
Certified Semantics for Relational
Programming

Dmitry Rozplokhas1,3 , Andrey Vyatkin2 , and Dmitry Boulytchev2,3(B)

1 Higher School of Economics, Saint Petersburg, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia

dboulytchev@math.spbu.ru
3 JetBrains Research, Saint Petersburg, Russia

Abstract. We present a formal study of semantics for the relational
programming language miniKanren. First, we formulate a denotational
semantics which corresponds to the minimal Herbrand model for definite
logic programs. Second, we present operational semantics which models
interleaving, the distinctive feature of miniKanren implementation, and
prove its soundness and completeness w.r.t. the denotational semantics.
Our development is supported by a Coq specification, from which a ref-
erence interpreter can be extracted. We also derive from our main result
a certified semantics (and a reference interpreter) for SLD resolution with
cut and prove its soundness.

1 Introduction

In the context of this paper, we understand “relational programming” as a puris-
tic form of logic programming with all extra-logical features banned. Specifically,
we use miniKanren as an exemplary language; miniKanren can be seen as
a logical language with explicit connectives, existentials and unification, and
is mutually convertible to the pure logical subset of Prolog.1 Unlike Pro-
log, which relies on SLD-resolution, most miniKanren implementations use a
monadic interleaving search, which is known to be complete [15]. miniKanren
is designed as a shallow DSL which may help to equip the host language with
logical reasoning features. This design choice has been proven to be applicable in
practice, and there are more than 100 implementations for almost 50 languages.

Although there already were attempts to define a formal semantics for
miniKanren, none of them were capable of reflecting the distinctive property of
miniKanren’s search—interleaving [18]. Since this distinctive search strategy is
essential for the specification of the language and its extensions, the description
of almost all development on miniKanren was not based on formal semantics.
The introductory book on miniKanren [12] describes the language by means of

The reported study was funded by RFBR, project number 18-01-00380.
1 A detailed Prolog-to-miniKanren comparison can be found here: http://

minikanren.org/minikanren-and-prolog.html.

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 167–185, 2020.
https://doi.org/10.1007/978-3-030-64437-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_9&domain=pdf
http://orcid.org/0000-0001-7882-4497
http://orcid.org/0000-0003-0528-8798
http://orcid.org/0000-0001-8363-7143
http://minikanren.org/minikanren-and-prolog.html
http://minikanren.org/minikanren-and-prolog.html
https://doi.org/10.1007/978-3-030-64437-6_9

168 D. Rozplokhas et al.

C = {Cki
i } constructors with arities

TX = X ∪ {Cki
i (t1, . . . , tki) | tj ∈ TX} terms over the set of variables X

D = T∅ ground terms
X = {x, y, z, . . . } syntactic variables
A = {α, β, γ, . . . } semantic variables
R = {Rki

i } relational symbols with arities
G = TX ≡ TX unification

G ∧ G conjunction
G ∨ G disjunction
fresh X . G fresh variable introduction
Rki

i (t1, . . . , tki), tj ∈ TX relational symbol invocation
S = {Rki

i = λ xi
1 . . . xi

ki
. gi; } g specification

Fig. 1. The syntax of the source language

an evolving set of examples. In a series of follow-up papers [1,7,13–15,30] vari-
ous extensions of the language were presented with their semantics explained in
terms of a Scheme implementation. We argue that this style of semantic defi-
nition is fragile and not self-sufficient since it relies on concrete implementation
languages’ semantics and therefore is not stable under the host language replace-
ment. In addition, the justification of important properties of the language and
specific relational programs becomes cumbersome.

In this paper, we present a formal semantics for core miniKanren and prove
some of its basic properties. First, we define denotational semantics similar to the
least Herbrand model for definite logic programs [23]; then we describe opera-
tional semantics with interleaving in terms of a labeled transition system. Finally,
we prove soundness and completeness of the operational semantics w.r.t the
denotational one. We support our development with a formal specification using
the Coq proof assistant [4], thus outsourcing the burden of proof checking to the
automatic tool and deriving a certified reference interpreter via the extraction
mechanism. As a rather straightforward extension of our main result, we also
provide a certified operational semantics (and a reference interpreter) for SLD
resolution with cut, a new result to our knowledge; while this step brings us out
of purely relational domain, it still can be interesting on its own.

2 The Language

In this section, we introduce the syntax of the language we use throughout the
paper, describe the informal semantics, and give some examples.

The syntax of the language is shown in Fig. 1. First, we fix a set of con-
structors C with known arities and consider a set of terms TX with constructors
as functional symbols and variables from X. We parameterize this set with an
alphabet of variables since in the semantic description we will need two kinds of
variables. The first kind, syntactic variables, is denoted by X . The second kind,
semantic or logic variables, is denoted by A. We also consider an alphabet of

Certified Semantics for Relational Programming 169

relational symbols R which are used to name relational definitions. The central
syntactic category in the language is goal. In our case, there are five types of
goals: unification of terms, conjunction and disjunction of goals, fresh variable
introduction, and invocation of some relational definition. Thus, unification is
used as a constraint, and multiple constraints can be combined using conjunc-
tion, disjunction, and recursion. The final syntactic category is a specification
S. It consists of a set of relational definitions and a top-level goal. A top-level
goal represents a search procedure which returns a stream of substitutions for
the free variables of the goal. The definition for a set of free variables for both
terms and goals is conventional; as “ fresh ” is the sole binding construct the
definition is rather trivial. The language we defined is first-order, as goals can
not be passed as parameters, returned or constructed at run time.

