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Abstract. The Datalog language is used in many potential applications
including database queries, program analysis, bidirectional transforma-
tions, and so forth. In practice, such a Datalog program is expected to
be well-written to meet requirements such as the round-tripping prop-
erties in bidirectional programming. Although verifying and debugging
Datalog programs play an essential role to guarantee the expected prop-
erties of these programs, very few approaches have been proposed. The
existing approaches require much users’ effort in finding out unintended
behaviors or unexpected computations of the Datalog program that nei-
ther counterexamples nor bug explanations are provided. In this paper,
we propose an efficient approach to interactively debugging Datalog pro-
grams so that the user’s burden is reduced. Specifically, we provide a
syntax for users to specify properties of non-recursive Datalog programs,
present a counterexample generator that verifies specified properties and
generates counterexamples to show unexpected behaviors of user-written
programs, and design a debugging engine combined with a dialog-based
user interface to assist users in locating bugs in the programs with the
generated counterexamples. We have implemented a prototype of our
approach and demonstrated its feasibility and efficiency.
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1 Introduction

Datalog, a declarative logic programming language, has many applications in
a variety of domains such as deductive databases [17], data integration [12],
program analysis [4,11], bidirectional programming [21], and so forth. Verifying
Datalog programs plays an essential role to guarantee the properties of these pro-
grams required by the applications. When a property is not satisfied, it is more
important to reduce the user’s burden in debugging the unexpected behavior of
the program.

This kind of debugging problem, which arises when a property of a program
is not satisfied, has not been well studied for Datalog. There are two challenges
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Fig. 1. Motivating example. The unexpected tuple and the buggy rule are highlighted.

in practice. The first challenge is searching for a concrete input database, i.e., a
counterexample that reveals the unexpected behavior of the program. The sec-
ond challenge is locating the buggy Datalog rules that break the property. By
adopting the algorithmic debugging method [7], a few approaches were proposed
for debugging Datalog programs [5,6,14]. However, the existing approaches nei-
ther provide users a way to specify the properties of Datalog programs nor
generate counterexamples to show the incorrectness of the programs. To locate
a bug, these approaches ask the users many questions about the computation
correctness of the Datalog program. In other words, the users have to find out
whether the Datalog program has unintended interpretations, e.g., the intention
is not met by the program results. Identifying such unintended interpretations
becomes costly when the input database of the program is not small.

An ideal approach to debugging would allow the user to specify the program’s
properties and automatically run all the checks. The properties of a program are
commonly specified by a set of assertions such as equalities, domain constraints,
containments, and so forth. For Datalog, which is a logic programming language
in relational databases, it is intuitive for programmers to specify the assertions
in the forms of relational predicates. For example, one may consider that some
relations of the Datalog program must be equivalent or some relations must be
empty, i.e., the corresponding predicates are always false.

We illustrate with the following example the property specifications and the
debugging problem of Datalog programs.

Example 1 (Motivating Example: View Update Strategy). In this example, we
consider an application of Datalog in describing view update strategies [21].
Suppose that we are given a database of two base relations s1(A,B) and s2(A,B)
(Fig. 1) with a view v(A,B) defined over these two relations by a union query:
v = get(s1, s2) = s1 ∪ s2. The following is a buggy Datalog program (denoted as
putdelta) that describes a view update strategy, i.e., a description about how to
update the base relations s1 and s2 through the view v.

Δ−
s1(X,Y ) :- s1(X,Y ),¬v(X,Y ). (r1)
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Δ−
s2(X,Y ) :- s2(X,Y ),¬v(X,Y ). (r2)
m(Y,X) :- v(X,Y ),¬s1(X,Y ). (r3)

Δ+
s1(X,Y ) :- m(X,Y ),¬s2(X,Y ). (r4)

In putdelta, for a relation, Δ+ and Δ− denote the insertion and deletion sets
on the relation, respectively. Rules (r1) and (r2) state that if a tuple 〈X,Y 〉 is
in s1 or s2 but not in v, it will be deleted from s1 or s2, respectively. Rule (r3)
checks the tuples in v but not in s1, and stores these tuples in a mediate relation
m. The last rule states that if a tuple 〈X,Y 〉 is in m but not in s2, it will be
inserted into s1. putdelta takes as input the states of s1, s2, and v to produce
the delta relations of s1 and s2.

Such a putback program putdelta is required to satisfy round-tripping prop-
erties to maintain the consistency of view updates, as formulated in the existing
works [10,21]. Here, we illustrate the problem with the property (called Get-
Put) that in the input of putdelta, if the view is unchanged, i.e., v = s1 ∪ s2,
the output of putdelta must be empty. We use first-order logic sentences (Fig. 1)
to specify the constraints of the input (called precondition) and the constraints
over the output (called postcondition).

Figure 1 shows a counterexample of GetPut that is a collection of tuples in
the source tables and the view (s1, s2, v). Over this counterexample, the result
of putdelta is Δ−

s1 = Δ−
s2 = ∅ and Δ+

s1 = {〈b2, a2〉}. That means tuple 〈b2, a2〉 is
inserted into s1. This insertion is not expected by the postcondition. Since the
input of putdelta satisfies the precondition but the output does not satisfy the
postcondition, the GetPut property of putdelta is violated.

