
Bruno C. d. S. Oliveira (Ed.)
LN

CS
 1

24
70

18th Asian Symposium, APLAS 2020
Fukuoka, Japan, November 30 – December 2, 2020
Proceedings

Programming Languages
and Systems

Lecture Notes in Computer Science 12470

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Bruno C. d. S. Oliveira (Ed.)

Programming Languages
and Systems
18th Asian Symposium, APLAS 2020
Fukuoka, Japan, November 30 – December 2, 2020
Proceedings

123

Editor
Bruno C. d. S. Oliveira
University of Hong Kong
Hong Kong, Hong Kong

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-64436-9 ISBN 978-3-030-64437-6 (eBook)
https://doi.org/10.1007/978-3-030-64437-6

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8632-2291
https://doi.org/10.1007/978-3-030-64437-6

Preface

This volume contains the papers presented at the 18th Asian Symposium on
Programming Languages and Systems (APLAS 2020), held online during
November 30 – December 2, 2020. APLAS 2020 was originally meant to be held in
Fukuoka City, Japan, but due to the COVID-19 epidemic, it was changed to an online
event.

APLAS aims to stimulate programming language research by providing a forum for
the presentation of the latest results and the exchange of ideas in programming lan-
guages and systems. APLAS is based in Asia but is an international forum that serves
the worldwide programming languages community.

This year we solicited contributions in the forms of regular research papers and tool
papers. Among others, solicited topics include: semantics, logics, and foundational
theory; design of languages, type systems, and foundational calculi; domain-specific
languages; compilers, interpreters, and abstract machines; program derivation, syn-
thesis, and transformation; program analysis, verification, model-checking; logic,
constraint, probabilistic, and quantum programming; software security; concurrency
and parallelism; tools and environments for programming and implementation; and
applications of SAT/SMT to programming and implementation.

We also continued employing a light double-blind reviewing process adopted
recently by APLAS with an author-response period. More precisely, we had a
two-stage reviewing process. Each paper received at least three reviews before the
author-response period, which was followed by a one-week Program Committee
(PC) discussion, taking into account initial impressions of the papers as well as the
author responses.

This year we received 46 submissions, out of which 19 papers (17 regular papers
and 2 tool papers) were accepted after thorough reviews and discussions by the PC. We
were also honored to include three invited talks by distinguished PL researchers:

– Luca Cardelli (University of Oxford, UK) on “Integrated Scientific Modeling and
Lab Automation”

– Hidehiko Masuhara (Tokyo Institute of Technology, Japan) on “Object Support for
GPU Programming: Why and How”

– Nadia Polikarpova (University of California San Diego, USA) on “Generating
Programs from Types”

I am indebted to many people who helped make APLAS 2020 possible. First and
foremost, I sincerely thank the PC, who have spent a lot of time and effort throughout
the entire reviewing process. I am also grateful for the sub-reviewers and expert
reviewers for their thorough and constructive reviews. I thank Masahiro Yasugi (Kyushu
Institute of Technology, Japan) who served as a general chair and worked out every
detail of the conference well in advance. This year’s APLAS was especially challenging
to prepare due to the complications of moving to and organizing an online event.

I am also grateful to AAFS Executive Committee (especially Wei-Ngan Chin, National
University of Singapore, Singapore, and Atsushi Igarashi, Kyoto University, Japan)
who provided a lot of helpful advice and thank them for their leadership. I thank the
previous APLAS PC chair, Anthony Widjaja Lin (TU Kaiserslautern, Germany) for his
helpful advice and resources. Finally, I thank Eelco Visser and Elmer van Chastelet for
their very helpful conf.researchr.org conference management system, as well as Eddie
Kohler for his very helpful HotCRP conference management system.

October 2020 Bruno C. d. S. Oliveira

vi Preface

Organization

General Chair

Masahiro Yasugi Kyushu Institute of Technology, Japan

General Vice-chair

Kento Emoto Kyushu Institute of Technology, Japan

Local Arrangement Chair

Ryosuke Sato The University of Tokyo, Japan

Remote Arrangement Chair

Tomoharu Ugawa The University of Tokyo, Japan

Workshop Chair

Atsushi Igarashi Kyoto University, Japan

Program Chair

Bruno C. d. S. Oliveira The University of Hong Kong, Hong Kong

Program Committee

Edwin Brady University of St Andrews, UK
Soham Chakraborty IIT Delhi, India
Shigeru Chiba The University of Tokyo, Japan
Andreea Costea National University of Singapore, Singapore
Silvia Crafa University of Padova, Italy
Pierre-Evariste Dagand LIP6, CNRS, France
Mila Dalla Preda University of Verona, Italy
Cristina David University of Bristol, UK
Benjamin Delaware Purdue University, USA
Jeremy Gibbons University of Oxford, UK
Ichiro Hasuo National Institute of Informatics, Japan
Sam Lindley Heriot-Watt University and The University

of Edinburgh, UK
James McKinna The University of Edinburgh, UK
Madhavan Mukund Chennai Mathematical Institute, India

Hakjoo Oh Korea University, South Korea
Florian Rabe University of Erlangen-Nuremberg, Germany
Sukyoung Ryu KAIST, South Korea
Tom Schrijvers KU Leuven, Belgium
Ilya Sergey Yale-NUS College and National University

of Singapore, Singapore
Marco Servetto Victoria University of Wellington, New Zealand
Wouter Swierstra Utrecht University, The Netherlands
Alwen Tiu The Australian National University, Australia
Sam Tobin-Hochstadt Indiana University Bloomington, USA
Janis Voigtländer University of Duisburg-Essen, Germany
Meng Wang University of Bristol, UK
Nicolas Wu Imperial College London, UK
Yizhou Zhang University of Waterloo, Canada
Tijs van der Storm CWI, University of Groningen, The Netherlands

Additional Reviewer

Robert Rand

viii Organization

Abstracts of Invited Talks

Integrated Scientific Modeling and Lab
Automation

Luca Cardelli

University of Oxford, UK
luca.a.cardelli@gmail.com

Abstract. The cycle of observation, hypothesis formulation, experimentation,
and falsification that has driven scientific and technical progress is lately
becoming automated in all its separate components. However, integration
between these automated components is lacking. Theories are not placed in the
same formal context as the (coded) protocols that are supposed to test them:
neither description knows about the other, although they both aim to describe
the same process. We develop integrated descriptions from which we can extract
both the model of a phenomenon (for possibly automated mathematical analy-
sis), and the steps carried out to test it (for automated execution by lab equip-
ment). This is essential if we want to carry out automated model synthesis,
falsification, and inference, by taking into account uncertainties in both the
model structure and in the equipment tolerances that may jointly affect the
results of experiments.

Object Support for GPU Programming:
Why and How

Hidehiko Masuhara

Tokyo Institute of Technology, Japan
masuhara@is.titech.ac.jp

Abstract. General-purpose computing on graphics processing units (GPGPU) is
now widely used in many application domains. However, programming for
GPGPU is challenging due to its peculiar performance characteristics and still
being done either in low-level languages or through libraries (e.g., those for
matrix computation and machine learning). This talk discusses the performance
challenges of using objects in GPGPU programming from the viewpoint of
memory management, and the efficient mechanisms to support objects.

Generating Programs from Types

Nadia Polikarpova

UC San Diego, USA
npolikarpova@eng.ucsd.edu

Abstract. Program synthesis is a promising approach to automating low-level
aspects of programming by generating code from high-level declarative speci-
fications. But what form should these specifications take? In this talk I will
advocate for using types as input to program synthesis. Types are widely
adopted by programmers, they can vary in expressiveness and capture both
functional and non-functional properties, and finally, type checking is often fully
automatic and compositional, which helps the synthesizer find the right pro-
gram. I will describe two type-driven program synthesizers we developed. The
first one is Synquid, a synthesizer for recursive functional programs that uses
expressive refinement types as a specification mechanism. The second one is
Hoogle+, which relies on more mainstream Haskell types and generates code
snippets by composing functions from Haskell libraries.

Contents

Program Analysis and Verification

A Set-Based Context Model for Program Analysis 3
Leandro Fachinetti, Zachary Palmer, Scott F. Smith, Ke Wu,
and Ayaka Yorihiro

Declarative Stream Runtime Verification (hLola). 25
Martín Ceresa, Felipe Gorostiaga, and César Sánchez

Formal Verification of Atomicity Requirements for Smart Contracts 44
Ning Han, Ximeng Li, Guohui Wang, Zhiping Shi, and Yong Guan

Types

Neural Networks, Secure by Construction: An Exploration
of Refinement Types . 67

Wen Kokke, Ekaterina Komendantskaya, Daniel Kienitz, Robert Atkey,
and David Aspinall

A New Refinement Type System for Automated mHFLZ Validity Checking. . . . 86
Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi,
and Takeshi Tsukada

Behavioural Types for Memory and Method Safety in a Core
Object-Oriented Language . 105

Mario Bravetti, Adrian Francalanza, Iaroslav Golovanov, Hans Hüttel,
Mathias S. Jakobsen, Mikkel K. Kettunen, and António Ravara

Syntactically Restricting Bounded Polymorphism for Decidable Subtyping . . . 125
Julian Mackay, Alex Potanin, Jonathan Aldrich, and Lindsay Groves

Semantics

An Abstract Machine for Strong Call by Value. 147
Małgorzata Biernacka, Dariusz Biernacki, Witold Charatonik,
and Tomasz Drab

Certified Semantics for Relational Programming . 167
Dmitry Rozplokhas, Andrey Vyatkin, and Dmitry Boulytchev

Algebraic and Coalgebraic Perspectives on Interaction Laws. 186
Tarmo Uustalu and Niels Voorneveld

Program Generation, Transactions and Automation

Stack-Driven Program Generation of WebAssembly 209
Árpád Perényi and Jan Midtgaard

Banyan: Coordination-Free Distributed Transactions over
Mergeable Types. 231

Shashank Shekhar Dubey, K. C. Sivaramakrishnan,
Thomas Gazagnaire, and Anil Madhavapeddy

Automatically Generating Descriptive Texts in Logging Statements:
How Far Are We?. 251

Xiaotong Liu, Tong Jia, Ying Li, Hao Yu, Yang Yue, and Chuanjia Hou

Synthesis and Program Transformation

Parameterized Synthesis with Safety Properties . 273
Oliver Markgraf, Chih-Duo Hong, Anthony W. Lin, Muhammad Najib,
and Daniel Neider

Relational Synthesis for Pattern Matching . 293
Dmitry Kosarev, Petr Lozov, and Dmitry Boulytchev

REFINITY to Model and Prove Program Transformation Rules 311
Dominic Steinhöfel

Debugging, Profiling and Constraint Solving

A Counterexample-Guided Debugger for Non-recursive Datalog 323
Van-Dang Tran, Hiroyuki Kato, and Zhenjiang Hu

A Symbolic Algorithm for the Case-Split Rule in String
Constraint Solving. 343

Yu-Fang Chen, Vojtěch Havlena, Ondřej Lengál, and Andrea Turrini

P3: A Profiler Suite for Parallel Applications on the Java Virtual Machine . . . 364
Andrea Rosà and Walter Binder

Author Index . 373

xvi Contents

Program Analysis and Verification

A Set-Based Context Model
for Program Analysis

Leandro Fachinetti1, Zachary Palmer2(B), Scott F. Smith1, Ke Wu1,
and Ayaka Yorihiro3

1 Johns Hopkins University, Baltimore, USA
2 Swarthmore College, Swarthmore, USA

zachary.palmer@swarthmore.edu
3 Cornell University, Ithaca, USA

Abstract. In program analysis, the design of context models is an
understudied topic. This paper presents a study of context models for
higher-order program analyses and develops new approaches. We develop
a context model which equates control flows with the same set of call
sites on the program stack, guaranteeing termination without the arbi-
trary cutoffs which cause imprecision in existing models. We then selec-
tively polyinstantiate these contexts to avoid exponential growth.

We evaluate this model and existing models across multiple higher-
order program analysis families. Existing demand-driven analyses cannot
support the set model, so we construct a demand-driven analysis, Plume,
which can. Our experiments demonstrate that the set-based model is
tractable and expressive on representative functional programs for both
forward- and demand-driven functional analyses.

Keywords: Program analysis · Control flow · Data flow · Context
sensitivity · Higher-order · Object-oriented

1 Introduction

In higher-order program analysis, there exists a fundamental tension between
context sensitivity and field sensitivity (also called structure-transmitted data
dependence [41]). Context sensitivity relates to how the analysis accounts for
the calling context of a function while analyzing the function’s body. Field sen-
sitivity relates to how the analysis aligns constructions and destructions as it
explores structured data: for instance, whether it can accurately project a field
from a constructed record or, equivalently, look up a non-local variable captured
in closure. Context and field sensitivity inform each other: an analysis lacking in
context sensitivity may lead to spurious data flows despite perfect field sensitiv-
ity. Any analysis which is perfectly context- and field-sensitive has been shown
to be undecidable [29] so, for an analysis tool to guarantee termination, some
concessions must be made.

A common approach is to preserve field sensitivity by approximating con-
text sensitivity using an abstract model. When introducing one of the first
c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 3–24, 2020.
https://doi.org/10.1007/978-3-030-64437-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-64437-6_1

4 L. Fachinetti et al.

higher-order program analyses, kCFA, Shivers wrote about context models:
“Choosing a good abstraction that is well-tuned to typical program usage is not a
topic that I have explored in depth, although it certainly merits study.” [33, p. 34]
The choice of context models is a critical factor in analysis precision and running
time, but explorations of this question have been largely confined to truncated
call strings à la kCFA [4,12,18,19,23,38,39]. Recent work has explored selective
approaches to polyinstantiation [16,37] and using different context models for
parts of the same program [17,21,22], but these approaches must still contend
with a crucial weakness: in kCFA-like models, polyinstantiation of a saturated
context will lose the oldest call site. This conflates that call site’s control flows
with those of other call sites and weakens the analysis.

Alternative models of control flow exist in the space of object-oriented alias
analyses. The context and field sensitivity problems can be reduced to matched
parenthesis problems, so they can be modeled as a linear conjunctive language
(LCL) [26] reachability problem. While that problem is undecidable, performant
and relatively precise approximations have been recently developed [41]. Unfor-
tunately, it is not clear what information is lost in these approximations or which
programs would be affected by using LCL reachability in an analysis.

Another recent technique, synchronized pushdown systems (SPDS) [34],
involves making no concessions on either context sensitivity or field sensitiv-
ity but treating them as separate problems. The resulting analysis performs well
on traditional object-oriented programs. But functional programs rely heavily
upon the interplay of data and interprocedural control flow and we show that
this approach is problematic for those programs (see Sect. 4.3).

In contrast with the kCFA-like models, we propose not to discard old call
site information at all. Instead, we represent calling contexts as the set of call
sites on the program stack. This identifies calls appearing at the same site but
retains information about the entire sequence of calls, preventing the conflation
of control flows in the k-limited models described above. This precision intro-
duces a problem: because the set stores call sites rather than called functions,
a recursive function calling itself at n sites may create 2n different contexts,
all of which analyze the same recursive function. We address this by selectively
polyinstantiating contexts in a fashion similar to context tunneling [16].

We evaluate these techniques both in terms of precision and performance.
Evaluating the precision of a component of a program analysis is a challenge: it
is difficult to separate the effects of the component from how it interacts with the
surrounding analysis. Our evaluation is a reproducability experiment: we test a
Cartesian product of program analyses and context models, demonstrating that
the k-cutoff and set-based context models exhibit the same difference in behavior
across those analyses. Given that these differences are reproducible in different
analyses, we ascribe them to the context model.

For the reproducability experiment’s result to apply broadly, the analyses
must be significantly different. We perform the experiment on three analyses.
The first two are ADI, a state-of-the-art functional analysis [4], and an analysis
similar to mCFA [24] in the style of object-oriented CFA analyses.

A Set-Based Context Model for Program Analysis 5

For the third analysis, we desired to use a higher-order analysis in a demand-
driven style. Demand-driven analyses differ from forward-running analyses in
that they only look up values on demand rather than propagating abstract
heaps throughout the program. Demand-driven analyses were originally devel-
oped for first-order programs [5,13,15,28,30–32] where they were shown to
achieve good performance/expressiveness trade-offs. Unfortunately, previous
higher-order demand-driven analyses [6,7,9,27,34,35] do not support set-based
context models. We develop a new demand-driven higher-order program anal-
ysis, Plume, to support set-based contexts and selective polyinstantiation. We
prove that Plume is sound, decidable, and strictly more expressive than DDPA
[6], a previous analysis in this class.

We describe Plume, set-based context models, and selective polyinstantiation
in Sect. 2. We formalize Plume in Sect. 3. Precision and performance testing are
discussed in Sect. 4 and Sect. 5. (The full performance evaluation as well as the
proofs of Plume’s soundness and decidability appear in a supplemental report
[8]). Section 6 discusses related and future work; we conclude in Sect. 7.

2 Overview

This section gives an overview of Plume, set-based context models and selective
polyinstantiation. Although our examples focus on the Plume analysis, set-based
context models and selective polyinstantiation are applicable to other analyses
as well. We discuss their use in other analyses in later sections.

2.1 Shallow A-Normalized Lambda Calculus

Throughout this paper, we will focus on a shallow A-normalized lambda calculus.
The grammar for this language appears in Fig. 1. An expression is a list of
clauses to be executed in sequence; the result is the last assigned variable in
that sequence.

Call site annotations Θ are used for selective polyinstantiation; we discuss
them in Sect. 2.4 below.

e ::= [c, . . .] expressions v ::= f values

c ::= x = b clauses f ::= fun x -> (e) functions

b ::= f | x | x x Θ clause bodies Θ ::= [θ, . . .] call site annotation lists

x ::= (identifiers) variables θ ::= @x call site annotations

E ::= [x = v, . . .] environments

Fig. 1. Grammar of analyzed language

We require that all programs are alphatized : all clauses define a unique vari-
able. This creates a bijection between variable names and program points, sim-
plifying the theory and presentation. We include more language features in the
implementation evaluated in Sects. 4 and 5.

6 L. Fachinetti et al.

2.2 Plume by Example

Plume is a demand-driven program analysis inspired by DDPA [6]. Plume pro-
ceeds by incrementally constructing a contextual control flow graph (CCFG).
This structure tracks control flow in a context-sensitive manner by associating
a calling context with each graph node. DDPA does not include context infor-
mation in CFG nodes. The CCFG is the only data structure in Plume; there
are no stores or program states. Plume iteratively expands call sites, effectively
inlining function bodies into the CCFG.

1 f = fun x -> (# λx.(λy.y)x
2 i = fun y -> (# λy.y
3 ri = y;

4);

5 rf = i x;

6);

7 g = fun p -> (rg = p); # λp.p
8 h = fun q -> (rh = q q); # λq.q q
9 c1 = f g; # evaluates to λp.p

10 c2 = f h; # evaluates to λq.q q

Fig. 2. Identity example: ANF

f g h c1 c2

i rf

ri

i rf

ri

x=g c1=rf

x=h c2=rf

y=x rf=ri

y=x rf=ri

1

2

3

4

5

Fig. 3. Identity example: CCFG result

Consider the example program in Fig. 2. f is simply an η-converted identity
function. The functions defined in g and h are never called; they are simply
used as distinct values for discussion. In the execution of the program, the call
assigned to variable c1 will return g; the call assigned to variable c2 will return h.

Constructing the CCFG. Plume’s CCFG initially consists only of the middle
row of nodes (marked 1) representing top-level program points. Because the
analysis is demand-driven, we are not concerned with f, g, and h: they are value
assignments and, if those values are required, we will look them up on demand.

The first function call appears at c1. We start by tracing backward from c1

to find the called function. We pass two clauses—h = . . . and g = . . .—which do
not define f and so are skipped. We then discover variable f and its function.

We next add the second row of nodes (marked 2). The top line is the body
of the f function; the two nodes below are wiring nodes that represent the call’s
parameter and return data flows.

A Set-Based Context Model for Program Analysis 7

This is why the analysis does not require a store: values may be established
on demand by retracing these control flow edges.

The call site rf is now reachable via non-call nodes. Expanding rf yields the
top row of nodes (marked 3).

The call site c2 becomes reachable so, like before, we identify f as the called
function. We do not reuse the previous f subgraph: because this call occurs at a
distinct site, we create a new subgraph. This subgraph appears in the second-to-
last row in the diagram (marked 4). Finally, we expand the call site rf, adding
the nodes in the last row (marked 5).

The completed CCFG is Plume’s result and can be used to perform lookups. To
look up c2 from the end of the program, for instance, we move backward through
the graph and encounter c2=rf; our lookup therefore reduces to finding the value
of rf from that node. Moving backward from c2=rf, we discover rf=ri, changing
our goal to finding the value of ri. This process proceeds through ri=y , y=x, and
x=h, eventually leading us to the function defined on line 8.

This example does not show the lookup of a non-local variable. This is a
delicate process in demand-driven analyses and is solved in Plume with a stack
of lookup variables, a technique originally developed for DDPA [6]. We discuss
this approach in Appendix A in the supplemental material [8] for reasons of
space.

2.3 Models of Context Sensitivity

Multiple passes over a program point allow different calls of a function to be
distinguished. These passes manifest in Plume as copies of the function in the
CCFG; in other analyses, they may manifest as additional program states, edges
in an automaton, or similar structures. A decidable program analysis must limit
how many times it analyzes each program point to keep these structures finite.

One typical finitization approach is to associate each function call with a
calling context derived from the circumstances under which the function is called.
In kCFA [33], for instance, calling contexts are a list of the k most recent call sites
visited by the program. In polyvariant P4F [12], calling contexts are represented
by the call site from which we have most recently returned. DDPA [6] and Plume,
like many program analyses, are parametric in the model of calling context used.
We use Σ to denote a context model and use Σk to denote the model in which
contexts are the top k call sites of the stack.

1 o = fun x -> (r = x x;)

2 z = o o; # (λx.x x)(λx.x x)

Fig. 4. Ω-combinator: ANF

8 L. Fachinetti et al.

o z

r

r

x=o z=r

x=x r=r

[]

[z]

[r]

Fig. 5. 1Plume CCFG

o z

r

r

r

x=o z=r

x=x r=r

x=x r=r

[]

[z]

[r,z]

[r,r

Fig. 6. 2Plume CCFG

o z

r

r

x=o z=r

x=x r=r

∅

{z}

{r,z}

Fig. 7. SetPlume CCFG

One contribution of this paper is the development of a tractable analysis
using a set-based context model denoted ΣSet, which represents contexts as the
set of all call sites on the call stack. ΣSet addresses a weakness of traditional
k-cutoff models: recursion. Consider the non-terminating Ω-combinator program
in Fig. 4 analyzed by Plume using Σ1 (which we call 1Plume). The generated
CCFG appears in Fig. 5. Initially, the calling context is empty: the top level of the
program is not generated from any calls. When the first r call site is expanded,
it introduces nodes associated with the context [r]. (The context for groups of
nodes appears to the right.) The z is dropped from this context because the list
is limited to size 1. When the second r call site is expanded, we also associate
that call with [r], reusing the subgraph associated with this context.

By the time a program analysis begins to reuse resources in recognition of
the recursive call, we have lost all information about where the recursive call
started. In the final context of the CCFG, [r], the call site z is no longer present.
If the same recursive function were called in multiple locations, all such calls
would eventually converge on the [r] context and their control flows would be
conflated. As illustrated in Fig. 6, increasing k does nothing to prevent this: the
context [r,r] has similarly lost all information before the recursive call.

Recent developments in object-oriented k-cutoff models mitigate this prob-
lem in a variety of ways. Context tunneling [16] is the most relevant to this
case: at each call, we can decide whether to polyinstantiate the context as above
or to proceed with the context we already have. This technique is almost iden-
tical in expressiveness to selective polyinstantiation, which we discuss below.
Instead of applying this technique to prevent information loss, however, we use
the set-based context model (which loses none of this information) and apply
this technique to support performance.

The CCFG in Fig. 7 is generated by Plume using ΣSet (which we call Set-
Plume); SetPlume does not conflate recursive calls in this way. While this CCFG
initially appears to be the same as the one generated by 1Plume, the contexts

A Set-Based Context Model for Program Analysis 9

associated with each node retain every call site encountered since the top level
of the program. As a consequence, calls to the same function at different sites
will not be conflated. This is critical to allow recursive polymorphic functions
such as List.map to be analyzed correctly.

SetPlume is not the first program analysis to retain the context of recursive
calls by eshewing k-limited context. LCL reachability-based analyses [41] have
a similar approximation which tracks the call stack even more precisely at the
expense of some data flow information. However, most state-of-the-art analyses
use a k-cutoff model [4,18] or rely upon an externally generated CFG [34,35].

2.4 Selective Polyinstantiation

1 fact0 = fun self -> (

2 factfn = fun n -> (

3 factret =

4 ifzero n then (

5 factret1 = 1;

6) else (

7 n’ = n - 1;

8 selfself = self self @self;

9 factn’ = selfself n’ @n;

10 fact = factn’ * n;

11);););

12 fact = fact0 fact0 @self;

13 x = 5;

14 fact5 = fact x;

Fig. 8. Factorial example: extended ANF

ΣSet distinguishes calls to recursive
functions at different call sites by
retaining information about where
the recursive function was called.
Unlike Σk, there is no point at which
polyinstantiation loses information.
As a result, ΣSet is vulnerable to an
exponential expansion of contexts.
We address this issue using a selec-
tive polyinstantiation technique sim-
ilar to the context tunneling work
mentioned above.

Consider a recursive function
whose body contains n recursive
call sites (e.g. an expression inter-
preter). This recursive function may
be called through any combination of the n recursive sites, leading to 2n possible
contexts. This is clearly intractable. Further, it is a waste of effort: the analysis
is only more precise if different recursive calls yield different (abstract) values,
and the inference of polymorphic recursion is known to be undecidable [14].

Our strategy is to be selective: when a function calls itself, we choose not to
polyinstantiate it. The challenge is that, while ΣSet correctly identifies and avoids
polyinstantiation for recurring call sites, it does not identify recursive functions.
To identify a recursive call, we must take into account both the position of call
site and the function being called there. We explicitly mark each call site with
the identities of those functions which should not be polyinstantiated if they are
called in that location.

Consider the self-passing factorial program written in Fig. 8 in an extended
ANF. The only contexts generated during the analysis of this program in Set-
Plume will be ∅ and {fact5} despite the fact that there are several other function
calls in the program. Upon reaching line 8, for instance, the analysis looks up
self and discovers that the function being called is the one assigned to fact0.
Because the ANF is alphatized, the name of the function’s parameter, self,
uniquely identifies it in the program. The annotation @self indicates that, if this

10 L. Fachinetti et al.

function is called on line 8, it should not be polyinstantiated. As a result, this
call site is wired to the body of that function associated with the current context,
{fact5}, rather than to a new copy. These annotations are often automatically
inferrable: the performance benchmark programs evaluated in Appendix D of the
supplement [8] are written in an ML-like surface language without annotations
and are then machine translated to an annotated ANF.

Selective polyinstantiation is almost equivalent in expressiveness to context
tunneling. Both systems determine whether or not to polyinstantiate based upon
the pairing of call site and called function. This choice is driven here by annota-
tions and in the context tunneling work by a global relation. (Selective polyin-
stantiation can differentiate between call sites within the same method while con-
text tunneling cannot, but this distinction seems unlikely to be useful.) There are
two key differences between this work and context tunneling. First: the context
tunneling paper [16] uses a data-driven machine learning algorithm to generate
its pairwise relation; by comparison, we use a simple lexical annotator here. Sec-
ond: the motivations differ. The data-driven algorithm is used to prevent the
k-limited context from losing precision; here, we apply the technique to mitigate
performance concerns. Selective polyinstantiation also shares some properties
with earlier work [37] which eliminate provably redundant polyinstantiations,
although that work is not applicable to the set-based context model discussed
here.

Note that this approach is not limited to ΣSet or to Plume. Selective polyin-
stantiation is similar to context tunneling [16], which has been applied to k-
limited context models to prevent new, unimportant context information from
supplanting old, important context information. Here, polyinstantiation is used
to prevent a blow-up in complexity instead.

3 Formalizing Plume

We now formally define the Plume analysis. As outlined in Sect. 2.2, the analysis
proceeds in two steps. First, the program is embedded into an initial CCFG;
second, we perform a full closure of the CCFG using information from a demand-
driven value lookup algorithm. There is no store or heap; all values are looked
up by following the CCFG backward from the point of interest. We define the
analysis in three parts: the initial embedding and corresponding preliminary
definitions (Sect. 3.1), the demand-driven lookup function (Sect. 3.2), and the
CCFG closure algorithm (Sect. 3.3).

3.1 Preliminary Definitions

We begin by abstracting the target program. We define “hatted” analogs for
each grammar term in Fig. 1: ê for abstract expressions, ĉ for abstract clauses,
and so on. We denote the abstraction of a concrete expression as α(e) = ê. For
convenience, we define RV as a function returning the last defined variable in an
expression and use || to denote list concatenation.

A Set-Based Context Model for Program Analysis 11

Recall that a CCFG is a contextual control flow graph; it contains context
information. We begin by defining a general notion of context model, Σ.

Definition 1. A context model Σ is a triple 〈Ĉ, ε,⊕〉 where

– Ĉ is a set whose elements, denoted Ĉ, are calling contexts.
– ε, the “empty context”, is an element of Ĉ.
– For all Ĉ ∈ Ĉ and all ĉ, Ĉ ⊕ ĉ = Ĉ ′ and Ĉ ′ ∈ Ĉ.

We formalize the k-cutoff and set models of Sect. 2 as follows:

Definition 2.

– Σk = 〈Ĉ, [],⊕〉 where Ĉ contains all lists of ĉ of length up to k and
[ĉn, . . . , ĉ1] ⊕ ĉ0 = [ĉk−1, . . . , ĉ0].

– ΣSet = 〈Ĉ, ∅,⊕〉 where Ĉ is the power set of all ĉ and Ĉ ⊕ ĉ = Ĉ ∪ {ĉ}.
Each context model defines a distinct Plume variant; for instance, we give

Plume using ΣSet the name SetPlume. Throughout the remainder of this section,
we assume some fixed context model meeting the conditions of Definition 1.

Fig. 9. Analysis grammar

Given a context model, the remaining constructs required for the Plume
analysis appear in Fig. 9. A CCFG Ĝ is a set of edges between contextual control
flow points η̂, each of which is a pairing between a program point and the calling
context in which that program point is visited. To work with these graphs, we
introduce the following notation:

Definition 3. We use the following notational sugar for CCFG graph edges:

– â1 << . . . << ân abbreviates {â1 << â2, . . . , ân−1 << ân}.
– â′ << {â1, . . . , ân} (resp. {â1 . . . ân} << â′) denotes {â′ << â1, . . . , â

′ << ân}
(resp. {â1 << â′, . . . , ân << â′}).

– We write â <� â′ to mean that (â << â′) ∈ Ĝ for Ĝ understood from context.

Using the above, we define the initial state of the CCFG as just the clauses
of the main program, with no function calls (yet) wired in:

12 L. Fachinetti et al.

Definition 4. The initial embedding of an expression into a CCFG, ̂Embed(e),
is the graph Ĝ = 〈Start, ε〉 << 〈ĉ1, ε〉 << . . . << 〈ĉn, ε〉 << 〈End, ε〉 where α(e) =
[ĉ1, . . . , ĉn].

For example, the subgraph labeled 1 in Fig. 3 is the initial embedding of the
Fig. 2 expression.

3.2 The Lookup Function

Plume does not require an explicit representation of the heap. Instead, we look
up the value of each variable when it is needed by starting from the point where
it is used and tracing backward through the CCFG to the point where it is
defined.

Given a CCFG Ĝ, we formalize variable lookup as a relation Ĝ, 〈â, Ĉ〉 �
X̂ � v̂ which indicates that the value v̂ may be discovered by reducing the
lookup stack X̂ from program point â in calling context Ĉ. For instance, if
lookup of variable x̂ from the end of the program produces value v̂, we may
write “Ĝ, 〈End, ε〉 � [x̂] � v̂”. (As mentioned briefly in Sect. 2.2 and illustrated
in Appendix A in the supplemental material [8], we use a stack of variables to
facilitate looking up non-local (i.e. closure-captured) variables.) Note that the
provided program point â is assumed not to have executed yet; each time we
step backward through the graph, we are undoing the effect of the preceding
clause.

We formally define this relation as follows:

Definition 5. Ĝ, η̂ � X̂ � v̂ holds iff there is a proof using the rules of Fig. 10.

Given a position η̂ in the CCFG Ĝ and a lookup stack X̂, the rules in Fig. 10
describe which transitions are legal during lookup. Any valid path through the
CCFG to locate a variable definition corresponds to a proof in that system.

The Alias rule indicates that, when looking for variable x̂ and about to undo
the assignment x̂=x̂′, we can reduce our lookup to finding the value of x̂′ from that
point. The Value Discovery rule indicates that, when stepping back to x̂=v̂ while
looking for x̂, our lookup is complete: v̂ is the answer. The Function Enter Non-
Local and Value Discard rules represent the beginning and end (respectively) of
the lookup of a closure-captured variable, using the stack to retain the variable
while finding the definition site of the closure. The other two function rules
represent a value flowing into or out of a function (and update the current
lookup variable appropriately); the Skip rule handles clauses which do not have
an impact on the current lookup.

In Sect. 2.2 we informally described the lookup of the value of c2 of Fig. 2
from the end of the program; formally that lookup corresponds to a proof of
Ĝ, 〈End, ε〉 � [c2] � (fun p -> . . .) in the lookup system of Fig. 10, for Ĝ being
the CCFG of Fig. 3.

A Set-Based Context Model for Program Analysis 13

Fig. 10. Abstract value lookup

3.3 CCFG Closure Construction

Given a CCFG, the lookup function allows us to determine the values that
variables may have. We can use this to in turn deductively close over the CCFG:
we add to the CCFG when we discover new control flows based upon looking up
values of variables. In this way, CCFG closure and value lookup work in tandem:
closure grows the CCFG based upon lookup, that growth increases the set of
values that lookup provides, closure grows the CCFG further, and so on.

When a function application is reached with a novel function-argument pair,
we add its body to the graph and add edges wiring that body around the call
site, effectively inlining that function as described in Sect. 2.2. We pair each of
the function’s clauses with the calling context Ĉ in which they will be executed.
Below, we formalize this process as a function: it creates an edge from each prede-

cessor of the call site (Preds(η̂)) to a parameter wiring node (〈x̂0
�̂c
= x̂1, Ĉ

′〉), con-
nects that wiring node to the body of the function via a sequence of edges, adds

an edge from the body to a return wiring node (〈x̂2
�ĉ
= RV(ĉn), Ĉ ′〉), and then

draws edges from that return wiring node to the call site’s successors (Succs(η̂)).
We delegate the choice of calling context Ĉ ′ to the caller of the wiring function.

14 L. Fachinetti et al.

Definition 6. Let ̂Wirefun(η̂, fun x̂0 -> ([ĉ1, . . . , ĉn]), x̂1, x̂2, Ĉ
′) =

Preds(η̂) << 〈x̂0
�̂c
= x̂1, Ĉ

′〉 << 〈ĉ1, Ĉ ′〉 << . . . << 〈ĉn, Ĉ ′〉 << 〈x̂2
�ĉ
=

RV(ĉn), Ĉ ′〉
<< Succs(η̂)

where η̂ = 〈ĉ, Ĉ〉, Preds(η̂) = {η̂′ | η̂′ <� η̂}, and Succs(η̂) = {η̂′ | η̂ <� η̂′}.
We describe a call site which can be reached via a control flow from the

beginning of the program (and therefore must be analyzed) as active:

Definition 7. The predicate ̂Active?(η̂′, Ĝ) holds iff path Start << η̂1 << . . . <<
η̂n << η̂′ appears in Ĝ such that no η̂i is of the form 〈x̂=x̂′ x̂′′ Θ̂, Ĉ〉.

We are now ready to define the closure construction.

Contextual Application
η̂ = 〈ĉ, Ĉ〉 ĉ = (x̂1 = x̂2 x̂3 Θ̂) Âctive?(η̂, Ĝ) Ĝ, η̂ � [x̂2] � f̂

Ĝ, η̂ � [x̂3] � v̂ f̂ = fun x̂4 -> (ê) @x̂4 /∈ Θ̂ Ĉ′ = Ĉ ⊕ ĉ

Ĝ −̂→1 Ĝ ∪ ̂Wirefun(η̂, f̂ , x̂3, x̂1, Ĉ
′)

Acontextual Application
η̂ = 〈ĉ, Ĉ〉 ĉ = (x̂1 = x̂2 x̂3 Θ̂) Âctive?(η̂, Ĝ)

Ĝ, η̂ � [x̂2] � f̂ Ĝ, η̂ � [x̂3] � v̂ f̂ = fun x̂4 -> (ê) @x̂4 ∈ Θ̂

Ĝ −→1 Ĝ ∪ ̂Wirefun(η̂, f̂ , x̂3, x̂1, Ĉ)

Fig. 11. Control flow graph closure construction

Definition 8. We define Ĝ −̂→1
Ĝ′ to be the least relation satisfying the rules

in Fig. 11. We write Ĝ0 −̂→∗
Ĝn to denote Ĝ0 −̂→1

. . . −̂→1
Ĝn. We write −̂→!

to denote the transitive closure of −̂→1.

To understand the rules in this definition, consider a function-argument pair
at a call site. We must select a calling context Ĉ to ascribe to the call. The rules
are otherwise similar: given an active call site for which values can be found
for both the function (x̂2) and argument (x̂3), we wire the body of the called
function around the call site (x̂1) using the wiring function defined above. The
only difference regards Θ̂ and Ĉ. Since the program is alphatized, all function
parameters are unique, so we identify each function by its parameter (x̂4). If the
parameter appears in a call site annotation in Θ̂, we do not polyinstantiate the
call site (the Acontextual Application rule); if the parameter does not appear in
the annotations, then we do (the Contextual Application rule).

A Set-Based Context Model for Program Analysis 15

3.4 Soundness and Decidability

The Plume analysis defined above is both sound and decidable. Here, soundness
means that the lookup relation Ĝ, η̂ � X̂ � v̂ is always an over-approximation: if
a value can exist at runtime, then the lookup relation holds for its abstract coun-
terpart. Soundness is demonstrated in Appendix C.1 in the supplemental mate-
rial [8] in two parts: first by showing the operational semantics in Appendix B
in the supplemental material [8] equivalent to a graph-based operational seman-
tics and then by showing the Plume analysis to be an abstraction of the latter.
Decidability proceeds by upper bounding the size of the CCFG and then by a
counting argument. This proof appears in Appendix C.2 in the supplemental
material [8].

4 Evaluation of Precision

In this section, we evaluate the precision of the analysis techniques presented in
this paper. We perform this evaluation in three parts:

1. We directly compare Plume to DDPA, a closely-related functional analysis.
2. We compare the context models Σk and ΣSet and evaluate the precision

impact of selective polyinstantiation. We do so via a reproducability experi-
ment involving multiple functional analyses.

3. We consider another state-of-the-art analysis technique—synchronized push-
down systems [34]—and discuss how it may apply to functional programs.

All higher-order program analyses evaluated in this section are available as
supplementary material associated with this submission.

4.1 kPlume ≥ kDDPA

DDPA [6], like Plume, is a demand-driven higher-order functional program anal-
ysis. Both analyses iteratively construct a CFG and use on-demand lookups
rather than explicit value stores. Unlike Plume, DDPA uses an acontextual con-
trol flow graph (ACFG); calling contexts are represented as an extra parameter
in lookup. The ACFG in DDPA is much smaller than the CCFG of Plume, but
(1) the graph closure rules of DDPA perform all lookups irrespective of context
and (2) the caching structures necessary to make DDPA efficient are of the same
size complexity as Plume’s CCFG.

Like Plume, DDPA is parametric in its context model, but DDPA is more
restrictive and cannot support ΣSet. With list-based models, the analyses are
directly comparable and kPlume is more precise than kDDPA. Formally,

Theorem 1. For any program ê and any natural number k, let Ġ be the ACFG
produced for ê by kDDPA and let Ĝ be the CCFG produced for ê by kPlume.
Then, for any variable x̂ and program point ĉ in ê, every value produced by
lookup on Ĝ in kPlume is also produced by lookup on Ġ in kDDPA.

For space, the proof of this Theorem appears in Appendix C.3 in the sup-
plemental material [8]. As kPlume subsumes kDDPA, we elide kDDPA from the
remainder of this discussion.

16 L. Fachinetti et al.

4.2 Comparing Context Models

We now focus not on Plume or any one analysis but instead upon the effect
that context models and selective polyinstantiation have on functional program
analyses in general. We cannot simply compare two analyses: it would be unclear
how the choice of analysis affected the result. We cannot even do so while holding
the rest of the analysis theory constant (e.g. comparing kPlume vs. SetPlume)
as the results may only pertain to the theory in question (e.g. Plume).

To draw conclusions about context sensitivity models independent of the pro-
gram analysis, we examine the reproducibility of changes as the program analysis
itself is varied. We compare pairs of program analysis from a variety of analy-
sis families; each analysis in a pair differs from its counterpart only by context
sensitivity model, while each pair differs from the other pairs significantly. We
contend that, if changing the context sensitivity model of an analysis produces an
effect which is consistent across all pairs, it is reasonable to ascribe this effect to
the context model rather than to the program analyses. This conclusion is more
reliable the larger the differences are between the analysis families. We therefore
conduct our experiments on the following families of program analyses:

– Plume, the demand-driven functional program analysis family in this paper.
– ADI, a state-of-the-art forward functional program analysis family [4].
– mADI, a modification of [4] using techniques from mCFA [24] to more closely

match object-oriented program analysis behavior.

We chose ADI to represent a series of higher-order program analyses that
include P4F [12], AAC [19], PDCFA [18], CFA2 [39], and others. ADI is the
most recent of the series and its precision is the state-of-the-art. ADI’s reference
implementation does not include a notion of context sensitivity so, for these
experiments, we use a purpose-built implementation of ADI over the same ANF
language used by Plume. This artifact yields two analyses, kADI and SetADI,
with context sensitivity models identical to kPlume and SetPlume.

We also modified ADI to produce an analysis family called mADI that models
the precision of object-oriented CFA-based analyses [24]. The main distinction is
in how non-local variables are handled when constructing a closure: ADI stores
a reference to the non-local while mADI stores a fresh copy of its value. As a
result, mADI is less precise than ADI but more performant. mADI is to ADI
what mCFA [24] is to kCFA. Just as with ADI, we define two variants of mADI
with different context models: kmADI uses Σk and SetmADI uses ΣSet. (Note
that the ADI paper [4] only used a list model).

Functional Test Cases. Presently, no standard suite of functional precision
benchmarks exist. For this experiment, we developed a series of small programs
which are representative of common functional programming patterns:

– rec-ident, two calls to a recursive identity function. This function recurses,
decrementing a counter to zero, and then returns its argument. It is called
once with an integer and again with a boolean.

A Set-Based Context Model for Program Analysis 17

– list-2map, which generates an integer list in a loop and then maps over that
list twice. The first mapper is (+1); the second mapper is (==0).

– nest-pairmap, which uses a homogeneous pair mapping function to incre-
ment the elements of a pair (as in: pairmap (pairmap inc)((0,1), (1,0))) or
to convert them to boolean values.

– foldl-2L2F, which performs two left folds on two distinct lists. The first list
(of integers) is summed; the second list (of booleans) is “and-ed”.

– foldl-2L1F, which generates the same lists as foldl-2L2F using a single map-
ping function with case analysis.

– foldl-1L2F, which folds over a single list of integers twice. The first fold sums
the list; the second fold produces true iff the list contains no zeroes.

Each of the tests above calls a function on two types of primitive data:
integers and booleans. For each of the above programs, we ran each analysis
both with selective polyinstantiation annotations and without them. (k-limited
analyses without selective polyinstantiation are presented here for completeness
but are not representative of the state of the art.) A test passes if the analysis
can distinguish integers from booleans in every case.

For analyses not using k-cutoff models, we indicate whether the test passed
(denoted ✓) or failed (denoted ✗) by the above criteria. For analyses using k-
cutoff models, we give the minimum value of k necessary for the test to pass (or
✗ if no such k exists). In real programs, the two function calls to be distinguished
do not necessarily appear side by side. To simulate this, we η-converted the two
call sites some number of times d; thus, d appears in the results in places where
the number of η conversions affects the choice of k.

Fig. 12. Precision of analyses on functional test cases

Functional Test Results. The results of our experiments appear in Fig. 12.
(Note that Boomerang and Boomerang SPDS analyses are not list-vs-set and
are discussed below.) Some clear patterns emerge from these results.

18 L. Fachinetti et al.

First and foremost: the differences between the Σk and ΣSet context models
are reproducible across all three analysis families. Each family’s four-column
group is identical. This degree of similarity suggests that the change in behavior
is, in fact, due to the context model.

Second: selective polyinstantiation had no impact on the precision of ΣSet.
This is intuitive as these functions do not exhibit polymorphic recursion. In
agreement with previous work [16], selective polyinstantiation improved the Σk

analyses. This is because Σk may lose information on polyinstantiation; ΣSet

does not.
Third: ΣSet fails on nest-pairmap. In this example, Σk required three call sites

worth of context: one for the outer pairmap call, one for the inner pairmap call
(which served as the outer call’s mapping function), and one to call the element
mapping function itself. Because this test was not recursive, no annotations were
present. ΣSet failed on this example because it conflated the calls to the two
mappers (the inner pairmap function and the element mapper), as they occurred
at the same call site (within pairmap itself). Σk succeeded here because it admits
duplicate call sites in its contexts.

In conclusion, the precisions of ΣSet and Σk are incomparable: each has
advantages over the other. ΣSet succeeds unconditionally in most cases; selective
polyinstantiation merely improves performance. Σk without selective polyinstan-
tiation unsurprisingly fails in all recursive cases; with selective polyinstantiation,
it succeeds on every case (including pairmap). But annotated Σk is still fragile
because k must be large enough to accommodate d, the number of polyinstan-
tiations between the two calls’ nearest ancestor, which cannot be determined at
analysis time.

4.3 Synchronized Pushdown Systems

Two types of precision are key to higher-order program analyses: context sen-
sitivity (specifically with respect to interprocedural control flow) and so-called
“field sensitivity” or “structure-transmitted data dependence” (such as which
values were stored in a particular record or object field). Any analysis with per-
fect precision in both of these forms is known to be undecidable [29], so program
analyses must decide which concessions to make. In SetPlume, for instance, con-
text sensitivity is approximated with a set while field sensitivity is handled by
the variable lookup stack X̂, which is represented by the stack of a pushdown
automaton in our implementation and not approximated.

Boomerang SPDS [34] uses a synchronized pushdown system: both context
and field sensitivity are represented without approximation but in separate
pushdown automata. Boomerang SPDS’s separation of these concerns showed
promise but functional programs rely upon the interplay between control and
data flow, so we chose to run the examples from the previous section on these
two analyses to investigate their precision on common functional-style code.

The Boomerang analysis family artifacts perform analysis of at-scale Java
programs and not our ANF grammar, so we translated each of our examples

A Set-Based Context Model for Program Analysis 19

by hand. These translations attempt to preserve the control flow of the original
program while minimizing the number of program points introduced.

Our results from running these experiments appears in the rightmost two
columns of Fig. 12 above. The original Boomerang analysis bears a striking
resemblance to the behavior of set-based context models on these examples.
Boomerang SPDS, on the other hand, failed on every example except for rec-
ident. This is unsurprising in retrospect: Boomerang SPDS intentionally disre-
gards interactions between interprocedural calls and structured data flow.

This interaction does not appear in rec-ident (as there is no structured data)
but is critical in every other example; indeed, that type of interaction is com-
mon in functional programs and in related higher-order object-oriented design
patterns such as the Visitor Pattern. Contrary to suppositions in the SPDS
paper [34], these results suggest that the SPDS technique is not appropriate for
higher-order programming patterns in functional languages.

4.4 Threats to Validity

Test Cases. There does not presently exist a standard functional test suite for
analysis precision. The test cases presented here represent common functional
programming patterns but are not numerous or complete.

Translations. The conclusions regarding the Boomerang family of analyses rely
upon translations of functional programming idioms to Java. We only make
claims regarding the Boomerang analysis technique with respect to existing
functional programming languages and not with respect to the object-oriented
languages for which those analyses were designed.

5 Summary of Performance

We subjected the analysis techniques in this paper to two forms of preliminary
performance experiments: one which used typical functional microbenchmarks
from previous work [12] and another which used pumped versions of pathological
patterns to simulate use at scale. We leave experiments on programs from the
wild to future work. The details of these experiments appear in Appendix D in
the supplemental material [8] for reasons of space; we summarize them here.

We applied each of SetPlume, kPlume, P4F [12], and Boomerang SPDS to
each microbenchmark; kPlume is most similar to SetPlume and so most directly
demonstrates the impact of ΣSet. P4F and Boomerang SPDS are recent state-of-
the-art analyses. We used P4F in lieu of 1ADI as they are theoretically similar
and the P4F artifact has been used in previously published benchmarks.

SetPlume performs comparably or favorably to the other analyses in the
microbenchmarks and pumped examples with one significant exception: a regular
expression matching program. This program makes use of continuation passing,
effectively hiding self-reference from our annotator and thus preventing selective
polyinstantiation from occurring. In the remaining cases, SetPlume performs
well; indeed, in the analysis of a brute-force SAT solving program, SetPlume

20 L. Fachinetti et al.

completes the analysis while both P4F and Boomerang SPDS trigger thirty-
minute timeouts. While more thorough and realistic benchmarks remain to be
conducted, we conclude that set-based context models with selective polyinstan-
tiation show promise as a practical tradeoff between precision and performance.

6 Related Work

6.1 Context Models

The higher-order program analysis community has long known that, in practice,
the widely-used kCFA context model [4,12,18,19,23,33,38,39] is imprecise and
slow [39, p.25], issues that have been the biggest impediments in the adoption
of higher-order analyses. The closest to a systematic study of context models
in the higher-order analysis literature is Allocation Characterizes Polyvariance
[11], but the main intent of that paper is to identify a layer of abstraction
between context models (what they call polyvariance techniques) and the AAM
[38] underlying analysis technique; the paper is not concerned with evaluating
the context models empirically to determine how tractable they are in practice.

Object-oriented analysis research has explored the choice of context model
further. Recent efforts have explored how to avoid polyinstantiation [16,37] and
how to vary polyvariance models within a singe analysis run [17,21,22]. These
analyses are still brittle in a way, as polyinstantiating a saturated context still
loses information. However, they preserve the ordered property of k-cutoff models
and so can often correctly handle the pairmap example in Sect. 4.2.

Other context models have been explored for object-oriented analyses, both
in theory [2] and in practice [3,20,25]. The experiments in these papers confirm
the weaknesses of the k-limited context models and point at better alternatives,
including a context model based on the arguments of a method call (the Carte-
sian Product Algorithm [1]), and a context model based on the object whose
method is called (termed object sensitivity [25]).

mCFA [24] simulates running kCFA in an object-oriented program. mCFA
inspired the mADI analysis we used in our evaluation (Sect. 4).

To the best of our knowledge the set-based context model introduced in this
paper is novel in the literature of both higher-order and object-oriented analysis.

6.2 Selective Polyinstantiation

As mentioned in Sect. 2.4, selective polyinstantiation is most similar to con-
text tunneling [16]. It also bears some resemblance to Polymorphic Splitting
[40]. Both selective polyinstantiation and polymorphic splitting involve anno-
tating the analyzed program to direct decisions on polymorphism. In selective
polyinstantiation, the annotations occur at call sites and indicate functions for
which the analysis should not be polymorphic. In polymorphic splitting, by con-
trast, the annotations occur at function definitions and indicate where the anal-
ysis should be polymorphic. The selective polyinstantiation technique prevents
building spurious contexts and can be adapted to other underlying analysis tech-
niques. Polymorphic splitting is an analysis technique in and of itself.

A Set-Based Context Model for Program Analysis 21

6.3 Analysis Techniques

DDPA. DDPA [6] is an ancestor of Plume. The difference between Plume
and DDPA is in how they handle context: Plumes’ context is stored in the
CCFG while DDPA’s context is reconstructed during lookup. This has two con-
sequences. First, all Plume lookups include context, making Plume more precise
than DDPA (Sect. 4.1). Second, because Plume does not reconstruct contexts, it
is more permissive than DDPA and allows set-based models to be defined.
Demand CFA. Beyond DDPA, the technique closest to Plume is Demand
CFA [10]. Plume has the advantage of context sensitivity while Demand CFA
does not. However, Plume builds a full CCFG to answer localized lookups;
Demand CFA may need to construct only a small part of the CFG for some
lookups.

Other Higher-Order Analysis Techniques. Unlike most other higher-order
analysis techniques [4,12,18,19,23,24,33,38,39], Plume does not maintain an
abstraction of the heap (sometimes also called a store elsewhere in the litera-
ture); Plume reconstructs only the relevant parts of the heap on demand with a
lookup function over the CFG. Some other higher-order analysis techniques fea-
ture something called a pushdown abstraction, which yields perfect call–return
alignment [12,18,19,39] (though not perfect context sensitivity), but Plume only
aligns calls and returns up to the precision of its context model.

Boomerang. The Boomerang family of analyses consists of two object-oriented
alias analyses for Java: the original Boomerang [35] and the recently-defined
“synchronized pushdown system” variant [34] called Boomerang SPDS. These
analyses do not model context sensitivity using a model of the form Σ. The
Boomerang analysis computes control flow in tandem with IFDS [30] and
uses additional iterations to address non-distributive flow problems; Boomerang
SPDS instead models control flow using a pushdown system which is intention-
ally separated from the modeling of field-sensitive data flow. The SPDS technique
is not specific to Boomerang; it has been applied to the IDEal taint analysis [36]
and has shown promise as a performance improvement there. All evaluations of
these theories prior to this paper have been on traditional object-oriented code.

Other Object-Oriented Analysis Techniques. The idea of reconstructing
the heap on demand was inspired by first-order demand-driven CFL-reachability
analyses [30], and DDPA was the first analysis to bring this technique to a
higher-order setting. The primary challenge of that setting is the interdependence
between control-flow and data-flow: no CFG is available a priori and so one must
be built as the analysis proceeds. Another challenge is lookup of closure-captured
variables: previous attempts to bring the technique to a higher-order setting [9]
lost precision in those cases, but Plume and DDPA are both able to preserve
precision by performing a series of subordinate lookups.

Recent analyses based on linear conjunctive language (LCL) reachability [41]
bear some resemblance to Plume in that they reduce lookup to an automa-
ton reachability question. While Plume is related to CFL reachability analyses
[30], this recent work reduces to the undecidable problem of LCL reachability

22 L. Fachinetti et al.

and then uses a computable approximation algorithm. Both classes of analysis
approach context- and field-sensitivity as an approximation of reachability on
a two-stack pushdown automaton; one avenue of future work is to determine if
LCL reachability can be applied to Plume-style analyses.

7 Conclusions

This paper introduced set-based context sensitivity. This addresses the weakness
of k-limiting models – that polyinstantiation can cause information loss – without
compromising field sensitivity or separating it into a distinct problem. To make
set-based models practical, we applied selective polyinstantiation, an adaptation
of techniques used in k-limiting model research. This technique prevents recursive
functions from triggering the worst case performance of the set-based model.

To demonstrate the viability of these techniques, we have formally defined
Plume, a demand-driven higher-order program analysis which supports them,
and implemented several analysis artifacts. Our experiments show that, for rep-
resentative functional examples, several set-based, selectively polyinstantiated
analyses are superior in precision to their k-cutoff counterparts. We have also
demonstrated that analyses using these techniques yield performance compara-
ble with state-of-the-art analyses on typical functional benchmarks.