We now informally describe how relational search works. As we said, a goal
represents a search procedure. This procedure takes a state as input and returns
a stream of states; a state (among other information) contains a substitution
that maps semantic variables into the terms over semantic variables. Then five
types of scenarios are possible (depending on the type of the goal):
– Unification “t1 ≡ t2” unifies terms t1 and t2 in the context of the substitution

in the current state. If terms are unifiable, then their MGU is integrated into
the substitution, and a one-element stream is returned; otherwise the result
is an empty stream.

– Conjunction “g1 ∧g2” applies g1 to the current state and then applies g2 to
each element of the result, concatenating the streams.

– Disjunction “g1 ∨g2” applies both its goals to the current state independently
and then concatenates the results.

– Fresh construct “ fresh x . g” allocates a new semantic variable α, substi-
tutes all free occurrences of x in g with α, and runs the goal.

– Invocation “Rki
i (t1,...,tki

)” finds a definition for the relational symbol Rki
i =

λx1 . . . xki
. gi, substitutes all free occurrences of a formal parameter xj in gi

with term tj (for all j) and runs the goal in the current state.
We stipulate that the top-level goal is preceded by an implicit “ fresh ”

construct, which binds all its free variables, and that the final substitutions for
these variables constitute the result of the goal evaluation.

Conjunction and disjunction form a monadic [32] interface with conjunction
playing role of “bind” and disjunction the role of “mplus”. In this description,
we swept a lot of important details under the carpet—for example, in actual
implementations the components of disjunction are not evaluated in isolation,
but both disjuncts are evaluated incrementally with the control passing from
one disjunct to another (interleaving) [18]; the evaluation of some goals can be
additionally deferred (via so-called “inverse-η-delay”) [13]; instead of streams the
implementation can be based on “ferns” [8] to defer divergent computations, etc.
In the following sections, we present a complete formal description of relational
semantics which resolves these uncertainties in a conventional way.

As an example consider the following specification. For the sake of brevity
we abbreviate immediately nested “ fresh ” constructs into the one, writing
“ fresh x y g” instead of “ fresh x. fresh y. . . . g”.

170 D. Rozplokhas et al.

appendo = λ x y xy .

((x ≡ Nil) ∧ (xy ≡ y)) ∨
(fresh h t ty .

(x ≡ Cons (h, t)) ∧
(xy ≡ Cons (h, ty)) ∧
(appendo t y ty));

reverso x x

reverso = λ x xr .

((x ≡ Nil) ∧ (xr ≡ Nil)) ∨
(fresh h t tr .

(x ≡ Cons (h, t)) ∧
(appendo tr (Cons (h, Nil)) xr) ∧
(reverso t tr));

Here we defined2 two relational symbols—“appendo” and “reverso”,—and
specified a top-level goal “reverso x x”. The symbol “appendo” defines a relation
of concatenation of lists—it takes three arguments and performs a case analysis
on the first one. If the first argument is an empty list (“Nil”), then the second and
the third arguments are unified. Otherwise, the first argument is deconstructed
into a head “h” and a tail “t”, and the tail is concatenated with the second
argument using a recursive call to “appendo” and additional variable “ty”, which
represents the concatenation of “t” and “y”. Finally, we unify “Cons (h , ty)”
with “xy” to form a final constraint. Similarly, “reverso” defines relational list
reversing. The top-level goal represents a search procedure for all lists “x”, which
are stable under reversing, i.e. palindromes. Running it results in an infinite
stream of substitutions:

α �→ Nil
α �→ Cons (β0 , Nil)
α �→ Cons (β0 , Cons (β0 , Nil))
α �→ Cons (β0 , Cons (β1 , Cons (β0 , Nil)))
. . .

where “α” is a semantic variable, corresponding to “x”, “βi” are free semantic
variables. Therefore, each substitution represents a set of all palindromes of a
certain length.

3 Denotational Semantics

In this section, we present a denotational semantics for the language we defined
above. We use a simple set-theoretic approach analogous to the least Herbrand
model for definite logic programs [23]. Strictly speaking, instead of developing it
from scratch we could have just described the conversion of specifications into def-
inite logic form and took their least Herbrand model. However, in that case, we
would still need to define the least Herbrand model semantics for definite logic
programs in a certified way. In addition, while for this concrete language the con-
version to definite logic form is trivial, it may become less trivial for its extensions
(with, for example, nominal constructs [7]) which we plan to do in future.

2 We respect here a conventional tradition for miniKanren programming to super-
script all relational names with “o”.

Certified Semantics for Relational Programming 171

We also must make the following observations. First, building inductive deno-
tational semantics in a conventional way amounts to constructing a complete lat-
tice and a monotone function and taking its least fixed point [31]. As we deal with
a first-order language with only monotonic constructs (conjunction/disjunction)
these steps are trivial. Moreover, we express the semantics in Coq, where all
well-formed inductive definitions already have proper semantics, which removes
the necessity to justify the validity of the steps we perform. Second, the least
Herbrand model is traditionally defined as the least fixed point of a transition
function (defined by a logic program) which maps sets of ground atoms to sets of
ground atoms. We are, however, interested in relational semantics which should
map a program into n-ary relation over ground terms, where n is the number of
free variables in the topmost goal. Thus, we deviate from the traditional route
and describe the denotational semantics in a more specific way.

