
Chapter II.4

Invariant Manifold Theory

This chapter will be devoted to the invariant manifold theory of impulsive
differential equations. At the theoretical level, we will assume only that the
reference bounded solution has exponential trichotomy, but when we move
into computational aspects we will assume that the dynamics are periodic.
This will allow us to take advantage of the Floquet decomposition, with the
result being that computation of invariant manifolds has much in common
with the same procedure for ordinary differential equations without impulses.

In this chapter we will assume a semilinear decomposition

ẋ = A(t)x+ f(t, x), t �= tk (II.4.1)

Δx = Bkx+ gk(x), t = tk, (II.4.2)

where f(t, 0) = gk(0) = 0 and D2f(t, 0) = Dgk(0) = 0.

Definition II.4.0.1. System (II.4.1)–(II.4.2) is periodic with period T > 0
and c impulses per period if A(t+T ) = A(t), f(t+T, ·) = f(t, ·), Bk+c = Bk,
gk+c = gk and tk+c = tk + T for all t ∈ R and k ∈ Z.

II.4.1 Existence and Smoothness

Definition II.4.1.1. An invariant manifold for the trivial solution x = 0 is
a subset W ⊂ R× R

n with the following properties:

• R× {0} ⊂ W ;

• the sets Wt := {x : (t, x) ∈ W} are submanifolds of Rn;

• if xs ∈ Ws, then x(t; s, x) ∈ Wt as long as this solution is defined.

© Springer Nature Switzerland AG 2021
K. E. M. Church, X. Liu, Bifurcation Theory of Impulsive Dynamical
Systems, IFSR International Series in Systems Science and Systems
Engineering 34, https://doi.org/10.1007/978-3-030-64533-5 12

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64533-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-64533-5_12


222 CHAPTER II.4. INVARIANT MANIFOLD THEORY

An invariant manifold is Ck if Wt is Ck for each t.

We will at this point drop the phrase “for the trivial solution x = 0”, since
we will always be referring to invariant manifolds at this solution. To define
invariant manifolds at other solutions γ, one can simply perform a change of
variables to translate γ to zero and get a system of the form (II.4.1)–(II.4.2).

Definition II.4.1.2. Suppose the trivial solution x = 0 has exponential tri-
chotomy. An invariant manifold W is a

• stable manifold if Wt is tangent to Xs(t) at 0 ∈ R
n for all t ∈ R, and

solutions x(t) ∈ Wt converge exponentially to zero as t → ∞;

• centre manifold if Wt is tangent to Xc(t) at 0 ∈ R
n for all t ∈ R, and

solutions x(t) ∈ Wt have sub-exponential growth as t → ±∞;

• unstable manifold if Wt is tangent to Xu(t) at 0 ∈ R
n for all t ∈ R,

and solutions x(t) ∈ Wt converge exponentially to zero as t → −∞;

• centre-stable manifold if Wt is tangent to Xcs(t) at 0 ∈ R
n for all t ∈ R,

and solutions x(t) ∈ Wt have sub-exponential growth as t → ∞;

• centre-unstable manifold if Wt is tangent to Xcu(t) at 0 ∈ R
n for all

t ∈ R, and solutions x(t) ∈ Wt have sub-exponential growth as t → −∞.

Definition II.4.1.3. Suppose x = 0 has exponential trichotomy. Let P (t)
denote the projection onto one of the stable, centre, unstable, centre-stable or
centre-unstable fibre bundles associated to the linear part,

ẋ = A(t)x, t �= tk (II.4.3)

Δx = Bkx, t = tk, (II.4.4)

of (II.4.1)–(II.4.2). A local stable, centre, unstable, centre-stable or centre-
unstable manifold is a set of the form

W loc = {(t, x+ h(t, x)) : t ∈ R, x ∈ Bδ(0) ∩R(P (t)) ⊂ R
n},

for some h : R × Bδ(0) → R
n, satisfying h(t, 0) = 0, P (t)h(t, u) = 0, with

W loc having the following properties:

• If (s, xs) ∈ W loc, there exists ε > 0 such that (t, x(t; s, xs)) ∈ W loc for
|t− s| < ε.