References

1. Agesen, O.: The Cartesian product algorithm: simple and precise type inference of
parametric polymorphism. In: ECOOP (1995)

2. Besson, F.: CPA beats ∞-CFA. In: Proceedings of the 11th International Workshop
on Formal Techniques for Java-like Programs (2009)

3. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: OOPSLA (2009)

4. Darais, D., Labich, N., Nguyen, P.C., Horn, D.V.: Abstracting definitional inter-
preters. CoRR (2017)

5. Duesterwald, E., Gupta, R., Soffa, M.L.: A practical framework for demand-driven
interprocedural data flow analysis. TOPLAS 19(6), 992–1030 (1997)

6. Facchinetti, L., Palmer, Z., Smith, S.: Higher-order demand-driven program anal-
ysis. TOPLAS 41, 1–53 (2019)

7. Facchinetti, L., Palmer, Z., Smith, S.F.: Relative store fragments for singleton
abstraction. In: Static Analysis (2017)

8. Fachinetti, L., Palmer, Z., Smith, S.F., Wu, K., Yorihiro, A.: Appendices to a
set-based context model for program analysis (2020). https://www.cs.swarthmore.
edu/∼zpalmer/publications/supplemental/aplas2020-supplement.pdf

9. Fähndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis using
instantiation constraints. In: PLDI (2000)

10. Germane, K., McCarthy, J., Adams, M.D., Might, M.: Demand control-flow anal-
ysis. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 226–246.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11245-5 11

11. Gilray, T., Adams, M.D., Might, M.: Allocation characterizes polyvariance: a uni-
fied methodology for polyvariant control-flow analysis. In: ICFP (2016)

https://www.cs.swarthmore.edu/~zpalmer/publications/supplemental/aplas2020-supplement.pdf
https://www.cs.swarthmore.edu/~zpalmer/publications/supplemental/aplas2020-supplement.pdf
https://doi.org/10.1007/978-3-030-11245-5_11

A Set-Based Context Model for Program Analysis 23

12. Gilray, T., Lyde, S., Adams, M.D., Might, M., Van Horn, D.: Pushdown control-
flow analysis for free. In: POPL (2016)

13. Heintze, N., Tardieu, O.: Demand-driven pointer analysis. In: PLDI (2001)
14. Henglein, F.: Type inference with polymorphic recursion. TOPLAS 15(2), 253–289

(1993)
15. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In:

SIGSOFT (1995)
16. Jeon, M., Jeong, S., Oh, H.: Precise and scalable points-to analysis via data-driven

context tunneling. Proc. ACM Program. Lang. 2(OOPSLA), 29 (2018)
17. Jeong, S., Jeon, M., Cha, S., Oh, H.: Data-driven context-sensitivity for points-to

analysis. Proc. ACM Program. Lang. 1(OOPSLA), 1–28 (2017)
18. Johnson, J.I., Sergey, I., Earl, C., Might, M., Van Horn, D.: Pushdown flow analysis

with abstract garbage collection. JFP 24(2–3), 218–283 (2014)
19. Johnson, J.I., Van Horn, D.: Abstracting abstract control. In: DLS (2014)
20. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to

analysis using a BDD-based implementation. TOSEM 18(1), 31–353 (2008)
21. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: Precision-guided context sensitivity

for pointer analysis. Proc. ACM Program. Lang. 2(OOPSLA), 141:1–141:29 (2018)
22. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: Scalability-first pointer analysis with

self-tuning context-sensitivity. In: Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2018 (2018)

23. Might, M.: Environment Analysis of Higher-order Languages. Ph.D. thesis (2007)
24. Might, M., Smaragdakis, Y., Van Horn, D.: Resolving and exploiting the k-CFA

paradox: illuminating functional vs. object-oriented program analysis. In: PLDI
(2010)

25. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. TOSEM 14(1), 1–41 (2005)

26. Okhotin, A.: Conjunctive grammars. J. Autom. Lang. Comb. 6, 519–535 (2001)
27. Rehof, J., Fähndrich, M.: Type-base flow analysis: from polymorphic subtyping to

CFL-reachability. In: POPL (2001)
28. Reps, T.: Shape analysis as a generalized path problem. In: PEPM (1995)
29. Reps, T.: Undecidability of context-sensitive data-dependence analysis. TOPLAS

22(1), 162–186 (2000)
30. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via

graph reachability. In: POPL (1995)
31. Reps, T.W.: Demand interprocedural program analysis using logic databases. In:

Ramakrishnan, R. (ed.) Applications of Logic Databases. SECS, vol. 296, pp. 163–
196. Springer, Boston (1995). https://doi.org/10.1007/978-1-4615-2207-2 8

32. Saha, D., Ramakrishnan, C.R.: Incremental and demand-driven points-to analysis
using logic programming. In: PPDP (2005)

33. Shivers, O.G.: Control-flow Analysis of Higher-order Languages. Ph.D. thesis, uMI
Order No. GAX91-26964 (1991)

34. Späth, J., Ali, K., Bodden, E.: Context-, flow-, and field-sensitive data-flow analysis
using synchronized pushdown systems. Proc. ACM Program. Lang. 3(POPL), 1–29
(2019)

35. Späth, J., Do, L.N.Q., Ali, K., Bodden, E.: Boomerang: demand-driven flow- and
context-sensitive pointer analysis for Java. In: ECOOP (2016)

36. Späth, J., Ali, K., Bodden, E.: Ideal: efficient and precise alias-aware data-flow
analysis. PACMPL 1(OOPSLA), 1–27 (2017)

https://doi.org/10.1007/978-1-4615-2207-2_8

24 L. Fachinetti et al.

37. Tan, T., Li, Y., Xue, J.: Making k -object-sensitive pointer analysis more precise
with still k -limiting. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 489–510.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7 24

38. Van Horn, D., Might, M.: Abstracting abstract machines. In: ICFP (2010)
39. Vardoulakis, D., Shivers, O.: CFA2: a context-free approach to control-flow anal-

ysis. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 570–589. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6 30

40. Wright, A.K., Jagannathan, S.: Polymorphic splitting: an effective polyvariant flow
analysis. TOPLAS 20(1), 166–207 (1998)

41. Zhang, Q., Su, Z.: Context-sensitive data-dependence analysis via linear conjunc-
tive language reachability. In: POPL (2017)

https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1007/978-3-642-11957-6_30

Declarative Stream Runtime
Verification (hLola)

Mart́ın Ceresa1 , Felipe Gorostiaga1,2,3(B) , and César Sánchez2

1 CIFASIS, Rosario, Argentina
2 IMDEA Software Institute, Pozuelo de Alarcón, Spain

felipe.gorostiaga@imdea.org
3 Universidad Politécnica de Madrid, Madrid, Spain

Abstract. Stream Runtime Verification (SRV) is a formal dynamic
analysis technique that generalizes runtime verification algorithms from
temporal logics like LTL to stream monitoring, allowing the computation
of richer verdicts than Booleans (quantitative values or even arbitrary
data). The core of SRV algorithms is a clean separation between tem-
poral dependencies and data computations. In spite of this theoretical
separation previous engines include ad-hoc implementations of just a few
data types, requiring complex changes in the tools to incorporate new
data types.

In this paper we present a solution as a Haskell embedded domain
specific language that is easily extensible to arbitrary data types. The
solution is enabled by a technique, which we call lift deep embedding, that
consists in borrowing general Haskell types and embedding them trans-
parently into an eDSL. This allows for example the use of higher-order
functions to implement static stream parametrization. We describe the
Haskell implementation called hLola and illustrate simple extensions
implemented using libraries, which would require long and error-prone
additions in other ad-hoc SRV formalisms.

1 Introduction

In this paper we study the problem of implementing a truly generic Stream
Runtime Verification (SRV) engine, and show a solution using an embedded
domain specific language (eDSL) based on borrowing very general types from
the host language into the SRV language and then applying a deep embedding.

Runtime Verification (RV) [2,20,26] is an area of formal methods for reactive
systems that analyses dynamically one trace of the system at a time. Compared
to static techniques like model checking [8] RV sacrifices completeness to obtain
an applicable and formal extension of testing and debugging. Monitors are gen-
erated from formal specifications which then inspect a single trace of execution

This work was funded in part by Madrid Regional Government project “S2018/TCS-
4339 (BLOQUES-CM)” and by Spanish National Project “BOSCO (PGC2018-102210-
B-100)”.

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 25–43, 2020.
https://doi.org/10.1007/978-3-030-64437-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_2&domain=pdf
http://orcid.org/0000-0003-4691-5831
http://orcid.org/0000-0002-3478-3408
http://orcid.org/0000-0003-3927-4773
https://doi.org/10.1007/978-3-030-64437-6_2

26 M. Ceresa et al.

at a time. Early RV languages were based on logics like LTL [27] or past LTL
adapted for finite paths [3,12,21]. Other approaches followed, based on regu-
lar expressions [36], rule based languages [1], or rewriting [34]. These specifica-
tion languages come from static verification, where decidability is key to obtain
algorithmic solutions to decision problems like model checking. Therefore, the
observations and verdicts are typically Boolean values.

Stream Runtime Verification [10,35] starts from the observation that most
monitoring algorithms for logics from static verification can be generalized to
richer observations and outcomes (verdicts), by generalizing the datatypes of
the individual internal operations of the monitors. Languages for SRV, pioneered
by Lola [10], describe monitors declaratively via equations that relate streams
of input and streams of output, offering a clean separation between the time
dependencies and the concrete operations. The temporal part is a sequence of
operations on abstract data, mimicking the steps of the algorithms for temporal
logics. Each individual operation can then be performed on a datatype imple-
mentation, obtaining monitors for arbitrary data. Offset expressions allow us to
refer to stream values in different moments of time, including future instants
(that is, SRV monitors need not be causal).

Most previous SRV developments [9,16,18,25] focus on efficiently implement-
ing the temporal engine, promising that the clean separation between time and
data allows incorporating off-the-shelf datatypes easily. However, in practice,
adding a new datatype requires modifying the parser, the internal representation,
and the runtime system that keeps track of offset expressions and partially eval-
uated expressions. Consequently, these tools only support a limited hard-wired
collection of datatypes. In this paper, we give a general solution to this problem
via a Haskell eDSL, resulting in the language hLola1, whose engine implements
a generic SRV monitoring algorithm that works for general datatypes.

Typically, a DSL is designed as a complete language, first defining the types
and terms of the language (this is, the underlying theory), which is then im-
plemented—either as an eDSL or as a standalone DSL—, potentially map-
ping the types of the DSL into types of the host. However, our intention with
hLola is to have a language where datatypes are not decided upfront but can
be added on demand without requiring any re-implementation. For this rea-
son, hLola borrows (almost) arbitrary types from the host system and then
embeds all these borrowed types, so hLola is agnostic from the stream types
(even types added in the future). Even though this technique has been some-
what part of the folklore of modern Haskell based eDSLs (e.g. [40]), this is
a novel approach to build runtime verification engines. We called this tech-
nique a lift deep embedding, which consists of (1) lifting the types and values
of the host language into the generic DSL using generic programming, and
(2) deep embedding the resulting concrete DSL into the host language. This
technique allows us to incorporate Haskell datatypes into hLola, and enables
the use of many features from the host language in the DSL. For example,
we use higher-order functions to describe transformations that produce stream

1 Available open source at http://github.com/imdea-software/hlola.

http://github.com/imdea-software/hlola

Declarative Stream Runtime Verification (hLola) 27

declarations from stream declarations, obtaining static parameterization for free.
In turn, libraries collect these transformers, which allows defining in a few lines
new logics like LTL, MTL, etc. or quantitative semantics for these logics. Haskell
type-classes allow us to implement simplifiers which can compute the value of
an expression without resolving all its sub-expressions first. If the unevaluated
sub-expressions contain future offset references, the engine may anticipate ver-
dicts ahead of time. Implementing many of these in previous SRV systems has
required to re-invent and implement features manually (like macro expansions
or ad-hoc parameterization). We use polymorphism both for genericity (to sim-
plify the engine construction) and to enable the description of generic stream
specifications, which, again, is not allowed by previous SRV engines. Finally, we
also exploit features present in Haskell to offer IO for many stream datatypes
for free.

Related Work. SRV was pioneered by Lola [10] for monitoring synchronous
systems only supporting Integers and Booleans. Copilot [31] is a Haskell imple-
mentation that offers a collection of building blocks to transform streams into
other streams, but Copilot does not offer explicit time accesses (and in partic-
ular future accesses). Lola 2.0 [16] extends Lola with special constructs for
runtime parameterization and real-time features. TeSSLa [9] and Striver [18]
are two modern SRV approaches that target real-time event streams. All these
languages still support only limited hard-wired datatypes.

RV and SRV overlap with other areas of research. Synchronous languages
–like Esterel [5] or Lustre [19]– are based on data-flow. These languages force
causality because their intention is to describe systems and not observations or
monitors, while SRV removes the causality assumption allowing the reference to
future values. In Functional Reactive Programming (FRP) [13] reactive behav-
iors are defined using the building blocks of functional programming. An FRP
program describes a step of computation, a reaction when new input values
(events) are available, thus providing implicitly the dependency of the output
streams at the current point from input streams values. Again, the main differ-
ence is that FRP programs do not allow explicit time references and that the
dependencies are causal (after all, FRP is a programming paradigm). In com-
parison, FRP allows immediately all the features of the programming language
without needing the solution proposed in this paper. It would be interesting to
study the opposite direction that we solve in this paper: how to equip FRP with
explicit times and non-causal future references. Also, FRP does not typically
target resource calculation, while this is a main concern in RV (and in SRV).

Contributions. In summary, the contributions of the paper are: (1) An imple-
mentation of SRV, called hLola, based on an eDSL that exploits advanced
features of Haskell to build a generic engine. A main novelty of hLola as an
SRV implementation is the use of a lift deep embedding to gain very general
types without costly implementations. Section 3 describes the runtime system
of hLola. (2) An implementation of many existing RV specification languages
(including LTL, MT-LTL and MTL) in hLola, which illustrates the simplicity

28 M. Ceresa et al.

of extending the language. This is shown in Sect. 4. (3) A brief empirical evalua-
tion, which suggests that the hLola engine executes using only the theoretically
predicted resources, shown in Sect. 5.

2 Preliminaries

We briefly introduce SRV using Lola (see [35]) and then present the features
of Haskell as a host language that we use to implement hLola.

2.1 Stream Runtime Verification: Lola

Intuitively speaking, Lola is a specification language and a monitoring algo-
rithm for synchronous systems. Lola programs describe monitors by express-
ing, in a declarative manner, the relation between output streams and input
streams. Streams are finite sequences of values, for example, a Boolean stream
is a sequence of Boolean values. The main idea of SRV is to cleanly separate the
temporal dependencies from the data computation.

For the data, monitors are described declaratively by providing one expres-
sion for each output stream. Expressions are terms from a multi-sorted first order
theory, given by a first-order signature and a first-order structure. A theory is a
finite collection of interpreted sorts and a finite collection of interpreted function
symbols. Sorts are interpreted in the sense that each sort is associated with a
domain, for example the domain of sort Bool is the set of values {true, false}.
For the purpose of this paper we use sorts and types interchangeably, as we
use Haskell types to implement Lola sorts. Function symbols are interpreted,
meaning that f is both (1) a constructor to build terms; and (2) a total func-
tion (the interpretation) used to evaluate and obtain values of the domain of
the return sort. For example, natural numbers uses two sorts (Nat and Bool),
constant function symbols 0, 1, 2, . . . of sort Nat , and True and False of type
Bool, as well as functions +, ∗, · · · Nat×Nat → Nat and predicates <, �, . . . ,
that are symbols that return Bool. We assume that our theories include equality,
and also that for every sort T there is a ternary function if · then · else ·
that returns a value of sort T given a Boolean and two arguments of sort T . We
use e : T to represent that e has sort T .

Given a set Z of (typed) stream variables, offset expressions are v[k, d] where
v is a stream variable, d : T is a constant and k is an integer number. For
example, x[−1, false] is an Bool offset expression and y[+3, 5] is a Nat offset
expression. The intended meaning of v[k, d] is to represent, at time n, the value
of the stream v at time n+k. The second argument d indicates the default value
to be used beyond the time limits. When it is clear from the context, we use v to
refer to the offset expression v[0] (that does not need a default value). The set of
stream expressions over a set of variables Z (denoted Expr(Z)) is the smallest
set containing Z and all offset expressions of variables of type Z, that is closed
under constructor symbols of the theory used. For example (x[−1, false] ∨ x)
and (y + y[+3, 5] ∗ 7) are stream expressions.

Declarative Stream Runtime Verification (hLola) 29

A Lola specification consists of a set {s1, s2 . . .} of input stream variables
and a set {t1, t2 . . .} of output stream variables, and one defining expression
ti = expi per output variable over the set of input and output streams, including
ti itself.

Example 1. The following is a Lola specification with input stream variable
s : Bool and output stream variable once s : Bool:

input bool s

output bool once_s = once_s [-1,false] || s

This example corresponds to the LTL formula s . The following specification
counts how many times s was True in the past (toint is the function that returns
0 for False and 1 for True):

output int n_once_s = n_once_s [-1,0] + toint(s)

A valuation of a specification associates a stream of length N to each of its
stream variables, all of which are of the same length. Given a stream σi for each
input stream variable si and a stream τi for each output stream variable ti in a
specification, every expression e can be assigned a stream �e� of length N . For
every j = 0 . . . N − 1:

– �c�(j) = c for constants;
– �si�(j) = σi(j) and �ti�(j) = τi(j) for stream variables;
– �f(e1, . . . , en)�(j) = f(�e1�(j), . . . , �en�(j)); and
– �v[k, d]�(j) = �v�(j + k) if 0 � j + k < N , and �v[k, d]�(j) = d otherwise.

We say that a valuation is an evaluation model, if �ti� = �ei� for each output
variable ti, that is, if every output stream satisfies its defining equation. The
dependency graph is the graph of offset dependencies between variables, and can
be used to rule out cycles in specifications to guarantee that every specification
has a unique output for every input.

One very important aspect of SRV is its ability to analyze specifications
and automatically calculate the necessary resources. A monitor is trace-length
independent if it operates with an amount of memory (and of processing time
per input event) that does not depend on the length of the trace. Many log-
ics admit trace-length independent algorithms for their past fragments, like for
example LTL and TLTL [3] and MTL [38]. The notion of efficient monitorability
in SRV [10,35], defined as the absence of positive (future) cycles in the depen-
dency graph, guarantees a trace-length independent monitor. The dependency
graph can also be used to build efficient runtime systems, by determining when
a value stream variable is guaranteed to be resolved (the latency) and when a
value can be removed because it will no longer be necessary (the back-reference).
See [35] for longer formal definitions.

30 M. Ceresa et al.

2.2 Haskell as a Host Language for an eDSL

An embedded Domain Specific Language [23] (eDSL) is a DSL that can be used
as a language by itself, and also as a library in its host programming language.
An eDSL inherits the language constructs of its host language and adds domain-
specific primitives. In this work we implemented hLola as an eDSL in Haskell. In
particular, we use Haskell’s features as host language to implement static param-
eterization (see Sect. 3.4), a technique that allows the programmatic definition
of specifications. This is used to extend hLola to support many temporal logics
proposed in RV. Other SRV implementations, in their attempt to offer expres-
sive data theories in a standalone tool, require a long and costly implementation
of features that are readily available in higher-order expressive languages like
Haskell. Using an eDSL, we can effectively focus our development efforts on the
temporal aspects of Lola.

We describe in the next section the lift deep embedding, which allows us to
lift Haskell datatypes to Lola and then to perform a single deep embedding for
all lifted datatypes. This technique fulfills the promise of a clean separation of
time and data and eases the extensibility to new data theories, while keeping the
amount of code at a minimum. Additionally, using eDSLs brings benefits beyond
data theories, including leveraging Haskell’s parsing, compiling, type-checking,
and modularity. The drawback is that specifications have to be compiled with
a Haskell compiler, but once a specification is compiled, the resulting binary
is agnostic of the fact that an eDSL was used. Therefore, any target platform
supported by Haskell can be used as a target of hLola. Moreover, improvements
in the Haskell compiler and runtime systems will be enjoyed seamlessly, and new
features will be ready to be used in hLola.

Haskell [28] is a pure statically typed functional programming language that
has been reported to be an excellent host language for eDSLs [17]. Functions
are values, and function application is written simply as a blank space without
parentheses, which helps eDSLs look cleaner. Haskell also allows custom para-
metric polymorphic datatypes, which eases the definition of new data theories,
and enables us to abstract away the types of the streams, effectively allowing
the expression of generic specifications.

Haskell’s ecosystem provides a plethora of frameworks for generic program-
ming [22]. In particular, our engine implementation uses the Typeable class to
incorporate new types without modification. However, we do not perform any
kind of traversal over generic data, we employ the Typeable class as a mecha-
nism to hide concrete types and implement heterogeneous lists. Members of the
Typeable class have an associated type representation, which can be compared,
and therefore employed to define a Dynamic datatype (which hides a Typeable
datatype), and to define a type-safe cast operation. New datatypes developed
by the active Haskell community can be incorporated immediately into hLola.
The datatype members of the Typeable class encompass all sorts that are used
in practice in SRV.

Haskell is declarative and statically typed, just like Lola. In Lola, functions
are functions in the mathematical sense, that is, they do not have side effects.

Declarative Stream Runtime Verification (hLola) 31

Lola does not make assumptions about when these functions will be called,
and guarantees that a function yields the same result when applied to the same
arguments twice. This is aligned with the Haskell purity of (total) functions.

Another feature that improves syntax readability is Haskell type classes,
which allows overloading methods. We can redefine functions that are typically
native in other languages, such as Boolean operators (∨) and (∧), and the arith-
metic operators (+), (−) and (∗), as well as define and use custom infix oper-
ators. Such definitions are possible by extensions made by the de-facto Haskell
compiler, GHC [29]. Haskell has let-bindings, list comprehensions, anonymous
functions, higher-order, and partial function application, all of which improves
specification legibility. Finally, hLola uses Haskell’s module system to allow
modular specifications and to build language extensions.

3 Implementation

3.1 Language Design

We model input and output stream variables using:

– Input Stream declarations, which model Lola’s input variables simply as a
name. During evaluation, the engine can look up a name in the environment
and fetch the corresponding value at a required time instant.

– Output Stream declarations, which model output streams in Lola. These dec-
larations bind the name of the stream with its Expression, which represents
the defining expression of a Lola output stream.

Revisiting the Lola specification in Example 1, in hLola, s will be an Input
Stream declaration and once s an Output Stream declaration.

We seek to represent many theories of interest for RV and to incorporate
new ones transparently, so we abstract away concrete types in the eDSL. For
example, we want to use the theory of Boolean without adding the constructors
that a usual deep embedding would require. To accomplish this goal we revisit
the very essence of functional programming. Every expression in a functional
language—as well as in mathematics—is built from two basic constructions: val-
ues and function applications. Therefore, to implement our SRV engine we use
these two constructions, plus two additional stream access primitives to capture
offset expressions. The resulting datatype is essentially a de-functionalization [33]
of the applicative interface. There is a limitation that some Haskell datatypes
cannot be handled due to the use of Dynamic and Typeable, which we intro-
duce within the engine to get a simple way to implement generic programming
while preserving enough structure. However, this is not a practical limitation to
represent theories and sorts of interests for monitoring.

We define expressions in Haskell as a parametric datatype Expr with a poly-
morphic argument domain. An e ::Expr domain represents an expression e over
the domain domain. The generic domain is automatically instantiated at static
time by the Haskell compiler, effectively performing the desired lifting of Haskell

32 M. Ceresa et al.

datatypes to types of the theory in hLola. For example, the use of Expr Int will
make the compiler instantiate domain as Int . The resulting concrete Expressions
constitute a typical deeply embedded DSL. We call this two step technique a lift
deep embedding. This technique avoids defining a constructor for all elements in
the data theory, making the incorporation of new types transparent.

Here we present in more detail the Expr construction in Haskell. The first
two constructors (Leaf and App) are the data constructions of the language,
which are aligned with the notions of de-functionalization mentioned above, and
allow encoding terms from a Lola theory seamlessly. The other two constructors
(Now and (:@)) represent the offset expressions:

– The constructor Leaf :: Typeable a ⇒ a → Expr a models an element of the
theory.

– The constructor App :: (Typeable a,Typeable b,Typeable (b → a)) ⇒
Expr (b → a) → Expr b → Expr a represents the application of a function
Expression to a value Expression.

– A term Now :: Stream a → Expr a represents the value of a stream in the
current instant.

– The at infix constructor, (:@) :: Stream a → (Int ,Expr a) → Expr a models
future and past offset expressions, specifying the default value to use if the
access falls off the trace

These constructions allow us to lift operations from domain values to Expressions
directly. For example, we can create an Expression that represents the sum of
two Expr Int without defining a dedicated type of Expression.

Similarly, we define the Stream declarations in Haskell as a parametric
datatype Stream with a polymorphic argument domain.

– The Input :: (FromJSON a,Read a,Typeable a) ⇒ String → Stream a
constructor represents an input stream, and associates the name of the stream
to the type of its values.

– The Output :: Typeable a ⇒ (String ,Expr a) → Stream a constructor rep-
resents an output stream, and associates the name of the stream to the type
of its values and its defining Expression, of the same type.

The Lola specification from Example 1 can be written in hLola as follows:

once s :: Stream Bool
once s = Output ("once_s",App (App (Leaf (∨)) prevOnce s) (Now s))

where s = Input "s"
prevOnce s = once s :@ (−1,False)

The expression of once s takes the application of the (data theory) function (∨)
to the value of once s at −1, using False as the default value, and applying the
result to the current value of s. We define the infix operator (=:) that builds
an output stream from a name and an expression, and override the Boolean

Declarative Stream Runtime Verification (hLola) 33

operator ∨; and the hLola Output Stream declaration looks almost like a Lola
expression:

once s = "once_s" =: once s :@ (−1,False) ∨ Now s

3.2 Static Analysis

Not every grammatically correct Lola specification is valid. Some errors like
syntactic errors, missing references and type mismatches can be checked by the
Haskell compiler. But to guarantee that a specification is well-defined we also
need to examine the dependency graph to check that it does not contain closed
paths of weight zero. This will ensure that the value of a stream at any point
does not depend on itself. We first convert every Expression a and Stream a to
their equivalent Expression and Stream declaration of Dynamic, so Stream dec-
larations and Expressions of different types can be mixed and used in the same
specification. Then we obtain the dependency graph by traversing the stream def-
initions in the specification recursively. One drawback of this approach is that the
Haskell type-system can no longer track the original type of an expression, but
this step is made after Haskell has type-checked the specification, guaranteeing
that the engine is forgetting the type information of a well-typed specification.
The engine keeps the information on how to parse the input streams and how to
show output values given a stream name, safely casting from and into Dynamic,
and avoiding type mismatches when converting from dynamically-typed objects.
We make the following claim:

Claim. Every conversion from a Dynamic Expression within the hLola engine
returns a value Expression of the expected type.

The proof of this claim can be done using Liquid Haskell [39] and is ongoing
research beyond the scope of this paper. Assuming the claim above, a runtime
type error can only be produced when processing an input event whose value is
not of the expected type.

During this stage, the tool also calculates the minimum weight of the paths
in the dependency graph, a non-positive value that we call minimum back ref-
erence and note minBackRef , along with the maximum weight of the edges,
which we call latency and note maxLatency . The dependency graph of the

once s

0

−1

s

specification in Example 1 is shown on the right. The
minBackRef is −1, because once s depends on the previ-
ous value of itself, and the maxLatency is 0 because there
are no references to future values of streams. The values of
minBackRef and maxLatency indicate that the engine will
only keep the values of the streams at the present and pre-
vious instants.

3.3 Runtime System

We now describe some key internal datatypes used in the implementation of the
execution engine. An Instant is a map that binds the name of a stream to an

34 M. Ceresa et al.

Expression. Given a specification with m streams s1, . . . , sm, an Instant can be
interpreted as a vector of size m. A Sequence is an ordered collection of Instants,
one of which is said to be “in focus”. The Instants in the past of the one in focus
are stored in the Sequence in an array of size (maxLatency−minBackRef), which
limits the amount of memory that the engine can consume. On the other hand,
the Instants in the future of the one in focus are stored as a list. Even though
this list can be (implicitly) as long as the full trace, the elements in the list will
not actually exist in memory until they are needed to compute a value, due to
the laziness of Haskell evaluation. We can think of a Sequence as a matrix of
expressions, where each column is an Instant vector, and one of them is in focus.
The evaluation of a specification with m streams over n instants is conceptually
an n × m matrix.

Given a specification and a list of values, we first create a Sequence with an
empty past and the focus on the first instant. In this Sequence, the value of the
cell (si, n) in the Sequence matrix for an input stream si and instant n, is a Leaf
containing the value read for the stream of si at time instant n. Similarly, the
value of every output stream tj and instant n is the defining Expression for tj in
the specification, waiting to be specialized and evaluated. Note that these values
do not actually exist in memory until they are needed. The goal of the engine is
to compute a Leaf expression (this is, a ground value) at every position in the
matrix, particularly for output streams.

1 2 3 . . . n⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

s1 Leaf1,1 Leaf1,2 Leaf1,3 . . . Leaf1,n
...

...
...

...
. . .

...
sk Leafk,1 Leafk,2 Leafk,3 . . . Leafk,n
t1 Leafk+1,1 Leafk+1,2 e1,3 . . . e1,n
...

...
...

...
. . .

...
tm Leafk+m,1 Leafk+m,2 em,3 . . . em,n�

Starting from the ini-
tial state, the engine will
solve every output stream
at the instant in focus, and
then move the focus one
step forward. This algo-
rithm guarantees that all
elements in the past of the
focus are leaves. The figure
on the right illustrates the
Sequence of an execution at time instant 3, where some of the output expressions
e1,3 . . . em,n can be leaves too. At the end of the execution, the focus will be on
the last column of the matrix, and all the elements in the matrix will be leaves.

The output streams will be calculated and output incrementally while new
data is retrieved for the input streams. The engine will block when it needs the
value of an input stream that has not been provided yet. These characteristics
of the Haskell runtime system allow the monitor to run online processing events
from the system under analysis on the fly, or offline over dumped traces.

A language that offers means to define new datatypes must not only provide
the constructs to define them, but it also must implement the encoding and
decoding of custom datatypes. Extensible encoding and decoding of datatypes
in the theory is not trivial and might account for a large portion of the codebase.
As an eDSL, hLola can rely upon Haskell’s facilities to define how to encode and
decode Typeable datatypes, sometimes even automatically from their definitions.

Declarative Stream Runtime Verification (hLola) 35

This class encompasses many of the datatypes that are used in practice to encode
values (observations and verdicts) when monitoring systems.

Input events are fed to hLola in JSON format, where each line is a string
representation of a JSON object with one field per input stream. The types of
the input streams have to be instances of the FromJSON class, meaning that
a value of the corresponding type can be constructed from a serialized JSON
Object . Output streams must be instances of the ToJSON class, which means
that we can get a JSON Object from a value of the corresponding type.

Haskell allows defining custom datatypes via the data statement. Once
defined, these types can be used just like any other type in Haskell. Most of
the times, we can use Haskell’s deriving mechanism to make our custom types
instances of the corresponding classes, if needed. Sect. 4 contains examples of
custom datatypes for input values.

3.4 Additional Features

The use of Haskell as a host language eases the implementation of many use-
ful features of SRV in hLola. We show here two examples: anticipation and
parameterized streams.

Anticipation. Input event streams represent the trace of observations of a
system, and output streams encode a property to be evaluated dynamically. The
principle of anticipation, as presented in [11], states that once every (infinite)
continuation of a finite trace leads to the same verdict, then the finite trace can
safely evaluate to this verdict. This principle can be trivially implemented when
functions know all their arguments, but it is not always possible to anticipate
what the output of the function will be when some of the arguments will only
be known in the future. Nevertheless, there are cases where a function can be
evaluated with just a subset of its arguments. This property of some functions
can be used to compute their values as soon as all the relevant information is
retrieved, avoiding waiting for input values that are not strictly necessary to
evaluate the function. This idea effectively brings us closer to strict anticipation
as defined above.

The circumstances under which a function can be computed with missing
arguments is data-specific information. Typical SRV implementations provide
simplifications for some functions in the covered theories, but do not offer a way
to provide new simplifications to their theories. Instead, we provide a framework
to keep the simplifications extensible. To allow the use of functions off-the-shelf
as well as simplifiable functions, we define a new datatype and a class of which
the Haskell function constructor (→) is an instance, shown below:

data LFunction a b = Pure (a → b) | Simplifier (Maybe a → Maybe b)
class ILFunction x where toLFunction :: x a b → LFunction a b

instance ILFunction (→) where toLFunction = Pure

We then generalize the type of the function application constructor App ::
Expression (f b a) → Expression b → Expression a, under the constraint

36 M. Ceresa et al.

that f be a member of the class ILFunction. In this way, users of the eDSL can
define their own simplifiable functions using the Simplifier constructor, or just
use off-the-shelf functions seamlessly; which will automatically be applied the
Pure constructor by the compiler.

The language is shipped with simplifiers for the Boolean operators ∨ and ∧;
as well as the if · then · else · operator and some numeric operators. These
simplifiers have great impact in temporal logics with references to the future,
where values can often be resolved at an instant with the information retrieved
up to that point—without the need to wait until all future values are resolved.
We show the simplifiers for the if · then · else · operator in the extended
version of the paper [6].

Parameterized Streams. Static parametrization is a feature of some SRV
systems which allows instantiating an abstract specification. This is useful to
reuse repetitive specifications and capture the essence of a stream definition,
abstracting away the specific values. Sect. 4 shows how this feature is used to
concisely implement several monitoring languages as libraries in hLola. This
feature is implemented in Lola2.0 [15] as well as in TeSSLa [9] using an ad-hoc
macro feature in the tool chain. Here we show how static parametrization can
be obtained directly using Haskell features. Consider again the specification of
s shown in Example 1:

once s :: Stream Bool

once s = "once_s" =: once s :@ (−1,False) ∨ Now s

If we want to define a stream to compute r, we would have to define a
stream once r whose definition is almost identical to the definition of once s.
This leads to code duplication and hard to maintain specifications.

Instead of defining an output stream once s specifically for s, we aim to
write a general stream once parameterized by a Boolean stream. We can use
Haskell as a macro system to programmatically define specifications, effectively
implementing static parameterization.

Example 2. The definition of once in hLola using static parameterization is:
once :: Stream Bool → Stream Bool

once s = "once" <: s =: once s :@ (−1,False) ∨ Now s

Note that we simply abstracted away the occurrences of s. To avoid name clashes
among different instantiations of once, we concatenate the string "once" with the
name of the argument stream s, by using the operator <:. Static parametrization
is used extensively to implement libraries as described in the next section.

4 Extensible Libraries in HLola

One of the benefits of implementing an eDSL is that we can reuse the library
system of the host language to modularize and organize the code. The Haskell
module system allows importing third parties libraries, as well as developing
new libraries; hLola ships with some predefined theories and stream-specific
libraries. In this section we show an overview of the stream-specific libraries.

Declarative Stream Runtime Verification (hLola) 37

Past-LTL. The operators of Past-LTL [4] can be described using the Lola

specification language (e.g. from Example 2). Given two Boolean streams p
and q , the Boolean stream p ‘since‘ q is True if q has ever been True, and p has
been True since the last time q became True. One can simply import Lib.LTL
and then define streams like: property = yesterday (p ‘since‘ q).

Example 3. We show an example of a Past-LTL property for a sender/receiver
model taken from [4]: (snd .state = waitForAck snd .state waitForAck).
Using hLola, we define a type to represent the possible states of the sender,
deriving a FromJSON instance to use it as the type of an input stream
sndrState:

data SndrState = Get | Send | WaitForAck deriving (Generic,Read ,FromJSON ,Eq)

Then, we define the property as a Boolean output stream:

sndrState :: Stream SndrState
sndrState = Input "senderState"

sndrNotWaiting :: Stream Bool
sndrNotWaiting = "sndrNotWaiting" =: Now sndrState / == Leaf WaitForAck

prop :: Stream Bool
prop = let sndrWaitingAck = Now sndrState === Leaf WaitForAck

startedWaiting = yesterday (historically sndrNotWaiting)
in "prop" =: sndrWaitingAck ‘implies‘Now startedWaiting

MTL. Metric Temporal Logic [24] is an extension of LTL with time con-
straints that give upper and lower bounds on the temporal intervals. The stream
until is parameterized by two integers, which are the boundaries of the inter-
val, and two Boolean streams to model the formula p U[a,b] q. We use recursion
to programmatically define the Expression of until , which will be unfolded at
compile time for the dependency graph sanity check. This expansion can be
observed in the dependency graph of a specification that uses until , for example,
property = until (−1, 1) p q , which checks that a stream p is True until q is
True in the interval (−1, 1), which is shown on the right.

−1 0 1

qp

until (-1,1)<p><q>

−1 0 1

In [32], Reinbacher et al. introduce Mission-
Time LTL, a projection of LTL for systems
which are bounded to a certain mission time.
They propose a translation of each LTL oper-
ator to its corresponding MTL operator, using
[0,missiont] as the temporal interval, where
missiont represents how the duration of the mission. The ability of hLola to
monitor MTL can be used to monitor Mission-Time LTL through this transla-
tion.

Example 4. We show an example of an MTL property taken from [30]:
(alarm → ([0,10]allclear ∨[10,10]shutdown)) .

38 M. Ceresa et al.

This property uses MTL to establish deadlines between environment events and
the corresponding system responses. In particular, the property assesses that an
alarm is followed by a shutdown event in exactly 10 time units unless all clear
is sounded first. We consider three Boolean input streams alarm, allclear and
shutdown—which indicate if the corresponding event is detected—and define an
output stream that captures whether the property holds:

alarm = Input "alarm" :: Stream Bool
allclear = Input "allclear" :: Stream Bool
shutdown = Input "shutdown" :: Stream Bool

prop :: Stream Bool
prop = "prop" =: Now alarm ‘implies‘Now willClear ∨ Now willShutdown

where willClear = eventually (0, 10) allclear
willShutdown = eventually (10, 10) shutdown

5 Implementation and Empirical Evaluation

The implementation of hLola requires no code for the parser and type checker,
since it reuses those from the Haskell compiler. The table below shows the num-
ber of lines for the full hLola implementation.

Language and input
Files: ./ LoC
DecDyn.hs 87
InFromFile.hs 51
Lola.hs 62
StaticAnalysis.hs 78
Total 278

Engine
Files: Engine/ LoC
Engine.hs 176
Focus.hs 39

Total 215

Syntax
Files: Syntax/ LoC
Booleans.hs 37
HLPrelude.hs 3
Num.hs 26
Ord.hs 18
Total 102

Libraries
Files: Lib/ LoC
LTL.hs 21
MTL.hs 29
Pinescript.hs 41
Utils.hs 13
Total 104

In summary, the core of the tool has 493 lines, while the utils account for
206 lines, giving a total of 699 lines. This compares to the tens of thousands of
lines of a parser and runtime system of a typical stand-alone tool. In the rest of
this section we summarize how using Haskell enables the use of available tools,
and then report on an empirical evaluation of hLola.

Haskell Tools. The use of Haskell as a host language allows us to use existing
tools to improve hLola specifications, such as LiquidHaskell and QuickCheck.

Liquid Haskell [39] enriches the type system with refinement types that allow
more precise descriptions of the types of the elements in a Haskell program. In
our case we can use Liquid Haskell to express specifications with more precision.
For example, we can prevent a specification that adds the last n elements from
being used with a negative n:

{- nsum :: Stream Int -> Nat -> Stream Int -}
nsum :: Stream Int → Int → Stream Int

nsum s n = "n_sum" <: s <: n =: nsum s n :@ (−1, 0) + Now s − s :@ (−n, 0)

Then, given a stream r of type Stream Int we can attempt to define a stream
s that computes the sum of the last 5 values on stream r as s = nsum r 5.

Declarative Stream Runtime Verification (hLola) 39

Running LiquidHaskell with --no-termination allows the recursive definition
of n over this specification, which yields no error, but running LiquidHaskell on
s ′ = nsum r (−1) produces a typing error.

QuickCheck [7] is a tool to perform random testing of Haskell programs,
which we can easily use for hLola specifications. For example, we can assess
that the first instant at which a Boolean stream p is False is exactly one instant
after the last instant at which p is True, increasing our confidence on the
implementation of the Past-LTL operator.

Empirical Evaluation. We report now on an empirical evaluation performed
to assess whether the engine behaves as theoretically expected in terms of mem-
ory usage. The hardware platform over which the experiments were run is a
MacBook Pro with MacOS Catalina Version 10.15.4, with an Intel Core i5 at
2,5 GHz and 8 GB of RAM.

The first two Stream declarations calculate if an input Boolean stream p is
periodic with period n. This is a simple, yet interesting property to assess in
embedded systems. We specify this property in two different ways. In the first
Stream declaration, we define a single stream which compares the current value
of p with its value n instants before:

booleanPeriodWidth :: Int → Stream Bool

booleanPeriodWidth n = "periodic_width" =: Now p === p :@ (−n,Now p)

101 102 103 104 105 106 107

100

120

140

Trace length

K
B
s

0 200 400 600
0

0.5

1

1.5

2

Number of streams

M
B
s

0 200 400 600

0.15

0.2

0.25

0.3

Absolute value of minimum back reference

M
B
s

(a) Memory wrt trace length (b) Memory wrt number of streams (c) Memory wrt minBackRef

Fig. 1. Empirical evaluation

The data of this experiment is represented by the solid, unmarked black curves
in Fig. 1 (a) and (c).

In the second Stream declaration, we programmatically create n + 1 streams
carrier i , with i = 0 . . . n defined as a function that compares its argument with
the value of p i instants before, which is bound by the partially applied equality
function:
booleanPeriodHeight :: Int → Stream Bool
booleanPeriodHeight n = "periodic_height" =: Now (carrier n) 〈�〉 Now p
where
carrier 0 = "carrier_prd" <: 0 =: (≡) 〈$〉 Now p
carrier n = "carrier_prd" <: n =: carrier (n − 1) :@ (−1,Leaf (const True))

40 M. Ceresa et al.

The data of this experiment is represented by the solid, circle-marked red
curves in Fig. 1 (a) and (b).

We also run a quantitative version of this n-period checker, whose value is
100 at a given instant if p at that instant is equal to the value of p n instants
ago; 50 if it is equal to the value of p n − 1 or n +1 instants ago; 25 if it is equal
to the value of p n − 2 or n + 2 instants ago; and 0 otherwise. Note that this
specification has a value closer to 100 when the specification is closer to being
periodic, and closer to 0 when the specification is further from being periodic.
This example illustrates how hLola can be used to define quantitative semantics
of temporal logics, which is an active area of research in Runtime Verification. In
this case we also define a version with a single stream (represented by the solid,
cross-marked brown curves in Fig. 1 (a) and (c)), and a version with auxiliary
streams, each of which has an offset of −1 at most (represented by the dashed
blue curves in Fig. 1 (a) and (b)).

In the first experiment, we run all four specifications over traces with syn-
thetic inputs of varying length. The results are shown in Fig. 1 (a), which suggest
that the memory required is approximately constant, indicating that the mem-
ory used is independent of the trace length, and that monitors run in constant
space, as theoretically predicted.

In the second experiment, we vary the period n to asses how the number
of streams affects the memory usage for both period checkers. The outcome
suggests that increasing the number of streams only impacts linearly on the
memory required to perform the monitoring, as shown in Fig. 1 (b).

In the third experiment, we use different values for the period n to increase
the absolute value of the minBackRef for the Boolean and quantitative period
checkers to asses how increasing the absolute value of the minBackRef affects
the memory required. The outcome again suggests that the memory required
grows linearly, as shown in Fig. 1 (c). In both the second and third scenarios, we
can observe that the memory required is unaffected by whether we are working
with quantitative datatypes or Boolean values.

6 Final Discussions, Conclusion and Future Work

Final Discussions. One alternative to Typeable is to use modular datatypes
and evaluators [37]. However, this would break our goal of transparently bor-
rowing datatypes in the lift deep embedding, by forcing hLola data sorts to be
defined manually as Haskell datatypes.

Resource analysis is a central concern in RV and, in fact, in all real-time
and critical systems. For example, aviation regulation forbids the use of runtime
environments with garbage collection for critical systems. But this is still an
option for soft-critical applications, where hLola has successfully been applied
to improve mission software of autonomous UAVs [41]. As future work we plan
to generate embeddable C code from a restricted version of hLola, using the
Ivory framework [14] (see Copilot [31]).

An eDSL like hLola is a library within the host language, and can be used
as a theory within hLola reflectively. This feature can greatly simplify writing

Declarative Stream Runtime Verification (hLola) 41

specifications, used for example to express predictive Kalman filters as in [41] or
quantitative semantics of STL and MTL.

Conclusions. We have presented hLola, an engine for SRV implemented as a
Haskell eDSL. We use the notion of lift deep embedding—folklore in advanced
eDSLs (see [40])—in a novel way to fulfill the SRV promise of a clean separation
between the temporal engine and the data manipulated, allowing the transparent
incorporation of new types. Using Haskell makes readily available features like
static parameterization—which allows implementing many logics with Boolean
and quantitative semantics—, otherwise programmed in an ad-hoc manner in
other SRV tools. The resulting system hLola is very concise. A well-known
drawback of using an eDSL is that errors are usually cryptic. We are currently
working on a front-end restriction of the language that enables better error
reporting, while still allowing expert users to use all the advanced features.

Current work includes extending hLola to support time-stamped event
streams, which allows monitoring real-time event sequences as in [18]. This exten-
sion will be to Striver [18] like hLola is to Lola. From the point of view of
exploiting Haskell further, future work includes using LiquidHaskell more aggres-
sively to prove properties of specifications and memory bounds, as well as proving
formally the claim that our use of Dynamic is safe. We are also working on using
QuickCheck to generate test traces from specifications and on studying how to
use model-based testing to improve the test suites obtained.

References

1. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 5

2. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol.
10457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

3. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011)

4. Benedetti, M., Cimatti, A.: Bounded model checking for past LTL. In: Garavel, H.,
Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 18–33. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36577-X 3

5. Berry, G.: The foundations of Esterel. In: Proof, Language, and Interaction: Essays
in Honour of Robin Milner, pp. 425–454. MIT Press (2000)

6. Ceresa, M., Gorostiaga, F., Sanchez, C.: Declarative stream runtime verification
(hLola) (2020)

7. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the ICFP 2000, pp. 268–279. ACM (2000)

8. Clarke, E.M., Grunberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

9. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5 10

https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/3-540-36577-X_3
https://doi.org/10.1007/978-3-030-03044-5_10

42 M. Ceresa et al.

10. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: Pro-
ceedings of the TIME 2005, pp. 166–174. IEEE (2005)

11. Dong, W., Leucker, M., Schallhart, C.: Impartial anticipation in runtime-
verification. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.)
ATVA 2008. LNCS, vol. 5311, pp. 386–396. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88387-6 33

12. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45069-6 3

13. Eliot, C., Hudak, P.: Functional reactive animation. In: Proceedings of the ICFP
2007, pp. 163–173. ACM (1997)

14. Elliott, T., et al.: Guilt free ivory. SIGPLAN Not. 50(12), 189–200 (2015)
15. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-

fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9 10

16. Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M.,
Tentrup, L., Torfah, H.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 24

17. Gill, A.: Domain-specific languages and code synthesis using Haskell. CACM 57,
42–49 (2014)

18. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

19. Halbwachs, N., Caspi, P., Pilaud, D., Plaice, J.: LUSTRE: a declarative language
for programming synchronous systems. In: Proceedings of the POPL 1987, pp.
178–188. ACM Press (1987)

20. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Woodcock, J. (eds.)
VSTTE 2005. LNCS, vol. 4171, pp. 374–383. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69149-5 40

21. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

22. Hinze, R., Jeuring, J., Löh, A.: Comparing approaches to generic programming
in Haskell. In: Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.) SSDGP
2006. LNCS, vol. 4719, pp. 72–149. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-76786-2 2

23. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv.,
28(4es) (1996)

24. Koymans, R.: Specifying real-time properties with metric temporal logic. R.-Time
Syst. 2(4), 255–299 (1990)

25. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: runtime
verification of non-synchronized real-time streams. In: Proceedings of the SAC
2018, pp. 1925–1933. ACM (2018)

26. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Program. 78(5), 293–303 (2009)

27. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995). https://doi.org/10.1007/978-1-4612-4222-2

https://doi.org/10.1007/978-3-540-88387-6_33
https://doi.org/10.1007/978-3-540-88387-6_33
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-540-76786-2_2
https://doi.org/10.1007/978-3-540-76786-2_2
https://doi.org/10.1007/978-1-4612-4222-2

Declarative Stream Runtime Verification (hLola) 43

28. Marlow, S.: Haskell language report (2010)
29. Marlow, S., Peyton Jones, S.: The Glasgow Haskell Compiler. Lulu, The Architec-

ture of Open Source Applications, vol. 2, January 2012
30. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez,

F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-85778-5 1

31. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime
monitor. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 26

32. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8 24

33. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
High. Order Symb. Comput. 11(2), 363–397 (1998)

34. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)

35. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 9

36. Sen, K., Roşu, G.: Generating optimal monitors for extended regular expressions.
ENTCS 89(2), 226–245 (2003)

37. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436 (2008)
38. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.

Electron. Notes Theor. Comput. Sci. 113, 145–162 (2005)
39. Vazou, N., Seidel, E.L., Jhala, R.: LiquidHaskell: experience with refinement types

in the real world. In: Proceedings of the Haskell 2014, pp. 39–51. ACM (2014)
40. Westphal, O., Voigtländer, J.: Implementing, and keeping in check, a DSL used in

e-learning. In: Nakano, K., Sagonas, K. (eds.) FLOPS 2020. LNCS, vol. 12073, pp.
179–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59025-3 11

41. Zudaire, S., Gorostiaga, F., Sanchez, C., Schneider, G., Uchitel, S.: Assumption
monitoring using runtime verification for UAV temporal task plan executions.
Under submission (2020)

https://doi.org/10.1007/978-3-540-85778-5_1
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1007/978-3-030-59025-3_11

Formal Verification of Atomicity
Requirements for Smart Contracts

Ning Han1, Ximeng Li1,3(B), Guohui Wang2, Zhiping Shi1, and Yong Guan3

1 Beijing Key Laboratory of Electronic System Reliability and Prognostics,
Capital Normal University, Beijing, China
15238483068@163.com, shizp@cnu.edu.cn

2 Beijing Engineering Research Center of High Reliable Embedded System,
Capital Normal University, Beijing, China

ghwang@cnu.edu.cn
3 Beijing Advanced Innovation Center for Imaging Theory and Technology,

Capital Normal University, Beijing, China
{lixm,guanyong}@cnu.edu.cn

Abstract. Smart contracts are notoriously vulnerable to bugs and loop-
holes. This is due largely to an unusual combination of features: re-
entrant calls, transfer-triggered code execution, the way exceptions are
propagated, etc. Numerous validation techniques have been developed to
ensure the safety and security of smart contracts. An important class of
problems dealt with is related to the atomic performance of actions such
as contract calls and state updates. In this paper, we examine the major
existing atomicity-related criteria for the safety and security of smart
contracts. We then propose an atomicity criterion and argue about its
advantages. Furthermore, we develop a Hoare-style program logic that is
capable of verifying the fulfillment of safety requirements by smart con-
tracts, including the satisfaction of the proposed criterion. The program
logic is developed and proven sound for a core Solidity-like language,
which supports reentrant calls, ether transfers, and exception handling.

1 Introduction

Blockchains are distributed digital ledgers containing records of user data and
activities [33]. The blockchain technology provides multiple desired features such
as distributed consensus, decentralized management and control, the difficulty in
corrupting data and fake data, the traceability of provenance, etc. This technol-
ogy has the potential to play a key role in the effective and efficient management
of trust relationship in the information era.

Since the advent of Ethereum [32], programmability has become an indispens-
able feature of blockchain systems. Programs implementing smart contracts [30]
can be written to define the logic of transactions over a blockchain system. Pro-
grammability greatly eases the development of a wide spectrum of blockchain
applications, ranging from digital currency to online gaming.

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 44–64, 2020.
https://doi.org/10.1007/978-3-030-64437-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-64437-6_3

Formal Verification of Atomicity Requirements for Smart Contracts 45

There has been a high level of activity in the development of smart contracts.
However, a great number of bugs and loopholes have been found to exist in the
smart contracts deployed. These bugs and loopholes put on-chain digital assets
at stake [1,5]. The safety and security problems of smart contracts have led to
extensive recent efforts related to the validation of smart contracts (as recently
surveyed in [31]). The bulk of the existing work is focused on bug detection
and verification [3,7,9,11,12,15,17,20,22,24–27,34], semantic foundation [6,13,
16,18,19,21], or language design [8,10,28]. Relatively little attention has been
directed to the discussion about the safety and security requirements themselves.
The mis-specification of requirements and criteria could lead to undetected flaws
or false alarms, even if the analysis is sound and precise with respect to the
specified requirements.

An important class of requirements for the safety and security of smart con-
tracts is the atomicity of operations – a group of related operations should be
performed in an all-or-nothing fashion. A typical problem is as follows. A contract
may fail to transfer an amount of ether, yet deduct this amount from its book-
keeping records, leading to locked funds. Atomicity problems also arise in other
scenarios than related to digital currency. Consider a contract that may update
the sales figures of a product, without updating its stock. Atomicity problems
significantly harm the integrity of the business logics of smart contracts.

In this paper, we propose an atomicity criterion (Sect. 2) that can be used to
specify the updates to state variables and the performance of function calls that
must happen in sync, in smart contract transactions. The criterion is flexible
to use because it supports the specification of which ones of all the potential
variable updates and function calls in a smart contract are of concern. Hence, the
criterion can be tailored to capture application-specific atomicity requirements.

Currently, the bulk of the existing techniques for the source-level verification
of smart contracts does not come with an emphasis on soundness with respect
to a concrete language semantics. In this work, we devise a Hoare-style program
logic (Sect. 4) for the verification of smart contracts, covering the atomicity cri-
terion we propose, as well as other safety criteria. We establish the soundness
of the program logic with respect to a Solidity-like language (Sect. 3), for which
we carefully formulate the typing disciplines and a formal semantics.

The main contributions of this paper are:

1. an atomicity criterion for smart contracts supporting the specification of the
state updates, as well as function calls, that must happen in atomic batches,

2. a Hoare-style program logic supporting the source-level verification of safety
requirements on smart contracts, especially the proposed atomicity criterion.

The proposed program logic provides the vocabulary for referring to, and
reasoning about the initial and current values of state variables, the builtin
balances of accounts, the caller address, the amount of ether transfered with calls,
the presence of successful calls within and between contracts, and the presence
of uncaught exceptions. It employs forward-style inference rules for assignments
to variables and mapping elements, which provides a basis for automation. It
uses contract invariants to capture the effect of calls with reentry possibilities.

46 N. Han et al.

Both the proposed atomicity criterion and program logic are illustrated
(Sect. 5) using examples of practical relevance, including a batch-transfer func-
tion for the refund of smart contract users. For space reasons, the detailed formal
definitions of the smart contract language and the proofs of the theoretical results
are given in the addendum of this paper.

2 Atomicity Criteria for Smart Contracts

We introduce the proposed atomicity criterion with the help of a simple example.
We then discuss major related atomicity criteria in the literature. We use the
smart contract language defined in the present work for this discussion, to avoid
potential confusion arising from the switch between different languages.

fun withdraw(;b:U256) ret x:U256
{

b := bal;
if (b = 0) { throw };

bal := 0;
try { caller.transfer(b) }

catch { bal := b; err := err + 1 }

}

Fig. 1. The function withdraw

The smart contract function withdraw in
Fig. 1 allows a fixed amount of ether to
be withdrawn once. In this function, bal
is a state variable belonging to the overall
contract. It records the amount of ether
that can be withdrawn (i.e., the balance).
This amount is retrieved in the local vari-
able b, which is declared after the ; in
the first line. If a previous withdrawal has
already succeeded (b = 0 in the condi-

tional), then the call ends with an exception. Otherwise, the bookkeeping balance
bal is zeroed, and the amount of ether to be withdrawn is transfered to the caller.
Exceptions occurring in the transfer are caught and handled by resetting bal to
its initial value, and incrementing the state variable err . This state variable is
used to log the number of errors occurring with the ether withdrawal attempts
by calling the function withdraw.

A key point about the safety of the function withdraw is that the actual
transfer of ether is kept in sync with the update of the bookkeeping balance bal .
More concretely, when the execution of withdraw is completed, the transfer has
been successfully performed, if and only if bal has been updated to zero.

There are two further aspects to be noted about withdraw in Fig. 1. Firstly,
when stating the atomicity requirement, it is more convenient to be concerned
with the overall value change of the variable bal (e.g., to zero) than with the
execution of a specific assignment to bal (e.g., bal := b). That is, it is more conve-
nient to consider semantic updates (i.e., overall value changes) of state variables,
rather than syntactic updates (e.g., particular assignments to state variables) of
them. Secondly, although err is also a state variable of the contract like bal is,
the update of err is not supposed to happen in sync with the update of bal .
Hence, the atomicity of a transaction does not imply that the update of all the
state variables should happen in one atomic batch.

In this work, we deal with the formal verification of the following atomicity
criterion for smart contracts.

Formal Verification of Atomicity Requirements for Smart Contracts 47

For a number of semantic updates to specific state variables, as well as calls
to specific functions, either all of them happen or none of them happen, in
the execution of a smart contract function.

For the execution of withdraw in Fig. 1, it can be shown that either bal is
updated, the builtin balance [32] of the contract is updated, and the call to
transfer is also successfully performed, or none of the above happens.

Related Atomicity Criteria. In the literature, there are two major criteria
used to detect atomicity problems in smart contracts that are related to ours.

The first criterion is to check whether write accesses to state variables hap-
pen only after successful ether transfers (e.g., [22]). The rationale is that if a
transfer fails, the builtin balance of the contract does not change, and, hence, no
bookkeeping by means of updating a state variable should be attempted. This
criterion is simple to understand, and can be efficiently implemented. On the
other hand, this criterion is not met by the function withdraw. This is because a
write to the state variable bal (bal := b) happens even if the transfer fails. How-
ever, it is inappropriate to report this write as causing an atomicity problem,
because overall the bookkeeping in bal is kept in sync with actual ether trans-
fer, and with the builtin balance. In fact, the utility of the write bal := b in the
function withdraw is different than that considered when adopting the criterion
in [22]. This write is not for deducting an amount from the recorded balance to
reflect ether transfer, but for canceling out the effect of an earlier deduction.

The second criterion is a security property called atomicity [16]. To see if a
smart contract satisfies atomicity, one considers two executions of the contract,
started in states that differ only in the gas value. If the two executions end
with different values for some declared state variable(s), then it is required that
the values of all the state variables should be the same as in the beginning, in
at least one execution. Hence, the only allowed form of interference that the
gas value has on the state is the suspension of changes to all state variables
atomically. This atomicity property addresses a noninterference concern that is
not addressed by our criterion. On the other hand, this property is not satisfied
by the function withdraw. This is because if there is an insufficient amount of gas
initially, causing the transfer in withdraw to fail, then the change to the value
of bal is suspended, but the change to err is not. However, it is inappropriate to
report this update of err as causing an atomicity problem, because this update
is used to implement the logging functionality, and it does not cause the builtin
balance of the contract to be out of sync with the bookkeeping balance.

Remark 1. In the motivating example, we use an exception-handling program-
ming construct. Language features like this are introduced with Solidity version
0.6. Nevertheless, if the try ... catch ... were replaced by an if statement whose
conditional checks whether a low-level call implementing the transfer succeeds
or not, the essence of the example would remain.

48 N. Han et al.

3 Smart Contract Language

We consider a simplified programming abstraction for smart contracts. There is
a blockchain system that contains a number of user accounts. Each account has
an address, maintains its balance in the native digital currency of the blockchain,
contains a storage that maps the state variables to their values, and contains a
smart contract. Although we do not aim for a formalization of the computation
model that is absolutely precise for Ethereum, we use “ether” to refer to the
native digital currency, to aid the intuition of a reader familiar with Ethereum.

θ ::=U160 | U256 | bool
tp ::= θ | θ1 → θ2

l ::= v : θ (where v ∈ N ∪ {tt ,ff })
tvs ::=x1 : θ1, . . . , xn : θn

tpvs ::=x1 : tp1, . . . , xn : tpn

e ::= l | x | x〈e〉 | e1 aop e2 | e1 cop e2 | e1 bop e2 |
this | caller | callval | balance | adr(c)

S ::= skip | e1 := e2 | if (e) {S} | while (e) {S} | S1;S2 |
ea.f(e1, . . . , en) → x | ea.transfer(e) | throw | try {S1} catch {S2}

fd ::= fun f(tvs1; tvs2) ret x : θ {S}
fbd ::= fun (tvs) {S}
ctr ::= contract c { var tpvs fd1 . . . fdm fbd }

ctrs ::= [ctr1, . . . , ctrn]

Fig. 2. The syntax of the smart contract language

3.1 Syntax

We define a smart contract language with the syntax in Fig. 2. A basic type
θ can be U160 that represents 160-bit addresses of user accounts, U256 that
represents 256-bit unsigned integers, or the Boolean type bool. A type tp can be
a basic type, or a mapping type θ1 → θ2. A literal l can be a Boolean literal,
or a numeral with value v and type θ. A basic typed variable list tvs is a list of
variables each associated with a basic type. A typed variable list tpvs is a list of
variables each associated with a type.