To motivate further development, we first consider the following example.
Let us have the following goal:

x ≡ Cons (y , z)

There are three free variables, and solving the goal delivers us the following
single answer:

α �→ Cons (β , γ)

where semantic variables α, β and γ correspond to the syntactic ones “x”,
“y”, “z”. The goal does not put any constraints on “y” and “z”, so there are no
bindings for “β” and “γ” in the answer. This answer can be seen as the following
ternary relation over the set of all ground terms:

{(Cons (β, γ), β, γ) | β ∈ D, γ ∈ D} ⊆ D3

The order of “dimensions” is important, since each dimension corresponds
to a certain free variable. Our main idea is to represent this relation as a set of
total functions

f : A �→ D
from semantic variables to ground terms. We call these functions representing

functions. Thus, we may reformulate the same relation as

{(f (α), f (β), f (γ)) | f ∈ �α ≡ Cons (β, γ)�}

where we use conventional semantic brackets “�•�” to denote the semantics.
For the top-level goal, we need to substitute its free syntactic variables with dis-
tinct semantic ones, calculate the semantics, and build the explicit representation
for the relation as shown above. The relation, obviously, does not depend on the
concrete choice of semantic variables but depends on the order in which the
values of representing functions are tupled. This order can be conventionalized,
which gives us a completely deterministic semantics.

172 D. Rozplokhas et al.

Now we implement this idea. First, for a representing function

f : A → D
we introduce its homomorphic extension

f : TA → D
which maps terms to terms:

f (α) = f (α)
f (Cki

i (t1,tki
)) = Cki

i (f (t1), . . . f (tki
))

Let us have two terms t1, t2 ∈ TA. If there is a unifier for t1 and t2 then,
clearly, there is a substitution θ which turns both t1 and t2 into the same ground
term (we do not require θ to be the most general). Thus, θ maps (some) variables
into ground terms, and its application to t1(2) is exactly θ(t1(2)). This reasoning
can be performed in the opposite direction: a unification t1 ≡ t2 defines the set
of all representing functions f for which f(t1) = f(t2).

We will use the conventional notions of pointwise modification of a function
f [x ← v] and substitution g [t/x] of a free variable x with a term t in a goal (or
a term) g.

For a representing function f : A → D and a semantic variable α we define
the following generalization operation:

f ↑ α = {f [α ← d] | d ∈ D}
Informally, this operation generalizes a representing function into a set of

representing functions in such a way that the values of these functions for a
given variable cover the whole D. We extend the generalization operation for
sets of representing functions F ⊆ A → D:

F ↑ α =
⋃

f∈F

(f ↑ α)

Now we are ready to specify the semantics for goals (see Fig. 2). We’ve already
given the motivation for the semantics of unification: the condition f(t1) = f(t2)
gives us the set of all (otherwise unrestricted) representing functions which
“equate” terms t1 and t2. Set union and intersection provide a conventional
interpretation for disjunction and conjunction of goals. In the case of a rela-
tional invocation we unfold the definition of the corresponding relational symbol
and substitute its formal parameters with actual ones.

The only non-trivial case is that of “ fresh x . g”. First, we take an arbitrary
semantic variable α, not free in g, and substitute x with α. Then we calculate the
semantics of g [α/x]. The interesting part is the next step: as x can not be free
in “ fresh x . g”, we need to generalize the result over α since in our model the
semantics of a goal specifies a relation over its free variables. We introduce some
nondeterminism by choosing arbitrary α, but we can prove that with different
choices of free variable the semantics of a goal does not change.

Certified Semantics for Relational Programming 173

Fig. 2. Denotational semantics of goals

Lemma 1. For any goal fresh x . g, for any two variables α and β which are
not free in this goal, if f ∈ �g [α/x]�, then for any representing function f′, such
that
1. f′(β) = f(α)
2. ∀γ : γ �= α ∧ γ �= β, f′(γ) = f(γ)
it is true that f′ ∈ �g [β/x]�.

The proof turned out to be the most cumbersome among all others in the case
where g is a nested fresh construct. In that case, we have to constructively build
two representing functions (including an intermediate one for an intermediate
goal) by pointwise modification. The details of this proof can be found in the
extended version of the paper.3

We can prove the following important closedness condition for the semantics
of a goal g.

Lemma 2 (Closedness condition). For any goal g and two representing
functions f and f′, such that f|FV (g) = f′|FV (g), it is true, that f ∈ �g� ⇔ f′ ∈ �g�.

In other words, representing functions for a goal g restrict only the values of
free variables of g and do not introduce any “hidden” correlations. This condition
guarantees that our semantics is closed in the sense that it does not introduce
artificial restrictions for the relation it defines.

4 Operational Semantics

In this section we describe the operational semantics of miniKanren, which cor-
responds to the known implementations with interleaving search. The semantics
is given in the form of a labeled transition system (LTS) [17]. From now on we
assume the set of semantic variables to be linearly ordered (A = {α1, α2, . . . }).

We introduce the notion of substitution

σ : A → TA

as a (partial) mapping from semantic variables to terms over the set of semantic
variables. We denote Σ the set of all substitutions, Dom (σ)—the domain for a
substitution σ, VRan (σ) =

⋃
α∈Dom (σ) FV (σ (α))—its range (the set of all free

variables in the image).
3 The extended version of this paper is available at https://arxiv.org/abs/2005.01018.

https://arxiv.org/abs/2005.01018

174 D. Rozplokhas et al.

The non-terminal states in the transition system have the following shape:

S = G × Σ × N | S ⊕ S | S ⊗ G
As we will see later, an evaluation of a goal is separated into elementary steps,

and these steps are performed interchangeably for different subgoals. Thus, a
state has a tree-like structure with intermediate nodes corresponding to partially-
evaluated conjunctions (“⊗”) or disjunctions (“⊕”). A leaf in the form 〈g, σ, n〉
determines a goal in a context, where g is a goal, σ is a substitution accumulated
so far, and n is a natural number, which corresponds to a number of semantic
variables used to this point. For a conjunction node, its right child is always
a goal since it cannot be evaluated unless some result is provided by the left
conjunct.

