hold. For all (s, φ) ∈ RCR, there exists a unique integrated
solution x ∈ RCR([s− r,∞),Rn) of (I.2.1)–(I.2.2) satisfying the initial con-
dition (s, φ).

The above lemma follows by hypotheses H.1–2, the Banach fixed-point
theorem, Lemma I.1.5.1 and typical continuation arguments. Note that h
may be unbounded on the real line, but since it is regulated we are guaranteed
its boundedness on every compact set—see Honig [69]. Any classical solution
(in the sense of Ballinger and Liu [13]) is an integrated solution, so the
definition is indeed appropriate. We will drop the adjective integrated from
this point onwards, since this class of solutions will be used exclusively from
this point on.

On the note of “classical” solutions, it will later be important that the
impulsive RFDE (I.2.1)–(I.2.2) has a regularizing effect on initial conditions.
Precisely, we have the following lemma.
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Lemma I.2.1.2. Under the conditions of Lemma I.2.1.1, the integrated so-
lution x : [s−r,∞) → R

n is differentiable from the right on [s,∞). In partic-
ular, if x : R → R

n is a solution defined for all time, then x ∈ RCR1(R,Rn).

Proof. The first conclusion follows by the integral representation of solutions
with the remark that μ 	→ L(μ)xμ ∈ RCR([s,∞),Rn). For the second part,
one can show that the restriction of x to any interval of the form [s,∞) is
differentiable from the right by applying the previous result to the restriction
on [s− r,∞). Since s is arbitrary, the result is proven.

I.2.2 Evolution Families

In this section we will specialize to the equation

ẋ = L(t)xt, t �= tk (I.2.4)

Δx = B(k)xt− , t = tk. (I.2.5)

Definition I.2.2.1. Let hypotheses H.1–H.2 hold. For a given (s, φ) ∈ R ×
RCR, let t 	→ x(t; s, φ) denote the unique solution of (I.2.4)–(I.2.5) satisfying
xs(·; s, φ) = φ. The function U(t, s) : RCR → RCR defined by U(t, s)φ =
xt(·, s, φ) for t ≥ s is the evolution family associated with the homogeneous
equation (I.2.4)–(I.2.5).

From here onwards, we will take the convention that if L : RCR → RCR
is a linear operator, then Lφ(θ) for φ ∈ RCR and θ ∈ [−r, 0] should be un-
derstood as [L(φ)](θ). Also, the symbol IX will refer to the identity operator
on X. When the context is clear, we will simply write it as I. Introduce the
linear function χs : R

n → RCR defined by

[χsξ](θ) =

{
ξ, θ = s
0, θ �= s.

(I.2.6)

Lemma I.2.2.1. The evolution family satisfies the following properties:

1) U(t, t) = I for all t ∈ R.

2) For s ≤ t, U(t, s) : RCR → RCR is a bounded linear operator. In
particular,

||U(t, s)|| ≤ exp

(∫ t

s

�(μ)dμ

) ∏
s<ti≤t

(1 + b(i)). (I.2.7)

3) For s ≤ v ≤ t, U(t, s) = U(t, v)U(v, s).

4) For all θ ∈ [−r, 0], s ≤ t+θ and φ ∈ RCR, U(t, s)φ(θ) = U(t+θ, s)φ(0).
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5) For all tk > s, one has U(tk, s) = (I + χ0B(k))U(t−k , s).
1

6) Let C(t, s) denote the evolution family on RCR associated with the
“continuous” equation ẋ = L(t)xt. The following factorization holds:

U(t, s) =

{
C(t, s), [s, t] ∩ {tk}k∈Z ∈ {{s}, ∅}
C(t, tk) ◦ (I + χ0B(k)) ◦ U(t−k , s), t ≥ tk > s.

(I.2.8)

Proof. Properties (1), (3) and (4) are straightforward, given the uniqueness
assertion of Lemma I.2.1.1 and the definition of the evolution family. Prop-
erty (6) follows similarly once we can establish (5). To obtain boundedness,
we use the integral equation (I.2.3) to get the estimate

|U(t, s)φ(θ)| ≤ ||φ||+
∫ t+θ

s

|L(μ)U(μ, s)φ|dμ+
∑

s<ti≤t+θ

|B(i)U(t−i , s)φ|

≤ ||φ||+
∫ t

s

�(μ)||U(μ, s)φ||dμ+
∑

s<ti≤t

b(i)||U(t−i , s)φ||.