An expression e can be a literal, a variable reference, the expression x〈e〉
that is used to retrieve the value for the key e in the mapping x or to update
this value, an arithmetic operation, a comparative operation, a Boolean opera-
tion, the retrieval of the address of a contract (adr(c)), or one of the operations
retrieving state information about the current execution. The expression this
retrieves the address of the currently executing contract. The expression caller
retrieves the address of the caller contract (i.e., the contract calling the currently

Formal Verification of Atomicity Requirements for Smart Contracts 49

executing function). The expression callval retrieves the amount of ether trans-
fered along with the call. The expression balance retrieves the ether balance of
the currently executing contract.

A statement S can be an assignment, a branching construct, a looping con-
struct, a sequential composition, or one of the constructs with strong association
to smart contract programming. The statement ea.f(e1, . . . , en) → x invokes the
function with identifier f in the contract at the address ea, passing n expres-
sions as arguments, and putting the return value in the local variable x. The
statement ea.transfer(e) transfers the amount e of ether to the address ea. The
statement throw throws an exception. The statement try {S1} catch {S2} catches
exceptions resulting from a call or a throw in S1, and handles them in S2.

A function definition fd contains a list tvs1 of formal parameters, a list tvs2 of
local variables, a typed return variable, and a statement S that is the function
body. A fallback function in a contract is executed when a call is made to a
non-existing function in the contract, or after the contract receives ether. The
definition of a fallback function fbd consists only of a list tvs of local variables
and a function body. The fallback functions in our language resemble the fallback
functions in Solidity [2].

A contract ctr consists of a contract identifier c, a typed variable list (with
state variables), a list of function definitions, and a fallback function definition.
Finally, ctrs models a list of contracts deployed together. A contract in ctrs may
refer to another contract in the same list using the identifier of the latter.

We use Tp to represent the set of types, use L to represent the set of literals,
use Var to represent the set of variables, use C to represent the set of contract
identifiers, use Ctr to represent the set of contracts, and use Fid to represent the
set of function identifiers. We adhere mostly to the rule that the initial letters for
the names of sets are in upper case, and the initial letters for the meta-variables
represents the individual elements are in lower-case. The only exception is the
use of the meta-variable S for individual statements.

The language design reflects a number of key features of Ethereum smart
contracts – the differentiation of local variables and state variables, mappings,
ether transfer with post-processing at the receiver, exception handling, etc. Intra-
contract and inter-contract calls are supported through the unified construct
ea.f(e1, . . . , en) → x. If the address of the callee equals that of the current
contract, then an internal call is made; otherwise an external call is made.

3.2 Semantics

We present the key facts about the static semantics (i.e., type system) and
dynamic semantics of our smart contract language.

Static Semantics. The type system establishes the judgment

� ctrs

This judgment says that the list ctrs of contracts is well-typed. The main require-
ments are that the contract identifiers should be pairwise distinct, and that each

50 N. Han et al.

contract ctr in the list should be typable. The typability of each individual con-
tract is captured by the judgment

ctrs � ctr

In a contract ctr , the declaration of state variables with their types induces
a storage typing environment in the set Var → Tp ∪ {⊥}. We denote this
storage typing environment by ste-of (ctr). In a function with the identifier
f⊥ ∈ Fid ∪ {⊥} in the contract ctr (f⊥ = ⊥ for the fallback function), the
declaration of the formal parameters, local variables, and the return variable
induces a local typing environment in the set Var → (L ∪ {⊥}). We denote
this local typing environment by lte-of (ctr , f⊥). To establish ctrs � ctr , the
statements and expressions in the contract ctr are typed under ste-of (ctr) and
lte-of (ctr , f⊥).

Remark 2. A key reason for the contract ctr to be typed with a given list
of contracts (ctrs) is the following. For a function call in the code of ctr ,
if the target contract of the call is specified by the contract identifier (i.e.,
adr(c).f(e1, . . . , en) → x), then the type system checks that c is in the set of
contract identifiers of ctrs. Moreover, the existence of a function whose signa-
ture matches the call is statically checked in the target contract. Hence, the
invocation of the fallback function in the target contract at runtime is avoided.

Dynamic Semantics. We define a big-step semantics for our smart contract
language. We introduce the semantic domains and the main judgment below.

Let Nk represent the subset of natural numbers up to 2k −1. Let D := {N256,
N160, {tt ,ff }}. Let SVal :=

⋃ D ∪ ⋃
A1,A2∈D(A1 → A2) be the set of struc-

tured values. We model the status of an account by an account state in the
set ASt :=N256 × Ctr × (Var → SVal). For each ast ∈ ASt , ast is of the
form (bal , ctr , st), where bal represents the balance of the account, ctr rep-
resents the smart contract of the account, and st represents the storage of
the account. We model the state of the blockchain by world states in the set
WSt :=N160 → ASt ∪{⊥}. Each address value is mapped to an optional account
state by a world state wst . We model the context for the current call by execu-
tion environments in the set EE :=N160 × N160 × N256. For each ee ∈ EE , ee
is of the form (ths, clr , cvl), where ths represents the address of the currently
executing contract, clr represents the address of the caller contract, and cvl
represents the amount of ether transfered with the current call. We record the
values of the local variables of an executing function by local states in the set
LSt :=Var → (L ∪ {⊥}). Hence, each variable is mapped to an optional literal.
That is, a local state lst records the types of the variables alongside their values.
We model the deployment of contracts at addresses by address environments in
the set H :=C → N160. This set is ranged over by η. We use the dot-notation
to reference a component of a tuple. For instance, we refer to the balance of an
account by ast .bal .

Formal Verification of Atomicity Requirements for Smart Contracts 51

The evaluation of statements is represented by the judgment

〈S, lst ,wst , ee〉 →η (lst ′,wst ′, cs)flg

This judgment says: the evaluation of the statement S in the local state lst , the
world state wst , the execution environment ee, and the address environment η
results in the local state lst ′, the world state wst ′, the set cs of successful calls,
and the Boolean flag flg indicating the existence of uncaught exceptions. More
concretely, cs is a subset of

{call(v, v′, f⊥) | v, v′ ∈ N160 ∧ f⊥ ∈ Fid ∪ {⊥}}

Here, call(v, v′, f⊥) represents a successful call from the account at the address
v to the account at the address v′. The f⊥ is an optional function identifier for
the intended callee. In case f⊥ = ⊥, a transfer is intended.

3.3 Preservation of Types by Evaluation

We show that types and the observance of types by the values of variables are
preserved by evaluation.

We write ste � st to express that the storage type environment ste is consis-
tent with the storage st . Intuitively, each state variable is mapped under st to
a value (which could be a function value) in the range of its type according to
ste. We write lte � lst to express that the local type environment lte is consistent
with the local state lst . Intuitively, each local variable is mapped under lst to a
value in the range of its type according to lte.

We write wf (ctr , f⊥, lst ,wst) to express that the values of all local variables,
parameters and the return variable of the function identified by f⊥ in the con-
tract ctr as recorded in lst , and the values of all state variables (of any contract)
as recorded in wst , are consistent with the types of these variables, and that
each contract in wst is well-typed under some list fds of contracts.

wf (ctr , f⊥, lst ,wst) :=

lte-of (ctr , f⊥) � lst ∧
(∀v ∈ N160 : ∀ast : wst(v) = ast ⇒ ste-of (ast .ctr) � ast .st ∧ ∃ctrs : ctrs � ast .ctr)

We then have the following result.

Theorem 1. If wf (ctr , f⊥, lst ,wst) holds, ctr = wst(ee.ths).ctr holds, S =
stmt-of (ctr , f⊥) holds, and 〈S, lst ,wst , ee〉 →η (lst ′,wst ′, cs)flg can be derived,
then wf (ctr , f⊥, lst ′,wst ′) holds.

Here, stmt-of (ctr , f⊥) gives the body of the function identified by f⊥ in the
contract ctr . The theorem indicates that if a well-typed function is executed
to completion, and the values of local and state variables observe their types
initially, then the local and state variables still have the same types that are
observed by their values in the end.

52 N. Han et al.

4 Program Logic

The program logic for our smart contract language establishes Hoare-style judg-
ments for the functions of smart contracts. It explicitly records the presence of
successful calls via dedicated terms, and implicitly keeps track of the presence
of state updates via logical variables. In this manner, it supports the reasoning
about whether specific calls and state updates are performed in atomic batches.

4.1 The Assertions

We consider the following language for formulating the assertions in the program
logic. These assertions are used as the pre-conditions and post-conditions for
statements and functions, as well as the invariants for contracts.

t ::= ν | w | x | xc | b | κ | u | ths | clr | cvl | ε

t ::= t | c | t1 aop t2 | t(t) | t[t1 : t2] | (t1, t2, f⊥)

φ ::= t1 cop t2 | φ1 bop φ2 | ∃t : φ

A basic term t can be a value1 (ν), an auxiliary variable (w), a local variable (x),
a state variable annotated with the identifier of its contract (xc), the variable
b representing a mapping from account addresses to balances, the variable κ
representing a mapping from triples (ν1, ν2, f⊥) to Boolean values for the pres-
ence of successful calls from the account at address ν1 to the account at address
ν2, targeting the function identified by f⊥, a logical variable u representing the
value of a program variable, b or κ, at a fixed program point, ths representing
the address of the currently executing contract, clr representing the address of
the caller, cvl representing the call value, or ε signalling an uncaught exception.

A term t can be a basic term, the term c for the address of the contract with
identifier c, an arithmetic operation on terms, t(t) for the application of t on t,
t[t1 : t2] for the update of t (that represents a function) at point t1 to t2, or a
triple (t1, t2, f⊥) consisting of a source contract address, a destination contract
address, and an optional function identifier for a call. Whether such a call has
been successfully performed is represented by κ(t1, t2, f⊥).

An assertion φ can be a comparison of two terms, a Boolean operation on
two assertions, or an assertion with a quantified basic term.

We use ε as syntactical sugar for ε = tt , and use ¬ε as syntactical sugar for
ε = ff . For an assertion φ, we use ¬φ as syntactical sugar for ((0 = 0) xor φ),
and we use ∀t : φ as syntactical sugar for ¬(∃t : ¬φ).

We write lvs(φ) for the set of logical variables in the assertion φ. We write
svs(a1, . . . , an) for the set of state variables (of the form xc for some x and c) in
any of a1, . . . , an. We write vs(a1, . . . , an) for the set of variables in any of a1,
. . . , an. Here, each ai is an assertion or a term. We precede a set of variables
with ∃ to represent a series of existential quantifications over the variables in
this set. We write φ[t1/t1, . . . , tn/tn] for the simultaneous substitution of t1, . . . ,
tn for t1, . . . , tn, in φ, where t1, . . . , tn are pair-wise distinct.
1 We allow function values in the assertions, and, hence, ν is used rather than v.

Formal Verification of Atomicity Requirements for Smart Contracts 53

We write [e]cX for the term or assertion corresponding to the expression e.
Here, c is the identifier of the contract in which e resides, and X is the set of
local variables of the function in which e resides. We define [x]cX := x if x ∈ X,
and [x]cX := xc if x �∈ X. We define [x〈e〉]cX := xc([e]cX), where the right-hand
side represents the application of xc on [e]cX . The definition of [e]cX on other
expressions are relatively straightforward.

4.2 The Inference System

We write Δ to represent a function that takes each contract identifier c and
function identifier f to a pair ([x1, . . . , xn, x], (Φ,Φ′)). Here, x1, . . . , xn are the
formal parameters of the function identified by f in c, and x is the return variable
of this function. Furthermore, Φ and Φ′ are the pre-condition and post-condition
of this function, respectively. We restrict the local variables of a function that are
used in its pre-condition to the formal parameters. We restrict the local variables
of a function that are used in its post-condition to the return variable.

The invariant I for a contract satisfies: If I holds before any function of the
contract is called, then I holds after the function finishes executing. Furthermore,
we assume that the only basic terms contained in the invariant for a contract with
the contract identifier c are the state variables of the contract, logical variables,
b, and κ, where b is only used in the term b(c), and κ is only used in terms
κ(c, t, f⊥) for some t and f⊥. Hence, after the contract with identifier c makes a
call, the values for the terms involving b and κ in I can only change when the
contract is re-entered.

The logical judgment for statements is

I,Δ �c
X {φ} S {φ′}

The judgment says that under I and Δ, if the pre-condition φ holds when start-
ing to evaluate the statement S, and the evaluation terminates, then the post-
condition φ′ holds on termination. The statement S is part of the contract with
identifier c, with accesses to local variables in X.

The inference rules for statements that are neither calls nor transfers are
shown in Fig. 3. The two rules for assignments are formulated to support forward
reasoning [14]. For the rule about assignments to variables x, the post-condition
says that there exists some initial value w for x, such that the pre-condition holds
for this value, and an equality holds between the two sides of the assignment,
provided that the expression e is evaluated using the value of w for x. The premise
of this rule requires that w should be fresh for φ. The rule for assignments to
mappings embodies similar intuition. The rule for sequential compositions S1;S2

derives a post-condition that reflects the post-state can either be an exceptional
post-state of S1, or the post-state of S2 in case S1 finishes normally. The rule
for try {S1} catch {S2} employs the pre-condition φ′′[tt/ε] ∧ ¬ε for S2, where
φ′′ is the post-condition for S1. The substitution erases the information about
the exception from S1 because the exception is caught. The conjunction with ¬ε
signals to S2 that there is no current exception. The remaining rules in Fig. 3
can be understood following intuition from standard Hoare logic [4].

54 N. Han et al.

w �∈ vs(φ)

I, Δ �c
X {φ} x := e {∃w : φ[w/[x]cX] ∧ [x]cX = [e]cX [w/[x]cX] ∧ ¬ε}

w �∈ vs(φ) φ′ = ∃w : φ[w/xc] ∧ xc = w[[e1]cX [w/xc] : [e2]cX [w/xc]] ∧ ¬ε

I, Δ �c
X {φ} x〈e1〉 := e2 {φ′}

I, Δ �c
X {φ} S1 {φ′′} I, Δ �c

X {φ′′ ∧ ¬ε} S2 {φ′}
I, Δ �c

X {φ} S1;S2 {φ′′ ∧ ε ∨ φ′}
I, Δ �c

X {φ ∧ [e]cX} S {φ′}
I, Δ �c

X {φ} if (e) {S} {φ′ ∨ φ ∧ ¬[e]cX ∧ ¬ε}
I, Δ �c

X {φ ∧ [e]cX} S {φ}
I, Δ �c

X {φ} while (e) {S} {φ ∧ ¬[e]cX ∧ ¬ε ∨ φ ∧ ε}
I, Δ �c

X {φ} S1 {φ′′} I, Δ �c
X {φ′′[tt/ε] ∧ ¬ε} S2 {φ′}

I, Δ �c
X {φ} try {S1} catch {S2} {φ′′ ∧ ¬ε ∨ φ′}

I, Δ �c
X {φ} skip {φ} I, Δ �c

X {φ} throw {φ[ff /ε] ∧ ε}

I, Δ �c
X {φ′

1} S {φ′
2} φ1 ⇒ φ′

1 φ′
2 ⇒ φ2

I, Δ �c
X {φ1} S {φ2}

Fig. 3. The inference rules for statements (part 1)

The inference rules for call statements are presented in Fig. 4. The first rule
describes the case where the identifier (c′) of the target contract is known. In
the premise, it is checked that the pre-condition Φ of the callee function should
hold with substitutions of the argument expressions for the formal parameters,
as well as the substitutions in δ, under the pre-condition φ of the call. Here, the
substitutions in δ take the execution environment used for the evaluation of Φ
to that of the callee. In the conclusion of this rule, the condition φ′ in the post-
condition describes the states reached if the call succeeds. In φ′, it is stated that
there is some return value w, and some set of successful calls described by the
function w′, for which the post-condition Φ′ holds in the execution environment
of the callee. In addition, the final mapping κ for the successful calls is as w′,
except that the success of the current call from c to c′ targeting f is also recorded.
The additional conditions in φ′ state that the pre-conditions φ and Φ hold in the
post-state, if the updated variables are re-mapped to some appropriate values
(e.g., their values in the pre-state). The inclusion of these conditions enables
information to be passed directly, or via the logical variables shared by Φ and
Φ′, from the pre-state to the post-state. The second rule in Fig. 4 describes how to
reason about a call for which the identifier of the target contract is unavailable. In
the post-condition, φ′ describes the post-states reached after the call succeeds.
The first disjunct of φ′ describes post-states reached without any successful

Formal Verification of Atomicity Requirements for Smart Contracts 55

Fig. 4. The inference rules for statements (part 2)

κ
c,1
= w′[t, f⊥ : tt] :=(

κ(c, t, f⊥) = tt ∧
∀w′′, f ′

⊥ : (w′′ �= t ∨ f ′
⊥ �= f⊥) ⇒ κ(c, w′′, f ′

⊥) = w′(c, w′′, f ′
⊥)

)

κ
c,2
= w′ := (∀w′′, f ′

⊥ : κ(w′′, c, f ′
⊥) = w′(w′′, c, f ′

⊥))

Fig. 5. The definitions of κ
c,1
= w′[t, f⊥ : tt] and κ

c,2
= w′

reentrance to the current contract. It reflects the fact that the state variables of
the current contract still have their initial values after the call, and the mapping
of successful calls is related to the initial mapping w′ as κ

c,1
= w′[[ea]cX [w/b], f :

tt] ∧ κ
c,2
= w′. The two conjuncts of this condition are defined according to

Fig. 5. Hence, the condition κ
c,1
= w′[[ea]cX [w/b], f : tt] ∧ κ

c,2
= w′ says that there

is a successful call from the current contract to the callee, and otherwise the
successful calls from the current contract, or to the current contract, are the
same as before. The second disjunct of φ′ describes the post-states reached after
successful reentrance to the current contract during the call. The invariant I of
the current contract is used to establish the post-condition. It is stated that there
is some function w′ describing the presence of all successful calls immediately
before the return of the current call, such that I is satisfied for w′, and the new

56 N. Han et al.

Fig. 6. The inference rules for statements (part 3)

set of successful calls is as described by w′, except that the call from the current
contract to the target contract should be added (last line of the second disjunct).

The inference rules for transfer statements are presented in Fig. 6. The rules
for transfers come with a case distinction in whether the identifier of the target
contract is explicitly specified in the transfer statement. If the identifier of the
target contract is explicitly specified, the pre-condition and post-condition of the
callee function (i.e., the fallback function of the target contract) are leveraged
in reasoning about the transfer. Otherwise, the invariant of the current contract
is used. In the premise of the rule for the transfer statement adr(c′).transfer(e),
it is checked that the precondition of the callee function is implied by the fact
that the transfer is performed towards a different contract than the current one,
the precondition of the transfer, and the fact that the transfered amount can be
supplied by the caller and does not cause any overflow of the callee’s balance.
In the conclusion of this rule, the condition φ′ describes the states reached in
case the transfer succeeds. In φ′, it is stated that there exists some call value w
(i.e., the amount of ether transfered to the callee), and some mapping w′ for the
successful calls that have been performed on completion of the callee function,
such that the post-condition Φ′ of the callee holds. The successful calls that have

Formal Verification of Atomicity Requirements for Smart Contracts 57

been performed after the returning of the callee are as those after the completion
of the callee, except that the current transfer has also succeeded. It is also stated
that the identifier of the current contract is different than the identifier of the
target contract (in case the transfer succeeds). The remaining part of φ′ says that
there exists mappings w0 and w1 for the account balances immediately before
the transfer is performed, and immediately before the execution of the callee
function, respectively, such that the pre-condition φ of the transfer holds if the
balances of the accounts are in accordance with w0, and the pre-condition Φ of
the callee function holds if the balances of the accounts are in accordance with
w1. The rule for the transfer statement ea.transfer(e) is analogous to the rule for
the transfer statement adr(c′).transfer(e) in the treatment of account balances.
In addition, the rule for the transfer statement ea.transfer(e) is analogous to the
rule for the call statement ea.f(e1, . . . , en) → x in the treatment of the two
different cases regarding the presence of reentrance into the current contract.

Based on the verification of statements, functions and fallback functions can
be verified against their specifications. Furthermore, a given contract ctr can be
verified against the specifications of its functions in Δ, using an invariant I for the
contract ctr . This gives rise to an instance of the judgment I,Δ � ctr . Ultimately,
a given set of smart contracts can be verified against the specifications of their
functions in Δ. This results in an instance of the judgment Δ � ctrs.

The program logic devised in the above lays a solid foundation for the ver-
ification of safety properties for smart contracts. Some of the logic rules have
relatively involved formulations. To overcome the tediousness of using these rules
in the reasoning tasks, a semi-automated tool can be implemented to conduct
verification based on the specification of contract invariants and loop invariants.

4.3 Soundness

The soundness of our program logic relies on a notion of satisfaction of asser-
tions in states. We interpret the assertions in assertion states of the form
σ := (lst ,wst , ee, cs,flg , ζ). The first five components are all from the seman-
tic judgment for statements. The last component, ζ, is a function that gives
the values of the auxiliary variables w, as well as the logical variables u in the
assertions. The interpretation result is written �φ�asst(σ), which is a truth value.

We articulate the notion that a function semantically satisfies its specification
that consists of a pre-condition and a post-condition. More concretely, we write
ctrs |= {Φ} (ctr , f⊥) {Φ′} to express that under the following five conditions

1. wf (ctr , f⊥, lst ,wst),
2. ∀x ∈ nprms-of (ctr , f⊥) : ∃θ : lst(x) = d(θ) : θ,
3. η(cid(ctr)) = ee.ths ∧ ∀i : wst(η(cid(ctrs!i))).ctr = ctrs!i,
4. 〈stmt-of (ctr , f⊥), lst ,wst , ee〉 →η (lst ′,wst ′, cs)ff ,
5. �Φ�asst(lst ,wst , ee, cs0,ff , ζ) = tt ,

it holds that �Φ′�asst(lst ′,wst ′, ee, cs0 ∪ cs,ff , ζ) = tt .
Intuitively, the main requirement of ctrs |= {Φ} (ctr , f⊥) {Φ′} is that if the

execution of the function with the identifier f⊥ in the smart contract ctr starts

58 N. Han et al.

in a state that satisfies the condition Φ (Condition 5), and the execution fin-
ishes without uncaught exceptions (Condition 4), then the ending state satisfies
the condition Φ′. Condition 1 requires that the execution of the function should
be started in local and world states in which the values of variables are consis-
tent with their types (see Sect. 3.3). Condition 2 requires that the initial local
state should map each local variable to the default value for its (basic) type,
unless the variable is a parameter. Here, the default value for the basic type θ
is written d(θ), which is defined as 0 for the basic types U160 and U256, and
defined as ff for the basic type bool. Condition 3 is a sanity condition on the
address environment η used in the evaluation. It requires that the identifier of
the currently executing contract should be mapped to the address of the current
contract (ee.ths). Additionally, it requires that the identifier of each given con-
tract should be mapped to an account address where the code of the contract
can be found.

We have the following theorem about the soundness of the program logic.

Theorem 2. If � ctrs and Δ � ctrs can be derived, ctr is in ctrs, and
Δ(ctr , f⊥) = (xs, (Φ,Φ′)) for some xs, then we have ctrs |= {Φ} (ctr , f⊥) {Φ′}.
Hence, if a given series of smart contracts are well-typed, and these contracts
pass the verification using the program logic, then each function (or fallback
function) of each given contract semantically satisfies its specification.

With the assertion language in Sect. 4.1, Theorem 2 supports the sound
deductive verification of general safety requirements for smart contracts at the
source-level. When logical variables are used in Φ and Φ′ to help express the
presence of semantic updates to state variables, and the term κ is used to help
express the presence of successful calls, the sound reasoning about the satisfac-
tion of the atomicity criterion proposed in Sect. 2 is supported (see Sect. 5).

5 Atomicity Verification

Firstly, we evaluate our technique using the example in Fig. 1 that was intuitively
discussed to motivate our work. Secondly, we consider a more involved example
with atomicity requirements verified on a function refunding a group of users.

Verifying Atomicity for Ether Withdrawal. Suppose a smart contract ctr
has identifier c, and it consists of the function withdraw of Fig. 1, and a fallback
function with the code if (bal = 0) {throw}.

Suppose Δ has the domain {(c, withdraw), (c,⊥)}. Furthermore, suppose

Δ(c, withdraw) := ([], (balc = u1 ∧ b = u2, balc �= u1 ⇔ b(c) �= u2(c)))

Δ(c, ⊥) := ([], (ff , tt))

Then, it can be established that Δ � [ctr], using the invariant

I = (balc = 0 ∧ b(c) = u)

Formal Verification of Atomicity Requirements for Smart Contracts 59

for the contract ctr . This invariant states that if the state variable bal has value
0 before calling either function of the contract ctr , then bal still has the value 0,
and the builtin balance of the contract remains the same (via the logical variable
u), after the callee function finishes executing. If bal and err are both declared
with the type U256 in the contract ctr , then we also have � [ctr]. This enables
the establishment of the following result using Theorem2.

[ctr] |= {balc = u1 ∧ b = u2} (ctr , withdraw) {balc �= u1 ⇔ b(c) �= u2(c)}

This result indicates that if we start the execution of the function withdraw in
a legal initial state (i.e., with the values of b and x observing the type U256,
and the value of b being 0), and the execution finishes normally, then bal is
semantically updated if and only if the builtin balance of the contract is updated.
If the execution ends exceptionally, then there is no effect on the states. This
means that the fact established in the above applies for all possible executions
started from legal initial states for the function withdraw. These include both
the executions that end normally, and the executions that end exceptionally.

Thus, it is verified that the function withdraw always performs the actual
transfer and the bookkeeping in an atomic batch. �

fun refund(; i:U256) ret x:U256 {

if (lock != 0) { throw };

lock := 1; i := 0;

while (i < num) {

if (bals〈addr〈i〉〉 > 0) {

try { addr〈i〉.transfer(bals〈addr〈i〉〉); bals〈addr〈i〉〉 := 0 }

catch { skip }

};

i := i + 1

};

lock := 0

}

Fig. 7. The function refund

Verifying Per-account Atomicity for Batch Transfer. We consider a more
involved example, where a contract ctr with identifier c consists of the function
refund in Fig. 7, and a fallback function with code if (lock != 0) {throw}.

Via a while loop, the function refund transfers the amount bals〈addr〈i〉〉 of
ether to the user account at address addr〈i〉, for each i from 0 to num − 1. To
avoid reentrance, the state variable lock is used. Each time a transfer is made,
lock has the value 1. Hence, an exception is thrown if the receiver attempts at a
call back to refund or the fallback function of the contract ctr .

The rationale of the function refund is to refund as many users as possible
in a single execution. The transfer to a specific user may fail, without affecting

60 N. Han et al.

the transfer to a different user. Hence, it cannot be guaranteed in general that
all the transfers happen in an atomic batch. Nevertheless, it is crucial to ensure
that for each individual user, the transfer and the setting of the bookkeeping
balance to 0 (with bals〈addr〈i〉〉 := 0) must happen together.

This atomicity requirement can be verified using the proposed program logic.
With the pre-condition

∀r : 0 ≤ r < numc ⇒ (balsc(addrc(r)) = u(r) ∧ κ(c, addrc(r), ⊥) = ff)

for the function refund, the post-condition

∀r : 0 ≤ r < numc ⇒ (balsc(addrc(r)) �= u(r) ⇔ κ(c, addrc(r), ⊥) = tt)

can be derived. This indicates that the bookkeeping balance for the r-th user is
semantically updated, if and only if a transfer to the r-th user succeeds. �

The two examples given in this section are both about atomicity requirements
on a single smart contract, in a scenario involving ether transfer. In general, the
usage scope of the proposed program logic is not limited to the verification
of requirements on a single smart contract, or ether-related scenarios. This is
because pre-conditions and post-conditions involving any state variables of mul-
tiple smart contracts that are deployed together can be specified. For instance,
in a retailing scenario, if the information about the products and their current
stock are managed in two different smart contracts, the proposed program logic
can be used to verify that the registration of a product in one of the smart
contracts must happen together with the initialization of its stock in the other.
Last but not least, the usage scope of the proposed program logic goes beyond
the verification of atomicity requirements. This is because the Hoare-style pre-
conditions and post-conditions support the verification of partial correctness in
general.

6 Related Work

Design and Formalization of Smart Contract Languages. To support the
sound verification of smart contracts, there have been a number of developments
on the formalization of smart contract languages.

In [13], a calculus called Featherweight Solidity is defined to closely model the
core of the Solidity language. The calculus supports contract creation and single
inheritance, which are not supported by our language. In [6], a minimal calculus
for Solidity contracts is formalized. The formalization contains an explicit model
of transactions and blockchains, while our formalization is focused on the exe-
cution of a single transaction. Neither work deals with the verification of smart
contracts beyond type checking. On the other hand, we provide a discussion of
atomicity-related requirements on smart contracts, and devise a program logic
for the source-level verification of smart contracts.

In [34] and [21], formalizations of large fragments of Solidity are provided,
with a big-step semantics, and a small-step semantics, respectively. Both formal-
izations are mechanized – the first in the Coq proof assistant, and the second in

Formal Verification of Atomicity Requirements for Smart Contracts 61

the K Framework. In [16,18,19], the bytecode language of the Ethereum virtual
machine is formalized. These works are mostly focused on the semantic founda-
tion for smart contracts, without looking much into verification problems.

The work [28] does not formalize an existing smart contract language, but
proposes a new language for the safe programming of smart contracts. This is an
intermediate language with strong safety guarantees provided by its type system.
Light-weight static analyses are defined to address some of the verification issues.
The design of a new language simplifies the verification of smart contracts.

Formal Validation of Smart Contracts. There have been extensive research
efforts into the formal validation of smart contracts. The consideration of sound-
ness is featured by a small fragment of the existing developments.

In [26], a technique based on software model checking is proposed for the
automated verification of Ethereum smart contracts. The approach is sound in
general. However, there is no mentioning of a formal semantics on which sound-
ness arguments are based. In [17], a tool for the source-level verification of Solid-
ity contracts is presented. Semi-automated deductive verification is performed,
but the verification does not appear to be based on solid semantic foundation.

Several developments exist on the analysis and verification of Ethereum smart
contracts in low-level and intermediate-level languages. In [15] and [27], static
analysis techniques and tools for the sound checking of EVM bytecode are pre-
sented. In [22], a verification technique for the LLVM intermediate representation
of smart contracts is developed. Our development differs from these existing ones
both in the language level targeted, and in the verification approach taken.

Finally, in [3], a program logic is formalized in the Isabelle proof assistant
for the deductive verification of EVM bytecode. The program logic is proven
sound based on the semantic foundation provided in [19]. On the down side, it
is relatively difficult to specify the desired properties and auxiliary information
needed for a proof, while working with low-level code. In consideration of this
issue, [23] proposes to conduct theorem proving based verification of Ethereum
smart contract at the level of the Ethereum intermediate language Yul.

Program Verification via Matching Logics. In [29], an approach and tool
for verifying programs directly based on an operational semantics is proposed.
The work builds on matching logic. It has a language-agnostic proof system
using a unified representation of both the language semantics and the program
correctness specifications. This approach has proven to be effective for real-
world programming languages. If the approach is taken for the verification of
smart contracts, there will be no need to develop a program logic and prove its
correspondence with the semantics. On the other hand, the specification of the
correctness assertions and the intermediate assertions (e.g., contract invariants
and loop invariants) in matching logic patterns is expected to be more verbose
on average than that in the proposed program logic. There will also be the
need for an operational semantics in which the calls to contracts with unknown
code is specified abstractly. It remains to be an interesting topic to evaluate

62 N. Han et al.

the approach of [29] in the formal verification of smart contracts, and to figure
out about the impact of the underlying logic (language-specific program logic
VS language-agnostic matching logic) on the conceptual complexity in reasoning
about smart contracts and on the efficiency of verifiers that can be implemented.

7 Conclusion

Atomicity guarantees are crucial for the integrity of smart contracts. We propose
an atomicity criterion that supports the characterization of semantic updates to
variables, and enables the flexible specification of the operations that are sup-
posed to be performed in atomic batches. We devise a Hoare-style program
logic that supports the sound verification of the proposed atomicity criterion on
smart contracts specifically, and partial correctness properties of smart contracts
in general. The program logic is devised for a core Solidity-like programming lan-
guage supporting the use of local and state variables, mappings, intra-contract
and inter-contract calls, ether transfers, and the handling of exceptions. We illus-
trate the advantages of the proposed atomicity criterion, and the effectiveness
of the program logic, using examples with practical relevance.

In the contract invariants of the proposed program logic, the Boolean con-
ditions that are preserved as well as which state variables are unaffected by
arbitrary executions of a smart contract can be expressed. However, the specifi-
cation of the constraints on the value changes of state variables is not supported.
In future work, we plan to further improve the expressiveness of the contract
invariants, and extend our development to handle contract creation.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (61877040, 61876111, 62002246), and the general project numbered
KM202010028010 of Beijing Municipal Education Commission.

References

1. Ethereum smart contract best practices - known attacks. https://consensys.github.
io/smart-contract-best-practices/known attacks/

2. Solidity. https://solidity.readthedocs.io/en/v0.6.10/
3. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying Ethereum smart

contract bytecode in Isabelle/HOL. In: CPP 2018, pp. 66–77 (2018)
4. Apt, K.R.: Ten years of Hoare’s logic: a survey - part 1. ACM Trans. Program.

Lang. Syst. 3(4), 431–483 (1981)
5. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-

tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

6. Bartoletti, M., Galletta, L., Murgia, M.: A minimal core calculus for Solidity con-
tracts. CoRR, abs/1710.09437 (2019)

7. Beckert, B., Herda, M., Kirsten, M., Schiffl, J.: Formal specification and verification
of Hyperledger Fabric chaincode. In: SDLT 2018 (2018)

https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://solidity.readthedocs.io/en/v0.6.10/
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8

Formal Verification of Atomicity Requirements for Smart Contracts 63

8. Bernardo, B., Cauderlier, R., Pesin, B., Tesson, J.: Albert, an intermediate smart-
contract language for the Tezos blockchain. CoRR, abs/2001.02630 (2020)

9. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., et al.: Formal verification of
smart contracts: Short paper. In: PLAS@CCS 2016, pp. 91–96 (2016)

10. Blackshear, S., Cheng, E., Dill, D.L., et al.: Move: a language with programmable
resources (2020). https://developers.libra.org/

11. Chang, J., Gao, B., Xiao, H., Sun, J., Cai, Y., Yang, Z.: sCompile: critical path
identification and analysis for smart contracts. In: Ait-Ameur, Y., Qin, S. (eds.)
ICFEM 2019. LNCS, vol. 11852, pp. 286–304. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-32409-4 18

12. Chen, T., Zhang, Y., Li, Z., et al.: TokenScope: automatically detecting inconsistent
behaviors of cryptocurrency tokens in Ethereum. In: CCS 2019, pp. 1503–1520
(2019)

13. Crafa, S., Pirro, M.D., Zucca, E.: Is Solidity solid enough? In: FC 2019, pp. 138–153
(2019)

14. Gordon, M., Collavizza, H.: Forward with Hoare. In: Roscoe, A.W., Jones, C.B.,
Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare, pp. 101–121. Springer,
London (2010). https://doi.org/10.1007/978-1-84882-912-1 5

15. Grishchenko, I., Maffei, M., Schneidewind, C.: Foundations and tools for the static
analysis of Ethereum smart contracts. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10981, pp. 51–78. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96145-3 4

16. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6 10

17. Hajdu, Á., Jovanovic, D.: solc-verify: a modular verifier for Solidity smart contracts.
In: VSTTE 2019, pp. 161–179 (2019)

18. Hildenbrandt, E., Saxena, M., Rodrigues, N., et al.: KEVM: a complete formal
semantics of the Ethereum virtual machine. In CSF 2018, pp. 204–217 (2018)

19. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.
In: FC 2017, pp. 520–535 (2017)

20. Jiang, B., Liu, Y., Chan, W.K.: ContractFuzzer: fuzzing smart contracts for vul-
nerability detection. In: ASE 2018, pp. 259–269 (2018)

21. Jiao, J., Lin, S., Sun, J.: A generalized formal semantic framework for smart con-
tracts. In: FASE 2020, pp. 75–96 (2020)

22. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: NDSS 2018 (2018)

23. Li, X., Shi, Z., Zhang, Q., Wang, G., Guan, Y., Han, N.: Towards verifying
Ethereum smart contracts at intermediate language level. In: Ait-Ameur, Y., Qin,
S. (eds.) ICFEM 2019. LNCS, vol. 11852, pp. 121–137. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32409-4 8

24. Luu, L., Chu, D., Olickel, H., et al.: Making smart contracts smarter. In: CCS
2016, pp. 254–269 (2016)

25. Nikolic, I., Kolluri, A., Sergey, I., et al.: Finding the greedy, prodigal, and suicidal
contracts at scale. In: ACSAC 2018, pp. 653–663 (2018)

26. Permenev, A., Dimitrov, D., Tsankov, P., et al.: VerX: safety verification of smart
contracts. In: S&P 2020 (2020)

27. Schneidewind, C., Grishchenko, I., Scherer, M., Maffei, M.: eThor: practi-
cal and provably sound static analysis of Ethereum smart contracts. arXiv,
arXiv:2005.06227 (2020)

https://developers.libra.org/
https://doi.org/10.1007/978-3-030-32409-4_18
https://doi.org/10.1007/978-3-030-32409-4_18
https://doi.org/10.1007/978-1-84882-912-1_5
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-030-32409-4_8
http://arxiv.org/abs/2005.06227

64 N. Han et al.

28. Sergey, I., Nagaraj, V., Johannsen, J., et al.: Safer smart contract programming
with Scilla. In: OOPSLA 2019, pp. 1–30 (2019)

29. Stefanescu, A., Park, D., Yuwen, S., et al.: Semantics-based program verifiers for
all languages. In: OOPSLA 2016, pp. 74–91 (2016)

30. Szabo, N.: Smart contracts (1994). https://nakamotoinstitute.org/formalizing-
securing-relationships/

31. Tolmach, P., Li, Y., Lin, S.-W., et al.: A survey of smart contract formal specifi-
cation and verification. CoRR, arXiv:2008.02712 (2020)

32. Wood, G.: Ethereum: a secure decentralised generlised transaction ledger. https://
gavwood.com/paper.pdf

33. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain technology overview. Tech-
nical report, NISTIR 8202 (2018)

34. Zakrzewski, J.: Towards verification of Ethereum smart contracts: a formalization
of core of Solidity. In: VSTTE 2018, pp. 229–247 (2018)

https://nakamotoinstitute.org/formalizing-securing-relationships/
https://nakamotoinstitute.org/formalizing-securing-relationships/
http://arxiv.org/abs/2008.02712
https://gavwood.com/paper.pdf
https://gavwood.com/paper.pdf

Types

Neural Networks, Secure by Construction

An Exploration of Refinement Types

Wen Kokke1,2(B), Ekaterina Komendantskaya1, Daniel Kienitz1,
Robert Atkey3, and David Aspinall2

1 Heriot-Watt University, Edinburgh, UK
wen.kokke@ed.ac.uk, {ek19,dk50}@hw.ac.uk
2 University of Edinburgh, Edinburgh, UK

david.aspinall@ed.ac.uk
3 Strathclyde University, Glasgow, UK

robert.atkey@strath.ac.uk

Abstract. We present StarChild and Lazuli, two libraries which lever-
age refinement types to verify neural networks, implemented in F∗ and
Liquid Haskell. Refinement types are types augmented, or refined, with
assertions about values of that type, e.g. “integers greater than five”,
which are checked by an SMT solver. Crucially, these assertions are writ-
ten in the language itself. A user of our library can refine the type of
neural networks, e.g. “neural networks which are robust against adver-
sarial attacks”, and expect F∗ to handle the verification of this claim for
any specific network, without having to change the representation of the
network, or even having to learn about SMT solvers.

Our initial experiments indicate that our approach could greatly
reduce the burden of verifying neural networks. Unfortunately, they also
show that SMT solvers do not scale to the sizes required for neural net-
work verification.

Keywords: Neural networks · Verification · Refinement types

1 Introduction

Deep neural networks—or simply neural networks—is an umbrella term for a
range of machine learning algorithms that, given numeric data instances as an
input, construct a non-linear function or classifier that separates these data
instances into classes. When a suitable classifier is found, it can be used to classify
new, unseen data—or at least, that’s the hope. Data instances can be pixel data
for images, numeric encodings of the words from a lexicon for text analysis, or
generally any n features of interest, viewed as a point in an n-dimensional real
space. There are numerous applications of neural networks: in computer vision,

The work was funded by the National Cyber Security Center, UK. Grant SecConn-
NN: Neural Networks with Security Contracts—towards lightweight, modular security
for neural networks.

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 67–85, 2020.
https://doi.org/10.1007/978-3-030-64437-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-64437-6_4

68 W. Kokke et al.

Fig. 1. (Left) Image from MNIST [16] dataset, which is correctly classified as 0 by
a given neural network. (Center) A small perturbation applied to the image. (Right)
Resulting noisy image classified by the same neural network as a 3 with 92% confidence.

natural language processing, data mining, to name but a few. As neural networks
move into domains where safety and security are important—e.g. autonomous
cars, conversational agents, governance—the problem of their verification comes
to the forefront.

Neural network verification is a notoriously difficult problem. Firstly, neural
networks rely on data for training, testing, and often for verification. This data
may be incomplete, noisy, or deliberately poisoned. Secondly, finding a suitable
classifier is a mathematically complex task. There is a continuum of suitable
classifiers in a continuous real space, and the search space may be prohibitively
large, and an optimal classifier may not even exist. Finally, neural networks are
difficult to interpret. Even if a reasonably accurate classifier is found, we do not
understand all its latent properties. This is particularly true for classifiers that
work with data of high dimensionality.

The very features that we value in neural networks (adaptivity and the
ability to generalise from noisy data) becomes a source of safety and secu-
rity threats. Neural networks are known to be vulnerable to adversarial
attacks [10,19,21,22,25] (specially crafted inputs that can create an unexpected
and possibly dangerous output) and suffer from catastrophic forgetting [20].

One approach to the verification of complex problems is lightweight verifica-
tion, which means to:

1. verify only the properties that matter [9],
2. embed verification in the implementation, and
3. employ proof automation where possible.

In neural network verification, one property that matters is adversarial robust-
ness, commonly characterised as the deviation in the neural network’s outputs
given perturbations of its inputs, checked for some set of inputs [11,13,23]. For
datasets with relatively low inner-class variation, like MNIST [16], we can pick
our sample images either randomly or by hand, and define perturbations using
some valid transformations like rotation, scaling, and translation. For example,
we could pick the image on the left of Fig. 1 as a sample image for the class zero,
and verify whether, given a certain range of perturbations defined by a suitable
distance function, we can guarantee that the perturbed image is still classified as
0. Such method would not cover unanticipated perturbations, e.g. since we did

Neural Networks, Secure by Construction 69

Fig. 2. (Left) Perceptron shown graphically as a neural network. (Center) Dataset for
perceptron. (Right) Dataset as points in the three-dimensional space, with a linear
classifier for the data.

not think of noise, the image on the right of Fig. 1 is not covered by our safety
guarantees. This is not the only possible interpretation of the “neural network
verification problem”, but it is by far the most common. We will therefore use
it throughout the paper.

We are primarily interested in exploring the space of solutions for (2) and (3).
Since neural networks are “just” functions, we seek to embed verification con-
straints on inputs and outputs in the types of these functions, and then use the
facilities of refinement type checking—with SMT solver integration—to automate
all tedious proofs. In this paper, we explore this space using F∗ [24] and Liquid
Haskell [27] and test whether contemporary, off-the-shelf programming language
technologies are suitable for neural network verification, and to analyse the ben-
efits and limitations of using refinement types. We hope the reader will find this
study useful, by employing our ideas, avoiding the pitfalls we encountered, and
perhaps filling the gaps in contemporary programming language technologies.

1.1 Example: Verifying the AND-Gate

Let’s use a simple example to illustrate the use of our library: a perceptron for the
logical AND-gate [17]. It has two inputs, a single, fully-connected layer, and one
output, and its training set is the truth table for Boolean conjunction (see Fig. 2).

The perceptron is a gradient descent algorithm that approximates the linear
function:

neuron : (x1 : R) → (x2 : R) → (y : R)
neuron x1 x2 = b + wx1 × x1 + wx2 × x2

that separates the data points into two classes, as shown in Fig. 2. The constants
wx1 and wx2 are called the weights of the neuron, and b its bias. The gradient
descent algorithm searches for suitable values for these constants, e.g.:

neuron x1 x2 = −0.9 + 0.5x1 + 0.5x2

Often, perceptrons involve an activation function, which is applied to the result
of the linear function. Here, we use the threshold function S. We discuss other
activation functions in Sect. 4.

70 W. Kokke et al.

S x =

{
1, if x ≥ 0
0, otherwise

We can refine the output type of our new neuron function, as S only ever returns
0 or 1:

neuron : (x1 : R) → (x2 : R) → (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)

Let’s verify that the neural network returns the “correct” values for inputs which
lie within some distance ε of 1 and 0. Let’s call these values truthy and falsey :

truthy x = |1 − x| ≤ ε

falsey x = |0 − x| ≤ ε

We can request that F∗ checks whether our neural network is correct by refining
the type of neuron, e.g. by requiring that the output be 1 if both inputs are
truthy. If neuron does not satisfy this property, test will not type check:

test : (x1 : R {truthy x1}) → (x2 : R {truthy x2}) → (y : R {y = 1})
test = neuron

The user can implement the network directly in F∗. Alternatively, if they have
a pre-existing neural network in, e.g. Python, they can export the network to
F∗, as a Python library to export networks is included in both StarChild and
Lazuli. For instance, we can use a Python library to find a suitable function for
the data in Fig. 2, and export our model to F∗ to obtain the following code:

val model : network (*with*) 2 (*inputs*) 1 (*output*) 1 (*layer*)
let model = NLast // ← makes single-layer network
{ weights = [[0.5R]; [0.5R]]
; biases = [−0.9R]
; activation = Threshold }

Let’s verify that it is correct for, e.g. ε = 0.1, in F∗:
let eps = 0.1R
let truthy x = 1.0R - eps ≤ x && x ≤ 1.0R + eps
let falsey x = 0.0R - eps ≤ x && x ≤ 0.0R + eps

val test : (x1 : R{truthy x1}) → (x2 : R{truthy x2})
→ (y : vector R 1 {y ≡ [1.0R]})

let test x1 x2 = run model [x1; x2]

Refinement types, used in this manner, seem to be a natural fit. The “burden” of
verifying the AND-gate in our approach is minuscule. Once written, the user can
reuse the code for test to verify different neural networks that use similar veri-
fication conditions, and develop a codebase of reusable verification conditions.

As a benefit of using F∗, any model specified using StarChild, and any other
F∗ program, is usable in refinements, and F∗ takes care of the translation to
the SMT logic for us! For instance, when F∗ checks the function test, it passes

Neural Networks, Secure by Construction 71

the definition and the refinements on the inputs and output to the SMT solver,
and only accepts the function if the SMT solver does. It does not check the
networks output for all inputs within distance ε—this wouldn’t be feasible, as
there are uncountably many, and even accounting for the maximum precision of
floating-point numbers, the search space is vast.

F∗ translates programs to the SMT logic by normalising them, translating
constructs to their SMT equivalents where possible, and keeping the rest as
uninterpreted functions. For instance, test normalises to:
let test x1 x2 = if x1×0.5R + x2×0.5R − 0.9R ≥ 0.0R then 1.0R else 0.0R

The normalised version can be translated directly to the SMT logic, together
with the type refinements for test. This generates the following SMT query—
simplified for readability—in SMTLIB2 Lisp [5]:
(define-fun neuron ((x1 Real) (x2 Real)) Real
(ite (>= (- (+ (* x1 0.5) (* x2 0.5)) 0.9) 0.0) 1.0 0.0))

(define-fun truthy ((x Real)) Bool (and (<= 0.9 x) (<= x 1.1)))
(assert (∀ ((x1 Real) (x2 Real))
(=> (and (truthy x1) (truthy x2)) (= (neuron x1 x2) 1.0))))

(check-sat)

As it turns out, this particular query is satisfiable, which you can verify with your
favourite SMTLIB2-compatible solver. Therefore, our neural network is robust
around truthy inputs!

1.2 Contributions

We make several contributions:

– We introduce two libraries, StarChild1 for F∗, and Lazuli2 for Liquid Haskell.
These libraries allow users to conveniently and modularly define and verify
neural networks (Sect. 2).

– We illustrate that both F∗ and Liquid Haskell are suitable for the lightweight
verification of neural networks (Sect. 2).

– We describe an approach for translating Keras [6] models, e.g. generated in
Python, to StarChild and Lazuli (Sect. 2.2).

– We describe an approach for automating proofs involving non-linear activa-
tion functions, by piecewise-linearisation. SMT queries using non-linear func-
tions such as the exponential function are not generally supported, and prob-
lems involving such functions are generally undecidable. However, all deep
neural networks use non-linear activation functions, such as Sigmoid or Soft-
max (Sect. 4)

– We show that both training and testing using piecewise-linear approximations
of non-linear activation functions is possible, and results in only a negligible
decrease in performance (Sect. 4).

1 https://github.com/wenkokke/starchild.
2 https://github.com/wenkokke/lazuli.

https://github.com/wenkokke/starchild
https://github.com/wenkokke/lazuli

72 W. Kokke et al.

– Finally, we describe several problems that we believe cannot be overcome
without substantial improvements in both the programming languages, e.g.
F∗ and Liquid Haskell, and in SMT solvers. These are problems of scale,
and limitations that arise from the incomplete implementation of real-valued
expressions in F∗, and the lack of normalisation of refinements in Liquid
Haskell. We suggest possible solutions for the future (Sect. 5).

Neural network verification is a growing area of research, with several tools
on the market, e.g. Marabou [13], ERAN [23], DLV [11], PAROT [3], to name
a few. It is not our goal to produce another competing tool, hence the miss-
ing benchmarking against these. Instead, our goal is to establish programming
language principles for incorporating these tools into a more abstract frame-
work, which may open ways of embedding neural net verification into future
multi-component projects.

2 An Overview of StarChild

Neural networks are functions on vectors of real numbers. Hence, the
StarChild library consists mostly of an F∗ implementation of basic linear alge-
bra (implemented in StarChild.LinearAlgebra). A second module contains an
implementation of dimension-safe neural networks, following Grenade3 and
the “dependently-typed” Haskell bindings for TensorFlow4,5 (implemented in
StarChild.Network).

The linear algebra module defines the types of length-indexed real vec-
tors and matrices, using F∗’s implementation of real numbers (implemented
in FStar.Real), and using refinements of F∗’s implementation of lists for both
vectors and matrices, where the refinement adds a length-index.

The module further defines standard operations on vectors and matrices:
maps and folds, the dot product, and matrix multiplication (see Fig. 3). We
reuse the list implementations of these functions when possible, but often F∗

needs us to redefine functions, e.g. map1, to verify the length-index.
Finally, the module defines common distance metrics on vectors, which can

be used in verification constraints. However, not all distance metrics can be
represented in the SMT logic. For instance, Euclidean distance uses the square
root function, which is non-linear. Instead, we opt to use the squared Euclidean
distance (see Fig. 3).

The neural network module defines the structure of neural networks. A neural
network is a non-empty list of layers, where the number of outputs of each layer
matches the number of inputs of the next layer. The network type has three
parameters—the number of inputs, outputs, and layers. Just like with lists, there
are two ways to construct a network. NLast defines a single-layer network, whose
number of inputs and outputs correspond to those of the layer. NStep adds a layer

3 https://github.com/HuwCampbell/grenade.
4 https://hackage.haskell.org/package/tensor-safe.
5 https://github.com/helq/tensorflow-haskell-deptyped.

https://github.com/HuwCampbell/grenade
https://hackage.haskell.org/package/tensor-safe
https://github.com/helq/tensorflow-haskell-deptyped

Neural Networks, Secure by Construction 73

Fig. 3. Linear algebra functions in StarChild.

to the front of a network, where the number of inputs of new layer becomes the
number of inputs of the network, and the number of outputs of the new layer
has to correspond to the old number of inputs of the network:
type network (i:N>0) (o:N>0) : n:N → Type =
| NLast : l:layer i o → network i o 1
| NStep : #n:N>0 → #h:N>0

→ l:layer i h → ls:network h o n → network i o (n + 1)

We use N>0 to denote the refined type of positive natural numbers, and similarly,
R>0 and R≥0 to denote the positive and non-negative real numbers.

Each fully-connected layer consists of a matrix of weights, whose dimensions
correspond to the number of inputs and outputs of the layer, a vector of biases,
whose length corresponds to the number of outputs of the layer, and the name
of an activation function:
type layer (i:N>0) (o:N>0) =
{ weights : matrix R i o
; biases : vector R o
; activation : activation }

74 W. Kokke et al.

Fig. 4. Naive piecewise-linear approximations of the Sigmoid and Softmax functions
in the StarChild library.

Our current implementation supports four common activation functions:
type activation : Type =
| Linear // linear(x) = x
| ReLU // relu(x) = max(0, x)
| Sigmoid // sigmoid(x) = 1

1+e−x

| Softmax // softmax(x̄)i = exi
∑k

j=1 e
xj

The linear and ReLU functions are straightforward to define, although the
FStar.Real module is rather sparse, and lacks functions for, e.g. minimum, max-
imum, negation, etc.:
val linear : R → R

let linear x = x // i.e. identity function
val relu : R → R

let relu x = if x ≤ 0.0R then x else 0.0R

However, the Sigmoid and Softmax functions are non-linear functions, and can-
not be translated directly to the SMT logic. Our solution is to use piecewise-
linear approximations of these functions. Since F∗ does not allow us to fine-tune
the translation to the SMT logic, we implement these directly in F∗. In Fig. 4,
we present two naive implementations of piecewise-linear approximations for
the Sigmoid and Softmax functions. We discuss a more principled approach to
generating linear approximations in Sect. 4.

To run a StarChild network, we simply run each layer successively, feeding
the output of one layer into the next:
val run : #i:N>0 → #o:N>0 → #n:N>0

→ ls:network i o n → xs:vector R i
→ Tot (vector R o) (decreases n)

let rec run #i #o #n ls xs = match ls with
| NLast l → run_layer l xs
| NStep l ls → run ls (run_layer l xs)

Neural Networks, Secure by Construction 75

We annotate the function with a totality annotation, which lets F∗ verify the
recursion terminates by checking that the number of layers decreases.

We run a layer by performing the computations described in Sect. 1.1: we
multiply the inputs by the weights, add the bias, and run the activation function:
val run_layer : #i:N>0 → #o:N>0

→ l:layer i o → xs:vector R i → vector R o
let run_layer #i #o l xs =
run_activation #o l.activation (vAv #o l.biases (vXm #i #o xs l.weights))

Finally, we run an activation function by matching the name, e.g. Sigmoid, up
with the appropriate definition, e.g. lsigmoid:
val run_activation : #n:pos → a:activation → xs:vector R n → vector R n
let run_activation #n a xs =
match a with
| Linear → xs
| ReLU → map1 relu xs
| Sigmoid → map1 lsigmoid xs
| Softmax → lsoftmax xs

2.1 A Note on Lazuli

The Liquid Haskell counterpart to StarChild, Lazuli, follows a similar architec-
ture, and shares the module and function names whenever possible. Any differ-
ences are due to quirks of F∗ or Liquid Haskell.

When implementing dimension-safe vector arithmetic in Liquid Haskell, it is
convenient to store the dimensions of a vector or matrix in the structure itself,
hence, in Lazuli, vectors and matrices are refined record types. For instance,
a vector is a record which stores a list and an integer, with a type refinement
requiring that integer is exactly equal to the length of the list.

Liquid Haskell allows us to fine-tune the translation of functions to the SMT
language, hence, if the user wants to, they could translate the standard Soft-
max function to the linearised Softmax only during verification. This has con-
sequences for the safety guarantees, however, as the verified network no longer
corresponds exactly to the executed network.

Finally, Liquid Haskell does not support normalisation prior to the transla-
tion to the SMT logic. Instead, Liquid Haskell supports refinement reflection [28],
in which Haskell functions are translated to SMT equalities which encode their
reduction behaviour. This offloads the burden of normalisation to the SMT
solver. Unfortunately, SMT solvers perform exploratory search, in which they
use these equations in both directions, i.e. they expand as well as reduce. Hence,
they are much less efficient at reduction, and consequently, at the time of writing
Lazuli is significantly slower than StarChild.

76 W. Kokke et al.

2.2 The Convenience of Keras Models

We don’t have any illusions that training networks in F∗ or Liquid Haskell will
be the preferred method, or even feasible, in the near future. Therefore, it is
important to integrate our libraries with existing methods. For this reason, we
implemented a Python library for converting Keras [6] models to StarChild and
Lazuli, which we bundle with StarChild and Lazuli as convert.py.

3 Verifying A “Real” Example: MNIST

In this section, we describe our experiences using StarChild to verify a neural
network trained on MNIST.

The MNIST dataset contains 28×28 images of the handwritten digits “0” to
“9”. Hence, an input consists of 748 pixels, and an output is—conventionally—a
probability distribution over the 10 classes, created by the Softmax function.
This leaves us to determine the number of hidden layers, their sizes, and their
activation functions. For instance, we could opt for a 128-node hidden layer using
the ReLU activation function:

...

...
...

I1

I2

I3

I784

H1

H128

O1

O10

Input
layer

Hidden
layer

Output
layerReLU Softmax

Unfortunately, this model has 784 × 128 + 128 + 128 × 10 + 10 = 101770
constant parameters and 784 input parameters. Worse, it has 3 fully-connected
layers, meaning that each input parameter occurs at least 128×10 = 1280 times
in the SMT query, and constant parameters occur several times in accordance
to the layer they are in. This is a huge query from an SMT solving perspective,
and it would overwhelm any SMT solver. However, this is not a large network
from a machine learning perspective. We discuss this matter further in Sect. 5.

For now, we seek to make verification with an SMT solver tractable. One
option is to reduce the dimensionality of the input, and reduce the size of the
network. If used with care, this usually only leads to modest decreases in model
accuracy. We use principal component analysis (PCA) to reduce the size of the
input vectors to 25, and reduce the size of the hidden layer to 10. This model
has far fewer parameters, 25 × 10 + 10 + 10 × 10 + 10 = 370, yet it only suffers
a loss of 2 percentage points in test accuracy (see Fig. 9). Note that verifying
the correctness of the smaller model gives us no formal guarantees about the
correctness of the larger model. Hence, using this approach, we are forced to
deploy the smaller, less accurate model. Figure 5 shows the F∗ code for the
smaller MNIST network, imported from Keras using the library described in
Sect. 2.2.

