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Preface

Impulsive dynamical systems have become increasingly popular during the
past decades because they provide a natural framework for mathematical
modeling of many real-world phenomena. Applications of impulsive dynam-
ical systems can be found in a variety of fields such as aeronautics, ecology,
economics, epidemiology, finance, medicine and robotics, just to name a few.
An impulsive dynamical system normally consists of three elements: a con-
tinuous system of differential equations, which governs the motion of the
dynamical system between impulsive and resetting events; a discrete system
of difference equations, which governs the way the system states are instanta-
neously changed when a setting event occurs; and a criterion for determining
when the states of the system are to be reset. The solutions of impulsive
dynamical systems are in general discontinuous, which often renders some of
the standard analysis and control design methods ineffective. Nonetheless,
significant progress has been made in theory and applications of impulsive
dynamical systems in the past few decades, especially when the underlying
continuous portions are described by ordinary differential equations. The lat-
ter are often referred to as impulsive (ordinary) differential equations. When
time delays are present in the systems, they are also called impulsive re-
tarded functional differential equations. There are added layers of challenges
in studying such systems containing time delays because of a lack of some
more ubiquitous properties in dynamical systems, such as continuity of the in-
duced semiflow. However, much progress has been made in recent years, and
many interesting results in stability, manifold theory and bifurcation analysis
have been published for such systems. The purpose of this book is to present
the recent progress in this direction and to demonstrate that the local sta-
bility and bifurcation analysis of these systems, while at times subtle, can be
made rigorous and computationally viable. The scope has been expanded to
address not only smooth local bifurcations but also some nonsmooth bifurca-
tion phenomena that are unique to impulsive dynamical systems. Arguably,
one of the most powerful techniques in the study of local bifurcations in finite-
dimensional smooth dynamical systems is the combination of linearization,
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centre manifold reduction and normal form theory. This continues to hold
true for retarded functional differential equations, of which delay differential
equations are a subclass. There, the first two steps of linearization and centre
manifold reduction are fundamentally different than in the finite-dimensional
setting, but the normal form theory can function as usual because the centre
dynamics are finite-dimensional. The primary objective of this book is to ex-
tend this programme to the case of impulsive retarded functional differential
equations.

This book consists of four parts with twenty chapters in total. Part I
is devoted to infinite-dimensional impulsive functional differential equations.
Some preliminary background is provided in Chap. I.1, including the phase
space of right-continuous regulated functions that we use throughout. A
thorough treatment of the representation of solutions for linear systems and
linear periodic systems is completed in Chaps. I.2 and I.3. Following this,
nonlinear systems are considered in Chap. I.4 from the point of view of mild
solutions, where we also discuss stability. Invariant manifold theory is the
focus of Chaps. I.5, I.6 and I.7, with a discussion of the generic codimension-
one smooth bifurcations appearing in Chap. I.8.

Finite-dimensional ordinary impulsive differential equations are considered
in Part II. This part of the monograph can be read independently of Part I.
The first two chapters contain a review of material that should be familiar
to a reader who is versed in ordinary impulsive differential equations: exis-
tence and uniqueness of solutions, dependence on initial conditions and linear
systems theory. Chapter II.3 contains finite-dimensional variants of some of
the results from Chap. I.4, including linearized stability. Invariant manifold
theory is covered in Chap. II.4, and methods of studying bifurcations of fixed
points and periodic solutions are discussed in Chap. II.5.

Part III contains some special topics concerning singular phenomena and
nonsmooth bifurcations. Chapter III.1 pertains to the robustness of bifur-
cations and hyperbolic orbits under continuous-time temporal smoothing of
the impulse effect, as well as the sensitivity of bifurcation curves under such
smoothing actions. In a sense, this chapter is an analysis of what might be
considered the fundamental tenet of modeling with impulses: the transient
dynamics that occur during a temporally short burst of activity can be ig-
nored and replaced by a discrete jump in state. Chapter III.2 is a study of
some nonsmooth bifurcations in impulsive systems, namely those caused by
taking discrete delays and/or impulse times as system parameters.

The final part, Part IV, contains applications. Therein, we study stability
and bifurcation in five mathematical models involving impulses and (discrete
and distributed) delays. The subject areas include classical mechanics, in-
fectious disease modeling, mathematical ecology and in-host viral replication
dynamics.
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Reading Guide

The target audience of this book is applied mathematicians and scientists
who want to understand more about their models, especially if these are
based on impulsive dynamical with such functional dependence as delays.
Part I is rather technical, as we build up the theory from scratch and require
machinery from functional analysis and measure theory to do it consistently.
To compare, Part II should be approachable by advanced undergraduates
or early graduate students with sufficient exposure to ordinary differential
equations and dynamical systems. The remaining Parts III and IV are special
topics and applications.

We recommend that readers less familiar with impulsive dynamical sys-
tems (especially delay equations) first read only the opening pages of
Chap. I.1, as these provide some background, are mostly nontechnical and
illustrate the main theoretical issues of impulsive dynamical systems we aim
to remedy with this book. The readers could then skim the applications in
Part IV to see what the theory from Parts I and II could do for the analysis
of their mathematical models. Following this, such readers have two options:
read Part II if they are primarily interested in ordinary impulsive differen-
tial equations, or begin Part I in earnest if their models involve functional
dependence like delays or integrals.

Readers who are most interested in the theoretical developments concern-
ing invariant manifolds and bifurcations for impulsive functional differential
equations are advised to begin with Part I. The finite-dimensional analogues
of these results appear in Chaps. II.4 and II.5.

Part III should be of interest to those readers interested in the intersection
of bifurcation theory and nonsmooth dynamics. The content of Chap. III.1
is accessible to any reader who has read Part II or is familiar with the basics
of impulsive differential equations, while to fully understand Chap. III.2 it is
advisable that the reader have read Chaps. I.3 and I.6.

IX



Contents

I Impulsive Functional Differential Equations 1
I.1 Introduction 3

I.1.1 Nonautonomous Dynamical Systems . . . . . . . . . . . . 9
I.1.2 History Functions . . . . . . . . . . . . . . . . . . . . . . 11
I.1.3 The Space RCR of Right-Continuous Regulated. . . . . . . 12
I.1.4 Gelfand–Pettis Integration . . . . . . . . . . . . . . . . . 17
I.1.5 Integral and Summation Inequalities . . . . . . . . . . . . 18
I.1.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 19

I.2 General Linear Systems 21
I.2.1 Existence and Uniqueness of Solutions . . . . . . . . . . . 22
I.2.2 Evolution Families . . . . . . . . . . . . . . . . . . . . . . 23

I.2.2.1 Phase Space Decomposition . . . . . . . . . . . 25
I.2.2.2 Evolution Families are (Generally) Nowhere

Continuous . . . . . . . . . . . . . . . . . . . . . 25
I.2.2.3 Continuity under the L2 Seminorm . . . . . . . 26

I.2.3 Representation of Solutions of the . . . . . . . . . . . . . . 27
I.2.3.1 Pointwise Variation-of-Constants Formula . . . . 28
I.2.3.2 Variation-of-Constants Formula in the

Space RCR . . . . . . . . . . . . . . . . . . . . . 30
I.2.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
I.2.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 32

I.3 Linear Periodic Systems 35
I.3.1 Monodromy Operator . . . . . . . . . . . . . . . . . . . . 36
I.3.2 Floquet Theorem . . . . . . . . . . . . . . . . . . . . . . 43
I.3.3 Floquet Multipliers, Floquet Exponents and. . . . . . . . . 44
I.3.4 Computational Aspects in Floquet Theory . . . . . . . . 45

I.3.4.1 Floquet Eigensolutions . . . . . . . . . . . . . . 46

XI



XII CONTENTS

I.3.4.2 Characteristic Equations for Finitely Reducible
Linear Systems . . . . . . . . . . . . . . . . . . . 48

I.3.4.3 Characteristic Equations for Systems with
Memoryless Continuous Part . . . . . . . . . . . 51

I.3.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 52
I.4 Nonlinear Systems and Stability 55

I.4.1 Mild Solutions . . . . . . . . . . . . . . . . . . . . . . . . 55
I.4.2 Dependence on Initial Conditions . . . . . . . . . . . . . 58
I.4.3 The Linear Variational Equation and Linearized. . . . . . . 61
I.4.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 65

I.5 Existence, Regularity and Invariance of Centre Manifolds 67
I.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 68

I.5.1.1 Spaces of Exponentially Weighted Functions . . 68
I.5.1.2 η-Bounded Solutions from Inhomogeneities . . . 69
I.5.1.3 Substitution Operator and Modification of

Nonlinearities . . . . . . . . . . . . . . . . . . . 74
I.5.2 Fixed-Point Equation and Existence... . . . . . . . . . . . 75

I.5.2.1 A Remark on Centre Manifold Representations:
Graphs and Images . . . . . . . . . . . . . . . . 77

I.5.3 Invariance and Smallness Properties . . . . . . . . . . . . 77
I.5.4 Dynamics on the Centre Manifold . . . . . . . . . . . . . 79

I.5.4.1 Integral Equation . . . . . . . . . . . . . . . . . 79
I.5.4.2 Abstract Ordinary Impulsive Differential

Equation . . . . . . . . . . . . . . . . . . . . . . 80
I.5.4.3 A Remark on Coordinates and Terminology . . 83

I.5.5 Reduction Principle . . . . . . . . . . . . . . . . . . . . . 83
I.5.5.1 Parameter Dependence . . . . . . . . . . . . . . 88

I.5.6 Smoothness in the State Space . . . . . . . . . . . . . . . 89
I.5.6.1 Contractions on Scales of Banach Spaces . . . . 90
I.5.6.2 Candidate Differentials of the Substitution

Operators . . . . . . . . . . . . . . . . . . . . . 91
I.5.6.3 Smoothness of the Modified Nonlinearity . . . . 92
I.5.6.4 Proof of Smoothness of the Centre Manifold . . 94
I.5.6.5 Periodic Centre Manifold . . . . . . . . . . . . . 98

I.5.7 Regularity of Centre Manifolds... . . . . . . . . . . . . . . 100
I.5.7.1 A Coordinate System and Pointwise PC1,m-

Regularity . . . . . . . . . . . . . . . . . . . . . 100
I.5.7.2 Reformulation of the Fixed-Point Equation . . . 102
I.5.7.3 A Technical Assumption on the Projections Pc(t)

and Pu(t) . . . . . . . . . . . . . . . . . . . . . . 103
I.5.7.4 Proof of PC1,m-Regularity at Zero . . . . . . . . 104
I.5.7.5 The Hyperbolic Part Is Pointwise PC1,m-Regular

at Zero . . . . . . . . . . . . . . . . . . . . . . . 105
I.5.7.6 Uniqueness of the Taylor Coefficients . . . . . . 106



CONTENTS XIII

I.5.7.7 A Discussion on the Regularity of the Matrices
t �→ Yj(t) . . . . . . . . . . . . . . . . . . . . . . 107

I.5.8 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 108
I.6 Computational Aspects of Centre Manifolds 111

I.6.1 Euclidean Space Representation . . . . . . . . . . . . . . 111
I.6.1.1 Definition and Taylor Expansion . . . . . . . . . 113
I.6.1.2 Dynamics on the Centre Manifold in Euclidean

Space . . . . . . . . . . . . . . . . . . . . . . . . 115
I.6.1.3 An Impulsive Evolution Equation and Boundary

Conditions . . . . . . . . . . . . . . . . . . . . . 118
I.6.2 Approximation by the Taylor Expansion . . . . . . . . . 121

I.6.2.1 Evolution Equation and Boundary Conditions for
Quadratic Terms . . . . . . . . . . . . . . . . . . 121

I.6.2.2 Solution by the Method of Characteristics . . . 122
I.6.3 Visualization of Centre Manifolds . . . . . . . . . . . . . 125

I.6.3.1 An Explicit Scalar Example Without Delays . . 126
I.6.3.2 Two-Dimensional Example with Quadratic

Delayed Terms . . . . . . . . . . . . . . . . . . . 127
I.6.3.3 Detailed Calculations Associated with

Example I.6.3.2 . . . . . . . . . . . . . . . . . . 130
I.6.4 The Overlap Condition . . . . . . . . . . . . . . . . . . . 133

I.6.4.1 Distributed Delays . . . . . . . . . . . . . . . . . 134
I.6.4.2 Transformations that Enforce the Overlap

Condition for Discrete Delays . . . . . . . . . . 134
I.6.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 137

I.7 Hyperbolicity and the Classical Hierarchy of Invariant
Manifolds 139
I.7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 139
I.7.2 Unstable Manifold . . . . . . . . . . . . . . . . . . . . . . 141
I.7.3 Stable Manifold . . . . . . . . . . . . . . . . . . . . . . . 143
I.7.4 Centre-Unstable Manifold . . . . . . . . . . . . . . . . . . 144
I.7.5 Centre-Stable Manifold . . . . . . . . . . . . . . . . . . . 145
I.7.6 Dynamics on Finite-Dimensional... . . . . . . . . . . . . . 147
I.7.7 Linearized Stability and Instability,

Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
I.7.8 Hierarchy and Inclusions . . . . . . . . . . . . . . . . . . 149

I.8 Smooth Bifurcations 151
I.8.1 Centre Manifolds Depending Smoothly on Parameters . . 151
I.8.2 Codimension-One Bifurcations for Systems with a Single

Delay: Setup . . . . . . . . . . . . . . . . . . . . . . . . . 153
I.8.3 Fold Bifurcation . . . . . . . . . . . . . . . . . . . . . . . 154

I.8.3.1 Example: Fold Bifurcation in a Scalar System
with Delayed Impulse . . . . . . . . . . . . . . . 161

I.8.3.2 Calculation of the Function Y11(t) for
Example I.8.3.1 . . . . . . . . . . . . . . . . . . 162



XIV CONTENTS

I.8.4 Hopf-Type Bifurcation and Invariant Cylinders . . . . . . 164
I.8.4.1 Example: Impulsive Perturbation from a Hopf

Point . . . . . . . . . . . . . . . . . . . . . . . . 176
I.8.5 Calculations Associated to Example I.8.4.1 . . . . . . . . 181

I.8.5.1 The Projection Pc(t) and Matrix Ỹ (t) . . . . . . 182
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Impulsive Functional
Differential Equations
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Chapter I.1

Introduction

Many real-world processes exhibit continuous-time evolution with intermit-
tent bursts of comparatively fast dynamics. In mathematical models of such
processes, these bursts of activity are sometimes intrinsic to the dynamics.
For example, the Hodgkin–Huxley model [68] is a nonlinear ordinary differen-
tial equation that describes the propagation of action potentials of neurons;
here, the bursts of activity correspond to the action potentials and are an in-
trinsic feature of the model. In the Hodgkin–Huxley model, these bursts arise
from slow–fast dynamics in the continuous-time model, but in other neuronal
models such as integrate-and-fire [1], the bursts are introduced synthetically
using a logic rule. In other situations, these bursts of activity or impulses
enter into the model in the form of a control that is designed to (ideally) force
or constrain the dynamics in a desired way. The applications of this idea are
quite diverse, including control theory, multi-agent systems, epidemiology,
population dynamics, medicine and robotics [108, 140, 163]. The mathemat-
ical formalism in which these ideas take concrete form is impulsive dynamical
systems.

The theoretical foundations of ordinary impulsive differential equations
are mostly contained in the monographs [9, 10, 85, 112, 125]. One important
class of ordinary impulsive differential equations are those that have impulses
at fixed times. These are systems of the form

dx

dt
= f(t, x), t �= tk (I.1.1)

Δx = g(k, x), t = tk, (I.1.2)
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where {tk : k ∈ Z} is a monotone sequence of impulse times (typically un-
bounded for k → ∞), f and g are the vector field and jump function that
satisfy some appropriate regularity conditions, and the second equation is
interpreted as

Δx = x(t+k )− x(tk) = g(k, x(tk)).

The solutions of (I.1.1)–(I.1.2) are continuous from the left and have lim-
its on the right (although conventions differ; some authors use continuity
from the right, although these notions are equivalent for x ∈ R

n finite-
dimensional). In many practical problems, the right-hand side of (I.1.1)–
(I.1.2) is autonomous—that is, t �→ f(t, x) and k �→ g(k, x) are constant for
fixed x. When the sequence of impulses is of the form tk = kT for some
T > 0, the result is a system

dx

dt
= f(x), t �= kT (I.1.3)

Δx = g(x), t = kT. (I.1.4)

The above system is periodically forced though the impulse effects, which
occur every T units of time. System (I.1.3)–(I.1.4) falls under the category
of periodic impulsive differential equations. Many dynamical aspects of these
systems can be understood by transforming to discrete time through the use
of the time T map. Using this formalism, bifurcations from fixed points and
periodic solutions can be studied using either Lyapunov–Schmidt reduction
or centre manifold reduction for maps [30]. One of the earliest applications of
such an approach seems to be due to Lakmeche and Arino [84] in the context
of chemotherapy modelling. Since then, numerous authors have studied bi-
furcations in specific impulsive differential equation models—the reader may
consult [37, 48, 128, 145, 162, 164] for a few recent applications. In most of
these papers, the impulse effect represents a control that is applied at fixed,
regular times.

Impulsive dynamical systems may be classified into the incredibly broad
class of hybrid systems. The latter can be specified by a differential inclusion
on one subset of the phase space, and a set-valued map defined on another
subset of the phase space. They include impulsive dynamical systems as
a subclass but also can be used to describe systems with distinct continu-
ous states and logical modes, hybrid automata, switched systems, Filippov
systems and others. See [51] for background.

The model (I.1.1)–(I.1.2) is suitable for describing systems whose evolution
law does not depend explicitly on the state of the system in the past. How-
ever, many processes do have explicit memory effects, or models that take
these into account have improved fidelity to empirical observations. Consider
the logistic growth (Verlhust) model

dN

dt
= rN

(
1− N

K

)
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for a single species. The number K is the carrying capacity of the population.
Every solution of this differential equation from a positive initial condition
converges monotonically to the carrying capacity. However, any notion of
carrying capacity must take into account either that such a quantity is con-
stantly fluctuating [126] or that the carrying capacity represents some quan-
tity which populations fluctuate about [118]. Since solutions of the logistic
equation are monotone, such fluctuations cannot be realized. The Hutchinson
equation [72]

dN

dt
= rN

(
1− N(t− τ)

K

)

includes a delayed term N(t− τ), which suggests that the density-dependent
feedback takes τ units of time to affect the population dynamics. Under
certain parameter configurations, Hutchinson’s equation features sustained
oscillations near the carrying capacity.

Many authors have considered theoretical questions related to includ-
ing impulse effects in systems involving delays and other functional depen-
dence. Broadly, impulsive retarded functional differential equations (impul-
sive RFDEs)

dx

dt
= f(t, xt), t �= tk (I.1.5)

Δx = g(t, xt), t = tk (I.1.6)

sometimes referred to simply as impulsive functional differential equations
(impulsive FDEs) have been considered. f(t, ·) and g(t, ·) are functionals
acting on some appropriate space of functions φ : [−r, 0] → R

n, the history
xt is defined by xt(θ) := x(t+θ) for θ ∈ [−r, 0] and the jump condition (I.1.6)
is understood as one of

Δx ∈ {x(tk)− x(t−k ), x(t
+
k )− x(tk)}.

The choice corresponds to a continuity convention. The majority of literature
on impulsive functional differential equations appears to take the convention
of continuity from the right—that is, Δx = x(tk)−x(t−k )—but there are some
exceptions. Classical topics such as existence and uniqueness, continuability
of solutions and stability are treated in [13, 14, 92, 93, 105]. In the typical
case of a right-continuity convention, the jump condition (I.1.6) is usually
taken to be one of the more explicit forms

Δx = g(t, xt−),

where xt−(θ) = x(t+ θ) for θ ∈ [−r, 0), and xt−(0) = lims→0− x(t+ s).
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The transition from the finite-dimensional system (I.1.1)–(I.1.2) to the
infinite-dimensional system (I.1.5)–(I.1.6) is far from smooth (pun absolutely
intended), at least insofar as dynamical systems aspects are concerned. The
difficulties mostly centre around two inherently connected observations.

1. The phase space of (I.1.5)–(I.1.6) must contain discontinuous functions.

2. The associated dynamical system is generally discontinuous everywhere
(with respect to time).

To compare, the nonautonomous dynamical system φ : R × R × Ω → R
n

associated with the finite-dimensional system (I.1.1)–(I.1.2) has the property
that t �→ φ(t, s, x) and s �→ φ(t, s, x) only have discontinuities in the set
{tk : k ∈ Z} of impulse times. The infinite-dimensional setting is far less well-
behaved, and it is our view that this is precisely the reason that bifurcation
theory techniques for impulsive functional differential equations have lagged
behind in development.

The first of these observations, that some amount of discontinuity must
be allowed in the initial condition of a Cauchy problem if continuability of
solutions is to be considered, is responsible for the occasionally abstract pre-
sentation of existence and uniqueness results. These universally involve a
condition on the composition

t �→ f(t, xt)

whenever x : I → R
n is an element of the class of solutions the author is

considering. For example, Ballinger and Liu [14] take x : I → R
n to be

continuous at all but finitely many points in any compact set and assume
that the composition t �→ f(t, xt) satisfies a Carathéodory condition, with
the result being existence, uniqueness and continuability of solutions in the
extended sense. If this composition is suitably continuous, then the same
conclusions hold for classical solutions [13]. Regardless, under these assump-
tions the phase space is incomplete, which makes the situation less than ideal
for considering dynamical systems aspects such as invariant manifold theory.

In order to more fully understand the difficulties in moving to the infinite-
dimensional setting, we will study here a few simple examples. Our discussion
will be a bit informal, as we have yet to properly define such concepts as
solutions.

First, consider the following scalar initial-value problem:

dx

dt
= 1, t �= k ∈ Z (I.1.7)

Δx = x(t− 1), t = k ∈ Z (I.1.8)

x0 = 1, (I.1.9)
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Figure I.1.1: Plots of x1.5, x1.55 and x1.45 for the solution x(t) from (I.1.10).
These functions are discontinuous at θ = −0.5, θ = −0.55 and θ = −0.45,
respectively. The discontinuities are plotted with vertical lines for emphasis.
We can now clearly see that for small ε �= 0, ||x1.5+ε − x1.5|| ≥ 1

where x0(θ) = 1 is a constant initial function. Note that since the impulse
effect requires the data at time t − 1, we need to specify initial conditions
on an interval [−1, 0]. By convention, the impulse at time t = 0 is ignored
since our initial condition is specified at this same time. The solution can be
computed directly: it is given by

x(t) =

{
1, t < 0
2�t�+1 − 1 + t− �t	, t ≥ 0

(I.1.10)

for �·	 the floor (round down to the nearest integer) function. Indeed, one can
verify that this function is differentiable for t > 0 non-integer with derivative
1, while for positive integers, x(k) = 2k+1 − 1 and lims→k− x(s) = 2k. Then,
the impulse effect dictates that the solution must satisfy

x(k) = lim
s→k−

x(s) + Δx = 2k + x(k − 1) = 2k + 2k − 1 = 2k+1 − 1,

which is consistent with our claimed solution x above. However, if we consider
the function t �→ xt, for xt(θ) = x(t + θ) and θ ∈ [−1, 0], this function is
discontinuous for all t ≥ 1, in the sense that limε→0 ||xt+ε − xt|| �= 0, where
the norm is the supremum norm; see Fig. I.1.1. In fact, one can verify that
for t > 1 and ε �= 0 sufficiently small, ||xt+ε − xt|| ≥ x(�t	 − 1) = 2�t� − 1.
This example demonstrates one of the previously mentioned major technical
differences between continuous time delay differential equations and those
that involve impulses.
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The dynamical system generated by an impulsive functional dif-
ferential equation is generally discontinuous everywhere (in the
sense that t �→ xt is not continuous in the supremum norm, along
solutions x).

It might seem natural to therefore endow the phase space with a different
topology to avoid this issue. For example, one might consider what might
happen if we instead equip the phase space with the topology induced by the
L2 norm. While this fixes the continuity problem of the dynamical system
along individual solutions, it has the effect of breaking continuous dependence
on initial conditions, as we show in Sect. I.2.2.3.

Observe also that the function xt(θ) = x(t + θ) for θ ∈ [−1, 0], with x
the solution from (I.1.10), is discontinuous at θ = �t	 − t for t ≥ 1; see
again Fig. I.1.1. The conventional wisdom when working with functional
differential equations is to think of the solution history segments xt as living
in the phase space of the associated dynamical system. This is reasonable,
since to specify an initial-value problem it is necessary to define the initial
condition on an interval. For the present example, this interval is [−1, 0]
since the largest delay is 1. Finally, as we could have taken x0 to be any
continuous function (initial condition) in (I.1.9) and defined a solution x(t)
in a similar way, we come to the following observations concerning the phase
space:

The phase space of an impulsive functional differential equation
must generally contain discontinuous functions. In particular, any
“reasonable” phase space must contain the following subsets:

• the continuous functions;

• functions that are continuous except for at a single point.

The last of these two conditions makes it necessary to enlarge the phase space
substantially from merely the continuous functions. Indeed, if we want the
phase space to admit a vector space structure, we need to in fact allow for
functions that are discontinuous at a countably infinite number of points.

Now that we have demonstrated the fundamental technical novelties of
impulsive functional differential equations as compared to their counterparts
without impulses, and our first task will be to put these systems into a
rigorous nonautonomous dynamical systems framework. This will allow us to
use classical techniques of nonlinear functional analysis to study the solution
set of impulsive dynamical systems and determine the effects of parameter
variation on these solutions. The first steps are to decide on a phase space
and develop the theory of linear equations. Nonlinear equations will then be
studied using the mild solution formalism, and from there we will be able to
venture into the world of invariant manifolds and bifurcations.
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I.1.1 Nonautonomous Dynamical Systems

Here we introduce some definitions related to nonautonomous dynamical sys-
tems. This is needed to provide a working theory for linear systems, but the
terminology is very useful for nonlinear systems as well.

Definition I.1.1.1. If X is a Banach space, a subset M ⊆ R × X is a
nonautonomous set over X. For each t ∈ R, the fibre is the set M(t) ⊂ C
defined by

M(t) = {x : (t, x) ∈M}.

Definition I.1.1.2. A process on X is a pair (S,M), where M is a nonau-
tonomous set over R × X and S : M → X, whose action we denote by
S(t, (s, x)) = S(t, s)x satisfies the following:

• {t}×X ⊂M(t) and S(t, t) = IX for all t ∈ R, where IX is the identity
operator on X.

• S(t, s)x = S(t, v)S(v, s)x whenever (s, x) ∈ M(v) and (v, S(v, s)x) ∈
M(t).

A process is a forward process if for all s ∈ R and x ∈ X, (t, S(t, s)x) ∈M(t)
for all t ≥ s. A process is an all-time process if for all t, s ∈ R and x ∈ X,
(t, S(t, s)x) ∈M(t).

Processes will typically be identified in this monograph with solutions of
impulsive differential equations, both finite- and infinite-dimensional. The
definition of process stated above is rather different than the standard ones
due to Dafermos [40] and Hale [57]. Regardless, the following definition can
make some statements less verbose and more intuitive.

Definition I.1.1.3. If M is a nonautonomous set over R×X and M(t) ⊂
R×X is the associated t-fibre, define the (t, s)-fibre by

M(t, s) = {x : (s, x) ∈M(t)} ⊂ X.

The two-parameter semigroup associated with a process (S,M) is the family
S(t, s) :M(t, s)→ X defined by S(t, s)x = S(t, (s, x)) for all t, s ∈ R.

The two-parameter semigroup is appropriately named. The following
proposition follows easily from the definitions.

Proposition I.1.1.1. The two-parameter semigroup S(t, s) : M(t, s) → X
associated with a process (S,M) enjoys the following properties:

1. S(t, t) = IX for all t ∈ R.

2. S(t, s)x = S(t, v)S(v, s)x provided x ∈M(v, s) and S(v, s)x ∈M(t, v).
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Conversely, a two-parameter semigroup of operators S(t, s) :M(t, s)→ X
satisfying properties 1 and 2 of Proposition I.1.1.1 determines a process.

Definition I.1.1.4. A two-parameter semigroup over X is a family S(t, s) :
M(t, s)→ X of functions, with M a nonautonomous set over R×X, satis-
fying properties 1 and 2 of Proposition I.1.1.1.

Proposition I.1.1.2. Let S(t, s) : M(t, s) → X be a two-parameter semi-
group over X. S(t, s) is the two-parameter semigroup associated with (S̃,M),
with S̃(t, (s, x)) := S(t, s)x.

Proof. We check that (S̃,M) as defined is indeed a process. Since S(t, t) =
IX has domain X and S(t, t) :M(t, t)→ X, it follows thatM(t, t) = X. But
this means that {t} ×X ⊂ M(t). Also, S̃(t, t) = S(t, t) = IX . This verifies
the first condition of a process. For the second condition, (s, x) ∈ M(v)
and (v, S̃(v, s)x) ∈ M(t) imply x ∈ M(v, s) and S̃(v, s)x ∈ M(t, v). By
definition of S̃ and the properties of the two-parameter family S, this gives
us S(t, s)x = S(t, v)S(v, s)x, which implies S̃(t, s)x = S̃(t, v)S̃(v, s)x.

In this way, a process uniquely determines its associated two-parameter
semigroup and vice versa. This allows us to easily define linear processes,
decompositions and invariant sets in terms of the two-parameter semigroup.

Definition I.1.1.5. A process (S,M) is linear ifM(t, s) is a linear subspace
of X for all t, s ∈ R, S(t, s) : M(t, s) → X is bounded and linear and
M(t, s) = X whenever t ≥ s.

Definition I.1.1.6. Let (S,M) be a linear process, and consider the restric-
tion of the associated two-parameter semigroup S(t, s) : X → X for t ≥ s.
We say that (S,M) is spectrally separated if there exists a triple (Ps, Pc, Pu)
of bounded projection-valued functions Pi : R→ L(X) for Ps +Pc +Pu = IX
such that the following hold for i, j ∈ {s, c, u}:

1. There exists a constant N such that supt∈R
(||Ps(t)||+||Pc(t)||+||Pu(t)||)

= N <∞.

2. The projectors are mutually orthogonal: Pi(t)Pj(t) = 0 for i �= j.

3. S(t, s)Pi(s) = Pi(t)S(t, s) for all t ≥ s.

4. Define Si(t, s) as the restriction of S(t, s) to Xi(s) = R(Pi(s)). The
operators Sc(t, s) : Xc(s) → Xc(t) and Su(t, s) : Xu(s) → Xu(t) are
invertible, and we denote Sc(s, t) = Sc(t, s)

−1 and Su(s, t) = Su(t, s)
−1

for s ≤ t.

5. For all t, s, v ∈ R, we have

Sc(t, s) = Sc(t, v)Sc(v, s), Su(t, s) = Su(t, v)Su(v, s).
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6. There exist real numbers a < 0 < b such that for all ε > 0, there exists
K ≥ 1 such that

||Su(t, s)|| ≤ Keb(t−s), t ≤ s (I.1.11)

||Sc(t, s)|| ≤ Keε|t−s|, t, s ∈ R (I.1.12)

||Ss(t, s)|| ≤ Kea(t−s), t ≥ s. (I.1.13)

Definition I.1.1.7. Let (S,M) be a spectrally separated linear process. De-
fine the following nonautonomous sets over X for i ∈ {s, c, u}:

Xi =
⋃
t∈R

{t} ×Xi(t). (I.1.14)

The nonautonomous sets Xs, Xc and Xu are the stable, centre and unstable
fibre bundles1, respectively. (S,M) is hyperbolic if Xc = {0}, otherwise it
is nonhyperbolic.

Definition I.1.1.8. Let (S,M) be a process. A nonautonomous set V over
X is

• positively invariant if S(t, s)x ∈ V(t) for all t ≥ s, whenever x ∈ V(s);

• negatively invariant if S(t, s)x ∈ V(t) for all t ≤ s, whenever x ∈ V(s);

• invariant if it is both positively and negatively invariant.

From the definition of invariance and properties 4 and 5 of spectral sepa-
ration, we directly get the following proposition.

Proposition I.1.1.3. Let (S,M) be linear spectrally separated. The stable
fibre bundle is positively invariant, and the centre and unstable fibre bundles
are (positively and negatively) invariant.

The stable, centre and unstable fibre bundles of a linear process will even-
tually play the roles of the stable, centre and unstable subspaces from, for ex-
ample, ordinary differential equations. A consequence of Propositions I.1.1.1
and I.1.1.2 is that any definition applicable to a process is also applicable
to an arbitrary two-parameter semigroup. This includes linearity, invariance
and spectral separation.

I.1.2 History Functions

It is necessary to define various history functions or window functions. Let
x : I → X for some interval I ⊂ R and a Banach space X. Let r > 0 be
finite, let t ∈ I and assume inf I < t− r.

1A nonautonomous set over X naturally has the structure of a topological fibre bundle
over X with base space R, hence the borrowing of this term here.
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Definition I.1.2.1. The history of x at time t ∈ I is xt : [−r, 0] → X
defined by

xt(θ) = x(t+ θ). (I.1.15)

Definition I.1.2.2. The one-point left-limit history of x at t ∈ I is xt− :
[−r, 0]→ X defined by

xt−(θ) =

{
x(t+ θ), θ < 0
lims→0− x(t+ s), θ = 0,

(I.1.16)

provided the limit exists.

Definition I.1.2.3. The regulated left-limit history of x at t ∈ I is x−
t :

[−r, 0]→ X defined by

x−
t (θ) = lim

s→0−
x(t+ θ + s),

provided the limits exist.

The various history functions are illustrated schematically in Fig. I.1.2.
They all coincide when x : I → X is continuous, whereas if the set of discon-
tinuities is reasonably well-behaved, then each of the history functions exists.
Note that the regulated left-limit can be equivalently written in the more
suggestive form

x−
t (θ) = lim

s→0−
xt+s(θ),

so that in a pointwise (in θ) sense, we have the alternative definition

x−
t = lim

s→0−
xt+s.

I.1.3 The Space RCR of Right-Continuous
Regulated Functions

When working with impulsive functional differential equations, we will see
that the natural phase space is that of the right-continuous regulated func-
tions. Denote

RCR(I,X) =

{
f : I → X : ∀t ∈ I, lim

s→t+
f(s) = f(t) and lim

s→t−
f(s) exists

}
,

where X ⊆ R
n and I ⊆ R. When X and I are closed,

RCRb(I,X) := {f ∈ RCR(I,X) : ||f || <∞}

is a Banach space with the norm ||f || = supx∈I |f(x)|. We will also at
times require the space G(I,X) of regulated functions from I into X; this is
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Figure I.1.2: History functions for an illustrative example of a right-
continuous function (top left), with r = 4.5. The data contained within the
dashed rectangle is (in a limiting sense) needed to define the various history
functions. Filled-in circles indicate the value of the function at the relevant
argument (t or θ), while empty circles denote appropriate limit points. Note
that x5 and the one-point left-limit x5− remain continuous from the right,
but the regulated left-limit x−

5 is continuous from the left

merelythe set of functions f : I → X that possess left- and right-limits at each
point, with no continuity sidedness restriction. One may consult Honig [69]
for background on regulated functions, in particular, the claim that G(I,X)
is complete. As RCR(I,X) is a closed subspace thereof, its completeness
follows immediately. We will write RCR := RCR([−r, 0],Rn) when there is
no ambiguity, and note that since RCRb([−r, 0],Rn) = RCR([−r, 0],Rn), we
may identify RCR with its associated Banach space. The step functions are
dense in G(I,X) and by extension, the subspace RCR(I,X). The proof of
the following proposition appears in Honig [69].

Proposition I.1.3.1. Let I be compact. For all f ∈ G(I,X), there exists a
sequence of step functions fn : I → X such that ||fn − f || → 0.
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Adapting the aforementioned proof to the explicitly right-continuous case,
one obtains a specification to RCR(I,X).

Lemma I.1.3.1. Let I be compact. For all f ∈ RCR(I,X), there ex-
ists a sequence of right-continuous step functions fn : I → X such that
||fn − f || → 0.

Regulated functions are integrable, as the following lemma guarantees. Its
proof is simple and omitted.

Lemma I.1.3.2. Let f ∈ G(I,Rn) for some interval I. f is locally integrable
—that is,

∫
S
f(x)dx exists for all S ⊆ I compact.

In contrast to continuous functions, if f ∈ RCR(A,B) and g ∈ RCR(B,X)
for A,B real intervals, it need not be true that g ◦ f ∈ RCR(A,X). This is
generally false even if f is continuous. As a simple example, take

f(x) =

{
2x, 0 ≤ x < 1

2
2− 2x, 1

2 ≤ x ≤ 1,

and g(x) = �x	. Then, f ∈ C([0, 1],R) and g ∈ RCR(R,R), but the compo-
sition g ◦ f : [0, 1]→ R has the form

g ◦ f(x) =
{

0, x �= 1
2

1, x = 1
2

and so is not continuous from the right. The following is a sufficient condition
for the composition g ◦ f to be RCR(A,X) for any g ∈ RCR(B,X).

Lemma I.1.3.3. If f ∈ RCR(A,B) for intervals A,B ⊂ R, then g ◦ f ∈
RCR(A,X) for any g ∈ RCR(B,X) provided the following conditions are
satisfied:

1. For all x ∈ A, there exists ε > 0 such that f |[x,x+ε] is nondecreasing.

2. If x ∈ A and f(x) �= f(x−), there exists ε > 0 such that f |[x−ε,x) is
nondecreasing.

Proof. Let x < supA. Since f |[x,x+ε] is nondecreasing for ε > 0 sufficiently
small, we have that for any xn → x+, the sequence f(xn) is eventually
nondecreasing. Since f ∈ RCR(A,B), we have f(xn) → f(x). Then, as
g ∈ RCR(B,X), we conclude limn→∞ g◦f(xn) = g◦f(x). Now let x > inf A.
There are two cases to consider. If f(x) �= f(x−), then from the second
condition f |[x−ε,x) is nondecreasing for ε > 0 small enough. A symmetric
argument to how we proved the existence of right-limits can now be used to
prove limy→x− f◦g(y) exists. The more difficult case is if f(x) = f(x−)—that
is, when f is continuous at x.

For ε > 0 sufficiently small, sgn(f |[x−ε,x) − f(x)) is constant. To see this,
assume to the contrary that there exists xn → x− such that sgn(f(xn)−f(x))
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is oscillatory. This is impossible because g(y) := sgn(f(y) − f(x))ν is an
element of RCR(B,X) for any 0 �= ν ∈ X, and g ◦ f(xn) has no limit as
n → ∞ even though xn → x−. We can then without loss of generality
assume f(y) ≥ f(x) for all x ∈ [x − ε, x) for some ε > 0. Let xn ∈ [x −
ε, x) satisfy xn → x. Let xnk

be any subsequence of xn, and consider the
sequence k �→ f(xnk

). Since the limit exists and f(xnk
) ≥ f(x), there exists

a further subsequence such that j �→ f(xnkj
) := uj is nonincreasing. Since

g ∈ RCR(B,X), limj→∞ g(uj) exists. As uj → f(x)−, the limit does not
depend on the choice of the subsequence. Thus, limn→∞ g◦f(xn) = g(f(x)−)
for any sequence xn → x−.

Remark I.1.3.1. Later on, one of the conditions needed to ensure the exis-
tence of solutions for an impulsive functional differential equation will con-
cern the regularity of the composition t �→ f(t, φt) whenever φ ∈ RCR(I,Rn),
where f is the functional defining the vector field and I is an interval. The
motivation for Lemma I.1.3.3 is that functionals with time-dependent discrete
delays involve terms of the form

fd(t, φ) = φ(d(t))

for state φ ∈ RCR([−r, 0],Rn) and some delay function d : R → [−r, 0]. In
this case, fd(t, xt) = x(t−d(t)). Lemma I.1.3.3 provides a sufficient condition
on t − d(t) for the t �→ x(t − d(t)) to be an element of RCR(R,Rn) for any
x ∈ RCR(R,Rn).

We will eventually need spaces of function f : I → X that are differentiable
from the right and whose right-hand derivatives are elements of RCR(I,X).
Specifically, define the right-hand derivative by

d+f(t) = lim
ε→0+

f(t+ ε)− f(t)

ε
,

and introduce the space

RCR1(I,X) = {f ∈ RCR(I,X) : d+f ∈ RCR(I,X)}.

This space is complete with respect to the norm ||f ||1 = ||f ||+ ||d+f || when
restricted to the subspace consisting of functions that are || · ‖|1-bounded,
although we will not make great use of this fact in this monograph.

We will need a few convergence and boundedness results for Perron–
Stieltjes integrals involving right-continuous regulated functions and func-
tions of bounded variation. These two results appear in [31] and are based
on results by Tvrdý [142]. In what follows, vᵀ denotes the transpose of
v ∈ R

n. In the two lemmas below, we overload the notation and define
fᵀ : [a, b]→ R

n∗ by fᵀ(t) = [f(t)]ᵀ.
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Lemma I.1.3.4. Let f : [a, b] → R
n be of bounded variation and g ∈

RCR([a, b],Rn). The integral
∫ b
a
fᵀ(t)dg(t) exists in the Perron–Stieltjes

sense, and ∣∣∣∣∣
∫ b

a

fᵀ(t)dg(t)

∣∣∣∣∣ ≤ (|f(a)|+ |f(b)|+ varbaf)||g||, (I.1.17)

where varbaf denotes the total variation of f on the interval [a, b].

Lemma I.1.3.5. Let hn ∈ RCR([a, b],Rn) and h ∈ RCR([a, b], Rn) be such
that ||hn − h|| → 0 as n→∞. For any f : [a, b]→ R

n of bounded variation,

the Perron–Stieltjes integrals
∫ b
a
fᵀ(t)dh(t) and

∫ b
a
fᵀ(t)dhn(t) exist and

lim
n→∞

∫ b

a

fᵀ(t)dhn(t) =

∫ b

a

fᵀ(t)dh(t). (I.1.18)

Next, we provide a generalization of a result by Ballinger and Liu [14],
which can itself be seen as a weakened form of the result that if x : R→ R

n

is continuous, then F : t �→ xt ∈ C([−r, 0],Rn) is continuous as a function
F : R → C([−r, 0],Rn), where the codomain is the Banach space of contin-
uous functions from [−r, 0] to R

n equipped with the supremum norm. The
following lemma appears in [31], and we reproduce its proof here.

Lemma I.1.3.6. Let r > 0 be finite, and let φ ∈ RCR([a, b],Rn) for some
b ≥ a+ r. With φt : [−r, 0]→ R

n defined by (I.1.15), t �→ ||φt|| is an element
of RCR([a+ r, b],R).

Proof. Let t ∈ [a + r, b] be fixed. We will only prove right-continuity, since
the proof of the existence of left-limits is similar. It suffices to prove that
for any decreasing sequence sn ↓ 0, we have ||φt+sn || → ||φt||. Let ε > 0 be
given. By right-continuity of φ, for all ε > 0, there exists δ > 0 such that, if
0 < μ < δ, then |φ(t+ μ)− φ(t)| < ε. Therefore,

||φt+sn || = sup
μ∈[−r,0]

|φ(t+ sn + μ)| ≤ sup
μ∈[−r,sn]

|φ(t+ μ)|

≤ max{||φt||, sup
μ∈[0,sn]

|φ(t+ μ)|}

≤ max{||φt||, |φ(t)|+ ε} ≤ ||φt||+ ε,

provided sn < δ. On the other hand, since φ is bounded, there exists some se-
quence xn ∈ [−r, 0] such that |φt(xn)| → ||φt||. By passing to a subsequence,
we may assume xn → x̂ ∈ [−r, 0]. If x̂ > −r, then we have

||φt+sn || ≥ sup
μ∈[−r+sn,0]

|φ(t+ μ)| = |φ(x̂)| = ||φt||

provided sn < −x̂, while if x̂ = −r, we notice that the sequence x′
n = t−r+sn

converges to t + x̂, so that for all ε > 0, there exists N3 > 0 such that for
n ≥ N ,

||φt+sn || ≥ |φ(t+ sn) ≥ ||φt|| − ε.
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Therefore, if we let sN1
< δ and sN2

< −x̂, then by setting N = max{N1,
N2, N3}, it follows by the above three inequalities that for n ≥ N ,

−ε ≤ ||φt+sn || − ||φt|| ≤ ε.

We conclude ||φt+sn || converges to ||φt||.

Using essentially the same argument, one can prove the following very
slight generalization.

Lemma I.1.3.7. Suppose φ ∈ RCR([a, b],Rn), X ∈ RCR([a, b],Rn×m) and
z ∈ RCR([a, b],Rm) for some b ≥ a+r. Then, the function t �→ ||φt+Xtz(t)||
is an element of RCR([a+ r, b],R)

The final element in our overview of right-continuous regulated functions
is a characterization of the topological dual RCR∗. A result from Tvrdy
[142] provides such for the dual of the space of regulated left-continuous
scalar-valued functions, and for our purposes, the obvious modification that
is needed is the following. It can also be found in [31].

Lemma I.1.3.8. F ∈ RCR∗ if and only if there exists q ∈ R
n and p :

[−r, 0]→ R
n of bounded variation such that

F (x) = qᵀx(0) +
∫ 0

−r

pᵀ(t)dx(t), (I.1.19)

where the integral is a Perron–Stieltjes integral.

A final comment concerns the various left-limit histories introduced in
Sect. I.1.2. When x ∈ RCR(I,Rn), these histories are themselves regulated
functions. The following proposition follows directly from the definitions of
the history functions and the spaces RCR and G.

Proposition I.1.3.2. Let x ∈ RCR(I,Rn), and assume inf I < t − r. The
left-limit histories xt− ∈ RCR([−r, 0],Rn) and x−

t ∈ G([−r, 0],Rn) exist.
Also, x−

t : [−r, 0]→ R
n is continuous from the left.

I.1.4 Gelfand–Pettis Integration

In this monograph we will regularly need to integrate functions f : R → X
mapping into a Banach space X that have poor measurability properties.
Such constraints make it difficult to establish the existence of a strong inte-
gral. Thankfully, for our purposes the following duality-based weak integra-
tion is sufficient.

Definition I.1.4.1. Let X be a Banach space and (S,Σ, μ) a measure space.
We say that f : S → X is Pettis integrable (or Gelfand–Pettis integrable) if
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there exists a set function If : Σ→ X such that

ϕ∗If (E) =

∫
E

ϕ∗fdμ

for all ϕ∗ ∈ X∗ and E ∈ Σ. If is the indefinite Pettis integral of f and
If (E) the Pettis integral of f on E.

In the above definition X∗ is the topological dual of X. By abuse of
notation, we will often write If (E) =

∫
E
fdμ when there is no ambiguity.

The following proposition will be very useful; its proof is elementary and can
be found in numerous textbooks on functional analysis and integration. For
a brief introduction, one may consult Hille and Philips [65].

Proposition I.1.4.1. The Pettis integral possesses the following properties:

• If f is Pettis integrable, then its indefinite Pettis integral is unique.

• If T : X → X is a bounded linear operator, then T
(∫

E
fdμ
)
=
∫
E

(Tf) dμ whenever one of the integrals exists.

• If μ(A ∩B) = 0, then
∫
A∪B

fdμ =
∫
A
fdμ+

∫
B
fdμ.

• ||
∫
E
fdμ|| ≤

∫
E
||f ||dμ.

I.1.5 Integral and Summation Inequalities

We conclude this chapter with three inequalities. The first is an impulsive
Gronwall–Bellman inequality for regulated functions. The result is similar
to Lemma 2.3 from the 1993 monograph of Bainov and Simeonov [9], and
the proof is omitted. The second one concerns an elementary estimation
of sums of continuous functions at impulses, when the sequence of impulses
satisfies a separation condition. The third allows for a coarse bound on sums
of constant sequences.

Lemma I.1.5.1. Suppose x ∈ RCR([s, α],R) satisfies the inequality

x(t) ≤ C +

∫ t

s

(p(μ)x(μ) + h(μ))dμ+
∑

s<ti≤t

(bix(t
−
i ) + gi) (I.1.20)

for some nonnegative integrable function p, integrable and bounded h, non-
negative constants bi, gi and c, and all t ∈ [s, α]. For t ≥ s, define

z(t, s) = exp

(∫ t

s

p(μ)dμ

) ∏
s<ti≤t

(1 + bi).

Then, μ �→ z(t, μ) is integrable, and the following inequality is satisfied:

x(t) ≤ Cz(t, s) +

∫ t

s

z(t, μ)h(μ)dμ+
∑

s<ti≤t

z(t, ti)gi. (I.1.21)
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Lemma I.1.5.2. Let f ∈ RCR(R,R+), and suppose that {tk} satisfies tk+1−
tk ≥ ξ.

1. If f is nondecreasing, then
∑

s<ti≤t f(ti) ≤ 1
ξ

∫ t+ξ

s
f(μ)dμ.

2. If f is nonincreasing, then
∑

s<ti≤t f(ti) ≤ 1
ξ

∫ t
s−ξ

f(μ)dμ.

Proof. Let {t0, . . . , tN} = {tk : k ∈ Z} ∩ (s, t]. If f is nondecreasing, then

∑
s<ti≤t

f(ti) =

N∑
i=0

f(ti) =
1

ξ

N∑
i=0

f(ti)ξ ≤
1

ξ

N∑
i=0

f(t0 + iξ)ξ ≤ 1

ξ

∫ t+ξ

s

f(μ)dμ.

The nonincreasing case is similar.

Lemma I.1.5.3. Suppose the sequence of impulses {tk} satisfies ξ1 ≤ tk+1−
tk ≤ ξ2. Then,

t− s

ξ1
− 1 ≤ # {k ∈ Z : s < tk ≤ t} ≤ t− s

ξ2
+ 1.

I.1.6 Comments

Definition I.1.1.1 of a process uses the language of nonautonomous sets ex-
plicitly. The idea of these indexed families of sets has a long history of use
in nonautonomous dynamical systems, and the term appears in this form in,
for example, Koksch and Siegmund [81] and Rasmussen [120]. Our definition
of process itself is certainly inspired by the one due to Dafermos [40] and
Hale [57], but the motivation here is that we wish to allow for the process to
not be defined for all (forward) time, regardless of the initial state x ∈ X.
The reason here is that the solution maps of nonlinear impulsive functional
differential equations will naturally define processes that are generally only
well-defined for small increments forward in time. Instead of defining a pro-
cess imprecisely as a partial function such as U : R × R × X → X for a
final/initial time pair (t, s) ∈ R × R and initial state x ∈ X, we choose to
bake this into the domain through the use of a nonautonomous set. The
transition is made concrete by appealing to the two-parameter semigroup
S(t, s) :M(t, s)→ X.

The one-point left-limit history xt− is used extensively in the literature
on impulsive functional differential equations, though the first appearance
seems to be in the 1999 paper of Ballinger and Liu [13]. The term regulated
left-limit history is introduced in Church and Liu [33], although the definition
had been previously used in literature concerning stability.

The left-limit history functions xt− and x−
t are distinct, and the reader

may have some difficulty in navigating the literature as most authors use the
symbol xt− exclusively in impulse conditions of the form

Δx = I(tk, xtk−),
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although how the symbol xt− should be interpreted may vary. Zhang and
Sun [160] consider stability of impulsive functional differential equations with
fixed delays, where the impulse effect is of the form

Δx = Ik(x(t
−
k )) + Jk(x(t

−
k − r)),

which can be identified as the action of a functional on the regulated left-
limit x−

tk
. Inspired by this work, Lin, Li and O’Regan [91] consider stability

of systems with impulse effect of the form

Δx = Ik(x(t
−
k )) + Jk(xt−k

),

where we have placed the second x in boldface to emphasize that the notation
used in the cited reference is what we refer to here as the one-point left-limit
(xt−), but the definition used in that paper is the regulated left-limit (x−

t ).
The regulated left-limit is also used in [26, 96, 150] and others, although we
should point out that some of these papers suffer from minor technical errors
mostly relating to the observation that if x : I → R

n is continuous from the
right, then x−

t : [−r, 0] → R
n is continuous from the left with finite jump

discontinuities on the right—see Fig. I.1.2 for a visual aid. To contrast, the
papers [13, 14, 93, 137] use the one-point left-limit.

In this monograph, we will primarily make use of the one-point left-limit.
The reason for this is m : RCR → RCR defined by mφ = φ0− is bounded
and linear with norm 1. This allows for a rather elegant operator-theoretic
definition of mild solutions that is amenable to the eventual construction of
invariant manifolds.

The right-continuous regulated functions or càdlàg2 functions are used
extensively in probability and stochastic processes. The use of regulated
functions in impulsive dynamical systems has one of its first appearances in
the work of Bachar and Arijno [7] in 2004, where left-continuous regulated
functions are used. The right-continuous regulated functions as they are
used in impulsive dynamical systems were considered by Church and Liu
[31, 33], where the integral inequalities from Sect. I.1.5 appear. Regulated
functions G(I,Rn) are extensively used by Federson and Schwabik [45] in their
approach to solutions of impulsive functional differential equations through
the lens of generalized ordinary differential equations. More recently, some
authors have taken the regulated functions as the phase space in order to
prove the existence of periodic solutions for some special classes of nonlinear
impulsive FDE [6, 46] by fixed-point theory applied to Poincaré return maps.

2From the French: “continue à droite, limite à gauche”, which translates to “continuous
from the right with limit on the left”.
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General Linear Systems

In this chapter we will be primarily interested in the linear impulsive RFDE

ẋ = L(t)xt + h(t), t �= tk (I.2.1)

Δx = B(k)xt− + rk, t = tk. (I.2.2)

The following assumptions will be needed throughout:

H.1 The representation

L(t)φ =

∫ 0

−r

[dθη(t, θ)]φ(θ)

holds, where the integral is taken in the Lebesgue–Stieltjes sense, the
function η : R× [−r, 0]→ R

n×n is jointly measurable and is of bounded
variation and right-continuous on [−r, 0] for each t ∈ R, such that
|L(t)φ| ≤ (t)||φ|| for some  : R→ R locally integrable.

H.2 The sequence tk is monotonically increasing with |tk| → ∞ as |k| → ∞,
and the representation

B(k)φ =

∫ 0

−r

[dθγk(θ)]φ(θ)

holds for k ∈ Z for functions γk : [−r, 0]→ R
n×n of bounded variation

and right-continuous, such that |B(k)| ≤ b(k).
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Remark I.2.0.1. Assumption H.1 includes the case of discrete time-varying
delays: for example, the linear differential-difference equation

ẋ =

m∑
k=1

Ak(t)x(t− rk(t))

with rk continuous, is associated with a linear operator satisfying condition
H.1 with η(t, θ) =

∑
Ak(t)H−rk(t)(θ), where Hz(θ) = 1 if θ ≥ z and zero

otherwise. It also obviously includes a large class of distributed delays, such
as those appearing in the differential equation

ẋ =

∫ 0

−τ

K(t, θ)x(t+ θ)dθ.

Similar results apply for the jump function B(k) and assumption H.2. More-
over, each of L(t) and B(k) is well-defined on RCR; see Theorem 2.23 from
Chapter 3 of [66].

I.2.1 Existence and Uniqueness of Solutions

Definition I.2.1.1. Let (s, φ) ∈ R × RCR. A function x ∈ RCR([s −
r, α),Rn) for some α > s is an integrated solution of the linear impulsive
RFDE (I.2.1)–(I.2.2) satisfying the initial condition (s, φ) if it satisfies xs = φ
and the integral equation

x(t) =

{
φ(0) +

∫ t

s
[L(μ)xμ + h(μ)]dμ+

∑
s<ti≤t[B(i)x

t−i
+ ri], t > s

φ(t− s), s− r ≤ t ≤ s.

(I.2.3)

Lemma I.2.1.1. Let h ∈ RCR(R,Rn), let {rk : k ∈ Z} ⊂ R
n and let hy-

potheses H.1–H.2 hold. For all (s, φ) ∈ RCR, there exists a unique integrated
solution x ∈ RCR([s− r,∞),Rn) of (I.2.1)–(I.2.2) satisfying the initial con-
dition (s, φ).

The above lemma follows by hypotheses H.1–2, the Banach fixed-point
theorem, Lemma I.1.5.1 and typical continuation arguments. Note that h
may be unbounded on the real line, but since it is regulated we are guaranteed
its boundedness on every compact set—see Honig [69]. Any classical solution
(in the sense of Ballinger and Liu [13]) is an integrated solution, so the
definition is indeed appropriate. We will drop the adjective integrated from
this point onwards, since this class of solutions will be used exclusively from
this point on.

On the note of “classical” solutions, it will later be important that the
impulsive RFDE (I.2.1)–(I.2.2) has a regularizing effect on initial conditions.
Precisely, we have the following lemma.
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Lemma I.2.1.2. Under the conditions of Lemma I.2.1.1, the integrated so-
lution x : [s−r,∞)→ R

n is differentiable from the right on [s,∞). In partic-
ular, if x : R→ R

n is a solution defined for all time, then x ∈ RCR1(R,Rn).

Proof. The first conclusion follows by the integral representation of solutions
with the remark that μ �→ L(μ)xμ ∈ RCR([s,∞),Rn). For the second part,
one can show that the restriction of x to any interval of the form [s,∞) is
differentiable from the right by applying the previous result to the restriction
on [s− r,∞). Since s is arbitrary, the result is proven.

I.2.2 Evolution Families

In this section we will specialize to the equation

ẋ = L(t)xt, t �= tk (I.2.4)

Δx = B(k)xt− , t = tk. (I.2.5)

Definition I.2.2.1. Let hypotheses H.1–H.2 hold. For a given (s, φ) ∈ R ×
RCR, let t �→ x(t; s, φ) denote the unique solution of (I.2.4)–(I.2.5) satisfying
xs(·; s, φ) = φ. The function U(t, s) : RCR → RCR defined by U(t, s)φ =
xt(·, s, φ) for t ≥ s is the evolution family associated with the homogeneous
equation (I.2.4)–(I.2.5).

From here onwards, we will take the convention that if L : RCR → RCR
is a linear operator, then Lφ(θ) for φ ∈ RCR and θ ∈ [−r, 0] should be un-
derstood as [L(φ)](θ). Also, the symbol IX will refer to the identity operator
on X. When the context is clear, we will simply write it as I. Introduce the
linear function χs : R

n → RCR defined by

[χsξ](θ) =

{
ξ, θ = s
0, θ �= s.

(I.2.6)

Lemma I.2.2.1. The evolution family satisfies the following properties:

1) U(t, t) = I for all t ∈ R.

2) For s ≤ t, U(t, s) : RCR → RCR is a bounded linear operator. In
particular,

||U(t, s)|| ≤ exp

(∫ t

s

(μ)dμ

) ∏
s<ti≤t

(1 + b(i)). (I.2.7)

3) For s ≤ v ≤ t, U(t, s) = U(t, v)U(v, s).

4) For all θ ∈ [−r, 0], s ≤ t+θ and φ ∈ RCR, U(t, s)φ(θ) = U(t+θ, s)φ(0).
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5) For all tk > s, one has U(tk, s) = (I + χ0B(k))U(t−k , s).
1

6) Let C(t, s) denote the evolution family on RCR associated with the
“continuous” equation ẋ = L(t)xt. The following factorization holds:

U(t, s) =

{
C(t, s), [s, t] ∩ {tk}k∈Z ∈ {{s}, ∅}
C(t, tk) ◦ (I + χ0B(k)) ◦ U(t−k , s), t ≥ tk > s.

(I.2.8)

Proof. Properties (1), (3) and (4) are straightforward, given the uniqueness
assertion of Lemma I.2.1.1 and the definition of the evolution family. Prop-
erty (6) follows similarly once we can establish (5). To obtain boundedness,
we use the integral equation (I.2.3) to get the estimate

|U(t, s)φ(θ)| ≤ ||φ||+
∫ t+θ

s

|L(μ)U(μ, s)φ|dμ+
∑

s<ti≤t+θ

|B(i)U(t−i , s)φ|

≤ ||φ||+
∫ t

s

(μ)||U(μ, s)φ||dμ+
∑

s<ti≤t

b(i)||U(t−i , s)φ||.

Since the upper bounds are independent of θ, denoting X(t) = U(t, s)φ, we
obtain

||X(t)|| ≤ ||φ||+
∫ t

s

(μ)||X(μ)||dμ+
∑

s<ti≤t

b(i)||X(t−i )||.

By Lemma I.1.3.6, t �→ ||X(t)|| is an element of RCR([s − r,∞),R). Using
the Gronwall inequality of Lemma I.1.5.1, we obtain the desired boundedness
(I.2.7). As for property (5),

U(tk, s)φ(0) = φ(0) +

∫ tk

s

L(μ)U(μ, s)φdμ+
∑

s<ti≤tk

B(i)U(t−i , s)φ

= U(t−k , s)φ(0) +B(k)U(t−k , s)φ

and U(t−k , s)φ(θ) = U(tk, s)φ(θ) for θ < 0.

The connection between the evolution family and processes is given by the
following lemma, whose proof now follows directly from Lemma I.2.2.1.

Lemma I.2.2.2. LetM be the nonautonomous set over R×RCR with t-fibre

M(t) =
⋃
s≤t

{s} × RCR,

and define S(t, (s, φ)) = x(t; s, φ). (S,M) is a forward, linear process, and
U(t, s) : RCR → RCR is its two-parameter semigroup.

1Note here that the left limit is defined by U(t−k , s)φ(θ) = U(tk, s)φ(θ) for θ < 0, while

U(t−k , s)φ(0) = U(tk, s)φ(0
−).
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I.2.2.1 Phase Space Decomposition

In the analysis of steady states of linear ordinary differential equations, the
stable, centre and unstable subspaces play a key role. The appropriate gener-
alization to impulsive functional differential equations is spectral separation
of the evolution family. That is, the evolution family U(t, s) : RCR → RCR
is spectrally separated if it satisfies the properties of Definition I.1.1.6.

If the evolution family U(t, s) : RCR → RCR is spectrally separated, the
phase space admits a direct sum decomposition

RCR = RCRs(t)⊕RCRc(t)⊕RCRu(t) (I.2.9)

for each t ∈ R. If (s, φ) ∈ RCRs, Eq. (I.1.11) implies that U(t, s)φ decays to
zero exponentially as t→∞. We say that in the stable fibre bundle, solutions
decay exponentially in forward time. Similarly, in the unstable fibre bundle,
solutions are defined for all time and decay exponentially in backward time.
In the centre fibre bundle, solutions are defined for all time and grow slower
than exponentially in forward and backward times. The difference between
this decomposition and one more typical of autonomous or ordinary delay
differential equations is that the factors of the decomposition are generally
time-dependent; that is, they are determined by the t-fibres of the invariant
fibre bundles RCRs, RCRc and RCRu.

I.2.2.2 Evolution Families are (Generally) Nowhere
Continuous

The use of the phase space RCR causes the evolution family U(t, s) : RCR →
RCR to have some undesirable regularity properties. To illustrate this, con-
sider the trivial impulsive functional differential equation

ẋ = 0, t �= tk

Δx = 0, t = tk.

The evolution family associated with the above homogeneous equation is
equivalent to a one-parameter semigroup; U(t, s) = V (t−s), where for ξ ≥ 0,

V (ξ)φ(θ) =

{
φ(ξ + θ), ξ + θ ≤ 0
φ(0), ξ + θ > 0.

Suppose φ ∈ RCR has an internal discontinuity at some d ∈ (−r, 0). Then,
for ε > 0 sufficiently small and any 0 ≤ t < min{|d|, d+ r}, one has

||V (t− ε)φ− V (t)φ|| ≥ |V (t− ε)φ(d− t)− V (t)φ(d− t)|
= |φ(d− ε)− φ(d)|,

which because of the discontinuity is guaranteed to be bounded away from
zero for ε arbitrarily small. As such, t �→ V (t)φ is nowhere continuous from
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the left in [0,min{|d|, d+ r}). On the other hand, we also have

||V (t+ ε)φ− V (t)φ|| ≥ |V (t+ ε)φ(d− t− ε)− V (t)φ(d− t− ε)|
= |φ(d)− φ(d− ε)|,

which is again bounded away from zero. We conclude that t �→ V (t)φ is
nowhere continuous from the right on the interval [0,min{|d|, d + r}). As a
consequence, neither t �→ U(t, s)φ nor s �→ U(t, s)φ can generally be relied
on to have any points of continuity from either side.

This lack of continuity continues to be a problem for arbitrary evolution
families U(t, s) : RCR → RCR. Indeed, suppose U(t, s)φ : [−r, 0] → R

n

has an internal discontinuity at some d ∈ (−r, 0)—this could result from
an impulse effect at some time tk ∈ (t − r, t). Because of the translation
property (4) of Lemma I.2.2.1, we have for any t′ ≥ t such that 0 ≤ t′ − t <
min{|d|, d+ r}

||U(t′ + ε, s)φ− U(t′, s)φ|| ≥ |U(t′ + ε, s)φ(d+ t− t′ − ε)− U(t′, s)

φ(d+ t− t′ − ε)|
= |U(t, s)φ(d)− U(t, s)φ(d− ε)|,

which is yet again bounded away from zero for ε arbitrarily small. In the
same way as before, we conclude that t′ �→ U(t′, s)φ is nowhere continuous
from the left or right, for t′ ∈ [t, t+min{|d|, d+ r}).

I.2.2.3 Continuity under the L2 Seminorm

While t �→ U(t, s)φ is generally discontinuous everywhere with respect to the
uniform norm ||g|| = supθ∈[−r,0] |g(θ)| that we have been using up until this

point, the same is not true if one uses the L2 norm. Indeed, for 0 < ε < ε0 < r
and a fixed ε0, one can make the estimate

∫ 0

−r

|U(t+ ε, s)φ(θ)−U(t, s)φ(θ)|2dθ ≤
∫ −ε

−r

|U(t, s)φ(θ+ε)−U(t, s)φ(θ)|2dθ+εK

where K is some constant such that ||U(t + ε, s)φ − U(t, s)φ||2 ≤ K for
ε < ε0. The integrand converges pointwise to zero almost everywhere and
is uniformly bounded, so the dominated convergence theorem implies that
U(t+ ε, s)φ→ U(t, s)φ in the L2 sense, with respect to the norm

||g||2 =

(∫ 0

−r

|g(θ)|2dθ
)1/2

.

Consequently, t �→ U(t, s)φ is continuous for each φ ∈ RCR with respect to
the || · ||2 norm. However,

U(t, s) : (RCR, || · ||2)→ (RCR, || · ||2)
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is not bounded. To see this, let us again make use of our translation2 semi-
group V (t) : RCR → RCR from Sect. I.2.2.2. Assume there exists K ≥ 0
such that ||U(t, s)φ||2 ≤ K||φ||2 for all φ ∈ RCR. If t ≥ s + r, this implies
the equation

r|φ(0)| ≤ K

(∫ 0

−r

|φ(θ)|2dθ
) 1

2

,

which cannot hold for all φ ∈ RCR. As such, even though RCR is dense
in L2([−r, 0],Rn), we cannot extend U(t, s) to a bounded linear operator on
L2 and take advantage of the continuity of t �→ U(t, s)φ or the completeness
of L2.

I.2.3 Representation of Solutions of the
Inhomogeneous Equation

Given the evolution family U(t, s) : RCR → RCR associated with the homo-
geneous equation (I.2.4)–(I.2.5), we now consider to what extent the solutions
of the inhomogeneous equation (I.2.1)–(I.2.2) can be represented in the form
of a variation-of-constants formula. It is worth revisiting the variation-of-
constants formula of Hale [56] for the functional differential equation

ẋ = L(t)xt + h(t).

The formula states that the solution x : [s− r,∞)→ R
n satisfying the initial

condition xs = φ can be written in the form

xt = X(t, s)φ+

∫ t

s

X(t, μ)χ0h(μ)dμ (I.2.10)

for all t ≥ s, where X(t, s) : C([−r, 0],Rn) → C([−r, 0],Rn) is the evolution
family associated with the homogeneous equation ẋ = L(t)xt, and the inte-
gral is understood as one parameterized by the lag θ ∈ [−r, 0]—that is, for
each θ ∈ [−r, 0], one interprets the integral on the right-hand side to be the
integral of μ �→ X(t, μ)[χ0h(μ)](θ) ∈ R

n over [s, t]. As stated, the formula
is technically incorrect because χ0h(μ) is not in the domain C([−r, 0],Rn)
of X(t, μ). In this section we will prove an analogous formula for the inho-
mogeneous linear system (I.2.1)–(I.2.2), but this technical difficulty will be
resolved by working with the phase space RCR at the outset. We will also
interpret the integral in the weak sense. See the comments (Sect. I.2.5) for
further discussion. The content of this section follows closely the presentation
of Church and Liu [31].

2u(t, θ) = V (t)φ(θ) satisfies the partial differential equation du
dt

= du
dθ

on the half-line
t+ θ > 0. This partial differential equation corresponds to a translation with speed one.
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I.2.3.1 Pointwise Variation-of-Constants Formula

The first task is to decompose solutions of the inhomogeneous equation by
means of superposition. Specifically, we write them as the sums of homoge-
neous solutions and a pair of inhomogeneous solutions with different inho-
mogeneities corresponding to the continuous forcing h(t) and the impulsive
forcing rk. The result follows directly from Lemma I.2.1.1.

Lemma I.2.3.1. Let h ∈ RCR(R,Rn), and let hypotheses H.1–H.2 hold.
Denote by t �→ x(t; s, φ;h, r) the solution of the linear inhomogeneous equa-
tion (I.2.1)–(I.2.2) for inhomogeneities h = h(t) and r = rk, satisfying the
initial condition xs(·; s, φ;h, r) = φ. The following decomposition is valid:

x(t; s, φ;h, r) = x(t; s, φ; 0, 0) + x(t; s, 0;h, 0) + x(t; s, 0; 0, r) (I.2.11)

The following lemmas prove representations of the inhomogeneous impul-
sive and continuous terms xt(·; s, 0; 0, r) and xt(·; s, 0;h, 0), respectively.

Lemma I.2.3.2. Under hypotheses H.1–H.2, one has

xt(·; s, 0; 0, r) =
∑

s<ti≤t

U(t, ti)χ0ri (I.2.12)

Proof. Denote x(t) = x(t; s, 0; 0, r). Clearly, for t ∈ [s,min{ti : ti > s}, one
has xt = 0. We may assume without loss of generality thatt0 = min{ti : ti >
s}. Then, xt0 = χ0r0 due to (I.2.3). From Lemmas I.2.1.1 and I.2.2.1, we
have xt = U(t, t0)χ0r0 for all t ∈ [t0, t1), so (I.2.12) holds for all t ∈ [s, t1).
Supposing by induction that xt =

∑
s<ti≤t U(t, ti)χ0ri for all t ∈ [s, tk) for

some k ≥ 1, we have

xtk = xt−k
+ χ0B(k)xt−k

+ χ0rk

= U(tk, tk−1)xtk−1
+ χ0rk

= U(tk, tk−1)
∑

s<ti≤tk−1
U(tk−1, ti)χ0ri + χ0rk

=
∑

s<ti≤tk
U(t, ti)χ0ri.

Equality (I.2.12) then holds for t ∈ [tk, tk+1) by applying Lemma I.2.2.1.

Lemma I.2.3.3. Let h ∈ RCR(R,Rn). Under hypotheses H.1–H.2, one has

xt(θ; s, 0;h, 0) =

∫ t

s

U(t, μ)[χ0h(μ)](θ)dμ, (I.2.13)

where the integral is defined for each θ as the integral of the function μ �→
U(t, μ)[χ0h(μ)](θ) in R

n.

Proof. We provide a brief sketch of the proof. The interested reader can
consult Church and Liu [31] for details. Denote x(t; s)h = x(t; s, 0;h, 0). The
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function x(t, s) : RCR([s, t],Rn) → R
n is linear for each fixed s ≤ t and

extends uniquely to a linear functional x̃(t, s) : L1([s, t],R
n) → R

n. One
can show that it is also bounded, so there exists an integrable, essentially
bounded n× n matrix-valued function μ �→ V (t, s, μ) such that

x̃(t, s)h =

∫ t

s

V (t, s, μ)h(μ)dμ. (I.2.14)

One can then show that V (t, s, μ) is independent of s. Define V (t, s) =
V (t, ·, s) for any t ≥ s and V (t, s) = 0 for s < t. Let us denote x̃(t) =
x̃(t, s)h and Vt−i

(θ, s) = V (ti + θ, s) when θ < 0 and Vt−i
(0, s) = V (t−i , s).

From the integral equation (I.2.3) and the representation (I.2.14), one can
carefully show after a serious of changes of variables and applications of
Fubini’s theorem that

∫ t

s

V (t, μ)h(μ)dμ=

∫ t

s

⎡
⎣I+

∫ t

μ

L(μ)Vν(·, μ)dν+
∑

s<ti≤t

B(i)Vt−i
(·, μ)

⎤
⎦h(μ)dμ.

Since the above holds for all h ∈ L1([s, t],R
n), the fundamental matrix V (t, s)

satisfies

V (t, s) =

⎧⎪⎨
⎪⎩

I +

∫ t

s

L(μ)Vμ(·, s)dμ+
∑

s<ti≤t

B(i)Vt−i
(·, s), t ≥ s

0 t < s,

(I.2.15)

almost everywhere. By uniqueness of solutions (Lemma I.2.1.1), V (t, s)ξ =
U(t, s)[χ0ξ](0) for all ξ ∈ R

n. Since x̃ is an extension of x to L1([s, t],R
n) ⊃

RCR([s, t],Rn), representation (I.2.14) holds for h ∈ RCR([s, t],Rn). Then,
from the properties of V , one can verify that for all t ≥ s,

xt(θ; s, 0;h, 0) = x̃(t+ θ, s)h

=

∫ t

s

U(t, μ)[χ0h(μ)](θ)dμ,

which is what was claimed by Eq. (I.2.13).

With Lemma I.2.3.1 through Lemma I.2.3.3 at hand, we arrive at the
variation-of-constants formula.

Lemma I.2.3.4. Let h ∈ RCR(R,Rn). Under hypotheses H.1–H.2, one has
the variation-of-constants formula

xt(θ; s, φ;h, r)=U(t, s)φ(θ)+

∫ t

s

U(t, μ)[χ0h(μ)](θ)dμ+
∑

s<ti≤t

U(t, ti)[χ0ri](θ).

(I.2.16)
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I.2.3.2 Variation-of-Constants Formula in the
Space RCR

The main result of the previous section—Lemma I.2.3.4—is a variation-of-
constants formula in the Euclidean space. That is, for each θ ∈ [−r, 0], one
can compute the right-hand side of (I.2.16), with the integral being that of a
vector-valued function with codomain R

n. The goal of this section will be to
reinterpret the variation-of-constants formula in such a way that the integral
appearing therein may be thought of as a weak integral in the space RCR.

Lemma I.2.3.5. Let h ∈ RCR(R,Rn), and let hypotheses H.1–H.2 hold.
The function U(t, ·)[χ0h(·)] : [s, t] → RCR is Pettis integrable for all t ≥ s
and

[∫ t

s

U(t, μ)[χ0h(μ)]dμ

]
(θ) =

∫ t

s

U(t, μ)[χ0h(μ)](θ)dμ. (I.2.17)

Proof. By Lemma I.1.3.8 and the uniqueness assertion of Proposition I.1.4.1,
if we can show for all p : [−r, 0]→ R

n of bounded variation that the equality

∫ 0

−r

pᵀ(θ)d

[∫ t

s

U(t, μ)[χ0h(μ)](θ)dμ

]
=

∫ t

s

[∫ 0

−r

pᵀ(θ)d
[
U(t, μ)[χ0h(μ)](θ)

]]
dμ

holds, then Lemma I.2.3.5 will be proven. Note that the above is equivalent
to

∫ 0

−r

pᵀ(θ)d
[∫ t

s

V (t+ θ, μ)h(μ)dμ

]
=

∫ t

s

[∫ 0

−r

pᵀ(θ)d
[
V (t+ θ, μ)h(μ)

]]
dμ.

(I.2.18)

Suppose first that h is a step function. In this case, a consequence of
Eq. (I.2.15) is that θ �→ V (t+θ, μ)h(μ) and μ �→ V (t+θ, μ)h(μ) are piecewise-

continuous, while Lemmas I.2.1.1 and I.2.3.3 imply that θ �→
∫ t
s
V (t +

θ, μ)h(μ)dμ is also piecewise-continuous, all with at most finitely many dis-
continuities on any given bounded set. Consequently, both integrals in (I.2.18)
can be regarded as the Lebesgue–Stieltjes integrals, with Fubini’s theorem
granting the desired equality.

Given h ∈ RCR(R,Rn), we approximate its restriction to the interval [s, t]
by a convergent sequence of right-continuous step functions hn by
Lemma I.1.3.1. Equation (I.2.18) is then satisfied with h replaced with hn.
Define the functions

Jn(θ) =

∫ t

s

V (t+ θ, μ)hn(μ)dμ, Kn(μ) =

∫ 0

−r

pᵀ(θ)d
[
V (t+ θ, μ)hn(μ)

]
,

J(θ) =

∫ t

s

V (t+ θ, μ)h(μ)dμ, K(μ) =

∫ 0

−r

pᵀ(θ)d
[
V (t+ θ, μ)h(μ)

]
,
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so that
∫ 0
−r

pᵀ(θ)dJn(θ) =
∫ t
s
Kn(μ)dμ. Using Lemma I.2.2.1, we can get the

inequality

|Jn(θ)− J(θ)| ≤ ||hn − h||
∫ t

s

exp

(∫ t

μ

(ν)dν

)
dμ,

so Jn → J uniformly. The conditions of Lemma I.1.3.5 are satisfied, and we
have the limit ∫ 0

−r

pᵀ(θ)dJn(θ)→
∫ 0

−r

pᵀ(θ)dJ(θ).

Conversely, for each μ ∈ [s, t], Lemma I.1.3.4 applied to the differenceKn(μ)−
K(μ) yields, together with Lemma I.2.2.1,

|Kn(μ)−K(μ)| ≤ (|p(0)|+ |p(−r)|+ var0−rp)

(∫ t

s

exp

(∫ t

y

�(ν)dν

)
dy

)
||hn − h||.

Thus, Kn → K uniformly, and the bounded convergence theorem implies∫ t
s
Kn(μ)dμ →

∫ t
s
K(μ)dμ. Combining these results, Eq. (I.2.18) holds and

the lemma is proven.

Lemmas I.2.3.4 and I.2.3.5 together grant the variation-of-constants for-
mula in the Banach space RCR.

Theorem I.2.3.1. Let hypotheses H.1–H.2 hold, and let h ∈ RCR(R,Rn).
The unique solution t �→ xt(·; s, φ;h, r) ∈ RCR of the linear inhomogeneous
impulsive system (I.2.1)–(I.2.2) with initial condition xs(·; s, φ;h, r) = φ sat-
isfies the variation-of-constants formula

xt(·; s, φ;h, r) = U(t, s)φ+

∫ t

s

U(t, μ)[χ0h(μ)]dμ+
∑

s<ti≤t

U(t, ti)[χ0ri],

(I.2.19)

where the integral is interpreted in the Pettis sense and may be evaluated
pointwise using (I.2.17).

As a simple corollary, if x is a solution defined on [s−r,∞), we can express
t �→ xt defined on [s,∞) as the solution of an abstract integral equation.

Corollary I.2.3.1. Let hypotheses H.1–H.2 hold, and let h ∈ RCR(R,Rn).
Any solution x : [s − r,∞) → R

n of the linear inhomogeneous impulsive
system (I.2.1)–(I.2.2) satisfies for all t ≥ s the abstract integral equation

xt = U(t, s)xs +

∫ t

s

U(t, μ)[χ0h(μ)]dμ+
∑

s<ti≤t

U(t, ti)[χ0ri]. (I.2.20)

Equation (I.2.20) will be the key to defining mild solutions in Chap. I.4
and, ultimately, will permit us to construct centre manifolds.



32 CHAPTER I.2. GENERAL LINEAR SYSTEMS

I.2.4 Stability

Stability (in the sense of Lyapunov) is a fundamental topic in dynamical
systems. We remind the reader of its definition, which we will specify to the
inhomogeneous linear system (I.2.1)–(I.2.2).

Definition I.2.4.1. We say that the inhomogeneous impulsive RFDE
(I.2.1)–(I.2.2) is

• exponentially stable if there exist K > 0, α > 0 and δ > 0 such that
for all φ, ψ ∈ RCR satisfying ||φ − ψ|| < δ, one has ||xt(·, s, φ) −
xt(·, s, ψ)|| ≤ K||φ− ψ||e−α(t−s) for all t ≥ s;

• stable if for all ε > 0 there exists δ > 0 such that for all φ, ψ ∈ RCR
satisfying ||φ − ψ|| < δ, one has ||xt(·, s, φ) − xt(·, s, ψ)|| < ε for all
t ≥ s;

• unstable if it is not stable.

A simple consequence of the superposition principle is that stability of
the inhomogeneous equation can be directly inferred from the properties of
the evolution family U(t, s) : RCR → RCR associated with its homogeneous
part.

Proposition I.2.4.1. The inhomogeneous impulsive RFDE (I.2.1)–(I.2.2)
is exponentially stable if and only if there exist K > 0 and α > 0 such that
the evolution family U(t, s) : RCR → RCR associated with the homogeneous
part (I.2.4)–(I.2.5) satisfies ||U(t, s)|| ≤ Ke−α(t−s) for t ≥ s. It is stable if
and only if the evolution family is bounded: there exists K > 0 such that
||U(t, s)|| ≤ K for t ≥ s.

There are several analytical criteria in the literature that guarantee expo-
nential stability of linear impulsive RFDE. Some of these are based on analyt-
ical estimates and variation-of-constants formulas [4, 18, 98, 156], while others
are proven using Lyapunov–Razumikhin methods [149, 166]. Of course, non-
linear stability criteria can be applied to the linear equation (I.2.4)–(I.2.5) as
well. We will discuss nonlinear stability further in Chap. I.4.

I.2.5 Comments

This chapter contains results that appear in the paper Smooth centre mani-
folds for impulsive delay differential equations [31] by Church and Liu, pub-
lished by Journal of Differential Equations in 2018. Most importantly, that
publication contains the main results of Sect. I.2.3, as well as Lemmas I.2.1.1
and I.2.2.1.

The variation-of-constants formula (I.2.10) for functional differential equa-
tions due to Hale can be made rigorous in several ways, such as through
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adjoint semigroup theory and integrated semigroup theory. See the refer-
ence [62] for an overview on these ideas. In the autonomous setting, the
textbook of Diekmann, Verduyn Lunel, van Gils and Walther [41] provides a
very readable account based on adjoint semigroups. Here, we have proposed
an arguably more elementary approach; use the phase space RCR and treat
the integral in the weak sense. It is not possible (or at least quite nontriv-
ial) to interpret the integral in (I.2.20) as a strong integral in RCR because
μ �→ U(t, μ) is generally nowhere continuous from the left or right—see the
discussion of Sect. I.2.2.2.

Variation-of-constants formulas for impulsive delay differential equations
have appeared in the literature at various earlier points, but only in the con-
text of Euclidean space integrals and only when the impulses did not contain
delays. See, for instance, Gopalsamy and Zhang [53], Anokhin, Berezan-
sky and Braverman [4] and Berezansky and Braverman [18] for some early
instances.



Chapter I.3

Linear Periodic Systems

We will once again be interested in the homogeneous linear system

ẋ = L(t)xt, t �= tk (I.3.1)

Δx = B(k)xt− , t = tk (I.3.2)

satisfying the conditions H.1 and H.2, but in this chapter we will assume that
the system is also periodic. That is, there exists T > 0 and q ∈ N \ {0} such
that L(t + T ) = L(t) for all t ∈ R, B(k + q) = B(k) and tk+q = tk + T for
all k ∈ Z. One motivation for studying linear periodic systems comes from
applications involving systems of the form

ẏ = f(xt), t �= kT

Δy = g(xt−), t = kT,

for some T > 0. Such an impulsive functional differential has an autonomous
right-hand side. The variational equation (also called the equation of per-
turbed motion) associated with a fixed point or periodic solution has the
form of system (I.3.1)–(I.3.2). The analysis of this system can be used to in-
form the stability of the fixed point or periodic solution, construct invariant
manifolds and study bifurcations. These topics will be covered in Sect. I.4.3,
Chaps. I.5, I.7, and I.8, respectively.
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I.3.1 Monodromy Operator

In this section we will define a linear operator that plays the role of the
Poincaré map from ordinary differential equations. We will demonstrate that
this operator is compact and provide some definitions related to its spectrum.
For reasons that will become apparent soon, it is sometimes convenient to
work instead with the phase space RCR([−jT, 0],Rn) for some j ≥ 1 such
that jT ≥ r. This can always be done, since each of L(t) and B(k) extends in
an obvious, trivial way to RCR([−jT, 0],Rn). We then obtain the following
proposition.

Proposition I.3.1.1. There exists j ∈ N minimal such that r ≤ jT , and the
evolution family U(t, s) on RCR associated with the periodic system (I.3.1)–
(I.3.2) extends uniquely to an evolution family Ũ(t, s) on RCR([−jT, 0],Rn)
satisfying the identity

Ũ(t, s)φ(θ) = U(t, s)ψ(θ)

for all φ ∈ RCR([−jT, 0],Rn) and θ ∈ [−r, 0], where ψ = φ|[−r,0]. In partic-
ular, we have the representation

U(t, s) = π→Ũ(t, s)π←,

where the linear maps π← : RCR → RCR([−jT, 0],Rn) and
π→ : RCR([−jT, 0],Rn)→ RCR are

π←φ(θ) =

{
φ(θ), θ ∈ [−r, 0],
0, θ ∈ [−jT,−r) π→φ = φ|[−r,0].

Following the above proposition, we denote RCRj = RCR([−jT, 0],Rn).

For each t ∈ R, define the extended monodromy operators Z̃t : RCRj →
RCRj and Zt : RCR → RCR by

Z̃t = Ũ(t+ jT, t), Zt = U(t+ jT, t). (I.3.3)

Also define the monodromy operators Vt : RCR → RCR simply by

Vt = U(t+ T, t).

Recall that a linear operator L : X → X on a Banach space X is compact
if the image under L of any bounded subset of X is relatively compact.

Lemma I.3.1.1. Z̃t is compact for each t ∈ R.

Proof. If φ ∈ RCRj , then Z̃tφ is continuous except at times θn ∈ [−jT, 0]
such that t+ jT + θn ∈ {tk : k ∈ Z}. At such times, Z̃tφ is continuous from
the right and has limits on the left. Let Θ = {θ1, . . . , θN} denote the set
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of all such discontinuity points, guaranteed to be finite since N = jq. Thus
B ⊂ RCRj is bounded, and then Y := Ṽt(B) is a subset of PCΘ, with

PCΘ = {f ∈ RCRj : the only points of discontinuity are in Θ}.

Being closed in RCRj , PCΘ is complete.
A subset of Y ⊂ PCΘ is precompact if and only if it is uniformly bounded

and quasi-equicontinuous—that is, for all ε > 0, there exists δ > 0 such that if
t1, t2 ∈ [θk−1, θk)∩[−jT, 0] satisfy |t1−t2| < δ, then ||x(t1)−x(t2)|| < ε for all
x ∈ Y . One may consult Bainov and Simeonov [9] and associated references
for a proof of this result. Uniform boundedness follows by Lemma I.2.2.1.
As for quasi-equicontinuity, let t1 > t2 and t = 0 without loss of generality.
We note that for all Z̃tx ∈ Y,

||Z̃tx(t1)− Z̃tx(t2)|| = ||U(jT + t1, jT + t2)U(jT + t2, 0)x(0)− U(jT + t2, 0)x(0)||
= ||χ0 ◦ [U(jT + t1, jT + t2)− I]U(jT + t2, 0)x||

≤
∫ jT+t2

jT+t1

�(μ)dμ

(
e
∫ jT
0 �(μ)dμ

jq∏
k=1

(1 + b(k))

)
C

≡ K

∫ jT+t2

jT+t1

�(μ)dμ,

where ||x|| ≤ C for all x ∈ B, and the inequality on the third line follows
by Lemma I.2.2.1 and the integral form of solutions provided by Eq. (I.2.3).

Choosing δ so that
∫ jT+t2
jT+t1

(μ)dμ < ε/K for |t1 − t2| < δ whenever t1, t2 ∈
[−jT, 0] we obtain the required quasi-equicontinuity of Y . We conclude that
Z̃t is compact.

Lemma I.3.1.2. Zt is compact for each t ∈ R.

Proof. This follows by Proposition I.3.1.1 and the compactness of Z̃t from
Lemma I.3.1.1.

Lemma I.3.1.3. V j
t is compact.

Proof. This is clear, since V j
t = Zt.

The eventual (i.e. jth power) compactness of Vt provides us with several
useful results from the spectral theory of compact operators; one may consult
the reference [79] for details. First, recall that if X is a real vector space,
its complexification XC = X ⊕ X is a complex vector space with scalar
multiplication defined by

(a+ ib)(x1, x2) = (ax1 − bx2, bx1 + ax2).

We will regularly abuse notation and identify an element (x1, x2) ∈ XC with
the formal symbol x1+ix2. If L : X → X is a linear map, its complexification
LC : XC → XC is defined by

LC(x+ iy) = L(x) + iL(y).
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With this machinery, the spectral theory of compact operators grants the
following characterization of the spectrum and generalized eigenspaces of the
monodromy operator. One may consult Chapter IV.2 of [41] or Chapter III.6
of [79] for background and proofs.

Theorem I.3.1.1. Let t ∈ R, and let σt denote the spectrum of V C

t := (Vt)C,
the complexification of Vt.

1. If λ ∈ σt is nonzero, then λ and λ∗ are eigenvalues of V C

t .

2. The generalized eigenspace Mλ,t ⊂ RCRC associated with the eigen-
value λ ∈ σt is finite-dimensional and invariant under V C

t .

3. The Riesz projection

Pλ,t =
1

2πi

∫
γ

(ξI − V C

t )−1dξ (I.3.4)

is a projection onto Mλ,t, where γ is a simple continuous closed contour
in C such that λ is the only eigenvalue of V C

t contained in its interior.

4. If Λ ⊂ σt, then

PΛ,t =
∑
λ∈Λ

Pλ,t

is a projection onto

MΛ,t =
⊕
λ∈Λ

Mλ,t.

5. The projections PΛ,t commute with V C

t and if Λ1 and Λ2 are disjoint,
then PΛ1,tPΛ2,t = 0.

6. σt is bounded, and 0 ∈ σt is the only accumulation point.

We also have the following theorem concerning eigenvalues of distinct mon-
odromy operators and their generalized eigenspaces. The proof follows ver-
batim the proof of Theorem 3.3 from Chapter XIII.3 of [41].

Theorem I.3.1.2. Let t, s ∈ R be given with t ≥ s, and let λ ∈ C \ {0}.

• λ ∈ σt if and only if λ ∈ σs.

• The restriction of UC(t, s) to Mλ,s is a topological isomorphism onto
Mλ,t.

Due to the uniqueness of the eigenvalues across all of the monodromy
operators, the following definition is appropriate.

Definition I.3.1.1. The Floquet multipliers of the evolution family U(t, s)
are the eigenvalues 0 �= λ ∈ σ0 of the (complexified) monodromy operator
W0. The multiplier spectrum of the evolution family U(t, s) is denoted as
σ(U) := σ0.
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The projections of Theorem I.3.1.1 take values in the complexifications
MΛ,t ⊂ RCRC. However, it will be helpful to know later that the eigenvec-
tors of Vt come in complex conjugate pairs. This will be so if PΛ,t is the
complexification of a real projection operator on RCR. For this to be the
case, it suffices to ensure that all conjugate Floquet multipliers are included
in the set Λ. See Section IV, Theorem 2.18 and Corollary 2.19 of [41].

Definition I.3.1.2. A subset Λ ⊂ C is symmetric if Λ = Λ∗—that is, it
contains all of its complex conjugates.

Corollary I.3.1.1. Let 0 /∈ Λ ⊂ σ(U). If Λ is symmetric, the projec-
tion PΛ,t : RCRC → RCRC is the complexification of a projection operator
on RCR.

By definition of complexification, if x ∈ RCRC is real (that is, x = ξ + i0
for some ξ ∈ RCR), then PΛ,tx is also real. By abuse of notation, we will
identify the complexification of said operator with its “real part” whenever
no confusion should arise. That is, we say that

PΛ,t : RCR → RCR

is also a projection and is identified with its complexification. Similarly, we
will sometimes blur the lines between a given operator L : RCR → RCR
and its complexification LC : RCRC → RCRC whenever no confusion should
result.

Define the time-varying projectors

Pu(t) = PΛc,t, Pc(t) = PΛc,t, Ps(t) = I − Pu(t)− Pc(t), (I.3.5)

where Λu = {λ ∈ σ(U) : |λ| > 1} and Λc = {λ ∈ σ(U) : |λ| = 1}. By
Corollary I.3.1.1, the first two of these define projections on RCR. The third
one is a complementary projector.

The main result of this section is that the evolution family U(t, s) : RCR →
RCR is spectrally separated. Specifically, the triples (Ps, Pc, Pu) are projec-
tors onto the stable, centre and unstable fibre bundles. We need two prepara-
tory lemmas.

Lemma I.3.1.4. The projectors Pi(t) for i ∈ {s, c, u} are T -periodic.

Proof. First, from periodicity and uniqueness of solutions, we have U(t, s) =
U(t+ kT, s+ kT ) for any integer k ≥ 0 and reals t ≥ s. Pi(t) is the projector
through the spectral subset Λi associated with the complexified operator
U1 := UC(t+ T, t), and Pi(t+ kT ) is the projector through the same subset,
associated with U2 := UC(t+ T + kT, t+ kT ), for all k ∈ Z. Since U1 = U2,
it follows that Pi(t) = Pi(t+ kT ).

Lemma I.3.1.5. The restriction of V C

t to the subspace R(Ps(t)) has its
spectrum contained in the ball B1(0) ⊂ C.
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Proof. Denote Pcu = Pc + Pu and Λcu = Λc ∪ Λu. Since the generalized
eigenspaces MΛcu,t are invariant under Vt, the same is true for the (closed)

complement, R(Ps(t)). Denote by V̂t the restriction of Vt to said complement.
Suppose by way of contradiction that ξ is a (generalized) eigenvector of V̂t

with eigenvalue λ with |λ| ≥ 1. Then there exists k ≥ 1 with (Vt − λI)kξ =
(V̂t−λI)ξ = 0, so ξ is in fact a (generalized) eigenvector of Vt with eigenvalue
λ and |λ| ≥ 1. This means ξ ∈ R(Pcu(t)), but we have assumed that ξ ∈
R(Ps(t)) is a (generalized) eigenvector of V̂t : R(Ps(t))→ R(Ps(t)). One can
check that Ps(t)Pcu(t) = 0, which implies ξ = 0, a contradiction.

Theorem I.3.1.3. The evolution family U(t, s) : RCR → RCR associated
with the periodic system (I.3.1)–(I.3.2) is spectrally separated, with projec-
tors (Ps, Pc, Pu) defined as in Eq. (I.3.5). Also, RCRc and RCRu are finite-
dimensional.

Proof. We prove the theorem by verifying properties 1–6 of Definition I.1.1.6
explicitly.

1. Since ||Ps|| ≤ 1 + ||Pu|| + ||Pc||, it suffices to prove that ||Pu(t)|| and
||Pc(t)|| are uniformly bounded. We will prove only uniform bounded-
ness of Pc(t), since the argument is similar for Pu(t). Also, by peri-
odicity (Lemma I.3.1.4), it suffices to prove uniform boundedness on
[0, T ].

Assume for the moment that property 3 and property 6 are satisfied
(they will be proven later, independently of property 1). Suppose by
way of contradiction that there exist xn ∈ RCR and a sequence tn ∈
[0, T ] with ||xn|| = 1 such that ||Pc(tn)xn|| = n. We can then write

n = ||Pc(tn)xn|| = ||Uc(tn, T )Uc(T, tn)Pc(tn)xn||
≤ ||Uc(tn, T )|| · ||Pc(T )U(T, tn)xn||
≤ C||Uc(tn, T )||
≤ CKeεT

for some constant C ≥ ||Pc(T )|| · ||U(T, tn)|| (see Lemma I.2.2.1) and
a constant K as in property 6 of spectral separation. This is a contra-
diction.

2. This follows by property 5 of Theorem I.3.1.1.

3. We first prove that for i ∈ {s, c, u},

Pi(t)U(t+ T, s+ kT ) = U(t+ T, s+ kT )Pi(s) (I.3.6)

for any k ∈ N chosen so that s+ (k− 1)T ≤ t < s+ kT . The argument
follows that of Theorem 3.3, Section X.III of [41], and we reproduce
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it here. We can decompose Vt and Vs for t ≥ s as Vt = AtAs and
Vs = AsAt with

At = U(t+ T, s+ kT ), As = U(s+ kT, t)

whenever k satisfies the above inequality. This follows from the obser-
vation Vt+qT = Vt and Vs+qT = Vs for any q ∈ Z. Since Λc and Λu are
both finite, we can find contours Γc and Γu such that

int(Γc) ∩ (σ(Vt) ∪ σ(Vs)) = Λc

int(Γu) ∩ (σ(Vt) ∪ σ(Vs)) = Λu.

Observe that for any z ∈ C,

At(zI −AsAt) = (zI −AtAs)At.

As a consequence, if z ∈ int(Γc) ∪ int(Γu), then we can multiply both
sides of the above by (zI − Vt)

−1 on the left and (zI − Vs)
−1 on the

right. The result is

(zI − Vt)
−1At = At(zI − Vs)

−1.

Multiplying by 1
2πi and integrating over either Γc or Γu result in the

equation

Pi(t)At = AtPi(s), i ∈ {c, u}.

This is equivalent to (I.3.6) for i ∈ {c, u}. The analogous result for Ps

follows from the decomposition Ps = I − Pc − Pu.

Now, (I.3.6) implies P (t)U(t, s+ qT ) = U(t, s+ qT )P (s) for q = k− 1.
Thus,

P (t)U(t, s) = P (t)U(t, s+ qT )U(s+ qT, s)

= U(t, s+ qT )P (s)U(s+ T, s)q

= U(t, s+ qT )P (s)qU(s+ T, s)q

= U(t, s+ qT )U(s+ T, s)qP (s)q

= U(t, s)P (s),

where we have used the fact that P (s) is a projector and commutes
with U(s+ T, s).

4. This follows from Theorem I.3.1.2.

5. When t ≥ v ≥ s, the identity Uc(t, s) = Uc(t, v)Uc(v, s) holds by
properties of the evolution family U . When t ≥ s ≥ v, we find
I = Uc(t, v)

−1Uc(t, s)Uc(s, v), which implies

Uc(v, s) = Uc(v, t)Uc(t, s). (I.3.7)
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Also,

Uc(t, s)=Uc(t, v)Uc(t, v)
−1Uc(t, s) = Uc(t, v)[Uc(v, t)Uc(t, s)]=Uc(t, v)Uc(v, s).

(I.3.8)

Equation (I.3.7) implies Uc(t, s) = Uc(t, v)Uc(v, s) for v ≥ s ≥ t, while
(I.3.8) grants it for t ≥ s ≥ v. If v ≥ t ≥ s, then

Uc(t, s)=Uc(t, v)Uc(t, v)
−1Uc(t, s)=Uc(t, v)Uc(v, t)Uc(t, s) = Uc(t, v)Uc(v, s).

If s ≥ t ≥ v, then

Uc(t, s) = Uc(s, t)
−1 = [Uc(s, v)U(v, t)c]

−1 = Uc(t, v)Uc(v, s).

Similarly, the desired equality holds if s ≥ v ≥ t. We have proven that
Uc(t, s) = Uc(t, v)Uc(v, s) for all t, v, s ∈ R. The proof is identical for
Uu.

6. This section is split into two parts, where we prove the estimates for Uc

and Us separately. The proof for Uu is similar to the centre (Uc) case
and is omitted.

Centre part: Uc. Let ε > 0 be given. Recall that Uc(t, s) is the restric-
tion of U(t, s) to R(Pc(s)), so by Lemma I.2.2.1 and periodicity, there
exists K > 0 such that for any s ∈ R, we have ||Uc(t, s)|| ≤ K provided
t ∈ [s, s+T ]. As all eigenvalues of Uc(s+T, s) satisfy |λ| = 1, Gelfand’s
(spectral radius) inequality guarantees for any ε > 0 the existence of an
integer k > 0 such that ||Uc(s + T, s)k|| < 1 + εT . If we let mt be the
greatest integer such that s + mtkT ≤ t and m∗

t ∈ {0, . . . , k − 1} the
greatest integer such that s+mtkT +m∗

tT ≤ t, then following Section
XIII, Theorem 2.4 of [41], we can write

U(t, s) = U(t, s+mtkT+m∗
tT )U(s+mtkT+m∗

tT, s+mtkT )U(s+mtkT, s)

= U(t−mtkT −m∗
tT, s)U(s+m∗

tT, s)U(s+ T, s)kmt

= U(t−mtkT −m∗
tT, s)U(s+ T, s)m

∗
t+kmt .

Set ε = ε/k. We can then make the estimate

||Uc(t, s)|| ≤ K||Uc(s+ T, s)k||
m∗

t
k +mt ≤ K(1 + εT )

t−s
kT ≤ Keε(t−s).

The proof is similar when t ≤ s, and we obtain ||Uc(t, s)|| ≤ Keε|t−s|.

Stable part: Us. Let t ≥ s. Since Us(s+T, s) has its spectrum contained
in the complex unit ball by Lemma I.3.1.5, there exists k > 0 such that
||Us(s+T, s)k|| ≤ (1+aT ) for some a < 0. The rest of the proof follows
by the same reasoning as the proof for the centre part, and we obtain
||U(t, s)|| ≤ Kea(t−s) as required.

The finite-dimensionality of RCRc and RCRu follows easily from The-
orem I.3.1.1 and Corollary I.3.1.1.



I.3.2. FLOQUET THEOREM 43

Remark I.3.1.1. The centre and unstable fibre bundles RCRc and RCRu

are subsets of RCR1. This is because Vt : RCR → RCR has range in RCR1

and the t-fibres of these bundles consist of eigenvectors of Vt. The same is not
generally true for the stable fibre bundle, being the range of I−Pu(t)−Pc(t).

I.3.2 Floquet Theorem

The Floquet Theorem of ordinary differential equations allows the transfor-
mation from a time-periodic linear system into an autonomous one, by way
of a time-periodic change of coordinates. For impulsive systems, a similar
result holds—we will review it in Sect. II.2.5. For infinite-dimensional sys-
tems, the best we can generally hope for is the existence of a transformation
on each invariant fibre bundle that reduces the associated dynamics to an
autonomous flow.

Theorem I.3.2.1. Let Λ ∈ σ(U) be finite and symmetric, and denote by
UΛ(t, s) : MΛ,s → MΛ,t the restriction of U(t, s) to MΛ,s. There exists
W ∈ L(MΛ,0) and t �→ α(t) ∈ L(MΛ,0,MΛ,t) with the following properties:

• α is T -periodic, α(t) is invertible and there exists β ≥ 1 such that for
all φ ∈MΛ,0,

β−1||φ|| ≤ sup
t∈R

||α(t)φ|| ≤ β||φ||.

• UΛ(t, 0)φ = α(t)etWφ for all φ ∈MΛ,0.

Proof. Define W = 1
T logUΛ(T, 0), where we choose the logarithm to be

a branch that includes the (finite set of nonzero) eigenvalues of UΛ(T, 0).
Defining α(t) = UΛ(t, 0)e

−tW , one may verify (compare to Proposition 4.4
and Theorem 4.5 from Section XIII of [41]; the proofs in the present case
are essentially identical) that α is periodic and UΛ(t, 0) satisfies the claimed
decomposition. Uniform boundedness of α above and below follows by its
periodicity and boundedness of UΛ(t, 0) on [−T, T ]; see the related proof of
Theorem I.3.1.3. α(t) is clearly invertible.

Theorem I.3.2.1 grants the change of coordinates xt = αtz(t) for xt ∈MΛ,t

and z(t) ∈MΛ,0 finite-dimensional. In the new coordinate system, z satisfies
the ordinary differential equation

ż = Wz.