The user may wonder why tuple 〈b2, a2〉 of Δ+
s1 occurs unexpectedly in the

output of putdelta. From this unexpected tuple, the problem now is to detect
which rules in the original Datalog program are the causes. Here, in the head of
rule (r3), the variables X and Y are placed in the wrong positions and thereby
some wrong tuples are derived. This bug must be fixed to make putdelta satisfy
the GetPut property. ��

We believe that for a required property of a Datalog program, the user may
not only have unexpected mistakes such as typos but also have wrong intentions
that do not conform to the property. Providing suggestions on how to correct the
program is very useful to users but is a challenging issue. In addition, debugging
is an ambiguous process that there are many possible causes for a bug. Therefore,
it is essential to design an interface that lets users interact with the underlying
debugging engine. For example, the user can mark suspicious rules to inspect or
decide how to proceed for the bug ambiguity.

The key insight of this paper is that counterexamples play a central role in
debugging Datalog programs. First, a program is buggy if and only if a coun-
terexample exists. Second, to be useful for debugging the Datalog program, a
counterexample is expected to be a realistic and simple database.
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Our approach is statically generating such a counterexample rather than
dynamically testing the program with randomly generated test cases as in other
works such as [3]. Over the generated counterexample, bugs can be observed in
the execution results of the Datalog program. Although data provenance tech-
niques from the database literature [16] can provide useful support to explain
how and why the unexpected results are derived, whether we can use this prove-
nance information to efficiently track down the detailed source of bugs remains
unclear. In this paper, we fulfill this gap by a novel method that combines the
provenance information with the user interaction for resolving the ambiguity in
debugging. In summary, this paper has the following contributions:

– We present a new way to use a syntactic extension of non-recursive Datalog
for specifying the properties of a Datalog program.

– To explain to the user the behavior of the written Datalog program, we
develop a counterexample generator that statically checks specified proper-
ties of non-recursive Datalog programs and generates counterexamples for
showing why the properties are not satisfied.

– To reduce the user’s effort of correcting buggy Datalog programs, we design a
user interface and a provenance-based debugging engine to assist the user in
locating the bugs with the counterexamples. The debugging engine provides
correction hints to the user when the bugs are found.

– To demonstrate the efficiency and the usability of the proposed approach, we
have implemented a prototype of the approach and evaluated it with Datalog
programs in practice. The source code is available upon request.

The paper is organized as follows. Section 2 gives some background about the
Datalog language with syntax extensions. In Sect. 3, we explain the design of our
proposed counterexample generation method. We describe the counterexample-
guided debugging approach in Sect. 4 and the experiment in Sect. 5. Section 6
presents related works. Section 7 wraps up the paper.

2 Background

A pure Datalog program is a finite set of logical rules, and each rule is an
expression of the form [9]:

r0(X0) :- r1(X1), . . . , rn(Xn).

where r0, r1, . . . , rn are relations, “:- ” is a variant of the standard logical impli-
cation “←” from the rule body in the right-hand side to the rule head in the
left-hand side. Each Xi (i ∈ [0, n]) is a tuple of variables. Each variable occurring
in X0 must occur in at least one of X1, . . . ,Xn in the body.

The relations in a Datalog program are divided into two categories:
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Fig. 2. Counterexample generation architecture

– EDB relations, which are physically stored in a relational database, called
extensional database (EDB). These relations are the input of the program.

– IDB (intensional database) relations, which are derived from the EDB rela-
tions using the Datalog program. An IDB relation occurs in some rule heads
while an EDB relation can never be in the head of a rule. An IDB relation
is recursive if it appears in both the head and the body of a rule. A Datalog
program is non-recursive if it has no recursive IDB relation.

We can extend Datalog by allowing negations and built-in predicates such as
equality (=) or comparison (<,>) in Datalog rule bodies but in a safe way that
each variable occurring in the negated atoms or the built-in predicates must also
occur in some positive atoms [9]. Throughout the paper, we refer Datalog to the
Datalog language with the extensions of safe negation and built-in predicates.

Let P be a Datalog program and D be the database of all the EDB and IDB
relations. A tuple A in r, or a fact r(A), is immediately inferred from P and D
if it satisfies one of the following conditions:

– A ∈ r, where r is an EDB relation.
– r(A) :- (¬)r1(A1), . . . , (¬)rn(An). is an instantiation of a rule in P , i.e.,

all variables in the rule are substituted with constants. Here, a negative fact
¬ri(Ai) holds if the fact ri(Ai) does not hold, i.e., Ai is not a tuple of ri in
D. This is based on the Closed World Assumption (CWA) [9].

Semantically, evaluating P is computing the minimum database D such that
every tuple in D is immediately inferred from D and P . In other words, we
compute the least fixpoint of the immediate inference operator. In the standard
bottom-up evaluation strategy for Datalog, the least fixpoint is obtained from
P and the input EDB database by deriving all IDB tuples with a finite number
of immediate inferences. To deal with negations in the Datalog program, the
Datalog program is stratified to ensure that all the tuples of an IDB relation are
derived before using any negative facts of this IDB relation in other immediate
inferences. This is because if an IDB relation is incomplete, it is not sufficient to
judge a negative fact of the IDB relation. The sequence of immediate inferences
used for deriving a fact is called a proof of the fact and can be represented in a
proof tree with different levels of the applied rules and facts.
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3 Counterexample Generation

In this section, we present our approach to statically validating and generating
counterexamples for a specified property of a non-recursive Datalog program.

