
Chapter II.2

Linear Systems

The linear systems theory of this chapter is far from exhaustive, and we
will introduce only what is necessary to proceed with stability and invariant
manifold theory. The reader is encouraged to consult the 1993 monograph of
Bainov and Simeonov [9] for additional background, if desired.

The main object of interest in this chapter is the inhomogeneous linear
equation

ẋ = A(t)x(t) + f(t), t �= tk (II.2.1)

Δx = Bkx(t) + gk, t = tk, (II.2.2)

and the associated homogeneous equation

ż = A(t)z(t), t �= tk (II.2.3)

Δz = Bkz(t), t = tk. (II.2.4)

In what follows, we will always assume that t �→ A(t), t �→ f(t) are continuous
from the right and possess limits on the left. This is sufficient to ensure local
existence and uniqueness of solutions forward in time; see Theorem II.1.1.1
and the subsequent remark.

II.2.1 Cauchy Matrix

Let X(t, s) denote the Cauchy matrix of the homogeneous ordinary differen-
tial equation (II.2.3). That is, x(t; s, x0) := X(t, s)x0 is the unique solution
of (II.2.3) satisfying the initial condition x(s; s, x0) = x0. The Cauchy matrix
has the following (defining) properties.
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• X(t, t) = I for all t ∈ R.

• X(t, s)−1 exists for all t, s ∈ R, and for s < t we define X(s, t) ≡
X(t, s)−1.

• X(t, s) = X(t, 0)X(0, s) for all t, s ∈ R.

• d
dtX(t, s) = A(t)X(t, s) at all arguments t, where A is continuous.

• X(t, s) = I +
∫ t

s
A(u)X(u, s)du for all t, s ∈ R.

Using the Cauchy matrix of the continuous part (II.2.3), we can construct
the fundamental matrix solution of the impulsive system (II.2.3)–(II.2.4).

Theorem II.2.1.1. Introduce the matrix-valued function U(t, s) for t ≥ s
by the equation

U(t, s)

=

{
X(t, s), tk−1 ≤ s ≤ t < tk

X(t, t�)
(∏k+1

j=� (I + Bj)X(tj , tj−1)
)
(I + Bk)X(tk, s) tk−1 ≤ s < tk < t� ≤ t < t�+1.

Then, x(t) := U(t, s)x0 is defined on [s,∞) and is the unique solution of
(II.2.3)–(II.2.4) satisfying the initial condition x(s) = x0. If the matrices
I+Bk are invertible—that is, det(I+Bk) �= 0 for all k ∈ Z—then, U(s, t) :=
U(t, s)−1 is well-defined for all s ≤ t. In this case, the solution x(t) =
U(t, s)x0 is defined on the entire real line. In the above equation, the product

denotes multiplication from left to right:
∏k+1

j=� Mj = M�M�−1 · · ·Mk+2Mk+1.

Proof. This theorem can be proven by induction on the cardinality of (s, t]∩
{tj : j ∈ Z}. If this set is empty, then it is clear by definition of X(t, s)
that the t �→ U(t, s)x0 = X(t, s)x0 is the unique solution of (II.2.3)–(II.2.4)
satisfying the initial condition x(s) = x0, since there are no impulse times in
(s, t]. Suppose now that the conclusion of the theorem is true for any interval
[s, t] such that (s, t] ∩ {tj : j ∈ Z} has cardinality at most q ≥ 0. Let [s, t] be
any interval such that |(s, t]∩{tj : j ∈ Z}| = q+1. Without loss of generality,
we may assume

(s, t] ∩ {tj : j ∈ Z} = {t1, . . . , tq+1}.
From the induction hypothesis, the unique solution x of the initial condition
x(s) = x0 satisfies

x(tq) =

⎛

⎝
2∏

j=q

(I +Bj)X(tj , tj−1)

⎞

⎠ (I +B1)X(t1, s)x0.
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Then, by definition of X(t, s), the solution x satisfies x(t−q+1) = X(t−q+1, tq)
x(tq). Since v �→ X(v, s) is continuous, combining the previous calculation
with the jump condition (II.2.4), we get

x(tq+1) = (I +Bq+1)X(tq+1, tq)x(tq)

=

⎛

⎝
2∏

j=q+1

(I +Bj)X(tj , tj−1)

⎞

⎠ (I +B1)X(t1, s)x0.

The conclusion follows since x(t) = X(t, tq+1)x(tq+1).

Definition II.2.1.1. The matrix U(t, s) introduced in Theorem II.2.1.1 is
called the Cauchy matrix associated to the linear homogeneous impulsive dif-
ferential equation (II.2.3)–(II.2.4).

Corollary II.2.1.1. The Cauchy matrix enjoys the following properties.

• U(t, t) = I for all t ∈ R.

• If det(I + Bk) �= 0 for all k ∈ Z, then U(t, s)−1 exists for all t, s ∈ R,
and for s < t we define U(s, t) ≡ U(t, s)−1.

• U(t3, t1) = U(t3, t2)U(t2, t1) whenever t1 ≤ t2 ≤ t3. If the above condi-
tion on {Bk : k ∈ Z} holds, the conclusion holds for any t1, t2, t3 ∈ R.

• U(t, s) = I +
∫ t

s
A(u)U(u, s)du+

∑
s<tk≤t BkU(tk, s) for all t ≥ s.

• U(tk, s) = (I +Bk)U(t−k , s) for all s ∈ R, tk > s.