Through the use of an appropriate coordinate map, one can obtain a concrete
ordinary differential equation in R

p for some appropriate p ∈ N. We will dis-
cuss this in more detail in Sect. I.3.4. The decomposition UΛ(t, 0) = α(t)etW

will serve as a convenient way to, eventually, make the dynamics on invariant
manifolds more concrete.
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I.3.3 Floquet Multipliers, Floquet Exponents
and Stability

The Floquet multipliers of the evolution family U(t, s) determine the stability
of the periodic homogeneous system (I.3.1)–(I.3.2). We first have a definition.

Definition I.3.3.1. Let X be a complex n-dimensional vector space. A linear
operator L : X → X is diagonalizable if there exists a basis B = {x1, . . . , xn}
such that the n× n matrix LB of L relative to the basis B is diagonalizable.

It is simple to verify that the above notion of diagonalizability is well-
defined, in that if LB is diagonalizable and B2 is another basis, then LB2

is
also diagonalizable.

Theorem I.3.3.1. The periodic impulsive RFDE (I.3.1)–(I.3.2) is expo-
nentially stable if and only if σ(U) ⊂ B1(0). It is stable if and only if
σ(U) ⊂ B1(0) and the linear operator W : RCRC

c (0) → RCRC

c (0) from the
Floquet decomposition on the centre fibre bundle is diagonalizable.

Proof. First, suppose σ(U) ⊂ B1(0). The sets Λu = {λ ∈ σ(U) : |λ| > 1}
and Λc = {λ ∈ σ(U) : |λ| = 1} are empty, and it follows that Ps(t) = I. By
spectral separation, there exist K ≥ 0 and α < 0 such that

||U(t, s)|| = ||U(t, s)Ps(s)|| ≤ Kea(t−s), t ≥ s,

which implies exponential stability with ε = −a. Conversely, if ||U(t, s)|| ≤
Ce−ε(t−s) for some C > 0 and ε > 0, then Λu and Λc must be empty.
Indeed, if Λc were nonempty, there would exist ξ ∈ RCR nonzero such that
||U(t + kT, t)ξ|| = ||ξ|| for all k ∈ N. By exponential stability, this would
imply ||ξ|| ≤ C||ξ||e−εkT and, subsequently, ξ = 0, which is a contradiction.
By the same argument, Λu is empty, and with Lemma I.3.1.5 we conclude
σ(U) ⊂ B1(0).

Now suppose σ(U) ⊂ B1(0) and W is diagonalizable. The former assump-
tion implies Pu(t) = 0. Recall that Uc(t, s) : RCRc(s) → RCRc(t) defines
an all-time process on RCRc by definition of spectral separation, so we may
write

Uc(t, s) = α(t)e(t−s)Wα−1(s)

using Theorem I.3.2.1 with Λ = Λc. Moreover, by definition of W all of
its eigenvalues have zero real part. From diagonalizability, it follows that
t �→ ||etW || is bounded. Then,

||U(t, s)φ|| ≤ ||U(t, s)Ps(s)||+ ||U(t, s)Pc(s)||
≤ Kea(t−s) + ||Uc(t, s)||
≤ K + ||α(t)|| · ||α−1(s)|| · ||e(t−s)W ||.
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The condition β−1||φ|| ≤ supt ||α(t)φ|| ≤ β||φ|| from the Floquet Theorem
implies that ||α−1(s)|| is bounded, and with the periodicity of α we conclude
that ||U(t, s)|| is bounded by a constant independent of t ≥ s.

Suppose now that ||U(t, s)|| ≤ K for all t ≥ s. By similar arguments to
the previous case, we must have σ(U) ⊂ B1(0). If W were not diagonalizable,
then the Jordan canonical form of WB relative to some basis B would contain
a block whose exponential grows at least linearly in t. In particular, there ex-
ist δ > 0 and D > 0 such that ||etWB || ≥ Dt for |t| ≥ δ. If C : RCRC

c (0)→ C
c

denotes the coordinate map satisfying C(ri) = ei for B = {r1, . . . , rn}, then
we can write W = C−1WBC. From the convergent power series definition of
the exponential, it follows that

||Uc(t, s)||=||α(t)e(t−s)Wα−1(s)||≥ 1

β
||C−1e(t−s)WBCα−1(s)|| ≥ D(t− s)

||C|| · ||C−1||

for |t−s| ≥ δ. If φ ∈ RCRc(s), the above implies ||U(t, s)φ|| = ||Uc(t, s)φ|| →
∞ as t→∞, which contradicts the uniform boundedness of U(t, s).

The Floquet multipliers characterize the rates of expansion, contraction
and rotation associated with the discrete-time maps φ �→ Vtφ for any t ∈ R,
and through iteration they characterize the stability. To get a sense of the
growth rate in continuous time, we have the following definition.

Definition I.3.3.2. The Floquet spectrum of the evolution family U(t, s) :
RCR → RCR is the set λ(U) = { 1

T log(μ) : μ ∈ σ(U)}, where the principal
branch of the logarithm is taken. Its elements are called Floquet exponents.

The Floquet exponents truly are the (average) growth rates of solutions in
the invariant fibre bundles associated with their respective Floquet multipli-
ers, as made precise by Theorem I.3.2.1. As for stability, we can reformulate
Theorem I.3.3.1 in terms of Floquet exponents as follows.

Corollary I.3.3.1. The periodic impulsive RFDE (I.3.1)–(I.3.2) is exponen-
tially stable if and only if all Floquet exponents have negative real parts. It is
stable if and only if all Floquet exponents have zero real part and the linear
operator W : RCRC

c (0) → RCRC

c (0) from the Floquet decomposition on the
centre fibre bundle is diagonalizable.

I.3.4 Computational Aspects in Floquet
Theory

The Floquet exponents (equivalently, multipliers) determine the stability of
a periodic impulsive RFDE. It is important in applications to be able not
only to compute Floquet exponents but also to calculate the (generalized)
eigenvectors of the monodromy operator Vt. Such computations are necessary
for the analysis of local bifurcations in nonlinear systems, for example. In this



46 CHAPTER I.3. LINEAR PERIODIC SYSTEMS

section we will therefore take some time to discuss these more computational
matters. We will assume for simplicity that j = 1, so that U(T, 0) is a
monodromy operator.

I.3.4.1 Floquet Eigensolutions

Suppose μ is a Floquet multiplier of U(T, 0). Let B = {ξ1, . . . , ξm} be a basis
for the generalized eigenspace Mμ,0. Then,

U(T, 0)ξj = μξj

for j = 1, . . . ,m. From the Floquet Theorem I.3.2.1, there exists a linear
operator W : Mμ,0 → Mμ,0 and α(t) : Mμ,0 → Mμ,t periodic in t such that
Uμ(t, 0) = α(t)etW . As in the proof of Theorem I.3.3.1, let C : Mμ,0 → C

m

denote the coordinate map satisfying C(ξj) = ej . Let WB = PJP−1 be the
Jordan canonical form of the matrix WB of the operator W relative to the
basis B. If we compute the action of Uμ(t, 0) on the basis elements ξj , we get

Uμ(t, 0)ξj = α(t)C−1PetJP−1ej . (I.3.9)

Also, since Uμ(T, 0) = eTW , it follows that the eigenvectors satisfy the equa-
tion eTW ξj = μξj . In terms of coordinate maps and the Jordan form of WB ,
this gives

C−1PeTJP−1Cξj = μξj ⇒ PeTJP−1(Cξj) = μ(Cξj).

It follows that 1
T log μ is the only eigenvalue of J . That is, J is a Jordan

matrix whose only eigenvalue is the Floquet exponent λ = 1
T log μ. We can

then express etJP−1ej as a sum of the form

etJP−1ej =

m∑
i=1

ti−1eλtvi

for some vectors vi ∈ R
m. If we now define the function zj(t) = U(t, 0)ξj(0),

we can use the above summation formula in (I.3.9) to obtain the representa-
tion

zj(t) =

m∑
i=1

pi(t)t
i−1eλt,

where pi(t) = [α(t)C−1Pvi](0). By definition, pi : R → C
n is periodic

and right-differentiable with its only discontinuities at times tk where it is
continuous from the right and has a finite jump discontinuity. Moreover, zj
is a solution of the (complexified) homogeneous system (I.3.1)–(I.3.2). This
proves the following theorem.
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Theorem I.3.4.1. λ is a Floquet exponent of the evolution family U(t, s)
associated with the linear homogeneous system (I.3.1)–(I.3.2) if and only if
the latter admits a solution of the form x(t) = eλtp(t) for a nonzero T -periodic
p ∈ RCR(R,Cm). Moreover, the m-dimensional generalized eigenspace
MeλT ,t is spanned by elements xt such that x ∈ RCR(R,Cn) is a solution
of (I.3.1)–(I.3.2) admitting a decomposition of the form

x(t) = eλt
m∑
i=1

pi(t)t
i−1, (I.3.10)

for T -periodic pi ∈ RCR(R,Cm).

Definition I.3.4.1. A solution of the linear homogeneous system (I.3.1)–
(I.3.2) having a decomposition of the form (I.3.10) is a Floquet eigensolution
with exponent λ. Its rank is d = max{i = 1, . . . ,m : pi �= 0}.

Any solution contained in a generalized eigenspace MeλT ,t for a given Flo-
quet exponent λ is a linear combination of history functions consisting of
complex vector polynomials with periodic coefficients, multiplied by the ex-
ponential growth factor eλt. This motivates the following definition.

Definition I.3.4.2. The generalized eigenspace of U(t, s) with Floquet ex-
ponent λ is the invariant fibre bundle Eλ with t-fibre Eλ(t) = MeλT ,t.

Corollary I.3.4.1. Considered as a subset of RCR(R,Cn), for each Floquet
exponent λ there exists a maximal linearly independent set S = {φ(1), . . . ,
φ(m)} of Floquet eigensolutions with exponent λ for some natural number m.
The generalized eigenspace with Floquet exponent λ is given by the linear span

of the histories of the elements of S; that is, Eλ(t) = span{φ(1)
t , . . . , φ

(m)
t }.

Proof. The existence of S follows from the finite-dimensionality (Theorem
I.3.1.1) of MeλT ,s for any s, and that these eigenspaces are isomorphic (Theo-
rem I.3.1.2). That S can be chosen to be linearly independent inRCR(R,Cn)

follows because one can impose that the histories {φ(1)
0 , . . . , φ

(m)
0 } form a ba-

sis for MeλT ,0 ⊂ RCR([−T, 0],Cn), which then implies the independence of
S in RCR(R,Cn). The characterization of the t-fibre Eλ(t) then follows from
Theorem I.3.4.1.

The following corollary to Theorem I.3.4.1 provides a dynamical charac-
terization of Floquet exponents. Its proof is straightforward—one merely
substitutes the Floquet eigensolution ansatz x(t) = eλtp(t) into the periodic
homogeneous system (I.3.1)–(I.3.2).

Corollary I.3.4.2. Define expλ : [−T, 0]→ C by expλ(θ) = eλθ. λ is a Flo-
quet exponent of the evolution family U(t, s) associated with the linear homo-
geneous system (I.3.1)–(I.3.2) if and only if there exists a nonzero T -periodic
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p ∈ RCR(R,Cn) satisfying the impulsive functional differential equation

ṗ+ λp = L(t)[expλ pt], t �= tk (I.3.11)

Δp = B(k)[expλ pt− ], t = tk. (I.3.12)

It is worth contrasting the result of Corollary I.3.4.2 with the notion of
characteristic equation from autonomous ordinary differential equations or
delay differential equations. A good reference on these topics for autonomous
functional differential equations is Chapter 7 of the book by Jack Hale and
Sjoerd Verduyn Lunel [58]. For an autonomous retarded functional differen-
tial equation

ẋ = Lxt,

the function v expλ for some nonzero v ∈ C
n is always contained within the

generalized eigenspace Eλ associated with the eigenvalue λ of the infinitesimal
generator of the strongly continuous (solution) semigroup. In particular, t �→
eλtv must be a solution. Substituting this into the above delay differential
equation and simplifying produce the equation λv = L(expλ v), which can be
written equivalently as

(L(expλ)− λI)v = 0, (I.3.13)

where we define L(expλ) = [ L(e1 expλ) · · · L(en expλ) ] ∈ C
n×n. The

term in parentheses in (I.3.13) is a complex n×n matrix—the characteristic
matrix (see Section I.3 of [41])—and v ∈ C

n. It follows that λ is an eigenvalue
if and only if

det(L(expλ)− λI) = 0. (I.3.14)

Equation (I.3.14) is the characteristic equation for ẋ = Lxt. It is a scalar
equation that is generally transcendental in λ. It is difficult to formulate
a similar equation for impulsive RFDE because the equivalent dynamical
characterization for Floquet exponents is precisely given by Corollary I.3.4.2,
which contains functional terms that cannot be simplified further. See
Sect. I.3.5 for related comments.

I.3.4.2 Characteristic Equations for Finitely Reducible
Linear Systems

For some special classes of impulsive RFDE, one can define a characteristic
equation in a straightforward way or at least reduce the problem of computing
Floquet exponents to a finite-dimensional problem.

Definition I.3.4.3. The linear periodic system (I.3.1)–(I.3.2) is finitely re-
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ducible if L(t) and B(k) can be written in the form

L̃(t)φ =

�∑
j=0

L̃j(t)φ(−iT ), (I.3.15)

B̃(k)φ =

∫ 0

−hk

Ck(s)φ(s)ds+

�∑
j=0

B̃j(k)φ(−iT ), (I.3.16)

for some  ≥ 0 and matrices Ãi(t) and B̃i(k), and continuous Ck : [−hk, 0]→
R

n×n, with hk ≤ tk − tk−1.

In the following, recall that q > 0 is a positive integer for which B̃(k+q) =
B̃(k) and tk+q = tk + T for k ∈ Z, where T is the period of L̃.

Theorem I.3.4.2. Let the linear periodic system (I.3.1)–(I.3.2) be finitely
reducible. Let Xλ(t, s) denote the Cauchy matrix of the ordinary differential
equation

ṗ =

⎛
⎝−λI +

�∑
j=0

e−λjT L̃j(t)

⎞
⎠ p. (I.3.17)

λ is a Floquet exponent if and only if there exist p1, . . . , pc ∈ C
n not all zero

such that

(
I +

∫ 0

−hk

Ck(s)Xλ(tk + s, tk)e
λsds+ B̃0(k)

)
Xλ(tk, tk−1)pk−1

=

⎛
⎝I −

�∑
j=1

B̃j(k)e
−λjT

⎞
⎠ pk, (I.3.18)

for k = 1, . . . , q, where we define p0 := pq. If this is the case, then x(t) =
p(t)eλt is a Floquet eigensolution with the periodic function p : R → C

n

defined by

p(t) = Xλ(t, tk)p[k]c , t ∈ [tk, tk+1).

Proof. If L(t) can be written as L̃(t) from (I.3.15), then the right-hand side
of the functional differential equation (I.3.11) becomes

L(t)[expλ pt] =

⎛
⎝ �∑

j=0

exp(−λjT )L̃j(t)

⎞
⎠ p(t),

where we used the periodicity of p. As a consequence, between the im-
pulse times the function p actually satisfies the ordinary differential equation
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(I.3.17), parameterized by the parameter λ. At the impulse times, Eq. (I.3.12)
becomes

p(t)− p(t−) =

∫ 0

−hk

Ck(s)e
λsp(t+ s)ds+ B̃0(k)p(t

−) +
�∑

j=1

B̃j(k)e
−λjT p(t),

(I.3.19)

with t = tk, after exploiting the periodicity of p. Since hk ≤ tk − tk−1,
Eq. (I.3.17) implies p(tk + s) = Xλ(tk + s, tk)p(t

−
k ) for all s ∈ [−hk, 0]. Sub-

stituting into (I.3.19), it follows that

Δp(tk)=

(
�∑

j=1

B̃j(k)e
−λjT

)
p(tk)+

(∫ 0

−hk

Ck(s)e
λsXλ(tk + s, tk)ds+B̃0(k)

)
p(t−k ).

(I.3.20)

Assuming x(t) = p(t)eλt is a Floquet eigensolution, Eq. (I.3.20) relates the
value of p(t−k ) with that at p(tk), while the ordinary differential equation
(I.3.17) determines the evolution of the state p(tk) to p(t−k+1). Applying
these results to the interval [t0, tq] = [t0, t0 + T ], the theorem is proven.

To summarize, one can check whether a given λ is a Floquet exponent
of a finitely reducible periodic system by solving the cyclic system of finite-
dimensional equations (I.3.18). An explicit result is provided by the following
corollary.

Corollary I.3.4.3. Suppose the linear periodic system (I.3.1)–(I.3.2) is
finitely reducible with Ck = 0 and det(I + B̃0(k)) �= 0 for k = 1, . . . , q.
λ is a Floquet exponent if and only if it satisfies the characteristic equation

det

⎛
⎝I −

q∏
k=1

Xλ(tk−1, tk)(I + B̃0(k))
−1

⎛
⎝I −

�∑
j=1

B̃j(k)e
−λjT

⎞
⎠
⎞
⎠ = 0, (I.3.21)

where the product denotes composition from left to right:
∏b

k=a Mk = Ma · · ·
Mb.

Proof. From (I.3.18) of Theorem I.3.4.2, one can uniquely write

pk−1 = Xλ(tk−1, tk)(I + B̃0(k))
−1Mkpk,

where Mkpk is the term on the right-hand side of (I.3.18) for Mk the matrix
term in parentheses. It follows that

p0 =

(
q∏

k=1

Xλ(tk−1, tk)(I + B̃0(k))
−1Mk

)
pc.

From the cyclic condition, we must have pq = p0. It follows that there must
be a nonzero solution of the equation(

I −
c∏

k=1

Xλ(tk−1, tk)(I + B̃0(k))
−1Mk

)
p0 = 0,

from which we obtain Eq. (I.3.21).
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Equation (I.3.21) provides a generalization of the characteristic equation
(I.3.14) from autonomous functional differential equations to impulsive
RFDEs with discrete delays being multiples of the period. Its practical ap-
plications are limited, however, as delays are typically not multiples of the
period.

There are some additional special cases that can be dealt with analytically,
such as when only discrete delays are present and these are rational multiples
of the period. For example, consider

ẋ = ax(t) + bx

(
t− 1

2

)
, t /∈ Z

Δx = cx(t−) + dx

(
t− 1

2

)
, t ∈ Z,

for constants a, b, c and d. If one assumes an ansatz x(t) = p(t)eλt Floquet
eigensolution and defines w(t) = p(t− 1/2), then z(t) = (p(t), w(t)) satisfies

u̇ =

[
a be−

1
2λ

be−
1
2λ a

]
z, t /∈ Z

Δu = cu(t−) +

[
0 de−

1
2λ

de−
1
2λ 0

]
u(t), t ∈ Z.

If c �= −1, the above system can be shown to have a periodic solution if and
only if

det

(
exp

(
−
[

a be−
1
2λ

be−
1
2λ a

])
1

1 + c

[
1 −de− 1

2λ

−de− 1
2λ 1

]
− I

)
= 0.

Though difficult to solve analytically, the above is nonetheless an explicit
equation satisfied by every Floquet exponent. This tactic of defining extra
lagged states becomes infeasible very quickly, however. For example, if there
is a single rational delay of the form p

q < 1 with impulses at the integers, then

q − 1 additional lagged states (such as w from above) are needed to use the
same method. In general, some form of numerical discretization is needed to
approximate the Floquet multipliers directly from the monodromy operator;
see the comments in Sect. I.3.5.

I.3.4.3 Characteristic Equations for Systems with Mem-
oryless Continuous Part

A final class of systems for which an explicit characteristic equation is avail-
able is that where the continuous-time dynamics are memoryless—that is,
have no delays (distributed, discrete or otherwise). A result of this type ap-
pears in [30], where an explicit change of variables is used to eliminate the
delay entirely. See Sect. IV.1.2 for an application.
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Theorem I.3.4.3. For RCR = RCR([−r, 0],Rn), B(k) ∈ L(RCR) and
λ ∈ C, let Bλ(k) ∈ RCR. Let (t, s) �→ X(t, s) denote the Cauchy matrix of
the ordinary differential equation ẋ = A(t)x for A ∈ RCR(R,Rn×n) being
T -periodic. Assume Bk+q = Bk for some q > 0, and tk+q = tk + T for
k ∈ Z. If tk+1 − tk > r for all k ∈ Z, then μ �= 0 is a Floquet multiplier of
the periodic system

ẋ = A(t)x, t �= tk (I.3.22)

Δx = B(k)xt− , t = tk (I.3.23)

if and only if it satisfies the characteristic equation

det

⎛
⎝μI −

1∏
k=q

(
X(t−k , tk−1) +B(k)Xt−k

(·, tk−1)
)⎞⎠ = 0. (I.3.24)

Proof. Let φ ∈ RCR. Taking into account the spacing tk+1− tk > r between
subsequent impulses and solving (I.3.22)–(I.3.23) forward from the initial
condition (t0, φ) ∈ R×RCR, it follows that

φtk(θ) =

{
X(tk + θ, tk−1)φtk−1

(0), −r ≤ θ < 0[
X(t−k , tk−1) +B(k)Xt−k

(·, tk−1)
]
φtk−1

(0), θ = 0

≡ Rk(θ)φtk−1
(0).

We can therefore represent the monodromy operator M0 (from the initial
time t0) in the form

M0φ(θ) = Rq(θ)Rq−1(0)Rq−2(0) · · ·R2(0)R1φ(0).

If M0φ = μφ, then, in particular, we must have M0φ(0) = μφ(0), from which
the necessary condition (I.3.24) for μ to be a Floquet multiplier is obtained.
On the other hand, if μ �= 0 satisfies (I.3.24), then there is a nontrivial
solution φ(0) of the equation Rq(0) · · ·R1(0)φ(0) = μφ(0). Define

φ̃(θ) =
1

μ
Rq(θ)Rq−1(0) · · ·R2(0)R1(0)φ(0).

By construction, φ̃(0) = φ(0) and M0φ̃ = μφ̃, so μ is indeed a Floquet
multiplier.

I.3.5 Comments

Sections 1–4 of this chapter contain results that appear in the paper Smooth
centre manifolds for impulsive delay differential equations [31] by Church and
Liu, published by Journal of Differential Equations in 2018. The presentation
here has been streamlined, and some of the proofs have been improved.
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Characteristic matrices (and, consequently, characteristic equations) have
been derived for linear periodic differential-difference equations [129, 138]
under minimal assumptions, and there is certainly a possibility of extend-
ing these results to impulsive functional differential equations. This being
said, in implementing the cited characteristic matrix construction, one must
ultimately perform some kind of discretization and collocation procedure to
approximate an abstract linear operator. Church and Liu [32] introduced a
discretization scheme for the monodromy operator of the linear homogeneous
impulsive differential-difference equation with a single discrete delay:

ẋ = A(t)x(t) +B(t)x(t− τ), t �= kτ

Δx = Cx(t−) +Dx(t− τ), t = kτ,
(I.3.25)

where the impulses occur at periodic times kτ for k ∈ Z, and A(t) and B(t)
are periodic with period τ , but no proof of convergence was supplied. More
recently, a numerical method based on Chebyshev expansion was proposed in
[29] for the discretization of the monodromy operator, and convergence was
proven in an operator norm on the relevant sequence space. This approach
has limitations in that the period and delay must be commensurate. Explicit
characteristic equations when the period and delay are equal and the impulses
contain no delays have been derived in the autonomous [73] and periodic [132]
setting.

We mentioned briefly in Sect. I.3.4.2 that when there are only discrete
delays that are rational multiples of the period, the technique of defining
additional lagged states will ultimately produce an explicit (although likely
not analytically tractable) characteristic equation. See the related discussion
in the conclusion of Szalai, Stépán and Hogan [138].

Finally, we should mention that if the exact computation of Floquet multi-
pliers (or equivalently, exponents) is not necessary and all that one wants is to
verify stability or instability, Rouché’s theorem can be used to derive counts
of the number of Floquet multipliers outside of the unit disc in the complex
plane. We mention [52, 77, 89, 122] for some applications to stability of delay
differential equations and later Chap. IV.3 for an application to stability in an
infectious disease model. On a related note is the argument principle, which
was used extensively by Stépan [136] in the study of stability and characteris-
tic equations (characteristic functions) for delay differential equations. Many
results appearing in that reference are applicable to systems with impulses
and delays. See also Hassard [61], Kaslik and Sivasundaram [78] and Shi and
Wang [127] for other applications.



Chapter I.4

Nonlinear Systems
and Stability

I.4.1 Mild Solutions

Our attention shifts now to the semilinear system

ẋ = L(t)xt + f(t, xt), t �= tk (I.4.1)

Δx = B(k)xt− + g(k, xt−), t = tk, (I.4.2)

for nonlinearities f : R × RCR → R
n and g : Z × RCR → R

n. Note that
we could instead replace RCR in the domains of f and g with some open
subset thereof, and the results of this and subsequent chapters would remain
correct with trivial modifications. For notational simplicity, however, we will
typically leave the domain as RCR and allow the reader to fill in any minor
changes as needed. Additional assumptions on the nonlinearities, evolution
family and sequence of impulses may include the following:

H.3 For j = 0, . . . ,m, and any φ, ψ(1), . . . , ψ(j) ∈ RCR([α − r, β],Rn), the

function t �→ Djf(t, φt)[ψ
(1)
1 , . . . , ψ

(j)
t ] is an element ofRCR([α, β],Rn).

H.4 The evolution family U(t, s) : RCR → RCR associated with the homo-
geneous equation (I.2.4)–(I.2.5) is spectrally separated.

© Springer Nature Switzerland AG 2021
K. E. M. Church, X. Liu, Bifurcation Theory of Impulsive Dynamical
Systems, IFSR International Series in Systems Science and Systems
Engineering 34, https://doi.org/10.1007/978-3-030-64533-5 4

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64533-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-64533-5_4


56 CHAPTER I.4. NONLINEAR SYSTEMS AND STABILITY

H.5 φ �→ f(t, φ) and φ �→ g(k, φ) are Cm for some m ≥ 1 for each t ∈ R and
k ∈ Z, and there exists δ > 0 such that for each j = 0, . . . ,m, there exist
cj : R → R

+ locally bounded and a positive sequence {dj(k) : k ∈ Z}
such that

||Djf(t, φ)−Djf(t, ψ)|| ≤ cj(t)||φ− ψ||,
||Djg(k, φ)−Djg(k, ψ)|| ≤ dj(k)||φ− ψ||,

for φ, ψ ∈ Bδ(0) ⊂ RCR. Also, there exists q > 0 such that ||Djf(t, φ)
|| ≤ qcj(t) and ||Djgk(φ)|| ≤ qdj(k) for φ ∈ Bδ(0).

H.6 f(t, 0) = g(k, 0) = 0 and Df(t, 0) = Dg(k, 0) = 0 for all t ∈ R and
k ∈ Z.

H.7 There exists a constant ξ > 0 such that tk+1 − tk ≥ ξ for all k ∈ Z.

Remark I.4.1.1. Consider the general nonlinear system

ẏ = F (t, yt), t �= tk

Δy = G(t, yt−), t = tk,

and suppose γ(t) is a given reference solution—this could be an equilibrium,
periodic solution or any other solution of interest. If the nonlinearities are
differentiable, one can define

f(t, φ) = F (t, φ+ γt)− F (t, γt)−Df(t, γt)φ,

g(k, φ) = G(k, φ+ γt)k−)−G(k, γt−k
)−DG(k, γt−k

)φ,

L(t) = DF (t, γt),

B(k) = DG(k, γt−k
).

Then, after the change of coordinates x = y+γ, the above impulsive functional
differential equation is equivalent to the semilinear system (I.4.1)–(I.4.2), and
one has f(t, 0) = g(k, 0) = 0, Df(t, 0) = DG(k, 0) = 0.

Definition I.4.1.1. A mild solution of the semilinear equation (I.4.1)–(I.4.2)
is a function x : [s, T ] → RCR such that for all s ≤ t < T , the function
x(t) = xt satisfies the integral equation

x(t)=U(t, s)x(s)+

∫ t

s

U(t, μ)[χ0f(μ, x(μ))]dμ+
∑

s<ti≤t

U(t, ti)[χ0g(i, x(t
−
i ))],

(I.4.3)

and x(t)(θ) = x(t + θ)(0) whenever θ ∈ [−r.0] satisfies t + θ ∈ [s, T ], where
U is the evolution family associated with the homogeneous equation (I.2.4)–
(I.2.5), and the integral is interpreted in the Pettis sense.
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Remark I.4.1.2. The right-hand side of Eq. (I.4.3) is well-posed under con-
ditions H.1–H.3 in the sense that it naturally defines for s ≤ t < T , a non-
linear operator from RCR([s − r, t],Rn) into RCR. Note also that for a
function x : [s, T ] → RCR, we denote x(t−i )(θ) = x(ti)(θ) for θ < 0 and
x(t−i )(0) = x(ti)(0

−).

If x : [s − r, T ) → R
n is a classical solution—that is, x is differentiable

from the right, continuous except at impulse times tk, continuous from the
right on [s− r, T ] and its derivative satisfies the differential equation (I.4.1)–
(I.4.2)—then, t �→ xt is a mild solution. This can be seen by defining the
inhomogeneities h(t) ≡ f(t, xt) and rk ≡ g(k, xt−k

), solving the equivalent

linear equation (I.2.1)–(I.2.2) with these inhomogeneities and initial condition
(s, xs) ∈ R×RCR in the integrated sense and applying Corollary I.2.3.1. For
this reason, we will work with Eq. (I.4.3) exclusively from now on.

Additionally, one should note that the assumption H.5 implies that the
nonlinearities are uniformly locally Lipschitz continuous. Together with the
other assumptions, this implies the local existence and uniqueness of mild
solutions through a given (s, φ) ∈ R×RCR. Namely, we have the following
lemma, which may be seen as a local, nonlinear version of Lemma (I.2.1.1),
with an extension of Lemma I.2.1.2. Its proof is an application of the Banach
fixed-point theorem and is omitted. The idea is nearly identical to a portion
of the proof of Proposition I.4.3.1 in the following section, and the interested
reader may consult it for reference.

Lemma I.4.1.1. Under assumptions H.1–H.5, for all (s, φ) ∈ R × RCR,
there exists a unique mild solution x(s,φ) : [s, s + α) → RCR of (I.4.3) for
some α = α(s, φ) > 0, satisfying x(s) = φ. Moreover, the function

t �→ y(t) :=

{
x(s,φ)(t)(0), t ∈ [s, s+ α)
φ(s− t), t ∈ [s, s− r)

is an element of RCR([s− r, s+ α),Rn), the restriction to [s, α) is differen-
tiable from the right, it is continuous except at impulse times {tk : k ∈ Z}
and x(s,φ)(t) = yt. That is, it is a classical solution. If one defines the
nonautonomous set

M =
⋃

φ∈RCR

⋃
s∈R

⋃
t∈[s,s+α)

{t} × {s} × {φ},

then S : M→ RCR with S(t, s)x = x(s,φ)(t) is a process on RCR and x �→
S(t, s)x is continuous. Finally, if x : R → RCR is a mild solution defined
for all time, then the function y(t) = x(t)(0) is an element of RCR1(R,Rn),
and its only discontinuities occur in {tk : k ∈ Z} and x(t) = yt.

Combining the discussion following Definition I.4.1.1 with Lemma I.4.1.1,
it follows that S(t, s) satisfies the following abstract integral equation wher-
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ever it is defined.

S(t, s)φ=U(t, s)φ+

∫ t

s

U(t, μ)χ0f(μ, S(μ, s)φ)dμ+
∑

s<ti≤t

U(t, ti)χ0g(i, S(t
−
i , s)φ).

(I.4.4)

Definition I.4.1.2. We say that the process S(t, s) :M→RCR guaranteed
by Lemma I.4.1.1 is generated by the impulsive RFDE (I.4.1)–(I.4.2).

I.4.2 Dependence on Initial Conditions

Of use later will be a result concerning the smoothness of the process S :
M → RCR with respect to arguments φ ∈ RCR. This result is interesting
in its own right and will be useful later in proving the periodicity of invariant
manifolds.

Theorem I.4.2.1. Under hypotheses H.1–H.6, the process S : M → RCR
is Cm. More precisely, φ �→ S(t, s)φ is Cm in a neighbourhood of φ, provided
(t, s, φ) ∈ M. Also, DS(t, s)φ ∈ L(RCR) for given φ ∈ RCR satisfies for
t ≥ s the abstract integral equation

DS(t, s)φ = U(t, s) +

∫ t

s

U(t, μ)χ0Df(μ, S(μ, s)φ)DS(μ, s)dμ

+
∑

s<ti≤t

U(t, ti)χ0Dg(ti, S(t
−
i , s)φ)DS(t−i , s).

(I.4.5)

Proof. We will prove only that S is C1, the proof of higher-order smooth-
ness being an essentially identical albeit notationally cumbersome extension
thereof. Let s ∈ R be fixed. Let ψ ∈ RCR be given. For given ν > 0, denote
by Bν(ψ) the closed ball centred at ψ with radius ν in RCR.

The proof is based on a formal differentiation procedure justified by the
fibre contraction theorem. Introduce for given ε, δ, ν > 0 the normed vector
space (Xε,δ,ν , || · ||), where Xε,δ,ν consists of the functions φ : [s − r, s + ε] ×
Bδ(ψ) → Bν(ψ) such that x �→ φ(t, x) is continuous for each t, φ(t, x)(θ) =
φ(t+ θ, x)(0) whenever θ ∈ [−r, 0] and [t+ θ, t] ⊂ [s− r, s+ ε], and |φ|| <∞
for the norm given by

||φ||ε,δ,ν = sup
t∈[s−r,s+ε]
||x−ψ||≤δ

||φ(t, x)||.

It can be easily verified that (Xε,δ,ν , || · ||) is a Banach space. With L(RCR)
the bounded linear operators on RCR, introduce also the space (Xε,δ, || · ||)
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consisting of functions Φ : [s − r, s + ε] × RCR → L(RCR) such that x �→
Φ(t, x) is continuous for each t, Φ(t, x)h(θ) = Φ(t + θ, x)h(0) for all h ∈
RCR, and ||Φ|| <∞, where the norm is ||Φ(t, x)|| = sup||h||=1 ||Φ(t, x)h||ε,δ,ν .
Clearly, (Xε,δ, || · ||) is complete.

Define a pair of nonlinear operators
Λ1 : Xε,δ,ν → Xε,δ,ν ,

Λ1(φ)(t, x)=χ[s−r,s)(t)x(t − s)+χ[s,s+ε](t)

[
U(t, s)x(s)+

∫ t

s
U(t, s)χ0f(μ, φ(μ, x))dμ

+
∑

s<ti≤t

U(t, ti)χ0g(ti, φ(t
−
i , x))

⎤

⎦

Λ2 : Xε,δ × Xε,δ → Xε,δ

Λ2(φ,Φ)(t, x)h=χ[s−r,s)(t)IRCRh+χ[s,s+ε](t)

[
U(t, s)h+

∫ t

s
U(t, μ)χ0Df(μ, φ(μ, x))Φ(μ, x)hdμ+

+
∑

s<ti≤t

U(t, μ)χ0Dg(i, φ(t
−
i , x)))Φ(t

−
i , x)h

⎤

⎦ ,

where in the definition of Λ2 we have h ∈ RCR. By choosing ε and δ small
enough, Λ1 can be shown to be a uniform contraction. Indeed, if we denote
κ = sup||x−ψ||≤2δ ||x||, the mean-value theorem grants the estimate

||Λ1(φ)− Λ1(γ)||

≤ κ sup
t∈[s,s+ε]

⎛
⎝∫ t

s

||U(t, μ)||c1(μ)dμ+
∑

s<ti≤t

||U(t, ti)||d1(i)

⎞
⎠ ||φ− γ||

≡ κLε||φ− γ||.

We can always obtain a uniform contraction by taking ε small enough. Also,
note that t �→ Λ1(φ)(t, x) ∈ RCR, x �→ Λ1(φ, x) is continuous and Λ1(φ)(t, x)
(θ) = Λ1(φ)(t+θ, x)(0). To ensure the appropriate boundedness, if we denote
κ = sup||x−ψ||≤δ k0(x), the estimate

||Λ1(φ)− ψ|| ≤ ||φ− ψ||+ κ sup
t∈[s,s+ε]

⎛
⎝∫ t

s

||U(t, μ)||c0(μ)dμ+
∑

s<ti≤t

||U(t, ti)||d0(i)

⎞
⎠

≡ δ + κMε

implies it is sufficient to choose ε, δ, ν > 0 small enough so that δ + κMε <
ν. This can always be done because Mε → 0 as ε → 0 due to H.5 and
Lemma I.2.2.1.

The continuity of φ �→ Λ2(φ,Φ) for fixed Φ ∈ Xε,δ follows by the estimate

||Λ2(φ,Φ)− Λ2(γ,Φ)|| ≤
(∫ s+ε

s

||U(s+ ε, μ)||c1(μ)||(φ(μ, x)− γ(μ, x)||dμ

+
∑

s<ti≤s+ε

||U(s+ ε, ti)||d1(i)||φ(t−i , x)− γ(t−i , x)||

⎞
⎠ ||Φ||.
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Also, for each φ ∈ Bδ(ψ), it is readily verified that ||Λ2(φ,Φ) − Λ2(φ,Γ)|| ≤
κLε||Φ − Γ||, which by previous choices of ε, δ, ν > 0 indicates that Φ �→
Λ2(φ,Φ) is a uniform contraction.

We are ready to prove the statement of the theorem. Denote by (xn, x
′
n)

the iterates of the map Λ : Xε,δ,ν × Xε,δ,ν → Xε,δ,ν × Xε,δ,ν defined by
Λ(x, x′) = (Λ1(x),Λ2(x, x

′)) and initialized at (x0, x
′
0) with x0(t, x) = x and

x′
0(t, x) = IRCR. The fibre contraction theorem—see [67] for the original,

more abstract result or Theorem 1.176 of [27] for a more concrete formalism—
implies convergence (xn, x

′
n) → (x, x′). Note also that Dx0 = x′

0. If we
suppose Dxn = x′

n for some n ≥ 0, then for t ≥ s, Lemma I.2.3.5 implies
that for each θ ∈ [−r, 0],

Dxn+1(t, φ)(θ) = D

[
U(t, s)xn(s, φ)(θ) +

∫ t

s
U(t, μ)χ0f(μ, xn(μ, φ))(θ)dμ

+
∑

s<ti≤t

U(t, ti)χ0g(i, xn(t
−
i , φ))(θ)

⎤
⎦

= D

[
U(t, s)xn(s, φ)(θ) +

∫ t

s
V (t+ θ, μ)f(μ, xn+1(μ, φ))dμ

+
∑

s<ti≤t

V (t+ θ, ti)g(i, xn+1(t
−
i , φ))

⎤
⎦

= U(t, s)x′
n(s, φ)(θ) +

∫ t

s
V (t+ θ, μ)Df(μ, xn(μ, φ))x

′
n(μ, φ)dμ

+
∑

s<ti≤t

V (t+ θ, ti)Dg(i, xn(t
−
i , φ))x′

n(t
−
i , φ),

which is precisely Λ2(xn, x
′
n)(t, φ)(θ) = x′

n+1(t, φ)(θ). For t < s, it is easily
checked that Dxn+1(t, φ) = x′

n+1(t, φ). This proves that Dxn+1(θ) = x′
n+1(θ)

pointwise in θ. To prove the result uniformly, we note that the difference
quotient can be written for t ≥ s as

1

||h||
(
xn+1(t, φ + h) − xn+1(t, φ) − x

′
n+1(t, φ)h

)

=

∫ t

s

U(t, μ)χ0
1

||h||
(
f(μ, xn(μ, φ + h)) − f(μ, xn(μ, φ)) − Df(μ, xn(μ, φ))Dxn(μ, φ)h

)
dμ

+
∑

s<ti≤t

U(t, ti)χ0
1

||h|||
(
g(i, xn(t

−
i , φ+h))−g(i, xn(t

−
i , φ))−Dg(i, xn(t

−
i , φ))Dxn(t

−
i , φ)h

)
.

Since xn is differentiable by the induction hypothesis, the integrand and
summand converge uniformly to zero as h → 0. Thus, xn+1 is differentiable
and Dxn+1 = x′

n+1, so by induction Dxn = x′
n for each n. Also, by construc-

tion, x′
n is continuous for each n and, being the uniform limit of continuous

functions, x′ = limn→∞ x′ is continuous. By the fundamental theorem of
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calculus,

x(φ+ h)− x(φ)− x′(φ)h

||h|| = lim
n→∞

xn(φ+ h)− xn(φ)−Dxn(φ)h

||h||

= lim
n→∞

∫ 1

0

1

||h|| [x
′
n(φ+ (λ− 1)h)− x′

n(φ)]hdλ

=

∫ 1

0

1

||h|| [x
′(φ+ (λ− 1)h)− x′(φ)]hdλ→ 0

as h→ 0. By definition, x is differentiable and Dx = x′.
If we define y(t)φ = x(t, φ) for the fixed point x : [s− r, s+ ε]×Bδ(ψ)→

Bν(ψ), then y satisfies y(t)φ = S(t, s)φ for (t, φ) ∈ [s, s+ε]×Bδ(ψ). This can
be seen by comparing the fixed-point equation y(t) = Λ1(y)(t, φ) with the
abstract integral equation (I.4.4). We conclude that S is C1 (fibrewise). The
correctness of Eq. (I.4.5) follows by comparing to the fixed-point equation
associated with Λ2.

We should remind the reader that although φ �→ S(t, s)φ is smooth for
fixed t ≥ s, the same is decidedly not true for s �→ S(t, s)φ and t �→ S(t, s)φ
for other arguments fixed. The lack of regularity of the latter two functions
is implied by the discussion of Sect. I.2.2.2.

I.4.3 The Linear Variational Equation and
Linearized Stability

The Fréchet derivative DS(t, s, φ) ∈ L(RCR) of the process associated with
the semilinear equation (I.4.1)–(I.4.2) satisfies the abstract integral equation
(I.4.5). Evaluating at φ = 0, we see that DS(t, s, 0) = U(t, s), the evolution
family associated with the homogeneous equation. We are therefore fully
justified in referring to

ż = L(t)zt, t �= tk

Δz = B(k)zt− , t = tk

as the linearization of the semilinear equation (I.4.1)–(I.4.2). In general, if
γ : R→ R

n is a solution of the nonlinear system

ẏ = F (t, yt), t �= tk (I.4.6)

Δy = G(t, yt−), t = tk, (I.4.7)

and then we refer to the linear system

ż = DF (t, γt)zt, t �= tk (I.4.8)

Δz = DG(k, γt−k
)zt− , t = tk, (I.4.9)
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as the linearization at γ or the variational equation associated with γ. When
γ is a periodic solution, it is sometimes called the equation of perturbed mo-
tion.

The linearized stability principle is the statement that the stability of the
linearization (I.4.8)–(I.4.9) to a certain extent informs the stability of γ in the
nonlinear system (I.4.6)–(I.4.7). To make this statement precise, we should
of course define the notation of stability we will need.

Definition I.4.3.1. Suppose F (t, 0) = G(t, 0) = 0. The trivial solution
γ = 0 of (I.4.6)–(I.4.7) is

• stable if for all ε > 0 and s ∈ R, there exists δ = δ(ε, s) > 0 such that
if ||φ|| < δ, then ||S(t, s, φ)|| < ε for all t ≥ s;

• uniformly stable if it is stable and δ can be chosen independent of s;

• attracting if for all s ∈ R, there exists δ = δ(s) > 0 such that if ||φ|| < δ,
then ||S(t, s, φ)|| → 0 as t→∞;

• uniformly attracting if it is attracting and δ can be chosen independent
of s;

• asymptotically stable if it stable and attracting;

• uniformly asymptotically stable if it is uniformly stable and uniformly
attracting;

• exponentially stable if there exist δ, α and K > 0 such that ||S(t, s, φ)||
≤ Ke−α(t−s) for all t ≥ s, whenever ||φ|| < δ.

By Remark I.4.1.1, no generality is lost by defining stability with respect
to a constant (zero) solution. The following proposition, which concerns
linearized stability of the zero solution, therefore applies also to nonconstant
solutions.

Proposition I.4.3.1 (Linearized Stability). Let assumptions H.1–H.7 hold.
Assume that for all δ > 0 sufficiently small, there exists c(δ) ≥ 0 satisfying
limδ→0+ c(δ) = 0 and such that

||f(t, φ)− f(t, ψ)|| ≤ c||φ− ψ|| (I.4.10)

||g(k, φ)− g(k, ψ)|| ≤ c||φ− ψ||, (I.4.11)

for all t ∈ R, k ∈ Z and φ, ψ ∈ Bδ(0). If the evolution family U(t, s) :
RCR → RCR associated with the linearization of (I.4.1)–(I.4.2) is hyperbolic
and RCRu(t) = {0}, the fixed point 0 is exponentially stable.

Proof. SinceRCRu(t) = {0} and the linearization is hyperbolic, the evolution
family satisfies ||U(t, s)|| ≤ Kea(t−s) for some a < 0, for all t ≥ s. We first
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prove that the fixed point is stable. Let ε > 0 be arbitrary, and choose some
ε′ ≤ ε small enough so that

(
1 +

1

ξ

)
c(ε′) <

1

2
, (I.4.12)

where c is the constant from the statement of the theorem. Next, choose
δ > 0 satisfying

δ <
ε′

2K
. (I.4.13)

Let ||φ|| < δ, and introduce the space of history-valued functions Xφ, defined
by

Xφ =

{
z : [s,∞)→ RCR : ∃y ∈ RCR([s− r,∞),Rn),
z(t) = yt, ||z|| < ε′, z(s) = φ

}
,

on which we introduce the norm ||z|| = supt≥s ||z(t)||, where the latter is the
typical supremum norm. Xφ is clearly equivalent up to isometry as a normed
space to the subspace

{w ∈ RCR([s− r,∞) : ||w|| < ε,ws = φ} ⊂ RCR([s− r,∞),Rn).

Since the latter is complete, the same is true of Xφ. Consider the formal
expression

F (z)[t] = U(t, s)φ+

∫ t

s

U(t, μ)[χ0f(μ, z(μ))]dμ+
∑

s<ti≤t

U(t, ti)[χ0g(i, z(t
−
i ))]

for z ∈ Xφ. By assumption H.3 and Lemma I.2.3.5, the above defines a
nonlinear map F : Xφ → X, with

X={z : [s,∞)→ RCR : ∃y ∈ RCR([s−r,∞),Rn), z(t)=yt, ||z||<∞} ⊃ Xφ.

We claim that im(F ) ⊂ Xφ. We can estimate the nom ||F (z)[t]|| using
||U(t, s)|| ≤ Kea(t−s), the fundamental theorem of calculus for Banach space-
valued C1 functions and Lemma I.1.5.2. The result is

||F (z)[t]|| ≤ Kea(t−s)δ +
K(1− ea(t−s))

−a c(ε′)ε′ +
K(1− ea(t+ξ−s))

−aξ c(ε′)ε′,

and from inequalities (I.4.12) and (I.4.13) together with a < 0, it follows
that ||F (z)[t]|| < ε′ for all t ≥ s, independent of s. Since mild solutions are
precisely fixed points of F , it follows that whenever ||φ|| < δ, the process sat-
isfies ||S(t, s)φ|| < ε′ ≤ ε for all t ≥ s. That is, the fixed point is (uniformly)
stable.
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To get exponential stability, repeat the above argument but with the
stronger condition that ε′ ≤ ε is small enough to guarantee in addition to
(I.4.12), the inequality

ρ := a+Kc(ε′)

(
1 +

1

ξ

)
< 0. (I.4.14)

We begin with the integral equation (I.4.4) for the mild solution. We have
the estimate

||S(t, s)φ|| ≤ Kea(t−s)||φ||+
∫ t

s

Kea(t−μ)||S(μ, s)φ||c(ε′)dμ

+
∑

s<ti≤t

Kea(t−ti)||S(t−i , s)φ||c(ε′)

for all t ≥ s, provided ||φ|| < δ, where δ > 0 is again chosen according to
(I.4.13). Multiplying both sides by e−at, this is equivalent to

e−at||S(t, s)φ|| ≤ Ke−as||φ||+
∫ t

s

Kc(ε′)e−aμ||S(μ, s)φ||dμ

+
∑

s<ti≤t

Kc(ε′)e−ati ||S(t−i , s)φ||.

Applying the Gronwall lemma I.1.5.1 to t �→ e−at||S(t, s)φ||, we eventually
obtain

e−at||S(t, s)φ|| ≤ Ke−as||φ|| exp
(
(t− s)Kc(ε′)+

(t+ξ−s)
ξ

log(1+Kc(ε′))

)
.

Multiplying by eat and exploiting log(1 + x) ≤ x for x > 0, we obtain

||S(t, s)φ|| ≤ K(1 +Kc(ε′))||φ||eρ(t−s),

and since ρ < 0 from the assumption (I.4.14) that ε′ is chosen small enough,
we obtain exponential stability.

Remark I.4.3.1. If γ is a periodic orbit of the autonomous delay differ-
ential equations without impulses, its centre fibre bundle is always at least
one-dimensional [41] because t �→ γ′(t) is a solution of the variational equa-
tion. Nevertheless, this orbit will be asymptotically stable modulo phase shifts
provided the centre fibre bundle is one-dimensional and the unstable bundle is
trivial. In this sense, the statement of Proposition I.4.3.1 is not optimized for
this very special case. In this monograph, however, we will typically assume
that our systems are temporally forced by impulses, so this consideration need
not be taken into account.
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We will generally describe a solution as being hyperbolic or nonhyperbolic
depending on whether the centre fibre bundle of its linearization is trivial or
not.

Definition I.4.3.2. Suppose the linearization associated with a solution γ
is spectrally separated. γ is hyperbolic if the centre fibre bundle is trivial.
Otherwise, it is said to be nonhyperbolic.

From Remark I.4.1.1, statements concerning the fixed point at zero for
the semilinear equation (I.4.1)–(I.4.2) can be translated into statements con-
cerning the reference solution γ : R → R

n of the fully nonlinear equation
(I.4.6)–(I.4.7).

I.4.4 Comments

Theorem I.4.2.1 and its proof appear in [31]. Under some weaker assumptions
that we have made in this chapter, Federson and Schwabik [45] have proven
existence and uniqueness of solutions of nonlinear impulsive RFDE with reg-
ulated initial conditions using a generalized ordinary differential equations
approach, under the assumption that the impulse effects involve no delays.
Ballinger and Liu [13, 14] previously investigated existence and uniqueness
of solutions with initial conditions that are more regular, being piecewise-
continuous. Continuous dependence on initial conditions has previously been
considered by Liu and Ballinger [94], Federson and Schwabik [45] and Church
and Liu [31], with Section I.4.2 being based on the work of the latter. Exis-
tence and uniqueness of solutions for impulsive functional differential equa-
tions in general Banach spaces have been studied by many authors, and we
refer the reader to the short list [59, 64, 74, 113, 154, 155, 168] for some recent
work.

We have not discussed here some of the more “nonlinear” methods of prov-
ing stability, which include Lyapunov functions and Lyapunov functionals.
The body of literature on these methods is vast. More recently, there has been
a great deal of research done on developing sufficient condition under which
a given nonlinear time-delayed system can be stabilized by impulses. When
Lyapunov functions and functionals are involved, these sufficient conditions
often involve linear matrix inequalities. For a very short list of results along
these lines, see [47, 88, 90, 100, 104, 148, 159, 167]. An alternative approach
is invariance stabilization [34], which exploits the dynamics on invariant man-
ifolds in the design of a controller to stabilize a time-delayed system. Related
to stability is synchronization, for which the Lyapunov method continues to
be an indispensable tool; see [25, 42, 63, 99, 141, 148, 152, 167].

An alternative approach to proving stability of nonlinear dynamical sys-
tems involves the use of fixed-point theory. The fixed-point theory in stability
of functional differential equations arose with the aim of handling equations
for which Lyapunov methods are too strict to grant asymptotic stability. For
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example [20], fixed-point methods can handle equations where the vector field
is unbounded in time, where time-varying delays might be unbounded and
nondifferentiable, and when the lag term t − r(t) might very well approach
a finite limit as t → ∞. The use of fixed-point methods for stability seems
to have been initiated by Burton and Furomochi in the year 2001 [21]. More
recently, these ideas have been applied to impulsive functional differential
equations [95, 119].



Chapter I.5

Existence, Regularity and
Invariance of Centre
Manifolds

In Sect. I.2.2.1 we introduced spectral separation for the evolution family
U(t, s) : RCR → RCR associated to a linear impulsive functional differential
equation. This results in a decomposition of the phase space as the internal
direct sum RCR = RCRs(t) ⊕ RCRc(t) ⊕ RCRu(t) of three fibre bundles,
respectively: the stable, centre and unstable fibre bundles. These can be
thought of as time-varying vector spaces, and the evolution family restricted
to these fibre bundles exhibits growth characteristics that are distinct. In the
stable fibre bundle, solutions decay exponentially to zero in forward time.
Solutions in the centre fibre bundle are defined for all time and exhibit at
most subexponential growth in forward and backward time, and solutions
in the unstable fibre bundle are also defined for all time and decay to zero
exponentially in reverse time.

For a nonlinear impulsive functional differential equation, if the evolution
family of the linearization of some equilibrium point is spectrally separated,
the invariant fibre bundles are in some sense nonlinearly distorted by the
nonlinearities in the vector field and jump map, and the result is a local stable,
centre and unstable manifold. The centre manifold in particular contains
useful information pertaining to small solutions near the equilibrium and
can for this reason be used for the detection of bifurcations. The present
chapter is devoted to several aspects of the centre manifold, including its
existence, smoothness (in both the phase space and with respect to time),
invariance, reduction principle, restricted dynamics and its approximation
by Taylor expansion. In Chap. I.7 we touch on aspects of the other classical
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invariant manifolds (although in less detail) and, in general, the dynamics of
the nonautonomous process on restriction to them.

I.5.1 Preliminaries

The local centre manifold (and, indeed, every invariant manifold we consider
in this monograph) is defined through the solution of a particular fixed-point
equation. In order to formulate this equation correctly, we need to take into
account the expected growth rates of solutions on the centre manifold, which,
as we know from linear systems theory, may exhibit subexponential growth
in both forward and reverse time. This section is devoted to the introduction
of Banach spaces that satisfy these growth rate conditions, as well as some
useful results from linear systems and substitution operators that we will later
need to define the Lyapunov–Perron operator that will define the fixed-point
equation.

I.5.1.1 Spaces of Exponentially Weighted Functions

Denote PC(R,Rn) the set of functions f : R → R
n that are continuous

everywhere except for at times t ∈ {tk : k ∈ Z} where they are continuous
from the right and have limits on the left. Define a weighted norm ||f ||η =
supt∈R

e−η|t|||φ(t)|| for functions f : R→ X for Banach space X. We define
an analogous norm for sequences indexed by Z.

PCη = {φ : R→ RCR : φ(t) = ft, f ∈ PC(R,Rn), ||φ||η <∞}
Bη(R,RCR) = {f : R→ RCR : ||f ||η <∞}
PCη(R,Rn) = {f ∈ PC(R,Rn) : ||f ||η <∞}
Bη

tk
(Z,Rn) = {f : Z→ R

n : ||f ||η <∞}.

Also, if M ⊂ R × RCR is a nonautonomous set over RCR, we define the
space PCη(R,M) of piecewise-continuous functions taking values in M by

PCη(R,M) = {f ∈ PCη : f(t) ∈M(t)}.

If Xη is one of the above spaces, then the normed space Xη,s = (Xη, || · ||η,s)
with norm

||F ||η,s =
{

supt∈R
e−η|t−s|||F (t)||, dom(F ) = R

supk∈Z
e−η|tk−s|||F (k)||, dom(F ) = Z,

is complete. Broadly speaking, elements of these spaces will be referred to as
η-bounded.
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I.5.1.2 η-Bounded Solutions from Inhomogeneities

In this section we will characterize the η-bounded solutions of the inhomoge-
neous linear equation

x(t) = U(t, s)x(s) +

∫ t

s
U(t, μ)[χ0F (μ)]dμ+

∑
s<ti≤t

U(t, ti)[χ0Gi], −∞ < s ≤ t < ∞,

(I.5.1)

for inhomogeneous terms F and G. As defined in Definition I.1.1.6, we recall
now that RCRc(t) = R(Pc(t)), where Pc is the projection onto the centre
bundle of the linear part of (I.4.1)–(I.4.2).

Lemma I.5.1.1. Let η ∈ (0,min{−a, b}) and let H.1, H.2 and H.5 hold.
Then,

RCRc(ν) = {ϕ ∈ RCR : ∃x ∈ PCη, x(t) = U(t, s)x(s), x(ν) = ϕ} . (I.5.2)

Proof. If ϕ ∈ RCRc(ν), then Pc(ν)ϕ = ϕ and the function x(t) = U(t, ν)
Pc(ν)ϕ = Uc(t, ν)ϕ is defined for all t ∈ R, satisfies x(t) = U(t, s)x(s),
x(ν) = ϕ, x(t)(θ) = x(t + θ)(0), and by choosing ε < η, there exists K > 0
such that

e−η|t|||x(t)|| ≤ Keε|ν|e−(η−ε)|t|||ϕ|| ≤ Keε|ν|||ϕ||.
Finally, as x(t) = [U(t, s)x(s)(0)]t for all t ∈ R, we conclude x ∈ PCη.

Conversely, suppose ϕ ∈ RCR admits some x ∈ PCη such that x(t) =
U(t, s)x(s) and x(ν) = ϕ. Let ||x||η = K. We will show that Ps(ν)ϕ =
Pu(ν)ϕ = 0, from which we will conclude ϕ ∈ RCRc(ν).

By spectral separation, we have for all ρ < ν,

e−η|ρ|||Ps(ν)ϕ|| = e−η|ρ|||Us(ν, ρ)Ps(ρ)x(ρ)||
≤ e−η|ρ|Kea(ν−ρ)||Ps(ρ)|| · ||x(ρ)||
≤ KKea(ν−ρ)||Ps(ρ)||,

which implies ||Ps(ν)ϕ|| ≤ KKeaν ||Ps(ρ)|| exp(η|ρ| − aρ). Since η < −a and
ρ �→ ||Ps(ρ)|| is bounded, taking the limit as ρ→ −∞ we obtain ||Ps(ν)ϕ||| ≤
0. Similarly, for ρ > ν, we have

e−η|ρ|||Pu(ν)ϕ|| = e−η|ρ|||Uu(ν, ρ)Pu(ρ)x(ρ)||
≤ e−η|ρ|Keb(ν−ρ)||Pu(ρ)|| · ||x(ρ)||
≤ KKeb(ν−ρ)||Pu(ρ)||,

which implies ||Pu(ν)ϕ|| ≤ KKebν ||Pu(ρ)|| exp(η|ρ| − bρ). Since η <b and
ρ �→ ||Pu(ρ)|| is bounded, taking the limit ρ → ∞ we obtain ||Pu(ν)ϕ|| ≤ 0.
Therefore, Ps(ν)ϕ = Pu(ν)ϕ = 0, and we conclude that Pc(ν)ϕ = ϕ and
ϕ ∈ RCRc(ν).
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Lemma I.5.1.2. Let conditions H.1, H.2 and H.5 be satisfied. Let h ∈
RCR(R,Rn). The integrals

∫ t

s

U(t, μ)Pc(μ)[χ0h(μ)]dμ,

∫ t

v

U(t, μ)Pu(μ)[χ0h(μ)]dμ

are well-defined as Pettis integrals for all s, t, v ∈ R, where we define
∫ a
b
fdμ =

−
∫ b
a
fdμ when a < b.

Proof. The nontrivial cases are where t ≤ s and t ≤ v. For the former,
defining H(μ) = χ0h(μ) we have the string of equalities

Uc(t, s)Pc(s)

∫ s

t

U(s, μ)H(μ)dμ = Uc(t, s)

∫ s

t

Uc(s, μ)Pc(μ)H(μ)dμ

=

∫ s

t

Uc(t, μ)Pc(μ)H(μ)dμ

=

∫ s

t

U(t, μ)Pc(μ)H(μ)dμ

= −
∫ t

s

U(t, μ)Pc(μ)H(μ)dμ.

The first integral on the left exists due to Lemma I.2.3.5 and Proposition
I.1.4.1. The subsequent equalities follow by Proposition I.2.3.5 and the defi-
nition of spectral separation. The case t ≤ v for the other integral is proven
similarly.

Define the (formal) linear operators Kη
s : PCη,s⊕Bη

tk
(Z,Rn)→Bη(R,RCR)

by the equation

Kη
s (F,G)(t) =

∫ t

s
U(t, μ)Pc(μ)[χ0F (μ)]dμ−

∫ ∞

t
U(t, μ)Pu(μ)[χ0F (μ)]dμ

+

∫ t

−∞
U(t, μ)Ps(μ)[χ0F (μ)]dμ+

t∑
s

U(t, ti)Pc(ti)[χ0Gi]dti

−
∞∑
t

U(t, ti)Pu(ti)[χ0Gi]dti +

t∑
−∞

U(t, ti)Ps(ti)[χ0Gi]dti,

(I.5.3)

indexed by s ∈ R, where the external direct sum PCη,s ⊕ Bη,s
tk

(Z,Rn) is
identified as a Banach space with norm ||(f, g)||η,s = ||f ||η,s + ||g||η,s, and
the summations are defined as follows:

b∑
a

F (ti)dti =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
a<ti≤b

F (ti), a ≤ b

−
a∑
b

F (ti)dti, b < a.

Lemma I.5.1.3. Let H.1, H.2, H.5 and H.7 hold, and let η ∈ (0,min{−a, b}).
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1. The function Kη
s : PCη,s ⊕ Bη,s

tk
(Z,Rn) → Bη,s(R,RCR) with η ∈

(0,min{−a, b}) and defined by formula (I.5.3) is linear and bounded. In
particular, the norm satisfies

||Kη
s || ≤ C

[
1

η − ε

(
1 +

e(η−ε)ξ

ξ

)
+

1

−a − η

(
1 +

2e(η−a)ξ

ξ

)
+

1

b − η

(
1 +

2e(b+η)ξ

ξ

)]

(I.5.4)

for some constants C and ε independent of s.

2. Kη
s has range in PCη,s, and v = Kη

s (F,G) is the unique solution of (I.5.1)
in PCη,s satisfying Pc(s)v(s) = 0.

3. The expression K∗(F,G)(t) = (I − Pc(t))K
0
s (F,G)(t) uniquely defines,

independent of s, a bounded linear map

K∗ : PC0 ⊕B0
tk
(Z,Rn)→ PC0.

Proof. Let ε < min{min{−a, b} − η, η}. To show that Kη
s is well-defined, we

start by mentioning that all improper integrals and infinite sums appearing
on the right-hand side of (I.5.3) can be interpreted as limits of well-defined
finite integrals and sums, due to Lemma I.2.3.5, Lemma I.5.1.2 and Proposi-
tion I.1.4.1. For brevity, write

Kη
s (F,G) =

(
Ku,f

1 −Kc,F
1 +Ku,F

1

)
+
(
Ku,G

2 −Kc,G
2 +Ks,G

2

)
,

where each term corresponds to the one in (I.5.3) in order of appearance.
We start by proving the convergence of the improper integrals. Denote

I(v) =

∫ v

t

U(v, μ)Pu(μ)[χ0F (μ)]dμ,

and let vk ↗∞. We have, for m > n and n sufficiently large so that vm > 0,

||I(vm)− I(vn)|| ≤
∫ vm

vn

KNeb(t−μ)|F (μ)|dμ

≤
∫ vm

vn

KNeb(t−μ)eημ||F ||ηdμ

= KN ||F ||ηebt
∫ vm

vn

eμ(η−b)dμ

=
KN ||F ||η

b− η
ebt
(
e−vn(b−η) − e−vm(b−η)

)

≤ KN ||F ||η
b− η

ebte−vn(b−η).

Therefore, I(vk) ∈ RCR is Cauchy and thus converges; namely, it converges
to the improper integral Ku,F (t). One can similarly prove that Ks,F (t)
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converges. For the infinite sums, we employ similar estimates; if we denote
S =

∑
t<ti<∞ ||Uu(t, ti)[χ0Gi]|| and assume without loss of generality that

t0 = 0, a fairly crude estimate (that we will later improve) yields

S ≤
∑

t<ti<∞
KNeb(t−ti)eη|ti|||G||η

=
∑

−|t|<ti≤0

KN ||G||ηebte|ti|(b+η) +
∑

0<tk<∞
KN ||G||ηebte−(b−η)ti

≤ KNebt
(
|t|
ξ
e|t|(b+η) +

1

1− e−(b−η)ξ

)
||G||η.

Thus, Ku,G(t) converges uniformly. One can show by similar means that
Ks,F (t) and Ks,G(t) both converge. Therefore, Kη

s (F,G)(t) ∈ RCR exists.
We can now unambiguously state that Kη

s is clearly linear.
Our next task is to prove that ||Kη

s (F,G)]||η,s ≤ Q||(F,G)||η,s for constant
Q satisfying the estimate of equation (I.5.4). We will prove the bounds only
for ||Ku,F ||η,s, ||Ku,G||η,s, ||Kc,F ||η,s and ||Kc,G||η,s; the others follow by
similar calculations. For t < s, we have

e−η|t−s|||Ku,F (t)||

≤ e−η|t−s|
∫ ∞

t

KNeb(t−μ)|F (μ)|dμ

≤ eη(t−s)KN

[∫ s

t

eb(t−μ)eη|μ−s|||F ||η,sdμ+

∫ ∞

s

eb(t−μ)eη|μ−s|||F ||η,sdμ
]

= eη(t−s)KN ||F ||η,s
[∫ s

t

eb(t−μ)eη(s−μ)dμ+

∫ ∞

s

eb(t−μ)eη(μ−s)dμ

]

= eη(t−s)KN ||F ||η,s
[
ebt+ηs e

−(b+η)t − e−(b+η)s

b+ η
+ ebt−ηs e

−(b−η)s

b− η

]

≤ KN ||F ||η,s
1

b− η
.

The above inequality is also satisfied for t ≥ s, and we conclude ||Ku,F ||η,s ≤
KN(b− η)−1||(F,G)||η,s. Next, for t < s,

e−η|t−s|||Ku,G(t)||
≤ e−η|t−s|

∑
t<ti<∞

KNeb(t−ti)|Gi|

≤ eη(t−s)KN

⎡
⎣ ∑
t<ti<s

eb(t−ti)eη|ti−s|||G||η,s+
∑

s≤ti<∞
eb(t−ti)eη|ti−s|||G||η,s

⎤
⎦

≤ eη(t−s)KN ||G||η,s
1

ξ

[∫ s

t−ξ

eb(t−μ)eη(s−μ)dμ+

∫ ∞

s−ξ

eb(t−μ)eη(μ−s)dμ

]
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≤ eη(t−s)KN ||G||η,s
ξ

[
ebt+ηs e

−(b+η)(t−ξ) − e−(b+η)x

b+ η
+ ebt−ηs e

−(b−η)(s−ξ)

b− η

]

≤ 2KN ||G||η,s
ξ(b− η)

· e(b+η)ξ,

where we have made use of Lemma I.1.5.2 to estimate the sums. The same
conclusion is valid for t ≥ s, and it follows that ||Ku,G||η,s ≤ 2KNe(b+η)ξ(ξ(b−
η))−1||(F,G)||η,s. Next, for t ≤ s,

e−η|t−s|||Kc,G(t)|| ≤ eη(t−s)KN ||G||η,s
∑

t<ti≤s

eε(ti−t)eη(s−ti)

≤ eη(t−s)KN ||G||η,s
ξ

∫ t

s−ξ

eε(μ−t)eη(s−μ)dμ

= eη(t−s)KN ||G||η,s
ξ(η − ε)

(
eε(s−ξ−t)eηξ − e−η(t−s)

)

≤ KN ||G||η,s
ξ(η − ε)

e(η−ε)ξ.

This estimate continues to hold for all t, s ∈ R. To compare to the integral
term, for s ≤ t, we have

e−η|t−s|||Kc,F (t)|| ≤ e−η(t−s)KN ||F ||η,s
∫ t

s

eε(t−μ)eη(μ−s)dμ

= e−η(t−s)KN ||F ||η,s
1

η − ε

(
eη(t−s) − eε(t−s)

)

≤ KN ||F ||η,s
η − ε

,

and this estimate persists for all t, s ∈ R. Similar estimates for the other inte-
grals and sums appearing in (I.5.3) ultimately result in the bound appearing
in (I.5.4). This proves part 1.

To prove part 2, denote v = Kη
s (F,G). It is clear from the definition of

v, the orthogonality of the projection operators and Proposition I.1.4.1 that
Pc(s)v(s) = 0. Also, for all −∞ < z ≤ t < ∞, denoting F = χ0F and
Gi = χ0G, we have

U(t, z)v(z) +

∫ t

z

U(t, μ)F (μ)dμ+
t∑
z

U(t, ti)Gidti

= U(t, z)v(z) +

∫ t

z

U(t, μ)Pc(μ)F (μ)dμ−
∫ z

t

U(t, μ)Pu(μ)F (μ)dμ

+

∫ t

z

U(t, μ)Pu(μ)F (μ)dμ+
t∑
z

U(t, ti)Pc(ti)Gidti

−
z∑
t

U(t, ti)Pu(ti)Gidti +
t∑
z

U(t, ti)Pu(ti)Gidti
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=

∫ t

s

U(t, μ)Pc(μ)F (μ)dμ−
∫ ∞

t

U(t, μ)Pu(μ)F (μ)dμ+

∫ t

−∞
U(t, μ)Ps(μ)F (μ)dμ

+
t∑
s

U(t, ti)Pc(ti)Gidti −
∞∑
t

U(t, ti)Pu(ti)Gidti +
t∑

−∞
U(t, ti)Ps(ti)Gidti

= v(t),

so that t �→ v(t) solves the integral equation (I.5.1). This also demon-
strates that v ∈ PCη. To show that it is the only solution in PCη sat-
isfying Pc(s)v(s) = 0, suppose there is another r ∈ PCη that satisfies
Pc(s)r(s) = 0. Then the function w := v − r is an element of PCη that
satisfies w(t) = U(t, z)w(z) for −∞ < z ≤ t < ∞. By Lemma I.5.1.1, we
have w(s) ∈ RCRc(s). But since Pc(s)w(s) = 0 and Pc(s) is the identity on
RCRc(s), we obtain w(s) = 0. Therefore, w(t) = U(t, s)0 = Uc(t, s)0 = 0 for
all t ∈ R, and we conclude v = r, proving the uniqueness assertion.

For assertion 3, we compute first

K∗(F,G)(t) =

∫ t

−∞
U(t, μ)Ps(μ)[χ0F (μ)]dμ−

∫ ∞

t

U(t, μ)Pu(μ)[χ0F (μ)]dμ

t∑
−∞

U(t, ti)Ps(ti)[χ0Gi]dti −
∞∑
t

U(t, ti)Pu(ti)[χ0Gi]dti.

Routine estimation using inequalities (I.1.11)–(I.1.13) together with Lemma
I.1.5.2 produces the bound

||K∗(F,G)(t)|| ≤ KN

(
−1
a

+
1

b
− e−aξ

aξ
+

ebξ

bξ

)
||(F,G)||,

and as the bound is independent of t, s, the result is proven.

I.5.1.3 Substitution Operator and Modification of Non-
linearities

Let ξ : R+ → R be a C∞ bump function satisfying

i) ξ(y) = 1 for 0 ≤ y ≤ 1,

ii) 0 ≤ ξ(y) ≤ 1 for 1 ≤ y ≤ 2,

iii) ξ(y) = 0 for y ≥ 2.

We modify the nonlinearities of (I.4.1)–(I.4.2) in the centre and hyperbolic
directions separately. For δ > 0 and s ∈ R, we let

Fδ,s(t, x) = f(t, x)ξ

(
||Pc(s)x||

Nδ

)
ξ

(
||(Ps(s) + Pu(s))x||

Nδ

)
(I.5.5)

Gδ,s(k, x) = g(k, x0−)ξ

(
||Pc(s)x0− ||

Nδ

)
ξ

(
||(Ps(s) + Pu(s))x0− ||

Nδ

)
. (I.5.6)
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Notice that Gδ,s(k, x) takes the pointwise left-limit in the evaluation (I.5.6).
The proof of the following lemma and corollary will be omitted. They can
be proven by emulating the proof of Lemma 6.1 from [70] and taking into
account the uniform boundedness of the projectors Pi; see property 1 of
Definition I.1.1.6.

Lemma I.5.1.4. Let f(t, ·) and g(k, ·) be uniformly (in t ∈ R and k ∈ Z)
Lipschitz continuous on the ball BRCR(δ, 0) in RCR with mutual Lipschitz
constant L(δ), and let f(t, 0) = gk(0) = 0. The functions

Fδ,s : R×RCR → R
n, Gδ,s : Z×RCR → R

n

are globally, uniformly (in t ∈ R and k ∈ Z) Lipschitz continuous with mutual
Lipschitz constant Lδ that satisfies Lδ → 0 as δ → 0, independent of s.

Corollary I.5.1.1. The substitution operator

Rδ,s : PCη,s → PCη,s(R,Rn)⊕Bη,s
tk

(Z,Rn)

defined by Rδ,s(x)(t, k) = (Fδ,s(t, x(t)), Gδ,s(k, x(tk))) is globally Lipschitz

continuous with Lipschitz constant L̃δ that satisfies L̃δ → 0 as δ → 0. More-
over, the Lipschitz constant is independent of η, s.

Corollary I.5.1.2. ||(Fδ,s(t, x), Gδ,s(k, x))|| ≤ 4δLδ for all x ∈ RCR and
(t, k) ∈ R× Z.

Remark I.5.1.1. The explicit connection between L(δ) (the Lipschitz con-
stant for f and g) and Lδ and L̃δ is complicated and depends in part on the
choice of cutoff function ξ and the constant N .

I.5.2 Fixed-Point Equation and Existence of a
Lipschitz Centre Manifold

Let η ∈ (ε,min{−a, b}) and define a mapping Fs : PCη,s×RCRc(s)→ PCη,s
by

Fs(u, ϕ) = U(·, s)ϕ+Kη
s (Rδ,s(u)). (I.5.7)

Note that by Lemma I.5.1.3 and Corollary I.5.1.1, the operator is well-defined,
Kη

s is bounded and Rδ is globally Lipschitz continuous for each δ > 0, pro-
vided H.1–H.7 hold. Choose δ small enough so that

L̃δ||Kη
s ||η <

1

2
. (I.5.8)

Notice that δ can be chosen so that (I.5.8) can be satisfied independent of s,
due to Lemma I.5.1.3. If ||ϕ|| < r/(2K), then Fs(·, ϕ) leaves B(r, 0) ⊂ PCη,s
invariant. Moreover, Fs(·, ϕ) is Lipschitz continuous with Lipschitz constant
1
2 . One may notice that r is arbitrary. We can now prove the following:
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Theorem I.5.2.1. Let conditions H.1–H.7 hold. If δ is chosen as in (I.5.8),
then there exists a globally Lipschitz continuous mapping u∗

s : RCRc(s) →
PCη,s such that us = u∗

s(ϕ) is the unique solution in PCη,s of the equation
us = Fs(us, ϕ).

Proof. The discussion preceding the statement of Theorem I.5.2.1 indicates
that Fs(·, ϕ) is a contraction mapping on B(r, 0) ⊂ PCη,s for every r >
||ϕ||2K. Since the latter is a closed subspace of the Banach space PCη,s, the
contraction mapping principle implies the existence of the function u∗

s. To
show that it is a Lipschitz continuous, we note

||u∗
s(ϕ)− u∗

s(ψ)||η,s = ||Fs(u
∗
s(ϕ), ϕ)−Fs(u

∗
s(ψ), ψ))||η,s

≤ K||ϕ− ψ||+ 1

2
||u∗

s(ϕ)− u∗
s(ψ)||η,s.

Therefore, u∗
s is Lipschitz continuous with Lipschitz constant 2K.

Definition I.5.2.1 (Lipschitz Centre Manifold). The centre manifold, Wc ⊂
R×RCR, is the nonautonomous set whose t-fibres for t ∈ R are given by

Wc(t) = Im{C(t, ·)}, (I.5.9)

where C : RCRc → RCR is the (fibrewise) Lipschitz map defined by C(t, φ) =
u∗
t (φ)(t). Its dimension is equal to dim(RCRc).

Remark I.5.2.1. The centre manifold depends non-canonically on the choice
of cutoff function from Sect. I.5.1.3. That is, the centre manifold is not
unique, so we are committing an abuse of syntax by referring to such a con-
struct generally as “the” centre manifold. One must always understand that
the definition of the centre manifold is with respect to a particular cutoff func-
tion. Also, since C(t, ·) : RCRc(t)→ RCR has a dim(RCRc(t))-dimensional
domain, it is appropriate to say that the centre manifold also has this dimen-
sion.

The construction above implies the centre manifold is fibrewise Lipschitz.
We can prove a stronger result, namely that the Lipschitz constant can be
chosen independent of the given fibre.

Corollary I.5.2.1. There exists a constant L > 0 such that ||C(t, φ) −
C(t, ψ)|| ≤ L||φ− ψ|| for all t ∈ R and φ, ψ ∈ RCRc(t).

Proof. Denote uφ = ut(φ) and uψ = ut(ψ). A preliminary estimation ap-
pealing to the fixed-point equation (I.5.7) yields

||C(t, φ)− C(t, ψ)|| ≤ ||φ− ψ||+ ||(Kη
t (Rδu

φ)−Kη
t (Rδu

ψ))(t)||.
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By Corollary I.5.1.2, each ofRδu
φ andRδu

ψ is uniformly bounded, so Lemma
I.5.1.3 implies the existence of a constant c > 0 such that

||(Kη
t (Rδ,tu

φ)−Kη
t (Rδ,tu

ψ))(t)|| ≤ c||(Rδ,tu
φ −Rδ,tu

ψ)(t)||
≤ c sup

s∈R

||(Rδ,tu
φ −Rδ,tu

ψ)(s)||e−η|t−s|

≤ cL̃δ||uφ − uψ||η,t
≤ cL̃δ2K||φ− ψ||,

and in the last line, we used the Lipschitz constant from Theorem I.5.2.1.
Combining this result with the previous estimate for ||C(t, φ)−C(t, ψ)|| yields
the uniform Lipschitz constant. By Corollary I.5.1.1, the Lipschitz constant
has the claimed property.

I.5.2.1 A Remark on Centre Manifold Representations:
Graphs and Images

Our initial definition of the centre manifold was as the fibre bundle whose
t-fibres are the images of C(t, ·). However, sometimes one likes to think of the
centre manifold as being the graph of a function. To accomplish this, one can
use the hyperbolic part. Let us define the function H : RCRc → RCR by
H(t, φ) = (I−Pc(t))C(t, φ). In this way, the centre manifold can be identified
with the graph of the hyperbolic part of the centre manifold. Indeed, by part
2 of Lemma I.5.1.3, we have the decomposition C(t, φ) = φ+(I−Pc(t))C(t, φ),
so that

Wc(t) = {φ+H(t, φ) : φ ∈ RCRc(t)}
∼ {(φ,H(t, φ)) : φ ∈ RCRc(t)} = Graph(H(t, ·)).

Since RCRc(t) and its complement R(I−Pc(t)) = RCRs(t)⊕RCRu(t) have
only 0 in their intersection, this identification makes sense. When one reduces
down to ordinary differential equations, one usually thinks of precisely the
functionH as being the centre manifold. This ambiguity between the function
C : RCRc → RCR, the fibre bundle Wc, the hyperbolic part H : RCRc →
RCR and its graph can sometimes make statements about centre manifolds
imprecise. In this thesis, the term centre manifold without any additional
qualifiers will always mean the fibre bundle Wc.

I.5.3 Invariance and Smallness Properties

Recall that by Lemma I.4.1.1, there is a process (S,M) on RCR such that
t �→ S(t, s)φ is the unique mild solution of (I.4.3) through the initial condition
(s, φ) defined on an interval [s, s+α). With this in mind, the centre manifold
is locally positively invariant with respect to S.
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Theorem I.5.3.1 (Centre Manifold: Invariance and Inclusion of Bounded
Orbits). Let conditions H.1–H.7 hold. The centre manifold Wc enjoys the
following properties.

1. Wc is locally positively invariant: if (s, φ) ∈ Wc and ||S(t, s)φ|| < δ for
t ∈ [s, T ], then (t, S(t, s)φ) ∈ Wc for t ∈ [s, T ].

2. If (s, φ) ∈ Wc, then S(t, s)φ=u∗
t (Pc(t)S(t, s)φ)(t)= C(t, Pc(t)S(t, s)φ).

3. If (s, φ) ∈ Wc, there exists a unique mild solution u ∈ PCη,s of the
semilinear system

ẋ = L(t)xt + Fδ,s(t, xt), t �= tk

Δx = B(k)xt− +Gδ,s(k, xt−), t = tk

with the property that u(t) ∈ Wc(t) for t ∈ R, ||u||η,s ≤ δ and u(s) = φ.

4. If x : R → RCR is a mild solution of (I.4.3) satisfying ||x|| < δ, then
(t, x(t)) ∈ Wc for all t ∈ R.

5. R× {0} ⊂ Wc and C(t, 0) = 0 for all t ∈ R.

Proof. Let (s, φ) ∈ Wc and denote x(t) = S(t, s)φ, with ||x|| < δ. Since
(s, φ) ∈ Wc, there exists ϕ ∈ RCRc(s) such that φ = u∗

s(ϕ)(s). Define x̂ =
u∗
s(ϕ). Then, it follows that ϕ = Pc(s)φ, x̂(s) = φ = Pc(s)φ+Kη

s (R(x̂))(s),
and

x̂(t) = U(t, s)ϕ+Kη
s (Rδ(x̂))(t)

= U(t, s)ϕ+

[
U(t, s)Kη

s (Rδ,s(x̂))(s) +

∫ t

s
U(t, μ)χ0Fδ,s(μ, x̂(μ))dμ

+
∑

s<ti≤t

U(t, ti)χ0Gδ,s(i, x̂(ti))

⎤
⎦

= U(t, s)x̂(s) +

∫ t

s
U(t, μ)χ0Fδ,s(μ, x̂(μ))dμ+

∑
s<ti≤t

U(t, ti)χ0Gδ,s(i, x̂(ti))

for all t ∈ [s, T ]. But since ||x(t)|| < δ on [s, T ], uniqueness of mild solutions
(Lemma I.2.1.1 with Theorem I.2.3.1) implies that x = x̂|[s,T ].

Let v ∈ [s, T ] and define z : R → RCR by z = x̂ − U(·, v)Pc(v)x̂(v). One
can easily verify that

z(t) = U(t, v)z(v) +

∫ t

v

U(t, μ)U(t, μ)χ0Fδ,s(μ, x̂(μ))dμ

+
∑

v<ti≤t

U(t, ti)χ0Gδ,s(i, x̂(ti))

for all t ∈ [v,∞) and that Pc(v)z(v) = 0. On the other hand, since ||x̂|| < δ,
we have Rδ,s(x̂) = Rδ,v(x̂). From these two observations and Lemma I.5.1.3,
z = Kη

v(Rδ,v(x̂))|[v,∞), so that we may write

x̂ = U(·, v)Pc(v)x̂(v) +Kη
v(Rδ,v(x̂)) = u∗

v(Pc(v)x̂(v)).
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Therefore, x̂(v) = u∗
v(Pc(v)x̂(v))(v), and since x(v) = x̂(v), this proves that

(v, x(v)) ∈ Wc and, through essentially the same proof, that

x(v) = u∗
v(Pc(v)x(v))(v) = C(v, x(v))(v).

The proofs of the other three assertions of the theorem follow by similar
arguments and are omitted.

The modification of the nonlinearity Rδ results in the function u∗
s that de-

fines the centre manifold having a uniformly small hyperbolic part. Namely,
we have the following lemma.

Lemma I.5.3.1. Define P̂c : PCη → PCη(R,RCRc) by P̂cφ(t) = Pc(t)φ(t).

If δ > 0 is sufficiently small, then ||(I − P̂c)u
∗
s ||0 < δ. More precisely, it is

sufficient to chose δ > 0 small enough so that NLδ||Kη
s || < 1

4 .

Proof. Recall that u∗
s satisfies the fixed-point equation u∗

s = U(·, s)ϕ +

Kη
s (Rδ,s(u

∗
s)). Thus, with P̂h = I − P̂c,

P̂hu
∗
s = P̂h ◦ Kη

s (Rδ,s(u
∗
s))

because U(t, s) is an isomorphism ofRCRc(s) ontoRCRc(t) and ϕ∈RCRc(s).
By Corollary I.5.1.2, we have for all t ∈ R that ||Rδ,s(u

∗
s(t))|| ≤ 4δLδ, which

implies Rδ,s(u
∗
s) ∈ B0(R,Rn) ⊕ B0

tk
(Z,Rn). We obtain the claimed result

by applying the second conclusion of Lemma I.5.1.3 and taking δ sufficiently
small, recalling from Corollary I.5.1.1 that Lδ → 0 as δ → 0. The explicit
estimate for δ comes from the bound ||P̂hKη

s (Rδ,s(u
∗
s)||0 ≤ N ||Kη

s ||4δLδ.

I.5.4 Dynamics on the Centre Manifold

The centre manifold can be identified with a dim(RCRc(t))-dimensional in-
variant fibre bundle over R × RCR. A natural question to ask is how the
process (S,M) behaves when restricted to the centre manifold. We address
this now.

I.5.4.1 Integral Equation

On the centre manifold, components of mild solutions on the centre fibre
bundle are decoupled. The following lemma states how the components in
the centre fibre bundle evolve. The proof follows from Theorem I.5.3.1.

Lemma I.5.4.1 (Dynamics on the Centre Manifold: Integral Equation). Let
y : R → RCR satisfy y(t) ∈ Wc(t) with ||y|| < δ. Consider the projection of
y onto the centre fibre bundle: w(t) = Pc(t)y(t). The projection satisfies the
integral equation

w(t) = U(t, s)w(s) +

∫ t

s
U(t, μ)Pc(μ)χ0Fδ,μ(μ, C(μ,w(μ)))dμ

+
∑

s<ti≤t

U(t, ti)Pc(ti)χ0Gδ,ti (i, C(ti, w(ti))). (I.5.10)
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I.5.4.2 Abstract Ordinary Impulsive Differential Equa-
tion

Lemma I.5.4.1 describes the dynamics of the centre fibre bundle component
of the centre manifold in terms of an integral equation. With an additional
assumption on the jump map, we can extend this result to an ordinary im-
pulsive differential equation on a Banach space.

Definition I.5.4.1. A sequence of functionals J(k, ·) : RCR → R
n for k ∈ Z

satisfies the overlap condition (with respect to the sequence {tk : k ∈ Z} of
impulse times) if

lim
ε→0+

J(k, φ+ χ[θ,θ+ε)h) = J(k, φ)

for all φ ∈ RCR and h ∈ RCR, whenever θ = tj − tk ∈ [−r, 0).

The overlap condition roughly states that the jump functional does not
have observable “memory” at times in the past that happens to correspond
to impulse times. As the definition is somewhat abstract, we will give an
example.

Example I.5.4.1. Consider the scalar impulse effect defined according to

Δx = x(t− r), t = tk,

where tk = k ∈ Z are the integers. The functional associated to the above
is simply J(φ) = φ(−r). If r is a positive integer, the overlap condition will
not be satisfied because with θ = tk − tk+r = −r ∈ [−r, 0), we have

J(φ+ χ[θ,θ+ε)h) = φ(−r) + h(−r) �= φ(−r) = J(φ)

for all ε > 0 and h ∈ RCR with h(−r) �= 0. However, if r is not an integer,
then since any θ = tj − tk ∈ [−r, 0) must be an integer, it follows that for
ε > 0 small enough, −r /∈ [θ, θ + ε). From here, we can conclude that J
satisfies the overlap condition.

Remark I.5.4.1. The overlap condition is equivalent to the statement that
J(k, ·) admits a continuous extension to a particular closed subspace of G
([−r, 0],Rn); see later Lemma I.6.1.1.

The overlap condition is mostly important for functionals that define dis-
crete delays, since the regularization incurred from distributed delays gener-
ally forces the overlap condition to be satisfied. See Sect. I.6.4 for a more
thorough discussion. We make use of the overlap condition in proof of the
following theorem. The details are somewhat subtle, and we will spend a fair
bit more time on them in Sect. I.5.7.

Theorem I.5.4.1 (Dynamics on the Centre Manifold: Abstract Impulsive
Differential Equation). Let y ∈ RCR1(R,Rn) satisfy yt ∈ Wc(t) with ||y|| <
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δ. Consider the projection w(t) = Pc(t)yt and define the linear operators
L(t) : RCR1 → RCR and J (k) : RCR → G([−r, 0],Rn) by

L(t)φ(θ) =
{

L(t)φ, θ = 0
d+φ(θ), θ < 0

, J (k)φ(θ) =

{
B(k)φ, θ = 0
φ(θ+)− φ(θ), θ < 0

(I.5.11)

If the jump functionals B(k) and g(k, ·) satisfy the overlap condition, then w :
R→ RCR1 satisfies, pointwise, the abstract impulsive differential equation

d+w(t) = L(t)w(t) + Pc(t)χ0Fδ(t, C(t, w(t))), t �= tk (I.5.12)

Δw(tk) = J (k)w(t−k ) + Pc(tk)χ0Gδ(k, C(tk, w(tk))), t = tk, (I.5.13)

where w(t−k )(θ) := limε→0− w(tk−ε)(θ) and Δw(tk)(θ) := w(tk)(θ)−w(t−k )(θ)
for θ ∈ [−r, 0].

Proof. For brevity, denote F (μ) = Fδ,μ(μ, C(μ,w(μ))), F (μ) = χ0F (μ),
F(μ) = Pc(μ)χ0F (μ), and analogously for Gδ. We begin by noting that equa-
tion (I.5.10) allows us to write the finite difference wε(t) = w(t + ε) − w(t)
as

wε(t) = [U(t+ ε, s)− U(t, s)]w(s) + (U(t+ ε, t)− I)

∫ t

s

U(t, μ)F(μ)dμ

+ U(t+ ε, t)Pc(t)

∫ t+ε

t

U(t, μ)F (μ)dμ+ (U(t+ ε, t)− I)

×
∑

s<ti≤t

U(t, ti)G(i) + U(t+ ε, t)
∑

t<ti≤t+ε

U(t, ti)G(i).

(I.5.14)

First, we show that d+U(t, s)φ = L(t)U(t, s)φ pointwise for φ ∈ RCR. For
θ = 0, we have

1

ε
(U(t+ ε, s)φ(0)− U(t, s)φ(0)) =

1

ε

∫ t+ε

t

L(μ)U(μ, s)φdμ,

which converges to L(t)U(t, s)φ as ε → 0+. For θ < 0 and ε > 0 sufficiently
small,

1

ε
(U(t+ ε, s)φ(θ)− U(t, s)φ(θ))

=
1

ε
(φ(t+ ε+ θ − s)− φ(t+ θ − s)) −→ d+φ(t+ θ − s) = d+U(t, s)φ(θ).

Therefore, d+U(t, s)φ = L(t)U(t, s)φ pointwise, as claimed. Since U(t, t) = I,
this also proves the pointwise convergence

1

ε
(U(t+ ε, t)− I)φ→ L(t)φ.



82 CHAPTER I.5. EXISTENCE, REGULARITY AND. . .

Next, we show that

1

ε
U(t+ ε, t)Pc(t)

∫ t+ε

t

U(t, μ)F (μ)dμ→ Pc(t)F (t) = F(t) (I.5.15)

pointwise as ε→ 0+. We do this by first proving that the sequence

xn :=
1

εn
U(t+ εn, t)Pc(t)

∫ t+εn

t

U(t, μ)F (μ)dμ

is pointwise Cauchy for each sequence εn → 0+. Assuming without loss of
generality that εn is strictly decreasing, we have for all n ≥ m,

xn − xm =

[
1

εn
U(t+ εn, t)−

1

εm
U(t+ εm, t)

]
Pc(t)

∫ t+εn

t

U(t, μ)χ0F (μ)dμ

+
1

εm
U(t+ ε, t)

∫ t+εn

t+εm

Uc(t, μ)Pc(μ)χ0F (μ)dμ.

Both integrals can be made arbitrarily small in norm by taking n,m ≥ N
and N large enough. Since 1

εU(t+ ε, t) is pointwise convergent as ε→ 0+, we
obtain that the sequence xn is pointwise Cauchy and is hence pointwise con-
vergent. Direct calculation of the limit in the pointwise sense yields (I.5.15).
Combining all of the above results with Eq. (I.5.14) gives the pointwise equal-
ity

d+w(t) = L(t)U(t, s)w(s) + L(t)
∫ t

s

U(t, μ)F(μ)dμ

+ F(t) + L(t)
∑

s<ti≤t

U(t, ti)G(i)

= L(t)w(t) + F(t),

which is equivalent to (I.5.12).
To obtain the difference equation (I.5.13), we similarly identify wε(tk)(θ)

:= w(tk)(θ)− w(tk − ε)(θ) with the decomposition
wε(tk) = [U(tk, s)− U(tk − ε, s)]w(s) +

∫ tk

tk−ε
U(t, μ)F(μ)dμ

+

∫ tk−ε

s
[U(tk, μ)− U(tk − ε, μ)]F(μ)dμ

+
∑

tk−ε<ti≤tk

U(tk, ti)G(i) +
∑

s<ti≤tk−ε

[U(tk, ti)− U(tk − ε, ti)]G(i).

Using Lemmas I.2.2.1 and I.2.3.5, the above is seen to converge pointwise as
ε→ 0+, with limit

Δw(tk) = J̃ (k)U(t−k , s)w(s) + J̃ (k)

∫ tk

s

U(t−k , μ)F(μ)dμ

+G(k) + J̃ (k)
∑

s<ti<tk

U(t−k , ti)G(i), (I.5.16)
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where J̃ (k)φ(θ) = χ0(θ)B(k)φ + χ(−r,0)(θ)[φ(θ) − φ(θ−)], and we assume
without loss of generality that r > 0 is large enough so that tk − r �= tj for
all j < k and all k ∈ Z. Let us denote

U−(t, s)φ(θ) = lim
ε→0+

U(t− ε, s)φ(θ)

the strong left-limit of the evolution family at t. This limit is well-defined
pointwise, and due to the overlap condition, we have

J̃ (k)U(t−k , ξ)φ = J (k)U−(tk, ξ)φ (I.5.17)

pointwise for all ξ < tk. Moreover, since

w(t−k ) = U−(tk, s)w(s) +

∫ tk

s

U−(tk, μ)F(μ)dμ+
∑

s<ti<tk

U−(tk, ti)G(i),

(I.5.18)

we can obtain equation (I.5.13) by substituting (I.5.17) and (I.5.18) into
(I.5.16).

We will not make much use of the abstract differential equation (I.5.12)–
(I.5.13) and have included it mostly for the purpose of comparison with anal-
ogous results for delay differential equations. As we will see, the integral
equation (I.5.10) will be more than sufficient.

I.5.4.3 A Remark on Coordinates and Terminology

It is a slight abuse of terminology to describe (I.5.12)–(I.5.13) as an impul-
sive differential equation on the centre manifold. More precisely, it is the
dynamical system associated to the projection onto the centre fibre bundle
associated to a given solution in the centre manifold. This precise description
is, however, quite verbose, and for this reason we will usually call (I.5.12)–
(I.5.13) the impulsive differential equations on the centre manifold, even if
this is not exactly what it is.

The evolution equations (I.5.12)–(I.5.13) are quite abstract. It is an evo-
lution equation in the centre fibre bundle that, despite being (in many sit-
uations) finite-dimensional, is still rather difficult to use in practice because
the fibres RCRc(t) are not themselves constant in time. What is needed
is an appropriate coordinate system. This would in principle allow for the
derivation of an impulsive differential equation in R

p for p = dimRCRc. We
expand on precisely this idea in Sects. I.5.7 and I.6.1.

I.5.5 Reduction Principle

Given a nonhyperbolic equilibrium, one may want to study the orbit struc-
ture near this equilibrium under parameter perturbation in the vector field
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or jump map defining the impulsive functional differential equation (I.4.1)–
(I.4.2). Assuming the sufficient conditions for the existence of a centre man-
ifold are satisfied, part 2 of Theorem I.5.3.1 implies that on the centre man-
ifold, the dynamics are completely determined by those of the component in
the centre fibre bundle. Part 3 of the same theorem guarantees that the small
bounded solutions are all contained on the centre manifold. Lemma I.5.4.1
completely characterizes these dynamics in terms of an integral equation
(I.5.10). As a consequence, bifurcations can be detected by analysing this
integral equation instead, and no loss of generality occurs by looking only on
the centre manifold (at least for small perturbations of the parameter).

The next natural question is the following. If we detect a bifurcation on
the centre manifold and the branch of solutions (or union of solutions, e.g.
a torus) is stable when restricted to the centre manifold, are we guaranteed
that this solution is stable in the infinite-dimensional system provided RCRu

is trivial? The answer is yes, and the following results make this precise.
This is sometimes referred to as the centre manifold reduction. They are
inspired by similar results for ordinary differential equations in both finite-
and infinite-dimensional systems; see for instance Theorem 2.2 from Chapter
10 of Hale and Verduyn Lunel’s introductory text [58] for functional differen-
tial equations, Theorem 3.22 from Chapter 2 of [60] for ordinary differential
equations in Banach spaces and the classic text of Jack Carr [22] for finite-
dimensional ordinary differential equations, as well as some extensions to
infinite-dimensional problems. However, we will require the vector field to be
slightly more regular than previously.

Definition I.5.5.1. The functional f : R×RCR → R
n is additive composite

regulated (ACR) if for all x ∈ RCR(R,Rn), Y ∈ RCR(R,Rn×m) and z ∈
RCR(R,Rm), the function t �→ f(t, xt+Ytz(t)) is an element of RCR(R,Rn).

Remark I.5.5.1. ACR functionals are quite common in applications. For
example, suppose f : R×RCR → R

n can be written in the form

f(t, φ) = F

(
t, A(t)φ(−d(t)),

∫ 0

−r

K(t, θ)φ(θ)dθ

)

for d ∈ RCR(R, [−r, 0]), A ∈ RCR(R,Rn×n), K : R × [−r, 0] → R
n×n

integrable in its second variable, continuous from the right in its first variable
and uniformly bounded and F : R × R

n × R
n → R

n jointly continuous from
the right in its first variable and continuous in its other variables. It is clear
that

t �→ A(t)[xt(−d(t)) + Yt(−d(t))z(t)] = A(t)[x(t− d(t)) + Y (t− d(t))z(t)]

is an element of RCR(R,Rn). As for the integral term, the function

t �→
∫ 0

−r

K(t, θ)[x(t+ θ) + Y (t+ θ)z(t)]dθ]
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can be seen to be an element of RCR(R,Rn) by applying the dominated con-
vergence theorem. From the assumptions on F , we conclude that f is ACR.
The same holds true for vector fields with multiple time-varying delays and
distributed delays.

Lemma I.5.5.1. Assume RCRu = {0}. Let Φt = [ φ
(1)
t · · · φ

(p)
t ] be a

row array whose elements form a basis for RCRc(t), the latter being assumed
p-dimensional for p finite, such that Φt = Uc(t, 0)Φ0. Given a mild solution
x(·) : I → RCR, write Pc(t)xt = Φtz(t) for some z ∈ R

p, so that

xt = Φtz(t) + h(t, z(t)) + ySt

with z ∈ R
p, h(t, z) := (I − Pc(t)C(t,Φtz), and ySt ∈ RCRs(t) is a remain-

der term. Assume the matrix-valued function Yc(t) defined by the equation
Pc(t)χ0 = ΦtYc(t) is continuous from the right and possesses limits on the
left. There exist positive constants ρ,C and α such that for all t ≥ s, the
remainder term satisfies

||ySt || ≤ C||ySs − h(s, z(s))||e−α(t−s),

provided ||xt|| ≤ ρ for all t ≥ s.

Proof. One can carefully verify that z(t) and ySt , respectively, satisfy the
following integral equations for all t ≥ s:

z(t) = z(s) +

∫ t

s

Yc(μ)F(μ, z(μ), ySμ )dμ+
∑

s<ti≤t

Uc(ti)G(i, z(ti), ySti),

(I.5.19)

ySt = U(t, s)[ySs − h(s, z(s))] +

∫ t

s

U(t, μ)Ps(μ)χ0[F(μ, z(μ), ySμ ) (I.5.20)

−F(μ, z(μ), 0)]dμ+
∑

s<ti≤t

U(t, ti)Ps(ti)χ0[G(i, z(ti), ySti)

− G(i, z(ti), 0)],

provided ρ < δ/N , where F(t, z, y) = Fδ,0(t,Φtz + h(t, z) + y), G(k, z, y) =
Gδ,0(k,Φtkz + h(tk, z) + y), and Yc(μ) is defined by the equation Pc(μ)χ0 =
ΦμYc(μ). Because of our assumption on Yc(μ), it follows (from the integral
equation (I.5.19)) that z is continuous from the right and possesses limits on
the left. If we remark that

ySt = (I − Pc(t))xt = xt − Φtz(t),

we can use Lemma I.1.3.7 to conclude that t �→ ||ySt || is an element of
RCR(I,R). Using spectral separation and the Lipschitz condition on the
substitution operator, we can use (I.5.20) to get the estimate
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||ySt ||e−at ≤ Ke−as||ySs − h(s, z(s))||+
∫ t

s

KLδ||ySμ ||e−aμdμ

+
∑

s<ti≤t

KLδ||ySti ||e
−ati ,

provided ||xt|| ≤ ρ for ρ sufficiently small. Next, we apply the Gronwall
Inequality (Lemma I.1.5.1) to the function t �→ ||ySt ||e−at. After some sim-
plifications, we get

||ySt || ≤ K(1 +KLδ)||ySs − h(s, z(s))|| exp
((

a+KLδ

(
1 +

1

ξ

))
(t− s)

)
.

We can always guarantee that the exponential convergence rate is in the form
e−α(t−s) for α > 0 by taking δ sufficiently small, since a < 0 and we have
Lδ → 0 as δ → 0 by Corollary I.5.1.1. The result follows.

The continuity condition on the matrix t �→ Yc(t) comes up in a few places
in this monograph. Most noteworthy, it is used in Sect. I.5.7 to guarantee
temporal regularity properties of the centre manifold.

Theorem I.5.5.1 (Local Attractivity of the Centre Manifold). Let the as-
sumptions of Lemma I.5.5.1 be satisfied and let f be an ACR functional.
There exists a neighbourhood V of 0 ∈ RCR and positive constants K1, α1

such that if t �→ xt is a mild solution satisfying xt ∈ V for all t ≥ s, then
there exists ut ∈ Wc(t) with the property that

||xt − ut|| ≤ K1e
−α1(t−s)

for all t ≥ s. That is, every solution that remains close to the centre manifold
in forward time is exponentially attracted to a particular solution on the centre
manifold. More precisely, there exists u ∈ RCR([s,∞),Rn) such that t �→
Φtu(t) satisfies the abstract integral equation (I.5.10) for the coordinate on
the centre manifold, and we have the estimates

||Pc(t)xt − Φtu(t)|| ≤ Ke−a1(t−s),

||Ps(t)xt − h(t, u(t))|| ≤ Ke−a1(t−s).