Since the upper bounds are independent of θ, denoting X(t) = U(t, s)φ, we
obtain

||X(t)|| ≤ ||φ||+
∫ t

s

�(μ)||X(μ)||dμ+
∑

s<ti≤t

b(i)||X(t−i )||.

By Lemma I.1.3.6, t 	→ ||X(t)|| is an element of RCR([s − r,∞),R). Using
the Gronwall inequality of Lemma I.1.5.1, we obtain the desired boundedness
(I.2.7). As for property (5),

U(tk, s)φ(0) = φ(0) +

∫ tk

s

L(μ)U(μ, s)φdμ+
∑

s<ti≤tk

B(i)U(t−i , s)φ

= U(t−k , s)φ(0) +B(k)U(t−k , s)φ

and U(t−k , s)φ(θ) = U(tk, s)φ(θ) for θ < 0.

The connection between the evolution family and processes is given by the
following lemma, whose proof now follows directly from Lemma I.2.2.1.

Lemma I.2.2.2. Let M be the nonautonomous set over R×RCR with t-fibre

M(t) =
⋃
s≤t

{s} × RCR,

and define S(t, (s, φ)) = x(t; s, φ). (S,M) is a forward, linear process, and
U(t, s) : RCR → RCR is its two-parameter semigroup.

1Note here that the left limit is defined by U(t−k , s)φ(θ) = U(tk, s)φ(θ) for θ < 0, while

U(t−k , s)φ(0) = U(tk, s)φ(0
−).
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I.2.2.1 Phase Space Decomposition

In the analysis of steady states of linear ordinary differential equations, the
stable, centre and unstable subspaces play a key role. The appropriate gener-
alization to impulsive functional differential equations is spectral separation
of the evolution family. That is, the evolution family U(t, s) : RCR → RCR
is spectrally separated if it satisfies the properties of Definition I.1.1.6.

If the evolution family U(t, s) : RCR → RCR is spectrally separated, the
phase space admits a direct sum decomposition

RCR = RCRs(t)⊕RCRc(t)⊕RCRu(t) (I.2.9)

for each t ∈ R. If (s, φ) ∈ RCRs, Eq. (I.1.11) implies that U(t, s)φ decays to
zero exponentially as t → ∞. We say that in the stable fibre bundle, solutions
decay exponentially in forward time. Similarly, in the unstable fibre bundle,
solutions are defined for all time and decay exponentially in backward time.
In the centre fibre bundle, solutions are defined for all time and grow slower
than exponentially in forward and backward times. The difference between
this decomposition and one more typical of autonomous or ordinary delay
differential equations is that the factors of the decomposition are generally
time-dependent; that is, they are determined by the t-fibres of the invariant
fibre bundles RCRs, RCRc and RCRu.

I.2.2.2 Evolution Families are (Generally) Nowhere
Continuous

The use of the phase space RCR causes the evolution family U(t, s) : RCR →
RCR to have some undesirable regularity properties. To illustrate this, con-
sider the trivial impulsive functional differential equation

ẋ = 0, t �= tk

Δx = 0, t = tk.

The evolution family associated with the above homogeneous equation is
equivalent to a one-parameter semigroup; U(t, s) = V (t−s), where for ξ ≥ 0,

V (ξ)φ(θ) =

{
φ(ξ + θ), ξ + θ ≤ 0
φ(0), ξ + θ > 0.

