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Abstract. We present numerical methods to simulate the propagation of dis-
crete fractures embedded in a damaged zone. Continuum Damage Mechanics
(CDM) models are implemented in a Finite Element (FE) analysis code.
A damage threshold defines the beginning of micro-crack coalescence, when a
discrete cohesive segment opens. First, Cohesive Zone (CZ) elements are
inserted between volume elements. The length and orientation of the discrete
fracture are controlled by the magnitude of the energy released at integration
points. The fracture path highly depends on space discretization, but the damage
threshold is calculated automatically upon CDM model calibration. Second, an
eXtended Finite Element Method (XFEM) approach is proposed. The fracture
path is a function of the weighted average direction of maximum damage.
Fracture growth depends on a nonlocal internal length, and the damage
threshold is set empirically. Both coupling methods perform satisfactorily for
simulating pure mode I or pure mode II fracture propagation resulting from
micro-crack coalescence. However, the derivation of the Jacobian matrix in the
XFEM makes it impractical to couple CDM and CZ models when the damaged
stiffness cannot be expressed explicitly. For mixed mode fracture propagation
and bifurcation problems, CZ insertion shows great promise, but mesh depen-
dency and computational cost remain challenging.

Keywords: Geomechanics � Continuum damage mechanics � Cohesive zone
model � Finite element method � Extended finite element method � Multiscale
coupling

1 Introduction

Due to their computational efficiency, continuum mechanics-based models are often
used in practice to study complex geosystems such as wellbores interacting with natural
faults, engineered and geological barriers in nuclear waste disposals, or soil-anchor
systems. However, under high stress, geomaterials undergo localized damage and/or
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large deformation, which cannot be modeled in a continuum framework. Macro-
fracture propagation results from micro-crack coalescence. Numerous numerical
methods were proposed to model multiscale fracture propagation, including: (1) Direct
numerical simulation, also known as full-scale simulation, e.g., with the Discrete
Element Method or the Finite Element Method (FEM); (2) Homogenization-based
multiscale approaches (e.g., Belytschko et al. 2008; Geers et al. 2010); (3) Phase-field
methods (e.g., Verhoosel and de Borst 2013; Voyiadjis et al. 2013); and (4) Damage–
fracture transition techniques. The latter consists in coupling a Continuum Damage
Mechanics (CDM) model with a discrete fracture mechanics model through an
advanced discretization method. It was found that the cohesive fracture model could be
formulated as a nonlocal damage model (Planas et al. 1993). Then, an equivalence was
established between the energy dissipated for opening a discrete fracture and the energy
dissipated for producing a dilute distribution of micro-cracks (Mazars and Pijaudier–
Cabot 1996). This energy equivalence was further used to construct a cohesive law
from a nonlocal damage model (Cazes et al. 2010) and predict the transition from
micro-crack propagation to cohesive fracture debonding, with the embedded crack
method (Jirasek and Zimmermann 2001; Roth et al. 2015). Macro fractures were also
represented with traction free surfaces instead of cohesive models, by means of the
eXtended FEM (XFEM). For example, Simone and collaborators (2003) defined the
threshold for macroscopic fracture propagation as a function of a gradient enhanced
damage variable, while Comi and collaborators (2007) set the damage threshold in
relation to the size of the element at the fracture tip. Energy equivalence is ensured by
assigning the energy not yet dissipated by the damage model within the process zone to
the cohesive zone model. Coupled CDM-XFEM approaches were later used for mixed
mode fracture propagation (e.g.,Wang and Waisman 2015).

In the numerical methods reviewed above, the CDM model is usually isotropic and
phenomenological, and the threshold between CDM and CZ models is not always
precisely defined or calibrated. In this paper, we present a rigorous method to couple
continuum mechanics and discrete fracture mechanics governing equations for simu-
lating damage localization and subsequent propagation of “macroscopic” discontinu-
ities, beyond the scale of the Representative Elementary Volume (REV). Constitutive
relationships of CDM are out of the scope of this study. Section 2 introduces the hydro-
mechanical governing equations. The corresponding weak formulation is presented in
Sect. 3. FEM and XFEM discretization approaches are discussed in Sect. 4. Section 5
explains the calibration procedure in both approaches. We conclude on the perfor-
mance of the CDM-CZ coupling methods in Sect. 6.