Proof. With the same setup as in the previous proof, let u(t;us) for t ≥ s
denote the solution of the integral equation

u(t) = us +

∫ t

s

Yc(μ)F(μ, u(μ), 0)dμ+
∑

s<ti≤t

Yc(ti)G(i, u(ti), 0),
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for given us ∈ R
p. Define w(t) = z(t) − u(t;us). With xt = Φtz(t) +

h(t, z(t)) + ySt , we have the following integral equations for w and ySt :

ySt = U(t, s)[ySs − h(s, w(s) + us)] +

∫ t

s

U(t, μ)Ps(μ)χ0M1(μ,w(μ)

(I.5.21)

+ u(μ;us), y
S
μ )dμ+

∑
s<ti≤t

U(t, ti)Ps(ti)χ0M2(i, w(ti) + u(ti;us), y
S
ti),

w(t) = w(s) +

∫ t

s

Yc(μ)N1(μ,w(μ), y
S
μ )dμ+

∑
s<ti≤t

Yc(ti)N2(i, w(ti), y
S
ti),

(I.5.22)

with M1, M2, N1 and N2 defined by

M1(μ, a, b) = F(μ, a, b)−F(μ, a, 0),

M2(i, a, b) = G(i, a, b)− G(i, a),
N1(μ, a, b) = F(μ, a+ u(μ;us), b)−F(μ, u(μ;us), 0),

N2(i, a, b) = G(i, a+ u(ti;us), b)− G(i, u(ti; s), 0).

The idea now is to reinterpret the integral equation for w as a fixed-point
equation parameterized by yS(·) and u(·;us). Introduce the space

X = {φ ∈ RCR([s,∞),Rp) : ||φ(t)||ea(t−s) ≤ K}

equipped with the norm ||φ|| = supt≥s ||φ(t)||ea(t−s). Define Tw by

(Tw)(t) = −
∫ ∞

t

Yc(μ)N1(μ,w(μ), y
S
μ )dμ−

∑
t<ti<∞

Yc(ti)N2(i, w(ti), y
S
ti).

(I.5.23)

If w ∈ X, then from the assumption that f is an ACR functional we can
conclude that Tw ∈ RCR(R,Rn). So we consider the nonlinear function
T : X → RCR(R,Rn). Notice that if w is a fixed point of T , then w satisfies
the integral equation (I.5.22). Working backwards, it would then follow by
Lemma I.5.5.1 that

vt := Φt[w(t) + u(t;us)] + h(t, w(t) + u(t;us)) + ySt (I.5.24)

is a solution with the property that

||Pc(t)vt − Φtu(t;us)]|| = O(e−γt),

||Ps(t)vt − h(t, u(t;us))|| = O(e−γt),

as t → ∞ (recall that if w ∈ X, then w → 0 exponentially as t → ∞, while
h(t, ·) is uniformly Lipschitz with respect to t). It is at this stage that we
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refer the reader to the proof of Theorem 2 of Carr’s book [22]. The setup
having been completed, the proof that T can be made a contraction on X
provided δ is sufficiently small is the same as Carr’s argument and is omitted.
Specifically, we have the following conclusion: for s ∈ R and any (us, y

S
s ) is

sufficiently small, T : X → X is a contraction. In particular, by making this
dependence on the fixed point explicit and writing T : (R×R

p×RCRs(s))×
X → X, one can ensure that T is a uniform contraction. In the same way
we proved that the centre manifold is (uniformly in t) Lipschitz continuous,
one can show that the fixed point S∗(s, u, yS) of T (s, u, yS) is uniformly
(with respect to s) Lipschitz continuous in R

p ×RCRs(s), and the Lipschitz
constant can be made as small as needed by taking δ sufficiently small.

Now, for a given φ ∈ RCR, define us(φ) and ySs (φ) according to

Pc(s)φ = Φsus(φ), ySs (φ) = φ− Φsus(φ)− h(s, us(φ)).

Next, define Q(s, ·, ·) : Rp ×RCRs(s)→ R
p ×RCRs(s) by

Q(s, u, φ) = (u, φ) + (ΦsS
∗(s, us(φ), y

S
s (φ)), 0).

That is, Q(s, ·, ·) is a nonlinear perturbation from the identity. If we let
ψ ∈ RCR, then the function Qψ(s, ·, ·) : Rp × RCRs(s) → R

p × RCRs(s)
defined by

Qψ(s, u, φ) = (us(ψ), ψ − Φsus(ψ))− (ΦsS
∗(s, us(φ), y

S
s (φ)), 0)

satisfies the property that Q(s, u, φ) = (ψ1, ψ2) if and only if

QΦsψ1+ψ2
(s, u, φ) = (u, φ).

S∗(s, ·, ·) is (uniformly in s) Lipschitz continuous with a Lipschitz constant
that goes to zero as δ → 0. Since ψ does not factor into the nonlinear term,
Qψ can be made a uniform (with respect to s and ψ) contraction by taking
δ sufficiently small. As a consequence, every (ψ1, ψ2) ∈ R

p ×RCRs(s) is in
the range of Q(s, ·, ·) (in fact, Q(s, ·, · is a bijection).

Now, let xt defined for t ≥ s be a mild solution with ||xt|| for t ≥ s
sufficiently small. Write xs = Φsx

c
s + xS

s for xc
s ∈ R

p and xS
s ∈ RCRs(s).

Denote (vcs, v
S
s ) = Q−1(s, ·, ·)(xc

s, x
S
s ). Take note that vSs = xS

s . From the
above discussion, it follows that with u(t) = u(t; vcs), the asymptotic of the
theorem is satisfied. By restricting to a sufficiently small neighbourhood
of the origin, we can ignore the cutoffs on the vector field and jump map,
thereby obtaining results that are applicable to mild solutions of the system
without the cutoff nonlinearity. This proves the theorem.

I.5.5.1 Parameter Dependence

The following heuristic discussion of parameter-dependent centre manifolds
will be a bit imprecise. See Sect. I.8.1 for a more concrete presentation.



I.5.6. SMOOTHNESS IN THE STATE SPACE 89

Suppose the (parameter-dependent) process S(t, s; ε) : RCR → RCR is
generated by a parameter-dependent impulsive RFDE with parameter ε ∈
R

m, and at ε = 0, the equilibrium 0 is nonhyperbolic with a p-dimensional
centre manifold. One then considers the spatially extended process onRCR×
R

m defined by

(φ, ε) �→ (S(t, s; ε)φ, ε)

0 ∈ RCR×R
m is now nonhyperbolic with a (p+m)-dimensional centre fibre

bundle, so that the function (x, ε) �→ C(t, x, ε) defines a (p+m)-dimensional
centre manifold. The dynamics on this centre manifold are trivial in the
ε component, while those in the x component depend for each ε fixed on
x �→ C(t, x, ε).

For small parameters ε �= 0, there may be small solutions in the parameter-
dependent centre manifold Wε

c defined by

Wε
c(t) = {C(t, x, ε) : x ∈ RCRc(t)}

that are locally asymptotically stable when restricted to Wε
c . There could

also be stable attractors therein—in particular (by Theorem I.5.3.1), any
small bounded solutions are contained in the centre manifold. The stability
condition in addition to continuity with respect to initial conditions (Theo-
rem I.4.2.1) and attractivity of the centre manifold (Theorem I.5.5.1) then
grants the analogous stability of such small solutions or attractors when con-
sidered in the scope of the original infinite-dimensional system (I.4.1)–(I.4.2),
provided ε is small enough and RCRu is trivial.

To summarize, when the unstable fibre bundle is trivial, the dynam-
ics on the centre manifold completely determine all nearby dynamics. Lo-
cal stability assertions associated to small solutions and attractors on the
parameter-dependent centre manifold carry over to those of the original
infinite-dimensional system. The parameter-dependent centre manifold con-
tains all such small solutions and attractors.

I.5.6 Smoothness in the State Space

In Sect. I.5.2, we proved the existence of invariant centre manifolds associ-
ated to the abstract integral equation (I.4.3). These invariant manifolds are
images of a uniformly Lipschitz continuous function C : RCRc → RCR. Our
next task is to prove that the function C inherits the smoothness from the
generating impulsive functional differential equation. To accomplish this, we
will need to introduce an additional regularity assumption on the nonlinear
parts of the vector field and jump map.

H.8 The functions cj and sequences {dj(k) : k ∈ Z} introduced in H.5 are
bounded.
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Note that H.8 is a purely nonautonomous property and is trivially satisfied
if the vector field and jump functions are autonomous. Also, we will need to
assume in this section that the centre fibre bundle is finite-dimensional.

H.9 RCRc is finite-dimensional.

I.5.6.1 Contractions on Scales of Banach Spaces

The rest of this section will utilize several techniques from the theory of
contraction mappings on scales of Banach spaces. In particular, many of
the proofs that follow are inspired by those relating to smoothness of centre
manifolds appearing in [41, 71, 144], albeit adapted somewhat so as to manage
the explicitly nonautonomous and impulsive properties of the problem. The
following lemma will be very helpful. It is taken from Section IX, Lemma 6.7
of [41], but also appears as Theorem 3 in [144].

Lemma I.5.6.1. Let Y0, Y, Y1 be Banach spaces with continuous embeddings
J0 : Y0 ↪→ Y and J : Y ↪→ Y1, and let Λ be another Banach space. Consider
the fixed-point equation y = f(y, λ) for f : Y ×Λ→ Y . Suppose the following
conditions hold.

b1) The function g : Y0×Λ→ Y1 defined by (y0, λ) �→ g(y0, λ)=Jf(J0y0, λ)
is of class C1, and there exist mappings

f (1) : J0Y0 × Λ→ L(Y ),

f
(1)
1 : J0Y0 × Λ→ L(Y1).

such that D1g(y0, λ)ξ = Jf (1)(J0y0, λ)J0ξ for all (y0, λ, ξ) ∈ Y0×Λ×Y0

and Jf (1)(J0y0, λ)y = f
(1)
1 (J0y0, λ)Jy for all (y0, λ, y) ∈ Y0 × Λ× Y .

b2) There exists κ ∈ [0, 1) such that f(·, λ) : Y → Y is Lipschitz contin-

uous with Lipschitz constant κ, and each of f (1)(·, λ) and f
(1)
1 (·, λ) is

uniformly bounded by κ.

b3) Under the previous condition, the unique fixed point Ψ : Λ→ Y satisfy-
ing the equation Ψ(λ) = f(Ψ(λ), λ) itself satisfies Ψ = J0 ◦Φ for some
continuous Φ : Λ→ Y0.

b4) f0 : Y0 × Λ → Y defined by (y0, λ) �→ f0(y0, λ) = f(J0y0, λ) has a
continuous partial derivative

D2f : Y0 × Λ→ L(Λ, Y ).

b5) The mapping (y, λ) �→ J ◦ f (1)(J0y, λ) from Y0 × Λ into L(Y, Y1) is
continuous.
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Then, the mapping J ◦Ψ is of class C1 and D(J ◦Ψ)(λ) = J ◦ A(λ) for all
λ ∈ Λ, where A = A(λ) is the unique solution of the fixed-point equation
A = f (1)(Ψ(λ), λ)A+D2f0(Φ(λ), λ).

The reason we will need this lemma is because substitution operators such
as Rδ : PCη,s → PCη,s(R,Rn) ⊕ Bη,s

tk
(Z,Rn) defined in Corollary I.5.1.1,

though Lipschitz continuous, are generally not differentiable. The surprising
result is that if one instead considers the codomain to be PCζ,s(R,Rn) ⊕
Bζ,s

tk
(Z,Rn) for some ζ > η, then the substitution operator becomes differen-

tiable. Since Xη-type spaces admit continuous embeddings J : Xη1 ↪→ Xη2

whenever η1 ≤ η2, the centre manifold itself can be considered to be embed-
ded in any appropriate weighted Banach space with high enough exponent η.
An appropriate application of Lemma I.5.6.1 applied to the defining fixed-
point equation (I.5.7) of the centre manifold will allow us to prove that a
composition of the embedding operator with the fixed point is a C1 function.
An inductive argument will ultimately get us to Cm smoothness.

I.5.6.2 Candidate Differentials of the Substitution
Operators

Recall the definition of the modified nonlinearities

Fδ,s(t, x) = f(t, x)ξ

(
||Pc(s)x||

Nδ

)
ξ

(
||(Ps(s) + Pu(s))x||

Nδ

)

Gδ,s(k, x) = g(k, x0−)ξ

(
||Pc(s)x0− ||

Nδ

)
ξ

(
||(Ps(s) + Pu(s))x0− ||

Nδ

)
.

Since s is fixed, we may assume without loss of generality that || · || is smooth
on RCRc(0) \ {0}. We introduce a symbolic modification of the fixed-point
operator;

Gη,s
δ : PCη,s ××RCRc(s)→ PCη,s

defined in the same way as equation (I.5.7). The only difference here is that
wish to make the dependence on η, s and δ explicit. We denote the associated
fixed point by ũη,s, provided δ > 0 is sufficiently small.

From this point on, our attention shifts to proving the smoothness of
ũη,s : RCRc(s) → PCη,s as defined by the fixed point of (I.5.7). We begin
with some notation. Define PC∞ = ∪η>0PCη. Let

V η = {u ∈ PCη : ||(I − P̂c)u||0 <∞},

where P̂c is the projection operator from Lemma I.5.3.1. Equipped with the
norm

||u||V η,s = ||Pcu||η,s + ||(I − Pc)u||0,
the space V η,s is complete, where the s-shifted definitions are as outlined at
the beginning of Sect. I.5.1.1.
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Let δ > 0 be chosen as in Lemma I.5.3.1, define

V η
δ = {u ∈ V η : ||(I − P̂c)u||0 < δ}

and define V η
δ (t) ⊂ RCR by V η

δ (t) = {u(t) : u ∈ V η
δ }. Also, define the set

V ∞
δ = ∪η>0V

η
δ . Set Bη = PCη(R,Rn) ⊕ Bη

tk
(Z,Rn) and B∞ = ∪η>0B

η.
Finally, the bounded p-linear maps from X1 × · · · × Xp to Y for Banach
spaces Xi and Y will be denoted as Lp(X1× · · ·Xp, Y ). We will denote it as
Lp if there is no confusion.

By construction of the modified nonlinearity Rδ,s and the choice of δ from
Lemma I.5.3.1, the functions u �→ Fδ,s(t, u) and u �→ Gδ,s(k, u) are Cm on
V η
δ (t) and V η

δ (tk), respectively, for all t ∈ R and k ∈ Z. We are therefore free
to define

F̃
(p)
δ,s u(t) = DpF̃δ,s(t, u(t)), G̃

(p)
δ,su(k) = DpGδ,s(tk, u(tk)),

for 1 ≤ p ≤ m, where Dp denotes the pth Fréchet derivative with respect
to the second variable. For each u ∈ V ∞

δ , we can define a p-linear map

R̃
(p)
δ,s (u) : PC

∞ × · · · × PC∞ → B∞ by the equation

R̃
(p)
δ,s (u)(v1, . . . , vp)(t, k) = (F

(p)
δ,s u(t)(v1(t), . . . , vp(t)), G

(p)
δ,su(k)(v1(tk), . . . , vp(tk))).

(I.5.25)

For p = 0, we define R̃
(0)
δ,s = Rδ,s.

I.5.6.3 Smoothness of the Modified Nonlinearity

In this section we elaborate on various properties of the substitution operator

Rδ,s and its formal derivative R̃
(p)
δ,s introduced in equation (I.5.25). The first

thing we need to do is extend condition H.5 to the modified nonlinearities.

Lemma I.5.6.2. For j = 1, . . . ,m, there exist constants c̃j , d̃j , q̃ > 0 such
that

||Dj F̃δ,s(t, φ)−Dj F̃δ,s(t, ψ)|| ≤ c̃j ||φ− ψ||, ||Dj F̃δ,s(t, φ)|| ≤ q̃c̃j φ, ψ ∈ V ∞
δ (t)

||DjG̃δ,s(k, φ)−DjG̃δ,s(k, ψ)|| ≤ d̃j ||φ−ψ||, ||DjG̃(k, φ)|| ≤ q̃d̃j φ, ψ ∈ V ∞
δ,s(tk).

Proof. We prove only the Lipschitzian property for DjFδ,s, since the bound-
edness and corresponding results for DjGδ,s are proven similarly. Denote

X(s, φ) = ξ

(
||Pc(s)φ||

Nδ

)
ξ

(
||(I − Pc(s))φ||

Nδ

)
.

When φ, ψ ∈ V ∞
δ (t), X is m-times continuously differentiable and its deriva-

tive is globally Lipschitz continuous. Moreover, the Lipschitz constant can
be chosen independent of s because of the uniform boundedness (property
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1) of the projection operators. Let LipkX denote the Lipschitz constant for
DkX(s, ·). Then,

DjF̃δ,s(t, φ)−DjF̃δ,s(t, ψ) = Dj [f(t, φ)X(s, φ)− f(t, ψ)X(s, φ)]

=
∑

N1,N2∈P2(j)

D#N1f(t, φ)D#N2X(s, φ)−D#N1f(t, ψ)D#N2X(s, ψ)

=
∑

N1,N2∈P2(j)

D#N1 [f(t, φ)− f(t, ψ)]D#N2X(s, φ)

+D#N1f(t, ψ)D#N2 [X(s, φ)−X(s, ψ)],

where P2(j) denotes the set of partitions of length two from the set {1, . . . , j}
and #Y is the cardinality of Y . Restricted to the ball B2δ(0), the Lipschitz
constants for Djf(t, ·) and the boundedness estimates from H.5 then imply
the estimate

||DjF̃δ,s(t, φ)−DjF̃δ,s(t, ψ)|| ≤

⎛
⎝ ∑

N1,N2∈P2(j)

(1 + q)c#N1
(t)Lip#N2

X

⎞
⎠ ||φ−ψ||.

As each of cj and dj are bounded, the Lipschitz constant admits an upper
bound. Outside of B2δ(0), X and all of its derivatives are identically zero.

Lemma I.5.6.3. Let 1 ≤ p ≤ m, μi > 0 for i = 1, . . . , p, μ = μ1 + · · · + μp

and η ≥ μ. Then we have R̃
(p)
δ,s (u) ∈ Lp(PCμ1 × · · · × PCμp , Bη) for all

u ∈ V ∞
δ , with

||R̃(p)
δ,s (u)||Lp ≤ sup

t∈R

||F̃ (p)
δ,s u(t)||e−(η−μ)|t| + sup

k∈Z

||G̃(p)
δ,su(k)||e−(η−μ)|tk|

= ||R̃(p)
δ,s (u)||η−μ.

Also, u �→ R̃
(p)
δ,s (u) is continuous as a mapping R̃

(p)
δ,s : V σ

δ → Lp(PCμ1 × · · · ×
PCμp , Bη) if η > μ, for all σ > 0.

Proof. For brevity, denote R̃δ = R̃δ,s, and similarly for F̃ and G̃. It is easy

to verify that R̃
(p)
δ (u) is p-linear. For boundedness,

||R̃(p)
δ (u)||Lp = sup

t∈R,k∈Z

||v||�μ=1

||F̃ (p)
δ u(t)(v(t))||e−η|t| + ||G̃(p)

δ u(k)(v(tk))||e−η|tk|

≤ sup
t∈R

||v||�μ=1

||F̃ (p)
δ u(t)(v(t))||e−η|t| + sup

k∈Z

||w||�μ=1

||G̃(p)
δ u(k)(w(tk))||e−η|tk|

≤ sup
t∈R

||v||�μ=1

||F̃ (p)
δ u(t)|| ·

⎛
⎝∏

j

||vj(t)||

⎞
⎠e−η|t|+ sup

k∈Z

||w||�μ=1

||G̃(p)
δ u(k)|| ·

⎛
⎝∏

j

||wj(tk)||

⎞
⎠e−η|tk|

= sup
t∈R

||F̃ (p)
δ u(t)||e−(η−μ)|t| + sup

k∈Z

||G̃(p)
δ u(k)||e−(η−μ)|tk|,
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where ||v||�μ=1 is the set of all v = (v1, . . . , vp) ∈ PCμ1 × · · · × PCμp such
that ||vi||μi

= 1 for i = 1, . . . , p. The latter term in the inequality is finite
by Lemma I.5.6.2 whenever η ≥ μ. In particular, the latter lemma implies
that for all φ ∈ V ∞

δ , one has supt∈R
||DjF̃δ(t, φ(t))|| ≤ q̃c̃j , and similar for

G̃k. This uniform boundedness can then be used to prove the continuity of

u �→ R̃
(p)
δ (u) when η > μ; the proof follows that of [Lemma 7.3 [71]] and is

omitted here.

The proofs of the following lemmas are essentially identical to the proofs
of [Corollary 7.5, Corollary 7.6, Lemma 7.7 [71]] and are omitted.

Lemma I.5.6.4. Let η2 > kη1 > 0, 1 ≤ p ≤ k. Then, R̃δ,s : V η1

δ →
Lp(PCη1 × · · · × PCη1 , Bη2) is Ck and DpR̃δ,s = R̃

(p)
δ,s .

Lemma I.5.6.5. Let 1 ≤ p ≤ m, μi > 0 for i = 1, . . . , p, μ = μ1 + · · · + μp

and η ≥ μ. Then, R̃
(p)
δ,s : V σ

δ → Lp(PCμ1 × · · · × Πμp , Bη) is Ck−p provided
η > μ+ (k − p)σ.

Lemma I.5.6.6. Let 1 ≤ p ≤ k, μi > 0 for i = 1, . . . , p, μ = μ1 + · · ·μp

and η > μ + σ for some σ > 0. Let X : RCRc(s) → V σ
δ be C1. Then,

R̃
(p)
δ,s ◦X : RCRc(s)→ Lp(PCμ1 × · · · ×Πμp , Bη) is C1 and

D
(
R̃

(p)
δ,s ◦X

)
(φ)(v1, . . . , vp, ψ) = R̃

(p+1)
δ,s (X(φ))(v1, . . . , vp, X

′(φ)ψ).

I.5.6.4 Proof of Smoothness of the Centre Manifold

With our preparations complete, we can formulate and prove the statement
concerning the smoothness of the centre manifold.

Theorem I.5.6.1. Let J η2,η1
s : PCη1,s → PCη2,s denote the (continuous)

embedding operator for η1 ≤ η2. Let [η̃, η] ⊂ (0,min{−a, b}) be such that
mη̃ < η. Then, for each p ∈ {1, . . . ,m} and η ∈ (pη̃, η], the mapping Jηη̃

s ◦
ũη̃,s : RCRc(s)→ PCη,s is of class Cp provided δ > 0 is sufficiently small.

Proof. The proof here follows the same lines as Theorem 7.7 from Section
IX of [41]. To begin, we choose δ > 0 small enough so that Lemma I.5.3.1
is satisfied in addition to having NLδ||Kη

s || < 1
4 for all η ∈ [η̃, η]. Remark

that this condition ensures that the centre manifold has range in V η. By
Lemma I.5.1.3 and Corollary I.5.1.1, this can always be done in such a way
that the inequality holds for all s ∈ R.

We proceed by induction on k. For p = 1 = k, we let η ∈ (η̃, η] and show
that Lemma I.5.6.1 applies with

Y0 = V
η̃,s
δ , Y = PCη̃,s

, Y1 = PCη,s
, Λ = RCRc(s)

f(u, ϕ) = G̃η̃,s
δ (u, ϕ), f

(1)
(u, ϕ) = Kη̃

s ◦ R̃
(1)
δ,s(u), f

(1)
1 (u, ϕ) = Kη

s ◦ R̃
(1)
δ,s(u),
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with embeddings J = J ηη̃
s and J0 : V η̃,s

δ ↪→ PCη̃,s. To check condition b1,
we must first verify the C1 smoothness of

V η̃,s
δ ×RCRc(s) � (u, ϕ) �→ g(u, ϕ) = J ηη̃

s

(
U(·, s)ϕ+Kη̃

s ◦ R̃δ,s(J0u)
)
.

The embedding operator J ηη̃
s is itself C1, as is ϕ �→ U(·, s)ϕ and J0u �→

R̃δ,s(J0u), the latter due to Lemma I.5.6.4. C1 smoothness of g then fol-
lows by continuity of the linear embedding J0. Verification of the equali-

ties D1g(u, ϕ)ξ = Jf (1)(J0u, ϕ)J0ξ and Jf (1)(J0u, ϕ)ξ = f
(1)
1 (J0u, ϕ)Jξ is

straightforward. Condition b2 follows by boundedness of the embedding op-
erators and the small Lipschitz constant for G̃η̃,s

δ,s . For condition b3, the fixed

point is ũη̃,s : RCRc(s)→ PCη̃,s, and we may factor it as ũη̃,s = J0 ◦ Φ with

Φ : RCRc(s) → V η̃,s
δ defined by Φ(ϕ) = ũη̃,s(ϕ); the latter is continuous

by Theorem I.5.2.1, and the factorization is justified by Lemma I.5.3.1. To
check condition b4, we must verify that

V η̃,s
δ ×RCRc(s) � (u, ϕ) �→ f0(u, ϕ) = G̃η̃,s

δ,s (J0u, ϕ)

has a continuous partial derivative in its second variable—this is clear since
f0 is linear in ϕ. Finally, condition b5 requires us to verify that the map

(u, ϕ) �→ J ηη̃
s ◦ Kη̃

s ◦ R̃
(1)
δ,s (J0u) is continuous from V η̃,s

δ × RCRc(s) into
L(RCRc(s),PCη,s), but this once again follows by the continuity of the em-
bedding operators and the smoothness of R̃δ,s from Lemma I.5.6.4.

The conditions of Lemma I.5.6.1 are satisfied, and we conclude that J ηη̃ ◦
ũη̃,s is of class C1 and that the derivative D(J ηη̃ ◦ ũη̃,s(ϕ)) ∈ L(RCRc(s),
PCη,s) is the unique solution w(1) of the equation

w(1) = Kη̃
s ◦ R̃

(1)
δ,s (ũ

η̃
s(ϕ))w

(1) + U(·, s) := F1(w
(1), ϕ). (I.5.26)

The mapping F1 : L(RCRc(s),PCη,s) × RCRc(s) → L(RCRc(s),PCη,s) is
a uniform contraction for η ∈ [η̃, η]—indeed, F1(·, ϕ) is Lipschitz continuous
with Lipschitz constant L̃δ · ||Kη

s || < 1
4 ; this follows from Lemma I.5.6.3 and is

independent of s. Thus, ũ
(1)
s (ϕ) ∈ L(RCRc(s),PCη̃,s) ↪→ L(RCRc(s),PCη,s)

for η ≥ η̃. Moreover, ũ
(1)
s : RCRc(s) → L(RCRc(s),PCη,s) is continuous if

η ∈ (η̃, η].
Now, let 1 ≤ p ≤ k for k ≥ 1 and suppose that for all q ∈ {1, . . . , p} and

all η ∈ (qη̃, η], the mapping

J ηη̃
s ◦ ũη̃,s : RCRc(s)→ PCη,s

is of class Cq with Dq(J ηη̃
s ◦ ũη̃

s) = J ηη̃
s ◦ ũ(q)

η̃,s and ũ
(q)
η̃,s(ϕ) ∈ Lq(RCRc(s),

PCqη̃,s) for each ϕ ∈ RCRc(s), such that the mapping

J ηη̃
s ◦ ũ(q)

η̃,s : RCRc(s)→ Lq(RCRc(s),PCη,s)
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is continuous for η ∈ (qη̃, η]. Suppose additionally that ũ
(q)
η̃,s(ϕ) is the unique

solution w(p) of an equation

w(p) = Kη̃p
s ◦ R̃(1)

δ,s (ũη̃,s(ϕ))w
(p) +H

(p)
η̃ (ϕ) := F

(p)
η̃ (w(p), ϕ), (I.5.27)

with H1 = U(·, s), and H
(p)
x (ϕ) for p ≥ 2 is a finite sum of terms of the form

Kpx
s ◦ R̃(q)

δ,s(ũη̃,s(ϕ))(ũ
(r1)
η̃,s (ϕ), · · · , ũ(rq)

η̃,s (ϕ))

with 2 ≤ q ≤ p, 1 ≤ ri < p for i = 1, . . . , q, such that r1 + · · · + rq =

p. Under such assumptions, the mapping F
(p)
η̃ : Lp(RCRc(s),PCη,s) ×

RCRc(s) → Lp(RCRc(s),PCη,s) is a uniform contraction for all η ∈ [pη̃, η];
see Lemma I.5.6.3.

Next, choose some η ∈ ((p+1)η̃, η], σ ∈ (η̃, η/(p+1)] and μ ∈ ((p+1)σ, η).
We will verify the conditions of Lemma I.5.6.1 with the spaces and functions

Y0 = Lp(RCRc(s),PCpσ,s), Y = Lp(RCRc(s),PCμ,s),
[3pt]Y1 = Lp(RCRc(s),PCη,s)

f(u, ϕ) = Kμ
s ◦ R̃

(1)
δ,s (ũη̃,s(ϕ))u+H

(p)
μ/p(ϕ), Λ = RCRc(s),

f (1)(u, ϕ) = Kμ
s ◦ R̃

(1)
δ,s (ũη̃,s(ϕ)) ∈ L(Y ),

f
(1)
1 (u, ϕ) = Kη

s ◦ R̃
(1)
δ,s (ũη̃,s(ϕ)) ∈ L(Y1).

We begin with the verification of condition b1. We must check that

Lp(RCRc(s),PCpσ,s)×RCRc(s) � (u, ϕ) �→ J ημ ◦ Kμ
s ◦ R̃(1)

δ,s (ũη̃,s(ϕ))u+J ημ ◦H(p)
μ/p

(ϕ)

is of class C1, where now J η2η1 : Lp(RCRc(s),PCη1,s) ↪→ Lp(RCRc(s),
PCη2,s). The above mapping is C1 with respect to u ∈ Lp(RCRc(s),PCpσ,s)
since it is linear in this variable. With respect to ϕ ∈ RCRc(s), we have

that ϕ �→ J ημKμ
s ◦ R̃

(1)
δ,s (ũη̃,s(ϕ)) is C1: this follows by Lemma I.5.6.6 with

μ > (p + 1)σ and the C1 smoothness of ϕ �→ J ση̃ ◦ ũη̃,s(ϕ) with σ > η̃. For

the C1 smoothness of the portion ϕ �→ J ημH
(p)
μ/p(ϕ), we get differentiability

from Lemma I.5.6.6; we have that the derivative of ϕ �→ H
(p)
μ/p(ϕ) is a sum of

terms of the form

Kμ
s ◦R̃

(q+1)
δ,s (ũη̃,s(ϕ))(ũ

(r1)
η̃,s (ϕ), . . . , ũ

(rq)
η̃,s (ϕ))

+

q∑
j=1

Kμ
s ◦ R̃

(q)
δ,s(ũη̃,s(ϕ))(ũ

(r1)
η̃,s (ϕ), . . . , ũ

(rj+1)
η̃,s (ϕ), . . . , ũ

(rq)
η̃,s (ϕ)),

and each ũ
(j)
η̃,s is understood as a map into PCjσ,s. Applying Lemma I.5.6.3

with μ > (p + 1)σ grants continuity of DH
(p)
μ/p(ϕ) and, subsequently, to
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J ημDH
(p)
μ/p(ϕ). The other embedding properties of condition b1 are easily

checked. Condition b4 can be proven similarly.
The Lipschitz condition and boundedness of b2 follow by the choice of

δ > 0 at the beginning and the uniform contractivity of Hp described above.
Condition b3 is proven by writing

J ημ ◦ Kμ
s ◦ R̃

(1)
δ,s (ũη̃,s)(ϕ)) = Kη

s ◦ R̃
(1)
δ,s (ũη̃,s(ϕ))

and applying Lemma I.5.6.3 together with the C1 smoothness of ũη̃,s to

obtain the continuity of ϕ �→ R̃
(1)
δ,s (ũη̃,s) ∈ L(Y, Y1). This also proves the

final condition b5 of Lemma I.5.6.1, and we conclude that ũ
(p)
η̃,s : RCRc(s)→

Lp(RCRc(s),PCη,s) is of class C1 with ũ
(p+1)
η̃,μ = Dũ

(p)
η̃,s ∈ L(p+1)(RCRc(s),

PCη,μ) given by the unique solution w(p+1) of the equation

w(p+1) = Kμ
s ◦ R̃

(1)
δ,s (ũη̃,s(ϕ))w

(p+1) +H
(p+1)
μ/(p+1)(ϕ), (I.5.28)

where H
(p+1)
μ/(p+1)(ϕ) = Kμ

s ◦ R̃
(2)
δ,s (ũη̃,s(ϕ))(ũ

(p)
η̃,s(ϕ), ũ

(1)
η̃,s(ϕ)) +DH

(p)
μ/p(ϕ). Sim-

ilar arguments to the proof of the case k = 1 show that the fixed point
w(p+1) is also contained in L(p+1)(RCRc(s),PCη̃(p+1),s), and the proof is
complete.

Corollary I.5.6.1. C : RCRc → RCR is Cm and tangent at the origin to
the centre bundle RCRc. More precisely, C(t, ·) : RCRc(t) → RCR is Cm

and DC(t, 0)φ = φ for all φ ∈ RCRc(t).

Proof. Let η̃, η be as in the proof of Theorem I.5.6.1. Define the evaluation
map evt : PCη → RCR by evt(f) = f(t). Since we can decompose the centre
manifold as

C(t, φ) = evt(ũt(φ)) = evt(J ηη̃
t ũt(φ)),

boundedness of the linear evaluation map on the space PCη,t then implies
the Ck smoothness of C(t, ·). To obtain the tangent property, we remark that

DC(t, 0)φ = evt

(
D
(
J ηη̃
t ◦ ũt(0)

)
φ
)
= evt

(
ũ
(1)
η,t(0)φ

)
.

From equation (I.5.26) and Theorem I.5.3.1, we obtain ũ
(1)
η,t(0) = U(·, t), from

which it follows that DC(t, 0)φ = φ, as claimed.

As a secondary corollary, we can prove that each derivative of the centre
manifold is uniformly Lipschitz continuous. The proof is similar to that of
Corollary I.5.2.1 if one takes into account the representation of the derivatives

ũ
(p)
η̃,s as solutions of the fixed-point equations (I.5.28), whose right-hand side

is a contraction with Lipschitz constant independent of s.
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Corollary I.5.6.2. For each p ∈ {1, . . . , k}, there exists a constant L(p) > 0
such that the centre manifold satisfies ||DpC(t, φ)−DpC(t, ψ)|| ≤ L(p)||φ−ψ||
for all t ∈ R and φ, ψ ∈ RCRc(t).

Additionally, each of the Taylor coefficients of the centre manifold is in
fact bounded. This observation will be important in later chapters.

Corollary I.5.6.3. There exist constants γ0, . . . , γm such that the Cm centre
manifold satisfies ||DjC(t, 0)|| ≤ γj for all t ∈ R. If the centre manifold is
Cm+1, the Taylor remainder

Rm(t, φ) = C(t, φ)−
m∑
j=1

DjC(t, 0)φj

admits an estimate of the form ||Rm(t, φ)|| ≤ γ(m)||φ||m+1 for φ ∈ Bδ(0) ∩
RCRc(t). The constants γ(m) and δ can be chosen independent of t.

Proof. From equation (I.5.28), the jth Taylor coefficient is given by

DjC(t, 0) = evt

(
H

(j+1)
μ/(j+1)(0)

)
.

The first two coefficients (j = 0 and j = 1) are zero and the identity, re-
spectively. These are bounded. A straightforward inductive argument on
the form of the maps H then grants the uniform boundedness of DjC(t, 0).
The claimed bound on the remainder term then follows from the uniform
boundedness of Dm+1C(t, 0) and the Lipschitz constant L(j+1) from Corol-
lary I.5.6.2.

We readily obtain the smoothness of the centre manifold in the case where
the semilinear equation is periodic. In particular, in such a situation some of
the assumptions H.1–H.8 are satisfied automatically and can be ignored.

Corollary I.5.6.4. Suppose the semilinear equation (I.4.1)–(I.4.2) satisfies
the following conditions.

P.1 The equation is periodic with period T and c impulses per period. That
is, L(t+ T ) = L(t) and f(t+ T, ·) = f(t) for all t ∈ R, and B(k+ c) =
B(k) , g(k + c, ·) = g(k, ·) and tk+c = tk + T for all k ∈ Z.

P.2 Conditions H.1–H.3 and H.5–H.6 are satisfied.

Then, the conclusions of Corollaries I.5.6.1 and I.5.6.2 hold.

I.5.6.5 Periodic Centre Manifold

In this section we will prove that the centre manifold is itself a periodic
function, provided the conditions P.1–P.2 of Corollary I.5.6.4 are satisfied.
We begin with a preparatory lemma.
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Lemma I.5.6.7. Define the operator Ns : RCRc(s)→ RCRc(s) by

Ns(φ) = Pc(s)S(s+ T, s)C(s, φ).

This operator is well-defined and invertible in a neighbourhood of 0∈RCRc(s).
Moreover, the neighbourhood can be written U ∩ RCRc(s) for some open
neighbourhood U ⊂ RCR of 0 ∈ RCR, independent of s.

Proof. To show that Ns is invertible in a neighbourhood of the origin, we will
use the inverse function theorem. The Fréchet derivative of Ns at 0 is given
by

DNs(0)φ = Pc(s) ◦DS(s+ T, s)(0) ◦DC(s, 0)φ
= Pc(s+ T ) ◦ U(s+ T, s)φ

= Uc(s+ T, s)φ,

where we used Corollary I.5.6.1 to calculate DC(s, 0) and Theorem I.4.2.1
to calculate DS(s + T, s)(0). Since U(s + T, s) is an isomorphism (The-
orem I.3.1.3) of RCRc(s) with RCRc(s + T ) = RCRc(s), we obtain the
claimed local invertibility.

To show that the neighbourhood may be written as claimed, we remark
that DNs(x) is uniformly convergent (in the variable s) as x→ 0 to DNs(0).
Indeed, we have the estimate

||DNs(x)−DNs(0)|| ≤ ||Uc(s+ T, s)Pc(s)|| · ||DC(s, x)−DC(s, 0)||,

and the Lipschitz property of Corollary I.5.6.2 together with uniform bound-
edness of the projector Pc(s) and centre monodromy operator Uc(s + T, s)
grants the uniform convergence as x → 0. As a consequence, the implicit
function may be defined on a neighbourhood that does not depend on s.

Theorem I.5.6.2. There exists δ > 0 such that C(s+ T, φ) = C(s, φ) for all
s ∈ R whenever ||φ|| ≤ δ.

Proof. By Lemma I.5.6.7, there exists δ > 0 such that if ||φ|| ≤ δ, we can write
φ = Ns(ψ) for some ψ ∈ RCRc(s). By Theorem I.5.3.1 and the periodicity
condition P.1,

C(s+ T, φ) = C(s+ T,Ns(ψ))

= C(s+ T, Pc(s+ T )S(s+ T, s)C(s, ψ))
= S(s+ T, s)C(s, ψ)
= S(s, s− T )C(s, ψ)
= C(s, Pc(s)S(s, s− T )C(s, ψ))
= C(s, Pc(s)S(s+ T, s)C(s, ψ))
= C(s,Ns(ψ)) = C(s, φ),

where the identity S(s + T, s) = S(s, s − T ) follows due to periodicity and
Lemma I.4.1.1.
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I.5.7 Regularity of Centre Manifolds with
Respect to Time

In the previous section we were concerned with the smoothness of φ �→ C(t, φ).
To contrast, in this section we are interested in to what degree the function
t �→ DkC(t, φ) is differentiable, for each k = 1, . . . ,m. We should generally not
expect this function to be differentiable; indeed, it would be very surprising
if this were true given that the process U(t, s) associated to the linearization
is generally discontinuous everywhere (recall the discussion of Sect. I.2.2.2).

Perhaps it is better to motivate our ideas on regularity in time by explain-
ing how we will be using the centre manifold in applications. From Taylor’s
theorem, C(t, φ) admits an expansion of the form

C(t, φ) = DC(t, 0)φ+
1

2
D2C(t, 0)[φ]2 + · · ·+ 1

m!
DmC(t, 0)[φ]m +O(||φ||m+1),

where [φ]k = [φ, . . . , φ] with k factors, and the O(||φ||m+1) terms generally
depend on t. By Theorem I.5.6.2, under periodicity assumptions these terms
will be uniformly bounded in t for ||φ|| sufficiently small. This expansion
can in principle be used in the dynamics equation (I.5.12)–(I.5.13) on the
centre manifold or its integral version (I.5.10), which will permit us to classify
bifurcations in impulsive RFDE. In later sections we will want to make these
dynamics equations concrete—that is, to pose them in a concrete vector space
such as Rp for some p ∈ N. By analogy with ordinary and delay differential
equations, this should also allow us to obtain a partial differential equation
for the Taylor coefficients DjC(t, 0). As these coefficients are time-varying,
we should suspect this PDE to contain derivatives in time as well.

In summary, we need to consider the differentiability of the function t �→
DjC(t, 0) for j = 1, . . . ,m. Since we suspect that this function will not
actually be differentiable, we might consider instead the differentiability of

t �→ DjC(t, 0)[φ1, . . . , φj ](θ)

for each θ ∈ [−r, 0] and j-tuples φ1, . . . , φj . While a more realistic goal, even
this is too strong a condition. The first differential DC(t, 0) : RCRc(t) →
RCR of the centre manifold has a different domain for each t. As a con-
sequence, we cannot even define the derivative of t �→ DC(t, 0)φ(θ), since
we must have φ ∈ RCRc(t) for the right-hand side to be well-defined. This
problem is apparent for all higher differentials.

I.5.7.1 A Coordinate System and Pointwise PC1,m-
Regularity

To address the issue, the centre manifold having a “time-varying domain”, let
us first assume thatRCRc is finite-dimensional—that is, H.9 is satisfied. Note
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if we fix a sufficiently well-behaved coordinate system in RCRc(t)—for exam-
ple, let φ1, . . . , φp be a basis for RCRc(0) and define φi(t) = Uc(t, 0)φi for i =
1, . . . , p to be a basis for RCRc(t)—then the function w(t) of Lemma I.5.4.1
and Theorem I.5.4.1 can be written as w(t) = Φtz(t) for z ∈ R

p, where
Φt = [ φ1(t) · · · φp(t) ]. This motivates us to consider instead a centre
manifold in these coordinates.

Definition I.5.7.1. The function C : R× R
p → RCR defined by

C(t, z) = C(t,Φtz) (I.5.29)

is the centre manifold in terms of the basis array Φ.

If C(t, ·) is Cm-smooth, the chain rule implies the same is true for C(t, ·).
It follows that

C(t, w(t)) = DC(t, 0)z(t) +
1

2
D2C(t, 0)[z(t), z(t)] + · · ·

+
1

m!
DmC(t, 0)[z(t)]m +O(||w(t)||m+1),

so insofar as dynamics on the centre manifold are concerned, it is enough
to study the differentiability of t �→ DjC(t, 0)[z1, . . . , zp](θ) for p-tuples
z1, . . . , zp ∈ R

p. Specifically, the temporal regularity we will attempt to
prove is given in the following definition.

Definition I.5.7.2. A function F : R × R
p → RCR is pointwise PC1,m-

regular at zero if it satisfies the following conditions:

• x �→ F (t, x) is Cm in a neighbourhood of 0 ∈ R
p, uniformly in t;

• for j = 0, . . . ,m, DjF (t, 0)[z1, . . . , zj ](θ) is differentiable from the right
with limits on the left separately with respect to t and θ, for all z1, . . . , zj
∈ R

p.

With this in mind, the result we will prove is as follows.

Theorem I.5.7.1. Let φ1, . . . , φp be a basis for RCRc(0), and define

Φt = [ Uc(t, 0)φ1 · · · Uc(t, 0)φp ].

If the centre manifold C : RCRc → RCR is (fibrewise) Cm, then the centre
manifold in terms of the basis array Φ is pointwise PC1,m-regular at zero
provided certain technical conditions are met (assumption H.10). Moreover,
if θ ∈ RCR(R, [−r, 0]), then t �→ C(t, z)(θ(t)) is continuous from the right
with limits on the left for all z ∈ R

p, and z �→ C(t, z) is Lipschitz continuous,
uniformly for t ∈ R.

The technical condition will be introduced in Sect. I.5.7.3.
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I.5.7.2 Reformulation of the Fixed-Point Equation

Given that C(t, z) = C(t,Φtz), we can equivalently write C(t, z) = vt(z)(t)
with vt : R

p → PCη,t the unique fixed point of the equation

vt(z) = Φ(·)z +Kη
t (Rδ,t(vt(z))) (I.5.30)

for each |z| small enough, where Kη
t is as defined in Eq. (I.5.3) and Rδ,t is the

substitution operator from Sect. I.5.1.3. Notice also that the nonlinear oper-
ator defining the right-hand side of the equation admits the same Lipschitz
constant as original fixed-point operator G from Eq. (I.5.7). Up to an ap-

propriate embedding, the jth differential v
(j)
t satisfies for j ≥ 2 a fixed-point

equation of the form

v
(j)
t = Kη

t ◦R
(1)
δ,t (vt)v

(j)
t +Kη

t ◦H(j)(vt, v
(1)
t , . . . , v

(j−1)
t ), (I.5.31)

with the right-hand side defining a uniform contraction in v
(j)
t . H(j) can be

written as a finite linear combination of terms of the form

R
(q)
δ,t (vt)[v

(r1)
t , . . . , v

(rq)
t ],

for q ∈ {2, . . . , j}, such that r1 + · · · + rq = j. All of this follows from (the
proof of) Theorem I.5.6.1. Explicitly,

H(j) = −R(1)
δ,t (vt)v

(j)
t +Dj

z[Rδ,t(vt(z))],

and one can verify by induction on j that H(j) contains no term of the form

R(1)(vt)v
(j)
t and that the coefficients in the aforementioned linear combination

are independent of t. To compare, for j = 0 and j = 1, we can compute
directly from the definition of the fixed point and by using Corollary I.5.6.1
and the chain rule that

vt(0)(·) = 0, (I.5.32)

v
(1)
t (0)(·) = Φ(·). (I.5.33)

The assumption Df(t, 0) = Dg(k, 0) = 0 implies R
(1)
δ (0) = 0, so the fixed-

point equation (I.5.31) implies

v
(j)
t (0)(μ) =

[
Kη

t ◦H(j)(0,Φ(·), v
(2)
t (0)(·), . . . , v(j−1)

t (0)(·))
]
(μ) (I.5.34)

for j ≥ 2. By definition of the basis array Φ, the following lemma is proven.

Lemma I.5.7.1. If the centre manifold is C1, then the centre manifold in
terms of the basis array Φ is pointwise PC1,1-regular at zero. If the centre
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manifold is Cm, then the centre manifold in terms of the basis array Φ is
pointwise PC1,m-regular at zero provided

t �→
[
Kη

t ◦H(j)(0,Φ(·), v
(2)
t (0)(·), . . . , v(j−1)

t (0)(t))
]
(t)[z1, . . . , zj ](θ),

θ �→
[
Kη

t ◦H(j)(0,Φ(·), v
(2)
t (0)(·), . . . , v(j−1)

t (0)(t))
]
(t)[z1, . . . , zj ](θ)

are each, for j = 2, . . . ,m differentiable from the right with limits on the left,
for all z1, . . . , zj ∈ R

p.

I.5.7.3 A Technical Assumption on the Projections Pc(t)
and Pu(t)

By definition of the bounded linear mapKη
t from (I.5.3), it will be necessary to

differentiate (in t) integrals involving terms of the form μ �→ U(t, μ)Ps(μ)χ0

and μ �→U(t, μ)Pu(μ)χ0. Generally, if we assumeRCRu(0) to be q-dimensional
(guaranteed by Theorem I.3.1.3 if the linearization is periodic, for example),
then we can fix a basis ψ1, . . . , ψq for RCRu(0) and construct a basis array

Ψt = [ Uu(t, 0)ψ1 · · · Uu(t, 0)ψq ]

for RCRu(t) that is formally analogous to the basis array Φt for the centre
fibre bundle. Under spectral separation assumptions, Uu(t, s) : RCRu(s) →
RCRu(t) and Uc(t, s) : RCRc(s) → RCRc(t) are topological isomorphisms,
from which it follows that there exist unique Yc(t) ∈ R

p×n and Yu(t) ∈ R
q×n

such that

Pc(t)χ0 = ΦtYc(t),

Pu(t)χ0 = ΨtYu(t).
(I.5.35)

Recall p = dim(RCRc). Even under periodicity conditions, computing the
action of these projections on the functional χ0 ∈ RCR([−r, 0],Rn×n) is
quite nontrivial and requires computing the abstract contour integral (I.3.4).
Though this can in principle be done numerically by discretizing the mon-
odromy operator, there is little in the way of theoretical results guaranteeing,
for example, that the matrix functions t �→ Yc(t) and t �→ Yu(t) are, respec-
tively, elements of RCR(R,Rp×n) and RCR(R,Rq×n). Such a result would
make the differentiation of the integrals appearing in the definition of Kη

t

much more reasonable. We therefore introduce another hypothesis. We will
discuss it in a bit more detail in Sect. I.5.7.7.

****

H.10 There are (finite) basis arrays Φ and Ψ for RCRc and RCRu, respec-
tively, for which the matrix functions t �→ Yc(t) and t �→ Yu(t) from
equation (I.5.35) are continuous from the right and possess limits on
the left.
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I.5.7.4 Proof of PC1,m-Regularity at Zero

We deal first with the continuity of t �→ C(t, z)(θ(t)) from the right and
the existence of its left-limits. Since C(·, z) = vt(z)(·) ∈ PCη,t, it can be
identified with a history function t �→ ct for some c ∈ RCR(R,Rn). But
this implies C(t, z)(θ(t)) = ct(θ(t)) = c(t + θ(t)). The conclusion follows
because c ∈ RCR(R,Rn) and θ ∈ RCR(R, [−r, 0]), and right-continuity and
limits respect composition. As for the Lipschitzian claim, it follows by similar
arguments to the proof of the original centre manifold Theorem I.5.2.1 and
Corollary I.5.2.1.

Using the definition of the linear map Kη
t in (I.5.3) and equation (I.5.34),

we can explicitly write v
(j)
t (0)(t) as

v
(j)
t (0)(t) =

∫ t

−∞
U(t, μ)[I − Pc(μ)− Pu(μ)]χ0Ĥ

(j)
1 (μ)dμ

−
∫ ∞

t

U(t, μ)Pu(μ)χ0Ĥ
(j)
1 (μ)dμ

+
t∑

−∞
U(t, ti)[I − Pc(ti)− Pu(ti)]χ0Ĥ

(j)
2 (ti)dti

−
∞∑
t

U(t, ti)Pu(ti)χ0Ĥ
(j)
2 (ti)dti,

where each of Ĥ
(j)
1 (μ) and Ĥ

(j)
2 (ti) and H(j) are related by the equations

H(j) =
∑
i

ciR
(ri)
δ,t (0)[Φ

di,1

(·) , [v
(2)
t (0)(t)]di,2 , . . . , [v

(j−1)
t (0)(t)]di,j−1 ]

Ĥ
(j)
1 (μ) =

∑
i

ciD
rif(μ, 0)[Φdi,1

μ , [v
(2)
t (0)(μ)]di,2 , . . . , [v

(j−1)
t (0)(μ)]di,j−1 ]

Ĥ
(j)
2 (tk) =

∑
i

ciD
rig(k, 0)[Φ

di,1

tk
, [v

(2)
t (0)(tk)]

di,2 , . . . , [v
(j−1)
t (0)(tk)]

di,j−1 ].

The first line follows from the definition of H(j), while the other two come
from the definition of the substitution operator. Note also that we have

suppressed the inputs z1, . . . , zj ; technically, each of Ĥ
(j)
1 (μ) and Ĥ

(j)
2 (μ) are

j-linear maps from R
p to RCR. Using assumption H.10, we can equivalently

write v
(j)
t (0)(t) as

v
(j)
t (0)(t) =

∫ t

−∞
[U(t, μ)χ0 − ΦtYc(μ)−ΨtYu(μ)]Ĥ

(j)
1 (μ)dμ

−
∫ ∞

t

ΨtYu(μ)Ĥ
(j)
1 (μ)dμ
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+

t∑
−∞

[U(t, ti)χ0 − ΦtYc(ti)−ΨtYu(ti)]Ĥ
(j)
2 (ti)dti

−
∞∑
t

ΨtYu(ti)Ĥ
(j)
2 (ti)dti. (I.5.36)

At this stage, we remark that Theorem I.5.6.1 implies v
(i)
t (0)(·)[z1, . . . , zi] ∈

PC∞ for i = 1, . . . , j − 1, while Φt is pointwise differentiable from the
right by its very definition. With these details and assumption H.3, μ �→
Ĥ

(j)
1 (μ)[z1, . . . , zj ] is an element of RCR(R,Rn) for every tuple z1, . . . , zj ∈

R
p. From assumption H.10, v

(j)
t (0)(t) is pointwise differentiable from the

right if and only if the limit

lim
ε→0+

1

ε

∫ t+ε

t

U(t+ ε, μ)χ0Ĥ
(j)
1 (μ)dμ

exists pointwise. From Eq. (I.2.15) and Lemma I.2.3.5, we can equivalently
write the integral above in terms of the fundamental matrix solution:

∫ t+ε

t

U(t+ ε, μ)χ0Ĥ
(j)
1 (μ)dμ

=

∫ t+ε

t

χ(−∞,t+ε+θ](μ)

(
I +

∫ t+ε+θ

μ

L(ζ)Vζ(·, μ)dζ
)
Ĥ

(j)
1 (μ)dμ.

If θ < 0, then the integrand vanishes when ε < −θ. Since μ �→ Ĥ
(j)
1 (μ) is

continuous from the right, we conclude that

lim
ε→0+

1

ε

∫ t+ε

t

U(t, μ)χ0Ĥ
(j)
1 (μ)dμ = χ0Ĥ

(j)
1 (t),

so that t �→ v
(j)
t (0)(t) is differentiable from the right (for θ fixed), as claimed.

The proof of existence of limits on the left is similar and omitted.
To get the analogous result for θ, it is worth recalling that from the fixed-

point formulation, v
(j)
t (0) is a j-linear map from R

p to PCη,t. As a conse-
quence, for all t ∈ R, θ ∈ [−r, 0] and z1, . . . , zj ∈ R

p the equation

v
(j)
t (0)(t)[z1, . . . , zj ](θ) = v

(j)
t (0)(t+ θ)[z1, . . . , zj ](0)

is satisfied. The analogous differentiability and limit results for θ therefore
follow from those of t, completing the proof.

I.5.7.5 The Hyperbolic Part Is Pointwise PC1,m-Regular
at Zero

Later we will need to also consider the Taylor expansions of the hyperbolic
part H : R× R

p → RCR of the centre manifold in terms of a basis array Φ,
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defined by

H(t, z) = (I − Pc(t))C(t, z). (I.5.37)

The hyperbolic part is guaranteed to be Cm-smooth in z, since (I − Pc(t))
is linear. To show that it is pointwise PC1,m-regular at zero, we notice that
H(t, z) = ht(z)(t), where ht(z) can be written as

ht(z) = (I − Pc(t))Φ(·)z +K∗ ◦Rδ,t(vt(z))

in PC0. However, since (I−Pc(t)) is uniformly bounded, K∗ = (I−Pc(t))Kη
t

is well-defined as a map from η-bounded inhomogeneities into PCη,t. Setting
z = 0, it follows that

ht(0) = 0,

h
(1)
t (0)(t) = 0

h
(j)
t (0)(t) = K∗ ◦H(j)(0,Φ(·), v

(2)
t (0)(·), . . . , v(j−1)

t (0)(·)).

On the other hand, for z �= 0 we have

ht(z)(t) = K∗ ◦Rδ,t(vt(z))(t).

By the same argument as in the proof of Theorem I.5.7.1, we can make the
following conclusion.

Corollary I.5.7.1. The hyperbolic part H(t, z) = (I − Pc(t))C(t, z) of the
centre manifold in terms of the basis array Φ is pointwise PC1,m-regular at
zero. Moreover, if θ ∈ RCR(R, [−r, 0]), then t �→ H(t, z)(θ(t)) is continuous
from the right and has limits on the left for all z ∈ R

p, and z �→ H(t, z) is
Lipschitz continuous uniformly for t ∈ R.

I.5.7.6 Uniqueness of the Taylor Coefficients

Theorem I.5.7.1 guarantees that the coefficients in the Taylor expansion

C(t, z) = DC(t, 0)z +
1

2
D2C(t, 0)[z, z] + · · ·+ 1

m!
CmC(t, 0)[z, . . . , z] +O(||z||m+1)

are pointwise differentiable from the right and have limits on the left. How-
ever, the centre manifold C : RCRc → RCR used to define the representation
in terms of the basis array Φ depends non-canonically on the choice of cutoff
function used to define the substitution operator Rδ,t. However, this cut-
off function does not actually factor into the coefficients DjC(t, 0). Indeed,

each of μ �→ v
(j)
t (0)(μ) is a sum of improper integrals and convergent series

that depend only the lower-order terms v
(i)
t (0)(·) for i < j—see equation

(I.5.36)—and is independent of the cutoff function. By induction, we can see
from (I.5.32)–(I.5.34) that, in fact, none of these lower-order terms depend on
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the cutoff function. The same arguments apply to the hyperbolic part. Since
this is the only non-canonical element in the definition of the centre manifold
(indeed, the renorming is only relevant outside of a small neighbourhood of
0 ∈ RCR and so does not affect Taylor expansions), the following corollary
is proven.

Corollary I.5.7.2. Let Φ be a basis array for RCRc. Let C1 and C2 be two
distinct centre manifolds, and let C1 and C2, respectively, be the centre man-
ifolds with respect to the basis array Φ. Also, let H1 and H2 be the respective
hyperbolic parts. Then, for j = 1, . . . ,m, we have DjC1(t, 0) = DjC2(t, 0)
and DjH1(t, 0) = DjH2(t, 0). That is, the Maclaurin series expansion of
the centre manifold in terms of the basis array Φ is unique, as is that of the
hyperbolic part.

I.5.7.7 A Discussion on the Regularity of the Matrices
t �→ Yj(t)

Hypothesis H.10 introduces a technical assumption on the matrices appear-
ing in the decomposition (I.5.35). It is our goal in this section to formally
demonstrate that there is reason to suspect that this hypothesis holds gen-
erally, although proving this result would likely be difficult. We will consider
only t �→ Yc(t), since the discussion for t �→ Yu(t) is the same.

When the linearization “has no delayed terms” and is spectrally separated
as a finite-dimensional system, t �→ Yc(t) is automatically continuous from
the right with limits on the left. Abstractly, having no delayed terms means
that the functionals defining the linearization have support in the subspace
RCR0 = {χ0ξ : ξ ∈ R

n}. Let us prove the claim. Let X(t, s) denote the
Cauchy matrix associated to the linearization

ẋ = L(t)x(t), t �= tk (I.5.38)

Δx = B(k)x(t−), t = tk. (I.5.39)

The projection Pc(t) onto the associated centre fibre bundle satisfies the
equation

X(t, s)Pc(s) = Pc(t)X(t, s)

for all t ≥ s. However, since X−1(t, s) exists for all t, s ∈ R—see Chap. II.2 or
the monograph [9] for the relevant background on linear impulsive differential
equations in finite-dimensional spaces—we have Pc(t) = X(t, 0)Pc(0)X

−1(t, 0)
for all t ∈ R. Moreover, t �→ X(t, 0) is continuous from the right and has
limits on the left, from which it follows that the same is true for Pc(t). Sim-
ilarly, each of Ps(t) and Pu(t) is an element of RCR(R,Rn×n). If we write
Pc(t) = Φ(t)Yc(t) for Φ(t) = X(t, 0)Φ(0) a matrix whose columns form a
basis for RCRc(t), then the observation that the columns of Φ(t) are linearly
independent implies we can write

Yc(t) = Φ+(t)Pc(t),
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where Φ+(t) is the left-inverse of Φ(t). Since the rank of t �→ Φ(t) is constant,
t �→ Φ+(t) is continuous from the right and has limits on the left. It follows
that t �→ Yc(t) is an element of RCR(R,Rp×n). If (I.5.38)–(I.5.39) is now
considered as an impulsive RFDE with phase space RCR([−r, 0],Rn) for
some r > 0, then we can write

U(t, s)φ(θ) =

{
X(t+ θ, s)φ(0), t+ θ ≥ s
φ(t+ θ − s), t+ θ < s.

If one defines Pj(t) : RCR → RCR by

Pj(t)φ(θ) = X(t+ θ, t)Pj(t)φ(0),

one can verify directly U(t, s) : RCR → RCR is spectrally separated with
the triple of projectors (Ps,Pc,Pu). But then,

Pc(t)χ0(θ) = X(t+ θ, t)Pc(t) = X(t+ θ, t)Φ(t)Yc(t) = Φ(t+ θ)Yc(t) = Φt(θ)Yc(t).

We already know that t �→ Yc(t) is an element of RCR(R,Rp×n), and since
this same matrix satisfies the decomposition Pc(t)χ0 = ΦtYc(t), we are done.

In the general case, the situation is far more subtle since the projector t �→
Pc(t) is not even pointwise continuous. Consider the periodic case. RCRc(t)
is the invariant subspace of the monodromy operator Vt that contains, in
particular, nontrivial elements φ ∈ RCR(t) with the property that ||Vtφ|| =
||φ||. However, since Vt = U(t+T, t), any such element of RCRc(t) will have
discontinuities on the set Dt = {θ ∈ [−r, 0] : t+ θ ∈ {tk : k ∈ Z}}. Generally,
Dt is nonempty and nonconstant; the discontinuities move by translation to
the left as t increases. Consequently, the discontinuities of Pc(t)φ for fixed
φ ∈ RCR are nonconstant in t, so t �→ ||Pc(t)φ|| is generally discontinuous
(from the right and left) at any t ∈ R such that Dt is nonempty. As such,
one cannot take advantage of any regularity properties of t �→ Pc(t) even in
the pointwise sense.

I.5.8 Comments

Some of the content of this chapter appears in the two papers Smooth cen-
tre manifolds for impulsive delay differential equations and Computation of
centre manifolds and some codimension-one bifurcations for impulsive delay
differential equations by Church and Liu, published in Journal of Differential
Equations [31, 33] in 2018 and 2019, respectively. Some improvements have
been made in the present monograph, however. For example, in the first of
the two publications, smoothness of the centre manifold was only proven in
the periodic case. The second of the two publications considers only discrete
delays.

Some early results on the existence of invariant manifolds for impulsive
differential equations in the infinite-dimensional context are due to Bainov
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et al. [11, 12], where they prove the existence of integral manifolds (subsets
of the phase space consisting of entire solutions) identified as perturbations
of linear invariant subspaces. Centre manifolds are not considered, however,
and in this context, the linear dynamics on a given Banach space are assumed
to be reversible, so in particular the restriction to the stable subspace defines
an all-time process. Exponential trichotomy is assumed on the dynamics
of the linear part, which is similar to what we have assumed in this chap-
ter. Aside from these and related investigations into stable manifolds under
weaker notions of hyperbolicity than exponential dichotomy—see [16] and the
references cited therein—and some recent results on Lipschitz-smooth stable
manifolds for impulsive delay differential equations [8], there has not been
much investigation in this area.

Our proof of smoothness of the centre manifold uses formal differentiation
in conjunction with Lemma I.5.6.1 on fixed points of contractions on a scale
of Banach spaces. The latter technique as it applies to proving the smooth-
ness of centre manifolds was introduced in 1987 by Vanderbauwhede and Van
Gils [144]. See [44, 70, 71, 107] for a few other applications. Regularity in
time of the coefficients in the Taylor expansion of the centre manifold for
nonautonomous systems seems to not be as well-studied. See Theorem A.1
of [116] by Potzschë and Rasmussen for a regularity result for invariant man-
ifolds for nonautonomous ordinary differential equations, and the references
cited therein for relevant proof methodologies.



Chapter I.6

Computational Aspects of
Centre Manifolds

In this chapter we will once again be studying the semilinear equation

ẋ = L(t)xt + f(t, xt), t �= tk (I.6.1)

Δx = B(k)xt− + g(k, xt−), t = tk. (I.6.2)

We introduce some important conditions:

C.1 The linearization is periodic with period T and c impulses per period.
That is, L(t+T ) = L(t) for all t ∈ R, B(k+c) = B(k) and tk+c = tk+T
for all k ∈ Z.

C.2 Conditions H.1–H.3, H.5–H.6, and H.10 are satisfied.

C.3 The sequences of functionals B(k) and g(k, ·) satisfy the overlap condi-
tion.

Conditions C.1 and C.2 are strong enough to guarantee that the (local) cen-
tre manifold exists and is smooth, and in terms of the basis array Φ, it is
pointwise PC1,m-regular at zero. Condition C.3 will be needed to ensure
that the dynamics on the centre manifold are well-defined. We will assume
them throughout this chapter.

I.6.1 Euclidean Space Representation

The centre manifold
C : R× R

p → RCR

© Springer Nature Switzerland AG 2021
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Systems, IFSR International Series in Systems Science and Systems
Engineering 34, https://doi.org/10.1007/978-3-030-64533-5 6
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in terms of Φ has range in RCRc⊕RCRs. If y : R→ RCR is a solution in the
centre manifold—that is, y(t) = S(t, s)y(s) for all t ≥ s with y(t) ∈ Wc(t)—
then we can use property 2 of Theorem I.5.3.1 and part 2 of Lemma I.5.1.3
to write it as

y(t) = Φtz(t) +H(t, z(t)), (I.6.3)

where Φtz(t) = Pc(t)y(t) for some z : R → R
p. Recall H(t, z) = (I −

Pc(t))C(t,Φtz). By definition of the basis array Φ and the observation that
any mild solution such as y defined for all time must in fact be the history
function of some element ofRCR1(R,Rn)—see Lemma I.4.1.1—we must have
z ∈ RCR1(R,Rp). The present chapter is essentially an investigation into
how the above representation of solutions in the centre manifold can help us
obtain a concrete version of the dynamics restricted to the centre manifold.

We need to introduce some extra notation. The setMn×m(Rk) denotes the
set of n×m matrices with entries in the vector space Rk. If A ∈Mn×m(Rk),
Ai,j denotes the entry in its ith row and jth column. The notation [A]a:b
denotes the (b− a+1)×m matrix whose rows coincide with rows a through
b of A.

For a j-dimensional multi-index ξ = (ξ1, . . . , ξj), where ξi ∈ N, we define
|ξ| =

∑
i ξi. For u ∈ R

j and a j-dimensional multi-index ξ with |ξ| = m,

the ξ power of u is uξ = uξ1
1 · · ·u

ξj
j . If X is a vector space and U ∈ Xj , we

similarly define U ξ ∈ X |ξ| by

U ξ = (U1, . . . , U1, U2, . . . , U2, . . . , Uj . . . , Uj),

where the factor Ui appears ξi times. If u ∈ X and m ∈ N, we define
um ∈ Xm by um = (u, . . . , u).

For a vector multi-index ξ = (ξ1, . . . , ξj), where each ξi ∈ {e′1, . . . , e′k} for
{e′i : i = 1, . . . , k} the standard ordered basis of Rk∗, we write |ξ| = j and
define (u1 · · ·uj)

ξ for ui ∈ R
k as follows:

(u1 · · ·uj)
ξ = (ξ1u1) · · · (ξjuj).

For vectors in R
n written in component form, (u1, . . . , un) · (v1, . . . , vn) =∑

i uivi denotes the standard inner product.
If A ∈ R

m×n and B ∈Mn×k(R�), we define the overloaded product A∗B ∈
Mm×k(R�) by the equation

[A ∗B]i,j =

n∑
u=1

Ai,uBu,j . (I.6.4)

It is readily verified that if A ∈ R
m×m is invertible, then A ∗ B = C if and

only if B = A−1 ∗ C. Moreover, ∗ satisfies the Leibniz’s law

d

dt
A(t) ∗B(t) =

(
d

dt
A(t)

)
∗B(t) +A(t) ∗

(
d

dt
B(t)

)

whenever t �→ A(t) and t �→ B(t) are differentiable. Clearly, when  = 1, the
overloaded product reduces to the standard matrix product.
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I.6.1.1 Definition and Taylor Expansion

The first task is to replace the hyperbolic part of the centre manifold with
something even more concrete. First, we recall from the Floquet Theo-
rem I.3.2.1 that we can write the basis array equivalently as

Φt = α(t)etWΦ0,

for α(t) : RCRc(0) → RCRc(t) T -periodic and pointwise differentiable from
the right with limits on the left, and W ∈ L(RCRc(0)). Let Λ ∈ C

p×p denote
the matrix associated with W with respect to the ordered basis consisting of
the columns of the array Φ0, so that

etWΦ0 = RetΛ

for some R ∈ L(Rp,RCRc(0)). Then, the basis array satisfies the Floquet
decomposition

Φt = Qte
tΛ, (I.6.5)

where Qt = α(t)R. By construction, we can identify Qt(θ) = Q(t + θ) for
some Q ∈ RCR(R,Rn×p) that is T -periodic.

Remark I.6.1.1. We can guarantee that Λ is real by instead taking α(t) :
RCRc(0) → RCRc(t) to be 2T -periodic. The reason this can be done is
because we know that the spaces RCRc(kT ) are isomorphic for k ∈ Z via the
monodromy operator V0, by Theorem I.3.1.2. This then implies that there is
an invertible matrix M such that ΦT = Φ0M. But then,

Φ2T = V0Φ0M = Φ0M
2.

Using (I.6.5), it follows that

Λ =
1

2T
log(M2),

which is guaranteed to have a real logarithm. Moreover, if log(M) is real,
then 1

T log(M) still coincides with Λ as defined above. If the basis matrix Φ0

is taken to be real, this will result in Qt being real as well.

Let us introduce a change of variables. Starting from Eq. (I.6.3), we let
u(t) = etΛz(t) so that Φtz(t) = Qtu(t). We then define h : R×R

n× [−r, 0]→
R

n by the equation

h(t, u, θ) = H(t, Qtu)(θ). (I.6.6)

With this transformation completed, Eq. (I.6.3) becomes

y(t) = Qtu(t) + h(t, u(t), ·). (I.6.7)
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The function h : R × R
p × [−r, 0] → R

n will be referred to as the Euclidean
space representation of the centre manifold . Introduce the left-limit in the
first variable

h(t−, u, θ) = lim
ε→0−

h(t+ ε, u, θ).

We have the following approximation theorem.

Theorem I.6.1.1. The Euclidean representation h : R× R
p × [−r, 0]→ R

n

of any centre manifold enjoys the following properties:

1. h admits a Taylor expansion near u = 0:

h(t, u, θ) =
1

2!
h2(t, θ)u

2+
1

3!
h3(t, θ)u

3+ · · ·+ 1

m!
hm(t, θ)um+O(um+1),

with hi(t, θ) = Di
2h(t, 0, θ), and this Taylor expansion is unique and

does not depend on the choice of cutoff function.

2. t �→ hi(t, ·) is periodic for i = 2, . . . ,m, and each of t �→ hi(t, θ) and
θ �→ hi(t, θ) is differentiable from the right with limits on the left.

3. Pc(t)hi(t, ·) = 0 for i = 2, . . . ,m.

4. If u ∈ RCR(R,Rn) and θ ∈ [−r, 0], then we have lims→0− h(t+ s, u(t+
s), θ) = h(t−, u(t−), θ). Also, t �→ h(t, u(t), θ(t)) is an element of
RCR(R,Rn) whenever θ ∈ RCR(R, [−r, 0]).

Proof. The Taylor expansion is a consequence of Theorem I.5.2.1 and the
definition of the Euclidean space representation of the centre manifold. Next,
t �→ C(t, φ) is periodic, from which it follows that the same is true of the

differentials Dj
2C(t, 0). Since h(t, u, ·) = (I − Pc(t))C(t, Qtu), and each of

t �→ Qt and t �→ Pc(t) is also periodic, the same is true for t �→ h(t, ·, ·) and its

differentials t �→ Dj
2h(t, ·, ·). For the projection, linearity of the differential

implies that Dj
2H(t, 0) = (I − Pc(t))D

j
2C(t, 0), so that Pc(t)D

j
2H(t, 0) =

0. The same is true for h by its definition. As for the limit relation, the
fundamental theorem of calculus and the triangle inequality can be used to
obtain

||h(t+ s,u(t+ s), θ(t+ s))− h(t−, u(t−), θ(t−)||
≤ L||u(t+ s)− u(t−)||+ ||h(t+ s, u(t−), θ(t+ s))− h(t−, u(t−), θ(t+ s))||
+ ||h(t−, u(t−), θ(t+ s))− h(t−, u(t−), θ(t−)||,

where L is a Lipschitz constant for x �→ D2h(t, x, ·) valid uniformly for all t.
Note that this Lipschitz constant is guaranteed to exist by Theorem I.5.2.1,
the uniform boundedness of the projectors and the periodicity of t �→ Qt.
Since u(t+s)→ u(t−), the first of the two terms converges to zero as s→ 0−.
As for the second, since t �→ H(t, z)(θ(t)) has limits on the left, the same
is true of t �→ h(t, u(t−), θ(t)) for u(t−) fixed. For the third term, θ �→
h(t−, u(t−), θ) ∈ RCR gives the limit. This proves all assertions concerning
limits from the left. Limits from the right are proven analogously.
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I.6.1.2 Dynamics on the Centre Manifold in Euclidean
Space

Recall that the centre fibre bundle component w(t) = Pc(t)y(t) satisfies the
integral equation (I.5.10) whenever y : R → RCR is a mild solution with
y(t) ∈ Wc(t). From (I.6.7), it follows that w(t) = Φtz(t). But also, from
Lemma I.4.1.1, we can formally identify y : R→ RCR with a right-continuous
regulated function ỹ : R → R

n by way of y(t) = ỹt. Substituting into
the integral equation from Lemma I.5.4.1, using assumption H.10 to write
Pc(s)χ0 = ΦsYc(s) and recalling that y is a small solution, so we can ignore
the impact of the cutoff function on the nonlinearity, this gives after some
simplification

Φtz(t) = Φtz(s) + Φt

∫ t

s

Yc(μ)f(μ, yμ)dμ+Φt

∑
s<ti≤t

Yc(ti)g(i, yt−i
),

where we recall by Theorem I.5.3.1 that C(μ,w(μ)) = C(μ, Pc(μ)y(μ)) = y(μ).
Since the columns of Φt form a basis forRCRc(t), we can apply the coordinate
map defined by φi(t) �→ ei to eliminate the basis array Φt from each side.
The result is the following integral equation in R

p:

z(t) = z(s) +

∫ t

s

Yc(μ)f(μ, yμ)dμ+
∑

s<ti≤t

Yc(ti)g(i, yt−i
). (I.6.8)

It is here that our derivation becomes a bit subtle. To motivate the next
step, we prove a result concerning the overlap condition, mild solutions and
regulated left-limit histories.

Lemma I.6.1.1. Suppose F (k, ·) : RCR → R
n satisfies the overlap condi-

tion. If x ∈ RCR(R,Rn) defines a mild solution t �→ xt, then F (k, xt−k
)

is well-defined in the sense that there exists a continuous extension F (k, ·) :
RCR⊕D(k)→ R

n, where

D(k) = {φ ∈ G([−r, 0],Rn) : φ(θ) = 0 for θ �= tj − tk ∈ [−r, 0), t < k},

we have x−
tk
∈ RCR⊕D(k), the subspace RCR⊕D(k) is closed in G([−r, 0],Rn)

and F (k, xt−k
) = F (k, x−

tk
).

Proof. First, observe that D(k) is finite-dimensional because the sequence
of impulses is unbounded both forward and backward in time, so the set
{tj − tk ∈ [−r, 0) : j < k} is finite. If the cardinality of this set is m(k),
then dimD(k) = n ·m(k). It follows that RCR⊕D(k) is closed. We define
the extension of F (k, ·) to RCR ⊕ D(k) by F (k, φ) = F (k, φRCR), where
φ = φRCR + φD(k) according to the direct sum decomposition. Moreover,
one can verify (using the overlap condition and continuity of F on RCR)
that if φn ∈ RCR ⊕ D(k) satisfies limn→∞ φn = φ ∈ RCR ⊕ D(k), then
limn→∞ F (k, φn) = F (k, φ). That is, the extension is indeed continuous.
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By Lemma I.4.1.1, a solution x ∈ RCR(R,Rn) is classical, so its disconti-
nuities are a subset of {tk : k ∈ Z}. As a consequence, we can write

xt−k
−

∑
tk−tj∈[−r,0]

χtk−tjΔx(tk − tj) = x−
tk
.

We can now apply F (k, ·) to both sides, and the overlap condition together
with the extension property to RCR ⊕ D(k) implies F (k, xt−k

) = F (k, x−
tk
).

In particular, we have x−
tk
∈ RCR⊕D(k).

To see why the above lemma is so helpful, let us take right-derivatives of
both sides of the integral equation (I.6.8) and check finite differences across
the jump times tk. The result is the impulsive differential equation

ż = Yc(t)f(t, yt), t �= tk (I.6.9)

Δz = Yc(tk)g(k, yt−k
), t = tk, (I.6.10)

where the derivative operator is understood as the right-hand derivative ẋ =
d+

dt x(t). In (I.6.9), we can replace yt with C(t, w(t)) = Φtz(t)+h(t, z(t), ·) and
get a well-behaved ordinary differential equation. In the second equation we
have to take a pointwise left-limit. This is a problem, however, because the
pointwise left-limit is a limit in the θ variable at a single point. In particular,

yt−(θ) =

{
Φt(θ)z(t) +H(t, z(t), θ), θ < 0
Φt−(0)z(t

−) + lims→0− H(t+ s, z(t+ s), 0), θ = 0.

Substituting this into the jump condition (I.6.10) would result in an implicit
equation for z(tk), which makes the impulsive differential equation (I.6.9)–
(I.6.10) somewhat difficult to work with. Lemma I.6.1.1 solves this problem;
if g(k, ·) : RCR → R

n satisfies the overlap condition, we can replace yt−k
inside g(k, ·) with the regulated left-limit y−tk . In view of Theorem I.6.1.1, y−t
can be written as

y−t = Q−
t u(t

−) + h(t−, u(t−), ·). (I.6.11)

Substituting (I.6.11) into (I.6.10) and completing the change of variables
u(t) = etΛz(t) described in Sect. I.6.1.1, the following theorem is proven.

Theorem I.6.1.2. Suppose that g(k, ·) : RCR → R
n satisfies the overlap

condition and conditions C.1 and C.2 are satisfied. Then, the abstract dy-
namics on the centre manifold described by the integral equation (I.5.10) in
the variable w(t) ∈ RCR are equivalent under the time-periodic change of
variables w(t) = Qtu(t) for u ∈ R

p to the ordinary impulsive differential
equation

d+

dt
u(t) = Λu(t) + etΛYc(t)f(t, Qtu(t) + h(t, u(t), ·)), t �= tk (I.6.12)

Δu = etΛYc(t)g(k,Q
−
t u(t

−) + h(t−, u(t−), ·)), t = tk. (I.6.13)
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Remark I.6.1.2. t �→ etΛYc(t) is periodic. To see this, remark that from the
definition of Yc and the periodicity of the projectors Pc,

ΦtYc(t) = Pc(t)χ0 = Pc(t+ T )χ0 = Φt+TYc(t+ T )

= Qt+T e
(t+T )ΛYc(t+ T ) = Φte

TΛYc(t+ T ),

from which Φt being a basis for RCRc(t) implies the equality Yc(t) = eTΛYc(t+
T ). As a consequence, t �→ etΛYc(t) := Y c(t) satisfies

Y c(t+ T ) = e(t+T )ΛYc(t+ T ) = e(t+T )Λ)e−TΛYc(t) = etΛYc(t) = Y c(t),

so it is periodic as claimed. If the nonlinear terms are also periodic (with the
same period T and g(k + c, ·) = g(k, ·) for all k ∈ Z), then the same is true
of the impulsive differential equation (I.6.12)–(I.6.12).

By Theorem I.5.3.1, the ordinary impulsive differential equation (I.6.12)–
(I.6.13) completely characterizes the dynamics of all small solutions. From
the perspective of bifurcations, this is quite useful because we can study a
concrete impulsive differential equation in R

p to detect the birth or destruc-
tion of periodic solutions or other invariant structures. When RCRu(t) is
empty, stability transitions can be analyzed. If one needs only terms of or-
der two (e.g. saddle-node bifurcation), then the center manifold does not
need to be calculated. In this case, the dynamics on the center manifold are
characterized by the following corollary.

Corollary I.6.1.1. Under the hypotheses of Theorem I.6.1.2, the dynamics
on the centre manifold to quadratic order are equivalent by a time-periodic
change of variables to those of the impulsive differential equation

u̇ = Λu+ etΛYc(t)

[
1

2
D2f(t, 0)[Qtu]

2

]
+O(u3), t �= tk (I.6.14)

Δu = etΛYc(t)

[
1

2
D2g(k, 0)[Q−

t u(t
−)]2
]
+O(u3), t = tk. (I.6.15)

For Hopf bifurcation conditions, for example, we require the reduced dy-
namics equations to be explicit to cubic order. Recall from Theorem I.6.1.1
that we can write

h(t, u, θ) =
1

2!
h2(t, θ)u

2 +
1

3!
h3(t, θ)u

3 + · · ·

for symmetric multilinear mappings hi(t, θ) : (R
p)i → R

n defined by hi(t, θ) =
Di

2h(t, 0, θ). It is then easily verified that to cubic order, the reduced dynam-
ics are
u̇ = Λu+ eΛtYc(t)[

1

2!
D2f(t, 0)[Qtu]

2 +
1

3!

(
D3f(t, 0)[Qtu]

3 + 3D2f(t, 0)[Qtu, h2(t, θ)u
2]
)]

, t 
= tk

(I.6.16)
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Δu = eΛtYc(t)[
1

2!
D2g(k, 0)[Q−

t u]2 +
1

3!

(
D3g(k, 0)[Q−

t u]3 + 3D2g(k, 0)[Q−
t u, h2(t

−, θ)u2]
)]

, ct = tk.

(I.6.17)

I.6.1.3 An Impulsive Evolution Equation and Boundary
Conditions

In the same way that the centre manifold associated with a nonhyperbolic
equilibrium of an ordinary differential equation satisfies a nonlinear partial
differential equation, the centre manifold of an impulsive RFDE satisfies a
nonlinear impulsive evolution equation. This is what we prove in this section.

At this stage, we should define a pair of linear operators that are in a
certain sense “generators” of the evolution family U(t, s) : RCR → RCR.
They are

L(t)φ =

{
B(t)φ, θ = 0
d+φ(θ), θ < 0

, J (k)φ(θ) =

{
B(k)φ, θ = 0
φ(θ+)− φ(θ), θ < 0.

(I.6.18)

We introduced these generators in Theorem I.5.4.1, but it is worth recalling
them now. Also, we define Δ+

θ : RCR → G([−r, 0),Rn) by Δ+
θ φ(θ) = φ(θ+)−

φ(θ). This operator permits a decomposition of J (k) into

J (k) = χ0B(k) + χ[−r,0)Δ
+
θ .

Next, we introduce yet another jump operator. Δt : RCR(R,Rn)→ G([−r, 0],
R

n) is defined by
Δtφ(θ) = φt(θ)− lim

s→t−
φs(θ).

We will also need the notion of the regulated left-limit of an RCR-valued
function.

Definition I.6.1.1. For a function f : R → RCR, we define the regulated
left-limit f− : R→ F ([−r, 0],Rn) by the formal expression

f−(t)(θ) = lim
s→0−

f(t+ s)(θ).

Note that if x ∈ RCR(R,Rn), then for t �→ xt, the regulated left-limit x−
t

is an element of G([−r, 0],Rn) and, in particular, it is continuous from the
left. Moreover, Δtxt = xt − x−

t . The following proposition is clear, given
Lemma I.6.1.1.

Proposition I.6.1.1. Let x : R→ R
n be continuous except at times tk, where

it is right-continuous and has limits on the left. Then, Δ+
θ x

−
t (θ) = Δtxt(θ)

for θ < 0 and all t ∈ R. If the functionals B(k) and g(k, ·) satisfy the overlap
condition and x is a solution of the impulsive RFDE (I.4.1)–(I.4.2), then

B(k)xt−k
= B(k)x−

tk
, g(k, xt−k

) = g(k, x−
tk
). (I.6.19)
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Finally, if x : R→ R
n is differentiable from the right, we define d+

dt xt by the
equation [

d+

dt
xt

]
(θ) =

d+

dt
xt(θ).

Let x : R→ R
n be a complete solution such that t �→ xt ∈ Wt. If assump-

tion C.3 is satisfied, this solution satisfies the abstract evolution equation

d+

dt
xt = L(t)xt + χ0f(t, xt), t �= tk (I.6.20)

Δtxt = J (k)x−
t + χ0g(k, x

−
t ), t = tk, (I.6.21)

with L and J as defined in (I.6.18). In addition, the following boundary
condition must be satisfied across the jump interfaces t+ θ = tk for all k ∈ Z

and θ < 0 because of Proposition I.6.1.1:

Δtxt(θ) = Δ+
θ x

−
t (θ), t+ θ = tk, θ < 0. (I.6.22)

Along the lines t + θ = s for s /∈ {tk : k ∈}, the condition Δtxt(θ) =
Δ+

θ x
−
t (θ) is uninformative because x is continuous at s = t+ θ. Note that all

left-limits are now regulated left-limits because we have used Eq. (I.6.19) of
Proposition I.6.1.1. It is at this stage that we make the substitution (I.6.7) to
write xt in terms of the Euclidean space representation of the centre manifold.
The following theorem characterizes the Euclidean space representation of the
centre manifold in terms of an impulsive evolution equation.

Theorem I.6.1.3. For any solution u of the finite-dimensional ordinary
impulsive differential equation (I.6.12)–(I.6.13), the Euclidean space repre-
sentation of the centre manifold is a solution of the following boundary-value
problem (invariance equation):

Qt(θ)[u̇ − Λu] + ∂th(t, u, θ) + ∂uh(t, u, θ)u̇ = ∂θh(t, u, θ),

θ < 0, t �= tk

Qt(θ)Δu + Δth(t, u + Δu, θ) + Ω(t, h, u, θ)Δu = Δ
+
θ h(t

−
, u, θ),

θ < 0, (t = tk ∨ t + θ = tk)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(I.6.23)

Qt(0)[u̇ − Λu] + ∂th(t, u, 0) + ∂uh(t, u, 0)u̇ = L(t)h(t, u, ·) + f(t, Qtu + h(t, u, ·)),
θ = 0, t �= tk

Qt(0)Δu + Δth(t, u + Δu, 0) + Ω(t, h, u, 0)Δu = B(k)h(t
−
, u, ·) + g(k,Q

−
t u + h(t

−
, u, ·)),

θ = 0, t = tk,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(I.6.24)

where we denote u = u(t) when t �= tk and u = u(t−) when t = tk, Δu =
u(t)− u(t−), we define Ω by

Ω(t, h, u, θ) =

∫ 1

0

∂uh(t
−, u+ sΔu, θ)ds,

and all derivatives in t and θ are the right-derivatives ∂+

∂t and ∂+

∂θ .
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Proof. First, we remark that Qt satisfies the following abstract impulsive
differential equation:

d+

dt
Qt(θ) +QtΛ = χ0L(t)[Qt expΛ] + χ[−r,0)

d+

dθ
Qt(θ), t �= tk

ΔtQt(θ) = χ0B(k)[Q−
t expΛ] + χ[−r,0)Δ

+
θ Q

−
t (θ), t = tk,

(I.6.25)

where expΛ(θ) = eΛθ. It can be derived from the equality Φt = Qte
Λt and

Proposition I.6.1.1. Substituting the ansatz xt = Qtu(t) + h(t, u(t), ·) into
Eq. (I.6.20), we obtain when θ < 0 the equality

d+

dt
[Qt]u+Qtu̇+ ∂th+ ∂uhu̇ =

d+

dθ
[Qt]u+ ∂θh,

which is equivalent to the first equation from (I.6.23) if one takes into account
(I.6.25). When θ = 0, the same approach results in the first equation from
(I.6.24).

Next, we substitute the ansatz into (I.6.21). If one denotes u = u(t−),
when θ < 0 and t = tk, the result reduces to1

−QtΔu+Δ+
θ h(t

−, u, θ) = h(t, u+Δu, θ)− h(t−, u, θ)

after cancelling several duplicate terms. The above is equivalent to

QtΔu+Δth(t, u+Δu, θ) + h(t−, u+Δu, θ)− h(t−, u, θ) = Δ+
θ h(t

−, u, θ).

The fundamental theorem of calculus implies Ω(t, h, u, θ) = h(t−, u+Δu, θ)−
h(t−, u, θ), and from this, we obtain the second equation of (I.6.23). The
equation for t + θ = tk is obtained by checking the boundary condition
(I.6.22), while the equation for θ = 0 is obtained by the same methods.

Remark I.6.1.3. Note that h(t, θ, u) must possess discontinuities along the
lines t+ θ = tk for u fixed. These discontinuities are captured by the second
equation of (I.6.23) when θ < 0 and in the second equation of (I.6.24) when
θ = 0. When t = tk−θ /∈ {tj : j < k}, we have Δu = Δu(t) = 0 in the second
equation of (I.6.23), and the result is the constraint h(t, u, θ) = h(t−, u, θ+).
In particular, even though we know that θ �→ h(t, u, θ) is continuous from the
right, the same is not true of θ �→ h(t−, u, θ); the latter is continuous from
the left.

The boundary-value problem (I.6.23)–(I.6.24) is implicit in terms of the
variable u̇ and Δu. To obtain an explicit boundary-value problem for (t, u, θ)
�→ h(t, u, θ), one would replace every instance of u̇ and Δu with the
Eqs. (I.6.12) and (I.6.13). The resulting equations take up a lot of space,
so we do not write them out explicitly.

1Note that Q−
t (θ+) = Qt(θ) for θ < 0.
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I.6.2 Approximation by the Taylor Expansion

Equations (I.6.23)–(I.6.24) and (I.6.12)–(I.6.13) of Theorems I.6.1.3 and
I.6.1.2 yield a system of impulsive partial delay differential equations and
boundary conditions for the Euclidean space representation of the centre
manifold.

In the u coordinates, the dynamics on the centre manifold are given by
(I.6.12)–(I.6.13). If one seeks to obtain the O(||u||k) dynamics on the center
manifold, it is necessary to compute the terms of order O(||u||k−1) of the
center manifold h. Quadratic terms are needed to analyze Hopf-like bifurca-
tions, for instance. The quadratic coefficient h2(t, θ) of the centre manifold
can be represented in the form

h2(t, θ)[u, v]

=

⎡
⎢⎢⎢⎣

c111(t, θ)u1v1 + · · · c11p(t, θ)u1vp + c121(t, θ)u2v1 + c122(t, θ)u2v2 + · · · + c1pp(t, θ)upvp

.

.

.

cn11(t, θ)u1v1 + · · · cn1p(t, θ)u1vp + cn21(t, θ)u1v1 + cn22(t, θ)u2v2 + · · · + cnpp(t, θ)upvp

⎤
⎥⎥⎥⎦ ,

and similarly for the higher-order terms, where symmetrically, cij = cji. In
terms of vector multi-indices, we can write

hm(t, θ)[u1, . . . , um] =
∑

|ξ|=m

cξ(t, θ)(u1 · · ·um)ξ (I.6.26)

for multi-index ξ = (ξ1, . . . , ξm) and ξi ∈ {∅, e′1, . . . , e′p}.
As a consequence of the above observations, one can substitute an ap-

propriate order O(||u||k) expansion of the impulsive differential equation
(I.6.12)–(I.6.13) into the evolution equation and boundary conditions (I.6.23)–
(I.6.24) to obtain a O(||u||k) impulsive evolution equation for the center man-
ifold.

I.6.2.1 Evolution Equation and Boundary Conditions
for Quadratic Terms

For the calculation of cubic order dynamics (e.g. Hopf bifurcation), one needs
to calculate h2 before the dynamics on the center manifold (I.6.16)–(I.6.17)
can be studied. Substituting the aforementioned equation into the evolu-
tion equation and boundary conditions (I.6.23)–(I.6.24) and keeping only the
order two terms in u, we obtain the following rather large equation:

1

2
Qt(θ)e

ΛtYc(t)D
2
2f(t, 0)[Qtu]

2 +
1

2
∂th2(t, θ)u

2 + h2(t, θ)[Λu, u] =
1

2
∂θh2(t, θ)u

2,

θ < 0, t 	= tk

(I.6.27)
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1

2
Qt(θ)e

ΛtYc(t)D
2g(k, 0)[Q−

t u]
2 +

1

2
Δth2(t, θ)u

2 =
1

2
Δ+

θ h2(t
−, θ)u2

θ < 0, t ∈ {tk, tk − θ}
(I.6.28)

1

2
Qt(0)e

ΛtYc(t)D
2
2f(t, 0)[Qtu]

2 +
1

2
∂th2(t, 0)u

2 + h2(t, θ)[Λu, u] =
1

2
L(t)h2(t, ·)u2

+
1

2
D2

2f(t, 0)[Qtu]
2, θ = 0, t 	= tk

(I.6.29)

1

2
Qt(0)e

ΛtYc(t)D
2g(k, 0)[Q−

t u]
2 +

1

2
Δth2(t, 0)u

2 =
1

2
J(k)h2(t

−, ·)u2

+
1

2
D2g(k, 0)[Q−

t u]
2, θ = 0, t = tk.

(I.6.30)

In this equation, all partial derivatives are right-hand derivatives. Notice
that upon expansion, the coefficients of each binomial uξ = uξ1uξ2 generate
a system of coupled linear impulsive partial differential equations for the
associated coefficients cξ of the quadratic expansion of the center manifold.
This system can be solved by a variation of the method of characteristics;
this is done in Sect. I.6.2.2.

The pattern established here continues tomth-order expansions. In partic-
ular, each multinomial uξ = uξ1

1 · · ·uξm
m with

∑
m ξk = m generates a system

of coupled impulsive PDEs for the uξ coefficient of hm(t, θ). The order i < m
expansions hi(t, θ) are generally needed to compute the order m terms, so the
procedure must be done iteratively. The calculations quickly become taxing,
and the use of computer algebra software is highly recommended to keep
track of all of the differentials.

I.6.2.2 Solution by the Method of Characteristics

The system of impulsive partial differential equations (I.6.27)–(I.6.30) must
be solved in order to obtain the quadratic-order term of the center manifold.
A similar equation can be derived for the pth-order terms, and this equation
will typically depend on the lower-order terms. For notational simplicity, we
will only present the method as it applies to computing the quadratic term
h2.

First, some preparations. Given the representation (I.6.26), we can write

h2(t, θ)[u, u] =
∑
ξ∈Ξ

hξ
2(t, θ)(uu)

ξ,

for u ∈ R
p, where Ξ is a set of p-dimensional multi-indices in two variables

that is both permutation-free (i.e. (ei, ej) ∈ Ξ implies (ej , ei) ∈ Ξ if and
only if i = j) and complete (i.e. for every p-dimensional multi-index in two
variables ζ, either ζ ∈ Ξ or ζ = (ei, ej) and (ej , ei) ∈ Ξ ). In this setting we
have

hξ
2(t, θ) =

{
2cξ, ξ = (ei, ej), i �= j
cξ, ξ = (ei, ei).
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Writing everything in terms of scalar products, there exists a β × β matrix
Λ2 with β =

(
p+1
2

)
such that

h2(t, θ)[u, u] = [ (uu)ζ1 · · · (uu)ζβ ] ∗ hΞ
2 , (I.6.31)

h2(t, θ)[Λu, u] = [ (uu)ζ1 · · · (uu)ζβ ] ∗ Λ2 ∗ hΞ
2 , (I.6.32)

where hΞ
2 = (hζ1

2 , . . . , h
ζβ
2 ) ∈ (Rn)β is interpreted as a (β×1) array whose ith

entry is hζi
2 , and Ξ = {ζ1, . . . , ζβ}. As such, the matrix multiplication needs

to be interpreted in an overloaded sense as in Eq. (I.6.4). For example, with
p = 3, Ξ = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6} and the data

Λ =

⎡
⎣ 0 1 0

0 0 0
0 0 0

⎤
⎦ , ζ1 = (e1, e1), ζ2 = (e1, e2), ζ3 = (e1, e3),

ζ4 = (e2, e2), ζ5 = (e2, e3), ζ6 = (e3, e3),

we first calculate h2[Λu, u]. Written in terms of the coefficients hζi
2 , it is

h2[Λu, u] = h2

⎡
⎣
⎡
⎣ u2

0
0

⎤
⎦ ,
⎡
⎣ u1

u2

u3

⎤
⎦
⎤
⎦ = h11

2 u1u2 +
1

2
h12
2 u2

2 +
1

2
h13
2 u2u3.

We can then readily extract the matrix Λ2 satisfying the expression (I.6.32),
and we find it is

Λ2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Next, we write

Qt(θ)e
ΛtY (t)D2

2f(t, 0)[Qtu]
2 = [ (uu)ζ1 · · · (uu)ζβ ] ∗ F(t, θ)

(I.6.33)

Qtk(θ)e
ΛtkY (tk)D

2gk(0)[Qt−k
u]2 = [ (uu)ζ1 · · · (uu)ζβ ] ∗ Gk(θ) (I.6.34)

D2
2f(t, 0)[Qtu]

2 = [ (uu)ζ1 · · · (uu)ζβ ] ∗ a(t) (I.6.35)

D2gk(0)[Qt−k
u]2 = [ (uu)ζ1 · · · (uu)ζβ ] ∗ bk, (I.6.36)

where F(t, θ), Gk(θ), a(t) and bk are β × 1 arrays with entries in R
n. Note

that as Qte
Λt = Φt, Eqs. (I.6.33) and (I.6.34) could be simplified further.

Substituting equations (I.6.31)–(I.6.36) into (I.6.27)–(I.6.30) and cancelling
fractions, it follows upon comparing powers (uu)ζi that hΞ

2 must satisfy the
impulsive functional differential equation

F(t, θ) + ∂th
Ξ
2 (t, θ) + 2Λ2 ∗ hΞ

2 (t, θ) = ∂θh
Ξ
2 (t, θ), θ < 0, t �= tk (I.6.37)
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Gk(θ) + Δth
Ξ
2 (t, θ) = Δ−

θ h
Ξ
2 (t, θ), θ < 0, t ∈ {tk, tk − θ}

(I.6.38)

F(t, 0) + ∂th
Ξ
2 (t, θ) + 2Λ2 ∗ hΞ

2 (t, 0) = L(t)� hΞ
2 (t, ·) + a(t), θ = 0, t �= tk

(I.6.39)

Gk(0) + Δth
Ξ
2 (t, 0) = J(k)� hΞ

2 (t
−, ·) + bk, θ = 0, t = tk,

(I.6.40)

and we define the overloaded operator L(t)� by

L(t)� hΞ
2 (t, ·) =

⎡
⎢⎣

L(t)hζ1(t, ·)
...

L(t)hζβ (t, ·)

⎤
⎥⎦ ,

and similarly for J(k). Note also that all derivatives are taken from the right:

∂t =
∂+

∂t and ∂θ = ∂+

∂θ . The following proposition characterizes the solutions
of the above inhomogeneous linear impulsive system.

Proposition I.6.2.1. Every solution z = z(t, θ) of the inhomogeneous sys-
tem (I.6.37)–(I.6.40) can be expressed in the form

z(t, θ) = e2Λ2θ

∗

⎡
⎣n(t+ θ)−

∫ 0

θ
e−2Λ2s ∗ F(t− s+ θ, s)ds−

∑
θ<tk−t≤0

e−2Λ2tk ∗ Gk(t− tk + θ)

⎤
⎦ ,

(I.6.41)

where t �→ n(t) is a solution of the inhomogeneous linear impulsive delay
differential equation

F(t, 0) + ṅ(t) + 2Λ2 ∗ n(t) = L(t)� [e2Λ2(·) ∗ nt] +m(t), t 	= tk

Gk(0) + Δn(t) = J(k)� [e2Λ2(·) ∗ nt− ] + nk, t = tk
(I.6.42)

m(t) = a(t)− L(t)

�

⎡
⎣∫ 0

(·)
e−2Λ2s ∗ F(t−s+ ·, s)ds+

∑
(·)<tk−t≤0

e−2Λ2tk ∗Gk(t− tk+ ·)

⎤
⎦

nk = bk − J(k)

�

⎡
⎣∫ 0

(·)
e−2Λ2s ∗ F(t−k −s+ ·, s)ds+

∑
(·)<tj−tk≤0

e−2Λ2tj ∗Gj(t
−
k − tj + ·)

⎤
⎦ .

(I.6.43)

Proof. Solving the Eqs. (I.6.37)–(I.6.38) along the characteristic lines t+ θ =
constant, one can show that every solution has the form of (I.6.41) for some
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function n. To show that such a function n satisfies the impulsive delay differ-
ential equation (I.6.42)–(I.6.43), one substitutes the ansatz into Eqs. (I.6.39)–
(I.6.40), taking note that ∂tz(t, 0) = ṅ(t) and Δtz(t, 0) = Δn(t).

Solving the inhomogeneous system (I.6.42) is a nontrivial matter. More-
over, there are infinitely many solutions of the form prescribed by the above
proposition, since the inhomogeneous equation (I.6.42) can have many
bounded solutions. We must recall some additional properties of the cen-
tre manifold to identify the unique solution z = hΞ

2 corresponding to the true
coefficient vector of h2(t, θ) in the expansion (I.6.31). We state the result in
the form of a corollary. It is essentially a consequence of Theorem I.6.1.1.

Corollary I.6.2.1. Let the centre manifold be PC1,2-regular at zero, and
let the assumptions of Theorem I.5.2.1 hold. The (β × 1) array hΞ

2 with

[hΞ
2 ]i = hζi

2 in the expansion

h2(t, θ)[u, u] =

β∑
i=1

hζi
2 (t, θ)[uu]ζi

is the unique solution of the inhomogeneous linear impulsive PDE (I.6.37)–
(I.6.40) satisfying the following constraints:

1. Projection constraint: Pc(t)h
ζi
2 (t, ·) = 0 for all t ∈ [0, T ) and i =

1, . . . , β.

2. Periodicity constraint: t �→ hΞ
2 (t, ·) is periodic.

I.6.3 Visualization of Centre Manifolds

The discontinuous invariant manifolds we have presented here seem to be
relatively new in the dynamical systems literature. To aid with visualiza-
tion, here we consider two examples of centre manifold computation. The
first (Sect. I.6.3.1) is a finite-dimensional toy example where the centre man-
ifolds can all be explicitly calculated. The second one (Sect. I.6.3.2) is two-
dimensional with quadratic delays and requires Taylor expansions. Both
examples contain a parameter ε that controls the “size” of the impulse effect
and, for all ε small enough, the centre manifold is one-dimensional. This al-
lows us to visualize the centre manifolds as depending on the parameter ε and
study how the introduction of impulses affects their geometry. Both these
examples are intentionally simple; in particular, the linear parts contain no
delays.