• W loc
t is tangent to R(P (t)) at 0 ∈ R

n.

• Any solution that remains in W loc for the asymptotic time ranges speci-
fied in Definition II.4.1.2 satisfies the same asymptotic growth or decay
rates.
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A local invariant manifold is PC1,m-regular at zero if

• z �→ h(t, z) is Cm in a neighbourhood of 0 ∈ R
p;

• for j = 0, . . . ,m and all z1, . . . , zj ∈ R
p, t �→ Dj

2h(t, 0)[z1, . . . , zj ] is
continuous except at times tk where it has limits on the left and, addi-
tionally, it is differentiable from the right everywhere.

The PC1,m-regular condition in addition to the tangency property implies
that the function h : R× Bδ(0) → R

n has a Taylor expansion near x = 0 of
the form

h(t, z) =
1

2!
h2(t)z

2 +
1

3!
h3(t)z

3 + · · ·+ 1

m!
hm(t)zm +O(|z|m+1), (II.4.5)

for t fixed, and that the coefficients are differentiable from the right with
discontinuities at impulse times tk, where they have limits on the left.

Proving the existence of local invariant manifolds and their PC1,m regu-
larity is formally equivalent to all of the work done in Chaps. I.5, I.6, and I.7
and is in fact implied by the relevant theorems therein. Indeed, taking the de-
lay range r = 0 directly recovers the case of impulsive differential equations.
As such, the following theorem need not be proven.

Theorem II.4.1.1. Suppose the trivial solution x = 0 has exponential tri-
chotomy. There exist local stable, centre, unstable, centre-stable and centre-
unstable manifolds. These manifolds are PC1,m regular provided (II.4.1)–
(II.4.2) if PCm. The Taylor coefficients hj(t) in (II.4.5) are bounded, and
the asymptotic form of that equation holds uniformly for t ∈ R provided
(II.4.1)–(II.4.2) if PCm+1.

II.4.2 Invariance Equation for Nonautonomous
Systems

The dynamics on any invariant manifold can be characterized by the ab-
stract results in Sect. I.7.6. However, the situation here is a fair bit simpler
because the projection matrices Pj(t) onto the stable, centre and unstable
fibre bundles are much more regular than the associated operators in the
infinite-dimensional case.

This section will be devoted to the derivation of the invariance equation
associated to a given local invariant manifold. Throughout, P (t) will denote
a projection onto one of the stable, centre, unstable, centre-stable or centre-
unstable fibre bundles. The invariant manifold in question will be assumed
to be PC1,m-regular at zero and is represented in the form

W loc = {(t, x+ h(t, x)) : t ∈ R, x ∈ Bδ(0) ∩R(P (t)) ⊂ R
n} (II.4.6)

for h : R×Bδ(0) → R
n and satisfying h(t, 0) = 0 and P (t)h(t, x) = 0.
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The following lemma characterizes the regularity of the projector P (t). It
will be needed in the subsequent sections.

Lemma II.4.2.1. Let P : R → R
n×n be a matrix-valued function satisfying

U(t, s)P (s) = P (t)U(t, s) for all t ≥ s. Then, P satisfies the matrix impulsive
differential equation

Ṗ (t) = A(t)P (t)− P (t)A(t), t �= tk, (II.4.7)

ΔP (tk) = BkP (tk−)− P (tk)Bk, t = tk. (II.4.8)

More succinctly, at times t = tk we have P (tk)[I +Bk] = [I +Bk]P (t−k ).

Proof. For ease of presentation, we will assumeA(t) is continuous on [tk, tk+1),
so that t �→ U(t, s) will be differentiable on each of [tk, tk+1), but the result
remains true (in the sense of integrated solutions) under weaker PC0 condi-
tions. Let t ∈ (tk, tk+1). Then, we can write U(t, tk) = X(t, tk) for X the
Cauchy matrix of the continuous part, ẋ = A(t)x. This matrix is invertible,
from which it follows that

P (t) = U(t, tk)P (tk)U
−1(t, tk).