The full set of states also include one separate terminal state (denoted by �),
which symbolizes the end of the evaluation.

Ŝ = � | S

We will operate with the well-formed states only, which are defined as follows.

Definition 1. Well-formedness condition for extended states:
– � is well-formed;
– 〈g, σ, n〉 is well-formed iff FV (g) ∪ Dom (σ) ∪ VRan (σ) ⊆ {α1, . . . , αn};
– s1 ⊕ s2 is well-formed iff s1 and s2 are well-formed;
– s ⊗ g is well-formed iff s is well-formed and for all leaf triplets 〈 , , n〉 in s it

is true that FV (g) ⊆ {α1, . . . , αn}.

Informally the well-formedness restricts the set of states to those in which
all goals use only allocated variables.

Finally, we define the set of labels:

L = ◦ | Σ × N

The label “◦” is used to mark those steps which do not provide an answer;
otherwise, a transition is labeled by a pair of a substitution and a number of
allocated variables. The substitution is one of the answers, and the number is
threaded through the derivation to keep track of allocated variables.

The transition rules are shown in Fig. 3. The first two rules specify the seman-
tics of unification. If two terms are not unifiable under the current substitution
σ then the evaluation stops with no answer; otherwise, it stops with the most
general unifier applied to a current substitution as an answer.

The next two rules describe the steps performed when disjunction or con-
junction is encountered on the top level of the current goal. For disjunction, it
schedules both goals (using “⊕”) for evaluating in the same context as the par-
ent state, for conjunction—schedules the left goal and postpones the right one
(using “⊗”).

The rule for “ fresh ” substitutes bound syntactic variable with a newly
allocated semantic one and proceeds with the goal.

Certified Semantics for Relational Programming 175

The rule for relation invocation finds a corresponding definition, substitutes
its formal parameters with the actual ones, and proceeds with the body.

The rest of the rules specify the steps performed during the evaluation of
two remaining types of the states—conjunction and disjunction. In all cases, the
left state is evaluated first. If its evaluation stops, the disjunction evaluation
proceeds with the right state, propagating the label (SumStop and SumStep),
and the conjunction schedules the right goal for evaluation in the context of the
returned answer (ProdStopAns) or stops if there is no answer (ProdStop).

Fig. 3. Operational semantics of interleaving search

The last four rules describe interleaving, which occurs when the evaluation of
the left state suspends with some residual state (with or without an answer). In
the case of disjunction the answer (if any) is propagated, and the constituents of
the disjunction are swapped (SumStep, SumStepAns). In the case of conjunc-
tion, if the evaluation step in the left conjunct did not provide any answer, the
evaluation is continued in the same order since there is still no information to

176 D. Rozplokhas et al.

proceed with the evaluation of the right conjunct (ProdStep); if there is some
answer, then the disjunction of the right conjunct in the context of the answer
and the remaining conjunction is scheduled for evaluation (ProdStepAns).

The introduced transition system is completely deterministic: there is exactly
one transition from any non-terminal state. There is, however, some freedom
in choosing the order of evaluation for conjunction and disjunction states. For
example, instead of evaluating the left substate first, we could choose to evaluate
the right one, etc. This choice reflects the inherent non-deterministic nature of
search in relational (and, more generally, logical) programming. Although we
could introduce this ambiguity into the semantics (by replacing specific rules for
disjunctions and conjunctions evaluation with some conditions on it), we want
an operational semantics that would be easy to present and easy to employ to
describe existing language extensions (already described for a specific implemen-
tation of interleaving search), so we instead base the semantics on one canonical
search strategy. At the same time, as long as deterministic search procedures are
sound and complete, we can consider them “equivalent”.4

It is easy to prove that transitions preserve well-formedness of states.

Lemma 3. (Well-formedness preservation) For any transition s
l−→ ŝ, if s is

well-formed then ŝ is also well-formed.

A derivation sequence for a certain state determines a trace—a finite or
infinite sequence of answers. The trace corresponds to the stream of answers in
the reference miniKanren implementations. We denote a set of answers in the
trace for state ŝ by T rŝ.

We can relate sets of answers for the partially evaluated conjunction and dis-
junction with sets of answers for their constituents by the two following lemmas.

Lemma 4. For any non-terminal states s1 and s2, T rs1⊕s2 = T rs1 ∪ T rs2 .

Lemma 5. For any non-terminal state s and goal g, T rs⊗g ⊇
⋃

(σ,n)∈T rs

T r〈g,σ,n〉.

These two lemmas constitute the exact conditions on definition of these oper-
ators that we will use to prove the completeness of an operational semantics.

We also can easily describe the criterion of termination for disjunctions.

Lemma 6. For any goals g1 and g2, substitution σ, and number n, the trace
from the state 〈g1 ∨ g2, σ, n〉 is finite iff the traces from both 〈g1, σ, n〉 and
〈g2, σ, n〉 are finite.

These simple statements already allow us to prove two important proper-
ties of interleaving search as corollaries: the “fairness” of disjunction—the fact
that the trace for disjunction contains all the answers from both streams for
disjuncts—and the “commutativity” of disjunctions—the fact that swapping
two disjuncts (at the top level) does not change the termination of the goal
evaluation.
4 There still can be differences in observable behavior of concrete goals under different

sound and complete search strategies. For example, a goal can be refutationally
complete [6] under one strategy and non-complete under another.