Suppose φ ∈ RCR has an internal discontinuity at some d ∈ (−r, 0). Then,
for ε > 0 sufficiently small and any 0 ≤ t < min{|d|, d+ r}, one has

||V (t− ε)φ− V (t)φ|| ≥ |V (t− ε)φ(d− t)− V (t)φ(d− t)|
= |φ(d− ε)− φ(d)|,

which because of the discontinuity is guaranteed to be bounded away from
zero for ε arbitrarily small. As such, t 	→ V (t)φ is nowhere continuous from
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the left in [0,min{|d|, d+ r}). On the other hand, we also have

||V (t+ ε)φ− V (t)φ|| ≥ |V (t+ ε)φ(d− t− ε)− V (t)φ(d− t− ε)|
= |φ(d)− φ(d− ε)|,

which is again bounded away from zero. We conclude that t 	→ V (t)φ is
nowhere continuous from the right on the interval [0,min{|d|, d + r}). As a
consequence, neither t 	→ U(t, s)φ nor s 	→ U(t, s)φ can generally be relied
on to have any points of continuity from either side.

This lack of continuity continues to be a problem for arbitrary evolution
families U(t, s) : RCR → RCR. Indeed, suppose U(t, s)φ : [−r, 0] → R

n

has an internal discontinuity at some d ∈ (−r, 0)—this could result from
an impulse effect at some time tk ∈ (t − r, t). Because of the translation
property (4) of Lemma I.2.2.1, we have for any t′ ≥ t such that 0 ≤ t′ − t <
min{|d|, d+ r}

||U(t′ + ε, s)φ− U(t′, s)φ|| ≥ |U(t′ + ε, s)φ(d+ t− t′ − ε)− U(t′, s)
φ(d+ t− t′ − ε)|

= |U(t, s)φ(d)− U(t, s)φ(d− ε)|,
which is yet again bounded away from zero for ε arbitrarily small. In the
same way as before, we conclude that t′ 	→ U(t′, s)φ is nowhere continuous
from the left or right, for t′ ∈ [t, t+min{|d|, d+ r}).

I.2.2.3 Continuity under the L2 Seminorm

While t 	→ U(t, s)φ is generally discontinuous everywhere with respect to the
uniform norm ||g|| = supθ∈[−r,0] |g(θ)| that we have been using up until this

point, the same is not true if one uses the L2 norm. Indeed, for 0 < ε < ε0 < r
and a fixed ε0, one can make the estimate

∫ 0

−r

|U(t+ ε, s)φ(θ)−U(t, s)φ(θ)|2dθ ≤
∫ −ε

−r

|U(t, s)φ(θ+ε)−U(t, s)φ(θ)|2dθ+εK

where K is some constant such that ||U(t + ε, s)φ − U(t, s)φ||2 ≤ K for
ε < ε0. The integrand converges pointwise to zero almost everywhere and
is uniformly bounded, so the dominated convergence theorem implies that
U(t+ ε, s)φ → U(t, s)φ in the L2 sense, with respect to the norm

||g||2 =

(∫ 0

−r

|g(θ)|2dθ
)1/2

.

Consequently, t 	→ U(t, s)φ is continuous for each φ ∈ RCR with respect to
the || · ||2 norm. However,

U(t, s) : (RCR, || · ||2) → (RCR, || · ||2)
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is not bounded. To see this, let us again make use of our translation2 semi-
group V (t) : RCR → RCR from Sect. I.2.2.2. Assume there exists K ≥ 0
such that ||U(t, s)φ||2 ≤ K||φ||2 for all φ ∈ RCR. If t ≥ s + r, this implies
the equation

r|φ(0)| ≤ K

(∫ 0

−r

|φ(θ)|2dθ
) 1

2

,

which cannot hold for all φ ∈ RCR. As such, even though RCR is dense
in L2([−r, 0],Rn), we cannot extend U(t, s) to a bounded linear operator on
L2 and take advantage of the continuity of t 	→ U(t, s)φ or the completeness
of L2.

I.2.3 Representation of Solutions of the
Inhomogeneous Equation

Given the evolution family U(t, s) : RCR → RCR associated with the homo-
geneous equation (I.2.4)–(I.2.5), we now consider to what extent the solutions
of the inhomogeneous equation (I.2.1)–(I.2.2) can be represented in the form
of a variation-of-constants formula. It is worth revisiting the variation-of-
constants formula of Hale [56] for the functional differential equation

ẋ = L(t)xt + h(t).