II.2.2 Variation-of-Constants Formula

The Cauchy matrix can be used to analytically express the unique solution
of the inhomogeneous equation (II.2.1)–(II.2.2) satisfying a given initial con-
dition.

Theorem II.2.2.1. The unique solution t �→ x(t; s, x0) of (II.2.1)–(II.2.2)
satisfying the initial condition x(t; t, x0) = x0 can be expressed in the form

x(t; s, x0) = U(t, s)x0 +

∫ t

s

U(t, μ)f(μ)dμ+
∑

s<tk≤t

U(t, tk)gk. (II.2.5)

Proof. Under the assumption that A(t) and f(t) are merely continuous from
the right with limits on the left, we cannot prove that (II.2.5) is a solution
of (II.2.1)–(II.2.2) by computing a derivative because a priori, this function
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is not differentiable. We can, however, easily check that it satisfies the jump
condition. At times tk, we have

x(tk)− x(t−k )

= [U(tk, s)− U(t−k , s)]x0 +

∫ tk

s

[U(tk, μ)− U(t−k , μ)]f(μ)dμ

+ gk +
∑

s<tj<tk

[U(tk, tj)− U(t−k , tj)]gj

= BkU(t−k , s)x0 +

∫ t

s

BkU(t−k , s)f(μ)dμ+ gk +
∑

s<tj<tk

BkU(t−k , tj)

= Bkx(t
−
k ) + gk,

as required. Next, we prove that on each interval (tj , tj+1) for s < tj , the
variation-of-constants formula (II.2.5) is correct. Without loss of generality,
assume s = t0. For μ ∈ (t0, t1), we have U(t, μ) = X(t, μ). Then, with
x0 = x(t0) and t ∈ (t0, t1),

x0 +

∫ t

t0

(A(μ)x(μ) + f(μ))dμ

= x0 +

∫ t

t0

(

A(μ)

[

U(μ, t0)x0 +

∫ μ

t0

U(μ, v)f(v)dv

]

+ f(μ)

)

dμ

= x0 +

∫ t

t0

A(μ)X(μ, t0)dμx0 +

∫ t

t0

∫ μ

t0

A(μ)X(μ, v)f(v)dvdμ+

∫ t

t0

f(μ)dμ

= x0 + (X(t, t0)− I)x0 +

∫ t

t0

∫ t

v

A(μ)X(μ, v)dμf(v)dv +

∫ t

t0

f(μ)dμ

= X(t, t0)x0 +

∫ t

t0

(X(t, v)− I)f(v)dv +

∫ t

t0

f(μ)dμ

= U(t, t0)x0 +

∫ t

t0

U(t, v)f(v)dv = x(t),

as required by definition of solution. By the previous computation, we have

x(t1) = (I +Bk)x(t
−
1 ) + g1

= (I +B1)X(t1, t0)x0 +

∫ t1

t0

(I +B1)X(t1, μ)f(μ)dμ+ g1

= U(t1, t0)x0 +

∫ t1

t0

U(t1, μ)f(μ)dμ+ U(t1, t1)g1.

Equation (II.2.5) therefore holds on [t0, t1]. Assuming now that the variation-
of-constants formula is correct for t ∈ [t0, tk] for some k ≥ 1, the same proof
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can be used to show that for t ∈ (tk, tk+1),

x(t) = x(tk) +

∫ t

tk

X(t, μ)f(μ)dμ.

Substituting in the expression for x(tk) guaranteed by the induction hypoth-
esis, one obtains (II.2.5) for t ∈ (tk, tk+1). At t = tk+1, one uses the relation
x(tk+1) = (I +Bk)x(t

−
k+1) + gk+1, and the result is after some simplification

equivalent to (II.2.5).

II.2.3 Stability

We recall now the definition of (Lyapunov) stability.

Definition II.2.3.1. The inhomogeneous system (II.2.1)–(II.2.2) is

• exponentially stable if there exist K > 0, α > 0 and δ > 0 such that for
all φ, ψ ∈ R

n satisfying ||φ−ψ|| < δ, one has ||x(t; s, φ)− x(t; s, ψ)|| ≤
K||φ− ψ||e−α(t−s) for all t ≥ s;

• stable if for all ε > 0 there exists δ > 0 such that for all φ, ψ ∈ R
n

satisfying ||φ−ψ|| < δ, one has ||x(t; s, φ)−x(t; s, ψ)|| < ε for all t ≥ s;

• unstable if it is not stable.

Lemma II.2.3.1. The inhomogeneous system (II.2.1)–(II.2.2) is stable (re-
spectively, exponentially stable or unstable) if and only if the same is true for
the associated homogeneous system (II.2.3)–(II.2.4).

Proof. One can easily verify from the variation-of-constants formula that
y(t) := x(t; s, φ)−x(t; s, ψ) is a solution of the homogeneous system (II.2.3)–
(II.2.4) satisfying y(s) = φ − ψ. If the latter system is stable (respectively,
exponentially stable), then in particular the difference between the trivial
solution 0 and y(t) can be bounded appropriately provided ||(φ− ψ)− 0|| =
||φ− ψ|| < δ for some delta, which grants the stability assertion. The insta-
bility part follows similarly, as does the converse (that is, the stability of the
inhomogeneous system implies the same for the homogeneous system).

The above lemma states that, insofar as stability of linear systems is con-
cerned, one needs to only consider homogeneous systems.

II.2.4 Exponential Trichotomy

Of use in later sections will be exponential trichotomy—referred to as spectral
separation in Part I of this text.