Certified Semantics for Relational Programming 177

5 Equivalence of Semantics

Now we can relate two different kinds of semantics for miniKanren described
in the previous sections and show that the results given by these two semantics
are the same for any specification. This will actually say something important
about the search in the language: since operational semantics describes precisely
the behavior of the search and denotational semantics ignores the search and
describes what we should get from a mathematical point of view, by proving
their equivalence we establish the completeness of the search, which means that
the search will get all answers satisfying the described specification and only
those.

Fig. 4. Denotational semantics of states

But first, we need to relate the answers produced by these two semantics as
they have different forms: a trace of substitutions (along with the numbers of
allocated variables) for the operational one and a set of representing functions for
the denotational one. We can notice that the notion of a representing function
is close to substitution, with only two differences:
– representing functions are total;
– terms in the domain of representing functions are ground.

Therefore we can easily extend (perhaps ambiguously) any substitution to a
representing function by composing it with an arbitrary representing function
preserving all variable dependencies in the substitution. So we can define a set
of representing functions that correspond to a substitution as follows:

�σ� = {f ◦ σ | f : A �→ D}
And the denotational analog of operational semantics (a set of representing

functions corresponding to the answers in the trace) for a given state ŝ is then
defined as the union of sets for all substitutions in the trace:

�ŝ�op = ∪(σ,n)∈T rŝ
�σ�

This allows us to state theorems relating the two semantics.

Theorem 1 (Operational semantics soundness). If indices of all free vari-
ables in a goal g are limited by some number n, then �〈g, ε, n〉�op ⊆ �g�.

It can be proven by nested induction, but first, we need to generalize the state-
ment so that the inductive hypothesis is strong enough for the inductive step.

178 D. Rozplokhas et al.

To do so, we define denotational semantics not only for goals but for arbitrary
states. Note that this definition does not need to have any intuitive interpreta-
tion, it is introduced only for the proof to go smoothly. The definition of the
denotational semantics for extended states is shown on Fig. 4. The generalized
version of the theorem uses it.

Lemma 7 (Generalized soundness). For any well-formed state ŝ

�ŝ�op ⊆ �ŝ�.

It can be proven by the induction on the number of steps in which a given
answer (more accurately, the substitution that contains it) occurs in the trace.
We break the proof in two parts and separately prove by induction on evidence
that for every transition in our system the semantics of both the label (if there is
one) and the next state are subsets of the denotational semantics for the initial
state.

Lemma 8 (Soundness of the answer). For any transition s
(σ,n)−−−→ ŝ,

�σ� ⊆ �s�.

Lemma 9 (Soundness of the next state). For any transition s
l−→ ŝ,

�ŝ� ⊆ �s�.

It would be tempting to formulate the completeness of operational semantics
as soundness with the inverted inclusion, but it does not hold in such gener-
ality. The reason for this is that the denotational semantics encodes only the
dependencies between free variables of a goal, which is reflected by the closed-
ness condition, while the operational semantics may also contain dependencies
between semantic variables allocated in fresh constructs. Therefore we formu-
late completeness with representing functions restricted on the semantic vari-
ables allocated in the beginning (which includes all free variables of a goal).
This does not compromise our promise to prove the completeness of the search
as miniKanren returns substitutions only for queried variables, which are allo-
cated in the beginning.

Theorem 2 (Operational semantics completeness). If the indices of all
free variables in a goal g are limited by some number n, then

{f|{α1,...,αn} | f ∈ �g�} ⊆ {f|{α1,...,αn} | f ∈ �〈g, ε, n〉�op}.

Similarly to the soundness, this can be proven by nested induction, but the
generalization is required. This time it is enough to generalize it from goals
to states of the shape 〈g, σ, n〉. We also need to introduce one more auxiliary
semantics—step-indexed denotational semantics (denoted by �•�i). It is an imple-
mentation of the well-known approach [2] of indexing typing or semantic logical
relations by a number of permitted evaluation steps to allow inductive reasoning

Certified Semantics for Relational Programming 179

on it. In our case, �g�i includes only those representing functions that one can
get after no more than i unfoldings of relational calls.

The step-indexed denotational semantics is an approximation of the con-
ventional denotational semantics; it is clear that any answer in conventional
denotational semantics will also be in step-indexed denotational semantics for
some number of steps.

Lemma 10. �g� ⊆ ∪i�g�i

Now the generalized version of the completeness theorem is as follows.

Lemma 11 (Generalized completeness). For any set of relational defini-
tions, for any number of unfoldings i, for any well-formed state 〈g, σ, n〉,

{f|{α1,...,αn} | f ∈ �g�i ∩ �σ�} ⊆ {f|{α1,...,αn} | f ∈ �〈g, σ, n〉�op}.

The proof is by the induction on number of unfoldings i. The induction
step is proven by structural induction on goal g. We use Lemmas 4 and 5 for
evaluation of a disjunction and a conjunction respectively, and Lemma 1 in the
case of fresh variable introduction to move from an arbitrary semantic variable
in denotational semantics to the next allocated fresh variable. The details of this
proof may be found in the extended version of the paper.

6 Specification in Coq

We certified all the definitions and propositions from the previous sections using
the Coq proof assistant.5 The Coq specification for the most part closely follows
the formal descriptions we gave by means of inductive definitions (and induc-
tively defined propositions in particular) and structural induction in proofs. The
detailed description of the specification, including code snippets, is provided in
the extended version of the paper, and in this section we address only some
non-trivial parts of it and some design choices.