Neural Networks, Secure by Construction 77

Unlike in Sect. 1.1, vectors in Fig. 5 are wrapped in an assertion (let v =

... in assert_norm (length v = n); v). There are two assertion keywords, assert
and assert_norm. These assertions have no runtime significance. Instead, one
can think of them as functions with the refined type (b:bool {b ≡ true}) → ().
That is to say, assertions take an argument of type bool and verify, using an
SMT solver, that it is true.

By default, terms are translated to the SMT logic unnormalised, similar to
Liquid Haskell (see Sect. 2.1). After all, terms may grow enormously through
normalisation. Using assert_norm forces F∗ to normalise terms before querying
the SMT solver. Without it, F∗ offloads the burden of term reduction to the
SMT solver. Unfortunately, SMT solvers do exploratory search, and are much
less efficient at reduction. Worse, F∗ encodes a notion of fuel into translated
terms, meaning function definitions can only be unfolded a set number of times,
determined by the command-line argument --max-fuel (default 8). Beyond that,
programs fail to type check.

Let’s verify the model is robust for class “0” in an ε-ball B(x̂) around a sam-
ple input x̂, B(x̂, r) = {x ∈ R

n : ||x̂ − x||2 ≤ r}. First, we pick an input vector
representing the digit “0”, and convert it to F∗:
val sample_in : vector R 25
let sample_in = let v = [7.394R; −0.451R; ...; 0.199R]

in assert_norm (length v = 25); v

Then, we run the Keras model on the input, and convert the output to F∗:
val sample_out: vector R 10
let sample_out = let v = [0.998R; 0.000R; ...; 0.000R]

in assert_norm (length v = 10); v

For readability, we elide several elements from each vector, and limit the precision
of the floating-point numbers.

With these two definitions in hand, we can define our verification condition.
The idea is that, for all inputs within a certain distance ε1 from our sample
input, the neural network output should be within a certain ε2 from the sample
output. Let ε1 = 0.01 and ε2 = 1:
let _ = assert_norm (∀ (x:vector R 25). (sed #25 sample_in x < 0.01R)

=⇒ (sed #10 sample_out (run m x) < 1.0R))

Note that the function sed (squared Euclidean distance) is defined in Fig. 3.
While type checking, F∗ verifies that our verification condition holds. Crucially,
it wouldn’t be possible to verify this by testing.

Once again, the “burden” of verification in our approach is rather small, as
it takes only a handful of lines of code to formulate the verification conditions,
and the code which checks them. Unfortunately, even for this modest model,
verification of complex conditions takes an infeasibly long amount of time. We
address this problem in Sect. 5.

78 W. Kokke et al.

Fig. 5. StarChild model generated from Keras.

4 Piecewise-Linear Approximations Made Easy

In this section, we discuss non-linear activation functions, and automatic lin-
earisation. Deep neural networks require the use of non-linear functions between
each layer—the composition of two linear functions is itself a linear function,
and hence any deep neural network which uses only linear activation functions
is equivalent to a shallow neural network.

Unfortunately, SMT solvers do not generally support non-linear arithmetic,
and where they do, the solvers are slower and less reliable. At the time of writing,
F∗ uses the Z3 solver [18]. Z3 uses Dual Simplex [7] to solve linear real arith-
metic. It also supports a fragment of non-linear real arithmetic—specifically,
multiplications—and solves this using a conflict resolution procedure based on
cylindrical algebraic decomposition [12]. However, the addition of multiplication

Neural Networks, Secure by Construction 79

Fig. 6. Linearisation of the Sigmoid function over the interval I = [−5, 5] with n = 1,
n = 5, and n = 25 line segments.

is not enough to cover the non-linear activation functions used in deep learn-
ing, which often use exponents, logarithms, and trigonometric functions. The
only solver we are aware of that supports these functions out of the box is
MetiTarski [2]. However, the MetiTarski documentation reads “Beyond 4 or 5
continuous variables, there is very little hope for MetiTarski in finding a proof.”
Since our smallest possible “real” problem involves 25 continuous variables, we
have very little hope that MetiTarski will prove useful to us.

We approximate non-linear activation functions using piecewise-linear
approximations, i.e. several connected line segments. We refer to this as “lin-
earisation”. For instance, in Fig. 4 we used two handwritten piecewise-linear
approximations for the Sigmoid and the exponential functions. This approach
is a little crude, and manual linearisation is time consuming. Instead, we have
developed an algorithm for automatic linearisation of a function σ : R → R over
an interval I using n line segments:

1. We split the interval I into n equal-sized sub-intervals I1, . . . , In.
2. For each sub-interval Ii:

(a) Let li = min Ii and ui = max Ii.
(b) We draw a line segment of the form fi(x) = mix + bi, with slope mi and

y-intercept bi, from the minimum (li, σ(li)) to the maximum (ui, σ(ui)).
3. Finally, we connect all line segments fi. The result is a piecewise-linear

approximation for σ over the interval I.

The parameter n determines the granularity. In Fig. 6, we show the linear approx-
imation of the Sigmoid function for different values of n.

How should a piecewise-linear approximation behave outside of the interval
I? We have three simple options:

1. We can extrapolate the first and last line segments beyond the interval
boundaries.

2. We can return the minimum point, σ(min I), for inputs below the interval,
and return the maximum point, σ(max I), for inputs above the interval.

3. We can combine (1) and (2). We start by extrapolating, following (1), and
allow the user to specify lower and upper bounds, where we switch to return-
ing the constant minimum and maximum, following (2).

80 W. Kokke et al.

Fig. 7. Linearisation of the tanh-function over the interval [−1, 1] with n = 10 with
three different bounding methods: extrapolation, constant values, and the user-defined
combination.

The first option is unsound, as it may result in cases where the codomain
of the piecewise-linear approximation is not a subset of the codomain of the
approximated function. For instance, the piecewise-linear approximation of the
exp-function may return values < 0 for a sufficiently small input. The second
option is sound, albeit a bit crude. The third option combines the best of (1) and
(2), but requires manual tweaking. In Fig. 7, we show examples of these methods
for the tanh-function.

Piecewise-linear functions are not continuously differentiable, as they are
non-differentiable at each point where two line segments meet. For instance, the
ReLU function relu(x) is not differentiable at x = 0, since the left derivative
at x = 0 is 0, and the right derivative at x = 0 is 1. The same applies to our
linearised functions. However, ReLUs are widely used, and are differentiated by
arbitrarily choosing the derivative at x = 0 as either 0 or 1. Therefore, we have
two options for training our networks:

1. We train our network with non-linear activation functions, but verify it and
run it with piecewise-linear approximations.

2. We train our network with piecewise-linear approximations.

The first option has the advantage that we train with smooth, continuously
differentiable activation functions. However, we train and verify with different
architectures. As long as we verify and run the same object, this is not a problem
for safety. It does raise a question: what is the effect of running a model trained
with non-linear functions on a linearised architecture?

Fig. 8. Loss from weight transfer (tanh).

In Fig. 8, we present the loss in
test accuracy, as a result of trans-
ferring weights trained with the pre-
cise tanh function to networks with
piecewise-linear approximations. If
the tanh function is approximated
with at least 3 line segments, the
drop in accuracy is marginal.

Neural Networks, Secure by Construction 81

Hidden
activation

Output
activation

Training
accuracy

Test
accuracy

Training
time (sec.)

Fully-connected network trained on MNIST (with PCA 25)

relu softmax 0.973 0.968 7.6
tanh softmax 0.968 0.963 7.7

linear tanh linear softmax 0.964 0.960 18.1
Convolutional network trained on MNIST

relu softmax 0.999 0.991 50.7
linear tanh linear softmax 0.993 0.985 106.8
Convolutional network trained on CIFAR-10

tanh softmax 0.811 0.704 115.6
relu softmax 0.925 0.782 115.1

linear tanh linear softmax 0.769 0.702 243.9

Fig. 9. Performance for two networks trained on MNIST and one on CIFAR-10. For
the linearised hidden activations, we use 3 segments. For the exp-function in piecewise-
linear softmax, we use 10 segments. We extrapolate the first and last line segments.

The second option has the advantage that we train and verify with the same
architecture. Therefore, we do not incur the drop in accuracy which we expect
from option (1). However, it does raise a different question: what is the effect of
training with linearised activation functions, which have non-smooth gradients?
We train a fully-connected and a convolutional neural network on the MNIST
dataset and a convolutional neural network on the CIFAR-10 dataset [14]. Each
architecture is trained with either the precise tanh and Softmax functions, or
with their piecewise-linear approximations (n = 5). Since we did not observe
any difference with respect to the different bounding methods, we only report
the result for the extrapolation method. In Fig. 9, we show the results for these
experiments. The drop in train and test accuracy of the fully-connected neural
network trained and tested with linearised activation functions is marginal. For
comparison we also train a convolutional neural network, and we observe that
this model with linearised activations functions performs only slightly worse than
a state-of-the-art model with ReLU activations.

5 Lessons Learned

Refinement Types for Neural Network Verification. StarChild and Lazuli are
flexible and lightweight libraries. They support the dimension-safe construction
of neural networks. They support the lightweight verification of neural networks,
in which neural networks and their verification conditions be written in the same
language. Finally, they provide us with a user-friendly interface to SMT solvers,
which means that merely stating the verification conditions is enough—the host
language does the verification as part of type checking.

Training and Verification in the Same Language. We hope to extend our libraries
with the ability to train as well as verify networks. However, there are several

82 W. Kokke et al.

barriers to this. For F∗, the main barrier is that code cannot be executed, but
instead must be extracted to OCaml or F#. For Haskell, there already exist
several Haskell-bindings for TensorFlow. However, at the time of writing, Liquid
Haskell only verifies Haskell source, and not runtime objects such as neural
network models. Hence, we would have to either extend Liquid Haskell with the
ability to verify runtime objects, or convert the trained models to Haskell code.
The former would constitute a significant contribution to Liquid Haskell, and
the latter, while much simpler to implement, has very few advantages over our
current approach.

Training networks using Keras made our work significantly easier, and
importing the models to our libraries was an easy task. There is already exist-
ing work importing pre-trained models to theorem provers for the purposes of
verification, e.g. MLCert in Coq [4]. Our approach to importing models differs
from MLCert: we translate floating-point numbers to F∗ reals, whereas MLCert
translates them to bit-vectors.

Whether or not we integrate training into our libraries in the future, we
believe that interfacing with the Python machine learning ecosystem will remain
important for the foreseeable future.

Linearisation. The method presented for scalable automatic linearisation in
Sect. 4 works remarkably well. Our experiments show that it is possible to use
piecewise-linear approximations of non-linear functions both during training and
at runtime without a serious loss in accuracy. This is important, as non-linear
real arithmetic with exponentials, logarithms, and trigonometric functions is
undecidable, and therefore, it is unlikely that any future SMT solver will be able
to efficiently decide problems of this sort.

Our current method of linearisation is crude, in that it splits the interval into
sub-intervals of equal length. Often, a much better approximation is possible by
varying the lengths of the sub-intervals.

Scalability and Size Reduction. F∗ and Liquid Haskell offer to translate any
program to the SMT logic. Unfortunately, this generality comes with a cost.
In Fig. 10, we present a benchmark for the verification of the n-ary AND gate,
i.e. the network which returns 1 if, and only if, each of its n inputs is 1. The
verification task is to check whether the network returns the correct answer for
each of four sample inputs. There are two curves for StarChild. One in which
we use assert, and one in which we use assert_norm. Both are exponential. On
the contrary, the line for Z3 does not exceed 1s. Hence, it seems F∗ introduces
an exponential factor in its encoding.

Unfortunately, while the curve for Z3 is encouraging, it does not scale to
more complex conditions, such as the robustness conditions discussed in Sect. 3.
Most solvers for linear real arithmetic simply do not scale to the size and com-
plexity needed to check robustness conditions for even modest neural networks.
There are several existing lines of work which attempt to address this problem.
Marabou [13] uses a modification of the Simplex algorithm which more efficiently
decides problems with piecewise-linear functions (such as ReLU). DeepPoly [23]

Neural Networks, Secure by Construction 83

uses abstract interpretations. Kwiatkowska [15] gives an overview of the progress
in this area.

Fig. 10. Verification time for n-ary AND.

However, we consider the prob-
lem of scalable verification some-
what orthogonal to our goals. We
seek to integrate existing solvers
with programming languages in
ways which make neural net-
work verification as lightweight
as possible. We used Z3 and
other SMTLIB2-compatible solvers
because these solvers have existing
integration with programming lan-
guages. For future work, we plan
to look into integrating Marabou
with a dependently-typed pro-
gramming language, and abandon
generality in favour of generating efficient queries specific to the neural network
domain.

Soundness of the Proposed Approach. We did not prove, or attempt to prove, that
neural network transformations, such as size reduction (Sect. 3) or linearisation
(Sect. 4) preserves the semantics of the network. Our assumption is that the
verified network is deployed in practice, and we do not extend safety guarantees
to the full precision network.

Whether or not this approach is practically feasible deserves further atten-
tion. There are multiple papers in the machine learning community that show
that reduced size networks are feasible, and even desirable. There are a rising
number of implementations of neural networks on special purpose hardware, e.g.
using FPGAs [26]), mobile phones [1], and special-purpose robotics hardware
that require compression techniques. Ensuring that reduced-size networks per-
form sufficiently similar to the original networks is an optimisation problem that
has been considered in the literature, and is beyond the limits of this study.
However, we do provide a more detailed discussion of effects of linearisation in
Sect. 4, as it is less well-studied in the literature.

Continuous Training and Verification. In Sect. 1, we discussed why lightweight
verification is appropriate for neural network verification. However, there is one
novel feature of neural network verification, as opposed to the verification of
conventional programs. Usually, we assume that the object we verify is uniquely
defined, often hand-written, and therefore needs to be verified as-is. Neural net-
works are different—often there is a continuum of models that can serve as
suitable classifiers. Given the task of verifying a neural network, we are no
longer required to think of the object as immutable. This opens up new possibil-
ities, where we can feed information from the verification process back into the

84 W. Kokke et al.

training process. In fact, some papers in machine learning have already started
to explore this fact [8].

Seen from this angle, methods such as dimensionality reduction and lineari-
sation do not pose a threat to the soundness of our verification methods, but
instead are a part of the conversation between the training and the verification
mechanism in the search for a suitable, safe classifier.

References

1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous dis-
tributed systems (2016)

2. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-
valued special functions. J. Autom. Reason. 44(3), 175–205 (2009)

3. Ayers, E.W., Eiras, F., Hawasly, M., Whiteside, I.: PaRoT: a practical framework
for robust deep neural network training. In: Lee, R., Jha, S., Mavridou, A. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 63–84. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-55754-6 4

4. Bagnall, A., Stewart, G.: Certifying true error: machine learning in Coq with ver-
ified generalisation guarantees. In: AAAI (2019)

5. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: version 2.0. In:
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories,
Edinburgh, England, vol. 13, p. 14 (2010)

6. Chollet, F., et al.: Keras (2015). https://keras.io
7. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,

T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

8. Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev,
M.T.: DL2: training and querying neural networks with logic. In: Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, vol. 97, pp.
1931–1941. PMLR (2019)

9. Fisher, K., Launchbury, J., Richards, R.: The HACMS program: using formal meth-
ods to eliminate exploitable bugs. Phil. Trans. R. Soc. A. 375, 20150401 (2017)

10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

11. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

12. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. ACM Commun. Com-
put. Algebra 46(3/4), 104 (2013)

13. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

14. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Technical report, Citeseer (2009)

15. Kwiatkowska, M.Z.: Safety verification for deep neural networks with provable
guarantees (invited paper). In: Fokkink, W., van Glabbeek, R. (eds.) CONCUR
2019, LIPIcs, vol. 140, pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2019)

https://doi.org/10.1007/978-3-030-55754-6_4
https://doi.org/10.1007/978-3-030-55754-6_4
https://keras.io
https://doi.org/10.1007/11817963_11
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-030-25540-4_26

Neural Networks, Secure by Construction 85

16. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
[Online]. http://yann.lecun.com/exdb/mnist. Accessed Feb 2010

17. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5, 115–133 (1943)

18. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

19. Papernot, N., McDaniel, P.D., Swami, A., Harang, R.E.: Crafting adversarial input
sequences for recurrent neural networks. In: Brand, J., Valenti, M.C., Akinpelu, A.,
Doshi, B.T., Gorsic, B.L. (eds.) 2016 IEEE Military Communications Conference,
MILCOM 2016, Baltimore, MD, USA, 1–3 November 2016. pp. 49–54. IEEE (2016)

20. Parisi, G., et al.: Continual lifelong learning with neural networks: a review. Neural
Netw. 113, 54–71 (2019)

21. Pertigkiozoglou, S., Maragos, P.: Detecting adversarial examples in convolutional
neural networks. CoRR abs/1812.03303 (2018). http://arxiv.org/abs/1812.03303

22. Serban, A.C., Poll, E.: Adversarial examples - A complete characterisation of the
phenomenon. CoRR abs/1810.01185 (2018). http://arxiv.org/abs/1810.01185

23. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL), 41:1–41:30 (2019)

24. Swamy, N., et al.: Dependent types and multi-monadic effects in F∗. In: Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016. ACM Press (2016)

25. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

26. Umuroglu, Y., et al.: FINN: a framework for fast, scalable binarized neural network
inference. In: Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA 2017, Monterey, CA, USA, 22–24 Febru-
ary 2017, pp. 65–74 (2017)

27. Vazou, N.: Liquid Haskell: Haskell as a Theorem Prover. Ph.D. thesis, University
of California, San Diego, USA (2016)

28. Vazou, N., et al.: Refinement reflection: complete verification with SMT. Proc.
ACM Program. Lang. 2(POPL), 1–31 (2018)

http://yann.lecun.com/exdb/mnist
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1812.03303
http://arxiv.org/abs/1810.01185
http://arxiv.org/abs/1312.6199

A New Refinement Type System
for Automated νHFLZ Validity Checking

Hiroyuki Katsura1(B) , Naoki Iwayama1, Naoki Kobayashi1 ,
and Takeshi Tsukada2

1 The University of Tokyo, Bunkyo City, Japan
{katsura,iwayama,koba}@kb.is.s.u-tokyo.ac.jp

2 Chiba University, Chiba, Japan
tsukada@math.s.chiba-u.ac.jp

Abstract. Kobayashi et al. have recently shown that various verification
problems for higher-order functional programs can naturally be reduced
to the validity checking problem for HFLZ, a higher-order fixpoint logic
extended with integers. We propose a refinement type system for check-
ing the validity of νHFLZ formulas, where νHFLZ is a fragment of HFLZ

without least fixpoint operators, but sufficiently expressive for encoding
safety property verification problems. Our type system has been inspired
by the type system of Burn et al. for solving the satisfiability problem
for HoCHC, which is essentially equivalent to the νHFLZ validity check-
ing problem. Our type system is more expressive, however, due to a
more sophisticated subtyping relation. We have implemented a type-
based νHFLZ validity checker ReTHFL based on the proposed type
system, and confirmed through experiments that ReTHFL can solve
more instances than Horus, the tool based on Burn et al.’s type system.

1 Introduction

Kobayashi et al. [8,17] have recently shown that various verification problems
for higher-order functional programs can naturally be reduced to the validity
checking problem for HFLZ, an extension of HFL [16] with integers. In this paper,
we focus on a fragment of HFLZ called νHFLZ, which is a fragment of HFLZ

without least fixpoint operators, and propose an automated method for solving
the validity checking problem (which, in turn, serves as an automated method
for higher-order program verification, thanks to the reduction mentioned above).
The fragment νHFLZ is sufficiently expressive for encoding safety properties of
programs. A validity checker for νHFLZ can also be used as a building block for
a validity checker for full HFLZ, as briefly discussed in [17], and worked out for
the first-order fixpoint logic [7].

To see the connection between program verification and νHFLZ validity
checking, let us consider the following ML program.

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 86–104, 2020.
https://doi.org/10.1007/978-3-030-64437-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_5&domain=pdf
http://orcid.org/0000-0003-3420-4207
http://orcid.org/0000-0002-0537-0604
http://orcid.org/0000-0002-2824-8708
https://doi.org/10.1007/978-3-030-64437-6_5

A New Refinement Type System for Automated νHFLZ Validity Checking 87

let rec sum n k =
if n <= 0 then k n
else sum (n - 1) (fun r -> k (n + r))

let main m = sum m (fun r -> assert(r >= m))

This program calculates the sum of integers from 1 to n, and then asserts that
the value is no less than n. Suppose that we wish to verify that the assertion
never fails for any integer n. By using the reduction of Kobayashi et al. [8], the
verification problem can be reduced to the validity checking problem for the
following νHFLZ formula.

ψ := ∀m.(νSum.λn.λk.

(n ≤ 0 ⇒ k n)∧
(n > 0 ⇒ Sum (n − 1) (λr.k (n + r)))

) m (λr.r ≥ m)

(1)

Here, the part νSum.λn. · · · denotes the greatest predicate such that Sum =
λn. · · ·. A detailed explanation is deferred to Sect. 2, but the reader should be
able to notice the close correspondence between the program and the formula
above: for example, the part (n ≤ 0 ⇒ · · ·) ∧ (n > 0 ⇒ · · ·) corresponds to the
conditional expression in the program.

In this paper, we propose a refinement type system for proving the validity
of a νHFLZ formula, and develop an automated procedure for refinement type
inference. In our refinement type system, the type of propositions is refined to
a type of the form •〈θ〉, which is the type of propositions that hold whenever θ
holds; in other words, if a proposition ψ has type •〈θ〉, then θ is an underapprox-
imation of ψ (with respect to the order false < true). For example, νHFLZ

formula x ≥ 0 has type •〈x > 0〉 because x > 0 ⇒ x ≥ 0 holds.
Our type system has been inspired by that of Burn et al. [2] for proving the

satisfiability of Higher-order Constrained Horn Clauses (HoCHC), a higher-order
extension of Constrained Horn Clauses (CHC) [1]. In fact, the HoCHC satisfiabil-
ity problem1 is essentially the same as the νHFLZ validity checking problem (in the
sense that for any HoCHC C, there exists a νHFLZ formula ψC such that C is sat-
isfiable if and only if ψC is valid, and vice versa). The main difference between our
type system and theirs is in the subtyping relation. We introduce more sophisti-
cated subtyping relations, which makes the resulting subtyping relation complete
with respect to the semantic subtyping relation. In contrast, the subtyping rela-
tion in Burn et al.’s system is too conservative, which makes their type system too
weak; in fact, as confirmed through experiments, there are many νHFLZ formu-
las whose validity can be proved in our type system but the satisfiability of the
corresponding HoCHC cannot be proved in Burn et al.’s type system.

An alternative existing approach to automatically proving the validity of a
νHFLZ formula is a combination of (pure) HFL model checking and predicate
1 Throughout the paper, we assume integer arithmetic as the underlying constraint

language of HoCHC.

88 H. Katsura et al.

abstraction [5]. Though our type-based approach is less powerful in theory than
the model checking approach, ours tends to be faster, as confirmed by our exper-
iments. Thus, we consider that the two approaches are complementary.

The rest of this paper is structured as follows. Section 2 reviews the defini-
tion of νHFLZ. Section 3 presents our refinement type system for νHFLZ and
proves the soundness of the type system and the relative completeness of the
subtyping relation. Section 4 discusses the relationship between our type system
for νHFLZ and Burn et al.’s one for HoCHC. Section 5 presents an automated
method for νHFLZ validity checking based on our type system. Section 6 reports
an implementation and experimental results. Section 7 discusses related work,
and Sect. 8 concludes the paper.

2 Preliminaries: νHFLZ

We review the syntax and semantics of νHFLZ [8], which is a simply-typed higher-
order logic with arithmetic operations and the greatest fixed-point operator.

2.1 Syntax

The logic νHFLZ is simply typed. The syntax of simple types is given by:

ρ ::= • | η → ρ and η ::= ρ | Int.

The type • is for propositions and Int is for integers. The types are constructed
from these atomic types and the function type constructor →. The above syn-
tax restricts occurrences of Int only to argument positions. The reason will be
explained in the next subsection.

The syntax of νHFLZ formulas is given by:

ψ ::= n | ψ1 op ψ2 | p(ψ1, · · · , ψn) | tt | ff | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ∀X : Int.ψ
| X | λX : η.ψ | ψ1 ψ2 | νX : ρ.ψ

where n ranges over integers, op over basic binary operations on integers (such
as summation and multiplication), p over basic predicates on integers (such as
equality), and X over variables. The constructors in the first line are standard;
those in the second line are those from the simply-typed λ-calculus (i.e. variable
X, abstraction λX : η.ψ and application ψ1 ψ2) and the greatest fixed-point
operator νX : ρ.ψ. The occurrences of X in ∀X : Int.ψ, λX : η.ψ and νX :
ρ.ψ are binding occurrences. We shall not distinguish α-equivalent terms. We
shall often omit the type annotations. Lower case letters such as x, y and z are
sometimes used as variables of type Int.

The typing rules are straightforward. A judgment is a triple Γ �H ψ : η,
where Γ is a (simple) type environment (i.e. finite map from variables to simple
types). The type system is basically the simply-typed λ-calculus with typed
constants

A New Refinement Type System for Automated νHFLZ Validity Checking 89

n : Int op : Int → Int → Int p : Int → · · · → Int → •
tt,ff : • ∨,∧ : • → • → •

and the following additional typing rules:

Γ,X : Int �H ψ : •
Γ �H ∀X : Int.ψ : • and

Γ,X : ρ �H ψ : ρ

Γ �H νX : ρ.ψ : ρ
.

The complete list of typing rules can be found in [6]. In the sequel, we shall
consider only well-typed formulas.

A closed formula of type • is called a sentence.

Example 1. Let ψ be the νHFLZ formula defined by

ψ := νX : Int → •. λy : Int. y �= 0 ∧ X (y + 1).

The meaning of this formula can be intuitively understood as follows. Since it is
a fixed-point, (the meaning of) this formula must be a solution of the equation

X = λy. y �= 0 ∧ X (y + 1).

More specifically it is the greatest solution, where a predicate A is greater than
B if ∀n ∈ Z.(An ⇒ B n).

A more intuitive way to guess the greatest solution is to iteratively apply the
equation. Since (the meaning of) ψ satisfies the above equation, one has

ψ n = (n �= 0) ∧ ψ (n + 1) = (n �= 0) ∧ (n + 1 �= 0) ∧ ψ (n + 2) = · · ·
= (n �= 0) ∧ (n + 1 �= 0) ∧ · · · ∧ (n + k �= 0) ∧

This informal argument shows that ψ n must be false for every n ≤ 0. The
greatest solution is obtained by letting ψ n be true if ψ n does not have to be
false by this argument based on expansion of the definition. Hence ψ n is true
for every n > 0. ��

2.2 Semantics

A type η is interpreted as a poset Dη and a formula ψ of type η as an element
of Dη. The formal definition is as follows.

The poset Dη = (Dη,�η) is defined by induction on η:

D• = {�,⊥} �•= {(⊥,⊥), (⊥,�), (�,�)}
DInt = Z �Int= {(n, n) | n ∈ Z}
Dη→ρ = {f ∈ Dη → Dρ | ∀x, y.(x �η y ⇒ f(x) �ρ f(y))}
�η→ρ= {(f, g) | ∀x ∈ Dη.f(x) �ρ g(x)}.

We note that Dη→ρ is not the set of all functions but monotone functions.
Observe that Dρ is a complete lattice (i.e., for each subset A ⊆ Dρ, the greatest

90 H. Katsura et al.

lower bound
�

A of A exists). The interpretation DInt is not a complete lattice,
and this is why we distinguish Int from other simple types.

For a simple type environment Γ , we write [[Γ]] for the set of functions that
maps a variable X in (the domain of) Γ to an element of DΓ (X). We call an
element of [[Γ]] a valuation. Valuations are ordered by the point-wise ordering.

The interpretation [[ψ]] of a formula Γ �H ψ : η is a monotone function from
[[Γ]] to Dη. It is defined by induction on ψ. For example,

[[νX : ρ.ψ]](χ) :=
�

{v ∈ Dρ | v �ρ [[ψ]](χ[X �→ v])}
where χ[X �→ v] is the valuation defined by χ[X �→ v](X) = v and χ[X �→
v](Y) = χ(Y) (X �= Y). The right-hand-side of the above definition is an explicit
formula that calculates the greatest fixed-point of the mapping v �→ [[ψ]](χ[X �→
v]). The well-definedness and correctness of this explicit formula is ensured by the
facts that Dρ is a complete lattice and that v �→ [[ψ]](χ[X �→ v]) is monotone.
We omit other cases since they are straightforward; see [6] for the complete
definition.

We write the interpretation of a sentence ψ as [[ψ]] since it is independent of
a valuation (as a sentence has no free variable). If [[ψ]](∅) = �, then the sentence
ψ is valid and we write |= ψ. The νHFLZ validity checking problem is the
problem of checking whether a given sentence is valid. Note that this problem is
undecidable in general.

Example 2. Let us consider the following formula νHFLZ formula:

φ := ∀m.(νSum.λn.λk.

(n > 0 ∨ k n)∧
(n ≤ 0 ∨ Sum (n − 1) (λr.k (n + r)))

) m (λr.r ≥ m).

This formula is essentially the same as the example in Introduction (Sect. 1)
except that ⇒ is replaced with other connectives (since ⇒ is not in νHFLZ).
The relationship between this formula and the safety verification of the program
at the beginning of Introduction can be now explained as follows.

The reduction of the program corresponds to the β-reduction, the expansion
of Sum (cf. Example 1), and some trivial rewriting of formulas such as (0 �=
0) ∨ δ −→ δ. The safety verification asks whether the program fails in some
finite steps. If the program fails, then the corresponding rewriting of the formula
shows that the formula is false. If there is no such rewriting, the formula is true
as expected since the greatest fixed-point is true “by default” (cf. Example 1). ��

3 Refinement Type System

This section introduces a refinement type system, which our validity checker
is based on. The refinement type system introduced in this section is inspired
by and closely related to that of Burn et al. [2]. This section focuses on our
refinement type system; a comparison of the two systems is the topic of the next
section.

A New Refinement Type System for Automated νHFLZ Validity Checking 91

3.1 Syntax of Refinement Types

Our type system uses refinement types to describe properties of formulas. Here
we define the syntax and semantics of refinement types.

The syntax of refinement types is given by the following grammar:

arithmetic expressions a ::= n | x | op(a1, · · · ,an)
constraint formulas θ ::= tt | ff | p(a1, · · · ,an) | θ1 ∧ θ2 | θ1 ∨ θ2

extended constraint formulas Θ ::= θ | Θ1 ∧ Θ2 | ∃x.Θ

refinement types τ ::= •〈θ〉 | x : Int → τ | τ1 → τ2.

The occurrence of x in x : Int → τ is a binding occurrence. We shall not distin-
guish between α-equivalent refinement types.

Each refinement type τ describes a property on formulas and semantic ele-
ments of a simple type ρ. This relationship is formalized as the refinement rela-
tion, which is defined by the following rules:

•〈θ〉 :: •
τ :: ρ

(x : Int → τ) :: (Int → ρ)
τ1 :: ρ1 τ2 :: ρ2

(τ1 → τ2) :: (ρ1 → ρ2)
.

For every refinement type τ , there exists a unique simple type ρ such that τ :: ρ.
We write Γ � τ :: ρ if τ :: ρ and fv(τ) ⊆ {x | Γ (x) = Int}.

The meaning of arithmetic expressions and constraint formulas should be
obvious. We explain the intuitive meaning of refinement types. If τ :: ρ, then τ
is for formulas of simple type ρ that satisfies a certain property.

A formula ψ of type • has the refinement type •〈θ〉 if θ implies ψ. More
precisely, the type judgement ψ : •〈θ〉 means “if θ holds, then the interpretation
of ψ is �.” The simplest example is •〈tt〉; if ψ : •〈tt〉, then the interpretation
of ψ is �. Another extreme example is •〈ff〉; ψ : •〈ff〉 holds for every formula ψ
of simple type • since the condition ff never holds. Both ψ and θ may contain
free variables. For example, ψ : •〈x > 0〉 holds if the interpretation of ψ[n/x] is
� for every n > 0.

The meaning of the refinement type τ1 → τ2 is similar to the standard
function type. A formula ψ has type τ1 → τ2 just if ψ φ : τ2 for every formula φ
of type τ1.

The meaning of x : Int → τ is similar to the above case, but τ can refer to
the argument x in this case. For example, x : Int → •〈x > 0〉 is for formulas ψ
of simple type Int → • such that ψ n : •〈n > 0〉 for every n.2 In other words, it
is a type for predicates that are true on every positive integer.

It is worth emphasising that a refinement type describes a situation in which
a formula should be true. It does not say anything about a situation in which a
formula should be false. Therefore the constantly true function λX : ρ.tt has all
refinement type τ such that τ :: ρ → •. So a (valid) refinement type judgement
ψ : τ gives an underapproximation of ψ.

2 Equivalently, ψ x : •〈x > 0〉, provided that ψ has no free occurrence of x.

92 H. Katsura et al.

3.2 Semantics of Refinement Types

In order to clarify the informal definition of the meaning of refinement types
given above, we formalize the semantics of refinement types. For a refinement
type τ :: ρ, we give two interpretations. In the first interpretation, the refinement
type is interpreted as the subset (|τ |) ⊆ Dρ of semantic elements that satisfies
τ . This is a direct formarization of the above discussed meaning of refinement
types. In the second interpretation, the refinement type is seen as an element
γτ ∈ Dρ. As expected, the two interpretations are closely related: we have (|τ |) =
{v ∈ Dρ | γτ �ρ v}.

We give some auxiliary definitions. The interpretation [[θ]] of constraint for-
mulas θ is straightforward as constraint formulas can be seen as νHFLZ for-
mulas. It is a map from valuations α on free variables of θ to D• = {⊥,�}.
The interpretation can be naturally extended to extended constraint formulas
by [[∃x.Θ]](α) :=

⊔
v∈Z

[[Θ]](α[x �→ v]).
The first interpretation (|τ |) of a refinement type Γ � τ :: ρ is a function

from valuations α ∈ [[Γ]] to subsets (|τ |)(α) ⊆ Dρ of the interpretation of ρ. It is
defined by induction on the structure as follows:

(| • 〈θ〉|)(α) :=
{

{�} (if α |= θ)
{⊥,�} (if α �|= θ)

(|x : Int → τ |)(α) := {f ∈ DInt→ρ | ∀v ∈ DInt. f(v) ∈ (|τ |)(α[x �→ v])}
(|τ1 → τ2|)(α) := {f ∈ Dρ1→ρ2 | ∀v ∈ (|τ1|)(α). f(v) ∈ (|τ2|)(α)}.

This is basically a direct translation of the informal semantics discussed in the
previous subsection.

The second interpretation γτ is a map from [[Γ]] to Dρ, inductively defined by

γ•〈θ〉(α) :=

{
�• (if α |= θ)
⊥• (if α �|= θ)

γx:Int→τ (α) :=
[
DInt � v �→ γτ (α[x �→ v])

]

γτ1→τ2(α) :=

[

Dρ1 � v �→
{

γτ2(α) (if γτ1(α) �ρ1 v)
⊥ρ2 (otherwise)

]

where we assume (τ1 → τ2) :: (ρ1 → ρ2) in the last case. Here �ρ and ⊥ρ are the
greatest and least element of Dρ. The element γτ (α) is the minimum element in
(|τ |)(α).
Lemma 1. Assume Γ � τ :: ρ and α ∈ [[Γ]]. Then

∀v ∈ Dρ.
[
v ∈ (|τ |)(α) ⇐⇒ γτ (α) �ρ v

]
.

A New Refinement Type System for Automated νHFLZ Validity Checking 93

Fig. 1. Refinement typing rules

Fig. 2. Subtyping rules

3.3 Typing Rules

Now we define our refinement type system by giving the typing rules.
A refinement type environment Δ is a finite map from a subset of variables

to refinement types or Int. We write Δ :: Γ if the domains of Δ and Γ coincide
and Δ(X) :: Γ (X) for every X in the domain. Here we assume Int :: Int.

A refinement type judgement is a triple Δ � ψ : τ . We shall only consider a
refinement type judgement that refines a simple type judgement. That means,
when we consider Δ � ψ : τ , we implicitly assume a simple type judgement
Γ �H ψ : ρ and refinement relations Δ :: Γ and Γ � τ :: ρ.

Figure 1 shows typing rules of the refinement type system. We explain some
key rules. The rule RAnd says that θ1 ∧ θ2 is an underapproximation of ψ1 ∧ψ2

if θi is an underapproximation of ψi for i = 1, 2. The rule RAppI substitutes
the actual argument a for x in τ . The rule RGfp is the standard coinductive
(i.e. greatest) fixed-point rule, saying that the fixed-point νX.ψ has type τ if ψ
has type τ under the assumption that X has type τ . The most important rule
for this paper is RSub, which allows us to construct a derivation of Δ � ψ : τ2
from that of Δ � ψ : τ1 under a certain assumption. We explain this rule in more
detail.

The rule RSub refers to the subtyping judgement Δ;Θ � τ1 ≺ τ2, defined
by the subtyping rules listed in Fig. 2. Among the rules in Fig. 2, S-Fun is the
only nontrivial rule. Similar to the standard subtyping rule for function types,
it concludes τ1 → τ2 ≺ τ ′

1 → τ ′
2 from τ ′

1 ≺ τ1 and τ2 ≺ τ ′
2. A notable point is

94 H. Katsura et al.

that the assumption for τ ′
1 ≺ τ1 is strengthened by rty(τ ′

2), which is defined by
the following equations:

rty(•〈θ〉) := θ rty(x:Int → τ) := ∃x.rty(τ) and rty(τ1 → τ2) := rty(τ2).

A key property of rty(τ) is the following lemma.

Lemma 2. Assume Γ � τ :: ρ and α ∈ [[Γ]]. If α �|= rty(τ), then (|τ |)(α) = Dρ.

This means that, if rty(τ) is false, then τ2 is the trivial property that all elements
satisfy. Therefore, to show that τ ≺ τ ′, we can assume without loss of generality
that rty(τ ′) holds because otherwise τ ≺ τ ′ trivially holds. This explains why
we can assume rty(τ ′

2) in the premise of S-Fun.3
The significance of the assumption rty(τ ′

2) in S-Fun is demonstrated by the
next example.

Example 3. Recall the formula ψ in Introduction (Sect. 1) and Example 2:

∀m.(νSum.λn.λk.(n > 0∨k n)∧(n ≤ 0∨Sum (n−1) (λr.k(r+n)))) m (λr.r ≥ m).

We would like to show that � ψ : •〈tt〉, which implies the validity of ψ as we
shall see. The most interesting part is the typing of (νSum. . . .):

� (νSum. . . .) : n : Int → (x : Int → •〈x ≥ n〉) → •〈tt〉.
Let Δ be the refinement type environment:

Sum :
(
n :Int → (x :Int → •〈x ≥ n〉) → •〈tt〉), n :Int, k :

(
x :Int → •〈x ≥ n〉).

It suffices to show:

Δ � (n > 0 ∨ k n) ∧ (n ≤ 0 ∨ Sum (n − 1) (λr.k(r + n))) : • 〈tt〉.
We have:

...
(n > 0 ∨ k n) : •〈tt〉

n ≤ 0 : •〈n ≤ 0〉
...

Sum (n − 1) (λr.k(r + n)) : •〈n > 0〉
(n ≤ 0 ∨ Sum (n − 1) (λr.k(r + n))) : •〈tt〉

(n > 0 ∨ k n) ∧ (n ≤ 0 ∨ Sum (n − 1) (λr.k(r + n))) : • 〈tt〉
where we omit Δ � from each judgement and implicitly rewrite •〈n ≤ 0 ∨ n >
0〉 to •〈tt〉. Since the left judgement is easy to show, we focus on the right
judgement.

We have

Δ � Sum (n − 1) : (r : Int → •〈r ≥ n − 1〉) → •〈tt〉
3 A reader may wonder why we do not assume rty(τ ′

2) in the other premise. This is
because the subtyping judgements Δ;Θ � τ2 ≺ τ ′

2 and Δ;Θ ∧ rty(τ ′
2) � τ2 ≺ τ ′

2 are
equivalent in the sense that the derivability of one of them implies the other’s. We
chose the simpler judgement.

A New Refinement Type System for Automated νHFLZ Validity Checking 95

Fig. 3. A derivation of a subtyping judgement used in Example 3

but this is not immediately usable since

Δ � (λr.k(r + n))) : r : Int → •〈r ≥ n − 1〉.

Actually this judgement is invalid4: the type of k requires that r + n ≥ n but
r ≥ n − 1 is not sufficient for this when n ≤ 0. Therefore one needs subtyping.

Figure 3 proves a subtyping judgement. Note that the assumption n > 0
plays a crucial role in the left branch of the derivation. Since Δ � (λr.k(r+n))) :
(r : Int → •〈r ≥ 0〉) is easily provable, we have completed the proof.

��

3.4 Soundness and Completeness

This subsection defines the semantic counterpart of (sub)typing judgements, and
discuss soundness and completeness of the refinement type system.

The interpretation of a refinement type environment Δ :: Γ is the subset
[[Δ]] ⊆ [[Γ]] defined by

[[Δ]] := {α ∈ [[Γ]] | ∀X ∈ dom(Γ). α(X) ∈ [[Δ(X)]](α)}.

We write [[Δ;Θ]] for the set of valuations {α ∈ [[Δ]] | α |= Θ}.
The semantic counterpart of (sub)typing judgements are defined as follows:

Δ;Θ |= τ ≺ τ ′ :⇐⇒ (|τ |)(α) ⊆ (|τ ′|)(α) for every α ∈ [[Δ;Θ]]
Δ |= ψ : τ :⇐⇒ [[ψ]](α) ∈ (|τ |)(α) for every α ∈ [[Δ]].

The (sub)typing rules are sound with respect to the semantics of judgements.

Theorem 1 (Soundness)

– If Δ;Θ � τ1 ≺ τ2, then Δ;Θ |= τ1 ≺ τ2.
– If Δ � ψ : τ , then Δ |= ψ : τ .

Proof. By induction on the derivations. See [6]. ��
By applying Soundness to sentences, one can show that a derivation in the

refinement type system witnesses the validity of a sentence.

4 The formal definition of the validity of a refinement type judgement will be defined
in the next subsection.

96 H. Katsura et al.

Corollary 1. Let ψ be a νHFLZ sentence. If � ψ : •〈tt〉, then |= ψ.

A remarkable feature is completeness. Although the type system is not com-
plete for typing judgements, it is complete for subtyping judgements.

Theorem 2 (Completeness of subtyping). If Δ;Θ |= τ1 ≺ρ τ2, then
Δ;Θ � τ1 ≺ρ τ2.

Proof (Sketch). By induction on the structure of simple type ρ. Here we prove
only the case ρ = ρ1 → ρ2. A complete proof can be found in [6].

In this case τ = τ1 → τ2 and τ ′ = τ ′
1 → τ ′

2. Assume that Δ;Θ |= τ ≺ τ ′.
We prove Δ;Θ |= τ2 ≺ τ ′

2 and Δ;Θ ∧ rty(τ ′
2) |= τ ′

1 ≺ τ1. Then Δ;Θ � τ ≺ τ ′

follows from the induction hypothesis and S-Fun.
We prove Δ;Θ |= τ2 ≺ τ ′

2. Let α ∈ [[Δ;Θ]] and v ∈ (|τ2|)(α) and define
f ∈ (|τ1 → τ2|)(α) by f(x) := v. By the assumption, f ∈ (|τ ′

1 → τ ′
2|)(α). Since

�ρ1 ∈ (|τ ′
1|)(α), we have f(�ρ1) = v ∈ (|τ ′

2|)(α). Since v ∈ (|τ2|)(α) is arbitrary,
we obtain (|τ2|)(α) ⊂ (|τ ′

2|)(α).
We prove Δ;Θ ∧ rty(τ ′

2) |= τ ′
1 ≺ τ1. Assume for contradiction that Δ;Θ ∧

rty(τ ′
2) �|= τ ′

1 ≺ τ1. Then, there exist α ∈ [[Δ;Θ ∧ rty(τ ′
2)]] and g ∈ (|τ ′

1|)(α)
such that g /∈ (|τ1|)(α). By Lemma1, we have the minimal element γτ1→τ2(α)
in (|τ1 → τ2|)(α), which belongs to (|τ ′

1 → τ ′
2|)(α) by the assumption. Since

g ∈ (|τ ′
1|)(α), we have γτ1→τ2(α)(g) ∈ (|τ ′

2|)(α). One can prove that α |= rty(τ ′
2)

implies ⊥ρ2 �∈ (|τ ′
2|)(α) and thus γτ1→τ2(α)(g) �= ⊥ρ2 . On the other hand, from

the definition of the minimal element γτ1→τ2(α) and the assumption g �∈ (|τ1|)(α),
we have γτ1→τ2(α)(g) = ⊥ρ2 , a contradiction. ��

4 Relationship with Higher-Order Constrained Horn
Clauses

Our work is closely related to the work on Higher-order constrained Horn clauses
(HoCHC for short) [2]. HoCHC has been introduced by Burn et al. [2] as a
higher-order extension of the standard notion of constrained Horn clauses. They
also gave a refinement type system that proves the satisfiability of higher-order
constrained Horn clauses. The satisfiability problem of higher-order constrained
Horn clauses is equivalent to the validity problem of νHFLZ, and the refinement
type system of Burn et al. [2] is almost identical to ours, except for the crucial
difference in the subtyping rules. Below we discuss the connection and the differ-
ence between our work on their work in more detail; readers who are not familiar
with HoCHC may safely skip the rest of this section.

4.1 The Duality of νHFLZ and HoCHC

A HoCHC is of the form5 ψ =⇒ Z, where ψ is a νHFLZ formula that does
not contain the fixed-point operator ν and Z is a variable X or the constant
5 The syntax of HoCHC is modified in a way that emphasises the relationship to

νHFLZ.

A New Refinement Type System for Automated νHFLZ Validity Checking 97

ff whose simple type is the same as ψ. The formula ψ in HoCHC may have
free variables that possibly include X. A valuation α satisfies the HoCHC if
[[ψ]](α) � [[Z]](α). A solution of a set of HoCHCs is a valuation that satisfies all
given HoCHCs. Burn et al. [2] studied the HoCHC satisfiability problem, which
asks whether a given finite set of HoCHC has a solution.

The HoCHC satisfiability problem can be characterized by using the least
fixed-points. Assume a set of HoCHCs C = {ψ0 =⇒ ff, ψ1 =⇒ X1, . . . , ψn =⇒
Xn}, where X1, . . . , Xn are pairwise distinct variables. The HoCHCs {ψ1 =⇒
X1, . . . , ψn =⇒ Xn} has the minimum solution, say α, and C has a solution if
and only if [[ψ0]](α) = ⊥ for the minimum solution α.

The connection to the νHFLZ validity problem becomes apparent when we
consider the dual problem. Given a ν-free formula ψ, we write ψ for the dual
of ψ obtained by replacing ∧ with ∨, ff with tt, atomic predicates p(�a) with
its negation ¬p(�a) and a variable X with the dual variable X. Then C has a
solution if and only if so does

{ψ0 ⇐= tt, ψ1 ⇐= X1, . . . , ψn ⇐= Xn}.

This dual problem has a characterisation using the greatest fixed-points: it has
a solution if and only if [[ψ0]](α) = � where α is the greatest solution α of
{ψ1 ⇐= X1, . . . , ψn ⇐= Xn}. Since the greatest solution satisfies ψi = Xi

for every i, it can be represented by using the greatest fixed-point operator ν
of νHFLZ. By substituting Xi in ψ0 with the νHFLZ formula representation of
the greatest solution α, one obtains a νHFLZ formula φ. Now C has a solution
if and only if [[φ]] = �, that means, φ is valid.

4.2 The Similarity and Difference Between Two Refinement Type
Systems

The connection between HoCHC and νHFLZ allows us to compare the refinement
type system for HoCHC of Burn et al. [2] with our refinement type system for
νHFLZ. In fact, as mentioned in Introduction, this work is inspired by their
work. Our refinement type system is almost identical to that of Burn et al. [2],
but there is a significant difference. The subtyping rule for function types in
their type system corresponds to:

Δ;Θ � τ ′
1 ≺ τ1 Δ;Θ � τ2 ≺ τ ′

2

Δ;Θ � τ1 → τ2 ≺ τ ′
1 → τ ′

2

.

The difference from S-Fun is that rty(τ ′
2) cannot be used to prove τ ′

1 ≺ τ1.
Because of this difference, our refinement type system is strictly more expressive
than that of Burn et al. [2]. Their refinement type system cannot prove the
(judgement corresponding to the) subtyping judgement in Example 3, namely,

Δ; tt � (
(r :Int → •〈r ≥ n−1〉) → •〈tt〉) ≺ (

(r :Int → •〈r ≥ 0〉) → •〈n > 0〉);
recall that rty((r : Int → •〈r ≥ 0〉) → •〈n > 0〉) = (n > 0) is crucial in the
derivation of the subtyping judgement in Example 3. In fact, their type system
cannot prove that the sentence in Example 3 is valid.

98 H. Katsura et al.

The difference is significant from both theoretical and practical view points.
Theoretically our change makes the subtyping rules complete (Theorem 2). Prac-
tically this change is needed to prove the validity of higher-order instances. We
will confirm this claim by experiments in Sect. 6.

5 Type Inference

This section discusses a type inference algorithm for our refinement type system
in Sect. 3. The type system is based on constraint generation and solving. The
constraint solving procedure simply invokes external solvers such as Spacer [9],
HoIce [3] and PCSat [12]. In what follows, we describe the constraint generation
algorithm and discuss the shape of generated constraints.

5.1 Constraint Generation

The constraint generation algorithm adopts the template-based approach. For
each subformula Γ � φ : ρ of a given sentence � ψ : •, we prepare a refinement
type template, which is a refinement type with predicate variables. For example,
if Γ = (X : ρ′, y : Int, Z : ρ′′) and ρ = Int → (Int → •) → Int → •, then the
template is a :Int → (b :Int → •〈P (y, a, b)〉) → c :Int → •〈Q(y, a, c)〉. The ideas
are: (i) for each occurrence of type Int, we give a fresh variable of type Int (in
the above example, a, b and c), and (ii) for each occurrence of type •, we give
a fresh predicate variable (in the above example, P and Q). The arity of each
predicate variable is the number of integer variables available at the position.
Recall that the scope of x in (x : Int → τ) is τ .

Then we extract constraints. For example, assume that

x : Int � φ1 : (Int → •) → • x : Int � φ2 : Int → •
x : Int � φ1 φ2 : •

is a part of the simple type derivation of the input sentence. Then the refinement
type templates for φ1 and φ2 are

(y : Int → •〈P (x, y)〉) → •〈Q(x)〉 and z : Int → •〈R(x, z)〉,
respectively. The refinement type system requires that

x : Int; tt � (z : Int → •〈R(x, z)〉) ≺ (y : Int → •〈P (x, y)〉),
from which one obtains a constraint x : Int, z : Int; tt |= P (x, z) ⇒ R(x, z), or
more simply ∀x, z.

[
P (x, z) =⇒ R(x, z)

]
.

Example 4. Recall the formula ψ in Example 1:

ψ := νX. λy. y �= 0 ∧ X (y + 1) : Int → •.

We generate constraints for the sentence ∀z. (z ≤ 0) ∨ ψ z. The refinement type
template for ψ is y : Int → •〈P (z, y)〉.

A New Refinement Type System for Automated νHFLZ Validity Checking 99

The first constraint comes from the subtyping judgement filling the gap
between

z : Int � z ≤ 0 : •〈z ≤ 0〉
z : Int � ψ : y : Int → •〈P (z, y)〉

z : Int � ψ z : •〈P (z, z)〉
z : Int � (z ≤ 0) ∨ ψ z : •〈(z ≤ 0) ∨ P (z, z)〉

and z : Int � (z ≤ 0) ∨ ψ z : •〈tt〉. The required subtyping judgement is
z : Int; tt � •〈(z ≤ 0) ∨ P (z, z)〉 ≺ •〈tt〉, from which one obtains

∀z ∈ DInt. tt =⇒ z ≤ 0 ∨ P (z, z).

The second constraint comes from the gap between

· · · � y �= 0 : •〈y �= 0〉
· · · � X : (y′ : Int → •〈P (z, y′)〉)
· · · � X (y + 1) : •〈P (z, (y + 1))〉

z : Int,X : (y′ : Int → •〈P (z, y′)〉), y : Int �
(y �= 0∧X (y+1)) : •〈(y �= 0)∧P (z, (y+1))〉

and the requirement z : Int,X : y:Int → •〈P (z, y)〉, y : Int � (y �= 0∧X (y+1)) :
•〈P (z, y)〉. The second constraint is

∀y, z ∈ DInt. P (z, y) =⇒ P (z, y + 1).

These two constraints are sufficient for the validity of ∀z. (z ≤ 0) ∨ ψ z. ��
Remark 1. The constraint generation procedure is complete with respect to the
typability: � ψ : •〈tt〉 is derivable for the input sentence if and only if the
generated constraints are satisfiable. However it is not complete with respect to
the validity since the refinement type system is not complete with respect to the
validity. ��

5.2 Shape of Generated Constraints

Constraints obtained by the above procedure are of the from

∀x̃. P1(x̃1) ∧ · · · ∧ Pn(x̃n) ∧ θ =⇒ Q1(ỹ1) ∨ · · · ∨ Qm(ỹm).

Here Pi and Qj are predicate variables and θ is a constraint formula. If m ≤ 1,
then this is called a constrained Horn clause (CHC for short). Following [12],
we call the general form pCSP. We invoke external solvers such as Spacer [9],
HoIce [3] and PCSat [12] to solve the satisfiability of generated constraints.

PCSat [12] accepts the constraints of the above form, so it can be used as
a backend solver of the type inference. However PCSat is immature at present
compared with CHC solvers, some of which are quite efficient. By this reason,
we use CHC solvers such as Spacer [9] and HoIce [3] as the backend solver if the
constraints are CHCs.

It is natural to ask when generated constraints are CHCs. We give a conve-
nient sufficient condition on input νHFLZ formulas. We say a formula is tractable

100 H. Katsura et al.

if for every occurrence of disjunctions (ψ1 ∨ ψ2), at least one of ψ1 and ψ2 is an
atomic formula. For example, ((F x)∧ (Gy))∨ (b = 2) is tractable because b = 2
is atomic, and ((F x) ∧ (b = 2)) ∨ (Gy) is not. If the input formula is tractable,
the constraint generation algorithm generates CHCs.

In the context of program verification, the safety property verification of
higher-order programs are reducible to the validity problem of tractable for-
mulas. In fact, the reduction given in [8] satisfies this condition. Therefore the
translation in [8] followed by our type-based validity checking reduces the safety
property verification to CHCs, for which efficient solvers are available.

6 Implementation and Experiments

6.1 Implementation

We have implemented a νHFLZ validity checker ReTHFL based on the inference
on the proposed refinement type system. ReTHFL uses, as its backend, CHC
solvers HoIce [3] and Spacer [9], and pCSP solver PCSat [12]. In the experiments
reported below, unless explicitly mentioned, HoIce is used as the backend solver.
We have also implemented a functionality to disprove the validity when a given
formula is untypable, as discussed below. For this functionality, Eldarica [4] is
used to obtain a resolution proof of the unsatisfiability of CHC.

A Method to Disprove the Validity of a νHFLZ Formula. Since our
reduction from the typability of a νHFLZ formula ψ to the satisfiability of CHC
or pCSP is complete, we can conclude that ψ is untypable if the CHC or pCSP
obtained by the reduction is unsatisfiable. That does not imply, however, that
the original formula ψ is invalid, due to the incompleteness of the type system.
Therefore, when a CHC solver returns “unsat”, we try to disprove the validity of
the original formula. To this end, we first use Eldarica [4] to obtain a resolution
proof of the unsatisfiability of CHC, and estimate how many times each fixpoint
formula should be unfolded to disprove the validity of the νHFLZ formula. Below
we briefly explain this idea through an example.

Example 5. Let us consider the following formula:

∀n.n < 0 ∨ (νX.(λy.y = 1 ∨ (y ≥ 1 ∧ X (y − 1)))) n.

By preparing a refinement type template y : Int → •〈PX(y)〉 for X, we obtain
the following constraints:

∀x ∈ DInt. tt ⇒ PX(x) ∨ x < 0
∀x ∈ DInt. PX(x) ⇒ x = 1 ∨ (x ≥ 1 ∧ PX(x − 1)),

which correspond to the CHC:

∀x ∈ DInt. x ≥ 0 ⇒ PX(x) ∀x ∈ DInt. PX(x) ∧ x �= 1 ∧ x < 1 ⇒ ff
∀x ∈ DInt. PX(x) ∧ x �= 1 ⇒ PX(x − 1)

A New Refinement Type System for Automated νHFLZ Validity Checking 101

This set of CHC is unsatisfiable, having the following resolution proof:

0 ≥ 0 ⇒ PX(0) PX(0) ∧ 0 �= 1 ∧ 0 < 1 ⇒ ff
0 ≥ 0 ∧ 0 �= 1 ∧ 0 < 1 ⇒ ff (= ff)

Here, the two leaves of the proof have been obtained from the first two clauses by
instantiating x to 0. Since the second clause is used just once in the proof, we can
estimate that a single unfolding of X is sufficient for disproving the validity of
the formula. We thus expand the fixpoint formula for X once and check whether
the following resulting formula holds by using an SMT solver:

∀n.n < 0 ∨ (n = 1 ∨ (n ≥ 1 ∧ tt)).

The SMT solver returns’No’ in this case; hence we can conclude that the original
νHFLZ formula is invalid.

6.2 Experiments

We have conducted experiments to compare ReTHFL with:

– Horus [2]: a HoCHC solver based on refinement type inference [2].
– PaHFL [5]: a νHFLZ validity checker [5] based on HFL model checking and

predicate abstraction.

The experiments were conducted on a Linux server with Intel Xeon CPU E5-
2680 v3 and 64 GB of RAM. We set the timeout as 180 s in all the experiments
below.

Comparison with Horus [2]. We prepared two sets of benchmarks A and B.
Both benchmark sets A and B consist of νHFLZ validity checking problems
and the corresponding HoCHC problems. Benchmark set A comes from the
HoCHC benchmark for Horus [2], and we prepared νHFLZ versions based on
the correspondence between HoCHC and νHFLZ discussed in Sect. 4. Benchmark
set B has been obtained from safety verification problems for OCaml programs.
Benchmark set A has 8 instances, and benchmark set B has 56 instances. In the
experiments, we used Spacer as the common backend CHC solver of ReTHFL
and Horus.