2 Meso-macro Governing Hydro-Mechanical Equations

Consider a fracture embedded in a Damageable Porous Continuum (DPC), in which
micro-cracks are represented by a damage tensor x, either defined as a convolution of
moments of probabilities of crack descriptors (e.g., size, aspect ratio, orientation), or as
a function of displacement jumps at crack faces (Arson 2020). The stiffness tensor is a
function of damage, which translates stress or crack-induced anisotropy. Given the
potential energy density Hs of a REV of DPC, the expressions of Biot’s effective stress
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tensor r and of the porosity / are found through thermodynamic conjugation rela-
tionships, as follows:

r ¼ @Hs
@e ¼ C xð Þ: e� ap

/� /0 ¼ � @Hs
@p ¼ a : eþ p

N

ð1Þ

Where e is the strain tensor, /0 is the initial porosity, p is the fluid pressure, CðxÞ is
the elastoplastic stiffness tensor, aij ¼ �@2Hs=@eij@p is Biot’s coefficient tensor, and
1=N ¼ �@2Hs=@

2p is the inverse of Biot’s skeleton modulus. Hs is also called
Helmholtz free energy. Under the quasi-static condition, the momentum balance
equation of the REV (made of the mixture solid and fluid) is:

$:rþ qg ¼ 0 ð2Þ

where q is the average mass density of the mixture, defined as
q ¼ ð1� /Þqs þ/qf , in which qs (respectively qf) stands for the mass density of the
solid phase (respectively, the mass density of the fluid phase). g is the body force
vector. From Eq. (1)–(2), the strong form of the governing equation for the mixture is:

$: CðxÞ: e� ap½ � þ qg ¼ 0 ð3Þ

The mass balance equation for the fluid in the porous matrix of the DPC is:

$: qf v
� �þ @mf

@t
¼ 0 ð4Þ

where v is the velocity vector of the fluid, and mf is the mass of the fluid. Assuming
that the DPC is saturated with one fluid phase, we have mf = qf /. Moreover, from the
state equation of the fluid, the mass density of the fluid is related to the pore pressure
through the following equation:

dqf
qf

¼ dp
Kf

ð5Þ

where Kf is the bulk modulus of the fluid. We assume that fluid flow inside the
porous matrix is laminar and that it is governed by Darcy’s seepage equation as:

v ¼ � km
l

rp� qf g
� � ð6Þ

where l is the dynamic viscosity of the fluid and km(x) is the intrinsic anisotropic
permeability tensor of the solid skeleton, which depends on damage. By substituting
Eq. (1), (5) and (6) into Eq. (4), we get the governing equation for the fluid flow
through the permeable porous medium surrounding the fracture, as follows:
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a :
@e
@t

þ 1
M

@p
@t

¼ $:
km
l

$p� qf g
� � ð7Þ

where the spatial variability of the fluid mass density is assumed negligible (i.e.,
$qf ¼ 0). M is the so called Biot’s modulus, defined by 1=M ¼ 1=Nþ/=Kf .

The fluid mass change per unit of time within the REV is equal to the variation of
flow rate in the direction of the fracture flow, plus the variation of flow rate in the
direction perpendicular to the fracture surfaces. The mass balance equation is thus
expressed as:

$s qf qðsÞ
� �þ qf m sð Þ� �� �

:nCd þ
@

@t
qf w
� � ¼ 0 ð8Þ

where $s represents the gradient in the tangent direction of the local fracture
surface, in which s denotes the natural coordinate of the fracture. q is the flow rate
inside the fracture. We note m sð Þ½ �½ � the velocity jump across the fracture. The flow rate
q is typically computed by the integral of the velocity over the thickness of the fracture.
It can vary with the location s of the point on the fracture surface, and it is related to the
pressure gradient in the fracture surface by the following law:

qðsÞ ¼ �cðsÞ $spðsÞ � qf g
� � ¼ �w3ðsÞ

12l
$spðsÞ � qf g
� � ð9Þ

where c(s) is the hydraulic conductivity of the fracture at the natural coordinate
s. Here, we use Poiseuille fluid flow equation and we calculate c(s) from the cubic law.
By substituting the constitutive law (Eq. (9)) and the state equation (Eq. (5)) into
Eq. (8), we get the governing equation for fluid flow in the fracture, as follows:

m sð Þ½ �½ �:nCd þ
@w sð Þ
@t

þ w sð Þ
Kf

@p sð Þ
@t

¼ $s:
w3 sð Þ
12l

$sp sð Þ � qf g
� �� �

ð10Þ

Equation (3), (7) and (10) are usually referred to as the u-p formulation.
From a physics perspective, the existence of a fracture Cd in the domain X leads to

a hydro-mechanical coupling between the fracture and the bounding matrix. Fluid flow
along the fracture exerts pressure on the two fracture surfaces and pushes them apart,
while the two surfaces transmit cohesive traction. Reversely, pressure gradients drive
fluid flow into/out of the bounding matrix surrounding the fracture. The essential and
natural boundary conditions at the interior boundary Cd are:

r:nCd ¼ td � pnCd on Cd

mþ � m�ð Þ:nCd ¼ m½ �½ �:nCd ¼ qd on Cd
ð11Þ

in which the notations are explained in Fig. 1. td is the cohesive traction which
governs the mechanical behavior of the macro-fracture once the fracture is initiated,
and qd represents the fluid flow into the matrix, i.e., leak-off in the fracture flow model.
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3 Weak Formulation

We first obtain the weak form of the mixture governing equation by multiplying Eq. 4
with a virtual displacement du and by integrating over the whole domain X. After
applying the divergence theorem and the boundary conditions, we have:

R
X $sdu : CðxÞ :$su dX� R

X $sdu : apdXþ R
Cd

d u½ �½ �: td � pnCd

� �
dC

¼ R
Ct
du:t dCþ R

X qdu:gdX
\!endarray[

ð12Þ

where the kinematic strain-displacement relation $su ¼ e is used, and $s denotes
the symmetric part of the gradient operator. We adopt Ritz method, in which the
interpolation functions used to approximate the displacement field also serve as weight
functions to calculate the weighted integral residuals.
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Fig. 1. Boundary conditions on a domain X that contains a discontinuity Cd. X is subjected to
boundary conditions, as follows: Cu (respectively, Cp) is subjected to displacement (respectively,
pore pressure); and Ct (respectively, Cq) is subjected to traction (respectively, fluid flux). The
discontinuity Cd is treated as an interior boundary with a positive surface Cd

+ and a negative
surface Cd

−, subjected to cohesive traction td
+ and td

− respectively. Unit normal vectors are noted
nCd+ and nCd- for the positive and negative fracture surface, respectively. Note that the level set
function / is defined so as that it is positive on the side of the domain that contains Cd

+, and
negative on the side of the domain that contains Cd

−. Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Springer Nature, Acta Geotechnica, Fluid-driven
transition from damage to fracture in anisotropic porous media: a multi-scale XFEM approach,
W. Jin and C. Arson, 2020
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Similarly, the weak form of the governing equation of the fluid (Eq. (7)) is:

R
Xdp

1
M

@p
@t dXþ R

Xdpa : $s @u
@t dXþ R

X$dp:
km xð Þ

l
$p

� 	
dX

�R
Cd
dpqddC ¼ �R

Cd
dp�qdCþ R

X
qf km xð Þ

l

� 	
$dp:gdX

ð13Þ

Note that dp is the virtual pressure that satisfies dpjCp
¼ 0. The boundary condition

km
l �$pþ qf g
� �

:nC ¼ v:nC ¼ q is used for the exterior boundary Cq. In Eq. (13), the

term
R
Cd
dp qddC indicates that the velocity of the fluid normal to the fracture is

discontinuous. According to Darcy’s law, that means that the gradient of fluid pressure
along the normal to the fracture surface is also discontinuous. However, the fluid
pressure field and the virtual pressure should be continuous across the fracture so that
Darcy’s law can be applied. So, we use the same virtual pressure dp as in Eq. (13) to
multiply the governing equation of the fluid flowing in the fracture (Eq. 10), and we
integrate it over the fracture domain Cd to obtain the following weak form:

R
Cd

dp m½ �½ �:nCd dC ¼ R
Cd
dp qd dC ¼

� R
Cd

dp @w
@t dC� R

Cd
dp w

Kf

@p
@t dC� R

Cd
$m dp: w3

12l$mp
h i

dCþ dp Qinjs¼0
ð14Þ

where $m denotes the one-dimensional gradient along the fracture tangent direction
(mCd , as shown in Fig. 1) and Qin is a fluid injection rate applied at the fracture mouth
(s = 0). The width of the fracture is computed as:

w ¼ uþ � u�ð Þ:gCd
¼ u½ �½ �:nCd ð15Þ

The weak form of the governing equation for the fluid flow inside the fracture can
be directly injected into the weak form of the governing equation for the fluid flowing
in the matrix (Eq. 13), since the same virtual field dp is used.