The language formalized in Coq has a few non-essential simplifications for
the sake of convenience. Specifically, we restrict the arities of all constructors
to be either zero or two and require all relations to have exactly one argument.
These restrictions do not make the language less expressive in any way since we
can always represent a sequence of terms as a list using constructors Nil0 and
Cons2.

In our formalization of the language we use higher-order abstract syntax [27]
for variable binding, therefore we work explicitly only with semantic variables.
We preferred it to the first-order syntax because it gives us the ability to use
substitution and the induction principle provided by Coq. On the other hand,
we need to explicitly specify a requirement on the syntax representation, which is
trivially fulfilled in the first-order case: all bindings have to be “consistent”, i.e. if
5 The specification is available at https://github.com/dboulytchev/miniKanren-coq.

https://github.com/dboulytchev/miniKanren-coq

180 D. Rozplokhas et al.

we instantiate a higher-order fresh construct with different semantic variables
the results will be the same up to some renaming (provided that both those
variables are not free in the body of the binder). Another requirement we have
to specify explicitly (independent of HOAS/FOAS dichotomy) is a requirement
that the definitions of relations do not contain unbound semantic variables.

To formalize the operational semantics in Coq we first need to define all
preliminary notions from unification theory [3] which our semantics uses. In
particular, we need to implement the notion of the most general unifier (MGU).
As it is well-known [25] all standard recursive algorithms for calculating MGU
are not decreasing on argument terms, so we can’t define them as simple recursive
functions in Coq due to the termination check failure. The standard approach
to tackle this problem is to define the function through well-founded recursion.
We use a distinctive version of this approach, which is more convenient for our
purposes: we define MGU as a proposition (for which there is no termination
requirement in Coq) with a dedicated structurally-recursive function for one step
of unification, and then we use a well-founded induction to prove the existence
of a corresponding result for any arguments and defining properties of MGU.
For this well-founded induction, we use the number of distinct free variables in
argument terms as a well-founded order on pairs of terms.

In the operational semantics, to define traces as (possibly) infinite sequences
of transitions we use the standard approach in Coq—coinductively defined
streams. Operating with them requires a number of well-known tricks, described
by Chlipala [9], to be applied, such as the use of a separate coinductive definition
of equality on streams.

The final proofs of soundness and completeness of operational semantics are
relatively small, but the large amount of work is hidden in the proofs of auxil-
iary facts that they use (including lemmas from the previous sections and some
technical machinery for handling representing functions).

7 Applications

In this section, we consider some applications of the framework and results,
described in the previous sections.

7.1 Correctness of Transformations

One important immediate corollary of the equivalence theorems we have proven
is the justification of correctness for certain program transformations. The com-
pleteness of interleaving search guarantees the correctness of any transformation
that preserves the denotational semantics, for example:
– changing the order of constituents in conjunctions and disjunctions;
– distributing conjunctions over disjunctions and vice versa, for example, nor-

malizing goals info CNF or DNF;
– moving fresh variable introduction upwards/downwards, for example, trans-

forming any relation into a top-level fresh construct with a freshless body.

Certified Semantics for Relational Programming 181

Note that this way we can guarantee only the preservation of results as sets
of ground terms; the other aspects of program behavior, such as termination,
may be affected by some of these transformations.6

One of the applications for these transformations is a conversion from/to
Prolog. As both languages use essentially the same fragment of first-order
logic, their programs are mutually convertible. The conversion from Prolog to
miniKanren is simpler as the latter admits a richer syntax of goals. The inverse
conversion involves the transformation into a DNF and splitting the disjunction
into a number of separate clauses. This transformation, in particular, makes it
possible to reuse our approach to describe the semantics of Prolog as well. In
the following sections we briefly address this problem.

7.2 SLD Semantics

The conventional Prolog SLD search differs from the interleaving one in just
one aspect—it does not perform interleaving. Thus, changing just two rules in
the operational semantics converts interleaving search into the depth-first one:

s1
◦−→ s′

1

(s1 ⊕ s2)
◦−→ (s′

1 ⊕ s2)
[DisjStep]

s1
r−→ s′

1

(s1 ⊕ s2)
r−→ (s′

1 ⊕ s2)
[DisjStepAns]

With this definition we can almost completely reuse the mechanized proof of
soundness (with minor changes); the completeness, however, can no longer be
proven (as it does not hold anymore).

7.3 Cut

Dealing with the “cut” construct is known to be a cornerstone feature in the
study of operational semantics for Prolog. It turned out that in our case the
semantics of “cut” can be expressed naturally (but a bit verbosely). Unlike SLD-
resolution, it does not amount to an incremental change in semantics description.
It also would work only for programs directly converted from Prolog specifi-
cations.

The key observation in dealing with the “cut” in our setting is that a state
in our semantics, in fact, encodes the whole current search tree (including all
backtracking possibilities). This opens the opportunity to organize proper “navi-
gation” through the tree to reflect the effect of “cut”. The details of the semantic
description can be found in the extended version of the paper.

For this semantics, we can repeat the proof of soundness w.r.t. to the deno-
tational semantics. There is, however, a little subtlety with our construction: we
cannot formally prove that our semantics indeed encodes the conventional mean-
ing of “cut” (since we do not have other semantics of “cut” to compare with).
6 Possible slowdown and loss of termination after reorderings in conjunction is a

famous example of this phenomenon in miniKanren, known as conjunction non-
commutativity [6].

182 D. Rozplokhas et al.

Nevertheless, we can demonstrate a plausible behavior using the extracted ref-
erence interpreter.