Figure 2 shows our counterexample generation architecture. It consists of
two main parts: a validator for statically checking the specified property and
a counterexample generator for finding a counterexample for the property. The
Datalog program with its property specification is first passed to the validator.
If the validator successfully proves that the program satisfies the property, we
conclude there is no counterexample. If the validator fails, the Datalog program
is passed to the counterexample generator. Since many static checks such as
equivalence for Datalog programs are undecidable [19], in both the validator
and generator, we transform the property of the Datalog program into logical
constraints that can be solved by an SMT solver, even though the termination
is not guaranteed.

3.1 Specifying Program Properties

As mentioned previously, rather than introducing a new language, our approach
is to use the same language to specify properties of a non-recursive Datalog
program using preconditions and postconditions. By following the syntax intro-
duced in [8,21], we allow Datalog rules to have truth constant false (denoted as
⊥) in the head. In this way, a precondition, as well as a postcondition, is a set
of Datalog rules that have the following form:

⊥ :- r1(X1), . . . rn(Xn). (*)

That means ∀X, (r1(X1)∧. . .∧rn(Xn)) → ⊥, where X are all the free variables.

Example 2. Consider the GetPut property in Example 1, which says that if
there is no change to the view v, there is no change to the base tables s1 and s2.
We use non-recursive Datalog to specify the precondition as follows:

vold(X,Y ) :- s1(X,Y ).
vold(X,Y ) :- s2(X,Y ).

⊥ :- v(X,Y ),¬vold(X,Y ).
⊥ :- vold(X,Y ),¬v(X,Y ).

The first two rules store the union of s1 and s2 in a mediate relation vold, and the
last two rules indicate that v is the same as vold, i.e., the view does not change.
And we can specify the postcondition that there is no change to the base tables
as follows.

⊥ :- Δ−
s1(X,Y ).

⊥ :- Δ−
s2(X,Y ).

⊥ :- Δ+
s1(X,Y ).
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3.2 Validation

We use an SMT solver to prove the specified property of the Datalog program
by translating the property into a first-order logic (FO) sentence. If there is a
proof such that the FO sentence is valid, the property is satisfied.

Our transformation from non-recursive Datalog to first-order logic is based
on the standard transformation [2,9]. Let P be a non-recursive Datalog program,
we inductively transform each relation r in P and the rules of the precondition
and the postcondition into an equivalent FO formula ϕr as follows:

If r is an EDB relation, ϕr = r(Xr ) = r(X1, . . . , Xarity(r)).
If r is an IDB relation, i.e., r occurs in the head of m rules:

r(Xr ) :- α1,1, . . . , α1,n1 .
. . .
r(Xr ) :- αm,1, . . . , αm,nm

.

The FO formula of r, if considering only the i-th rule, is ϕr,i(Xr ) = ∃Ei,
ni∧

j=1

βi,j ,

where Ei contains the bound variables of the i-th rule, i.e., the variables not in
the rule head, and

βi,j =

⎧
⎨

⎩

ϕw(Z), if αi,j is an atom w(Z)
¬ϕw(Z), if αi,j is a negated atom ¬w(Z)
αi,j , if αi,j is an equality or a built-in predicate, e.g., x < y

By combining all the rules of r, we have:

ϕr(Xr ) =
m∨

i=1

ϕr,i(Xr ) =
m∨

i=1

⎛

⎝∃Ei,

ni∧

j=1

βi,j

⎞

⎠

By having the first-order formulas of all the IDB relations, each special Dat-
alog rule of (*), which has ⊥ in the head in the precondition and postcondition,
is transformed into a first-order sentence: ∀X, (ϕr1(X1) ∧ . . . ∧ ϕrn(Xn)) → ⊥.
The precondition, as well as the postcondition, is a conjunction of all its FO
sentences transformed from the special Datalog rules.

Let ϕpre and ϕpost be the first-order sentences of the precondition and the
postcondition, respectively. We employ an automated theorem prover to prove
whether ϕpost holds if ϕpre holds. In other words, we check whether the following
first-order sentence is valid: ϕpre → ϕpost.

3.3 Generating Counterexamples

As mentioned previously, to assist the user in debugging a specified property, we
shall generate counterexamples, which are used to guide the user to the location
of bugs. The simpler the counterexamples are, the easier the user can succeed in
debugging the program.
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To generate a counterexample, our idea is to create a symbolic database and
transform the evaluation of the Datalog program over the symbolic database with
the specified property into a constraint program in Rosette [20]. The Rosette
symbolic execution runtime translates the program into logical constraints that
are performed by an underlying SMT solver such as Z3 [1]. The result obtained
by the Rosette framework is an interpretation of the symbolic input over which
the specified property of the Datalog program is violated.

Fig. 3. Transformation from Datalog to functions

To put it more concretely, we construct a symbolic input of the source and
view tables by representing each table as a list of tuples, each tuple is a list,
where each element is a symbolic value. The order and the duplicates of tuples
are ignored because a relation is a set of tuples rather than a list. Considering
Example 1, assuming that the types of attributes A and B are integer and real,
respectively, we define a symbolic table v as follows (similarly for s1 and s2).

