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Preface

Impulsive dynamical systems have become increasingly popular during the
past decades because they provide a natural framework for mathematical
modeling of many real-world phenomena. Applications of impulsive dynam-
ical systems can be found in a variety of fields such as aeronautics, ecology,
economics, epidemiology, finance, medicine and robotics, just to name a few.
An impulsive dynamical system normally consists of three elements: a con-
tinuous system of differential equations, which governs the motion of the
dynamical system between impulsive and resetting events; a discrete system
of difference equations, which governs the way the system states are instanta-
neously changed when a setting event occurs; and a criterion for determining
when the states of the system are to be reset. The solutions of impulsive
dynamical systems are in general discontinuous, which often renders some of
the standard analysis and control design methods ineffective. Nonetheless,
significant progress has been made in theory and applications of impulsive
dynamical systems in the past few decades, especially when the underlying
continuous portions are described by ordinary differential equations. The lat-
ter are often referred to as impulsive (ordinary) differential equations. When
time delays are present in the systems, they are also called impulsive re-
tarded functional differential equations. There are added layers of challenges
in studying such systems containing time delays because of a lack of some
more ubiquitous properties in dynamical systems, such as continuity of the in-
duced semiflow. However, much progress has been made in recent years, and
many interesting results in stability, manifold theory and bifurcation analysis
have been published for such systems. The purpose of this book is to present
the recent progress in this direction and to demonstrate that the local sta-
bility and bifurcation analysis of these systems, while at times subtle, can be
made rigorous and computationally viable. The scope has been expanded to
address not only smooth local bifurcations but also some nonsmooth bifurca-
tion phenomena that are unique to impulsive dynamical systems. Arguably,
one of the most powerful techniques in the study of local bifurcations in finite-
dimensional smooth dynamical systems is the combination of linearization,
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centre manifold reduction and normal form theory. This continues to hold
true for retarded functional differential equations, of which delay differential
equations are a subclass. There, the first two steps of linearization and centre
manifold reduction are fundamentally different than in the finite-dimensional
setting, but the normal form theory can function as usual because the centre
dynamics are finite-dimensional. The primary objective of this book is to ex-
tend this programme to the case of impulsive retarded functional differential
equations.

This book consists of four parts with twenty chapters in total. Part I
is devoted to infinite-dimensional impulsive functional differential equations.
Some preliminary background is provided in Chap. 1.1, including the phase
space of right-continuous regulated functions that we use throughout. A
thorough treatment of the representation of solutions for linear systems and
linear periodic systems is completed in Chaps. 1.2 and 1.3. Following this,
nonlinear systems are considered in Chap. 1.4 from the point of view of mild
solutions, where we also discuss stability. Invariant manifold theory is the
focus of Chaps. 1.5, 1.6 and 1.7, with a discussion of the generic codimension-
one smooth bifurcations appearing in Chap. I1.8.

Finite-dimensional ordinary impulsive differential equations are considered
in Part II. This part of the monograph can be read independently of Part I.
The first two chapters contain a review of material that should be familiar
to a reader who is versed in ordinary impulsive differential equations: exis-
tence and uniqueness of solutions, dependence on initial conditions and linear
systems theory. Chapter I1.3 contains finite-dimensional variants of some of
the results from Chap. 1.4, including linearized stability. Invariant manifold
theory is covered in Chap. I1.4, and methods of studying bifurcations of fixed
points and periodic solutions are discussed in Chap. IL.5.

Part III contains some special topics concerning singular phenomena and
nonsmooth bifurcations. Chapter III.1 pertains to the robustness of bifur-
cations and hyperbolic orbits under continuous-time temporal smoothing of
the impulse effect, as well as the sensitivity of bifurcation curves under such
smoothing actions. In a sense, this chapter is an analysis of what might be
considered the fundamental tenet of modeling with impulses: the transient
dynamics that occur during a temporally short burst of activity can be ig-
nored and replaced by a discrete jump in state. Chapter II1.2 is a study of
some nonsmooth bifurcations in impulsive systems, namely those caused by
taking discrete delays and/or impulse times as system parameters.

The final part, Part IV, contains applications. Therein, we study stability
and bifurcation in five mathematical models involving impulses and (discrete
and distributed) delays. The subject areas include classical mechanics, in-
fectious disease modeling, mathematical ecology and in-host viral replication
dynamics.
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Reading Guide

The target audience of this book is applied mathematicians and scientists
who want to understand more about their models, especially if these are
based on impulsive dynamical with such functional dependence as delays.
Part I is rather technical, as we build up the theory from scratch and require
machinery from functional analysis and measure theory to do it consistently.
To compare, Part II should be approachable by advanced undergraduates
or early graduate students with sufficient exposure to ordinary differential
equations and dynamical systems. The remaining Parts IIT and IV are special
topics and applications.

We recommend that readers less familiar with impulsive dynamical sys-
tems (especially delay equations) first read only the opening pages of
Chap. 1.1, as these provide some background, are mostly nontechnical and
illustrate the main theoretical issues of impulsive dynamical systems we aim
to remedy with this book. The readers could then skim the applications in
Part IV to see what the theory from Parts I and II could do for the analysis
of their mathematical models. Following this, such readers have two options:
read Part II if they are primarily interested in ordinary impulsive differen-
tial equations, or begin Part I in earnest if their models involve functional
dependence like delays or integrals.

Readers who are most interested in the theoretical developments concern-
ing invariant manifolds and bifurcations for impulsive functional differential
equations are advised to begin with Part I. The finite-dimensional analogues
of these results appear in Chaps. I1.4 and II.5.

Part ITI should be of interest to those readers interested in the intersection
of bifurcation theory and nonsmooth dynamics. The content of Chap. III.1
is accessible to any reader who has read Part II or is familiar with the basics
of impulsive differential equations, while to fully understand Chap. II1.2 it is
advisable that the reader have read Chaps. 1.3 and I.6.