126 CHAPTER I.6. COMPUTATIONAL ASPECTS OF CENTRE. . .

I.6.3.1 An Explicit Scalar Example Without Delays

Consider the finite-dimensional impulsive system

ẋ = x2, t �= k, Δx = 0, t = k (I.6.44)

ẏ = −y, t �= k, Δy = εy, t = k. (I.6.45)

This system has several useful properties. First, for all ε ∈ (−1, e − 1), the
unique equilibrium at the origin is nonhyperbolic with a one-dimensional
centre fiber bundle RCRc = span(e1) that is constant in time. Moreover,
when ε = 0, this system is a classical example of a system with infinitely
many centre manifolds, the only analytic one being the x-axis. The centre
manifolds are all graphs of

y = c exp

(
1

x

)
χ(−∞,0)(x), c ∈ R. (I.6.46)

Our first step will be to introduce a time-dependent change of variables.
Define y = (1 + ε)�t�−tw. This change of variables eliminates the impulse
effect from (I.6.44)–(I.6.45) entirely. The result is the autonomous system

ẋ = x2, (I.6.47)

ẇ = (log(1 + ε)− 1)w. (I.6.48)

The centre manifolds of the above autonomous system are all orbits. Explic-
itly solving the differential equations and rearranging show that they can be
represented in the form

w = c exp

(
1

x
(1− log(1 + ε))

)
χ(−∞,0)(x),

where c ∈ R is a constant. Inverting the change of variables and simplifying
the expression somewhat, the centre manifolds of the original system (I.6.44)–
(I.6.45) can be written as the graphs of

y = c(1 + ε)�t�−t

(
e

1 + ε

)1/x

χ(−∞,0)(x) := hε(t, x) (I.6.49)

See Fig. I.6.1 for a visualization.
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Figure I.6.1: The forward orbit through (−1, 1) of system (I.6.44)–(I.6.45)
plotted for time t ∈ [0, 200] and parameter ε = 1, illustrated by the thick solid
line. On the intervals [k, k + 1) for k = 0, . . . , 9, the graphs of y = c exp

(
1
x

)
(Eq. (I.6.46)) on which the solution travels are indicated by dashed lines and
plotted for x < 0

I.6.3.2 Two-Dimensional Example with Quadratic
Delayed Terms

We consider in this section the equation with a single discrete delay

ẋ = −x+ y2, t �= 2kπ, Δx = εy(t−), t = 2kπ
(I.6.50)

ẏ = x− x2(t− π)− y2(t− π), t �= 2kπ, Δy = 0, t = 2kπ
(I.6.51)

ε̇ = 0, t �= 2kπ, Δε = 0, t = 2kπ.
(I.6.52)

Considered in isolation, the planar system (I.6.50)–(I.6.51) has, with ε treated
as a parameter, a single zero Floquet exponent for all ε ∈ R. Thus, for
each ε, the centre manifold at the origin is one-dimensional. Taking ε as
a state variable, we obtain (I.6.50)–(I.6.52), and it is for this system that
we will calculate (approximate) the two-dimensional centre manifold at the
origin. Taking one-dimensional slices for fixed ε small will produce the centre
manifolds for the parameterized system (I.6.50)–(I.6.51).
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The linearization of (I.6.50)–(I.6.52) at (0, 0, 0) admits the monodromy
operator Vt and associated resolvent R(z;Vt)

Vtξ(θ) =

⎡
⎣ e−(2π+θ) 0 0

1− e−(2π+θ) 1 0
0 0 1

⎤
⎦ ξ(0) := V (θ)ξ(0), (I.6.53)

R(z;Vt) = z−1(IRCR + V [I − z−1V (0)]−1ev0), z �= 0, 1. (I.6.54)

One can similarly calculate a basis matrix Φt for the centre fiber bundle, the
projection Pc(t) : RCR → RCRc(t) and the matrix Y (t). We find

Φt =

⎡
⎣ 0 0

1 0
0 1

⎤
⎦ , Pc(t)φ(θ) =

⎡
⎣ 0 0 0

1 1 0
0 0 1

⎤
⎦φ(0), Y (t) =

[
1 1 0
0 0 1

]
.

(I.6.55)

It follows that we can take Qt = Φt and Λ = 0 in the Floquet decomposition.
The nonlinearity f of the vector field contains only the second-order term,
and we have

Qt(θ)u =

⎡
⎣ 0

u1

u2

⎤
⎦ , 1

2
D2f(0)[Qtu]

2 =

⎡
⎣ u2

1

−u2
1

0

⎤
⎦ . (I.6.56)

Similarly, the nonlinearity of the jump map g also contains only the second-
order term, and we have at t = 2kπ,

1

2
D2g(0)[Q2kπ−u]2 =

⎡
⎣ u1u2

0
0

⎤
⎦ . (I.6.57)

Using (I.6.55), (I.6.56), and (I.6.57), we can read off the impulsive delay dif-
ferential equations and boundary conditions (I.6.27)–(I.6.30) for the second-
order term h2. These are listed in I.6.3.3, where the rest of the calculations
are completed. In particular, the coefficients cξ of the quadratic-order ex-
pansion h2u

2 = h11
2 u2

1 + h12
2 u1u2 + h22

2 u2
2 are computed therein. Given that

h = 1
2h2u

2 + O(u3), the quadratic-order expansion of the centre manifold is
found to be

h(t, u, θ) =
1

2

⎡
⎣ 1
−1
0

⎤
⎦u2

1 +
1

2
h12
2 (t, θ)u1u2 +O(u3), (I.6.58)

where the function t �→ h12
2 (t, θ) is 2π-periodic, has discontinuities along the

lines t+ θ = 2kπ and is given, for t ≥ 2π, by (I.6.66).
As ε is stationary in (I.6.50)–(I.6.52), we actually have u2 = ε. Therefore,

the parameter-dependent centre manifold for the planar system (I.6.50)–
(I.6.51) is obtained by replacing u2 with ε and u1 with u in (I.6.58) and
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dropping the third row, as this last row corresponds to the dynamics in ε.
The result is

hε(t, θ, u) =
1

2

[
1
−1

]
u2 +

1

2
εh̃12

2 (t, θ)u+O(u3) := hε,2(t, θ, u) +O(u3),

(I.6.59)

where h̃12
2 denotes the first two rows of h12

2 (the third row is identically
zero). When ε = 0, the centre manifold is identical to the one that would be
obtained by the usual adjoint-based method for autonomous delay differential
equations. This can be verified by direct calculation. A static portrait of hε,2

at the fixed time argument t = π with ε = −0.5 is provided in Fig. I.6.2,
while a contour plot of the quadratic coefficient h̃12

2 appears in Fig. I.6.3.
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Figure I.6.2: The two components (z1, z2) = hε,2(t, θ, u) of the quadratic-
order truncation of the parameter-dependent centre manifold for Exam-
ple I.6.3.2, plotted at the time snapshot t = π on the grid (u, θ) ∈
[−1, 1] × [−2π, 0], with parameter ε = −0.5. Notice the discontinuity along
the plane θ = −π; this occurs because t + θ = 0 is an integer multiple of
2π. The phase space was taken to be RCR([−2π, 0],R2) mainly for visual-
ization; it allows us to visualize a wider range of θ arguments than if we were
to restrict to [−π, 0], the latter being implied by the range of the delay in
(I.6.50)–(I.6.52)
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Figure I.6.3: Contour plot of (t, θ) �→ h̃12
2 (t, θ) for (t, θ) ∈ [0, 2π) × [−π, 0].

Left: the first component eᵀ1 h̃
12
2 . Right: the second component eᵀ2 h̃

12
2 . We

wish to emphasize two discontinuities: the localized (in space, θ) jump across
the line t+θ = 0 and the global discontinuity across the “periodic boundary”
t = 0 and t → 2π−. These contour plots provide a complete description of
the quadratic term since t �→ h̃12

2 (t, θ) is periodic with period 2π

I.6.3.3 Detailed Calculations Associated with Example
I.6.3.2

Substituting (I.6.55), (I.6.56), and (I.6.57) into Eqs. (I.6.27)–(I.6.30), we ob-
tain

∂th2u
2 − ∂θh2u

2 = 0, θ < 0, t �= 2πk⎡
⎣ 0

u1u2

0

⎤
⎦+Δth2u

2 −Δ+
θ h2(t

−, θ) = 0, θ < 0, t = 2πk

∂th2u
2 −

⎡
⎣ −1 0 0

1 0 0
0 0 0

⎤
⎦h2(t, 0)u

2 −

⎡
⎣ u2

1

−u2
1

0

⎤
⎦ = 0, θ = 0, t �= 2πk

⎡
⎣ 0

u1u2

0

⎤
⎦+Δth2u

2 −

⎡
⎣ u1u2

0
0

⎤
⎦ = 0, θ = 0, t = 2πk.

The second-order term h2(t, θ)u
2 is given by

h2u
2 = c11u

2
1 + 2c12u1u2 + c22u

2
2 = h11

2 u2
1 + h12

2 u1u2 + h22
2 u2

2

for hζ
2 ∈ R

3, so there is a system of three 3-dimensional systems to solve. In

this example, the impulsive PDEs for each of the coefficients hζi
2 of (I.6.37)–
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(I.6.40) decouple because Λ = 0 implies Λ2 = 0. With respect to the multi-
index ordering ζ1 = (e1, e1), ζ

2 = (e1, e2), ζ
3 = (e2, e2), we have

∂th
Ξ
2 = ∂θh

Ξ
2 , θ < 0, t �= 2πk

(I.6.60)⎡
⎣ 0

e2
0

⎤
⎦+Δth

Ξ
2 = Δ+

θ h
Ξ
2 (t

−, θ), θ < 0, t = 2πk

(I.6.61)

∂th
Ξ
2 =

⎡
⎣ −1 0 0

1 0 0
0 0 0

⎤
⎦� hΞ

2 (t, 0) +

⎡
⎣ e1 − e2

0
0

⎤
⎦ , θ = 0, t �= 2kπ

(I.6.62)⎡
⎣ 0

e2
0

⎤
⎦+Δth

Ξ
2 =

⎡
⎣ 0

e1
0

⎤
⎦ , θ = 0, t = 2kπ.

(I.6.63)

We will solve the equations for hζi
2 individually.

The u2
1 Coefficient

The partial differential equation (I.6.60)–(I.6.61) becomes the trivial trans-
port equation:

∂th
ζ
2 = ∂θh

ζ
2, t �= 2kπ (I.6.64)

Δth
ζ
2 = Δ+

θ h
ζ
2(t

−, θ), t = 2kπ, (I.6.65)

for ζ = (e1, e1). Therefore, both the functions F and G of Proposition I.6.2.1
are zero, and it follows that h11

2 (t, θ) = h11
2 (t+θ, 0). The latter is determined

solely by the boundary conditions (I.6.62)–(I.6.63). Namely, t �→ h11
2 (t, 0)

satisfies the impulsive differential equation

∂th
11
2 (t, 0) =

⎡
⎣ −1 0 0

1 0 0
0 0 0

⎤
⎦h11

2 (t, 0) +

⎡
⎣ 1
−1
0

⎤
⎦ , t �= 2πk

Δth
11
2 (t, 0) = 0, t = 2πk.

It follows that h11
2 (t, θ) is given by

h11
2 (t, θ)=h11

2 (t+ θ, 0) =

⎡
⎣ e−(t+θ) 0 0

1− e−(t+θ) 1 0
0 0 1

⎤
⎦h11

2 (0, 0) +

⎡
⎣ 1− e−(t+θ)

e−(t+θ) − 1
0

⎤
⎦ .
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Finally, we apply the constraint of Corollary I.6.2.1 to identify the unknown
constant h11

2 (0, 0) = (α, β, γ). We therefore require both Pc(t)h
11
2 (t, ·) = 0

and h11
2 (t, θ) = h11

2 (t + 2π, θ), where the period is 2π. Evaluating these two
constraints and simplifying produce the systems of equations

[
α+ β
γ

]
= 0,

⎡
⎣ (α− 1)(e−(t+θ) − e−(t+θ+2π)

(1− α)(e−(t+θ) − e−(t+θ+2π))
γ

⎤
⎦ = 0.

It follows that α = 1, β = −1 and γ = 0, so that the coefficient h11
2 (t, θ) is

the constant

h11
2 (t, θ) =

⎡
⎣ 1
−1
0

⎤
⎦ .

The u2
2 Coefficient

With ζ = (e2, e2), the partial differential equation (I.6.60)–(I.6.61) for h22
2

similarly reduces to the transport equation (I.6.64)–(I.6.65), so that we have
h22
2 (t, θ) = h22

2 (t + θ, 0). The boundary condition (I.6.62)–(I.6.63) contains
no inhomogeneous terms, and it follows that

h22
2 (t, θ) =

⎡
⎣ e−t 0 0

1− e−t 1 0
0 0 1

⎤
⎦ c22(0, 0).

The periodicity constraint h22
2 (t + 2π, θ) = h22

2 (t, θ) implies that h22
2 (0, 0) =

(α, β, γ) satisfies α = 0. The projection constraint Pc(t)h
22
2 (t, ·) = 0 then

yields β = 0 and γ = 0, from which we conclude that h22
2 ≡ 0.

The u1u2 Coefficient

Contrary to the previous two coefficients, there is an inhomogeneity in
the impulsive partial differential equation (I.6.60)–(I.6.61) for the final index
ζ = (e1, e2). Specifically, in the notation of Proposition I.6.2.1,

Gk = [ 0 1 0 ]′, F = 0, bk = [ 1 0 0 ]′, a = 0,

which means that the coefficient h12
2 is of the form

h12
2 (t, θ) = n(t+ θ)−

∑
θ<2kπ−t≤0

⎡
⎣ 0

1
0

⎤
⎦ ,
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whereas n is a solution of the impulsive differential equation

ṅ =

⎡
⎣ −1 0 0

1 0 0
0 0 0

⎤
⎦n, t �= 2kπ

Δn =

⎡
⎣ 1
−1
0

⎤
⎦ t = 2kπ.

The general solution of the above system is given by

n(t) = X(t, 0)

⎡
⎣ α

β
γ

⎤
⎦+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
0<2kπ≤t X(t, 2kπ)

⎡
⎣ 1
−1
0

⎤
⎦ , t > 0

−
∑

t<2kπ≤0 X(t, 2kπ)

⎡
⎣ 1
−1
0

⎤
⎦ , t ≤ 0.

X(t, s) =

⎡
⎣ e−(t−s) 0 0

1− e−(t−s) 1 0
0 0 1

⎤
⎦ .

Checking the projection condition Pc(t)h
12
2 (t, ·) = 0, we find that γ = 0 and

α + β = 0. Verifying the periodicity condition h12
2 (t + 2π, θ) = h12

2 (t, θ) at
θ = 0 and t = 0, we see that α must satisfy the equation e−2πα + 1 = α,
which implies

α =
1

1− e−2π
, β = − 1

1− e−2π
, γ = 0.

It is not necessary to check at other arguments t and θ because Corol-
lary I.6.2.1 guarantees that the constants α, β and γ are uniquely specified.
Therefore, the u1u2 coefficient vector is given, for t ≥ 2π, by

h12
2 (t, θ) =

1

1− e−2π
X(t+ θ, 0)

⎡
⎣ 1
−1
0

⎤
⎦− ∑

θ<2kπ−t≤0

⎡
⎣ 0

1
0

⎤
⎦

+
∑

0<2kπ≤t+θ

X(t+ θ, 2kπ)

⎡
⎣ 1
−1
0

⎤
⎦ .

(I.6.66)

For t < 2π, one may extend backwards by periodicity.

I.6.4 The Overlap Condition

Throughout this chapter, we have assumed that the overlap condition (Def-
inition I.5.4.1) is satisfied. We will study this condition in a bit more detail
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now, verifying for what classes of impulse effect it is satisfied and when it
might be violated. We will later (Chap. IV.3) study a mathematical model
in which the overlap condition is explicitly violated. In these instances, it is
sometimes possible to circumvent the overlap condition by defining additional
state variables. This is the technique used in [30], for example. For ease of
presentation, we will focus our attention on impulse effects that involve only
distributed delays or discrete delays.

I.6.4.1 Distributed Delays

Suppose that gk : [−r, 0]× R
n → R

n for k ∈ Z is continuous. We claim that
the sequence of functionals J(k, ·) : RCR → R

n defined by

J(k, φ) =

∫ 0

−r

gk(s, φ(s))ds

satisfies the overlap condition, regardless of the sequence of impulse effects.
To see why, first observe that since gk is continuous, s �→ gk(s, φ(s)) is in-
tegrable on [−r, 0] whenever φ ∈ G([−r, 0],Rn). This is a consequence of
the fact that regulated functions (i.e. elements of G([−r, 0],Rn)) are actually
Riemann integrable since they are uniform limits of step functions. Next,
it is straightforward to verify that we have limε→0+ φ + χ[t,t+ε)h = φ + χth
pointwise in G([−r, 0],Rn) for any h ∈ RCR and t ∈ [−r, 0). This together
with the Lebesgue dominated convergence theorem implies limε→0+ J(k, φ+
χ[t,t+ε)h) = J(k, φ), as required.

The continuity of the sequence of functionals gk can be weakened some-
what and the conclusion that J(k, ·) satisfies the overlap condition will re-
main valid. For example, it is enough to require s �→ gk(s, φ(s)) integrable
on [−r, 0] for all φ ∈ G([−r, 0],Rn).

I.6.4.2 Transformations that Enforce the Overlap
Condition for Discrete Delays

For (discrete delay) functionals of the form

φ �→ J(k, φ) = gk(φ(−r1), . . . , φ(−r�))

for 0 ≤ r1 < · · · < r� ≤ r and continuous gk : (Rn)� → R
n, the overlap

condition fails if there exists an impulse time tj such that tj − rn = tm for
some n ∈ {1, . . . , } and m < j.

We will demonstrate how one can introduce additional state variables to
transform an impulsive functional differential equation that fails the overlap
condition into one for which the condition is satisfied. Since the procedure
can quickly become complicated, it is best explained for a simple class of
systems. Consider

ẋ = f(xt), t �= kT (I.6.67)
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Δx = g(x(t−), x(t− T )), t = kT, (I.6.68)

for k ∈ Z, where g : (Rn)2 → R
n is continuous and f satisfies assumption

H.3. This system clearly fails the overlap condition. Consider the following
modification of (I.6.67)–(I.6.67), which includes an additional state variable
y:

ẋ = f(xt), t �= kT (I.6.69)

ẏ = 0, t �= kT (I.6.70)

Δx = g(x(t−), y(t−)), t = kT (I.6.71)

Δy = −y(t−) + x(t−) + g(x(t−), y(t−)), t = kT. (I.6.72)

For brevity, we will call (I.6.69)–(I.6.72) the transformed system. Using the
jump condition for x, we get

x((k−1)T ) = x((k−1)T−)+Δx = x((k−1)T−)+g(x((k−1)T−), y((k−1)T−)).

On the other hand, since y is right-continuous, the differential equation and
jump condition for y imply

y(kT−) = y((k − 1)T ) = x((k − 1)T−) + g(x((k − 1)T−), y((k − 1)T−))

= x((k − 1)T ).

In other words, if t = kT , then y(t−) = x(t − T ), so the jump condition for
Δx reduces to the one from (I.6.68). The new impulsive functional differen-
tial equation satisfies the overlap condition because it has no delays in the
impulse effects at all. The explicit correspondence between solutions of the
new system and the original one is provided by the following proposition,
whose proof is a fairly direct consequence of the above discussion.

Proposition I.6.4.1. Let x : R → R
n be a solution of (I.6.67)–(I.6.68).

Then, the function (x(t), y(t)) with y defined by y(t) = x(kT ) for t ∈ [kT, (k+
1)T ) is a solution of the transformed system. Conversely, if (x, y) is a so-
lution of the transformed system defined for t ∈ R, then x is a solution of
(I.6.67)–(I.6.68).

Analogous statements can be made for solutions defined on a semiaxis
[a,∞), and assertions for stability, asymptotic stability and instability carry
over between each of these systems.

Proposition I.6.4.2. Suppose f(0) = 0 and g(0, 0) = 0. The trivial solution
is asymptotically stable in (I.6.67)–(I.6.68) if and only if the trivial solution is
asymptotically stable in the transformed system. Analogous statements hold
for stability and instability.

Proof. Suppose zero is asymptotically stable in the original system. Then for
all ε > 0, there exists δ > 0 such that if ||φ|| < δ, then ||xt|| < ε for t ≥ T
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and limt→∞ x(t) = 0. Since g is continuous and f satisfies H.3, there exists
δ2 > 0 such that the solution (x(t), y(t)) of the transformed system with
initial condition (x0, y0) = Φ0 satisfies ||(xT , yT )|| < δ provided ||Φ0|| < δ2.
Consider now the function x̃(t) = x(t+T ). Then x̃0 = xT satisfies ||x̃0|| < δ.
It is straightforward to verify that x̃ is a solution of (I.6.67)–(I.6.68), from
which it follows that ||x̃t|| < ε for t ≥ 0 and limt→∞ x̃(t) → 0. Thus,
||xt|| < ε for t ≥ T and limt→∞ x(t) = 0. From (I.6.72) and the previous
discussion on the dynamics of the y component, we conclude ||yt|| < ε for
t ≥ T and limt→∞ y(t) = 0. It follows that zero is asymptotically stable in
the transformed system, since if we take ||(x0, y0)|| < min{ε, δ2}, then we are
guaranteed ||(xt, yt)|| < ε for t ≥ 0 and limt→∞(x(t), y(t)) = 0. The converse
is proven in a similar way, as are the analogous statements for stability and
instability.

For systems with several impulses per period, the construction is similar
to the transformed system. One defines new state variables yj with trivial
continuous-time dynamics, with impulse effects that ensure that these new
state variables correspond to lagged x variables. It is possible to set up the
impulses for the yj equations in such a way that they contain no delays. These
are then transplanted into the original impulse effect for the x equations. The
result is that the new system has no discrete-delayed impulses, so the overlap
condition is satisfied. The general procedure is rather involved if one wants
to keep the dimension as small as possible, so we do not develop it fully.

More generally, if both discrete and distributed delays are present, the
same kind of trick can be used. For example, the scalar impulse effect

Δx = x(t− 1)

∫ 0

−1

g(x(t+ s))ds, t ∈ Z (I.6.73)

fails the overlap condition with the sequence of impulses corresponding to the
integers. If one introduces an additional variable y with continuous dynamics
ẏ = 0 and considers the “augmented” impulse effect

Δx = y(t−)

∫ 0

−1

g(x(t+ s))ds, t ∈ Z

Δy = −y(t−) + x(t−) + y(t−)

∫ 0

−1

g(x(t+ s))ds, t ∈ Z,

then from the jump conditions in x, we get

x(k − 1) = x((k − 1)−) + y((k − 1)−)

∫ 0

−1

g(x(k − 1 + s))ds.

From the dynamics ẏ = 0 and the jump condition for y, we get

y(k−) = y(k − 1) = x((k − 1)−) + y((k − 1)−)

∫ 0

−1

g(x(k − 1 + s))ds
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= x(k − 1).

This is exactly the property we want, since then

Δx(k) = y(k−)

∫ 0

−1

g(x(k + s))ds = x(k − 1)

∫ 0

−1

g(x(k + s))ds,

which coincides with (I.6.73).

I.6.5 Comments

The content of this chapter features extended, more general versions of re-
sults appearing in Computation of centre manifolds and some codimension-
one bifurcations for impulsive delay differential equations [33] by Church and
Liu, published by Journal of Differential Equations in 2019. The approxi-
mation scheme for centre manifolds for delay differential equations (without
impulses) seems to date back to 1997 with the work of Ait Babram, Hbid
and Arino [5]. For ordinary differential equations, it is of course well-known.



Chapter I.7

Hyperbolicity and the
Classical Hierarchy of
Invariant Manifolds

In Chap. I.5 we studied the existence and smoothness of centre manifolds
and their invariance properties. Chapter I.6 was devoted to computational
aspects. Now we expand the scope. We discuss the existence and smooth-
ness of unstable, stable and centre-stable manifolds, thereby establishing the
classical hierarchy of invariant manifolds for impulsive functional differential
equations. The presentation in this chapter will, however, be less thorough
than the analogous ones for the centre manifold, since many of the proofs are
similar.

I.7.1 Preliminaries

Let us introduce a few more spaces of exponentially weighted functions. The
notation will be similar to what we have in Sect. I.5.1.1. First, we define

PC(−s,Rn) = {f |(−∞,s] : f ∈ PC(R,Rn)}, PC(+s,Rn) = {f |[s,∞) : f ∈ PC(R,Rn)}.

Next, for s ∈ R, define Z−s = {k ∈ Z : tk ≤ s} and Z+s = {k ∈ Z : tk ≥ s}.
We introduce some exponentially weighted function spaces

PCη,−s = {φ : (−∞, s] → RCR : φ(t) = ft, f ∈ PC(−s,Rn), ||φ||η,−s < ∞}
PCη,+s = {φ : [s,∞) → RCR : φ(t) = ff , f ∈ PC(+(s− r),Rn), ||φ||η,+s < ∞}

Bη,−s(−s,RCR) = {f : (−∞, s] → RCR : ||f ||η,−s < ∞}
Bη,+s(+s,RCR) = {f : [s,∞) → RCR : ||f ||η,+s < ∞}

© Springer Nature Switzerland AG 2021
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Systems, IFSR International Series in Systems Science and Systems
Engineering 34, https://doi.org/10.1007/978-3-030-64533-5 7
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PCη,−s(−s,Rn) = {f ∈ PC(−s,Rn) : ||f ||η,−s < ∞}
PCη,+s(+s,Rn) = {f ∈ PC(+s,Rn) : ||f ||η,+s < ∞}

Bη,−s
tk

(Z−s,R
n) = {f : Z−s → R

n : ||f ||η,−s < ∞}

Bη,+s
tk

(Z−s,R
n) = {f : Z+s → R

n : ||f ||η,+s < ∞},

with the norms

||f ||η,−s =

{
supt≤s ||f(t)||e−η(t−s), dom(f) = (−∞, s]

supk∈Z−s
||f(k)||e−η(tk−s), dom(f) = Z−s

||f ||η,+s =

{
supt≥s ||f(t)||e−η(t−s), dom(f) = [s,∞)

supk∈Z+s
||f(k)||e−η(tk−s), dom(f) = Z+s.

Next, we introduce analogues of the linear operator Kη
s from Sect. I.5.1.2.

Formally,

Kη
−s : PCη,−s ⊕Bη,−s

tk
(Z−s,R

n)→ Bη,−s(−s,RCR)

Kη
+s : PCη,+s ⊕Bη,+s

tk
(Z+s,R

n)→ Bη,+s(+s,RCR)

Kη
0−s : PCη,−s ⊕Bη,−s

tk
(Z−s,R

n)→ Bη,−s(−s,RCR)

Kη
0+s : PCη,+s ⊕Bη,+s

tk
(Z+s,R

n)→ Bη,+s(+s,RCR)

defined as follows:

Kη
−s(F,G)(t) =

∫ t

s

U(t, μ)Pu(μ)[χ0F (μ)]dμ+

∫ t

−∞
U(t, μ)[I − Pu(μ)][χ0F (μ)]dμ

(I.7.1)

+

t∑
s

U(t, ti)Pu(ti)[χ0Gi]dti +

t∑
−∞

U(t, ti)[I − Pu(ti)][χ0Gi]dti,

Kη
+s(F,G)(t) =

∫ t

s

U(t, μ)Ps(μ)[χ0F (μ)]dμ−
∫ ∞

t

U(t, μ)[I − Ps(μ)][χ0F (μ)]dμ

(I.7.2)

+

t∑
s

U(t, ti)Ps(ti)[χ0Gi]dti −
∞∑
t

U(t, ti)[I − Ps(ti)][χ0Gi]dti.

Kη
0−s(F,G)(t) =

∫ t

s

U(t, μ)[I − Ps(μ)][χ0F (μ)]dμ+

∫ t

−∞
U(t, μ)Ps(μ)[χ0F (μ)]dμ

(I.7.3)

+
t∑
s

U(t, ti)[I − Ps(ti)][χ0Gi]dti +
t∑

−∞
U(t, ti)Ps(ti)[χ0Gi]dti,

Kη
0+s(F,G)(t) =

∫ t

s

U(t, μ)Ps(μ)[χ0F (μ)]dμ−
∫ ∞

t

U(t, μ)[I − Ps(μ)][χ0F (μ)]dμ

(I.7.4)

+
t∑
s

U(t, ti)Ps(ti)[χ0Gi]dti −
∞∑
t

U(t, ti)[I − Ps(ti)][χ0Gi]dti.
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The following result is the appropriate analogue of Lemma I.5.1.3. Its
proof is similar to that of the aforementioned result and is omitted.

Lemma I.7.1.1. Let H.1, H.2, H.5 and H.7 hold.

1. For η ∈ (0,min{−a, b}), Kη
−s and Kη

0−s are bounded linear maps with
norms that can be chosen independent of s. For any compact interval
J ⊂ (0,min{−a, b}), the norms are bounded uniformly for η ∈ J .

2. For −η ∈ (0,min{−a, b}), Kη
+s and Kη

0+s are bounded linear maps with
norms that can be chosen independent of s. For any compact interval
J ⊂ (−min{−a, b}, 0), the norms are bounded uniformly for η ∈ J .

3. With η satisfying the above inequality, Kη
−s has range in PCη,−s and

v = Kη
−s(F,G) is the unique solution of (I.5.1) in PCη,−s such that

Ps(s)v(s) = 0.

4. With η satisfying the above inequality, Kη
+s has range in PCη,+s and

v = Kη
+s(F,G) is the unique solution of (I.5.1) in PCη,+s such that

Pu(s)v(s) = 0.

5. With η satisfying the above inequality, Kη
0−s has range in PCη,−s and

v = Kη
0−s(F,G) is the unique solution of (I.5.1) in PCη,−s such that

(Pc(s) + Ps(s))v(s) = 0.

6. With η satisfying the above inequality, Kη
0+s has range in PCη,−s and

v = Kη
0+s(F,G) is the unique solution of (I.5.1) in PCη,+s such that

(Pc(s) + Pu(s))v(s) = 0.

I.7.2 Unstable Manifold

Let η ∈ (0,min{−a, b}). At this stage, we reintroduce the substitution oper-
ators

R−s : PCη,−s → Bη,−s(−s,Rn)⊕Bη,−s
tk

(Z−s,R
n),

defined by R−s(x)(t, k) = (f(t, x(t)), g(k, x(tk)0−)). One can then prove the
following lemma.

Lemma I.7.2.1. Let H.4 and H.7 hold. The substitution operator defined
above is m-times continuously differentiable. Moreover, on the ball Bδ(0)
in PCη,−s, the substitution operator is Lipschitz continuous with Lipschitz
constant Lδ that satisfies Lδ → 0 as δ → 0 (and is independent of s).

This lemma is the reason we do not need to cut off the nonlinearity. It
is a consequence of the fact that if u ∈ PCη,−s ∩ Bδ(0) for η > 0, then
||u(t)|| ≤ δ for all t ≤ s. Let η ∈ (0,min{−a, b}), and introduce a map
F−s : PCη,−s ×RCRu(s)→ PCη,−s defined by

F−s(u, ϕ) = U(·, s)ϕ+Kη
−s(R−s(u)).
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In the same way that we proved Theorem I.5.2.1, one can show that if
||ϕ|| < δ1 is small enough, then F−s(·, ϕ) has a unique fixed point in some
ball Bδ2(0) ∩ PCη,−s. Moreover, δ1 and δ2 can be chosen independent of s,
and the fixed point is (uniformly in s) Lipschitz continuous with respect to ϕ.

Theorem I.7.2.1. Let assumptions H.1–H.7 hold. There exist δ1 and δ2 > 0
such that for all ϕ ∈ Bδ1(0) ∩ RCRu(s), there is a unique u∗

−s = u∗
−s(ϕ) ∈

Bδ2(0) ∩ PCη,−s such that u∗
−s = Fη

−s(u
∗
−s, ϕ).

Definition I.7.2.1. The local unstable manifold, Wu ⊂ R × RCR, is the
nonautonomous set whose t-fibres for t ∈ R are given by

Wu(t) = Im{U(t, ·)}, (I.7.5)

where U : RCRu ∩Bδ1(0)→ RCR is the (fibrewise) Lipschitz map defined by
U(t, φ) = u∗

−t(φ)(t).

Corollary I.7.2.1. There exists a constant L > 0 such that ||U(t, φ) −
U(t, ψ)|| ≤ L||φ− ψ|| for all t ∈ R and φ, ψ ∈ RCRu(t).

The local unstable manifold is both positively and negatively invariant
under the nonautonomous process S(t, s) : RCR → RCR, in the following
sense. The proof is similar to the proof of part 1 of Theorem I.5.3.1.

Theorem I.7.2.2. Let conditions H.1–H.7 hold.

• For ϕ sufficiently small and t ≤ s, we have u∗
−s(ϕ)(t) ∈ Wu(t). In

particular, if (s, φ) ∈ Wu, then there exists a unique mild solution
u ∈ PCη,−s of (I.4.1)–(I.4.2) with the property that u(t) ∈ Wu(t),
||u||η,−s ≤ δ2, and u(s) = φ.

• If (s, φ) ∈ Wu, there exists T > s such that (t, S(t, s)φ) ∈ Wu for
t ∈ [s, T ].

To prove smoothness of the unstable manifold (in the state space), we will
apply the implicit function theorem to the solutions of the equation F−s = 0,
with

F−s(u, ϕ) = u−F−s(u, ϕ).

Because of Lemma I.7.2.1, Fs ism-times continuously differentiable, F−s(0, 0)
= 0 and the differential at zero is DuF−s(0, 0) = I. One can then di-
rectly apply the implicit function theorem to guarantee the existence of
an m-times continuously differentiable ϕ �→ ũ∗

−s(ϕ) defined on some neigh-
bourhood Bρ(0) ⊂ RCRu(s), such that F−s(ũ

∗
−s(ϕ), ϕ) = 0. By restrict-

ing to Bδ1(0), we get the equality ũ∗
−s = u∗

−s. Since this operation al-
lows formal differentiation of the fixed-point equation, we immediately get
Du∗

−s(0) = U(·, s). Finally, as the evaluation functional evs : PCη,−s → RCR
defined by evs(f) = f(s) is linear and bounded, the following theorem is
proven.
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Theorem I.7.2.3. U(t, ·) : RCRu(t) → RCR is m-times continuously dif-
ferentiable, and DU(t, 0)φ = φ for all φ ∈ RCRu(t). Each of t �→ DjU(t, 0)
is uniformly bounded.

I.7.3 Stable Manifold

The construction here is essentially symmetric to the one for the unstable
manifold. With −η ∈ (0,min{−a, b}), we can define the substitution operator

R+s : PCη,+s → Bη,+s(+s,Rn)⊕Bη,+s
tk

(Z+s,R
n),

with the same formula as previously. In the same way as before, the following
lemma is applicable. It is a consequence of the fact that, if ||u||η,+s ≤ δ and
η < 0, then ||u(t)|| ≤ δ for all t ≥ s.

Lemma I.7.3.1. Let H.4 and H.7 hold. The substitution operator defined
above is m-times continuously differentiable. Moreover, on the ball Bδ(0)
in PCη,+s, the substitution operator is Lipschitz continuous with Lipschitz
constant Lδ that satisfies Lδ → 0 as δ → 0.

We can then proceed to define the fixed-point operator F+s : PCη,+s ×
RCRs(s)→ PCη,+s by

F+s(u, ϕ) = U(·, s)ϕ+Kη
+s(R+s(u))

and ultimately obtain the following results. They are proven similarly to the
analogous results in Sect. I.5.2.

Theorem I.7.3.1. Let assumptions H.1–H.7 hold. There exist δ1 and δ2 > 0
such that for all ϕ ∈ Bδ1(0) ∩ RCRu(s), there is a unique u∗

+s = u∗
+s(ϕ) ∈

Bδ2(0) ∩ PCη,+s such that u∗
+s = Fη

+s(u
∗
+s, ϕ).

Definition I.7.3.1. The local stable manifold,Ws ⊂ R×RCR, is the nonau-
tonomous set whose t-fibres for t ∈ R are given by

Ws(t) = Im{T (t, ·)},

where T : RCRs ∩Bδ1(0)→ RCR is the (fibrewise) Lipschitz map defined by
T (t, φ) = u∗

+t(φ)(t).

Corollary I.7.3.1. There exists a constant L > 0 such that ||T (t, φ) −
T (t, ψ)|| ≤ S||φ− ψ|| for all t ∈ R and φ, ψ ∈ RCRs(t).

Theorem I.7.3.2. Let conditions H.1–H.7 hold. If (s1, φ) ∈ Ws and φ is
sufficiently small, then (t, S(t, s1)φ) ∈ Ws for all t ≥ s1. Additionally, for
each γ > 0, there exist δ > 0 and C > 0 such that for all ϕ ∈ RCRs(s1) with
||ϕ|| ≤ δ, we have the estimate

||S(t, s1)T (s1, ϕ)|| ≤ Ce(a+γ)(t−s1).

Also, 0 ∈ Ws(t) for all t ∈ R.
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Theorem I.7.3.3. T (t, ·) : RCRs(t) → RCR is m-times continuously dif-
ferentiable, and DT (t, 0)φ = φ for all φ ∈ RCRs(t). Each of t �→ DjT (t, 0)
is uniformly bounded.

I.7.4 Centre-Unstable Manifold

Let ξ : R+ → R be a C∞ cutoff function as introduced in Sect. I.5.1.3. For
δ > 0 and s ∈ R, we define the cutoff nonlinearities

Fδ,−s(t, x) = f(t, x)ξ

(
||(Pc(s) + Pu(s))x||

Nδ

)
ξ

(
||Ps(s)x||

Nδ

)

Gδ,−s(k, x) = g(k, x0−)ξ

(
||(Pc(s) + Pu(s))x0− ||

Nδ

)
ξ

(
||Ps(s)x0− ||

Nδ

)
.

Next, let η ∈ (0,min{−a, b}), and define R0−s : PCη,−s → Bη,−s(−s,Rn) ⊕
Bη,−s

tk
(Z−s,R

n) by

Rδ,0−s(x)(t, k) = (Fδ,−s(t, x(t)), Gδ,−s(k, x(tk)0−)).

One can then derive an analogue of Lemma I.5.1.4 and Corollary I.5.1.1. If
one then introduces a nonlinear map F0−s : PCη,−s×RCRc(s)⊕RCRu(s)→
PCη,−s by

F0−s(u, ϕ) = U(·, s)ϕ+Kη
0−s(Rδ,0−s(u)),

then by essentially the same proof as Theorem I.5.2.1, one obtains the fol-
lowing.

Theorem I.7.4.1. If δ > 0 is chosen sufficiently small, there exists a globally
Lipschitz continuous mapping u∗

0−s : RCRc(s) ⊕ RCRu(s) → PCη,−s such

that u0−s = u0−s(ϕ) is the unique solution in PCη,−s of the equation u0−s =
F0−s(ϕ, u0−s).

Definition I.7.4.1 (Lipschitz Centre-Unstable Manifold). The centre-unstable
manifold, Wcu ⊂ R×RCR, is the nonautonomous set whose t-fibres for t ∈ R

are given by

Wcu(t) = Im{CU(t, ·)},

where CU(t, ·) : RCRc(t) ⊕ RCRu(t) → RCR is the fibrewise Lipschitz map
defined by CU(t, ϕ) = u∗

0−t(ϕ)(t).

Corollary I.7.4.1. There exists a constant L > 0 such that ||CU(t, φ) −
CU(t, ψ)|| ≤ S||φ− ψ|| for all t ∈ R and φ, ψ ∈ RCRc(t)⊕RCRu(t).

The centre-unstable manifold has much the same invariance properties as
the centre manifold.
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Theorem I.7.4.2. Let conditions H.1–H.7 hold. The centre-unstable mani-
fold Wcu enjoys the following properties:

1. Wcu is locally positively invariant: if (s, φ) ∈ Wcu and ||φ|| < δ, there
exists T > s such that (t, S(t, s)φ) ∈ Wcu for t ∈ [s, T ].

2. If (s, φ) ∈ Wcu, there exists a unique mild solution u ∈ PCη,−s of the
semilinear system

ẋ = L(t)xt + Fδ,−s(t, xt), t �= tk

Δx = B(k)xt− +Gδ,−s(k, xt−), t = tk

with the property that u(t) ∈ Wcu(t), for t ≤ s, ||u||η,−s ≤ δ, and
u(s) = φ.

3. If u is a mild solution satisfying ||u(t)|| < δ on (−∞, s], then (t, u(t)) ∈
Wcu for t ≤ s.

4. R× {0} ⊂ Wcu and CU(t, 0) = 0 for all t ∈ R.

To obtain smoothness of the centre manifold, we need to assume H.1–
H.7 in addition to H.8, H.9 and the finite-dimensionality of RCRu. The
proof follows the same lines as the one of Theorem I.5.6.1 and the relevant
Corollarys I.5.6.1 and I.5.6.3. The proof is omitted.

Theorem I.7.4.3. Assume that conditions H.1–H.8 are satisfied, and both
RCRc and RCRu are finite-dimensional. CU : RCRc ⊕ RCRu → RCR is
Cm and tangent at the origin to the centre-unstable fibre bundle RCRc ⊕
RCRu. More precisely, CU(t, ·) : RCRc(t) ⊕ RCRu(t) → RCR is Cm and
DCU(t, 0)φ = φ for all φ ∈ RCRc(t)⊕RCRu(t). Each of t �→ DjCU(t, 0) is
uniformly bounded.

I.7.5 Centre-Stable Manifold

The construction here is essentially symmetric to the one for the centre-
unstable manifold. Let ξ : R+ → R be a C∞ cutoff function as introduced in
Sect. I.5.1.3. For δ > 0 and s ∈ R, we define the cutoff nonlinearities as

Fδ,+s(t, x) = f(t, x)ξ

(
||(Pc(s) + Ps(s))x||

Nδ

)
ξ

(
||Pu(s)x||

Nδ

)

Gδ,+s(k, x) = g(k, x0−)ξ

(
||(Pc(s) + Ps(s))x0− ||

Nδ

)
ξ

(
||Pu(s)x0− ||

Nδ

)
.

Let −η ∈ (0,min{−a, b}), and define R0+s : PCη,+s → Bη,+s(−s,Rn) ⊕
Bη,+s

tk
(Z+s,R

n) by

Rδ,0+s(x)(t, k) = (Fδ,+s(t, x(t)), Gδ,+s(k, x(tk)0−)).



146 CHAPTER I.7. HYPERBOLICITY AND THE CLASSICAL. . .

One can once again derive an analogue of Lemma I.5.1.4 and Corollary I.5.1.1.
If one then introduces a nonlinear map F0+s : PCη,+s×RCRc(s)⊕RCRs(s)→
PCη,+s by

F0+s(u, ϕ) = U(·, s)ϕ+Kη
0+s(Rδ,0+s(u)),

then by essentially the same proof as Theorem I.5.2.1, one obtains the fol-
lowing.

Theorem I.7.5.1. If δ > 0 is chosen sufficiently small, there exists a globally
Lipschitz continuous mapping u∗

0+s : RCRc(s) ⊕ RCRu(s) → PCη,+s such

that u0+s = u0−s(ϕ) is the unique solution in PCη,+s of the equation u0+s =
F0+s(ϕ, u0+s).

Definition I.7.5.1 (Lipschitz Centre-Stable Manifold). The centre-stable
manifold, Wcs ⊂ R × RCR, is the nonautonomous set whose t-fibres for
t ∈ R are given by

Wcu(t) = Im{CT (t, ·)},
where CT (t, ·) : RCRc(t) ⊕ RCRs(t) → RCR is the fibrewise Lipschitz map
defined by CT (t, ϕ) = u∗

0+t(ϕ)(t).

Corollary I.7.5.1. There exists a constant L > 0 such that ||CT (t, φ) −
CT (t, ψ)|| ≤ S||φ− ψ|| for all t ∈ R and φ, ψ ∈ RCRc(t)⊕RCRs(t).

Theorem I.7.5.2. The centre-stable manifold enjoys the following proper-
ties:

• Wcu is locally positively invariant with respect to S(t, s); if (s, φ) ∈ Wcs

and ||φ|| < δ, there exists T > 0 such that (t, S(t, s)φ) ∈ Wcs for
t ∈ [s, T ].

• If (s, φ) ∈ Wcu, there exists a unique mild solution u ∈ PCη,+s of the
semilinear system

ẋ = L(t)xt + Fδ,+s(t, xt), t �= tk

Δx = B(k)xt− +Gδ,+s(k, xt−), t = tk

with the property that u(t) ∈ Wcs(t), for t ≥ s, ||u||η,+s ≤ δ, and
u(s) = φ.

• If u is a mild solution satisfying ||u(t)|| < δ on [s,∞), then (t, u(t)) ∈
Wcs for t ≥ s.

• R× {0} ⊂ Wcs and CT (t, 0) = 0 for all t ∈ R.

The same proof of smoothness we used for the centre manifold does not
work here because RCRcs(t) := RCRc(t) ⊕ RCRs(t) is always infinite- di-
mensional, so we cannot assume by a suitable renorming that x �→ ||x|| is
smooth on RCRcs(t) \ {0}.
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I.7.6 Dynamics on Finite-Dimensional
Invariant Manifolds

Suppose RCRj is one of the finite-dimensional invariant fibre bundles RCRc,
RCRu or RCRcu = RCRc ⊕ RCRu. Then, analogously to Lemma I.5.4.1,
for any sufficiently small y : R → RCR satisfying y(t) ∈ Wj(t), the j-fibre
bundle component w(t) = Pj(t)y(t) satisfies the integral equation

w(t) = U(t, s)w(s)+

∫ t

s

U(t, μ)Pj(μ)χ0f(μ, yμ)dμ+
∑

s<ti≤t

U(t, ti)Pj(ti)χ0g(k, yt−i
).

If one poses that w(t) = Xtz(t) for Xt an array whose columns form a
basis for RCRj(t) and satisfy Xt = U(t, 0)X0 for all t ∈ R, and we let Yj(t)
be a matrix-valued function satisfying Pj(t)χ0 = XtYj(t), then the function
z : R→ R

p for p = dim(RCRj) satisfies

w(t) = w(s) +

∫ t

s

Yj(μ)f(μ, yμ)dμ+
∑

s<ti≤t

Yj(ti)g(i, yt−i
).

yt can be written in the equivalent form as

yt = Xtz(t) +M(t, z(t))

M(t, z) = (I − Pj(t))M(t,Xtz),

for z ∈ R
p and M(t, ·) : RCRj(t)→ RCR defining the fibres of the relevant

invariant manifoldWj . The dynamics on said invariant manifold are therefore
determined by those of the p = dim(RCRj)-dimensional ordinary impulsive
differential equation

ż = Yj(t)f(t,Xtz(t) +M(t, z(t))), t �= tk

Δz = Yj(t)g(k,X
−
t z(t−) + [M(t, z(t))]−), t = tk,

assuming t �→ Yj(t) is an element of RCR(R,Rn×p). In this sense we have a
generalized, non-periodic version of Theorem I.6.1.2. However, since ξ �→ Xtξ
is not necessarily bounded (it is guaranteed to be unbounded if Wj is, for
example, the unstable manifold and RCRu is nontrivial), the topological con-
jugacy between the above system and the dynamics on the invariant manifold
is only local in time.

Under periodicity assumptions, we can write Xt = Qte
tΛ in the Floquet

decomposition. If one then defines m(t, u, θ) = M(t, Qtu)(θ) for u ∈ R
p,

then under this same assumption of regularity on t �→ Yj(t) and the overlap
condition, the function u(t) = etΛz(t) satisfies

u̇ = Λu(t) + etΛYj(t)f(t, Qtu(t) +m(t, u(t), ·)), t �= tk

Δu = etΛYj(t)g(k,Q
−
t u(t

−) +m(t−, u(t−), ·)), t = tk.
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Since this transformation is equivalent to w(t) = Qtu(t) and t �→ Qt is
uniformly bounded, the conjugacy between the above impulsive differential
equation and the dynamics on the invariant manifold is all-time. In this way
we obtain a generalization of Theorem I.6.1.2 to two other finite-dimensional
invariant manifolds. Under conditions that are fully analogous to those of
Theorem I.5.7.1, the function M : R×R

p → RCR is pointwise PC1,m-regular
at zero. The Euclidean space representation m : R×R

p × [−r, 0]→ R
n then

has all properties outlined in Theorem I.6.1.1, except of course that its Taylor
coefficients mi satisfy Pj(t)mi(t, ·) = 0 for the correct projector.

I.7.7 Linearized Stability and Instability,
Revisited

Proposition I.4.3.1 states that when the unstable and centre fibre bundles are
trivial, the fixed point 0 of the nonlinear equation (I.4.1)–(I.4.2) is exponen-
tially stable. With the help of the unstable manifold, we can prove a converse,
completing our extension of the classical linearized stability/instability theo-
rem. The following lemma will be helpful in proving the linearized instability
theorem; its proof is an elementary consequence of the definition of instability
and is omitted.

Lemma I.7.7.1. Suppose there exists ε > 0 such that for all s ∈ R, there
exist sequences xn ∈ RCR and tn ∈ R with xn → 0 and tn > s satisfying
tn →∞, such that ||S(tn, s)xn|| ≥ ε. Then, the fixed point 0 is unstable.

Theorem I.7.7.1. Let assumptions H.1–H.7 hold. The fixed point 0 ∈ RCR
of the nonlinear equation (I.4.1)–(I.4.2) is unstable if RCRu is nontrivial. If
for all δ > 0 sufficiently small, there exists c(δ) ≥ 0 satisfying limδ→0+ c(δ) =
0 and such that

||f(t, φ)− f(t, ψ)|| ≤ c||φ− ψ||
||g(k, φ)− g(k, ψ)|| ≤ c||φ− ψ||,

for all t ∈ R, k ∈ Z and φ, ψ ∈ Bδ(0), then the fixed point is exponentially
stable provided both RCRc and RCRu are trivial.

Proof. The exponential stability result is precisely Proposition I.4.3.1. For
the instability result, let s ∈ R be given. Let s < tn → ∞, and let ϕn ∈
RCRu(tn) be a sequence such that ||ϕn|| = δ1, with δ1 > 0 the constant from
Theorem I.7.2.1. Consider the sequence ξn = U(tn, ϕn). From the fixed-point
equation (for the unstable manifold), it follows that Pu(tn)ξn = ϕn for all n.
Also, we have

δ1 = ||ϕn|| = ||Pu(tn)ξn|| ≤ N ||ξn||,
from which we get the lower bound ||ξn|| ≥ 1

N δ1 for all n ∈ N. From Theo-

rem I.7.2.2, there exists a mild solution un ∈ PCη,−tn satisfying un(tn) = ξn.
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From the bound ||un||η,−tn ≤ δ2, we have the exponential estimate ||un(t)|| ≤
δ2e

η(t−tn) for all t ≤ tn. In particular, we have ||un(s)|| ≤ δ2e
η(s−tn). Since

tn → ∞, we get un(s) → 0 as n → ∞. Applying Lemma I.7.7.1 with the
sequence xn = un(s) and ε = 1

N δ1, we get the claimed result.

I.7.8 Hierarchy and Inclusions

The classical hierarchy of invariant manifolds is so named because of the
chain of inclusions

Ws ⊆ Wcs ⊇ Wc ⊆ Wcu ⊇ Wu,

for which at least two inclusions must always be strict. These inclusions can
easily be checked using the definitions of the relevant invariant manifolds
based on the fixed-point operators. One can form an extended hierarchy of
invariant manifolds if there is a finer decomposition of the phase space by the
evolution family into invariant fibre bundles—see Pötzsche [114] for the idea
as it applies to dynamic equations on measure chains. This is the case for
periodic systems, since there is generally an infinite family of invariant fibre
bundles parameterized by the Floquet multipliers.



Chapter I.8

Smooth Bifurcations

The centre manifold reduction provides a framework in which bifurcations
of fixed points and periodic solutions can be studied. In this section we
will explain how the centre manifold reduction can be adapted to take into
account parameters, prove two generic bifurcation patterns and present a
general recipe for how one might study smooth local bifurcations in impulsive
functional differential equations.

I.8.1 Centre Manifolds Depending Smoothly
on Parameters

Suppose we have a system depending on a parameter ε ∈ R
p for some p > 0:

ẋ = f(t, xt, ε), t �= tk (I.8.1)

Δx = g(k, xt− , ε), t = tk. (I.8.2)

Suppose f(t, 0, 0) = g(k, 0, 0) for all t ∈ R and k ∈ Z, so that x = 0 is an
equilibrium when ε = 0. If the linearization has a c-dimensional centre fibre
bundle when ε = 0, we can construct a centre manifold depending on the
parameter ε as follows.

We consider the following extension of (I.8.1)–(I.8.2) to the phase space
RCR([−r, 0],Rn+p):

ẋ = f(t, xt, ε), t �= tk (I.8.3)

ε̇ = 0, t �= tk (I.8.4)
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Δx = g(k, xt− , ε), t = tk (I.8.5)

Δε = 0, t = tk. (I.8.6)

The above system has no parameter dependence, and if one fixes the initial
condition for the ε component—that is, some function ε ∈ RCR([−r, 0],Rp)—
then the solution of the x component through some initial condition pair
(s, φ) ∈ R × RCR will coincide with the solution of (I.8.1)–(I.8.2) with pa-
rameter ε(0) through the same initial condition. Thus, the above system in
the extended phase space contains, after projection to the first component,
every solution of the original parameter-dependent system.

One can identify the functional on the right-hand side of the first two
Eqs. (I.8.3)–(I.8.4) with F (t, ·) : RCR([−r, 0],Rn+p)→ R

n+p defined by

F (t, φ) = [ f(t, φ1, φ2(0)) 0 ]ᵀ,

for φ = (φ1, φ2) ∈ RCR([−r, 0],Rn) × RCR([−r, 0],Rp). One can similarly
identify the jump functional in (I.8.5)–(I.8.6) with the analogous G(k, ·). Ab-
stractly, the result is the impulsive system

Ẋ = F (t,Xt), t �= tk

ΔX = G(k,Xt−), t = tk

without parameters. Assuming this system satisfies conditions H.1–H.7, the
centre fibre bundle of the linearization at (0, 0) will be (c+ p)−dimensional,
and there will be a (c + p)-dimensional centre manifold. The centre fibre
bundle will always take the form

RCRc(t) = (RCR0
c(t)× {0})⊕ span{(φ1

t , e1)} ⊕ · · · ⊕ span{(φp
t , ep)},

where RCR0
c is the c-dimensional centre fibre bundle associated to the lin-

earization of (I.8.1)–(I.8.2) at ε = 0, each φi
t ∈ RCR is nonzero and ei is the

ith standard basis vector in R
p. We can therefore represent RCRc(t) in the

equivalent way

RCRc(t) = (RCR0
c(t)× {0})⊕ {[ φ1

t · · · φp
t ]ε : ε ∈ R

p} ∼ RCR0
c(t)⊕ R

p,

where the latter identification is up to isomorphism (for each t fixed). As a
result, the centre manifold can be expressed in the form

Wc(t) = {C(t, φ, ε) : φ ∈ RCR0
c(t), ε ∈ R

p},

for some C(t, ·) : RCR0
c(t) × R

p → RCR smooth (under assumptions H.1–
H.7). Since the centre manifold consists of solutions of (I.8.3)–(I.8.6) and
the dynamics in the ε component are trivial, it follows that π2[C(t, φ, ε)] = ε,
where π2 : RCR × R

p → R
p is the projection onto the second component.
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The centre manifold depending on the parameter ε is the nonautonomous set
Wε

c over RCR with t-fibre

Wε
c(t) = {π1[C(t, φ, ε)] : φ ∈ RCR0

c(t)},
where π1 : RCR × R

p → RCR is the projection onto the first component.
For |ε| sufficiently small, this nonautonomous set will be locally (near zero)
invariant under the dynamics of (I.8.1)–(I.8.2) and contain all small solu-
tions, so bifurcations can then be studied by examining the dynamics on this
invariant manifold. The next section will demonstrate how this is done in
practice.

I.8.2 Codimension-One Bifurcations for
Systems with a Single Delay: Setup

Consider the n-dimensional system

ẋ = A(t)x(t) +B(t)x(t− r) + q1(t)ε+ f(t, x(t), x(t− r), ε), t �= k ∈ Z

(I.8.7)

Δx = Cx(t−) + Ex(t− r) + q2ε+ g(x(t−), x(t− r), ε), t = k ∈ Z,
(I.8.8)

where q1 and q2 are column vectors, and t �→ f(t, ·, ·, ·), t �→ A(t), t �→ B(t)
and t �→ q1(t) are periodic with period 1. We will assume that f and g are
sufficiently smooth and f(t, 0, 0, 0) = g(0, 0, 0) = 0, so that 0 is an equilibrium
point when ε = 0. Also, we assume Df(t, 0, 0, 0) = 0 and Dg(0, 0, 0) = 0, so
that f and g contain all terms of order 2 and above in x(t), x(t − r) and ε.
We will also assume that the discrete delay satisfies r < 1. The linearization
at x = 0 with parameter ε = 0 is

ẋ = A(t)x(t) +B(t)x(t− r), t �= k (I.8.9)

Δx = Cx(t−) + Ex(t− r), t = k. (I.8.10)

We will assume throughout that the unstable fibre bundle of the above linear
system is q-dimensional. We will also need the formally adjoint equation

d

ds
z1 = −z1(s)A(s)− z1(s+ r)E(s+ r), s /∈ {k, k − r} (I.8.11)

Δz1 =

{
−z1(k)C(I + C)−1, s = k
−z1(k)E, s = k − r,

(I.8.12)

and the augmented linear homogeneous system

π̇ = A(t)π(t) +B(t)π(t− r) + q1(t)ε, t �= k (I.8.13)

Δπ = Cπ(t−) + Eπ(t− r) + q2ε, t = k (I.8.14)

ε̇ = 0, t �= k, (I.8.15)

Δε = 0, t = k. (I.8.16)
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Finally, we denote

F (t, xt, ε) = f(t, xt(0), xt(−r), ε)
G(xt, ε) = g(xt(0), xt(−r), ε)

I.8.3 Fold Bifurcation

Suppose the linearized system (I.8.9)–(I.8.10) at ε = 0 has one-dimensional
centre fibre bundle: RCR0

c(t) = span{φt}. This means that zero is a Floquet
exponent, and there is a single rank 1 Floquet eigensolution φt.

To study bifurcations at the origin for (I.8.7)–(I.8.8) at ε = 0, we must
expand the state space by taking ε as an additional state variable as in
Sect. I.8.1. This results in the augmented system

d

dt

[
x
ε

]
= L(t)

[
xt

εt

]
+

[
f(t, x(t), x(t− r), ε)

0

]
, t �= k (I.8.17)

Δ

[
x
ε

]
= J

[
xt−

εt−

]
+

[
g(x(t−), x(t− r), ε)

0

]
, t = k, (I.8.18)

and the linear functionals L and J are defined by

L(t)
[

w
y

]
=

[
A(t) q1(t)
0 0

] [
w(0)
y(0)

]
+

[
B(t) 0
0 0

] [
w(−r)
y(−r)

]
,

J
[

w
y

]
=

[
C q2
0 0

] [
w(0)
y(0)

]
+

[
E 0
0 0

] [
w(−r)
y(−r)

]
.

Observe that the linearization of the augmented system (I.8.17)–(I.8.18) is
(I.8.13)–(I.8.16). The centre fibre bundle, in particular, has become two-
dimensional, but the dimension of the unstable fibre bundle is unchanged.

Lemma I.8.3.1. The centre fibre bundle RCRc(t) associated to the lineariza-
tion of the augmented system (I.8.17)–(I.8.18) is two-dimensional. A basis
matrix is

Φt =

[
φt πt

0 1

]
,

where φt spans the centre fibre bundle of the original linearization (I.8.9)–
(I.8.10) at ε = 0, and t �→ (πt(0), 1) is a Floquet eigensolution of rank ≤ 2
with exponent zero of the augmented homogeneous system (I.8.13)–(I.8.16).
Also, the unstable fibre bundle RCRu(t) of the augmented system remains
q-dimensional.

Proof. (φt, 0) is a solution in the centre fibre bundle, so dimRCRc(t) ≥ 1.
On the other hand, any solution (x, ε) of the linearization (I.8.13)–(I.8.16)
must satisfy ε = constant, so in searching for other solutions in RCRc(t) with
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such a nonzero constant, we may without loss of generality assume a solution
of the form (πt, 1), where t �→ πt(0) solves

π̇ = A(t)π(t) +B(t)π(t− r) + q1(t), t �= k (I.8.19)

Δπ = Cπ(t−) + Eπ(t− r) + q2, t = k. (I.8.20)

Observe, however, that for any pair of solutions πt and ωt of the above system,
the difference ht = πt−ωt satisfies the homogeneous equation (I.8.9)–(I.8.10)
and, consequently, if (πt, 1) ∈ RCRc(t), then πt is unique up to addition
by a multiple of φt. Thus, dimRCRc(t) ≤ 2. Moreover, because of the
inhomogeneity, any solution of the form (πt, 1) cannot satisfy ||πt|| → 0 as
t→∞ or t→ −∞. By spectral separation, if follows that if t �→ (πt, 1) is an
eigensolution, then (πt, 1) ∈ RCRc(t).

Next, we prove that RCRu(t) = RCR0
u(t) × {0}, thereby proving that

RCRu(t) is q-dimensional. Let (ωt, ε) ∈ RCRu(t), and assume by way of
contradiction that ε = 1, because if ε = 0 then we must have ωt ∈ RCR0

c(t),
and if ε �= 1 we can rescale. But this means (ωt, 1) ∈ RCRu(t), which is
a contradiction to the above result that all such eigensolutions must be in
RCRc(t). Thus, RCRu(t) contains only eigensolutions of the form (ωt, 0),
and so RCRu(t) = RCR0

u(t)× {0} is c-dimensional.
Finally, by way of contradiction, assume that dimRCRc(t) = 1 andRCRc(t)

is spanned by (φt, 0). Consider the element (0, 1) ∈ RCR = RCR([−r, 0],Rn)×
RCR([−r, 0],R). Due to the decomposition RCR = RCRc(0) ⊕ RCRs(0),
there exists a unique c ∈ R such that (0, 1) = c(φ0, 0) + (a0, b0) for some
(a0, b0) ∈ RCRs(0). Consequently, b0 = 1, and it follows that (a0, 1) ∈
RCRs(0). The solution t �→ (at, 1) through (a0, 1) is defined on [0,∞), and
by forward invariance of RCRs, we have (at, 1) ∈ RCRs(t), which is a con-
tradiction because as has been proven above, such a solution can only be in
RCRc(t). That πt is a Floquet eigensolution with exponent zero and of rank
≤ 2 is a consequence the Floquet decomposition (I.6.5).

Lemma I.8.3.2. Let ρ(t) ∈ R
n∗

be a nontrivial periodic solution of the
formally adjoint equation (I.8.11)–(I.8.12), normalized with respect to φt such
that

N(ρ, φ) :=

∫ 1

0

ρ(t)[φ(t) + rB(t)φ(t− r)]dt+ ρ(0)rEφ(−r) = 1. (I.8.21)

This normalization is always attainable. Define the quantity

a01 =

∫ 1

0

ρ(t)q1(t)dt+ ρ(0)q2. (I.8.22)

The Floquet eigensolution t �→ (πt(0), 1) from Lemma I.8.3.1 is rank 1 if and
only if a01 = 0. Under the above normalization, πt satisfies the equality

π1 = π0 + a01φ0, (I.8.23)
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and the matrix Λ of the Floquet decomposition Φt = Qte
Λt for t �→ Qt of

period one is

Λ =

[
0 a01
0 0

]
.

Proof. The proof of this result makes use of a modification and slight gen-
eralization of [[3], Theorem 1 & Lemma 5] adapted to the right-continuous
solution formalism. Specialized to our class of systems, it says the following.
The proof is omitted.

Proposition I.8.3.1. The inhomogeneous linear system

ẋ = A(t)x+B(t)x(t− r) + f(t), t �= k

Δx = Cx(t−) + Ex(t− r) + g, t = k

has a periodic solution if and only if

∫ 1

0

ρi(s)f(s)ds+ ρi(0)g = 0 (I.8.24)

for every nontrivial periodic solution ρi of the formally adjoint homogeneous
system (I.8.11)–(I.8.12). Also, the number of linearly independent periodic
solutions of the homogeneous system (I.8.9)–(I.8.10) and its formal adjoint
(I.8.11)–(I.8.12) is the same.

Using Proposition I.8.3.1, it is clear that the condition a01 = 0 is equivalent
to the periodicity of πt. Next we show that Λ has the claimed form. To
begin, we remark that (π(t), 1) being a Floquet eigensolution of rank ≤ 2
and exponent zero implies it can be written in the form π(t) = tv(t) + w(t)
for periodic v and w. Substituting into (I.8.19)–(I.8.20) and factoring, we
can write

t(v̇ −Av −Bv(t− r)) + v + ẇ + rBv(t− r) = Aw +Bw(t− r) + q1,

t �= k (I.8.25)

t(Δv − Cv(t−)− Ev(t− r)) + Δw + rEv(t− r) = Cw(t−) +Bw(t− r) + q2,

t = k. (I.8.26)

Since w is periodic and hence bounded, it follows that the order t terms must
vanish. Consequently, v must in fact be a periodic solution of (I.8.9)–(I.8.10),
and it follows that vt = cφt for a constant c. But this in turn means

π1(θ) = (1 + θ)v1(θ) + w1(θ)

= θv0(θ) + w0(θ) + v0(θ)

= π0(θ) + cφ0(θ).
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Thus, Φ1 satisfies the decomposition

Φ1 = Φ0

[
1 c
0 1

]
:= Φ0M.

If a01 = 0, we must chose c = 0, with the result being the matrix Λ = logM =
02×2 as claimed. On the other hand, if a01 �= 0, we substitute our ansatz
v(t) = cφ(t) into (I.8.25)–(I.8.26) to obtain the following inhomogeneous
system for w:

ẇ = Aw +Bw(t− r) + q1 − c[φ(t) + rBφ(t− r)], t �= k

Δw = Cw(t−) + Ew(t− r) + q1 − crEφ(t− r), t = k.

Applying Proposition I.8.3.1 to the above inhomogeneous system, we con-
clude that as w is periodic, c must satisfy the equation

a01 − cN(ρ, φ) = 0.

It follows that N(ρ, φ) �= 0, and as it is linear in ρ, we can always attain the
normalization condition N(φ, ρ) = 1. Therefore, c = a01, and we get

Λ = logM = log

[
1 a01
0 1

]
=

[
0 a01
0 0

]
.

Lemma I.8.3.3. Write the matrix Y (t) ∈ R
2×(n+1) satisfying Pc(t)χ0 =

ΦtY (t) in block form

Y =

[
Y11 Y12

Y21 Y22

]

for Yi1 ∈ R
1×n and Yi2 ∈ R

1×1. We have Y21 = 0 and

φtY11(t) =
1

2πi

∫
Γ1

(zI − V 0
t )

−1χ0dz, (I.8.27)

where V 0
t : RCR → RCR is the monodromy operator associated to the linear

system (I.8.9)–(I.8.10) and Γ1 is a positively oriented contour whose interior
is bounded away from zero, enclosing 1 ∈ C and no other eigenvalue of V 0

t .

Proof. By definition, we have

Φt

[
Y11(t)
Y21(t)

]
=

1

2πi

∫
Γ1

(zI − Vt)
−1diag(1, 1, . . . , 1, 1, 0)χ0dz, (I.8.28)

where the diagonal matrix has n ones. For bounded linear operator X, de-
note by R(z;X) = (zI −X)−1 its resolvent operator. We start by partially
computing ψ, defined by

R(z;Vt)diag(1, . . . , 1, 0)χ0 = ψ ∈ RCR([−r, 0],Rn+1).
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By linearity of the monodromy operator Vt, if we write

ψ =

[
ψπ

0

]
+

[
0
ψε

]

for ψπ ∈ RCR([−r, 0],Rn) and ψε ∈ RCR([−r, 0],R), the equation for ψ is
equivalent to

diag(1, . . . , 1, 0)χ0 = zψ − Vt

[
ψπ

0

]
− Vt

[
0
ψε

]
.

Note, however, that the dynamics of the augmented system (I.8.13)–(I.8.16)
are trivial in ε, and the left-hand side of the above equation is zero in the
ε component. Consequently, ψε ≡ 0. Similarly, Vt[ ψπ 0 ]ᵀ ∈ RCR([−r, 0],
R

n)× {0}, so the equation for the component ψπ takes the form

χ0 = zψπ − V 0
t ψπ,

which implies ψπ satisfies the equation R(z;V 0
t )χ0 = ψπ. Taking all of the

above into account together with the representation of Φt from Lemma I.8.3.1,
we see that Eq. (I.8.28) is equivalent to

[
φtY11(t) + πtY21(t)

Y21(t)

]
=

1

2πi

∫
Γ1

[
(zI − V 0

t )
−1χ0

0

]
dz,

which readily implies Y21 = 0 and the characterization of Y11 specified in
Eq. (I.8.27).

With the above three lemmas at hand, we can compute the quadratic-
order dynamics on the centre manifold (I.6.14)–(I.6.15). First, however, we
note that because the dynamics of ε in (I.8.17)–(I.8.18) are trivial, we can
abuse notation and write u = (u1, u2) ∈ R

2 instead as u = (u, ε).

Lemma I.8.3.4. The dynamics on the parameter-dependent centre manifold,
to quadratic order, are given by

u̇ = a01ε+
1

2
Y11(t)D

2F (t, 0)[(φtu+ (πt − a01tφt)ε, ε)]
2, t �= k (I.8.29)

Δu =
1

2
Y11(0)D

2G(0)[(φ−
0 u+ π−

0 ε, ε)]
2, t = k, (I.8.30)

for |ε| small, and all differentials are in the RCR variable.

Proof. First, using Lemmas I.8.3.1 and I.8.3.2, we can calculate

Qt =

[
φt πt − a01tφt

0 1

]
.
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Next, the quadratic-order dynamics for (u, ε) are given by (I.6.14)–(I.6.15):

d

dt

[
u
ε

]
= Λ

[
u
ε

]
+

1

2
Y (t)

⎡
⎣ D2F (t, 0)

[
Qt

[
u
ε

]]2
0

⎤
⎦ , t �= k,

Δ

[
u
ε

]
=

1

2
Y (t)

⎡
⎣ D2G(0)

[
Qt−

[
u
ε

]]2
0

⎤
⎦ , t = k.

By periodicity of Qt and Y (t), we can replace Qt− with Q0− and Y (t) with
Y (0) in the second equation, since the jumps occur at the integers. Also,
because of the structure of Y (t) supplied by Lemma I.8.3.3, the above re-
duces to Eqs. (I.8.29)–(I.8.30) together with the trivial equations ε̇ = 0
and Δε = 0.

Theorem I.8.3.1 (Fold Bifurcation). Let the centre fibre bundle associ-
ated to the linear system (I.8.7)–(I.8.8) be one-dimensional, with λ = 0 be-
ing the only Floquet exponent with zero real part. Let a01 be as stated in
Lemma I.8.3.2, and let πt satisfy Eq. (I.8.23). Assume that the functions
ρ(t) and φ(t) satisfy the normalization condition (I.8.21) and introduce the
quantities

a20 =

∫ 1

0

Y11(s)D
2F (s, 0)[(φs, 0)]

2ds+ Y11(0)D
2G(0)[(φ−

0 , 0)]
2,

a11 =

∫ 1

0

Y11(s)D
2f(s, 0)[(φs, 0), (πs − a01sφs, 1)]ds

+ Y11(0)D
G(0)[(φ−

0 , 0), (π
−
0 , 1)]

The following are true.

1. If a01 �= 0 and a20 �= 0, the nonlinear system (I.8.7)–(I.8.8) undergoes
a fold (saddle-node) bifurcation of periodic orbits from the equilibrium
0 at parameter ε = 0. More precisely, the iterated discrete-time dynam-
ics on the parameter-dependent centre manifold are locally topologically
equivalent near (u, ε) = 0 to the quadratic-order truncated dynamics

u �→ u+ a01ε+
1

2
a20u

2.

2. Suppose a01 = 0. If a11 �= 0 and a20 �= 0, and the nonlinear system
(I.8.7)–(I.8.8) has a stationary solution x = 0 for all |ε| sufficiently
small, then this system undergoes a transcritical bifurcation of peri-
odic orbits from the equilibrium 0 at parameter ε = 0. More precisely,
the iterated discrete-time dynamics on the parameter-dependent cen-
tre manifold are locally topologically equivalent near (u, ε) = 0 to the
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quadratic-order truncated dynamics

u �→ u+ a11εu+
1

2
a20u

2.

3. If RCR0
u(t) is trivial, the stability of fixed points of the iterated dynam-

ics carries over to the analogous bifurcating periodic orbits in (I.8.7)–
(I.8.8).

Proof. Starting from the quadratic-order dynamics (I.8.29)–(I.8.30) on the
centre manifold, we define the stroboscopic (Poincaré) map u �→ S(u, ε) map-
ping the state u at time t = 0 to the state at time t = 1 for parameter ε.
This function is smooth, and following [30], it admits a Taylor expansion of
the form

S(u, ε) = u+ q01ε+
1

2
q20u

2 + q11uε+
1

2
q02ε

2 +O(||(u, ε)||3)

near (u, ε) = 0. Each of the coefficients qij is a solution of a particular initial-
value problem evaluated at t = 1. Namely, qij = vij(1), where vij(0) = 0
and

v̇01 = a01, t ∈ R

v̇20 = Y11(t)D
2F (t, 0)[(φt, 0)]

2, t �= k

v̇11 =
1

2
Y11(t)D

2F (t, 0)[(φt, 0), (πt − a01tφt, 1)], t �= k

Δv20 = Y11(0)D
2G(0)[(φ−

0 , 0)]
2, t = k

Δv11 =
1

2
Y11(0)D

2G(0)[(φ−
0 , 1), (π

−
0 , 1)], t = k.

The differential equation for v02 is not shown because it will not be needed.
Solving the above differential equations, it follows that the stroboscopic map
admits the Taylor expansion

S(u, ε) = u+ a01ε+
1

2
a20u

2 + a11εu+O(ε2 + ||(u, ε)||3).

As the dynamics on the centre manifold are periodic, the orbit structure and
bifurcations can be determined by analyzing the iterated map u �→ S(u, ε).
The conclusions 1–2 of the theorem now follow directly from the saddle-node
bifurcation theorem for maps [151]. The stability assertion in the presence
of a trivial unstable fibre bundle follows by Theorem I.5.5.1.

Remark I.8.3.1. The above theorem could easily be generalized to the setting
where there is more than one impulse per period. The period can also be any
positive real number, since one can always rescale time so that the period is
unity. Note also that there is no need to calculate πt unless the nondegeneracy
condition a01 �= 0 of the saddle-node bifurcation fails.
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The following corollary is a statement of the generic fold bifurcation the-
orem for the system (I.8.7)–(I.8.8). The genericity conditions are the para-
metric nonstationarity condition a01 �= 0 and the nonvanishing quadratic
condition a20 �= 0.

Corollary I.8.3.1 (Generic Fold Bifurcation). For any generic impulsive
delay differential equation (I.8.7)–(I.8.8) having at ε = 0 the equilibrium 0
with a single Floquet exponent λ = 0 and one-dimensional centre fibre bundle,
there is a neighbourhood N of 0 ∈ RCR and a smooth invertible change of
parameters η = η(ε) satisfying η(0) = 0, such that for η > 0, there are
exactly two periodic orbits of period 1 in N that trivialize to the equilibrium
as η → 0+, while for η < 0 there are no periodic orbits in N .

I.8.3.1 Example: Fold Bifurcation in a Scalar System
with Delayed Impulse

Consider the scalar equation with discrete delay

ẋ = log(2)x− x2(t− 1/2) + εσ(t), t �= k (I.8.31)

Δx = − 1√
2
x(t− 1/2) + ε, t = k, (I.8.32)

where σ(t) is periodic with period 1. When ε = 0, the linearization at
the origin has φ(t) = 2t−�t� as the unique periodic solution up to scaling.
Moreover, every solution of the linearization at 0 of the above impulsive
delay differential equation is eventually a solution of (i.e. (I.8.31)–(I.8.32) is
FD-reducible [35] to) the system

ż = log(2)z, t �= k

Δz = −1

2
z, t = k.

Since any solution of (I.8.31)–(I.8.32) defined for all time must satisfy the
above finite-dimensional system, and since it has only the Floquet exponent
0 with multiplicity 1, we conclude that the linearization of (I.8.31)–(I.8.32)
has RCRc(t) = span{φt} and RCRu(t) = {0}. We are therefore in a position
to apply Theorem I.8.3.1.

The formal adjoint system to the linearization is

ẏ = − log(2)y, t �= k − 1/2

Δy =
1√
2
y(k), t = k − 1/2.

From this, we can calculate the nontrivial periodic solution

ρ(t) =

{
2−t+�t�, 0 ≤ t− �t	 < 1

2

21−t+�t�, 1
2 ≤ t− �t	 < 1,
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by solving the equation in reverse time from (t, y) = (1, 1). Next we verify
the normalization condition (I.8.21). We have

N(ρ, φ) =

∫ 1

0

ρ(t)φ(t)dt+ ρ(0)
1

2
· −1√

2
φ(−1/2)

=

∫ 1
2

0

1dt+

∫ 1

1
2

2dt− 1

2
√
2
2

1
2

= 1,

so ρ is already normalized relative to φ. The calculation of the function Y11(t)
is carried out in Sect. I.8.3.2; we find that Y11(t) = ρ(t). We have enough
information to calculate the coefficients a01 and a20:

a01 = 1 +

∫ 1/2

0

2−sσ(s)ds+

∫ 1

1/2

21−sσ(s)ds,

a20 =

∫ 1

0

−2φ(s− 1/2)2ds = − 3

log(2)
.

Since a20 is nonzero, Theorem I.8.3.1 guarantees a saddle-node bifurcation
occurs at ε = 0 assuming a01 �= 0.

For example, if we choose σ(t) = sin(2πt), then a01 = 0.88881 ± 10−5 is
positive and a20 is negative. Reading off the discrete-time dynamics from
the theorem, we predict that there should be a single, locally asymptotically
stable periodic orbit when ε > 0, the origin should be semistable when ε = 0,
and there should be no small periodic orbits when ε < 0. These conclusions
should all hold true provided |ε| is sufficiently small. Indeed, we can verify
numerically that these conclusions are consistent for 0 ≤ ε ≤ 1, although the
bifurcating periodic orbit appears to undergo a period doubling bifurcation
between ε = 1 and ε = 1.2; see Fig. I.8.1. Solutions rapidly diverge in the
regime ε < 0, and we do not provide accompanying figures.

I.8.3.2 Calculation of the Function Y11(t) for
Example I.8.3.1

First, we remark that because of the periodicity of the monodromy operator
and the matrix Y (t), it suffices to compute the restriction of Y11(t) to the in-
terval [0, 1) and extend periodically. We begin by computing the monodromy
operator V 0

t on this restriction. One can verify that this is given by

V 0
t ξ(θ) =

⎧⎨
⎩

2θ+1ξ(0), t+ θ < 0, t ≤ 1
2

2θξ(0), t+ θ ≥ 0, t ≤ 1
2

2θ(2ξ(0)− 2t−
1
2 ξ(t− 1/2)), t > 1

2 .

Next, we solve the equation (zI − V 0
t )

−1χ0 = ψ. This is equivalent to

χ0 = zψ − V 0
t ψ. (I.8.33)
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Figure I.8.1: Simulations of the scalar impulsive system (I.8.31)–(I.8.32)
from Sect. I.8.3.1 for various parameters ε, with the forcing function σ(t) =
sin(2πt), from the constant initial condition x0 = 1

2 . Time t on the horizontal
with x(t) on the vertical axis. Top row left to right: solutions with ε = 0,
ε = 0.2 and ε = 0.4. Bottom row from left to right: ε = 0.8, ε = 1 and ε = 1.2

We do two cases separately: first, with t ≤ 1
2 , and then with t > 1

2 .
If t ≤ 1

2 , Eq. (I.8.33) evaluated at θ = 0 produces the following algebraic
equation for ψ(0):

1 = zψ(0)− ψ(0).

Therefore, ψ(0) = (z − 1)−1. Evaluating (I.8.33) at θ < 0 and substituting
in the constraint ψ(0) = (z − 1)−1 produce the equation

0 = zψ(θ)− 1

z − 1

{
21+θ, t+ θ < 0
2θ, t+ θ ≥ 0.

Solving the above equation for ψ(θ), combining the two results and simplify-
ing, we have determined that for t ≤ 1

2 ,

(zI − V 0
t )

−1χ0 =
2θ

z(z − 1)

⎧⎨
⎩

z, θ = 0
2, t+ θ < 0
1, t+ θ ≥ 0.

(I.8.34)

Next, we consider the case t > 1
2 . Evaluating Eq. (I.8.33) at θ = 0 and

θ = 1
2 − t < 0, we obtain the following pair of linear equations for the

unknowns ψ(0) and ψ(1/2− t):

1 = (z − 2)ψ(0) + 2t−
1
2ψ(1/2− t)

0 = −2 3
2−t + (z + 1)ψ(1/2− t).
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Solving this equation, we find

[
ψ(0)

ψ(1/2− t)

]
=

1

z(z − 1)

[
z + 1

2
3
2−t

]
. (I.8.35)

Next, evaluating (I.8.33) at θ < 0 and expressing one of the terms as matrix
product yield the equation

0 = zψ(θ)− 2θ[ 2 −2t− 1
2 ]

[
ψ(0)

ψ(1/2− t)

]
.

Solving the equation for ψ(θ) and combining it with (I.8.35), we conclude
that for t > 1

2 ,

(zI − V 0
t )

−1χ0 =
2θ

z(z − 1)

{
z + 1, θ = 0
2, θ < 0.

(I.8.36)

Next we calculate the Dunford integral (2πi)−1
∫
Γ1
(zI−V 0

t )
−1χ0dz. Using

(I.8.34) and (I.8.36) together with residue theorem, we obtain after much
simplification

1

2πi

∫
Γ1

(zI − V 0
t )

−1χ0(θ)dz =

{
21+θ, t ≤ 1

2 , t+ θ < 0 or t > 1
2

2θ, t ≤ 1
2 , t+ θ ≥ 0.

By Lemma I.8.3.3, we can calculate Y11(t) by multiplying the above by
1/φt(θ), and the result should be independent of θ. Initially, we obtain

1

φt(θ)

1

2πi

∫
Γ1

(zI − V 0
t )

−1χ0(θ)dz =

{
21−t+�t+θ�, t ≤ 1

2 , t+ θ < 0 or t > 1
2

2−t+�t+θ�, t ≤ 1
2 , t+ θ ≥ 0.

(I.8.37)

When t > 1
2 , we have 1− t+ �t+θ	 = 1− t. Conversely, when t ≤ 1

2 , we have

t+ θ < 0 ⇒ 1− t+ �t+ θ	 = −t
t+ θ ≥ 0 ⇒ −t+ �t+ θ	 = −t.

Therefore, in both cases, we see that (I.8.37) can be written independent of
θ, with the result being Y11(t) = ρ(t) on [0, 1). Extending by periodicity, the
claim is proven.

I.8.4 Hopf-Type Bifurcation and Invariant
Cylinders

This time we will assume that (I.8.9)–(I.8.10) have a pair ±iω of complex-
conjugate Floquet exponents, and there are no other Floquet exponents with
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zero real part. This means the centre fibre bundle has the real basis ma-
trix Φ0

t = [ φ1,t φ2,t ], so that RCR0
c(t) = span{φ1,t(θ), φ2,t(θ)}. As the

Floquet exponents are ±iω, Eq. (I.6.5) implies the decomposition

Φ0
t = Q0

t exp

([
0 ω
−ω 0

]
t

)
, (I.8.38)

where t �→ Qt is periodic with columns in RCR. Finally, we let dim
RCR0

u(t) = c.
The analysis of this section is similar to the previous one, with some modifi-

cations. To motivate our first result, recall that a Neimark–Sacker bifurcation
occurs in the iterated map

z �→ A(ε)z +
1

2
B(ε)[z, z] +

1

6
C(ε)[z, z, z] +O(||z||4) (I.8.39)

for a 2 × 2 matrix A(ε) and symmetric multilinear maps B(ε) and C(ε), at
z = 0 with parameter ε = 0, provided the following are satisfied [82]:

• the eigenvalues μ1(ε) and μ2(ε) of A(ε) satisfy μi(0) = e±iω, and eikω �=
1 for k = 1, 2, 3, 4;

• the crossing condition1 r′(0) �= 0 is satisfied, where

r′(0) =
1

2

d

dε

∣∣∣
ε=0

μ1(ε)μ2(ε) �= 0;

• the first Lyapunov coefficient [82] d(0),

d(0) =  
(
e−iω 1

2

[
〈p, C0[q, q, q]〉+ 2〈p,B0[q, (I −A0)

−1B0[q, q]]〉

+ 〈p,B0[q, (e
2iωI −A0)

−1B0[q, q])〉
])

,

(I.8.40)

satisfies d(0) �= 0, where 〈a, b〉 = a1b1 + a2b2 is the standard inner
product on C

2, A0 = A(0), B0 = B(0) and C0 = C(0), q satisfies
A0q = eiωq, p satisfies Aᵀ

0p = e−iωp, and 〈p, q〉 = 1.

Our approach in analyzing the Hopf bifurcation condition in (I.8.7)–(I.8.8)
will be to first expand the state space as in equation (I.8.17)–(I.8.18) and
determine the nontrivial dynamics on the parameter-dependent centre mani-
fold near (xt, ε) = (0, 0). This will be a two-dimensional impulsive differential
equation. The iterated dynamics of the associated stroboscopic map at pa-
rameter ε = 0 will be compared to (I.8.39), while the dynamics for |ε| small

1Precisely, this condition states the eigenvalues must cross the boundary of |z| = 1 in
C transversally. This is equivalent to the modulus |μi(ε)| being increasing or decreasing at
ε = 0, which, given that |z| = zz, is equivalent to the condition we have supplied.
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will provide a way to calculate r′(0). This will allow us to effectively lift the
Neimark–Sacker bifurcation into the nonlinear dynamics of (I.8.7)–(I.8.8).

To begin, we introduce some additional notation. The symbols Dx and Dε

will denote the partial derivative operators acting on functions H : RCR ×
R → R

n. We then set Hxx = D2
xH(0), Hxxx = D3

xH(0) and Hxε =
DεDxH(0), where the first two are symmetric bilinear and trilinear maps
on RCR, respectively, and the latter is a linear operator on RCR. For
H(t, ·, ·) : RCR×R→ R

n, we overload the notation and write, for example,
Hxx(t) = H(t, ·, ·)xx.

The following three lemmas provide the foundation of our result. They are
analogues of Lemmas I.8.3.1, I.8.3.2 and I.8.3.3, and the proofs follow from
the same reasoning.

Lemma I.8.4.1. The centre fibre bundle RCRc(t) associated to the lineariza-
tion of the parameter-augmented system (I.8.17)–(I.8.18) is three-dimensional.
A basis matrix is

Φt =

[
φ1,t φ2,t πt

0 0 1

]
,

where φt spans the centre fibre bundle of the original linearization (I.8.9)–
(I.8.10) at ε = 0, and t �→ (πt(0), 1) = (π(t), 1) is a Floquet eigensolution
with exponent zero of the homogeneous impulsive delay differential equation
(I.8.13)–(I.8.16). Also, the unstable fibre bundle RCRu(t) of the parameter-
augmented system remains c-dimensional.

Lemma I.8.4.2. The Floquet eigensolution t �→ (πt(0), 1) is rank 1, so
π(t) = πt(0) is the unique periodic solution of the system (I.8.13)–(I.8.14)
with ε ≡ 1. The matrices Λ and Qt of the Floquet decomposition Φt = Qte

Λt

are

Λ =

[
Λω 02×1

01×2 0

]
, Λω =

[
0 ω
−ω 0

]
, Qt =

[
Q0

t πt

0 1

]
,

(I.8.41)

where Q0
t is the same periodic matrix appearing in (I.8.38).

Lemma I.8.4.3. Write the matrix Y (t) ∈ R
3×(n+1) defined by Pc(t)χ0 =

ΦtY (t) in block form

Y =

⎡
⎣ Y11 Y12

Y21 Y22

Y31 Y32

⎤
⎦

for Yi1 ∈ R
1×n and Yi2 ∈ R

1×1. We have Y31 = 0 and

φ1,tY11(t) + φ2,tY21(t) =
1

2πi

∫
Γ

(zI − V 0
t )

−1χ0dz, (I.8.42)

where V 0
t : RCR → RCR is the monodromy operator associated to the linear

system (I.8.9)–(I.8.10) and Γ is a positively oriented contour whose interior
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is bounded away from zero, enclosing both of e±iω and no other eigenvalues
of V 0

t .

At this stage, we should point out that because of the trivial dynamics of
the parameter ε and the form of Φt, the Euclidean space representation of the
three-dimensional centre manifold of the augmented system (I.8.17)–(I.8.18)
takes the form

h(t, (u, ε), θ) =

[
h(t, u, ε, θ)

ε

]

for h(t, u, ε, θ) ∈ R
n and u ∈ R

2. Consequently, Lemma I.8.4.1 though
Lemma I.8.4.3 together with Theorem I.6.1.2 imply that the dynamics on
parameter-dependent centre manifold at parameter ε are

u̇ = Λωu+ eΛωt

[
Y11(t)
Y21(t)

]
F (t, Q0

tu+ επ̃t + h(t, u, ε, ·), ε), t �= k

(I.8.43)

Δu =

[
Y11(0)
Y21(0)

]
G(Q0

0−u+ επ̃0− + h(0−, u, ε, ·), ε), t = k.

(I.8.44)

Next we consider h̃(t, u, θ) := h(t, u, 0, θ), the centre manifold at parame-
ter ε = 0. As we will need the cubic order terms in the iterated map (I.8.39),
it will be necessary to compute h̃ to quadratic order in u. As Theorem I.6.1.1
implies the expansion h̃ = 1

2 h̃2 +O(||u||3), the following lemma is of use and
implies the fairly striking result that, for Hopf bifurcation conditions, the pro-
jection constraint of Proposition I.6.2.1 is not actually needed to determine
the quadratic term of the centre manifold at ε = 0.

Lemma I.8.4.4. In terms of the expansion

h̃2(t, θ)[u, u] = h11
2 u2

1 + h12
2 u1u2 + h22

2 u2
2,

the vector function hΞ
2 = (h11

2 , h12
2 , h22

2 ) ∈ (Rn)3 is the unique periodic solu-
tion of period one of the impulsive partial delay differential equation (I.6.37)–
(I.6.40) satisfying the constraint Pc(t)h

ij
2 (t, ·) = 0 for all t ∈ [0, 1) and un-
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ordered pairs i, j ∈ {1, 2}, with the data

Λ2 =

⎡
⎣ 0 −ω

2 0
ω 0 −ω
0 ω

2 0

⎤
⎦ ,

F(t, θ) =
(
φ1,t(θ)Y11(t) + φ2,t(θ)Y21(t)

)
⎡
⎢⎣

Fxx(t)[Q
0
t,1]

2

2Fxx(t)[Q
0
t,1, Q

0
t,2]

Fxx(t)[Q
0
t,2]

2

⎤
⎥⎦ ,

G(θ) = (φ1,0

(
θ)Y11(0) + φ2,0(θ)Y21(0)

)
⎡
⎢⎣

Gxx[Q
0
0−,1]

2

2Gxx[Q
0
0−,1, Q

0
0−,2]

Gxx[Q
0
0−,2]

2

⎤
⎥⎦ .

a(t) =

⎡
⎢⎣

Fxx(t)[Q
0
t,1]

2

2Fxx(t)[Q
0
t,1, Q

0
t,2]

Fxx(t)[Q
0
t,2]

2

⎤
⎥⎦ , b0 =

⎡
⎢⎣

Gxx[Q
0
0−,1]

2

2Gxx[Q
0
0−,1, Q

0
0−,2]

Gxx[Q
0
0−,2]

2

⎤
⎥⎦ .

Moreover, the inhomogeneous linear system (I.6.42)–(I.6.43) from Proposi-
tion I.6.2.1 has a unique periodic solution n(t) of period T , so the vector hΞ

2

of coefficients of the centre manifold at parameter ε = 0 is given precisely by
the right-hand side of Eq. (I.6.41). Also, if RCRu(t) is trivial, the set

nt +RCR†
c(t) ⊂ RCR3

is globally attracting, where RCR†
c(t) is the centre fibre bundle associated to

the homogeneous equation

ṅ(t) + 2Λ2 ∗ n(t) = L(t)� [e2Λ2(·) ∗ nt], t �= tk (I.8.45)

Δn(t) = J(k)� [e2Λ2(·) ∗ nt− ], t = tk. (I.8.46)

Proof. Since Λ = Λω =

[
0 ω
−ω 0

]
, one can readily compute

h2[Λu, u] = h2(t, θ)

[[
ωu2

−ωu1

]
,

[
u1

u2

]]

= ω
(
c11u2u1 + c12u

2
2 − c21u

2
1 − c22u1u2

)

= ω

(
h11
2 u2u1 +

1

2
h12
2 u2

2 −
1

2
h12
2 u2

1 − h22
2 u1u2

)

= [ u2
1 u1u2 u2

2 ] ∗ Λ2 ∗

⎡
⎣ h11

2

h12
2

h22
2

⎤
⎦ ,

so that Λ2 does indeed have the claimed form. Verifying that F , G, a and
b0 are as stated in the lemma can be done in a similar manner, taking into
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account Lemmas I.8.4.2, I.8.4.3 and the symmetric bilinearity of the second
differentials Fxx and Gxx.

Since (I.6.42)–(I.6.43) are inhomogeneous, we can write any given periodic
solution in the form n(t) = n0(t) +M(t)y, where n0(t) is a particular peri-
odic solution, M(t) is a matrix whose columns consist of a maximal linearly
independent set (finite, due to the Floquet theory) of real periodic solutions
of the homogeneous equation and y is a real vector of appropriate dimension.
To characterize M(t), we write down the homogeneous equation

ṅ+ 2Λ2 ∗ n = L(t)� [e2Λ2(·) ∗ nt], t �= k (I.8.47)

Δn = J(k)� [e2Λ2(·) ∗ nt− ], t = k, (I.8.48)

where we remember that multiplications involving Λ2 and its exponentials are
treated as array multiplications. Introducing a change of variables w(t) =
e2Λ2t ∗ n(t) for w ∈ (Rn)β×1, we find by applying the Leibniz’s law that w
satisfies the homogeneous equation

ẇ = L(t)� wt, t �= k (I.8.49)

Δw = J(k)� wt− , t = k. (I.8.50)

Thus, the dynamical system for w is merely the β-fold product of the ho-
mogeneous system (I.8.9)–(I.8.10) with itself. Recall that this system has, a
priori, no nontrivial periodic solutions, and the only Floquet exponents on
the imaginary axis are ±iω. Since the eigenvalues of 2Λ2 are λ = 0 and
λ = ±i2ω, the transformation u �→ e2Λ2t ∗ u is uniformly bounded, so every
periodic solution of (I.8.47)–(I.8.48) must be of the form e−2Λ2t ∗ w(t) for a
periodic solution w(t) of (I.8.49)–(I.8.50). Since ω �= 0, the only periodic so-
lution of this form is the trivial solution, thereby proving that the T -periodic
solution of the inhomogeneous equation is unique. That nt +RCR†

c(t) is at-
tracting when RCRu(t) is trivial follows by the uniform boundedness of the
transformation and the spectral separation of RCR3 by the homogeneous
system (I.8.49)–(I.8.50).

We cannot hope to obtain an explicit, fully general formula for the solution
c(t, θ) encoding the coefficients of h̃2(t, θ). The difficulty arises in solving the
inhomogeneous impulsive delay system (I.6.42)–(I.6.43) of Proposition I.6.2.1.
See later Example I.8.4.1.

At this stage, we will assume that one has computed the second-order
term h̃2 of the centre manifold at parameter ε = 0, or some sufficiently
precise numerical approximation thereof. To prove the following lemma, we
could apply the method of [30], as is done in the proof of Theorem I.8.3.1.
However, the calculations are obviously a bit messier in this case. For the
sake of transparency, we provide a self-contained proof.

Lemma I.8.4.5. The iterated dynamics defined by the Stroboscopic (Poincaré)
map associated to the impulsive differential equation (I.8.43)–(I.8.44) on the
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parameter-dependent centre manifold, at the fixed parameter ε = 0, are given
to cubic order by

u �→ Ω(1)u+
1

2!

(∫ 1

0

Ω(1)Ỹ (s)Fxx(s)[Φ
0
su]

2ds+ Ỹ (0)Gxx[Φ
0
1−u]2

)

+
1

3!

(∫ 1

0

Ω(1)Ỹ (s)

[
Fxxx(s)[Φ

0
su]

3 + 3Fxx(s)[Φ
0
su, h̃2(s, ·)[Ω(s)u]2] + · · ·

+ 3Fxx(s)

[
Φ0

su,Φ
0
s

∫ s

0

Ỹ (t)Fxx(t)[Φ
0
tu]

2dt

]
ds

]
+ · · ·

+ Ỹ (0)

[
Gxxx[Φ

0
1−u]3 + 3Gxx[Φ

0
1−u, h̃2(1

−, ·)[Ω(1)u]2] + · · ·

+ 3Gxx

[
Φ0

1−u,Φ0
1−

∫ 1

0

Ỹ (t)Fxx(t)[Φ
0
tu]

2dt

]])
+O(||u||4),

(I.8.51)

where Λω =

[
0 ω
−ω 0

]
, Ω(t) = eΛωt and Ỹ (t) =

[
Y11(t)
Y21(t)

]
.

Proof. The cubic order dynamics (I.6.16)–(I.6.17) on the centre manifold at
parameter ε = 0 are

u̇ = Λu+ eΛtỸ (t)

[
1

2
D2F (t)[Q0

tu]
2

+
1

3!
(D3F (t)[Q0

tu]
3 + 3D2F (t)[Q0

tu, h̃2(t, ·)u2])

]
, t �= k

Δu = Ỹ (0)

[
1

2!
D2G[Qk−u]2

+
1

3!
(D3G[Q0

k−u]3 + 3D2G[Q0
k−u, h̃2(k

0, ·)u2])

]
, t = k,

where D2F = Fxx and analogously for the third derivatives and for G. Let
t �→ S(t, u) be the unique solution of the above ordinary impulsive differential
equation, defined for time t ≥ 0 and satisfying the initial condition S(0, u) =
u. It follows that t �→ S(t, u) satisfies the impulsive differential equation

Ṡ = ΛS + eΛtỸ (t)][
1

2
D2F (t)[Q0

tS]
2 +

1

3!
(D3F (t)[Q0

tS]
3 + 3D2F (t)[Q0

tS, h̃2(t, ·)S2])

]
,

t 	= k (I.8.52)

ΔS = Ỹ (0)

[
1

2!
D2G[Q0

k−S]2+

1

3!
(D3G[Q0

k−S]3 + 3D2G[Q0
k−S, h̃2(k

−, ·)S2])

]
, t = k. (I.8.53)
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Our objective is to compute a degree three Taylor expansion of u �→ S(1, u)
near u = 0. The function S : R+ × R

2 → R
2 is C3 in its second variable

and C1 in its first variable except at times t ∈ Z, where it is right-continuous
[30]. Consequently, the multiple partial derivatives t �→ ∂ukS := Suk for
k = 1, 2, 3 themselves satisfy a set of impulsive differential equations that
can be calculated by formally differentiating (I.8.52)–(I.8.53) with respect to
u, keeping in mind that S = S(t, u). Also, we have the initial conditions
Su(0, 0) = I, Suu(0, 0) = 0 and Suuu(0, 0) = 0. The formal differentiation
process produces

Ṡu = ΛSu + eΛtỸ (t)

(
D2F (t)[Q0

tS,Q
0
tSu] +

1

3!

(
3D3F (t)[Q0

tS,Q
0
tS,Q

0
tSu] + · · ·

+ 3D2F (t)[Q0
tSu, h̃2(t, ·)S2] + 6D2F (t)[Q0

tS, h̃2(t, ·)[S, Su]
))

, t 	= k

Ṡuu = ΛSuu + eΛtỸ (t)

(
D2F (t)[Q0

tSu]
2 +D2F (t)[Q0

tS,Q
0
tSuu] + · · ·

+
1

3!

(
3D3F (t)[Q0

tS,Q
0
tS,Q

0
tSuu] + 6D3F (t)[Q0

tS,Q
0
tSu, Q

0
tSu] + · · ·

+ 3D2F (t)[Q0
tSuu, h̃2(t, ·)S2] + 12D2F (t)[Q0

tSu, h̃2(t, ·)[S, Su] + · · ·

+ 6D2F (t)[Q0
tS, h̃2(t, ·)[Su, Su] + h̃2(t, ·)[S, Suu]]

)
, t 	= k

ΔSu = Ỹ (k)

(
D2G[Q0

k−S,Q0
k−Su] +

1

3!

(
3D3G[Q0

0−S,Q0
k−S,Q0

k−Su] + · · ·

+ 3D2G[Q0
k−Su, h̃2(k

−, ·)S2] + 6D2G[Q0
k−S, h̃2(k

−, ·)[S, Su]
))

, t = k

ΔSuu = Ỹ (k)

(
D2G[Q0

k−Su]
2 +D2G[Q0

k−S,Q0
k−Su] + · · ·

+
1

3!

(
3D2G[Q0

k−S,Q0
k−S,Q0

k−Suu] + 6D2G[Q0
k−S,Q0

k−Su, Q
0
k−Su] + · · ·

+ 3D2G[Q0
k−Suu, h̃2(k

−, ·)S2] + 12D2G[Q0
k−Su, h̃2(k

−, ·)[S, Su] + · · ·

+ 6D2G[Q0
k−S, h̃2(k

−, ·)[Su, Su] + h̃2(k
−, ·)[S, Suu]]

)
, t = k,

and we refrain from calculating the impulsive differential equation for Suuu for
now. Take note that each of S = S(t, u), Su = D2S(t, u) and Suu = D2

2S(t, u)
is evaluated at an arbitrary u ∈ R

2. If one calculates the impulsive differential
equation for Suuu and evaluates each of S, Su and Suu at u = 0, many terms
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cancel because S(t, 0) = 0. The result is

Ṡu = ΛSu,

Ṡuu = ΛSuu + eΛtỸ (t)D2F (t)[Q0
tSu]

2,

Ṡuuu = ΛSuuu + eΛtỸ (t)
[
D3F (t)[Q0

tSu]
3 + 3D2F (t)[Q0

tSu, h̃2(t, ·)[Su]
2] + · · ·

+ 3D2F (t)[Q0
tSu, Q

0
tSuu]

]
,

ΔSu = 0,

ΔSuu = Ỹ (k)D2G[Q0
k−Su]

2,

ΔSuuu = Ỹ (k)
[
D3G[Q0

k−Su]
3 + 3D2G[Q0

k−Su, h̃2(k
−, ·)[Su]

2] + · · ·

+ 3D2G[Q0
k−Su, Q

0
k−Suu]

]
.

where we have suppressed the conditions t �= k and t = k.
It follows that Su(0, t) = eΛt = Ω(t), so that Q0

tSu = Φ0
t . Taking this into

account, solving the above impulsive differential equations at the prescribed
initial conditions and substituting into the Taylor expansion

S(1, u) = Su(1, 0)u+
1

2!
Suu(1, 0)[u, u] +

1

3!
Suuu(1, 0)[u, u, u] +O(||u||4)

produce the right-hand side of (I.8.51). As u �→ S(1, u) is precisely the
stroboscopic (Poincaré) map, the lemma is proven.

Remark I.8.4.1. If the vector field and jump map have no quadratic terms
in the state xt—that is, if Fxx = Gxx = 0—one does not need to compute
h̃2 at all, since the evaluations of h̃2 in the iterated dynamics (I.8.51) only
appear in the action of the second differentials D2F (s) and D2G.

Remark I.8.4.2. Technically, we have not computed the actual symmetric
multilinear maps Suu(1, 0) and Suuu(1, 0). We have only obtained the action
of these maps on the elements (u, u) and (u, u, u). It will be necessary in the
computation of the Lyapunov coefficient d(0) to evaluate these maps at non-
identical tuples; see Eq. (I.8.40). To rectify this, we have three suggestions.

• One can use the expression (I.8.51) as a starting point for a numerical
differentiation to approximate the action of the multilinear maps on
the appropriate tuples in the expression for d(0). We do this for the
example of Sect. I.8.4.1.

• Compute the multilinear maps directly. This is done later in
Sect. II.5.2.3, when we consider the cylinder bifurcation again in the
finite-dimensional context.

• Avoid the formal expression of the stroboscopic map entirely, and ap-
proximate it numerically by time integration. Use numerical differenti-
ation to approximate the multilinear maps.
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With these preparatory lemmas in place, we are ready to state and prove
our bifurcation theorem at a Hopf point.

Theorem I.8.4.1 (Cylinder Bifurcation). With the notation and assump-
tions of Lemma I.8.4.1 through Lemma I.8.4.3, suppose the following nonde-
generacy conditions are satisfied:

G.1 eimω �= 1 for m = 1, 2, 3, 4.

