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Abstract. The founding principles of consolidation of soils was set by Terzaghi
dating back to 1923. This theory focused on the interplay between pore pressure
dissipation and effective stress increase on fully saturated soils, and works by
means of the diffusion theory in one-dimensional flow conditions under constant
static external loading. The theory remains to use still and works as the funding
stone for all subsequent formulations in the international theory. It is noted, that
all consolidation formulations reduce to the original Terzaghi’s theory (as they
comprise its extensions) for one-dimensional flow under constant static loading
on fully saturated conditions. This paper revisits the consolidation theory and
derives the governing equations via a rigorous integration of mass conservation,
which accounts for instantaneous void ratio alterations within the continuity
equation by including an additional term in the consolidation coefficient. This
gives shorter consolidation times compared to Terzaghi’s original expression.
The derived equations reduce to Terzaghi’s with appropriate manipulation. The
paper compares the 1D consolidation coefficients to Terzaghi’s and other for-
mulations, and proposes a simplified solution of the consolidation equation
based on regression, accompanied with a workaround to include the rigorous
approach in commercial (FEM, FDM) codes within the consolidation governing
equations.

Keywords: Consolidation � Continuity equation � Permeability � One-
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1 Introduction

The founding principles for the consolidation of soils were embedded by Terzaghi
(1923), scoping to understand the behavior of saturated soils. The theory describes the
one-dimensional excess porewater pressure dissipation and subsequent settlement of
fully saturated soils under static external loading, based on thermodynamic (heat dif-
fusion) principles with temperature and heat energy per unit mass being replaced by
porewater pressure and water content respectively. Terzaghi’s one-dimensional con-
solidation theory extended to account for self-weight in geostatic stress distribution
with depth by Fillunger (1936). The theory remains to use still, regardless of possible
shortcomings stemming from the hydro-mechanical response of geomaterials.
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The consolidation equations were generalized to three-dimensional space by
Rendulic (1936), giving the uncoupled consolidation theory, and Biot (1941), giving
the coupled consolidation theory. Fredlung and Morgenstern (1977) proposed the
superposition of two coincident stress fields to describe fully the current stress state of a
saturated soil, within the extended framework of the consolidation theory for unsatu-
rated soils. These governing equations describe soil settlement due to air and water
flow within the soil skeleton. Numerous analytical and numerical studies address the
integration of the partial differential governing equations of unsaturated soil consoli-
dation for an ensemble of initial and boundary conditions.

All consolidation theories in the international literature however build, generalize
and extend Terzhaghi’s one-dimensional consolidation equation. For full saturation and
static external applied loading, consolidation theories have been shown to reduce to
Terzaghi’s original one-dimensional expression (Sills 1975, Fredlund and Hasan 1979,
Fredlund and Rahardjo 1993). As such, all consolidation theories may be bounded to
approximations involved in the original integration of water mass conservation. The
necessity to revisit the consolidation theory is in line with the De Boer’s (2000)
observations. This paper formulates the consolidation differential equations on full
saturation by means of a rigorous integration of the (water) mass conservation equa-
tions similar to Thomas et al. (2009), giving a dependence on the void ratio even at an
isotropic linear elasticity. The three-dimensional differential equations are reduced to
one-dimensional conditions and compared to published one-dimensional consolidation
expressions. The study works on a linear stress-strain relationship for comparative
reasons with novel formulations founded on the same principles.

2 Revised 3-D Formulation of Soil Consolidation

The consolidation process in geomechanics describes alterations to the soil skeleton
due to applied external tractions and body forces, by thus necessitating reformulation of
the governing consolidation equations in the corresponding dimensionality (three-
dimensional stress-space).

The mathematical formulation hereafter founds on the following assumptions:
(a) saturation of the idealized soil medium (voids between the soil particles are filled
with water); (b) the stress—train response is isotropic; (c) compression of the soil
skeleton and associated hydraulic flow unfolds in all three dimensions; (d) water
molecules and soil particles are assumed incompressible for the imposed stress range;
(e) Darcy’s law describes the water flow through the inter-particle voids; (f) the per-
meability coefficient is assumed constant in each flow direction, as the hydraulic
coefficient is constant along the same flow axis. The permeability coefficient is different
in all three directions to account for cross-anisotropy in the hydraulic conductivity (in
each orthogonal axis); (g) the soil particles remain stationary as the water flows through
the interparticle voids, which ensures that the velocity of the particles can be neglected;
(h) self-weight distribution with depth is neglected; and (i) the effective stress is
associated linearly with the void ratio (i.e., constant stiffness).