IX
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Chapter 1.1

Introduction

Many real-world processes exhibit continuous-time evolution with intermit-
tent bursts of comparatively fast dynamics. In mathematical models of such
processes, these bursts of activity are sometimes intrinsic to the dynamics.
For example, the Hodgkin—Huxley model [68] is a nonlinear ordinary differen-
tial equation that describes the propagation of action potentials of neurons;
here, the bursts of activity correspond to the action potentials and are an in-
trinsic feature of the model. In the Hodgkin—Huxley model, these bursts arise
from slow—fast dynamics in the continuous-time model, but in other neuronal
models such as integrate-and-fire [1], the bursts are introduced synthetically
using a logic rule. In other situations, these bursts of activity or impulses
enter into the model in the form of a control that is designed to (ideally) force
or constrain the dynamics in a desired way. The applications of this idea are
quite diverse, including control theory, multi-agent systems, epidemiology,
population dynamics, medicine and robotics [108, 140, 163]. The mathemat-
ical formalism in which these ideas take concrete form is impulsive dynamical
systems.

The theoretical foundations of ordinary impulsive differential equations
are mostly contained in the monographs [9, 10, 85, 112, 125]. One important
class of ordinary impulsive differential equations are those that have impulses
at fixed times. These are systems of the form

dx

= = f(t.a), t £t (L1.1)
Az = g(k, z), t =ty (1.1.2)
(© Springer Nature Switzerland AG 2021 3
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where {t;, : k € Z} is a monotone sequence of impulse times (typically un-
bounded for k — o), f and g are the vector field and jump function that
satisfy some appropriate regularity conditions, and the second equation is
interpreted as

Az = a(tf) — x(ty) = g(k, x(tx)).

The solutions of (I.1.1)—(I.1.2) are continuous from the left and have lim-
its on the right (although conventions differ; some authors use continuity
from the right, although these notions are equivalent for x € R™ finite-
dimensional). In many practical problems, the right-hand side of (I.1.1)—
(I.1.2) is autonomous—that is, t — f(t,z) and k — g(k,z) are constant for
fixed z. When the sequence of impulses is of the form t; = kT for some
T > 0, the result is a system

dx
i (x), t# kT (I.1.3)
Az = g(x), t=kT. (1.1.4)

The above system is periodically forced though the impulse effects, which
occur every T units of time. System (I.1.3)—(I.1.4) falls under the category
of periodic impulsive differential equations. Many dynamical aspects of these
systems can be understood by transforming to discrete time through the use
of the time T map. Using this formalism, bifurcations from fixed points and
periodic solutions can be studied using either Lyapunov-Schmidt reduction
or centre manifold reduction for maps [30]. One of the earliest applications of
such an approach seems to be due to Lakmeche and Arino [84] in the context
of chemotherapy modelling. Since then, numerous authors have studied bi-
furcations in specific impulsive differential equation models—the reader may
consult [37, 48, 128, 145, 162, 164] for a few recent applications. In most of
these papers, the impulse effect represents a control that is applied at fixed,
regular times.

Impulsive dynamical systems may be classified into the incredibly broad
class of hybrid systems. The latter can be specified by a differential inclusion
on one subset of the phase space, and a set-valued map defined on another
subset of the phase space. They include impulsive dynamical systems as
a subclass but also can be used to describe systems with distinct continu-
ous states and logical modes, hybrid automata, switched systems, Filippov
systems and others. See [51] for background.

The model (I.1.1)—(I.1.2) is suitable for describing systems whose evolution
law does not depend explicitly on the state of the system in the past. How-
ever, many processes do have explicit memory effects, or models that take
these into account have improved fidelity to empirical observations. Consider
the logistic growth (Verlhust) model

dN N
dtTN(lK>
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for a single species. The number K is the carrying capacity of the population.
Every solution of this differential equation from a positive initial condition
converges monotonically to the carrying capacity. However, any notion of
carrying capacity must take into account either that such a quantity is con-
stantly fluctuating [126] or that the carrying capacity represents some quan-
tity which populations fluctuate about [118]. Since solutions of the logistic
equation are monotone, such fluctuations cannot be realized. The Hutchinson

equation [72]
dN N(t—1)
2N (Y
a ( K )

includes a delayed term N (¢ — 1), which suggests that the density-dependent
feedback takes 7 units of time to affect the population dynamics. Under
certain parameter configurations, Hutchinson’s equation features sustained
oscillations near the carrying capacity.

Many authors have considered theoretical questions related to includ-
ing impulse effects in systems involving delays and other functional depen-
dence. Broadly, impulsive retarded functional differential equations (impul-
sive RFDEs)

X = e, E# b, (L15)

Az = g(t,xy), t =ty (I.1.6)

sometimes referred to simply as impulsive functional differential equations
(impulsive FDEs) have been considered. f(¢,-) and g(t,-) are functionals
acting on some appropriate space of functions ¢ : [—r,0] — R", the history
x4 is defined by x4(0) := x(t+6) for 6 € [—r,0] and the jump condition (I.1.6)
is understood as one of

Az € {a(ty) - z(ty), 2(t]) - (te)}.

The choice corresponds to a continuity convention. The majority of literature
on impulsive functional differential equations appears to take the convention
of continuity from the right—that is, Az = x(ty) —x(t, )—but there are some
exceptions. Classical topics such as existence and uniqueness, continuability
of solutions and stability are treated in [13, 14, 92, 93, 105]. In the typical
case of a right-continuity convention, the jump condition (I.1.6) is usually
taken to be one of the more explicit forms

Ax = g(taxt*%

where x;- (0) = x(t + 0) for 6 € [—r,0), and z;- (0) = lim,_.o- (¢t + ).
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The transition from the finite-dimensional system (I.1.1)—(1.1.2) to the
infinite-dimensional system (1.1.5)—(1.1.6) is far from smooth (pun absolutely
intended), at least insofar as dynamical systems aspects are concerned. The
difficulties mostly centre around two inherently connected observations.

1. The phase space of (I.1.5)—(1.1.6) must contain discontinuous functions.

2. The associated dynamical system is generally discontinuous everywhere
(with respect to time).

To compare, the nonautonomous dynamical system ¢ : R x R x  — R"
associated with the finite-dimensional system (I.1.1)—(I.1.2) has the property
that ¢t — &(t, s,2) and s — ¢(¢,s,2) only have discontinuities in the set
{tx : k € Z} of impulse times. The infinite-dimensional setting is far less well-
behaved, and it is our view that this is precisely the reason that bifurcation
theory techniques for impulsive functional differential equations have lagged
behind in development.