(define-symbolic a1 integer?) (define-symbolic a2 integer?)
(define-symbolic b1 real?) (define-symbolic b2 real?)
(define t1 (list a1 b1)) (define t2 (list a2 b2))
(define v (list t1 t2))

Since string values are not supported in the underlying SMT solvers, in our
transformation, we use an integer symbol for a string attribute. A value for this
integer symbol will be mapped to a string value by using a predefined dictionary,
where the integer value is used as an index to determine the corresponding string
value. In other words, we build up a partial bijective function that maps an
integer value to a string in the dictionary. Since the dictionary has finite words,
we limit the values of a string attribute to be in the predefined dictionary. For
example, for a relation r(S : string), we define a symbolic tuple as the following:
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(define-symbolic s1 integer?)
(assert (and (< -1 s1) (< s1 dictionary_size)))
(define t1 (list s1))

The assertion in the second line ensures that the value of s1 is in the index range
of the dictionary.

We evaluate a non-recursive Datalog program over a symbolic input by using
four functions: Cartesian product, Filter, Map, and Concat. Figure 3 illustrates
the steps for evaluating a relation r. For each rule of r, we first take a carte-
sian product over all positive relations in the rule body and then apply a filter
(Filter1) for the join attributes, a filter (Filter2) for all built-in predicates, and
another filter (Filter3) for the negative relations. Over the tuples resulted from
these tree filters, we use a mapping function to select the attributes appearing
in the rule head1. If r is defined by multiple rules, we evaluate r in each rule and
concatenate all the resulted tuples. For a non-recursive Datalog program, which
has many IDB relations, we can inductively evaluate all the IDB relations in the
program.

Example 3. For the first rule in Fig. 3, we take a cartesian product of the two
positive relations s and u. The result is first filtered by Filter2 to select only
tuples, where the second attribute of s agrees with the first attribute of u, i.e.,
Ys = Yu. Filter2 is applied to select the tuples satisfying X > 1. Filter3 checks
whether there exists a tuple 〈Xt, Zt〉 in t that agrees with the attributes Xs and
Zu in the tuples resulted from Filter2. The mapping function takes a projection
over the three-dimension tuples and results in two-dimension tuples. Function
Concat gets all the tuples computed by the two rules. ��

We now turn to encode the property that is specified by the precondition and
the postcondition. Recall that the precondition, as well as the postcondition, is
a set of Datalog rules having constant ⊥ in the head. To encode these Datalog
rules into Rosette constraints, we first replace ⊥ with a normal predicate, named
∅pre for the precondition and ∅post for the postcondition, and then encode the
evaluation of the obtained Datalog rules into functions as presented previously.
These two relations, ∅pre and ∅post, are both expected to be empty. With the
evaluation of ∅pre and ∅post over the symbolic input presented previously, we
first encode the precondition into an assertion that the length of table ∅pre is
equal to 0 as the following:

(assert (= 0 (length ∅pre)))
We then add another assertion that the length of table ∅post is greater than 0 to
solve the constraint on the symbolic input that the precondition is satisfied but
the postcondition is violated:

(solve (assert (< 0 (length ∅post))))

1 It is not necessary to filter duplicates here. The duplicates will be eliminated in all
the other checks and algorithms.
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Algorithm 1: Counterexample generation
n ← 0 // The maximum size of input tables

Success ← False
while not Success do

n ← n + 1
foreach EDB relation ri do // Construct a symbolic input

Define ri as a list of n symbolic tuples.
// Encoding the property

Replace ⊥ in the precondition/postcondition with ∅pre/∅post.
Construct the evaluation of ∅pre and ∅post over the symbolic EDB relations.
Assert the constraints for ∅pre and ∅post:

(assert (= 0 (length ∅pre)))

(solve (assert (< 0 (length ∅post))))

(A list of symbol-value pairs, Success) ← Call the Rosette framework to
resolve the constraints
if Success then

foreach ri do // Instantiate all the EDB tables
Replace each symbol with the corresponding value.
Remove duplicates in ri.

return the instance of all the EDB tables.

Algorithm 1 summarizes the main steps in our proposed counterexample
generation. Starting from 0, we increase the maximum size, denoted as n, of each
input EDB table. With a value of n, we construct n symbolic tuples for each EDB
table. We encode the specified property by constructing assertions corresponding
to the precondition and the postcondition. We input these assertions to the
Rosette framework [20] to find a value for each symbol in the input that the
precondition is satisfied but the postcondition is not. If it succeeds, we stop the
while loop, instantiate all the EDB symbolic tables, and eliminate duplicates.
Otherwise, we continue the loop with an increased value of n.

4 Interactively Locating Bugs with Counterexamples

In this section, we present our method for interactively debugging a non-recursive
Datalog program with counterexamples. Our approach consists of a user interface
and an underlying debugging engine that assists the user in determining the
location of bugs that cause the unexpected behavior of the program.