4 Transition Between Continuum and Discrete

4.1 Finite Element Method (FEM) and Cohesive Zone (CZ) Elements

One way of coupling the evolution of damage in the DPC to the propagation of a
macro-scale discontinuity is to formulate a constitutive law for a domain that contains a
fraction of discrete fracture (closed or open) embedded in the DPC. The fracture is
modeled by a CZ element, in which the hardening behavior is governed by a CDM
model, up to a critical value of damage (e.g., the critical damage Xcr shown in Fig. 2,
which can represent an isotropic damage variable, or the norm of a damage tensor),
while the post-peak softening behavior is governed by a softening traction-separation
law, as illustrated in Fig. 2.
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Cohesive elements have a reduced number of degrees of freedom, because only the
normal and shear displacement jumps across the fracture are considered. For example,
the 8-node 3-D cohesive element shown in Fig. 3 has only 12 degrees of freedom
(dof): two shear jump dofs and one normal jump dof per pair of nodes, where a pair
here is formed by two nodes separated by the element thickness. We can represent the
3-D 8-node cohesive element as a four-node 2-D plane element that lies in the so-called
“mid-layer”. In the following, we derive the Jacobian matrix of the 8-node 3-D
cohesive element. We note ðX; Y ; ZÞ the global coordinate system, and (r; s; tÞ the local
orthogonal coordinate system (Fig. 3). We introduce the natural coordinate system
(n; g; fÞ to derive the equations of the standard (master) element.

We define four vectors 2 P
*

i
i ¼ 1; 2; 3; 4ð Þ that provide the displacement jump of

the element at each of the four nodes in the mid-layer. Linear interpolation functions
are adopted. Therefore, the position vector [X; Y ; Z� of a point inside the element can be

described by the position vector of the mid-layer X; Y ; Z
� �

and the vector P
*
:

X;Y ; Z½ � ¼ X; Y ; Z
� �þ fPi ð16Þ

Fig. 2. Conceptual model of CDM – based cohesive law

Fig. 3. Geometry and coordinate systems in the thin layered element
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where the position vector Xi; Yi; Zi
� �

of a node in the mid-layer is calculated as the
average position vector of the corresponding nodes in the upper and lower surfaces. We
adopt the 2 � 2 Gauss integration scheme for planar linear elements. The interpolation
functions at the Gauss point are noted: w1 ¼ 1

4 ð1� nÞð1� gÞ, w2 ¼ 1
4 ð1þ nÞð1� gÞ,

w3 ¼ 1
4 ð1þ nÞð1þ gÞ, w4 ¼ 1

4 ð1� nÞð1þ gÞ. The position vector for an integration
point in the mid-layer can then be calculated as follows:

�X ¼ P4
i¼1 wi Xi; Y ¼ P4

i¼1 wi Yi ð17Þ

Since the thickness change of the element is small compared to the changes of
length in the other directions, the third component of the position vector ðZÞ of a point
inside the element can be approximated as the position vector in the mid-layer ½X; Y ; Z�,
plus half of the vector of thickness direction P

*
, as follows:

X; Y ; Z½ � ¼
X4

i¼1
wið½X; Y ; Z� þ f P

*

i
Þ ð18Þ

The Jacobian matrix for a standard 3D linear element is given as (Reddy 2004):

J ¼
@r
@n

@s
@n

@t
@n

@r
@g

@s
@g

@t
@g

@r
@f

@s
@f

@t
@f

2
64

3
75 ¼ r s t½ �T ½ @

@n
@
@g

@
@f � ð19Þ

Notice that in the local coordinate system (r; s; tÞ, the interpolation relationships
still hold. Since t = 0 in the mid-layer, we have:

r s t½ �T¼
X4

i¼1
wi ri si 0½ �T þ f P

*

i


 �
ð20Þ

where here, P
*

is expressed in the local coordinate system. Substituting

r s t½ �T¼ P4
i¼1 wi ri si 0½ �T þ f P

*

i


 �
into the expression of Jacobian, the

Jacobian matrix of the 3-D cohesive element in local coordinates (r; s; t) is thus
obtained as:

J ¼ P4
i¼1 r s 0½ �T @wi

@n þ f
@�
P
@n ;

P4
i¼1 r s 0½ �T @wi

@g þ f
@�P
@g ;P

h iT
ð21Þ

in which we note
P4

i¼1 wi P
*

l
¼ P. Notice that the local coordinates r s t½ �T are

transformed from the global coordinates X Y Z½ �T by using the transformation
matrix T, as follows:
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r s t½ �T ¼ TT X Y Z½ �T ð22Þ

Let v ¼ r s t½ �T , V ¼ X Y Z½ �T . The transformation matrix for a 2D plane
in 3D space is: T ¼ ½VrVsVt�, where Vr;Vs;Vt are base vectors for the 2D plane and
are expressed as (Kim et al. 2003):

Vr ¼ Vn

jVnj
;Vs ¼ Vt � Vr;Vt ¼ Vn � Vg

jVn � Vgj ð23Þ

where Vn ¼
P4

i¼1
@wi
@n X Y Z½ �T and Vg ¼

P4
i¼1

@wi
@g X Y Z½ �T . We now

substitute v ¼ VT
r VT

s VT
t

� �
V into the expression of the Jacobian in local

coordinates:

J ¼
VT
r ðVn þ f @P

@nÞ VT
s ðVn þ f @P

@nÞ VT
t ðVn þ f @P

@nÞ
VT
r ðVg þ f @P

@gÞ VT
s ðVg þ f @P

@gÞ VT
t ðVg þ f @P

@gÞ
VT
r P VT

s P VT
t P

2
64

3
75 ð24Þ

in which we used vector notations Vn and Vg for compactness.

4.2 EXtended Finite Element Method (XFEM) and CZ Segments

An alternative to inserting CZ elements between all finite elements is to discretize the
governing equations with the XFEM. The Heaviside enrichment function is employed
to account for the displacement jump across the macro-fracture. The approximate
function of displacement uhðx; tÞ is expressed in the following form:

uh x; tð Þ ¼ P
i2S NuiðxÞuiðtÞþ

P
i2SH NuiðxÞ 12 HCdðxÞ �HCdðxiÞ½ �aiðtÞ

¼ NuðxÞUðtÞþNaðxÞAðtÞ ð25Þ

where Nui(x) is the standard shape function associated with node i, S is the set of all
nodal points and SH is the set of enriched nodes, the supports of which are bisected by
the fracture. ui(x) and ai(x) denote the nodal value of the displacement field associated
with the standard and enriched degree of freedoms, respectively. The Heaviside jump
function H(x) is defined as

HCd ðxÞ ¼ þ 1;/ðxÞ[ 0
�1;/ðxÞ\0

�
ð26Þ

where /(x) is the level set function, which is defined as the closest distance from
the fracture surface, positive or negative, depending on which side of the fracture the
point x is located (Fig. 1). The displacement jump across the fracture Cd is:
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uðx; tÞ½ �½ � ¼
X

i2SH NuiðxÞaiðtÞ ¼ NaðxÞAðtÞ ð27Þ

Note that the displacement jump is directly used to calculate the fracture aperture
w in the fluid flow equation (Eq. (15)). For the fluid pressure field, enrichment is done
with the distance function. The approximate pressure field is expressed as:

phðx; tÞ ¼ P
i2S NpiðxÞpiðtÞþ

P
i2SH NpiðxÞ DCd ðxÞ � DCd ðxiÞ½ �RðxÞbiðtÞ

¼ NpðxÞPðtÞþNbðxÞBðtÞ ð28Þ

where Npi(x) is the standard finite element shape function associated with node
i. Nodal sets S and SH are the same as for the displacement field. pi(t) and bi(t) denote
the nodal value of the fluid pressure associated with the standard and enriched degree
of freedom, respectively. DCd ðxÞ is the distance function, defined as