The first of these observations, that some amount of discontinuity must
be allowed in the initial condition of a Cauchy problem if continuability of
solutions is to be considered, is responsible for the occasionally abstract pre-
sentation of existence and uniqueness results. These universally involve a
condition on the composition

t— f(t, .It)

whenever x : I — R”™ is an element of the class of solutions the author is
considering. For example, Ballinger and Liu [14] take  : I — R™ to be
continuous at all but finitely many points in any compact set and assume
that the composition ¢ — f(¢,x;) satisfies a Carathéodory condition, with
the result being existence, uniqueness and continuability of solutions in the
extended sense. If this composition is suitably continuous, then the same
conclusions hold for classical solutions [13]. Regardless, under these assump-
tions the phase space is incomplete, which makes the situation less than ideal
for considering dynamical systems aspects such as invariant manifold theory.

In order to more fully understand the difficulties in moving to the infinite-
dimensional setting, we will study here a few simple examples. Our discussion
will be a bit informal, as we have yet to properly define such concepts as
solutions.

First, consider the following scalar initial-value problem:

dz

=1 1.
=1, t£kel (L1.7)
Ax =x(t—1), t=keZ (I.1.8)

z0 =1, (1.1.9)



CHAPTER 1.1 INTRODUCTION 7

3.5¢

Figure I.1.1: Plots of 1.5, ©1.55 and x1 45 for the solution z(¢) from (1.1.10).
These functions are discontinuous at § = —0.5, § = —0.55 and § = —0.45,
respectively. The discontinuities are plotted with vertical lines for emphasis.
We can now clearly see that for small € # 0, ||21 54 — 215]| > 1

where z¢(f) = 1 is a constant initial function. Note that since the impulse
effect requires the data at time t — 1, we need to specify initial conditions
on an interval [—1,0]. By convention, the impulse at time ¢ = 0 is ignored
since our initial condition is specified at this same time. The solution can be
computed directly: it is given by

1, t<0
for |-| the floor (round down to the nearest integer) function. Indeed, one can
verify that this function is differentiable for ¢ > 0 non-integer with derivative
1, while for positive integers, x(k) = 2¥*! — 1 and lim,_,;~ x(s) = 2*. Then,
the impulse effect dictates that the solution must satisfy

z(k) = hI,? z(s) +Ax =28tk —1) =2~ 428 —1 =281
S—K™

which is consistent with our claimed solution x above. However, if we consider
the function ¢t — x, for z:(0) = z(t + ) and 6 € [—1,0], this function is
discontinuous for all t > 1, in the sense that lime_,q ||x¢+e — ¢|| # 0, where
the norm is the supremum norm; see Fig. I.1.1. In fact, one can verify that
for t > 1 and e # 0 sufficiently small, ||z — 24| > x(|t] — 1) = 2l — 1.
This example demonstrates one of the previously mentioned major technical
differences between continuous time delay differential equations and those
that involve impulses.
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The dynamical system generated by an impulsive functional dif-
ferential equation is generally discontinuous everywhere (in the
sense that ¢t — x; is not continuous in the supremum norm, along
solutions z).

It might seem natural to therefore endow the phase space with a different
topology to avoid this issue. For example, one might consider what might
happen if we instead equip the phase space with the topology induced by the
L? norm. While this fixes the continuity problem of the dynamical system
along individual solutions, it has the effect of breaking continuous dependence
on initial conditions, as we show in Sect. 1.2.2.3.

Observe also that the function z:(8) = z(t + 0) for § € [—1,0], with =
the solution from (I.1.10), is discontinuous at § = [t] — ¢ for t > 1; see
again Fig. [.1.1. The conventional wisdom when working with functional
differential equations is to think of the solution history segments x; as living
in the phase space of the associated dynamical system. This is reasonable,
since to specify an initial-value problem it is necessary to define the initial
condition on an interval. For the present example, this interval is [—1,0]
since the largest delay is 1. Finally, as we could have taken zy to be any
continuous function (initial condition) in (I.1.9) and defined a solution z(t)
in a similar way, we come to the following observations concerning the phase
space:

The phase space of an impulsive functional differential equation
must generally contain discontinuous functions. In particular, any
“reasonable” phase space must contain the following subsets:

e the continuous functions;

e functions that are continuous except for at a single point.

The last of these two conditions makes it necessary to enlarge the phase space
substantially from merely the continuous functions. Indeed, if we want the
phase space to admit a vector space structure, we need to in fact allow for
functions that are discontinuous at a countably infinite number of points.

Now that we have demonstrated the fundamental technical novelties of
impulsive functional differential equations as compared to their counterparts
without impulses, and our first task will be to put these systems into a
rigorous nonautonomous dynamical systems framework. This will allow us to
use classical techniques of nonlinear functional analysis to study the solution
set of impulsive dynamical systems and determine the effects of parameter
variation on these solutions. The first steps are to decide on a phase space
and develop the theory of linear equations. Nonlinear equations will then be
studied using the mild solution formalism, and from there we will be able to
venture into the world of invariant manifolds and bifurcations.
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I.1.1 Nonautonomous Dynamical Systems

Here we introduce some definitions related to nonautonomous dynamical sys-
tems. This is needed to provide a working theory for linear systems, but the
terminology is very useful for nonlinear systems as well.

Definition 1.1.1.1. If X is a Banach space, a subset M C R x X is a
nonautonomous set over X. For each t € R, the fibre is the set M(t) C C
defined by

M) ={z: (t,z) € M}.

Definition I.1.1.2. A process on X is a pair (S, M), where M is a nonau-
tonomous set over R x X and S : M — X, whose action we denote by
S(t, (s,x)) = S(t, s)x satisfies the following:

o {t} xX C M(t) and S(t,t) = Ix for allt € R, where Ix is the identity
operator on X.

o S(t,s)xr = S(t,v)S(v, s)x whenever (s,x) € M(v) and (v,S(v,s)z) €
M(t).