Definition II.2.4.1. The homogeneous system (II.2.3)–(II.2.4) has expo-
nential trichotomy if there exist projection-valued functions t �→ Pc(t) and
t �→ Pu(t) on R

n such that its Cauchy matrix U(t, s) satisfies the following:
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1. supt∈R
||Pc(t)||+ ||Pu(t)|| = N < ∞.

2. Pc(t)Pu(t) = Pu(t)Pc(t) = 0.

3. U(t, s)Pj(s) = Pj(t)U(t, s) for all t ≥ s and j ∈ {c, u}.

4. Define Uj(t, s) as the restriction of U(t, s) to Xj(s) = R(Pj(s)) for
j ∈ {c, u, s}, where we set Ps = I −Pc −Pu. The linear maps Uj(t, s) :
Xj(s) → Xj(t) are invertible for j ∈ {c, u}, and we denote Uj(s, t) =
Uj(t, s)

−1 for t ≥ s.

5. For all t, s, v ∈ R, Uj(t, s) = Uj(t, v)Uj(v, s) for j ∈ {c, u}.

6. There exist real numbers a < 0 < b such that for all ε > 0, there exists
K ≥ 1 such that

||Uu(t, s)|| ≤ Keb(t−s), t ≤ s (II.2.6)

||Uc(t, s)|| ≤ Keε|t−s|, t, s ∈ R (II.2.7)

||Us(t, s)|| ≤ Kea(t−s), t ≥ s. (II.2.8)

Definition II.2.4.2. Let (II.2.3)–(II.2.4) have exponential trichotomy. De-
fine the sets Xj = {(t, x) : t ∈ R, x ∈ R(Pj(t))} for j ∈ {s, c, u}. Xs, Xc and
Xu are, respectively, the stable, centre and unstable fibre bundles.

Xcs = {(t, x+ y) : x ∈ Xc(t), y ∈ Xs(t)} = {(t, x) : x ∈ R(Pc(t) + Ps(t))}
Xcu = {(t, x+ y) : x ∈ Xc(t), y ∈ Xu(t)} = {(t, x) : x ∈ R(Pc(t) + Pu(t))}

are, respectively, the centre-stable and centre-unstable fibre bundles. For
each of these, the t-fibre is the set Xj(t) = {x : (t, x) ∈ Xj}.

The fibre bundles introduced in the above definition play the role of the
invariant subspaces from autonomous ordinary differential equations. There
are simpler descriptions of these objects available—in particular, one can
define an equivalent time-invariant description—if det(I + Bk) �= 0 for all
k ∈ Z, since then the dynamics are reversible. Since we do not assume this,
we will stick with the definition above.

II.2.5 Floquet Theory

The Floquet theory allows for the transformation of a periodically driven ho-
mogeneous system into an autonomous ordinary differential equation. This
will be helpful later when we consider invariant manifold theory. In this
section we begin with the homogeneous equation before proceeding to inho-
mogeneous equations. First, two definitions are as follows.
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Definition II.2.5.1. The inhomogeneous system (II.2.1)–(II.2.2) is periodic
if there exist real T > 0 and c ∈ N such that A(t+T ) = A(t), f(t+T ) = f(t),
Bk+c = Bk, gk+c = gk and tk+c = tk+T for all t ∈ R and k ∈ Z. The period
is T , and the number of impulses per period is c.

Definition II.2.5.2. The homogeneous system (II.2.1)–(II.2.2) is periodic
if there exist real T > 0 and c ∈ N such that A(t + T ) = A(t), Bk+c = Bk

and tk+c = tk +T for all t ∈ R and k ∈ Z. The period is T , and the number
of impulses per period is c.

II.2.5.1 Homogeneous Systems

Definition II.2.5.3. Suppose the homogeneous system (II.2.3)–(II.2.4) is
periodic (with period T ). Each of Mt := U(t + T, t) for t ∈ R is called a
monodromy matrix. The eigenvalues are called Floquet multipliers.

Proposition II.2.5.1. If the homogeneous system (II.2.3)–(II.2.4) is peri-
odic (with period T ), then U(t+ T, s+ T ) = U(t, s) for all t ≥ s.

Proof. This follows from existence and uniqueness of solutions together with
periodicity (period T ).

Lemma II.2.5.1. For any t, s ∈ R, Mt and Ms have the same eigenvalues.

Proof. First suppose t ≥ s. The monodromy matrices satisfy the equation

MtU(t, s) = U(t, s)Ms.

Suppose v eigenvalue of Ms with eigenvalue μ �= 0. Then,

Mt(U(t, s)v) = U(t, s)Msv = U(t, s)μv = μ(U(t, s)v),

so U(t, s)v is an eigenvector of Mt with the same eigenvalue, provided w :=
U(t, s)v �= 0. If w = 0, then Msv = U(s + T, t)U(t, s)v = U(s + T, t)w = 0,
which would contradict v being an eigenvector of Ms. On the other hand, 0
is an eigenvalue of Ms if and only if there is at least one k ∈ {0, . . . , c − 1}
such that det(I +Bk) = 0, which is then equivalent to 0 being an eigenvalue
of Mt. From Lemma II.2.5.1, we have

Ms+T = U(s+ 2T, s+ T ) = U(s+ T, s) = Ms.

Therefore, Ms and Ms+T have the same eigenvalues. If σ(M) denotes the set
of eigenvalues of M , then the previous results imply the inclusions σ(Mt) ⊆
σ(Ms) for t ≥ s and σ(Ms) = σ(Ms+jT ) for all j ≥ 0. Together, these imply
σ(Ms) = σ(Mt).