DCd ðxÞ ¼ þ/ðxÞ;/ðxÞ[ 0
�/ðxÞ;/ðxÞ\0

�
ð29Þ

The gradient of the distance function along the direction normal to the fracture is
discontinuous, with: rDCd :nCd ¼ HCd . As a result, enriching the FEM with the dis-
tance function for the pressure field ensures a continuous pressure field and a dis-
continuous gradient of pressure across the fracture. Thus, the fluid exchange between
the fracture and the matrix can be accounted for. Similar to the displacement
approximation, the shifted enrichment function DCd ðxÞ � DCd ðxiÞ½ � is used and R(x) is
a weight function, defined as RðxÞ ¼ P

i2SH NpiðxÞ, as proposed by Mohammadnejad
and Khoei (2013). It is worth noting that the pressure field at the tip of the fracture does
not need to be enriched to satisfy the ‘‘no leakage flux’’ boundary condition. By
substituting the approximations (Eqs. (25) and (28)) into the governing weak form
equations (Eqs. (3), (7), (10)), we can obtain the discretized form of the governing
equations, as follows:

KuuUþKuaA� QupP� QubB� Fext
u ¼ 0 ð30aÞ

KT
uaUþKaaA� QapP� QabB� QadPd þFint

a � Fext
a ¼ 0 ð30bÞ

QT
up

_UþQT
ap
_AþMpp_PþMpb_BþHppPþHpbB� Fint

p � Fext
p ¼ 0 ð30cÞ

QT
ub

_UþQT
ab
_AþMbp_PþMbb_BþHT

pbPþHbbB� Fint
b � Fext

b ¼ 0 ð30dÞ

in which Nu(x) and Np(x) (respectively, Na(x) and Nb(x)) are the matrices of
standard (respectively, enriched) shape functions for the displacement field u and for
the pressure field p, respectively. U(t) and P(t) (respectively, A(t) and B(t)) are the
vectors of the standard (respectively, enriched) displacement and pressure degrees of
freedom, respectively. The expressions of the matrices in Eq. (30a, b, c, d) are
explained in detail in (Jin and Arson, 2020). In order to simplify the notations, we
condense the enriched and standard degrees of freedom for displacement and pressure

12 C. F. Arson et al.



as UðU;AÞ and PðP;BÞ, respectively. The weak form of the governing equation dis-
cretized in space (Eq. (30)) can be rewritten as:

KU� QPþFint
U

U;Pð Þ � Fext
U

¼ 0
QT

UþMPþHP� Fint
P

U;Pð Þ � Fext
P

¼ 0
ð31Þ

To solve the above equations, we use a linear time discretization scheme. After
injecting the time discretization equations into the spatially discretized governing
equations (Eq. 31), we obtain the residual at time step n + 1, as follows:

RU;nþ 1 ¼ KUnþ 1 � QPnþ 1 þFint
Unþ 1

� Fext
Unþ 1

¼ 0
RP;nþ 1 ¼ QT

Unþ 1 þ Mþ hDtHð ÞPnþ 1 � Fint
Pnþ 1

� GPnþ 1 ¼ 0
ð32Þ

in which the weight h can be any value between 0 and 1, and GPnþ 1 is the vector of
known values at time step n, expressed as:

GPnþ 1 ¼ Dt Fint
Pnþ 1

þQT
Un þ M � Dtð1� hÞHð ÞPn þ

R
Cd
NT

P

w
Kf
pndC

þ R
Cd

NT
P
u½ �½ �n:nCd dC�Dt 1� hð Þ RCd

$NT
P
:mCd

w3

12l$pn:mCddC
ð33Þ

and Fint
Pnþ 1

is the flux vector that accounts for the mass exchange between the matrix
and the fracture at time step n + 1:

Fint
Pnþ 1

¼ � R
Cd

NT
P

w
Kf
pnþ 1 dC� R

Cd
NT

P
u½ �½ �nþ 1:nCd dC

�Dt h
R
Cd

$NT
P
:mCd

w3

12l$pnþ 1:mCd dCþDtNPQinjs¼0

ð34Þ

The nonlinear system (Eq. (32)) is solved iteratively (Jin and Arson 2020). The
transition between CDM and CZ is triggered when the invariants of the damage tensor
meet a threshold condition (similar to a yield condition in plasticity). To compute the
damage value at the crack tip, we adopt the method proposed by Wang and Waisman
(2016) and Wells et al. (2002). As shown in Fig. 4, we assume that the fracture
propagates when the maximum component of the weighted damage vector over the
half-circle patch (shaded in blue) exceeds the threshold xcrit.