The formula states that the solution x : [s− r,∞) → R
n satisfying the initial

condition xs = φ can be written in the form

xt = X(t, s)φ+

∫ t

s

X(t, μ)χ0h(μ)dμ (I.2.10)

for all t ≥ s, where X(t, s) : C([−r, 0],Rn) → C([−r, 0],Rn) is the evolution
family associated with the homogeneous equation ẋ = L(t)xt, and the inte-
gral is understood as one parameterized by the lag θ ∈ [−r, 0]—that is, for
each θ ∈ [−r, 0], one interprets the integral on the right-hand side to be the
integral of μ 	→ X(t, μ)[χ0h(μ)](θ) ∈ R

n over [s, t]. As stated, the formula
is technically incorrect because χ0h(μ) is not in the domain C([−r, 0],Rn)
of X(t, μ). In this section we will prove an analogous formula for the inho-
mogeneous linear system (I.2.1)–(I.2.2), but this technical difficulty will be
resolved by working with the phase space RCR at the outset. We will also
interpret the integral in the weak sense. See the comments (Sect. I.2.5) for
further discussion. The content of this section follows closely the presentation
of Church and Liu [31].

2u(t, θ) = V (t)φ(θ) satisfies the partial differential equation du
dt

= du
dθ

on the half-line
t+ θ > 0. This partial differential equation corresponds to a translation with speed one.
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I.2.3.1 Pointwise Variation-of-Constants Formula

The first task is to decompose solutions of the inhomogeneous equation by
means of superposition. Specifically, we write them as the sums of homoge-
neous solutions and a pair of inhomogeneous solutions with different inho-
mogeneities corresponding to the continuous forcing h(t) and the impulsive
forcing rk. The result follows directly from Lemma I.2.1.1.

Lemma I.2.3.1. Let h ∈ RCR(R,Rn), and let hypotheses H.1–H.2 hold.
Denote by t 	→ x(t; s, φ;h, r) the solution of the linear inhomogeneous equa-
tion (I.2.1)–(I.2.2) for inhomogeneities h = h(t) and r = rk, satisfying the
initial condition xs(·; s, φ;h, r) = φ. The following decomposition is valid:

x(t; s, φ;h, r) = x(t; s, φ; 0, 0) + x(t; s, 0;h, 0) + x(t; s, 0; 0, r) (I.2.11)

The following lemmas prove representations of the inhomogeneous impul-
sive and continuous terms xt(·; s, 0; 0, r) and xt(·; s, 0;h, 0), respectively.
Lemma I.2.3.2. Under hypotheses H.1–H.2, one has

xt(·; s, 0; 0, r) =
∑

s<ti≤t

U(t, ti)χ0ri (I.2.12)

Proof. Denote x(t) = x(t; s, 0; 0, r). Clearly, for t ∈ [s,min{ti : ti > s}, one
has xt = 0. We may assume without loss of generality thatt0 = min{ti : ti >
s}. Then, xt0 = χ0r0 due to (I.2.3). From Lemmas I.2.1.1 and I.2.2.1, we
have xt = U(t, t0)χ0r0 for all t ∈ [t0, t1), so (I.2.12) holds for all t ∈ [s, t1).
Supposing by induction that xt =

∑
s<ti≤t U(t, ti)χ0ri for all t ∈ [s, tk) for

some k ≥ 1, we have

xtk = xt−k
+ χ0B(k)xt−k

+ χ0rk

= U(tk, tk−1)xtk−1
+ χ0rk

= U(tk, tk−1)
∑

s<ti≤tk−1
U(tk−1, ti)χ0ri + χ0rk

=
∑

s<ti≤tk
U(t, ti)χ0ri.

Equality (I.2.12) then holds for t ∈ [tk, tk+1) by applying Lemma I.2.2.1.

Lemma I.2.3.3. Let h ∈ RCR(R,Rn). Under hypotheses H.1–H.2, one has

xt(θ; s, 0;h, 0) =

∫ t

s

U(t, μ)[χ0h(μ)](θ)dμ, (I.2.13)

where the integral is defined for each θ as the integral of the function μ 	→
U(t, μ)[χ0h(μ)](θ) in R

n.