Extending Fulks et al. (1971) mathematical formulation of porous flow through an
undeformable porous body, the consolidation theory of a deformable porous medium
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works on the water mass mw definition within a an arbitrary, time dependent control
volume V(t) (that has a boundary ∂V(t)) as follows:

mw ¼
Z

VðtÞ

qw Sr gð Þ dV ð1Þ

where “qw” denotes the water density, “Sr” is the degree of saturation of the soil and
“η” is the porosity.

The conservation of water mass flowing through the soil porous is described by
means of a Lagrangian equation ∂mw/∂t = 0 (continuity equation), which considers a
differential control volume that always accommodates/conserves the exact same vol-
ume of water (i.e. the control volume size changes). This means that while the volume
of water remains intact, the control volume and the volume of solids changes within the
time increment. Applying at a given time “t” the Leibniz-Reynolds transport theorem,
the conservation of water mass flowing through an infinitesimal cubic element (i.e., the
control volume) is expressed as follows:

@mw

@t
¼

Z

VðtÞ

@

@t
qwSrgð ÞdV þ

Z

@VðtÞ

qwgð Þ vw � nð ÞdS ¼ 0 ð2Þ

where “vw” is the fluid velocity vector and “n” is the unit vector vertical to the surface
denoted “S”. Bold face symbols indicate vectors, while the symbol “∙” denotes the
scalar dot product of the two vectors. Using Gauss’s divergence theorem, Eq. (2) gives:

�
Z

VðtÞ

r � qwgð ÞvwdV ¼
Z

VðtÞ

@

@t
qw Sr gð ÞdV ð3Þ

On fully saturated conditions (Sr = 1) and constant qw (independent of time and
space):

$ � gvwð Þ ¼ �@g=@t ð4Þ

Under the assumption of incompressible grains, any change of the total volume
equals to the change in the volume of voids. Therefore, for the fully saturated soil
(where Vv = Vw) it becomes ∂V/∂t = ∂Vv/∂t = ∂Vw/∂t and:

$ � gvwð Þ ¼ � @g
@t

¼ � @

@t
VV

V

� �
¼ � 1

V2

@VV

@t
V � VV

@V
@t

� �

¼ � 1 � gð Þ
V

@V
@t

ð5Þ

Assuming that the solid particles cannot undergo volumetric deformation and the
void ratio gives e = Vv/Vs , 1/e = Vs/Vw , 1/(1 + e) = Vs/V , V = (1 + e)Vs, the

634 A. Kalos et al.



volume derivative with respect to time (∂V/∂t) can be computed by differentiating the
volumetric strain evol = − DV/V0 = − (V − V0)/V0 = 1 − V/V0 as follows:

ð6Þ

Equation (6) can be expressed as a function of porosity by substituting the specific
volume v = (1 + e) = V/Vs = 1/(Vs/V) = 1/(1 − Vw/V) = 1/(1 − η):

@evol
@t

¼ � 1þ eð Þ
1þ e0ð Þ

1
V
@V
@t

¼ � 1� g0ð Þ
1� gð Þ

1
V
@V
@t

ð7Þ

which further gives � 1�gð Þ
V

@V
@t ¼ 1�gð Þ2

1�g0ð Þ
@evol
@t . Substituting this expression in (5) gives:

r � gvwð Þ ¼ 1� gð Þ2
1� g0ð Þ

@evol
@t

ð8Þ

Assuming a linear relationship between the isotropic stress and the volumetric
strain:

r0oct ¼ K evol ) @r0oct
�
@t ¼ K @evol=@t ð9Þ

While it is well known that the stress–strain relationship is nonlinear even at small
strain levels, this approach scopes in reproducing a relationship on the same principles
as the novel equations produced by Terzaghi (1923, 1927), Davis and Raymond
(1965), Tsytovich and Zaretsky (1969) and Gibson and Schiffman (1985) for com-
parative reasons. This approach will be extended to account for soil nonlinearity and is
thus, not bounded by this approximation.