4.1 Checking Counterexamples

As presented in the previous section, a counterexample is an instance of the input
database of the Datalog program such that the property, which is specified by
the precondition and the postcondition, is not satisfied. Given an instance of
the input database, to check whether the property is violated, we evaluate the
output and check whether the input satisfies the precondition and the output
does not satisfy the postcondition. Recall that both the precondition and the
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postcondition are written in Datalog rules with a constant ⊥ in the head. We
check these conditions by replacing ⊥ with ∅pre(X)/∅post(X) for the precondi-
tion/postcondition, where X are variables in the rule body, and evaluating the
obtained Datalog rules. The specified property is violated if ∅pre is empty but
∅post is not empty. Any tuple appearing in ∅post is the symptom of the unex-
pected behavior of the Datalog program with respect to the specified property.

Example 4. Consider the putdelta program with an input database in Example 1
and its GetPut property specified in Example 2. To check GetPut, we check
the emptiness of ∅pre and ∅post in the following rules:

Fig. 4. Strata-based sequentialization.

vold(X,Y ) :- s1(X,Y ).
vold(X,Y ) :- s2(X,Y ).
∅pre(X,Y ) :- v(X,Y ),¬vold(X,Y ).
∅pre(X,Y ) :- vold(X,Y ),¬v(X,Y ).
∅post(X,Y ) :- Δ−

s1(X,Y ).
∅post(X,Y ) :- Δ−

s2(X,Y ).
∅post(X,Y ) :- Δ+

s1(X,Y ).

Clearly, in the result, there is no tuple in ∅pre but there is a tuple 〈b2, a2〉 in
∅post. Therefore, GetPut is violated.

4.2 Dialog-Based User Debugging Interface

Given a counterexample, the debugging problem is to locate the buggy Datalog
rules that cause the symptom that the output is faulty. It is extremely ambiguous
to determine the locations of bugs since there may be many possible reasons for a
fault in the output. Therefore, we allow the user to be involved in the debugging
process by designing a dialog-based interface that asks the user to confirm and
choose relevant options to handle the ambiguity occurring in the debugging
process.

Since Datalog is a declarative programming language, the computation is
not explicitly described in the Datalog program. Rather than constructing the
computation tree or graph from the Datalog program as in other existing works
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[5,6,14], we shall sequentialize the Datalog program to construct an order of
the rules for the evaluation. In other words, we partition the original Datalog
program into a sequence of smaller parts, where the final output of the program
is obtained by evaluating these parts one by one in the order defined by the
sequence. Similarly, we also sequentialize Datalog rules of the postcondition,
where the head ⊥ is replaced by ∅post.

To construct a partition {P1, P2, . . . , Pn} of a Datalog program P , we use
the well-known stratification method for Datalog [9] simplified for the case that
there is no recursion in the Datalog program. Specifically, we use the precedence
graph defined as the following.

Definition 1. The precedence graph GP of a Datalog program P is a directed
graph, where nodes are the IDB relations of P and edges are relation dependen-
cies: if r(X) :- . . . r′(Y ) . . . or r(X) :- . . . ¬ r′(Y ) . . . is a rule in P , then
〈r′, r〉, which represents that r′ precedes r, is an edge in GP .

For a precedence graph, we assign to each node, which is a relation, all the
rules of the relation. The rules in each node in the precedence graph form a
stratum. We assign to each stratum a unique position such that if stratum Pi

precedes stratum Pj in the precedence graph, then i < j. Clearly, each stratum
in the graph can be evaluated only after all its preceding stratums are evaluated.

Figure 4 shows a program P , which is partitioned into n parts P1, P2, . . . , Pn,
and postcondition rules, which are partitioned into m parts Σ1, . . . , Σm. The
input of P , which consists of EDB relations, is the input for the first part P1.
We evaluate the output of P by evaluating each part individually that the output
of Pi−1 (IDBi−1) becomes the input of Pi (EDBi) for every part Pi. Similarly,
the output of P is the input of the postcondition rules. By evaluating Σ1, . . . , Σm

in this order, we obtain ∅post.
Any tuple unexpectedly appearing in ∅post indicates that the specified prop-

erty is violated. From this fault symptom, the debugging process is to analyze
how the data is changed after each stratum to detect which stratum contains
the bugs. In the input/output of a stratum, there are two types of faulty tuples:
wrong tuples, which unexpectedly appear, and missing tuples, which cannot be
computed as expected. For example, all the tuples in ∅post are wrong. This is
caused by wrong or missing tuples in the input of Σm, i.e., the output of Σm−1.

For each stratum Pi, if there is a wrong/missing tuple in the output of Pi

(IDBi), we have two possible reasons: Pi contains the buggy rules; or the input
of Pi, which is the output of Pi−1, contains wrong/missing tuples.

Since the root cause of the property violation is in the original Datalog pro-
gram P , only P1, P2, . . . , Pn need to be inspected. Meanwhile, the stratums of the
postcondition rules, Σ1, . . . , Σm, do not need to be inspected. They are used to
detect faulty tuples in the output of P . Our underlying debugging engine auto-
matically predicts the possible faults in the input of each stratum Σi. In this
way, the possible faults in the output of P are detected without user interaction.