G.2 γ(0) �= 0, where

γ(0) =
1

2

(
trB +

∫ 1

0

trA(s)ds
)
, (I.8.54)

where B ∈ R
2×2 and A(t) ∈ R

2×2 are defined by

B = Ỹ (0)
(
Gxx[π0− , Q

0
0− ] +GεxQ

0
0−
)

A(t) = Ω(t)Ỹ (t)
(
Fxx(t)[πt, Q

0
t ] + Fεx(t)Q

0
t

)
.

G.3 The first Lyapunov coefficient d(0) associated to the two-dimensional
discrete-time map (I.8.51) of Lemma I.8.4.5 is nonzero.

Then, the equilibrium point at the origin of the nonlinear impulsive delay
differential equation (I.8.7)–(I.8.8) undergoes a bifurcation to an invariant
cylinder at the critical parameter ε = 0. Specifically, for |ε| small, there
is a unique periodic orbit t �→ y(t, ε) that satisfies yt(·, ε) → 0 as ε → 0,
in addition to a two-dimensional parameter-dependent invariant fibre bundle
Σε ⊂ S

1 × RCR that exists for d(0)γ(0)ε < 0 and is periodic. The t-fibre
Σε(t) can be locally realized as

Σε(t) = Q0
tσε(t) +O(ε),

where t �→ σε(t) ⊂ R
2 is periodic with its image a curve of diameter O(

√
ε),

and continuous in the Hausdorff metric except at integer times, where it is
continuous from the right. Also, if in addition RCR0

u(t) is trivial, then

• yε is asymptotically stable for γ(0)ε < 0, stable for ε = 0 and unstable
for γ(0)ε > 0, while Σε(t) is attracting for γ(0)ε > 0 provided d(0) < 0;

• yε is asymptotically stable for γ(0)ε < 0 and unstable for γ(0)ε ≥ 0,
while Σε(t) is unstable for γ(0)ε < 0 provided d(0) > 0.

Moreover, the assertions concerning the stability and existence of the periodic
orbit y(t, ε) for ε �= 0 are true regardless of the nondegeneracy condition G.3.

Proof. The persistence of the equilibrium to a periodic orbit for |ε| small
follows by the remark that the iterated dynamics satisfy, to linear order,
u �→ Ω(1)u at the parameter ε = 0. As Ω(1) is invertible, the implicit function
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theorem guarantees the iterated dynamics posses a unique, small fixed point
for 0 < |ε| # 1. Lifting this fixed point into the nonlinear impulsive delay
differential equation, the result is a unique, small periodic orbit.

The periodic orbit vε(t) is C
1 in ε. Near ε = 0, we can infer from (I.8.43)–

(I.8.44) that vε(t) = O(ε2). If we perform a time- and parameter-dependent
change of coordinates y = z + vε, (I.8.43)–(I.8.44) become

ż = Λωz + eΛωtỸ (t)
[
F (t, Q0

t (vε + z) + πtε, ε)− F (t, Q0
t z + πtε, ε)

]
, t �= k
(I.8.55)

Δz = eΛωkỸ (k)
[
G(Q0

k−(vε + z) + πk−ε, ε)−G(Q0
k−vε + πk−ε, ε)

]
, t = k.

(I.8.56)

Comparing to the iterated map (I.8.39), the Floquet multipliers of the trivial
equilibrium z = 0 of (I.8.55)–(I.8.56) are precisely the eigenvalues of A(ε) for
the iterated map obtained via the stroboscopic (Poincaré) map for the above
dynamical system. The linearization of the above system is

ż = Λωz + eΛωtỸ (t)
[
DxF (t, Q0

t vε + πtε, ε)Q
0
t

]
z, t �= k

Δz = eΛωkỸ (k)
[
DxG(Q0

k−vε + πk−ε, ε)Q0
k−
]
z, t = k,

and it follows from Liouville’s formula for impulsive differential equations [9]
that the product of the Floquet multipliers is

γ̃(ε)2 := μ1(ε)μ2(ε) = det
(
I + Ỹ (0)DxG(Q0

0−vε(0
−) + π0−ε, ε)Q

0
0−

)
· · ·

× exp

(∫ 1

0

tr
[
eΛωtỸ (t)Dxf(t, Q

0
t vε(t) + πtε, ε)Q

0
t

]
dt

)
.

Using Jacobi’s formula and the asymptotic vε(t) = O(ε2), we can readily
calculate the derivative of μ1(ε)μ2(ε) at ε = 0. The formula from (I.8.54) and
the sufficient condition γ(0) �= 0 for the transversality condition follows by
the observation that r′(0) = 1

2 γ̃
′(0) = γ(0).

It follows that under assumptions G.1 through G.3, the discrete-time dy-
namical system defined by the Stroboscopic map Sε : R2 → R

2 of (I.8.55)–
(I.8.56) undergoes a Neimark–Sacker bifurcation at parameter ε = 0. Invert-
ing the change of variables, the same is true of the original system (I.8.43)–
(I.8.44). There is a closed curve σε(0) ⊂ R

2 that exists for d(0)γ(0) < 0, is
invariant under Sε and is attracting and stable for γ(0)ε > 0 and unstable for
γ(0)ε < 0. The fixed point vε(0) of Sε satisfies the stability and attraction
properties of the theorem, and the same is true of t �→ vε(t). The stability
and attraction persist when considered in the infinite-dimensional context of
(I.8.7)–(I.8.8) provided RCRu(t) = {0} because of Theorem I.5.5.1.

Let t �→ Xε(t; 0, w) denote the unique solution of (I.8.55)–(I.8.56). Because
σε(0) is invariant under Sε, the fibre bundle

σε = {(t, x(t)) : ∃w ∈ σε(0), x(t) = X(t; 0, w)}



I.8.4. HOPF-TYPE BIFURCATION AND INVARIANT CYLINDERS 175

is invariant under the process Xε and the t-fibre σε(t) is periodic with period
1. The continuity of t �→ X(t; 0, w) for t ∈ [k, k+1) and k ∈ Z leads naturally
to the continuity of fibre t �→ σε(t). Also, the diameter [82] of σε(0) is O(

√
ε),

and continuity implies the same of σε(t). Moreover, ||σε(t)|| = O(
√
ε), and

we can write σε(t) = vε(t) + σ0
ε (t) for another closed curve σ0

ε (t) of diameter
O(
√
ε).

By invariance of the parameter-dependent centre manifold, it follows from
the representation (I.6.3) of solutions on the centre manifold and the descrip-
tion of the matrix Qt from (I.8.41) that

Σε(t) = Q0
tσε(t) + πtε+ h̃(t, σε(t), ε, ·) ⊂ RCR

naturally defines an invariant fibre bundle Σ ⊂ R × RCR of the nonlinear
impulsive delay differential equation (I.8.7)–(I.8.8), with

Σε =
⋃
t∈R

{t} × Σε(t).

The fibre bundle is periodic in the sense that Σε(t + 1) = Σε(t), and so can
be identified as being a subset of S1 ×RCR. Since h = O(||(u, ε)||2), we can
write

Σε(t) = Q0
tσε(t) + πtε+O(||(σε(t), ε)||2)

= Q0
tσε(t) +O(ε+ ||(vε(t) + σ0

ε (t), ε)||2)
= Q0

tσε(t) +O(ε+ |
√
ε+ ε|2)

= Q0
tσε(t) +O(ε).

Finally, the attractivity properties of Σε follow by recognizing that it is a
locally attracting invariant set within the centre manifold and applying The-
orem I.5.5.1.

If we wanted to be more verbose, we would describe this bifurcation pattern
as a Neimark–Sacker bifurcation from a discontinuous periodic solution. As
for the term cylinder bifurcation, we discuss this now. Because the system
(I.8.7)–(I.8.8) is periodic, there is a nonautonomous dynamical system

S : R×(S1×RCR)→ S
1×RCR, S(t, (s, φ)) = (s+t mod 1, x(s,φ)(t)), t ≥ s

associated to it, where x(s,φ) : [s, s+α)→ RCR is the unique solution through
the initial condition (s, φ) and defined on a maximal interval of existence.
This dynamical system satisfies the semigroup properties S(t, (t, ·)) = IRCR
and

S(t, (s, S(s, (u, φ)))) = S(t, (u, φ))

whenever t ≥ s ≥ u. As such, S1 × RCR is the state space of the nonau-
tonomous dynamical system generated by (I.8.7)–(I.8.8).
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Each of the t-fibres Σε(t) of the bifurcating invariant fibre bundle are
homeomorphic to the circle S

1. The set

Σε =
⋃
t∈R

{t mod 1} × Σε(t) ⊂ S
1 ×RCR

naturally has the structure of a topological manifold with boundary {0} ×
Σε(0), while every interior slice {s} × Σε(s) for s �= 0 has a neighbourhood
homeomorphic to the open cylinder (0, 1)×S

1. The nontrivial boundary is the
result of t �→ σε(t) being periodic but lacking continuity at the integers, being
only right-continuous there and generically possessing a finite jump. The
name cylinder bifurcation we propose stems from this fact. When the impulse
effect is trivial, there are no discontinuities in the time evolution of t �→ σε(t),
and we obtain the classical bifurcation pattern to an invariant torus. Such
torus bifurcations typically occur from periodic orbits in autonomous delay
differential equations or from equilibrium points in periodically forced delay
differential equations [121].

The generic cylinder bifurcation is as follows, with the genericity conditions
being eikω �= 1 for k = 1, 2, 3, 4, γ(0) �= 0 and d(0) �= 0.

Corollary I.8.4.1 (Generic Cylinder Bifurcation). For any generic impul-
sive delay differential equation (I.8.7)–(I.8.8) having at ε = 0 the equilib-
rium 0 with a single pair of complex-conjugate Floquet exponent λ = ±iω for
ω ∈ (0, 2π) and two-dimensional centre fibre bundle, there is a neighbourhood
N of 0 ∈ RCR and a smooth invertible change of parameters η = η(ε) satis-
fying η(0) = 0 such that for η > 0, there is an invariant cylinder in S

1 ×N
that trivializes to S

1 × {0} (i.e. to the equilibrium) as η → 0+, together with
a unique periodic orbit in N that persists for all |η| sufficiently small and
trivializes to the equilibrium as η → 0.

I.8.4.1 Example: Impulsive Perturbation from a Hopf
Point

We will study the effect of linear impulsive perturbations on a scalar delay
differential equation at a Hopf point

ẋ = −π

2
x(t− 1) + s2(t)x

2(t− 1) + s3(t)x
3(t), t �= kT

Δx = εx(t−), t = kT,

where T ≥ 1 is a fixed period not smaller than the delay and s2(t) and s3(t)
are real periodic functions of period T . When ε = 0, the impulse effect is
trivial and the linearization of the associated delay differential equation has
a pair of simple complex-conjugate eigenvalues ±iπ2 on the imaginary axis,
and all other have negative real parts. Thus, perturbing the vector field from
this configuration would generically lead to a Hopf bifurcation if s2 and s3
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were constant. Otherwise, if they were periodic and nonconstant, we would
expect a bifurcation to an invariant torus [121].

One can easily verify that [ cos π
2 (t+ θ) sin π

2 (t+ θ) ] is a basis matrix

for RCR0
c(t). Performing a rescaling of time t �→ Tt, the result is

ẋ = −Tπ

2
x(t− 1/T ) + σ2(t)x

2(t− 1/T ) + σ3(t)x
3(t), t �= k (I.8.57)

Δx = εx(t−), t = k, (I.8.58)

where σi(t) = Tsi(t/T ) is periodic with period 1. After this transformation,

Φ0
t = [ cos(π2T (t+ θ)) sin(π2T (t+ θ)) ]

is a the new basis for RCR0
c(t), ±iTπ

2 are the Floquet exponents on the imag-
inary axis, and we have the representation Φ0

t = Q0
t exp(tΛTπ

2
). Therefore, ω

and Q0
t are

ω =
Tπ

2
, Q0

t (θ) = Q0(θ) =

[
cos

(
Tπ

2
θ

)
sin

(
Tπ

2
θ

) ]
.

Using this information, we can verify the first nondegeneracy conditions G.1
of Theorem I.8.4.1. We find that G.1 is equivalent to the condition

T and
3T

4
are not integers.

To check the nondegeneracy condition G.2, we require Ỹ (t) and πt. In I.8.5,
we compute Ỹ (t) and find

Ỹ (t) = e−Λωt 4

4 + π2

[
2
π

]
.

The explicit calculation of πt is a much more difficult problem: one must
compute the unique periodic solution π(t) of the linear inhomogeneous equa-
tion

ẏ = −Tπ

2
π(t− 1/T ), t �= k

Δy = 1, t = k.
(I.8.59)

When T is rational, the periodic solution can be computed explicitly, al-
though the calculation can be very lengthy. Alternatively, although π(t) is
not asymptotically stable, every solution y(t) satisfies yt → πt + et as t→∞
for some et ∈ RCRc(t), and since the latter is completely characterized, one
could numerically simulate an arbitrary solution and solve an appropriate
linear equation to compute π(t) to any desired precision. Still another way is
to discretize the monodromy operator and compute an approximation using
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a discretized variation-of-constants formula. To demonstrate one of the (in
principle) more analytically tractable cases however, we will focus our at-
tention on a specific choice of T satisfying the nondegeneracy condition G.1.
One of the simplest choices is T = 3

2 . As demonstrated in I.8.5, the periodic
solution is y(t) = e1 ·S(t−�t	), where S : [0, 1)→ R

3 is defined piecewise by
the expression

S(t) =

⎧⎨
⎩

eAtu0, t ∈ [0, 1/3)

eAt(e3 + eA
1
3 u0), t ∈ [1/3, 2/3)

eAt(e2 + eA
1
3 e1 + eA

2
3 u0), t ∈ [2/3, 1),

A = −3π

4

⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦ ,

(I.8.60)

u0 = (I − eA)−1(e1 + e
1
3
Ae2 + e

2
3
Ae3), (I.8.61)

where {e1, e2, e3} is the standard ordered basis of R
3. The expression is

rather cumbersome, so we do not display it explicitly in terms of elementary
functions. A plot (Fig. I.8.6) of this periodic solution is provided in I.8.5.
The nondegeneracy condition G.2 is then equivalent to

γ(0) =
4

4 + π2

(
1− π

∫ 1

0

σ2(u)e2 · S(u)du
)
�= 0. (I.8.62)

Being affine linear in the coefficient σ2, the condition γ(0) �= 0 is indeed
generic.

At this stage, we will make a choice for the coefficient σ2. Choosing σ2(t) =
1
2 sin(2πt), numerical integration yields

γ(0) =
4

4 + π2

(
1− π

∫ 1

0

1

2
sin(2πu)e2 · S(u)du

)
= 0.30854± 10−5,

(I.8.63)

so the nondegeneracy condition G.2 passes, and in particular, Theorem I.8.4.1
predicts the existence of a nontrivial periodic orbit t �→ y(t, ε) that is locally
asymptotically stable for ε < 0 and unstable for ε > 0.

Next, we calculate the quadratic approximation h2 of the centre manifold.
We must solve the impulsive evolution equation (I.6.37)–(I.6.40) subject to
the data and constraints from Lemma I.8.4.4. The first step is to calculate
the unique periodic solution n0(t) satisfying (I.6.42)–(I.6.43). The second
equation (I.6.43) is trivial for the present example, so n0(t) satisfies the in-
homogeneous linear delay differential equation

F(t, 0) + ṅ+ 2Λ2n(t) = −3π

4
e−

2
3Λ2n(t− 2/3) +m(t), (I.8.64)

with the functions F(t, θ) and m(t) being given in Sect. I.8.5.4. We devise a
numerical routine in Sect. I.8.5.3 to approximate the periodic solution. With
σ2(t) =

1
2 sin(2πt), a plot of the result is provided in Fig. I.8.7. A numerical

approximation of the coefficient vector hΞ
2 is then obtained by substituting the

approximation into (I.6.41), with the integral being computed by numerical
quadrature.
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Visualizing the quadratic term 1
2 h̃2 of the two-dimensional centre manifold

is slightly more complicated because even though the two independent pa-
rameters u1, u2 are real, h̃2(t, ·)[u1, u2] is an element of RCR for each t ∈ R.
However, since (u1, u2) �→ 1

2 h̃2(t, θ)[u1, u2] is a scalar field with a zero at the
origin, we can get a sense of the geometry in a neighbourhood of this point
using the Hessian matrix. To provide a coarse but faithful depiction of the
geometry, we will therefore generate a plot of the eigenvalues of

θ �→ eig

[
h11
2 (t, θ) 1

2h
12
2 (t, θ)

1
2h

12
2 (t, θ) h22

2 (t, θ)

]
:= eig(H(t, θ)),

for θ ∈ [−1, 0], where eig(H) denotes the eigenvalues of H, and the matrix
above is indeed the Hessian of (u1, u2) �→ h(t, θ)(u1, u2) at the origin. See
Fig. I.8.2. It is clear that the classification of the origin is generally noncon-
stant in (t, θ), as there are θ-intervals where the origin is a saddle, maximum
or minimum for fixed t. These intervals themselves are nonconstant in t.
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Figure I.8.2: Plots of the function θ �→ eig(H(t, θ)) for fixed arguments of
t ∈ [−1, 0]. From top left counterclockwise, these times are t = 0, t = 0, 1,
t = 0.5 and t = 0.6. Notice the varying topological classification of the origin
as θ and t are varied. For each argument θ, the origin is a local minimum
when both curves are above the dashed line, a local maximum when both
curves are below the dashed line, and a saddle point when the dashed line
separates the curves



180 CHAPTER I.8. SMOOTH BIFURCATIONS

By fixing a particular θ ∈ [−1, 0], we can generate a contour plot of
(u1, u2) �→ 1

2 h̃2(t, θ)[u1, u2] for a few fixed arguments of t to see the tran-
sitions between different topological classifications of the origin. Fixed snap-
shots from one period of transitions of the contour plot are provided in
Fig. I.8.3 for the same times used in the snapshots of the Hessian eigenvalue
plot (Fig. I.8.2).

To compute the Lyapunov coefficient d(0), we will need to fix a choice of
σ3. We choose σ3(t) = −2. For our example, the Lyapunov coefficient was
calculated by first defining a MATLAB function that computes the right-hand
side of (I.8.51) using numerical quadrature (specifically, MATLAB’s built-in
trapezoidal method trapz) and our previously computed approximation of
h̃2. Then, we used numerical differentiation (with iterated use of gradient)
to calculate the associated bilinear and trilinear maps in (I.8.40), the normal-
ized right- and left- eigenvectors of A0 and, finally, the Lyapunov coefficient
d(0). With our choices T = 3

2 , σ2(t) = 1
2 sin(2πt) and σ3(t) = −2, our ap-

proximation of the Lyapunov coefficient is d(0) = −0.5604. Since γ(0) > 0
and d(0) < 0, Theorem I.8.4.1 implies the existence of a locally attracting
invariant cylinder when ε > 0 is small.

A standard way to visualize bifurcations to invariant tori in autonomous
scalar delay differential equations is to plot curves of the form (x(t), x(t −
r1), x(t − r2)) for two delays r1 and r2 that can be chosen as desired. For
periodically forced systems, the same thing can be done, or one can plot
(t mod T, x(t), x(t − r)) and identify the hyperplanes t = 0 and t = 1−

by “wrapping” the figure around a circle of fixed radius embedded in R
3

to illustrate the torus as being a subspace of S1 × R
2. For impulsive delay

differential equations of the form (I.8.7)–(I.8.8), one must choose the delays r1
and r2 to be positive integers, otherwise the curves t �→ (x(t), x(t− r1), x(t−
r2)) will have discontinuities at times other than the integers.

For our example, we provide both with the illustrative parameter ε = 1
2 .

Figure I.8.4 is a plot of the attractor in the delayed variables x(t), x(t − 1)
and x(t−2), while Fig. I.8.5 is a plot of the curve t �→ (t mod 1, x(t), x(t−1))
wrapped around a cylinder of radius 7 (there is no deep significance to the
choice of radius). That is, we plot the curve in the cylindrical coordinates
(r, θ, z) with

r = |7 + x(t)|, θ = 2πt, z = x(t− 1).

In rectangular coordinates, this corresponds to a plot of (xrad,1(t), xrad,2(t),
x(t− 1)) with

[
xrad,1(t)

xrad,2(t)

]
=

[
cos(2πt)(7 + x(t))

sin(2πt)(7 + x(t))

]
. (I.8.65)
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Figure I.8.3: Contour plots of (u1, u2) �→ 1
2 h̃2(t, 0)[u1, u2] for various argu-

ments of t ∈ [0, 1]. In the colour map (displayed right), yellow (top) cor-
responds to more positive levels and purple (bottom) corresponds to more
negative levels. From top left clockwise, the plot times are t = 0, t = 0.1,
t = 0.5 and t = 0.6, corresponding to the origin being a saddle point, lo-
cal minimum, saddle point and local maximum, respectively. The transition
times between the different topological classifications in the interval [0, 1] are
t = 0.0781, t = 0.262, t = 0.576 and t = 0.759

The simulation is in agreement with Theorem I.8.4.1, as the cylinder is indeed
present and attracting for ε > 0.

I.8.5 Calculations Associated to
Example I.8.4.1

This section is broken up into several parts. We begin with the calculations
concerning the projection Pc(t). Next, we calculate π(t) and the matrices
A(t) and B needed in the nondegeneracy condition γ(0) �= 0. Following
this, we calculate h̃2. We conclude by checking the nondegeneracy condition
d(0) �= 0.
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Figure I.8.4: Left: trajectory through the constant initial condition
x0 = 8 of the system (I.8.58)–(I.8.58) from Example I.8.4.1 for pa-
rameters T = 3

2 , σ2(t) = 1
2 sin(2πt), σ3(t) = −2, ε = 1

2 in
the coordinates x(t), x(t − 1) and x(t − 2), plotted for time t ∈
[0, 80]. Linear interpolation between left-limits x(k−) and points x(k)
for integer times k ∈ Z is shown. Right: attractor to which
the solution in the left pane converges. In both panes, trajecto-
ries are coloured using the Viridis colourmap (displayed right) relative
to the argument t mod 1, so that purple corresponds to integer ar-
guments of t = k ∈ Z, while yellow corresponds to the left-limits
t→ k−

I.8.5.1 The Projection Pc(t) and Matrix Ỹ (t)

Conveniently, since Pc(t) is calculated with respect to the linearization at
ε = 0 and this system is autonomous, we have V 0

t = V 0
0 for all t ∈ R, and

the projection

Pc(t) =
1

2πi

∫
Γ

(zI − V 0
0 )

−1dz

is constant. Precisely, V 0
0 is the monodromy operator associated to the au-

tonomous system

ẋ = −Tπ

2
x(t− 1/T ). (I.8.66)

To compute the vector Y (t), we remark that because Pc(t) = Pc is constant
and Φ0

t = Q0e
Λωt for ω = Tπ

2 , we have the representation Y (t) = e−ΛωtY (0),
so it suffices to compute Y (0). Since Φ0 = Q0, Y (0) satisfies the equation
Pcχ0 = Q0Y (0). Q0 is precisely the basis matrix for the centre eigenspace
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Figure I.8.5: The same trajectories and attractors from Fig. I.8.4 in the
cylindrical coordinates defined in Eq. (I.8.65). The same colourmap is also
used. In these coordinates it is much easier to visualize the cylindrical
topology of the attractor as well as the discontinuity along the half-plane
{xrad,2(t) = 0, xrad,1(t) ≥ 0} corresponding to the times t = k ∈ Z. If
the impulse effect were replaced by a parameter-dependent continuous-time-
periodic linear forcing in the vector field, the structure above would generi-
cally be replaced by that of a torus, and the aforementioned half-plane dis-
continuity would not be present

of the infinitesimal generator associated to the semigroup of (I.8.66), so we
can formally calculate Pcχ0 using adjoint-based methods; see [55, 58]. A
basis matrix for the centre eigenspace of the infinitesimal generator of the
formal adjoint of (I.8.66) is Ψ(θ) = [cos(Tπ

2 θ) − sin(Tπ
2 θ) ]ᵀ, so applying

the usual bilinear form,

〈Ψ,Φ0〉 = Ψ(0)Φ0(0)−
Tπ

2

∫ 0

−1/T

Ψ(θ + 1/T )Φ0(θ)dθ

=

[
1 0
0 0

]
− π

2

∫ 0

−1

[
cos(π

2
(θ + 1)) cos(π

2
θ) cos(π

2
(θ + 1)) sin(π

2
θ)

− sin(π
2
(θ + 1)) cos(π

2
θ) − sin(π

2
(θ + 1)) sin(π

2
θ)

]
dθ

=

[
1/2 π/4

π/4 −1/2

]
.

Normalizing Ψ with respect to Φ0, it follows that the projection Pcχ0 is given
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Pcχ0 = Φ0〈Ψ,Φ0〉−1〈Ψ, χ0〉

=
[
cos(Tπ

2 θ) sin(Tπ
2 θ)

] [ 8
4+π2

4π
4+π2

4π
4+π2 − 8

4+π2

] [
1
0

]

= Φ0(θ)
4

4 + π2

[
2
π

]
.

Therefore, Ỹ (t) = e−Λωt 4
4+π2 [ 2 π ]ᵀ, as claimed.

I.8.5.2 Calculation of π(t) and the Matrices A(t) and B

Now, we consider only the case T = 3
2 . To calculate π(t), we define the

shifts y0(t) = y(t), y1(t) = y(t − 2/3) and y2(t) = y(t − 4/3). Assuming
y is periodic with period 1, it follows that the shifts satisfy the impulsive
differential equation

ẏj = −3π

4
yi+1, t �= k +

2

3
j,

Δyj = 1, t = k +
2

3
j,

for j = 0, 1, 2, and we define y3 = y0. The sequence of impulses is periodic
with period 1, and the impulse times in the interval (0, 1] are 1

3 ,
2
3 and 1.

If u0 is a given initial condition at time t = 0, it is easy to check that the
solution at time t = 1 is given by

�y(1) = e1 + e
1
3A(e2 + e

1
3A(e3 + e

1
3Au0)).

Imposing the periodicity constraint �y(1) = u0 and solving for u0 yield the
expression (I.8.61), which is well-defined because 1 is not an eigenvalue of A.
Since π(t) is the unique periodic solution of (I.8.59), there is exactly one pe-
riodic solution of the above inhomogeneous impulsive system. Thus, its first
component must coincide with π(t), thereby proving our claim. Figure I.8.6
is a plot of the periodic solution π(t) together with the shifted components.
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Figure I.8.6: The periodic solution π(t) = y0(t) (solid black line) and the
two shifts y1(t) and y2(t) (black dashed line and dotted lines, respectively),
plotted over one period t ∈ [0, 1)

To check the nondegeneracy condition G.2, we calculate each of B and
A(t). Since Gxx = 0, Gεxφ = φ(0) and Q0

0− = [ 1 0 ], we readily compute

B = Ỹ (0)(Gxx[π0− , Q
0
0− ] +GεxQ

0
0−)

=
4π

2

[
2
π

] [
1 0

]

=
4

4 + π2

[
2 0
π 0

]
.

On the other hand, we have Fxx(t)[φ, ψ] = 2σ2(t)φ(−1/T )ψ(−1/T ), Fxε = 0
and Q0

t (−1/T ) = [ 0 −1 ]. Since Ω(t)Ỹ (t) = Ỹ (0) and we have chosen
T = 3

2 , we have

A(t) = Ω(t)Ỹ (t)(Fxx(t)[πt, Q
0
t ] + FeεxQ

0
t )

=
4

4 + π2

[
2
π

] (
2σ2(t)π(t− 2/3)[ 0 −1 ]

)

= −8σ2(t)π(t− 2/3)

4 + π2

[
0 2
0 π

]
.

Taking into account that π(t− 2/3) = y1(t) = e2 · S(t), one obtains (I.8.62)
after substituting B and A(t) into (I.8.54).

I.8.5.3 Calculation of n0(t): A Numerical Routine

The routine we propose here could certainly be adapted to more general
settings, and our notation will at times suggest at a more general approach.
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Our first step is to compute a periodic solution satisfying (I.8.64). To do
this, we integrate the delay differential equation from the constant initial
condition 0 ∈ R

3 until convergence is achieved to a superposition of some
periodic solution n0(t) of period one, together with a linear combination of
periodic solutions of period 8

3 determined by the eigenvalues ± 3π
4 i of the

homogeneous equation

ṅ+ 2Λ2n(t) = −3π

4
e−

2
3Λ2n(t− 2/3). (I.8.67)

Symbolically, the solution s(t) satisfying s(0) = 0 is simulated until the
numerical convergence s(t)→ s̃(t) is achieved with

s̃t ∈ n0
t +RCR†

c(t), (I.8.68)

where RCR†
c(t) is the centre fibre bundle associated to the homogeneous

equation for (I.8.67). That this decomposition can be realized in the limit is
due to Lemma I.8.4.4.

Next, we construct an approximate basis for RCR†
c(t). This is done by

integrating the homogeneous equation associated to (I.8.64) from a collection
{x1

0, . . . , x
K
0 } of arbitrary linearly independent initial conditions xi

0 ∈ RCR
for i = 1, . . . ,K, with the integration performed until the associated solutions
si(t) numerically converge to some s̃i(t) satisfying s̃it ∈ RCR†

c(t). That this
convergence is attainable essentially follows be Lemma I.8.4.4.

Having computed an approximate basis {s̃1t , . . . , s̃Kt } forRCR†
c(t), our goal

is to extract n0
t from s̃t in the decomposition (I.8.68). To this end, we define

the shifts

v = s̃t − s̃t−1, vi = s̃it − s̃it−1, i = 1, . . . ,K.

In an idealized sense, we have v, vi ∈ RCR†
c(t), so that v =

∑K
i=1 yivi for

some real constants yi. In practice this equality is not attainable, so instead
we search for a best approximation of v in the finite-dimensional subspace
W = span{v1, . . . , vK}, where we now interpret v and W as being in L2 =

L2([−1, 0],R3). The best approximation is
∑K

i=1 yivi with the vector �y =
(y1, . . . , yK) ∈ R

K being the unique solution of

M�y = b, Mij = 〈vi, vj〉, bi = 〈v, vi〉, (I.8.69)

where 〈f, g〉 =
∫ 0
−1

f(t) ·g(t)dt is the standard inner product on L2. It follows
that the function

n0(t) = s̃(t)−
K∑
i=1

yis̃i(t) (I.8.70)

is the best approximation to a periodic solution of (I.8.64), relative to the
basis W , in the sense that the L2 periodicity error

e(n0
t ) = ||n0

t − n0
t−1||L2

is minimized.
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Figure I.8.7: The unique periodic solution n0 = (n0
1, n

0
2, n

0
3) ∈ R

3 of the
inhomogeneous linear system (I.8.64) computed using the numerical routine
from I.8.5.3. The solid black curve is the plot of n0

1(t), while the dashed and
dotted curves are those of n0

2(t) and n0
3(t), respectively

I.8.5.4 Calculation of h2

Using Eq. (I.6.33), we find that F(t, θ) and m(t) are, in terms of an arbitrary
σ2(t),

F(t, θ) =
4

4 + π2

(
2 cos(

3π

4
θ) + π sin(

3π

4
θ)

)
2σ2(t)

⎡
⎣ 0

0
1

⎤
⎦ (I.8.71)

m(t) = 2σ2(t)

⎡
⎣ 0

0
1

⎤
⎦+

3π

4
e−

4
3Λ2

∫
−2/3

e−
4
3Λ2sF

(
t− s− 2

3
, s

)
ds,

(I.8.72)

Λ2 =
3π

4

⎡
⎣ 0 − 1

2 0
1 0 −1
0 1

2 0

⎤
⎦ . (I.8.73)

We implemented the numerical routine from Sect. I.8.5.3 with K = 6 in
MATLAB R2018a. All numerical integration of the delay differential equa-
tions was done using dde23 with default error tolerances. The random ini-
tial history functions xi

0 for i = 1, . . . , 6 were produced using separate calls
to randn(3,1) at each point t ∈ [−2/3, 0] requested by the solver. With
σ2(t) =

1
2 sin(2πt), the result was the periodic solution plotted in Fig. I.8.7

with L2 periodicity error e(n0
t ) < 3 · 10−3.
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I.8.6 A Recipe for the Analysis of Smooth
Local Bifurcations

In the previous two sections we followed what might be described a “recipe”
for the analysis of a smooth local bifurcation from a nonhyperbolic fixed point
(or periodic solution, after change of variables) of impulsive functional differ-
ential equations (I.8.1)–(I.8.2) subject to periodicity conditions. In Part IV
we will consider several applications of the centre manifold reduction in the
analysis of local bifurcations. To aid in the structure of these chapters later,
and also to make this recipe more explicit, we will list the steps now.

Check for Nonhyperbolicity

Suppose x = 0 is an equilibrium point of (I.8.1)–(I.8.2) for some subset
N ⊂ R

p of parameter space. This will be the case if one has a known periodic
solution t �→ x(t, p) depending smoothly2 on a parameter and performs a
change of variables to place this periodic solution at zero. To check for
nonhyperbolicity amounts to determining at which parameter(s) ε ∈ N the
linearization

ẏ = D2f(t, 0, ε), t �= tk

Δy = D2g(k, 0, ε), t = tk

has Floquet exponents with zero real part (equivalently, Floquet multipliers
on the unit circle). Here, D2f(t, 0, ε) is the differential of φ �→ f(t, φ, ε)
evaluated at φ = 0, and similarly for D2g(k, 0, ε).

Extend Phase Space and Write Equations in Semilinear
Form

Assume without loss of generality that at ε = 0, the fixed point x = 0 is
nonhyperbolic with c > 0 Floquet exponents with zero real part. In the
extended phase space, we can write the dynamics in semilinear form

d

dt

[
x
ε

]
=

[
D2f(t, 0, 0) D3f(t, 0, 0)χ0

0 0

] [
xt

εt

]
+ rf (t, xt, εt), t 	= tk

(I.8.74)

Δ

[
x
ε

]
=

[
D2g(k, 0, 0) D3g(k, 0, 0)χ0

0 0

] [
xt−

εt−

]
+ rg(t, xt− , εt−), t = tk,

(I.8.75)

2In the sense that p �→ xt(·, p) is smooth for each t fixed.
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where rf and rg are the quadratic (and above) nonlinearities (in x and ε)
satisfying rf (t, 0, 0) = rg(k, 0, 0) = 0 with vanishing differentials at zero;
D2rf (t, 0, 0) = D2g(k, 0, 0) = 0, D3rf (t, 0, 0) = D3rg(k, 0, 0) = 0. Here,
D3f(t, 0, 0) denotes the derivative of ε �→ f(t, 0, ε) at ε = 0, and analogously
for g and the remainders. The interpretation of D2 is the same as before.

Linear Data

Next, one must compute a basis matrix Φ0 of RCRc(0) for the linearization

d

dt
z =

[
D2f(t, 0, 0) D3f(t, 0, 0)χ0

0 0

]
zt, t �= tk

Δz =

[
D2g(k, 0, 0) D3g(k, 0, 0)χ0

0 0

]
zt− , t = tk.

After doing this, one defines Φt = Uc(t, 0)Φ0 and computes the (real) Flo-
quet decomposition Φt = Qte

tΛ and the matrix Yc(t) ∈ R
n×(c+p) satisfying

Pc(t)χ0 = ΦtYc(t). These steps will, in most situations, involve some form
of numerical approximation. For example, one might use some form of dis-
cretization scheme on the monodromy operator V0 to compute Φ0. Then, to
compute Y (t) at some set of discrete points in the interval [0, T ] for T the
period, one could discretize Vt and numerically integrate the action of the nu-
merical resolvent R(z;Vt) on the relevant representation (i.e. discretization)
of χ0 to compute the integral

Pc(t)χ0 =
1

2πi

∫
Γ

R(z;Vt)χ0dz.

Taylor Coefficients of the Centre Manifold

To approximate the Euclidean space representation of the centre manifold,
one applies Theorem I.6.1.3 and substitutes the Taylor series ansatz

h(t, u, θ) =
1

2
h2(t, θ)u

2 + · · ·+ 1

m!
hm(t, θ)um +O(|u|m+1)

to obtain a sequence of linear evolution equations for the coefficients hi. For
i = 2, one use the method of characteristics from Sect. I.6.2.2. In most cases,
this step will also require the help of a numerical solver.

Centre Manifold Reduction

Having determined all necessary data to write down the impulsive differential
equation on the centre manifold, one applies Theorem I.6.1.2 to (I.8.74)–
(I.8.75). After truncating to the order of the Taylor expansion (e.g. order 3
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for a quadratic Taylor expansion), the result will be an impulsive differential
equation in c + p dimensions. The projection onto the first c components
will give the dynamics on the parameter-dependent centre manifold for fixed
parameter ε, up to prescribed order in R

c. Local bifurcations can then be
studied using time T maps (i.e. reduction to discrete time), now taking the
dynamics as being dependent on the (small) parameter ε.

I.8.7 Comments

The content of Sect. I.8.2 through Sect. I.8.5 appears in Computation of
centre manifolds and some codimension-one bifurcations for impulsive delay
differential equations [33] by Church and Liu, published by Journal of Differ-
ential Equations in 2019. The existing literature on smooth bifurcations for
impulsive functional differential equations has mostly consisted of numerical
studies; see the references [146, 157, 158, 165] for some example. Church and
Liu [32] have applied the results of this chapter to analytically study tran-
scritical bifurcations and numerically verify cylinder bifurcations in a SIR
model with pulse vaccination and temporary immunity; an abridged version
of this publication appears later in Sect. IV.3.

The results of this section do not depend crucially on the assumption that
discrete delay r satisfies r < 1, but rather that the linear and nonlinear terms
in the jump map satisfy the overlap condition and that r ≤ 1. We make the
assumption r < 1 mostly for ease of presentation. The methodology can
be extended in a straightforward way to accomodate the case r > 1. In
particular, the generic results of Corollaries I.8.3.1 and I.8.4.1 remain true
for r arbitrary, provided the overlap condition is satisfied. They also hold if
there is more than one delay and more than one impulse per period, under
similar assumptions.
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Chapter II.1

Preliminaries

II.1.1 Existence and Uniqueness of Solutions

An impulsive differential equations with impulses at fixed times is a type of
nonautonomous dynamical system generated by

dx

dt
= f(t, x), t �= tk (II.1.1)

Δx = gk(x), t = tk, (II.1.2)

for x ∈ R
n. The symbol Δx should be understood as Δx = x(tk) − x(t−k ),

whereas gk(x) should be understood as gk(x(t
−
k )), so that (II.1.2) more con-

cretely states
x(tk)− x(t−k ) = gk(x(t

−
k )).

The superscript minus sign denotes a left-limit; x(t−k ) = lims→t−k
x(s). The

sequence of impulses {tk : k ∈ Z} is always assumed strictly increasing and
unbounded as k → ±∞.

For systems with impulses at fixed times, mild conditions on the impulse
effect and sufficient continuity of the vector field are enough to guarantee
local existence and uniqueness of solutions forward in time. The following
results can be found in [9], except that in the reference continuity is assumed
from the left—see Sect. II.1.3 for a discussion.

Theorem II.1.1.1 (Forward Existence and Uniqueness for Systems with
Impulses at Fixed Times). Consider the impulsive differential equation

dx

dt
= f(t, x), t �= tk

Δx = gk(x), t = tk.

© Springer Nature Switzerland AG 2021
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Suppose the following conditions are valid:

(a) The function f : R × Ω → R
n is continuous in the sets [tk, tk+1) × Ω

for k ∈ Z, and, for each k ∈ Z and x ∈ Ω, the limit of f(t, y) as
(t, y)→ (t−k , x) exists and is finite.

(b) For any compact interval K ⊂ R, f(t, ·) is locally Lipschitz continuous,
uniformly for t ∈ K.

(c) x+ gk(x) ∈ Ω for all x ∈ Ω and k ∈ Z.

Then the initial-value problem

x(s) = x0

has a unique solution for all (s, x0) ∈ R×Ω defined in an interval of the form
[t0, ω) and is not continuable to the right of ω. That is, there is a unique
function x : [s, ω) → Ω that satisfies x(s) = x0, the differential equation
ẋ = f(t, x(t)) except at times tk ∈ (s, ω), where it is continuous from the
right with limits on the left, and the jump condition x(tk)−x(t−k ) = gk(x(t

−
k ))

whenever s ∈ (t0, ω).

Remark II.1.1.1. The conclusions remain valid if condition (a) is replaced
with the requirement that for any xn → x ∈ R

n and any s ∈ R, if sn → s is
decreasing then limn→∞ f(xn, sn) = f(x, s), while if sn → s is increasing the
limit limn→∞ f(xn, sn) exists. However, in this case one must work with a
weaker definition solution (an integrated solution) since the time-dependent
discontinuities in the vector field will generally result in a lack of differentia-
bility of the solution. Namely, a solution x : [s, ω) → Ω of the initial-value
problem x(s) = x0 is a function satisfying the integral equation

x(t) = x0 +

∫ t

s

f(u, x(u))du+
∑

s<tk≤t

gk(x(t
−
k )), s ≤ t < ω

and continuous except for at t ∈ (s, ω) ∩ {tk : k ∈ Z}.

By time reversal, one finds analogous conditions for existence of solutions
defined on intervals that are not continuable to the left.

Corollary II.1.1.1 (Backward Existence and Uniqueness). As in Theo-
rem II.1.1.1, the initial-value problem x(s) = x0 has a unique solution for all
(s, x0) ∈ R×Ω defined on an interval of the form (γ, s) and is not continuable
to the left of γ, if conditions (a) and (b) of Theorem II.1.1.1 are satisfied,
and (c) is strengthened to the condition that the equation x+ gk(x) = η has
a unique solution x ∈ Ω for each η ∈ Ω.

Consequently, to establish existence and uniqueness of solutions defined on
maximal intervals that are not continuable on either side, it suffices that the
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vector field f is continuous in t on [tk, tk+1), locally Lipschitz with respect
to x, and for the map Jk : Ω→ Ω defined by Jk(x) = x+ gk(x) to exist and
be invertible for all k ∈ Z. This last condition makes it impossible for two
distinct solutions to “merge” together by way of a discontinuity.

Theorem II.1.1.2 (Global Existence). Let the conditions of Theorem II.1.1.1
or Corollary II.1.1.1 hold, suppose J±(s, x0) is the left (−) or right (+) max-
imal interval of existence of the initial-value problem x(s) = x0, and let ϕ(t)
be the solution associated to this interval. If there exists a compact set Q ⊂ Ω
such that ϕ(t) ∈ Q for t ∈ J±(s, x0), then J±(s, x0) is unbounded; specifi-
cally,

J± ∈ {(−∞, s), (s,∞)}.

The converse of this result then states that a solution that is not continu-
able must approach the boundary of Ω at one of the endpoints of its interval
of existence. In the case where Ω is unbounded or equal to R

n, this means
that there may be finite-time “blow-up” of solutions.

II.1.2 Dependence on Initial Conditions and
Parameters

We introduce a parameter into the system (II.1.1)–(II.1.2):

ẋ = f(t, x, p), t �= tk(p) (P1)

Δx = gk(x, p), t = tk(p), (P2)

where p ∈ Π ⊂ R
d. Since our main focus in this book is the analysis of

bifurcations, it is natural for us to assume a fairly high level of regularity on
the vector field. For these reasons, we introduce some assumptions.

F.1 t0(p) = 0 for all p ∈ Π.

F.2 (P1)–(P2) is PCk for some k ≥ 0; that is,

• Dm
(2,3)f(t, x, p) exist for m = 0, . . . , k, whenever (sn, xn, pn) →

(s, x, p), the limit limn→∞ Dm
(2,3)f(sn, xn, pn) exists and, if sn is

decreasing, the limit is precisely Dfm
(2,3)f(s, x, p);

• gj and tj are Ck for all j ∈ Z.

Remark II.1.2.1. Condition F.2 for m = 1 is strong enough to guarantee
local existence and uniqueness of solutions; see Remark II.1.1.1. Condition
F.1 can always be assumed without loss of generality, by performing a change
of variables.

Under the assumptions F.1 and F.2, solutions of (P1)–(P2) have a good
amount of regularity in terms of both initial conditions and parameters. The



196 CHAPTER II.1. PRELIMINARIES

following is a generalization of Theorem 2.1 of the monograph of Bainov and
Simeonov [9]. Its proof is omitted.

Theorem II.1.2.1. Consider the solution map x(t; ·, ·, ·) : R × Ω × Π → Ω
of the PCk system (P1)–(P2) for some k ≥ 1. Denote x(t) = x(t; s, x0, p0),
u = ∂x

∂x0
(t; s, x0, p0), v = ∂x

∂p (t; s, x0, p0). If s /∈ {tk(p) : k ∈ Z}, then u and v
satisfy the following initial-value problems:

u̇ = Dxf(t, x(t), p0)u, t �= tk(p0)

Δu = Dxgku, t = tk(p0)

v̇ = Dxf(t, x(t), p0)v +Dpf(t, x(t), p0), t �= tk(p0)

Δv = Dxgkv +Dpgk − [f − f− − (Dxgk)f ]Dptk(p0), t = tk(p0)

u(0) = In×n,

v(0) = 0,

where Dxgk and Dpgk are evaluated at (x(t−k ), p0), f = f(tk, x(tk), p0), f
− =

f(tk(p0), x(t
−
k ), p0).

Remark II.1.2.2. Technically, since the PC1 assumption only guarantees
existence and uniqueness of integrated solutions—see Remark II.1.1.1—the
differential equations in the above theorem themselves will only generated in-
tegrated solutions. In practice, this will not be of great importance because
the discontinuities in the vector field will be quite minute. In fact, it will
usually be the case that f (and its differentials) are continuous on the sets
[tk, tk+1)×Ω×Π for all k ∈ Z, so that the integrated solutions will be differ-
entiable except at the impulse times.

II.1.3 Continuity Conventions: Right- and
Left-Continuity

In the study of impulsive dynamical systems, one must eventually make a
choice as to how to define solutions at impulse times. Specifically, must decide
whether left-continuity (x(tk) = x(t−k )) or right-continuity (x(tk) = x(t+k ))
is imposed on the solution. This will affect the interpretation of the symbol
Δx. For finite-dimensional systems such as we consider in this part of the
present monograph, the definitions end up being equivalent in some sense.

For simplicity, suppose f : Rn → R
n is locally Lipschitz continuous so that

the ordinary differential equation ẋ = f(x) has local existence and uniqueness
of solutions. Let gk : R

n → R
n be continuous and {tk : k ∈ Z} be a

monotonically increasing unbounded (as k → ±∞) sequence. Let s ∈ R\{tk :
k ∈ Z} and consider the solution x(t; s, x0) of ẋ = f(x) satisfying x(s; s, x0) =
x0. If we impose that x has a single jump at time tj = min{tk : tk > s},
then we have two reasonable choices assuming we only want a single jump
discontinuity in a neighbourhood of tj :
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• define x(tj) = x(t−j ) + Ij(x(t
−
j )), and then continue the solution of the

differential equation from (tj , x(tj));

• let x(tj) = x(t−j ), define x(t+j ) = x(tj) + Ij(x(tj)), and continue onto

the unique solution y(t) that satisfies y(t+j ) = x(t+j ).

In both cases, the value of x(t+j ) is the same, so both solutions will coincide
in the interval (tj , tj+1). Obviously, this equivalence breaks down if s = tk
for some k, but other structures such as periodic solutions are preserved. For
instance, if x(t) is a periodic solution that is continuous from the right and
satisfies x(tk) = x(t−k ) + gk(x(t

−
k )), then the function y(t) defined by

y(t) =

{
x(t), t �= tk
x(t−), t = tk

is continuous from the left and satisfies y(t+k ) = y(tk) + gk(y(tk)).
To summarize, there is no loss of generality in taking solutions to be

continuous from the right. Since this was the convention we took in Part
1 of this book, we will continue it here.

II.1.4 Comments

There are many monographs that cover the basics of ordinary impulsive dif-
ferential equations with impulses at fixed times. These include the more
classical works [9, 10, 85, 112, 125], in addition to some more modern treat-
ments [2, 17]. This brief chapter serves only to provide enough detail so that
in subsequent chapters, the equations we study will be on a rigorous footing.
The interested reader certainly should consult any of these related references
for additional background.



Chapter II.2

Linear Systems

The linear systems theory of this chapter is far from exhaustive, and we
will introduce only what is necessary to proceed with stability and invariant
manifold theory. The reader is encouraged to consult the 1993 monograph of
Bainov and Simeonov [9] for additional background, if desired.

The main object of interest in this chapter is the inhomogeneous linear
equation

ẋ = A(t)x(t) + f(t), t �= tk (II.2.1)

Δx = Bkx(t) + gk, t = tk, (II.2.2)

and the associated homogeneous equation

ż = A(t)z(t), t �= tk (II.2.3)

Δz = Bkz(t), t = tk. (II.2.4)

In what follows, we will always assume that t �→ A(t), t �→ f(t) are continuous
from the right and possess limits on the left. This is sufficient to ensure local
existence and uniqueness of solutions forward in time; see Theorem II.1.1.1
and the subsequent remark.

II.2.1 Cauchy Matrix

Let X(t, s) denote the Cauchy matrix of the homogeneous ordinary differen-
tial equation (II.2.3). That is, x(t; s, x0) := X(t, s)x0 is the unique solution
of (II.2.3) satisfying the initial condition x(s; s, x0) = x0. The Cauchy matrix
has the following (defining) properties.
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• X(t, t) = I for all t ∈ R.

• X(t, s)−1 exists for all t, s ∈ R, and for s < t we define X(s, t) ≡
X(t, s)−1.

• X(t, s) = X(t, 0)X(0, s) for all t, s ∈ R.

• d
dtX(t, s) = A(t)X(t, s) at all arguments t, where A is continuous.

• X(t, s) = I +
∫ t
s
A(u)X(u, s)du for all t, s ∈ R.

Using the Cauchy matrix of the continuous part (II.2.3), we can construct
the fundamental matrix solution of the impulsive system (II.2.3)–(II.2.4).

Theorem II.2.1.1. Introduce the matrix-valued function U(t, s) for t ≥ s
by the equation

U(t, s)

=

{
X(t, s), tk−1 ≤ s ≤ t < tk

X(t, t)
(∏k+1

j= (I + Bj)X(tj , tj−1)
)
(I + Bk)X(tk, s) tk−1 ≤ s < tk < t ≤ t < t+1.

Then, x(t) := U(t, s)x0 is defined on [s,∞) and is the unique solution of
(II.2.3)–(II.2.4) satisfying the initial condition x(s) = x0. If the matrices
I+Bk are invertible—that is, det(I+Bk) �= 0 for all k ∈ Z—then, U(s, t) :=
U(t, s)−1 is well-defined for all s ≤ t. In this case, the solution x(t) =
U(t, s)x0 is defined on the entire real line. In the above equation, the product

denotes multiplication from left to right:
∏k+1

j=� Mj = M�M�−1 · · ·Mk+2Mk+1.

Proof. This theorem can be proven by induction on the cardinality of (s, t]∩
{tj : j ∈ Z}. If this set is empty, then it is clear by definition of X(t, s)
that the t �→ U(t, s)x0 = X(t, s)x0 is the unique solution of (II.2.3)–(II.2.4)
satisfying the initial condition x(s) = x0, since there are no impulse times in
(s, t]. Suppose now that the conclusion of the theorem is true for any interval
[s, t] such that (s, t] ∩ {tj : j ∈ Z} has cardinality at most q ≥ 0. Let [s, t] be
any interval such that |(s, t]∩{tj : j ∈ Z}| = q+1. Without loss of generality,
we may assume

(s, t] ∩ {tj : j ∈ Z} = {t1, . . . , tq+1}.
From the induction hypothesis, the unique solution x of the initial condition
x(s) = x0 satisfies

x(tq) =

⎛
⎝ 2∏

j=q

(I +Bj)X(tj , tj−1)

⎞
⎠ (I +B1)X(t1, s)x0.
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Then, by definition of X(t, s), the solution x satisfies x(t−q+1) = X(t−q+1, tq)
x(tq). Since v �→ X(v, s) is continuous, combining the previous calculation
with the jump condition (II.2.4), we get

x(tq+1) = (I +Bq+1)X(tq+1, tq)x(tq)

=

⎛
⎝ 2∏

j=q+1

(I +Bj)X(tj , tj−1)

⎞
⎠ (I +B1)X(t1, s)x0.

The conclusion follows since x(t) = X(t, tq+1)x(tq+1).

Definition II.2.1.1. The matrix U(t, s) introduced in Theorem II.2.1.1 is
called the Cauchy matrix associated to the linear homogeneous impulsive dif-
ferential equation (II.2.3)–(II.2.4).

Corollary II.2.1.1. The Cauchy matrix enjoys the following properties.

• U(t, t) = I for all t ∈ R.

• If det(I + Bk) �= 0 for all k ∈ Z, then U(t, s)−1 exists for all t, s ∈ R,
and for s < t we define U(s, t) ≡ U(t, s)−1.

• U(t3, t1) = U(t3, t2)U(t2, t1) whenever t1 ≤ t2 ≤ t3. If the above condi-
tion on {Bk : k ∈ Z} holds, the conclusion holds for any t1, t2, t3 ∈ R.

• U(t, s) = I +
∫ t
s
A(u)U(u, s)du+

∑
s<tk≤t BkU(tk, s) for all t ≥ s.

• U(tk, s) = (I +Bk)U(t−k , s) for all s ∈ R, tk > s.

II.2.2 Variation-of-Constants Formula

The Cauchy matrix can be used to analytically express the unique solution
of the inhomogeneous equation (II.2.1)–(II.2.2) satisfying a given initial con-
dition.

Theorem II.2.2.1. The unique solution t �→ x(t; s, x0) of (II.2.1)–(II.2.2)
satisfying the initial condition x(t; t, x0) = x0 can be expressed in the form

x(t; s, x0) = U(t, s)x0 +

∫ t

s

U(t, μ)f(μ)dμ+
∑

s<tk≤t

U(t, tk)gk. (II.2.5)

Proof. Under the assumption that A(t) and f(t) are merely continuous from
the right with limits on the left, we cannot prove that (II.2.5) is a solution
of (II.2.1)–(II.2.2) by computing a derivative because a priori, this function
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is not differentiable. We can, however, easily check that it satisfies the jump
condition. At times tk, we have

x(tk)− x(t−k )

= [U(tk, s)− U(t−k , s)]x0 +

∫ tk

s

[U(tk, μ)− U(t−k , μ)]f(μ)dμ

+ gk +
∑

s<tj<tk

[U(tk, tj)− U(t−k , tj)]gj

= BkU(t−k , s)x0 +

∫ t

s

BkU(t−k , s)f(μ)dμ+ gk +
∑

s<tj<tk

BkU(t−k , tj)

= Bkx(t
−
k ) + gk,

as required. Next, we prove that on each interval (tj , tj+1) for s < tj , the
variation-of-constants formula (II.2.5) is correct. Without loss of generality,
assume s = t0. For μ ∈ (t0, t1), we have U(t, μ) = X(t, μ). Then, with
x0 = x(t0) and t ∈ (t0, t1),

x0 +

∫ t

t0

(A(μ)x(μ) + f(μ))dμ

= x0 +

∫ t

t0

(
A(μ)

[
U(μ, t0)x0 +

∫ μ

t0

U(μ, v)f(v)dv

]
+ f(μ)

)
dμ

= x0 +

∫ t

t0

A(μ)X(μ, t0)dμx0 +

∫ t

t0

∫ μ

t0

A(μ)X(μ, v)f(v)dvdμ+

∫ t

t0

f(μ)dμ

= x0 + (X(t, t0)− I)x0 +

∫ t

t0

∫ t

v

A(μ)X(μ, v)dμf(v)dv +

∫ t

t0

f(μ)dμ

= X(t, t0)x0 +

∫ t

t0

(X(t, v)− I)f(v)dv +

∫ t

t0

f(μ)dμ

= U(t, t0)x0 +

∫ t

t0

U(t, v)f(v)dv = x(t),

as required by definition of solution. By the previous computation, we have

x(t1) = (I +Bk)x(t
−
1 ) + g1

= (I +B1)X(t1, t0)x0 +

∫ t1

t0

(I +B1)X(t1, μ)f(μ)dμ+ g1

= U(t1, t0)x0 +

∫ t1

t0

U(t1, μ)f(μ)dμ+ U(t1, t1)g1.

Equation (II.2.5) therefore holds on [t0, t1]. Assuming now that the variation-
of-constants formula is correct for t ∈ [t0, tk] for some k ≥ 1, the same proof
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can be used to show that for t ∈ (tk, tk+1),

x(t) = x(tk) +

∫ t

tk

X(t, μ)f(μ)dμ.

Substituting in the expression for x(tk) guaranteed by the induction hypoth-
esis, one obtains (II.2.5) for t ∈ (tk, tk+1). At t = tk+1, one uses the relation
x(tk+1) = (I +Bk)x(t

−
k+1) + gk+1, and the result is after some simplification

equivalent to (II.2.5).

II.2.3 Stability

We recall now the definition of (Lyapunov) stability.

Definition II.2.3.1. The inhomogeneous system (II.2.1)–(II.2.2) is

• exponentially stable if there exist K > 0, α > 0 and δ > 0 such that for
all φ, ψ ∈ R

n satisfying ||φ−ψ|| < δ, one has ||x(t; s, φ)− x(t; s, ψ)|| ≤
K||φ− ψ||e−α(t−s) for all t ≥ s;

• stable if for all ε > 0 there exists δ > 0 such that for all φ, ψ ∈ R
n

satisfying ||φ−ψ|| < δ, one has ||x(t; s, φ)−x(t; s, ψ)|| < ε for all t ≥ s;

• unstable if it is not stable.

Lemma II.2.3.1. The inhomogeneous system (II.2.1)–(II.2.2) is stable (re-
spectively, exponentially stable or unstable) if and only if the same is true for
the associated homogeneous system (II.2.3)–(II.2.4).

Proof. One can easily verify from the variation-of-constants formula that
y(t) := x(t; s, φ)−x(t; s, ψ) is a solution of the homogeneous system (II.2.3)–
(II.2.4) satisfying y(s) = φ − ψ. If the latter system is stable (respectively,
exponentially stable), then in particular the difference between the trivial
solution 0 and y(t) can be bounded appropriately provided ||(φ− ψ)− 0|| =
||φ− ψ|| < δ for some delta, which grants the stability assertion. The insta-
bility part follows similarly, as does the converse (that is, the stability of the
inhomogeneous system implies the same for the homogeneous system).

The above lemma states that, insofar as stability of linear systems is con-
cerned, one needs to only consider homogeneous systems.

II.2.4 Exponential Trichotomy

Of use in later sections will be exponential trichotomy—referred to as spectral
separation in Part I of this text.

Definition II.2.4.1. The homogeneous system (II.2.3)–(II.2.4) has expo-
nential trichotomy if there exist projection-valued functions t �→ Pc(t) and
t �→ Pu(t) on R

n such that its Cauchy matrix U(t, s) satisfies the following:
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1. supt∈R
||Pc(t)||+ ||Pu(t)|| = N <∞.

2. Pc(t)Pu(t) = Pu(t)Pc(t) = 0.

3. U(t, s)Pj(s) = Pj(t)U(t, s) for all t ≥ s and j ∈ {c, u}.

4. Define Uj(t, s) as the restriction of U(t, s) to Xj(s) = R(Pj(s)) for
j ∈ {c, u, s}, where we set Ps = I −Pc−Pu. The linear maps Uj(t, s) :
Xj(s) → Xj(t) are invertible for j ∈ {c, u}, and we denote Uj(s, t) =
Uj(t, s)

−1 for t ≥ s.

5. For all t, s, v ∈ R, Uj(t, s) = Uj(t, v)Uj(v, s) for j ∈ {c, u}.

6. There exist real numbers a < 0 < b such that for all ε > 0, there exists
K ≥ 1 such that

||Uu(t, s)|| ≤ Keb(t−s), t ≤ s (II.2.6)

||Uc(t, s)|| ≤ Keε|t−s|, t, s ∈ R (II.2.7)

||Us(t, s)|| ≤ Kea(t−s), t ≥ s. (II.2.8)

Definition II.2.4.2. Let (II.2.3)–(II.2.4) have exponential trichotomy. De-
fine the sets Xj = {(t, x) : t ∈ R, x ∈ R(Pj(t))} for j ∈ {s, c, u}. Xs, Xc and
Xu are, respectively, the stable, centre and unstable fibre bundles.

Xcs = {(t, x+ y) : x ∈ Xc(t), y ∈ Xs(t)} = {(t, x) : x ∈ R(Pc(t) + Ps(t))}
Xcu = {(t, x+ y) : x ∈ Xc(t), y ∈ Xu(t)} = {(t, x) : x ∈ R(Pc(t) + Pu(t))}

are, respectively, the centre-stable and centre-unstable fibre bundles. For
each of these, the t-fibre is the set Xj(t) = {x : (t, x) ∈ Xj}.

The fibre bundles introduced in the above definition play the role of the
invariant subspaces from autonomous ordinary differential equations. There
are simpler descriptions of these objects available—in particular, one can
define an equivalent time-invariant description—if det(I + Bk) �= 0 for all
k ∈ Z, since then the dynamics are reversible. Since we do not assume this,
we will stick with the definition above.

II.2.5 Floquet Theory

The Floquet theory allows for the transformation of a periodically driven ho-
mogeneous system into an autonomous ordinary differential equation. This
will be helpful later when we consider invariant manifold theory. In this
section we begin with the homogeneous equation before proceeding to inho-
mogeneous equations. First, two definitions are as follows.
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Definition II.2.5.1. The inhomogeneous system (II.2.1)–(II.2.2) is periodic
if there exist real T > 0 and c ∈ N such that A(t+T ) = A(t), f(t+T ) = f(t),
Bk+c = Bk, gk+c = gk and tk+c = tk+T for all t ∈ R and k ∈ Z. The period
is T , and the number of impulses per period is c.

Definition II.2.5.2. The homogeneous system (II.2.1)–(II.2.2) is periodic
if there exist real T > 0 and c ∈ N such that A(t + T ) = A(t), Bk+c = Bk

and tk+c = tk +T for all t ∈ R and k ∈ Z. The period is T , and the number
of impulses per period is c.

II.2.5.1 Homogeneous Systems

Definition II.2.5.3. Suppose the homogeneous system (II.2.3)–(II.2.4) is
periodic (with period T ). Each of Mt := U(t + T, t) for t ∈ R is called a
monodromy matrix. The eigenvalues are called Floquet multipliers.

Proposition II.2.5.1. If the homogeneous system (II.2.3)–(II.2.4) is peri-
odic (with period T ), then U(t+ T, s+ T ) = U(t, s) for all t ≥ s.

Proof. This follows from existence and uniqueness of solutions together with
periodicity (period T ).

Lemma II.2.5.1. For any t, s ∈ R, Mt and Ms have the same eigenvalues.

Proof. First suppose t ≥ s. The monodromy matrices satisfy the equation

MtU(t, s) = U(t, s)Ms.

Suppose v eigenvalue of Ms with eigenvalue μ �= 0. Then,

Mt(U(t, s)v) = U(t, s)Msv = U(t, s)μv = μ(U(t, s)v),

so U(t, s)v is an eigenvector of Mt with the same eigenvalue, provided w :=
U(t, s)v �= 0. If w = 0, then Msv = U(s + T, t)U(t, s)v = U(s + T, t)w = 0,
which would contradict v being an eigenvector of Ms. On the other hand, 0
is an eigenvalue of Ms if and only if there is at least one k ∈ {0, . . . , c − 1}
such that det(I +Bk) = 0, which is then equivalent to 0 being an eigenvalue
of Mt. From Lemma II.2.5.1, we have

Ms+T = U(s+ 2T, s+ T ) = U(s+ T, s) = Ms.

Therefore, Ms and Ms+T have the same eigenvalues. If σ(M) denotes the set
of eigenvalues of M , then the previous results imply the inclusions σ(Mt) ⊆
σ(Ms) for t ≥ s and σ(Ms) = σ(Ms+jT ) for all j ≥ 0. Together, these imply
σ(Ms) = σ(Mt).

As a consequence of the previous lemma, the following definition is rea-
sonable.
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Definition II.2.5.4. The Floquet multipliers of the linear system (II.2.3)–
(II.2.4) are the eigenvalues of the monodromy matrix M0. The latter is given
by

M0 =

1∏
k=c

(I +Bk)X(tk, tk−1). (II.2.9)

Theorem II.2.5.1 (Floquet Decomposition). Let B := {ξ1, . . . , ξp} be a
union of canonical bases for the direct sum of generalized eigenspaces of M0

with nonzero eigenvalues. The restriction of U(t, 0) to span{ξ1, . . . , ξp} is
invertible for t ≥ 0. Let Φ(t) be the n × p matrix whose jth column is
Φj(t) = U(t, 0)ξj , defined for t ∈ R. There exist a p × p complex matrix Λ
and a T -periodic n× p complex matrix Q(t) such that Φ(t) = Q(t)etΛ for all
t ≥ 0. The eigenvalues of Λ are

σ(Λ) =

{
1

T
log(μ) : μ is a nonzero Floquet multiplier

}
.

Proof. Note, since U(T, 0) is invertible on B (generalized eigenspaces of a
matrix are invariant under its action), it suffices to prove first that U(t, 0) is
invertible for t ∈ (0, T ). Suppose not, then there exist t ∈ (0, T ) and ξj such
that U(t, 0)ξj = 0. But this implies U(T, 0)ξj = 0, and since M0 = U(T, 0),
we conclude ξj is an eigenvector with eigenvalue zero. As the generalized
eigenspaces are disjoint, we have obtained a contradiction.

Since M0 = U(T, 0) is invertible on span{ξ1, . . . , ξp}, there exists an in-
vertible p × p matrix V such that Φ(T ) = Φ(0)V . Define Λ = 1

T log V ,
where the logarithm is any branch that defined on the spectrum of V . Define
Q(t) = Φ(t)e−tΛ. By definition, we have Φ(t) = Q(t)etΛ. For periodicity, we
observe

Q(t+ T ) = Φ(t+ T )e−(t+T )Λ = U(t+ T, T )Φ(T )V −1e−tΛ

= U(t, 0)Φ(0)V V −1e−tΛ = Φ(t)e−tΛ = Q(t),

as required. The last thing to prove is the characterization of the spectrum
of Λ. Let ν ∈ B be a generalized eigenvector of rank m with eigenvector
μ for M0. Since B is a union of canonical bases, there is a Jordan chain
{ν1, . . . , νm} ⊆ B such that νj = (M0−μI)νj+1 and νm = ν. Relative to the
basis B, we can write νj = ξrj for some new index rj so that the previous
equation becomes ξrj = (M0−μI)ξrj+1

. The right-hand side can be written as

(M0 − μI)ξrj+1
= U(T, 0)ξrj+1

− μξrj+1
= Φ(T )erj+1

− μξrj+1

= Φ(0)V ej+1 − μξrj+1
.

Since Φ(0) has linearly independent columns, the left-inverse Φ+(0) exists.
Then, since ξj = Φ(0)ej , multiplying Φ+(0) on the left on both sides of
ξrj = (M0 − μI)ξrj+1

, it follows that

erj = (V − μI)erj+1
.
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We conclude that erm , . . . , er1 is a Jordan chain for eigenvalue μ of V . Since
Λ = 1

T log(V ), the result follows.

Remark II.2.5.1. One can replace B with any basis for the direct sum of
generalized eigenspaces of M0 with nonzero eigenvalues. Indeed, the only
place we used the previous description of B was in determining the spectrum
of Λ. If one writes Φ̃(0) = Φ̃(0)Z for invertible Z, where the columns of Φ̃(0)
are a canonical basis of Jordan chains, and defines Φ̃(t) = U(t, 0)Φ̃(0), then

one can apply the theorem directly to Φ̃(t) = Q̃(t)etΛ̃, where Φ̃(T ) = Φ̃(0)Ṽ
and Λ̃ = 1

T log Ṽ . However, if Φ(T ) = Φ(0)V , then Φ̃(T ) = Φ̃(0)ZV Z−1, so

Ṽ and V are similar and thus have the same eigenvalues. The same therefore
holds for Λ̃ and Λ = 1

T log V .

Corollary II.2.5.1. With the notation of Theorem II.2.5.1, introduce a fam-
ily of subspaces Xt of R

n indexed by t ∈ R as follows:

Xt = {U(t, 0)x : x ∈ span(B)}.

The nonautonomous dynamical system U(t, s) : Xs → Xt is equivalent to the
ordinary differential equation

ẏ = Λy (II.2.10)

under the time-periodic change of variables x(t) = Q(t)y(t). More precisely,
any solution x : R→ R

n of (II.2.3)–(II.2.4) such that x(t) ∈ Xt for all t ∈ R

can be written in the form x(t) = Q(t)y(t), where y is a solution of (II.2.10).

Proof. Let x be a solution of (II.2.3)–(II.2.4) such that x(t) ∈ Xt. Write
x(0) = Φ(0)h for some h ∈ R

p. By uniqueness of solutions, x(t) = U(t, 0)
Φ(0)h = Φ(t)h, so by Theorem II.2.5.1, we can write x(t) = Q(t)etΛh. With
y = etΛh, the claim is proven.

Corollary II.2.5.2. If p = n—that is, B is a basis for Rn—the time-periodic
change of coordinates x = Q(t)y transforms the ordinary impulsive differen-
tial equation (II.2.3)–(II.2.4) into the autonomous ordinary differential equa-
tion (II.2.10). In this case, |Q(t)| and |Q−1(t)| are both bounded. B is a basis
for R

n if and only if det(I +Bk) �= 0 for k = 0, . . . , c− 1.

Proof. The first part follows by Corollary II.2.5.1. As for the second part,
since B is a basis for the direct sum of generalized eigenspaces of M0 with
nonzero eigenvalue, the assertion that B is a basis for Rn is equivalent to 0 not
being an eigenvalue of M0. Since M0 =

∏1
k=c(I+Bk)X(tk, tk−1) and each of

X(tk, tk−1) has full rank, zero can only be an eigenvalue of det(I + Bk) = 0
for at least one k ∈ {1, . . . , c}. Since Bk+c = Bk, this proves the claim.

Corollary II.2.5.2 is an analogue of the Floquet theorem from ordinary
differential equations. It appears in the 1993 monograph of Bainov and Sime-
onov [9]. Theorem II.2.5.1 is the generalization of the Floquet decomposition



208 CHAPTER II.2. LINEAR SYSTEMS

to the case where the jump maps x �→ x + Bkx to not be one-to-one, while
Corollary II.2.5.1 gives the change of variables on the “non-singular fibre
bundle” Xt that renders the dynamics autonomous.

In essentially the same way Theorem II.2.5.1 is proven, we can establish
a more general version that roughly states that for a homogeneous linear
periodic system, the dynamics on any of its invariant fibre bundles—except
for the “singular” portion of the stable fibre bundle or centre-stable fibre
bundle—are driven by an autonomous ordinary differential equation. The
proof is omitted. First, a quick definition is as follows.

Definition II.2.5.5. Let Xf (t) be one of the following:

• one of the centre, unstable or centre-unstable fibre bundles;

• the reversible stable fibre bundle, X∞
s (t) = {ξ ∈ Xs(t) : ∀t′ > t, U(t′, t)

ξ �= 0};

• the reversible centre-stable fibre bundle, X∞
cs (t) = Xc(t)⊕X∞

s (t).

Let {ξ1, . . . , ξp} be a basis for Xf (0). The matrix-valued function Φf (t) =
U(t, 0)[ξ1, · · · , ξp] is a basis matrix for Xf .

Theorem II.2.5.2. Let Xf be one of the following fibre bundles:

• one of the centre, unstable or centre-unstable fibre bundles;

• the reversible stable fibre bundle or reversible centre-stable fibre bundle.

The restriction of U(t, 0) to any basis for Xf (0) is invertible for t ≥ 0, so
any basis matrix Φf (t) for Xf can be uniquely extended to the entire real line.
There exist a p×p complex matrix Λf and a T -periodic n×p complex matrix
Qf (t) such that Φ(t) = Qf (t)e

tΛf for all t ≥ 0. The eigenvalues of Λf are

σ(Λ) =

{
1

T
log(μ) : M0ξ = μξ, ξ ∈ Xf (0)

}
.

As defined in the above theorem, X∞
s (t) is spanned by the generalized

eigenvectors of Mt having with Floquet multipliers μ satisfying 0 < |μ| < 1.
As a consequence, if det(I +Bk) �= 0 for k = 0, . . . , c− 1, then X∞

s = Xs.

II.2.5.2 Periodic Solutions of Homogeneous Systems

The Floquet multipliers allow us to identify periodic solutions of the homo-
geneous system.

Proposition II.2.5.2. The homogeneous system (II.2.3)–(II.2.4) has a non-
trivial jT -periodic solution for j ∈ N if and only if there exists a Floquet
multiplier μ satisfying μj = 1. In this case, the jT -periodic solutions are
precisely x(t) = U(t, 0)ξ, where ξ ∈ R

n satisfies M j
0 ξ = ξ.
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Proof. x(t) is a nontrivial periodic solution of period jT if and only if x(jT ) =
x(0) �= 0, which is equivalent to the equation U(jT, 0)x(0) = x(0). Since
U(jT, 0) = M j

0 , this implies that x(0) satisfies the equation M j
0x(0) = x(0),

so that 1 is an eigenvalue of M j
0 . Since the eigenvalues of M

j
0 are the jth pow-

ers of the eigenvalues of M0, there must be a Floquet multiplier μ satisfying
μj = 1.

II.2.5.3 Periodic solutions of Inhomogeneous Systems

From the variation-of-constants formula, a periodic solution x(t) is uniquely
determined by its value at time t = 0. Indeed, starting from the variation-
of-constants formula (II.2.5), setting s = 0 and assuming the periodic ansatz
x(0) = x(T ), the necessary and sufficient condition for the existence of a
periodic solution is that there exists a solution x0 of the equation

(U(T, 0)− I)x0 =

∫ T

0

U(T, μ)f(μ)dμ+
∑

0<tk≤T

U(T, tk)gk. (II.2.11)

The matrix on the left-hand side will be invertible precisely if 1 is not an
eigenvalue of U(T, 0). Since the latter is precisely the monodromy matrix
M0, we obtain the following lemma.

Lemma II.2.5.2. The inhomogeneous equation (II.2.1)–(II.2.2) has a unique
T -periodic solution if and only if 1 is not a Floquet multiplier of the associated
homogeneous equation; that is, det(M0 − I) �= 0.

More generally, one might want to know under what conditions there is a
jT -periodic solution for natural number j. The ansatz x(jT ) = 0 leads to
the equation

(U(jT, 0)− I)x0 =

∫ jT

0

U(jT, μ)f(μ)dμ+
∑

0<tk≤jT

U(jT, tk)gk.

Since U(jT, 0) = U(T, 0)j = M j
0 , the previous lemma has the following simple

generalization.

Theorem II.2.5.3. The inhomogeneous equation (II.2.1)–(II.2.2) has a
unique jT -periodic solution if and only if no Floquet multiplier μ of the as-
sociated homogeneous equation is a jth root of unity; that is, μj �= 1 for all
μ ∈ σ(M0).

If 1 ∈ σ(M0), there will be either infinitely many periodic solutions or
none, depending on whether the right-hand side of (II.2.11) is in the range
of M0 − I. Similar conclusions hold for jT -periodic solutions. Existence of
periodic solutions in the critical case where det(M0 − I) = 0 is discussed in
Bainov and Simeonov [9], and we refer the interested reader to this resource.
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II.2.5.4 Periodic Systems Are Exponentially Trichoto-
mous

The invariant fibre bundles of a periodic system induce an exponential tri-
chotomy.

Theorem II.2.5.4. The periodic system (II.2.3)–(II.2.4) has exponential tri-
chotomy. The projectors Pc, Pu and Ps = I − (Pc +Pu) are projections onto
the centre, unstable and stable fibre bundles Xc, Xu and Xs, respectively.
These projectors are also periodic with period T .

Proof Outline. Define Pj(t) by the integral

Pj(t) =
1

2πi

∫
Γj

(zI −Mt)
−1dz,

where Γj is a simple closed contour in C such that the only eigenvalues
μ of M0 contained in its closure are, respectively, those with |μ| > 0 for
j = c, |μ| = 1 for j = u and |μ| < 1 for j = s, oriented counterclockwise
relative to its interior. One can show that with this choice of projections, all
properties of exponential trichotomy are satisfied. The proof is quite long;
see Theorem I.3.1.3 for details.

Sometimes it is desirable to have an explicit formula for one of the pro-
jections P (t) onto an invariant fibre bundle. When there are c = 1 impulses
per period, we have a fairly nice formula. Let M0 = V JV −1 be the Jordan
canonical form of the monodromy matrix M0, and let X(t, s) be the Cauchy
matrix of the continuous part ẋ = A(t)x. Let t ∈ [t0, t0 + T ). Then, we have

Mt = X(t+ T, t0 + T )[I +B1]X(t0 + T, t) = X(t, t0)[I +B]X(t0 + T, t0)X
−1(t, t0)

= X(t, t0)M0X
−1(t, t0) = V (t)JV −1(t),

where we set V (t) = X(t, t0)V . The projection Pj(t) can then be equivalently
written in the form

Pj(t) = V (t)

[
1

2πi

∫
Γj

(zI − J)−1dz

]
V −1(t), (II.2.12)

where the contour Γj is as stated in Theorem II.2.5.4. The contour integral
in (II.2.12) is easy to evaluate because J is a Jordan matrix and the integrand
no longer depends on t. Since Pj is periodic, it is enough to compute it for
t ∈ [t0, t0 + T ).

II.2.5.5 Stability

The following theorem characterizes the stability of the homogeneous system
in terms of the Floquet multipliers. It follows directly from the associated
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infinite-dimensional version, Theorem I.3.3.1, from Part I of this text. The
proof is identical apart from symbolic changes and slight changes to presen-
tation, so it will be omitted.

Theorem II.2.5.5. The homogeneous system (II.2.3)–(II.2.4) is exponen-
tially stable if and only if all Floquet multipliers μ satisfy |μ| < 1. It is
stable if and only if all Floquet multipliers satisfy |μ| ≤ 1, and to those Flo-
quet multipliers satisfying |μ| = 1, the generalized eigenspaces contain only
rank 1 eigenvectors—equivalently, each block in the complex Jordan form of
M0 corresponding to one of the Floquet multipliers satisfying |μ| = 1 is one-
dimensional.

Stability for periodic linear systems is therefore completely determined by
the Floquet multipliers—that is, the eigenvalues μ of M0. These satisfy the
characteristic equation

det(M0 − μI) = 0. (II.2.13)

Recall that M0 is given explicitly by (II.2.9). There is, however, another way
to compute the Floquet multipliers. The following proposition is a direct
consequence of Theorem II.2.5.1.

Proposition II.2.5.3. If M0ξ = μξ and μ �= 0, the function x(t) = U(t, 0)ξ
can be written in the form x(t) = q(t)eλt, where λ = 1

T log μ and q is (gen-
erally) complex-valued and T -periodic. Conversely, if x(t) = q(t)eλt is a so-
lution of (II.2.3)–(II.2.4) with q a complex-valued T -periodic function, then
μ = eTλ is a Floquet multiplier and M0q(0) = μq(0).

Let us substitute the ansatz x(t) = q(t)eλt into (II.2.3)–(II.2.4). After
some cancellation, one arrives at the following impulsive differential equation
for q:

λq + q̇ = A(t)q, t �= tk (II.2.14)

Δq = Bkq, t = tk. (II.2.15)

Let Xλ denote the Cauchy matrix of the continuous part of Eq. (II.2.14).
That is, Xλ(t, s) satisfies Xλ(t, t) = I for t ∈ R and

d

dt
Xλ(t, s) = (A(t)− λI)Xλ(t, s).

By Proposition II.2.5.2, system (II.2.14)–(II.2.15) has a T -periodic solution
if and only if

det

(
1∏

k=c

(I +Bk)Xλ(tk, tk−1)− I

)
= 0. (II.2.16)

Notice that the product term is precisely the monodromy matrix M0 for
(II.2.14)–(II.2.15). If one can compute all solution λ of the equation (II.2.16),
then one can compute the Floquet multipliers μ = eTλ. The numbers λ have
a special name.
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Definition II.2.5.6. The complex numbers λ that solve (II.2.16) are the
Floquet exponents. The set of all Floquet exponents is denoted λ(U) and is
called the Floquet spectrum.

Equation (II.2.16) will have infinitely many solutions because λ = 1
T log μ

and the logarithm has infinitely many branches. Namely, if λ is a Floquet
exponent, then so is λ + 2πi

T . As such, when solving (II.2.16), one should
focus only on solutions in the strip

{
λ ∈ C : $(λ) ∈

[
0,

2π

T

)}
.

II.2.6 Generalized Periodic Changes of Vari-
ables

The changes of variables we introduced in Sect. II.2.5 transform some or
all components of a periodic impulsive system into an autonomous ordinary
differential equation. The downside is that the resulting ordinary differential
equation might be complex-valued. In this section we consider other periodic
changes of variables that will be useful in later applications.

II.2.6.1 A Full State Transformation and Chain Matri-
ces

Corollary II.2.5.1 grants a transformation that very nearly renders the dy-
namics of (II.2.3)–(II.2.4) autonomous. The barrier is the singular fibre bun-
dle, X0, whose t-fibres are given by

X0(t) = {ξ ∈ Xs(t) : ∃t′ > t : U(t′, t)ξ = 0}.

Denote P0(t) the projection onto X0(t). To any solution x : R → R
n such

that P0(s)x(s) �= 0, there necessarily exist some t′ > s such that P0(t)x(t) = 0
for all t ≥ t′. This suggests we form a basis matrix of X0(t) not in the way
that is done in Theorem II.2.5.2, but rather in a piecewise fashion.

Definition II.2.6.1. Let Ψ0, . . . ,Ψc−1 denote matrices whose columns are
bases for the tj-fibres X(tj) of a fibre bundle X. Define for k ∈ {0, . . . , c−1}
and t ∈ [tk, tk+1) the matrix Q(t) = U(t, tk)Ψk. Then, extend Q to Q : R→
R

n×q by periodicity, where q = dimX0(0). We will call Q a chain matrix for
X.

We can now apply Theorem II.2.5.2 and pose a transformation that maps
x into its components in each of X∞

s , Xc, Xu and X0. These components
will be decoupled, and the dynamics for all components aside from X0 will
be autonomous.
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Theorem II.2.6.1. Let Q0 be a chain matrix for X0. Let Φs, Φc and Φu

be basis matrices for X∞
s , Xc and Xu, respectively. The change of variables

x = Qsy + Qcz + Quw + Q0q is invertible and transforms the homogeneous
impulsive system (II.2.3)–(II.2.4) into the decoupled system

ẏ = Λsy, (II.2.17)

ż = Λcz, (II.2.18)

ẇ = Λuw, (II.2.19)

q̇ = 0, t �= tk (II.2.20)

Δq = Q+
0 (tk)[(I +Bk)Q0(t

−
k )−ΔQ0(tk)]q, t = tk, (II.2.21)

where Φj = Qje
tΛj are the respective Floquet decompositions, and for a ma-

trix M with independent columns, the symbol M+ denotes its left-inverse.
The transformation and its inverse are uniformly bounded.

Proof. Since the columns of Qs(t), Qc(t), Qu(t) and Q0(t) are bases X∞
s (t),

Xc(t), Xu(t) and X0(t), respectively, and these subspaces have trivial in-
tersection, the transformation is invertible. Substituting x = Qsy + Qcz +
Quw +Q0q into (II.2.3), we find

A(Qsy +Qcz +Quw +Q0q)

= (AQs −QsΛs)y +Qsẏ + (AQc −QcΛc)z +Qcż

+ (AQu −QuΛu)w +Quẇ +AQ0q +Q0q̇.

After cancelling several terms, we get

0 = Qs(ẏ − Λsy) +Qc(ż − Λcz) +Qu(ẇ − Λuw) +Q0q̇.

This implies the first four equations, (II.2.17)–(II.2.20). It is easy to check
that Qj(tk) = [I + Bk]Qj(t

−
k ) for j = c, s, u. Substituting x = Qsy +Qcz +

Quw +Q0q into (II.2.4), this implies

(I +Bk)Q0(t
−
k )q(t

−
k ) = Q0(tk)q(tk)−Q0(t

−
k )q(t

−
k ).

Denoting Δq = Δq(tk), q = q(t−k ), ΔQ0 = ΔQ0(tk) and Q−
0 = Q0(t

−
k ), we

can expand the above as

(I +Bk)Q
−
0 q = Q−

0 (q +Δq) + ΔQ0(q
− +Δq)−Q−

0 q.

Cancelling Q−
0 q on either side, this is equivalent to

(I +Bk)Q0(t
−
k )q(t

−
k ) = Q0(tk)Δq +ΔQ0(tk)q(t

−
k ).

Rearranging and multiplying by Q+
0 (tk) on both sides give (II.2.21). The

boundedness of the transformation and its inverse is clear from the periodicity
of each of Qs, Qc, Qu, together with the observation that Q0 is periodic and
the left-limits Q0(t

−
k ) are full column rank.
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II.2.6.2 Real Floquet Decompositions

In some applications, the utility of the Floquet decomposition is less than
the transformation of a periodic system to an autonomous one, but rather
in the decoupling of the stable, centre and unstable parts. This is where
the emphasis is placed in Theorem II.2.6.1. However, sometimes we also
want the resulting dynamics of the transformed equation to be real. The
following provides a sufficient condition for all matrices in the statement of
Theorem II.2.6.1 to be real, or for there to exist real matrices such that
the statement holds. The proof is a consequence of the existence of a real
logarithm of a real matrix [39] and is omitted.

Proposition II.2.6.1. Let M0 = V JV −1 denote the real Jordan canonical
form of M0. There exist real basis matrices Φs, Φc and Φu for X∞

s , Xc

and Xu, respectively, with real Floquet decompositions Φj(t) = Qj(t)e
tΛj for

j ∈ {s, c, u}, where Qj are real and T -periodic and Λj are real, if and only if
each Jordan block of J belonging to a negative real eigenvalue occurs an even
number of times.

Corollary II.2.6.1. Let Φ(t) be a real basis matrix for one of X∞
s , Xc or

Xu. Let D be the unique non-singular (real) matrix such that Φ(T ) = Φ(0)D,
and let D = V JV −1 be its real Jordan canonical form. There exists a real
Floquet decomposition—that is, Q(t) real and T -periodic and Λ real such that
Φ(t) = Q(t)etΛ—if and only if any Jordan block of J belonging to a negative
real eigenvalue occurs an even number of times.

Corollary II.2.6.2. There exist real basis matrices Φs, Φc and Φu for X∞
s ,

Xc and Xu, respectively, with real Floquet decompositions Φj(t) = Qj(t)e
tΛj

for j ∈ {s, c, u}, where Qj are real and 2T -periodic and Λj are real.

Proof. Let Φ(t) ∈ R
m×m be a basis matrix for one of X∞

s , Xc or Xu. Then,

Φ(2T ) = M0(M0Φ(0)) = M0(Φ(0)D) = Φ(0)D2

for some invertible D ∈ R
m×m. Defining Λ = 1

2T log(D), since D has no
negative real eigenvalues, Λ is real. Then, Q(t) := Φ(t)e−tΛ is 2T -periodic.

It is clear from the above proposition and corollary that, for example, the
best real Floquet decomposition one can hope to obtain for the system

ẋ =

[
0 1
0 −1

]
x, t �= kT

Δx =

[
−2 0
0 0

]
x, t = kT
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is one that is 2T -periodic. For some applications, this is not enough, for
example, in the analysis of period-doubling bifurcations, it is preferable to
maintain the original period. We can accomplish this by way of chain matri-
ces.

II.2.6.3 A Real T -Periodic Kinematic Similarity

We can use a system of chain matrices to transform any T -periodic impulsive
system into a T -periodic impulsive system with a block structure. The proof
is analogous to that of Theorem II.2.6.1 and is omitted.

Corollary II.2.6.3. Let Q0, Qs, Qc and Qu be chain matrices for X0, X
∞
s ,

Xc and Xu, respectively. Define Q(t) = [ Q0(t) Qs(t) Qc(t) Qu(t) ].
This matrix is bounded and periodic with a bounded inverse. The change of
variables x = Q(t)y transforms (II.2.3)–(II.2.4) into the piecewise-constant
system

ẏ = 0, t �= tk

Δy = Q−1(tk)[(I +Bk)Q(t−k )−ΔQ(tk)]y, t = tk.

One can also define a transformation x = Q(t)y, where Q(t) is some com-
bination of chain matrices and Floquet periodic matrices (i.e. coming from
a Floquet decomposition), and the result will be some combination of the
systems from Theorem II.2.6.1 and Corollary II.2.6.3. In some cases, it will
be preferable to use the standard Floquet periodic matrices, and other times,
it will be better to use chain matrices. Regardless, we have the following
general corollary.

Corollary II.2.6.4. There exists a real, T -periodic, linear change of vari-
ables x = Q(t)y with ||Q(t)|| and ||Q−1(t)|| uniformly bounded, such that
(II.2.3)–(II.2.4) are transformed into a system of the form

ẏ = Λsy, t �= tk

ż = Λcw, t �= tk

ẇ = Λuz, t �= tk

Δy = Ωsy, t = tk

Δz = Ωcz, t = tk

Δw = Ωuw, t = tk,

with real matrices Λj and Ωj, j ∈ {s, c, u}. Let M0 denote the monodromy
matrix of (II.2.3)–(II.2.4), and write its spectrum (set of eigenvalues) as
σ(M0) = σs ∪ σc ∪ σu, with |σs| < 1, |σc| = 1 and |σu| > 1. Let M0,y, M0,z

and M0,w denote the monodromy matrices of the y, z and w subsystems.
Then,

σ(M0,y) = σs, σ(M0,z) = σc, σ(M0,w) = σu.

In the above corollary, we used |S| < 1 as a shorthand for the sentence all
elements of S have absolute value less than one. The symbols |S| = 1 and
|S| > 1 are interpreted analogously.
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II.2.7 Comments

The Floquet theory for impulsive differential equations is fully described in
the monograph of Bainov and Simeonov [9], being partially developed in 1982
by Samoilenko and Perestyuk [124], although therein the assumption that
matrices I + Bk are invertible is assumed. We have intentionally dispensed
with this requirement since it makes the theory far more flexible. The content
of Sects. II.2.5.2 and II.2.5.3 appears in [9], as does Theorem II.2.5.5.



Chapter II.3

Stability for Nonlinear
Systems

In this chapter we will discuss some methods of proving stability for nonlinear
systems. There are parallels here to Chap. I.4 from part I, but we will not
go into as much detail. Here we will be interested in the general nonlinear
system

ẋ = f(t, x), t �= tk (II.3.1)

Δx = gk(x), t = tk, (II.3.2)

under PC1 regularity assumptions.

II.3.1 Stability

Before proceeding, we must of course define stability for the nonlinear system
(II.3.1)–(II.3.2). Let t �→ x(t; s, x0) denote the solution of the above system
satisfying the initial condition x(s; s, x0) = x0.

Definition II.3.1.1. Suppose f(t, 0) = gk(0) = 0 for all t ∈ R and k ∈ Z.
The trivial solution (II.3.1)–(II.3.2) is

• stable if for all ε > 0 and s ∈ R, there exists δ = δ(ε, s) > 0 such that
if ||φ|| < δ, then ||x(t; s, φ)|| < ε for all t ≥ s;

• uniformly stable if it is stable and δ can be chosen independent of s;

• attracting if for all s ∈ R there exists δ = δ(s) > 0 such that if ||φ|| < δ,
then ||x(t; s, φ)|| → 0 as t→∞;
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• uniformly attracting if it is attracting and δ can be chosen independent
of s;

• asymptotically stable if it stable and attracting;

• uniformly asymptotically stable if it is uniformly stable and uniformly
attracting;

• exponentially stable if there exists δ, α and K > 0 such that ||x(t; s, φ)||
≤ Ke−α(t−s) for all t ≥ s, whenever ||φ|| < δ.

Remark II.3.1.1. To define stability of a nontrivial solution γ : R → R
n,

one may translate it into zero by a time-varying change of coordinates and
consider the stability of the trivial solution in the new systems.

II.3.2 The Linear Variational Equation and
Linearized Stability

Definition II.3.2.1. Let γ : R→ R
n be a solution of (II.3.1)–(II.3.2). The

linear variational equation about γ or the linearization at γ is the linear
system

ż = Df(t, γ(t))z, t �= tk (II.3.3)

Δz = Dgk(γ(t
−
k ))z, t = tk. (II.3.4)

Definition II.3.2.2. The solution γ has exponential trichotomy if the lin-
earization at γ has exponential trichotomy.

Definition II.3.2.3. The solution γ is hyperbolic if it has exponential tri-
chotomy and the centre fibre bundle is trivial. It is nonhyperbolic if the centre
fibre bundle is nontrivial.

The following proposition is a direct consequence of Theorem II.2.5.4.

Proposition II.3.2.1. If the variational equation about γ is periodic (in the
sense of Definition II.2.5.2), then γ has exponential trichotomy.

The linearization contains some information about how solutions near γ
evolve with time. It can be derived in several ways, but the most heuristic
one is to assume that x(t) = γ(t) + z(t) is some perturbed solution of γ.
Substituting this ansatz into (II.3.1)–(II.3.2) results in

ż + f(t, γ(t)) = f(t, z + γ(t)), t �= tk

Δz + gk(γ(t
−
k )) = gk(z + γ(t−k )), t = tk.

Expanding f(t, ·) and gk(·) in Taylor series in z at γ(t) and γ(t−k ), respectively,
and neglecting terms of order higher than linear, the result is an impulsive
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differential equation for z, given by (II.3.3)–(II.3.4). That this equation ac-
tually grants stability information is harder to prove. The main result is the
following theorem, whose proof we omit. The interested reader can gain some
insight from the analogous Theorem I.7.7.1.

The following is a linearized stability theorem stated relative to a given
solution γ : R → R

n. Its proof is a consequence of the more general Theo-
rem I.7.7.1.

Theorem II.3.2.1. Suppose (II.3.1)–(II.3.2) is PC1 and, additionally, the
following conditions hold.

• x �→ [f(t, γ(t) + x)− f(t, γ(t))−Df(t, γ(t))x] is uniformly (in t) Lips-
chitz continuous in the ball Bδ(0) ⊂ R

n with Lipschitz constant c1(δ).

• x �→ [gk(γ(t
−
k ) + x) − gk(γ(t

−
k )) − Dgk(γ(t

−
k ))x] is uniformly (in k)

Lipschitz continuous in ball Bδ(0) ⊂ R
n with Lipschitz constant c2(δ).

• There exists ξ > 0 such that tk+1 − tk ≥ ξ for all k ∈ Z.

If γ has exponential trichotomy and the variational equation about γ is un-
stable, then γ is unstable. If the linear variational equation about γ is ex-
ponentially stable, then γ is exponentially stable provided the constants c1(δ)
and c2(δ) satisfy c1, c2 → 0 as δ → 0.

Corollary II.3.2.1. Let γ : R → R
n be a bounded solution of (II.3.1)–

(II.3.2). Suppose f : R × Ω → R
n is C2 on [tk, tk+1) × Ω for all k ∈ Z and

gk : Ω → R
n is C2, where Ω is some open set containing the image of γ.

Suppose x �→ D2f(t, x) and x �→ Dgk(x) are uniformly (in t and k) locally
Lipschitz continuous.

• If the linear variational equation about γ is exponentially stable, then γ
is exponentially stable.

• If γ has exponential trichotomy and the variational equation about γ is
unstable, then γ is unstable.

Proof. The assumption and the C2 assumption imply that Df(t, ·) and gk(·)
are uniformly (in t and k) Lipschitz continuous on any compact set containing
γ. To see that the Lipschitz constant vanishes as this compact set shrinks
uniformly to γ, we use the mean-value theorem on f̃(t, z) = f(t, γ(t) + z) −
f(t, γ(t))−Df(t, γ(t))z to write

||f̃(t, φ)− f̃(t, ψ)||

=

∣∣∣∣
∣∣∣∣
∫ 1

0

D̃2f(t, φ+ h(ψ − φ))(ψ − φ)

∣∣∣∣
∣∣∣∣

≤
∫ 1

0

||D2f(t, γ(t) + φ+ h(ψ − φ))−D2f(t, γ(t))|| · ||φ− ψ||dh

≤ L2δ||φ− ψ||,
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for φ, ψ ∈ Bδ(0) for δ < δ′, where L is a uniform (in t) Lipschitz constant for
x �→ D2f(t, x) on the closure of K,

K =
⋃
t∈R

{x ∈ R
n : ||x− γ(t)|| ≤ 2δ′},

and δ′ > 0 is some fixed constant. The Lipschitz constant on f̃ is L2δ,
which vanishes as δ → 0. A similar Lipschitz constant can be derived for
g̃k(z) = gk(γ(t

−
k )+ z)−gk(γ(t

−
k ))−Dg(γ(t−k ))z. The conclusion then follows

from Theorem II.3.2.1.

Corollary II.3.2.2. Let γ : R → R
n be a periodic solution of (II.3.1)–

(II.3.2) with period T . Suppose f : R × Ω → R
n is C2 on [tk, tk+1) × Ω for

all k ∈ Z, and gk : Ω → R
n is C2, where Ω is some open set containing

the image of γ. Additionally, assume f(t + T, ·) = f(t, ·), gk+c = gk and
tk+c = tk + T for all t ∈ R and k ∈ Z.

• If the linear variational equation about γ is exponentially stable, then γ
is exponentially stable.

• If the linear variational equation about γ is unstable, then γ is unstable.

Proof. The periodicity assumptions imply the Lipschitzian estimates on D2f
and Dgk required by Corollary II.3.2.1. Proposition II.3.2.1 grants the re-
quired exponential trichotomy of γ.

II.3.3 Comments

The exponential stability part of Corollary II.3.2.2 on periodic solutions and
periodic systems is originally due to Simeonov and Bainov [131], with an
instability result under exponential dichotomy appearing in the same authors’
1993 monograph [9].



Chapter II.4

Invariant Manifold Theory

This chapter will be devoted to the invariant manifold theory of impulsive
differential equations. At the theoretical level, we will assume only that the
reference bounded solution has exponential trichotomy, but when we move
into computational aspects we will assume that the dynamics are periodic.
This will allow us to take advantage of the Floquet decomposition, with the
result being that computation of invariant manifolds has much in common
with the same procedure for ordinary differential equations without impulses.

In this chapter we will assume a semilinear decomposition

ẋ = A(t)x+ f(t, x), t �= tk (II.4.1)

Δx = Bkx+ gk(x), t = tk, (II.4.2)

where f(t, 0) = gk(0) = 0 and D2f(t, 0) = Dgk(0) = 0.

Definition II.4.0.1. System (II.4.1)–(II.4.2) is periodic with period T > 0
and c impulses per period if A(t+T ) = A(t), f(t+T, ·) = f(t, ·), Bk+c = Bk,
gk+c = gk and tk+c = tk + T for all t ∈ R and k ∈ Z.

II.4.1 Existence and Smoothness

Definition II.4.1.1. An invariant manifold for the trivial solution x = 0 is
a subset W ⊂ R× R

n with the following properties:

• R× {0} ⊂W ;

• the sets Wt := {x : (t, x) ∈W} are submanifolds of Rn;

• if xs ∈Ws, then x(t; s, x) ∈Wt as long as this solution is defined.

© Springer Nature Switzerland AG 2021
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An invariant manifold is Ck if Wt is Ck for each t.

We will at this point drop the phrase “for the trivial solution x = 0”, since
we will always be referring to invariant manifolds at this solution. To define
invariant manifolds at other solutions γ, one can simply perform a change of
variables to translate γ to zero and get a system of the form (II.4.1)–(II.4.2).

Definition II.4.1.2. Suppose the trivial solution x = 0 has exponential tri-
chotomy. An invariant manifold W is a

• stable manifold if Wt is tangent to Xs(t) at 0 ∈ R
n for all t ∈ R, and

solutions x(t) ∈Wt converge exponentially to zero as t→∞;

• centre manifold if Wt is tangent to Xc(t) at 0 ∈ R
n for all t ∈ R, and

solutions x(t) ∈Wt have sub-exponential growth as t→ ±∞;

• unstable manifold if Wt is tangent to Xu(t) at 0 ∈ R
n for all t ∈ R,

and solutions x(t) ∈Wt converge exponentially to zero as t→ −∞;

• centre-stable manifold if Wt is tangent to Xcs(t) at 0 ∈ R
n for all t ∈ R,

and solutions x(t) ∈Wt have sub-exponential growth as t→∞;

• centre-unstable manifold if Wt is tangent to Xcu(t) at 0 ∈ R
n for all

t ∈ R, and solutions x(t) ∈Wt have sub-exponential growth as t→ −∞.

Definition II.4.1.3. Suppose x = 0 has exponential trichotomy. Let P (t)
denote the projection onto one of the stable, centre, unstable, centre-stable or
centre-unstable fibre bundles associated to the linear part,

ẋ = A(t)x, t �= tk (II.4.3)

Δx = Bkx, t = tk, (II.4.4)

of (II.4.1)–(II.4.2). A local stable, centre, unstable, centre-stable or centre-
unstable manifold is a set of the form

W loc = {(t, x+ h(t, x)) : t ∈ R, x ∈ Bδ(0) ∩R(P (t)) ⊂ R
n},

for some h : R × Bδ(0) → R
n, satisfying h(t, 0) = 0, P (t)h(t, u) = 0, with

W loc having the following properties:

• If (s, xs) ∈ W loc, there exists ε > 0 such that (t, x(t; s, xs)) ∈ W loc for
|t− s| < ε.

• W loc
t is tangent to R(P (t)) at 0 ∈ R

n.

• Any solution that remains in W loc for the asymptotic time ranges speci-
fied in Definition II.4.1.2 satisfies the same asymptotic growth or decay
rates.
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A local invariant manifold is PC1,m-regular at zero if

• z �→ h(t, z) is Cm in a neighbourhood of 0 ∈ R
p;

• for j = 0, . . . ,m and all z1, . . . , zj ∈ R
p, t �→ Dj

2h(t, 0)[z1, . . . , zj ] is
continuous except at times tk where it has limits on the left and, addi-
tionally, it is differentiable from the right everywhere.

The PC1,m-regular condition in addition to the tangency property implies
that the function h : R× Bδ(0) → R

n has a Taylor expansion near x = 0 of
the form

h(t, z) =
1

2!
h2(t)z

2 +
1

3!
h3(t)z

3 + · · ·+ 1

m!
hm(t)zm +O(|z|m+1), (II.4.5)

for t fixed, and that the coefficients are differentiable from the right with
discontinuities at impulse times tk, where they have limits on the left.

Proving the existence of local invariant manifolds and their PC1,m regu-
larity is formally equivalent to all of the work done in Chaps. I.5, I.6, and I.7
and is in fact implied by the relevant theorems therein. Indeed, taking the de-
lay range r = 0 directly recovers the case of impulsive differential equations.
As such, the following theorem need not be proven.

Theorem II.4.1.1. Suppose the trivial solution x = 0 has exponential tri-
chotomy. There exist local stable, centre, unstable, centre-stable and centre-
unstable manifolds. These manifolds are PC1,m regular provided (II.4.1)–
(II.4.2) if PCm. The Taylor coefficients hj(t) in (II.4.5) are bounded, and
the asymptotic form of that equation holds uniformly for t ∈ R provided
(II.4.1)–(II.4.2) if PCm+1.

II.4.2 Invariance Equation for Nonautonomous
Systems

The dynamics on any invariant manifold can be characterized by the ab-
stract results in Sect. I.7.6. However, the situation here is a fair bit simpler
because the projection matrices Pj(t) onto the stable, centre and unstable
fibre bundles are much more regular than the associated operators in the
infinite-dimensional case.

This section will be devoted to the derivation of the invariance equation
associated to a given local invariant manifold. Throughout, P (t) will denote
a projection onto one of the stable, centre, unstable, centre-stable or centre-
unstable fibre bundles. The invariant manifold in question will be assumed
to be PC1,m-regular at zero and is represented in the form

W loc = {(t, x+ h(t, x)) : t ∈ R, x ∈ Bδ(0) ∩R(P (t)) ⊂ R
n} (II.4.6)

for h : R×Bδ(0)→ R
n and satisfying h(t, 0) = 0 and P (t)h(t, x) = 0.
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The following lemma characterizes the regularity of the projector P (t). It
will be needed in the subsequent sections.