The result is shown in Fig. 4. In the figure, “Unknown” means that Horus
returned “unsat”, which implies that it is unknown whether the program is safe,
due to the incompleteness of the underlying refinement type system. ReTHFL
could solve 8 instances correctly for benchmark set A, and 46 instances for bench-
mark set B. In contrast, Horus could solve 7 instances correctly for benchmark
set A, and only 18 instances for benchmark set B; as already discussed, this is
mainly due to the difference of the subtyping relations of the underlying type
systems. The running times were comparable for the instances solved by both
ReTHFL and Horus,

Comparison with PaHFL [5]. We used two benchmark sets I and II. Bench-
mark set I is the benchmark set of PaHFL [5] consisting of νHFLZ validity

102 H. Katsura et al.

Fig. 4. Comparison with Horus [2]. Fig. 5. Comparison with PaHFL [5].

checking problems, which have been obtained from the safety property verifi-
cation problems for OCaml programs [13]. Since the translation used to obtain
νHFLZ formulas is tailor-made for and works favorably for PaHFL, we also
used benchmark set II, which consists of the original program verification prob-
lems [13]; for this benchmark set, ReTHFL and PaHFL use their own transla-
tions to νHFLZ formulas.

The results of the two experiments are shown in Fig. 5. In the figure, “Fail”
means that the tool terminated abnormally, due to a problem of the back-
end solvers, or a limitation of our current translator from OCaml programs
to νHFLZ formulas. For benchmark set I, ReTHFL and PaHFL solved 205
and 217 instances respectively. For benchmark set II, ReTHFL and PaHFL
solved 247 and 217 instances respectively. Thus, both systems are comparable
in terms of the number of solved instances. As for the running times, our solver
outperformed PaHFL for most of the instances.

We also compared our solver with PaHFL by using 10 problems reduced from
higher-order non-termination problems, which were used in [10]. While PaHFL
could solve 4 instances, our solver could not solve any of them in 180 s. This is
mainly due to the bottleneck of the underlying pCSP solver; developing a better
pCSP solver is left for future work.

7 Related Work

Burn et al. [2] introduced a higher-order extension of CHC (HoCHC) and pro-
posed a refinement type system for proving the satisfiability of HoCHC. As
already discussed in Sect. 4, the HoCHC satisfiability problem is essentially
equivalent to the νHFLZ validity problem. Our type system is more expres-
sive than Burn et al.’s type system due to more sophisticated subtyping rules.
We have confirmed through experiments that our νHFLZ solver ReTHFL out-
performs their HoCHC solver Horus in terms of the number of solved instances.

A New Refinement Type System for Automated νHFLZ Validity Checking 103

Iwayama et al. [5] have recently proposed an alternative approach to νHFLZ

validity checking, which is based on a combination of (pure) HFL model check-
ing, predicate abstraction, and counterexample guided abstraction refinement.
In theory, their method is more powerful than ours, since theirs can be viewed as
a method for inferring refinement intersection types. In practice, however, their
solver PaHFL is often slower and times out for some of the instances which
ReTHFL can solve. Thus, both approaches can be considered complementary.

Kobayashi et al. [7] have shown that a validity checker for a first-order fixpoint
logic can be constructed on top of the validity checker for the ν-only fragment of
the first-order logic. We expect that the same technique can be used to construct
a validity checker for full HFLZ on top of our νHFLZ validity checker ReTHFL.

There are other refinement type-based approach to program verification, such
as Liquid types [11,15] and F* [14]. They are not fully automated in the sense
that users must provide either refinement type annotations or qualifiers [11] as
hints for verification, while our method is fully automatic. Also, our νHFLZ-
based verification method can deal with (un)reachability in the presence of both
demonic and angelic branches, while most of the type-based verification methods
including those mentioned above can deal with reachability in the presence of
only demonic branches.

8 Conclusion

We have proposed a refinement type system for νHFLZ validity checking, and
developed an automated procedure for refinement type inference. Our refinement
type system is more expressive than the system by Burn et al. [2] thanks to the
refined subtyping relation, which is sound and relative complete with respect
to the semantic subtyping relation. We have confirmed the effectiveness of our
approach through experiments. Future work includes an improvement of the
backend pCSP solver (which is the current main bottleneck of our approach),
and an extension of the method to deal with full HFLZ, based on the method
for the first-order case [7].

Acknowledgments. We would like to thank anonymous referees for useful com-
ments. This work was supported by JSPS Kakenhi JP15H05706, JP20H00577, and
JP20H05703.

References

1. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2

2. Burn, T.C., Ong, C.L., Ramsay, S.J.: Higher-order constrained horn clauses for
verification. Proc. ACM Program. Lang. 2(POPL), 11:1–11:28 (2018). https://doi.
org/10.1145/3158099

https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1145/3158099
https://doi.org/10.1145/3158099

104 H. Katsura et al.

3. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10805, pp. 365–384. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89960-2_20

4. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: Proceedings of FMCAD
2018, pp. 1–7. IEEE (2018). https://doi.org/10.23919/FMCAD.2018.8603013

5. Iwayama, N., Kobayashi, N., Tsukada, T.: Predicate abstraction and CEGAR for
νHFLZ validity checking (2020). Draft

6. Katsura, H., Iwayama, N., Kobayashi, N., Tsukada, T.: A new refinement type
system for automated νHFLZ validity checking (2020). A longer version of this
paper, http://www.kb.is.s.u-tokyo.ac.jp/~katsura/papers/aplas20.pdf

7. Kobayashi, N., Nishikawa, T., Igarashi, A., Unno, H.: Temporal verification of
programs via first-order fixpoint logic. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS,
vol. 11822, pp. 413–436. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32304-2_20

8. Kobayashi, N., Tsukada, T., Watanabe, K.: Higher-order program verification via
HFL model checking. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp.
711–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_25

9. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods Syst. Des. 48(3), 175–205 (2016). https://doi.org/10.
1007/s10703-016-0249-4

10. Kuwahara, T., Sato, R., Unno, H., Kobayashi, N.: Predicate abstraction and
CEGAR for disproving termination of higher-order functional programs. In: Kroen-
ing, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 287–303. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_17

11. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta, R., Amaras-
inghe, S.P. (eds.) Proceedings of the PLDI 2008, pp. 159–169. ACM (2008). https://
doi.org/10.1145/1375581.1375602

12. Satake, Y., Unno, H., Yanagi, H.: Probabilistic inference for predicate constraint
satisfaction. In: Proceedings of the AAAI, vol. 34, pp. 1644–1651 (2020). https://
doi.org/10.1609/aaai.v34i02.5526

13. Sato, R., Iwayama, N., Kobayashi, N.: Combining higher-order model checking
with refinement type inference. In: Proceedings of PEPM 2019, pp. 47–53 (2019).
https://doi.org/10.1145/3294032.3294081

14. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: 43rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pp. 256–270. ACM (2016). https://www.fstar-lang.org/papers/mumon/

15. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Jones, S.L.P.: Refinement types
for Haskell. In: Jeuring, J., Chakravarty, M.M.T. (eds.) Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming, Gothen-
burg, Sweden, 1–3 September 2014, pp. 269–282. ACM (2014). https://doi.org/10.
1145/2628136.2628161

16. Viswanathan, M., Viswanathan, R.: A higher order modal fixed point logic. In:
Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 512–528.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_33

17. Watanabe, K., Tsukada, T., Oshikawa, H., Kobayashi, N.: Reduction from
branching-time property verification of higher-order programs to HFL validity
checking. In: Proceedings of PEPM 2019, pp. 22–34 (2019). https://doi.org/10.
1145/3294032.3294077

https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.23919/FMCAD.2018.8603013
http://www.kb.is.s.u-tokyo.ac.jp/~katsura/papers/aplas20.pdf
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-319-89884-1_25
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/978-3-319-21668-3_17
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1609/aaai.v34i02.5526
https://doi.org/10.1609/aaai.v34i02.5526
https://doi.org/10.1145/3294032.3294081
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1007/978-3-540-28644-8_33
https://doi.org/10.1145/3294032.3294077
https://doi.org/10.1145/3294032.3294077

Behavioural Types for Memory
and Method Safety in a Core
Object-Oriented Language

Mario Bravetti1 , Adrian Francalanza2 , Iaroslav Golovanov3,
Hans Hüttel3 , Mathias S. Jakobsen3, Mikkel K. Kettunen3,

and António Ravara4(B)

1 Dipartimento di Informatica, Universitá di Bologna, Bologna, Italy
2 Department of Computer Science, University of Malta, Msida, Malta

3 Institut for Datalogi, Aalborg Universitet, Aalborg, Denmark
4 NOVA-LINCS and NOVA School of Science and Technology, Caparica, Portugal

aravara@fct.unl.pt

Abstract. We present a type-based analysis ensuring memory safety
and object protocol completion in the Java-like language Mungo. Objects
are annotated with usages, typestates-like specifications of the admissi-
ble sequences of method calls. The analysis entwines usage checking,
controlling the order in which methods are called, with a static check
determining whether references may contain null values. It prevents null
pointer dereferencing in a typestate-aware manner and memory leaks and
ensures that the intended usage protocol of every object is respected and
completed. The type system admits an algorithm that infers the most
general usage with respect to a simulation preorder. The type system is
implemented in the form of a type checker and a usage inference tool.

1 Introduction

The notion of reference is central to object-oriented programming, which is thus
particularly prone to the problem of null-dereferencing [18]: a recent survey
[30, Table 1.1] analysing questions posted to StackOverflow referring to java.lang
exception types notes that, as of 1 November 2013, the most common excep-
tion was precisely null-dereferencing. Existing approaches for preventing null-
dereferencing require annotations, e.g. in the form of pre-conditions or type
qualifiers, together with auxiliary reasoning methods. For instance, Fähndrich
and Leino [12] use type qualifiers with data flow analysis to determine if fields
are used safely, while Hubert et al. rely on a constraint-based flow analysis [20].
Recently, type qualifiers to prevent issues with null pointers were adopted in
mainstream languages, like nullable types in C#, Kotlin, and Swift, and option

Work partially supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No. 778233 (BehAPI), the UK EPSRC grant
EP/K034413/1 (ABCD), and by NOVA LINCS (UIDB/04516/2020) via FCT.

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 105–124, 2020.
https://doi.org/10.1007/978-3-030-64437-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_6&domain=pdf
http://orcid.org/0000-0001-5193-2914
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0002-4603-5407
http://orcid.org/0000-0001-8074-0380
https://doi.org/10.1007/978-3-030-64437-6_6

106 M. Bravetti et al.

types in OCaml, Scala, and Java. These approaches rely on programmer interven-
tion, what can be viewed as a limitation, since the absence of null-dereferencing
does not come “for free”, just as a consequence of a program being well-typed.

Static analysis tools that are “external” with respect to the type-system, like
the Checker framework [10] or the Petri Net based approach in [8], can be used
to check the code once it is in a stable state. However, both type qualifiers and
“external” static analyses suffer from a common problem: they are restrictive
and require additional explicit checks in the code (e.g., if-then-else statements
checking for null), resulting in a “defensive programming” style.

On the contrary, by including the analysis as part of the type system, one
obviates the need for additional annotations and auxiliary reasoning mechanisms.
For instance, the Eiffel type system [24] now distinguishes between attached and
detachable types: variables of an attached type can never be assigned a void value,
which is only allowed for variables of detachable type. However, enriching the type
system in this way is not enough, in that it is the execution of a method body that
typically changes the program state, causing object fields to become nullified. The
interplay between null-dereferencing and the order in which methods of an object
are invoked is therefore important. A recent manifestation of this is the bug found
in Jedis [32], a Redis [33] Java client, where a close method could be called even
after a socket had timed out [32, Issue 1747]. One should therefore see an object
as following a protocol describing the admissible sequences of method invocations.
The intended protocol can, thus, be expressed as a behavioural type [3,6,21]: our
idea is to use such types to ensure no null-dereferencing via static type checking.

There are two main approaches to behavioural type systems. The notion of
typestates originates with Strom and Yemini [29]; the idea is to annotate the
type of an object with information pertaining to its current state. Earlier work
includes that of Vault [11], Fugue [9] and Plaid [2,31]. In the latter, an object-
oriented language, the programmer declares for each class typestates (the signif-
icant states of objects) and annotates each method with (statically checked) pre
and post-conditions. Pre-conditions declare typestates that enable the method;
post-conditions define in which typestate the method execution leaves the object.
One has also to declare in these assertions the states of fields and parameters.
Garcia et al. [14] describe a gradual typestate system following the approach of
Plaid and combining access permissions with gradual types [28] to also control
aliasing in a robust way. The other approach taken is that of session types [19].
This originated in a π-calculus setting where the session type of a channel is a
protocol that describes the sequence of communications that the channel must
follow. Channels are linear : they are used exactly once with the given protocol,
and evolve as a result of each communication that it is involved in.

1.1 Our Approach

The approach of Gay et al. [15], adopted in this paper, combines the two
approaches above to behavioural types: the type of a class C is endowed with
a usage type denoting a behaviour that any instance of C must follow. Con-
sider the class File in Listing 1.1 [1]; the usage defined on lines 4–8 specifies the

Behavioural Types for Memory and Method Safety 107

admissible sequences of method calls for any object instance of File. The usage is
a set of defining equations where Init is the initial variable (denoting a typestate).
It tells the object must first be opened, going then into typestate Check (another
usage variable) where only the method isEOF can be called. When isEOF is called
the continuation of the protocol depends on the method result: if it returns EOF
one can only close the file and the protocol is completed (denoted by end); if it
returns NOTEOF one can read and check again. This ensures that all methods
of a File object are called according to the safe order declared.

1enum F i l eS t a tu s { EOF , NOTEOF }
2
3class F i l e {
4{ I n i t = {open ; Check}
5Check = { isEOF ;
6〈EOF: { c l o s e ; end} , NOTEOF: { read ; Check} 〉
7}
8}
9

10void open (void x) { . . . }
11F i l eS t a tu s isEOF(void x) { . . . }
12Char read (void x) { . . . }
13void c l o s e (void x) { . . . }
14}

Listing 1.1. An example class describing files

In Listing 1.2 an additional class FileReader is introduced. Its usage type,
at line 18, requires that the init() method is called first, followed by method
readFile().

17class Fi leReader {
18{ I n i t = { i n i t ; { r e adF i l e ; end}}}
19
20F i l e f i l e ;
21
22void i n i t () { f i l e = new F i l e }
23
24void r e adF i l e () {
25f i l e . open (un i t) ;
26loop : switch (f i l e . isEOF ()) {
27EOF: f i l e . c l o s e ()
28NOTEOF: f i l e . read () ; continue loop
29}
30}
31}

Listing 1.2. An example class intended for reading files

Class FileReader uses class File for its field file declared at line 20: method
calls on file will have to follow the usage type of File. Indeed, since FileReader

108 M. Bravetti et al.

class usage imposes to call method init before method readFile, we have that
FileReader class code correctly deals with objects of class File: first method init
code creates a File object inside field file, then method readFile code follows File
usage for such an object, by first opening it, entering a loop (lines 26 to 29)
to read until its end, and closeing it. So, in general, type checking of a class
(as FileReader) entails checking that: assuming the usage type of the class is
followed, all fields (e.g. file) are correctly dealt with according to the usage type
of their class (e.g. the usage of File). Moreover, since methods on field file are
called by code of method readFile only, and since, by considering for FileReader
class typestates, we know that such method can only be performed after the init
method, no null-dereferencing can occur when FileReader class code is executed.
In spite of this, previous work considering typestates and no null-dereferencing
checking would not allow to type check the FileReader class. For example the
above mentioned approach of [2,14,31] would require the programmer, besides
declaring typestates imposing init to be performed before method readFile, to
explicitly annotate readFile method with a precondition stating that file cannot
be null. Such annotations are quite demanding to the programmer and sometimes
even redundant. When an object is in a given typestate (e.g. when readFile is
enabled) the values of its fields are, implicitly, already constrained (file cannot be
null). Therefore type-checking based on a typestate-aware analysis of FileReader
class code (i.e., assuming that the usage type of the class is followed) makes it
possible to guarantee no null-dereferencing without any additional annotation.
Typestate-aware analysis of null-dereferencing is one of the novel contributions
of this paper.

The type system for Mungo (a Java-like language) [23] depends on linearity
and protocol fidelity. Linearity requires that, once an object reference is written
to a variable/field whose type is a class with a usage, it can be read from that
variable/field at most once (it can also be passed around or written to other
variables/fields instead). This avoids aliasing while permitting compositional
reasoning via the type system, making it possible to statically verify that objects
follow the intended protocol. Protocol fidelity requires that usage of a class
is followed when calling methods on a variable/field whose type is that class.
Checking protocol compliance merely by such a simple form of protocol fidelity,
however, does not suffice to correctly perform all checks guaranteeing correctness
of our example. For instance, protocol fidelity in [23] permits:

– Omitting file = new File in the body of method init at line 22. However, even
if one follows the prescribed protocol of FileReader by invoking first init and
then readFile, one gets a null-dereferencing when calling open on file.

– Adding file = null after file = new File at line 22. This results not only in
getting a null-dereferencing, as above, but also in losing the reference to the
created object before its protocol is completed, due to object memory being
released only at the end of its protocol.

– Adding file = new File at line 27 before calling close . This result in the loss
of the reference to the previous object stored in file that has not yet completed
its protocol.

Behavioural Types for Memory and Method Safety 109

Therefore, the Mungo type system in [23] does not provide guarantees ruling
out null-dereferencing and loss of references. In particular, three unpleasant
behaviours are still allowed: (i) null-assignment to a field/parameter containing
an object with an incomplete typestate; (ii) null-dereferencing (even null.m()
is accepted); (iii) using objects without completing their protocol and without
returning them. Moreover the type system in [23] is based on a mixture of type
checking and type inference that makes it not fully compositional – to be, type
checking a class should not depend on type checking other classes; without it,
the complexity of the type analysis would not depend only on the structure of
the class being typechecked but also on that of other classes.

1.2 Contributions

In this paper we present the first “pure” behavioural type-checking system for
Mungo that handles all these important unsolved issues. This constitutes (to
our knowledge) the first compositional behavioural type system for a realistic
object-oriented language that rules out null-dereferencing and memory leaks as
a by-product of a safety property, i.e., protocol fidelity, and of a (weak) liveness
property, i.e., object protocol completion for terminated programs. In particular
it is the first type system that checks null-dereferencing in a typestate-aware
manner. Note that, while protocol fidelity is an expected property in behavioural
type systems, this does not hold for properties like: protocol completion for a
mainstream-like language or memory safety, i.e., no null-dereferencing/memory
leaks. Notably our type system:

– Makes it possible to analyze source code of individual classes in isolation
(by just relying on usages of other classes which are part of their public
information, thus respecting correct encapsulation principles).

– Is based on a more complex notion of protocol fidelity, w.r.t. the type system
in [23], that includes a special typestate for variables/fields representing the
null value and encompasses typestate-aware null-dereferencing checking.

– Is based on requiring protocol completion for terminated programs and ref-
erences that are lost (e.g. by means of variable/field re-assignment or by not
returning them).

– Is compositional and uses type checking only, i.e. a term is typable if its
immediate constituents are (unlike [23] which uses a mixture of type checking
and type inference).

– Admits an algorithm for principal usage inference. For any class, the algo-
rithm correctly infers the largest usage that makes the class well-typed.

The typing-checking system and the usage inference system presented herein
as (rule based) inductive definitions, were implemented (in Haskell) to allow to
test not only the examples presented ahead, but also more elaborate programs
– a suit of examples and the code implementing both systems is available at
GitHub [1]. A new version of Mungo following our approach is also available
at https://github.com/jdmota/java-typestate-checker.

https://github.com/jdmota/java-typestate-checker

110 M. Bravetti et al.

Table 1. Syntax of Mungo

D ::= enum L {̃l} | class C {U ,
»
M,

#»
F }

F ::= z f

M ::= t m(t x){e}
v ::= unit | true | false | l | null
r ::= x | f | this
e ::= v | r | new C | f = e | r.m(e) | e; e

| k : e | continue k | if (e) {e} else {e}
| switch (r.m(e)) {li : ei}ii∈L

b ::= void | bool | L
z ::= b | C

t ::= b | C[U]

u ::= {mi; wi}i∈I | X

w ::= u | 〈li : ui〉li∈L

E ::= X = u

U ::= u
#»
E

Due to space restrictions, we omit in this paper some rules and results.
The complete formal systems are presented and described in detail in http://
people.cs.aau.dk/∼hans/APLAS20/typechecking.pdf and http://people.cs.aau.
dk/∼hans/APLAS20/inference.pdf.

2 The Mungo Language

Mungo is a typed Java-like language in the style of Featherweight Java [22] that
contains usual object-oriented and imperative constructs; the name also refers to
its associated programming tool developed at Glasgow University [23,34]. The
Mungo language is a subset of Java that extends every Java class with a typestate
specification. The syntax of Mungo is given in Table 1. A program

−→
D is a sequence

of enumeration declarations, introducing a set of n labels {l1, . . . , ln}, for some
natural n > 0, identified by a name L ∈ ENames, followed by a sequence of
class declarations where C ∈ CNames is a class name,

»

M a set of methods,
#»

F

a set of fields, and U a usage. A program
−→
D is assumed to include a main class,

called Main, with a single method called main having void parameter/return
type and usage type U = {main; end}ε. In the examples we used a set of defining
equations to specify usages, indicating which variable is the initial one. In the
formal syntax we omit the initial variable—a usage is just an expression u with a
set of defining equations

#»

E as superscript (u
#»
E). The usage in line 18 of Listing 1.2

is thus written as {init;RF}E , with E = {RF = {readFile; end}}.
Fields, classes and methods are annotated with types, ranged over by t. The

set of base types BTypes contains the void type (that of value unit), the type
bool of values, and enumerations types, ranged over by L, for sets of labels.
Typestates C[U] ∈ Typestates are a central component of the behavioural
type system, where C is a class name and U is a usage, specifying the admissible
sequences of method calls allowed for an object. In our setting typestates are
used to type non-uniform objects [27], instead of the usual class type (i.e., we
write C[U] instead of just C). A branch usage {mi;wi}i∈I describes that any
one of the methods mi can be called, following which the usage is then wi. We

http://people.cs.aau.dk/~hans/APLAS20/typechecking.pdf
http://people.cs.aau.dk/~hans/APLAS20/typechecking.pdf
http://people.cs.aau.dk/~hans/APLAS20/inference.pdf
http://people.cs.aau.dk/~hans/APLAS20/inference.pdf

Behavioural Types for Memory and Method Safety 111

let end denote the terminated, empty usage – a branch with I = ∅. The usage
{readFile; end} is a simple example of a terminating branch usage. A choice usage
〈li : ui〉 specifies that the usage continues as ui depending on a label li. This is
useful when the flow of execution depends on the return value of a method. The
usage in line 6 of Listing 1.1 is an example of a choice usage. Recursive usages
allow for iterative behaviour. A defining equation X = u specifies the behaviour
of the usage variable X, which can occur in u or in any of the other equations.

The set Values is ranged over by v and contains boolean values, unit, labels,
and null. References ranged over by r describe how objects are accessed – as
method parameters ranged over by x ∈ PNames, as field names ranged over
by f ∈ FNames or as the enclosing object, this. Values and references are
expressions. To follow a linear discipline, reading either a field or a parameter
containing an object nullifies the reference (as the object is passed somewhere
else). Moreover, assigning objects to references is only possible if they contain
null or if their protocol is terminated. Expressions also include standard method
calls r.m(e). Methods have exactly one argument; the extension to an arbitrary
number of arguments is straightforward. Sequential compositions is denoted by
e; e′, conditionals are if (e) {e1} else {e2}, and there is a restricted form of
selection statements, switch (r.m(e)) {li : ei}ii∈L, that branches on the result of
a method call that is supposed to return a label (an example of this construct
is in lines 26–29 of Listing 1.2).

Iteration in Mungo is possible by means of jumps. This lets us give more
expressive behavioural types as mutual recursions in nested loops [23]. Expres-
sions can be labelled as k : e, where k must be a unique label; the execution
can then jump to the unique expression labelled k by evaluating the expression
continue k (an example of this construct is in lines 26 and 28 of Listing 1.2).
We require that labelled expressions are well-formed: in a labelled expression
k : e, the label k is bound within e, and all occurrences of continue k must be
found in this scope; moreover, in e, continue cannot be part of the argument of
a method call; the expression on the right side of an assignment or on the left
of a sequential composition must not be a continue expression; finally, within
k : e there must be at least a branch, considering all if and switch expressions
possibly included in the code e, that does not end up in continue k (if there is
no if and switch, e must not end up in continue k). This last condition rules out
pathological infinite behaviours such as k : if (true) {continue k} {continue k}
and k : continue k.

A method named m is declared as t2 m(t1 x){e}, where t2 denotes the return
type of m, while the argument type is t1. The body of m is an expression e.
Classes in Mungo are instantiated with new C. When an object is created all
its fields are initialised to null. Assignment is always made to a field inside the
object on which a method is evaluated (fields are considered private). For an
object to modify a field in another object, it must use a method call.

We introduce a dot-notation that refers directly to components of a class
definition; we let C.methods #»D

def=
»

M , C.fields #»D
def=

#»

F and C.usage #»D
def= U .

112 M. Bravetti et al.

To describe (partially) evaluated expressions, we extend the syntax to include
run-time expressions and values:

v:: = · · · | o

e:: = · · · | return{e} | switchr.m (e){li : ei}li∈L

The return{e} construct encapsulates the ongoing evaluation of a method body e.
We also introduce a general switch construct that allows arbitrary expressions
and thus the partial evaluation of this construct.

3 The Type System

Our type system is a sound approximation of the reduction relation (c.f., Sect. 4)
and rejects programs that “may go wrong” [26]. We return to this type safety
result as Theorem 2 in Sect. 5. The main intentions behind our type system
are to ensure that every object will follow its specified protocol, that no null
pointer exceptions are raised, and no object reference is lost before its protocol
is completed. The system lets us type classes separately and independently of a
main method or of client code. Following Gay et al. [15], when we type a class, we
type its methods according to the order in which they appear in the class usage.
This approach to type checking is crucial. For suppose we call a method m of
an object o that also has a field containing another object o′. This call will not
only change the typestate of o (admitting the method was called at a moment
allowed by the usage). The call can also change the state of o′, since the code
of method m may contain calls to methods found in o′. With the type-checking
system we present herein, we take an important step further: by giving a special
type to null and make a careful control of it in the typing rules, we manage to
prevent memory leaks and detect previously allowed null-pointer exceptions.

Example 1. Recall the FileReader class in Listing 1.2. Its usage requires calling
first method init to guarantee that field file gets a new File object. Then the
usage of FileReader requires calling the method readFile which then call methods
on file according to its usage (cf. Listing 1.1): first open then iterate testing for
end-of-file (using the method isEOF), reading while this is not the case. Failure to
follow the usage of FileReader and, for instance, calling readFile without having
called init first causes null-dereferencing. The behavioural type system of Mungo
presented herein prevents this, alleviating the programmer from having to con-
sider all possible negative situations that could lead to errors for each method.
Usages are also simpler than the (sometimes redundant) assertions required by
Plaid [2,14,31] and the defensive programming style required by tools such as
Checker [10] is not needed. �

Typing program definitions
#»

D requires judgements like � −→
D . Rule TProg

(below) says a program is well-typed if each of its enumeration and class dec-
larations are well-typed; in turn declarations require judgements � #»

D D, saying
an enumeration is well-typed if all labels in the set do not occur in any other

Behavioural Types for Memory and Method Safety 113

enumeration declaration (labels are uniquely associated with a type L – rule
tEnum omitted) and a class is well-typed if its usage is well-typed.

Judgements for typing class usages are of the form

Θ;Φ � #»
D C[U] � Φ′

where Φ is a field typing environment assigning types to fields of the class C (Φ′

is the corresponding result of the typing derivation, reflecting the changes in the
typestates of objects stored in the fields) and Θ is an environment assigning field
type environments to usage equation variables, to deal with recursive behaviour,
as explained below. The judgement also considers the program definition

#»

D in
which the class occurs, but since it never changes in a type derivation, we will
not refer it in the rules henceforth presented (a subset of all rules; the omitted
ones are in the technical reports referred at the end of Sect. 1). The judgement
takes Θ, Φ,

#»

D, and C[U] as input and if there is a derivation, it outputs Φ′.
Rule TClass uses an empty usage variable type environment and a field

typing environment assigning initial types to the fields of the class: since when
a new object is created, all its fields of a class type are initialised with null,
their respective type in the initial field typing environment is ⊥ (to control
dereferencing), a new type not available to the programmer – we extend the
syntax of types with it (see below). So,

−→
F .inittypes � {f 	→ inittype(z) | z f ∈−→

F }
where inittype(b) � b and inittype(C) � ⊥ . Moreover, following the class usage
U must result in a terminated field typing environment Φ, i.e., fields with
class types must have either usage end or type ⊥. The judgement Θ;Φ �
C[U] � Φ, discussed below, makes use of the method set

»

M via C.methods.

(TProg)
∀D ∈ #»

D . � #»
D D

� −→
D

(TClass)
∅;

#»
F .inittypes � C[U] � Φ terminated(Φ)

� #»
D class C{U ,

#»
F ,

»
M}

Linear and Terminated Types. Values have a type that can be either a base type
b, ⊥, the type of null, or “general” typestates C[U], with U now being either
branch or choice usages.

W :: = w
−→
E U :: = U|W t:: = b|C[U]|⊥

An important distinction in our type system is the one between linear and non-
linear types, as it is this distinction that makes the type system able to detect
potential null dereferencings and memory leaks.

A type t is linear, written lin(t), if it is a class type C[U] with a usage U that
is different from end. This use of linearity forces objects to be used only by a
single “client”, thus preventing interference in the execution of its protocol.

lin(t) � ∃C,U . t = C[U] ∧ U �= end

All other types are non-linear, and we call such types terminated.

114 M. Bravetti et al.

Table 2. Typing class usage definitions

TCBr

I �= ∅ ∀i ∈ I. ∃Φ′′.
{this �→Φ}; (∅·(this, [xi �→ t′i])

) 	 ei : ti � {this �→Φ′′}; (∅·(this, [xi �→ t′′i])
)

∧ terminated(t′′i) ∧ ti mi(t
′
i xi){ei}∈C.methods ∧ Θ;Φ′′ 	 C[w

�E
i] � Φ′

Θ;Φ 	 C[{mi;wi}�E
i∈I] � Φ′

TCCh
∀li ∈ L . Θ;Φ 	 C[u

�E
i] � Φ′

Θ;Φ 	 C[〈li : ui〉�E
li∈L] � Φ′ TCEnd

Θ;Φ 	 C[end
�E] � Φ

TCVar
(Θ, [X �→ Φ]);Φ 	 C[X

�E] � Φ′ TCRec
(Θ, [X �→ Φ]);Φ 	 C[u

�E] � Φ′

Θ;Φ 	 C[X
�E�{X=u}] � Φ′

Typing class usages requires the rules in Table 2. Each one applies to a dif-
ferent constructor of usages: rule TCEnd is a base case: end does not change
the field environment. Rules TCRec and TCVar are used to type a class with
respect to a recursive usage X, which is well-typed if the class C can be well-
typed under the body u of X defined in �E (note that in the premise of TCRec,
the defining equation for X does not occur); rule TCVar handles recursion
variables appearing in usages, associating a type with the variable in the envi-
ronment. Rule TCCh deals with choice usages, requiring all possible evolutions
to lead to the same usage to guarantee determinism. Finally, the important rule
TCBr deals with (non-terminated) branch usages: for each method mi men-
tioned, its body ei is checked with its return type ti; and the initial type t′i of
the parameter x, declared in the method signature; following the effect of exe-
cuting the method body, yields the resulting type t′′i of x and the resulting type
of this.

Example 2. Recall the class File from Listing 1.1. To type it, we inspect its usage.
As it starts as a branch, we apply TCBr and check that the body of method open
is well-typed and move on to check usage Check. As it is a recursion variable,
we use TCRec; we now have a branch usage where we check that the body of
method isEOF is well-typed, using rule TCCh. If the method returns EOF, we
then check method close and terminate with rule TCEnd; if it returns NOTEOF,
we check method read and finish the type-checking process (the derivation ends)
since we find again the recursion variable Check. Both cases result in identical
field typing environments. �

Typing expressions requires rules for values, with atomic and composite con-
structors. Our semantics is stack-based and introduces run-time extensions to
the language. In the type system, the counterpart of the stack is an environment
that plays a limited role in typing the language we show herein but is essen-
tial for typing code resulting from computational steps (details in the technical
report).

Let the object field environment Λ record the type information for fields in
objects and S = [x 	→ t] be a parameter type environment.

Behavioural Types for Memory and Method Safety 115

The key element when typing the programmer’s code is the pair (o, S), where
o is the main object. Type judgements are of the form

Λ; (o, S) �Ω
#»
D

e : t � Λ′; (o, S′)

Their intended meaning is as follows: evaluating e in the initial environments Λ
and S will produce final typing environments Λ′ and S′, results yield only if the
derivation succeeds. Here Ω is a label environment that is used to map a label
k to a pair of environments (Λ, S), Ω is only used in continue expressions and
is therefore omitted in most rules (as well as �D). Since typing environments are
functions, Λ{o 	→ t}, for instance, denotes the result of a substitution, i.e., the
environment equal to Λ everywhere but in the image of o, that is now t.

When typing values, unit has type void, null has type ⊥, and the boolean
values have type Bool where the initial and final environments in the judgements
do not change. Typing a parameter is similar to typing (reading) a field, so we
only describe the latter here. The rules are presented below. The rule TObj
handles object typing and it says that once we type an object, corresponding to
reading it, we remove it from the object type environment.

(TObj)
Λ{o 	→ t}; (o′, S) � o : t � Λ; (o′, S)

TNoLFld describes how to type non-linear parameters and fields: no
updates happen to the environments. The rule TLinFld deals with linear
parameters and fields: after typing the value, the linear parameter or field is
updated to the type ⊥ (to prevent aliasing) in either the parameter stack envi-
ronment or field type environment (only the rules for fields are presented, as
those for parameters are similar).

(TLinFld)
t = Λ(o).f lin(t)

Λ; (o, S) � f : t � Λ{o.f 	→ ⊥}; (o, S)

(TNoLFld)
¬lin(t)

Λ{o.f 	→ t}; (o, S) � f : t � Λ{o.f 	→ t}; (o, S)

The key atomic constructors are the creation of objects and assignment to
fields and parameters. The typing rules are given below; we omit the rule typing
assignment to parameters, as it is similar to that of fields.

(TNew) Λ; (o, S) � new C : C[C.usage] � Λ; (o, S)

(TFld)

C = Λ(o).class agree(C.fields(f), t′)
Λ; (o, S) � e : t′ � Λ′, o.f 	→ t; (o, S′) ¬lin(t)
Λ; (o, S) � f = e : void � Λ′{o.f 	→ t′}; (o, S′)

The assignment rules are designed to avoid overwriting fields containing
objects with incomplete protocols. To that purpose we use a binary predicate
agree that only holds if both arguments are the same base type or class type.

agree(z, t) def= z= t ∨ ∃C. z=C ∧ (t=⊥ ∨ ∃U. t=C[U])

116 M. Bravetti et al.

Notice that in rule (TFld) null agrees with any class type declared in the pro-
gram only if the field does not contain an object with a linear type.

Example 3. Consider a field f declared in the program with some class type
C. Rule (TFld) only lets us assign to f if its type is not linear, i.e., it must
be either ⊥ or C[end]. So, f either contains null or an object with a terminated
protocol. The agree predicate lets us assign to f either null or, more significantly,
any object with a usage (that in the subsequent code will be followed, as the
rules we present below show). In particular, one can assign new C to f . �

To type a method call on a field using the rule (TCallF) (the rule for
typing method calls on parameters is similar) first the type environments must
be updated by typing the argument and then the usage of the callee object must
offer the method. Usages have a labelled transition semantics. Transitions are of
the form u

m−→ u′ and u
l−→ u′ and defined by the rules below.

(Branch)
j ∈ I

{mi : wi}
#»
E
i∈I

mj−−→ w
#»
E
j

(Unfold) u
#»
E∪{X=u} m−→ W

X
#»
E∪{X=u} m−→ W

(Sel) (〈li : ui〉li∈L)
#»
E li−→ u

#»
E
i

The rule (TRet) for typing return is not surprising: once the environments
are updated by typing the expression e, we remove from the object environment
the last entry, with the identity of the caller and the type of the value in the
parameter identifier, given that this type is terminated (to prevent memory leaks
and dangling objects with incomplete protocols).

Note that the body of the method is not typed in this rule, since it was
handled at the class declaration.

(TCallF)

Λ; (o, S) � e : t � Λ′{o.f 	→ C[U]}; (o, S′)
t′ m(t x){e′} ∈ C.methods #»D U m−→ W

Λ; (o, S) � f.m(e) : t′ � Λ′{o.f 	→ C[W]}; (o, S′)

(TRet)
Λ;Δ � #»

D e : t � Λ′;Δ′ Δ′ = Δ′′ · (o′, [x 	→ t′]) terminated(t’)

Λ;Δ · (o, S) � #»
D return{e} : t � Λ′;Δ′′ · (o, S)

Example 4. Recall class File from Listing 1.1. Rule (TCallF) states that in
order for a call of the close method to be well-typed, there must be a transition
labelled with close. This method call thus fails to typecheck under usage Init. �

We conclude this section presenting the typing rules for control structures.
The rule TSeq for sequential composition requires the left expression not to
produce a linear value (that would be left dangling): e; e′ is well-typed only if
the type of e is not linear. Moreover, e′ is typed with the environments resulting
from typing e (i.e., we take into account the evolution of the protocols of objects
in e).

Behavioural Types for Memory and Method Safety 117

The rules TLab and TCon for labelled expressions allows environments
to change during the evaluation of continue-style loops. However, if a continue
expression is encountered, the environments must match the original environ-
ments, in order to allow an arbitrary number of iterations. Since (o, S) is not
relevant, we refer it as Δ.

(TSeq)
Λ; (o, S) � e : t � Λ′′; (o, S′′) ¬lin(t) Λ′′; (o, S′′) � e′ : t′ � Λ′; (o, S′)

Λ; (o, S) � e; e′ : t′ � Λ′; (o, S′)

(TLab)

Ω′ = Ω, k : (Λ, Δ)

Λ; Δ �Ω′
e : void � Λ′; Δ′

Λ; Δ �Ω k : e : void � Λ′; Δ′ (TCon)
Ω′ = Ω, k : (Λ, Δ)

Λ; Δ �Ω′
continue k : void � Λ′; Δ′

In Subsect. 1.1 a class FileReader was introduced with a loop repeated in
Listing 1.3. Even though calling the close method leaves the field in another
state than calling read, the code is well typed. The reason is that after calling
read, the field is left in the initial state when entering the loop, and another
iteration occurs. When calling close the loop is ended. Hence the only resulting
state for the field after the loop, is File[end].

26[. . .]
27f i l e . open (un i t)
28loop : switch (f i l e . isEOF ()) {
29EOF: f i l e . c l o s e () (∗@\ label { l s t : code :2}@∗)
30NOTEOF: f i l e . read () ;
31continue loop
32}
33[. . .]

Listing 1.3. Loop from class FileReader

4 The Dynamic Semantics of Mungo

The operational semantics of Mungo is a reduction relation and uses a stack-
based binding model, the semantic counterpart of that of the type system.

Expressions transitions are relative to a program definition
#»

D with the form

� #»
D 〈h, envS , e〉 → 〈h′, env′

S , e′〉
A heap h records the bindings of object references. In the heap, every object
reference o is bound to some pair (C[W], envF) where C[W] is a typestate
and envF ∈ EnvF is a field environment. A field environment is a partial
function envF : FNames ⇀ Values that maps field names to the values
stored in the fields. Given a heap h = h′ � {o 	→ (C[W], envF)}, we write
h{W ′/h(o).usage} to stand for the heap h′ � {o 	→ (C[W ′], envF)}1; h{v/o.f}
for h′ � {o 	→ (C[W], envF {f 	→ v})}; and we use the notation h{o.f 	→ C[W]}
1 We use
 to denote disjoint union.

118 M. Bravetti et al.

to denote the heap h′ � {o 	→ (C[W ′], env′
F)} where env′

F = envF {f 	→ C[W]}.
Moreover, if h = h′�{o 	→ } then h\{o} = h′ and when o /∈ dom(h), h\{o} = h.
Finally, we say a heap is terminated if for all objects in its domain, their usages
are terminated.

The parameter stack envS records to the bindings of formal parameters. It
is a sequence of bindings where each element (o, s) contains an object o and a
parameter instantiation s=[x 	→ v]. In a parameter stack envS · (o, s) we call
the bottom element o the active object. Often, we think of the parameter stack
as defining a function. The domain dom(envS) of the parameter stack envS is
the multiset of all object names on the stack. The range of the parameter stack
ran(envS) is the multiset of all parameter instantiations on the stack. We refer
to the attributes of an object o bound in heap h, where h(o)=〈C[W], envF 〉, as:

h(o).class def= C h(o).envF
def= envF

h(o).usage def= W h(o).f def= envF (f) h(o).fields def= dom(envF)

The Transition Rules. Linearity also appears in the semantics, and the linearity
requirement is similar to that of the type system. Here, a value v is said to be
linear w.r.t. a heap h written lin(h, v) iff v has type C[U] and U �= end. If the
field denotes a terminated object or a ground value, field access is unrestricted.

Below we show the most important transition rules. The rules for reading
linear fields illustrate how linearity works in the semantics. In lDeref we update
a linear field or parameter to null after we have read it, while the rule uDeref
tells us that the value contained in an unrestricted fields remains available.

(uDeref)
h(o).f = v ¬lin(v, h)

	 #»
D 〈h, (o, s) · envS , f〉 −→ 〈h, (o, s) · envS , v〉

(lDeref)
h(o).f = v lin(v, h)

	 #»
D 〈h, (o, s) · envS , f〉 −→ 〈h{null/o.f}, (o, s) · envS , v〉

(Upd)
h(o).f = v′ ¬lin(v′, h)

	 #»
D 〈h, (o, s) · envS , f = v〉 −→ 〈h{v/o.f}, (o, s) · envS , unit〉

(Lbl) 	 #»
D 〈h, envS , k : e〉 −→ 〈h, envS , e{k : e/continue k}〉

(CallF)

envS = (o, s) · env′
S o′ = h(o).f

m(x){e} ∈ h(o′).class.methods #»D h(o′).usage m−→ W
	 #»

D 〈h, envS , f.m(v)〉 −→ 〈h{W/h(o′).usage}, (o′, [x �→ v]) · envS , return{e}〉

(Ret)
v �= v′ ⇒ ¬lin(v′, h)

	 #»
D 〈h, (o, [x �→ v′]) · envS , return{v}〉 −→ 〈h, envS , v〉

The rule Lbl shows how a loop iteration is performed by substituting
instances of continue k with the expression defined for the associated label.
In CallF the premise describes how an object must follow the usage described
by its current typestate. A method m can only be called if the usage of the
object allows an m transition and the result of this evaluation is that the usage
of the object is updated and the next evaluation step is set to the method body

Behavioural Types for Memory and Method Safety 119

e by wrapping the expression in a special return{e} statement; this is a run-time
extension of the syntax that lets us record method calls waiting to be completed.
The Ret rule describes how a value is returned from a method call, by unpack-
ing the return statement into the value, while popping the call stack. For details
on the run-time syntax, see the technical report.

5 Results About the Type System

The first important result is the soundness of the type system, as usual shown
in two steps: subject-reduction and type-safety. So, firstly, well-typed programs
remain well-typed during execution. In our setting this means that when a well-
typed configuration reduces, it leads to a configuration that is also well-typed.
A configuration is well-typed if its bindings match the type information given:
The heap matches the field typing environment Λ, the stack Δ in the type
system matches the stack from the semantics, the objects mentioned in the type
system match those of e, the expression e itself is well typed and the field type
environment Λ is compatible with the program

#»

D. If this is the case, we write
Λ,Δ � #»

D 〈h, envS , e〉 : t � Λ′. Let Δ and Δ′ be sequences of object type and
parameter type environments, defined as Δ = envTO · envTS . An object type
environment envTO maps object names to typestates.

envTO : ONames ⇀ Typestates

A parameter type environment envTS is a sequence of pairs (o, [x 	→ t]) mapping
an object o to a parameter binding [x 	→ t].

To prove Theorem 1, we need typing rules for the dynamic syntax. Rule
(TRet) is one such rule; it also becomes central when proving Theorem3.

(TRet)
Λ;Δ � #»

D e : t � Λ′;Δ′ Δ′ = Δ′′ · (o′, [x 	→ t′]) terminated(t’)

Λ;Δ · (o, S) � #»
D return{e} : t � Λ′;Δ′′ · (o, S)

The rule tell us that a return{e} expression is well-typed if the expression
body e is well-typed and the method parameter used in the expression body
is terminated after the execution. The final type environment is one, in which
the parameter stack environment does not mention the called object and its
associated parameter. The intention is that this mirrors the modification of the
stack environment in the semantics as expressed in the reduction rule (Ret).

Theorem 1 (Subject reduction). Let
#»

D be such that � #»

D and let 〈h, envS , e〉
be a configuration. If � #»

D 〈h, envS , e〉 −→ 〈h′, env′
S , e′〉 then:

∃Λ,Δ . Λ,Δ � #»
D 〈h, envS , e〉 : t � Λ′;Δ′ implies

∃ΛN ,ΔN . ΛN ,ΔN � #»
D 〈h′, env′

S , e′〉 : t � Λ′′;Δ′, where Λ′(o) = Λ′′(o) and o
is the active object in the resulting configuration.

120 M. Bravetti et al.

Secondly, a well-typed program will never go wrong. In our case, this means
that a well-typed program does not attempt null-dereferencing, and all method
calls follow the specified usages. We formalize the notion of run-time error via a
predicate and write 〈h, envS , e〉 −→err whenever 〈h, envS , e〉 has an error. Rules
(NC-1) and (NC-2) describe two cases of null-dereferencing that occur when
the object invoked by method m has been nullified.

(NC-1)
h(o).f = null

〈h, (o, s) · envS , f.m(v)〉 −→err

(NC-2) 〈h, (o, [x �→ null]) · envS , x.m(v)〉 −→err

Theorem 2 (Type safety). If Λ;Δ � #»
D 〈h, envS , e〉 : t � Λ′;Δ′ and

〈h, envS , e〉 →∗ 〈h′, env′
S , e′〉 then 〈h′, env′

S , e′〉 �−→err

The second important result concerning type-checking is that well-typed ter-
minated programs do not leave object protocols incomplete. It is a direct conse-
quence of requiring in rule TClass the field typing environment to be terminated
and of the fact that the only active object is the main one, omain, which have the
end usage).

Theorem 3 (Protocol Completion). Let � �D. For all reachable configura-
tions 〈h, envS , e〉�D such that 〈h, envS , e〉 �→, we have envS = (omain, smain), e = v,
and moreover, terminated(h) .

6 Usage Inference

In this section, we outline a usage inference algorithm and present results for the
inferred usages. The algorithm infers usages from class declarations in order to
improve usability: it allows programmers to abstain from specifying usages for
all class declarations and facilitates type checking with less usages annotations
in the source program. The algorithm works on an acyclic graph of dependencies
between class declarations. This dependency graph defines the order in which
inference takes place, where the usage for a class C can only be inferred if the
usages of its fields have been explicitly declared or previously inferred.

The inference algorithm returns a usage for any given class declaration. It
considers how method call sequences of the class affect its field typing environ-
ments by using the type rules defined in Table 2. The process can be described
by the following three steps: Step 1. Extract allowed method sequences. Step
2. Filter non-terminating sequences. Step 3. Convert sequences into usages.

Step 1 is the most interesting since it establishes the possible sequences of
method calls in relation to the type system by using a transition relation −→ given
by rule (Class) shown below. This rule states that a method call m initiated
from field typing environment Φ and results in Φ′ is allowed if the method body is
well-typed and its parameter is terminated at the end. The (Class) rule, when

Behavioural Types for Memory and Method Safety 121

applied to a class declaration, defines a transition system where field typing
environments are states and transitions between them are method calls.

(Class)

{this �→ Φ}; ∅ · (this, [x �→ t]) �∅ e : t′ � {this �→ Φ′}; ∅ · (this, [x �→ t′′])
t′ m(t x) {e} ∈ C.methods ¬lin(t′′)

Φ
m−→ Φ′

Note that the premise of the (Class) rule is similar to the premise of (TCBr)
and that a method transition is only available if the method body is well typed
according to (TCBr). From the transition system defined by −→, we filter out
all transitions that cannot reach a terminated environment, since these environ-
ments will result in protocols that cannot terminate.

Example 5. Recall the FileReader example from Listing 1.2. We wish to infer the
usage for the FileReader class. Since the class has a field of type File, the usage
of the File class must be known. The inference algorithm starts from the initial
field typing environment {file : ⊥}. Using the (Class) rule we see that only the
method body of init is well typed in the initial field typing environment, thus
updating the field typing environment {file : File[U]}. The procedure is then
repeated for the updated environment where a call to readFile is now possible.
The field is now terminated and the algorithm proceeds to convert the transition
system into a usage. This conversion is done by representing each state of the
transition system as a usage variable and each transition as a branch usage. The
resulting usage for class FileReader is: X{X={init;X′} X′={readFile;end readFile;X}} �

A correctly inferred usage, in our case, is the principal usage for a class dec-
laration. A principal usage is the most permissible usage hence it includes the
behaviours of all usages that well-type a class. In other words, the most permis-
sible usage allows all sequences of method calls, for a class declaration, that do
not lead to null-dereferencing errors and can terminate. We define principality
in terms of a simulation ordering � where the principal usage can simulate any
usage that would make the class well typed. Let R be a binary relation on usages.
We call R a usage simulation iff for all (U1,U2) ∈ R we have that:

1. If U1
m−→ U ′

1 then U2
m−→ U ′

2 such that (U ′
1,U ′

2) ∈ R

2. If U1
l−→ U ′

1 then U2
l−→ U ′

2 such that (U ′
1,U ′

2) ∈ R

We say that U is a subusage of U ′, written U � U ′, if for some usage simulation
R we have (U ,U ′) ∈ R. Principal usages are always recursive since there is no
difference between a field typing environment at the initial state and at the end
as all fields are non-linear in accordance with protocol completion. A method
sequence that results in a terminated environment can be repeated any num-
ber of times and remain well typed. To allow usages to express termination or
repetition, we allow a limited form of non-determinism to choose between end
and repeating the protocol, as in the definition of X ′ above. If UI is the inferred
usage for a class C, then C is well-typed with this usage. Moreover, the inferred
usage is principal wrt. usage simulation.

122 M. Bravetti et al.

Theorem 4 (Principality). If UI is the inferred usage for class C, then UI is
the largest usage for C that makes C well typed. That is, � #»

D class C{UI ,
#»

F ,
»

M}
and ∀U . � #»

D class C {U ,
#»

F ,
»

M} =⇒ U � UI .

7 Conclusions and Future Work

In this paper we present a behavioural type system for the Mungo language, also
implemented in the form of a type-checker. Every class is annotated with usages
that describe the protocol to be followed by method calls to object instances
of the class. Moreover, object references can only be used in a linear fashion.
The type system provides a formal guarantee that a well-typed program will
satisfy three important properties: memory-safety, and object protocol fidelity
and object protocol completion. Behavioural types are essential, as they allow
variables of class type to have a type that evolves to ⊥, which is the only type
inhabited by the null value. This is in contrast to most type systems for Java
like languages that do not let types evolve during a computation and overload
null to have any type.

Furthermore, a contribution that is novel and in contrast to other typestate-
based approaches is that it is possible to infer usages from a class description. We
have implemented a tool that can infer the most general usage wrt. a simulation
preorder that makes the class well-typed.

In our type system, variables obey a very simple protocol of linearity: They
must be written to once, then read once (otherwise they return a null value).
The current version of the Mungo tool [23] allows for a representation of fields
that can be used k times for k > 1 by having k field variables that are each
used once. A natural extension of the system is therefore to allow for a richer
language of safe variable protocols. An approach currently under investigation
is to use ideas from the work on behavioural separation of Caires and Seco [7],
by Franco et al. on SHAPES [13] and that of Militão et al. [25].

To be able to type a larger subset of Java than what Mungo currently allows,
further work also includes adding inheritance to the language in a type-safe
manner. Inheritance is common in object oriented programming, and would
allow Mungo to be used for a larger set of programs. This is particularly impor-
tant, since classes in languages like Java always implicitly inherit from the class
Object. However, Grigore has shown that type checking for Java in the pres-
ence of full subtyping is undecidable [17]. Therefore, in further work, we need
to be extremely careful when introducing subtyping into our system. Moreover,
notice that this would require defining subtyping for class usages, a form of
behavioural/session subtyping [4,5,16].

References

1. https://github.com/MungoTypesystem/Mungo-Typechecker/ExamplePrograms/
2. Aldrich, J.: The Plaid programming language (2010)

https://github.com/MungoTypesystem/Mungo-Typechecker/ExamplePrograms/

Behavioural Types for Memory and Method Safety 123

3. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016)

4. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous session
subtyping. Inf. Comput. 256, 300–320 (2017)

5. Bravetti, M., Carbone, M., Zavattaro, G.: On the boundary between decidability
and undecidability of asynchronous session subtyping. Theoret. Comput. Sci. 722,
19–51 (2018)

6. Bravetti, M., Zavattaro, G.: Process calculi as a tool for studying coordination,
contracts and session types. J. Logical Algebraic Methods Program. 112, 100527
(2020)

7. Caires, L., Seco, J.C.: The type discipline of behavioral separation. In: The 40th
Symposium on Principles of Programming Languages, POPL 2013, pp. 275–286.
ACM (2013)

8. de Boer, F.S., Bravetti, M., Lee, M.D., Zavattaro, G.: A petri net based modeling
of active objects and futures. Fundamenta Informaticae 159(3), 197–256 (2018)

9. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24851-4 21

10. Dietl, W., Dietzel, S., Ernst, M.D., Muslu, K., Schiller, T.W.: Building and using
pluggable type-checkers. In: Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, pp. 681–690. ACM (2011)

11. Fähndrich, M., DeLine, R.: Adoption and focus: practical linear types for impera-
tive programming. In: Proceedings of PLDI 2002, pp. 13–24. ACM (2002)

12. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-
oriented language. In: Proceedings of OOPSLA 2003, pp. 302–312. ACM (2003)

13. Franco, J., Tasos, A., Drossopoulou, S., Wrigstad, T., Eisenbach, S.: Safely
abstracting memory layouts. CoRR, abs/1901.08006 (2019)

14. Garcia, R., Tanter, É., Wolff, R., Aldrich, J.: Foundations of typestate-oriented
programming. Trans. Program. Lang. Syst. 36(4), 1–44 (2014)

15. Gay, S.J., Gesbert, N., Ravara, A., Vasconcelos, V.T.: Modular session types for
objects. Logical Methods Comput. Sci. 11(4), 1–76 (2015)

16. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica
42(2–3), 191–225 (2005)

17. Grigore, R.: Java generics are turing complete. In: Proceedings of POPL 2017, pp.
73–85. ACM (2017)

18. Hoare, T.: Null references: the billion dollar mistake (2009)
19. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

20. Hubert, L., Jensen, T., Pichardie, D.: Semantic foundations and inference of non-
null annotations. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol.
5051, pp. 132–149. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68863-1 9

21. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 1–36 (2016)

22. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight java: a minimal core calculus
for Java and GJ. Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

23. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo: a session type toolchain for Java. Sci. Comput. Program.
155, 52–75 (2018)

https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-540-24851-4_21
https://arxiv.org/abs/1901.08006
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/978-3-540-68863-1_9
https://doi.org/10.1007/978-3-540-68863-1_9

124 M. Bravetti et al.

24. Meyer, B.: Ending null pointer crashes. Commun. ACM 60(5), 8–9 (2017)
25. Militão, F., Aldrich, J., Caires, L.: Aliasing control with view-based typestate. In:

Proceedings of the 12th Workshop on Formal Techniques for Java-Like Programs,
FTFJP 2010. ACM (2010)

26. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17, 348–375 (1978)

27. Nierstrasz, O.: Regular types for active objects. In: Proceedings of the 8th Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA 1993), pp. 1–15. ACM (1993)

28. Siek, J., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 2–27. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73589-2 2

29. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986)

30. Sunshine, J.: Protocol programmability. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA (2013). AAI3578659

31. Sunshine, J., Stork, S., Naden, K., Aldrich, J.: Changing state in the plaid language.
In: Companion to OOPSLA 2011, pp. 37–38. ACM (2011)

32. The Jedis Project: Jedis (2011–2019). https://github.com/xetorthio/jedis/
33. The Redis Project: Redis (2011–2019). https://redis.io/
34. Voinea, A.L., Dardha, O., Gay, S.J.: Typechecking Java protocols with [St]Mungo.

In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 208–224.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50086-3 12

https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://github.com/xetorthio/jedis/
https://redis.io/
https://doi.org/10.1007/978-3-030-50086-3_12

Syntactically Restricting Bounded
Polymorphism for Decidable Subtyping

Julian Mackay1(B) , Alex Potanin1 , Jonathan Aldrich2 ,
and Lindsay Groves1

1 Victoria University of Wellington, Wellington, New Zealand
{julian,alex,lindsay}@ecs.vuw.ac.nz

2 Carnegie Mellon University, Pittsburgh, USA
jonathan.aldrich@cs.cmu.edu

Abstract. Subtyping of Bounded Polymorphism has long been known
to be undecidable when coupled with contra-variance. While decidable
forms of bounded polymorphism exist, they all sacrifice either useful
properties such as contra-variance (Kernel F<:), or useful metatheoretic
properties (F�

<:). In this paper we show how, by syntactically separating
contra-variance from the recursive aspects of subtyping in System F<:,
decidable subtyping can be ensured while also allowing for both contra-
variant subtyping of certain instances of bounded polymorphism, and
many of System F<:’s desirable metatheoretic properties. We then show
that this approach can be applied to the related polymorphism present
in D<:, a minimal calculus that models core features of the Scala type
system.