The macro-fracture propagates in the direction di, calculated as the weighted
average of the damage directions in the half-circle patch, as follows:

diðxtipÞ ¼
Z

XT

aðxtip; nÞxi nð Þ d
kdk dXT nð Þ; ði ¼ 1; 2Þ ð35Þ

where d ¼ n� xtip, as shown in Fig. 4. If the damage invariants meet the threshold
function, we propagate the fracture in the direction of di with a user-defined growth
length Da. Since only the Heaviside function is used for XFEM discretization, no
cohesive segment is inserted into the tip element if the fracture tip is located inside an
element.
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It is worth noting that for a given time increment, the size of the zone in which
damage satisfies the transition criterion may exceed the growth length Da. Thus, we
repeat the above calculation until the damage invariants meet the threshold criterion.
Within a single time increment, the length of the propagated fracture equals several
times Da. Every time the fracture grows by a length Da, we add extra degrees of
freedom at the enriched nodes, and we add enriched shape functions for the elements
that contain newly enriched nodes. In addition, to ensure consistent displacement jumps
across the fracture, we adopt the classical sub-region quadrature technique to divide a
quadrilateral element into multiple triangles, as illustrated in Fig. 4. We use three
Gauss points within each triangle to calculate the Jacobian matrix and the residual. To
transform the internal and state variables from the initial to the new set of Gauss points,
we adopt the Super-convergent Patch Recovery (SPR) method proposed by Zienkie-
wicz and Zhu (1992). After remapping, we recheck the propagation criterion and repeat
all the follow-up steps. If the propagation criterion is not satisfied, we march to the next
increment and construct the global matrix equations, and the problem is iteratively
solved. After convergence is reached and the results are postprocessed, the fracture
propagation procedure is repeated.

5 Calibration

5.1 Finite Element Method (FEM) and Cohesive Zone (CZ) Elements

The FEM-based CZ model is calibrated in three steps: (i) CDM parameters in the
hardening regime; (ii) Critical damage threshold; (iii) Softening parameters. Typically,
the CDM parameters can be found iteratively by fitting simulated stress/strain curves to

Fig. 4. Principle of the transition CDM model - CZ segment with the XFEM. Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Acta
Geotechnica, Fluid-driven transition from damage to fracture in anisotropic porous media: a
multi-scale XFEM approach, W. Jin and C. Arson 2020
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experimental data, e.g., triaxial compression results. We used parallel computing
algorithms in MATLAB to accelerate the calibration process. The program keeps
comparing the simulation results with stress-strain curves obtained from laboratory
tests and gradually narrows down the searching range to obtain the set of parameters
that can best predict the mechanical behavior of the tested material. The initial
searching area still needs to be defined prior to the automatic calibration process. In the
case of the DSID model (Xu and Arson 2014), which is an energy-based CDM model,
we can observe that, for rock materials subjected to triaxial loading conditions: (1) The
initial (reference, pre-loading) elastic modulus E0 and Poisson’s ratio v0 govern the
mechanical behavior before damage occurs, so these two parameters can be estimated
based on the linear portion of the experimental stress-strain curve; (2) The parameter a2
that is needed to express the free energy and controls the evolution of the principal
stress directions, has the most significant influence on rock damage; (3) The initial
damage threshold parameter C0 governs the initiation of damage. Therefore, the ini-
tialization of the parameters of the DSID model can be done by searching first the range
of values of only four parameters: E0, v0, a2 and C0. After estimating these four
parameters, the MATLAB program is used to find the other parameters and to refine the
initial estimation of the four initialization parameters. After calibration of the CDM
parameters, the material compression strength is found by calculating the peak stress.
The corresponding damage tensor is set as the critical damage threshold. Lastly, the
softening parameters are calibrated to minimize the distance between the experimental
and simulated stress/strain curves. Figure 5 shows material-point simulation results
obtained by coupling the DSID model to a linear softening CZ model. Damage initi-
ation under tensile loading occurred at the very early stage of the loading and tensile
strength is much lower than shear strength, as could be expected for a rock material. In
Fig. 5.b, the same shearing deformation is applied under different levels of compressive
strain (applied in the z – direction). It can be observed that, at a higher compressive
strain, the mean stress level increases and so do the stiffness and shear strength. This is
typical of most geomaterials, which exhibit material hardening. The approach used here
can be extended to any CDM model and to any CZ softening model.