The right-hand side is differentiable, from which it follows that P ′(t) exists,
with

Ṗ (t) = A(t)U(t, tk)P (tk)U(t, tk)
−1 + U(t, tk)P (tk)[−U(t, tk)

−1A(t)]

= A(t)P (t)− P (t)A(t),

as claimed. As for the impulse times, since U(tk, t
−
k ) = I+Bk, the definition

of P implies P (tk)[I +Bk] = [I +Bk]P (t−k ). Rearranging gives (II.4.8).

Suppose x(t) is a solution on the invariant manifold. Then, at each time
t we can write u(t) = z + h(t, z) for some z ∈ R(P (t)). Substituting this
ansatz into the impulsive differential equation (II.4.1)–(II.4.2), we get

A(t)(z + h) + f(t, z + h) = ∂th+ [I + ∂zh]ż, t �= tk

Bk(z + h) + gk(z + h) = Δth(t, z +Δx) +

[
I +

∫ 1

0

∂zh(t
−
k , z + sΔz)ds

]
Δz, t = tk.

Since P (t)h(t, u) = 0, we get z = P (t)u(t). Applying Lemma II.4.2.1, one
can check that

ż = A(t)z + P (t)f(t, z + h), t �= tk (II.4.9)

Δz = Bkz + P (tk)gk(z + h), t = tk. (II.4.10)
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Combining these two results, we arrive at the invariance equation for the
invariant manifold:

A(t)h+ (I − P (t))f(t, z + h) = ∂zh[Az + Pf(t, z + h)] + ∂th, t �= tk,

(II.4.11)

Bkh+ (I − P (tk))gk(z + h) =

[∫ 1

0

∂zh(t
−
k , z + srk)ds

]
rk +Δth(tk, z + rk), t = tk,

(II.4.12)

where in the above rk = rk(z, h) := Bkz+P (tk)gk(z+h), all unspecified time
evaluations are at t = t−k in (II.4.12), and we define Δth(tk, y) = h(tk, y) −
h(t−k , y).

The pair of Eqs. (II.4.11)–(II.4.12) defines an impulsive partial differential
equation satisfied by the function h : R × R

n → R
n defining the invariant

manifold.

II.4.3 Invariance Equation for Systems with
Periodic Linear Part

When the linear part (II.4.3)–(II.4.4) is periodic, we can take advantage of
Floquet theory to simplify the form of the invariance equation (II.4.11)–
(II.4.12). More generally, we will assume a kinematic similarity as introduced
in Sect. II.2.6.3. Let

x = Qs(t)ys +Qc(t)yc +Qu(t)yu, (II.4.13)

be a real T -periodic change of variables of the form introduced in Corol-
lary II.2.6.4. Each Qj could be a chain matrix, a Floquet periodic matrix
or some combination thereof, and the optimal choice will depend on the sit-
uation at hand. After completing the change of variables, (II.4.1)–(II.4.2)
become

ẏs = Λsys + f̃s(t, ys, yc, yu), t �= tk (II.4.14)

ẏc = Λcyc + f̃c(t, ys, yc, yu), t �= tk (II.4.15)

ẏu = Λuyu + f̃u(t, ys, yc, yu), t �= tk (II.4.16)

Δys = Ωsys + g̃s(k, ys, yc, yu), t = tk (II.4.17)

Δyc = Ωcyc + g̃c(k, ys, yc, yu), t = tk (II.4.18)

Δyu = Ωuyu + g̃u(k, ys, yc, yu), t = tk, (II.4.19)

with the nonlinearities

f̃j(t, y, z, w) = Q+
j (t)f(t, Qs(t)y +Qc(t)z +Qu(t)w),

g̃j(k, y, z, w) = Q+
j (tk)gk(Qs(t

−
k )y +Qc(t

−
k )z +Qu(t

−
k )w).
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Recall that for a matrix M with linearly independent columns, the symbol
M+ denotes its left-inverse. The dynamics have been decoupled into stable
(ys), centre (yc) and unstable (yu) directions.