Keywords: Polymorphism · Language design · Functional languages ·
Object oriented languages

1 Introduction

Bounded polymorphism (or bounded quantification) is a powerful and widely
used language construct that introduces a form of abstraction for types. Where
functions provide an abstraction of behaviour for values, bounded polymorphism
provides an abstraction of behaviour for types. A motivating example is an
ordering for numbers, comparing two numbers, and returning −1 if the first is
smaller than the second, 0 if the two numbers are equal, and 1 if the first is
larger than the second. Below we provide such the signature for ord using no
particular language syntax.

def ord : [A <: Number] A -> A -> Integer

The type A is unimportant except in that A is some subtype of Number (the upper
bound on A). Ideally we would like ord to be defined abstractly for any value
that could be considered a Number, and not have to write a separate function for

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 125–144, 2020.
https://doi.org/10.1007/978-3-030-64437-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_7&domain=pdf
http://orcid.org/0000-0003-3098-3901
http://orcid.org/0000-0002-4242-2725
http://orcid.org/0000-0003-0631-5591
http://orcid.org/0000-0002-9179-3602
https://doi.org/10.1007/978-3-030-64437-6_7

126 J. Mackay et al.

Integer, Natural, and Real. ord is quantified over type A which is bounded by
Number.

Bounded polymorphism has been adopted by many different languages, and
is not exclusive to any specific paradigm. Haskell is an instance of bounded
polymorphism in a functional setting. In Haskell, bounds take the form of type
classes that values must conform to [17]. In an object oriented language, Java
Generics provide a form of bounded polymorphism for both method and class
definitions. Scala exists in both the function and object oriented paradigms, and
includes generics similar to that of Java (only more flexible), but adds abstract
type members on top, further complicating matters.

Unfortunately, several forms of bounded polymorphism have been shown to
exhibit undecidable subtyping. To the surprise of many at the time, Pierce [13]
demonstrated that subtyping in System F<:, a typed λ-calculus with subtyping
and bounded polymorphism, was undecidable by a reduction to the halting prob-
lem. More recently, and to perhaps less surprise, subtyping of Java Generics was
also shown to be undecidable [8]. Hu and Lhoták [9] showed subtyping of D<:,
a minimal calculus, capturing parts of the Scala type system, was undecidable
by a reduction to an undecidable fragment of System F<:. Mackay et al. [10]
developed two decidable variants on Wyvern, a programming language closely
related to Scala. Mackay et al. focused on recursive types in Scala, but touched
on bounded polymorphism.

If subtyping in languages with relatively wide usage is undecidable, then
one might ask the question: how important is decidable subtyping in practice?
Unfortunately, undecidability means that type checking of certain programs will
not terminate, and will potentially crash without any error message indicating
the problem. In writing a compiler, one fix to this problem might be to enforce a
maximal depth on proof search, or to simply timeout during type checking. These
are unsatisfying solutions, as not only might they create some false negatives, but
they also won’t be able to provide the programmer much guidance on debugging
their program. Thus, while presumably rare, the potential problems are severe.

Not all forms of bounded polymorphism are undecidable, and there have
been attempts at identifying fragments of bounded polymorphism that are both
decidable and expressive. With regard to System F<:, the most notable instances
of these are perhaps Kernel F<: and F�

<: (technically Kernel F<: existed prior to
questions of decidability). All restrictions sacrifice some aspect of the language,
and exclude some category of program from the language. Both Kernel F<:

and F�
<: exclude useful behaviour, or in the case of F�

<: introduce undesirable
properties to the language (this will be addressed in Sect. 2).

In this paper we show how simple syntactic restrictions can allow for decid-
able forms of bounded polymorphism that are easy to type check, allow for
informative error messages, all while retaining many of the useful properties of
typing in System F<:: subtype transitivity, type safety, and minimal typing. We
then demonstrate that this approach can be extended to the related calculus
D<:. The novelty of our approach lies in its simplicity. Simple syntactic restric-
tions allow for relatively simple extensions to existing type checkers, and can

Syntactically Restricting Bounded Polymorphism for Decidable Subtyping 127

help keep metatheory simple. Simplicity of metatheory is particularly useful in
the context of D<:, a type system that arises from a family of type systems that
are notoriously nuanced in their theoretical foundations [15].

2 The Undecidability of Bounded Polymorphism in
System F<:

Bounded polymorphism was formalized in System F<: by Cardelli [4], and shown
to be undecidable by Pierce [13]. System F<: introduces bounded polymorphism
to the simply typed λ-calculus by way of a universally quantified syntactic form
with the following typing rule.

Γ, (α � τ1) � t : τ2

Γ � Λ(α � τ1).t : ∀(α � τ1).τ2

That is, term t, with type τ2, is quantified over some type, represented by α,
whose upper bound is τ1. The undecidability of subtyping in System F<: was
demonstrated by a reduction of subtyping to the halting problem. The reduction
relies on the contra-variance in the subtyping rule for bounded polymorphism
given below.

Γ � τ2 <: τ1 Γ, (α � τ2) � τ ′
1 <: τ ′

2

Γ � ∀(α � τ1).τ ′
1 <: ∀(α � τ2).τ ′

2

(S-All)

As can be seen above, subtyping of bounded polymorphism in System F<: allows
for contra-variance on the polymorphic type bound. Kernel F<:, a variant of Sys-
tem F<:, has been shown to be decidable in its subtyping [14]. Kernel F<: removes
the contra-variance of the S-All rule above, and instead enforces invariance on
the bound.

Γ, (α � τ) � τ1 <: τ2

Γ � ∀(α � τ).τ1 <: ∀(α � τ).τ2
(S-All-Kernel)

While decidable, S-All-Kernel is unsatisfying as it excludes desirable
behaviour. Ideally, we would like the ord function, from Sect. 1, to be usable
in positions that require a more specific type such as Integer. Suppose we want
to parameterize an Integer sorting algorithm on not just the list, but the order-
ing too.

def sort (compare : [A <: Integer] A -> A -> Integer ,
l : List[Integer]) : List[Integer]

We would like to be able to call the above sort function with ord.

assert(sort(ord , [1, 8, 2, -10]) == [-10, 1, 2, 8])

128 J. Mackay et al.

Castagna and Pierce [5] attempted to introduce such variance in a safe way by
proposing F�

<: with the following subtyping rule for bounded polymorphism.

Γ � τ2 <: τ1 Γ, (α � �) � τ ′
1 <: τ ′

2

Γ � ∀(α � τ1).τ ′
1 <: ∀(α � τ2).τ ′

2

(S-All�)

τ ::=
� top
α variable

τ → τ arrow
∀(α � τ).τ all

Fig. 1. System F<: Type Syntax

Unfortunately, while decidable, F�
<: sacrifices minimal typing. That is, it is pos-

sible to write a term in F�
<: that can be typed with two different, and unrelated

types [6]. A lack of minimal typing means that the typing algorithm for F�
<: is

not complete.

3 Separating Recursion and Contra-Variance
in System F<:

In this section we present a variant of System F<: that introduces a syntactic
restriction on bounded polymorphism to achieve decidable subtyping. We start
by introducing the type syntax of System F<: in Fig. 1. Since we are only con-
cerned with subtyping, and not typing, we only present the type syntax. The
term syntax and typing rules can be found in the accompanying technical report.
Further, throughout the rest of this paper, we refer to several different definitions
of subtyping and typing. To distinguish between these differences, we annotate
the judgment. We have already mentioned three different subtyping definitions,
and differentiate them here

– Subtyping for System F<: as defined by Cardelli et al. [4] is indicated as
Γ � τ1 <: τ2.

– Subtyping for Kernel F<: is indicated as Γ � τ1 <:K τ2.
– Subtyping for F�

<: is indicated as Γ � τ1 <:� τ2.

A type in System F<: is either the top type (�), a bounded type variable
(α), an arrow type (τ → τ), or a universally quantified type (∀(α � τ).τ) i.e.
bounded polymorphism. Note: in the literature, polymorphism can mean several
different language features, however in this paper, unless stated otherwise, we
use it as short hand to refer to bounded polymorphism of the form in System
F<:.

In Fig. 2 we define the subtyping of FN
<:, a normal form of subtyping in Sys-

tem F<:, defined by Pierce [13]. Subtyping is bounded above by � (SN -Top)

Syntactically Restricting Bounded Polymorphism for Decidable Subtyping 129

and explicitly reflexive in the case of type variables (SN -Rfl). A type super-
types a type variable if it supertypes its upper bound (SN -Var). Subtyping of
arrow types is contra-variant with respect to its argument type, and covariant
with respect to its return type (SN -Arr). Finally, subtyping of bounded poly-
morphism is contra-variant with respect to the type bounds, and covariant with
respect to the type bodies.

Achieving a decidable variant of System F<: follows a simple idea: we restrict
contra-variance of type bounds to only types that do not themselves contain
bounded polymorphism. In Fig. 3 we introduce a separated variant for the syntax
of System F<: called FR

<:. In FR
<:, types containing no bounded polymorphism are

identified by ρ. Their only difference from more general types is a lack of bounded
polymorphism. A restricted type, ρ, is either �, a restricted type variable γ, or an
arrow type. We keep the generalized form of type variables, α, for convenience.
We now define a restricted subtyping relation using the rule set in Fig. 4.

Γ � τ <:N � (SN -Top) Γ � α <:N α (SN -Rfl)

(α � τ ′) ∈ Γ

Γ � τ ′ <:N τ

Γ � α <:N τ
(SN -Var)

Γ � τ2 <:N τ1
Γ � τ ′

1 <:N τ ′
2

Γ � τ1 → τ ′
1 <:N τ2 → τ ′

2

(SN -Arr)

Γ � τ2 <:N τ1 Γ, (α � τ2) � τ ′
1 <:N τ ′

2

Γ � ∀(α � τ1).τ ′
1 <:N ∀(α � τ2).τ ′

2

(SN -All)

Fig. 2. System F<: Subtyping

τ ::= FR
<: Type

� top
α variable
τ → τ arrow
∀(γ � ρ).τ restricted all
∀(υ � τ).τ all

α ::= Type Variable
υ unrestricted
γ restricted

ρ ::= Restricted Type
� top
γ variable
ρ → ρ arrow

Fig. 3. FR
<: Type Syntax

The subtyping of FR
<: defined in Fig. 4 replaces the SN -All rule with two

rules: SR-All-Kernel and SR-All. SR-All-Kernel is exactly the rule for
subtyping of bounded polymorphism found in Kernel F<:, that is, for ∀(α �
τ1).τ ′

1 to subtype ∀(α � τ2).τ ′
2, τ1 and τ2 must be syntactically equivalent.

Contra-variance is allowed only in cases where the type bounds are of the form

130 J. Mackay et al.

γ � ρ, and thus do not themselves include bounded polymorphism. This is
captured by the rule SR-All.

The result of this restriction is that subtyping may only introduce new
instances of bounded polymorphism into the context if they are common to
both types.

3.1 Subtype Decidability

In order to prove subtype decidability, we define a finite measure on types under
a context (M(Γ, τ)), along with an ordering (M(Γ1, τ1) < M(Γ2, τ2)). We sub-
sequently demonstrate that for any calls to a subtype algorithm for FR

<:, all
resulting subtype calls are strictly smaller that the original call.

Γ � τ <:R � (SR-Top) Γ � α <:R α (SR-Rfl)

(α � τ ′) ∈ Γ

Γ � τ ′ <:R τ

Γ � α <:R τ
(SR-Var)

Γ � τ2 <:R τ1
Γ � τ ′

1 <R: τ ′
2

Γ � τ1 → τ ′
1 <:R τ2 → τ ′

2

(SR-Arr)

Γ, (α � τ) � τ1 <:R τ2

Γ � ∀(α � τ).τ1 <:R ∀(α � τ).τ2
(SR-All-Kernel)

Γ � ρ2 <:R ρ1 Γ, (γ � ρ2) � τ1 <:R τ2

Γ � ∀(γ � ρ1).τ1 <:R ∀(γ � ρ2).τ2
(SR-All)

Fig. 4. FR
<: Subtyping

Indexed Types. Before we define our measure M, we introduce an indexing
on type variables and types, along with a related invariant on typing contexts.

We index type variables with a natural number, indicating their position
in a context. This is represented as a superscript on type variables: αn under
context Γ is the (n + 1)th type variable introduced to Γ (the first type variable
introduced to Γ being indexed by 0). We extend this indexing to types in the
form of an upper bound on type variable indices: τn under context Γ indicates
that for all αi occurring in τn, i < n. Generally the index n is not important,
and so we only include it when relevant. We further define a simple form of
well-formedness:

Definition 1 (Type Variable Well-Formedness). A type τn is well-formed
under context Γ (written Γ � τn wf) if and only if n ≤ |Γ |.
We now use this to define a well-formedness property that we assume on all
typing contexts:

Syntactically Restricting Bounded Polymorphism for Decidable Subtyping 131

Definition 2 (Typing Context Well-Formedness). A typing context Γ is
well-formed (written Γ wf) if and only if for all (αn � τ i) ∈ Γ we have i < n.

That is, a type bound τ in a typing context Γ may only contain occurrences of
type variables that were already in Γ when τ was added to it.

Note that indices on types are not unique, and are only an upper bound on
type variable occurrences. i.e. if we are able to write τn, and n < m, then we
are equally able to write τm. Finally, we use this to define an indexing on typing
contexts.

Definition 3 (Indexed Typing Context)

Γn � {(αi � τ)|(αi � τ) ∈ Γ and i ≤ n}

D(Γ, α) = 1 + D(Γ ′, τ)
where Γ = Γ ′, (α � τ), Γ ′′

D(Γ, τ1 → τ2) = 1 + max(D(Γ, τ1), D(Γ, τ2))

D(Γ, �) = 0
D(Γ, ∀(α � τ1).τ2) = 0

Fig. 5. Quantification depth: the depth of the next instance of bounded polymorphism.

Q(�) = 0
Q(α) = 0
Q(τ1 → τ1) = Q(τ1) + Q(τ2)
Q(∀(α � τ1).τ2) = 1 + Q(τ1) + Q(τ2)

Q(∅) = ∅
Q(Γ) = Q(τ) + Q(Γ ′)

where Γ = Γ ′, (α � τ)
Q(Γ, τn) = Q(Γn) + Q(τn)

Fig. 6. Quantification size: the number of instances of bounded polymorphism in a
type.

A Finite Measure on Types. M(Γ, τ) is defined as a lexicographic ordering
on the quantification size and the quantification depth of τ under Γ . Note: we
use quantification here to refer to bounded polymorphism, i.e. “all” types of the
form ∀(α � τ1).τ2. We define M using two simpler measures:

1. D(Γ, τ) (see Fig. 5): the depth at which the next instance of bounded poly-
morphism occurs in τ , and

2. Q(Γ, τ) (see Fig. 6): the number of instances of bounded polymorphism in τ
under context Γ .

D, or quantification depth is defined in Fig. 5 as the maximum depth at
which the next quantification type occurs. D is also necessarily finite, since it
is bounded by the sizes the context Γ and type τ . Note: we assume a simple
well-formedness property, that type variables in the context only refer to types
lower down in the context, this allows us to disregard Γ ′′ in the definition of
D(Γ, α).

132 J. Mackay et al.

Q(τ), or quantification size of a type is defined in Fig. 6 as the number of
syntactic instances of quantification within some τ . It is simple to demonstrate
that Q is finite, as it is bound by the (finite) size of τ . We then define Q(Γ, τ), as
the quantification size of both the type τ , and all types in the context Γ . Since
context arising from type checking must be finite, it follows that Q(Γ, τ) must
also be finite.

M = Q × D
and
(q1, d1) < (q2, d2) ⇐⇒ q1 < q2 or (1)

q1 = q2 and d1 < d2 (2)

Fig. 7. Lexicographic ordering on quantification size and depth.

Finally, we define M(Γ, τ) along with an ordering in Fig. 7. M(Γ, τ) is defined
as (Q(Γ, τ), D(Γ, τ)). The key property of M that guarantees subtype decidabil-
ity, is the fact that restricted types have no bounded polymorphism as subterms,
i.e.

Property 1 (Quantification Size of Restricted Types in FR
<:)

∀ρ,Q(ρ) = 0

Proof of Decidability. Since the subtyping defined in Fig. 4 is syntax-directed,
the inversion of the rules themselves represent an algorithm for subtyping of FR

<:.
This means that we need not define an algorithm, and are only required to reason
about the conclusions of the rules and their premises. We define subtypeF R

<:
as

the algorithm obtained by inverting the rules in Fig. 4. Theorem 1 provides a
proof of decidability of subtyping in FR

<:.

Theorem 1 (Subtype Decidability of FR
<:). For all Γ , τ1, and τ2,

subtypeF R
<:
(Γ , τ1, τ2) is guaranteed to terminate.

Proof. Termination of subtypeF R
<:

is easy to demonstrate by showing that M
represents a strictly decreasing measure on subtyping. That is, for any subtype
check

subtypeF R
<:

(Γ, τ1, τ2)

for any resulting calls
subtypeF R

<:
(Γ ′, τ ′

1, τ
′
2)

we have
M(Γ ′, τ ′

1) + M(Γ ′, τ ′
2) < M(Γ, τ1) + M(Γ, τ2)

Since subtypeF R
<:

is defined as the inversion of the rules in Fig. 4, the above
property is demonstrated by showing that the size of the premises (as measured
by M) of each rule is strictly smaller than the size of the conclusion. In most
cases it is fairly simple to demonstrate this invariant, however in the cases of
SR-Var and SR-All, the result is not necessarily so obvious.

Syntactically Restricting Bounded Polymorphism for Decidable Subtyping 133

Case 1 (SR-Var).

(α � τ ′) ∈ Γ Γ � τ ′ <:R τ

Γ � α <:R τ
(SR-Var)

The only sub-proof that we need demonstrate our invariant for is Γ � τ ′ <:R τ .
That is, we need to show that

(Q(Γ, τ ′)+Q(Γ, τ),D(Γ, τ ′)+D(Γ, τ)) < (Q(Γ, α)+Q(Γ, τ),D(Γ, α)+D(Γ, τ))

Since Q(Γ, τ) and D(Γ, τ) fall on both sides of the ordering, it is sufficient to
show that

(Q(Γ, τ ′),D(Γ, τ ′)) < (Q(Γ, α),D(Γ, α))

Γ is in fact an ordered list of type variable bounds, and thus (α � τ ′) ∈ Γ is
equivalent to asserting that there exists some Γ ′ and Γ ′′ such that Γ = Γ ′, (α �
τ ′), Γ ′′. Now from the definition of D we have that

D(Γ, α) = 1 + D(Γ ′, τ ′)

Therefore, clearly D(Γ, α) > D(Γ ′, τ ′), and since Γ (and thus Γ ′) is ordered all
variables in τ ′ are mapped within Γ ′, and D(Γ, τ ′) = D(Γ ′, τ ′), giving us

D(Γ, α) > D(Γ, τ ′)

Since D is decreasing, in order to show that our invariant is obeyed, we need
only show that Q is not increasing, i.e. Q(Γ, α) �< Q(Γ, τ ′). We make use of
the well-formedness of typing contexts that we defined in Definition 2. That is,
whenever we retrieve a type bound from a well-formed typing context, the index
of that type bound is strictly smaller than that of the associated type variable.
Suppose that α above is indexed by some n By definition

Q(Γ, αn) = Q(Γn) + Q(αn)

Further, by Definition 2 we know there exists some i such that i < n and

Q(Γ, τ i) = Q(Γ i) + Q(τ i)

Since i < n and n ≤ n, by Definition 3 we know that

Γ i ∪ {(αn � τ i)} ⊆ Γn

Therefore,
Q(Γn) ≥ Q(Γ i) + Q(τ i)

and finally we get
Q(Γn) + Q(αn) ≥ Q(Γ i) + Q(τ i)

134 J. Mackay et al.

Case 2 (SR-All).

Γ � ρ2 <:R ρ1 Γ, (γ � ρ2) � τ1 <:R τ2

Γ � ∀(γ � ρ1).τ1 <:R ∀(γ � ρ2).τ2
(SR-All)

Firstly, it is simple to show that

M(Γ, ρ1) + M(Γ, ρ2) < M(Γ,∀(γ � ρ1).τ1) + M(Γ,∀(γ � ρ2).τ2)

Secondly, the key observation is that by Property 1 we know that

Q(ρ1) = Q(ρ2) = 0

As a result we also have that

Q(Γ, (γ � ρ2) = Q(Γ))

Thus we have

Q(Γ, (γ � ρ2), τ1) + Q(Γ, (γ � ρ2), τ2) = Q(Γ, τ1) + Q(Γ, τ2)

It is thus simple to show that

Q(Γ, τ1) + Q(Γ, τ2) < Q(Γ,∀(γ � ρ1).τ1) + Q(Γ,∀(γ � ρ2).τ2)

and subsequently we get the desired result.

3.2 Properties of FR
< :

One of the most useful aspects of FR
<:, is that it represents a subset of System

F<:. That is, not only is any type τ in FR
<: also a type in System F<:, but

subtyping in FR
<: implies subtyping in System F<:, and typing in FR

<: implies
typing in System F<:. This means that FR

<: inherits several useful properties of
System F<: metatheory.

In this Section, we discuss some of the properties of FR
<:, and in doing so,

we refer to both the typing judgment, and operational semantics. These are
identical to those of System F<:, and so are not given here, but are provided in
the accompanying technical report [1]. As with subtyping, we often need to refer
to several different forms of typing, and we make this distinction by annotating
the judgment appropriately. Typing in System F<: is indicated as Γ � τ1 : τ2,
and in FR

<: as Γ � τ1 :R τ2.

Subtype Transitivity. Unlike other variants on System F<: [9], FR
<: retains

the subtype transitivity of System F<:.

Theorem 2 (Subtype Transitivity in FR
<:). For all τ1, τ2, and τ3, if Γ �

τ1 <:R τ2 and Γ � τ2 <:R τ3, then Γ � τ1 <:R τ3.

Syntactically Restricting Bounded Polymorphism for Decidable Subtyping 135

Proof. Subtype transitivity is proven as part of more general theorem that
includes narrowing of the typing context. i.e. we prove the following properties
mutually hold:

Γ � τ1 <:R τ2
Γ � τ2 <:R τ3

Γ � τ1 <:R τ3
(Trans)

Γ1, (α � τ), Γ2 � τ1 <:R τ2
Γ1 � τ ′ <:R τ

Γ1, (α � τ ′), Γ2 � τ1 <:R τ2
(Narrowing)

The proof can be found in the associated technical report [1].

Subtyping in FR
<: ⊂ Subtyping in System F<: FR

<: is not a significant change
to the semantics of bounded polymorphism from System F<:, in fact subtyping
in FR

<: is a subset of subtyping in System F<:. That is any subtyping that can
be derived in FR

<: can also be derived in System F<:.

Theorem 3 (FR
<: ⊂ System F<:). For all Γ , τ1, and τ1, if Γ � τ1 <:R τ2

then Γ � τ1 <:N τ2.

Proof. The result is easily reached by noting that every rule in Fig. 4 has a
counterpart in Fig. 2 that is at least as permissive.

This is a useful property because it implies that existing type checkers need
only introduce syntactic checks at key points (when checking subtyping between
polymorphic types with different bounds), and do not need significant modifica-
tions to the subtyping algorithm.

Subtyping in Kernel F<: ⊂ Subtyping in FR
<: FR

<: represents a super-set
of Kernel F<: in terms of subtyping. This provides a useful lower bound on
expressiveness. Any valid Kernel F<: program is also a valid FR

<: program.

Theorem 4 (Kernel F<: ⊂ FR
<:). For all Γ , τ1, and τ1, if Γ � τ1 <:K τ2

then Γ � τ1 <:R τ2.

Proof. The result arises from the fact that the SR-Kernel-All rule in Fig. 4
is the exact rule for bounded polymorphism in Kernel F<:. Thus, subtyping in
FR

<: is at least as expressive than subtyping in Kernel F<:.

Type Safety. As subtyping in FR
<: is a subset of subtyping in System F<:, and

the two calculi have otherwise identical typing, it follows that every well-typed
program in FR

<: is well-typed in System F<:. It is thus unsurprising that given
System F<:’s type safety, and that the two calculi have identical operational
semantics, any well-typed FR

<: program is guaranteed to not get stuck. In other
words, FR

<: is type safe.

Theorem 5 (Type Safety). For all Γ , t and τ , if Γ � t :R τ , then reduction
of t is guaranteed to not get stuck.

Proof. The result arises immediately from the type safety of System F<:, and
the result in Theorem3.

136 J. Mackay et al.

Minimal Typing. As mentioned in Sect. 2 F�
<: [5] is another variant of System

F<: that allows for subtyping of bounded polymorphism that is both decidable
and contra-variant on type bounds. We also mentioned that typing in F�

<: is not
minimal [6], and thus some terms can be typed with two different types that are
not related by subtyping. Specifically, in F�

<:, the term t = Λ(X � Int).λ(x :
X).x can be shown to have both the type τ1 = ∀(X � Int).X → X, and the
type τ2 = ∀(X � Int).X → Int. In F�

<:, these two types are unrelated, and have
no lower bound. The implications of this lack of minimality are that the standard
typing algorithm for System F<: is not complete for F�

<:, and will assign t one
type, but not the other, and any usage where t is required to be typed with both
types will not type check.

The reason for the loss of minimal typing in F�
<: is due to a “rebounding” of

type variables during subtyping to �. Subtyping of the body of a polymorphic
type is done with reduced type information as the bound of the type variable is
treated as �, hiding the relationship between the type variable and its bound.

A central motivation in designing FR
<: is to provide reliable and expected

behaviour to type checkers, that allows for understandable error messages in
type checking. The loss of minimal typing does not provide these assurances.
For instance, it seems reasonable to expect that in the example above, τ1 should
subtype τ2, and if it doesn’t a satisfying reason should be provided by the type
checker. Subtyping in FR

<: does not perform the same “rebounding”, and as a
result does not suffer from the same loss of minimal typing.

τ ::=
� top
⊥ bottom
∀(x : τ).τx function

x.L selection
{L : τ . . . τ} declaration

Fig. 8. D<: Type Syntax

Theorem 6 (Minimal Typing). For all Δ, Γ , t, τ1, and τ2, if Δ;Γ � t :R τ1
and Δ;Γ � t :R τ2, then there exists some τ , such that Δ;Γ � t :R τ ,
Δ;Γ � τ <:R τ1, and Δ;Γ � τ <:R τ2.

Proof. The proof can be found in the associated technical report [1].

4 Separating D<:

D<: is a calculus related to System F<: that includes abstract type members and
dependent functions, and serves to model core aspects of the Scala type system.
The syntax of D<: is given in Fig. 8, and at first glance does not immediately
resemble that of System F<:. Most noticeably, D<: does not include any type
variables. The expressiveness of D<: derives from being able to capture System
F<: using path types (x.L) and dependent function types (∀(x : τ1).τ2).

Syntactically Restricting Bounded Polymorphism for Decidable Subtyping 137

A type in D<: is either �, ⊥, a type declaration {L : τ1 . . . τ2}, a selection
type x.L, or a dependent function type ∀(x : τ1).τx

2 .
In D<:, type declarations ({L : τ1 . . . τ2}) define a type. Given a path x to the

type definition, the defined type can be used by selection on the path: x.L. That
is, if value x has type {L : τ1 . . . τ2}, then x.L refers to the defined type, where τ1
is the lower bound, and τ2 the upper bound. This is useful when combined with
the dependent function types of D<:. The return types of functions in D<: can
be dependent on the argument. This dependence is indicated in the syntax by a
super-script of the variable identifying the argument. i.e. ∀(x : τ1).τx

2 indicates
that x is free in τ2.

D<: subtyping is defined in Fig. 9, and is indicated by Γ � τ1 <:D τ2.
Subtyping is bound above by � (Top) and below by ⊥ (Bot). Subtyping is
explicitly reflexive (Rfl). Selection types subtype their upper bounds (Sel1),
and super type their lower bounds (Sel2). Subtyping of type declarations are
contra-variant with respect to the lower bounds, and covariant with respect to
their upper bounds (Bnd). Finally, subtyping of dependent function types is
contra-variant with respect to the argument types, and covariant with respect
to the return types, with the return types being dependent on the arguments
(All).

Coupling type declarations together with dependent function types allows for
similar functionality to F<:. That is, we can use the encoding below to capture
bounded polymorphism from System F<: in D<:.

[[�]] � � (1)
[[α]] � xα.A (2)

[[τ1 → τ2]] � ∀(xα : [[τ1]]).[[τ2]]xα (3)
[[∀(α � τ1).τ2]] � ∀(xα : {A : ⊥ . . . [[τ1]]}).[[τ2]]xα (4)

Γ � τ <:D � (Top) Γ � ⊥ <:D τ (Bot) Γ � τ <:D τ (Rfl)

Γ (x) = {L : τ1 . . . τ2}
Γ � x.L <:D τ2

(Sel1)
Γ (x) = {L : τ1 . . . τ2}

Γ � τ1 <:D x.L
(Sel2)

Γ � τ1 <:D τ2
Γ � τ2 <:D τ3

Γ � τ1 <:D τ3
(Trans)

Γ � τ2 <:D τ1
Γ, (x : τ2) � τ ′

1 <:D τ ′
2

Γ � ∀(x : τ1).τ ′
1 <:D ∀(x : τ2).τ ′

2

(All)

Γ � τ2 <:D τ1 Γ � τ ′
1 <:D τ ′

2

Γ � {L : τ1 . . . τ ′
1} <:D {L : τ2 . . . τ ′

2}
(Bnd)

Fig. 9. D<: Subtyping

The above encoding is in fact not enough to demonstrate the undecidability
of D<: due to the fact that subtyping of System F<: types is not equivalent to
subtyping of their encoding in D<:. That is, while the following holds:

Γ � τ1 <:N τ2 ⇒ [[Γ]] � [[τ1]] <:D [[τ2]]

138 J. Mackay et al.

the inverse does not.

[[Γ]] � [[τ1]] <:D [[τ2]] �⇒ Γ � τ1 <:N τ2

The reasons for this are due to the fact that functions in System F<: are unrelated
to polymorphic types, but in D<: they are both captured using dependent func-
tion types. A simple counter-example to the inverse are the types ∀(α � �).�
and � → �. Both polymorphic types and arrow types in System F<: are encoded
as dependent function types, and [[∀(α � �).�]] subtypes [[� → �]], however,
it is clear that ∀(α � �).� does not subtype � → �. The full proof for this
was demonstrated by Hu and Lhoták [9]. This result does not affect the unde-
cidability result for D<:, as the proof of undecidability in System F<: does not
rely on arrow types. Pierce’s [13] proof of undecidability uses a subset of System
F<: that does not include arrow types, and thus while the encoding of System
F<: into D<: is not complete, it is possible to define a complete encoding of the
fragment of System F<: that is undecidable. We leave the details of this to Hu
and Lhoták [9].

Figure 10 presents the syntax for DR
<:, a separated variant of D<:. DR

<: intro-
duces a similar separation on syntax to that of FR

<:. Where FR
<: places a restric-

tion on the bounds of type variables, DR
<: places a restriction on the bounds

of type members. That is, we distinguish restricted type definitions from unre-
stricted ones. A restricted type definition ({R : ρ1 . . . ρ2}) is a type definition
that does not contain any dependent function types in either the upper or lower
bound. As with FR

<:This restriction is indicated by restricted types (ρ). Note:
restricted types are only separated from dependent function types, and not func-
tion types in general. As we have already mentioned, dependent functions in D<:

capture both abstraction over values and abstraction over types, while in Sys-
tem F<:, bounded polymorphism only captures abstraction over types. To this
end, we allow restricted types in DR

<: to include non-dependent function types
(∀(x : τ1).τ2) that can be identified by the absence of the variable super-script
indicating the return type is dependent on the argument type.

τ ::= DR
<: Type

� top
⊥ bottom
{U : τ . . . τ} declaration
{R : ρ . . . ρ} restricted declaration
x.L selection
∀(x : τ).τx dependent function

L ::= Type Label
U unrestricted
R restricted

ρ ::= DR
<: Restricted Type

� top
⊥ bottom
{L : ρ . . . ρ} declaration
∀(x : ρ).ρ function
x.R selection

Fig. 10. DR
<: Type Syntax

Syntactically Restricting Bounded Polymorphism for Decidable Subtyping 139

Γ � τ <:R � (TopR) Γ � ⊥ <:R τ (BotR) Γ � x.L <:R x.L (RflR)

Γ (x) = {L : τ1 . . . τ2}
Γ � τ2 <: τ

Γ � x.L <:R τ
(Sel1R)

Γ (x) = {L : τ1 . . . τ2}
Γ � τ <: τ1

Γ � τ <:R x.L
(Sel2R)

Γ � τ2 <:R τ1 Γ � τ ′
1 <:R τ ′

2

Γ � {L : τ1 . . . τ ′
1} <:R {L : τ2 . . . τ ′

2}
(BndR)

Γ, (x : τ) � τ1 <:R τ2

Γ � ∀(x : τ).τx
1 <:R ∀(x : τ).τx

2

(All-KernelR)

Γ � ρ2 <:R ρ1 Γ, (x : ρ2) � τ1 <:R τ2

Γ � ∀(x : ρ1).τ ′x
1 <:R ∀(x : ρ2).τ ′x

2

(AllR)

Fig. 11. DR
<: Subtyping

4.1 Restricted Subtyping in DR
< :

Subtyping for DR
<: is defined in Fig. 11. There are several differences between the

restricted form of subtyping and that of D<:. As with bounded polymorphism
in FR

<:, subtyping of dependent function types in DR
<: can be proven using one

of two rules: (i) Kernel-AllR, a subtype rule that enforces invariance on the
argument type, and (ii) AllR, a subtype rule that allows covariance on function
argument types of the form ρ.

D(Γ, x.L) = 1 + max(D(Γ, τ1), D(Γ, τ2))
where Γ � x : {L : τ1 . . . τ2}

D(Γ, ∀(x : τ1).τ2) = 1 + max(D(Γ, τ1), D(Γ, τ2))

D(Γ, �) = 0
D(Γ, ⊥) = 0
D(Γ, ∀(x : τ1).τx

1) = 0

Fig. 12. Quantification Depth: the depth of the next dependent function type.

Subtyping in DR
<: also differs from standard D<: subtyping in how reflexivity

and transitivity are formalized. Explicit subtype reflexivity in DR
<: is restricted to

type selections (x.L). This is similar to the modification FN
<: makes to traditional

System F<:.

Subtype Transitivity. As in FN
<:, the explicit transitivity rule, Trans, is

removed. Transitivity rules are generally difficult to design an algorithm for as
it is not always clear what to choose for the middle type (τ2 in Trans). To try
and recapture some level of transitivity, we modify the subtype rules for upper
and lower bounds by introducing a level of transitivity (see Sel1R and Sel2R

140 J. Mackay et al.

in Fig. 11). This mirrors the difference in transitivity between the FN
<: version

of System F<: subtyping, and the original definition of Cardelli [4], where the
explicit transitivity rule was removed, and replaced with a modified rule for type
variable subtyping that accounted for transitivity. In the FN

<: (and FR
<:) rule set,

general transitivity is provable as a property of subtyping. Unfortunately the
same cannot be said for DR

<:. Subtyping in DR
<: is not transitive.

The reason for the loss of transitivity is due to the relationship between the
upper and lower bounds of type definitions: there is no requirement that the
lower bound subtypes the upper bound. Precursor calculi to D<: attempted to
enforce this invariant, but due to a complex set of reasons, this is not generally
possible in the presence of another Scala feature: intersection types. A critical
insight of previous work on the DOT calculus, is that ill-formed type bounds
not necessarily unsound [2,3,16] since ultimately at run-time, any type bounds
must be fulfilled by some value (a witness), and only well-formed bounds may
be fulfilled. The details are interesting, but are fairly complex and so we do not
address them further.

4.2 Subtype Decidability in DR
< :

The subtype decidability argument for DR
<: is much like that of FR

<:: We define
an ordering on the number of dependent function types and the depth of a type
down to the next dependent function type. We define the measures D and Q
in Figs. 12 and 13. As with FR

<:, the finite measure of DR
<: the lexicographic

ordering:
M = D × Q

Q(�) = 0
Q(α) = 0
Q(∀(x : τ1).τ2) = Q(τ1) + Q(τ2)
Q(∀(x : τ1).τx

2) = 1 + Q(τ1) + Q(τ2)

Q(Γ) = Q(τ) + Q(Γ ′)
where Γ = Γ ′, (α � τ)

Q(Γ, τn) = Q(Γn) + Q(τn)

Fig. 13. Quantification Size: the number of dependent function types in a DR
<: type.

We can now prove subtype decidability for DR
<: using much the same logic

as we did for FR
<:. We define a subtype algorithm for DR

<: : subtypeDR
<:

. As with
subtypeFR

<:, subtypeDR
<:

is the inversion of the rule set in Fig. 11. A sketch of
the proof of decidability is given below.

Theorem 7 (Subtype Decidability of DR
<:). For all Γ , τ1, and τ2,

subtypeDR
<:
(Γ , τ1, τ2) is guaranteed to terminate.

Proof. As with the proof of subtype decidability for FR
<:, it is fairly simple to

demonstrate that for any call subtypeDR
<:

(Γ, τ1, τ2), by the measure M, any
resulting calls to subtypeDR

<:
are strictly smaller.

Syntactically Restricting Bounded Polymorphism for Decidable Subtyping 141

4.3 Type Safety

Subtyping in DR
<: is a subset of subtyping in DR

<:, and as with FR
<:, this affords

DR
<: many of the properties of D<:. Type safety is one such property, and arises

immediately from Theorem 8 below.

Theorem 8 (DR
<: ⊂ D<:). For all Γ , τ1, and τ1, if Γ � τ1 <:R τ2 then

Γ � τ1 <:D τ2.

Proof. The result follows directly from the fact that for every rule in Fig. 11,
there is an corresponding rule in Fig. 9 that is at least as permissive.

4.4 Expressiveness

The expressiveness of DR
<: is still an open question, and can only properly be

addressed in an empirical way. It is worth noting that our definition of DR
<: is

similar in its conception to FR
<:, in that we take care to only place restrictions on

the use of dependent function types, and not function types in general. Argument
types may still refer to function types that do not meaningfully modify the
context. In fact, DR

<: is actually still too strict, and could potentially be relaxed
further in its definition. There is no reason that subtyping of non-dependent
function types need to have the same restrictions placed on them as dependent
function types. It is likely possible that we could extend the subtyping in Fig. 11
with the following rule.

Γ � τ2 <:R τ1 Γ, (x : τ2) � τ ′
1 <:R τ ′

2

Γ � ∀(x : τ1).τ ′
1 <:R ∀(x : τ2).τ ′

2

(All2R)

While at first glance the above rule looks like it might re-introduce undecidabil-
ity, note that the return types do not depend on the argument type: that is they
lack the super-script x. In this case, while we are still introducing differing types
to the context, they are not referred to in the return types, and so are of no
consequence. Such a rule is not without potential problems however. It is not
immediately clear what the above rule would mean for other properties of DR

<:.

5 Related Work

5.1 Strong F< : and Strong D< :

Hu and Lhoták [9], defined decidable variants of System F<: and D<: named
Strong F<: and Strong D<: respectively. Their approach introduces a second
typing context to subtyping, one for each type, giving subtyping the following
form.

Γ1 � τ1 <: τ2 � Γ2

Hu and Lhoták refer to this as “stare-at subtyping”. Type bounds in τ1 are
appended to Γ1, while type bounds in τ2 are appended to Γ2. This separation

142 J. Mackay et al.

of contexts ensures that there is no problematic “rebounding” [13] that might
lead to an expansive context. There are however some short comings to this
technique, specifically subtype transitivity is lacking in both type systems. Below
we demonstrate an instance of subtype transitivity that is lost in Strong F<:.

A = ∀(α � �).α B = ∀(α � Int).α C = ∀(α � Int).Int

While it can be shown that both A subtypes B and B subtypes C in Strong
F<:, the transitive case cannot be derived, i.e. A �<: C. During subtyping of
bounded polymorphism in Strong F<: (and Strong D<:), two typing contexts are
maintained, each updated with the bounds of the relevant type. While subtype
reflexivity of type variables allows α to subtype α when deriving A <: B, this
is not so when attempting to derive A <: C. This is not an especially complex
example, and is a subtyping that programmers might expect to hold.

Using a syntactic separation we are able to retain subtype transitivity in FR
<:.

The trade off is that we exclude a specific class of programs. These programs,
however, can be identified syntactically, and thus FR

<: enables the type checker
to better guide programmers in fixing their error.

While we have already mentioned that DR
<: is not indeed transitive, this is due

to the potential for “bad bounds” on type definitions, and the problems associ-
ated with ensuring “good bounds”. DR

<: does not exclude the types of transitivity
seen in Strong D<: which lacks transitivity, not only due to the “bad bounds”
problem, but also for the same reasons Strong F<: does. More specifically, the
subtyping A <: C can be derived in FR

<:. Similarly, the equivalent example in
D<: is not derivable in Strong D<:, but is derivable in DR

<:.

5.2 Wyvern

Mackay et al. [10] defined two decidable variants of Wyvern [11,12], a language
related to Scala, featuring type members, dependent function types, recursive
types, and a limited form of intersection types called type refinements. Their vari-
ants of Wyvern were named Wyvfix and Wyv self, and took different approaches
to ensuring decidability.

Interestingly, Wyvfix introduces essentially the same double headed form of
subtyping that Hu and Lhoták [9] did. An independent discovery, Mackay et al.
[10] use the double headed subtyping form in a slightly different setting with
the same purpose. While the Strong Kernel D<: of Hu and Lhoták [9] does not
include recursive types or any form of intersection types, Wyvfix does. Wyvfix
suffers from the same loss of transitivity that Strong Kernel D<: does, and as
such prohibits several useful forms of expressiveness.

Wyv self does not use a double headed form, and rather makes use of a Mate-
rial/Shape separation inspired by the work of Greenman et al. [7]. Wyv self does
not allow for contra-variance on the argument types of dependent functions.

Syntactically Restricting Bounded Polymorphism for Decidable Subtyping 143

6 Conclusion

In this paper we have presented FR
<:, a variant of System F<: that is decidable in

its subtyping, while retaining several of the desirable qualities of System F<:. Our
approach is largely in the form of a syntactic restriction on types, rather than a
significant departure from the semantics of subtyping bounded polymorphism.
Further, we have shown that this approach can be applied to another related
calculus, D<:, to get DR

<:, a type system that models core concepts of Scala. DR
<:

does not sacrifice certain instances of transitivity and expressiveness that other
similar designs in the past have.

In future work, we hope to show that this approach can be further applied to
the much more complex DOT calculus, by incorporating intersection types and
recursive types. Further, the expressiveness of these restrictions is still an open
question. While there are many languages that incorporate bounded polymor-
phism similar to System F<:, it is not clear how many of them allow for bounded
polymorphism within type bounds, the pattern that FR

<: restricts. What is yet
harder to say is what the restrictions of DR

<: mean for Scala. As we have noted,
the Scala type system potentially suffers from more undecidability issues than
just those related to dependent function types, recursive types in Scala are also
a source of undecidability [10], and so DR

<: does not ensure decidability of Scala’s
type system.

To settle the question of expressiveness, it would be valuable to conduct an
empirical survey of existing languages with bounded polymorphism to determine
either (i) how many of them already restrict the usage of bounded polymorphism
in the way that FR

<: and DR
<:, or (ii) how many of them are permit such patterns,

but are not in practice used by the respective programming communities.

References

1. Syntactically restricting bounded polymorphism for decidable subtyping. Technical
report (2020). https://doi.org/10.5281/zenodo.4039832

2. Amin, N., Moors, A., Odersky, M.: Dependent object types. In: 19th International
Workshop on Foundations of Object-Oriented Languages (2012)

3. Amin, N., Rompf, T., Odersky, M.: Foundations of path-dependent types. In: Pro-
ceedings of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA 2014 (2014)

4. Cardelli, L., Martini, S., Mitchell, J.C., Scedrov, A.: An extension of system F
with subtyping. In: Ito, T., Meyer, A.R. (eds.) Theor. Aspects Comput. Softw.,
pp. 750–770. Springer, Berlin Heidelberg, Berlin, Heidelberg (1991)

5. Castagna, G., Pierce, B.C.: Decidable bounded quantification. In: Proceedings of
the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1994 (1994)

6. Castagna, G., Pierce, B.C.: Corrigendum: decidable bounded quantification. In:
Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 1995 (1995)

7. Greenman, B., Muehlboeck, F., Tate, R.: Getting F-bounded polymorphism into
shape. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2014 (2014)

https://doi.org/10.5281/zenodo.4039832

144 J. Mackay et al.

8. Grigore, R.: Java generics are turing complete. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017
(2017)

9. Hu, J.Z.S., Lhoták, O.: Undecidability of D<: and its decidable fragments. In:
Proceedings of the ACM on Programming Languages (POPL) (2019)

10. Mackay, J., Potanin, A., Aldrich, J., Groves, L.: Decidable subtyping for path
dependent types. In: Proceedings of the ACM on Programming Languages (POPL)
(2019)

11. Nistor, L., Kurilova, D., Balzer, S., Chung, B., Potanin, A., Aldrich, J.: Wyvern:
a simple, typed, and pure object-oriented language. In: Proceedings of the 5th
Workshop on MechAnisms for SPEcialization, Generalization and inHerItance.
MASPEGHI 2013 (2013)

12. Omar, C., Kurilova, D., Nistor, L., Chung, B., Potanin, A., Aldrich, J.: Safely
composable type-specific languages. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol.
8586, pp. 105–130. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44202-9 5

13. Pierce, B.C.: Bounded quantification is undecidable. In: Proceedings of the 19th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1992 (1992)

14. Pierce, B.C.: Types and Programming Languages. The MIT Press, Massachusetts
(2002)

15. Rapoport, M., Kabir, I., He, P., Lhoták, O.: A simple soundness proof for depen-
dent object types. In: Proceedings of the ACM on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA) (2017)

16. Rompf, T., Amin, N.: Type soundness for dependent object types (dot). In: Pro-
ceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016 (2016)

17. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 1989 (1989)

https://doi.org/10.1007/978-3-662-44202-9_5
https://doi.org/10.1007/978-3-662-44202-9_5

Semantics

An Abstract Machine for Strong
Call by Value

Ma�lgorzata Biernacka , Dariusz Biernacki , Witold Charatonik ,
and Tomasz Drab(B)

Institute of Computer Science, University of Wroc�law, Wroc�law, Poland
{mabi,dabi,wch,tdr}@cs.uni.wroc.pl

https://ii.uni.wroc.pl/~mabi, https://ii.uni.wroc.pl/~dabi,

https://ii.uni.wroc.pl/~wch, https://ii.uni.wroc.pl/~tdr

Abstract. We present an abstract machine that implements a full-
reducing (a.k.a. strong) call-by-value strategy for pure λ-calculus. It is
derived using Danvy et al.’s functional correspondence from Crégut’s KN
by: (1) deconstructing KN to a call-by-name normalization-by-evaluation
function akin to Filinski and Rohde’s, (2) modifying the resulting nor-
malizer so that it implements the right-to-left call-by-value function
application, and (3) constructing the functionally corresponding abstract
machine.

This new machine implements a reduction strategy that subsumes
the fireball-calculus variant of call by value studied by Accattoli et al.
We describe the strong strategy of the machine in terms of a reduction
semantics and prove the correctness of the machine using a method based
on Biernacka et al.’s generalized refocusing. As a byproduct, we present
an example application of the machine to checking term convertibility
by discriminating on the basis of their partially normalized forms.

Keywords: λ-calculus · Abstract machines · Reduction strategies ·
Normalization by evaluation · Reduction semantics.

1 Introduction

Full-reducing (also known as strong) normalization strategies in the lambda cal-
culus have so far received relatively little attention compared to weak strategies
that provide foundations for functional programming languages, such as OCaml
(implementing call by value) or Haskell (implementing call by need). However,
recent advances in proof technology and the use of proof assistants based on
dependently typed lambda calculus for complex verification efforts propel the
design and study of strong reduction strategies, and of their corresponding effi-
cient realizations on a machine [2,7,18].

This research is supported by the National Science Centre of Poland, under grant
number 2019/33/B/ST6/00289.

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 147–166, 2020.
https://doi.org/10.1007/978-3-030-64437-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_8&domain=pdf
http://orcid.org/0000-0001-8094-0980
http://orcid.org/0000-0002-1477-4635
http://orcid.org/0000-0001-7062-0385
http://orcid.org/0000-0002-6629-5839
https://doi.org/10.1007/978-3-030-64437-6_8

148 M. Biernacka et al.

Abstract machines provide a convenient computation model that mediates
between the specific reduction strategy in the calculus and its practical imple-
mentations. The first machine for strong normalization of lambda terms is due to
Crégut [11]. This machine implements normal-order strategy [17], i.e., a hybrid
strategy that iterates call by name (CbN), and necessarily extends reduction to
open terms and reduces under lambda abstractions—unlike machines for weak
strategies that operate on closed terms and stop at lambdas. Similarly to strong
CbN, one can define strong call by value (CbV) as an iteration of weak CbV,
carefully generalizing the notion of value to open terms [1]. A normalization
function realizing strong CbV was proposed by Grégoire & Leroy and imple-
mented in their virtual machine extending the ZAM machine [18]. Another vir-
tual machine for strong CbV was derived by Ager et al. [5] from Aehlig and
Joachimski’s normalization function [4]. Recently, a strong call-by-need strategy
has been proposed by Kesner et al. [7], and the corresponding abstract machine
has been derived by Biernacka et al. [9]. On the other hand, there is a line of
work done by Accattoli et al. who study computational complexity of abstract
machines, in particular in the context of a weak CbV strategy that operates
on open terms, as an intermediate step towards an efficient machine for strong
CbV [2].

Many abstract machines are devised or tailored by hand, and their correctness
is far from obvious. Alternatively, Danvy et al. initiated a derivational approach
that allows to obtain abstract machines from preexisting semantic artefacts for
specific strategies by applying well-defined transformations in a systematic way.

Danvy et al.’s functional correspondence [6] is a two-way semantics-
preserving derivation method that relates higher-order evaluators and abstract
machines. More precisely, following Reynolds’ recipe of applying a CPS transla-
tion and defunctionalization to a higher-order evaluator expressed in a functional
meta-language, it leads to an implementation, in the same meta-language, of the
corresponding abstract machine [23]. However, the two program transformations
can be inverted and, as first observed by Danvy [12], starting with an imple-
mentation of an abstract machine, one can obtain a higher-order compositional
evaluator, in the style of a valuation function of denotational semantics [25], that
abstractly and concisely embodies the low-level intricacies of the machine, typi-
cally scattered all over the transition rules. Such an evaluator can then be locally
modified according to one’s needs and a new abstract machine can be derived
from it. This approach has proven extremely successful at numerous occasions
and it appears to be considerably more systematic and effective than groping
for the right changes directly at the level of the abstract machine.

The goal of this work is to derive an abstract machine that can be seen as
a strong CbV counterpart of Crégut’s machine for normal order which avoids
needless reevaluation of function arguments. Rather than directly tweaking the
KN machine we propose to take a systematic approach following Danvy’s recipe
and (1) we first deconstruct KN into a compositional evaluator, (2) we then
modify this evaluator accordingly to account for CbV, and (3) from the new
evaluator we derive a new abstract machine. Our meta-language is a small subset
of OCaml [20].

An Abstract Machine for Strong Call by Value 149

In the process, we identify the reduction semantics of the rrCbV variant of a
strong CbV strategy in the pure lambda calculus which we also present. In the
terminology of Biernacka et al.’s, this is a hybrid strategy that uses three kinds
of contexts, and it subsumes as a substrategy the weak right-to-left strategy of
Accattoli et al.’s fireball calculus. As an application of the machine we also show
how to check convertibility of terms by their partial normalization where we can
stop the machine and compare computed prefixes of normal forms. Thus, the
contributions of this paper include:

1. a full systematic derivation of the machine from a CbV evaluator,
2. a presentation of an abstract machine for strong CbV that is a counterpart

of Crégut’s KN machine,
3. a reduction semantics for a strong CbV strategy,
4. an application of the machine to convertibility checking.

Outline. In Sect. 2 we recall the KN machine and present the NbE function
obtained by its deconstruction. In Sect. 3 we present the machine derived from
the evaluator, and in Sect. 4 the corresponding reduction semantics. In Sect. 5
we prove the correctness of the machine with respect to the semantics, and in
Sect. 6 we conclude.

Supplementary Materials. The full derivations can be found at https://
bitbucket.org/pl-uwr/scbv-machine.

2 Deconstruction of the KN Machine

In this section we highlight the endpoints of the derivation: the KN machine,
and the resulting evaluator obtained from an OCaml encoding of the machine.
The main steps in the derivation are: disentangling the abstract machine into a
defunctionalized form, refunctionalizing the stacks of the machine into continua-
tions, mapping the continuation-passing evaluator to direct style, and refunction-
alizing the closures the direct-style evaluator operates on into their functional
representation [12]. All these transformations are described in detail in the sup-
plementary materials.

2.1 Specification of the KN Machine

Crégut’s KN machine is shown in Fig. 1. Due to the lack of space we do not
discuss its architecture here; we refer the reader to the original paper [11] (which
also includes a nice introduction to de Bruijn indices and levels) or to a more
modern presentation in [17]. We also discuss all transitions of the machine in
our supplementary materials.

The presentation here is slightly optimized compared to the original, and it
coincides (on closed terms) with later presentation introduced by Munk [21]. The
machine is in strong bisimulation with the original one, but the latter threads

https://bitbucket.org/pl-uwr/scbv-machine
https://bitbucket.org/pl-uwr/scbv-machine

150 M. Biernacka et al.

Syntax:

Terms � T ::= n | T1 T2 | λT

TN ::= T | V (n)

Closures � C ::= [TN , E]

Envs = Closures∗ � E ::= • | C :: E

Frames � F ::= � [T, E] | λ� | T �
Stacks = Frames∗ � S ::= • | F :: S

Confs � K ::= 〈TN , E, S, m〉 | 〈S, T, m〉
Initial state (for closed terms):

IKN : T 〈→� T, •, •, 0〉
Transition rules:

〈T1 T2, E, S1, m〉 → 〈T1, E, � [T2, E] :: S1, m〉 (1)

〈λT , E, � [T ′, E′] :: S1, m〉 → 〈T, [T ′, E′] :: E, S1, m〉 (2)

〈λT , E, S2, m〉 → 〈T, [V (m + 1), •] :: E, λ� :: S2, m + 1〉 (3)

〈0, [T, E] :: E′, S1, m〉 → 〈T, E, S1, m〉 (4)

〈n + 1, C :: E, S1, m〉 → 〈n, E, S1, m〉 (5)

〈V (n), E, S1, m〉 → 〈S1, m − n, m〉 (6)

〈•, Tnf, 0〉 → Tnf (7)

〈� [T ′, E′] :: S1, Tneu, m〉 → 〈T ′, E′, Tneu � :: S1, m〉 (8)

〈λ� :: S2, Tnf, m〉 → 〈S2, λTnf, m − 1〉 (9)

〈Tneu � :: S1, Tnf, m〉 → 〈S1, Tneu Tnf, m〉 (10)

Fig. 1. Rules for the KN machine

more redundant information: the parameter m in configurations is exactly the
number of lambda frames in the current stack and need not be saved in stack
frames.

The machine operates on lambda terms with de Bruijn indices used to rep-
resent bound variables in the standard way. Things get more complicated when
we want to reduce open terms or reduce under lambdas, where we need to care
for free variables. In the KN machine this is done using de Bruijn levels which
represent the number of enclosing lambda abstractions from the root of the
term to the current variable occurrence, and such abstract variables are formed
with a different constructor V (n). The machine normalizes terms according to
the normal-order strategy that extends CbN to reduce open terms and under
lambdas. It can be seen as an extension of the Krivine machine for CbN [19].

An Abstract Machine for Strong Call by Value 151

2.2 Shape Invariant

The machine specification can be seen as a function explicitly written in trampo-
lined style [15], where each transition dispatches by a single pattern matching on
the term or on the stack component of the configuration. Stacks are sequences
of frames that are constructed when traversing the term in search of a next
redex. However, this “flat” representation allows more stacks to be formed than
are reachable in a machine run from the initial empty stack. In order to reason
about the machine correctness, one needs to identify the precise structure of
reachable stacks. Crégut expresses this shape invariant by a regular expression
[11] but it can also be expressed simply by the context grammar using two kinds
of stacks S1, S2:

S1 ::= � [T,E] :: S1 | S2

S2 ::= • | λ� :: S2 | Tneu � :: S1

where Tneu denotes terms in neutral form. Neutral and normal forms are con-
structed according to the following grammar:

Normal forms � Tnf ::= λTnf | Tneu

Neutral terms � Tneu ::= n | Tneu Tnf

Garćıa-Pérez and Nogueira [16] underline the importance of establishing the
shape invariant for refunctionalization step of the functional correspondence and
characterize evaluation contexts of the normal-order strategy by an outside-in
context grammar.1 Below we present the grammar of normal-order contexts for
the λ-calculus, i.e., leftmost-outermost contexts. We can see that the machine
stacks correspond to the inside-out representation of contexts: S1 represents L-
contexts encoding the weak CbN strategy while S2 represents A-contexts of the
strong extension of CbN. The grammar of outside-in contexts is, on the other
hand, more natural for top-down decomposition. Both Lio and Loi represent
the same L-contexts family but with reversed order of frames in the lists. We
elaborate on the connection between the two kinds of representations in Sect. 4
when we discuss the strong CbV strategy.

inside-out contexts

Lio ::= � T :: Lio | Aio

Aio ::= • | λ� :: Aio | Tneu � :: Lio

outside-in contexts

Boi ::= � T :: Boi | Tneu � :: Loi | •
Loi ::= λ� :: Loi | Boi

2.3 Compositional Evaluator

The evaluator derived through the functional correspondence from the encoding
of the abstract machine of Fig. 1, after some tidying to underline its structure,
1 This family can be also defined in terms of an order on contexts [3].