Fig. 5. One-element simulation results obtained with MATLAB for one CDM-based cohesive
element on: (a) normal direction and (b) shearing direction.
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5.2 EXtended Finite Element Method (XFEM) and CZ Segments

In the XFEM-based coupling approach, the direction of propagation of the discrete
fracture is not known a priori, and solving for the critical damage thresholds in several
directions of space is usually not feasible. That is why a damage measure is often
defined to set a threshold empirically. For example, the threshold can be found by
calculating the values of the damage components beyond which the damaged stiffness
components predicted by the CDM model depart from those predicted by a micro-
mechanical model that accounts for micro-crack interaction (Jin et al. 2017, Jin and
Arson 2019). In phenomenological CDM models, the damage threshold is typically
reached when principal damage components equal a value between 0.1 and 0.3.
The CDM and CZ parameters are calibrated in the same way as in the FEM-based
coupling approach. First, a FEM model without discrete fractures is used to simulate
laboratory tests and CDM parameters are adjusted to match numerical stress/strain
curves to experimental results in the hardening regime. Then, the coupled CDM-CZ
model is used to simulate the tests once more, and the CZ parameters are calibrated to
match the stress/strain curve in the softening regime, beyond the critical damage
threshold. Figure 6 shows an example of calibration simulation for a micromechanical
damage model coupled with the Park–Paulino–Roesler CZ model (Park et al. 2009).

The tip of the macro cohesive fracture is behind the front of the process zone at all
stages, which indicates a smooth transition from damage to fracture. The size of the
process zone is constant throughout the simulation. All the simulated cases show that
the evolution of energy follows three phases. In the initial phase, all the input work is
transformed and stored as elastic energy within the system. In the second phase, energy
is dissipated by micro-crack and macro-fracture propagation while the elastic energy of
the system keeps increasing. In the final phase, most of the input work is dissipated
immediately, and some of the stored elastic energy gets dissipated as well, to propagate
the micro-cracks and the macro-fracture. The elastic energy of the system tends to zero.
We can also note that the percentage of energy dissipated by micro-crack propagation
(damage development) is significantly smaller than the amount of energy dissipated by
macro-fracture surface formation.
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Fig. 6. Simulation of a splitting wedge test with an XFEM-based CDM-CZ model. Left: Load
vs. CMOD response: comparison of numerical and experimental results. Right: Contour of the
damage component Xy (horizontal micro cracks) and macro cohesive fracture path shown on the
deformed mesh (displacements magnified x 5). Reprinted from Computer Methods in Applied
Mechanics and Engineering, vol. 357, W. Jin and C. Arson, XFEM to couple nonlocal
micromechanics damage with discrete mode I cohesive fracture, p.18, copyright 2019, with
permission from Elsevier.
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6 Conclusions

The coupling between CDM and CZ models relies on an energy equivalence criterion
to determine the cohesive strength and the cohesive energy release rate, such that the
total dissipated energy by propagating macro-fracture and micro-cracks for a unit area
equals the energy release rate measured in the laboratory. In the FEM approach, the
critical damage threshold is calculated after calibrating the CDM parameters. In the
XFEM approach, a weighted damage tensor is calculated around the tip area to
determine the direction and length of the macro-fracture that propagates, and the SPR
method is used to map state variables after remeshing. Results demonstrate that the
XFEM-based CDM-CZ framework can successfully capture the propagation of a mode
I microfracture within a damage process zone. Simulation results reveal that most of the
energy is dissipated to create macro-fracture surfaces and that the amount of energy
dissipated by damage development is negligible. However, the tangent Jacobian matrix
cannot be calculated without the explicit expression of the damaged stiffness matrix,
which can result in convergence issues for complex stress paths, and also restricts the
type of CDM constitutive models that can be used in the coupled approach, hence
limiting the type of fracture patterns that can be simulated. Furthermore, some dis-
crepancies are noted with the XFEM approach, especially when both material and
stress anisotropy are accounted for, because of the choice of the damage-to-fracture
transition criterion, which cannot account for fracture branching (but works perfectly
well for unidirectional fractures). On the one hand, a more detailed algorithm is needed
to process the evolution of damage at the tip and predict branching paths; on the other
hand, the level set method used to identify fracture paths in the XFEM has inherent
limitations to account for multiple fracture branches and intersections, especially in 3D.
The FEM approach based on the insertion of CZ elements shows great promise. The
main challenges ahead are to parallelize FEM-CZM computations to reduce the
computational cost, and to understand the dependency of predicted field variables and
fracture patterns to spatial discretization.
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