Denote σs, σc and σu the sets of Floquet multipliers of the decoupled linear
parts, so that σ(M0) = σs ∪ σc ∪ σu, with M0 being the monodromy matrix
of the original linear part (II.4.3)–(II.4.3). To derive the invariance equation
for the invariant manifold Wf , we will partition (II.4.14)–(II.4.19) as

ẏ = Uy + f̃1(t, y, z), t �= tk, (II.4.20)

ż = V z + f̃2(t, y, z), t �= tk, (II.4.21)

Δy = Rky + g̃1(k, y, z), t = tk, (II.4.22)

Δz = Skz + g̃2(k, y, z), t = tk, (II.4.23)

where the linear part of the y equations has only the Floquet exponents
σf , and the linear part of the z equations has only the Floquet exponents

σ(M0) \σf . This partitioning is always attainable. The nonlinearities f̃i and
g̃i will be some vectors involving those of (II.4.14)–(II.4.19).

In the (y, z) coordinates, the t-fibre Wf (t) of the invariant manifold is the
solution set of the equation

z = h̃(t, y), (II.4.24)

with h̃ : R×R
dimXf → R

n−dimXf defined explicitly in terms of the function
h in (II.4.6) by

Q̃(t)h̃(t, y) = h(t, Qf (t)y),

where Q̃(t) is the matrix Q = [ Qs Qc Qu ] without the Qf part. For

example, if Qf = Qc, then Q̃ = [ Qs Qu ]. These details are unimportant,
since we can work directly with (II.4.24). Also, from this point on we will
drop the tildes in (II.4.24) and simply write z = h(t, y).

To derive the invariance equation, we substitute (II.4.24) into (II.4.20)–
(II.4.23). Working first with the differential equation (II.4.21), we get

V h(t, y) + f̃2(t, y, h(t, y)) = ∂th(t, y) + ∂yh(t, y)ẏ. (II.4.25)

The next step would be to substitute (II.4.20) into (II.4.25) and replace all
instances of z with h(t, y). As for the jumps, substituting z = h(t, y) into
(II.4.23) gives the equation

Skh(t
−
k , y) + g̃2(k, y, h(t

−
k , y)) = h(tk, y +Δy)− h(t−k , y).

We can write the right-hand side equivalently as

h(tk, y +Δy)− h(t−k , y) = Δth(tk, y +Δy) +

∫ 1

0

∂yh(t
−
k , y + sΔy)Δyds,
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where Δth(tk, v) = h(tk, v) − h(t−k , v). Every instance of Δy can now be
replaced with (II.4.22), and all appearances of z therein are replaced with
h(t−k , y). This entire discussion then leads to the complete invariance equa-
tion.

Theorem II.4.3.1. The invariant manifold Wf in the (y, z) coordinates of
system (II.4.20)–(II.4.23) can be expressed as the solution set of z = h(t, y),
where the function h : R×R

dimXf → R
n−dimXf is periodic in its first variable

and satisfies the impulsive partial differential equation

V h+ f̃2(t, y, h) = ∂th+ (∂yh)[Uy + f̃1(t, y, h)], t �= tk

(II.4.26)

Skh+ g̃2(k, y, h) = Δth(tk, y + rk) +

∫ 1

0

∂yh(t
−
k , y + srk)rkds, t = tk,

(II.4.27)

where h = h(t, y) in the first equation, h = h(t−k , y) in the second equa-
tion (unless otherwise specified), Δth(tk, v) = h(tk, v) − h(t−k , v), and rk =
rk(y, h) := Rky + g̃1(k, y, h(t

−
k , y)).