A process is a forward process if for all s € R and z € X, (t,S5(t,s)x) € M(t)
for allt > s. A process is an all-time process if for all t,s € R and x € X,
(t,S(t,s)x) € M(t).

Processes will typically be identified in this monograph with solutions of
impulsive differential equations, both finite- and infinite-dimensional. The
definition of process stated above is rather different than the standard ones
due to Dafermos [40] and Hale [57]. Regardless, the following definition can
make some statements less verbose and more intuitive.

Definition 1.1.1.3. If M is a nonautonomous set over R x X and M(t) C
R x X is the associated t-fibre, define the (t, s)-fibre by

M(t,s) ={x: (s,z) € M(t)} C X.

The two-parameter semigroup associated with a process (S, M) is the family
S(t,s) : M(t,s) = X defined by S(t,s)x = S(t,(s,x)) for allt,s € R.

The two-parameter semigroup is appropriately named. The following
proposition follows easily from the definitions.

Proposition I.1.1.1. The two-parameter semigroup S(t,s) : M(t,s) — X
associated with a process (S, M) enjoys the following properties:

1. S(t,t) = Ix for allt € R.

2. 5(t,s)r = S(t,v)S(v, s)x provided x € M(v,s) and S(v,s)x € M(t,v).
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Conversely, a two-parameter semigroup of operators S(t,s) : M(t,s) = X
satisfying properties 1 and 2 of Proposition I.1.1.1 determines a process.

Definition I.1.1.4. A two-parameter semigroup over X is a family S(t, s) :
M(t,s) = X of functions, with M a nonautonomous set over R x X, satis-
fying properties 1 and 2 of Proposition 1.1.1.1.

Proposition 1.1.1.2. Let S(t,s) : M(t,s) — X be a two-parameter semi-
group over X. S(t,s) is the two-parameter semigroup associated with (S, M),
with S(t, (s,x)) = S(t,s)z.

Proof. We check that (S, M) as defined is indeed a process. Since S(t,t) =
Ix has domain X and S(¢,t) : M(t,t) — X, it follows that M(¢,¢) = X. But
this means that {t} x X C M(t). Also, S(t,t) = S(t,t) = Ix. This verifies
the first condition of a process. For the second condition, (s,z) € M(v)
and (U,S(U,S):L‘) € M(t) imply z € M(v,s) and S(v,s)z € M(t,v). By

definition of S and the properties of the two-parameter family S, this gives
us S(t, s)x = S(t,v)S(v, s)x, which implies S(t, s)z = S(t,v)S (v, s)x. O

In this way, a process uniquely determines its associated two-parameter
semigroup and vice versa. This allows us to easily define linear processes,
decompositions and invariant sets in terms of the two-parameter semigroup.

Definition I1.1.1.5. A process (S, M) is linear if M(t, s) is a linear subspace
of X for all t,s € R, S(t,s) : M(t,s) — X is bounded and linear and
M(t,s) = X whenevert > s.

Definition 1.1.1.6. Let (S, M) be a linear process, and consider the restric-
tion of the associated two-parameter semigroup S(t,s) : X — X fort > s.
We say that (S, M) is spectrally separated if there exists a triple (Ps, P, P,)
of bounded projection-valued functions P; : R — L(X) for Ps+ P.+ P, = Ix
such that the following hold for i,j € {s,c,u}:

1. There exists a constant N such that sup,cg (|| Ps () || +]| P (t)||+]| Pu(t)]])
=N < oo.

2. The projectors are mutually orthogonal: P;(t)P;(t) =0 for i # j.
3. S(t,s)Pi(s) = P;(t)S(t,s) for allt > s.

4. Define S;(t,s) as the restriction of S(t,s) to X;(s) = R(Pi(s)). The
operators Se(t,s) : Xe(s) = Xe(t) and Su(t, s) : Xu(s) = X (t) are
invertible, and we denote S.(s,t) = S.(t,s)~! and S,(s,t) =S
for s <t.

5. For allt,s,v € R, we have

Se(t, s) = Se(t,v)Sc(v, s), Su(t,s) = Syu(t,v)Sy(v,s).
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6. There exist real numbers a < 0 < b such that for all € > 0, there exists
K > 1 such that

1Sy (t,s)|] < Kebt=), t<s (1.1.11)
1S.(t, s)|| < Keclt=>!, t,s €R (1.1.12)
1S4 (t, 5)|| < Ke® =), t>s. (1.1.13)

Definition 1.1.1.7. Let (S, M) be a spectrally separated linear process. De-
fine the following nonautonomous sets over X fori € {s,c,u}:

X; = |J{t} x Xi(1). (1.1.14)

teR

The nonautonomous sets X4, X. and X, are the stable, centre and unstable
fibre bundles!, respectively. (S, M) is hyperbolic if X. = {0}, otherwise it
s nonhyperbolic.

Definition 1.1.1.8. Let (S, M) be a process. A nonautonomous set V over
X is

e positively invariant if S(t, s)x € V(t) for all t > s, whenever x € V(s);
e negatively invariant if S(t, s)x € V(t) for allt < s, whenever x € V(s);
e invariant if it is both positively and negatively invariant.

From the definition of invariance and properties 4 and 5 of spectral sepa-
ration, we directly get the following proposition.

Proposition 1.1.1.3. Let (S, M) be linear spectrally separated. The stable
fibre bundle is positively invariant, and the centre and unstable fibre bundles
are (positively and negatively) invariant.

The stable, centre and unstable fibre bundles of a linear process will even-
tually play the roles of the stable, centre and unstable subspaces from, for ex-
ample, ordinary differential equations. A consequence of Propositions I.1.1.1
and 1.1.1.2 is that any definition applicable to a process is also applicable
to an arbitrary two-parameter semigroup. This includes linearity, invariance
and spectral separation.

1.1.2 History Functions

It is necessary to define various history functions or window functions. Let
x : I — X for some interval I C R and a Banach space X. Let r > 0 be
finite, let ¢ € I and assume inf I <t —r.