As a consequence of the previous lemma, the following definition is rea-
sonable.
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Definition II.2.5.4. The Floquet multipliers of the linear system (II.2.3)–
(II.2.4) are the eigenvalues of the monodromy matrix M0. The latter is given
by

M0 =

1∏

k=c

(I +Bk)X(tk, tk−1). (II.2.9)

Theorem II.2.5.1 (Floquet Decomposition). Let B := {ξ1, . . . , ξp} be a
union of canonical bases for the direct sum of generalized eigenspaces of M0

with nonzero eigenvalues. The restriction of U(t, 0) to span{ξ1, . . . , ξp} is
invertible for t ≥ 0. Let Φ(t) be the n × p matrix whose jth column is
Φj(t) = U(t, 0)ξj , defined for t ∈ R. There exist a p × p complex matrix Λ
and a T -periodic n× p complex matrix Q(t) such that Φ(t) = Q(t)etΛ for all
t ≥ 0. The eigenvalues of Λ are

σ(Λ) =

{
1

T
log(μ) : μ is a nonzero Floquet multiplier

}

.

Proof. Note, since U(T, 0) is invertible on B (generalized eigenspaces of a
matrix are invariant under its action), it suffices to prove first that U(t, 0) is
invertible for t ∈ (0, T ). Suppose not, then there exist t ∈ (0, T ) and ξj such
that U(t, 0)ξj = 0. But this implies U(T, 0)ξj = 0, and since M0 = U(T, 0),
we conclude ξj is an eigenvector with eigenvalue zero. As the generalized
eigenspaces are disjoint, we have obtained a contradiction.

Since M0 = U(T, 0) is invertible on span{ξ1, . . . , ξp}, there exists an in-
vertible p × p matrix V such that Φ(T ) = Φ(0)V . Define Λ = 1

T log V ,
where the logarithm is any branch that defined on the spectrum of V . Define
Q(t) = Φ(t)e−tΛ. By definition, we have Φ(t) = Q(t)etΛ. For periodicity, we
observe

Q(t+ T ) = Φ(t+ T )e−(t+T )Λ = U(t+ T, T )Φ(T )V −1e−tΛ

= U(t, 0)Φ(0)V V −1e−tΛ = Φ(t)e−tΛ = Q(t),

as required. The last thing to prove is the characterization of the spectrum
of Λ. Let ν ∈ B be a generalized eigenvector of rank m with eigenvector
μ for M0. Since B is a union of canonical bases, there is a Jordan chain
{ν1, . . . , νm} ⊆ B such that νj = (M0 −μI)νj+1 and νm = ν. Relative to the
basis B, we can write νj = ξrj for some new index rj so that the previous
equation becomes ξrj = (M0−μI)ξrj+1

. The right-hand side can be written as

(M0 − μI)ξrj+1
= U(T, 0)ξrj+1

− μξrj+1
= Φ(T )erj+1

− μξrj+1

= Φ(0)V ej+1 − μξrj+1
.

Since Φ(0) has linearly independent columns, the left-inverse Φ+(0) exists.
Then, since ξj = Φ(0)ej , multiplying Φ+(0) on the left on both sides of
ξrj = (M0 − μI)ξrj+1

, it follows that

erj = (V − μI)erj+1
.
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We conclude that erm , . . . , er1 is a Jordan chain for eigenvalue μ of V . Since
Λ = 1

T log(V ), the result follows.

Remark II.2.5.1. One can replace B with any basis for the direct sum of
generalized eigenspaces of M0 with nonzero eigenvalues. Indeed, the only
place we used the previous description of B was in determining the spectrum
of Λ. If one writes Φ̃(0) = Φ̃(0)Z for invertible Z, where the columns of Φ̃(0)
are a canonical basis of Jordan chains, and defines Φ̃(t) = U(t, 0)Φ̃(0), then

one can apply the theorem directly to Φ̃(t) = Q̃(t)etΛ̃, where Φ̃(T ) = Φ̃(0)Ṽ
and Λ̃ = 1

T log Ṽ . However, if Φ(T ) = Φ(0)V , then Φ̃(T ) = Φ̃(0)ZV Z−1, so

Ṽ and V are similar and thus have the same eigenvalues. The same therefore
holds for Λ̃ and Λ = 1

T log V .

Corollary II.2.5.1. With the notation of Theorem II.2.5.1, introduce a fam-
ily of subspaces Xt of R

n indexed by t ∈ R as follows:

Xt = {U(t, 0)x : x ∈ span(B)}.
The nonautonomous dynamical system U(t, s) : Xs → Xt is equivalent to the
ordinary differential equation

ẏ = Λy (II.2.10)

under the time-periodic change of variables x(t) = Q(t)y(t). More precisely,
any solution x : R → R

n of (II.2.3)–(II.2.4) such that x(t) ∈ Xt for all t ∈ R

can be written in the form x(t) = Q(t)y(t), where y is a solution of (II.2.10).

Proof. Let x be a solution of (II.2.3)–(II.2.4) such that x(t) ∈ Xt. Write
x(0) = Φ(0)h for some h ∈ R

p. By uniqueness of solutions, x(t) = U(t, 0)
Φ(0)h = Φ(t)h, so by Theorem II.2.5.1, we can write x(t) = Q(t)etΛh. With
y = etΛh, the claim is proven.