II.4.4 Dynamics on Invariant Manifolds

In the most general (nonautonomous) setting, the dynamics on a given in-
variant manifold can be derived from (II.4.9)–(II.4.10). Set z(t) = Φ(t)w(t)
for Φ(t) a basis matrix for R(P (t)) and some w(t) ∈ R

dimXc . Then, the
function w satisfies the impulsive differential equation

ẇ = Φ+(t)P (t)f(t,Φ(t)w + h(t,Φ(t−k )w)), t �= tk

Δw = Φ+(tk)P (tk)gk(Φ(t
−
k )w + h(t−k ,Φ(t

−
k )w)), t = tk.

The above system essentially describes the nonlinear part of the dynamics
on the centre manifold. Indeed, the transformation z = Φ(t)w quotients
out the linear part. However, this transformation is not generally uniformly
bounded, so it is difficult to compare growth rates of solutions of the above
equation with those on the invariant manifold.

The drawbacks described in the previous paragraph are remedied if the
linear part (II.4.3)–(II.4.4) is periodic. In this case, the dynamics on the
invariant manifold are topologically equivalent near the origin to

ẏ = Uy + f̃1(t, y, h(t, y)), t �= tk (II.4.28)

Δy = Rky + g̃1(k, y, h(t
−
k , y)), t = tk. (II.4.29)

Solutions of (II.4.28)–(II.4.29) near the origin are in one-to-one correspon-
dence with those on the invariant manifold. For more information on notions
of topological equivalence for impulsive systems, we refer the reader to [28]
and the references cited therein.
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II.4.5 Reduction Principle for the Centre Man-
ifold

The centre manifold (at zero) contains several important classes of solutions,
namely:

• all sufficiently small bounded solutions;

• all sufficiently small periodic solutions.

As a consequence, any small solution or attractor that is formed at a bifurca-
tion point must necessarily be contained within the (parameter-dependent)
centre manifold. The following theorem provides more detail.

Theorem II.4.5.1. Suppose Xu is trivial. There exists a neighbourhood V
of 0 ∈ R

n such that any solution x : [s,∞) → R
n for which x(t) ∈ V for t ≥ s

converges exponentially towards Wc. That is, there exists a solution u(t) ∈
Wc(t) such that ||x(t)− u(t)|| ≤ K1e

−α1(t−s) for some positive constants K1

and α1.

II.4.6 Approximation by Taylor Expansion

We have discussed a few ways to represent invariant manifolds in this chapter.
In the periodic case, we can always express Wf as the (time-varying) graph
of a function h : R×R

dimXf → R
n−dimXf , where t �→ h(t, v) is periodic and

the Taylor expansion

h(t, v) =
1

2
h2(t)v

2 + · · ·+ 1

m!
hm(t)vm +O(||v||m+1)

holds uniformly in t near v = 0. Each of the coefficients hj is periodic
and differentiable from the right everywhere, with discontinuities only at
the impulse times. The idea is to substitute the above Taylor expansion
ansatz into the invariance equation (whichever is appropriate to the given
situation) and compare powers of v, starting at degree two and proceeding
higher until the desired expansion is computed. Since the Taylor coefficients
of the invariant manifold are unique, this process yields a unique solution at
each order of the expansion. Rather than develop this procedure abstractly,
we will consider an example.

Example II.4.6.1. Consider the following two-dimensional impulsive dif-
ferential equation:

u̇ = −u+ v2, t /∈ Z

v̇ = v − w2, t /∈ Z

ẇ = αuw, t /∈ Z

Δu = 0.5u3, t ∈ Z

Δv = −v, t ∈ Z

Δw = 0, t ∈ Z,
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where α ∈ R is a parameter. We will determine the invariance equation for
the centre manifold and obtain its Taylor approximation. The first thing to do
is to transform the above system into the form (II.4.20)–(II.4.23). This is very
nearly complete; the w component corresponds to the centre component for all
values of α, while (u, v) corresponds to “leftover” components, z. However,
the dynamics are not as simple as they could be, since the z = (u, v) dynamics
involve a singular stable direction (the v component) but the continuous-time
portion in this direction is nonzero. To fix this, we can use a chain matrix
for X0. This is easily computed: Q0(t) = e[t]1 .