LA nonautonomous set over X naturally has the structure of a topological fibre bundle
over X with base space R, hence the borrowing of this term here.
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Definition I.1.2.1. The history of = at time ¢t € I is ay : [-r,0] - X
defined by

x24(0) = z(t + 0). (I.1.15)
Definition 1.1.2.2. The one-point left-limit history of = at ¢t € I is ;- :
[—7,0] = X defined by

| z(t+0), <0
L= (9) o { limsﬁ()— x(t + 5), 0= O, (1116)
provided the limit exists.

Definition I.1.2.3. The regulated left-limit history of x at ¢t € I is z; :
[—7,0] = X defined by

xy (0) = lim z(t+ 60+ s),

s—0~
provided the limits exist.

The various history functions are illustrated schematically in Fig. 1.1.2.
They all coincide when z : I — X is continuous, whereas if the set of discon-
tinuities is reasonably well-behaved, then each of the history functions exists.
Note that the regulated left-limit can be equivalently written in the more
suggestive form

zy (0) = lim z444(0),

s—0~

so that in a pointwise (in 6) sense, we have the alternative definition

r, = lm x4y,
s—=0~

I[.1.3 The Space RCR of Right-Continuous
Regulated Functions

When working with impulsive functional differential equations, we will see
that the natural phase space is that of the right-continuous regulated func-
tions. Denote

RCR(I,X) = {f I = X :Veel, lim f(s)= f(t) and lim f(s) exists},

s—tt s—t—

where X C R™ and I C R. When X and I are closed,
RCRy(I,X) :={f e RCR(I,X) : ||f|] < oo}

is a Banach space with the norm ||f|| = sup,¢;|f(z)]. We will also at
times require the space G(I, X) of regulated functions from I into X; this is
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Figure 1.1.2: History functions for an illustrative example of a right-
continuous function (top left), with » = 4.5. The data contained within the
dashed rectangle is (in a limiting sense) needed to define the various history
functions. Filled-in circles indicate the value of the function at the relevant
argument (¢ or 6), while empty circles denote appropriate limit points. Note
that x5 and the one-point left-limit x5- remain continuous from the right,
but the regulated left-limit x; is continuous from the left

merelythe set of functions f : I — X that possess left- and right-limits at each
point, with no continuity sidedness restriction. One may consult Honig [69]
for background on regulated functions, in particular, the claim that G(I, X)
is complete. As RCR(I,X) is a closed subspace thereof, its completeness
follows immediately. We will write RCR := RCR([—r,0],R™) when there is
no ambiguity, and note that since RCR([—r,0],R") = RCR([—r,0],R"), we
may identify RCR with its associated Banach space. The step functions are
dense in G(I,X) and by extension, the subspace RCR(I, X ). The proof of
the following proposition appears in Honig [69].

Proposition 1.1.3.1. Let I be compact. For all f € G(I,X), there exists a
sequence of step functions fn : I — X such that ||f, — f|| = 0.
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Adapting the aforementioned proof to the explicitly right-continuous case,
one obtains a specification to RCR(I, X).

Lemma I1.1.3.1. Let I be compact. For all f € RCR(I,X), there ex-
ists a sequence of right-continuous step functions f, : I — X such that

[fn = fII = 0.

Regulated functions are integrable, as the following lemma guarantees. Its
proof is simple and omitted.

Lemma 1.1.3.2. Let f € G(I,R™) for some interval I. f is locally integrable
—that is, [¢ f(x)dx ewists for all S C I compact.

In contrast to continuous functions, if f € RCR(A, B) and g € RCR(B, X)
for A, B real intervals, it need not be true that go f € RCR(A, X). This is
generally false even if f is continuous. As a simple example, take

_f 2, 0<z<3
f(m)_{ 222, l<u<l,

and g(z) = |x]. Then, f € C([0,1],R) and g € RCR(R,R), but the compo-
sition g o f : [0, 1] — R has the form

g<>f(w)={ ?’ ii

9

[N

and so is not continuous from the right. The following is a sufficient condition
for the composition g o f to be RCR(A, X) for any g € RCR(B, X).

Lemma 1.1.3.3. If f € RCR(A, B) for intervals A,B C R, then go f €
RCR(A,X) for any g € RCR(B,X) provided the following conditions are
satisfied:

1. For all v € A, there exists € > 0 such that f|; ,1q is nondecreasing.

2. If v € A and f(z) # f(x7), there exists € > 0 such that fl_c ) is

nondecreasing.

Proof. Let x < sup A. Since f|; 24¢ is nondecreasing for € > 0 sufficiently
small, we have that for any z, — x*, the sequence f(z,) is eventually
nondecreasing. Since f € RCR(A,B), we have f(z,) — f(z). Then, as
g € RCR(B, X), we conclude lim,,_,«, go f(x,,) = go f(x). Now let z > inf A.
There are two cases to consider. If f(z) # f(x7), then from the second
condition f[;_c ) is nondecreasing for € > 0 small enough. A symmetric
argument to how we proved the existence of right-limits can now be used to
prove lim,_,,— fog(y) exists. The more difficult case is if f(x) = f(z~)—that
is, when f is continuous at x.

For € > 0 sufficiently small, sgn(f|jz—e ) — f()) is constant. To see this,
assume to the contrary that there exists x,, — x~ such that sgn(f(z,)— f(z))
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is oscillatory. This is impossible because g(y) := sgn(f(y) — f(z))v is an
element of RCR(B,X) for any 0 # v € X, and g o f(z,) has no limit as
n — oo even though x, — x~. We can then without loss of generality
assume f(y) > f(z) for all x € [z — ¢,x) for some € > 0. Let z,, € [x —
€,x) satisfy x, — x. Let x,, be any subsequence of z,, and consider the
sequence k — f(zp,). Since the limit exists and f(z,,) > f(x), there exists
a further subsequence such that j — f (:vnkj) := u; is nonincreasing. Since
g € RCR(B,X), lim;_,o g(u;) exists. As u; — f(z)~, the limit does not
depend on the choice of the subsequence. Thus, lim, . go f(z,) = g(f(x)7)
for any sequence z,, — x~. O

Remark 1.1.3.1. Later on, one of the conditions needed to ensure the exis-
tence of solutions for an impulsive functional differential equation will con-
cern the reqularity of the composition t — f(t, ¢;) whenever ¢ € RCR(I,R™),
where f is the functional defining the vector field and I is an interval. The
motivation for Lemma 1.1.5.3 is that functionals with time-dependent discrete
delays involve terms of the form

for state ¢ € RCR([—r,0],R™) and some delay function d : R — [—r,0]. In
this case, fa(t,x¢) = x(t—d(t)). Lemma 1.1.3.3 provides a sufficient condition
ont—d(t) for the t — x(t — d(t)) to be an element of RCR(R,R™) for any
x € RCR(R,R™).