Lemma II.4.2.1. Let P : R→ R
n×n be a matrix-valued function satisfying

U(t, s)P (s) = P (t)U(t, s) for all t ≥ s. Then, P satisfies the matrix impulsive
differential equation

Ṗ (t) = A(t)P (t)− P (t)A(t), t �= tk, (II.4.7)

ΔP (tk) = BkP (tk−)− P (tk)Bk, t = tk. (II.4.8)

More succinctly, at times t = tk we have P (tk)[I +Bk] = [I +Bk]P (t−k ).

Proof. For ease of presentation, we will assumeA(t) is continuous on [tk, tk+1),
so that t �→ U(t, s) will be differentiable on each of [tk, tk+1), but the result
remains true (in the sense of integrated solutions) under weaker PC0 condi-
tions. Let t ∈ (tk, tk+1). Then, we can write U(t, tk) = X(t, tk) for X the
Cauchy matrix of the continuous part, ẋ = A(t)x. This matrix is invertible,
from which it follows that

P (t) = U(t, tk)P (tk)U
−1(t, tk).

The right-hand side is differentiable, from which it follows that P ′(t) exists,
with

Ṗ (t) = A(t)U(t, tk)P (tk)U(t, tk)
−1 + U(t, tk)P (tk)[−U(t, tk)

−1A(t)]

= A(t)P (t)− P (t)A(t),

as claimed. As for the impulse times, since U(tk, t
−
k ) = I+Bk, the definition

of P implies P (tk)[I +Bk] = [I +Bk]P (t−k ). Rearranging gives (II.4.8).

Suppose x(t) is a solution on the invariant manifold. Then, at each time
t we can write u(t) = z + h(t, z) for some z ∈ R(P (t)). Substituting this
ansatz into the impulsive differential equation (II.4.1)–(II.4.2), we get

A(t)(z + h) + f(t, z + h) = ∂th+ [I + ∂zh]ż, t 
= tk

Bk(z + h) + gk(z + h) = Δth(t, z +Δx) +

[
I +

∫ 1

0

∂zh(t
−
k , z + sΔz)ds

]
Δz, t = tk.

Since P (t)h(t, u) = 0, we get z = P (t)u(t). Applying Lemma II.4.2.1, one
can check that

ż = A(t)z + P (t)f(t, z + h), t �= tk (II.4.9)

Δz = Bkz + P (tk)gk(z + h), t = tk. (II.4.10)
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Combining these two results, we arrive at the invariance equation for the
invariant manifold:

A(t)h+ (I − P (t))f(t, z + h) = ∂zh[Az + Pf(t, z + h)] + ∂th, t 
= tk,

(II.4.11)

Bkh+ (I − P (tk))gk(z + h) =

[∫ 1

0

∂zh(t
−
k , z + srk)ds

]
rk +Δth(tk, z + rk), t = tk,

(II.4.12)

where in the above rk = rk(z, h) := Bkz+P (tk)gk(z+h), all unspecified time
evaluations are at t = t−k in (II.4.12), and we define Δth(tk, y) = h(tk, y) −
h(t−k , y).

The pair of Eqs. (II.4.11)–(II.4.12) defines an impulsive partial differential
equation satisfied by the function h : R × R

n → R
n defining the invariant

manifold.

II.4.3 Invariance Equation for Systems with
Periodic Linear Part

When the linear part (II.4.3)–(II.4.4) is periodic, we can take advantage of
Floquet theory to simplify the form of the invariance equation (II.4.11)–
(II.4.12). More generally, we will assume a kinematic similarity as introduced
in Sect. II.2.6.3. Let

x = Qs(t)ys +Qc(t)yc +Qu(t)yu, (II.4.13)

be a real T -periodic change of variables of the form introduced in Corol-
lary II.2.6.4. Each Qj could be a chain matrix, a Floquet periodic matrix
or some combination thereof, and the optimal choice will depend on the sit-
uation at hand. After completing the change of variables, (II.4.1)–(II.4.2)
become

ẏs = Λsys + f̃s(t, ys, yc, yu), t �= tk (II.4.14)

ẏc = Λcyc + f̃c(t, ys, yc, yu), t �= tk (II.4.15)

ẏu = Λuyu + f̃u(t, ys, yc, yu), t �= tk (II.4.16)

Δys = Ωsys + g̃s(k, ys, yc, yu), t = tk (II.4.17)

Δyc = Ωcyc + g̃c(k, ys, yc, yu), t = tk (II.4.18)

Δyu = Ωuyu + g̃u(k, ys, yc, yu), t = tk, (II.4.19)

with the nonlinearities

f̃j(t, y, z, w) = Q+
j (t)f(t, Qs(t)y +Qc(t)z +Qu(t)w),

g̃j(k, y, z, w) = Q+
j (tk)gk(Qs(t

−
k )y +Qc(t

−
k )z +Qu(t

−
k )w).
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Recall that for a matrix M with linearly independent columns, the symbol
M+ denotes its left-inverse. The dynamics have been decoupled into stable
(ys), centre (yc) and unstable (yu) directions.

Denote σs, σc and σu the sets of Floquet multipliers of the decoupled linear
parts, so that σ(M0) = σs ∪ σc ∪ σu, with M0 being the monodromy matrix
of the original linear part (II.4.3)–(II.4.3). To derive the invariance equation
for the invariant manifold Wf , we will partition (II.4.14)–(II.4.19) as

ẏ = Uy + f̃1(t, y, z), t �= tk, (II.4.20)

ż = V z + f̃2(t, y, z), t �= tk, (II.4.21)

Δy = Rky + g̃1(k, y, z), t = tk, (II.4.22)

Δz = Skz + g̃2(k, y, z), t = tk, (II.4.23)

where the linear part of the y equations has only the Floquet exponents
σf , and the linear part of the z equations has only the Floquet exponents

σ(M0) \σf . This partitioning is always attainable. The nonlinearities f̃i and
g̃i will be some vectors involving those of (II.4.14)–(II.4.19).

In the (y, z) coordinates, the t-fibre Wf (t) of the invariant manifold is the
solution set of the equation

z = h̃(t, y), (II.4.24)

with h̃ : R×R
dimXf → R

n−dimXf defined explicitly in terms of the function
h in (II.4.6) by

Q̃(t)h̃(t, y) = h(t, Qf (t)y),

where Q̃(t) is the matrix Q = [ Qs Qc Qu ] without the Qf part. For

example, if Qf = Qc, then Q̃ = [ Qs Qu ]. These details are unimportant,
since we can work directly with (II.4.24). Also, from this point on we will
drop the tildes in (II.4.24) and simply write z = h(t, y).

To derive the invariance equation, we substitute (II.4.24) into (II.4.20)–
(II.4.23). Working first with the differential equation (II.4.21), we get

V h(t, y) + f̃2(t, y, h(t, y)) = ∂th(t, y) + ∂yh(t, y)ẏ. (II.4.25)

The next step would be to substitute (II.4.20) into (II.4.25) and replace all
instances of z with h(t, y). As for the jumps, substituting z = h(t, y) into
(II.4.23) gives the equation

Skh(t
−
k , y) + g̃2(k, y, h(t

−
k , y)) = h(tk, y +Δy)− h(t−k , y).

We can write the right-hand side equivalently as

h(tk, y +Δy)− h(t−k , y) = Δth(tk, y +Δy) +

∫ 1

0

∂yh(t
−
k , y + sΔy)Δyds,
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where Δth(tk, v) = h(tk, v) − h(t−k , v). Every instance of Δy can now be
replaced with (II.4.22), and all appearances of z therein are replaced with
h(t−k , y). This entire discussion then leads to the complete invariance equa-
tion.

Theorem II.4.3.1. The invariant manifold Wf in the (y, z) coordinates of
system (II.4.20)–(II.4.23) can be expressed as the solution set of z = h(t, y),
where the function h : R×R

dimXf → R
n−dimXf is periodic in its first variable

and satisfies the impulsive partial differential equation

V h+ f̃2(t, y, h) = ∂th+ (∂yh)[Uy + f̃1(t, y, h)], t �= tk

(II.4.26)

Skh+ g̃2(k, y, h) = Δth(tk, y + rk) +

∫ 1

0

∂yh(t
−
k , y + srk)rkds, t = tk,

(II.4.27)

where h = h(t, y) in the first equation, h = h(t−k , y) in the second equa-
tion (unless otherwise specified), Δth(tk, v) = h(tk, v) − h(t−k , v), and rk =
rk(y, h) := Rky + g̃1(k, y, h(t

−
k , y)).

II.4.4 Dynamics on Invariant Manifolds

In the most general (nonautonomous) setting, the dynamics on a given in-
variant manifold can be derived from (II.4.9)–(II.4.10). Set z(t) = Φ(t)w(t)
for Φ(t) a basis matrix for R(P (t)) and some w(t) ∈ R

dimXc . Then, the
function w satisfies the impulsive differential equation

ẇ = Φ+(t)P (t)f(t,Φ(t)w + h(t,Φ(t−k )w)), t �= tk

Δw = Φ+(tk)P (tk)gk(Φ(t
−
k )w + h(t−k ,Φ(t

−
k )w)), t = tk.

The above system essentially describes the nonlinear part of the dynamics
on the centre manifold. Indeed, the transformation z = Φ(t)w quotients
out the linear part. However, this transformation is not generally uniformly
bounded, so it is difficult to compare growth rates of solutions of the above
equation with those on the invariant manifold.

The drawbacks described in the previous paragraph are remedied if the
linear part (II.4.3)–(II.4.4) is periodic. In this case, the dynamics on the
invariant manifold are topologically equivalent near the origin to

ẏ = Uy + f̃1(t, y, h(t, y)), t �= tk (II.4.28)

Δy = Rky + g̃1(k, y, h(t
−
k , y)), t = tk. (II.4.29)

Solutions of (II.4.28)–(II.4.29) near the origin are in one-to-one correspon-
dence with those on the invariant manifold. For more information on notions
of topological equivalence for impulsive systems, we refer the reader to [28]
and the references cited therein.



228 CHAPTER II.4. INVARIANT MANIFOLD THEORY

II.4.5 Reduction Principle for the Centre Man-
ifold

The centre manifold (at zero) contains several important classes of solutions,
namely:

• all sufficiently small bounded solutions;

• all sufficiently small periodic solutions.

As a consequence, any small solution or attractor that is formed at a bifurca-
tion point must necessarily be contained within the (parameter-dependent)
centre manifold. The following theorem provides more detail.

Theorem II.4.5.1. Suppose Xu is trivial. There exists a neighbourhood V
of 0 ∈ R

n such that any solution x : [s,∞)→ R
n for which x(t) ∈ V for t ≥ s

converges exponentially towards Wc. That is, there exists a solution u(t) ∈
Wc(t) such that ||x(t)− u(t)|| ≤ K1e

−α1(t−s) for some positive constants K1

and α1.

II.4.6 Approximation by Taylor Expansion

We have discussed a few ways to represent invariant manifolds in this chapter.
In the periodic case, we can always express Wf as the (time-varying) graph
of a function h : R×R

dimXf → R
n−dimXf , where t �→ h(t, v) is periodic and

the Taylor expansion

h(t, v) =
1

2
h2(t)v

2 + · · ·+ 1

m!
hm(t)vm +O(||v||m+1)

holds uniformly in t near v = 0. Each of the coefficients hj is periodic
and differentiable from the right everywhere, with discontinuities only at
the impulse times. The idea is to substitute the above Taylor expansion
ansatz into the invariance equation (whichever is appropriate to the given
situation) and compare powers of v, starting at degree two and proceeding
higher until the desired expansion is computed. Since the Taylor coefficients
of the invariant manifold are unique, this process yields a unique solution at
each order of the expansion. Rather than develop this procedure abstractly,
we will consider an example.

Example II.4.6.1. Consider the following two-dimensional impulsive dif-
ferential equation:

u̇ = −u+ v2, t /∈ Z

v̇ = v − w2, t /∈ Z

ẇ = αuw, t /∈ Z

Δu = 0.5u3, t ∈ Z

Δv = −v, t ∈ Z

Δw = 0, t ∈ Z,
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where α ∈ R is a parameter. We will determine the invariance equation for
the centre manifold and obtain its Taylor approximation. The first thing to do
is to transform the above system into the form (II.4.20)–(II.4.23). This is very
nearly complete; the w component corresponds to the centre component for all
values of α, while (u, v) corresponds to “leftover” components, z. However,
the dynamics are not as simple as they could be, since the z = (u, v) dynamics
involve a singular stable direction (the v component) but the continuous-time
portion in this direction is nonzero. To fix this, we can use a chain matrix
for X0. This is easily computed: Q0(t) = e[t]1 .

If we set z = (u,Q0(t)v) and y = w, then the above system becomes

ẏ = αyz1, t /∈ Z

ż =

[
−1 0
0 0

]
z +

[
e2[t]1z22
−e−[t]1y2

]
, t /∈ Z

Δy = 0, t ∈ Z

Δz =

[
0 0
0 −1

]
z +

[
0.5z31
0

]
, t ∈ Z.

Compare to (II.4.14)–(II.4.19) for details. The centre manifold can be repre-
sented in the form

z1 = h1(t, y), z2 = h2(t, y)

for a pair h1, h2 of scalar-valued functions that are periodic in their first
variable. Writing h = [ h1 h2 ]ᵀ, the invariance equation is[

−1 0
0 0

]
h+

[
e2[t]1(π2h)

2

−e−[t]1y2

]
= ∂th+ (∂yh)αyπ1h, t /∈ Z

[
0 0
0 −1

]
h+

[
0.5(π1h)

3

0

]
= Δth(tk, y), t ∈ Z,

(II.4.30)

where π1h = h1 and π2h = h2. Note: the function rk from Theorem II.4.3.1
is identically zero, hence why the partial derivative ∂yh does not appear in
the jump condition of the invariance equation.

Let us compute the fourth-order approximation of the centre manifold. We
write

h(t, y) =

[
h1,2(t)y

2 + h1,3(t)y
3 + h1,4(t)y

4

h2,2(t)y
2 + h2,3(t)y

3 + h2,4(t)y
4

]
+O(|y|5)

for periodic functions hi,j of period one. Substituting the above into (II.4.30)
and comparing y2 coefficients, we get[

−h1,2

−e−[t]1

]
= ∂t

[
h1,2

h2,2

]
, t /∈ Z

[
0

−h2,2

]
= Δt

[
h1,2

h2,2

]
, t ∈ Z.

The unique periodic solution is h1,2(t) = 0 and h2,2(t) = e−[t]1 − 1. We can
now update our expression for h

h(t, y) =

[
h1,3(t)y

3 + h1,4(t)y
4

(e−[t]1 − 1)y2 + h2,3(t)y
3 + h2,4(t)y

4

]
+O(|y|5).
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Substituting this into (II.4.30) and equating cubic terms y3, the result is

[
−h1,3

0

]
= ∂t

[
h1,3

h2,3

]
, t /∈ Z

[
0

−h2,3

]
= Δt

[
h1,3

h2,3

]
, t ∈ Z.

The unique periodic solution is the trivial solution h1,3 = h2,3 = 0. Updating
our expression for h yet again,

h(t, y) =

[
h1,4(t)y

4

(e−[t]1 − 1)y2 + h2,4(t)y
4

]
+O(|y|5).

Finally, substituting into (II.4.30) and equating coefficients on y4 terms, the
result is

[
−h1,4 + e2[t]1(e−[t]1 − 1)2

0

]
= ∂t

[
h1,4

h2,4

]
, t /∈ Z

[
0

−h2,4

]
= Δt

[
h1,4

h2,4

]
, t ∈ Z.

There is a nontrivial periodic solution: h2,4 = 0 and

h1,4(t) =
e−[t]1−1

3(1− e−1)
(e− 1)3 + e−[t]1

∫ [t]1

0

es(e2s − 2es + 1)ds. (II.4.31)

Note that h1,4 > 0. The latter can be identified with the unique periodic
solution of

q̇ = −q + e2[t]1(e−[t]1 − 1)2.

To fourth order, the function h representing the centre manifold is given
by

h(t, y) =

[
h1,4(t)y

4

(e−[t]1 − 1)y2

]
+O(|y|5),

where h1,4 is the positive function from (II.4.31). The dynamics on the centre
manifold are topologically conjugate to those of ẏ = αyh1(t, y). Substituting
in the above expression for h, we get

ẏ = αh1,4(t)y
5 +O(α|y|6).

Since h1,4 is positive, we conclude that the zero solution of the original im-
pulsive system is unstable if α > 0, stable if α = 0, and asymptotically
stable if α < 0. These last two assertions follow by the reduction principle,
Theorem II.4.5.1. See Fig. II.4.1 for a comparison.
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Figure II.4.1: Left to right: simulation from the initial condition (u, v, w) =
(0.1, 0.1, 0.1) at time t = 0 of the system from Example II.4.6.1 for parameters
α = −100, α = 0 and α = 2, respectively. The convergence rate for the case
α < 0 is incredibly small and numerically unstable, hence our decision to
choose a large α = −100. Time integration for the cases α < 0 and α = 0
was done for t ∈ [0, 1000], and in the α > 0 case for t ∈ [0, 200]. In all figures,
the black dot denotes the initial condition

II.4.7 Parameter Dependence

In this section we will discuss how one can incorporate parameter-dependent
systems into the invariant manifold framework. Suppose we have a system
of the form

ẋ = f(t, x, ε), t �= tk(ε),

Δx = gk(x, ε), t = tk(ε),

for a parameter ε ∈ R
p. We assume this system is periodic with period T (ε)

with q > 0 impulses per period. Importantly, we assume the number of
impulses per period does not change depending on the parameter. Suppose
that f(t, 0, 0) = gk(0, 0) = 0, so that 0 is an equilibrium point when ε = 0.
We will assume without loss of generality that tk(ε) = 0.

The first thing we will do is to perform a parameter-dependent rescaling
of time so that the impulses occur on the integers. Specifically, set

t = t(τ, ε) =
{

tk(ε) + (τ − k)(tk+1(ε)− tk(ε)), τ ∈ [k, k + 1), k ∈ Z.

for rescaled time τ . Under this rescaling, t = tk(ε) if and only if τ = k.
Moreover, τ �→ t is continuous, piecewise-linear and monotone increasing, so
it has an inverse with the same properties. If we define y(τ) = x(t(τ, ε)),
then y satisfies the impulsive differential equation

dy

dτ
= f(t(τ, ε), y, ε)(tk+1(ε)− tk(ε)), k < τ < k + 1

Δy = gk(y, ε), τ = k ∈ Z.
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The above system is now periodic with period q, and q impulses per period.
Moreover, it has the same level of regularity of the original system—if the
original system is PCm, so is the above. As such, we can always assume
without loss of generality that a parameter-dependent system is in the form

ẋ = f(t, x, ε), t /∈ Z (II.4.32)

Δx = gk(x, ε), t ∈ Z, (II.4.33)

where the period is q > 0 and there are q impulses per period.
Next, we expand the state space of Eqs. (II.4.32)–(II.4.33) by taking ε as

an additional state. The result is the system

d

dt

[
x
ε

]
=

[
f(t, x, ε)

0

]
, t /∈ Z Δ

[
x
ε

]
=

[
gk(x, ε)

0

]
, t ∈ Z.

We can now apply the invariant manifold theory to the above system. Indeed,
the above is equivalent to the semilinear form

d

dt

[
x
ε

]
=

[
Dxf(t, 0, 0) Dεf(t, 0, 0)

0 0

] [
x
ε

]
+

[
F (t, x, ε)

0

]
, t /∈ Z

(II.4.34)

Δ

[
x
ε

]
=

[
Dxgk(0, 0) Dεgk(0, 0)

0 0

] [
x
ε

]
+

[
Gk(x, ε)

0

]
, t /∈ Z,

(II.4.35)

with F = f(t, x, ε) −Dxf(t, 0, 0)x −Dεf(t, 0, 0)ε and Gk = gk(x, ε) −Dxgk
(0, 0)x − Dεgk(0, 0)ε. It follows that DF (t, 0, 0) = 0 and DGk(0, 0) = 0 as
required.

II.4.7.1 Centre Manifolds Depending on a Parameter

System (II.4.34)–(II.4.35) always has a centre manifold of dimension at least
p. If x = 0 in (II.4.32)–(II.4.33) at parameter ε = 0 is nonhyperbolic with a c-
dimensional centre fibre bundle Xc, then the centre manifold of (x, ε) = (0, 0)
in (II.4.34)–(II.4.35) will be (c+p)-dimensional. Applying the transformation
from Sect. II.4.3 and partitioning the equations appropriately, the result will
be a q-periodic system in the form

ẏ = U1y + U2ε+ F̃1(t, y, z, ε), t /∈ Z

ż = V1z + V2ε+ F̃2(t, y, z, ε), t /∈ Z

ε̇ = 0, t /∈ Z

Δy = R1(k)z +R2(k)ε+ G̃1(k, y, z, ε), t ∈ Z

Δz = S1(k)z + S2(k)ε+ G̃2(k, y, z, ε), t ∈ Z

Δε = 0, t ∈ Z,
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where the linear part of the y equation with ε = 0 has only Floquet multipliers
with absolute value equal to unity, and the Floquet multipliers associated to
the linear part of the z component at ε = 0 are disjoint from the unit circle.
A local centre manifold of the above system at (0, 0, 0) is locally representable
by the solution set of the equation

z = h(t, y, ε)

for h : R× R
c × R

p → R
n−c periodic in its first variable. In the ε direction,

the dynamics on the centre manifold are trivial since there are no linear or
nonlinear terms. However, in the y (centre) direction they are

ẏ = U1y + U2ε+ F̃1(t, y, h(t, y, ε), ε), t /∈ Z (II.4.36)

Δy = R1(k)y +R2(k)ε+ G̃1(k, y, h(t
−
k , y, ε), ε), t ∈ Z, (II.4.37)

for ε fixed and sufficiently small. The local parameter-dependent centre man-
ifold is the set with t-fibres

W loc
c,ε (t) = {(y, h(t, y, ε)) : ||(y, ε)|| < δ}.

The dynamics on this invariant manifold are topologically conjugate near y =
0 to those of (II.4.36)–(II.4.37), provided |ε| is small enough. The reduction
principle (Theorem II.4.5.1) also applies to the parameter-dependent centre
manifold, allowing one to derive bifurcation results.

II.4.8 Comments

Taylor approximation of invariant manifolds for nonautonomous ordinary
differential in Banach spaces was developed by Pötzsche and Rasmussen
[116]. The same authors also developed these techniques for nonautonomous
discrete-time systems in [117]. The construction for impulsive differential
equations with delays was completed by Church and Liu [33]. The computa-
tional (e.g. invariance equation and Taylor expansion) aspects of this chapter
can be considered as a specification of the latter results to finite-dimensional
systems.

Theorem II.4.1.1 is apparently new. The existence of invariant manifolds
in the reversible hyperbolic case—that is, where Xc and X0 are empty—has
been known for some time. See for instance Theorem 6.8 of [9]. In the non-
hyperbolic case, there was perhaps a good reason to believe such manifolds
existed. Indeed, they can be identified with the forward time evolution of the
associated invariant manifold of the time T map. Still, the concrete result of
Theorem II.4.1.1 and the representation furnished by Eq. (II.4.6) remained
absent.

Linear periodic systems are examples of reducible systems. Such systems
can be transformed into block form by way of a bounded linear transfor-
mation with a bounded inverse, where the blocks induce a natural spectral
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decomposition. The transformation is called a kinematic similarity. A the-
orem of Siegmund [130] implies that such kinematic similarities always exist
for linear ordinary differential equations ẋ = A(t)x provided A(t) is locally
integrable. A suitable generalization of such a result to nonautonomous im-
pulsive differential equations would permit the derivation of a concrete dy-
namics equation on the centre manifold analogous to (II.4.26)–(II.4.27) for
general nonautonomous differential equations, not necessarily under periodic
conditions.



Chapter II.5

Bifurcations

In this chapter we will specialize to periodic systems. We begin with a
parameter-dependent system

ẋ = f(t, x, ε), t /∈ Z (II.5.1)

Δx = gk(x, ε), t ∈ Z. (II.5.2)

In what follows, M0 will always denote the monodromy matrix for the lin-
earization at parameter ε = 0—that is, for the system

ż = Dxf(t, 0, 0)z, t /∈ Z

Δz = Dxgk(0, 0)z, t ∈ Z.

We denote by σc the set of eigenvalues of M0 on the complex unit circle.
Following the results of Chap. II.4 and, in particular, Sect. II.4.7, we may

assume that a suitable approximation of the centre manifold has been com-
puted and that to some prescribed order the dynamics on the parameter-
dependent centre manifold are given by a q-periodic system of the form

ẏ = U1y + U2ε+ f(t, y, ε), t /∈ Z (II.5.3)

Δy = R1(k)y +R2(k)ε+ gk(y, ε), t ∈ Z, (II.5.4)

where Dyf(t, 0, 0) = Dygk(0, 0) = 0, and the Floquet multipliers of the linear
part at ε = 0 are precisely σc. Some form of PCm smoothness will always
be assumed. The specific requirement on the degree m of smoothness will be
stated when needed.

An important remark: The various transformations made to reach the
dynamics on the centre manifold (II.5.3)–(II.5.4) will influence which of the
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matrices U1, U2, R1 and R2 is nonzero. The most important part is the form
of the transformation

x = Qs(t)ys +Qc(t)yc +Qu(t)yu (II.5.5)

that is originally used to split up the dynamics into stable, centre and unstable
(linear) parts. In this regard, there are a few general statements we can make.

• If Qc is a Floquet periodic matrix (i.e. from a Floquet decomposition
Φc(t) = Qc(t)e

tΛc for a basis matrix of Xc), then R1 = 0 and R2 = 0.

• If Qc is a chain matrix for Xc, then U1 = 0 and U2 = 0.

For these reasons, in the subsequent sections we will state the optimal choice
of the transformation that will make the bifurcation analysis as straightfor-
ward as possible. However, one can always make the appropriate transfor-
mation after the fact (i.e. on the system (II.5.3)–(II.5.4)) to eliminate either
the U matrices or the R matrices, so there is really no loss of generality in
assuming the optimal choice at the outset.

II.5.1 Reduction to an Iterated Map

Although it is perhaps an unsatisfying solution, the easiest way to analyze
local bifurcations in (II.5.3)–(II.5.4) is to reduce to a discrete-time problem.
Let t �→ φ(t; y, ε) denote the solution of this impulsive differential equation
(with parameter ε) satisfying φ(t; y, ε) = y.

Definition II.5.1.1. The time q map is S : Rn × R
p → R

n defined1 by
S(y, p) = φ(q; y, ε).

Bifurcations from the fixed point y = 0 at parameter ε = 0 in (II.5.3)–
(II.5.4) can now studied by examining the equivalent parameter-dependent
discrete-time system

yk+1 = S(yk, ε). (II.5.6)

II.5.2 Codimension-one Bifurcations

In what follows, ε ∈ R will be a real parameter. We will describe how the
generic codimension-one bifurcations for discrete-time maps present them-
selves on the parameter-dependent centre manifold of an impulsive differen-
tial equation.

1We should be precise; S might not be defined on the entirety of Rn × R
p. However,

under PC0 assumptions, it is at least defined on some open set containing (0, 0). This is
sufficient for applications.
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II.5.2.1 Fold Bifurcation

Suppose σ0 = {1} with multiplicity one. Then, (II.5.3)–(II.5.4) are scalar. By
Corollary II.2.6.1, we can chooseQc in the transformation (II.5.5) to be a real,
Floquet q-periodic matrix. Since Φc(t) = Q(t)etΛ has Λ = 1

q log(σc) = 0, this
further implies U1 = 0. As such, we may assume without loss of generality
that R1 = 0, R2 = 0 and U1 = 0, so that the dynamics on the parameter-
dependent centre manifold are

ẏ = U2ε+ f(t, y, ε), t /∈ Z (II.5.7)

Δy = gk(y, ε), t ∈ Z. (II.5.8)

The time q map takes the form

S(y, ε) = ∂yS(0, 0)y + ∂εS(0, 0)ε+
1

2
∂yyS(0, 0)y

2 + ∂yεS(0, 0)yε

+
1

2
∂εεS(0, 0)ε

2 +O(||(y, ε)||3).

This expansion requires PC3 smoothness of the impulsive differential equa-
tion. To determine the coefficients of this Taylor expansion, we will iteratively
apply Theorem II.1.2.1. If we denote φ(t; y, ε) the solution of (II.5.7)–(II.5.8)
satisfying φ(0; y, ε) = y, then φ(0; 0, 0) = 0, ∂yφ(0; 0, 0) = 1, all other partial
derivatives vanish at t = 0 and the partial derivatives

φξ1,ξ2 := ∂ξ1ξ2φ(t; 0, 0), ξ1, ξ2 ∈ {y, ε}
satisfy the impulsive differential equations

φ̇y = 0, t /∈ Z Δφy = 0, t = k ∈ Z

φ̇ε = U2, t /∈ Z, Δφε = 0, t = k ∈ Z

φ̇yy = fyyφ
2
y, t /∈ Z, Δφyy = gyyφ

2
y, t = k ∈ Z

φ̇yε = fyyφεφy + fyεφy, t /∈ Z, Δφyε = gyyφyφε + gyεφy, t = k ∈ Z

φ̇εε = fyyφ
2
ε + 2fyεφε + fεε, t /∈ Z, Δφεε = gyyφ

2
ε + 2gyεφε + gεε, t = k ∈ Z,

where fξ1ξ1(t) = ∂ξ1ξ2f(t, 0, 0) and gξ1ξ2(k) = ∂ξ1ξ2gk(0, 0) in the above
equations. Since U1 = 0, we can solve these equations very easily.

φy = 1, φε = tU2 φyy =

∫ t

0

fyy(s)ds+
∑

0<k≤t

gyy(k)

φyε =

∫ t

0

(fyy(s)sU2 + fyε(s))ds+
∑

0<k≤t

(gyy(k)kU2 + gyε(k))

φεε =

∫ t

0

(fyy(s)s
2U2

2 + 2fyε(s)sU2 + fεε(s))ds

+
∑

0<k≤t

(gyy(k)k
2U2

2 + 2gyε(k)kU2 + gεε(k)),



238 CHAPTER II.5. BIFURCATIONS

where in the above, empty summations are defined to be equal to zero. For
example, we define

∑
0<k≤0.9 sk = 0 because the interval (0, 0.9] contains no

integers. Since ∂ξ1ξ2S(0, 0) = φξ1ξ2(q), we can write the Taylor expansion of
the time q map (nearly) explicitly by

S(y, ε) = y + qU2ε+
1

2

[∫ q

0

fyy(s)ds+

c∑
k=1

gyy(k)

]
y2

+

[∫ q

0

(fyy(s)sU2 + fyε(s))ds+

q∑
k=1

(gyy(k)kU2 + gyε(k))

]
yε

+O(ε2 + ||(y, ε)||3).
(II.5.9)

The O(ε2) terms and the cubic terms above do not enter into the generic fold
bifurcation conditions, and we arrive at the following theorem.

Theorem II.5.2.1. Let (II.5.7)–(II.5.8) be PC2 with Dyf(t, 0, 0) = 0 and
Dygk(0, 0) = 0. Suppose a0 := qU2 �= 0 and a1 := 1

2

(∫ q
0
fyy(s)ds+∑q

k=1 gyy(k)) �= 0. Then, the discrete-time system (II.5.6) undergoes a
fold bifurcation at parameter ε = 0. More importantly, the impulsive system
(II.5.7)–(II.5.8) undergoes a fold bifurcation of periodic solutions (of period
q). There exists an interval [−δ, δ] such that for |ε| sufficiently small, the
following are true:

• If a0a1ε > 0, (II.5.3)–(II.5.4) have no periodic solutions (or fixed points)
in [−δ, δ].

• If ε = 0, [−δ, δ] contains exactly one periodic solution, the trivial solu-
tion y = 0, and this solution is unstable.

• If a0a1ε < 0, [−δ, δ] contains a pair of nontrivial periodic solutions (of
period q). These periodic solutions are

yε(t) = ±
√
−a0ε

a1
+O(ε).

The positive solution is stable (and asymptotically stable) if and only if
a1 < 0, and the negative solution is stable (and asymptotically stable)
if and only if a1 > 0.

Proof. The assertions concerning the existence of the periodic solutions follow
by the fold bifurcation theorem for maps; see Wiggins [151]. The stability
assertions are easy to check from (II.5.9). The only thing we need to verify
is the claimed asymptotic for the periodic solution. To accomplish this, first
suppose that a0a1 > 0. Introduce the change of parameter ρ =

√
−ε, defined

for ε < 0. In terms of the variable ε < 0, y0(ε) = ±
√
−εa0/a1 + O(ε) is the
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lowest order approximation of the pair of periodic points of the iterated map
derived from (II.5.9). Writing this in terms of ρ, we get

ỹ0(ρ) = ± ρ

√
a0
a1

+O(ρ2).

The periodic solutions are t �→ yε = φ(t; ỹ0(ρ),−ρ2). A first-order Taylor
expansion at ρ = 0 gives

yε(t) = φy(t; 0, 0)ỹ
′
0(0)ρ+O(ρ)2 = ±

√
a0
a1

ρ+O(ρ2) = ±
√
−a0
a1

+O(ε),

as claimed. The case where a0a1 < 0 is similar.

While not a codimension-one bifurcation in the strictest sense, we can
state the analogous transcritical and pitchfork bifurcation theorems. The
transcritical bifurcation theorem follows much the same lines as the previous
theorem, while the pitchfork result will require a higher-order expansion of
the time q map; see later Sect. II.5.2.2, where the differential equation for
the cubic term is provided (albeit for a slightly different system). In what
follows, we will be introducing a few quantities that will take the role of the
Taylor coefficients of the time q map. To aid with the understanding of these
theorems, the expansion of the time q map is assumed to take the form

S(y, ε) = y + a01ε+ a20y
2 + a11εy + a30y

3 + higher-order terms,

where the higher-order terms have no bearing on the transcritical or pitchfork
bifurcation conditions (i.e. ε2, mixed cubic terms not including y3, and all
higher-order terms).

Theorem II.5.2.2. Let (II.5.7)–(II.5.8) be PC2 with Dyf(t, 0, 0) = 0 and
Dygk(0, 0) = 0. Introduce the constants

a01 = qU2, a20 =
1

2

(∫ q

0

fyy(s)ds+

q∑
k=1

gyy(k)

)
,

a11 =

∫ q

0

(fyy(s)sU2 + fyε(s))ds+

q∑
k=1

(gyy(k)kU2 + gyε(k)).

If a01 = 0, a20 �= 0 and a11 �= 0, and f(t, 0, ε) = gk(0, ε) = 0 for |ε| suffi-
ciently small (i.e. y = 0 is a stationary, trivial solution), the discrete-time
system (II.5.6) undergoes a transcritical bifurcation at parameter ε = 0. More
importantly, the impulsive system (II.5.7)–(II.5.8) undergoes a transcritical
bifurcation of periodic solutions (of period q). There exists an interval [−δ, δ]
such that for |ε| sufficiently small, the following are true:

• If ε = 0, [−δ, δ] contains exactly one periodic solution, the trivial solu-
tion y = 0, and this solution is unstable.
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• If ε �= 0, [−δ, δ] contains exactly two periodic solutions: the trivial
solution y = 0 and a nontrivial periodic solution

yε(t) = −a11
a20

ε+O(ε2).

y = 0 is stable (and asymptotically stable) if and only if a11ε < 0. The
solution yε is stable (and asymptotically stable) if and only if a11ε > 0.

Theorem II.5.2.3. Let (II.5.7)–(II.5.8) be PC3 with Dyf(t, 0, 0) = 0 and
Dygk(0, 0) = 0. Introduce the constant

a30 =
1

6

∫ q

0

⎡
⎣fyyy(s) + 3fyy(s)

⎛
⎝∫ s

0

fyy(μ)dμ+
∑

0≤k<s

gyy(k)

⎞
⎠
⎤
⎦ ds

+
1

6

q∑
k=1

⎡
⎣gyyy(k) + 3gyy(k)

⎛
⎝∫ k

0

fyy(s)ds+

k−1∑
j=1

gyy(j)

⎞
⎠
⎤
⎦ .

Let a01, a20 and a11 be as defined in Theorem II.5.2.2. If a01 = 0, a20 = 0,
a11 �= 0, a30 �= 0 and f(t, 0, ε) = gk(0, ε) = 0 for |ε| sufficiently small (i.e.
y = 0 is a stationary, trivial solution), then the discrete-time system (II.5.6)
undergoes a pitchfork bifurcation at parameter ε = 0. More importantly, the
impulsive system (II.5.7)–(II.5.8) undergoes a pitchfork bifurcation of peri-
odic solutions (of period q). There exists an interval [−δ, δ] such that for |ε|
sufficiently small, the following are true:

• If ε = 0, [−δ, δ] contains exactly one periodic solution, the trivial solu-
tion y = 0 and this solution is stable (and asymptotically stable) if and
only if a30 < 0.

• If a11a30ε > 0, [−δ, δ] contains exactly one periodic solution, the trivial
solution y = 0 and this solution is stable (and asymptotically stable) if
and only if a11ε < 0.

• If a11a30ε < 0, [−δ, δ] contains exactly three periodic solutions: the
trivial solution y = 0 and a pair of periodic solutions

yε(t) = ±
√
−a11ε

a30
+O(ε).

The trivial solution y = 0 is stable (and asymptotically stable) if and
only if a11ε < 0, and the other two periodic solutions are stable (and
asymptotically stable) if and only if a11ε > 0.

Remark II.5.2.1. If one of the above bifurcations occurs and (II.5.7)–(II.5.8)
are the dynamics on the parameter-dependent centre manifold of a higher-
dimensional system (II.5.1)–(II.5.2), then the bifurcating periodic solutions
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persist in the higher-dimensional system, as does their local uniqueness. The
local stability properties of any such periodic solutions also transfer over to
the higher-dimensional system provided M0 has no eigenvalue with absolute
value greater than one—that is, the unstable subspace Xu is trivial when
ε = 0. This is a consequence of the reduction principle; see Sect. I.5.5.

II.5.2.2 Period-Doubling Bifurcation

Suppose σ0 = {−1} with multiplicity one. Then, the associated Floquet
exponent is iπ. As such, we cannot use a real Floquet q-periodic matrix
for the Qc part of the transformation (II.5.5) since one does not exist. We
will therefore need to use a chain matrix instead if we wish to maintain the
q-periodicity of the impulsive differential equation. We may without loss of
generality assume that (II.5.3)–(II.5.4) take the form

ẏ = f(t, y, ε), t /∈ Z (II.5.10)

Δy = R1(k)y +R2(k)ε+ gk(y, ε), t ∈ Z. (II.5.11)

That is, U1 = 0 and U2 = 0. Also, the above equation is scalar since Xc is
one-dimensional. Since the linear part at ε = 0 must have −1 as its Floquet
multiplier, the matrices R1 must satisfy

∏q
k=1(1 +R1(k)) = −1.

We will need to compute some terms of the Taylor expansion for the time
q map. Those needed for checking the conditions for the generic period-
doubling bifurcation can be computed by solving the impulsive differential
equations

φ̇y = 0, t /∈ Z Δφy = R1(k)φy, t = k ∈ Z

φ̇ε = 0, t /∈ Z, Δφε = R1(k)φε + R2(k), t = k ∈ Z

φ̇yy = fyyφ
2
y, t /∈ Z, Δφyy = R1(k)φyy + gyyφ

2
y, t = k ∈ Z

φ̇yε = fyyφεφy + fyεφy, t /∈ Z, Δφyε = R1(k)φyε + gyyφyφε + gyεφy, t = k ∈ Z

φ̇yyy = 3fyyφyφyy + fyyyφ
3
y, t /∈ Z, Δφεε = R1(k)φyyy + 3gyyφyφyy + gyyyφ

3
y, t = k ∈ Z,

satisfying φy(0) = 1, with all other initial conditions zero. Define the conve-
nience function

z(t) =
∏

0<k≤t

(1 +R1(k)).

When the interval (0, t] contains no integers k, the empty product is taken
to be equal to unity so that, for example, z(s) = 1 for s ∈ [0, 1). In terms of
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this convenience function, we can calculate

φy(t) = z(t), φε(t) = z(t)
∑

0<k≤t

R2(k)

z(k)

φyy(t) = z(t)

⎡
⎣∫ t

0

fyy(s)

z(s)
ds+

∑
0<k≤t

gyy(k)
z(k − 1)

1 +R1(k)

⎤
⎦ (II.5.12)

φyε(t)=z(t)

⎡
⎣∫ t

0

(
fyy(s)φε(s)+

fyε(s)

z(s)

)
ds+

∑
0<k≤t

(
gyy(k)

φε(k − 1)

1+R1(k)
+

gyε(k)

z(k)

)⎤⎦
(II.5.13)

φyyy(t) = z(t)

[∫ t

0

(3fyy(s)φyy(s) + fyyy(s)z(s)
2)ds

+
∑

0<k≤t

(
3gyy(k)

φyy(k
−)

1 +R1(k)
+ gyyy(k)

z(k − 1)3

z(k)

)
] (II.5.14)

The coefficients needed to check the conditions of a generic period-doubling
bifurcation are φy(q) = −1, φyy(q), φyε(q) and φyyy(q). This is because the
time q map has the expansion

S(y, ε) = −y + φyε(q)yε+
1

2
φyy(q)y

2 +
1

6
φyyy(q)y

3 + higher-order terms,

where the higher-order terms contain some quadratic and cubic terms as well
as fourth-order terms and above, all of which do not factor into the generic
period-doubling bifurcation conditions. The following theorem can be proven
using Theorem 4.3 of Kuznetsov [82] and similar arguments to the previous
section.

Theorem II.5.2.4. Let (II.5.10)–(II.5.11) be PC3 with Dyf(t, 0, 0) = 0 and
Dygk(0, 0) = 0. Suppose the following nondegeneracy conditions are satisfied:

• s := 1
2 (φyy(q))

2 + 1
3φyyy(q) �= 0;

• β := φyε(q) �= 0.

The discrete-time system (II.5.6) undergoes a period-doubling bifurcation at
parameter ε = 0. More importantly, the impulsive system (II.5.10)–(II.5.11)
undergoes a period-doubling bifurcation of periodic solutions. There exists an
interval [−δ, δ] such that for |ε| sufficiently small, the following are true:

• If sβε ≥ 0, [−δ, δ] contains exactly one periodic solution t �→ y0(t, ε) of
period q, satisfying y0(t, 0) = 0.

• If sβε < 0, [−δ, δ] contains exactly two periodic solutions of period 2q,
exactly one periodic solution y0(t; ε) of period q and no other periodic
solutions.
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• The q-periodic solution y0 is stable (and asymptotically stable) if and
only if βε > 0 or, if ε = 0, it is asymptotically stable provided s > 0.

• The 2q-periodic solutions are stable (and asymptotically stable) if and
only if βε < 0, provided they exist.

Remark II.5.2.2. If a period-doubling bifurcation occurs and (II.5.10)–
(II.5.11) are the dynamics on the parameter-dependent centre manifold of
a higher-dimensional system (II.5.1)–(II.5.2), then the bifurcating periodic
solutions of period q and 2q persist in the higher-dimensional system, as does
their local uniqueness. The local stability properties of any such periodic so-
lutions also transfer over to the higher-dimensional system provided M0 has
no eigenvalue with absolute value greater than one—that is, the unstable sub-
space Xu is trivial when ε = 0.

Special Case: q = 1

If there is one impulse per period, the constants s and β needed to check
the nondegeneracy conditions of the period-doubling bifurcation can be com-
puted more or less explicitly. They are

β = −
(∫ 1

0

fyε(s)ds+ gyε(1)

)
,

s =
1

2
(Fyy(1) + gyy(1))

2

− 1

3

(∫ 1

0

(3fyy(s)Fyy(s) + fyyy(s)) ds− 3gyy(1)Fyy(1)− gyyy(1)

)
,

where Fyy(t) =
∫ t
0
fyy(s)ds.

II.5.2.3 Cylinder Bifurcation

Suppose σ0 = {eiω, e−iω}, each with multiplicity one for ω ∈ (0, π). Then,
(II.5.3)–(II.5.4) are two-dimensional. By Corollary II.2.6.1, we can choose
Qc in the transformation (II.5.5) to be a real, Floquet q-periodic matrix. We
may therefore assume without loss of generality that R1 = 0 and R2 = 0.

To identify the matrix U1, let φ be any eigenvector of M0 such that M0φ =
eiωφ. Then, Φ(t) = U(t, 0)[  (φ) $(φ) ] is a basis matrix for Xc. It can be
shown to satisfy

Φ(q) = Φ(0)

[
cosω sinω
− sinω cosω

]
,

from which it follows that the Floquet decomposition Φ(t) = Q(t)etΛ has

Λ =
1

q

[
0 ω
−ω 0

]
. (II.5.15)
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Consequently, U1 = Λ. The dynamics on the parameter-dependent centre
manifold have the form

ẏ = Λy + U2ε+ f(t, y, ε), t /∈ Z

Δy = gk(y, ε), t ∈ Z.

We will show that we may assume without loss of generality that U2 = 0.
Since Λ is invertible, define the parameter-dependent change of variables

y = ỹ − Λ−1U2ε.

Then, ỹ satisfies

˙̃y = Λ(ỹ − Λ−1U2ε) + U2ε+ f(t, ỹ − Λ−1U2ε, ε) = Λỹ + f̃(t, ỹ, ε), t /∈ Z

Δỹ = gk(ỹ − Λ−1U2ε, ε) = g̃k(ỹ, ε), t ∈ Z.

Therefore, dropping the tildes, we may assume without loss of generality that
the dynamics on the parameter-dependent centre manifold take the form

ẏ = Λy + f(t, y, ε), t /∈ Z (II.5.16)

Δy = gk(y, ε), t ∈ Z, (II.5.17)

where f and g contain all terms of order 2 and above in y and ε.
Our goal is to determine conditions under which the time q map associated

to (II.5.16)–(II.5.17) undergoes a Neimark–Sacker bifurcation. To accomplish
this, we will first compute a third-order Taylor expansion of the time q map
fixed at ε = 0. Next, we will compute the partial derivative ∂εyS(0, 0). These
computations will grant a representation of the time q map as

S(y, ε) =

[
eqΛy +

1

2
B0[y, y] +

1

6
C0[y, y, y]

]

+ ∂εyS(0, 0)εy +O(ε(ε||y||+ ||y||2) + ||(ε, y)||4),

where B0 and C0 are symmetric multilinear maps. Note that there are
no O(ε) terms since f and gk satisfy ∂εf(t, 0, 0) = ∂εgk(0, 0) = 0. Since
∂yS(0, 0) = eqΛ does not have 1 as an eigenvalue, the implicit function
theorem implies the existence of a unique y∗ = y∗(ε) smooth such that
S(y∗(ε), ε) = y∗(ε) for |ε| sufficiently small. By implicit differentiation, one
can check that

dy∗

dε
(0) = −e−qΛ∂εS(0, 0) = 0. (II.5.18)

If we perform the change of variables y = ỹ+ y∗(ε), the time q map becomes

S̃(ỹ, ε) = S(ỹ + y∗(ε), ε)− S(y∗(ε), ε),
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which implies (after a bit of algebra) the expansion

S̃(ỹ, ε) = eqΛỹ+ ∂εyS(0, 0)εỹ+
1

2
B0[ỹ, ỹ] +

1

6
C0[ỹ, ỹ, ỹ] + higher-order terms,

where the higher-order terms include some mixed quadratic, cubic and terms
of order higher than four that will not be important. Importantly, we have
S̃(0, ε) = 0 for |ε| sufficiently small. The above expansion will be sufficient
in the verification of all nondegeneracy conditions for the Neimark–Sacker
bifurcation.

As in the previous section, denote

fyy(t) = D2
yf(t, 0, 0), fyyy(t) = D3

yf(t, 0, 0),

gyy(k) = D2
ygk(0, 0), gyyy(k) = D3

ygk(0, 0).

The second differentials are symmetric bilinear maps, and the third differ-
entials are symmetric trilinear maps. Denoting t �→ φ(t; y, ε) the solution of
(II.5.16)–(II.5.17) satisfying φ(0; y, ε) = 0, the first two partial derivatives in
the variable y at (y, ε) = (0, 0) satisfy the impulsive differential equations

φ̇y = Λφy, t /∈ Z Δφy = 0, t ∈ Z

φ̇yy = Λφyy + fyy[φy]
2, t /∈ Z, Δφyy = gyy[φy]

2, t ∈ Z,

with φy(0) = I, and all other initial conditions equal to zero. We have
used the shorthand B[x]2 = B[x, x] for bilinear maps B. It is clear that
the right-hand side of the equation for φyy is a symmetric bilinear map,
assuming φyy is itself bilinear. The third differential is slightly more difficult.
If one computes ∂yyφ(t; y, 0)[u,w] := ψ[u,w] at an arbitrary point y, then
the associated impulsive differential equation is

ψ̇[u,w] = Λψ[u,w] + fyy[φyu, φyw] + fyy[φ, ψ[u,w]]

+ fyyy[φyu, φyw, φ] +
1

2
fyyy[ψ[u,w], φ, φ], t /∈ Z

Δψ[u,w] = gyy[φyu, φyw] + gyy[φ, ψ[u,w]]

+ gyyy[φyu, φyw, φ] +
1

2
gyyy[ψ[u,w], φ, φ], t ∈ Z,

where φ = φ(t; y, 0). Then, if we take another y differential, evaluate at
y = 0 and apply the linear map to an element h, then φyyy[u,w, h] =
∂yyyφ(t; 0, 0)[u,w, h] satisfies

φ̇yyy [u,w, h] = Λφyyy [u,w, h] + fyy [φyy [u,w], φyh] + fyy [φyy [h, u], φyw]

+ fyy [φyy [w, h], φyu] + fyyy [φyu, φyw, φyh], t /∈ Z

Δφyyy [u,w, h] = gyy [φyy [u,w], φyh] + gyy [φyy [h, u], φyw] + gyy [φyy [w, h], φyu]

+ gyyy [φyu, φyw, φyh], t ∈ Z.

This is indeed consistent; if φyyy is symmetric, then so is the right-hand side
of the above impulsive differential equation. Suppressing the inputs (u,w, h)
can lead to some ambiguity, so we refrain from doing this.
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We can solve the impulsive differential equations directly. We get

φy(t) = etΛ, (II.5.19)

φyy(t)[u,w] = etΛ
∫ t

0

e−sΛfyy(s)[e
sΛu, esΛw]ds+ etΛ

∑
0<k≤t

e−kΛgyy(k)[e
kΛu, ekΛw],

(II.5.20)

φyyy(t)[u,w, h] = etΛ
∫ t

0

e−sΛ
(
fyy(s)[φyy(s)[u,w], esΛh] + fyy(s)[φyy(s)[h, u], e

sΛw]

+ fyy(s)[φyy(s)[w, h], esΛu] + fyyy(s)[e
sΛu, esΛw, esΛh]

)
ds

+etΛ
∑

0<k≤t

e−kΛ
(
gyy(k)[φyy(k

−)[u,w], ekΛh]+gyy(k)[φyy(k
−)[h, u], ekΛw]

+ gyy(k)[φyy(k
−)[w, h], ekΛu] + gyyy(k)[e

kΛu, ekΛw, ekΛh]
)
.

(II.5.21)

The expression for φyyy in its complete explicit form is quite large, so we will
be satisfied with the above expression in terms of φyy. Note that the above
three are indeed symmetric linear, bilinear and trilinear maps, respectively.
We therefore have

B0 = φyy(1), C0 = φyyy(1). (II.5.22)

Next, we need to calculate ∂yεS̃(0, 0). By the chain rule,

∂yεS̃(0, 0) = ∂yyS(0, 0)
dy∗

dε
(0) + ∂yεS(0, 0) = ∂yεS(0, 0),

where we have used (II.5.18). The partial derivative φyε satisfies φyε(0) = 0
and the impulsive differential equation

φ̇yε = Λφyε + fyεφy, t /∈ Z

Δφyε = gyεφy, t ∈ Z,

which has the solution

φyε(t) = etΛ
∫ t

0

e−sΛfyε(s)e
sΛds+ etΛ

q∑
k=1

e−kΛgyε(k)e
kΛ. (II.5.23)

To summarize, S̃ admits the Taylor expansion

S̃(ỹ, ε)=eqΛỹ+φyε(q)εỹ+
1

2
φyy(q)[ỹ, ỹ]+

1

3!
φyyy(q)[ỹ, ỹ, ỹ]+higher-order terms,

(II.5.24)

with the higher-order terms including mixed cubics and terms of order four
and above. We remind the reader that S̃(0, ε) = 0 for |ε| sufficiently small.
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The eigenvalues associated to the fixed point ỹ = 0 are the eigenvalues of the
matrix

m(ε) = eqΛ + φyε(q)ε.

The condition that the eigenvalues of m(ε) should cross the unit circle |z| = 1
transversally at ε = 0 is equivalent to the statement that their product γ(ε) =
det(m(ε)) satisfies p′(0) �= 0. This can be computed by Jacobi’s formula:

d

dε
p(0) = tr

(
adj(m(0))

d

dε
m(0)

)
= tr

(
e−qΛφyε(q)

)
,

Moreover, p′(0) quantifies whether the eigenvalues exit the unit circle (p′(0) >
0) or enter the unit circle (p′(0) < 0) as ε increases through zero. The
following theorem now follows by the generic Neimark–Sacker bifurcation
[82] and arguments analogous to those for Theorem I.8.4.1.

Theorem II.5.2.5. Suppose the following nondegeneracy conditions are met:

• eikω �= 1 for k = 1, 2, 3, 4;

• γ(0) := tr
(∫ q

0
e−sΛfyε(s)e

sΛds+
∑q

k=1 e
−kΛgyε(k)e

kΛ
)
�= 0;

• the first Lyapunov coefficient d(0) (see (I.8.40)) associated to the map
(II.5.24) is nonzero.

Then, the equilibrium point at the origin of the nonlinear impulsive delay dif-
ferential equation (II.5.16)–(II.5.17) undergoes a bifurcation to an invariant
cylinder (cylinder bifurcation) at the critical parameter ε = 0. Specifically,
for |ε| small, there is a unique periodic solution t �→ yε(t) that satisfies yε → 0
as ε → 0, in addition to a two-dimensional parameter-dependent invariant
fibre bundle Σε ⊂ S

1 × R
2 that exists for d(0)γ(0)ε < 0 and is periodic. The

t-fibre Σε(t) can be locally realized as

Σε(t) = σε(t) +O(ε),

where t �→ σε(t) ⊂ R
2 is periodic with its image of a curve of diameter O(

√
ε),

and continuous in the Hausdorff metric except at integer times, where it is
continuous from the right. Moreover,

• yε is asymptotically stable for γ(0)ε < 0, stable for ε = 0 and unstable
for γ(0)ε > 0, while Σε(t) is attracting for γ(0)ε > 0 provided d(0) < 0;

• yε is asymptotically stable for γ(0)ε < 0 and unstable for γ(0)ε ≥ 0,
while Σε(t) is unstable for γ(0)ε < 0 provided d(0) > 0.

Moreover, the assertions concerning the stability and existence of the periodic
orbit yε for ε �= 0 are true regardless of the third nondegeneracy condition.
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Remark II.5.2.3. If an invariant cylinder bifurcation occurs and (II.5.16)–
(II.5.17) are the dynamics on the parameter-dependent centre manifold of
a higher-dimensional system (II.5.1)–(II.5.2), then the bifurcating periodic
solution and the fibre bundle persist in the higher-dimensional system, as
does their local uniqueness. In the higher-dimensional system, the image of
the fibre bundle (as a periodic function R → R

n) is a topological cylinder.
The local stability properties transfer over to the higher-dimensional system
provided M0 has no eigenvalue with absolute value greater than one—that is,
the unstable subspace Xu is trivial when ε = 0.

II.5.3 Comments

The reduction to a discrete-time map to analyze bifurcations in a finite-
dimensional impulsive system seems to have been first completed by Lak-
meche and Arino [84] for a pulse chemotherapy model. Once the discrete-time
map has been approximated to a high enough degree, Lyapunov-Schmidt re-
duction is used to determine the bifurcation. Since then, this technique
has been used numerous times to study bifurcations in impulsive differential
equations; one needs to only glance at the hundreds of citations of the afore-
mentioned paper to find them. To name a few in chronological order, Lu,
Chi and Chen studied bifurcations in a susceptible–infected–removed (SIR)
model with pulsed vaccination [102], as well as control strategies in pesti-
cide models [103]. Jiang and Lu [76] study bifurcations in a state-feedback
controlled predator-prey model. Impulsive harvesting in a predator-prey sys-
tem and bifurcations were analyzed by Negi and Gakkhar [110]. Georgescu,
Zhang and Chen [49] analyzed bifurcations to nontrivial periodic solutions
in a pest management model. Bifurcations to nontrivial periodic solutions in
an infectious diseases model with media coverage and pulse vaccination were
considered by Li and Cui [86]. These articles all date prior to 2010 are some
of the most-cited papers in which bifurcations to nontrivial periodic solutions
in impulsive differential equations are explicitly proven using the reduction
to discrete time. There are several others, and the method continues to have
use today.

There are two ways the method described in the previous paragraph—
which, for brevity, we will refer to as the Lakmeche–Arino method— funda-
mentally differs from the one we have advocated for in this chapter. First,
we assume that the dynamics have already been reduced to the parameter-
dependent centre manifold. Second, and most importantly, we approximate
the period map restricted to the centre manifold and use the normal form the-
ory for discrete-time maps to detect the bifurcations. With the Lakmeche–
Arino method, one obtains an approximation (Taylor expansion) of the period
map in the original phase space first and then applies Lyapunov-Schmidt re-
duction to reduce the dimension. The differences are subtle, but important.
Since the Lakmeche–Arino method reduces the dimension of the map using
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Lyapunov-Schmidt reduction, more complicated structures such as invariant
cylinders cannot be detected. In particular, only bifurcations involving peri-
odic solutions can be detected. An alternative to both the Lakmeche–Arino
method and the one we have proposed in this chapter is to approximate the
period map and subsequently apply the centre manifold reduction for maps.
Church and Liu [30] provide a comparison between these two alternative
methods for a few specific models.

We wish to point out that although cylinder bifurcations have only ap-
peared in the literature in one publication to date [32] in an analytical con-
text, they have come up in numerical simulations. Shuai and Qingdao [128]
studied a three-species food-chain model with impulsive introduction of the
middle predator. They used Lakmeche and Arino’s method to prove the
existence of a nontrivial solution and followed up with some numerical sim-
ulations. Their simulations very clearly show an invariant cylinder but the
authors did not remark that this structure was the result of a particular
bifurcation. Specifically, this cylinder results from a Neimark–Sacker bifur-
cation in the period map centred at a nontrivial periodic solution. A bit less
verbose, it arises from a cylinder bifurcation.
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Chapter III.1

Continuous Approximation

In the theory of impulsive dynamical systems, impulses are often interpreted
as idealized discrete jumps associated with a process that is continuous in
time but occurs on a negligibly small time scale. The intuition is that one can
ignore the transient small-time intermediate dynamics and consider only the
change in state. It was demonstrated [38, Theorem 3.1] that under fairly mild
conditions, this intuition appears to be correct in a pointwise sense, at least
for linear systems. That is, under one formulation of an “approximating”
continuous ordinary differential equation, taking the associated time-scale
parameter to zero yields pointwise convergence to a given solution of the
impulsive differential equation.

This intuition breaks down in any neighbourhood of an equilibrium point
or periodic solution that has a Floquet multiplier on the unit circle. In this
case, it is perhaps surprising that the stability of a given equilibrium point
(or periodic orbit) in an impulsive system does not generally carry over to a
suitable class of “approximating” ordinary differential equations, regardless of
how small a time scale the impulse effect acts on. The interested reader may
consult [38, Section 3.4.2] or [36, Section 3.2.1] for two concrete examples.
Ultimately, the deficiency is due to a lack of hyperbolicity of the equilibrium
point.

This observation has implications for bifurcations in these systems. In-
deed, suppose a bifurcation is identified in a parameter-dependent system
of impulsive differential equations. If this dynamical system is a model for
a real-world process and an approximation to a continuous system with im-
pulse effect acting on a short but nonzero time scale, it would be important to
know that this bifurcation can be realized in reality, provided the time scale is
small enough. Despite being of fundamental importance to the rigorousness
of impulsive differential equations as mathematical models, this question of
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realizability of bifurcations has not yet been addressed. In this work, we will
refer to this question as the realization problem.

An important warning to readers of this chapter: herein, we will be us-
ing the convention that solutions of (finite-dimensional) ordinary impulsive
differential equations are continuous from the left. Our view is that at the
level of continuous approximation, the convention of left-continuity is more
physically appropriate—see Sect. III.1.1.5. This should not cause much dis-
comfort, however, since as we have previously demonstrated in Sect. II.1.3
the two solution conventions—left-continuous and right-continuous—are es-
sentially equivalent.

III.1.1 Introduction

We will be considering the situation of a bifurcation from the trivial equilib-
rium in the periodic impulsive differential equation

ẋ = f(t, x, α), t �= k ∈ Z (III.1.1)

Δx = g(t, x, α), t = k ∈ Z, (III.1.2)

with α ∈ R
m a parameter, f : R× R

n × R
m → R

n being sufficiently smooth
and periodic with integer period q ≥ 1 in its first argument, g : Z×R

n×R
m →

R
n being sufficiently smooth and satisfying g(k + q, ·, ·) = g(k, ·, ·) for all

k ∈ Z, and f(t, 0, 0) = g(k, 0, 0) = 0. Specifically, we assume that (III.1.1)
and (III.1.2) are PC� for some  ≥ 1 to be specified. However, in this context
the continuity requirement is reversed.

Definition III.1.1.1. (III.1.1) and (III.1.2) are PC� (in the left-continuity
sense) if

• Dm
(2,3)f(t, x, p) exist for m = 0, . . . , k, whenever (sn, xn, pn)→ (s, x, p),

the limit

lim
n→∞

Dm
(2,3)f(sn, xn, pn)

exists and, if sn is increasing, the limit is precisely Dfm
(2,3)f(s, x, p);

• gj and tj are Ck for all j ∈ Z.

We will also modify somewhat our definition of solution.

Definition III.1.1.2. A function x : [s, ω)→ R
n is a solution of (III.1.1)–

(III.1.2) with parameter α if it is continuous except at times t ∈ [s, ω)∩ {tk :
k ∈ Z} and satisfies the integral equation

x(t) =

{
x(s) +

∫ t
s f(s, x(s), α)ds+

∑
s<tk<t gk(x(tk), α), s /∈ {tj : j ∈ Z}

x(s) + gj(x(s)) +
∫ t
s f(s, x(s), α)ds+

∑
s<tk<t gk(x(tk), α), s = tj , t > s.
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Under the PC1 assumption, to any initial condition (s, x0) ∈ R × R
n,

there is a unique solution (in the above sense) x : [s, ω) → R
n satisfying

x(s) = x0, for each parameter α. See the related Theorem II.1.1.1 and
subsequent remark.

Remark III.1.1.1. In this chapter, we are taking the impulse times to be
the integers. There is actually no loss of generality in doing this, since we
can make an appropriate reparameterization of time. Suppose impulses occur
at times tk for k ∈ Z. Define a reparameterization of time as follows:

t =
{

tk + (τ − k)(tk+1 − tk), τ ∈ (k, k + 1], k ∈ Z

for rescaled time τ . Under this rescaling, t = tk if and only if τ = k. More-
over, τ �→ t is continuous, piecewise-linear and monotone increasing, so it
has an inverse with the same properties.

III.1.1.1 Singular Unfolding of an Impulsive Differential
Equation

If we wanted to maintain complete generality, we would address the realiza-
tion problem by considering the functional differential equation

ẏ = f(t, y, α) +G(t, yt, α, ε), (III.1.3)

where ε is a real positive parameter and G : R × C([−1, 0],Rn) × R
m × R

+

is characterized by the following properties that emphasize the idea that the
above system is a continuous version of (III.1.1)–(III.1.2):

• t �→ G(t, ·, ·, ·) is periodic with period q.

• The support of t �→ G(t, ·, ·, ε) is a subset of
⋃

k∈Z
[k − ε, k + ε].

• (φ, α) �→ G(t, φ, α, ε) is smooth.

• If t �→ y(t; ε) is any solution of (III.1.3) satisfying y(t0; ε) = x0 ∈ R
n

for all ε ∈ (0, 1) and some t0 ∈ I = Dom(y(·; ε)), and t �→ x(t) is the
solution of (III.1.1)–(III.1.2) satisfying x(t0) = y0, then for all integers
k ≥ t0 such that [k − ε, k + ε] ⊂ I,

lim
ε→0+

∫ k+ε

k−ε

G(s, ys(·; ε), α, ε)ds = g(k, x(k), α). (III.1.4)

The purpose of G is to serve as a continuous-time replacement for the jump
function g from (III.1.1)–(III.1.2). Taking ε as an unfolding parameter,
this will permit us to study the realization problem. By definition, ε �→
G(t, x, α, ε) must have a singularity at ε = 0, and for this and the previous
reasons, we will call G a singular unfolding of g. By abuse of notation, we
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will also say that the functional differential equation (III.1.3) is a singular
unfolding of (III.1.1)–(III.1.2).

To arrive at impulse extension equations [38], for example, one imposes
the further constraint that G satisfies

G(t, φ, α, ε) = 1S(ε)(t)ϕ(t, φ(�t	 − t), α, ε)∫ k+aj(ε)

k

ϕ(s, x, α, ε)ds = g(k, x, α),

with S(ε) = ∪k∈Z[k, k + ak(ε)) for ak(ε) ∈ (0, 1) a sequence of durations of
impulse effect satisfying ak(ε)→ 0 as ε→ 0+. In that formulation, solutions
are taken to be continuous from the left, so it is natural to pose that t �→
G(t, ·, ·, ε) has support in half-open intervals to the right of each impulse time.

To avoid complications associated with the infinite-dimensional phase space
C([−r, 0],Rn) and how the system behaves in the singular limit ε → 0+, we
will mostly focus our attention on a very simple (candidate) singular unfold-
ing:

ẏ = f(t, y, α) +
1

ε

∞∑
k=−∞

g(k, y(k), α)1[k,k+ε)(t). (III.1.5)

This is a specific impulse extension equation. The change in state due to
the impulse effect is approximated by a piecewise-constant perturbation to
the vector field, parameterized by the time-scale/unfolding parameter ε. It is
chosen because, as we will see, it is easy to verify the limit property of the sin-
gular unfolding (even in the nonlinear setting), and the resulting linearization
has nice spectral properties.

It should be remarked that one cannot generally replace y(k) in Eq. (III.1.5)
with y(t). The resulting system would generally fail the limit condition of the
singular unfolding, as can be demonstrated by way of scalar linear examples.
In this sense, (III.1.5) may very well be the simplest general case singular
unfolding that can be studied.

There are several equivalent ways of interpreting the dynamical system
associated with (III.1.5). For each ε > 0, it defines a differential equation
with discontinuous right-hand side and piecewise-constant arguments. In-
deed, one can write y(k) = y(t− tk(t)) for tk(t) = t− k for t ∈ [k, k + 1), so
(III.1.5) is in fact a differential-difference equation with discontinuous right-
hand side. Alternatively, one can multiply both sides by ε and view (III.1.5)
as a singularly perturbed system

εẏ = εf(t, y, α) +

∞∑
k=−∞

g(k, y(k), α)1[k,k+ε)(t),

with intermittent periods of fast–slow dynamics in the intervals [k, k+ ε) and
[k + ε, k + 1), respectively.
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III.1.1.2 Preliminaries

Our first task will be to prove that solutions of singular unfoldings (III.1.3)
converge pointwise to those of the impulsive system (III.1.1)–(III.1.2) as the
unfolding parameter is taken to zero. This has been proven for unfoldings
that coincide with impulse extensions [38], but only for linear systems. This
is the subject of Sect. III.1.2. Such an analysis is necessary to support our
claim that a singular unfolding of an impulsive differential equation really
is a continuous approximation. Following this, we show that the candidate
(III.1.5) truly is a singular unfolding of the impulsive differential equation,
as claimed.

III.1.1.3 Time q Map

After having proven the pointwise convergence of solutions, we will begin
to address the realization problem with respect to the simple (candidate)
piecewise-constant unfolding from (III.1.5). We will define the time q map
P : Rn × R

m × R
+ → R

n that maps an initial condition x0 ∈ R
n, system

parameter α ∈ R
m and unfolding parameter ε ∈ R

+ at time t0 = 0 to its state
at time q, where q is the period of the impulsive system (III.1.1)–(III.1.2).
When ε > 0, the evolution is governed by the singular unfolding (III.1.5),
while if ε = 0, it is the impulsive differential equation (III.1.1)–(III.1.2). We
will study the smoothness of this map. In particular, we will prove that
this map is at the very least C3. This level of smoothness is sufficient for
most typical applications. For instance, the normal form coefficients of all
codimension-one bifurcations for iterated maps are determined by the cubic
order terms and below. As for codimension-two, C3 smoothness is sufficient
for the analysis of cusp points, fold–flip points as well as strong resonances
at Neimark–Sacker points.

III.1.1.4 The Realization Problem

With the conclusion that the time p map is C3 smooth, we can apply the
results of bifurcation theory to this map under the condition that the lin-
earization of x �→ P (x, 0, 0) at the fixed point x = 0. If the fixed point is
hyperbolic, we have unique persistence of the fixed point for ε > 0 and |α|
sufficiently small from the implicit function theorem. If it is nonhyperbolic,
there is generically a bifurcation curve along which the bifurcation of the
impulsive system persists for ε > 0 small. We study this by way of a few
examples.
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III.1.1.5 A Brief Discussion on the Continuity Conven-
tion

Consider the following “left-sided” functional singular unfolding for a scalar,
linear impulsive differential equation:

ẋ = ax(t) +
∞∑

k=−∞
1[k−ε,k](t)b(t, ε)xt. (III.1.6)

If x(t; ε) : [s − r, ω) → R is a solution through a fixed initial condition
(s, x0) ∈ R × RCR with parameter ε, then the limit x(t; 0+) upon taking
ε → 0+ will be an element of RCR([s − r, ω),R) provided the functional
b(t, ε) is regular enough to guarantee local existence and uniqueness of so-
lutions for RCR initial data. As such, this form of a singular unfolding is
suitable for the investigation of solutions in the right-continuous formalism
for impulsive differential equations. However, the support of the forcing term
on the right-hand side of (III.1.6) being to the left of the “impulse times”
k ∈ Z is somewhat at odds with how such models are typically presented.
In the formulation of such impulsive models, the impulse effect is usually
introduced as follows:

There exists a sequence of times tk at which event Xk occurs. These
events occur on a time scale that is very small relative to the distance
Δtk = tk+1 − tk between events. As such, these events are modelled
as occurring instantaneously.

The question to ask is then, for the real-world process that this model should
approximate, does the event Xk start at time tk or end at time tk? In the
latter, we have a singular unfolding that looks like (III.1.6), and taking the
unfolding parameter to zero imposes a right-continuous solution to the impul-
sive differential equation. For the former, we get a left-continuous solution.
It is our stance that the former interpretation is more reasonable. This ra-
tionale comes from the heuristic observation that the phrase event Xk occurs
at time tk is nearly synonymous with the phrase event Xk starts at time tk.
There is of course some ambiguity if the description of event Xk involves some
sort of temporal dependence, but for more coarse events that are equivalent
to something of the form

Xk = change state A(k) into state B(k),

there is no such implied temporal dependence. For these reasons, we will be
employing the left-continuity formalism for solutions of impulsive differential
equations in this chapter.
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III.1.2 Pointwise Convergence and the
Candidate Unfolding

In this section we justify our earlier claim that a singular unfolding provides
a continuous approximation of an impulsive differential equation. Following
this, we prove that (III.1.5) is indeed a singular unfolding.

Proposition III.1.2.1. Let x0 ∈ R
n. Let (III.1.1)–(III.1.2) be PC1. Let

y(t; ε) be any solution of the singular unfolding (III.1.3) satisfying the initial
condition y(t0; ε) = x0 for ε ∈ (0, ε0). Let x(t) be the unique solution of
the impulsive differential equation (III.1.1)–(III.1.2) satisfying x(t0) = x0.
Let these solutions be defined on a maximal right-sided interval of existence
I = [t0, β) ⊂ R. For all t ∈ I, we have limε→0+ y(t; ε) = x(t).

Proof. The proof is by strong induction. If I ∩ Z = ∅, then the result holds
trivially. If I ∩Z = {k}, then the limit is trivially true for t ∈ [t0, k]. For any
μ ≥ 0 such that k + μ ∈ I and ε > 0 sufficiently small,

y(k + μ+ ε; ε)− x(k + μ+ ε) =

∫ k+μ+ε

k

[
f(s, y(s; ε))− f(s, x(s))]ds

+

∫ k+ε

k−ε

[
G(s, ys(·; ε), ε)−

1

2ε
g(k, x(k))

]
ds,

and we have suppressed the dependence on α. The condition on the maximal
interval implies ε �→ y(t; ε) is uniformly bounded on [t0, k]. Taking this into
account with the smoothness of f and the limit property (III.1.4) of the
singular unfolding, it follows that we can take ε → 0+ uniformly in μ. The
result is the equation

y(k + μ; 0+)− x(k + μ) =

∫ k+μ

k

[
f(s, y(s; 0+))− f(s, x(s))

]
ds.

The smoothness conditions on f and boundedness of ε �→ y(t; ε) together
with the above characterization imply that μ �→ y(k + μ; 0+) is continuous.
Defining the difference h(μ) = y(k+μ; 0+)−x(k+μ), it follows that for some
local Lipschitz constant L > 0,

|h(μ)| ≤ L

∫ μ

0

|h(s)|ds,

and applying Gronwall’s inequality, it follows that h = 0. We conclude that
limε→0+ y(t; ε) = x(t) for all t ∈ I. Suppose now that I ∩ Z = {k1, . . . , kj}.
Taking the intersection I1 = I ∩ (−∞, k2), it follows from the base case that
the limit relation holds on I1. Taking the induction hypothesis that the limit
relation holds for some I� = I∩(−∞, k�+1), one can prove in a similar manner
that the limit relation holds on I�+1, and it follows that the result holds true
for I ∩ Z = {k1, . . . , kj} for any j finite. The infinite case follows easily.
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Proposition III.1.2.2. Let (III.1.1)–(III.1.2) be PC1. Then, (III.1.5) is a
singular unfolding.

Proof. Similarly to Proposition III.1.2.1, we prove the result by induction.
The first nontrivial case is when I ∩ Z = {k} is nonempty. We have

∫ k+ε

k−ε

G(k, ys(·; ε), ε))ds =

∫ k+ε

k

1

ε
g(k, y(k; ε))ds

= g(k, y(k; ε)) = g(k, x(k)),

as required. By Proposition III.1.2.1, it follows that y(t; ε) → x(t) for all
t ∈ I. Take as an inductive hypothesis that for some j ≥ 1, (III.1.4) holds for
the integers {k1, . . . , kj} = I ∩ (−∞, kj ]∩Z and that [kj+1 − ε, kj+1 + ε] ⊂ I
for all ε sufficiently small. By Proposition III.1.2.1, the limit y(t; ε) → x(t)
holds for all t ∈ I ∩ (−∞, kj+1]. Then,

∫ kj+1+ε

kj+1−ε

G(kj+1, ys(·; ε), ε)ds =

∫ kj+1+ε

kj+1

1

ε
g(kj+1, y(kj+1); ε))ds

= g(kj+1, y(kj+1; ε)).

From the continuity of g, it follows that the above approaches g(kj+1, x(kj+1))
as ε→ 0. The result follows by induction.

III.1.3 Smoothness of the Time q Map

Throughout this section, we will assume that (III.1.1)–(III.1.2) be PC� for
some  ≥ 1. To define the time q map for unfolding parameter ε, it is useful
to first denote t �→ Φ(t, s, x0, α) ≡ Ψ(t, s, α)x0 the solution of the ordinary
differential equation ẋ = f(t, x, α) satisfying the initial condition x(s) = x0.
Also, let Ψ(t, k, x0, α, ε) ≡ Ψ(t, k, α, ε)x0 denote the solution of the singular
unfolding (III.1.5) satisfying the initial condition y(k) = x0 for k ∈ Z. Finally,
define the switching functions Sk : Rn × R

m × R
+ → R

n by

Sk(x, α, ε) ≡ Sk(α, ε)x = χ(0,1)(ε)Ψ(k + ε, k, α, ε)x+ χ{0}(ε)(x+ g(k, x, α)).

We can succinctly write the time q map as follows:

P (x, α, ε) =

(
q−1∏
k=0

Φ(k + 1, k + ε, α)Sk(α, ε)

)
x, (III.1.7)

where the product denotes composition from right to left:

q−1∏
k=0

Ak = Aq−1 ◦ · · · ◦A0.
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Because of the PC� assumption, the C� smoothness of the time q map is
equivalent to that of the switching functions Sk(·, ·) for k = 0, . . . , q − 1.

At this stage, we will suppress all dependence on the parameter α. There
is no loss of generality in doing so because one can always use the typical trick
of expanding the state space to R

n × R
m � (x, α). With this in mind, the

switching functions admit the following integral representation, which will be
helpful later:

Sk(x, ε) = x+ g(k, x) + χ(0,1)(ε)

∫ k+ε

k

f(s,Ψ(s, k, ε)x)ds. (III.1.8)

The first result we need is a proposition concerning uniform bounds on the
solution of the singular unfolding and its Fréchet derivatives in a neighbour-
hood of x = 0.

Proposition III.1.3.1. There exist positive constants C, δ and ρ such that
for |x| < δ and ε < ρ, one has, for j = 0, . . . , ,

||DjΨ(t, k, x, ε)|| ≤ C, t ∈ [k, k + ε]. (III.1.9)

Proof. We proceed by strong induction on j. For j = 0, we first show that
t �→ Ψ(t, k, x, ε) is a fixed point of the nonlinear operator F0 : Xδ

ε,0 → Xδ
ε,0

with datum

F0φ(t) = x+
1

ε

∫ t

k

g(k, x)ds+

∫ t

k

f(s, φ(s))ds

Xδ
0,ε =

{
φ ∈ C([k, k + ε],Rn × R

m) :

∣∣∣∣φ(t)− x− t− k

ε
g(k, x)

∣∣∣∣ < δ

}
,

for appropriately chosen δ. To accomplish this, let η(δ) > 0 be small enough
so that for |x| < η(δ), we have |x|+ |g(k, x)| < δ. It follows that if φ ∈ Xδ

0,ε

and |x| < η(δ), then ||φ|| ≤ 2δ. If we denote by Lμ a uniform (in t) Lipschitz
constant for f(t, ·) on the ball Bμ(0) in R

n × R
m, one can check that F0 is

well-defined and, similarly, a contraction provided ε < 1/(2L2δ). It follows
that supt∈[k,k+ε] |Ψ| ≤ 2δ provided |x| < η(δ) and ε < 1/(2L2δ).

For j = 1, we define the nonlinear operator F1 : Xε
δ,1 → Xε

δ,1 with

F1φ(t) = I +
1

ε

∫ t

k

Dg(x, k)ds+

∫ t

s

Df(s,Ψ(s))φ(s)ds

Xε
δ,1 =

{
φ ∈ C([k, k+ ε],L(Rn×R

m,Rn)) :

∣∣∣∣φ(t)−I− t− k

ε
Dg(k, x)

∣∣∣∣ <δ

}
.

DΨ(t) is fixed point of F1, which is well-defined and a contraction provided

ε <
1

2L1
2δ+1(2δ + 1)

,
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where L1
μ is the uniform Lipschitz constant for Df(t, ·, ·) on Bμ(0). In this

case, supt∈[k,k+ε] |DΨ(t)| ≤ 2δ + 1 provided |x| < η1(δ), where the latter is
small enough to guarantee that ||Dg(k, x)|| ≤ δ for |x| < η1(δ).

Suppose the conclusion holds for some j ≥ 1. φ(t) = Dj+1
x Ψ(t, k, x, ε)

satisfies the fixed-point equation

φ(t) =

∫ t

k

DDj [f(s,Ψ(s)]ds+
1

ε

∫ t

k

Dj+1g(k, x)ds.

From the chain rule and the induction hypothesis, it follows that the above
can be written in the form

φ(t) =

∫ t

k

([Df(s,Ψ(s))]φ(s) +R(s)) ds+
t− k

ε
Dj+1

x g(k, x),

where R(s) is a term that is uniformly bounded on [k, k + ε] for all |x| < η,
for all ε sufficiently small, and contains all terms DrΨ(s) for r ≤ j. A similar
fixed-point setup to before then yields the desired result.

We begin by proving the continuity of the switching functions before mov-
ing onto smoothness. For brevity, let us denote

Ω+ = R
n × (0, 1), Ω0 = R

n × {0}, Ω = Ω+ ∪ Ω0.

For a function F : Ω → R
n and U ⊂ Ω, we will say that F is C� on U

if it is C� on U ∩ Ω+ and it is  times Gateaux differentiable on U in the
direction (x, ε) for all x ∈ R

n and ε > 0. This effectively means that along the
boundary Ω0, derivatives from the right with respect to ε are well-defined,
continuous and commute with derivatives in x for all mixed order up to .

Lemma III.1.3.1. The switching functions are continuous in a neighbour-
hood of 0 ∈ Ω.

Proof. The switching functions are clearly continuous on each of Ω+ and Ω0.
So, let (y, 0) ∈ Ω. Without loss of generality, assume ε �= 0. Then, using
Proposition III.1.3.1, we can get the estimate

|Sk(0)y − Sk(ε)x| ≤ |y + g(k, y)− (x+ g(k, x))|+ εCLC

for some C > 0, provided ε < ρ and |x| < δ, where LC is the uniform
Lipschitz constant for f(t, ·) on the ball BC(0) ⊂ R

n. Continuity follows
upon taking (x, ε)→ (y, 0).

Lemma III.1.3.2. The switching functions are continuously differentiable
in a neighbourhood of 0 ∈ Ω.

Proof. We will prove that the partial derivativesDxSk andDεSk exist and are
continuous in a neighbourhood of 0 ∈ Ω. For the latter, we will rather prove
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the sufficient condition that DεSk is continuous on Ω+ and can be uniquely
extended to the boundary Ω0 provided |x| is small enough. Beginning with
DSk, one can verify from the j = 1 case of the proof of Proposition III.1.3.1
and Eq. (III.1.8) that we can write the derivative as

DxSk = I +Dg + χ(0,1)(ε)

∫ k+ε

k

Df(s,Ψ)DΨds, (III.1.10)

for any (x, ε), where we have suppressed several function inputs in Ψ and
g. By Proposition III.1.3.1, the integrand is uniformly bounded for |x| suffi-
ciently small, and it follows that (x, ε) �→ DSk(x, ε) is continuous in a neigh-
bourhood of 0 ∈ Ω.

Next, we note that for (x, ε) ∈ Ω+, we have

DεSk(x, ε) = f(k + ε,Ψ(k + ε, k, x, ε)) +

∫ k+ε

k

Df(s,Ψ)DεΨ(s, k, x, ε)ds,

(III.1.11)

where u(s) = u(s, k, x, ε) = DεΨ(s, k, x, ε) is the solution of the initial-value
problem

u̇ = Df(t,Ψ(t, k, x, ε))u(t)− 1

ε2
g(k, x), t ∈ [k, k + ε], u(k) = 0.

From this, it follows that DεSk is continuous on Ω+. To deal with the limits
on the boundary, we will first study the limiting behaviour of f(k+ ε,Ψ(k+
ε, k, x, ε) near ε = 0. From the regularity assumptions on f and the functional
form of Ψ(k + ε, k, x, ε) = Sk(x, ε), we can write

f(k + ε,Ψ(k + ε, k, x, ε))

= f(k+, x+ g(k, x)) + f ′(k+, x+ g(k, x))ε

+Df(k+, x+ g(k, x))

∫ k+ε

k

f(s,Ψ(s, k, x, ε))ds+O(||(x, ε)||2).

(III.1.12)

As f(s,Ψ) is uniformly bounded for |x| small enough, (III.1.12) converges to
f(k+, x+ g(k, x)) as ε→ 0.

Working with the integral term in (III.1.11) is a bit more subtle. First,
we need to compute DεΨ explicitly. y(s) = DεΨ(s, k, x, ε) for s ∈ [k, k + ε]
satisfies the integral equation

y(s) =

∫ s

k

Df(s,Ψ)y(s)− 1

ε2
g(k, x)ds,

which implies the solution

DεΨ(s, k, x, ε) = − 1

ε2

∫ s

k

X(s, μ;x, ε)g(k, x)dμ, (III.1.13)

X(s, μ;x, ε) = I +

∫ s

μ

Df(r,Ψ(r, k, x, ε))X(r, μ;x, ε)dr. (III.1.14)
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Using these expressions and Proposition III.1.3.1, for |x| small enough, we
can write∫ k+ε

k

Df(s,Ψ)DεΨds

= − 1

ε2

∫ k+ε

k

Df(s,Ψ)

[
(s− k)I +

∫ s

k

∫ s

μ

Df(r,Ψ)drdμ

]
gds+O(ε2),

(III.1.15)

where the O(ε2) remainder terms are uniform with respect to |x| small
enough. Next we exploit the regularity of f to get the expansion

Df(s,Ψ) = Df

(
s, x+

s− k

ε
g

)
+D2f

(
s, x+

s− k

ε
g

)[∫ s

k

f(r,Ψ)dr, I

]
+O(ε2).

Note that the O(ε2) terms come from the squared norm of
∫ s
k
f(r,Ψ)dr =

O(ε). Next, with ε small enough and s ∈ [k, k+ ε], we can go one step further
to get

Df(s,Ψ) = Df

(
k+, x+

s− k

ε
g

)
+ (s− k)Df ′

(
k+, x+

s− k

ε
g

)

+D2f

(
k+, x+

s− k

ε
g

)[∫ s

k

f(r,Ψ)dr, I

]
+O(ε2).

Substituting into (III.1.15) and performing a few change of variables, we
ultimately end up with

∫ k+ε

k
Df(s,Ψ)DεΨds

= −ε

∫ 1

0
vD2f(k+, x+ vg)

[∫ v

0
f(k+, x+ ug)du, g

]
dv −

∫ 1

0
Df(k+, x+ vg)vgdv

− ε

∫ 1

0

(
1

2
v2Df(k+, x+ vg)g + v2Df ′(k+, x+ vg)

)
gdv +O(ε2).

(III.1.16)

From these observations, we conclude that for any (xn, εn) ∈ Ω+ with (xn, εn)
→ (x, 0) ∈ Ω0 and |x| sufficiently small, the limit limn→∞ DεSk(xn, εn) :=
DεSk(x, 0) exists and depends only on (x, 0).

Lemma III.1.3.3. Let (III.1.1)–(III.1.2) be PC� for  ≥ 2. The switching
functions are C2 in a neighbourhood of 0 ∈ Ω.

Proof. We proceed in a similar manner to the proof of C1 smoothness. First,
it is easily verified that D2Sk exists and is equal to

D2Sk(x, ε)=D2g(x)+χ(0,1)(ε)

∫ k+ε

k

D2f(s,Ψ)[DΨ, DΨ]+Df(s,Ψ)D2Ψds.

(III.1.17)
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Similarly to C1 smoothness, the above is continuous in a neighbourhood of
0 ∈ Ω. For the partial derivatives in ε, we can start from (III.1.11) to verify
that DxDεSk(x, ε) exists and is continuous for (x, ε) ∈ Ω+. Then, we use the
results from (III.1.12) and (III.1.16)

DxDεSk = Df(k+, x+ g)[I +Dg] +Df ′(k+, x+ g)[I +Dg]

−
∫ 1

0

(D2f(k+, x+ vg)[I + vDg, vg] +Df(k+, x+ vg)vDg)dv +O(ε),

(III.1.18)

for |x| small enough, which implies that the limit DxDεSk(xn, εn)→ DxDεSk

(x, 0) exists as (xn, εn)→ (x, 0) and depends only on the argument x. Since
one can easily check that DεDxSk(x, ε) = DxDεSk(x, ε) for (x, ε) ∈ Ω+,
the other mixed partial derivative is similarly continuous on Ω and coincides
with the first. As for D2

εSk(x, ε), it is continuous for (x, ε) ∈ Ω+ as can
be inferred from (III.1.11). Near the boundary Ω0, one may use (III.1.12)
and (III.1.16) to show that limn→∞ D2

εSk(xn, εn) := D2
εSk(x, 0) exists for

Ω+ � (xn, εn)→ (x, 0) and depends only on x sufficiently small.

Theorem III.1.3.1. Let (III.1.1)–(III.1.2) be PC� for  ≥ 3. The switch-
ing functions are C3 in a neighbourhood of 0 ∈ Ω. The third-order Taylor
polynomial of Sk at 0 ∈ Ω is

Sk(x, ε) = (I +Dg)x+
1

2
D2g[x, x] +

1

6
D3g[x, x, x] + εDf ·

(
I +

1

2
Dg

)
x

+
1

2
ε

(
D2f [I, I +Dg] +

1

3
D2f [Dg,Dg] +

1

2
DfD2g

)
[x, x]

+
1

2
ε2
(
Df ·Df ·

(
I +

1

3
Dg

)
+Df ′ ·

(
I +

2

3
Dg

))
x,

where all function evaluations involving f are at (k+, 0), and those involving
g are at (k, 0).

Proof. The C2 case was proven in Lemma III.1.3.3. The proof of C3 smooth-
ness is similar and omitted. We will, however, provide a fair bit of detail to
demonstrate the computation of the cubic order terms. The first three terms
come from the expansion of x �→ x + g(k, x). For the order ε term, we can
directly use Lemma III.1.3.2. Since f ′(·, 0) = f(·, 0) = g(·, 0) = 0, this term
vanishes. The same is true of the second-order term ε2. For the mixed term
εx, evaluating (III.1.18) at (x, ε) = (0, 0) gives us the derivative

DεDxSk(0, 0) = Df · (I +Dg)−
∫ 1

0

Df · vDgdv = Df

(
I +

1

2
Dg

)
,

which is equivalent to the term in the Taylor polynomial.
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The cubic term ε3 is obtained from D3
εSk(0, 0). Starting from (III.1.11),

taking two derivatives in ε and limits yields

D3
εSk(0, 0)

= f ′′ + 2Df ′DεSk +D2f [DεSk, SεSk] +Df ′DεΨ(k, k, 0, 0)

+D2f [DεSk, DεΨ(k, k, 0, 0)] +Df · lim
s→0+

d

ds
DεΨ(k + s, k, 0, s)

+D2f [DεΨ(k, k, 0, 0), DεΨ(k, k, 0, 0)] +Df ·DεΨ(k, k, 0, 0)

+ lim
t→0+

∫ k+t

k

D3f(s, 0)[DεΨ, DεΨ, DεΨ] + 3D2f(s, 0)[DεΨ, D2
εΨ] +Df(s, 0)D3

εΨds,

where DεΨ(s, k, x, ε) is defined in Eq. (III.1.13). Taking note that Dε(s, k, 0,
ε) = 0, many terms vanish. Also, one can similarly check thatDj

εΨ(s, k, 0, ε) =
0 for any j ≥ 1. Since f ′′(·, 0) = 0 and DεSk(0, 0) = 0, we conclude
D3

εSk(0, 0) = 0.
In a similar way, we can formally write down the mixed partial derivative

D2
xDεSk(0, 0) as

D2
xDεSk(0, 0) = D2f [I +Dg, I +Dg] +Df ·D2g

+ lim
ε→0+

(∫ k+ε

k

D2f(s, 0)[DxΨ, DxΨ, DεΨ]ds

+

∫ k+ε

k

D2f(s, 0)[D2
xΨ, DεΨ] + 2D2f(s, 0)[DxΨ, DxDεΨ]ds

+

∫ k+ε

k

Df(s, 0)D2
xDεΨds

)
.

Again, many terms vanish, and we are left with

D2
xDεSk(0, 0) = D2f [I +Dg, I +Dg] +Df ·D2g

+ lim
ε→0+

∫ k+ε

k

2D2f(s, 0)[DxΨ, DxDεΨ] +Df(s, 0)D2
xDεΨds.

(III.1.19)

We need to express each of DxΨ, DxDεΨ and D2
xDεΨ in terms of the func-

tions f and g. With x = 0, these functions satisfy for t ∈ [k, k+ε] the integral
equations

DxΨ(t) = I +

∫ t

k
Df(s, 0)DxΨ(s) +

1

ε
Dg(k, 0)ds,

DxDεΨ(t) =

∫ t

k

(
Df(s, 0)DxDεΨ(s)− 1

ε2
Dg(k, 0)

)
ds,

D2
xDεΨ(t) =

∫ t

k

(
2D2f(s, 0)[DxΨ, DxDεΨ] +Df(s, 0)D2

xDεΨ(s)− 1

ε2
D2g(k, 0)

)
ds.
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In terms of the function X(s, μ) = X(s, μ, 0, ε) = X(s, μ, 0, 0) from (III.1.14),
they can be written as

DxΨ(t) = X(t, k)

[
I +

∫ t

k

X(t, s)Dg(k, 0)
1

ε
ds

]
,

DxDεΨ(t) = − 1

ε2

∫ t

k

X(t, s)Dg(k, 0)ds,

D2
xDεΨ(t) =

∫ t

k

2D2f(s, 0)

[
X(s, k) +

∫ s

k

X(s, μ)Dg(k, 0)
1

ε
dμ ,

− 1

ε2

∫ s

k

X(t, μ)Dg(k, 0)dμ

]
ds

− 1

ε2

∫ t

k

X(t, s)D2g(k, 0)ds.

The integral
∫ k+ε

k
2D2f(s, 0)[DxΨ, DxDεΨ]ds can then be written as

− 2

ε2

∫ k+ε

k
D2f(s, 0)

[
X(s, k) +

1

ε

∫ s

k
X(s, μ)Dg(k, 0)dμ,

∫ s

k
X(s, μ)Dg(k, 0)dμ

]
ds

=− 2

ε2

∫ k+ε

k

(
D2f(s, 0)

[
I +

s− k

ε
Dg(k, 0), (s− k)Dg(k, 0)

]
+O(ε2)

)
ds

=− 2

ε2

∫ k+ε

k
(s− k)D2f(k+, 0)[I,Dg(k, 0)]

+
(s− k)2

ε
D2f(k+, 0)[Dg(k, 0), Dg(k, 0)]ds+O(ε)

=−D2f(k+, 0)[I,Dg(k, 0)]− 2

3
D2f(k+, 0)[Dg(k, 0), Dg(k, 0)] +O(ε).

Similarly, we can compute the integral
∫ k+ε

k
Df(s, 0)D2

xDεΨds by estimating
it as ∫ k+ε

k

Df(s, 0)D2
xDεΨds

=

∫ k+ε

k

Df(s, 0)

∫ s

k

X(s, t)

[
O

(
1

ε

)
− 1

ε2
D2g(k, 0)

]
dtds

= −
∫ k+ε

k

Df(s, 0)
s− k

ε2
D2g(k, 0)ds+O(ε)

= −1

2
Df(k+, 0)D2g(k, 0) +O(ε).

Collecting the above results and substituting into (III.1.19), it follows that

D2
xDεSk(0, 0) = D2f [I +Dg, I +Dg] +Df ·D2g −D2f [I,Dg]

− 2

3
D2f [Dg,Dg]− 1

2
Df ·D2g

= D2f [I, I +Dg] +
1

3
D2f [Dg,Dg] +

1

2
DfD2g,
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as claimed by the Taylor polynomial.
The last thing to check is the ε2x coefficient. After taking into account

the vanishing terms in the same way as for the previous coefficients, we are
left with

DxD
2
εSk(0, 0) = lim

ε→0+
R(ε) +Df ′ · (I +Dg) +Df ·DxDεSk(0, 0),

R(ε):=Df(k + ε, 0)DxDεΨ(k+ε, k, 0, ε)+

∫ k+ε

k

Df(s,Ψ)DxD
2
εΨds.

We know that DxDεSk(0, 0) = Df(I + 1
2Dg). As for the terms inside the

limit, they can be written more explicitly as

R(ε) = − 1

ε2
Df(k + ε, 0)

∫ k+ε

k
X(k + ε, s)Dg(k, 0)ds

+
2

ε3

∫ k+ε

k
Df(s, 0)

∫ s

k
X(s, t)Dg(k, 0)dtds

= − 1

ε2
(Df(k+, 0) + εDf ′(k+, 0))

(
εI +

∫ k+ε

k

∫ s

k
Df(k+, 0)dtds

)
Dg(k, 0)

+
2

ε3

∫ k+ε

k
(Df(k+, 0) +Df ′(k+, 0)(s− k))

×
(
(s− k)I +

∫ s

k

∫ s

t
Df(k+, 0)dudt

)
ds+O(ε)

= −1

ε
DfDg −Df ′Dg − 1

ε2
[Df ]2Dg

∫ k+ε

k
(s− k)ds+

2

ε3

∫ k+ε

k
(s− k)DfDgds

+
2

ε3

∫ k+ε

k
(s− k)2Df ′Dg + [Df ]2Dg

∫ s

k
(s− t)dtds+O(ε)

=

(
−1

6
Df ·Df − 1

3
Df ′

)
Dg +O(ε),

where starting from the third equality we have suppressed the (constant)
inputs on f and g. In total, we get

DxD
2
εSk(0, 0) = −1

6
Df ·Df ·Dg − 1

3
Df ′ ·Dg

+Df ′ · (I +Dg) +Df ·Df

(
I +

1

2
Dg

)

= Df ·Df ·
(
I +

1

3
Dg

)
+Df ′ ·

(
I +

2

3
Dg

)
,

as claimed by the associated coefficient of the Taylor polynomial.

Corollary III.1.3.1. Let (III.1.1)–(III.1.2) be PC� for  ≥ 3. The time q
map is C3 in a neighbourhood of 0 ∈ Ω.

We would conjecture that for any  ≥ 0, the time q map is C� in a neigh-
bourhood of 0 ∈ Ω provided (III.1.1)–(III.1.2) is PC�. Proving it would seem
a technical exercise in keeping track of the singular terms ε−k that result from
differentiating the switching functions. We do not attempt to prove such a
result.
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III.1.4 Sensitivity and Realization

From Theorem 3.1, we can write the switching function in the form

S(x, ε) = x+ g3(k, x) + εr2(k, x) +O(||(x, ε)||4),

where g3(k, ·) is the degree three Taylor polynomial of g(k, ·) at zero, and
r2(k, x) = O(x). The explicit form of the perturbation (i.e. no isolated ε
terms) guarantees that the orbit structure associated with any generic bifur-
cation of the fixed point x∗ in the iterated map

x �→ P (x, α, ε)

for x∗ a nonhyperbolic fixed point for parameter α = α∗ and ε = 0 is not
affected by small perturbations in ε. In other words,

Under the reasonable smoothness assumptions, any generic bifurca-
tion of a fixed point (or periodic solution) for the periodic impulsive
system

ẋ = f(t, x, α), t �= k ∈ Z

Δx = g(t, x, α), t = k ∈ Z,

is locally realizable under the piecewise-constant unfolding

ẏ = f(t, y, α) +
1

ε

∞∑
k=−∞

g(k, y(k), α)1[k,k+ε)(t).

That is, there exists a unique smooth curve ε �→ (x∗(ε), α∗(ε))
such that x∗(ε) is a nonhyperbolic fixed point of the time q map
x �→ P (x, α∗(ε), ε) for all ε ≥ 0 sufficiently small, and the maps
are topologically equivalent.

With realizability dealt with, the next issue to consider is sensitivity. In
many mathematical models involving impulsive differential equations, the
impulse effect corresponds to a control designed to drive the system towards
a particular equilibrium point of the continuously evolving part

ẋ = f(t, x, α)

of the dynamical system. In these instances, the reference fixed point x∗ is
known and can without loss of generality be treated as the origin. We are
interested in answering two questions:

1. (Sensitivity of stability) How is the stability of the fixed point x∗ af-
fected in the regime 0 < ε# 1?

2. (Sensitivity of bifurcation) If x∗ is nonhyperbolic at some parameter
α∗(0), how does variation of the unfolding parameter ε alter the critical
bifurcation parameter α∗(ε)?
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These questions are intrinsically linked. We begin with an assumption
that will simplify the analysis somewhat.

Assumption 1. The C3 smoothness assumption of Theorem III.1.3.1 is
satisfied, each of f(t, ·, ·) and g(k, ·, ·) is periodic with period 1 and there exists
a periodic solution t �→ x∗(t, α) of (III.1.1)–(III.1.2) such that x∗(0, α) = 0
and g(k, 0, α) = 0 for all k ∈ Z and α ∈ R

p.

Under the above assumption, the time 1 map can be written in the form

P (x, α, ε) = P0(α, ε)x+O(||x||2)

for P0 ∈ R
n×n two times continuously differentiable in U × [0, η) for some

η > 0 and U ⊂ R
p a neighbourhood of zero. By performing a linear invertible

change of coordinates x = Γz, we may assume without loss of generality that
P0(0, 0) is in the real Jordan canonical form. The stability of x = 0 is
therefore determined by the eigenvalues of the matrix P0(α, ε)− I. Define a
function W : (U × [0, η))× (Cn × C)→ C

n × C by

W (α, ε; v, λ) =

[
P0(α, ε)v − λv

v∗v − 1

]
,

where v∗ denotes the conjugate transpose of v. Let λ0 be a simple eigenvalue
of P0(0, 0). There exists some v0 ∈ C

n such that W (0, 0; v0, λ0) = 0. Namely,
v0 is a unit eigenvector of P0(0, 0) associated with the eigenvalue λ0. Then,
we have

D(v,λ)W (0, 0; v0, λ0) =

[
P0(0, 0)− λ0I −v0

2v∗0 0

]
.

Since λ0 is simple, M := P0(0, 0) − λ0I has rank n− 1 and v0 ∈ ker(J). As
such, I −M+M = v0v

∗
0 is the orthogonal projection onto ker(J). Moreover,

since M is in the Jordan canonical form and Mv0 = 0 with λ0 being simple,
we know that v∗0M = 0. It follows that D(v,λ)W (0, 0; v0, λ0) has full rank
and, specifically,

D(v,λ)W (0, 0; v0, λ0)
−1 =

[
M+ 1

2v0
−v∗0 0

]
.

By the implicit function, we have (v, λ) = (v(α, ε), λ(α, ε)) smoothly in some
neighbourhood U0 × [0, η0) of (0, 0) ∈ U × [0, η). Taking into account the
appropriate change of variables to ensure the Jordan normal form, this proves
the following lemma.

Lemma III.1.4.1. Let J(α0) ∈ R
n×n denote the real Jordan normal form

of P0(α0, 0), so that P0(α0, 0) = ΓJ(α0)Γ
−1 for some Γ ∈ R

n×n. Let λ0 be a
simple eigenvalue of P0(α0, 0), and let v0 ∈ R

n satisfy J(α0)v0 = λ0v0 with
||v0|| = 1. P0(α, ε) admits a C1 eigenvalue λ(α, ε) for (α, ε) ∈ U× [0, η0) with



III.1.4. SENSITIVITY AND REALIZATION 271

some neighbourhood U of α0 ∈ R
p and some η0 > 0, satisfying λ(α0, 0) = λ0

and

dλ

dα
(α0, 0) = v∗0Γ

−1∂αP0(α0, 0)Γv0,
dλ

dε
(α0, 0) = v∗0Γ

−1∂εP0(α0, 0)Γv0.

Keep in mind that the eigenvectors of the Jordan normal form J(α0) cor-
respond precisely to the standard basis vectors. The following definition is
appropriate.