Using Eq. (9), expression (8) can be reformed as follows:

r � gvwð Þ ¼ 1� gð Þ2
.

1� g0ð ÞK
h i

@r0oct
�
@t ð10Þ

The water flow is assumed to follow Darcy’s law, which holds (approximately) true
if the flow is so slow that g r � vwð Þ can be neglected and qw g @ vw=@t (see Fulks
et al. 1971) is small. Water velocity, vw, is related to Darcy’s velocity, vD, by
vw ¼ vD=g, and therefore it is:

vw ¼ vD
g

¼ � k � rh
g

¼ � k
g
� r z� þ u

qwg

� �
¼ � k

gqwg
� ru ð11Þ

where “k” is the hydraulic conductivity tensor and “h” the hydraulic pressure given by
h ¼ z� þ u=qwg, with “z*” being the distance from the reference level and “u” the
pore water pressure. Applying Eq. (11) in Eq. (10) gives:
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1� g0ð ÞK
1 � gð Þ2qwg

kr2 � uð Þ ¼ � @r0oct
@t

ð12Þ

which can be expressed in cartesian coordinates as follows:

1� g0ð ÞK
1� gð Þ2 qwg

kx
@2u
@x2

þ ky
@2u
@y2

þ kz
@2u
@z2

� �
¼ � @r0oct

@t
ð13Þ

Considering consistent hydraulic conductivity in all three dimensions, the hydraulic
conductivity tensor is k ¼ k I and Eq. (11) can be rewritten as follows:

1� g0ð ÞK k

1� gð Þ2 qwg
r2u ¼ � @r0oct

@t
ð14Þ

Equation (14) works on an isotropic hydraulic conductivity in the three-
dimensional space. Consequently, the governing equation of soil consolidation for-
mulated in three dimensions of consistent permeability k, can be expressed as follows:

C� r2u ¼ �@r0oct
�
@t ; where C� ¼ 1� g0ð ÞK k

1� gð Þ2 qwg
¼ 1þ eð Þ2K k

1þ e0ð Þqwg
ð15Þ

The mathematical formulation of three dimensional consolidation, shown in
Eqs. (13) and (16), is derived based on a rigorous conservation of mass and accounts
for instantaneous alterations of the void ratio at all times. The following section reduces
the three-dimensional consolidation equation to a single dimension and compares the
solution with published one-dimensional expressions.

3 Derivation of 1-D Revised Consolidation Equations

Derivations of one-dimensional consolidation in the international literature (e.g. Davis
and Raymond 1965; Fillunger (1936); Gibson and Schiffman 1985; Gibson et al. 1967;
Merchant 1939; Monte and Krizek 1976; Terzaghi (1923); Tsytovich and Zaretsky
1969) can be hindered by approximations involved in the continuity equation. As all
formulations work on the conservation of fluid mass proposed by Terzaghi, they tend to
neglect the void ratio term in the definition of the consolidation coefficient.

Alternatively, a coefficient of consolidation can be derived using Terzaghi’s
effective stress principle (16) into Eq. (15).

Devol ¼ Dez ¼ Dr0oct
�
K ¼ Dr0v

�
D ) @r0oct

�
@t ¼ K=Dð Þ@r0v

�
@t ð16Þ

CV
@2u
@z2

¼ � @r0v
@t

; where CV ¼ 1� g0ð ÞDk

1� gð Þ2 qwg
¼ 1þ eð Þ2Dk

1þ e0ð Þqwg
ð17Þ
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The above differential equation uses the constrained modulus D and accounts for
alterations in the void ratio, within the expression of the coefficient of one-dimensional
consolidation CV, based on a prompt derivation of water mass conservation flowing
through the interparticle voids.

Next, we ensue few of the most commonly used novel expressions of the coefficient
of consolidation in Eulerian form:

(a) CV ¼ k D=cw, from Terzaghi’s original theory (1923).
(b) CV ¼ k D= 1þ e0ð Þcw, from Terzaghi’s revised theory (1927).
(c) CV ¼ k 1þ e0ð Þ r0v

�
0:434CC cw, from Davis and Raymond’s theory (1965).