The user interaction is allowed when the underlying debugging engine
inspects the stratums from Pn to P1. At each stratum Pi, when having a faulty
tuple in the output of Pi, we let the user confirm and choose one of the two
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reasons for diagnosing the bugs by questioning the user about the validity of
IDBi−1, i.e., the input of Pi. Specifically, we evaluate all the stratums preceding
Pi to obtain IDBi−1 and use the faulty output of Pi (IDBi) to predict faulty
tuples in IDBi−1. On one hand, if the user confirms that IDBi−1 is valid, the
underlying engine will suspect Pi to infer possible buggy rules. On the other
hand, if the user finds suspiciousness in IDBi−1, the underlying engine will infer
possible wrong/missing tuples in IDBi−1 assuming Pi is correct, and then ques-
tion the user to confirm the relevant faulty tuples.

Fig. 5. Debugging interaction example.

Example 5. Figure 5 illustrates a debugging session for the putdelta program
and its GetPut property shown in Example 1. Here, putdelta is stratified into
four parts, P1, P2, P3, P4, corresponding to the four rules defining the four IDB
relations in the program. There is only one stratum Σ1 for the postcondition
rules. ��

4.3 Debugging Engine

We now present our underlying debugging engine that generates debugging
details for the dialog-based user interaction and performs the debugging pro-
cess based on the user’s choices. Specifically, the debugging engine traverses all
the stratums from the last one to the first one. At each stratum Pi, the debugging
engine predicts possible faults in the input of the stratum that cause the faults
observed in the output of the stratum and lets the user confirm and choose one
fault. If the user confirms the input of Pi is correct, the engine suspects Pi. In
contrast, if the user chooses one fault, the engine goes to the preceding stratum
Pi−1 for inspecting.

Assuming that the rules in the stratum are correct, and there is a faulty
(wrong or missing) tuple in the output of the stratum, we predict faulty tuples
in the input of the stratum based on the provenance information of the faulty
tuple in the output that is how it is derived or how it is not derived.

For a wrong tuple in the output of the stratum, its provenance can be
explained by constructing all the proof trees that are used by the stratum to
derive the tuple. In our stratification strategy, each stratum contains only rules
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of an IDB relation. Therefore, the maximum height of the proof trees of wrong
output tuples is 1. If a wrong tuple does not belong to the IDB relation, it is
derived directly from the same wrong tuple in the input of the stratum. In con-
trast, if a wrong tuple belongs to the IDB relation, it is derived by an immediate
inference with rules in the stratum, thus its proof trees have height 1. The proof
trees can be extracted from the standard bottom-up evaluation strategy [9] of
Datalog by assembling all the immediate inferences.

Example 6. Considering the putdelta program in Example 4 and its stratifica-
tion in Fig. 5, the provenance of tuple 〈b2, a2〉 of ∅post in the output of the last
stratum is explained by the following proof tree:

Δ+
s1(b2, a2)

∅post(b2, a2)
[∅post(X,Y ) :- Δ+

s1(X,Y ).]

where Δ+
s1(b2, a2) is explained by the previous stratum as the following:

m(b2, a2) ¬s2(b2, a2)
Δ+

s1(b2, a2)
[Δ+

s1(X,Y ) :- m(X,Y ),¬s2(X,Y ).]

��
From the constructed proof trees, we detect all the faulty tuples in the input

that must be changed to make the wrong tuples in the output disappear. For
a wrong tuple, which is derived directly from the same tuple in the input of
the stratum, we conclude this tuple in the input of the stratum is wrong. For a
wrong tuple derived by the rules of the stratum, all the proof trees of this tuple
must be deconstructed by changing the facts used in these proof trees.

Let w be the IDB relation defined in a stratum Pi, and w(A0) be a wrong
tuple in the output of Pi. A proof tree of w(A0) has the following form:

(¬)r1(A1) . . . (¬)rn(An)
w(A0)

[w(X0) :- (¬)r1(X1), . . . , (¬)rn(Xn).]

Here, we apply the rule w(X0) :- (¬)r1(X1), . . . , (¬)rn(Xn) with the facts
(¬)r1(A1), . . . , (¬)rn(An) to infer w(A0). Since w(A0) is derived if all the facts
(¬)r1(A1), . . . , and (¬)rn(An) hold, changing one of (¬)r1(A1), . . . , (¬)rn(An)
is sufficient to make w(A0) not derived, and thus correct w(A0). In other words,
w(A0) is wrong because one of the facts (¬)r1(A1), . . . , (¬)rn(An) is wrong.
We exclude facts that are from EDB relations because the EDB database is not
computed by the Datalog program. We raise a question to the user interface to
let the user confirm and choose one wrong tuple. This is repeatedly performed
for each proof tree of each wrong tuple in the output of Pi.

Remark 1. A fact ¬r(A) is wrong iff r(A) is missing. This follows from the
closed world assumption (CWA).
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A missing tuple, which is not derived in the output of a stratum, is explained
by any proof tree that fails to be constructed. The failed proof tree cannot be
completed because of some facts that are required but do not hold. As presented
previously, in our stratification strategy, each stratum contains only rules of an
IDB relation that the proof trees of a tuple have maximum height 1. A proof
tree, which has height 1, is constructed by instantiating a rule in the stratum. To
avoid constructing an infinite number of proof trees that are not related to the
context of the Datalog program, as other approaches [16], we restrict the Datalog
program to its active domain, which is the set of all constants appearing in the
EDB relations and the program. Specifically, only values in the active domain
are used to instantiate a rule. In this way, we obtain a finite number of proof
trees for a tuple in the output.