Definition III.1.4.1. The time-scale sensitivity of the fixed point 0 at the
parameter α ∈ R

p is s = s(α) ∈ R defined by

s = max
j∈U(Γ)

|e∗jΓ−1∂εP0(α, 0)Γej |, (III.1.20)

where P0(α, 0)Γ = ΓJ(α) for J(α) a real Jordan normal form of P0(α, 0)
with Γ ∈ R

n×n, and

U(Γ) = {j = 1, . . . , n : ej is an eigenvector of

Γ−1P0(α, 0)Γ with one-dimensional Jordan block.}

The sensitivity matrix with respect to Γ is S = S(α; Γ) = Γ−1∂εP0(α, 0)Γ.

Lemma III.1.4.2. The time-scale sensitivity is well-defined. That is, it does
not depend on the choice of matrix Γ satisfying P0(α, 0)Γ = ΓJ(α), for J(α)
any real Jordan normal form.

Proof. We first prove that if P0(α, 0)Γi = ΓiJ for some fixed Jordan ma-
trix J and matrices Γi for i = 1, 2, then we must have Γ1ej = ρjΓ2ej and
e∗jΓ

−1
1 = ρ−1

j e∗jΓ
−1
2 for some constants ρj , whenever j ∈ U(Γ). The columns

of each of Γi form a basis for the generalized eigenspace associated with the
matrix P0(α, 0). Consequently, if j ∈ U(Γ), then Γ1ej = ρjΓ2ej because
the associated Jordan block is one-dimensional. Similarly, the rows of Γ−1

i

form a basis for the generalized eigenspace of the transpose P0(α, 0)
ᵀ, so

that e∗jΓ
−1
1 = ρ̃je

∗
jΓ

−1
2 . Combining these two results together, one obtains

1 = ρj ρ̃j , which implies ρ̃j = ρ−1
j as claimed. To conclude that the result

is independent of the choice of Jordan normal form, one may recall that the
Jordan normal form is unique up to the order of the Jordan blocks.

Remark III.1.4.1. The time-scale sensitivity of the fixed point 0 at the
parameter α ∈ R

p is the fastest linear-order speed at which the simple Floquet
multipliers of the fixed point x∗ = 0 can travel with respect to the time-scale
parameter ε # 1, provided the system parameter α is fixed. In this sense,
the time-scale sensitivity partially answers the first question of this section.
Since a generic matrix has all simple eigenvalues, we will be content with this
answer.
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Let μ �→ α(μ) ∈ U0 be any C1 curve with α(0) = 0. Define Λ : R×[0, η0)→
R by

Λ(μ, ε) = λ∗(α(μ), ε)λ(α(μ), ε)− 1, (III.1.21)

with λ being the function from Lemma III.1.4.1. If (α∗, ε∗) satisfies Λ(α∗, ε∗)
= 0, then the fixed point at zero for x �→ P (x, α∗, ε∗) is nonhyperbolic. Sup-
pose the fixed point is nonhyperbolic at (α, ε) = (0, 0). Using the above
results together with the implicit function theorem, it follows that the equa-
tion Λ(μ, ε) = 0 has a solution of the form (μ(ε), ε) for some smooth μ and
ε ≥ 0 sufficiently small provided

ν[α′(0)] =  
(
λ∗
0v

∗
0Γ

−1∂αP0(0, 0)Γv0α
′(0)
)

(III.1.22)

is nonzero, where λ0 = λ(0, 0). Note that ∂μΛ(0, 0) = 2ν[α′(0)]. In this case,
we can reparameterize the curve in terms of the time-scale parameter ε by
α(ε) := α(μ(ε)), and it admits the linear-order representation

α(ε) = −εα′(0)
 (λ∗

0v
∗
0Γ

−1∂εP0(0, 0)Γv0)

 (λ∗
0v

∗
0Γ

−1∂αP0(0, 0)Γv0α′(0))
+O(ε2).

The following lemma is therefore proven.

Lemma III.1.4.3. Let λ0 be a simple eigenvalue of P0(α0, 0) with unit mod-
ulus. Any C1 curve α : μ �→ α(μ) satisfying α(0) = α0 and ν[α′(0)] �= 0 can
be reparameterized in terms of the time-scale parameter ε ≥ 0 in such a way
that |λ(α(ε), ε)| = 1 for ε# 1. The reparameterization satisfies

α(ε) = α0 − εα′(0)
 (λ∗

0v
∗
0S(α0; Γ)v0)

ν[α′(0)]
+O(ε2), (III.1.23)

where v0 satisfies Γ−1P0(α0, 0)Γv0 = λ0v0 and ||v0|| = 1.

Remark III.1.4.2. If λ0 is real, then λ0 = ±1. The curve (α(ε), ε) then
corresponds to either a fold (saddle-node) or a flip (period-doubling) curve.
If λ0 is complex, then λ0 = eiω for some ω ∈ [0, 2π). The curve (α(ε), ε)
then corresponds to a Neimark–Sacker (cylinder) curve. When α is a one-
dimensional real parameter, Lemma III.1.21 provides a one-to-one correspon-
dence between α in some one-sided neighbourhood of α∗ and the time-scale
parameter ε ≥ 0. These observations provide a partial answer to the second
question of this section.

Remark III.1.4.3. The linear-order (ε) coefficient in (III.1.23) is scale-
invariant with respect to α′(0), so one can always without loss of generality
assume that α′(0) is a unit vector.

If a higher-order reparameterization is desired, one can extend Lemma
III.1.4.3 with further application of the implicit function theorem. How-
ever, the formulas for the implicit derivatives of the critical eigenvalues λ in
Eq. (III.1.21) quickly become large, even for quadratic terms. As such, we
will refrain from computing them here.
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III.1.5 An Important Comment (Or Warning)
Concerning Applications

Suppose we are interested in studying the sensitivity or bifurcation realization
problem for a nonlinear system (III.1.1)–(III.1.2) in a situation where t �→
x∗(t;α) is a nontrivial branch of periodic solutions. It may seem reasonable
to perform a parameter-dependent change of variables, shifting x∗(t;α) to
the origin. This would give the system

ẏ = f(t, y + x∗(t;α), α)− f(t, x∗(t;α), α) := F (t, y, α), t /∈ Z (III.1.24)

Δy = g(t, y + x∗(t;α), α)− g(t, x∗(t;α), α) := G(t, y, α), t ∈ Z, (III.1.25)

which satisfies F (t, 0, α) = G(t, 0, α) = 0 for all parameters α for which the
branch exists. If we form the singular unfolding, we get the equation

ż = F (t, z, α) +
1

ε

∞∑
k=−∞

G(k, z(k), α)1[k,k+ε)(t),

which has z = 0 as a fixed point for each α. We want to make conclusions
about the singular unfolding associated with (III.1.1)–(III.1.2), so the logical
step is to invert the change of coordinates we made at the beginning to place
x∗ at the origin; that is, we make the transformation w = z + x∗(t;α). This
yields

ẇ = F (t, w − x∗(t;α), α) + f(t, x∗(t;α), α)

+
1

ε

∞∑
k=−∞

[G(k,w(k)− x∗(k;α), α) + g(k, x∗(k;α), α)]1[k,k+ε)(t)

= f(t, w, α) +
1

ε

∞∑
k=−∞

g(k,w(k), α)1[k,k+ε)(t),

which is indeed the singular unfolding of (III.1.1)–(III.1.2). The problem is
that the transformation w = z+x∗(t;α) now implies that x∗(t;α) is a periodic
solution of the singular unfolding for every ε ∈ (0, 1). This is clearly nonsense,
as solutions of the singular unfolding are continuous and t �→ x∗(t;α) has (in
general) discontinuities at the integers.

To identify where the flaw is in this argument, let us begin with the singular
unfolding

ẇ = f(t, w, α) +
1

ε

∞∑
k=−∞

g(k,w(k), α)1[k,k+ε)(t)

and assume that w∗(t;α, ε) is a two-parameter branch of periodic solutions
that exists for some range of α and for 0 < ε# 1. If we translate w∗ to the
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origin by way of w = u+ w∗, we get

u̇ = f(t, u+ w∗(t;α, ε), α)− f(t, w∗(t;α, ε))

+
1

ε

∞∑
k=−∞

[g(k, u(k) + w∗(k;α, ε), α)− g(k,w∗(k;α, ε), α)]1[k,k+ε)(t).

This is not the singular unfolding of any obvious impulsive differential equa-
tion, but for ε small, it is asymptotic to the ż equation. The error therefore
occurs in forming the singular unfolding of (III.1.24)–(III.1.25).

It is not possible to perform the analysis using the machinery of the pre-
vious section without modification if the reference periodic solution is non-
constant. The error was in shifting the periodic solution to the origin at the
beginning, so the correct approach would be to compute a Taylor expansion
of the Poincaré map of the singular unfolding near (x∗(0;α0), α0) in the ex-
tended phase space, for some chosen parameter α0. The main difference will
be that whereas the O(εn) terms vanish in the expansion of the switching
function from Theorem III.1.3.1, they will not vanish in this more general
setting. We will not consider this more general setting here.

III.1.6 Example: Continuous-Time Logistic
Growth with Pulsed Birth

Consider a single species undergoing intraspecific competition and birth
pulses. Except at times tk, the population dynamics evolve according to
the scalar ODE

ẋ = −x(d+ k1x).

The constants d and k1 are positive. d represents baseline per capita death
rate, while k1 accounts for lower life expectancy due to competition over
limited resources. At times tk, a birth pulse occurs and the population gets
reset according to

x �→ x+ x(b− k2x),

where now b is baseline per capita birth rate and k2 accounts for decreased
fecundity due to competition.

If tk = kT for some period T , then after a suitable change of variables, we
have a system of the form

ẋ = −δx− k1x
2, t /∈ Z

Δx = βx− k2x
2, t ∈ Z.

One can readily check that when (1 + β)e−δ = 1, the linearization at x = 0
has a single Floquet multiplier μ = 1. Define the change of parameters
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δ = log(1 + β) + γ. We get

ẋ = − log(1 + β)x− γx− k1x
2, t /∈ Z (III.1.26)

Δx = βx− k2x
2, t ∈ Z. (III.1.27)

When γ = 0, the linearization at x = 0 has μ = 1 as its only Floquet
multiplier. We can compute the coefficients a20 and a11 of Theorem II.5.2.2
for the transcritical bifurcation. After performing the Floquet change of
variables x = (1 + β)−[t]1y to get the system into the correct form, they are
found to be

a20 = − k1β

log(1 + β)
− k2

(1 + β)2
< 0, a11 = −1 < 0.

It follows that for each β > 0 fixed, x = 0 in (III.1.26)–(III.1.27) undergoes
a transcritical bifurcation of periodic solutions at γ = 0. The nontrivial
periodic solution is asymptotically stable when γ < 0.

Taking β > 0 to be a fixed constant, we will investigate the sensitivity of
the transcritical bifurcation with respect to the parameter γ in the context of
the singular unfolding (III.1.5). By Theorem III.1.3.1, the switching function
can be expressed in the form

S((x, γ), ε)

=

[
(1 + β)x−k1x

2−ε log(1+β)
(
1+ β

2

)
x− 1

2
εγ(2 + β)x+ 1

2
ε2(log(1 + β))2

(
1+ β

3

)
x+O(||x||2)

γ

]

.

For t ∈ [ε, 1], the dynamics of the singular unfolding are independent of γ.
The time 1 map therefore admits the representation

x �→ exp
(
− (1−ε)(log(1+β)+γ)

)[
1+β−ε log(1+β)

(
1+

β

2

)
−1

2
εγ(2 + β)

+
1

2
ε2 log(1 + β)2

(
1 +

β

3

)]
x+O(x2)

:= P0(γ, ε)x+O(x2),

for β fixed and ||(γ, ε)|| sufficiently small. The function P0(γ, ε) satisfies

∂γP0(0, 0) = −1, ∂εP0(0, 0) =
β log(1 + β)

2(1 + β)
.

Taking the reference parameter curve to simply be the constant μ �→ γ(μ) =
μ, Lemma III.1.4.3 implies that

γ = ε

(
β log(1 + β)

2(1 + β)

)
+O(ε2) := εγ1 +O(ε2) (III.1.28)

is a transcritical bifurcation curve for |ε| sufficiently small, for each β fixed.
Namely, the following conclusions are valid for fixed β. There exists an open
interval J = J(β) containing 0 ∈ R such that
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Figure III.1.1: Solid curve (top): plot of the bifurcation curve given by the
solution γ of Eq. (III.1.30) at β = 1. Dashed curve (middle): plot of the
quadratic approximation (III.1.29) to the bifurcation curve. Dashed–dotted
line (bottom): the linear approximation (III.1.28)

• if γ > γ1ε+O(ε2), there are no nontrivial periodic solutions in J , and
x = 0 is locally asymptotically stable;

• if γ < γ1ε + O(ε2), there is exactly one nontrivial periodic solution in
J , and it is locally asymptotically stable, while x = 0 is unstable.

The linear approximation (III.1.28) provides a fairly good approximation to
the true bifurcation curve when 0 < ε# 1. See Fig. III.1.1 for a plot of the
true bifurcation curve along with the linear approximation.

As mentioned briefly at the end of the previous section, we can obtain a
higher-order approximation to the bifurcation curve. Since P0(γ, ε) is given
explicitly to quadratic order, the quadratic term of (III.1.28) can be calcu-
lated. To expedite the process, we used symbolic differentiation and symbolic
limit evaluations in MATLAB. The result is

γ = ε

(
β log(1 + β)

2(1 + β)

)
+ ε2

β log(1 + β)

2(1 + β)

(
1

4(1 + β)
+

log(1 + β)

3

)
+O(ε3).

(III.1.29)
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The quadratic truncation does provide a better fit to the bifurcation curve,
as expected. See again Fig. III.1.1.

We claim that the bifurcation curve γ = γ(ε) is precisely the solution of
the equation

e−γ

1 + β

(
1 +

β(eε(log(1+β)+γ) − 1)

ε(log(1 + β) + γ)

)
= 1, (III.1.30)

continuously extended so that the left-hand side is finite as ε → 0+ and
β → 0. To see why this is the case, let x �→ P (x, γ, ε) denote the time 1
map of the canonical singular unfolding of (III.1.26)–(III.1.27). For ε �= 0,
∂xP (0, ε, γ) = z(1), where z : [0, 1]→ R satisfies z(0) = 1 and

d

dt
z(t) = −(log(1 + β) + γ)z(t) +

β

ε
1[0,ε](t).

Solving this linear differential equation and evaluating at time t = 1 yield
precisely the left-hand side of (III.1.30). The claimed result follows because
the bifurcation curve satisfies ∂xP (0, ε, γ) = 1.



Chapter III.2

Non-smooth Bifurcations

III.2.1 Overview

In this chapter we will be interested in bifurcations that result from two
“non-smooth” phenomena:

• perturbations in the sequence of impulses and

• crossings of discrete delays across impulse times.

These two situations have some elements in common, but the second of the
two will typically involve explicit breaking of the overlap condition and will
result in highly non-smooth bifurcations. A bifurcation involving this type of
scenario will broadly be called an overlap bifurcation. The first one is slightly
better behaved, and the lack of smoothness is more of a technical issue.

III.2.1.1 Bifurcations Involving Perturbations of Impulse
Times

Consider the Hutchinson equation with impulsive harvesting:

ẋ = rx(t)

(
1− x(t− τ)

K

)
, t �= kT

Δx = −hx(t−), t = kT,

for k ∈ Z. We will revisit this system in Chapter IV.2. The linearization at
x = 0 has only the Floquet multipliers 0 and μ = (1 − h)erT . Since x = 0
is a fixed point for all parameter values, it is reasonable to suspect that a
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transcritical bifurcation could occur as T crosses through the threshold period

T ∗ = −1

r
log(1− h),

since μ = 1 when T = T ∗. Our previous framework for parameter-dependent
centre manifolds is based on taking the parameter as an additional state and
in the impulses must occur at fixed times. The required transformations
are therefore first a rescaling of time to map the impulses onto the integers,
followed by the introduction of the new state, T . After this is completed, we
get the system

ẋ = rTx(t)

(
1− x(t− τ/T )

K

)
, t /∈ Z

Ṫ = 0, t /∈ Z

Δx = −hx(t−), t ∈ Z

ΔT = 0, t ∈ Z.

The problem with the above system is that it contains a state-dependent
delay (τ/T ). The functional that defines the vector field is not smooth in
any open subset of the extended state space, so our centre manifold theory
does not apply. In Sect. III.2.2 we will give one method that allows this type
of non-smooth formulation to be avoided while still providing a reasonable
centre manifold theory.

Remark III.2.1.1. For further justification as to why varying the period
of impulse effect in an impulsive functional differential equation results in a
non-smooth perturbation, consider the scalar equation without delays

ẋ = 0, t �= kT

Δx = x, t = kT,

for T ∈ (0, 2), but with the phase space RCR([−2, 0],R). The solution from
the constant initial condition x0 = 1 satisfies

xt(θ, T ) =

{
2�(t+θ)/T�, t+ θ > 0
1 t+ θ ≤ 0,

where we have included T as a function input to emphasize its dependence
on the solution. Then for all T ∈ (0, 2), we can write

x2(θ, T ) = 2�(2+θ)/T�.

This function (of θ) is piecewise-constant with discontinuities at θ ∈ TZ− 2.
Since the location of these discontinuities depends on T , the function T �→
x2(·, T ) is not continuous as a function from (−2, 0) into RCR([−2, 0],R).
In fact, one can show that ||x2(·, T1) − x2(·, T2)|| ≥ 1 whenever T1 �= T2.
In other words, the solutions of an impulsive functional differential equation
are generally not continuous (in the phase space RCR) with respect to the
impulse times, even for fixed initial conditions.
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III.2.1.2 Bifurcations Involving Crossings of Impulse
Times and Delays

The second phenomenon is most easily motivated with the following toy
example:

ẋ = log

(
3

2

)
x, t /∈ Z (III.2.1)

Δx = −1

2
x(t−) +

1

4
xt−(−ω), t ∈ Z, (III.2.2)

where ω ∈ [0,Ω] is a real parameter. The state space is taken to beRCR([−Ω,
0],R). This scalar equation essentially has a delayed jump of the form

Δx =

{
− 1

2x(t
−) + 1

4x(t− ω), ω > 0
− 1

2x(t
−) + 1

4x(t
−), ω = 0.

When ω ∈ [0, 1], the situation is fairly simple. If we take x(t) = φ(t)eλt

as a Floquet eigensolution ansatz, φ is a periodic solution (of period one)
satisfying

φ̇ =

(
log

(
3

2

)
− λ

)
φ, t /∈ Z

Δφ = −1

2
φ(t−) +

1

4
e−λωφt−(−ω), t ∈ Z.

Since ω ∈ [0, 1], this equation can be explicitly solved with little effort. We
find

φ(1) =
1

2
elog(3/2)−λφ(0) +

1

4
e−λωe(log(3/2)−λ)(1−ω)φ(0)

= e−λ

(
3

4
+

1

4

(
3

2

)1−ω
)
φ0

for each of the cases ω = 0, ω ∈ (0, 1) and ω = 1. It follows that φ is periodic
if and only if μ = eλ satisfies

μ(ω) =
1

4

(
3 + 1

(
3

2

)1−ω
)
.

Suppose ω = 1 + ω̂ for some ω̂ ∈ (0, 1). Taking a Floquet ansatz again,
this time the function φ satisfies

φ̇ =

(
log

(
3

2

)
− λ

)
φ, t /∈ Z

Δφ = −1

2
φ(t−) +

1

4
e−λ(1+ω̂)φt−(−ω̂), t ∈ Z.
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We can yet again solve this impulsive differential equation explicitly, and we
find

φ(1) =
1

2
elog(3/2)−λφ(0) +

1

4
e−λωe(log(3/2)−λ)(2−ω)φ(0)

=

(
e−λ 3

4
+ e−2λ 1

4

(
3

2

)2−ω
)
φ0.

In order for φ to be periodic, μ = eλ must solve the equation

μ2 − 3

4
μ− 1

4

(
3

2

)2−ω

= 0.

This equation has two solutions, and they coincide with the nontrivial Floquet
multipliers. Combining the result from the previous section, it follows that
the nontrivial Floquet multipliers are

μ(ω) =

⎧⎨
⎩

1
4

(
3 + 1

(
3
2

)1−ω
)
, ω ∈ [0, 1]

3
8

(
1± 3−ω

√
3ω(22+ω + 3ω)

)
, ω ∈ (1, 2).

Notably, μ(1) = 1, but μ(1+) = 3
8 ±

1
8

√
33 ≈ {1.093,−0.343}, so, in partic-

ular, the function ω �→ max|μ(ω)| is discontinuous. If (III.2.1) and (III.2.2)
correspond to the linearization of a particular nonlinear system at some equi-
librium, a bifurcation could occur in the “smooth” regime ω → 1−, while
crossing over into ω > 1 could completely destroy the local orbit structure.
For example, consider the nonlinear system

ẋ = log

(
3

2

)
x− 1

10
x2, t /∈ Z (III.2.3)

Δx = −1

2
x(t−) +

1

4
xt−(−ω), t ∈ Z. (III.2.4)

For ω ∈ (0, 1], the nontrivial Floquet multiplier is decreasing, there is a
quadratic nonlinearity and x = 0 is a fixed point. It is therefore reasonable
to suspect that a transcritical bifurcation might occur as ω → 1−. However,
the fixed point x = 0 is not a bifurcation point as ω → 1+ since the Floquet
multipliers are bounded away from 1 in absolute value. We will study the
above nonlinear example in a bit more depth in Sect. III.2.3.

Roughly speaking, an overlap bifurcation is the resulting change in the
orbit structure whenever a system parameter is varied causing the overlap
condition to be violated. We will study some particular overlap bifurcation
scenarios in Sect. III.2.3 by focusing on systems with delayed impulses, since
these are slightly more amenable to analysis.
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III.2.2 Centre Manifolds Parameterized by
Impulse Times

In this section we consider a class of time-invariant delay differential equation
systems undergoing impulses at a specific frequency 1

p :

ẋ = LSxt + f(xt), t �= kp

Δx = BSxt− + g(xt−), t = kp,
(III.2.5)

for k ∈ Z. The following hypotheses will be needed:

F.1 L and B are n × m matrices, and S : RCR([−r, 0],Rn) → R
m is a

bounded linear operator possessing a representation of the form Sφ =∫ 0
−r

[dη(θ)]φ(θ) with η : [−r, 0]→ R
m×n of bounded variation and right-

continuous.

F.2 There exists p∗ ∈ R such that the periodic linear system

ẏ = LSxt, t �= kp∗,

Δy = BSxt− , t = kp∗

has exactly d > 0 Floquet multipliers μ1, . . . , μd satisfying |μ1| = · · · =
|μd| = 1, while all other Floquet multipliers μj satisfy |μj | �= 1. Also,
r < p∗ < r∗ for some r∗.

F.3 There exist Z1(p), Z2(p) ∈ R
n×m defined in a neighbourhood of p∗ with

the following properties:

• Z1(p
∗) = L, Z2(p

∗) = B.

• Z1 and Z2 are continuous.

• For each p, the periodic linear system

ẏ = Z1(p)Sxt, t �= kp,

Δy = Z2(p)Sxt− , t = kp
(III.2.6)

has exactly d > 0 Floquet multipliers γ1, . . . , γd satisfying |γ1| =
· · · = |γd| = 1.

F.4 f : RCR → R
n and g : RCR → R

n are Ck for some k.

Remark III.2.2.1. Hypothesis F.2 implies that the overlap condition holds
at the critical period p∗.
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III.2.2.1 Dummy Matrix System and Robustness of
Spectral Separation

Given hypotheses F.1–F.4, we introduce the quasilinear dummy matrix sys-
tem (DMS),

ẋ = Z1(p)Sxt +M1Sxt + f(xt), t �= kp

Ṁ1 = 0, t �= kp

Ṁ2 = 0, t �= kp

Δx = Z2(p)Sxt− +M2Sxt− + g(xt−), t = kp

ΔM1 = 0, t = kp

ΔM2 = 0, t = kp.

(III.2.7)

with M1,M2 ∈ R
n×m. Notice that if M1 = L− Z1(p) and M2 = B − Z2(p),

then the DMS coincides with (III.2.5) extended trivially to the state space
RCR× R

n×m × R
n×m.

The idea here is that since we cannot take p as a state variable, we will
instead parameterize the linear part in such a way that for each fixed p ≈ p∗,
we have a centre manifold of the appropriate dimension. The introduction
of a dummy (matrix) parameter eventually allows us to recover a particular
invariant manifold of the original system. Our plan is as follows:

1. We show that under the assumptions F.1–F.4, the spectral separation
of (III.2.6) near p = p∗ is robust (Lemma III.2.2.3).

2. Using the robustness of spectral separation and the analysis of the
centre manifold construction, we prove that there exist ε > 0 and a
constant δ > 0 such that the DMS has, for each p ∈ (p∗ − ε, p∗ + ε), a
centre manifold that contains all small solutions of size at most δ.

3. We prove that there exist ν > 0 and δ > 0 such that if p ∈ (p∗−ν, p∗+ν),
the family of centre manifolds parameterized by the parameter p and
evaluated at M1 = L−Z1(p) and M2 = B−Z2(p) defines a parameter-
dependent centre manifold for the original system (III.2.5) and contains
all small solutions of size at most δ.

We begin with some notation. For given p, let V (p) : RCR → RCR denote
the monodromy operator V0 associated with the linear system (III.2.6). Also,
let U(t, s; p) denote the evolution family for (III.2.6) and C(t, s; p) : RCR →
RCR denote the evolution family associated with the linear system without
impulses ż = Z1(p)Szt. Finally, let PC0 denote the closed subspace of RCR
consisting of functions that are continuous except at zero, where they have
limits on the left.
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Lemma III.2.2.1. Let V0(p) : PC0 → RCR denote the restriction of V (p)
to PC0. p �→ V0(p) is strongly continuous at p∗—that is, for each ξ ∈ RCR,

lim
p→p∗

||V0(p)ξ − V0(p
∗)ξ|| = 0.

Proof. From Lemma I.2.2.1,

||V0(p)− V0(p
∗)||

= ||χ0[Z2(p)−B]SC(p, 0; p)− [I + χ0BS](C(p∗, 0; p∗)− C(p, 0; p))||
≤ ||Z2(p)−B|| · ||SC(p, 0; p)||

+ (1 + ||BS||) sup
ξ∈PC0,||ξ||=1

||[C(p∗, 0; p∗)− C(p, 0; p)]ξ||.

Continuity of Z2 at p∗ ensures that the first term above converges to zero as
p→ p∗. Denote z(t) = C(t, 0; p)ξ(0). Then,

ż = LSzt + (Z1(p)− L)Szt,

which implies by Theorem I.2.3.1 the decomposition

C(p, 0; p) = C(p, 0; p∗) +

∫ p

0

C(p, μ; p∗)χ0 [(Z1(p)− L)SC(μ, 0; p)] dμ.

We can then make the estimate

||C(p∗, 0; p∗)− C(p, 0; p)|| ≤ ||C(p, 0; p∗)− C(p∗, 0; p∗)||

+

∫ p

0

||C(p, μ; p∗)χ0 [(Z1(p)−L)SC(μ, 0; p)] ||dμ.

The integral term converges to zero as p→ p∗ due to Lemma I.2.2.1 and the
continuity of Z1 at p∗. As for the other one, observe that due to hypothesis
F.2, C(p, 0; p∗) has range in C([−r, 0],Rn) for |p − p∗| small enough. In
the same way we proved Lemma I.3.1.1, one can show that p �→ C(p, 0; p∗)
is compact for p ≥ p∗ − ε for some small ε > 0. It then follows (see for
instance Lemma 4.22 of [43]) that p �→ C(p, 0; p∗) is norm continuous at p∗.
Combining the previous convergence results, the lemma is proven.

Lemma III.2.2.2. There exist ε > 0 and constants α < 1 < β such that
for all p ∈ (p∗ − ε, p∗ + ε), any eigenvalue λ of V (p) satisfies one of |λ| = 1,
|λ| < α and |λ| > β.

Proof. Since V (p∗) is compact, assumption F.2 implies that its spectrum σ
admits a decomposition σ = Σu ∪ Σc ∪ Σs, with

d(0,Σs) < α0 < 1, d(0,Σc) = 1, d(0,Σu) > β0 > 1

for some constants α0 and β0. Note that V (p) has range in PC0, so any
eigenvalue of V (p) (and, by compactness, any nonzero element of the spec-
trum) must also be an eigenvalue of the restricted operator V0(p). But V0(p)
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is continuous at p∗ from Lemma III.2.2.1, so by [Theorem 4–3.16, [79]] on
semicontinuity of separated parts of the spectrum, there exists ε1 > 0 such
that if |p− p∗| < ε1, the spectrum of V (p) lies completely in the disjoint sets

Σ1 = {z ∈ C : |z| < α}, Σ2 = {z ∈ C : |z| > α}

for α = (1+α0)/2, and the number of eigenvalues in Σ2 is constant. Similarly,
there exists ε2 > 0 such that if |p − p∗| < ε2, the spectrum of V (p) lies
completely in the disjoint sets

Σ1 = {z ∈ C : |z| < β}, Σ2 = {z ∈ C : |z| > β},

for β = (1 + β0)/2, and the number of eigenvalues in Σ2 is constant. Thus,
for ε < min{ε1, ε2}, the number of eigenvalues in the annulus {z ∈ C : α <
z < β} is constant, and from the decomposition σ = Σu ∪ Σc ∪ Σs of V (p)
and assumption F.3, this annulus contains only the d eigenvalues on the unit
circle.

Taking advantage of Lemma III.2.2.2, we obtain a parameter-uniform ana-
logue of Theorem I.3.1.3. The proof is a trivial modification of the proof of
the aforementioned theorem and is omitted.

Lemma III.2.2.3. There exists ε > 0 such that U(t, s; p) is uniformly spec-
trally separated for p ∈ (p∗−ε, p∗+ε). That is, U(t, s; p) is spectrally separated
for each p ∈ (p∗ − ε, p∗ + ε) with projectors (Ps,p, Pc,p, Pu,p), the constants
K, a and b appearing in Eqs. (I.1.11)–(I.1.13) can be chosen independent of
p and there is a constant N independent of p such that

sup
t∈R

(||Ps,p(t)||+ ||Pc,p(t)||+ ||Pu,p(t)||) ≤ N.

Denote X = R
n × R

m×m × R
m×m. Let Ũ(t, s; p) : Y → Y be the

evolution family associated with the linear part of the DMS (III.2.7), for
Y = RCR([−r, 0], X) the extended phase space. Note that this is simply

Ũ(t, s; p)[φ, x, y] = (U(t, s; p)φ, x(0), y(0)),

so in the following we will abuse notation and identify Ũ(t, s; p) with U(t, s; p).
Lemma III.2.2.3 still holds for the evolution family on the extended phase
space, and the projections P̃i,p (which we later identify with Pi,p) inherit

block-diagonal structures P̃i,p = diag(Pi,p, Z, Z), with Z = I if i = c and
Z = 0 if i �= c.
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Due to Lemma III.2.2.3, there exist ε > 0 and a constant K > 0 indepen-
dent of p such that for all η ∈ (0,min{−a, b}), the Lyapunov–Perron operator
Kη,p

s : Bη(R, X)⊕Bη
kp(Z, X)→ Bη(R, Y )

Kη,p
s (F,G)(t)

=

∫ t

s

U(t, μ; p)Pc,p(μ)[χ0F (μ)]dμ−
∫ ∞

t

U(t, μ; p)Pu,p(μ)[χ0F (μ)]dμ

+

∫ t

−∞
U(t, μ; p)Ps,p(μ)[χ0F (μ)]dμ+

t∑
s

U(t, ti; p)Pc,p(ti)[χ0Gi]dti

−
∞∑
t

U(t, ti; p)Pu,p(ti)[χ0Gi]dti +

t∑
−∞

U(t, ti; p)Ps,p(ti)[χ0Gi]dti

(III.2.8)

is well-defined, linear and bounded with norm ||Kη,p
s ||η ≤ K, for all p ∈

(p− ε, p+ ε).

III.2.2.2 Centre Manifold Construction

Define f̃ : Y → X and g̃ : Y → X to be the vector field and jump map
associated with the DMS. Specifically, they are defined by

f̃(Φ) = [φ1(0)Sψ + f(ψ), 0, 0]T g̃(Φ) = [φ2(0)Sψ + g(ψ), 0, 0]T ,

where Φ : [−r, 0] → R
n × R

m×m × R
m×m is split into component functions

via Φ = (ψ, φ1, φ2). Following Sect. I.5.1.3, given a bump function ξ, we can
define the parameter-dependent smoothed nonlinearities F̃ p

δ and G̃p
δ by re-

placing the projections in Eqs. (I.5.5)–(I.5.6) with the appropriate parameter-
dependent ones described in Lemma III.2.2.3. Due to the robustness, there
is a mutual Lipschitz constant Lδ for the nonlinearities that satisfies Lδ → 0
as δ → 0, for all p ∈ (p∗ − ε∗, p∗ + ε∗) for some ε∗ > 0. The same is true for
the parameter-dependent substitution operators R̃p

δ , with Lipschitz constant

L̃δ.

Theorem III.2.2.1 (Centre Manifold: Dummy Matrix System). There exist
γ and ε > 0 such that for each p ∈ (p∗− ε, p∗ + ε), the dummy matrix system
(III.2.7) possesses a centre manifold Wp

c with (d+m)-dimensional t-fibres

Wp
c (t) = Im(Cp(t, ·)),

where Cp : R×RCR([−r, 0], X)→ RCR([−r, 0], X). Moreover, the following
are true:
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1. Define the map C̃p : R× (RCR× R
m×m × R

m×m) by

C̃p(t, (φ, y1, y2)) = πRCRCp(t, (φ, y1 · 1, y2 · 1)),

where πRCR : RCR([−r, 0], X) → RCR is the projection onto the first
component of RCR([−r, 0], X) for the product X = R

n×R
m×m×R

m×m

and 1(θ) = 1. Then, πRCRCp = C̃p.

2. Wp
c is locally positively invariant under the process Sp(t, s) : M →

Y associated with the dummy matrix system (III.2.7) in the sense of
Theorem I.5.3.1, for initial conditions smaller than δ.

3. Wp
c contains all mild solutions (φ, y1, y2) = x : R → Y of (III.2.7)

satisfying the estimate ||x||η = ||φ||η + ||y1|| + ||y2|| < γ, for any η ∈
(0,min{−a, b}), with a < 0 < b the spectral separation exponents from
Lemma III.2.2.3.

4. Wp
c is attracting in the sense of Theorem I.5.5.1, provided the unstable

fibre bundle is empty, f is an ACR functional and the unique matrix
t �→ Y (t; p) satisfying Pc,p(t)χ0 = Φt,pY (t; p) is continuous from the
right with limits on the left, where Φt,p is an array whose columns form
a basis for R(Pc,p(t)) and such that Φt,p = U(t, s; p)Φs,p for t ≥ s.

5. Cp(t, ·) : RCR([−r, 0], X) → RCR([−r, 0], X) is Ck and uniformly (in
p) Lipschitz continuous, as are its derivatives.

Proof. Choose γ > 0 small enough so that L̃γK < 1
2 . Note that L̃γK is

independent of p, provided |p−p∗| is small enough. The existence of the centre
manifold then follows by the analysis preceding the statement of the theorem,
together with Theorem I.5.2.1. Property 1 follows by the definition of the
vector field f̃ and jump map g̃ of the DMS, while properties 2 and 3 follow by
Theorem I.5.3.1 by taking the norm on X as ||(x, y, z)|| = ||x||+ ||y||+ ||z||.
To prove property 4, one emulates the proof of Theorem I.5.5.1. Smoothness
of property 5 follows by Theorem I.5.6.1.

With the above lemma at hand, we are ready to construct the parameter-
dependent centre manifold for the periodic system (III.2.5).

Corollary III.2.2.1 (Parameter-Dependent Centre Manifold). Let Sp(t, s) :
RCR → RCR denote the process associated with the periodic system (III.2.5).
Consider the formal expression

C(t, φ; p) = C̃p(t, (φ,L− Z1(p), B − Z2(p))).

There exist ν > 0 and δ > such that C : R×RCR× (p∗ − η, p∗ + η)→ RCR
is well-defined and enjoys the following properties:



III.2.3. OVERLAP BIFURCATIONS 289

1. For each p ∈ (p∗ − ν, p∗ + ν), the nonautonomous set Wp
c with t- fibres

Wp
c (t) = Im(C(t, ·; p)) is locally positively invariant under the process

Sp(t, s) : M→ RCR[−r∗, 0], for initial conditions φ satisfying ||φ|| <
δ.

2. Wp
c contains all mild solutions x : R → RCR of (III.2.5) satisfying

||x||η < δ, for any η ∈ (0,min{−a, b}).

3. Wp
c is attracting in the sense of Theorem I.5.5.1, provided the condi-

tions outlined in part 4 of Theorem III.2.2.1 are satisfied.

4. φ �→ C(t, φ; p) is Ck and uniformly (in p) Lipschitz continuous, as are
its derivatives.

Proof. Apply Theorem III.2.2.1 to obtain the centre manifold for the DMS
as the nonautonomous set with fibres given by the images of (φ, y1, y2) �→
Cp(t, φ, y1, y2) with (φ, y1, y2) ∈ Y . Recall that the DMS at M1 = L −
Z1(p) := M1(p) and M2 = B − Z2(p) := M2(p) coincides with the trivial
extension of the process Sp(t, s) to the phase space Y . Restricting the domain
of the centre manifold function Cp to the hypersurface R× {(φ, y1, y2) ∈ Y :
y1 = M1(p) · 1, y2 = M2(p) · 1}, the invariance, inclusion of small mild
solutions and attractivity properties of its image imply the same results for
the projection onto the first component through πRCR : Y → RCR[−r∗, 0],
where we choose 0 < η ≤ ε small enough so that ||L − Z1(p)|| + ||B −
Z2(p)|| < 1

2γ for p ∈ (p∗ − η, p∗ + η) and define δ = 1
2γ, where γ and ε are as

described in Theorem III.2.2.1. By property 1 from Theorem III.2.2.1, the
aforementioned projection onto the first component is precisely the image of
C(t, ·; p). Smoothness with respect to φ follows from Theorem I.5.6.1.

Remark III.2.2.2. One cannot conclude from the above construction that
the parameter-dependent centre manifold is smooth (or even continuous) with
respect to the parameter p, even under compatible (i.e. Ck) conditions on Z1

and Z2. The centre manifold associated with the DMS (Theorem III.2.2.1)
in the extended phase space, however, is Ck for each fixed p.

III.2.3 Overlap Bifurcations

In this section we will be interested in systems of the form

ẋ = Ax(t) + f(x(t)), t /∈ Z (III.2.9)

Δx = Bx(t−) + Cx(t− ω) + g(x(t−), x(t− ω)), t ∈ Z, (III.2.10)

for f and g sufficiently smooth functions satisfying f(0) = g(0, 0) = 0, real
n× n matrices A, B and C and ω ≥ 0.
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A remark: when ω = 0, we will interpret x(t − ω) in (III.2.10) as the
left-limit: x(t−). Formally, the jump condition should be understood as

Δx = Bx(t−) + Cev−ω(xt−) + g(x(t−), ev−ω(xt−)), (III.2.11)

where ev−ω(φ) = φ(−ω) is the evaluation functional at −ω.
We have two related problems to investigate:

1. Characterize the Floquet spectrum for ω ∈ (1 − ε, 1), ω = 1 and ω ∈
(1, 1 + ε) for small ε > 0.

2. Describe the local orbit structure near x = 0 for |ω − 1| < ε and small
ε > 0.

System (III.2.9)–(III.2.10) is essentially finite-dimensional. Indeed, with the
help of a state transformation, one can eliminate the discrete delay for each
ω fixed; it is introduced in the paper [30]. We will make use of this transfor-
mation in Sect. III.2.3.3 to set the stage for studying bifurcations.

Remark III.2.3.1. The presentation of this section and the correctness of all
results as stated depend crucially on the interpretation of the jump condition
and on the limit convention used. For example, if the regulated left-limit
x−
t is used in (III.2.11) instead of the one-point limit xt− , many results will

change.

III.2.3.1 Floquet Spectrum

Here we will characterize the Floquet spectrum of (III.2.9)–(III.2.10) for ω ≈
1. The analysis will be split into two stages. First, we will consider the case
ω ≤ 1. Next, we look at the ω > 1 case. Neither proof is difficult.

Lemma III.2.3.1. Let ω ∈ [0, 1]. λ is a Floquet exponent for the lineariza-
tion of (III.2.9)–(III.2.10) at x = 0 if and only if μ = eλ satisfies the equation

det
(
(I +B)eA + CeA(1−ω) − μI

)
= 0. (III.2.12)

That is, μ is an eigenvalue of (I +B)eA + CeA(1−ω).

Proof. Let x(t) = φ(t)etλ be a Floquet eigensolution. If ω ∈ (0, 1], the
periodic function φ (complex-valued with period one) satisfies

φ̇ = (A− λI)φ, t /∈ Z

Δφ = Bφ(t−) + e−λωCφ(t− ω), t ∈ Z.

At time t = 1, the solution with initial condition φ(0) = φ0 satisfies

φ(1) =
[
(I +B)eA−λI + e−λωCe(A−λI)(1−ω)

]
φ0 =

[
(I +B)eA + CeA(1−ω)

]
e−λφ0.
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φ is periodic if and only if φ(1) = φ0. This is equivalent to μ = eλ satisfying

det
([

(I +B)eA + CeA(1−ω)
]
μ−1 − I

)
= 0,

which is equivalent to (III.2.12). For the case ω = 0, we get

φ̇ = (A− λI)φ, t /∈ Z

Δφ = Bφ(t−) + Cφ(t−), t ∈ Z,

so that φ(t) satisfies

φ(1) = (I +B + C)e(A−λI)φ0.

The result follows by the same argument as the previous case.

Lemma III.2.3.2. Let ω ∈ (1, 2). λ is a Floquet exponent for the lineariza-
tion of (III.2.9)–(III.2.10) at x = 0 if and only if μ = eλ satisfies the equation

det
(
(I +B)eAμ+ CeA(2−ω) − μ2I

)
= 0. (III.2.13)

Proof. Let x(t) = φ(t)etλ be a Floquet eigensolution. The periodic function
φ (complex-valued with period one) satisfies

φ̇ = (A− λI)φ, t /∈ Z

Δφ = Bφ(t−) + e−λωCφ(t+ 1− ω), t ∈ Z.

Note that 1 − ω ∈ (0, 1). At time t = 1, the solution with initial condition
φ(0) = φ0 satisfies

φ(1) =
[
(I +B)eA−λI + e−λωCe(A−λI)(2−ω)

]
φ0

=
[
(I +B)eA + CeA(2−ω)e−λ

]
e−λφ0.

φ is periodic if and only if φ(1) = φ0. This is equivalent to μ = eλ satisfying

det
([

(I +B)eA + CeA(1−ω)μ−1
]
μ−1 − I

)
= 0,

which is equivalent to (III.2.13).

From these two lemmas, we immediately conclude that for ω ∈ (0, 1], there
are at most n nonzero Floquet multipliers counting multiplicities, whereas for
ω ∈ (1, 2) there are at most n2. There does not appear to be any general
connection between the Floquet multipliers at ω = 1 and the limit from the
right, ω → 1+.
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III.2.3.2 Symmetries of Periodic Solutions

One observation that will be helpful later in analyzing bifurcations of periodic
solutions is the following symmetry property.

Lemma III.2.3.3. Let x(t) be a periodic solution of (III.2.9)–(III.2.10) with
period one, for delay parameter ω > 0. Then, x(t) is a periodic solution for
the delay parameter ω + k for any k ∈ Z such that ω + k > 0.

Proof. Since x is periodic with period one, we have x(t−ω) = x(t− (ω+ k))
whenever ω + k > 0 and k ∈ Z. The result follows.

The reason for the strict inequalities ω > 0 and ω + k > 0 in the previous
lemma is because when ω = 0, the jump condition (III.2.11) reduces to

Δx = (B + C)x(t−) + g(x(t−), x(t−)),

but when ω = k > 0 for k ∈ N, it is

Δx = Bx(t−) + Cx(t− k) + g(x(t−), x(t− k)).

Since x(t−) �= x(t) = x(t−k), it is not possible to compare periodic solutions
for ω = 0 with ω ∈ N.

Take a note that this lemma applies to both linear and nonlinear systems.
Consequently, it implies furthermore that whenever μ = 1 is a Floquet mul-
tiplier for ω = 1 or as ω → 1+, the same is true for ω = k a positive integer
or as μ→ k+.

III.2.3.3 A State Transformation that Eliminates the
Delay

In order to analyze the local orbit structure near ω = 1, we will introduce
a delayed state transformation that eliminates the delay, producing a truly
finite-dimensional system. The result will be an impulsive system whose
impulse times depend on the parameter ω. For additional background on the
transformation, see [30]. The explicit state transformation will be different
depending on whether ω < 1, ω = 1 or ω > 1. This should not be surprising
considering the results of the previous section.

Lemma III.2.3.4 (Delayed State Transformation: ω < 1). Suppose ω ∈
(0, 1), and consider the finite-dimensional impulsive differential equation

ẋ = Ax(t) + f(x(t)), t /∈ Z (III.2.14)

ẏ = 0, t /∈ Z− ω (III.2.15)

Δx = Bx(t−) + Cy(t−) + g(x(t−), y(t−)), t ∈ Z (III.2.16)

Δy = x− y, t ∈ Z− ω. (III.2.17)
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If X : R→ R
n is a solution of (III.2.9)–(III.2.10), then

(x(t), y(t)) = (X(t), X(�t	 − ω)) (III.2.18)

is a solution of (III.2.14)–(III.2.17) defined for t ∈ R and vice versa. The
period of the transformed system is one, with two impulses per period. More-
over, X is locally asymptotically stable (respectively stable, unstable) if and
only if the same is true for the solution (III.2.18).

Remark III.2.3.2. The transformation (III.2.18) applies only to solutions
that are defined on the real line, as required by the lemma. If X : [a,∞)→ R

n

is a solution of (III.2.9)–(III.2.10) and a ∈ R is finite, then the transfor-
mation generates a solution (x(t), y(t)) of the transformed equation that is
defined for t ≥ a+ ω.

Lemma III.2.3.5 (Delayed State Transformation: ω = 1). Suppose ω = 1,
and consider the finite-dimensional impulsive differential equation

ẋ = Ax(t) + f(x(t)), t /∈ Z (III.2.19)

ẏ = 0, t /∈ Z (III.2.20)

Δx = Bx(t−) + Cy(t−) + g(x(t−), y(t−)), t ∈ Z (III.2.21)

Δy = x+B(x(t−)) + Cy(t−) + g(x(t−), y(t−))− y, t ∈ Z. (III.2.22)

This system enjoys the same property as the one from Lemma III.2.3.4, but
there is only one impulse per period.

Proof. Let (x, y) be a solution of (III.2.19)–(III.2.22). By construction, y(t−)
= x(t − 1) whenever t ∈ Z. Since the continuous-time dynamics (III.2.19)
are the same as those of (III.2.9)–(III.2.10), and the impulse effect (III.2.21)
is also the same upon replacing y(t−) with x(t − 1), we get that x(t) is a
solution of (III.2.9)–(III.2.10). The converse is similar.

Lemma III.2.3.6 (Delayed State Transformation: ω > 1). Suppose ω ∈
(1, 2), and consider the finite-dimensional impulsive differential equation

ẋ = Ax(t) + f(x(t)), t /∈ Z (III.2.23)

ẏ0 = 0, t /∈ 2Z− ω (III.2.24)

ẏ1 = 0, t /∈ 2Z+ 1− ω (III.2.25)

Δx = Bx(t−) + Cy[t]2(t
−) + g(x(t−), y[t]2(t

−)), t ∈ Z (III.2.26)

Δy0 = x− y0, t ∈ 2Z− ω (III.2.27)

Δy1 = x− y1, t ∈ 2Z+ 1− ω.
(III.2.28)

If X : R → R
n is a solution of (III.2.9)–(III.2.10), then (x(t), y0(t), y1(t)),

with x(t) = X(t) and

y0(t) = X(k − ω), t ∈ [k, k + 2), k ∈ 2Z

y1(t) = X(k − ω), t ∈ [k, k + 2), k ∈ 2Z+ 1,
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is a solution of (III.2.23)–(III.2.28) defined for t ∈ R and vice versa, and
their stability is equivalent. The period of the transformed system is two, and
there are four impulses per period.

Proof. If (x, y0, y1) is a solution of (III.2.23)–(III.2.28), we have two obser-
vations. First, if k ∈ 2Z, then x(k − ω) = y0(k

−). Second, if k ∈ 2Z + 1,
then x(k − ω) = y1(k

−). For a solution defined for all time, this implies
that at any time t ∈ Z, the delayed state x(t− ω) is one of y0(t

−) or y1(t
−).

The remainder [t]2 in (III.2.26) keeps track of the correct one. The argument
then follows the same lines as the proof for Lemma III.2.3.5. The converse is
similar.

To see that the period is two and there are four impulses per period,
observe that although the sequence of impulses can be identified with the set
Z ∪ (Z − ω), which upon sequential ordering gives a sequence tk satisfying
tk+2 = tk + 1—that is, period one with two impulses—the sequence of jump
functions defining Eqs. (III.2.26)–(III.2.28) can be identified with a function
Gk satisfying Gk+4 = Gk. As such, there are four impulses per period and
the period is two, since tk+4 = tk + 2.

If we are interested in locating bounded solutions—for example, periodic
solutions in invariant cylinders—it is sufficient for us to study the period
maps associated with the state transformed systems of the previous three
lemmas. However, since the transformed system for ω ∈ (1, 2) is of period
two, we will need an additional result if we wish to detect periodic solutions
of period one.

Lemma III.2.3.7. Suppose ω ∈ (1, 2). (x, y0, y1) is a periodic solution of
(III.2.23)–(III.2.28) with period one if and only if y0 = y1 is constant.

Proof. Suppose (x, y0, y1) is a periodic solution of period one. Then, y0(k
−) =

x(k − ω) for k ∈ 2Z, while y1(k
−) = x(k − ω) for k ∈ 2Z + 1. Since x is

periodic with period one, x(k − ω) = x∗ is constant for k ∈ Z. Since each of
y0 and y1 is piecewise-constant and only has an impulse every 2 time units,
we have y0(t) = y1(t) = x∗ for all t ∈ R.

Conversely, suppose y0 = y1 = x∗ is constant. Then x∗ = y0(k) = x(k−)
for k ∈ 2Z and x∗ = y1(k

−) = x(k−) for k ∈ 2Z + 1. Consequently, x(k) =
(I + B)x∗ + Cx∗ + g(x∗, x∗) for all k ∈ Z, whereas for t ∈ [k, k + 1), x
is determined by the autonomous dynamics (III.2.23). It follows that x is
periodic with period one.

III.2.3.4 Bifurcations of Periodic Solutions

Based on the description of the Floquet spectrum from Sect. III.2.3.1, we
should expect some sort of local bifurcation of periodic solutions at ω = 1 if
one or both of the following occur:
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T.1 at ω = 1, there is a Floquet multiplier μ satisfying |μ| = 1;

T.2 as ω → 1+, some Floquet multiplier μ satisfies |μ| → 1.

The T.1 scenario corresponds to the situation in which some bifurcation
occurs for ω ∈ (1 − ε, 1]. Such a bifurcation can be detected by computing
a Taylor expansion in (x, y) with ω as a parameter of the time 1 map of the
transformed system (III.2.14)–(III.2.17). To bridge the gap as ω → 1−, we
need the following lemma.

Lemma III.2.3.8. Let P1(·, ω) : Rn × R
n → R

n × R
n denote the time 1

map of (III.2.14)–(III.2.17) for parameter ω < 1. Then, limω→1− P1(·, ω) is
well-defined, uniformly near 0 ∈ R

n × R
n. The continuous extension P1 :

R
n × R

n × [0, 1] → R
n × R

n is smooth (with the same regularity as the
nonlinearities f and g) in a neighbourhood of (0, 0, 1) ∈ R

n × R
n × [0, 1].

It can be proven by appealing to the time 2 map and the integral repre-
sentation of solutions. Interestingly, the limit described in Lemma III.2.3.8 is
completely unrelated to the time 1 map of the delayed state transformation
at ω = 1. We will observe this in Sect. III.2.3.5.

The second T.2 scenario suggests a possible bifurcation in the interval
[1, 1+ ε). Formally, this can be justified by the following lemma, whose proof
we omit.

Lemma III.2.3.9. Let P2(·, ω) : (Rn)3 → (Rn)3 denote the time 2 map
for (III.2.23)–(III.2.28). The limit limω→1+ P2(ω, ·) exists uniformly in a
neighbourhood of 0 ∈ (Rn)3. The continuous extension P2 : (Rn)3 × [1, 2)→
(Rn)3 is smooth (with the same regularity as the nonlinearities f and g) in
a neighbourhood of (0, 1) ∈ (Rn)3 × [1, 2).

For ω ∈ (1, 2) the time 2 map will be smooth with respect to all the vari-
ables. The limit property of the above lemma then justifies using bifurcation
theorems in the interval [1, 1 + ε).

If scenario T.1 or T.2 explicitly does not occur, all Floquet multipliers
should be away from the unit circle in the relevant ω regime: (1 − ε, 1] for
the negation of T.1 and (1, 1 + ε) for the negation of T.2. Ideally, one would
want to prove that this parameter regime does not contain any small (i.e.
trivializing to zero as ω → 1) bounded solutions aside from the trivial solution
x = 0. This in fact follows from very general static bifurcation theory applied
to the period map—see [115], Proposition 2.6 for the relevant result. Taking
into account Lemma III.2.3.3, we get the following theorem.

Theorem III.2.3.1 (Overlap Bifurcation). The following hold in a neigh-
bourhood of the overlap point ω = 1 for the general nonlinear system (III.2.9)–
(III.2.10):
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• If scenario T.1 occurs, x = 0 may exhibit a bifurcation for ω ∈ (1− ε, 1]
and some small ε > 0. That is, there may exist a nontrivial bounded
solution xω satisfying xω → 0 as ω → 1−.

• If scenario T.2 occurs, x = 0 may exhibit a bifurcation for ω ∈ [1, 1+ ε)
and some small ε > 0. That is, there may exist a nontrivial bounded
solution xω satisfying xω → 0 as ω → 1+.

• If scenario T.1 does not occur, there exist δ > 0 and ε > 0 such that the
only bounded solution (defined for all time) contained in the ball Bδ(0)
for ω ∈ (1− ε, 1] is the trivial solution x = 0.

• If scenario T.2 does not occur, there exist δ > 0 and ε > 0 such that the
only bounded solution (defined for all time) contained in the ball Bδ(0)
for ω ∈ [1, 1 + ε) is the trivial solution x = 0.

III.2.3.5 The Introductory Example Revisited

Let us return to the system

ẋ = log

(
3

2

)
x− 1

10
x2, t /∈ Z (III.2.29)

Δx = −1

2
x(t−) +

1

4
xt−(−ω), t ∈ Z, (III.2.30)

from the overview of this chapter. We saw that at ω = 1, there is a Floquet
multiplier μ = 1, whereas for ω ∈ (1, 2) all Floquet multipliers have absolute
value greater than one and, in particular, μ � 1 as ω → 1+. This is a T.1
overlap bifurcation scenario, so we should compute a Taylor expansion for
ω ∈ [1 − ε, 1] from the time 1 map of the delayed state transformation. For
ω < 1, the latter is

ẋ = log

(
3

2

)
x− 1

10
x2, t /∈ Z Δx = −1

2
x+

1

4
y, t ∈ Z (III.2.31)

ẏ = 0, t /∈ Z− ω Δy = x− y, t ∈ Z− ω.
(III.2.32)

The time 1 map admits an expansion of the form

z �→ c1(ω)z +
1

2
c2(ω)z

2 +O(z3) = P1(x, ω)

for z = [ x y ]ᵀ, c1 a linear map and c2 a bilinear map, with P1(0, ω) = 0.
From Lemma III.2.3.8, we know that the coefficients are smooth.
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Computing c1(ω) is relatively straightforward since it is simply the mon-
odromy matrix of the linearization at (x, y) = 0 of (III.2.32)–(III.2.31). One
can check that

c1(ω) =

[ (
3
2

)1−ω ( 1
2

(
3
2

)ω
+ 1

4

)
0(

3
2

)1−ω
0

]
. (III.2.33)

For the coefficient c2, we have c2(ω) = Z(1), where Z is a symmetric bilinear
map defined by Z(0) = 0 and

Ż[h1, h2] =

[
log(3/2) 0

0 0

]
Z[h1, h2]−

2

10
e1h

ᵀ
1E11h2(3/2)

2t, t /∈ {1, 1−ω}

ΔZ[h1, h2] =

[
0 0
1 −1

]
Z[h1, h2], t = 1− ω

ΔZ[h1, h2] =

[
− 1

2
1
4

0 0

]
Z[h1, h2], t = 1.

Computing the solution and evaluating at t = 1, we get

c2(ω)[h1, h2]

= − 3hᵀ
1E11h2

20 log(3/2)

[ (
3
2

)ω − 1 + 1
2

(
3
2

)−ω (
2
(
3
2

)ω − 3
) (

1 + 1
2

(
3
2

)−ω
)

(
3
2

)−ω (
2
(
3
2

)ω − 3
)

]

︸ ︷︷ ︸
c̃(ω)

.

The quadratic-order expansion of the time 1 map therefore takes the form
[

x
y

]
�→
[ (

3
2

)1−ω ( 1
2

(
3
2

)ω
+ 1

4

)
0(

3
2

)1−ω
0

] [
x
y

]
− 3

20 log(3/2)
c̃(ω)x2+O(||(x, y)||3),

uniformly for 0 < 1 − ω # 1. Applying the Lyapunov–Schmidt reduction,
we can uniquely solve the fixed-point problem associated with the second
equation

y = 21−ωx−
3
(
2− 3

(
3
2

)−ω
)

20 log(3/2)
x2 +O(||(x, y)||3)

for y = y(x, ω) near (x, ω) = (0, 1). The fixed point satisfies y(0, ω) = 0.
Restricted to the curve y = y(x, ε), x is a fixed point of the first equation if
and only if

x =

(
3

2

)1−ω (
1

2

(
3

2

)ω

+
1

4

)
x+ eᵀ1 c̃(ω)x

2 +O(||x||3) ≡ F (x, ω)
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uniformly for |ω − 1| small. We have

F (0, 1) = 0, ∂xF (0, 1) = 1,

∂xωF (0, 1) = − log(3/2)

4
, ∂xxF (0, 1) =

3

40 log(3/2)
,

and F (0, ω) = 0. A transcritical bifurcation therefore occurs at ω = 1, and
the x component of the branch of nontrivial fixed points satisfies

x∗ =
10

3

(
log

(
3

2

))2

(ω − 1) +O((ω − 1)2).

Since the time 1 map we have computed only represents the dynamics of
the system (III.2.29)–(III.2.29) for ω ∈ (1 − ε, 1) and some small ε > 0, the
nontrivial fixed point is only guaranteed to exist in this range. With the
aid of Theorem III.2.3.1 and linearized stability, we can make the following
conclusion.

Lemma III.2.3.10. The trivial solution of (III.2.29)–(III.2.30) undergoes a
transcritical bifurcation at ω = 1 in the interval (1−ε, 1] for some ε > 0 small.
More precisely, there is a nontrivial, positive periodic solution t �→ xω(t) of
period one that exists for ω ∈ (1 − ε, 1) for some ε > 0 small and satisfies
xω(0) > 0 and limω→1− xω = 0. There exists δ > 0 such that no periodic
solution apart from xω and the trivial solution exist in the ball Bδ(0). The
nontrivial periodic solution is locally asymptotically stable for ω ∈ (1− ε, 1),
while the trivial solution is unstable.

By the symmetry of Lemma III.2.3.3, we obtain the following corollary.

Corollary III.2.3.1. For each positive integer k, the trivial solution of
(III.2.29)–(III.2.30) undergoes a transcritical bifurcation at ω = k in the in-
terval (k − ε, k] for some ε > 0 small.

Figure III.2.1 provides the plots of numerically computed solutions of
(III.2.29)–(III.2.30) for two choices of delays near ω = 1. We can see the
nontrivial positive periodic solution for ω ∈ (1 − ε, 1), as well as a “large”
nontrivial periodic solution for ω ∈ (1, 1 + ε). Performing a parameter con-
tinuation, it turns out that this “large” nontrivial periodic solution is created
near ω = 2 in the transcritical bifurcation predicted by Corollary III.2.3.1.
The bifurcation diagram is provided in Fig. III.2.2.
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Figure III.2.1: Plots of numerical solutions from the constant initial condition
x0 = 0.5 for the scalar equation (III.2.29)–(III.2.30) with delay ω = 0.9 (left)
and ω = 1.1 (right). Inset: windowing of the numerical solutions for various
time arguments, once convergence to the periodic solution is (nearly) achieved
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Figure III.2.2: Bifurcation diagram of (III.2.29)–(III.2.30) for ω ∈ [0, 2].
Curves denote the mean value (x) of a periodic solution. The nontrivial
curves are asymptotically stable (solid curves), while the trivial zero fixed
point is unstable (dashed line)
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III.2.4 Comments

We have considered only two simple examples in this chapter of bifurcations
driven by the perturbations to impulses and delay-impulse overlaps. Outside
of this monograph, the former appears to have never been considered (when
delays are involved). As for the later, Church and Liu [30] studied bifurca-
tions in a logistic model with harvesting and census delay at a parameter
configuration where the overlap condition was violated, but the bifurcation
parameter was one of the smooth model parameters and not the delay pa-
rameter. On the whole, neither of these bifurcations—bifurcations driven by
perturbations to impulse times or overlap bifurcations—is well-understood,
and the methods we have developed here to analyze them are somewhat
difficult to use.

In the example of Sect. IV.2, we needed to assume that T ∗ > τ . If this
assumption did not hold, we would be in the scope of an overlap bifurcation (if
T ∗ = τ) or at the very least need to modify the construction of the parameter-
dependent centre manifold. Since the delay appears in the continuous part
of the dynamics, however, the main conclusions of Sect. III.2.3 do not apply
here in the case of an overlap bifurcation. How to analyze such a bifurcation
scenario is unclear.
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Chapter IV.1

Bifurcations in an
Impulsively Damped or
Driven Pendulum

Consider the ordinary differential equation for the motion of a simple pen-
dulum with drag

θ̈ +
g


sin θ + F (θ̇) = 0.

θ represents the angle made by the rigid rod of the pendulum from the down-
ward, vertical equilibrium position θ = 0, g is acceleration due to gravity, 
is the length of the pendulum rod and F (θ̇) is drag. We will assume that

F (x) = βx3 +O(x4)

for some positive constant β. The reason we choose this function is threefold:

• we assume that the pendulum’s bob is large, so that except at small
velocities linear drag is negligible;

• the effect of air resistance is well-described by proportionality to
∣∣dθ
dt

∣∣ dθ
dt

for a large bob [147];

• F provides a reasonable qualitative approximation to x �→ βx|x| while
being smooth.

We will consider two forms of damping and driving dynamics, both of
which will be described by an impulse. First, suppose that for every unit

© Springer Nature Switzerland AG 2021
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of time T > 0 a damping or driving force is applied on a very short time
scale such that the angular velocity is multiplied by some factor α. This
corresponds to a discrete map θ̇ �→ αθ̇. Modelling this with impulsive differ-
ential equations, if we define v = θ̇ and drop the higher-order terms in the
expansion for F , the resulting system is

θ̇ = v, t �= kT

v̇ = −g


sin θ − βv3, t �= kT

Δθ = 0, t = kT

Δv = (α− 1)v, t = kT.
(IV.1.1)

In this chapter we will refer to (IV.1.1) as the model without delay (for reasons
that will become apparent soon).

The second form of damping/driving is similar to the first, except that
this time the angular velocity is reset according to the average of the angular
velocity over a small interval prior to damping/driving, multiplied by the
parameter α. That is, the angular velocity is reset according to

θ̇ �→ α

r

∫ t

t−τ

θ̇(s)ds =
α

r
(θ(t−)− θ(t− τ))

at times t = kT for k ∈ Z, where we require τ ∈ (0, T ). Formally, as τ → 0
the impulse effect of this model collapses to that of (IV.1.1). Writing the
model in terms of impulsive delay differential equations, we get

θ̇ = v, t �= kT

v̇ = −g


sin θ − βv3, t �= kT

Δθ = 0, t = kT

Δv = −v + α

τ
(θ(t)− θ(t− τ), t = kT,

(IV.1.2)

where v = θ̇ like before. In this chapter we will refer to (IV.1.2) as the model
with delay.

IV.1.1 Stability Analysis: The Model
Without Delay

There are two equilibria in the model without delay: the downward rest
position (θ = v = 0) and the upward rest position (θ = π, v = 0). We will
analyze these two separately.
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IV.1.1.1 Downward Rest Position

We want to determine conditions under which the equilibrium θ = v = 0 is
stable or unstable. Performing a linearization, we get the linear system

ż =

[
0 1
− g

� 0

]
z, t �= kT

Δz =

[
0 0
0 (α− 1)

]
z, t = kT.

The monodromy matrix M0 is easy to calculate; it is

M0 =

[
1 0
0 α

] [
cos(ρT ) 1

ρ sin(ρT )

−ρ sin(ρT ) cos(ρT )

]
=

[
cos(ρT ) 1

ρ sin(ρT )

−αρ sin(ρT ) α cos(ρT )

]
,

where ρ2 = g
� . The characteristic polynomial (in the variable μ) of this

matrix is

μ2 − μ(α+ 1) cos(ρT ) + α. (IV.1.3)

Computing the Floquet multipliers, we find that they are

μ =
(α+ 1) cos(ρT )

2
±
√

(α+ 1)2

4
cos2(ρT )− α. (IV.1.4)

There are two regimes we need to consider.

Case 1: (α+ 1)2 cos2(ρT ) ≤ 4α

If (α+1)2 cos2(ρT ) ≤ 4α, then the term inside the square root is nonpositive.
One can then check directly that |μ|2 = α. Based on Theorem II.3.2.1, the
stability assertions are summarized in Table IV.1.1.

Case 2: (α+ 1)2 cos2(ρT ) > 4α

In this case, the term inside the square root of (IV.1.4) is positive, so both
Floquet multipliers are real, and the largest Floquet multiplier (in absolute
value) satisfies

|μ| = |α+ 1| · | cos(ρT )|
2

+

√
(α+ 1)2

4
cos2(ρT )− α.

It is useful to make the transformation z = α+1 and ν = | cos(ρT )|. In these
variables, the inequality |μ| < 1 is equivalent to

r(z, ν) :=

√
z2ν2

4
− z + 1 +

|z|ν
2
− 1 < 0. (IV.1.5)
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(α+ 1)2 cos2(ρT ) ≤ 4α (α+ 1)2 cos2(ρT ) > 4α
Exponentially stable α < 1 α > −1, ρT /∈ πZ
Unstable α > 1 α < −1

Boundary, |μ| = 1 α = 1
α = −1 or
α > −1, ρT ∈ πZ

Floquet multiplier type Complex conjugate Real

Table IV.1.1: Parameter regimes for various stability classifications of the
downward rest position θ = v = 0 in the model without delay (IV.1.1), with
ρ = g/. In the third row, the linearized stability theorem fails because there
is a Floquet multiplier on the complex unit circle.

With respect to ν ∈ [0,∞), ν �→ r(z, ν) is increasing. As such, we will
have |μ| < 1 if and only if ν < ν∗, where ν∗ is the solution of the equation
r(z, ν∗) = 0. Solving this equation is straightforward, and we end up with

ν∗(z) =
z

|z| = sgn(z).

We therefore have |μ| < 1 if and only if | cos(ρT )| < sgn(α+ 1). This will be
the case if and only if ρT /∈ πZ and α > −1.

The equality r(z, ν) = 0 corresponds to the cases where |μ| = 1. The
relevant equation is

|α+ 1| · | cos(ρT )| = α+ 1.

This can only occur if ρT ∈ πZ and α > −1 or if α = −1. As for |μ| > 1,
this corresponds to r(z, ν) > 0. If z �= 0, the latter can only occur if α < −1.
If z = 0—that is, α = −1—we have r(z, ν) = 1, so |μ| = 1 for any ν. Based
on Theorem II.3.2.1, the stability assertions are summarized in Table IV.1.1.

IV.1.1.2 Upward Rest Position

We can perform a similar analysis on the upward rest position (θ, v) = (π, 0).
The linearization is very similar to the previous case:

ż =

[
0 1
g
� 0

]
z, t �= kT

Δz =

[
0 0
0 (α− 1)

]
z, t = kT.

One can then calculate the Floquet multipliers:

μ(α) =
(α+ 1) cosh(ρT )

2
±
√

(α+ 1)2

4
cosh2(ρT )− α. (IV.1.6)
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α = −1 α �= −1
Dominant |μ| 1 > 1

Stability Undecided to linear order Unstable

Table IV.1.2: Modulus |μ| of the dominant Floquet multiplier for the up-
ward rest position (θ, v) = (π, 0) in the model without delay (IV.1.1) along
with stability classification, based on the parameter α. The classification is
much simpler here than in the downward rest position. Also, the Floquet
multipliers are real.

Notice the formal similarity to Eq. (IV.1.4), with the only difference being
the presence of the hyperbolic cosine function.

At this stage, we will emulate the analysis of the previous section and
break into cases.

Case 1: (α+ 1)2 cosh2(ρT ) ≤ 4α

This case is trivial. Indeed, if α satisfies the above equation, then (α+1)2 ≤
4α, which is equivalent to (α−1)2 ≤ 0. The only solution is α = 1. However,
if α = 1, then the inequality 4 cosh2(ρT ) ≤ 4 implies ρT = 0, which in this
model is not permissible since ρ and T are positive.

Case 2: (α+ 1)2 cosh2(ρT ) > 4α

By exclusion, this is the only nontrivial case. The dominant Floquet multi-
plier μ satisfies

|μ| = |α+ 1| cosh(ρT )
2

+

√
(α+ 1)2

4
cosh2(ρT )− α.

We use a similar trick to the downward rest point case and denote z = α+1
and ν = cosh(ρT ), so that the equation |μ| < 1 is equivalent to r(z, ν) < 0,
with the function r the same one appearing in (IV.1.5). Again, ν �→ r(z, ν)
is nondecreasing for ν ∈ [1,∞), so all we need to do is solve the equation
r(z, ν∗) = 0 for ν∗, since stability will be ensured for ν < ν∗, instability for
ν > ν∗ and the boundary case when ν = ν∗. Just like last time, solving
r(z, ν∗) = 0 gives ν∗ = sgn(z) for z �= 0, whereas when z = 0 we have
α = −1, and it is easy to check that μ(−1) = 1. For the z �= 0 case,
exponential stability is impossible because ν = cosh(ρT ) > 1, so it is not
possible to have ν < ν∗. We summarize the results in Table IV.1.2.
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IV.1.2 Stability Analysis: The Model with
Delay

We will use Theorem I.3.4.3 to compute the Floquet multipliers. Once again,
we will analyze the downward and upward rest positions separately.

IV.1.2.1 Downward Rest Position

Linearizing at the downward rest position, we get the linear system

ż =

[
0 1
− g

� 0

]
z(t), t �= kT

Δz =

[
0 0
α
τ −1

]
z(t−) +

[
0 0
−α

τ 0

]
z(t− τ), t = kT.

Let ρ =
√
g/ > 0. Applying Theorem I.3.4.3, μ �= 0 is a Floquet multiplier

if and only if it is an eigenvalue of the matrix[
cos(ρT ) 1

ρ sin(ρT )
α
τ (cos(ρT )− cos(ρ(T − τ))) α

ρτ (sin(ρT )− sin(ρ(T − τ))

]
.

The characteristic polynomial (in the variable μ) of this matrix is

μ2 + μ
1

ρτ

(
α(sin(ρ(T − τ))− sin(ρT ))− ρr cos(ρT )

)
+

α

ρτ
sin(ρτ).

(IV.1.7)

It is worth mentioning that as τ → 0, the coefficients of the polynomial
(IV.1.7) converge to those of the polynomial (IV.1.3) of the monodromy ma-
trix for the model without delays. Applying the Jury stability criterion, all
Floquet multipliers μ satisfy |μ| < 1 if and only if

ρτ + α sin(ρτ)±
(
α(sin(ρT )− sin(ρ(T − τ))) + ρτ cos(ρT )

)
> 0 (IV.1.8)

1− |α sin(ρτ)|
ρτ

> 0. (IV.1.9)

More importantly for our analysis in the following section, we can determine
sufficient conditions for the existence of a pair of complex-conjugate Flo-
quet multipliers with absolute value of 1. The following lemma follows by a
straightforward analysis of the roots of the quadratic polynomial (IV.1.7).

Lemma IV.1.2.1. If α(ρτ)−1 sin(ρτ) = 1, the Floquet multipliers at the
downward rest position in the model with delay are complex conjugate with
nonzero imaginary part and have absolute value of 1 if the following inequality
is satisfied: ∣∣∣∣ sin(ρ(T − τ))− sin(ρT )

sin(ρτ)
− cos(ρT )

∣∣∣∣ < 2. (IV.1.10)
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If the Floquet multipliers are complex conjugate with nonzero imaginary part,
then the absolute value of these multipliers is |μ| = |α(ρτ)−1 sin(ρτ)|.

IV.1.2.2 Upward Rest Position

We can perform a similar analysis of the upward rest position. Linearizing,
we get

ż =

[
0 1
g
� 0

]
z(t), t �= kT

Δz =

[
0 0
α
τ −1

]
z(t−) +

[
0 0
−α

τ 0

]
z(t− τ), t = kT.

Applying Theorem I.3.4.3, μ �= 0 is a Floquet multiplier if and only if it is
an eigenvalue of the matrix

[
cosh(ρT ) 1

ρ sinh(ρT )
α
τ (cosh(ρT )− cosh(ρ(T − τ))) α

ρτ (sinh(ρT )− sinh(ρ(T − τ))

]
.

The characteristic polynomial of this matrix is identical to (IV.1.7) except
that all trigonometric functions are replaced with their hyperbolic variants.
One can therefore derive stability criterion using the Jury test analogously to
(IV.1.8)–(IV.1.9). However, we will not be analyzing bifurcations from the
upward rest position in the model with delay, so we will omit this step.

IV.1.3 Cylinder Bifurcation at the Downward
Rest Position in the Model Without
Delays

To simplify the presentation, we will perform four transformations in order:

• a rescaling of time Ts = t,

• define ρ2 = g
� and σ = α− 1,

• a change of variables v = ρν and

• define new parameters ξ = ρT and r = βTρ2.

After these transformations, if we replace s with t, then the impulsive differ-
ential equations for the model without delay become

θ̇ = ξν t /∈ Z

ν̇ = −ξ sin θ − rν3, t /∈ Z

Δθ = 0, t ∈ Z

Δν = σν, t ∈ Z.
(IV.1.11)
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These transformations effectively reduce the number of parameters from five
to three.

By far the easiest bifurcation to analyze is the one at σ = 0 (α = 1), which
we should suspect corresponds to a cylinder bifurcation since the critical
Floquet multipliers are complex conjugate. The bifurcation at σ = −2 (α =
−1) has the critical Floquet multipliers μ = ±1, which should generically lead
to a codimension-two fold–flip bifurcation. For this reason, we will start with
the analysis of σ = 0. This is a bifurcation of the downward rest position.

There is no need to perform a centre manifold reduction because (IV.1.11)
is already in the form of (II.5.16)–(II.5.17). Indeed, to cubic order in the
nonlinearities, we can write the system as

d

dt

[
θ
ν

]
=

[
0 ξ
−ξ 0

] [
θ
ν

]
+

[
0

ξ
6θ

3 − rν3

]
+O(|θ|5), t /∈ Z (IV.1.12)

Δ

[
θ
ν

]
=

[
0
σν

]
, t ∈ Z.

(IV.1.13)

The Floquet multipliers at σ = 0 are ±iξ. We can easily compute the crossing
condition γ(0) of Theorem II.5.2.5. We have

γ(0) = tr

([
cos ξ − sin ξ
sin ξ cos ξ

] [
0 0
0 1

] [
cos ξ sin ξ
− sin ξ cos ξ

])
= 1.

The first two nondegeneracy conditions therefore pass provided eikξ �= 1 for
k = 1, 2, 3, 4, and ξ /∈ π

2 + πZ. The latter condition is included in the first
(ei4ξ �= 1), so we may summarize the first two nondegeneracy conditions
simply by the requirement that eikξ �= 1 for k = 1, 2, 3, 4.

Since there is no quadratic ν2 term, the ν2 coefficient in the stroboscopic
map vanishes. As such, the third Lyapunov coefficient d(0) can be computed
according to

d(0) =  
(
e−iξ 1

2
〈p, φyyy(1)[q, q, q]〉

)
,

where the vectors p, q,∈ C
2 satisfy the normalization conditions

[
cos ξ sin ξ
− sin ξ cos ξ

]
q = eiξq,

[
cos ξ − sin ξ
sin ξ cos ξ

]
p = e−iξp, 〈p, q〉 = 1.

It is easy to check that the pair

p = q =
1√
2

[
1
i

]

works. We can then simplify the expression for d(0) by exploiting trilinearity
of φyyy and the inner product. We have
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d(0) =
1

8
�
(
e−iξ

〈[
1
i

]
, φyyy(1)

[[
1
i

]
,

[
1
i

]
,

[
1
−i

]]〉)
:=

1

8
�
(
e−iξ〈p, φ̃yyy〉

)
.

This computation is very amenable to symbolic computation. We have

φ̃yyy =

[
cos ξ sin ξ
− sin ξ cos ξ

] ∫ 1

0

[
cos(sξ) − sin(sξ)
sin(sξ) cos(sξ)

] [
0

ξeiξs − i6reiξs

]
ds.

This equation follows from (II.5.21), the form of the third differential

fyyy[u,w, h] = [ 0 ξu1w1h1 − 6ru2w2h2 ]ᵀ, (IV.1.14)

and the following expressions for esΛq and esΛq:

exp

[
0 ξs

−ξs 0

] [
1
i

]
=

[
eiξs

ieiξs

]
, exp

[
0 ξs

−ξs 0

] [
1
−i

]
=

[
e−iξs

−ie−iξs

]
.

Computing d(0) using MATLAB’s symbolic mathematics toolbox, we mirac-
ulously end up with the very clean expression

d(0) = −3r

4
.

We can summarize the bifurcation result with the following theorem.

Theorem IV.1.3.1. The impulsively forced/driven pendulum undergoes a
cylinder bifurcation at the downward rest position (θ, ν) = (0, 0) at forcing
parameter σ = 0 as long as eikξ �= 1 for k = 1, 2, 3, 4. In this case, the
following holds for |σ| small enough:

• The rest position is locally asymptotically stable for σ < 0, stable for
σ = 0 and unstable for σ > 0. When σ > 0, there is a family of
small quasiperiodic oscillations parameterized by a cylinder in the space
S
1 × R

2 that is locally attracting.

Figure IV.1.1 provides numerical solutions through a representative initial
condition for the asymptotically stable (σ < 0) and stable (σ = 0) cases.
After the bifurcation occurs (σ > 0), the phase portrait in the plane contains
an attracting region that qualitatively looks like an annulus. However, the
cylindrical structure is plainly visible in the correct coordinate system, as can
be seen in Fig. IV.1.2.
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Figure IV.1.1: Left: solution through the initial condition (θ, ν) = (0.1, 0.1)
of the system (IV.1.11), plotted for t ∈ [0, 200], with system parameters
ξ = 1, r = 1 and σ = −0.2. Since σ < 0, the rest position at the origin is
asymptotically (and exponentially) stable. Right: solution through the same
condition and parameters, except that σ = 0. The rest point at the origin
is stable, but the convergence is sub-exponential. In both figures, the initial
conditions are indicated by black dots
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Figure IV.1.2: Left: solution (solid curve and dashed curve, respectively)
through the initial conditions (θ, ν) = (0.1, 0.1) and (θ, ν) = (0.7, 0.7) of the
system (IV.1.11), plotted for t ∈ [0, 100], with system parameters ξ = 1,
r = 1 and σ = 0.2. Since σ > 0, the rest position at the origin is unstable.
In the plane, the attractor resembles an annulus. The initial conditions are
represented by black dots. Right: the attractor in the space S

1×R
2. Specif-

ically, the plot is the image of t �→ ([t]1, θ(t), ν(t)) for the solution through
(0.1, 0.1), numerically integrated on the interval [0, 2000] and then plotted
for t ∈ [90, 2000]. The colours reflect the argument [t]1 and help to provide a
sense of depth to the figure



IV.1.4. CYLINDER BIFURCATION AT THE DOWNWARD... 313

IV.1.4 Cylinder Bifurcation at the Downward
Rest Position in the Model with Delay

Similar to the previous section, we will perform some transformations to
reduce the number of parameters:

• a rescaling of time Ts = t,

• define ρ2 = g
� and κ = α

ρτ ,

• a change of variables v = ρν and

• define new parameters ξ = ρT , r = βTρ2 and η = τ
T .

After these transformations, if we replace s with t, then the impulsive delay
differential equations for the model with delay become

θ̇ = ξν t /∈ Z

ν̇ = −ξ sin θ − rν3, t /∈ Z

Δθ = 0, t ∈ Z

Δν = −ν + κ(θ(t−)− θ(t− η)), t ∈ Z.

(IV.1.15)

These transformations effectively reduce the number of parameters from
seven to five. Notice that in the new parameters, ρτ = ηξ.

IV.1.4.1 Floquet Multiplier Transversality Condition

Translating the statement of Lemma IV.1.2.1 into the transformed parame-
ters, the parameter constraint that provides a candidate cylinder bifurcation
at the downward rest position is κ sin(ηξ) = 1 and

∣∣∣∣ sin(ξ(1− η))− sin(ξ)

sin(ηξ)
− cos(ξ)

∣∣∣∣ < 2. (IV.1.16)

Moreover, when the multipliers are complex conjugate with nonzero imagi-
nary part, they have absolute value |μ| = |κ sin(ηξ)|. This proves the follow-
ing lemma.

Lemma IV.1.4.1. If (IV.1.16) is satisfied, the nontrivial pair of Floquet
multipliers associated with (IV.1.15) at the downward rest position crosses the
imaginary axis transversally as κ passes through κ̃ = csc(ηξ). In particular,
the absolute value |μ| of this pair of multipliers, taking κ as a variable and
all other parameters fixed, satisfies

d|μ|
dκ

(κ̃) = | sin(ηξ)| sign(κ̃). (IV.1.17)
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Lemma IV.1.4.1 provides a strong indication of the existence of a cylinder
bifurcation at κ = κ̃ under the parameter configuration (IV.1.16). Indeed,
the present scenario falls under the purview of Theorem I.8.4.1. In the ter-

minology of that theorem, γ(0) has the same sign as d|μ|
dκ (κ̃), so the second

nondegeneracy condition (G.2) concerning the transversal crossing of the Flo-
quet multipliers is satisfied as long as ηξ /∈ πZ. To begin studying the other
ones, recall from Sect. IV.1.2.1 that μ �= 0 is a Floquet multiplier if and only
if it is an eigenvalue of the matrix

N(κ) :=

[
cos(ξ) sin(ξ)

κ(cos(ξ)− cos(ξ(1− η)) κ(sin(ξ)− sin(ξ(1− η))

]
, (IV.1.18)

where we have changed to the new parameters. If κ = κ̃ and inequality
(IV.1.16) is satisfied, then N(κ̃) has a pair of complex-conjugate eigenvalues
with nonzero imaginary part and absolute value of 1. Let μ̃ = eiω be the
eigenvalue with positive real part. The first nondegeneracy condition (G.1)
of the cylinder bifurcation is satisfied if eimω �= 1 for m = 1, 2, 3, 4.

IV.1.4.2 Computation of the First Lyapunov Coefficient

The last step is to verify that the first Lyapunov coefficient d(0) is nonzero
(condition G.3 of the cylinder bifurcation theorem). While certainly feasible
to accomplish on paper, the computations are quite long. Even with the aid
of symbolic algebra software, the setup is quite messy because of the compu-
tation of the matrix Y (t) from Lemma I.8.4.3. To simplify the calculation, we
will therefore exploit the fact that discrete delays in (periodic) impulse effects
can always be removed by introducing additional state variables [30], since
after one period of impulse effect, the dynamics are equivalent to an ordinary
impulsive differential equation without delays. We saw a transformation of
this type in Sect. I.6.4.2, where it was introduced to deal with failure in the
overlap condition. It was also used in Sect. III.2.3.3 on overlap bifurcations.
The following lemma is easily verified.

Lemma IV.1.4.2. Any solution (θ, ν) : R → R
2 of (IV.1.15) is uniquely

identified with a solution (θ, ν, c) : R→ R
3 of

θ̇ = ξν,

ν̇ = −ξ sin θ − rν3, t /∈ Z

ċ = 0, t /∈ Z− ν

Δν = −ν + κ(θ(t−)− c(t−)), t ∈ Z

Δc = −c(t−) + θ(t−), t ∈ Z− η,

(IV.1.19)

and vice versa. Moreover, (θ, ν) in (IV.1.15) is asymptotically stable (re-
spectively, stable or unstable) if and only if the same is true for (θ, ν, c) in
(IV.1.19).



IV.1.4. CYLINDER BIFURCATION AT THE DOWNWARD... 315

Linearizing (IV.1.19) at the fixed point (θ, ν, c) = (0, 0, 0), we get the linear
system

ż =

⎡
⎣ 0 ξ 0
−ξ 0 0
0 0 0

⎤
⎦ z(t), t /∈ Z ∪ (Z− η) (IV.1.20)

Δz =

⎡
⎣ 0 0 0

κ −1 −κ
0 0 0

⎤
⎦ z(t−), t ∈ Z (IV.1.21)

Δz =

⎡
⎣ 0 0 0

0 0 0
1 0 −1

⎤
⎦ z(t−), t ∈ Z− η. (IV.1.22)

The monodromy matrix M0 is precisely

M0(κ) =

⎡
⎣ cos(ξ) sin(ξ) 0

κ(cos(ξ)− cos(ξ(1− η)) κ(sin(ξ)− sin(ξ(1− η)) 0
cos(ξ(1− η)) sin(ξ(1− η)) 0

⎤
⎦ ,

so if κ = κ̃, the Floquet multipliers are e±iω and zero. Note that the first 2×2
block corresponds precisely to N(κ). The centre manifold is therefore two-
dimensional. We will not, however, complete a centre manifold reduction.
Doing so is unnecessary. Indeed, let t �→ Z(t; θ0, ν0, c0) denote the solution
of (IV.1.19) satisfying the initial condition Z(0; θ0, ν0, c0) = (θ0, ν0, c0). Let
S(θ, ν, c) := Z(1; θ, ν, c) denote the time 1 (stroboscopic) map. Since η ∈
(0, 1), we have the identity S(θ, ν, c) = S(θ, ν, 0) for all c ∈ R. We can
therefore consider the dynamics of the two-dimensional projected map

S̃(θ, ν) = (IR3 − π3)S(θ, ν, 0)

with π3(x, y, z) = (0, 0, z) and compute the first Lyapunov coefficient of this
map. If it is nonzero, this fact and the previously verified nondegeneracy
conditions (G.1 and G.2) will give the cylinder bifurcation.

We cannot follow the cylinder bifurcation analysis of Sect. II.5.2.3 ex-
actly, but the ideas carry over with minor modifications because the analysis
is based on Taylor expansion of the period map. Since (IV.1.19) has no
quadratic terms at κ = κ̃, the quadratic-order terms of the map S̃ are iden-
tically zero. It follows that at κ = κ̃, we have the expansion

S̃(θ, ν) = N(κ̃)

[
θ
ν

]
+

1

6
C0

[
θ
ν

]3
+O(||(θ, ν)||4),

where we must compute the trilinear map C0 from (II.5.22). From an analysis
that is formally analogous to the derivation of (II.5.21), we can write

C0[u,w, h] = X12(1)

∫ 1

0
X−1

12 (s)D3f(0, 0)[X(s)u,X(s)w,X(s)h]ds, X12(t) = jX(t)j−1.
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X is the fundamental matrix solution of (IV.1.20)–(IV.1.22) satisfyingX(0) =
IR3 , j : R3 → R

2 is the embedding j(x, y, z) = (x, y) and j−1 : R2 → R
3 is the

one-sided inverse j−1(x, y) = (x, y, 0), and f(θ, ν) = (0,−ξ sin(θ)+ ξθ− rν3).
Note that f contains the nonlinear terms of the vector field relative to the
fixed point (0, 0); it satisfies Df(0, 0) = 0. The third differential of f at zero
is

D3f(0, 0)[u,w, h] =

[
0

ξu1w1h1 − 6ru2w2h2

]
.

Explicitly computing the fundamental matrix solution, the projected block
X12 satisfies

X12(t) =

{
eΛξt, 0 ≤ t < 1
N(κ), t = 1,

Λξ =

[
0 ξ
−ξ 0

]
.

To compute the first Lyapunov coefficient (I.8.40), we require an eigen-
vector q of N(κ̃) with eigenvalue eiω and an eigenvector p of N(κ̃)ᵀ with
eigenvalue e−iω satisfying the normalization condition 〈p, q, 〉 = 1, where the
inner product is the standard one on C

2. A suitable choice is

q =

[
sin ξ

eiω − cos ξ

]
, p =

1

ζ

[
κ(cos ξ − cos(ξ(1− η))

e−iω − cos ξ

]
,

with the normalization factor ζ = κ(sin ξ)(cos ξ − cos(ξ(1 − η))) + (e−iω −
cos ξ)2. The Lyapunov coefficient is

d(0) =  
(
e−iω 1

2
〈p, C0[q, q, q]〉

)

=
1

2
 
(
e−iω

〈
p,N(κ̃)

∫ 1

0

e−ΛξsD3f(0, 0)
[
eΛξsq, eΛξsq, eΛξsq

]〉)
.

Computing this with symbolic algebra, the resulting output is exceptionally
long, and there is no benefit in reproducing it here. Instead, we will choose
a few values of the parameters η and ξ that satisfy the inequality (IV.1.16),
substitute κ = κ̃ for these parameters and display the output of ω and d(0)
with r = 1. The result appears in Table IV.1.3, and some numerical simula-
tions are provided in Fig. IV.1.3.
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ξ η r κ̃ ω d(0) Direction of cylinder Stability of (0, 0)
0.5 0.5 1 4.0420 0.4330 −0.2618 κ > κ̃ κ < κ̃
7 0.8 1 −1.5841 0.8801 −0.7961 κ > κ̃ κ > κ̃

Table IV.1.3: Parameter direction in which the invariant cylinder exists the
fixed point (0, 0) is asymptotically stable near the bifurcation point κ = κ̃ for
a few illustrative parameter values. The frequency ω of the orbits parallel to
the cylinder at the bifurcation point and the first Lyapunov coefficient d(0)
are also provided. Equation (IV.1.17) is used to determine the sign of γ(0),
and the direction and stability computations are done using the value of d(0)
and Theorem II.5.2.5.
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Figure IV.1.3: Top left: solution through the initial condition (θ, ν) =
(0.1, 0.1) of system (IV.1.15) with parameters from the first row of Ta-
ble IV.1.3, except κ = 3.9 < κ̃. The solution is plotted for t ∈ [0, 200],
and we include the lagged argument θ(t − η). Asymptotic stability of the
trivial solution is observed. Top right: same parameters as previous except
κ = 4.2 > κ̃. The solution was computed for t ∈ [0, 800], and the result
was windowed to [600, 800] to help visualize the attracting invariant cylin-
der. Points are coloured according to [t]1, with dark purple corresponding
to [t]1 = 0 and light yellow to [t]1 → 1−. Bottom left: time series plot
with parameters from the second row of the table, with κ = −1.65 < κ̃
in the unstable region. Bottom right: same parameters as previous except
κ = 1.4 > κ̃, in the stable region



Chapter IV.2

The Hutchinson Equation
with Pulse Harvesting

The Hutchinson equation

ẋ = rx(t)

(
1− x(t− τ)

K

)

is arguably one of the oldest and most well-studied delay differential equa-
tions. Under an appropriate change of variables and rescaling of time, the
dynamics in the nonnegative section of the real line are equivalent to the
dynamics of the exponential form of Wright’s equation

ẏ = −α(ey(t−1) − 1),

for which characterizing the structure of the global attractor for α > 0 re-
mains an open problem [15]. Recent progress [75, 143] towards a complete
understanding of Wright’s equation includes proofs of the conjectures of Jones
and Wright, which concern, respectively, the global attractor for α ∈ [0, π/2)
and the existence and uniqueness of a branch of special periodic solutions for
α > π/2. See the references of the previous three papers for more background
on Wright’s and Hutchinson’s equations.

Hutchinson’s equation is motivated from mathematical ecology and is
sometimes called the delay logistic equation. K > 0 is the carrying capacity
of the species, r > 0 is the intrinsic growth rate and τ is a delay that takes
into account such factors as maturation or gestation time. If some proportion
h ∈ (0, 1) of the species is harvested very quickly (i.e. approximated by an
impulse) at the fixed multiples of time T > 0, we get the Hutchinson equation
with harvesting
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ẋ = rx(t)

(
1− x(t− τ)

K

)
, t �= kT (IV.2.1)

Δx = −hx(t−), t = kT. (IV.2.2)

This equation was studied with τ = 0 (i.e. the logistic equation with lin-
ear impulsive harvesting) in [161]. For more background on the Hutchinson
equation with impulse effect, see Section 4.2.1 of the reference [135] and the
literature cited therein.

We will use the non-smooth centre manifold theory of Sect. III.2.2 to
prove that the Hutchinson equation with impulsive harvesting undergoes a
transcritical bifurcation of the zero solution (extinction equilibrium) at T =
T ∗, with

T ∗ = −1

r
log(1− h), (IV.2.3)

provided T ∗ > τ . To verify (IV.2.3), one can linearize (IV.2.1)–(IV.2.2) at
x = 0 to get the linear system without delays

ẏ = ry(t), t �= kT

Δy = −hy(t−), t = kT.

The only Floquet multipliers are zero (which comes from the compactness
of the monodromy operator acting on RCR([−τ, 0],R)) and μ = erT (1− h),
from which setting μ = 1 gives the requirement that T = T ∗ from (IV.2.3).
The non-smooth theory is needed because, as explained in the beginning
of Chap. III.2, the period of impulse effect does not behave as a “smooth
parameter” at the level of the solution.

IV.2.1 Dummy Matrix System: Setup for the
Non-smooth Centre Manifold

Following the method of Sect. III.2.2, our choice for the dummy matrix system
is as follows:

ẋ = − 1

T
log(1− h)x+M1x−

r

K
x(t)x(t− τ), t �= kT

Ṁ1 = 0, t �= kT

Δx = −hx(t−), t = kT

ΔM1 = 0, t = kT.

Here, Z1(T ) = − 1
T log(1− h) satisfies Z(T ∗) = r. We have no need for a Z2

in this example. If M1 = M∗
1 (T ), where

M∗
1 (T ) = r +

1

T
log(1− h), (IV.2.4)
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the dummy matrix system reduces to (IV.2.1)–(IV.2.2) with an extra trivial
component. The linearization of the DMS at (x,M1) = (0, 0) is

ż1 = Z1(T )z1 t �= kT

ż2 = 0, t �= kT

Δz1 = −hz1(t−), t = kT

Δz2 = 0, t = kT.
(IV.2.5)

This system has only the Floquet multipliers 0 and 1. Our setup being com-
plete, we can apply Theorem III.2.2.1 and its corollary to get the existence
of a T -parameter-dependent centre manifold near T = T ∗.

IV.2.2 Dynamics on the Centre Manifold

The dynamics on this centre manifold at each fixed T can be determined to
quadratic order using Corollary I.6.1.1. To do this, we need the periodic array
Qt,T from the Floquet decomposition Φt,T = Qt,T e

tΛT of a basis array for the
centre fibre bundle of the linearization (IV.2.5) at parameter T . We also need
the matrix YT (t) satisfying Pc,T (t)χ0 = Φt,TYT (t). Since the linearization is
memoryless, we have Qt,T (θ) = Q(t+ θ;T ), where

Q(s;T ) =

⎡
⎣ exp

(
− [s]T

T
log(1− h)

)
0

0 1

⎤
⎦ .

Moreover, Qt,T = Φt,T . We will use the Riesz projection formula (I.3.4) to
calculate the matrix YT (t). The monodromy operator at parameter T is

Vt(T )

[
φ1

φ2

]
(θ)=

[
X(t+ θ + T, t)φ1(0)χ[−T,0](θ) + φ1(θ + T )χ[−r,−T )(θ)

φ2(0)χ[−T,0](θ) + φ2(T + θ)χ[−r,−T )(θ)

]
,

where X is the Cauchy matrix of the z1 equation of (IV.2.5) interpreted
as a finite-dimensional system. Using this information together with the
observations that X(t + T, t) = I and X(t + T, s + T ) = X(t, s), we can
compute

(zI − Vt(T ))
−1

χ0(θ) =
1

(z − 1)zm

[
X(t+ θ, t) 0

0 1

]
,

whenever −(m + 1)T ≤ θ < −mT for some m ∈ N. Since diag(X(t, s), I) =
Q(t;T )Q(s;T )−1, we get

Pc,T (t)χ0(θ) =
1

2πi

∫
γ

(zI − Vt(T ))−1χ0(θ) =

[
X(t+ θ, t) 0

0 1

]
= Qt,T (θ)Q(t;T )−1,

which implies YT (t) = Q(t;T )−1.
Combining these results, the dynamics on the (dummy) parameter-depe-

ndent centre manifold for the DMS are given for each T fixed by

u̇ = Q(t;T )−1

[
u1u2Q11(t;T )− (r/K)u2

1Q11(t;T )Q11(t− τ ;T )
0

]
+O(||u||3).
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Now, observe that the function M∗
1 defined in (IV.2.4) satisfies M∗

1 (T
∗) = 0.

Setting u2 = M∗
1 and ignoring the (trivial) second component of the dynamics

on the centre manifold, we get

u̇1 = u1

(
r +

1

T
log(1− h)

)
− r

K
u2
1 exp

(
− [t− τ ]T

T
log(1− h)

)
+R(u1, T ),

(IV.2.6)

accurate for T ∈ (T ∗ − ε, T ∗ + ε) for some small ε > 0, where the higher-
order terms R(u1, T ) = O(u3

1) are C∞ for each T fixed. Due to the uniform
Lipschitz continuity of the parameter-dependent centre manifold, there exists
a bound |R(u1, T )| ≤ C|u1|3 valid for |T −T ∗| < ε. Moreover, u1 �→ R(u1, T )
and its derivatives are uniformly (in T ) Lipschitz continuous near u1 = 0.

IV.2.3 The Transcritical Bifurcation

Our goal is ultimately to prove that for 0 < |T−T ∗| small, (IV.2.6) has a pair
of periodic solutions: the trivial solution at u1 = 0 and another small solu-
tion. The linear-order term will then dictate stability, and we will have proven
the existence of a transcritical bifurcation in the original system (IV.2.1)–
(IV.2.2). For each fixed T , (IV.2.6) is T -periodic, so the logical step is to
compute a second-order Taylor expansion of the associated period map near
(u1, T ) = (0, T ∗), treating T itself as a parameter in the expansion. However,
doing this is risky because we are not guaranteed that the period map is, it-
self, even continuous. Recall that the higher-order terms R(u1, T ) are not
guaranteed to be continuous with respect to T , so we can make no assump-
tions about the period map. To avoid this technical issue, we will make use
of the contraction mapping principle to find the bifurcating periodic solution,
rather than relying on smoothness results. Since this last stage makes up the
final argument in the proof of the transcritical bifurcation, we will state the
result in the form of a theorem first.

Theorem IV.2.3.1. Assume T ∗ > τ . The fixed point x = 0 of the Hutchin-
son equation with periodic impulsive harvesting (IV.2.1)–(IV.2.2) exhibits a
transcritical bifurcation as T passes through T ∗. The following are valid for
|T − T ∗| sufficiently small:

• If T < T ∗, the fixed point x = 0 is locally asymptotically stable, and
there is a nontrivial unstable periodic solution. There are no other small
periodic solutions.

• If T = T ∗, the fixed point x = 0 is conditionally stable, and there are
no other small periodic solutions.

• If T > T ∗, the fixed point x = 0 is unstable, and there is a nontrivial,
locally asymptotically stable periodic solution. There are no other small
periodic solutions.
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• The nontrivial periodic solution x∗ satisfies x∗ → 0 as T → T ∗.

Proof. Let x(t) be the solution of (IV.2.6) satisfying x(0) = x0. For T fixed
with |T − T ∗| small, we can write x(t) = c1(t, T )x0 + c2(t, T )x

2
0 + R̃(T, x0)

as a Taylor expansion with remainder near x0 = 0. With a bit of effort, one
can show that this expansion satisfies

x(T ) = x0 + (rT + log(1− h))x0

−
(

r

K

∫ T

0

exp

(
− [s− τ ]T

T
log(1− h)

)
ds

)
x2
0 +R(T, x0).

If we write R(T, x0) = R̃(T, x0)x
3
0, then R̃(T, x0) is uniformly (in T ) Lipschitz

continuous in some neighbourhood of x0 = 0.
If x is a periodic solution, x0 satisfies the equation

x0 = x0 + (rT + log(1− h))︸ ︷︷ ︸
m1(T )

x0

−
(

r

K

∫ T

0

exp

(
− [s− τ ]T

T
log(1− h)

)
ds

)

︸ ︷︷ ︸
m2(T )

x2
0 + R̃(T, x0)x

3
0.

This equation always has the trivial solution x0 = 0, so x0 is a nontrivial
solution if and only if

0 = m1(T )−m2(T )x0 + R̃(T, x0)x
2
0.

This is equivalent to x0 being a fixed point of the nonlinear map

y �→ G(y, T ) =
m1(T )

m2(T )
+

R̃(T, y)

m2(T )
y2 := a0(T ) + a2(T, y)y

2. (IV.2.7)

a0 is continuous in a neighbourhood of T ∗ and, by its definition, satisfies
a0(T

∗) = 0. Since m2(T ) ≥ Tr/K, we can find another (uniform in T )
Lipschitz constant for y �→ a2(T, y) valid in some closed δ-neighbourhood of
y = 0 for |T −T ∗| small enough. Let L be such a Lipschitz constant valid for
|y| ≤ δ.

Let r1 > 0 be small enough so that 3Lr21 < 1. Define r = min{δ, r1}. Then
r−Lr3 > 0 and we can choose ε > 0 small enough so that |a0(T )| ≤ r−Lr3

for |T −T ∗| < ε. Consider the nonlinear map G(·, T ) : Br(0)→ R defined by
the right-hand side of (IV.2.7). For |y| ≤ r,

|G(y, T )| ≤ |a0(T )|+ |a2(T, y)|y2 ≤ |a0(T )|+ Lr3 ≤ r,

so G(·, T ) has range in Br(0). Also,

|G(x, T )−G(y, T )|
≤ |x2 − y2| · |a2(T, x)|+ y2|a2(T, x)− a2(T, y)| ≤ 3Lr2|x− y|.
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Since 3Lr2 < 1, the map G(·, T ) has a unique fixed point in Br(0) by the
Banach fixed-point theorem. This fixed point corresponds to the unique
nontrivial periodic solution.

To see that this nontrivial periodic solution t �→ x∗(t) trivializes to zero
as T → T ∗, observe that the radius r of the ball in which the contraction
mapping is defined can be made as small as desired by taking |T − T ∗| small
enough. Indeed, the radius r of the ball is determined by the condition
that |a0(T )| ≤ r − Lr3 for |T − T ∗| < ε. For any r > 0 small enough so that
3Lr2 < 1, this can be achieved using the continuity of a0 with a0(T

∗) = 0.

Remark IV.2.3.1. The assumption T ∗ �= τ is needed to ensure that the
overlap condition is satisfied for |T − T ∗| small enough. This condition is
needed to get dynamics on the parameter-dependent centre manifold. We
also need T ∗ > τ for hypothesis F.2 to be satisfied, and the latter is needed
throughout this section.