152 M. Biernacka et al.

(* syntax of the lambda -calculus with de Bruijn indices *)

type index = int

type term = Var of index | Lam of term | App of term * term

(* semantic domain *)

type level = int

type glue = Abs of (sem -> sem) | Neutral of term

and sem = level -> glue

(* reification of semantic objects into normal forms *)

let rec reify (d : sem) (m : level) : term =

match d m with

| Abs f ->

Lam (reify (f (fun m’ -> Neutral (Var (m’-m -1))))(m+1))

| Neutral a ->

a

(* sem -> sem as a retract of sem *)

let to_sem (f : sem -> sem) : sem =

fun _ -> Abs f

let from_sem (d : sem) : sem -> sem =

fun d’ -> fun m ->

match d m with

| Abs f -> f d’ m

| Neutral a -> Neutral (App (a, reify d’ m))

(* interpretation function *)

let rec eval (t : term) (e : sem list) : sem =

match t with

| Var n -> List.nth e n

| Lam t’ -> to_sem (fun d -> eval t’ (d :: e))

| App (t1 , t2) -> from_sem (eval t1 e)

(fun m -> eval t2 e m)

(* NbE: interpretation followed by reification *)

let nbe (t : term) : term = reify (eval t []) 0

Fig. 2. An OCaml implementation of the higher-order compositional evaluator corre-
sponding to the KN machine: an instance of normalization by evaluation for normal-
order β-reduction in the λ-calculus.

is shown in Fig. 2. The evaluator implements an algorithm that follows the prin-
ciples of normalization by evaluation [14], where the idea is to map a λ-term
to an object in the meta-language from which a syntactic normal form of the
input term can subsequently be read off. Actually, what we have mechanically
obtained from KN is an OCaml implementation of a domain-theoretic residual-
izing model of the λ-calculus, in which the recursive type sem is an encoding of
a reflexive domain D of interpretation, isomorphic to N → ((D → D) + Λneu

⊥)⊥

An Abstract Machine for Strong Call by Value 153

(where N and Λneu are discrete CPOs of natural numbers and neutral terms,
respectively). In particular, to sem and from sem encode continuous functions
φ : (D → D) → D and ψ : D → (D → D), respectively, such that ψ ◦ φ = id,
establishing that D → D is a retract of D [14], which guarantees that β-
convertible terms are mapped to the same semantic object. The interpretation
function eval is completely standard, except for the η-expansion in the clause
for application which comes from the fact that the derivation has been carried
out in an eager meta-language. The reification function reify mediates between
syntax and semantics in the way known from Filinski and Rohde’s work [14] on
NbE for the untyped λ-calculus.

As a matter of fact, what we have obtained through the functional correspon-
dence from KN is very close to what Filinski and Rohde invented (and proved
correct using domain-theoretic tools). The difference lies in the semantic domain
which in their case was represented (in SML) by the type that in OCaml would
read as

type sem = Abs of ((unit -> sem) -> sem)
| Neutral of (level -> term)

from which we can see that the de Bruijn level is only needed to construct a
neutral term and otherwise redundant (an observation confirmed by the defi-
nition of to sem we have derived). With this domain of interpretation function
arguments are explicitly passed as thunks. From the reduction strategy point of
view, the normalizer of Fig. 2 (and KN) implements a two-stage normalization
strategy: first reduce a term to a weak normal form (function eval) and then
normalize the result (function reify). Seen that way, the two constructors of
type sem represent the two possible kinds of weak normal forms.

For the record, we have derived an alternative abstract machine for normal-
order reduction starting with Filinski and Rohde’s NbE. This machine differs
from KN in that it processes neutral terms in a separate mode and with an
additional kind of stack. In the next section, we modify our NbE so that it
accounts for CbV function applications.

In his MSc thesis, Munk also presents selected steps of a deconstruction of
KN into a NbE [21]. However, he goes through a step in which de Bruijn levels
are moved from the stack to closures in the environment. This step has not
been formally justified and the resulting NbE is quite different from Filinski and
Rohde’s or from ours.

3 Construction of a Call-by-Value Variant

In this section we derive a call-by-value variant of the Crégut abstract machine.
This is done by modifying the evaluator of Fig. 2 such that it accounts for CbV,
and then inverting the transformations on the path from the abstract machine
to the evaluator.

Call by value is a family of strategies where arguments of a function are
evaluated (to a weak normal form) before being passed to the function. This way

154 M. Biernacka et al.

type sem = Abs of (sem -> sem) | Neutral of (level -> term)

let rec reify (d : sem) (m : level) : term =

match d with

| Abs f ->

Lam (reify (f (Neutral (fun m’ -> Var (m’-m -1))))(m+1))

| Neutral l ->

l m

let to_sem (f : sem -> sem) : sem = Abs f

let from_sem (d : sem) : sem -> sem =

fun d’ ->

match d with

| Abs f ->

f d’

| Neutral l ->

Neutral (fun m -> let n = reify d’ m in App (l m, n))

let rec eval (t : term) (e : sem list) : sem =

match t with

| Var n -> List.nth e n

| Lam t’ -> to_sem (fun d -> eval t’ (d :: e))

| App (t1 , t2) -> let d2 = eval t2 e

in from_sem (eval t1 e) d2

let nbe (t : term) : term = reify (eval t []) 0

Fig. 3. An OCaml implementation of the modified higher-order compositional evalua-
tor: an instance of normalization by evaluation for a call-by-value β-reduction in the
λ-calculus.

one avoids needless recomputation of arguments that are used more than once.
A possible approach to a strong variant of such a strategy is the applicative order
(a.k.a. leftmost-innermost) reduction [26], where the arguments are evaluated to
the strong normal form. Here, however, we aim at a different, two-stage strategy,
analogous to the one embodied in KN and in the normalizer of Fig. 2, which is
a conservative extension of the standard CbV: the arguments are first evaluated
to a weak normal form, then the function is applied and only then the resulting
weak normal form is further reduced to the strong normal form. In order to
obtain one fixed member of the family, we follow [2] and choose the right-to-
left order of evaluation of arguments (we also choose the right-to-left order of
normalization in inert terms, see Sect. 4).

An Abstract Machine for Strong Call by Value 155

3.1 Call-by-Value Evaluator

In call by value, function arguments are evaluated before the application takes
place. To reflect this design choice in the evaluator, we modify the domain of
interpretation:

type sem = Abs of (sem -> sem)
| Neutral of (level -> term)

where an argument passed to a function is no longer a thunk, but a preevaluated
value in the semantic domain. Here, the two constructors correspond to two kinds
of weak normal forms: λ-abstraction and inert term, as presented in Sect. 4. All
the other changes in the evaluator are simple adjustments to this modification.
An OCaml implementation of the modified evaluator is shown in Fig. 3, where
we arbitrarily decided to evaluate function application right to left (witness
the explicit sequencing of computations with let in the clause for application in
eval) and similarly for generating neutral terms (again, with let in from sem).2

This normalizer could subsequently be given a domain-theoretic treatment,
using the same techniques as the ones applied by Filinski and Rohde to their call-
by-name normalizer [14] – an interesting endeavour that would offer one possible
way of revealing the precise meaning of the modified normalizer. Here, instead,
we take advantage of the functional correspondence and we derive a semantically
equivalent abstract machine that we then analyse and we identify the reduction
strategy it implements and inherits from the underlying NbE of Fig. 3.

The machine we derived from the evaluator has been subject to further opti-
mizations before we arrived at the version presented in the next section. In
particular, the de Bruijn level m has been moved from application frames of the
stack to a dedicated register in the configurations of the machine. This modifi-
cation requires a more careful bookkeeping of the level and, most notably, it has
to be decremented when the machine leaves the scope of a lambda, just as in
KN of Fig. 1. We also flattened the stack structure to be represented by a single
list of frames, instead of by a pair of mutually inductive list-like structures. The
final machine is then close in style to KN and can be seen as its call-by-value
variant.

3.2 Abstract Machine

The machine obtained by derivation from the NbE evaluator is presented in
Fig. 4. There are syntactic categories of lambda terms T in de Bruijn notation,
machine representations of weak normal forms W , inert terms I, environments E,
stack frames F , stacks S and configurations K. Weak normal forms are either clo-
sures consisting of a lambda abstraction and an environment or inert terms. Inert
terms are either abstract variables V (n) or inert terms applied to a weak normal
2 While it would be possible to directly use Filinski and Rohde’s NbE to obtain the

evaluator of this section, our goal was to reveal and adjust the evaluator underlying
KN, and the precise relation between KN and Filinski and Rohde’s NbE has not
been revealed prior to this work.

156 M. Biernacka et al.

form. Just as in the KN machine, here n is de Bruijn level (not to be confused
with de Bruijn index in the grammar of terms T). Weak normal forms represent
the intermediate values that are passed to functions as arguments through the
environment and subsequently reduced further to normal form. Environments
are just sequences of weak normal forms; they represent mappings that assign
nth element of the sequence to the variable with de Bruijn index n. As usual,
stacks represent evaluation contexts.

Syntax:

Terms � T ::= n | T1 T2 | λT

Wnfs � W ::= [λT, E] | I

Inerts � I ::= V (n) | I W

Envs � E ::= • | W :: E

Frames � F ::= [T, E] � | � W | � T | λ� | I �
Stacks � S ::= • | F :: S

Confs � K ::= 〈T, E, S, m〉E | 〈S, W, m〉C | 〈S, T, m〉S

Transition rules:

T 〈→� T, •, •, 0〉E (0)

〈T1 T2, E, S1, m〉E → 〈T2, E, [T1, E] � :: S1, m〉E (1)

〈λT , E, S1, m〉E → 〈S1, [λT, E], m〉C (2)

〈0, W :: E, S1, m〉E → 〈S1, W, m〉C (3)

〈n + 1, W :: E, S1, m〉E → 〈n, E, S1, m〉E (4)

〈[T, E] � :: S1, W, m〉C → 〈T, E, � W :: S1, m〉E (5)

〈� W :: S1, [λT, E], m〉C → 〈T, W :: E, S1, m〉E (6)

〈� W :: S1, I, m〉C → 〈S1, I W, m〉C (7)

〈S3, [λT, E], m〉C → 〈T, V (m + 1) :: E, λ� :: S3, m + 1〉E (8)

〈S2, I W, m〉C → 〈I � :: S2, W, m〉C (9)

〈S2, V (n), m〉C → 〈S2, m − n, m〉S (10)

〈I � :: S2, Tnf, m〉S → 〈� Tnf :: S2, I, m〉C (11)

〈λ� :: S3, Tnf, m〉S → 〈S3, λTnf, m − 1〉S (12)

〈� Tnf :: S2, Tneu, m〉S → 〈S2, Tneu Tnf, m〉S (13)

〈•, Tnf, 0〉S �→ Tnf (14)

Fig. 4. Rules for KNV, a call-by-value variant of KN

There are three kinds of configurations corresponding to three modes of oper-
ation: in configurations 〈·, ·, ·, ·〉E the machine evaluates some subterm to a weak
normal form; in 〈·, ·, ·〉C it continues with a computed weak normal form and in
〈·, ·, ·〉S it continues with a computed (strong) normal form. Let us discuss the

An Abstract Machine for Strong Call by Value 157

transitions. For the moment we ignore the indices in stacks; we think of S1, S2

and S3 as arbitrary members of the syntactic category S of stacks. Similarly,
Tneu and Tnf are arbitrary terms. These indices will become relevant in the next
section.

Transitions (0)–(6) implement a right-to-left version of the well-known CEK
machine [13] in a formulation similar to [6], but using de Bruijn indices. The
initial transition (0) loads the term to be evaluated to a configuration with the
empty environment and empty stack on de Bruijn level 0. Transitions (1)–(4)
operate on configurations of the form 〈T,E, S,m〉E that are meant to evaluate
the term T within the environment E in the context represented by S to a weak
normal form (wnf). In the case of application T1 T2, transition (1) calls the
evaluation of T2 and pushes a closure pairing T1 with the current environment
to the stack. Note that this implements the first of our right-to-left choices of the
order of reduction. A lambda abstraction in (2) is already in wnf, so we change
the mode of operation to a configuration of the form 〈S,W,m〉C . Transitions (3)
and (4) simply read a value of a variable from the environment (which always
returns a wnf) and change the mode of operation.

Configurations of the form 〈S,W,m〉C continue with a wnf W in a context
represented by S. There are two goals in these configurations: the first is to finish
the evaluation (to wnfs) of the closures stored on the stack according to the weak
call-by-value strategy; the second is to reduce W to a strong normal form. This
is handled by rules (5)–(10), where rules (5) and (6) are responsible for the first
goal, and rules (7)–(10) for the second. In rule (5) the stack contains a closure,
so we start evaluating this closure and push the already computed wnf to the
stack; when this evaluation reaches a wnf, rules (6) or (7) apply. If the wnf is
a lambda abstraction, transition (6) implements a β-contraction. Otherwise it is
an inert term; in this case rule (7) reconstructs the application of this inert term
to the wnf popped from the stack (which gives another wnf). Rules (8)–(10) are
applied when there are no more wnfs on the top of the stack; here we pattern-
match on the currently processed wnf W . If W is a closure, transition (8) pushes
the elementary context λ� to the stack, increments the de Bruijn level (m + 1),
adds the abstract variable V (n) to the environment and starts the evaluation
of the body. If W is an application I W ′, rule (9) delays the normalization of
I by pushing it to the stack and continues with W ′; note that this implements
the second of our right-to-left choices of the order of reduction. Finally, if W is
an abstract variable with index n at level m, we reach a normal form; rule (10)
computes the final index of the variable and changes the mode of operation to
a configuration of the form 〈S, T,m〉S .

Configurations of the form 〈S, T,m〉S continue with a (strong) normal form T
in a context represented by S (recall that the grammar of normal forms is pre-
sented in Sect. 2.2). The goal in these configurations is to finish the evaluation of
inert term stored on the stack and to reconstruct the final term. This is handled
by transitions (11)–(14); the choice of the transition is done by pattern-matching
on the stack. If there is an inert term I on the top of the stack, rule (11) pushes
the already computed normal form on the stack and calls normalization of I by

158 M. Biernacka et al.

switching the mode of operation to 〈S,W,m〉C . Otherwise there is a λ� frame
or a previously computed normal form on the top of the stack; in these cases
transitions (12) and (13) reconstruct the term accordingly. Finally, when the
stack is empty, transition (14) unloads the final result from a configuration.

The machine is pure in a sense that it does not use mutable state nor other
computational effects so it can be directly implemented in a pure functional
language. Thanks to that all structures of the machine are persistent data struc-
tures with their advantages (cf. [22]). It differs from machines of [2] in that its
implementation does not perform on-the-fly α-conversion nor does it use point-
ers explicitly. Assuming uniform cost criteria for arithmetic operations, the cost
of dispatch and of each transition is constant.

3.3 Shape Invariants

As in the case of the KN machine, not all sequences of stack frames represent
valid contexts that can occur in a reachable configuration of the machine from
Fig. 4. We define the syntactic category Kwf of well-formed configurations with
the following grammar.

S1 ::= [T,E] � :: S1 | � W :: S1 | S3

S2 ::= � Tnf :: S2 | S3

S3 ::= • | λ� :: S3 | I � :: S2

Kwf ::= 〈T,E, S1,m〉E | 〈S1,W,m〉C | 〈S2, I,m〉C | 〈S2, Tneu,m〉S | 〈S3, Tnf,m〉S

A simple induction on the length of evaluation gives the following lemma.

Lemma 1. For all initial terms T , all configurations reachable from T are well-
formed.

One can note that there is no invention in designing syntactic categories W and I
which correspond to grammars of weak normal forms and inert terms. They
are products of defunctionalization which is a part of mechanization carried
out via functional correspondence. More interestingly, all shape invariants can
be derived. It is enough to use a separate grammar for normal forms in the
higher-order normalizer. Through derivation this grammar is imprinted on the
grammars of stacks and configurations.

3.4 An Application: Streaming of Expressions

Here we show a method for early discovering that two terms are not β-
convertible, i.e., that they do not have equal normal forms. Grégoire and Leroy
show in [18] that the comparison of normal forms can be short-circuited when
enough data is computed. Our idea is to run the machine on both terms as long as
partial results are the same. If the machine completes the computation on both
terms and the computed normal forms are equal, the terms are β-convertible.
But whenever it sees partial results that are different for the two input terms, we

An Abstract Machine for Strong Call by Value 159

immediately know that the two terms do not have equal normal forms, without
actually completing the computation. In some cases it allows to give an answer
even on divergent terms. To get a partial result it is enough to interrupt the
machine after transitions (8) and (11) when it pushes λ� and � Tnf frames,
respectively, on the stack. This method is implemented in the accompanying
code.

(T1 T2)[i := T] = T1[i := T] T2[i := T]

(λT1)[i := T] = λ(T1[i + 1 := T])

n[i := T] =

⎧⎪⎨
⎪⎩

n : n < i

↑i
≥0 T : n = i

n − 1 : n > i

↑i
≥k (T1 T2) = ↑i

≥k T1 ↑i
≥k T2

↑i
≥k λT = λ↑i

≥k+1 T

↑i
≥k n =

{
n + i : n ≥ k

n : n < k

(λT1)T2 ⇀β T1[0 := T2]

C[T1]
C→β C[T2] if T1 ⇀β T2

Fig. 5. β-contraction and β-reduction for terms with de Bruijn indices

As an example, consider the terms λx.λy.Ω and λx.(x λy.Ω) x (using stan-
dard notation with names). Even if the evaluation of these terms never termi-
nates, we can detect different partial results and determine that these two terms
cannot have equal normal forms. By running our machine we learn that the
normal form of the former term (if it exists) starts with λx.λy.� while the the
normal form of the latter (if it exists) starts with λx.� x.

This application is not specific to KNV and a similar procedure can be imple-
mented based on KN. However, as is usual with CbV vs CbN, KNV in general
performs better by avoiding reevaluation (to weak normal form) of function
arguments.

4 Reduction Semantics for Strong CbV

A reduction semantics is a form of small-step operational semantics with an
explicit representation of reduction contexts, i.e., of locations in a term where
the computation can take place. Roughly, reduction contexts can be thought
to represent terms with a hole. The atomic computation step is defined by a
rewriting relation on terms, often called the contraction relation. For example, in
our source language, the lambda calculus with de Bruijn indices, the reduction
semantics can be formally defined as in Fig. 5, where the contraction relation
is ⇀β , and one-step reduction is defined as contraction in context C→β , where
reduction contexts C describe the specific reduction strategy. For example, if we
take C to be L from Sect. 2.2, then we obtain the normal-order strategy. The

160 M. Biernacka et al.

notation C[T] denotes the term reconstructed by plugging the term T in the hole
of the context C.

In uniform strategies the grammar of reduction contexts is defined using only
one nonterminal (as in CbN or CbV), while hybrid strategies use more than one
nonterminal (as in normal order). The strong CbV strategy is another example of
a hybrid strategy, one with three nonterminals leading to three kinds of contexts,
each describing a separate substrategy.

As already observed in Sect. 2.2, shape invariants of the machine stack nat-
urally lead to reduction contexts of the strategy realized by the machine. For
the case of the KNV machine, stack invariants translate to grammar of contexts
shown in Fig. 6 (left). Equivalently, they can be translated to an automaton,
whose transitions are labelled with terms (as opposed to their machine represen-
tations), where the syntactic categories of terms in weak normal form and inert
terms in the lambda calculus are

Weak normal forms Wnfs � TW ::= λT | TI

Inert terms Inerts � TI ::= n | TI TW

The grammar generates all stacks in syntactic categories S1, S2, S3 in an inside-
out manner: the automaton reading a stack from left to right moves from the
hole of the represented context towards the topmost symbol. By reversing the
arrows in the automaton we obtain an outside-in grammar (Fig. 6 right). A
context nonterminal (its kind) in inside-out grammars denotes the kind of the
hole, whereas in outside-in grammars it denotes the kind of the context generated
by that nonterminal.

inside-out

S3 S2 S1

λ�

ε
ε

� Tnf

TI �
� TW

T �

S1 ::= S3 | � TW :: S1 | T � :: S1

S2 ::= S3 | � Tnf :: S2

S3 ::= • | λ� :: S3 | TI � :: S2

S3 ⊆ S2 ⊆ S1

outside-in

R H F

λ�

ε
ε

� Tnf

TI �
� TW

T �

F ::= � TW :: F | T � :: F | •
H ::= � Tnf :: H | TI � :: R

R ::= λ� :: R | H | F

F ⊆ R ⊇ H

Fig. 6. Reduction semantics: automata and grammars of contexts

To complete the reduction semantics of strong CbV we have to specify a con-
traction relation. We simply read it from transition (6), where environments stor-
ing delayed substitution consist of structures representing weak normal forms.

An Abstract Machine for Strong Call by Value 161

Thus our contraction is β-contraction restricted to a variant where an argument
has to be in weak normal form. We call it βwnf-contraction:

(λT)TW ⇀βwnf T [0 := TW]

The substrategy corresponding to the F nonterminal in Fig. 6 and βwnf-
contraction can be recognized as the right-to-left weak strategy of the fireball
calculus considered in [2]. It is known that this strategy is deterministic and
reduces terms to weak normal forms. Our strong strategy corresponds to the
nonterminal R (the starting symbol in the grammar); it contains the substrat-
egy F and thus it is a conservative extension of the right-to-left call-by-value
strategy.

In our strategy arguments of functions are evaluated in the right-to-left order.
Similarly, arguments of inert terms are evaluated in the same order—thus we can
refer to the strategy as twice right-to-left call-by-value, rrCbV. This is an arbi-
trary choice; three other options are possible. Some of these options, like lrCbV
leave place for optimizations: after completing the weak right-to-left reduction
the stack contains a sequence of arguments in weak normal form, which are
then composed to build an inert term that is immediately decomposed to the
very same sequence of weak normal forms before normalizing them with the
strong left-to-right strategy. An optimized machine could refocus directly to
strong reduction of arguments on stack instead of rebuilding an inert term and
decomposing it again.

Strong CbV, as weak CbV, is an incomplete strategy, i.e., some normalizable
terms may loop forever, e.g., K I Ω.3 Nevertheless, it allows to compute values
of recursive functions.

Example 1. Consider the term λ(K I Ω). We can decompose it uniquely into a
context λ(K I �) and a subterm Ω forming a βwnf-redex. The context in the
inside-out representation is K I � :: λ� :: • and it satisfies the S1 constraints.
In the outside-in representation it is λ� :: K I � :: • and conforms with the
grammar R. Here S1 and R are initial nonterminals in the grammars of contexts
defined in Fig. 6. Thus λ(K I Ω) loops in the rrCbV strategy.

On the contrary, in term λ(K I λΩ) the subterm λΩ fits the TW grammar
and λ(� λΩ) is a correct context of rrCbV. Thus λ(K I λΩ) reduces to λI in
two steps.

5 Correctness

In this section we show the correctness of the derived machine: it traces [10] (i.e.,
exactly implements, in a step-by-step manner) the reduction semantics. Before
stating the formal theorem we need some definitions.

3 Where K = λx.λy.x, I = λx.x, Ω = (λx.x x) (λx.x x), using standard notation with
names.

162 M. Biernacka et al.

5.1 Decoding of Machine Representations

Terms. In the proof of correctness we have to translate lambda terms to machine
configurations and back. The encoding of a term to a configuration is given by
transition (0) in Fig. 4. The translation in the other direction is more involved.
We start by defining two functions: �·, ·�W : Wnfs → N → Wnfs decoding
the machine representations of weak normal forms and the function �·, ·�I :
Inerts → N → Inerts decoding the representations of inert terms. The formal
definitions of these functions are given in extended version of this paper [8]. The
second parameter, which is a de Bruijn level, is needed to decode an abstract
variable. The function �·, ·, ·�T : Terms → Envs → N → Terms decodes machine
representations of arbitrary terms.

Stacks. Intuitively, a stack should be decoded to an evaluation context. How-
ever, we are going to prove a termination result, for which we need an interme-
diate representation: lists of annotated frames. The annotation {·}w in {T}w �
indicates that the term T occurring in a context T � is known to be in weak
normal form; similarly {·}n in � {T}n indicates that T is known to be in strong
normal form.

AnnFrms � C ::= T � | � T | {T}w � | � {T}n | λ�
AnnFrms∗ � L ::= • | C :: L

The function �·�S : Stacks → AnnFrms∗ decodes stacks by decoding term rep-
resentations in stack frames and adding frame annotations.

Annotated Decompositions. A configuration of the machine encodes, among
others, a decomposition of a term into its subterm and a surrounding context.

Example 2. Consider a fragment of evaluation of the term λ00 (which is λx.xx
in de Bruijn notation). We adopt here the OCaml notation for lists, so [1; λ�]
is the same as 1 :: λ� :: •.

〈[� V (1); λ�], V (1), 1〉C
(7)→ 〈[λ�], V (1) V (1), 1〉C

(9)→
〈[V (1) �; λ�], V (1), 1〉C

(10)→ 〈[V (1) �; λ�], 0, 1〉S
(11)→

〈[� 0; λ�], V (1), 1〉C

Here both stacks [� 0; λ�] and [� V (1); λ�] represent the same context λ(� 0),
so the first and the last configuration in this sequence gives the same decompo-
sition of λ00 to the subterm 0 in the context λ(� 0). In order to capture the
fact that the machine does not fall into an infinite loop, even if it considers the
same decomposition more than once, we introduce a more informative notion
of annotated decomposition. We introduce annotations for terms that allow to
distinguish between arbitrary terms and terms in weak or strong normal form.

AnnTerms � A ::= T | {T}w | {T}n
AnnDcmp � D ::= A :: L

An Abstract Machine for Strong Call by Value 163

Configurations. Configurations are first decoded to annotated decompositions
with function �·�K : Confs → AnnDcmp and then to terms by function plug :
AnnDcmp → Terms. The latter function ignores all annotations.

5.2 Formal Correctness Result

We are now ready to state the result formally as the following theorem.

Theorem 1. KNV traces the twice right-to-left strong CbV strategy, i.e.:

1. The function plug(�·�K) : Confs → Terms is a surjection.
2. For each machine transition K → K ′, either plug(�K�K) = plug(�K ′�K)

(i.e., the two configurations represent different decompositions of the same
term), or plug(�K�K) reduces to plug(�K ′�K) in the strategy.

3. There are no silent loops in the machine, i.e., no infinite sequences of transi-
tions K0 → . . . → Kn → . . . such that plug(�Ki�K) = plug(�Ki+1�K) for all
i.

4. For all terms T, T ′, if T reduces to T ′ according to the strategy, then for each
K such that plug(�K�K) = T there exists a sequence of machine transitions
K → . . . → K ′ such that plug(�K ′�K) = T ′.

The proof of this theorem is more tedious than sophisticated. We provide a
sketch in the extended version of this article [8]. Point 1 is a simple observation
that for any term T the corresponding initial configuration is decoded to T . For

point 2, a simple case analysis gives that all transitions
�=(6)→ leave the decoding

of the configurations unchanged. The fact that
(6)→ implements βwnf-contraction

is technically more involved, but not surprising.
Probably the most interesting part concerns point 3, which implies that the

machine always finds a redex in a finite number of steps. We present the main
intuitions here, leaving formal details in the extended version. We start by
introducing a strict partial order on annotated terms and frames. For all terms
T1, . . . , T7 we set

T1 < T2 � < � T3 < {T4}w < {T5}w � < � {T6}n < λ� < {T7}n
Then we extend this order to the reversed lexicographic extension <rlex of < on
annotated decompositions: D1 <rlex D2 iff DR

1 <lex DR
2 where DR denotes the

reverse of D and <lex is the standard lexicographic extension of <. Since a given
term may have only finitely many corresponding annotated decompositions that
cannot grow forever, there are no silent loops.

Example 3. The following is the sequence of decodings of configurations from
Example 2. Note that this sequence is strictly increasing in the <rlex order.

[{0}w; � 0; λ�]
(7)→ [{0 0}w; λ�]

(9)→ [{0}w; {0}w �; λ�]
(10)→

[{0}n; {0}w �; λ�]
(11)→ [{0}w; � {0}n; λ�]

164 M. Biernacka et al.

5.3 Corollaries

Since all the transformations used in the derivation are meaning-preserving, we
can informally state that: For every closed term T and its OCaml representa-
tion t, the computation eval t [] 0 in the call-by-value normalizer of Fig. 3
returns a sem value iff T reaches weak normal form in the strategy. Similarly the
computation nbe t returns a term value t’ iff T reaches a normal form T ′ in
the strategy, and t’ is an OCaml representation of T ′.

6 Conclusion and Future Work

We presented the first systematic derivation of an abstract machine KNV that
implements the strong CbV strategy for normalization in the lambda calculus.
The derivation starts from the KN machine for normal-order reduction and uses
off-the-shelf tools to transform semantic artefacts in a sequence of steps that con-
stitute the so-called functional correspondence, as a two-way derivation recipe.
We also presented the reduction semantics for the strong CbV strategy that can
be read off the obtained machine, and that is an example of a hybrid strat-
egy with three kinds of reduction contexts. As an example application of the
machine, we illustrated how it can be used for convertibility checking, e.g., in
proof assistants based on dependent type theory.

In [2], the authors introduced a time complexity criterion for an abstract
machine: a machine is called a reasonable implementation of a given strategy if
it can simulate n reduction steps in a number of transitions that is polynomial
in n and in the size of the initial term. It is easy to observe that KNV is not
a reasonable implementation of strong CbV due to the size explosion problem.
Consider, e.g., the following term family en where cn denotes the nth Church
numeral:

ω := λx.x x en := λx.cn ω x

Each en reduces to its normal form in the number of steps linear in n, but the size
of this normal form is exponential in n. Since KNV never reuses structures con-
structed before, it has to introduce each of the exponentially many constructors
in a separate step. Therefore, it is not a reasonable implementation. We intend
to construct a modified version of KNV that will critically rely on sharing of
intermediate results. We conjecture that such a modification is both necessary
and sufficient to achieve a reasonable implementation of strong CbV. We also
believe that the present development is a crucial stepping stone in this undertak-
ing and that it offers all the necessary tools. In particular, sharing, in more than
one flavour, can be most naturally introduced at the level of the evaluator of
Fig. 3 and the resulting abstract machine will be a reflection of this modification
through the functional correspondence.

Acknowledgements. We thank Filip Sieczkowski and the anonymous reviewers for
their helpful comments on the presentation of this work.

An Abstract Machine for Strong Call by Value 165

References

1. Accattoli, B., Guerrieri, G.: Open call-by-value. In: Igarashi, A. (ed.) APLAS 2016.
LNCS, vol. 10017, pp. 206–226. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47958-3 12

2. Accattoli, B., Guerrieri, G.: Abstract machines for open call-by-value. Sci. Comput.
Program. 184 (2019). https://doi.org/10.1016/j.scico.2019.03.002

3. Accattoli, B., Lago, U.D.: (Leftmost-outermost) beta reduction is invariant, indeed.
In: Logical Methods in Computer Science, vol. 12 (2016). https://doi.org/10.2168/
LMCS-12(1:4)2016

4. Aehlig, K., Joachimski, F.: Operational aspects of untyped normalization by eval-
uation. Math. Struct. Comput. Sci. 14, 587–611 (2004)

5. Ager, M.S., Biernacki, D., Danvy, O., Midtgaard, J.: From interpreter to compiler
and virtual machine: a functional derivation. Technical report BRICS RS-03-14,
DAIMI, Department of Computer Science, Aarhus University, Aarhus, Denmark,
March 2003

6. Ager, M.S., Biernacki, D., Danvy, O., Midtgaard, J.: A functional correspondence
between evaluators and abstract machines. In: Miller, D. (ed.) Proceedings of
the Fifth ACM-SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP 2003), pp. 8–19. ACM Press, Uppsala, August
2003

7. Balabonski, T., Barenbaum, P., Bonelli, E., Kesner, D.: Foundations of strong call
by need. PACMPL 1(ICFP), 20:1–20:29 (2017). https://doi.org/10.1145/3110264

8. Biernacka, M., Biernacki, D., Charatonik, W., Drab, T.: An abstract machine for
strong call by value. CoRR abs/2009.06984 (2020). https://arxiv.org/abs/2009.
06984

9. Biernacka, M., Charatonik, W.: Deriving an abstract machine for strong call by
need. In: Geuvers, H. (ed.) 4th International Conference on Formal Structures for
Computation and Deduction, FSCD 2019, 24–30 June 2019, Dortmund, Germany.
LIPIcs, vol. 131, pp. 8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPIcs.FSCD.2019.8

10. Biernacka, M., Charatonik, W., Zielinska, K.: Generalized refocusing: from hybrid
strategies to abstract machines. In: Miller, D. (ed.) 2nd International Conference on
Formal Structures for Computation and Deduction, FSCD 2017, 3–9 September
2017, Oxford, UK. LIPIcs, vol. 84, pp. 10:1–10:17. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.FSCD.2017.10

11. Crégut, P.: Strongly reducing variants of the Krivine abstract machine. High.-Order
Symb. Comput. 20(3), 209–230 (2007). A preliminary version was presented at the
1990 ACM Conference on Lisp and Functional Programming

12. Danvy, O.: A rational deconstruction of Landin’s SECD machine. In: Grelck, C.,
Huch, F., Michaelson, G.J., Trinder, P. (eds.) IFL 2004. LNCS, vol. 3474, pp.
52–71. Springer, Heidelberg (2005). https://doi.org/10.1007/11431664 4

13. Felleisen, M., Friedman, D.P.: Control operators, the SECD machine, and the λ-
calculus. In: Wirsing, M. (ed.) Formal Description of Programming Concepts III,
pp. 193–217. Elsevier Science Publishers B.V. (North-Holland), Amsterdam (1986)

14. Filinski, A., Rohde, H.K.: Denotational aspects of untyped normalization by eval-
uation. Theor. Inform. Appl. 39(3), 423–453 (2005). A preliminary version was
presented at FOSSACS 2004

https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1016/j.scico.2019.03.002
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.1145/3110264
https://arxiv.org/abs/2009.06984
https://arxiv.org/abs/2009.06984
https://doi.org/10.4230/LIPIcs.FSCD.2019.8
https://doi.org/10.4230/LIPIcs.FSCD.2017.10
https://doi.org/10.1007/11431664_4

166 M. Biernacka et al.

15. Ganz, S.E., Friedman, D.P., Wand, M.: Trampolined style. In: Lee, P. (ed.) Pro-
ceedings of the 1999 ACM SIGPLAN International Conference on Functional Pro-
gramming. SIGPLAN Notices, vol. 34, no. 9, pp. 18–27. ACM Press, Paris, Septem-
ber 1999

16. Garćıa-Pérez, A., Nogueira, P.: On the syntactic and functional correspondence
between hybrid (or layered) normalisers and abstract machines. Sci. Comput. Pro-
gram. 95, 176–199 (2014)

17. Garćıa-Pérez, Á., Nogueira, P.: The full-reducing Krivine abstract machine KN
simulates pure normal-order reduction in lockstep: a proof via corresponding calcu-
lus. J. Funct. Program. 29, e7 (2019). https://doi.org/10.1017/S0956796819000017

18. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Wand,
M., Jones, S.L.P. (eds.) Proceedings of the Seventh ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP 2002), Pittsburgh, Penn-
sylvania, USA, 4–6 October 2002, pp. 235–246. ACM (2002). https://doi.org/10.
1145/581478.581501

19. Krivine, J.L.: A call-by-name lambda-calculus machine. High.-Order Symb. Com-
put. 20(3), 199–207 (2007)

20. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system, release 4.10. INRIA, Rocquencourt, France, February 2020. https://caml.
inria.fr/pub/docs/manual-ocaml/

21. Munk, J.: A study of syntactic and semantic artifacts and its application to lambda
definability, strong normalization, and weak normalization in the presence of state.
Master’s thesis, DAIMI, Department of Computer Science, Aarhus University,
Aarhus, Denmark, May 2007. BRICS research report RS-08-3

22. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cam-
bridge (1999)

23. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
High.-Order Symb. Comput. 11(4), 363–397 (1998). Reprinted from the Proceed-
ings of the 25th ACM National Conference (1972), with a foreword [24]

24. Reynolds, J.C.: Definitional interpreters revisited. High.-Order Symb. Comput.
11(4), 355–361 (1998)

25. Schmidt, D.A.: Denotational Semantics: A Methodology for Language Develop-
ment. Allyn and Bacon Inc., Boston (1986)

26. Sestoft, P.: Demonstrating lambda calculus reduction. In: Mogensen, T.Æ.,
Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol.
2566, pp. 420–435. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36377-7 19

https://doi.org/10.1017/S0956796819000017
https://doi.org/10.1145/581478.581501
https://doi.org/10.1145/581478.581501
https://caml.inria.fr/pub/docs/manual-ocaml/
https://caml.inria.fr/pub/docs/manual-ocaml/
https://doi.org/10.1007/3-540-36377-7_19
https://doi.org/10.1007/3-540-36377-7_19

Certified Semantics for Relational
Programming

Dmitry Rozplokhas1,3 , Andrey Vyatkin2 , and Dmitry Boulytchev2,3(B)

1 Higher School of Economics, Saint Petersburg, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia

dboulytchev@math.spbu.ru
3 JetBrains Research, Saint Petersburg, Russia

Abstract. We present a formal study of semantics for the relational
programming language miniKanren. First, we formulate a denotational
semantics which corresponds to the minimal Herbrand model for definite
logic programs. Second, we present operational semantics which models
interleaving, the distinctive feature of miniKanren implementation, and
prove its soundness and completeness w.r.t. the denotational semantics.
Our development is supported by a Coq specification, from which a ref-
erence interpreter can be extracted. We also derive from our main result
a certified semantics (and a reference interpreter) for SLD resolution with
cut and prove its soundness.

1 Introduction

In the context of this paper, we understand “relational programming” as a puris-
tic form of logic programming with all extra-logical features banned. Specifically,
we use miniKanren as an exemplary language; miniKanren can be seen as
a logical language with explicit connectives, existentials and unification, and
is mutually convertible to the pure logical subset of Prolog.1 Unlike Pro-
log, which relies on SLD-resolution, most miniKanren implementations use a
monadic interleaving search, which is known to be complete [15]. miniKanren
is designed as a shallow DSL which may help to equip the host language with
logical reasoning features. This design choice has been proven to be applicable in
practice, and there are more than 100 implementations for almost 50 languages.

Although there already were attempts to define a formal semantics for
miniKanren, none of them were capable of reflecting the distinctive property of
miniKanren’s search—interleaving [18]. Since this distinctive search strategy is
essential for the specification of the language and its extensions, the description
of almost all development on miniKanren was not based on formal semantics.
The introductory book on miniKanren [12] describes the language by means of

The reported study was funded by RFBR, project number 18-01-00380.
1 A detailed Prolog-to-miniKanren comparison can be found here: http://

minikanren.org/minikanren-and-prolog.html.

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 167–185, 2020.
https://doi.org/10.1007/978-3-030-64437-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_9&domain=pdf
http://orcid.org/0000-0001-7882-4497
http://orcid.org/0000-0003-0528-8798
http://orcid.org/0000-0001-8363-7143
http://minikanren.org/minikanren-and-prolog.html
http://minikanren.org/minikanren-and-prolog.html
https://doi.org/10.1007/978-3-030-64437-6_9

168 D. Rozplokhas et al.

C = {Cki
i } constructors with arities

TX = X ∪ {Cki
i (t1, . . . , tki) | tj ∈ TX} terms over the set of variables X

D = T∅ ground terms
X = {x, y, z, . . . } syntactic variables
A = {α, β, γ, . . . } semantic variables
R = {Rki

i } relational symbols with arities
G = TX ≡ TX unification

G ∧ G conjunction
G ∨ G disjunction
fresh X . G fresh variable introduction
Rki

i (t1, . . . , tki), tj ∈ TX relational symbol invocation
S = {Rki

i = λ xi
1 . . . xi

ki
. gi; } g specification

Fig. 1. The syntax of the source language

an evolving set of examples. In a series of follow-up papers [1,7,13–15,30] vari-
ous extensions of the language were presented with their semantics explained in
terms of a Scheme implementation. We argue that this style of semantic defi-
nition is fragile and not self-sufficient since it relies on concrete implementation
languages’ semantics and therefore is not stable under the host language replace-
ment. In addition, the justification of important properties of the language and
specific relational programs becomes cumbersome.

In this paper, we present a formal semantics for core miniKanren and prove
some of its basic properties. First, we define denotational semantics similar to the
least Herbrand model for definite logic programs [23]; then we describe opera-
tional semantics with interleaving in terms of a labeled transition system. Finally,
we prove soundness and completeness of the operational semantics w.r.t the
denotational one. We support our development with a formal specification using
the Coq proof assistant [4], thus outsourcing the burden of proof checking to the
automatic tool and deriving a certified reference interpreter via the extraction
mechanism. As a rather straightforward extension of our main result, we also
provide a certified operational semantics (and a reference interpreter) for SLD
resolution with cut, a new result to our knowledge; while this step brings us out
of purely relational domain, it still can be interesting on its own.

2 The Language

In this section, we introduce the syntax of the language we use throughout the
paper, describe the informal semantics, and give some examples.

The syntax of the language is shown in Fig. 1. First, we fix a set of con-
structors C with known arities and consider a set of terms TX with constructors
as functional symbols and variables from X. We parameterize this set with an
alphabet of variables since in the semantic description we will need two kinds of
variables. The first kind, syntactic variables, is denoted by X . The second kind,
semantic or logic variables, is denoted by A. We also consider an alphabet of

Certified Semantics for Relational Programming 169

relational symbols R which are used to name relational definitions. The central
syntactic category in the language is goal. In our case, there are five types of
goals: unification of terms, conjunction and disjunction of goals, fresh variable
introduction, and invocation of some relational definition. Thus, unification is
used as a constraint, and multiple constraints can be combined using conjunc-
tion, disjunction, and recursion. The final syntactic category is a specification
S. It consists of a set of relational definitions and a top-level goal. A top-level
goal represents a search procedure which returns a stream of substitutions for
the free variables of the goal. The definition for a set of free variables for both
terms and goals is conventional; as “ fresh ” is the sole binding construct the
definition is rather trivial. The language we defined is first-order, as goals can
not be passed as parameters, returned or constructed at run time.

We now informally describe how relational search works. As we said, a goal
represents a search procedure. This procedure takes a state as input and returns
a stream of states; a state (among other information) contains a substitution
that maps semantic variables into the terms over semantic variables. Then five
types of scenarios are possible (depending on the type of the goal):
– Unification “t1 ≡ t2” unifies terms t1 and t2 in the context of the substitution

in the current state. If terms are unifiable, then their MGU is integrated into
the substitution, and a one-element stream is returned; otherwise the result
is an empty stream.

– Conjunction “g1 ∧g2” applies g1 to the current state and then applies g2 to
each element of the result, concatenating the streams.

– Disjunction “g1 ∨g2” applies both its goals to the current state independently
and then concatenates the results.

– Fresh construct “ fresh x . g” allocates a new semantic variable α, substi-
tutes all free occurrences of x in g with α, and runs the goal.

– Invocation “Rki
i (t1,...,tki

)” finds a definition for the relational symbol Rki
i =

λx1 . . . xki
. gi, substitutes all free occurrences of a formal parameter xj in gi

with term tj (for all j) and runs the goal in the current state.
We stipulate that the top-level goal is preceded by an implicit “ fresh ”

construct, which binds all its free variables, and that the final substitutions for
these variables constitute the result of the goal evaluation.

Conjunction and disjunction form a monadic [32] interface with conjunction
playing role of “bind” and disjunction the role of “mplus”. In this description,
we swept a lot of important details under the carpet—for example, in actual
implementations the components of disjunction are not evaluated in isolation,
but both disjuncts are evaluated incrementally with the control passing from
one disjunct to another (interleaving) [18]; the evaluation of some goals can be
additionally deferred (via so-called “inverse-η-delay”) [13]; instead of streams the
implementation can be based on “ferns” [8] to defer divergent computations, etc.
In the following sections, we present a complete formal description of relational
semantics which resolves these uncertainties in a conventional way.

As an example consider the following specification. For the sake of brevity
we abbreviate immediately nested “ fresh ” constructs into the one, writing
“ fresh x y g” instead of “ fresh x. fresh y. . . . g”.

170 D. Rozplokhas et al.

appendo = λ x y xy .

((x ≡ Nil) ∧ (xy ≡ y)) ∨
(fresh h t ty .

(x ≡ Cons (h, t)) ∧
(xy ≡ Cons (h, ty)) ∧
(appendo t y ty));

reverso x x

reverso = λ x xr .

((x ≡ Nil) ∧ (xr ≡ Nil)) ∨
(fresh h t tr .

(x ≡ Cons (h, t)) ∧
(appendo tr (Cons (h, Nil)) xr) ∧
(reverso t tr));

Here we defined2 two relational symbols—“appendo” and “reverso”,—and
specified a top-level goal “reverso x x”. The symbol “appendo” defines a relation
of concatenation of lists—it takes three arguments and performs a case analysis
on the first one. If the first argument is an empty list (“Nil”), then the second and
the third arguments are unified. Otherwise, the first argument is deconstructed
into a head “h” and a tail “t”, and the tail is concatenated with the second
argument using a recursive call to “appendo” and additional variable “ty”, which
represents the concatenation of “t” and “y”. Finally, we unify “Cons (h , ty)”
with “xy” to form a final constraint. Similarly, “reverso” defines relational list
reversing. The top-level goal represents a search procedure for all lists “x”, which
are stable under reversing, i.e. palindromes. Running it results in an infinite
stream of substitutions:

α �→ Nil
α �→ Cons (β0 , Nil)
α �→ Cons (β0 , Cons (β0 , Nil))
α �→ Cons (β0 , Cons (β1 , Cons (β0 , Nil)))
. . .

where “α” is a semantic variable, corresponding to “x”, “βi” are free semantic
variables. Therefore, each substitution represents a set of all palindromes of a
certain length.

3 Denotational Semantics

In this section, we present a denotational semantics for the language we defined
above. We use a simple set-theoretic approach analogous to the least Herbrand
model for definite logic programs [23]. Strictly speaking, instead of developing it
from scratch we could have just described the conversion of specifications into def-
inite logic form and took their least Herbrand model. However, in that case, we
would still need to define the least Herbrand model semantics for definite logic
programs in a certified way. In addition, while for this concrete language the con-
version to definite logic form is trivial, it may become less trivial for its extensions
(with, for example, nominal constructs [7]) which we plan to do in future.

2 We respect here a conventional tradition for miniKanren programming to super-
script all relational names with “o”.

Certified Semantics for Relational Programming 171

We also must make the following observations. First, building inductive deno-
tational semantics in a conventional way amounts to constructing a complete lat-
tice and a monotone function and taking its least fixed point [31]. As we deal with
a first-order language with only monotonic constructs (conjunction/disjunction)
these steps are trivial. Moreover, we express the semantics in Coq, where all
well-formed inductive definitions already have proper semantics, which removes
the necessity to justify the validity of the steps we perform. Second, the least
Herbrand model is traditionally defined as the least fixed point of a transition
function (defined by a logic program) which maps sets of ground atoms to sets of
ground atoms. We are, however, interested in relational semantics which should
map a program into n-ary relation over ground terms, where n is the number of
free variables in the topmost goal. Thus, we deviate from the traditional route
and describe the denotational semantics in a more specific way.

To motivate further development, we first consider the following example.
Let us have the following goal:

x ≡ Cons (y , z)

There are three free variables, and solving the goal delivers us the following
single answer:

α �→ Cons (β , γ)

where semantic variables α, β and γ correspond to the syntactic ones “x”,
“y”, “z”. The goal does not put any constraints on “y” and “z”, so there are no
bindings for “β” and “γ” in the answer. This answer can be seen as the following
ternary relation over the set of all ground terms:

{(Cons (β, γ), β, γ) | β ∈ D, γ ∈ D} ⊆ D3

The order of “dimensions” is important, since each dimension corresponds
to a certain free variable. Our main idea is to represent this relation as a set of
total functions

f : A �→ D
from semantic variables to ground terms. We call these functions representing

functions. Thus, we may reformulate the same relation as

{(f (α), f (β), f (γ)) | f ∈ �α ≡ Cons (β, γ)�}

where we use conventional semantic brackets “�•�” to denote the semantics.
For the top-level goal, we need to substitute its free syntactic variables with dis-
tinct semantic ones, calculate the semantics, and build the explicit representation
for the relation as shown above. The relation, obviously, does not depend on the
concrete choice of semantic variables but depends on the order in which the
values of representing functions are tupled. This order can be conventionalized,
which gives us a completely deterministic semantics.

172 D. Rozplokhas et al.

Now we implement this idea. First, for a representing function

f : A → D
we introduce its homomorphic extension

f : TA → D
which maps terms to terms:

f (α) = f (α)
f (Cki

i (t1,tki
)) = Cki

i (f (t1), . . . f (tki
))

Let us have two terms t1, t2 ∈ TA. If there is a unifier for t1 and t2 then,
clearly, there is a substitution θ which turns both t1 and t2 into the same ground
term (we do not require θ to be the most general). Thus, θ maps (some) variables
into ground terms, and its application to t1(2) is exactly θ(t1(2)). This reasoning
can be performed in the opposite direction: a unification t1 ≡ t2 defines the set
of all representing functions f for which f(t1) = f(t2).

We will use the conventional notions of pointwise modification of a function
f [x ← v] and substitution g [t/x] of a free variable x with a term t in a goal (or
a term) g.

For a representing function f : A → D and a semantic variable α we define
the following generalization operation:

f ↑ α = {f [α ← d] | d ∈ D}
Informally, this operation generalizes a representing function into a set of

representing functions in such a way that the values of these functions for a
given variable cover the whole D. We extend the generalization operation for
sets of representing functions F ⊆ A → D:

F ↑ α =
⋃

f∈F

(f ↑ α)

Now we are ready to specify the semantics for goals (see Fig. 2). We’ve already
given the motivation for the semantics of unification: the condition f(t1) = f(t2)
gives us the set of all (otherwise unrestricted) representing functions which
“equate” terms t1 and t2. Set union and intersection provide a conventional
interpretation for disjunction and conjunction of goals. In the case of a rela-
tional invocation we unfold the definition of the corresponding relational symbol
and substitute its formal parameters with actual ones.

The only non-trivial case is that of “ fresh x . g”. First, we take an arbitrary
semantic variable α, not free in g, and substitute x with α. Then we calculate the
semantics of g [α/x]. The interesting part is the next step: as x can not be free
in “ fresh x . g”, we need to generalize the result over α since in our model the
semantics of a goal specifies a relation over its free variables. We introduce some
nondeterminism by choosing arbitrary α, but we can prove that with different
choices of free variable the semantics of a goal does not change.

Certified Semantics for Relational Programming 173

Fig. 2. Denotational semantics of goals

Lemma 1. For any goal fresh x . g, for any two variables α and β which are
not free in this goal, if f ∈ �g [α/x]�, then for any representing function f′, such
that
1. f′(β) = f(α)
2. ∀γ : γ �= α ∧ γ �= β, f′(γ) = f(γ)
it is true that f′ ∈ �g [β/x]�.

The proof turned out to be the most cumbersome among all others in the case
where g is a nested fresh construct. In that case, we have to constructively build
two representing functions (including an intermediate one for an intermediate
goal) by pointwise modification. The details of this proof can be found in the
extended version of the paper.3

We can prove the following important closedness condition for the semantics
of a goal g.

Lemma 2 (Closedness condition). For any goal g and two representing
functions f and f′, such that f|FV (g) = f′|FV (g), it is true, that f ∈ �g� ⇔ f′ ∈ �g�.

In other words, representing functions for a goal g restrict only the values of
free variables of g and do not introduce any “hidden” correlations. This condition
guarantees that our semantics is closed in the sense that it does not introduce
artificial restrictions for the relation it defines.

4 Operational Semantics

In this section we describe the operational semantics of miniKanren, which cor-
responds to the known implementations with interleaving search. The semantics
is given in the form of a labeled transition system (LTS) [17]. From now on we
assume the set of semantic variables to be linearly ordered (A = {α1, α2, . . . }).

We introduce the notion of substitution

σ : A → TA

as a (partial) mapping from semantic variables to terms over the set of semantic
variables. We denote Σ the set of all substitutions, Dom (σ)—the domain for a
substitution σ, VRan (σ) =

⋃
α∈Dom (σ) FV (σ (α))—its range (the set of all free

variables in the image).
3 The extended version of this paper is available at https://arxiv.org/abs/2005.01018.

https://arxiv.org/abs/2005.01018

174 D. Rozplokhas et al.

The non-terminal states in the transition system have the following shape:

S = G × Σ × N | S ⊕ S | S ⊗ G
As we will see later, an evaluation of a goal is separated into elementary steps,

and these steps are performed interchangeably for different subgoals. Thus, a
state has a tree-like structure with intermediate nodes corresponding to partially-
evaluated conjunctions (“⊗”) or disjunctions (“⊕”). A leaf in the form 〈g, σ, n〉
determines a goal in a context, where g is a goal, σ is a substitution accumulated
so far, and n is a natural number, which corresponds to a number of semantic
variables used to this point. For a conjunction node, its right child is always
a goal since it cannot be evaluated unless some result is provided by the left
conjunct.

The full set of states also include one separate terminal state (denoted by �),
which symbolizes the end of the evaluation.

Ŝ = � | S

We will operate with the well-formed states only, which are defined as follows.

Definition 1. Well-formedness condition for extended states:
– � is well-formed;
– 〈g, σ, n〉 is well-formed iff FV (g) ∪ Dom (σ) ∪ VRan (σ) ⊆ {α1, . . . , αn};
– s1 ⊕ s2 is well-formed iff s1 and s2 are well-formed;
– s ⊗ g is well-formed iff s is well-formed and for all leaf triplets 〈 , , n〉 in s it

is true that FV (g) ⊆ {α1, . . . , αn}.

Informally the well-formedness restricts the set of states to those in which
all goals use only allocated variables.

Finally, we define the set of labels:

L = ◦ | Σ × N

The label “◦” is used to mark those steps which do not provide an answer;
otherwise, a transition is labeled by a pair of a substitution and a number of
allocated variables. The substitution is one of the answers, and the number is
threaded through the derivation to keep track of allocated variables.

The transition rules are shown in Fig. 3. The first two rules specify the seman-
tics of unification. If two terms are not unifiable under the current substitution
σ then the evaluation stops with no answer; otherwise, it stops with the most
general unifier applied to a current substitution as an answer.

The next two rules describe the steps performed when disjunction or con-
junction is encountered on the top level of the current goal. For disjunction, it
schedules both goals (using “⊕”) for evaluating in the same context as the par-
ent state, for conjunction—schedules the left goal and postpones the right one
(using “⊗”).

The rule for “ fresh ” substitutes bound syntactic variable with a newly
allocated semantic one and proceeds with the goal.

Certified Semantics for Relational Programming 175

The rule for relation invocation finds a corresponding definition, substitutes
its formal parameters with the actual ones, and proceeds with the body.

The rest of the rules specify the steps performed during the evaluation of
two remaining types of the states—conjunction and disjunction. In all cases, the
left state is evaluated first. If its evaluation stops, the disjunction evaluation
proceeds with the right state, propagating the label (SumStop and SumStep),
and the conjunction schedules the right goal for evaluation in the context of the
returned answer (ProdStopAns) or stops if there is no answer (ProdStop).

Fig. 3. Operational semantics of interleaving search

The last four rules describe interleaving, which occurs when the evaluation of
the left state suspends with some residual state (with or without an answer). In
the case of disjunction the answer (if any) is propagated, and the constituents of
the disjunction are swapped (SumStep, SumStepAns). In the case of conjunc-
tion, if the evaluation step in the left conjunct did not provide any answer, the
evaluation is continued in the same order since there is still no information to

176 D. Rozplokhas et al.

proceed with the evaluation of the right conjunct (ProdStep); if there is some
answer, then the disjunction of the right conjunct in the context of the answer
and the remaining conjunction is scheduled for evaluation (ProdStepAns).

The introduced transition system is completely deterministic: there is exactly
one transition from any non-terminal state. There is, however, some freedom
in choosing the order of evaluation for conjunction and disjunction states. For
example, instead of evaluating the left substate first, we could choose to evaluate
the right one, etc. This choice reflects the inherent non-deterministic nature of
search in relational (and, more generally, logical) programming. Although we
could introduce this ambiguity into the semantics (by replacing specific rules for
disjunctions and conjunctions evaluation with some conditions on it), we want
an operational semantics that would be easy to present and easy to employ to
describe existing language extensions (already described for a specific implemen-
tation of interleaving search), so we instead base the semantics on one canonical
search strategy. At the same time, as long as deterministic search procedures are
sound and complete, we can consider them “equivalent”.4

It is easy to prove that transitions preserve well-formedness of states.

Lemma 3. (Well-formedness preservation) For any transition s
l−→ ŝ, if s is

well-formed then ŝ is also well-formed.

A derivation sequence for a certain state determines a trace—a finite or
infinite sequence of answers. The trace corresponds to the stream of answers in
the reference miniKanren implementations. We denote a set of answers in the
trace for state ŝ by T rŝ.

We can relate sets of answers for the partially evaluated conjunction and dis-
junction with sets of answers for their constituents by the two following lemmas.

Lemma 4. For any non-terminal states s1 and s2, T rs1⊕s2 = T rs1 ∪ T rs2 .

Lemma 5. For any non-terminal state s and goal g, T rs⊗g ⊇
⋃

(σ,n)∈T rs

T r〈g,σ,n〉.

These two lemmas constitute the exact conditions on definition of these oper-
ators that we will use to prove the completeness of an operational semantics.

We also can easily describe the criterion of termination for disjunctions.

Lemma 6. For any goals g1 and g2, substitution σ, and number n, the trace
from the state 〈g1 ∨ g2, σ, n〉 is finite iff the traces from both 〈g1, σ, n〉 and
〈g2, σ, n〉 are finite.

These simple statements already allow us to prove two important proper-
ties of interleaving search as corollaries: the “fairness” of disjunction—the fact
that the trace for disjunction contains all the answers from both streams for
disjuncts—and the “commutativity” of disjunctions—the fact that swapping
two disjuncts (at the top level) does not change the termination of the goal
evaluation.
4 There still can be differences in observable behavior of concrete goals under different

sound and complete search strategies. For example, a goal can be refutationally
complete [6] under one strategy and non-complete under another.

Certified Semantics for Relational Programming 177

5 Equivalence of Semantics

Now we can relate two different kinds of semantics for miniKanren described
in the previous sections and show that the results given by these two semantics
are the same for any specification. This will actually say something important
about the search in the language: since operational semantics describes precisely
the behavior of the search and denotational semantics ignores the search and
describes what we should get from a mathematical point of view, by proving
their equivalence we establish the completeness of the search, which means that
the search will get all answers satisfying the described specification and only
those.

Fig. 4. Denotational semantics of states

But first, we need to relate the answers produced by these two semantics as
they have different forms: a trace of substitutions (along with the numbers of
allocated variables) for the operational one and a set of representing functions for
the denotational one. We can notice that the notion of a representing function
is close to substitution, with only two differences:
– representing functions are total;
– terms in the domain of representing functions are ground.

Therefore we can easily extend (perhaps ambiguously) any substitution to a
representing function by composing it with an arbitrary representing function
preserving all variable dependencies in the substitution. So we can define a set
of representing functions that correspond to a substitution as follows:

�σ� = {f ◦ σ | f : A �→ D}
And the denotational analog of operational semantics (a set of representing

functions corresponding to the answers in the trace) for a given state ŝ is then
defined as the union of sets for all substitutions in the trace:

�ŝ�op = ∪(σ,n)∈T rŝ
�σ�

This allows us to state theorems relating the two semantics.