We will eventually need spaces of function f : I — X that are differentiable
from the right and whose right-hand derivatives are elements of RCR(I, X).
Specifically, define the right-hand derivative by

and introduce the space
RCRYI,X)={f € RCR(I,X) :d" f € RCR(I, X)}.

This space is complete with respect to the norm ||f||1 = || f|| + ||d* f]| when
restricted to the subspace consisting of functions that are || - |||;-bounded,
although we will not make great use of this fact in this monograph.

We will need a few convergence and boundedness results for Perron—
Stieltjes integrals involving right-continuous regulated functions and func-
tions of bounded variation. These two results appear in [31] and are based
on results by Tvrdy [142]. In what follows, vT denotes the transpose of
v € R™ In the two lemmas below, we overload the notation and define

T a, 0] = R™ by fT(t) = [f(1)]T-
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Lemma 1.1.3.4. Let f : [a,b] — R™ be of bounded variation and g €
RCR([a,b],R™). The integral fab fT(t)dg(t) exists in the Perron—Stieltjes
sense, and

b
/ FT @) dg(®)| < (1F(@)] + £ B)] +var’ £)]lg]l (11.17)

where var® f denotes the total variation of f on the interval [a,b].

Lemma 1.1.3.5. Let h,, € RCR([a,b],R™) and h € RCR([a,b], R™) be such
that ||hy, — h|| = 0 as n — co. For any f : [a,b] = R™ of bounded variation,

the Perron—Stieltjes integrals ff fT(t)dh(t) and f: fT(t)dh,(t) exist and
b

b
nh_)néo fT(t)dhn(t) = / fT(t)dh(t). (I.1.18)

Next, we provide a generalization of a result by Ballinger and Liu [14],
which can itself be seen as a weakened form of the result that if z : R — R”
is continuous, then F : t +— z, € C([—r,0],R™) is continuous as a function
F :R — C([-r,0],R™), where the codomain is the Banach space of contin-
uous functions from [—r,0] to R™ equipped with the supremum norm. The
following lemma appears in [31], and we reproduce its proof here.

Lemma 1.1.3.6. Let r > 0 be finite, and let ¢ € RCR([a,b],R™) for some
b>a+r. With ¢, : [-r,0] — R™ defined by (1.1.15), t — ||¢¢]| is an element
of RCR([a + r,b],R).

Proof. Let t € [a + r,b] be fixed. We will only prove right-continuity, since
the proof of the existence of left-limits is similar. It suffices to prove that
for any decreasing sequence s, | 0, we have ||¢i1s, || — ||¢¢]]. Let € > 0 be
given. By right-continuity of ¢, for all € > 0, there exists 6 > 0 such that, if
0 < p <6, then |¢p(t + ) — ¢(t)| < e. Therefore,

[pess, |l = sup |p(t+sn+p) < sup |6t + p)
weE[=r,0] RE[=T,5n]
< max{[|¢¢|], sup [B(t+ p)[}
HE[0,55]

< max{||g|], [¢()] + €} < [[oe]] + €,

provided s, < 4. On the other hand, since ¢ is bounded, there exists some se-
quence x,, € [—r,0] such that |¢;(x,)| = ||¢¢||. By passing to a subsequence,
we may assume &, — & € [—r,0]. If £ > —r, then we have

lfrrs Il = sup ot + )| = |o(2)] = [|d¢]|
PE[—T+55,0]
provided s,, < —%, while if & = —r, we notice that the sequence z/, = t—r+s,
converges to t + &, so that for all ¢ > 0, there exists N3 > 0 such that for
n>N,
[ptrs, || = 10(E + sn) = ||| — €.
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Therefore, if we let sy, < § and sy, < —&, then by setting N = max{Ny,
Ns, N3}, it follows by the above three inequalities that for n > N,

—€ < |[brrs, || —[lox]| < e

We conclude ||¢:1s, || converges to ||¢del]. O

Using essentially the same argument, one can prove the following very
slight generalization.

Lemma 1.1.3.7. Suppose ¢ € RCR([a,b],R™), X € RCR([a,b],R*"*™) and
z € RCR([a,b],R™) for some b > a+r. Then, the functiont — ||¢:+X:2z(¢)]|
is an element of RCR([a + r,b],R)

The final element in our overview of right-continuous regulated functions
is a characterization of the topological dual RCR*. A result from Tvrdy
[142] provides such for the dual of the space of regulated left-continuous
scalar-valued functions, and for our purposes, the obvious modification that
is needed is the following. It can also be found in [31].

Lemma 1.1.3.8. F' € RCR™ if and only if there exists ¢ € R™ and p :
[—7,0] = R™ of bounded variation such that

0
F(z) = ¢"z(0) -l—/ pT (t)dx(t), (I.1.19)

-r
where the integral is a Perron—Stieltjes integral.

A final comment concerns the various left-limit histories introduced in
Sect. 1.1.2. When = € RCR(I,R"), these histories are themselves regulated
functions. The following proposition follows directly from the definitions of
the history functions and the spaces RCR and G.

Proposition 1.1.3.2. Let x € RCR(I,R"™), and assume inf I <t —r. The
left-limit histories x;- € RCR([-r,0,R™) and z; € G([-r,0],R™) exist.
Also, x, : [-r,0] = R"™ is continuous from the left.

1.1.4 Gelfand—Pettis Integration

In this monograph we will regularly need to integrate functions f : R — X
mapping into a Banach space X that have poor measurability properties.
Such constraints make it difficult to establish the existence of a strong inte-
gral. Thankfully, for our purposes the following duality-based weak integra-
tion is sufficient.