Proof. We provide a brief sketch of the proof. The interested reader can
consult Church and Liu [31] for details. Denote x(t; s)h = x(t; s, 0;h, 0). The
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function x(t, s) : RCR([s, t],Rn) → R
n is linear for each fixed s ≤ t and

extends uniquely to a linear functional x̃(t, s) : L1([s, t],R
n) → R

n. One
can show that it is also bounded, so there exists an integrable, essentially
bounded n× n matrix-valued function μ 	→ V (t, s, μ) such that

x̃(t, s)h =

∫ t

s

V (t, s, μ)h(μ)dμ. (I.2.14)

One can then show that V (t, s, μ) is independent of s. Define V (t, s) =
V (t, ·, s) for any t ≥ s and V (t, s) = 0 for s < t. Let us denote x̃(t) =
x̃(t, s)h and Vt−i

(θ, s) = V (ti + θ, s) when θ < 0 and Vt−i
(0, s) = V (t−i , s).

From the integral equation (I.2.3) and the representation (I.2.14), one can
carefully show after a serious of changes of variables and applications of
Fubini’s theorem that

∫ t

s

V (t, μ)h(μ)dμ=

∫ t

s

⎡
⎣I+

∫ t

μ

L(μ)Vν(·, μ)dν+
∑

s<ti≤t

B(i)Vt−i
(·, μ)

⎤
⎦h(μ)dμ.

Since the above holds for all h ∈ L1([s, t],R
n), the fundamental matrix V (t, s)

satisfies

V (t, s) =

⎧⎪⎨
⎪⎩

I +

∫ t

s

L(μ)Vμ(·, s)dμ+
∑

s<ti≤t

B(i)Vt−i
(·, s), t ≥ s

0 t < s,

(I.2.15)

almost everywhere. By uniqueness of solutions (Lemma I.2.1.1), V (t, s)ξ =
U(t, s)[χ0ξ](0) for all ξ ∈ R

n. Since x̃ is an extension of x to L1([s, t],R
n) ⊃

RCR([s, t],Rn), representation (I.2.14) holds for h ∈ RCR([s, t],Rn). Then,
from the properties of V , one can verify that for all t ≥ s,

xt(θ; s, 0;h, 0) = x̃(t+ θ, s)h

=

∫ t

s

U(t, μ)[χ0h(μ)](θ)dμ,

which is what was claimed by Eq. (I.2.13).

With Lemma I.2.3.1 through Lemma I.2.3.3 at hand, we arrive at the
variation-of-constants formula.

Lemma I.2.3.4. Let h ∈ RCR(R,Rn). Under hypotheses H.1–H.2, one has
the variation-of-constants formula

xt(θ; s, φ;h, r)=U(t, s)φ(θ)+

∫ t

s

U(t, μ)[χ0h(μ)](θ)dμ+
∑

s<ti≤t

U(t, ti)[χ0ri](θ).

(I.2.16)
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I.2.3.2 Variation-of-Constants Formula in the
Space RCR

The main result of the previous section—Lemma I.2.3.4—is a variation-of-
constants formula in the Euclidean space. That is, for each θ ∈ [−r, 0], one
can compute the right-hand side of (I.2.16), with the integral being that of a
vector-valued function with codomain R

n. The goal of this section will be to
reinterpret the variation-of-constants formula in such a way that the integral
appearing therein may be thought of as a weak integral in the space RCR.

Lemma I.2.3.5. Let h ∈ RCR(R,Rn), and let hypotheses H.1–H.2 hold.
The function U(t, ·)[χ0h(·)] : [s, t] → RCR is Pettis integrable for all t ≥ s
and

[∫ t

s

U(t, μ)[χ0h(μ)]dμ

]
(θ) =

∫ t

s

U(t, μ)[χ0h(μ)](θ)dμ. (I.2.17)

Proof. By Lemma I.1.3.8 and the uniqueness assertion of Proposition I.1.4.1,
if we can show for all p : [−r, 0] → R

n of bounded variation that the equality

∫ 0

−r

pᵀ(θ)d

[∫ t

s

U(t, μ)[χ0h(μ)](θ)dμ

]
=

∫ t

s

[∫ 0

−r

pᵀ(θ)d
[
U(t, μ)[χ0h(μ)](θ)

]]
dμ

holds, then Lemma I.2.3.5 will be proven. Note that the above is equivalent
to

∫ 0

−r

pᵀ(θ)d
[∫ t

s

V (t+ θ, μ)h(μ)dμ

]
=

∫ t

s

[∫ 0

−r

pᵀ(θ)d
[
V (t+ θ, μ)h(μ)

]]
dμ.