Corollary II.2.5.2. If p = n—that is, B is a basis for Rn—the time-periodic
change of coordinates x = Q(t)y transforms the ordinary impulsive differen-
tial equation (II.2.3)–(II.2.4) into the autonomous ordinary differential equa-
tion (II.2.10). In this case, |Q(t)| and |Q−1(t)| are both bounded. B is a basis
for R

n if and only if det(I +Bk) �= 0 for k = 0, . . . , c− 1.

Proof. The first part follows by Corollary II.2.5.1. As for the second part,
since B is a basis for the direct sum of generalized eigenspaces of M0 with
nonzero eigenvalue, the assertion that B is a basis for Rn is equivalent to 0 not
being an eigenvalue of M0. Since M0 =

∏1
k=c(I+Bk)X(tk, tk−1) and each of

X(tk, tk−1) has full rank, zero can only be an eigenvalue of det(I + Bk) = 0
for at least one k ∈ {1, . . . , c}. Since Bk+c = Bk, this proves the claim.

Corollary II.2.5.2 is an analogue of the Floquet theorem from ordinary
differential equations. It appears in the 1993 monograph of Bainov and Sime-
onov [9]. Theorem II.2.5.1 is the generalization of the Floquet decomposition
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to the case where the jump maps x �→ x + Bkx to not be one-to-one, while
Corollary II.2.5.1 gives the change of variables on the “non-singular fibre
bundle” Xt that renders the dynamics autonomous.

In essentially the same way Theorem II.2.5.1 is proven, we can establish
a more general version that roughly states that for a homogeneous linear
periodic system, the dynamics on any of its invariant fibre bundles—except
for the “singular” portion of the stable fibre bundle or centre-stable fibre
bundle—are driven by an autonomous ordinary differential equation. The
proof is omitted. First, a quick definition is as follows.

Definition II.2.5.5. Let Xf (t) be one of the following:

• one of the centre, unstable or centre-unstable fibre bundles;

• the reversible stable fibre bundle, X∞
s (t) = {ξ ∈ Xs(t) : ∀t′ > t, U(t′, t)

ξ �= 0};
• the reversible centre-stable fibre bundle, X∞

cs (t) = Xc(t)⊕X∞
s (t).

Let {ξ1, . . . , ξp} be a basis for Xf (0). The matrix-valued function Φf (t) =
U(t, 0)[ξ1, · · · , ξp] is a basis matrix for Xf .

Theorem II.2.5.2. Let Xf be one of the following fibre bundles:

• one of the centre, unstable or centre-unstable fibre bundles;

• the reversible stable fibre bundle or reversible centre-stable fibre bundle.

The restriction of U(t, 0) to any basis for Xf (0) is invertible for t ≥ 0, so
any basis matrix Φf (t) for Xf can be uniquely extended to the entire real line.
There exist a p×p complex matrix Λf and a T -periodic n×p complex matrix
Qf (t) such that Φ(t) = Qf (t)e

tΛf for all t ≥ 0. The eigenvalues of Λf are

σ(Λ) =

{
1

T
log(μ) : M0ξ = μξ, ξ ∈ Xf (0)

}

.

As defined in the above theorem, X∞
s (t) is spanned by the generalized

eigenvectors of Mt having with Floquet multipliers μ satisfying 0 < |μ| < 1.
As a consequence, if det(I +Bk) �= 0 for k = 0, . . . , c− 1, then X∞

s = Xs.

II.2.5.2 Periodic Solutions of Homogeneous Systems

The Floquet multipliers allow us to identify periodic solutions of the homo-
geneous system.

Proposition II.2.5.2. The homogeneous system (II.2.3)–(II.2.4) has a non-
trivial jT -periodic solution for j ∈ N if and only if there exists a Floquet
multiplier μ satisfying μj = 1. In this case, the jT -periodic solutions are
precisely x(t) = U(t, 0)ξ, where ξ ∈ R

n satisfies M j
0 ξ = ξ.
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Proof. x(t) is a nontrivial periodic solution of period jT if and only if x(jT ) =
x(0) �= 0, which is equivalent to the equation U(jT, 0)x(0) = x(0). Since
U(jT, 0) = M j

0 , this implies that x(0) satisfies the equation M j
0x(0) = x(0),

so that 1 is an eigenvalue of M j
0 . Since the eigenvalues of M

j
0 are the jth pow-

ers of the eigenvalues of M0, there must be a Floquet multiplier μ satisfying
μj = 1.

II.2.5.3 Periodic solutions of Inhomogeneous Systems

From the variation-of-constants formula, a periodic solution x(t) is uniquely
determined by its value at time t = 0. Indeed, starting from the variation-
of-constants formula (II.2.5), setting s = 0 and assuming the periodic ansatz
x(0) = x(T ), the necessary and sufficient condition for the existence of a
periodic solution is that there exists a solution x0 of the equation

(U(T, 0)− I)x0 =

∫ T

0

U(T, μ)f(μ)dμ+
∑

0<tk≤T

U(T, tk)gk. (II.2.11)

The matrix on the left-hand side will be invertible precisely if 1 is not an
eigenvalue of U(T, 0). Since the latter is precisely the monodromy matrix
M0, we obtain the following lemma.

Lemma II.2.5.2. The inhomogeneous equation (II.2.1)–(II.2.2) has a unique
T -periodic solution if and only if 1 is not a Floquet multiplier of the associated
homogeneous equation; that is, det(M0 − I) �= 0.

More generally, one might want to know under what conditions there is a
jT -periodic solution for natural number j. The ansatz x(jT ) = 0 leads to
the equation

(U(jT, 0)− I)x0 =

∫ jT

0

U(jT, μ)f(μ)dμ+
∑

0<tk≤jT

U(jT, tk)gk.