We detect the faulty tuples in the input that cause a missing tuple in the
output as follows. If the missing tuple does not belong to the IDB relation defined
by the rules in the stratum, we conclude it is missing in the input of the stratum.
In contrast, we construct a proof tree of the missing tuple by instantiating a rule
in the stratum and then find all the facts not holding in the rule body. Clearly,
these faulty facts explain the missing tuple in the output of the stratum. In
this way, by constructing all the proof trees, we enumerate all possible faults in
the input and raise a question to the user for choosing the most suitable fault.
To reduce the number of possible faults, we also prefer the smaller faults to the
bigger ones. A fault is smaller if the number of faulty facts in the fault is smaller.
The smaller a fault is, the more easily it can be fixed.

We have predicted all the faults (wrong and missing tuples) in the input of
a stratum based on the assumption that the rules in the stratum are correct. At
the user interface level, we have raised questions to the user to confirm the faults
in the input that cause the faulty tuples in the output. Since a stratum contains
only rules of an IDB relation, named ri, changing the rules in the stratum can
only correct the faulty tuples of ri in the output. Therefore, for the faulty tuples
of ri, if in the input, there is no possible fault or the user confirms no predicted
fault is suitable, we can conclude that the rules in the stratum contain the bugs
and start inspecting the stratum’s rules.

Given a faulty tuple in the output of a stratum and assuming that all the
tuples in the input are correct, the problem is to determine which rules of ri are
wrong or whether a rule is missing. For a wrong tuple in the output, to locate
the corresponding buggy rules, we use the wrong tuple’s proof trees constructed
before. Specifically, all the rules applied in these proof trees are wrong since
they must be changed to make the wrong tuple disappear in the output. For a
missing tuple in the output, the user has two ways to fix the rules for producing
the missing tuple. The first option is changing one of the rules in the stratum
so that it can produce the missing tuple. The second option is adding to the
stratum a new rule that can be applied to derive the missing tuple.

To assist the user in correcting the buggy rules in the stratum, we give
the user correction hints by showing the proof trees of the faulty tuples and
showing the input and the output expected for adding/changing the rules. To be
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efficient, at each stratum, we show all these observations to the users for finding
the cheapest way to correct all the bugs found.

Example 7. We illustrate our debugging approach by considering the putdelta
program in Example 1 with another property, called PutGet [21], specified as
follows. There is no rule for the precondition, and the postcondition is:

snew1 (X,Y ) :- s1(X,Y ),¬Δ−
s1(X,Y ) (r5)

snew1 (X,Y ) :- Δ+
s1(X,Y ). (r6)

snew2 (X,Y ) :- s2(X,Y ),¬Δ−
s2(X,Y ). (r7)

vnew(X,Y ) :- snew1 (X,Y ). (r8)
vnew(X,Y ) :- snew2 (X,Y ). (r9)

⊥ :- vnew(X,Y ),¬v(X,Y ). (r10)
⊥ :- v(X,Y ),¬vnew(X,Y ). (r11)

That means if we apply delta relations, Δ±
s1/s2

obtained from the putdelta pro-
gram, to the source relations, s1 and s2, and calculate the view vnew again, we
expect vnew to be the same as the initial view v. Let us consider a counterexample
of PutGet as the following: s1 = {〈a1, b1〉}, s2 = ∅, v = {〈a1, b1〉, 〈a2, b2〉}. Over
this counterexample, the result of putdelta is: Δ−

s1 = Δ−
s1 = ∅, Δ+

s1 = {〈b2, a2〉}.
Thus, vnew = {〈a1, b1〉, 〈b2, a2〉}, leading to that ∅post = {〈a2, b2〉, 〈b2, a2〉} in the
rules (r10) and (r11). Therefore, the PutGet property is violated.

Figure 6 illustrates how the causes of the wrong tuples ∅post(a2, b2) and
∅post(b2, a2) are predicted. Here, the putdelta program is stratified into P1, P2,
P3, P4 and the PutGet precondition is stratified into Σ1, Σ2, Σ3, Σ4.

Fig. 6. Debugging demonstration.
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For the wrong tuple ∅post(b2, a2), by using its proof trees at each stratum of
Σ1, Σ2, Σ3 and Σ4, we have wrong tuples vnew(b2, a2), snew1 (b2, a2), snew1 (b2, a2),
and Δ+

s1(b2, a2), respectively. Since stratum Σ2 does not contain any rules defin-
ing snew1 , the wrong tuple snew1 (b2, a2) in the output of Σ2 is simply derived from
this wrong tuple snew1 (b2, a2) in the input of Σ2.

For the wrong tuple ∅post(a2, b2), at stratum Σ4, we predict a wrong fact
¬vnew(a2, b2) in the input of Σ4. That means vnew(a2, b2) is missing. At stra-
tum Σ3, there are two possible proof trees corresponding to rules (r8) and (r9),
respectively. Therefore, there are two possible causes of vnew(a2, b2): snew1 (a2, b2)
is missing or snew2 (a2, b2) is missing. We continue to predict the causes of each
of these tuples snew1 (a2, b2) and snew2 (a2, b2). Eventually, some predicted causes
are invalid. For example, at Σ2, the cause of the missing tuple snew2 (a2, b2) is a
missing tuple s2(a2, b2) which cannot be fixed because s2 is an EDB relation.
There is only one valid cause: Δ+

s1(a2, b2) is missing.