Figure IV.2.1 provides some numerical validation of Theorem IV.2.3.1.
There we can see the transition from the stable fixed point x = 0 to a stable
nontrivial periodic solution as T crosses through T ∗.
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Figure IV.2.1: Plots of numerical solutions through the constant initial con-
dition x0 = 0.01 for the Hutchinson equation with impulsive harvesting
(IV.2.1)–(IV.2.2). Parameters are r = K = 1, τ = 0.1 and h = 0.2. The
critical period is T ∗ = − log(0.8) ≈ 0.2231. Left: T = 0.20. Right: T = 0.24.
The simulation was run until time t = 80, which results in 400 and 333 im-
pulses, respectively, hence the lack of resolution of the solution curves in the
plots



Chapter IV.3

Delayed SIR Model with
Pulse Vaccination and
Temporary Immunity

IV.3.1 Introduction

This chapter is an abridged version of the paper Analysis of a SIR model
with pulse vaccination and temporary immunity: Stability, bifurcation and a
cylindrical attractor [32] by Church and Liu, published in Nonlinear Analysis:
Real World Applications in 2019. We encourage the reader to consult the
journal version of this article for expanded scope and some omitted proofs.

Consider the system of impulsive delay differential equations

Ṡ = μ− μS − ηf(I(t))S(t) + γI(t− τ)e−μτ , t �= tk (IV.3.1)

İ = ηf(I(t))S(t)− (μ+ γ)I(t), t �= tk (IV.3.2)

ΔS = −vS(t−) + vS(t− τ)e−μτ , t = tk. (IV.3.3)

This model represents a population consisting of three classes: susceptible
(S), infected (I) and recovered/immune (the third class is decoupled and
hidden). Here, f(I) is a general nonlinear incidence rate (that is, a rate
at which susceptible individuals become infected); infected individuals clear
their infection at rate γ and acquire temporary immunity that lasts for τ
time units. η is a recruitment rate and μ is a natural death rate, with
birth rate scaled accordingly so that the total population (susceptible plus
infected and the recovered/immune population, hidden) has a steady state
of unity. As such, populations represent proportions. The incidence rate

© Springer Nature Switzerland AG 2021
K. E. M. Church, X. Liu, Bifurcation Theory of Impulsive Dynamical
Systems, IFSR International Series in Systems Science and Systems
Engineering 34, https://doi.org/10.1007/978-3-030-64533-5 18
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is assumed to satisfy the properties: f(0) = 0, f ′(0) > 0, f ′′(0) < 0 and
limI→∞ f(I) = c <∞. The impulse effect corresponds to a pulse vaccination,
and it is derived under the following assumptions:

1) At specific instants of time tk for k ∈ Z, any individuals who received
their vaccine at time tk − τ and are still alive lose their immunity and
re-enter the susceptible cohort, at which point a fraction v ∈ [0, 1) of
the total susceptible cohort is vaccinated.

2) Vaccinated individuals are immune to infection for a period τ (the same
immunity period as having recovered from infection) and are subject
to the same natural death rate μ.

3) The sequence of vaccination times is periodic with shift of τ : there
exists q > 0 such that tk+q = tk + τ for all k ∈ Z.

It is known [77] that the model without pulse vaccination can exhibit a
Hopf bifurcation. In impulsive systems, Hopf points generically lead to bi-
furcations to invariant cylinders; see Theorem I.8.4.1. As such, we should
expect this model to exhibit a cylinder bifurcation under certain parameter
ranges. To this end, we will perform a combination of analytical and numeri-
cal bifurcation analyses. For a derivation of the model justifying the discrete
delay, see [32].

IV.3.2 Vaccinated Component Formalism

We have indicated that it is our goal to complete a bifurcation analysis on the
system (IV.3.1)–(IV.3.3). However, there are some technical difficulties asso-
ciated with this endeavour because the overlap condition (Definition I.5.4.1)
is not satisfied, since each of tk − τ is an impulse time and Eq. (IV.3.3) con-
tains delayed terms. While the failure of the overlap condition does not
complicate the stability analysis, it does complicate the bifurcation analysis.
To remedy this, we will at times instead consider the following modification
of the model (IV.3.1)–(IV.3.3):

ẋ = μ− μx− ηf(y(t))x(t) + γy(t− τ)e−μτ , t �= tk (IV.3.4)

ẏ = ηf(y(t))x(t)− (μ+ γ)y(t), t �= tk (IV.3.5)

V̇j = 0, t �= tk, (IV.3.6)

Δx = −vx(t−) + (1− v)Vj(t
−)e−μτ , t = tj+qk (IV.3.7)

ΔVj = vx(t−)− (1− ve−μτ )Vj(t
−), t = tj+qk. (IV.3.8)

In the above impulsive delay differential equation, j ranges from 0 to q − 1,
where q is the period of the sequence of impulse times as defined in assumption
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(3). Taking note that tj+qk = tj+q(k−1) + τ and V is constant except at
impulse times where it is continuous from the right, we see that for t = tj+qk,

(1− v)Vj(t
−)e−μτ = (1− v)Vj(t− τ)e−μτ

= (1− v)[vx((t− τ)−) + ve−μτVj((t− τ)−)]

= v[(1− v)x((t− τ)−) + (1− v)Vj((t− τ)−)e−μτ ]

= vx(t− τ).

Substituting the above into the jump condition for x, the result is

Δx = −vx(t−) + (1− v)Vj(t
−)e−μτ = −vx(t−) + vx(t− τ)e−μτ .

This is precisely the same functional form as the jump condition (IV.3.3)
for the original model. Since the continuous-time dynamics are identical for
both models, we can analyze bifurcations in (IV.3.1)–(IV.3.3) by equivalently
studying bifurcations in the model (IV.3.4)–(IV.3.8) with explicit vaccinated
components.

IV.3.3 Existence of the Disease-free Periodic
Solution

When there is no disease—that is, on the invariant subspace {(S, I) : I = 0}—
the nontrivial dynamics are determined solely by the linear, nonhomogeneous
impulsive system

ż = −μz + μ, t �= tk (IV.3.9)

Δz = −vz(t−) + vz(t− τ)e−μτ , t = tk. (IV.3.10)

By the variation of constants (Theorem I.2.3.1), every solution z(t) passing
through an initial condition φ ∈ RCR at time t = 0 can be written as

zt = U(t, 0)φ+

∫ t

0

U(t, s)χ0μds,

where U(t, s) is the evolution family associated with the homogeneous equa-
tion

ẇ = −μw, t �= tk (IV.3.11)

Δw = −vw(t−) + vw(t− τ)e−μτ , t = tk. (IV.3.12)

We can then prove the following lemma by means of the contraction mapping
principle.

Lemma IV.3.3.1. Suppose the trivial solution of the homogeneous equa-
tion (IV.3.11)–(IV.3.12) is exponentially stable. Then, the system (IV.3.1)–
(IV.3.3) has a unique disease-free periodic solution (S̃, 0), with period τ .
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Lemma IV.3.3.2. The trivial solution of the homogeneous equation (IV.3.11)–
(IV.3.12) is exponentially stable.

Proof. Let w(t) = φ(t)eλt be a solution of (IV.3.11)–(IV.3.12) with φ peri-
odic. Substituting this ansatz into the dynamical system, using the period-
icity condition φ(t) = φ(t − τ) and cancelling exponentials, we arrive at the
following impulsive differential equation for φ:

φ̇+ λφ = −μφ, t �= tk (IV.3.13)

Δφ = −vφ(t−) + vφ(t)e−(μ+λ)τ , t = tk. (IV.3.14)

The second equation is an implicit jump condition, but we can easily rear-
range it to obtain the explicit condition

φ(tk) =
1− v

1− ve−(μ+λ)τ
φ(t−k ).

Calculating the solution of the above impulsive differential equation at time
τ given an initial condition at time t = 0, one obtains

φ(τ) = e−(μ+λ)τ

(
1− v

1− ve−(μ+λ)τ

)q

φ(0) := D(λ)φ(0).

φ is periodic provided φ(τ) = φ(0), so we are left with describing the location
of the solutions of the transcendental equation D(λ) = 1. Defining z = e−λτ ,
it follows that λ is a solution of D(λ) = 1 if and only if z is a solution of

0 = f(z) + g(z),

f(z) = 1,

g(z) = −ze−μτ

(
1− v

1− ve−μτz

)q

.

We will show that |g(z)| < |f(z)| on the unit circle |z| = 1. We have

|g(z)| = e−μτ

(
1− v

|1− ve−μτz|

)q

≤ e−μτ

(
1− v

|1− |ve−μτz||

)q

= e−μτ

(
1− v

1− ve−μτ

)q

≤ e−μτ < 1 = |f(z)|,

as claimed. By Rouché’s theorem, the equation f(z) + g(z) = 0 has no
solutions satisfying |z| ≤ 1. Consequently, there are no Floquet exponents λ
satisfying the inequality |e−λτ | ≤ 1. We conclude that all Floquet exponents
have negative real part and the result follows by Corollary I.3.3.1.

As a consequence of Lemmas IV.3.3.1 and IV.3.3.2, we are guaranteed
a unique disease-free periodic solution that, in the absence of infection, is
globally exponentially stable.
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Corollary IV.3.3.1. The model (IV.3.1)–(IV.3.3) has a unique disease-free
periodic solution t �→ (S̃(t, v), 0) of period τ . Restricted to the disease-free
subspace D0 = {(S, I) : I = 0}, this periodic solution is globally exponentially
stable.

IV.3.4 Stability of the Disease-free Periodic
Solution

Introduce the basic reproduction number

R0 =
ηf ′(0)

τ(γ + μ)

∫ τ

0

S̃(t, v)dt. (IV.3.15)

Note that if one denotes the average of S̃ over the interval [0, τ ] by [S̃],
then one can equivalently write the basic reproduction number in the more
suggestive form

R0 =
ηf ′(0)[S̃]

γ + μ
.

Then, the interpretation is that R0 is the product of the average number of
susceptibles, multiplied by the small-infection (i.e. near I = 0) incidence rate,
divided by the aggregate rate of leaving the infected class through death or
clearance of the infection.

Lemma IV.3.4.1. R0 = 1 is an epidemiological threshold: if R0 < 1, the
disease-free periodic solution is locally asymptotically stable, while if R0 > 1,
it is unstable.

Proof. The linearization at (S̃, 0) produces the linear homogeneous impulsive
system

u̇1 = −μu1(t)− ηf ′(0)S̃(t, v)u2(t) + γe−μτu2(t− τ), t �= tk

u̇2 = ηf ′(0)S̃(t, v)u2(t)− (γ + μ)u2(t), t �= tk

Δu1 = −vu1(t
−) + vu1(t− τ)e−μτ , t = tk.

Notice that the second equation is decoupled from the first. Taking an ansatz
Floquet eigensolution u(t) = φ(t)eλt, we can examine the second component
independently. Indeed, φ = [ φ1 φ2 ]T satisfies

φ̇2 + λφ2 = ηf ′(0)S̃(t, v)φ2 − (γ + μ)φ2.

If φ2 �= 0, then as φ is assumed to be periodic with period τ , the only possible
Floquet exponent in this case is

λ0 = −(γ + μ) +
ηf ′(0)

τ

∫ τ

0

S̃(t, v)dt. (IV.3.16)
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Conversely, if φ2 = 0, then Lemma IV.3.3.2 implies that the associated Flo-
quet exponents all have negative real parts. Consequently, the Floquet spec-
trum includes the special Floquet exponent λ0 and the remainder with strictly
negative real part. The equilibrium is locally asymptotically stable provided
all Floquet exponents have negative real part and is unstable if at least one
has positive real part. Since λ0 is real and the others are guaranteed to have
negative real part, we obtain the conclusion of the lemma by noticing that
λ0 < 0 is equivalent to R0 < 1 and that λ0 > 0 is equivalent to R0 > 1.

IV.3.5 Existence of a Bifurcation Point

Before we can study bifurcations, we must establish the existence of a bifur-
cation point. The proof of the following lemma is a routine exercise taking
advantage of the explicit form of λ0(v) and the intermediate value theorem.

Lemma IV.3.5.1. Consider the critical Floquet exponent λ0 = λ0(v) as
defined in Eq. (IV.3.16). λ0 is strictly decreasing. As a consequence, if
λ0(0)λ0(1) ≤ 0, there is a unique v∗ ∈ [0, 1] such that λ0(v

∗) = 0, that
is, a critical vaccination coverage v∗ at which R0 = 1.

IV.3.6 Transcritical Bifurcation in Terms of
Vaccine Coverage at R0 = 1 with One
Vaccination Pulse Per Period

We will now take the vaccination coverage v as a bifurcation parameter and
unfold the bifurcation at v = v∗. To simplify the analysis, we will assume that
q = 1, so there is one vaccination pulse per period. That is, the sequence
of impulse times is precisely tk = kτ for k ∈ Z. Then, from the previous
section, we can explicitly calculate

S̃(t, v) = 1− ve−μ[t]τ , (IV.3.17)

which implies that S̃(τ−, v) = 1 − ve−μτ and S̃(0, v) = 1 − v. We can also
explicitly calculate the critical vaccination coverage where R0 = 1. We find

v∗ =
μτ

1− e−μτ

(
1− γ + μ

ηf ′(0)

)
. (IV.3.18)

We will now pass to the equivalent system with vaccinated component (IV.3.4)–
(IV.3.8). Define the changes of variables and parameters

X + S̃(·, v) = x, V +
vS̃(τ−, v)

1− ve−μτ
= V0, Y = y, ε+ v∗ = v.
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The result is the following system of impulsive delay differential equations:

Ẋ = −μX(t) + ηf(Y )
[
S̃(t, v∗ + ε) +X

]
+ γY (t− τ)e−μτ , t �= kτ

Ẏ = ηf(Y )
[
S̃(t, v∗ + ε) +X

]
− (μ+ γ)Y (t), t �= kτ

V̇ = 0, t �= kτ

ε̇ = 0, t �= kτ

ΔX = −(v∗ + ε)X(t−) + (1− (v∗ + ε))e−μτV (t−), t = kτ

ΔY = 0, t = kτ

ΔV = (v∗ + ε)X(t−)− (1− (v∗ + ε)e−μτ )V (t−), t = kτ

Δε = 0, t = kτ.

(IV.3.19)

Notice that (X,Y, V, ε) = (0, 0, 0, ε) is an equilibrium whenever v∗ + ε ∈
[0, 1]. The change of variables has had the effect of translating the disease-
free periodic solution to the origin. We will now follow the programme of
Sect. I.8.6.

Linearization

We must linearize at a nonhyperbolic equilibrium—that is, an equilibrium
at which the linearization has some Floquet exponents with zero real part.
The origin is expected to be nonhyperbolic with a pair of Floquet exponents
with zero real part, with the first zero exponent resulting from the nonhy-
perbolicity of S̃ at the critical vaccination coverage v = v∗, and the second
zero exponent coming from the trivial dynamics equation for the parameter
ε. The result is

u̇1 = −μu1(t)− ηf ′(0)S̃(t, v∗)u2(t) + γu2(t− τ)e−μτ , t �= kτ

u̇2 = ηf ′(0)S̃(t, v∗)u2(t)− (γ + μ)u2(t), t �= kτ

u̇3 = 0, t �= kτ

u̇4 = 0, t �= kτ

Δu1 = −v∗u1(t
−) + (1− v∗)e−μτu3(t

−), t = kτ

Δu2 = 0, t = kτ

Δu3 = v∗u1(t
−)− (1− v∗e−μτ )u3(t

−), t = kτ

Δu4 = 0, t = kτ.

(IV.3.20)

Centre Fibre Bundle

Before we characterize the centre fibre bundle, we introduce a few convenience
functions that will be useful both in this and subsequent sections. Define

β(t, s;α) = exp

(∫ t

s

(−γ − μ+ ηf ′(0)S̃(u+ α, v∗))du

)
.
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Then define the matrix Z1(t, s; z, α) ∈ C
2×2 for t ≥ s and z ∈ C \ {0} by

Z1(t, s; z, α)

=

[
e−μ(t−s)

∫ t
s
e−μ(t−u)(−ηf ′(0)S̃(u+ α, v∗) + 1

zγe
−μτ )β(u, s;α)du

0 β(t, s;α)

]
.

Then, set Z(t, s; z, α) = diag(Z1(t, s; z, α), I2×2). Also define the matrix B ∈
R

4×4:

B =

⎡
⎢⎢⎣

1− v∗ 0 (1− v∗)e−μτ 0
0 1 0 0
v∗ 0 v∗e−μτ 0
0 0 0 1

⎤
⎥⎥⎦ .

Finally, the function β satisfies a few useful identities. They are clear from
its definition:

β(t, s;α) = β(t, s, [α]τ ),

β(t, s;α) = β(t+ τ, s+ τ ;α),

β(t, s;α) = β(t+ α, s+ α; 0).

For convenience, we abuse notation and write β(t, 0; 0) = β(t).
Since we have already determined that the dominant Floquet exponent

of (IV.3.1)–(IV.3.3) at the disease-free periodic solution must be real—see
Lemma IV.3.4.1—we take the ansatz that u(t) is periodic with period τ .
As a consequence, u2(t − τ) = u2(t), and (IV.3.20) reduces to an ordinary
impulsive differential equation. If we denote X(t, s) the Cauchy matrix of
the resulting system, then M = X(τ, 0) is a monodromy matrix. Specifically,
M = BZ(τ, 0; 1, 0);

M =

⎡
⎢⎢⎣

(1− v∗)e−μτ (1− v∗)κ (1− v∗)e−μτ 0
0 1 0 0

v∗e−μτ v∗κ v∗e−μτ 0
0 0 0 1

⎤
⎥⎥⎦ , κ = eT1 Z1(τ, 0; 1, 0)e2.

The eigenvalues are 1, 0 and e−μτ . The periodic solutions are generated by
the two-dimensional generalized eigenspace associated with the eigenvalue 1.
The eigenvectors are

m1 =
[
(1− v∗)κ 1− e−μτ v∗κ 0

]T
and m2 = e4. As a consequence, we can completely describe the centre fibre
bundle.

Lemma IV.3.6.1. The centre fibre bundle, RCRc, associated with the non-
hyperbolic equilibrium 0 ∈ R

4 of the system (IV.3.19) is two-dimensional.
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A basis matrix Φt, whose columns form a basis for the t-fibre RCRc(t), is
periodic with period τ and is given explicitly by

Φt(θ) = Z([t+ θ]τ , 0; 1, 0)

⎡
⎢⎢⎣

(1− v∗)κ 0
1− e−μτ 0

v∗κ 0
0 1

⎤
⎥⎥⎦ :=

[
Φt,1(θ) 03×1

0 1

]
,

where Φt,1(θ) ∈ R
3.

Projection of χ0 Onto the Centre Fibre Bundle

Another ingredient necessary in the centre manifold reduction concerns the
projection of χ0 onto the centre fibre bundle. Specifically, if Pc(t) : RCR →
RCRc(t) denotes the spectral projection, then there exists a unique Y (t) ∈
R

2×4 such that Pc(t)χ0 = ΦtY (t). It is characterized as the solution of the
equation

ΦtY (t) =
1

2πi

∫
Γ1

(zI − Vt)
−1χ0dz, (IV.3.21)

where Vt denotes the monodromy operator associated with the linear delay
impulsive system (IV.3.20), and Γ1 is a simple closed counterclockwise con-
tour in C such that 1 is the only eigenvalue of Vt contained in the closure
of its interior. We must compute Y (t). Therefore, to proceed we solve the
equation

zy − Vty = χ0ξ (IV.3.22)

for y ∈ RCR, with ξ ∈ {e1, e2, e3, e4}. Our first task will be to obtain a
representation of Vty. Equation (IV.3.20) can be equivalently written as

u̇ = A(t)u(t) + g(t), t �= kτ

Δu = (B − I)u(t−), t = kτ,

A(t) = −μ(E11 + E22) + ηf ′(0)S̃(t, v∗)(−E21 + E12)− γE22,

with standard basis matrices Eij = eie
T
j ∈ R

4×4 and g(t) = γe−μτE12u(t−τ).
Note that we have treated the delayed term as a nonhomogeneous forcing.
If U0(t, s) denotes the Cauchy matrix associated with the (formally) homo-
geneous equation (without delays), we can use the variation of constants for
ordinary impulsive differential equations (Theorem II.2.2.1) to write

u(t) = U0(t, s)u(s) +

∫ t

s

U0(t, r)γe
−μτE12u(r − τ)dr.
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Since Vty(θ) = u(t+ τ + θ; t, y), where u(·; t, y) is the solution with an initial
condition (t, y) ∈ R×RCR, we obtain the representation

Vty(θ) = U0(t+ τ + θ, t)y(0) +

∫ τ+θ

0

U0(t+ τ + θ, t+ r)γe−μτE12y(r − τ)dr

(IV.3.23)

for θ ∈ [−τ, 0], after a few changes of variables.
Returning to Eq. (IV.3.22), we notice that zy(θ) = Vty(θ) for θ < 0. From

the above representation, it follows that θ �→ Vty(θ) is differentiable except at
times θ ∈ (−τ, 0] where t+ τ + θ = kτ for some k ∈ Z, where it is continuous
from the right. At θ = 0, there is an external discontinuity because of the
χ0ξ term in (IV.3.22). Taking this into account, we can take derivatives in
θ on both sides of zy(θ) = Vty(θ) and compute jumps at those times where
θ = −[t]τ . We find that y(θ) is a solution of

y′ = [A(t+ θ) +
1

z
γe−μτE12]y, θ �= −[t]τ (IV.3.24)

Δy = (B − I)y(θ−), θ = −[t]τ (IV.3.25)

for θ ∈ [−τ, 0). Using the convenience function Z from earlier, we can explic-
itly write

y(θ) =

{
Z(θ,−τ ; z, t)y(−τ), θ < −[t]τ
Z(θ,−[t]τ ; z, t)BZ(−[t]τ ,−τ ; z, t)y(−τ), θ ≥ −[t]τ .

(IV.3.26)

Since y(−τ) appears linearly on the right-hand side of the above, we will
write it as a matrix product

y(θ) = H(θ; z, t)y(−τ). (IV.3.27)

Next, from (IV.3.22), we have zy(0)−Vty(0) = ξ. It is our goal to compute
y(0), and to facilitate this, we consider two separate cases. If [t]τ = 0,
then we have Vty(0) = BVty(0

−), as can be verified via Eq. (IV.3.23). Since
Vt(θ) = zy(θ) for θ < 0, it then follows that Vty(0) = Bzy(0−). The equation
zy(0) − Vty(0) = ξ is then equivalent to zy(0) − Bzy(0−) = ξ. A similar
argument in the case where [t]τ �= 0 then implies that, in both cases, the end
result is

y(0) =
1

z
ξ +H(0−; z, t)y(−τ). (IV.3.28)

Our final task is to solve for y(−τ). To do this, substitute (IV.3.28) into
(IV.3.23) and set θ = −τ . Since Vty(−τ) = zy(−τ), the result is

zy(−τ) = 1

z
ξ +H(0−; z, t)y(−τ). (IV.3.29)
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Lemma IV.3.6.2. z �→ (zI −H(0−; z, t))−1 has a pole at z = 1. In partic-
ular, 1 is an eigenvalue of multiplicity two for H(0−; z, t).

We can now calculate y = (zI − Vt)
−1χ0. Solving Eq. (IV.3.29) and sub-

stituting the result into (IV.3.27), the following lemma is proven.

Lemma IV.3.6.3. (zI − Vt)
−1χ0 has the explicit form

(zI − Vt)
−1χ0(θ) =

1

z
H(θ; z, t)(zI −H(0−; z, t))−1. (IV.3.30)

The next step is to explicitly calculate the contour integral in (IV.3.21).
The following lemma provides just enough detail for later calculations.

Lemma IV.3.6.4. There exist real constants a and b such that

1

2πi

∫
Γ1

(zI − Vt)
−1χ0 = H(θ; 1, t)

⎡
⎢⎢⎣

0 ab 0 0
0 1 0 0
0 a 0 0
0 0 0 1

⎤
⎥⎥⎦ . (IV.3.31)

Finally, we can compute the matrix Y (t).

Lemma IV.3.6.5. The matrix Y (t) appearing in the decomposition (IV.3.21)
is

Y (t) =

[
0 (1− e−μτ )−1β(−[t]τ ,−τ ; t) 0 0
0 0 0 1

]
. (IV.3.32)

Proof. Since the matrix Y (t) appearing in (IV.3.21) is unique and therefore
independent of the argument θ ∈ [−τ, 0], we can evaluate both sides of the
equation at θ = −[t]τ to simplify the computation. Using Lemmas IV.3.6.4
and IV.3.6.5, the result is the equation
⎡
⎢⎢⎣
(1− v∗)κ 0
1− e−μτ 0

v∗κ 0
0 1

⎤
⎥⎥⎦
[
Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

]
= H(−[t]τ ; 1, t)

⎡
⎢⎢⎣
0 ab 0 0
0 1 0 0
0 a 0 0
0 0 0 1

⎤
⎥⎥⎦ .

Explicitly calculating H(−[t]τ ; 1, t), one immediately finds that the only
nonzero entries of Y are Y12 and Y24, the latter of which is Y24 = 1. The Y12

entry satisfies the equation

Y12

⎡
⎢⎢⎣

(1− v∗)κ
1− e−μτ

v∗κ
0

⎤
⎥⎥⎦ = H(−[t]τ ; 1, t)

⎡
⎢⎢⎣

ab
1
a
0

⎤
⎥⎥⎦ .

Comparing the entries in the second row, we find Y12 · (1 − e−μτ ) = β
(−[t]τ ,−τ ; t), and the result follows.
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Dynamics on the Centre Manifold and Bifurcation

To quadratic order, the dynamics on the parameter-dependent centre man-
ifold are driven by a scalar ordinary differential equation. The following
follows by Corollary I.6.1.1.

Lemma IV.3.6.6. The coordinate dynamics on the two-dimensional
parameter-dependent centre manifold of the nonhyperbolic equilibrium 0 ∈ R

4

of the impulsive delay differential equation (IV.3.19) are, for ||(w, ε)|| suffi-
ciently small,

ẇ = η(1− e−μτ )β(−[t]τ ,−τ ; t)
(
g(t)w2 + f ′(0)∂vS̃(t, v

∗)εw
)
+R(t, w, ε),

g(t) = S̃(t, v∗)(1− e−μτ )β(t)

(
1

2
f ′′(0)(1− e−μτ )β(t)

+ f ′(0)

∫ [t]τ

0

e−μ([t]τ−s)(γe−μτ − ηf ′(0)S̃(s, v∗))β(s)ds

)
,

(IV.3.33)

where R(t, w, ε) satisfies R(t, 0, ε) = 0, is periodic and right-differentiable in
its first argument and is C∞ in (w, ε) for fixed t. On the centre manifold, the
evolution in the phase space RCR is determined by the time evolution rule

t �→ Φt,1w(t). (IV.3.34)

With this lemma in place, we can finally state and prove our bifurcation
theorem.

Theorem IV.3.6.1. For a generic set of parameters, a transcritical bifur-
cation occurs in the model (IV.3.1)–(IV.3.3) along the disease-free periodic
solution as v crosses through the critical vaccination coverage level v∗. Specif-
ically,

 =

∫ τ

0

β(−[t]τ ,−τ ; t)S̃(t, v∗)β(t)g(t)dt

is nonzero on a generic subset of parameter space, and the following are
satisfied for |v − v∗| small enough and in a sufficiently small neighbourhood
of (S, I) = (S̃(t, v∗), 0).

• There are at most two periodic solutions: the disease-free solution and
a second solution t �→ ξ(t, v) that is exponentially stable when v < v∗,
unstable when v > v∗ and satisfies ξ(t, v∗) = (S̃(t, v∗), 0).

• The unique periodic solution is conditionally stable when v = v∗ in
some half-space.

• ξ(·, v) is positive (in both components) if and only if (v − v∗) > 0.
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Proof. The time τ (Poincaré) map associated with the ordinary differential
equation (IV.3.33) is readily found to satisfy

w �→ w + η(1− e−μτ )[w2 +mεw] + h(w, ε)

ε �→ ε,

where  is as in the statement of the theorem, m is given by

m =

∫ τ

0

β(−[t]τ ,−τ ; t)f ′(0)∂vS̃(t, v
∗)dt

and h(w, ε) =
∫ τ
0
R(t, w, ε)dt is a C∞ remainder satisfying h(0, ε) = 0 and

containing all terms of order 3 and above in (w, ε). Note that the mixed εw
term, m, is strictly negative because f ′(0) > 0, β > 0 and ∂vS̃(t, v

∗) < 0.
As for the quadratic term, the equation  = 0 is unstable with respect to
perturbations in f ′′(0), as can be verified by the functional form of g(t)
appearing in (IV.3.33). Consequently, on a generic set of parameters, we have
 �= 0 and m < 0. From the transcritical bifurcation for maps, there exists a
unique C1 nontrivial fixed point (w(ε), ε) for |ε| sufficiently small, satisfying
w(0) = 0. From (IV.3.34), we obtain the claimed nontrivial periodic solution.
The stability assertions follow by the reduction principle (Theorem I.5.5.1).

To see that ξ(·, v) is positive only when (v−v∗) = ε > 0, we first remark
that the fixed point satisfies the estimate w(ε) = −εm� +O(ε2). This follows
because of the properties of the remainder term h. Also, since ξ(t, v) →
(S̃(t, v∗), 0) as v → v∗, it suffices to consider only the sign of the second
component. This is precisely

sign(ξ2(t, v
∗ + ε)) = sign

(
−εm


eT2 Φt,1(0)

)

= sign
(
ε(1− e−μτ )β(t)

)
= sign(ε),

which is what was claimed.

IV.3.7 Numerical Bifurcation Analysis

In the previous section we proved that in the event there is only one vacci-
nation pulse per period, the disease-free periodic orbit generically undergoes
a transcritical bifurcation when the vaccination coverage crosses a critical
threshold, v∗. We can approximate the endemic (i.e. having nonzero I com-
ponent) periodic solution to linear order, but analyzing further bifurcations
will require assistance from the numerical analysis.

In this section, we will use the illustrative parameter choices provided in
Table IV.3.1, and to keep results consistent with the analysis appearing in
[77, 83], we will use the incidence rate f(x) = x

1+x .
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Figure IV.3.1: Plots of the periodic solution obtained by continuation for vac-
cine coverage v ∈ [0, v∗]. Dots indicate the “initial” points (S∗(0, v), I∗(0, v))
on each periodic solution, followed by evolution along the corresponding curve
at each level v with time left implicit. The periodic solution is constant in
the I variable at v = v∗ and collapses to a fixed point at v = 0. To im-
prove visibility, only fourteen vaccination coverages in the interval [0, v∗] are
displayed
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Figure IV.3.2: Plot of the real part of the dominant Floquet exponent. There
is a crossing of the imaginary axis (0 on the vertical axis) at v = v∗c ≈ 0.4063,
where there is a pair of complex-conjugate imaginary Floquet exponents



IV.3.7. NUMERICAL BIFURCATION ANALYSIS 339

Parameter Numerical value/range
μ 0.5
η 50
γ 25
τ 1
v∗ 0.6227
v [0, v∗]

Table IV.3.1: Parameters used for the numerical bifurcation analysis for the
model (IV.3.1)–(IV.3.3)

By employing a boundary-value continuation scheme, the nontrivial bifur-
cating periodic solution was continued from v = v∗ to v = 0. This branch of
periodic solutions is locally stable at least for v near v∗. Along this branch of
periodic solutions, the dominant (i.e. with maximum real part) Floquet expo-
nent was computed numerically. There is a single crossing point v∗c ≈ 0.4063
where  (λmax) = 0 in the regime [0, v∗], and the Floquet spectrum was com-
puted there. The result was a Hopf point. This investigation is summarized
in Figs. IV.3.1 and IV.3.2.

We should expect that a cylinder bifurcation occurs at v = v∗c due to
Theorem I.8.4.1. From the Floquet spectrum at v = v∗c , we can compute the
rotation parameter θ, and we find θ = 1.9886 and, in particular, |eikθ − 1| >
0.316 for k = 1, 2, 3, 4, so the first nondegeneracy condition (G.1) passes.
For the second nondegeneracy condition, we can infer from Fig. IV.3.2 that
γ(0) < 0, since the dominant Floquet multiplier crosses the imaginary axis
from right to left. In terms of the figure, the real part of λmax is decreasing
at v = v∗c , which implies γ(0) < 0. As such, we can be confident that the
second nondegeneracy condition (G.2) of the cylinder bifurcation succeeds.
We do not bother computing the Lyapunov coefficient, and this task is quite
onerous and does not improve the exposition.

Since γ(0) < 0, we should expect the invariant cylinder to be attracting
when γ(0)[v − v∗c ] > 0, which is equivalent to v < v∗c . Conversely, the
endemic periodic solution should be asymptotically stable when v > v∗c . This
is consistent with the earlier analysis, since the bifurcating branch of periodic
solutions appears to be locally stable in the regime (v∗c , v

∗). The complete
bifurcation diagram is provided in Fig. IV.3.3. We indeed numerically detect
an attracting invariant cylinder in the phase space; see Fig. IV.3.4. As v
decreases from v∗c to zero, the cylinder contracts until it collapses onto a
periodic solution of the system without vaccination. This visual is provided
in Fig. IV.3.5.
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Figure IV.3.3: Bifurcation diagram for the model (IV.3.1)–(IV.3.3) with the
parameters from Table IV.3.1. TB indicates a transcritical bifurcation, while
NSB indicates a Neimark–Sacker (cylinder) bifurcation. The boundaries of
the blue region denoted endemic cylinder correspond to the maximum and
minimum values of the norm of the infected component for the bifurcating
invariant cylinder over a long (100 time units) simulation range. Solid lines
indicate asymptotically stable (or attracting) objects, while dashed lines in-
dicate unstable objects
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Figure IV.3.4: Plot of t �→ (S(t), I(t), S(t − 1)) for t ∈ [300, 1300] from
a constant initial condition of (S(0), I(0)) = (0.5, 0.5) for v = 0.395.
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Chapter IV.4

Stage-Structured
Predator–Prey System
with Pulsed Birth

Predator–prey models have been studied for close to one hundred years, with
perhaps the most well-known Lotka–Volterra model [101] being proposed
in 1920. Jumping forward several decades, several authors have considered
predator–prey models involving stage structure. Gourley and Kuang [54]
consider the effect of maturation delay on a predator–prey system in which
the predator class is divided into juvenile and adult classes. A model with
Beddington–DeAngelis functional response and stage structure for the prey
was studied by Chen and You [24]. We refer the reader also to the review
article [123] for general discussion on predator–prey models with discrete
delay. These references are very far from exhaustive, and predator–prey
systems with numerous types of functional response, maturation delay and
stage structures have been described in the literature with varying degrees of
analysis.

The aforementioned models have considered continuous-time birth dynam-
ics. Pulsed birth dynamics in ecological models have been considered by a
few authors [97, 139]. More recently, Xiang, Long and Song [153] consid-
ered a delayed Lotka–Volterra model with prey birth pulse described by a
discrete logistic update, with stage-structured predator population. In this
chapter, we will consider a predator–prey model with prey birth pulse and
stage structure, where the predator only has one life stage. The model takes
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the form of an impulsive functional differential equation with distributed and
time-varying discrete delays:

x′ = ραx(t)y(tk) exp

(
−r1(t− tk)− δ

∫ 0

tk−t

x(t+ θ)dθ

)
− hx(t), t ∈ [tk, tk + τ),

(IV.4.1)

x′ = −hx, t ∈ [tk + τ, tk+1)

(IV.4.2)

y′ = −r2y − k2y
2, t 
= tk + τ (IV.4.3)

Δy = αy(t− τ) exp

(
−r1τ − δ

∫ 0

−τ

x(t+ θ)dθ

)
, t = tk + τ.

(IV.4.4)

Note that the y(tk) term in (IV.4.1) can be interpreted as a discrete delay.
Here, x represents the predator and y the adult prey. The juvenile prey
population is factored into the birth pulse (Eq. IV.4.4)—this will be further
explained in Sect. IV.4.1 where the model is derived from some biological
assumptions. In Sect. IV.4.2 the stability of the extinction equilibrium is
considered. The existence and stability of a predator-free periodic solution
are studied in Sect. IV.4.3. The transcritical bifurcation involving these solu-
tions is proven analytically in Sect. IV.4.4. Some additional discussion follows
in Sect. IV.4.5.

IV.4.1 Model Derivation

We consider three population classes: predator (x), juvenile prey (y1) and
adult prey (y2). The population dynamics are as follows:

• The hunting rate of juvenile prey by the predator is δ (units of (predator·
time)−1) with a type I functional response. Juvenile prey undergo back-
ground death due to other causes at per capita rate r1 and are not
resource-limited.

• Predators are unable to hunt adult prey. The latter are subject to
interspecific competition for resources with baseline death rate r2 and
interspecific competition coefficient k2.

• The reproductive effort of prey (offspring per adult per birth cycle) is
α. Juvenile prey are born at times tk.

• Those juvenile prey that survive τ time units mature1 into adults. The
maturation delay satisfies tk + τ < tk+1 for all k ∈ Z, and the sequence
{tk : k ∈ Z} is periodic.

1Without any variance—that is, all juvenile prey mature at exactly the same time.
This is a major simplifying assumption.
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• The birth rate of predators conditional on hunting is ρ (units of (prey ·
time)−1) with a type I functional response and death rate h.

Based on these assumptions, the number of juveniles at time tk is y1(tk) =
αy2(t

−
k ). The juvenile prey population then evolves according to the ordinary

differential equation

ẏ1(t) = −δx(t)y1(t)− r1y1(t)

for t ∈ [tk, tk + τ ], whereas y1(tk + τ) = 0 since all remaining juvenile prey
mature simultaneously. We have

y1(tk + s) = y2(t
−
k ) exp

(
−r1s− δ

∫ s

0

x(tk + θ)dθ

)
(IV.4.5)

for s ∈ [0, τ). The right-hand side depends only on the adult prey population,
and since all juveniles mature simultaneously, the result is the impulse effect
(IV.4.4). Using Eq. (IV.4.5), one can then derive the predator growth rate
from (IV.4.1). Since there are no juvenile prey available for hunting when
t ∈ [tk+τ, tk+1), we get (IV.4.2). The remaining differential equation (IV.4.3)
is straightforward.

Remark IV.4.1.1. The right-hand side of (IV.4.1)–(IV.4.2) can indeed be
written as a functional on RCR in a sense that is compatible with, for ex-
ample, conditions H.3/H.5 of Sect. I.4.1. With xt = φ and yt = ψ, it can be
identified with the (time-dependent) functional (φ, ψ) �→ F (t, φ, ψ) − hφ(0),
where

F (t, φ, ψ)

=

{
ραφ(0)ψ(tk−t) exp

(
−r1(t−tk)−δ

∫ 0
−τ χ(tk−t,0)(θ)φ(θ)dθ

)
, t ∈ [tk, tk+τ)

0, t ∈ [tk + τ, tk+1).

IV.4.2 Stability of the Extinction Equilibrium

The extinction equilibrium is the trivial fixed point (x, y) = (0, 0). The
linearization of (IV.4.1)–(IV.4.4) at this fixed point takes the form

ż =

[
−h 0
0 −r2

]
z(t), t �= tk + τ (IV.4.6)

Δz =

[
0 0
0 αe−r1τ

]
z(t− τ), t = tk + τ. (IV.4.7)

Lemma IV.4.2.1. Let the period of the birth sequence be T > 0 with q births
per period. That is, tk+q = tk + T for all k ∈ Z. Define the quantity

R0 =
(
1 + αe(r2−r1)τ

)q
e−r2T .
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The extinction equilibrium is unstable if R0 > 1 and locally asymptotically
stable if R0 < 1.

Proof. The first component of the linearization is an ordinary differential
equation that is exponentially stable, contributing the Floquet multiplier
e−hT . As for the second component, any Floquet eigensolution z2(t) =
φ(t)eλt must satisfy

φ̇ = −(r2 + λ)φ(t), t �= tk + τ

Δφ = αe−(r1+λ)τφ(t− τ), t = tk + τ.

Explicitly solving, we get

φ(tk + τ) = e−(r2+λ)τφ(tk) + αe−(r1+λ)τφ(tk)

= e−λτ
(
e−r2τ + αe−r1τ

)
φ(tk)

φ(tk+1) = e−(r2+λ)(tk+1−(tk+τ))e−λτ
(
e−r2τ + αe−r1τ

)
φ(tk)

= e−(r2+λ)(tk+1−tk)
(
1 + αe(r2−r1)τ

)
φ(tk),

which then implies

φ(tq) = e−(r2+λ)T
(
1 + αe(r2−r1)τ

)q
φ(t0).

φ is a periodic solution (of period T ) if and only if φ(tq) = φ(t0). Explicitly
solving for eλT , one finds eλT = R0. In particular, R0 is a Floquet multiplier.
The result follows by linearized stability (Theorem I.7.7.1).

Remark IV.4.2.1. The quantity R0 is the linear-order compounding ratio
(per period T ) of the prey population near extinction levels. By contrast, the
linear-order continuous-time growth rate is given by the associated Floquet
exponent: λ0 = 1

T logR0, which has the expression

λ0 = −r2 + q log
(
1 + αe(r2−r1)τ

)
.

Observe that if r2 > r1, the adult prey has a higher background mortality
rate, and the time delay has a positive effect on fitness (that is, increasing
τ will increase the growth rate). In the opposite case where r1 < r2, the
juvenile prey has a shorter average life expectancy (equivalently, a higher
death rate ignoring predation) than mature prey, with the time delay having
a corresponding negative effect on fitness. This is consistent with intuition—
overall fitness at low predator levels should be improved by lengthening the
time spent in the juvenile stage only if the juvenile stage is “safer,” in that
the background death rate (ignoring predation) is lower than it is for those in
the adult stage.
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IV.4.3 Analysis of Predator-Free Periodic
Solution

Any predator-free periodic solution (0, y) must satisfy the impulsive delay
differential equation

ẏ = −r2y − k2y
2, t �= tk + τ (IV.4.8)

Δy = αy(tk)e
−r2τ , t = tk + τ. (IV.4.9)

Although this equation is explicitly solvable, it is difficult (or at least tedious)
to analytically compute periodic solutions when there is more than one birth
pulse per period. We will therefore opt for a more topological tactic for exis-
tence and uniqueness of the predator-free periodic solution, covering stability
later.

IV.4.3.1 Existence and Uniqueness of the Predator-Free
Solution

To find periodic solutions of (IV.4.8)–(IV.4.9), it suffices to look for solutions
y that satisfy y(t0) = y(t0+T ). To this end, the general solution t �→ S(t, y0)
of the first equation (IV.4.8) satisfying y(0) = y0 is given by

S(t, y0) =
−r2ξ(y0)

k2ξ(y0)− er2t
, ξ(y0) =

y0
r2 + k2y0

. (IV.4.10)

Since this differential equation is autonomous, the solution t �→ z(t) satisfying
z(s) = zs is given by z(t) = S(t − s, zs). Any solution of (IV.4.8)–(IV.4.9)
satisfies

y(tk + τ) = S(τ, y(tk)) + αe−r2τy(tk)

y(tk+1) = S(tk+1 − tk − τ, S(τ, y(tk)) + αe−r2τy(tk)).

Define for convenience

gk+1(z) = S(tk+1 − tk − τ, S(τ, z) + αe−r2τz). (IV.4.11)

It follows that the solution t �→ y(t) of (IV.4.8)–(IV.4.9) with y(t0) = Y is
periodic if and only if Y is a solution of the fixed-point equation

Y = gq ◦ · · · ◦ g1(Y ) := G(Y ). (IV.4.12)

Lemma IV.4.3.1. The function G is

• twice continuously differentiable on (−ε,∞) for some ε > 0,

• increasing, with G′(0) = R0 and
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• strictly concave on [0,∞).

Proof. Twice continuous differentiability of G follows from its definition. Ob-
serve that the function y �→ S(t, y) in (IV.4.10) is strictly concave on the
nonnegative semiaxis, Y ≥ 0. This can be verified by computing its second
derivative and checking ∂2

yS(t, y) < 0. It is also increasing. Since αe−r2τ ≥ 0,
it follows that y �→ S(τ, y) + αe−r2τy is strictly concave and increasing and,
subsequently, that each gk for k = 1, . . . , q is strictly concave and increas-
ing. The same is therefore true for the composition G = gq ◦ · · · ◦ g1. As
for the claim concerning differentiability at zero, define z(t) = ∂

∂y0
y(t; 0) for

t �→ y(t; y0) the solution of (IV.4.8)–(IV.4.9) satisfying y(t0) = y0. Theo-
rem I.4.2.1 implies that this function is well-defined and, in particular, satis-
fies

ż = −r2z, t �= tk + τ

Δz = αz(tk)e
−r2τ , t = tk + τ,

with initial condition y(t0) = 1. Following (the proof of) Lemma IV.4.2.1,
we get z(t0 + T ) = R0. Since G(Y ) = y(t0 + T ;Y ), the result follows.

Lemma IV.4.3.2. A nontrivial, nonnegative predator-free periodic solution
exists if and only if R0 > 1. In this case, the predator-free periodic solution
is unique.

Proof. Suppose R0 ≤ 1. Then G′(0) = R0 ≤ 1 by Lemma IV.4.3.1, but since
G is strictly concave, it must satisfy G(y) < y for all y > 0. Consequently,
there are no positive solutions of the equation G(Y ) = Y and no nonnegative,
nontrivial predator-free periodic solutions.

If R0 > 1, then G′(0) = R0 > 1 implies the existence of some a > 0 such
that G(y) > y for 0 < y ≤ a. We also know that G(0) = 0. Since G is
strictly concave on [0,∞) and increasing, limy→∞ G(y) exists. It follows that
there exists b > a such that G(b) < b. Applying Theorem 3.3 from Kennan
[80], G has a unique positive fixed point. We conclude that there is a unique
nontrivial, nonnegative predator-free periodic solution.

IV.4.3.2 Stability

The next step in our analysis is the investigation of stability of the predator-
free periodic solution. Here our result will be a bit implicit, since an analytical
expression for the predator-free periodic solution is unavailable.

Theorem IV.4.3.1. Suppose R0 > 1. Define the quantity

R∗
0 = exp

(
−hT +

(1− e−r1τ )ρα

r1

q−1∑
k=0

y∗(tk)

)
,
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where y∗ is the prey component of the unique predator-free periodic solution.
The predator-free periodic solution is unstable if R∗

0 > 1 and locally asymp-
totically stable if R∗

0 < 1.

Proof. The linearization of (IV.4.1)–(IV.4.4) at the predator-free periodic
solution is

ż1 = (ραy∗(tk)e
−r(t−tk) − h)z1(t), t ∈ [tk, tk + τ)

ż1 = −hz1(t), t ∈ [tk + τ, tk+1),

ż2 = −(r2 + 2k2y
∗(t))z2(t), t �= tk + τ

Δz2 = αe−r1τ

(
z2(tk)− y∗(tk)δ

∫ 0

−τ

z1(tk + θ)dθ

)
, t = tk + τ.

Observe that the continuous-time portion (the first three equations) generates
a diagonal system of ordinary differential equations—that is, the z1 equation
is independent of z2 and vice versa. We can formally write the linearization
in block form

ż =

[
A1(t) 0
0 A2(t)

]
z(t), t �= tk + τ (IV.4.13)

Δz =

[
0 0

B1(k) B2(k)

]
zt− , t = tk + τ, (IV.4.14)

for some matrices A1(t) and A2(t) and some functionals B1(k) and B2(k).
Lemma I.2.2.1 implies that the evolution family satisfies

U(tq + τ, t0 + τ) =

1∏
k=q

([
I 0

χ0B1(k) I + χ0B2(k)

]
C(tk + τ, tk−1 + τ)

)
,

where C is the evolution family for the diagonal system generated by (IV.4.13),
and the product is from left to right. The above is a monodromy operator
for the linearization, and it admits a decomposition of the form

V φ := Vt0+τ

[
φ1

φ2

]
=

[
V1 0
V2 V3

] [
φ1

φ2

]

for compact operators V1, V2 and V3 on RCR([−τ, 0],R).
Suppose φ is an eigenvector of V with eigenvalue (the Floquet multiplier)

μ. If φ1 = 0, then by definition V3φ2 = μφ2. It follows that φ2 is a nonzero
eigenvector of the monodromy operator associated with the system

ż2 = −(r2 + 2k2y
∗(t))z2(t), t �= tk + τ

Δz2 = αe−r1τz2(tk), t = tk + τ.

This is precisely the linearization at y∗ in the predator-free system (IV.4.8)–
(IV.4.9), from which it follows that μ = G′(y∗(t0)). Since G is strongly
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concave, increasing and G′(0) = R0 > 1—see Lemma IV.4.3.1—we conclude
that 0 < G′(y∗(t0)) < 1, so μ ∈ (0, 1).

The remaining possibility is that φ1 �= 0. If this is the case, φ1 must be a
nonzero eigenvector of the monodromy operator associated with

ż1 = (ραy∗(tk)e
−r(t−tk) − h)z1(t), t ∈ [tk, tk + τ)

ż1 = −hz1(t), t ∈ [tk + τ, tk+1).

There is only one nontrivial (i.e. nonzero) Floquet multiplier, given pre-
cisely by the Floquet multiplier of the above scalar equation interpreted as
an ordinary differential equation. With a bit of effort, one can verify that
this nontrivial Floquet multiplier is R∗

0. The result then follows by Theo-
rem I.7.7.1.

IV.4.4 Bifurcation at Extinction

The conclusions of Lemma IV.4.2.1 and Lemma IV.4.3.2 strongly suggest that
at R0 = 1, there is a transcritical bifurcation of the predator-free periodic
solution with the extinction equilibrium. In order to complete the proof,
we must demonstrate that there are no other small periodic solutions for
|R0−1| small, apart from the extinction state and the predator-free solution.
To do this, we will perform a centre manifold reduction2 at R0 = 1 and
verify that the quadratic coefficient of the associated discrete-time map does
not vanish. This will guarantee that any parameter variation resulting in a
transversal crossing through the surface R0 = 1 (in parameter space) will
induce a transcritical bifurcation.

From (the proof of) Lemma IV.4.2.1), we know that when R0 = 1, the cen-
tre fibre bundle RCRc(t) is one-dimensional and is spanned by the singleton
qt := (0, zt), where z is a nontrivial periodic solution of

ż = −r2z, t �= tk + τ (IV.4.15)

Δz = αe−r1τz(t− τ), t = tk + τ. (IV.4.16)

Also, the unstable fibre bundle is trivial. From this point forward, we will
take z to be a fixed nontrivial periodic solution. We may without loss of
generality assume z > 0.

To apply Corollary I.6.1.1 concerning the quadratic-order dynamics on
the centre manifold, we must compute the 1 × 2 matrix Yc(t) satisfying the
equation Pc(t)χ0 = qtYc(t) (note: Λ = 1

T log(R0) = 0 since we have assumed
R0 = 1), for Pc(t) the Riesz projection operator onto RCRc(t) along the
monodromy operator. It is therefore necessary to solve the equation

ξφ(i) − Vtφ
(i) = χ0ei (IV.4.17)

2This will essentially give an alternate proof of Lemma IV.4.3.2 with additional details
for the case R0 < 1, as well as ruling out the existence of other small periodic solutions.
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for φ(i) = φ(i)(ξ, ·) ∈ RCR and t ∈ R, with ei the standard basis vectors for
R

2 and i = 1, 2. After completing this calculation, we will have

Pc(t)χ0 =
1

2πi

∫
γ

[
φ(1)(ξ, ·) φ(2)(ξ, ·)

]
dξ, (IV.4.18)

for γ a sufficiently small counterclockwise curve enclosing 1 ∈ C. We can
then use the above to construct Yc(t).

IV.4.4.1 Calculation of the Matrix Yc(t)

If φ solves Eq. (IV.4.17), then examining the first component gives the equa-
tion

ξφ1 − V
(1)
t φ1 = eᵀ1χ0ei,

where V
(1)
t is the monodromy operator for first component of the lineariza-

tion: ż1 = −hz1. If i = 1, evaluation at θ = 0 gives the equation

ξφ1(0)− e−hTφ1(0) = 1,

so that φ1(0) = (ξ − e−hT )−1 and, subsequently, φ1(θ) = ξ−1e−h(T+θ)(ξ −
e−hT )−1 for θ < 0. Conversely, if i = 2, then we get φ1(θ) = 0. Since ξ = 1
is not a pole of either of these functions, we conclude that the first row of
the 2× 2 matrix (IV.4.18) is identically zero.

Next we proceed with the second row of Pc(t)χ0. Again, if φ solves
(IV.4.17), then the second component gives the equation

ξφ2 − V
(2)
t φ2 = eᵀ2χ0ei, (IV.4.19)

where V
(2)
t is the monodromy operator for (IV.4.15)–(IV.4.16), the (decou-

pled) second component of the linearization (IV.4.6)–(IV.4.7). Suppose first
that i = 1. Then eᵀ2χ0e1 = 0, and the above equation reduces to

ξφ2 − V
(2)
t φ2 = 0.

From (the proof of) Lemma IV.4.2.1, the only eigenvalues of V
(2)
t are 0 (the

trivial eigenvalue shared by all compact operators) and R0 = 1. As such,
the above equation has a nontrivial solution if and only if ξ = 1. Thus, in a
punctured neighbourhood of ξ = 1, we have φ2 = 0, and we conclude that
the (2, 1)-entry of Pc(t)χ0 is zero.

To complete our calculation of Pc(t)χ0, we need to study the second row
of (IV.4.17) with i = 2. This is a bit more involved. Let s �→ w(s) denote
the solution (IV.4.15)–(IV.4.16) satisfying xt = φ, for given t ∈ R and some

φ ∈ RCR([−τ, 0],R). That is, wt+T = V
(2)
t φ with V

(2)
t the same operator as

appearing in (IV.4.19). We will handle two cases separately.
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Case 1: t ∈ [tk + τ, tk+1] for some k ∈ Z

We claim that w(s) = z(s)z(t)−1φ(0) for s ≥ t. Indeed, this function is a
scalar multiple of the fixed, nontrivial periodic solution of (IV.4.15)–(IV.4.16)
and satisfies w(t) = φ(0) as required, while the restriction of φ to [−τ, 0) has
no effect on the future dynamics because of the initial time condition t. Since
T − τ > 0, we are guaranteed t + T + θ > t for θ ∈ [−τ, 0]. We can then

express V
(2)
t φ as

V
(2)
t φ(θ) = w(t+ T + θ) = z(t+ T + θ)z(t)−1φ(0) = zt(θ)z(t)

−1φ(0).

Evaluating (IV.4.19) at θ = 0 results in the algebraic equation ξφ(0)−φ(0) =
1, which we readily solve to get φ(0) = (ξ − 1)−1. Evaluating (IV.4.19), we
can directly compute φ(θ). The end result is

φ(ξ, θ) =
1

ξ − 1

{
1, θ = 0
ξ−1zt(θ)z(t)

−1, θ < 0,
,

1

2πi

∫
γ

φ(ξ, θ)dξ = zt(θ)z(t)
−1.

(IV.4.20)

Case 2: t ∈ (tk, tk + τ) for some k ∈ Z

For θ �= 0, Eq. IV.4.19 implies that we can write φ(θ) = 1
ξw(t + T + θ).

Consequently,

d

dθ
φ(θ) =

1

ξ

d

dθ
w(t+ T + θ)

=
1

ξ
(−r2w(t+ T + θ))

= −r2φ(θ)

when θ �= 0 and t + T + θ /∈ {tk + τ : k ∈ Z}—equivalently, when t + θ /∈
{tk + τ : k ∈ Z} due to periodicity of the sequence {tk : k ∈ Z}. We will take
a further ansatz on φ and assume that it is continuous from the left at θ = 0,
so that, in particular, we have φ(tk − t) = e−r2(tk−t)φ(0). Under this ansatz,
we have for s ≥ t that the function w can be written in the form

w(s) = z(t)z(tk)
−1e−r2(tk−t)φ(0).

However, since z(tk)
−1e−r2(tk−t) = [z(tk)e

−r2(t−t−k)]−1 = z(t)−1, the func-
tion w reduces to precisely the same one as in case 1. Solving for φ then pro-
ceeds in the exact same way, so that (IV.4.20) remains valid for t ∈ (tk, tk+τ).
Since (IV.4.19) is guaranteed to have a unique solution for ξ �= 1, we are sat-
isfied.
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Factoring Pc(t)χ0 and Identifying Yc(t)

Combining the previous results, it follows that Pc(t)χ0 can be written in the
form

Pc(t)χ0 =

[
0 0
0 zt(·)z(t)−1

]
=

[
0

zt(·)

] [
0 z(t)−1

]
.

The row vector on the far right-hand side is precisely Yc(t) = [ 0 z(t)−1 ].

IV.4.4.2 Centre Manifold Quadratic Dynamics and
Bifurcation

The data to be input into the quadratic-order dynamics equation on the cen-
tre manifold from Corollary I.6.1.1 are as follows: Λ = 0, Yc(t) = [ 0 z(t)−1 ],

Qt = [ 0 zt ]ᵀ and

f(t, φ, ψ) =

[
F (t, φ, ψ)
−k2ψ(0)

2

]
, g(φ, ψ) =

[
0

αψ(−τ) exp
(
−r1τ − δ

∫ 0

−τ
φ(θ)dθ

) ]
,

where F is as defined in Remark IV.4.1.1. The end result is the scalar ordi-
nary differential equation

u̇ = −k2z2(t)u2 +O(u3). (IV.4.21)

We initially assumed without loss of generality that z > 0, and we now see
that even if we had taken the opposite choice z < 0, this would not alter the

conclusion. Since k2z
2(t) > 0, the quadratic coefficient a20 = −k2

∫ T
0
z2(t)dt

of the associated time T map does not vanish and is strictly negative. It
follows that the extinction equilibrium undergoes a transcritical bifurcation
with the predator-free solution whenever parameter variation results in a
transversal crossing of R0 through unity. There are no other small (i.e. near
(x, y) = 0) periodic solutions near R0 = 1. The predator-free periodic solu-
tion is locally asymptotically stable (for |R0−1| small) if and only if R0 > 1,
while the extinction equilibrium is locally asymptotically stable if and only
if R0 < 1. In the opposite cases, they are unstable.

IV.4.5 Discussion

The analysis of stability for the extinction equilibrium and the existence
and stability of the predator-free periodic solution in this chapter were quite
simple. This is primarily because the impulsive delay differential equations
decouple in convenient ways upon linearization, and the study for existence
of predator-free solutions allows us to consider a scalar equation. It should
be emphasized, however, that as simple as the proofs concerning existence
and stability of the predator-free periodic solution were, it was necessary
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to employ the invariant manifold theory to rule out the existence of other
solutions near the bifurcation point, R0 = 1.

R∗
0 = 1 represents another possible point of analysis, and we would expect

a transcritical bifurcation to occur there as well. The analysis is a bit more
challenging, however, since the predator-free periodic solution is needed to
express R∗

0 analytically. Moreover, the linearization at (0, y∗) is a fair bit
more complicated, as can be seen from the proof of Theorem IV.4.3.1. The
first equation is still decoupled from the second, so computing the matrix
Yc(t) needed to complete the bifurcation analysis may not be overly difficult.
We leave the problem of analyzing the bifurcation at R∗

0 = 1 open.



Chapter IV.5

Dynamics of an In-host
Viral Infection Model with
Drug Treatment

The final chapter of this part of the monograph will quickly demonstrate the
difficulty in analyzing systems of impulsive functional differential equations
without analytically available “reference states” such as periodic solutions.
The majority of the analysis will be completed with the help of numerical
methods, and even then we will not delve too deeply into it.

Broadly, our starting point here is the dynamics of human immunodefi-
ciency virus (HIV). Here, there is a small time delay between the time when a
CD4+ T cell is infected by a HIV-1 virus and when it begins producing virus
particles. In the infectious disease modelling literature, this is sometimes
modelled by a discrete delay; see for instance [87, 111, 134]. The impact
of protease inhibitors and reverse transcriptase inhibitors—two drugs that
serve to decrease viral load—has been considered [133] in a model without
delay, with the drug doses being modelled by impulses. Reverse transcriptase
inhibitors—as their name implies—inhibit reverse transcriptase. The latter
is an enzyme responsible for generating complementary DNA from an RNA
template, a process that retroviruses including HIV rely on to replicate. In
some sense, reverse transcriptase inhibitors “immunize” cells against viral
infection. Protease inhibitors disrupt the production of proteins necessary to
correctly build virus particles in an infected cell.

There are two interesting mechanisms we wish to study here. First, there
is the “vaccination” action of drug treatment on viral target cells. There
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is also the finite time delay between infection of a cell and production of
virions. We will propose here a general in-host viral infection model that
takes into account these two features. Although the inspiration is in-host
HIV dynamics, the model is fairly general and could be applied in other
situations. The model is as follows:

Ṫ = ŝ − μT (t) − βT (t)V (t) − rT (t)R(t) + mTr(t), t �= kq

(IV.5.1)

Ṫr = rT (t)R(t) − mTr(t) − μTr(t), t �= kq

(IV.5.2)

İ = βT (t − τ)V (t − τ)e
−μτ

exp

(
−r

∫ 0

−τ

R(t + θ)dθ

)
+ mIr(t)

− rI(t)R(t) − αI(t), t �= kq

(IV.5.3)

İr = βT (t − τ)V (t − τ)e
−μτ

(
1 − exp

(
−r

∫ 0

−τ

R(t + θ)dθ

))
− mIr(t)

+ rI(t)R(t) − αIr(t), t �= kq

(IV.5.4)

V̇ = α(γI(t) + νIr(t)) − δV (t) − βT (t)V (t), t �= kq

(IV.5.5)

Ṙ = −rη

(∫ 0

−τ

βT (t + θ)V (t + θ) exp

(
θμ − r

∫ 0

θ

R(t + ξ)dξ

)
dθ

)
R(t) − ρR(t)

− rη(T (t) + I(t))R(t), t = kq,

(IV.5.6)

ΔR = Q, t = kq,

(IV.5.7)

for k ∈ Z. T denotes the population of susceptible cells that have not ab-
sorbed the drug, Tr denotes the population of susceptible cells that have
absorbed the drug, I denotes the infected cells that have not absorbed the
drug, while Ir denotes the cells that have. V is the population of virions
(virus particles), and R is the amount of drug. These quantities are typically
measured in terms of concentrations. The fate of each individual cell/particle
in addition to its population dynamics is as follows.

• Susceptible cells (T ) are produced at a constant rate ŝ and die at rate
μ. They can also absorb drug at rate rR(t) or become infected at rate
βV (t). Those cells that had absorbed drug clear it at rate m.

• Cells that have absorbed drug (Tr) either clear it from their intracellular
compartment or die.

• Infected cells (I) become productive τ units of time after coming into
contact with virus, provided they do not die (at rate μ) or absorb drug
(at rate rR(t)) during this intermediate phase, hence the exponential
terms. These cells die at rate α.



IV.5.1. DERIVATION OF THE DELAYED TERMS 357

• Infected cells that have absorbed drug come from two sources: from
those infected cells that absorb drug while productively infected or
by absorbing drug after infection but before becoming productively
infected τ time units later. The latter is accounted for in the distributed
delay term, while the former is the semilinear term rI(t)R(t).

• Virus particles (V ) are produced by infected cells at an effective rate of
αγI(t) and drug-affected cells at rate ανIr(t). Virions degrade at rate
δ and infect susceptible cells at rate βT (t).

• The dose size of the drug is Q, and doses occur at times kq for k ∈ Z

(or, for biological significance, on some positive half-line of the integers).
The drug is metabolized (i.e. removed) at rate ρ and is absorbed into
susceptible cells at rate ηrT (t) and productively infected cells at rate
ηrI(t). The absorption rate of drug by those infected cells that have not
yet become productively infected (during the τ time unit intermediate
phase) is captured by the distributed delay term. It is assumed that
doses occur infrequently relative to the delay, so τ < q. η is a conversion
ratio representing the average quantity of drug absorbed per cell before
it becomes effective.

Remark IV.5.0.1. In the case of HIV, some experimental evidence [111]
suggests τ ≈ 1, whereas HIV drugs are often taken once per day or multiple
times per day. This is therefore one of the seemingly rare cases where the
delay appearing in the model feasibly could be larger than the time between
impulses.

The distributed delay terms arise naturally from the presence of the dis-
crete time delay between infection and production of virions. A derivation of
these terms is provided in Sect. IV.5.1. The complete model (IV.5.1)–(IV.5.7)
is very difficult to analyze by hand. Indeed, we have no analytical expression
for even a disease-free periodic solution and to establish the existence of such
a solution, we will need to use indirect methods—see Sect. IV.5.2. As such,
after proving well-posedness of the model and boundedness of solutions in
Sect. IV.5.3, we will immediately proceed to the numerical bifurcation anal-
ysis.

In this section, we will denote RCR+ = RCR([−τ, 0],R6
+)—that is, the

phase space consists of the right-continuous regulated functions that are non-
negative.

IV.5.1 Derivation of the Delayed Terms

During the short time interval [t − τ, t − τ + dt], an amount I0 = βT (t −
τ)V (t− τ)dt of cells is infected. At time t, some of these cells will have died,
while some of them will have absorbed drug. Let x(s) denote the amount
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of cells that have not died or absorbed drug for s ∈ [0, τ ]. Since these cells
exhibit the same death rate and absorption rate of the drug, we have

dx

ds
= −rx(s)R(t− τ + s)− μx(s),

with x(0) = I0. Solving the linear ODE, we get

x(τ) = I0 exp

(
−μτ − r

∫ τ

0

R(t− τ + s)ds

)

= βT (t− τ)V (t− τ)e−μτ exp

(
−
∫ 0

−τ

rR(t+ θ)ds

)
dt.

Dividing by dt, this is precisely the rate at which cells become productively
infected, and it accounts for the distributed delay in (IV.5.3).

We also need to determine the amount of cells that absorb drug after infec-
tion but before becoming productively infected and survive this intermediate
period. This can be determined by first observing the total amount of cells
that have not died by time s ∈ [0, τ ], in the sense of the previous derivation,
which is given by

y(s) = βT (t− τ)V (t− τ)−μsdt.

If we denote by z(s) the amount of cells that absorbed drug by time s ∈ [0, τ ],
then from conservation of mass, y = x+ z. Consequently,

z(τ) = βT (t− τ)V (t− τ)e−μτ

(
1− exp

(
−
∫ 0

−τ

rR(t+ θ)ds

))
dt.

This accounts for the distributed delay term in (IV.5.4).
Finally, we need to determine the rate of change or the drug. From the

model assumptions, this is consumed by

• cells that have not been infected (T (t), rate constant ηr),

• infected cells (I(t), rate constant ηr),

• those cells that have been infected but are not yet producing virus (rate
constant ηr) and

• linear decay (rate ρ).

The third item on the list will require a bit of work to compute. We know
that

Iu = βT (t− τ + u)V (t− τ + u)dt

is the amount of cells infected in the small interval [t− τ + u, t− τ + u+ dt]
for some arbitrary u ∈ [0, τ ]. Similar to the first paragraph,

xu(s) = βT (t− τ + u)V (t− τ + u) exp

(
−μs− r

∫ s

0

R(t− τ + u+ z)dz

)
dt
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is the amount of cells that have not absorbed drug or died at time t−τ+u+s,
given an initial small quantity of infected cells xu(0) = Iu at time t− τ + u.
We want to count all of the cells that were infected at any point in the interval
[t − τ, t] but have not absorbed drug prior to time t or died. This is given
precisely by the integral

∫ τ

0

xu(τ − u)du =

∫ τ

0

Iu exp

(
−μ(τ − u)− r

∫ τ−u

0

R(t− τ + u+ z)dz

)
du

= dt ·
∫ 0

−τ

βT (t+ θ)V (t+θ) exp

(
θμ− r

∫ 0

θ

R(t+ v)dv

)
dθ.

Therefore, the differential of R(t) is

dR(t) = −r
(
T (t) + I(t) +

∫ 0

−τ

βT (t+ θ)V (t+ θ)

× exp

(
θμ− r

∫ 0

θ

R(t+ v)dv

)
dθ +

ρ

r

)
R(t)dt,

which is equivalent to (IV.5.6).

IV.5.2 Existence of a Disease-free Periodic
Solution and a Disease-free Attractor

The disease-free subspace, that is, the set

Ω = {φ = (T, Tr, I, Ir, V,R) ∈ RCR : I = Ir = V = 0},

is invariant under (IV.5.1)–(IV.5.6). The dynamics restricted to Ω are given
by the system of ordinary impulsive differential equations

Ṫ = ŝ− μT − rTR+mTr, t �= kq (IV.5.8)

Ṫr = rTR− (m+ μ)Tr, t �= kq (IV.5.9)

Ṙ = −ρR− ηrTR, t �= kq (IV.5.10)

ΔR = Q, t = kq. (IV.5.11)

Observe that the positive orthant Ω+ = {(T, Tr, R) ∈ R
3 : T, Tr, R ≥ 0} is

positively invariant. If we define the sum Z = T + Tr + Q, it satisfies the
differential equality

Ż ≤ ŝ−min{μ, ρ}Z, t �= kq

ΔZ = Q, t = kq
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whenever (T, Tr, R) ∈ Ω+. One can then prove with little difficulty that Z(t)
is uniformly ultimately bounded. That is, for any initial condition Z(0) ≥ 0
and ε > 0, there exists t∗ > 0 such that

0 ≤ Z(t∗) ≤ ε+
Q

1− e−qmin{μ,ρ} +
ŝ

min{μ, ρ} .

Moreover, this bound can be achieved uniformly for T (0) ∈ B for any
bounded set B ⊂ Ω+. Define the simplex

Ω∗(ε) =

{
(T, Tr, R) ∈ R

3 : 0 ≤ T + Tr +R ≤ ε+
Q

1− e−qmin{μ,ρ} +
s

min{μ, ρ}

}
,

and let S : Ω+ → Ω+ be the time q map associated with (IV.5.8)–(IV.5.11). It
follows that Ω∗(ε) is a compact, absorbing set for the discrete-time dynamical
system S : Ω+ → Ω+ for each ε > 0. By the theory of dissipative systems[19],
we then get the following result.

Lemma IV.5.2.1. The disease-free subspace Ω contains at least one periodic
solution. The dynamics restricted to this subspace admits a unique global
attractor. We refer to it as the disease-free attractor.

We can obtain slightly more information concerning the structure of the
disease-free attractor. When Q = 0, the system degenerates to (IV.5.8)–
(IV.5.10), which has the global attractor consisting of a single, hyperbolic
fixed point

X∗(0) =

(
ŝ

μ
, 0, 0

)
.

There are no other fixed points. Since this fixed point is hyperbolic, it persists
uniquely for Q > 0 small enough. Denote this fixed point by X∗(Q), and let
t �→ x∗(t;Q) denote the associated periodic solution.

Corollary IV.5.2.1. Exactly one of the following holds:

• for each Q > 0, the periodic solution x∗(·;Q) is locally asymptotically
stable;

• there exists Q > 0 such that x∗(·;Q) is nonhyperbolic—equivalently,
X∗(Q) is a nonhyperbolic fixed point of the discrete-time system S :
Ω+ → Ω+.

This corollary will later justify our numerical approach of searching for the
disease-free periodic solution by parameter continuation in the Q parameter.

IV.5.3 Well-Posedness and Boundedness

In this section we consider some fundamentals concerning the complete model.
Namely, we will prove that the nonnegative phase space RCR+ is indeed
positively invariant and that every solution remains bounded for all (future)
time.
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Lemma IV.5.3.1. For any initial condition (φ, s) ∈ RCR+×R, the unique
(local) solution t �→ S(t, s)φ of (IV.5.1)–(IV.5.7) satisfies S(t, s)φ ∈ RCR+

as long as this solution exists.

Proof. Suppose, by way of contradiction, that there exists t∗ > s such that
S(t∗, s)φ /∈ RCR+. Let t �→ x(t) denote the solution in the Euclidean space
R

6. Then, there exists t∗∗ ≥ s with the following properties:

• x(t∗∗) is on the boundary of R6
+—that is, at least one component of

x(t∗∗) is zero;

• at least one component of x(t) that was zero at t = t∗∗ is negative for
all t ∈ (t∗∗, t∗∗ + ε) for some small ε > 0;

• there is no t ∈ [s, t∗∗) with these properties.

Let x(t∗∗) = (T, Tr, I, Ir, V,R). If T = 0, then from (IV.5.1), we can see that
Ṫ > 0, so this component cannot decrease through zero. If R = 0, then from
(IV.5.6) we have Ṙ = 0, so the R component cannot decrease through zero.
If Tr = 0, then Ṫr = rTR. Since T and R are bounded away from zero, we
conclude that Tr cannot decrease through zero.

Now, suppose that I = 0 and that the I component is negative for t ∈
(t∗∗, t∗∗+ε). It follows that one of Ir and V (t∗∗−τ) is nonpositive. Since they
both cannot be zero on (t∗∗, t∗∗ + ε), one of them must be strictly negative.
However, it cannot be V (t∗∗−τ) because this would contradict the definition
of t∗∗. Thus, Ir < 0. But this once again contradicts the definition of t∗∗. It
follows that the I component cannot go negative. The same type of argument
can be used to show that neither Ir nor V goes negative, thereby completing
the proof.

Lemma IV.5.3.2. The solutions of (IV.5.1)–(IV.5.7) remain bounded for
all time. That is, to any (φ, s) ∈ RCR+ × R, there exists K > 0 such that
||S(t, s)φ|| ≤ K for all t ≥ s.

Proof. Without loss of generality, let s = 0. Consider the sum Z1 = T + Tr.
Z1 satisfies the differential inequality

Ż1 ≤ ŝ− μZ1,

from which it follows that each of T (t) and Tr(t) is asymptotically bounded
above by μ−1ŝ+ε for any ε > 0. In a similar manner, R satisfies the impulsive
differential inequality

Ṙ ≤ −ρR, t �= qk

ΔR = Q, t = qk.
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The upper solution of this differential inequality converges exponentially to
a periodic solution. In particular,

R(t) ≤ Q

1− e−ρq
+ ε

asymptotically for any ε > 0.
Next, we aim to show that any given solution with an initial condition in

RCR+ remains bounded for all (positive) time. Assuming to the contrary,
at least one of the three components, I, Ir or V , must be unbounded since
we already know that the remaining components are uniformly bounded.
Suppose V is unbounded. Since the sum Z1 = T + Tr remains bounded and
satisfies the differential equation

Ż1 = ŝ− μZ1 − βT (t)V (t).

V can only be unbounded if T (t)V (t) is bounded. Now, define Z2 = I + Ir.
Then,

Ż2 ≤ βT (t− τ)V (t− τ)e−μτ − αZ2,

V̇ ≤ αmax{γ, ν}Z2 − δV.

By Gronwall’s inequality, Z2 remains bounded (since both T (t−τ)V (t−τ) and
R are bounded). We can then apply Gronwall’s inequality to get boundedness
of V , which is a contradiction. Therefore, V remains bounded. Since V is
bounded, we then have Ż2 ≤ C − αZ2 asymptotically for some constant C,
which implies that Z2 is bounded. Since each of Z1, R, V and Z2 is bounded
and all quantities are positive, the solution itself remains bounded for all
time.

The well-posedness of the model is proven, and we will now move onto the
numerical results. We would ideally like to prove that solutions are uniformly
ultimately bounded so that with a bit of effort we could again apply the theory
of dissipative systems to get the existence of a global attractor. From the
proof of the previous lemma, it is not difficult to obtain uniform bounds on
the T , Tr and R components, but the infected and virus components, I, Ir
and V , are difficult to bound uniformly. As such, we will not continue along
these lines here.

IV.5.4 Numerical Bifurcation Analysis:
Preamble

There are two tasks we must accomplish in order to complete even a non-
rigorous numerical bifurcation analysis. They are as follows:
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• transform the system (IV.5.1)–(IV.5.7) into a form that is amenable
to numerical integration—for crude parameter continuation of periodic
solutions;

• derive an efficient method of discretizing the monodromy operator as-
sociated with a linearized periodic solution—for bifurcation detection.

Following this, we will locate a disease-free periodic solution, perform param-
eter continuation and attempt to identify bifurcation points.

IV.5.4.1 Model Transformation

It is necessary to perform some transformations to the model as most nu-
merical integration packages do not support distributed delays out of the
box and these appear in (IV.5.3), (IV.5.4) and (IV.5.6). For instance, MAT-
LAB’s dde23 solver supports discrete (and state-dependent discrete) delays,
but not distributed delays. To accomplish this, define the functions

κ1(t) = exp

(
−r
∫ 0

−τ

R(t+ θ)dθ

)
, (IV.5.12)

κ2(t) =

∫ 0

−τ

βT (t+ θ)V (t+ θ) exp

(
θμ− r

∫ 0

θ

R(t+ ξ)dξ

)
dθ. (IV.5.13)

These functions appear in (IV.5.3), (IV.5.4) and (IV.5.6). Each one is contin-
uous and differentiable from the right everywhere. By rewriting the integral
terms, we can determine a system of delay differential equations in the vari-
ables, R, κ1 and κ2. Namely, writing equivalently

κ1(t) = exp

(
−r
∫ t

t−τ

R(θ)dθ

)
,

κ2(t) =

∫ t

t−τ

βT (θ)V (θ) exp

(
μ(θ − t)− r

∫ t

θ

R(ξ)dξ

)
dθ,

one can verify that these functions satisfy

κ̇1(t) = r (R(t− τ)−R(t))κ1(t), (IV.5.14)

κ̇2(t) = βT (t)V (t)− βT (t− τ)V (t− τ)e−μτκ1(t)− (μ+ rR(t))κ2(t).
(IV.5.15)

Appending these to (IV.5.1)–(IV.5.7) and substituting κ1 and κ2 in the ap-
propriate places in the original functional differential equations, the resulting
system can now be simulated using MATLAB’s dde23, with the impulses
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handled using events. For ease of reference later, we write down the com-
plete system now:

Ṫ = s− μT (t)− βT (t)V (t)− rT (t)R(t) +mTr(t), t 	= kq
(IV.5.16)

Ṫr = rT (t)R(t)−mTr(t)− μTr(t), t 	= kq
(IV.5.17)

İ = βT (t− τ)V (t− τ)e−μτκ1(t) +mIr(t)− rI(t)R(t)− αI(t), t 	= kq
(IV.5.18)

İr = βT (t− τ)V (t− τ)e−μτ (1− κ1(t))−mIr(t) + rI(t)R(t)− αIr(t), t 	= kq
(IV.5.19)

V̇ = α(γI(t) + νIr(t))− δV (t)− βT (t)V (t), t 	= kq
(IV.5.20)

Ṙ = −rηκ2(t)R(t)− ρR(t)− rη(T (t) + I(t))R(t), t = kq,
(IV.5.21)

κ̇1 = r(R(t− τ)−R(t))κ1(t), t 	= kq
(IV.5.22)

κ̇2 = βT (t)V (t)− βT (t− τ)V (t− τ)e−μτκ1(t)− (μ+ rR(t))κ2(t), t 	= kq
(IV.5.23)

ΔR = Q, t = kq.
(IV.5.24)

One must be careful with the modified system (IV.5.16)–(IV.5.24). The
initial conditions φ1, φ2 ∈ RCR for the functions κ1 and κ2 must be chosen
in such a way that

φ1(0) = exp

(
−r
∫ 0

−τ

R0(θ)dθ

)
, (IV.5.25)

φ2(0) =

∫ 0

−τ

βT0(θ)V0(θ) exp

(
μθ − r

∫ 0

θ

R0(ξ)dξ

)
dθ, (IV.5.26)

where T0, V0, R0 ∈ RCR are the respective initial conditions for T cells,
virus and RTI, respectively. This is needed to ensure compatibility with the
definition of κ1 and κ2.

Remark IV.5.4.1. The system (IV.5.1)–(IV.5.7) is not equivalent to
(IV.5.16)–(IV.5.24). For example, even though every periodic solution of the
first system uniquely determines one in the second system, the opposite is not
true. Indeed, This is mainly due to the fact that κ1 and κ2 are essentially
defined through differentiation and subsequent integration of the distributed
delay terms and so are not determined uniquely. A periodic solution must
have its κ1 and κ2 components satisfy the conditions (IV.5.12)–(IV.5.13).
Additionally, although one can study the stability of a periodic solution of the
original system using the new one (IV.5.16)–(IV.5.24)—and we will indeed
do this—the latter will always have μ = 1 as a Floquet multiplier. See [106]
for additional details.



IV.5.4. NUMERICAL BIFURCATION ANALYSIS: PREAMBLE 365

IV.5.4.2 Monodromy Operator Discretization

Once a (numerical) periodic solution (of period q) has been identified, we can
symbolically linearize the system at this solution. The linearization at this
periodic solution does not actually have any impulse effects, since the Fréchet
derivative of the (constant) right-hand side of (IV.5.7) vanishes. As such,
abstractly the linearization will take the form of a linear delay differential
equation

ż = A(t)z(t) +B(t)z(t− τ), (IV.5.27)

where the n×n (n = 8 for (IV.5.16)–(IV.5.24)) matrices A(t) and B(t) are q-
periodic, continuous and differentiable except at times t ∈ qZ where they are
continuous from the right. This delay differential equation can be solved using
the method of steps, and for continuous A and B, Gilsinn and Potra [50] used
the Chebyshev spectral collocation to discretize the monodromy operator for
systems of the type (IV.5.27) and obtained some convergence guarantees.
Church and Liu [32] proposed a quadrature-based approach to discretize a
monodromy operator for a linear impulsive delay differential equation but
did not derive any convergence guarantees. Since the latter method is quick
to implement, the exposition is fairly simple and we will only be using it as a
crude test for possible bifurcation points, we will use it as our discretization
scheme and outline it here.

Let V0 = U(q, 0) be the monodromy operator. Let M be the largest
integer such that Mτ ≤ q. Roughly speaking, the method is divided into
M + 1 stages:

• Stage 0: Given an initial condition (function) z0, compute (approxi-
mate) zτ .

• Stage j = 1, . . . ,M − 1: Compute (approximate) z(j+1)τ given zjτ .

• Stage M : Compute (approximate) zq = V0z0 given zMτ .

Each of zτ , . . . , zMτ and zq can be computed sequentially by the method of
steps. We will begin with steps 1, . . . ,M .

Let 0 ≤ j ≤ M − 1. For notational simplicity, denote zjτ = φ. The
solution through the initial condition (z0, 0) satisfies, for t ∈ [jτ, (j + 1)τ ],
the ordinary differential equation

u̇ = A(t)u(t) +B(t)φ(t− (j + 1)τ).

Let X(t, s) denote the Cauchy matrix for the ODE ẋ = A(t)x. Then, define
Z(t, s) ≡ X(t, s) for t ≥ s, while Z(t, s) = 0 for t < s. Let ν ∈ [−τ, 0]. For
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brevity, denote t = jτ . By the variation-of-constants formula,

u(t+ τ + ν)

= X(t+ τ + ν, t)φ(0) +

∫ t+τ+ν

t
X(t+ τ + ν, s)B(s)φ(s− t− τ)ds

= X(t+ τ + ν, t)φ(0) +

∫ ν

−τ
X(t+ τ + ν, t+ τ + s)B(t+ τ + s)φ(s)ds

= Z((j + 1)τ + ν, jτ)φ(0) +

∫ 0

−τ
Z((j + 1)τ + ν, (j + 1)τ + s)B((j + 1)τ + s)φ(s)ds.

Writing the above in the phase space RCR, we conclude that

z(j+1)τ (θ) = Z((j + 1)τ + θ, τj)zjτ (0)

+

∫ 0

−τ

Z((j + 1)τ + θ, (j + 1)τ + s)B((j + 1)τ + s)zjτ (s)ds.

(IV.5.28)

We discretize/approximate (IV.5.28) as follows. Let some natural number
N be given, assume θ ∈ {s1, . . . , sN} for −τ < s1 < · · · < sN < 0 the
standard Gauss–Legendre points translated to the interval (−τ, 0) and let
w1, . . . , wN denote the corresponding weights. For a function f : [−τ, 0] →
R

n, define the (N + 1)× 1 vector array

f̃ =

⎡
⎢⎢⎢⎣

f(s1)
...

f(sN )
f(0)

⎤
⎥⎥⎥⎦ .

Denote Zj+1(t, s) = Z((j+1)τ+t, (j+1)τ+s) and Bj+1(s) = B((j+1)τ+s).
Since the integrand in (IV.5.28) is continuous except at finitely many points,
the Gaussian quadrature justifies the approximation

z̃(j+1)τ ≈

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Zj+1(s1, s1)Bj+1(s1)w1 · · · Zj+1(s1, sN )Bj+1(sN )wN Zj+1(s1,−τ)

.

.

.
. . .

.

.

.

.

.

.

Zj+1(sN , s1)Bj+1(s1)w1 · · · Zj+1(sN , sN )Bj+1(sN )wN Zj+1(sN ,−τ)

Zj+1(0, s1)Bj+1(s1)w1 · · · Zj+1(0, sN )Bj+1(sN )wN Zj+1(0,−τ)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

z̃jτ

≡ K̃j+1,N z̃jτ ,

with convergence (in some appropriate sense) as N → ∞, and the multipli-
cation is interpreted as the product of a block matrix with an array (with
the correct dimensions). Successively iterating, it follows that

z̃mτ =

⎛
⎝ M∏

j=1

K̃j,N

⎞
⎠ z̃0

with the indexed product multiplying from right to left:
∏M

j=1 K̃j =

K̃M · · · K̃1.
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The final stage is to compute/approximate zq. This is very similar to the
previous derivation. In particular, if one defines Zq(t, s) = Z(q + t, (M +
1)τ + s) and Bq(s) = B((M + 1)τ + s), we can write

zq(θ) =

{
Zq(θ,−τ)zMτ (0) +

∫ 0
−τ

Zq(θ, s)Bq(s)zMτ (s)ds, q + θ ≥ 0

zMτ (q + θ), q + θ < 0.

Let ξ = max{i = 1, . . . , N : q + si < 0}. Then, we get the approximation

z̃q ≈
[

0ξn×(N−ξ)n | Iξn×ξn | 0ξn×n

D

]
z̃Mτ ≡ F̃N z̃Mτ ,

where D is the (N + 1− ξ)n× (N + 1)n matrix

D =

⎡
⎢⎢⎢⎣

Zq(sξ+1, s1)Bq(s1)w1 · · · Zq(sξ+1, sN )Bq(sN )wN Zq(sξ+1,−τ)
...

. . .
...

...
Zq(sN , s1)Bq(s1)w1 · · · Zq(sN , sN )Bq(sN )wN Zq(sN ,−τ)
Zq(0, s1)Bq(s1)w1 · · · Zq(0, sN )Bq(sN )wN Zq(0,−τ)

⎤
⎥⎥⎥⎦ .

We can now define the approximate monodromy matrix. It is the n(N +
1)× n(N + 1) matrix

Ṽ0,N = F̃N ·
M∏
j=1

K̃j,N . (IV.5.29)

It is reasonable to suspect that as N → ∞, every eigenvalue of Ṽ0,N ap-
proaches some eigenvalue of the operator V0. This heuristic is far from rig-
orous, and we make no effort to prove it here. See also the comments from
Sect. I.3.5.

Remark IV.5.4.2. For computational efficiency, it is worth noting that in
general, the nonzero entries Zq(si, sj) can be equivalently written as Zq(si, sj)
= Zq(si,−τ)[Zq(sj ,−τ)]−1, so it is only necessary to compute Zq(si,−τ) for
i = 1, . . . , N . This of course assumes that the matrix inversion is numerically
stable, which, as it turns out, is not the case for the analysis of the model
from this section.

The reader interested in how this method can be adapted to accommodate
for impulse effects (with or without delay) in the linearization is encouraged
to consult Appendix B of [32].

IV.5.4.3 Parameters

The model parameters are chosen for illustrative purposes. For the bifur-
cation analysis, we will look at one parameter that is expected to have an
influence on the stability of the disease-free periodic solution. This will be Q,
the drug dose size. The complete list of parameters and ranges is provided
in Table IV.5.1
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Parameter Numerical value/range
s 100
μ 0.1
r 5.61
η 0.001
m 4.16
ρ 5
δ 3
β 0.0032
τ 1
α 0.5
γ 125
ν 125
Q [350,450]
q 0.5

Table IV.5.1: Parameters used for the numerical bifurcation analysis for the
system (IV.5.1)–(IV.5.7)

IV.5.5 Transcritical Bifurcation from the
Disease-free Periodic Solution

The bifurcation parameter being Q, the disease-free periodic solution with
Q = 350 was computed by solving the boundary-value problem

Ṫ = 100− 0.1T − 5.61TR+ 4.16Tr, T (0) = T (0.5) (IV.5.30)

Ṫr = 5.61TR− (4.16 + 0.1)Tr, Tr(0) = T (0.5) (IV.5.31)

Ṙ = −5R− 0.001 · 5.61TR, R(0) = R(0.5) +Q (IV.5.32)

with bvp4c in MATLAB. We then increased Q by increments of 1 and used
the prior solution as the new guess for the solver, terminating at Q = 450.
This branch of solutions was stored for later calculations.

The result was then used to define the branch of disease-free periodic
solutions that is passed to the monodromy operator discretization scheme.
This requires redefining the R component of the periodic solution so that

R(0.5) = R(0.5−) +Q = R(0),

thereby correcting the impulse condition, in addition to computing κ1(t) from
its definition. This is accomplished by periodically extending the function R.
No changes to T and Tr are needed apart from the periodic extension.
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Next, we use the monodromy operator discretization scheme to approxi-
mate the Floquet spectrum along the branch of periodic solutions. We use
N = 40 quadrature points and ode45 with standard integration tolerances
for the Cauchy matrix calculations. Since 0.5 = q < τ = 1, only the final
stage of the scheme is necessary—that is, we have M = 0 in the notation of
Sect. IV.5.4.2. The spectral radius of Ṽ0,N was calculated at each point Q
along the branch of periodic solutions, and the value of Q at which the spec-
tral radius crossed unity was identified. This was taken as the approximate
bifurcation point, which we denote by Q̃.

IV.5.5.1 Results

Figure IV.5.1 provides the main result of the “algorithm” outlined earlier.
The (numerical) critical dosage Q̃ = 366 was identified. Since the relevant
Floquet multiplier crosses the unit circle transversally (or at least this is
observed numerically, since Q = 366 appears to be a regular point on the
curve from the figure) and is real at the crossing point, we should expect a
transcritical bifurcation of periodic solutions to occur there.
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Figure IV.5.1: Plot of the spectral radius of the discretized monodromy op-
erator versus the drug dose size Q along the disease-free periodic solution.
The crossing point at unity spectral radius is indicated by a dot. Note the
small numerical range of the spectral radius: for this range of Q arguments,
it is [0.9494, 1.0220]. Inset: the Floquet spectrum (set of Floquet exponents)
at the numerically estimated critical dosage size Q̃ = 366, windowed to the
strip −6 ≤ $(z) ≤ 1
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To provide some additional verification of this bifurcation, we have sim-
ulated the system (IV.5.1)–(IV.5.7) using the discrete delay representation
from Sect. IV.5.4.1 at Q = 361 and Q = 376 (the convergence rate is far
too slow even at Q = 376 to provide a reasonable figure demonstrating sta-
bility of the disease-free periodic solution). This can be seen in Figs. IV.5.2
and IV.5.3. As expected, for Q = 361, the viral component settles into an
endemic (nonzero) state, while at Q = 376 the viral load is decreased to zero.
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Figure IV.5.2: Plots of the virus (V ), drug (R) and total infected cell (I +
Ir) components of the system (IV.5.1)–(IV.5.7) versus time (t) from initial
conditions T (0) = 1000 and V (0) = 1 (all others zero), with Q = 361. The
susceptible cell component (T+Tr) is not plotted because it is on the order of
1000 and is not as informative insofar as verifying the stability of the disease-
free solution. The viral component provides a good proxy for verifying the
stability or instability of the disease-free periodic solution, and we see that
this component does not go to zero
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Figure IV.5.3: A plot analogous to the one in Fig. IV.5.2 except withQ = 376.
The colours and line styles are the same as in the previous legend. Compared
to the previous case Q = 361, the viral component is decreasing near t = 10,
albeit very slowly. Inset: simulation until time t = 500 with drug component
not plotted. Here the exponential decay of virus and infected cell is more
clearly seen
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equation with an impulsive self-support condition. J. Dyn. Differ. Equ.
32(2), 605–614 (2019)



BIBLIOGRAPHY 377

47. P. Feketa, N. Bajcinca, On robustness of impulsive stabilization. Auto-
matica 104, 48–56 (2019)

48. T. Gao, W. Wang, X. Liu, Mathematical analysis of an HIV model
with impulsive antiretroviral drug doses. Math. Comput. Simul. 82(4),
653–665 (2011)

49. P. Georgescu, H. Zhang, L. Chen, Bifurcation of nontrivial periodic
solutions for an impulsively controlled pest management model. Appl.
Math. Comput. 202(2), 675–687 (2008)

50. D.E. Gilsinn, F.A. Potra, Integral operators and delay differential equa-
tions. J. Integral Equ. Appl. 18(3), 297–336 (2006)

51. R. Goebel, R.G. Sanfelice, A.R. Teel, Hybrid Dynamical Systems: Mod-
eling, Stability, and Robustness (Princeton University Press, 2012)

52. K. Gopalsamy, B.G. Zhang, On a neutral delay logistic equation. Dyn.
Stab. Syst. 2(3-4), 183–195 (1988)

53. K. Gopalsamy, B.G. Zhang, On delay differential equations with im-
pulses. J. Math. Anal. Appl. 139(1), 110–122 (1989)

54. S.A. Gourley, Y. Kuang, A stage structured predator-prey model and its
dependence on maturation delay and death rate. J. Math. Biol. 49(2),
188–200 (2004)

55. S. Guo, J. Wu, Bifurcation Theory of Functional Differential Equations,
vol. 184 of Applied Mathematical Sciences (Springer New York, New
York, NY, 2013)

56. J. Hale, Functional Differential Equations (Springer, New York, 1971)

57. J. Hale, Asymptotic Behavior of Dissipative Systems, vol. 25 of Math-
ematical Surveys and Monographs (American Mathematical Society,
Providence, RI, 1988)

58. J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential
Equations, vol. 99 of Applied Mathematical Sciences (Springer New
York, New York, NY, 1993)

59. X. Hao, L. Liu, Mild solution of semilinear impulsive integro-differential
evolution equation in Banach spaces. Math. Methods Appl. Sci. 40(13),
4832–4841 (2017)

60. M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Nor-
mal Forms in Infinite-Dimensional Dynamical Systems (Springer, Lon-
don, 2011)



378 BIBLIOGRAPHY

61. B.D. Hassard, Counting roots of the characteristic equation for linear
delay-differential systems. J. Differ. Equ. 136(2), 222–235 (1997)

62. M.L. Hbid, K. Ezzinbi, Variation of constant formula for delay differ-
ential equations, in Delay Differential Equations and Applications, ed.
by O. Arino, M.L Hbid, E. Ait Dats (Springer, 2006), pp. 143–159

63. W. He, F. Qian, J. Cao, Pinning-controlled synchronization of delayed
neural networks with distributed-delay coupling via impulsive control.
Neural Networks 85, 1–9 (2017)

64. E. Hernández, M. Rabello, H.R. Henŕıquez, Existence of solutions for
impulsive partial neutral functional differential equations. J. Math.
Anal. Appl. 331(2), 1135–1158 (2007)

65. R.S. Hille, E. Philips, Functional Analysis and Semi-groups (American
Mathematical Society, 1957)

66. Y. Hino, S. Murakami, T Naito, Functional Differential Equations with
Infinite Delay (Springer, Berlin, Heidelberg, 1991)

67. M.W. Hirsch, C.C. Pugh, Stable manifolds for hyperbolic sets. Bull.
Am. Math. Soc. 75(1), 149–152 (1969)

68. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane
current and its application to conduction and excitation in nerve. J.
Physiol. 117(4), 500–544 (1952)

69. C.S. Honig, Volterra Stieltjes-Integral Equations (American Elsevier
Pub., 1975)

70. H.J. Hupkes, S.M. Verduyn Lunel, Center manifold theory for functional
differential equations of mixed type. J. Dyn. Differ. Equ. 19(2), 497–560
(2006)

71. H.J. Hupkes, S.M. Verduyn Lunel, Center manifolds for periodic func-
tional differential equations of mixed type. J. Differ. Equ. 245(6), 1526–
1565 (2008)

72. G.E. Hutchinson, Circular causal systems in ecology. Ann. New York
Acad. Sci. 50(4), 221–246 (1948)

73. I.L. Ivanov, V.I. Slyn’Ko, A stability criterion for autonomous lin-
ear time-lagged systems subject to periodic impulsive force. Int. Appl.
Mech. 49(6), 732–742 (2013)

74. R.S. Jain, M.B. Dhakne, On mild solutions of nonlocal semilinear im-
pulsive functional integro-differential equations. Appl. Math. E Notes
13, 109–119 (2013)



BIBLIOGRAPHY 379

75. J. Jaquette, A proof of Jones’ conjecture. J. Differ. Equ. 266(6), 3818–
3859 (2019)

76. G. Jiang, Q. Lu, Impulsive state feedback control of a predator-prey
model. J. Comput. Appl. Math. 200(1), 193–207 (2007)

77. Z. Jiang, J. Wei, Stability and bifurcation analysis in a delayed SIR
model. Chaos Solitons Fractals 35(3), 609–619 (2008)

78. E. Kaslik, S. Sivasundaram, Analytical and numerical methods for the
stability analysis of linear fractional delay differential equations. J. Com-
put. Appl. Math. 236(16), 4027–4041 (2012)

79. T. Kato, Perturbation Theory for Linear Operators, vol. 132 of Classics
in Mathematics (Springer, Berlin, Heidelberg, 1995)

80. J. Kennan, Uniqueness of positive fixed points for increasing concave
functions on Rn: An elementary result. Rev. Econ. Dyn. 4(4), 893–899
(2001)

81. N. Koksch, S. Siegmund, Inertial manifolds for nonautonomous dynami-
cal systems and for nonautonomous evolution equations. Proc. Equadiff.
221–266 (2001)

82. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, vol. 112 of
Applied Mathematical Sciences (Springer New York, New York, NY,
2004)

83. Y.N. Kyrychko, K.B. Blyuss, Global properties of a delayed SIR model
with temporary immunity and nonlinear incidence rate. Nonlinear Anal.
Real World Appl. 6(3), 495–507 (2005)

84. A. Lakmeche, O. Arino, Bifurcation of nontrivial periodic solutions
of impulsive differential equations arising chemotherapeutic treatment.
Dyn. Contin. Discrete Impulsive Syst. A Math. Anal. 7(2), 265–287
(2000)

85. V Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive
Differential Equations (World Scientific, 1989)

86. Y. Li, J. Cui, The effect of constant and pulse vaccination on SIS
epidemic models incorporating media coverage. Commun. Nonlinear
Sci. Numer. Simul. 14(5), 2353–2365 (2009)

87. D. Li, W. Ma, Asymptotic properties of a HIV-1 infection model with
time delay. J. Math. Anal. Appl. 335(1), 683–691 (2007)

88. X. Li, S. Song, Stabilization of delay systems: Delay-dependent impul-
sive control. IEEE Trans. Autom. Control 62(1), 406–411 (2017)



380 BIBLIOGRAPHY

89. X. Li, S. Ruan, J. Wei, Stability and bifurcation in delay-differential
equations with two delays. J. Math. Anal. Appl. 236(2), 254–280 (1999)

90. H. Li, C. Li, T. Huang, W. Zhang, Fixed-time stabilization of impulsive
Cohen-Grossberg BAM neural networks. Neural Networks 98, 203–211
(2018)

91. D. Lin, X. Li, D. O’Regan, Stability analysis of generalized impulsive
functional differential equations. Math. Comput. Modell. 55(5-6), 1682–
1690 (2012)

92. X. Liu, G. Ballinger, Uniform asymptotic stability of impulsive delay
differential equations. Comput. Math. Appl. 41(7-8), 903–915 (2001)

93. X. Liu, G. Ballinger, Existence and continuability of solutions for differ-
ential equations with delays and state-dependent impulses. Nonlinear
Anal. Theory Methods Appl. 51(4), 633–647 (2002)

94. X. Liu, G. Ballinger, Continuous dependence on initial values for im-
pulsive delay differential equations. Appl. Math. Lett. 17(4), 483–490
(2004)

95. X. Liu, C. Ramirez, Stability analysis by contraction principle for im-
pulsive systems with infinite delays. Commun. Nonlinear Sci. Numer.
Simul. 82, 105021 (2020)

96. X. Liu, Q. Wang, The method of Lyapunov functionals and exponential
stability of impulsive systems with time delay. Nonlinear Anal. Theory
Methods Appl. 66(7), 1465–1484 (2007)

97. B. Liu, Z. Teng, L. Chjen, The effect of impulsive spraying pesticide
on stage-structured population models with birth pulse. J. Biol. Syst.
13(01), 31–44 (2005)

98. X. Liu, X. Shen, Y. Zhang, Q. Wang, Stability criteria for impulsive
systems with time delay and unstable system matrices. IEEE Trans.
Circuits Syst. I Regul. Pap. 54(10), 2288–2298 (2007)

99. X. Liu, K. Zhang, W. Xie, Pinning impulsive synchronization of
reaction-diffusion neural networks with time-varying delays. IEEE
Trans. Neural Networks Learn. Syst. 1–13 (2016)

100. X. Liu, K. Zhang, W. Xie, Stabilization of time-delay neural networks
via delayed pinning impulses. Chaos Solitons Fractals 93, 223–234
(2016)

101. A.J. Lotka, Analytical note on certain rhythmic relations in organic
systems. Proc. Natl. Acad. Sci. 6(7), 410–415 (1920)



BIBLIOGRAPHY 381

102. Z. Lu, X. Chi, L. Chen, The effect of constant and pulse vaccination on
SIR epidemic model with horizontal and vertical transmission. Math.
Comput. Modell. 36(9-10), 1039–1057 (2002)

103. Z. Lu, X. Chi, L. Chen, Impulsive control strategies in biological control
of pesticide. Theor. Popul. Biol. 64(1), 39–47 (2003)

104. J. Lu, Z. Wang, J. Cao, D.W.C. Ho, J. Kurths, Pinning impulsive
stabilization of nonlinear dynamical networks with time-varying delay.
Int. J. Bifurcation Chaos 22(07), 1250176 (2012)

105. Z. Luo, J. Shen, Global existence results for impulsive functional differ-
ential equations. J. Math. Anal. Appl. 323(1), 644–653 (2006)

106. T. Luzyanina, D. Roose, Equations with distributed delays: bifurcation
analysis using computational tools for discrete delay equations. Funct.
Differ. Equ. 11(1-2), 87–92 (2004)

107. P. Magal, S. Ruan, Center manifolds for semilinear equations with non-
dense domain and applications to Hopf bifurcation in age structured
models. Mem. Am. Math. Soc. 202(951), 0–0 (2009)

108. L. Mailleret, V. Lemesle, A note on semi-discrete modelling in the life
sciences. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1908),
4779–4799 (2009)

109. M. Nedeljkov, M. Oberguggenberger, Ordinary differential equations
with delta function terms. Publ. de l’Inst. Math. 91(1), 125–135 (2012)

110. K. Negi, S. Gakkhar, Dynamics in a Beddington-DeAngelis prey-
predator system with impulsive harvesting. Ecological Modelling 206(3-
4), 421–430 (2007)

111. P.W. Nelson, A.S. Perelson, Mathematical analysis of delay differential
equation models of HIV-1 infection. Mathematical Biosciences 179(1),
73–94 (2002)

112. S.G. Pandit, S.G. Deo, Lecture Notes in Mathematics: Differential
Systems Involving Impulses (1982)

113. Y. Peng, X. Xiang, Y. Jiang, A class of semilinear evolution equations
with impulses at variable times on Banach spaces. Nonlinear Anal. Real
World Appl. 11(5), 3984–3992 (2010)
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