Since U(jT, 0) = U(T, 0)j = M j
0 , the previous lemma has the following simple

generalization.

Theorem II.2.5.3. The inhomogeneous equation (II.2.1)–(II.2.2) has a
unique jT -periodic solution if and only if no Floquet multiplier μ of the as-
sociated homogeneous equation is a jth root of unity; that is, μj �= 1 for all
μ ∈ σ(M0).

If 1 ∈ σ(M0), there will be either infinitely many periodic solutions or
none, depending on whether the right-hand side of (II.2.11) is in the range
of M0 − I. Similar conclusions hold for jT -periodic solutions. Existence of
periodic solutions in the critical case where det(M0 − I) = 0 is discussed in
Bainov and Simeonov [9], and we refer the interested reader to this resource.
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II.2.5.4 Periodic Systems Are Exponentially Trichoto-
mous

The invariant fibre bundles of a periodic system induce an exponential tri-
chotomy.

Theorem II.2.5.4. The periodic system (II.2.3)–(II.2.4) has exponential tri-
chotomy. The projectors Pc, Pu and Ps = I − (Pc +Pu) are projections onto
the centre, unstable and stable fibre bundles Xc, Xu and Xs, respectively.
These projectors are also periodic with period T .

Proof Outline. Define Pj(t) by the integral

Pj(t) =
1

2πi

∫

Γj

(zI −Mt)
−1dz,

where Γj is a simple closed contour in C such that the only eigenvalues
μ of M0 contained in its closure are, respectively, those with |μ| > 0 for
j = c, |μ| = 1 for j = u and |μ| < 1 for j = s, oriented counterclockwise
relative to its interior. One can show that with this choice of projections, all
properties of exponential trichotomy are satisfied. The proof is quite long;
see Theorem I.3.1.3 for details.

Sometimes it is desirable to have an explicit formula for one of the pro-
jections P (t) onto an invariant fibre bundle. When there are c = 1 impulses
per period, we have a fairly nice formula. Let M0 = V JV −1 be the Jordan
canonical form of the monodromy matrix M0, and let X(t, s) be the Cauchy
matrix of the continuous part ẋ = A(t)x. Let t ∈ [t0, t0 + T ). Then, we have

Mt = X(t+ T, t0 + T )[I +B1]X(t0 + T, t) = X(t, t0)[I +B]X(t0 + T, t0)X
−1(t, t0)

= X(t, t0)M0X
−1(t, t0) = V (t)JV −1(t),

where we set V (t) = X(t, t0)V . The projection Pj(t) can then be equivalently
written in the form

Pj(t) = V (t)

[
1

2πi

∫

Γj

(zI − J)−1dz

]

V −1(t), (II.2.12)

where the contour Γj is as stated in Theorem II.2.5.4. The contour integral
in (II.2.12) is easy to evaluate because J is a Jordan matrix and the integrand
no longer depends on t. Since Pj is periodic, it is enough to compute it for
t ∈ [t0, t0 + T ).

II.2.5.5 Stability

The following theorem characterizes the stability of the homogeneous system
in terms of the Floquet multipliers. It follows directly from the associated
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infinite-dimensional version, Theorem I.3.3.1, from Part I of this text. The
proof is identical apart from symbolic changes and slight changes to presen-
tation, so it will be omitted.

Theorem II.2.5.5. The homogeneous system (II.2.3)–(II.2.4) is exponen-
tially stable if and only if all Floquet multipliers μ satisfy |μ| < 1. It is
stable if and only if all Floquet multipliers satisfy |μ| ≤ 1, and to those Flo-
quet multipliers satisfying |μ| = 1, the generalized eigenspaces contain only
rank 1 eigenvectors—equivalently, each block in the complex Jordan form of
M0 corresponding to one of the Floquet multipliers satisfying |μ| = 1 is one-
dimensional.

Stability for periodic linear systems is therefore completely determined by
the Floquet multipliers—that is, the eigenvalues μ of M0. These satisfy the
characteristic equation

det(M0 − μI) = 0. (II.2.13)

Recall that M0 is given explicitly by (II.2.9). There is, however, another way
to compute the Floquet multipliers. The following proposition is a direct
consequence of Theorem II.2.5.1.

Proposition II.2.5.3. If M0ξ = μξ and μ �= 0, the function x(t) = U(t, 0)ξ
can be written in the form x(t) = q(t)eλt, where λ = 1

T log μ and q is (gen-
erally) complex-valued and T -periodic. Conversely, if x(t) = q(t)eλt is a so-
lution of (II.2.3)–(II.2.4) with q a complex-valued T -periodic function, then
μ = eTλ is a Floquet multiplier and M0q(0) = μq(0).

Let us substitute the ansatz x(t) = q(t)eλt into (II.2.3)–(II.2.4). After
some cancellation, one arrives at the following impulsive differential equation
for q:

λq + q̇ = A(t)q, t �= tk (II.2.14)

Δq = Bkq, t = tk. (II.2.15)

Let Xλ denote the Cauchy matrix of the continuous part of Eq. (II.2.14).
That is, Xλ(t, s) satisfies Xλ(t, t) = I for t ∈ R and

d

dt
Xλ(t, s) = (A(t)− λI)Xλ(t, s).