Definition 1.1.4.1. Let X be a Banach space and (S, 3, 1) a measure space.
We say that f : S — X is Pettis integrable (or Gelfand—Pettis integrable) if
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there exists a set function Iy : ¥ — X such that

w*ff(E)=/ o fdp

E

for all * € X* and E € X. Iy is the indefinite Pettis integral of f and
I;(E) the Pettis integral of f on E.

In the above definition X™* is the topological dual of X. By abuse of
notation, we will often write Iy(E) = [, fdu when there is no ambiguity.
The following proposition will be very useful; its proof is elementary and can
be found in numerous textbooks on functional analysis and integration. For
a brief introduction, one may consult Hille and Philips [65].

Proposition 1.1.4.1. The Pettis integral possesses the following properties:
o If f is Pettis integrable, then its indefinite Pettis integral is unique.
o If T : X — X is a bounded linear operator, then T(fE fdu) = fE

(Tf) du whenever one of the integrals exists.
o If u(ANB) =0, then [, 5 fdu= [, fdu+ [, fdpu.
o |l [ faull < [ 11 flldp.

I.1.5 Integral and Summation Inequalities

We conclude this chapter with three inequalities. The first is an impulsive
Gronwall-Bellman inequality for regulated functions. The result is similar
to Lemma 2.3 from the 1993 monograph of Bainov and Simeonov [9], and
the proof is omitted. The second one concerns an elementary estimation
of sums of continuous functions at impulses, when the sequence of impulses
satisfies a separation condition. The third allows for a coarse bound on sums
of constant sequences.

Lemma 1.1.5.1. Suppose x € RCR([s,a],R) satisfies the inequality
t
z(t) < C +/ (=) +h(p)du+ Y (bi(t;) + ;) (1.1.20)
s s<t;<t

for some nonnegative integrable function p, integrable and bounded h, non-
negative constants b;, g; and ¢, and all t € [s,a]. Fort > s, define

t
st e [ atan) T[ a0
S s<t;<t
Then, u— z(t, n) is integrable, and the following inequality is satisfied:

:c(t)ng(t,s)Jr/ 2t wh(wdp+ Y z(t,ti)gs. (1.1.21)

s<t;<t
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Lemma I.1.5.2. Let f € RCR(R,R), and suppose that {ty} satisfies tj11—
tp > §.

1. If f is nondecreasing, then 3 __, o, f(t;) < %f;—% flp)dpu.

2. If f is nonincreasing, then Zs<t,;§t flt) < %f;—g flp)dp.

Proof. Let {to,...,tn} = {trx : k € Z} N (s,t]. If f is nondecreasing, then

N

1 1 1 [t
Do) =D ) = s f)E< Y flto+i6)E < £ / F(w)dp.
s<t;<t i=0 ¢ i=0 £ i=0 £ S
The nonincreasing case is similar. U

Lemma I.1.5.3. Suppose the sequence of impulses {tx} satisfies & < tp41—
ty < &. Then,

t—s t—s
—1<#{keZ:s<tpy<t}<
& 3

+ 1.

1.1.6 Comments

Definition I.1.1.1 of a process uses the language of nonautonomous sets ex-
plicitly. The idea of these indexed families of sets has a long history of use
in nonautonomous dynamical systems, and the term appears in this form in,
for example, Koksch and Siegmund [81] and Rasmussen [120]. Our definition
of process itself is certainly inspired by the one due to Dafermos [40] and
Hale [57], but the motivation here is that we wish to allow for the process to
not be defined for all (forward) time, regardless of the initial state z € X.
The reason here is that the solution maps of nonlinear impulsive functional
differential equations will naturally define processes that are generally only
well-defined for small increments forward in time. Instead of defining a pro-
cess imprecisely as a partial function such as U : R x R x X — X for a
final/initial time pair (¢,s) € R x R and initial state x € X, we choose to
bake this into the domain through the use of a nonautonomous set. The
transition is made concrete by appealing to the two-parameter semigroup
S(t,s) : M(t,s) = X.

The one-point left-limit history z;- is used extensively in the literature
on impulsive functional differential equations, though the first appearance
seems to be in the 1999 paper of Ballinger and Liu [13]. The term regulated
left-limit history is introduced in Church and Liu [33], although the definition
had been previously used in literature concerning stability.

The left-limit history functions ;- and z, are distinct, and the reader
may have some difficulty in navigating the literature as most authors use the
symbol z,- exclusively in impulse conditions of the form

Ax = I(tlmxtk*)a
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although how the symbol x;- should be interpreted may vary. Zhang and
Sun [160] consider stability of impulsive functional differential equations with
fixed delays, where the impulse effect is of the form

Az = Ii(x(ty) + Ju(2(ty — 1)),

which can be identified as the action of a functional on the regulated left-
limit x; . Inspired by this work, Lin, Li and O’Regan [91] consider stability
of systems with impulse effect of the form

Azx = I (x(t,)) + Jk(xt;)’

where we have placed the second x in boldface to emphasize that the notation
used in the cited reference is what we refer to here as the one-point left-limit
(z4-), but the definition used in that paper is the regulated left-limit (z; ).
The regulated left-limit is also used in [26, 96, 150] and others, although we
should point out that some of these papers suffer from minor technical errors
mostly relating to the observation that if z : I — R" is continuous from the
right, then z; : [-r,0] — R™ is continuous from the left with finite jump
discontinuities on the right—see Fig. 1.1.2 for a visual aid. To contrast, the
papers [13, 14, 93, 137] use the one-point left-limit.

In this monograph, we will primarily make use of the one-point left-limit.
The reason for this is m : RCR — RCR defined by m¢ = ¢g- is bounded
and linear with norm 1. This allows for a rather elegant operator-theoretic
definition of mild solutions that is amenable to the eventual construction of
invariant manifolds.