(I.2.18)

Suppose first that h is a step function. In this case, a consequence of
Eq. (I.2.15) is that θ 	→ V (t+θ, μ)h(μ) and μ 	→ V (t+θ, μ)h(μ) are piecewise-

continuous, while Lemmas I.2.1.1 and I.2.3.3 imply that θ 	→ ∫ t

s
V (t +

θ, μ)h(μ)dμ is also piecewise-continuous, all with at most finitely many dis-
continuities on any given bounded set. Consequently, both integrals in (I.2.18)
can be regarded as the Lebesgue–Stieltjes integrals, with Fubini’s theorem
granting the desired equality.

Given h ∈ RCR(R,Rn), we approximate its restriction to the interval [s, t]
by a convergent sequence of right-continuous step functions hn by
Lemma I.1.3.1. Equation (I.2.18) is then satisfied with h replaced with hn.
Define the functions

Jn(θ) =

∫ t

s

V (t+ θ, μ)hn(μ)dμ, Kn(μ) =

∫ 0

−r

pᵀ(θ)d
[
V (t+ θ, μ)hn(μ)

]
,

J(θ) =

∫ t

s

V (t+ θ, μ)h(μ)dμ, K(μ) =

∫ 0

−r

pᵀ(θ)d
[
V (t+ θ, μ)h(μ)

]
,
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so that
∫ 0

−r
pᵀ(θ)dJn(θ) =

∫ t

s
Kn(μ)dμ. Using Lemma I.2.2.1, we can get the

inequality

|Jn(θ)− J(θ)| ≤ ||hn − h||
∫ t

s

exp

(∫ t

μ

�(ν)dν

)
dμ,

so Jn → J uniformly. The conditions of Lemma I.1.3.5 are satisfied, and we
have the limit ∫ 0

−r

pᵀ(θ)dJn(θ) →
∫ 0

−r

pᵀ(θ)dJ(θ).

Conversely, for each μ ∈ [s, t], Lemma I.1.3.4 applied to the differenceKn(μ)−
K(μ) yields, together with Lemma I.2.2.1,

|Kn(μ)−K(μ)| ≤ (|p(0)|+ |p(−r)|+ var0−rp)

(∫ t

s

exp

(∫ t

y

�(ν)dν

)
dy

)
||hn − h||.

Thus, Kn → K uniformly, and the bounded convergence theorem implies∫ t

s
Kn(μ)dμ → ∫ t

s
K(μ)dμ. Combining these results, Eq. (I.2.18) holds and

the lemma is proven.

Lemmas I.2.3.4 and I.2.3.5 together grant the variation-of-constants for-
mula in the Banach space RCR.

Theorem I.2.3.1. Let hypotheses H.1–H.2 hold, and let h ∈ RCR(R,Rn).
The unique solution t 	→ xt(·; s, φ;h, r) ∈ RCR of the linear inhomogeneous
impulsive system (I.2.1)–(I.2.2) with initial condition xs(·; s, φ;h, r) = φ sat-
isfies the variation-of-constants formula

xt(·; s, φ;h, r) = U(t, s)φ+

∫ t

s

U(t, μ)[χ0h(μ)]dμ+
∑

s<ti≤t

U(t, ti)[χ0ri],

(I.2.19)

where the integral is interpreted in the Pettis sense and may be evaluated
pointwise using (I.2.17).

As a simple corollary, if x is a solution defined on [s−r,∞), we can express
t 	→ xt defined on [s,∞) as the solution of an abstract integral equation.