(d) CV ¼ k D 1þ eavð Þ=cw 1þ e0ð Þ, from Tsytovich and Zaretsky’s theory (1969).
(e) CV ¼ k D 1þ eð Þ=cw 1þ e0ð Þ, from the theory of Gibson and Schiffman (1985).

The proposed solution (shown in Eq. (17)) is based on an Eulerian description of
the governing consolidation equations. The coefficient of consolidation is shown to
differ considerably from the novel expressions in the international literature.

4 Solution of the Revised 1-D Consolidation Equations

This section studies the linear consolidation response of a h0 (= 2H) deep homoge-
neous soil deposit overlaying a permeable layer. Figure 1 compares the numerical
solution of expression (17) (in black solid lines) to Terzaghi’s linear elastic formulation
(in grey dashed lines), for an initial void ratio e0 = 0.6. Numerical analyses show that
the effective stress builds faster on the revised formulation. Thus, the equivalent times
are considerably smaller than those manifested by the classical formulation.

Rigorous 1-D Consolidation - e0 = 0.60

U = Δσv' / Δσv = 1 - Δu / Δσv
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Fig. 1. Effective stress distribution with depth for a homogeneous layer overlaying a permeable
deposit, for the rigorous analysis, implemented on the hypotheses of different values of initial
void ratio
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The degree of consolidation Uaverage gives the ratio of the settlements d(t) at time
t to the settlements after full dissipation of the excess porewater pressures d∞ (Fig. 2)
in terms of equivalent dimensionless time factor TV = CV*t/H

2, where t is the time and
H is the drainage length, for multiple values of initial void ratio e0 (e0 = 0.6 � 1.4).
For high initial void ratio values, the settlements predicted by the rigorous analyses
occur in less than half the predicted times from Terzaghi’s classical formulation, which
has immense impact in the preliminary design of geotechnical projects. Considering
that real consolidation times are greatly overestimated, this revisited consolidation
theory provides the means of analysis for a more economic design of engineering
projects.

The finite difference numerical analyses on Eq. (17) show a nominal influence on
the TV − U curves of the hydraulic conductivity and constrained modulus as well as
that of the depth of the soil deposit, for a given value of void ratio. Infinitesimal
alterations to the degree of consolidation for a given initial void ratio are attributed to
the difference in the integration time step employed throughout the finite difference
scheme. Scoping to enhance the applicability of the integration method upon calcu-
lation of the surficial soil settlements, we propose an analytical solution upon imple-
mentation of constant void ratio e0:

Uaverage ffi 17:667 1� e�54:988 1þ e0ð Þ TV
� �

þ 82:221 1� e�1:884 1þ e0ð Þ TV
� �

ð18Þ

Application of Eq. (18) fits well to the numerical solution. The expression works on
a modified time factor TV

* = TV (1 + e0). It is possible to include the proposed solution

Fig. 2. Degree of one-dimensional consolidation Uaverage with equivalent time TV for a
homogeneous layer overlaying a permeable deposit, compared to Terzaghi’s formulation (black
solid line)
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in F.E. and/or F.D. coupled consolidation analyses, working and extending Terzaghi’s
water mass conservation, by modifying the permeability as k * = k(1 + e)2/(1 + e0).
This approach gives a prompt excess pore pressures evolution with time.

5 Concluding Remarks

The paper develops a revised three-dimensional consolidation theory to account for
instantaneous alterations of the void ratio implemented upon a rigorous integration of
incompressible fluid mass. The consolidation equation is reduced to the 1-D conditions
for horizontally stratified media.The consolidation times predicted are significantly
lower than those working on Terzaghi’s formulation. Thus, corresponding settlements
were realized faster, in less than half of Terzaghi’s equivalent times.

The paper proposes also an analytical solution to describe the solution of the one-
dimensional consolidation equation based on regression analyses. The proposed ana-
lytical formulation works on a modified time factor TV

*. It is possible to account for the
exact solution in a Finite Element and/or Finite Difference Scheme by introducing an
equivalent hydraulic conductivity, k* = k(1 + e)2/(1 + e0) dependent on the current
specific volume.
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