Table 1. Debugging results. � indicates that the property is satisfied.

ID Program Rules (program &

properties)

Counterexample

generation time (s)

Counterexample size (tuples) Number of

questionsDeltaDis GetPut PutGet

1 luxuryitems 12 8.721 � � 2 0

2 ukaz lok 13 7.162 � � 2 0

3 message 21 10.652 3 2 3 1

4 poi view 23 10.08 � 2 3 1

5 all cars 24 11.116 3 2 3 2

6 newpc 26 10.294 � � 3 1

7 products 28 13.614 � � 4 1

8 purchaseview 29 9.153 � 5 � 0

9 vehicle view 30 Timeout – – – –

10 koncerty 32 47.951 � � 5 2

11 phonelist 33 11.035 4 3 4 1

After predicting the faults in the output of P4, i.e., the output of the putdelta
program, the user interaction is triggered. At stratum P4, assuming P4 is correct,
the cause of the wrong tuple Δ+

s1(b2, a2) is a wrong tuple m(b2, a2) and the cause
of the missing tuple Δ+

s1(a2, b2) is a missing tuple m(a2, b2). Here, a question of
confirming whether m(b2, a2) is wrong and whether m(a2, b2) is missing is raised
to the user interface. If the user confirms there is no faulty tuple, the debugging
engine will inspect P4; in contrast, it goes to stratum P3. For inspecting P4,
since there is only one rule (r4) that is used in the proof tree of Δ+

s1(b2, a2) and
Δ+

s1(a2, b2), (r4) is a buggy rule. For P3, because no fault in the input of P3

is predicted, the engine inspects P3 without user interaction. Interestingly, both
the choices of inspecting P4 or going to P3 can detect the bug that can be solved.
Specifically, changing m(X,Y ) in (r4) to m(Y,X) can make Δ+

s1(b2, a2) disap-
pear and make Δ+

s1(a2, b2) appear in the output, and thus PutGet satisfied.
Similarly, changing m(Y,X) in (r3) to m(X,Y ) can also correct the program. ��
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5 Implementation and Experiment

We have implemented a prototype for our debugging approach in Ocaml and
integrated it with Rosette [20] and Z3 [1] as the SMT solvers for our counterex-
ample generation. The user can interact with our system via a command-line
tool. By the tool, the user can start a debugging session with a counterexample
which is automatically generated by the tool or given by the user.

To evaluate our approach, we use non-recursive Datalog programs collected in
[21]. These programs are written for implementing practical view update strate-
gies that are required to be well-defined (called the DeltaDis property) and
satisfy the round-tripping properties, i.e., GetPut and PutGet, with the cor-
responding view definitions to guarantee the consistency between the views and
the source tables. We randomly add bugs to these programs and run an experi-
ment to evaluate the performance of our approach in debugging these programs.
Specifically, we measure the time for generating counterexamples, the size of the
generated counterexamples, and the number of questions used to ask the user
for locating the bugs. The experiment is performed on a computer of 2 CPUs
and 4 GB RAM running Ubuntu Server LTS 16.04. We set up a timeout of 1 min
for generating counterexamples.

Table 1 summarizes the results of our experiment. The time for generating
counterexamples and the size of counterexamples almost increase against the
number of rules in the program and the specified properties. The generating time
also depends on the difficulty of the bugs and the complexity of Datalog rules.
For example, phonelist has a smaller generating time than koncerty because
the rules of phonelist are more straightforward. products has a bigger gener-
ating time than purchaseview because PutGet is usually more complex than
GetPut. For vehicle view, the counterexample generator does not terminate
after the maximum allowed running time. The results show that the number of
questions used in locating bugs is usually small. This number depends on the
complexity of the program and the difficulty of the bugs. Some simple programs
such as luxuryitems have no question, meanwhile, some bigger programs such
as all cars and koncerty, which contain more bugs or more user-written rules,
need more questions with the user interaction to find the buggy rules.

6 Related Work

Algorithmic debugging [18], also known as declarative debugging, is a semi-
automatic debugging technique that is based on the answers of the programmer
to a series of questions generated automatically by the algorithmic debugger.
Due to its abstraction level, this technique is relevant to declarative program-
ming languages such as Datalog. Some approaches [5,6,14] have been proposed
to apply algorithmic debugging to Datalog. These existing approaches can assist
the user after a fault (i.e., a counterexample) is detected but suffer from the
well-known scalability problems of algorithmic debugging [7] that more user
interaction is required in the debugging process. In our approach, we strengthen
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the algorithmic debugging technique applied to non-recursive Datalog by stati-
cally generating minimum-size counterexamples for the debugging process. We
exploit provenance techniques [13,15,16] to automatically predict the root causes
of the observed faults of the Datalog programs for reducing the human effort of
answering the questions raised by the algorithmic debugger.

7 Conclusion

In this paper, we have presented a novel debugging approach to non-recursive
Datalog programs. Our framework assists users in checking and generating coun-
terexamples for the programs with properties prespecified by users and then uses
counterexamples to guide the users to the location of bugs via a dialog-based
interface. The experimental results show the performance of our approach.
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