By Proposition II.2.5.2, system (II.2.14)–(II.2.15) has a T -periodic solution
if and only if

det

(
1∏

k=c

(I +Bk)Xλ(tk, tk−1)− I

)

= 0. (II.2.16)

Notice that the product term is precisely the monodromy matrix M0 for
(II.2.14)–(II.2.15). If one can compute all solution λ of the equation (II.2.16),
then one can compute the Floquet multipliers μ = eTλ. The numbers λ have
a special name.
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Definition II.2.5.6. The complex numbers λ that solve (II.2.16) are the
Floquet exponents. The set of all Floquet exponents is denoted λ(U) and is
called the Floquet spectrum.

Equation (II.2.16) will have infinitely many solutions because λ = 1
T log μ

and the logarithm has infinitely many branches. Namely, if λ is a Floquet
exponent, then so is λ + 2πi

T . As such, when solving (II.2.16), one should
focus only on solutions in the strip

{

λ ∈ C : �(λ) ∈
[

0,
2π

T

)}

.

II.2.6 Generalized Periodic Changes of Vari-
ables

The changes of variables we introduced in Sect. II.2.5 transform some or
all components of a periodic impulsive system into an autonomous ordinary
differential equation. The downside is that the resulting ordinary differential
equation might be complex-valued. In this section we consider other periodic
changes of variables that will be useful in later applications.

II.2.6.1 A Full State Transformation and Chain Matri-
ces

Corollary II.2.5.1 grants a transformation that very nearly renders the dy-
namics of (II.2.3)–(II.2.4) autonomous. The barrier is the singular fibre bun-
dle, X0, whose t-fibres are given by

X0(t) = {ξ ∈ Xs(t) : ∃t′ > t : U(t′, t)ξ = 0}.

Denote P0(t) the projection onto X0(t). To any solution x : R → R
n such

that P0(s)x(s) �= 0, there necessarily exist some t′ > s such that P0(t)x(t) = 0
for all t ≥ t′. This suggests we form a basis matrix of X0(t) not in the way
that is done in Theorem II.2.5.2, but rather in a piecewise fashion.

Definition II.2.6.1. Let Ψ0, . . . ,Ψc−1 denote matrices whose columns are
bases for the tj-fibres X(tj) of a fibre bundle X. Define for k ∈ {0, . . . , c−1}
and t ∈ [tk, tk+1) the matrix Q(t) = U(t, tk)Ψk. Then, extend Q to Q : R →
R

n×q by periodicity, where q = dimX0(0). We will call Q a chain matrix for
X.

We can now apply Theorem II.2.5.2 and pose a transformation that maps
x into its components in each of X∞

s , Xc, Xu and X0. These components
will be decoupled, and the dynamics for all components aside from X0 will
be autonomous.
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Theorem II.2.6.1. Let Q0 be a chain matrix for X0. Let Φs, Φc and Φu

be basis matrices for X∞
s , Xc and Xu, respectively. The change of variables

x = Qsy + Qcz + Quw + Q0q is invertible and transforms the homogeneous
impulsive system (II.2.3)–(II.2.4) into the decoupled system

ẏ = Λsy, (II.2.17)

ż = Λcz, (II.2.18)

ẇ = Λuw, (II.2.19)

q̇ = 0, t �= tk (II.2.20)

Δq = Q+
0 (tk)[(I +Bk)Q0(t

−
k )−ΔQ0(tk)]q, t = tk, (II.2.21)

where Φj = Qje
tΛj are the respective Floquet decompositions, and for a ma-

trix M with independent columns, the symbol M+ denotes its left-inverse.
The transformation and its inverse are uniformly bounded.

Proof. Since the columns of Qs(t), Qc(t), Qu(t) and Q0(t) are bases X∞
s (t),

Xc(t), Xu(t) and X0(t), respectively, and these subspaces have trivial in-
tersection, the transformation is invertible. Substituting x = Qsy + Qcz +
Quw +Q0q into (II.2.3), we find

A(Qsy +Qcz +Quw +Q0q)

= (AQs −QsΛs)y +Qsẏ + (AQc −QcΛc)z +Qcż

+ (AQu −QuΛu)w +Quẇ +AQ0q +Q0q̇.

After cancelling several terms, we get

0 = Qs(ẏ − Λsy) +Qc(ż − Λcz) +Qu(ẇ − Λuw) +Q0q̇.

This implies the first four equations, (II.2.17)–(II.2.20). It is easy to check
that Qj(tk) = [I + Bk]Qj(t

−
k ) for j = c, s, u. Substituting x = Qsy +Qcz +

Quw +Q0q into (II.2.4), this implies

(I +Bk)Q0(t
−
k )q(t

−
k ) = Q0(tk)q(tk)−Q0(t

−
k )q(t

−
k ).

Denoting Δq = Δq(tk), q = q(t−k ), ΔQ0 = ΔQ0(tk) and Q−
0 = Q0(t

−
k ), we

can expand the above as

(I +Bk)Q
−
0 q = Q−

0 (q +Δq) + ΔQ0(q
− +Δq)−Q−

0 q.

Cancelling Q−
0 q on either side, this is equivalent to

(I +Bk)Q0(t
−
k )q(t

−
k ) = Q0(tk)Δq +ΔQ0(tk)q(t

−
k ).