If we set z = (u,Q0(t)v) and y = w, then the above system becomes

ẏ = αyz1, t /∈ Z

ż =

[ −1 0
0 0

]
z +

[
e2[t]1z22

−e−[t]1y2

]
, t /∈ Z

Δy = 0, t ∈ Z

Δz =

[
0 0
0 −1

]
z +

[
0.5z31
0

]
, t ∈ Z.

Compare to (II.4.14)–(II.4.19) for details. The centre manifold can be repre-
sented in the form

z1 = h1(t, y), z2 = h2(t, y)

for a pair h1, h2 of scalar-valued functions that are periodic in their first
variable. Writing h = [ h1 h2 ]ᵀ, the invariance equation is[ −1 0

0 0

]
h+

[
e2[t]1(π2h)

2

−e−[t]1y2

]
= ∂th+ (∂yh)αyπ1h, t /∈ Z

[
0 0
0 −1

]
h+

[
0.5(π1h)

3

0

]
= Δth(tk, y), t ∈ Z,

(II.4.30)

where π1h = h1 and π2h = h2. Note: the function rk from Theorem II.4.3.1
is identically zero, hence why the partial derivative ∂yh does not appear in
the jump condition of the invariance equation.

Let us compute the fourth-order approximation of the centre manifold. We
write

h(t, y) =

[
h1,2(t)y

2 + h1,3(t)y
3 + h1,4(t)y

4

h2,2(t)y
2 + h2,3(t)y

3 + h2,4(t)y
4

]
+O(|y|5)

for periodic functions hi,j of period one. Substituting the above into (II.4.30)
and comparing y2 coefficients, we get[ −h1,2

−e−[t]1

]
= ∂t

[
h1,2

h2,2

]
, t /∈ Z

[
0

−h2,2

]
= Δt

[
h1,2

h2,2

]
, t ∈ Z.

The unique periodic solution is h1,2(t) = 0 and h2,2(t) = e−[t]1 − 1. We can
now update our expression for h

h(t, y) =

[
h1,3(t)y

3 + h1,4(t)y
4

(e−[t]1 − 1)y2 + h2,3(t)y
3 + h2,4(t)y

4

]
+O(|y|5).
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Substituting this into (II.4.30) and equating cubic terms y3, the result is

[ −h1,3

0

]
= ∂t

[
h1,3

h2,3

]
, t /∈ Z

[
0

−h2,3

]
= Δt

[
h1,3

h2,3

]
, t ∈ Z.

The unique periodic solution is the trivial solution h1,3 = h2,3 = 0. Updating
our expression for h yet again,

h(t, y) =

[
h1,4(t)y

4

(e−[t]1 − 1)y2 + h2,4(t)y
4

]
+O(|y|5).

Finally, substituting into (II.4.30) and equating coefficients on y4 terms, the
result is

[ −h1,4 + e2[t]1(e−[t]1 − 1)2

0

]
= ∂t

[
h1,4

h2,4

]
, t /∈ Z

[
0

−h2,4

]
= Δt

[
h1,4

h2,4

]
, t ∈ Z.

There is a nontrivial periodic solution: h2,4 = 0 and

h1,4(t) =
e−[t]1−1

3(1− e−1)
(e− 1)3 + e−[t]1

∫ [t]1

0

es(e2s − 2es + 1)ds. (II.4.31)

Note that h1,4 > 0. The latter can be identified with the unique periodic
solution of

q̇ = −q + e2[t]1(e−[t]1 − 1)2.

To fourth order, the function h representing the centre manifold is given
by

h(t, y) =

[
h1,4(t)y

4

(e−[t]1 − 1)y2

]
+O(|y|5),

where h1,4 is the positive function from (II.4.31). The dynamics on the centre
manifold are topologically conjugate to those of ẏ = αyh1(t, y). Substituting
in the above expression for h, we get

ẏ = αh1,4(t)y
5 +O(α|y|6).