7.4 Reference Interpreters

Using the Coq extraction mechanism, we extracted two reference interpreters
from our definitions and theorems: one for conventional miniKanren with inter-
leaving search and another one for SLD search with cut. These interpreters can be
used to practically investigate the behavior of specifications in unclear, complex,
or corner cases. Our experience has shown that these interpreters demonstrate
the expected behavior in all cases.

8 Related Work

The study of formal semantics for logic programming languages, particularly
Prolog, is a well-established research domain. Early works [10,16] addressed
the computational aspects of both pure Prolog and its extension with the cut
construct. Recently, the application of certified/mechanized approaches came
into focus as well. In particular, in one work [21] the equivalence of a few differ-
ently defined semantics for pure Prolog is proven, and in another work [20] a
denotational semantics for Prolog with cut is presented; both works provide
Coq-mechanized proofs. It is interesting that the former one also advocates
the use of higher-order abstract syntax. We are not aware of any prior work
on certified semantics for Prolog which contributed a correct-by-construction
interpreter. Our certified description of SLD resolution with cut can be consid-
ered as a certified semantics for Prolog modulo occurs check in unification
(which Prolog does not have by default).

The implementation of first-order unification in dependently typed languages
constitutes a well-known challenge with a number of known solutions. The major
difficulty comes from the non-structural recursivity of conventional unification
algorithms, which requires to provide a witness for convergence. The standard
approach is to define a generally-recursive function and a well-founded order
for its arguments. This route is taken in a number of works [5,19,26,28], where
the descriptions of unification algorithms are given in Coq, LCF and Alf.
The well-founded used there is lexicographically ordered tuples, containing the
information about the number of different free variables and the sizes of the
arguments. We implement a similar approach, but we separate the test for the
non-matching case into a dedicated function. Thus, we make a recursive call only
when the current substitution extension is guaranteed, which allows us to use
the number of different free variables as the well-founded order. An alternative
approach suggested by McBride [25] gives a structurally recursive definition of
the unification algorithm; this is achieved by indexing the arguments with the
numbers of their free variables.

The use of higher-order abstract syntax (HOAS) for dealing with language
constructs in Coq was addressed in early work [11], where it was employed to

Certified Semantics for Relational Programming 183

describe the lambda calculus. The inconsistency phenomenon of HOAS represen-
tation, mentioned in Sect. 6, is called there “exotic terms” there and is handled
using a dedicated inductive predicate “Valid_v”. The predicate has a non-trivial
implementation based on subtle observations on the behavior of bindings. Our
case, however, is much simpler: there is not much variety in “exotic terms” (for
example, we do not have reductions in terms), and our consistency predicate can
be considered as a limited version of “Valid_v” for a more limited language.

The study of formal semantics for miniKanren is not a completely novel
venture. Previously, a nondeterministic small-step semantics was described [24],
as well as a big-step semantics for a finite number of answers [29]; neither uses
proof mechanization and in both works the interleaving is not addressed.

The work of Kumar [22] can be considered as our direct predecessor. It also
introduces both denotational and operational semantics and presents a HOL-
certified proof for the soundness of the latter w.r.t. the former. The denotational
semantics resembles ours but considers only queries with a single free variable
(we do not see this restriction as important). On the other hand, the operational
semantics is non-deterministic, which makes it impossible to express interleav-
ing and extract the interpreter in a direct way. In addition, a specific form of
“executable semantics” is introduced, but its connection to the other two is
not established. Finally, no completeness result is presented. We consider our
completeness proof as an essential improvement.

The most important property of interleaving search—completeness—was
postulated in the introductory paper [18], and is delivered by all major imple-
mentations. Hemann et al. [15] give a proof of completeness for a specific imple-
mentation of miniKanren; however, the completeness is understood there as
preservation of all answers during the interleaving of answer streams, i.e. in a
more narrow sense than in our work since no relation to denotational semantics
is established.

9 Conclusion and Future Work

In this paper, we presented a certified formal semantics for core miniKanren and
proved some of its basic properties (including interleaving search completeness,
disjunction fairness and commutativity), which are believed to hold in existing
implementations. We also derived a semantics for conventional SLD resolution
with cut and extracted two certified reference interpreters. We consider our work
as the initial setup for the future development of miniKanren semantics.

The language we considered here lacks many important features, which are
already introduced and employed in many implementations. Integrating these
extensions—in the first hand, disequality constraints,—into the semantics looks
a natural direction for future work. We are also going to address the problems of
proving some properties of relational programs (equivalence, refutational com-
pleteness, etc.).

184 D. Rozplokhas et al.

References

1. Alvis, C.E., Willcock, J.J., Carter, K.M., Byrd, W.E., Friedman, D.P.: cKanren:
miniKanren with constraints. In: Proceedings of the 2011 Annual Workshop on
Scheme and Functional Programming (2011)

2. Appel, A.W., McAllester, D.A.: An indexed model of recursive types for foun-
dational proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683
(2001)

3. Baader, F., Snyder, W.: Handbook of automated reasoning. In: Unification Theory.
Elsevier Science Publishers B. V., Amsterdam, The Netherlands (2001)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer (2004)

5. Bove, A.: Programming in martin-löf type theory: Unification - a non-trivial exam-
ple, pp. 22–42, Department of Computer Science, Chalmers University of Technol-
ogy (1999)

6. Byrd, W.E.: Relational Programming in miniKanren: Techniques, Applications,
and Implementations. PhD thesis, Indiana University (2009)

7. Byrd, W.E., Friedman, D.P.: αkanren: a fresh name in nominal logic program-
ming. In: Proceedings of the 2007 Annual Workshop on Scheme and Functional
Programming, pp. 79–90 (2007)