Rearranging and multiplying by Q+
0 (tk) on both sides give (II.2.21). The

boundedness of the transformation and its inverse is clear from the periodicity
of each of Qs, Qc, Qu, together with the observation that Q0 is periodic and
the left-limits Q0(t

−
k ) are full column rank.
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II.2.6.2 Real Floquet Decompositions

In some applications, the utility of the Floquet decomposition is less than
the transformation of a periodic system to an autonomous one, but rather
in the decoupling of the stable, centre and unstable parts. This is where
the emphasis is placed in Theorem II.2.6.1. However, sometimes we also
want the resulting dynamics of the transformed equation to be real. The
following provides a sufficient condition for all matrices in the statement of
Theorem II.2.6.1 to be real, or for there to exist real matrices such that
the statement holds. The proof is a consequence of the existence of a real
logarithm of a real matrix [39] and is omitted.

Proposition II.2.6.1. Let M0 = V JV −1 denote the real Jordan canonical
form of M0. There exist real basis matrices Φs, Φc and Φu for X∞

s , Xc

and Xu, respectively, with real Floquet decompositions Φj(t) = Qj(t)e
tΛj for

j ∈ {s, c, u}, where Qj are real and T -periodic and Λj are real, if and only if
each Jordan block of J belonging to a negative real eigenvalue occurs an even
number of times.

Corollary II.2.6.1. Let Φ(t) be a real basis matrix for one of X∞
s , Xc or

Xu. Let D be the unique non-singular (real) matrix such that Φ(T ) = Φ(0)D,
and let D = V JV −1 be its real Jordan canonical form. There exists a real
Floquet decomposition—that is, Q(t) real and T -periodic and Λ real such that
Φ(t) = Q(t)etΛ—if and only if any Jordan block of J belonging to a negative
real eigenvalue occurs an even number of times.

Corollary II.2.6.2. There exist real basis matrices Φs, Φc and Φu for X∞
s ,

Xc and Xu, respectively, with real Floquet decompositions Φj(t) = Qj(t)e
tΛj

for j ∈ {s, c, u}, where Qj are real and 2T -periodic and Λj are real.

Proof. Let Φ(t) ∈ R
m×m be a basis matrix for one of X∞

s , Xc or Xu. Then,

Φ(2T ) = M0(M0Φ(0)) = M0(Φ(0)D) = Φ(0)D2

for some invertible D ∈ R
m×m. Defining Λ = 1

2T log(D), since D has no
negative real eigenvalues, Λ is real. Then, Q(t) := Φ(t)e−tΛ is 2T -periodic.

It is clear from the above proposition and corollary that, for example, the
best real Floquet decomposition one can hope to obtain for the system

ẋ =

[
0 1
0 −1

]

x, t �= kT

Δx =

[ −2 0
0 0

]

x, t = kT
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is one that is 2T -periodic. For some applications, this is not enough, for
example, in the analysis of period-doubling bifurcations, it is preferable to
maintain the original period. We can accomplish this by way of chain matri-
ces.

II.2.6.3 A Real T -Periodic Kinematic Similarity

We can use a system of chain matrices to transform any T -periodic impulsive
system into a T -periodic impulsive system with a block structure. The proof
is analogous to that of Theorem II.2.6.1 and is omitted.

Corollary II.2.6.3. Let Q0, Qs, Qc and Qu be chain matrices for X0, X
∞
s ,

Xc and Xu, respectively. Define Q(t) = [ Q0(t) Qs(t) Qc(t) Qu(t) ].
This matrix is bounded and periodic with a bounded inverse. The change of
variables x = Q(t)y transforms (II.2.3)–(II.2.4) into the piecewise-constant
system

ẏ = 0, t �= tk

Δy = Q−1(tk)[(I +Bk)Q(t−k )−ΔQ(tk)]y, t = tk.

One can also define a transformation x = Q(t)y, where Q(t) is some com-
bination of chain matrices and Floquet periodic matrices (i.e. coming from
a Floquet decomposition), and the result will be some combination of the
systems from Theorem II.2.6.1 and Corollary II.2.6.3. In some cases, it will
be preferable to use the standard Floquet periodic matrices, and other times,
it will be better to use chain matrices. Regardless, we have the following
general corollary.

Corollary II.2.6.4. There exists a real, T -periodic, linear change of vari-
ables x = Q(t)y with ||Q(t)|| and ||Q−1(t)|| uniformly bounded, such that
(II.2.3)–(II.2.4) are transformed into a system of the form

ẏ = Λsy, t �= tk

ż = Λcw, t �= tk

ẇ = Λuz, t �= tk

Δy = Ωsy, t = tk

Δz = Ωcz, t = tk

Δw = Ωuw, t = tk,

with real matrices Λj and Ωj, j ∈ {s, c, u}. Let M0 denote the monodromy
matrix of (II.2.3)–(II.2.4), and write its spectrum (set of eigenvalues) as
σ(M0) = σs ∪ σc ∪ σu, with |σs| < 1, |σc| = 1 and |σu| > 1. Let M0,y, M0,z

and M0,w denote the monodromy matrices of the y, z and w subsystems.
Then,

σ(M0,y) = σs, σ(M0,z) = σc, σ(M0,w) = σu.

In the above corollary, we used |S| < 1 as a shorthand for the sentence all
elements of S have absolute value less than one. The symbols |S| = 1 and
|S| > 1 are interpreted analogously.
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II.2.7 Comments

The Floquet theory for impulsive differential equations is fully described in
the monograph of Bainov and Simeonov [9], being partially developed in 1982
by Samoilenko and Perestyuk [124], although therein the assumption that
matrices I + Bk are invertible is assumed. We have intentionally dispensed
with this requirement since it makes the theory far more flexible. The content
of Sects. II.2.5.2 and II.2.5.3 appears in [9], as does Theorem II.2.5.5.
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