Since h1,4 is positive, we conclude that the zero solution of the original im-
pulsive system is unstable if α > 0, stable if α = 0, and asymptotically
stable if α < 0. These last two assertions follow by the reduction principle,
Theorem II.4.5.1. See Fig. II.4.1 for a comparison.
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Figure II.4.1: Left to right: simulation from the initial condition (u, v, w) =
(0.1, 0.1, 0.1) at time t = 0 of the system from Example II.4.6.1 for parameters
α = −100, α = 0 and α = 2, respectively. The convergence rate for the case
α < 0 is incredibly small and numerically unstable, hence our decision to
choose a large α = −100. Time integration for the cases α < 0 and α = 0
was done for t ∈ [0, 1000], and in the α > 0 case for t ∈ [0, 200]. In all figures,
the black dot denotes the initial condition

II.4.7 Parameter Dependence

In this section we will discuss how one can incorporate parameter-dependent
systems into the invariant manifold framework. Suppose we have a system
of the form

ẋ = f(t, x, ε), t �= tk(ε),

Δx = gk(x, ε), t = tk(ε),

for a parameter ε ∈ R
p. We assume this system is periodic with period T (ε)

with q > 0 impulses per period. Importantly, we assume the number of
impulses per period does not change depending on the parameter. Suppose
that f(t, 0, 0) = gk(0, 0) = 0, so that 0 is an equilibrium point when ε = 0.
We will assume without loss of generality that tk(ε) = 0.

The first thing we will do is to perform a parameter-dependent rescaling
of time so that the impulses occur on the integers. Specifically, set

t = t(τ, ε) =
{

tk(ε) + (τ − k)(tk+1(ε)− tk(ε)), τ ∈ [k, k + 1), k ∈ Z.

for rescaled time τ . Under this rescaling, t = tk(ε) if and only if τ = k.
Moreover, τ �→ t is continuous, piecewise-linear and monotone increasing, so
it has an inverse with the same properties. If we define y(τ) = x(t(τ, ε)),
then y satisfies the impulsive differential equation

dy

dτ
= f(t(τ, ε), y, ε)(tk+1(ε)− tk(ε)), k < τ < k + 1

Δy = gk(y, ε), τ = k ∈ Z.
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The above system is now periodic with period q, and q impulses per period.
Moreover, it has the same level of regularity of the original system—if the
original system is PCm, so is the above. As such, we can always assume
without loss of generality that a parameter-dependent system is in the form

ẋ = f(t, x, ε), t /∈ Z (II.4.32)

Δx = gk(x, ε), t ∈ Z, (II.4.33)

where the period is q > 0 and there are q impulses per period.
Next, we expand the state space of Eqs. (II.4.32)–(II.4.33) by taking ε as

an additional state. The result is the system

d

dt

[
x
ε

]
=

[
f(t, x, ε)

0

]
, t /∈ Z Δ

[
x
ε

]
=

[
gk(x, ε)

0

]
, t ∈ Z.

We can now apply the invariant manifold theory to the above system. Indeed,
the above is equivalent to the semilinear form

d

dt

[
x
ε

]
=

[
Dxf(t, 0, 0) Dεf(t, 0, 0)

0 0

] [
x
ε

]
+

[
F (t, x, ε)

0

]
, t /∈ Z

(II.4.34)

Δ

[
x
ε

]
=

[
Dxgk(0, 0) Dεgk(0, 0)

0 0

] [
x
ε

]
+

[
Gk(x, ε)

0

]
, t /∈ Z,

(II.4.35)

with F = f(t, x, ε) −Dxf(t, 0, 0)x −Dεf(t, 0, 0)ε and Gk = gk(x, ε) −Dxgk
(0, 0)x − Dεgk(0, 0)ε. It follows that DF (t, 0, 0) = 0 and DGk(0, 0) = 0 as
required.