Corollary I.2.3.1. Let hypotheses H.1–H.2 hold, and let h ∈ RCR(R,Rn).
Any solution x : [s − r,∞) → R

n of the linear inhomogeneous impulsive
system (I.2.1)–(I.2.2) satisfies for all t ≥ s the abstract integral equation

xt = U(t, s)xs +

∫ t

s

U(t, μ)[χ0h(μ)]dμ+
∑

s<ti≤t

U(t, ti)[χ0ri]. (I.2.20)

Equation (I.2.20) will be the key to defining mild solutions in Chap. I.4
and, ultimately, will permit us to construct centre manifolds.
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I.2.4 Stability

Stability (in the sense of Lyapunov) is a fundamental topic in dynamical
systems. We remind the reader of its definition, which we will specify to the
inhomogeneous linear system (I.2.1)–(I.2.2).

Definition I.2.4.1. We say that the inhomogeneous impulsive RFDE
(I.2.1)–(I.2.2) is

• exponentially stable if there exist K > 0, α > 0 and δ > 0 such that
for all φ, ψ ∈ RCR satisfying ||φ − ψ|| < δ, one has ||xt(·, s, φ) −
xt(·, s, ψ)|| ≤ K||φ− ψ||e−α(t−s) for all t ≥ s;

• stable if for all ε > 0 there exists δ > 0 such that for all φ, ψ ∈ RCR
satisfying ||φ − ψ|| < δ, one has ||xt(·, s, φ) − xt(·, s, ψ)|| < ε for all
t ≥ s;

• unstable if it is not stable.

A simple consequence of the superposition principle is that stability of
the inhomogeneous equation can be directly inferred from the properties of
the evolution family U(t, s) : RCR → RCR associated with its homogeneous
part.

Proposition I.2.4.1. The inhomogeneous impulsive RFDE (I.2.1)–(I.2.2)
is exponentially stable if and only if there exist K > 0 and α > 0 such that
the evolution family U(t, s) : RCR → RCR associated with the homogeneous
part (I.2.4)–(I.2.5) satisfies ||U(t, s)|| ≤ Ke−α(t−s) for t ≥ s. It is stable if
and only if the evolution family is bounded: there exists K > 0 such that
||U(t, s)|| ≤ K for t ≥ s.

There are several analytical criteria in the literature that guarantee expo-
nential stability of linear impulsive RFDE. Some of these are based on analyt-
ical estimates and variation-of-constants formulas [4, 18, 98, 156], while others
are proven using Lyapunov–Razumikhin methods [149, 166]. Of course, non-
linear stability criteria can be applied to the linear equation (I.2.4)–(I.2.5) as
well. We will discuss nonlinear stability further in Chap. I.4.

I.2.5 Comments

This chapter contains results that appear in the paper Smooth centre mani-
folds for impulsive delay differential equations [31] by Church and Liu, pub-
lished by Journal of Differential Equations in 2018. Most importantly, that
publication contains the main results of Sect. I.2.3, as well as Lemmas I.2.1.1
and I.2.2.1.

The variation-of-constants formula (I.2.10) for functional differential equa-
tions due to Hale can be made rigorous in several ways, such as through
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adjoint semigroup theory and integrated semigroup theory. See the refer-
ence [62] for an overview on these ideas. In the autonomous setting, the
textbook of Diekmann, Verduyn Lunel, van Gils and Walther [41] provides a
very readable account based on adjoint semigroups. Here, we have proposed
an arguably more elementary approach; use the phase space RCR and treat
the integral in the weak sense. It is not possible (or at least quite nontriv-
ial) to interpret the integral in (I.2.20) as a strong integral in RCR because
μ 	→ U(t, μ) is generally nowhere continuous from the left or right—see the
discussion of Sect. I.2.2.2.

Variation-of-constants formulas for impulsive delay differential equations
have appeared in the literature at various earlier points, but only in the con-
text of Euclidean space integrals and only when the impulses did not contain
delays. See, for instance, Gopalsamy and Zhang [53], Anokhin, Berezan-
sky and Braverman [4] and Berezansky and Braverman [18] for some early
instances.
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