The right-continuous regulated functions or cadlag? functions are used
extensively in probability and stochastic processes. The use of regulated
functions in impulsive dynamical systems has one of its first appearances in
the work of Bachar and Arijno [7] in 2004, where left-continuous regulated
functions are used. The right-continuous regulated functions as they are
used in impulsive dynamical systems were considered by Church and Liu
[31, 33], where the integral inequalities from Sect. I.1.5 appear. Regulated
functions G(I,R™) are extensively used by Federson and Schwabik [45] in their
approach to solutions of impulsive functional differential equations through
the lens of generalized ordinary differential equations. More recently, some
authors have taken the regulated functions as the phase space in order to
prove the existence of periodic solutions for some special classes of nonlinear
impulsive FDE [6, 46] by fixed-point theory applied to Poincaré return maps.

2From the French: “continue & droite, limite & gauche”, which translates to “continuous
from the right with limit on the left”.
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Chapter 1.2

General Linear Systems

In this chapter we will be primarily interested in the linear impulsive RFDE

& = L(t)x: + h(t), t# (I.2.1)
Az = B(k)xy- + rg, t=tg. (1.2.2)

The following assumptions will be needed throughout:

H.1 The representation

0

Lt)p = [ [don(t,0)]¢(0)

-r

holds, where the integral is taken in the Lebesgue—Stieltjes sense, the
function 1 : R x [—r, 0] — R™*™ is jointly measurable and is of bounded
variation and right-continuous on [—r,0] for each ¢t € R, such that
|L(t)p| < £(t)]|¢|| for some £ : R — R locally integrable.

H.2 The sequence ¢, is monotonically increasing with |t;| — oo as |k| — oo,
and the representation

0

B(k)g = [ [dov(0))(0)

-Tr

holds for k € Z for functions ~y : [—r,0] — R™*™ of bounded variation
and right-continuous, such that |B(k)| < b(k).
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Remark 1.2.0.1. Assumption H.1 includes the case of discrete time-varying
delays: for example, the linear differential-difference equation

m

&= Ap(t)z(t — ri(t))

k=1

with T, continuous, is associated with a linear operator satisfying condition
H.1 with n(t,0) = > Ax(t)H_r(+)(0), where H.(0) = 1 if 0 > z and zero
otherwise. It also obviously includes a large class of distributed delays, such
as those appearing in the differential equation

0
i= [ K(t0)x(t+0)do.

—T

Similar results apply for the jump function B(k) and assumption H.2. More-
over, each of L(t) and B(k) is well-defined on RCR; see Theorem 2.23 from
Chapter 3 of [66].

1.2.1 Existence and Uniqueness of Solutions

Definition 1.2.1.1. Let (s,¢) € R x RCR. A function v € RCR([s —
r,a),R™) for some a > s is an integrated solution of the linear impulsive
RFDEFE (1.2.1)—(1.2.2) satisfying the initial condition (s, ¢) if it satisfies x5 = ¢
and the integral equation

Bt —s), s—r<t<s.
(1.2.3)

o) = { $(0) + [ LG+ h(pldp + Xy <, [B)a,— +ri], >

Lemma I1.2.1.1. Let h € RCR(R,R™), let {ry : k € Z} C R™ and let hy-
potheses H.1-H.2 hold. For all (s,¢$) € RCR, there exists a unique integrated
solution x € RCR([s —r,o0),R™) of (1.2.1)~(1.2.2) satisfying the initial con-
dition (s, @).

The above lemma follows by hypotheses H.1-2, the Banach fixed-point
theorem, Lemma I1.1.5.1 and typical continuation arguments. Note that h
may be unbounded on the real line, but since it is regulated we are guaranteed
its boundedness on every compact set—see Honig [69]. Any classical solution
(in the sense of Ballinger and Liu [13]) is an integrated solution, so the
definition is indeed appropriate. We will drop the adjective integrated from
this point onwards, since this class of solutions will be used exclusively from
this point on.

On the note of “classical” solutions, it will later be important that the
impulsive RFDE (1.2.1)—(1.2.2) has a regularizing effect on initial conditions.
Precisely, we have the following lemma.
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Lemma 1.2.1.2. Under the conditions of Lemma 1.2.1.1, the integrated so-
lution x : [s—r,00) — R™ is differentiable from the right on [s,00). In partic-
ular, if x : R — R" is a solution defined for all time, then x € RCR*(R,R™).

Proof. The first conclusion follows by the integral representation of solutions
with the remark that p — L(u)z, € RCR([s,00), R™). For the second part,
one can show that the restriction of x to any interval of the form [s, o) is
differentiable from the right by applying the previous result to the restriction
on [s — r,00). Since s is arbitrary, the result is proven. O

1.2.2 Evolution Families

In this section we will specialize to the equation

& = L(t)xy, t # tg (I.2.4)
Az = B(k)xs—, t = tg. (I.2.5)

Definition 1.2.2.1. Let hypotheses H.1-H.2 hold. For a given (s,¢) € R x
RCR, lett — x(t; s, @) denote the unique solution of (1.2.4)—(1.2.5) satisfying
zs(58,0) = ¢. The function U(t,s) : RCR — RCR defined by U(t,s)p =
x4(+,8,0) for t > s is the evolution family associated with the homogeneous
equation (1.2.4)—1.2.5).

From here onwards, we will take the convention that if L : RCR — RCR
is a linear operator, then L$(#) for ¢ € RCR and 6 € [—r, 0] should be un-
derstood as [L(¢)](#). Also, the symbol Ix will refer to the identity operator
on X. When the context is clear, we will simply write it as I. Introduce the
linear function xs : R™ — RCR defined by

e ={ & 070 124

Lemma 1.2.2.1. The evolution family satisfies the following properties:
1) U(t,t) =1 for allt € R.

2) For s < t, U(t,s) : RCR — RCR is a bounded linear operator. In
particular,

ol <o ([ tan) TT a+oy. a2

s<t; <t

3) For s <v <t,U(t,s) =U(t,v)U(v,s).

4) Forall® € [-r,0], s <t+0 and ¢ € RCR, U(t,s)p(0) = U(t+0, s)¢p(0).
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5) For all ty, > s, one has U(ty,s) = (I + xoB(k))U(t; ,s).*
6) Let C(t,s) denote the evolution family on RCR associated with the

“continuous” equation & = L(t)x;. The following factorization holds:

_J C(ts), [s, ] N {tr}rez € {{s}, 0}
Ult,s) = { Cltt) o (T + xoB(K) o 