II.4.7.1 Centre Manifolds Depending on a Parameter

System (II.4.34)–(II.4.35) always has a centre manifold of dimension at least
p. If x = 0 in (II.4.32)–(II.4.33) at parameter ε = 0 is nonhyperbolic with a c-
dimensional centre fibre bundle Xc, then the centre manifold of (x, ε) = (0, 0)
in (II.4.34)–(II.4.35) will be (c+p)-dimensional. Applying the transformation
from Sect. II.4.3 and partitioning the equations appropriately, the result will
be a q-periodic system in the form

ẏ = U1y + U2ε+ F̃1(t, y, z, ε), t /∈ Z

ż = V1z + V2ε+ F̃2(t, y, z, ε), t /∈ Z

ε̇ = 0, t /∈ Z

Δy = R1(k)z +R2(k)ε+ G̃1(k, y, z, ε), t ∈ Z

Δz = S1(k)z + S2(k)ε+ G̃2(k, y, z, ε), t ∈ Z

Δε = 0, t ∈ Z,
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where the linear part of the y equation with ε = 0 has only Floquet multipliers
with absolute value equal to unity, and the Floquet multipliers associated to
the linear part of the z component at ε = 0 are disjoint from the unit circle.
A local centre manifold of the above system at (0, 0, 0) is locally representable
by the solution set of the equation

z = h(t, y, ε)

for h : R× R
c × R

p → R
n−c periodic in its first variable. In the ε direction,

the dynamics on the centre manifold are trivial since there are no linear or
nonlinear terms. However, in the y (centre) direction they are

ẏ = U1y + U2ε+ F̃1(t, y, h(t, y, ε), ε), t /∈ Z (II.4.36)

Δy = R1(k)y +R2(k)ε+ G̃1(k, y, h(t
−
k , y, ε), ε), t ∈ Z, (II.4.37)

for ε fixed and sufficiently small. The local parameter-dependent centre man-
ifold is the set with t-fibres

W loc
c,ε (t) = {(y, h(t, y, ε)) : ||(y, ε)|| < δ}.

The dynamics on this invariant manifold are topologically conjugate near y =
0 to those of (II.4.36)–(II.4.37), provided |ε| is small enough. The reduction
principle (Theorem II.4.5.1) also applies to the parameter-dependent centre
manifold, allowing one to derive bifurcation results.

II.4.8 Comments

Taylor approximation of invariant manifolds for nonautonomous ordinary
differential in Banach spaces was developed by Pötzsche and Rasmussen
[116]. The same authors also developed these techniques for nonautonomous
discrete-time systems in [117]. The construction for impulsive differential
equations with delays was completed by Church and Liu [33]. The computa-
tional (e.g. invariance equation and Taylor expansion) aspects of this chapter
can be considered as a specification of the latter results to finite-dimensional
systems.

Theorem II.4.1.1 is apparently new. The existence of invariant manifolds
in the reversible hyperbolic case—that is, where Xc and X0 are empty—has
been known for some time. See for instance Theorem 6.8 of [9]. In the non-
hyperbolic case, there was perhaps a good reason to believe such manifolds
existed. Indeed, they can be identified with the forward time evolution of the
associated invariant manifold of the time T map. Still, the concrete result of
Theorem II.4.1.1 and the representation furnished by Eq. (II.4.6) remained
absent.

Linear periodic systems are examples of reducible systems. Such systems
can be transformed into block form by way of a bounded linear transfor-
mation with a bounded inverse, where the blocks induce a natural spectral
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decomposition. The transformation is called a kinematic similarity. A the-
orem of Siegmund [130] implies that such kinematic similarities always exist
for linear ordinary differential equations ẋ = A(t)x provided A(t) is locally
integrable. A suitable generalization of such a result to nonautonomous im-
pulsive differential equations would permit the derivation of a concrete dy-
namics equation on the centre manifold analogous to (II.4.26)–(II.4.27) for
general nonautonomous differential equations, not necessarily under periodic
conditions.
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