8. Byrd, W.E., Friedman, D.P., Kumar, R., Near, J.P.: A shallow Scheme embedding
of bottom-avoiding streams. In: To appear in a special issue of Higher-Order and
Symbolic Computation, in honor of Mitchell Wand’s 60th birthday

9. Chlipala, A.: Certified Programming with Dependent Types - A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, Cambridge (2013)

10. Debray, S.K., Mishra, P.: Denotational and operational semantics for PROLOG.
In: Formal Description of Programming Concepts - III: Proceedings of the IFIP TC
2/WG 2.2 Working Conference on Formal Description of Programming Concepts
- III, Ebberup, Denmark, 25–28 August 1986, pp. 245–274 (1987)

11. Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-order abstract syntax in Coq.
In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp.
124–138. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0014049

12. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. MIT Press,
Cambridge (2005)

13. Hemann, J., Friedman, D.P.: μKanren: a minimal functional core for relational
programming. In: Proceedings of the 2013 Annual Workshop on Scheme and Func-
tional Programming (2013)

14. Hemann, J., Friedman, D.P.: A framework for extending microKanren with con-
straints. In Proceedings 29th and 30th Workshops on (Constraint) Logic Program-
ming and 24th International Workshop on Functional and (Constraint) Logic Pro-
gramming, WLP 2015 / WLP 2016 / WFLP 2016, Dresden and Leipzig, Germany,
22nd September 2015 and 12–14th September 2016, pp. 135–149 (2017)

15. Hemann, J., Friedman, D.P., Byrd, W.E., Might, M.: A small embedding of logic
programming with a simple complete search. In: Proceedings of the 12th Sym-
posium on Dynamic Languages, DLS 2016, Amsterdam, The Netherlands, 1 Nov
2016, pp. 96–107 (2016)

16. Jones, N.D., Mycroft, A.: Stepwise development of operational and denotational
semantics for Prolog. In: Proceedings of the 1984 International Symposium on
Logic Programming, Atlantic City, New Jersey, USA, 6–9 Feb 1984, pp. 281–288
(1984)

https://doi.org/10.1007/BFb0014049

Certified Semantics for Relational Programming 185

17. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976)

18. Kiselyov, O., Shan, C., Friedman, D.P., Sabry, A.: Backtracking, interleaving, and
terminating monad transformers: (functional pearl), pp. 192–203 (2005)

19. Kothari, S., Caldwell, J.: A machine checked model of idempotent MGU axioms
for lists of equational constraints. In: Proceedings 24th International Workshop on
Unification, UNIF 2010, Edinburgh, United Kingdom, 14th July 2010, pp. 24–38
(2010)

20. Kriener, J., King, A.: Semantics for Prolog with cut - revisited. In: Functional and
Logic Programming - 12th International Symposium, FLOPS 2014, Kanazawa,
Japan, 4–6 June 2014, Proceedings, pp. 270–284 (2014)

21. Kriener, J., King, A., Blazy, S.: Proofs you can believe. In: proving equivalences
between Prolog semantics in Coq. In: 15th International Symposium on Principles
and Practice of Declarative Programming, PPDP ’13, Madrid, Spain, 16–18 Sept
2013, pp. 37–48 (2013)

22. Kumar, R.: Mechanising aspects of miniKanren in HOL. Bachelor Thesis, The
Australian National University (2010)

23. Lloyd, J.W.: Foundations of Logic Programming, 1st edn. Springer (1984)
24. Lozov, P., Vyatkin, A., Boulytchev, D.: Typed relational conversion. In: Wang, M.,

Owens, S. (eds.) TFP 2017. LNCS, vol. 10788, pp. 39–58. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89719-6 3

25. McBride, C.: First-order unification by structural recursion. J. Funct. Program.
13(6), 1061–1075 (2003)

26. Paulson, L.C.: Verifying the unification algorithm in LCF. Sci. Comput. Program.
5(2), 143–169 (1985)

27. Pfenning, F., Elliott, C.: Higher-Order Abstract Syntax, pp. 199–208 (1988)
28. Ribeiro, R., Camarão, C.: A mechanized textbook proof of a type unification algo-

rithm. In: Cornélio, M., Roscoe, B. (eds.) SBMF 2015. LNCS, vol. 9526, pp. 127–
141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29473-5 8

29. Rozplokhas, D., Boulytchev, D.: Improving refutational completeness of relational
search via divergence test. In: Proceedings of the 20th International Symposium
on Principles and Practice of Declarative Programming, PPDP 2018, Frankfurt
am Main, Germany, 03–05 Sept 2018, pp. 18:1–18:13 (2018)

30. Swords, C., Friedman, D.P.: rKanren: guided search in miniKanren. In: Proceedings
of the 2013 Annual Workshop on Scheme and Functional Programming (2013)

31. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5, 06 (1955)

32. Wadler, P.: Monads for functional programming. In: Advanced Functional Pro-
gramming, First International Spring School on Advanced Functional Program-
ming Techniques, B̊astad, Sweden, 24–30 May 1995, Tutorial Text, pp. 24–52
(1995)

https://doi.org/10.1007/978-3-319-89719-6_3
https://doi.org/10.1007/978-3-319-29473-5_8

	Certified Semantics for Relational Programming
	1 Introduction
	2 The Language
	3 Denotational Semantics
	4 Operational Semantics
	5 Equivalence of Semantics
	6 Specification in Coq
	7 Applications
	7.1 Correctness of Transformations
	7.2 SLD Semantics
	7.3 Cut
	7.4 Reference Interpreters

	8 Related Work
	9 Conclusion and Future Work
	References