Theorem 1 (Operational semantics soundness). If indices of all free vari-
ables in a goal g are limited by some number n, then �〈g, ε, n〉�op ⊆ �g�.

It can be proven by nested induction, but first, we need to generalize the state-
ment so that the inductive hypothesis is strong enough for the inductive step.

178 D. Rozplokhas et al.

To do so, we define denotational semantics not only for goals but for arbitrary
states. Note that this definition does not need to have any intuitive interpreta-
tion, it is introduced only for the proof to go smoothly. The definition of the
denotational semantics for extended states is shown on Fig. 4. The generalized
version of the theorem uses it.

Lemma 7 (Generalized soundness). For any well-formed state ŝ

�ŝ�op ⊆ �ŝ�.

It can be proven by the induction on the number of steps in which a given
answer (more accurately, the substitution that contains it) occurs in the trace.
We break the proof in two parts and separately prove by induction on evidence
that for every transition in our system the semantics of both the label (if there is
one) and the next state are subsets of the denotational semantics for the initial
state.

Lemma 8 (Soundness of the answer). For any transition s
(σ,n)−−−→ ŝ,

�σ� ⊆ �s�.

Lemma 9 (Soundness of the next state). For any transition s
l−→ ŝ,

�ŝ� ⊆ �s�.

It would be tempting to formulate the completeness of operational semantics
as soundness with the inverted inclusion, but it does not hold in such gener-
ality. The reason for this is that the denotational semantics encodes only the
dependencies between free variables of a goal, which is reflected by the closed-
ness condition, while the operational semantics may also contain dependencies
between semantic variables allocated in fresh constructs. Therefore we formu-
late completeness with representing functions restricted on the semantic vari-
ables allocated in the beginning (which includes all free variables of a goal).
This does not compromise our promise to prove the completeness of the search
as miniKanren returns substitutions only for queried variables, which are allo-
cated in the beginning.

Theorem 2 (Operational semantics completeness). If the indices of all
free variables in a goal g are limited by some number n, then

{f|{α1,...,αn} | f ∈ �g�} ⊆ {f|{α1,...,αn} | f ∈ �〈g, ε, n〉�op}.

Similarly to the soundness, this can be proven by nested induction, but the
generalization is required. This time it is enough to generalize it from goals
to states of the shape 〈g, σ, n〉. We also need to introduce one more auxiliary
semantics—step-indexed denotational semantics (denoted by �•�i). It is an imple-
mentation of the well-known approach [2] of indexing typing or semantic logical
relations by a number of permitted evaluation steps to allow inductive reasoning

Certified Semantics for Relational Programming 179

on it. In our case, �g�i includes only those representing functions that one can
get after no more than i unfoldings of relational calls.

The step-indexed denotational semantics is an approximation of the con-
ventional denotational semantics; it is clear that any answer in conventional
denotational semantics will also be in step-indexed denotational semantics for
some number of steps.

Lemma 10. �g� ⊆ ∪i�g�i

Now the generalized version of the completeness theorem is as follows.

Lemma 11 (Generalized completeness). For any set of relational defini-
tions, for any number of unfoldings i, for any well-formed state 〈g, σ, n〉,

{f|{α1,...,αn} | f ∈ �g�i ∩ �σ�} ⊆ {f|{α1,...,αn} | f ∈ �〈g, σ, n〉�op}.

The proof is by the induction on number of unfoldings i. The induction
step is proven by structural induction on goal g. We use Lemmas 4 and 5 for
evaluation of a disjunction and a conjunction respectively, and Lemma 1 in the
case of fresh variable introduction to move from an arbitrary semantic variable
in denotational semantics to the next allocated fresh variable. The details of this
proof may be found in the extended version of the paper.

6 Specification in Coq

We certified all the definitions and propositions from the previous sections using
the Coq proof assistant.5 The Coq specification for the most part closely follows
the formal descriptions we gave by means of inductive definitions (and induc-
tively defined propositions in particular) and structural induction in proofs. The
detailed description of the specification, including code snippets, is provided in
the extended version of the paper, and in this section we address only some
non-trivial parts of it and some design choices.

The language formalized in Coq has a few non-essential simplifications for
the sake of convenience. Specifically, we restrict the arities of all constructors
to be either zero or two and require all relations to have exactly one argument.
These restrictions do not make the language less expressive in any way since we
can always represent a sequence of terms as a list using constructors Nil0 and
Cons2.

In our formalization of the language we use higher-order abstract syntax [27]
for variable binding, therefore we work explicitly only with semantic variables.
We preferred it to the first-order syntax because it gives us the ability to use
substitution and the induction principle provided by Coq. On the other hand,
we need to explicitly specify a requirement on the syntax representation, which is
trivially fulfilled in the first-order case: all bindings have to be “consistent”, i.e. if
5 The specification is available at https://github.com/dboulytchev/miniKanren-coq.

https://github.com/dboulytchev/miniKanren-coq

180 D. Rozplokhas et al.

we instantiate a higher-order fresh construct with different semantic variables
the results will be the same up to some renaming (provided that both those
variables are not free in the body of the binder). Another requirement we have
to specify explicitly (independent of HOAS/FOAS dichotomy) is a requirement
that the definitions of relations do not contain unbound semantic variables.

To formalize the operational semantics in Coq we first need to define all
preliminary notions from unification theory [3] which our semantics uses. In
particular, we need to implement the notion of the most general unifier (MGU).
As it is well-known [25] all standard recursive algorithms for calculating MGU
are not decreasing on argument terms, so we can’t define them as simple recursive
functions in Coq due to the termination check failure. The standard approach
to tackle this problem is to define the function through well-founded recursion.
We use a distinctive version of this approach, which is more convenient for our
purposes: we define MGU as a proposition (for which there is no termination
requirement in Coq) with a dedicated structurally-recursive function for one step
of unification, and then we use a well-founded induction to prove the existence
of a corresponding result for any arguments and defining properties of MGU.
For this well-founded induction, we use the number of distinct free variables in
argument terms as a well-founded order on pairs of terms.

In the operational semantics, to define traces as (possibly) infinite sequences
of transitions we use the standard approach in Coq—coinductively defined
streams. Operating with them requires a number of well-known tricks, described
by Chlipala [9], to be applied, such as the use of a separate coinductive definition
of equality on streams.

The final proofs of soundness and completeness of operational semantics are
relatively small, but the large amount of work is hidden in the proofs of auxil-
iary facts that they use (including lemmas from the previous sections and some
technical machinery for handling representing functions).

7 Applications

In this section, we consider some applications of the framework and results,
described in the previous sections.

7.1 Correctness of Transformations

One important immediate corollary of the equivalence theorems we have proven
is the justification of correctness for certain program transformations. The com-
pleteness of interleaving search guarantees the correctness of any transformation
that preserves the denotational semantics, for example:
– changing the order of constituents in conjunctions and disjunctions;
– distributing conjunctions over disjunctions and vice versa, for example, nor-

malizing goals info CNF or DNF;
– moving fresh variable introduction upwards/downwards, for example, trans-

forming any relation into a top-level fresh construct with a freshless body.

Certified Semantics for Relational Programming 181

Note that this way we can guarantee only the preservation of results as sets
of ground terms; the other aspects of program behavior, such as termination,
may be affected by some of these transformations.6

One of the applications for these transformations is a conversion from/to
Prolog. As both languages use essentially the same fragment of first-order
logic, their programs are mutually convertible. The conversion from Prolog to
miniKanren is simpler as the latter admits a richer syntax of goals. The inverse
conversion involves the transformation into a DNF and splitting the disjunction
into a number of separate clauses. This transformation, in particular, makes it
possible to reuse our approach to describe the semantics of Prolog as well. In
the following sections we briefly address this problem.

7.2 SLD Semantics

The conventional Prolog SLD search differs from the interleaving one in just
one aspect—it does not perform interleaving. Thus, changing just two rules in
the operational semantics converts interleaving search into the depth-first one:

s1
◦−→ s′

1

(s1 ⊕ s2)
◦−→ (s′

1 ⊕ s2)
[DisjStep]

s1
r−→ s′

1

(s1 ⊕ s2)
r−→ (s′

1 ⊕ s2)
[DisjStepAns]

With this definition we can almost completely reuse the mechanized proof of
soundness (with minor changes); the completeness, however, can no longer be
proven (as it does not hold anymore).

7.3 Cut

Dealing with the “cut” construct is known to be a cornerstone feature in the
study of operational semantics for Prolog. It turned out that in our case the
semantics of “cut” can be expressed naturally (but a bit verbosely). Unlike SLD-
resolution, it does not amount to an incremental change in semantics description.
It also would work only for programs directly converted from Prolog specifi-
cations.

The key observation in dealing with the “cut” in our setting is that a state
in our semantics, in fact, encodes the whole current search tree (including all
backtracking possibilities). This opens the opportunity to organize proper “navi-
gation” through the tree to reflect the effect of “cut”. The details of the semantic
description can be found in the extended version of the paper.

For this semantics, we can repeat the proof of soundness w.r.t. to the deno-
tational semantics. There is, however, a little subtlety with our construction: we
cannot formally prove that our semantics indeed encodes the conventional mean-
ing of “cut” (since we do not have other semantics of “cut” to compare with).
6 Possible slowdown and loss of termination after reorderings in conjunction is a

famous example of this phenomenon in miniKanren, known as conjunction non-
commutativity [6].

182 D. Rozplokhas et al.

Nevertheless, we can demonstrate a plausible behavior using the extracted ref-
erence interpreter.

7.4 Reference Interpreters

Using the Coq extraction mechanism, we extracted two reference interpreters
from our definitions and theorems: one for conventional miniKanren with inter-
leaving search and another one for SLD search with cut. These interpreters can be
used to practically investigate the behavior of specifications in unclear, complex,
or corner cases. Our experience has shown that these interpreters demonstrate
the expected behavior in all cases.

8 Related Work

The study of formal semantics for logic programming languages, particularly
Prolog, is a well-established research domain. Early works [10,16] addressed
the computational aspects of both pure Prolog and its extension with the cut
construct. Recently, the application of certified/mechanized approaches came
into focus as well. In particular, in one work [21] the equivalence of a few differ-
ently defined semantics for pure Prolog is proven, and in another work [20] a
denotational semantics for Prolog with cut is presented; both works provide
Coq-mechanized proofs. It is interesting that the former one also advocates
the use of higher-order abstract syntax. We are not aware of any prior work
on certified semantics for Prolog which contributed a correct-by-construction
interpreter. Our certified description of SLD resolution with cut can be consid-
ered as a certified semantics for Prolog modulo occurs check in unification
(which Prolog does not have by default).

The implementation of first-order unification in dependently typed languages
constitutes a well-known challenge with a number of known solutions. The major
difficulty comes from the non-structural recursivity of conventional unification
algorithms, which requires to provide a witness for convergence. The standard
approach is to define a generally-recursive function and a well-founded order
for its arguments. This route is taken in a number of works [5,19,26,28], where
the descriptions of unification algorithms are given in Coq, LCF and Alf.
The well-founded used there is lexicographically ordered tuples, containing the
information about the number of different free variables and the sizes of the
arguments. We implement a similar approach, but we separate the test for the
non-matching case into a dedicated function. Thus, we make a recursive call only
when the current substitution extension is guaranteed, which allows us to use
the number of different free variables as the well-founded order. An alternative
approach suggested by McBride [25] gives a structurally recursive definition of
the unification algorithm; this is achieved by indexing the arguments with the
numbers of their free variables.

The use of higher-order abstract syntax (HOAS) for dealing with language
constructs in Coq was addressed in early work [11], where it was employed to

Certified Semantics for Relational Programming 183

describe the lambda calculus. The inconsistency phenomenon of HOAS represen-
tation, mentioned in Sect. 6, is called there “exotic terms” there and is handled
using a dedicated inductive predicate “Valid_v”. The predicate has a non-trivial
implementation based on subtle observations on the behavior of bindings. Our
case, however, is much simpler: there is not much variety in “exotic terms” (for
example, we do not have reductions in terms), and our consistency predicate can
be considered as a limited version of “Valid_v” for a more limited language.

The study of formal semantics for miniKanren is not a completely novel
venture. Previously, a nondeterministic small-step semantics was described [24],
as well as a big-step semantics for a finite number of answers [29]; neither uses
proof mechanization and in both works the interleaving is not addressed.

The work of Kumar [22] can be considered as our direct predecessor. It also
introduces both denotational and operational semantics and presents a HOL-
certified proof for the soundness of the latter w.r.t. the former. The denotational
semantics resembles ours but considers only queries with a single free variable
(we do not see this restriction as important). On the other hand, the operational
semantics is non-deterministic, which makes it impossible to express interleav-
ing and extract the interpreter in a direct way. In addition, a specific form of
“executable semantics” is introduced, but its connection to the other two is
not established. Finally, no completeness result is presented. We consider our
completeness proof as an essential improvement.

The most important property of interleaving search—completeness—was
postulated in the introductory paper [18], and is delivered by all major imple-
mentations. Hemann et al. [15] give a proof of completeness for a specific imple-
mentation of miniKanren; however, the completeness is understood there as
preservation of all answers during the interleaving of answer streams, i.e. in a
more narrow sense than in our work since no relation to denotational semantics
is established.

9 Conclusion and Future Work

In this paper, we presented a certified formal semantics for core miniKanren and
proved some of its basic properties (including interleaving search completeness,
disjunction fairness and commutativity), which are believed to hold in existing
implementations. We also derived a semantics for conventional SLD resolution
with cut and extracted two certified reference interpreters. We consider our work
as the initial setup for the future development of miniKanren semantics.

The language we considered here lacks many important features, which are
already introduced and employed in many implementations. Integrating these
extensions—in the first hand, disequality constraints,—into the semantics looks
a natural direction for future work. We are also going to address the problems of
proving some properties of relational programs (equivalence, refutational com-
pleteness, etc.).

184 D. Rozplokhas et al.

References

1. Alvis, C.E., Willcock, J.J., Carter, K.M., Byrd, W.E., Friedman, D.P.: cKanren:
miniKanren with constraints. In: Proceedings of the 2011 Annual Workshop on
Scheme and Functional Programming (2011)

2. Appel, A.W., McAllester, D.A.: An indexed model of recursive types for foun-
dational proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683
(2001)

3. Baader, F., Snyder, W.: Handbook of automated reasoning. In: Unification Theory.
Elsevier Science Publishers B. V., Amsterdam, The Netherlands (2001)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer (2004)

5. Bove, A.: Programming in martin-löf type theory: Unification - a non-trivial exam-
ple, pp. 22–42, Department of Computer Science, Chalmers University of Technol-
ogy (1999)

6. Byrd, W.E.: Relational Programming in miniKanren: Techniques, Applications,
and Implementations. PhD thesis, Indiana University (2009)

7. Byrd, W.E., Friedman, D.P.: αkanren: a fresh name in nominal logic program-
ming. In: Proceedings of the 2007 Annual Workshop on Scheme and Functional
Programming, pp. 79–90 (2007)

8. Byrd, W.E., Friedman, D.P., Kumar, R., Near, J.P.: A shallow Scheme embedding
of bottom-avoiding streams. In: To appear in a special issue of Higher-Order and
Symbolic Computation, in honor of Mitchell Wand’s 60th birthday

9. Chlipala, A.: Certified Programming with Dependent Types - A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, Cambridge (2013)

10. Debray, S.K., Mishra, P.: Denotational and operational semantics for PROLOG.
In: Formal Description of Programming Concepts - III: Proceedings of the IFIP TC
2/WG 2.2 Working Conference on Formal Description of Programming Concepts
- III, Ebberup, Denmark, 25–28 August 1986, pp. 245–274 (1987)

11. Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-order abstract syntax in Coq.
In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp.
124–138. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0014049

12. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. MIT Press,
Cambridge (2005)

13. Hemann, J., Friedman, D.P.: μKanren: a minimal functional core for relational
programming. In: Proceedings of the 2013 Annual Workshop on Scheme and Func-
tional Programming (2013)

14. Hemann, J., Friedman, D.P.: A framework for extending microKanren with con-
straints. In Proceedings 29th and 30th Workshops on (Constraint) Logic Program-
ming and 24th International Workshop on Functional and (Constraint) Logic Pro-
gramming, WLP 2015 / WLP 2016 / WFLP 2016, Dresden and Leipzig, Germany,
22nd September 2015 and 12–14th September 2016, pp. 135–149 (2017)

15. Hemann, J., Friedman, D.P., Byrd, W.E., Might, M.: A small embedding of logic
programming with a simple complete search. In: Proceedings of the 12th Sym-
posium on Dynamic Languages, DLS 2016, Amsterdam, The Netherlands, 1 Nov
2016, pp. 96–107 (2016)

16. Jones, N.D., Mycroft, A.: Stepwise development of operational and denotational
semantics for Prolog. In: Proceedings of the 1984 International Symposium on
Logic Programming, Atlantic City, New Jersey, USA, 6–9 Feb 1984, pp. 281–288
(1984)

https://doi.org/10.1007/BFb0014049

Certified Semantics for Relational Programming 185

17. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976)

18. Kiselyov, O., Shan, C., Friedman, D.P., Sabry, A.: Backtracking, interleaving, and
terminating monad transformers: (functional pearl), pp. 192–203 (2005)

19. Kothari, S., Caldwell, J.: A machine checked model of idempotent MGU axioms
for lists of equational constraints. In: Proceedings 24th International Workshop on
Unification, UNIF 2010, Edinburgh, United Kingdom, 14th July 2010, pp. 24–38
(2010)

20. Kriener, J., King, A.: Semantics for Prolog with cut - revisited. In: Functional and
Logic Programming - 12th International Symposium, FLOPS 2014, Kanazawa,
Japan, 4–6 June 2014, Proceedings, pp. 270–284 (2014)

21. Kriener, J., King, A., Blazy, S.: Proofs you can believe. In: proving equivalences
between Prolog semantics in Coq. In: 15th International Symposium on Principles
and Practice of Declarative Programming, PPDP ’13, Madrid, Spain, 16–18 Sept
2013, pp. 37–48 (2013)

22. Kumar, R.: Mechanising aspects of miniKanren in HOL. Bachelor Thesis, The
Australian National University (2010)

23. Lloyd, J.W.: Foundations of Logic Programming, 1st edn. Springer (1984)
24. Lozov, P., Vyatkin, A., Boulytchev, D.: Typed relational conversion. In: Wang, M.,

Owens, S. (eds.) TFP 2017. LNCS, vol. 10788, pp. 39–58. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89719-6 3

25. McBride, C.: First-order unification by structural recursion. J. Funct. Program.
13(6), 1061–1075 (2003)

26. Paulson, L.C.: Verifying the unification algorithm in LCF. Sci. Comput. Program.
5(2), 143–169 (1985)

27. Pfenning, F., Elliott, C.: Higher-Order Abstract Syntax, pp. 199–208 (1988)
28. Ribeiro, R., Camarão, C.: A mechanized textbook proof of a type unification algo-

rithm. In: Cornélio, M., Roscoe, B. (eds.) SBMF 2015. LNCS, vol. 9526, pp. 127–
141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29473-5 8

29. Rozplokhas, D., Boulytchev, D.: Improving refutational completeness of relational
search via divergence test. In: Proceedings of the 20th International Symposium
on Principles and Practice of Declarative Programming, PPDP 2018, Frankfurt
am Main, Germany, 03–05 Sept 2018, pp. 18:1–18:13 (2018)

30. Swords, C., Friedman, D.P.: rKanren: guided search in miniKanren. In: Proceedings
of the 2013 Annual Workshop on Scheme and Functional Programming (2013)

31. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5, 06 (1955)

32. Wadler, P.: Monads for functional programming. In: Advanced Functional Pro-
gramming, First International Spring School on Advanced Functional Program-
ming Techniques, B̊astad, Sweden, 24–30 May 1995, Tutorial Text, pp. 24–52
(1995)

https://doi.org/10.1007/978-3-319-89719-6_3
https://doi.org/10.1007/978-3-319-29473-5_8

Algebraic and Coalgebraic Perspectives
on Interaction Laws

Tarmo Uustalu1,2 and Niels Voorneveld2(B)

1 Department of Computer Science, Reykjavik University, Reykjavik, Iceland
tarmo@ru.is

2 Department of Software Science, Tallinn University of Technology, Tallinn, Estonia
niels.voorneveld@taltech.ee

Abstract. Monad algebras, turning computations over return values
into values, are used to handle algebraic effects invoked by programs,
whereas comonad coalgebras, turning initial states into environments
(“cocomputations”) over states, describe production of coalgebraic coef-
fects that can respond to effects. (Monad-comonad) interaction laws by
Katsumata et al. describe interaction protocols between a computation
and an environment. We show that any triple of those devices can be
combined into a single algebra handling computations over state predi-
cates. This method yields an isomorphism between the category of inter-
action laws, and the category of so-called merge functors which merge
algebras and coalgebras to form combined algebras. In a similar vein, we
can combine interaction laws with coalgebras only, retrieving Uustalu’s
stateful runners. If instead we combine interaction laws with algebras
only, we get a novel concept of continuation-based runners that lift an
environment of value predicates to a single predicate on computations
of values. We use these notions to study different running examples of
interactions of computations and environments.

Keywords: Monad algebras · Comonad coalgebras · Interaction laws ·
Runners · Monad morphisms · Effects · Coeffects

1 Introduction

Programs can exhibit effects which impact how they are run. Such effects
(requests to the environment) may communicate with, invoke changes in, and
otherwise influence the environment, producing coeffects (responses to the com-
putation). How does one describe the protocols of such interactions?

Katsumata et al. [7] proposed to use (monad-comonad) interaction laws. We
model the notion of effect using a monad T following Moggi [10], and the notion
of coeffect using a comonad D, as pioneered by Power and Shkaravska [18].
The environment interacts with the effects, resolving some, ignoring others, and
potentially producing new effects. A residual monad R is specified to capture
these ignored and newly produced effects. This process of interaction is for-
malised using an R-residual interaction law between T and D.
c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 186–205, 2020.
https://doi.org/10.1007/978-3-030-64437-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_10&domain=pdf
http://orcid.org/0000-0002-1297-0579
http://orcid.org/0000-0001-6650-3493
https://doi.org/10.1007/978-3-030-64437-6_10

Algebraic and Coalgebraic Perspectives on Interaction Laws 187

But there is more to say about running computations in interaction with
environments from the “pragmatic” point of view: namely, how information is
extracted from completed runs and how environments are prepared for runs.

We use algebras to interpret outcomes of completed runs, i.e., residual com-
putations. Under favourable circumstances, algebras ξ : RX → X for a set of
values X can be used to extract a single value from a computation over values; in
this situation one often talks of them as handlers [16]. More generally, algebras
can be used to observe or test computations, in terms of a set Z of observables
(generalized truth values), as done, e.g., by Hasuo [5]. Algebras ζ : RZ → Z lift
value predicates P : X → Z to computation predicates ζ ◦ RP : RX → Z.

Coalgebras χ : Y → DY , on the other hand, can be used to specify the
environment that any initial state yields; an environment itself describing the
response and state-change behaviour of a world a computation may be placed
in. The carrier of such a coalgebra is the state set of the environment.

In this paper, we show that, given an algebra of R with carrier Z describ-
ing the handling of computations over observables, and a coalgebra of D with
carrier Y describing the production of environments over states, we can turn an
R-residual interaction law between T and D into a single algebra on T . This
resulting algebra with carrier Y ⇒ Z handles computations over state predi-
cates, and can be used to describe, in one go, the behaviour of the whole system.
This combination of tools gives rise to an isomorphism between the category of
R-residual interaction laws between T and D and the category of merge functors,
which merge coalgebras of D into algebras of R to form algebras of T .

We look at three running examples. One example is a computation which
requests probabilistic weights from the environment for resolving nondetermin-
istic choices. These weights are stored in the residual computation of weighted
probabilistic choices. The second example incorporates an uncertain data reader,
in which repeated state readings may be necessary before an effect is resolved,
and each reading has an associated cost. We see this cost as an emergent effect
resulting from the interaction, which we put in the residual computation. The
last example combines probability with a comonadic model of global store.

There are many applications for this result on combining algebras, coalgebras
and interaction laws. Firstly, it allows us to add program-environment inter-
action on top of pre-existing effect descriptions. For instance, if we have an
algebra for an effect, e.g. a handler or some predicate lifting, it can be com-
pleted with an interaction law in order to add environments to the picture. This
can, for instance, be seen in the last example, where we add global store to
probability. Secondly, using algebras also enables us to describe more fully sit-
uations of program-environment interaction that cannot be analyzed in terms
of an interaction law alone, as seen in the other two running examples. We
thus obtain a flexible framework for describing, and potentially implementing,
program-environment interactions.

The running examples are implemented using algebraic effects in the sense of
Plotkin and Power [14,15] (see also Bauer [3]), which use effect operations from
a signature that can be encoded by a functor F . To easily construct interaction

188 T. Uustalu and N. Voorneveld

laws, we use functor-comonad interaction laws. Such a law between F and D can
be extended to an interaction law between the free monad on F and comonad
D via an isomorphism.

Two additional descriptions lie between interaction laws and merge functors.
Combining interaction laws only with coalgebras yields stateful runners [7,20],
and combining them only with algebras yields a novel concept of continuation-
based runners, lifting an environment over value predicates to a single predicate
on computations over values. Both types of runners can also be described as
monad morphisms.

The next two sections give some preliminaries, where Sect. 2 focusses on
formulating handler algebras and producer coalgebras, and Sect. 3 studies inter-
action laws. Section 4 introduces merge functors, and Sect. 5 establishes their
isomorphism with interaction laws. Section 6 presents a way to formulate inter-
action laws locally on effect operations, and lastly, Sect. 7 talks about stateful
and continuation-based runners.

We introduce the categorical concepts necessary for following the main story
of the paper, but side remarks use more advanced category theory. Throughout
the paper, we work with one Cartesian closed base category C. The examples
are all for Set. We write Y ⇒ Z and occasionally ZY for exponents.

2 Effect Handling and Coeffect Production

2.1 Effect Handling

Effectful programs may produce multiple return values, no return values, or dif-
ferent return values in different situations, and they may communicate informa-
tion to the environment. Following Moggi [10], the behaviours of such programs
are abstracted into effectful computations. Effectful computations over a set of
return values X are elements of the set TX for T some monad. A computation
represents the behaviours of the program in terms of the requests it makes to
the world (effects) it is run in and values it eventually can return depending on
how the requests are responded.

Given a computation t ∈ TX over the set of return values X, we may want
to retrieve a single return value. To this end, we can use a monad algebra of T .

Definition 1. An algebra ξ : TX → X of the underlying functor of a monad
T = (T, ηT , μT) is said to be a monad algebra if it satisfies the following equa-
tions:

X
ηT

X �� ���
���

�

���
���

�

TX
ξ

�� X

TTX
μT

X ��

Tξ �� TX
ξ��

TX
ξ

�� X

We denote the category of monad algebras of T by Alg(T). The Kleisli
category Kl(T) is isomorphic to the full subcategory of Alg(T) given by monad
algebras μT

X : T (TX) → TX (the free algebras).

Algebraic and Coalgebraic Perspectives on Interaction Laws 189

Besides directly extracting a return value from a computation, we can also use
algebras to make observations about computations. Suppose that X is some set
of values, Z is a set of observables, perhaps (generalized) truth values, and that
RX for R some monad is the set of effectful computations over these values.
Given a morphism P : X → Z that assigns observables to values (is a value
predicate), an algebra ζ : RZ → Z associates an observable to any given effectful
computation via ζ ◦ RP : RX → Z (is a computation predicate).

Consider, for instance, the distributions monad D. A randomized computa-
tion is represented by an element t ∈ DX for some value set X. Not every set
X can be (meaningfully) endowed with an algebra structure ξ : DX → X: there
may be no way of combining the many possible return values x ∈ X appearing
in a computation t ∈ DX into a single value.

A solution to this issue is to work with observations. We use a set of observ-
ables Z, which in this case we can take to be probabilities, the real number
interval from 0 to 1 denoted by [0, 1]. Given some predicate on return values
P : X → Z (assigning a probability to each x ∈ X), we can transform t ∈ DX
into (DP)(t) ∈ D[0, 1]. We then use an algebra E : D[0, 1] → [0, 1] for calculating
expectations to compute an observed probability for t.

We can take a more syntactical approach, describing effects using algebraic
effect operations [15]. We consider a signature of effect operations Σ, each oper-
ation op having an arity given by an object of the category ar(op) ∈ C. This
arity tells us how many possible continuations there are for a program when this
effect is encountered. For instance, a binary choice operation would have arity
2, meaning there are two continuations.

Given such a signature Σ, we generate the free monad TΣX := μV.X +∑
op∈Σ(ar(op) ⇒ V). Given f : ar(op) ⇒ TΣX, we write op(f) ∈ TΣX for the

appropriate element in TΣX. If ar(op) = n = {0, . . . , n − 1} and t0, . . . , tn−1 ∈
TΣX, we may alternatively write op(t0, . . . , tn−1).

Example 1 (Probabilistic weights). Consider computations which can, for each
q ∈ [0, 1], have a q-weighted probabilistic binary choice orq with ar(orq) = 2.
Let Σ := {orq | q ∈ [0, 1]}, with computations over Z living in the free monad
RZ := TΣZ of binary leaf trees with nodes labelled with weights. As observables,
we take expectations of truth [0, 1], and we inductively define our algebra Exp :
R[0, 1] → [0, 1] by Exp(orq(x, y)) := (1 − q)Exp(x) + qExp(y).

Example 2 (Cost of computations). We consider a simpler example where we
associate a cost to certain computation steps. This can for instance represent
time investment, or expenditure of some other resource like memory or energy.
We consider a single tick operation Σ := {tick} with arity 1, and allow com-
putation to continue forever: RZ := νW.Z + W . This monad is given by final
coalgebras, not initial algebras, i.e., is not the free monad on the identity functor,
but the free completely iterative monad in the sense of Aczel et al. [1], infor-
mally, the smallest monad that supports both the tick operation and (guarded)
iteration. As an algebra, we take the cost tallying device Tal : R(N∞) → N∞
given by Tal(tick(t)) = 1 +Tal(t) for finite sequences of ticks and Tal(t) = ∞ for
t the infinite sequence of ticks.

190 T. Uustalu and N. Voorneveld

2.2 Coeffect Production

On the other side of the story, we consider environments. They react to requests
of the computation, but are otherwise passive. An environment reacts to requests
by responding, and it also has a state that it changes as it responds. Such a
process is called coeffectful. Notions of coeffect can be modelled with a comonad
D. Environments over a state set Y are elements of DY ; an environment is a
description of the response and state-change behaviour of the world, including
an initial state, which can be extracted using the counit εY .

Most of the work on coeffects modelled by comonads has concentrated on
scenarios where a notion of computation is coeffectful by primarily relying on
coeffect consumption (coeffect cooperations); computations are modelled by co-
Kleisli arrows, e.g., [12,22]. Typical examples of this are computations with
causal stream functions (dataflow computation) and stencil computations (a.k.a.
cellular automata) [4,21]. Here, in contrast, we are interested not in coeffectful
computations, but in coeffectful environments. Central for us in this endeavour
are coeffect producers, which are coalgebras of the comonad. They assign to every
initial state drawn from a fixed state set an environment in a consistent way:
given an environment assigned to some initial state by a coeffect producer, its
continuation from any point must be obtainable by applying the coffect producer
to the state reached by that point as the new initial state. See, e.g., [13,18,20]
for examples.

Definition 2. An coalgebra χ : Y → DY of the underlying functor of a comonad
D = (D, ε, δ) is called a comonad coalgebra if it satisfies the following equations:

Y

DY

εY

��

Y
χ

��

�������

�������

DDY DY
Dχ��

DY
δY

��

Y

χ
��

χ
��

Let Coalg(D) be the category of comonad coalgebras on D. The coKleisli cat-
egory CoKl(D) is isomorphic to the full subcategory of Coalg(D) given by
comonad coalgebras δY : DY → D(DY) (the cofree coalgebras).

To facilitate the description of examples, we can again take a more syntactical
approach. Typically, a coeffect is described using coalgebraic cooperations. We
consider a signature Π of such cooperations, each cop ∈ Π having an arity
ar(cop) ∈ C. The arity gives the range of responses the environment can give.

The state of the environment contains for each cooperation a particular
response and a new environment. Given a signature Π, we consider the cofree
comonad DΠY := νW. Y × Πcop∈Π(ar(cop) × W). Supposing e ∈ DΠY and
cop ∈ Π, we have that cop(e) ∈ ar(cop) × DΠY is a pair (c, e′) consisting of a
piece of data c provided by the environment and the continuation of the envi-
ronment e′.

Example 3 (Stream of data). Given some object of data C, we consider an envi-
ronment which can supply a stream of datapoints from C. We take one coop-
eration Π := {give} of arity C, and consider the comonad DY := DΠY ∼=

Algebraic and Coalgebraic Perspectives on Interaction Laws 191

νW. Y × (C × W) ∼= (Y × C)N of streams over Y × C. As environment we take
E := CN ∼= D1. The producer is the cofree coalgebra δ1 : E → DE, which sends
a stream σ to δ1(σ) where give(δ1(σ)) := (σ(0), δ1(λn. σ(n + 1))).

Example 4 (Global store). We consider a set of data C, and an environment
which has one datapoint from C stored in its memory. We have Π := {give} ∪
{changec | c ∈ C}, where ar(give) := C and ar(changec) := 1. We can take
DY := DΠY ∼= νW.Y × (C × W) × (1 × W)C to be the cofree comonad, which
allows for giving and receiving data C. A producer for a global store environment
generates from a global state the appropriate environment which acts in the
following way: (1) when data is provided on request, the internal state does
not change, and (2) when data is received, the environment changes its internal
state accordingly. We formulate the producer GS : Y → DY with Y := C where
give(GS(c)) := (c,GS(c)) and changed(GS(c)) := (∗,GS(d)). A smaller comonad
defined by D′Y := C×(C ⇒ Y) allows only producers that obey the coequations
of global store; these amount to arrays, a.k.a. lenses. The set D′Y consists of the
elements of DY satisfying the coequations; as seen in the literature [13,18].

3 Interaction Laws

We now formulate how computations can interact with environments, with coef-
fects reacting to effects. Supposing we have the effects of interest described by
some monad T , and the coeffects by a comonad D, an interaction law between
T and D tells us how coeffects can be used to resolve effects.

In general, not all effects of a computation may be resolved by the environ-
ment it is run against. Moreover, the interaction between effects and coeffects
may produce new effects. We therefore use another monad R = (R, η, μ) for
residual effects. We study R-residual interaction laws of T and D by Katsumata
et al. [7]. They are an elaboration of ideas and abstraction of concepts by Plotkin
and Power [13] and Møgelberg and Staton [9].

Definition 3. An R-residual interaction law of T = (T, ηT , μT) and D =
(D, ε, δ) is given by a natural transformation typed ψ

(1)
X,Y : TX×DY → R(X×Y)

satisfying the (co)unit and (co)multiplication agreement equations

X × Y X × Y

ηX×Y

��
X × DY

X×εY �������

ηT
X ×DY

����
���

T X × DY

ψX,Y�� R(X × Y)

T T X × DDY

ψT X,DY�� R(T X × DY)
RψX,Y�� RR(X × Y)

μX×Y

��
T T X × DY

T T X×δY ��������

μT
X ×DY

		���
���

T X × DY

ψX,Y �� R(X × Y)

By the Yoneda lemma, a natural transformation ψ(1) above can be alterna-
tively given as a natural transformation typed 1

ψ
(0)
X,Y,Z : C(X × Y,Z) → C(TX × DY,RZ)

1 Note that this is not the same in general as to have a natural transformation typed
X × Y ⇒ Z → TX × DY ⇒ RZ.

192 T. Uustalu and N. Voorneveld

and therefore by Currying and symmetry also by natural transformations

ψ
(2)
X,Z : D(X ⇒ Z) → TX ⇒ RZ, ψ

(3)
Y,Z : T (Y ⇒ Z) → DY ⇒ RZ.

In this paper, we use all these formats, especially the 3rd in the next few sections.
Translating the equations of interaction laws into the 3rd format, we get:

Y ⇒ Z
ηT

Y ⇒Z��

εY ⇒ηZ

��
����

T (Y ⇒ Z)
ψY,Z��

DY ⇒ RZ

TT (Y ⇒ Z)

μT
Y ⇒Z ��

TψY,Z�� T (DY ⇒ RZ)
ψDY,RZ�� DDY ⇒ RRZ

δY ⇒μZ��
T (Y ⇒ Z)

ψY,Z

�� DY ⇒ RZ

We will write MCILR(T,D) for the set of R-residual interaction laws between
T and D (ignoring the exact format chosen).

The intuition for interaction laws is as follows. In the 0th format, X is the
set of return values of computations, Y is the state set of environments and Z is
the set of observables (or truth values). An interaction law ψ says that, as soon
as we know how to observe a value-state pair, a computation over values and an
environment can be combined to yield a computation over observables. It must
be natural in X, Y , Z to reflect that interactions only pass values, states and
observables around, but do not inspect them. In the 1st format, the observables
are X × Y , i.e., value-state pairs are directly observable. In the 2nd format, the
states of environments are X ⇒ Z, i.e., value predicates. In the 3rd format, the
values that given computations return are Y ⇒ Z, i.e., state predicates.

Later in the paper, we will use algebras and coalgebras to explain what
interaction laws do in different terms.

Example 5 (Probabilistic weight requester). In this example, computations may
have to make certain binary choices. They are represented by binary trees TX :=
TΣ′X where Σ′ has one operation or of arity 2. To make a nondeterministic
choice, a computation requests a probabilistic weight from its environment. This
environment is given by a stream DY of such weights as in Example 3, using as
data object C := [0, 1]. Having received a weight for each choice, it generates a
tree of probabilistic choices: RZ := TΣZ as in Example 1. This is done using an
interaction law ψY,Z : T (Y ⇒ Z) → DY ⇒ RZ where:

– ψY,Z(or(a, b))(e) := orq(ψY,Z(a)(e′), ψY,Z(b)(e′)), if (q, e′) = give(e).

Example 6 (Uncertain stream reader). We use DY as in Example 3, and consider
a computation which can request datapoints (elements of a set C) from its
environment. Programs use one effect operation Σ′ := {get} with ar(get) := C
and TX := TΣ′X. Upon a request, the environment will keep giving datapoints
until it gives the same datapoint twice in a row. We associate to each give a cost,
which we store with a tick in the residual computation in RZ := νW.Z + W , as
given in Example 2. We describe this multistep protocol with the interaction law
ψY,Z as follows: given e ∈ DY , with (c0, e0) := give(e), and (c1, e1) := give(e0):

– ψY,Z(get(f))(e) :=

{
tick(tick(ψY,Z(f(c0))(e1))) if c0 = c1,

tick(ψY,Z(get(f))(e0)) if c0
= c1 .

Algebraic and Coalgebraic Perspectives on Interaction Laws 193

Example 7 (Combining global store with probability). Lastly, we consider a more
traditional example, where some but not all effects are resolved, and no new
effects are generated. Take Σ and Π from Examples 1 and 4 respectively, and let
Σ′ := Σ+{lookup, updatec | c ∈ C} where ar(lookup) := C and ar(updatec) := 1.
We take computations which can request and update a global store, and make
probabilistic choices, denoted by TX := TΣ′X. As comonad we use the environ-
ment DY := DΠY , and as residual monad RZ := RΣZ the weighted choice
trees. The interaction law ψY,Z resolves only the global store requests. For
e ∈ DY , let (c, e′) := give(e), and for each d ∈ C let (∗, ed) := changed(e),
then

– ψY,Z(lookup(f))(e) := ψY,Z(f(c))(e′),
– ψY,Z(updated(t))(e) := ψY,Z(t)(ed),
– ψY,Z(orq(a, b))(e) := orq(ψY,Z(a)(e), ψY,Z(b)(e)).

In Sect. 6, we discuss a method for showing that the above constructions
satisfy the unit and multiplication equations for interaction laws.

Katsumata et al. [7] proved that R-residual interaction laws of T , D are in a
bijection with monad morphisms from T to the monad D −� R where D −� − is
the right adjoint of −�D and � is the Day convolution. This monad is explicitly
given by (D −� R)X =

∫
Y

DY ⇒ R(X × Y) ∼= ∫
Y,Z

C(X × Y,Z) � (DY ⇒
RZ) ∼= ∫

Z
D(X ⇒ Z) ⇒ RZ (with

∫
with subscript for ends and � for powers).

A morphism between two interaction laws (T,D,R, ψ) and (T ′,D′, R′, ψ′)
is given by (co)monad morphisms t : T → T ′, d : D′ → D and r : R → R′

satisfying the left equation below for the 1st format and the right equation for
the 3rd format:

TX × DY
ψX,Y�� R(X × Y)

rX×Y

��
TX × D′Y

TX×dY ������

tX×D′Y
��				

T ′X × D′Y
ψ′

X,Y�� R′(X × Y)

T (Y ⇒ Z)
ψX,Y��

tY ⇒Z

��

DY ⇒ RZ

dY ⇒rZ

��
T ′(Y ⇒ Z)

ψ′
X,Y�� D′Y ⇒ R′Z

(Note the direction of d.) Interaction laws form a category. The bijection with
monad morphisms extends to an isomorphism of categories, see [7].

4 Merge Functors

We are interested in how interaction laws can be combined with algebras for han-
dling residual effects and coalgebras for producing coeffects. In general, we get
what we call a merge functor. This merges a coalgebra into an algebra creating
a new algebra.

Definition 4. A merge functor for T,D,R is given by a functor M :
(Coalg(D))op × Alg(R) → Alg(T) which is carrier-exponentiating:

(Coalg(D))op × Alg(R) M ��

Uop×U��

Alg(T)
U��

Cop × C ⇒ �� C

194 T. Uustalu and N. Voorneveld

U are the relevant forgetful functors, which are the left (resp. right) adjoints of
the co-Eilenberg-Moore (resp. Eilenberg-Moore) adjunctions of D (resp. R, T).

Note in particular the three conditions which need to hold for M to be a
merge functor:

– Every functor algebra in the image of M needs to be a monad algebra;
– M needs to be functorial in its comonad coalgebra and monad algebra argu-

ments, sending coalgebra and algebra morphisms to an algebra morphism;
– On the level of carriers, M needs to be the exponentiation function.

Here is a variation of merge functors. A Kleisli merge functor for T,D,R is
a functor N : (CoKl(D))op × Kl(R) → Alg(T) which is carrier-exponentiating
in the sense that

(CoKl(D))op × Kl(R) N ��

F op×F��

Alg(T)
U��

Cop × C ⇒ �� C
where F : CoKl(D) → C is the left adjoint of the coKleisli adjunction of D and
F : Kl(R) → C is the right adjoint of the Kleisli adjunction of R.

Here and in the rest of this paper, when we refer to CoKl(D), we mean the
full subcategory of Coalg(D) given by the cofree coalgebras, which is isomorphic,
and similarly for Kl(R) and the full subcategory of Alg(R) given by the free
algebras. Under this view, the two functors F are still forgetful functors.2

Proposition 1. Any Kleisli merge functor has a unique extension to merge
functors. This gives us a bijection between the sets of merge functors and Kleisli
merge functors for T,D,R:

(CoKl(D))op × Kl(R) →ce. Alg(T)

(Coalg(D))op × Alg(R) →ce. Alg(T)

(where ‘ce.’ stands for carrier-exponentiating).

To see why this is, let us observe the following. Suppose we have a merge
functor M : Coalg(D)op × Alg(R) → Alg(T). For any comonad coalgebra
χ : Y → DY and any monad algebra ζ : RZ → Z, by functoriality of M and
the counit and unit equations of χ and ζ, we have

T (Y ⇒ Z)
T (εY ⇒ηZ)

T (DY ⇒ RZ)
M(δY ,μZ)

T (χ⇒ζ)

DY ⇒ RZ
χ⇒ζ

T (Y Z)
M(χ,ζ)

Y Z

This uses functoriality of M on the facts that χ is a coalgebra morphism from χ
to δY and that ζ is an algebra morphism from μZ to ζ, which are consequences
of the comultiplication and multiplication equations of χ and ζ.
2 Namely, they send δD

Y and μR
Z to DY and RZ respectively.

Algebraic and Coalgebraic Perspectives on Interaction Laws 195

So any merge functor is determined by its Kleisli merge sub-functor. We
therefore have but one candidate for extending a given Kleisli merge functor N :
(CoKl(D))op × Kl(R) → Alg(T) into a merge functor N̂ , which is: N̂(χ, ζ) =
(χ ⇒ ζ) ◦ N(δY , μZ) ◦ T (εY ⇒ ηZ). It is easy to show that N̂ is functorial and
that the functor algebras it delivers are monad algebras.

5 The Interaction Law, Merge Functor Isomorphism

Given an interaction law ψ, we define a Kleisli merge functor Mψ as follows. For
a cofree coalgebra δY : DY → DDY and a free algebra μZ : RRZ → RZ, we
construct an algebra

Mψ(δY , μZ) := T (DY ⇒ RZ)
ψDY,RZ�� DDY ⇒ RRZ

δY ⇒μZ�� DY ⇒ RZ.

Mψ is easily seen to be functorial and delivering monad algebras.
The construction M(−) gives rise to the following coincidence.

Proposition 2. There is a bijection between R-residual interaction laws of T
and D, and Kleisli merge functors for T,D,R:

MCILR(T,D)

(CoKl(D))op × Kl(R) →ce. Alg(T)

We need to show that the construction M(−) gives a bijection. We do this by
explicitly defining the inverse. Given a Kleisli merge functor M : (CoKl(D))op×
Kl(R) → Alg(T), we construct a natural transformation

ψM
Y,Z := T (Y ⇒ Z)

T (εY ⇒ηZ)�� T (DY ⇒ RZ)
M(δY ,μZ)�� DY ⇒ RZ

It is easy to verify that ψM fulfills the conditions of an interaction law.

Lemma 1. The construction ψ(−) is an inverse to the construction M(−).

Proof. We show that ψMψ = ψ.

T (Y ⇒ Z)
T (εY ⇒ηZ)

TηT
Y ⇒Z

T (DY ⇒ RZ)
ψDY,RZ

Mψ(δY ,μZ)

DDY ⇒ RRZ
δY ⇒μZ

DY ⇒ RZ

TT (Y ⇒ Z)
TψY,Z

μT
Y ⇒Z

T (Y ⇒ Z)
ψY,Z

The diagram commutes by the definition of Mψ, the (co)unit and
(co)multiplication equations of ψ, and right unitality of T . As the path at the
top is the constructed interaction law ψMψ , and that at the bottom is the given
interaction law ψ, the two coincide.

196 T. Uustalu and N. Voorneveld

We show that MψM = M :

T (DY ⇒ RZ)
T (εDY ⇒ηRZ)

ψM
DY,RZ

T (DDY ⇒ RRZ)
T (δY ⇒μZ)

M(δDY ,μRZ)
DDY ⇒ RRZ

δY ⇒μZ

T (DY RZ)
M(δY ,μZ)

DY RZ

The diagram commutes by the definition of ψM , left unitality of D and R and
functoriality of M applied to the facts that δY and μZ are (co)algebra morphisms.
Following the top path, we get the constructed merge function MψM , whereas
following the bottom path yields the given merge function M . We conclude that
the two coincide. ��

This finishes the proof of Proposition 2. Combining this with Proposition 1,
we have proved the following.

Corollary 1. There is a bijection between R-residual interaction laws of T , D
and merge functors for T , D, R.

Explicitly, the bijection of Corollary 1 sends an interaction law ψ to Mψ :
(Coalg(D))op × Alg(R) → Alg(T) which does:

Mψ(χ : Y → DY, ζ : RZ → Z) := T (Y ⇒ Z)
ψY,Z �� DY ⇒ RZ

χ⇒ζ �� Y ⇒ Z .

Example 8 (Probabilistic weight requester). We use the interaction law ψ from
Example 5 to merge the coalgebra δ1 from Example 3 into the algebra Exp from
Example 1. We get Mψ(δ1,Exp) : T (E ⇒ [0, 1]) → E ⇒ [0, 1], with as carrier
set the [0, 1]-valued predicates on streams E = [0, 1]N. Suppose we have some
predicate P : X → E ⇒ [0, 1] giving some expectation to each return value
and final state. Then, given some computation t ∈ TX, we can find the weakest
precondition Mψ(δ1,Exp)(TP (t)) ∈ E ⇒ [0, 1], which gives, for each initial state
e of the environment, the expectation of the computation, determined by the
postcondition P on the return value and the final states yielded.

Example 9 (Uncertain stream reader). We use the interaction law ψ from Exam-
ple 6 to merge the coalgebra δ1 from Example 3 into the algebra Tal from Exam-
ple 2. We get Mψ(δ1,Tal) : T (E ⇒ N∞) → E ⇒ N∞, with as carrier set
N∞-valued predicates on streams E = CN. This merged algebra computes,
for each initial state of the environment, how many responses the environment
gives during the interaction, and adds it to the perceived value of the final
state. Streams which behave unreliably will naturally give more datapoints,
as they create more uncertainty. For instance, the stream 10000 . . . will make
a program return the same values as the stream 0000 . . . , but it may invoke
more ticks (one more tick) than the latter. So, for each t ∈ T (E ⇒ N∞),
Mψ(δ1,Tal)(t)(10000 . . .) ≥ Mψ(δ1,Tal)(t)(0000 . . .).

Algebraic and Coalgebraic Perspectives on Interaction Laws 197

Example 10 (Combining global store with probability). Lastly, we use the interac-
tion law ψ from Example 7 to merge GS from Example 4 into Exp from Example 1.
We retrieve the algebra Mψ(GS,Exp) : T (C ⇒ [0, 1]) → C ⇒ [0, 1] from previous
work [23], whose carrier set is given by [0, 1]-valued store predicates.

We have not yet specified what a morphism between merge functors is.
We define them so that they will coincide with morphisms between interac-
tion laws. We say that a morphism between two merge functors (T,D,R,M)
and (T ′,D′, R′,M ′) is a triple of (co)monad morphisms t : T → T ′, d : D′ → D
and r : R → R′ such that, for any comonad coalgebra χ : Y → D′Y and any
monad algebra ζ : R′Z → Z, M ′(χ, ζ) ◦ tY ⇒Z = M(dY ◦ χ, ζ ◦ rZ).

Proposition 3. A triple (t, d, r) of (co)monad morphisms forms a morphism
between interaction laws ψ and ψ′ if and only if it is a morphism between merge
functors Mψ and Mψ′ .

Corollary 2. The category of residual interaction laws is isomorphic to the cat-
egory of merge functors, thus preserving the underlying (co)monads.

Since the isomorphism preserves the underlying (co)monads of its objects, we
can also fix some of T , D, and R, and the isomorphism still holds. For instance,
we get an isomorphism between R-residual interaction laws for some fixed R,
and the category of merge functors for the same fixed R, with D and T varying.

6 Interaction Laws for Free Monads

One thing we have not yet done is show that the interaction laws of the exam-
ples satisfy the unit and multiplication equations. This is often tedious to do
in practice. In this section, we discuss a recipe for generating interaction laws
when T is a free monad. This recipe is exhaustive and without redundancy: it
generates all interaction laws exactly once. We start with a general Cartesian
closed category C first, and do some further simplifications for Set later on.

Given a functor F , the underlying functor T of the free monad on F is given
by initial algebra carriers: TX := μV.X +FV . The structure maps X +FTX →
TX split into ηT

X : X → TX and σX : FTX → TX. The unit is ηT
X and the

multiplication μT
X is the unique solution to the initial algebra diagram:

TX
ηT

T X ��

���
���

�

���
���

� TTX
μT

X��

FTTX
FμT

X��

σT X��

TX FTX
σX��

Now R-residual interaction laws between D and T can be defined in “small
steps”, in terms of F , giving rise to the following result.

Proposition 4. If T is the free monad on F , then there is a bijection between
R-residual interaction laws of T , D and natural transformations typed φY,Z :
F (Y ⇒ Z) → DY ⇒ RZ (subject to no equations!).

198 T. Uustalu and N. Voorneveld

The natural transformation φY,Z given above can also be seen as a functor-
comonad interaction law ; an intermediate between functor-functor and monad-
comonad interaction laws of Katsumata et al. [7].

Given a functor-comonad interaction law φY,Z , we construct a natural trans-
formation ψY,Z as the unique solution of the following initial algebra diagram:

Y ⇒ Z
ηT

Y ⇒Z��

εY ⇒ηZ 		

 T (Y ⇒ Z)
ψY,Z��

FT (Y ⇒ Z)
σY ⇒Z��

FψY,Z��
DY ⇒ RZ DDY ⇒ RRZ

δY ⇒μZ�� F (DY ⇒ RZ)
φDY,RZ��

The natural transformation ψ satisfies the equations of a monad-comonad inter-
action law. In the reverse direction, we extract from a given monad-comonad
interaction law ψ a natural transformation φ as follows:

φY,Z := F (Y ⇒ Z)
FηT

Y ⇒Z�� FT (Y ⇒ Z)
σY ⇒Z �� T (Y ⇒ Z)

ψY,Z �� DY ⇒ RZ

Combining the proposition with Corollary 1, we get a corollary exploiting
that the category Alg(T) is isomorphic to alg(F).

Corollary 3. There is a bijection between R-residual functor-comonad interac-
tion laws of F and D and functors (Coalg(D))op × Alg(R) → alg(F) that are
exponentiation on the level of carriers.

In the particular case of our examples, where FX :=
∑

op∈Σ(ar(op) ⇒ X),
the functor-comonnad interaction law φ required for specifying the monad-
comonad interaction law ψ decomposes, for each effect operation op ∈ Σ,
into a transformation ar(op) ⇒ (Y ⇒ Z) → DY ⇒ RZ natural in Y and
Z, an operation-wise interaction law. If R is strong and these natural trans-
formations are strong in Z, which holds for our examples since they are in
the category of sets, these natural transformations amount to transformations
φop

Y : DY → R(ar(op) × Y) natural in Y for each operation op.
The transformation φop

Y specifies what happens when the operation op is
encountered in the evaluation of some program. It tells us, given an environment,
which effects are encountered, which continuation is chosen for the program, and
what the new state is. The resulting interaction law ψ induced by our φ’s given
Proposition 4 will satisfy the following equation:

ψY,Z(op(t1, . . . , tn))(e) = μZ(R(λ(i, e′).ψY,Z(ti)(e′)) (φop
DY (δY (e)))) (1)

We show that the interaction laws for the examples satisfy the desired equa-
tions. This is done by specifying the natural transformations in such a way that
the induced Eq. 1 coincides with the specification required in the examples.

For Example 5, where we have one operation or of arity 2 = {0, 1}, we define:
φor

Y (e) := orq(ηZ(0, y), ηZ(1, y)), where (q, e′) := give(e) and y := εY (e′). The
transformation φor, which is obviously natural, tells us to allocate a probability
of q to continue with 0, and 1 − q probability to continue with 1, and to finish
in both cases in the next state, which is y.

Algebraic and Coalgebraic Perspectives on Interaction Laws 199

The local transformation for Example 6 is slightly more involved. Here we
have an effect operation get of arity C. The transformation φget

Y : DY → R(C×Y)
keeps applying give until the same data point comes out twice in a row (which
may never happen) and returns the corresponding number of ticks and that data
point and the final state (or an infinite sequence of ticks).

It is possible to design methods for defining interaction laws, using the above
ideas. We would specify how to naturally generate three things from the environ-
ment: (1) which residual effects we get, (2) what piece of data is communicated
to the program (the continuation), and (3) what is the state afterwards.

7 Runners

We have seen how an interaction law can be combined with a coalgebra of
D and an algebra of R to yield an algebra of T . There are also intermediate
constructions, combining the interaction law with only a coalgebra or an algebra.
Depending on the choice, we get different results. Since they amount to monad
morphisms from T to other monads, it is justified to call them runners.

7.1 Stateful Runners

Combining interaction laws with just coalgebras (rather than coalgebras and
algebras) yields stateful runners in the sense of Uustalu [20].

An R-residual stateful runner of T for an object Y ∈ C is a natural transfor-
mation typed θX : TX ×Y → R(X ×Y) subject to appropriate equations. With
the appropriate concept of map, stateful runners make a category RunR(T).

The following result gives alternative characterizations of stateful runners.

Proposition 5. For any object Y ∈ C, the following sets are in bijection:

1. R-residual stateful runners of T with carrier Y ,
2. monad morphisms from T to StRY , the R-transformed state monad for state

set Y , defined by StRY X := Y ⇒ R(X × Y),
3. functors Θ : Alg(R) → Alg(T) such that

Alg(R) Θ ��

U ��

Alg(T)
U��

C Y ⇒− �� C
The bijection between the first two items was pointed out in previous work [7,20].
These bijections extend to isomorphisms of the relevant total categories such as
RunR(T).

From the bijection between the 1st and 3rd item, by Corollary 1, we can
conclude that interaction laws are in bijection with D-coalgebraic specifications
of runners, which we define to be carrier-preserving functors Ψ : Coalg(D) →
RunR(T). Katsumata et al. [7] proved this bijection directly, rather than from
Corollary 1 and Proposition 5, circumventing functors Alg(R) → Alg(T).

200 T. Uustalu and N. Voorneveld

Explicitly, given an interaction law ψ (in the 1st format), the runner spec Ψ
for comonad coalgebras χ : Y → DY is given by

(Ψ χ)X := TX × Y
TX×χ �� TX × DY

ψX,Y �� R(X × Y) .

Given a runner spec Ψ , the interaction law is defined by

ψX,Y := TX × DY
(Ψ δY)X �� R(X × DY)

R(X×εY) �� R(X × Y) .

Ahman and Bauer [2] defined runners of T as coalgebras of a specific
comonad, namely the Sweedler dual of T with respect to R, studied in detail by
Katsumata et al. [7]. That comonad is the greatest comonad that T interacts
with R-residually. For that comonad, one has Coalg(D) ∼= RunR(T), justify-
ing this alternative definition. Runners of T for R := Id have also been called
coalgebras of the monad T (notice: coalgebras, not algebras) [17].

Example 11 (Probabilistic weight requester). We look at Example 8 under the
lens of stateful runners. Let Ψ be the coalgebraic specification of runners asso-
ciated to ψ, and consider the runner Ψ(δ1) : TX × E → R(X × E). Given some
computation t ∈ TX and some state of the environment given by a stream of data
σ ∈ CN, the runner produces some weighted choice tree Ψ(δ1)(t, σ) ∈ TΣ(X×E).
In this example, σ is used to label all the nodes of the initial tree t with the
values of the stream σ. If the node has height n in the tree, it will be given label
σ(n). Each leaf of t will be joined with the remainder of the σ leftover after
labelling. For instance, Ψ(δ1) given stream qpqpqpqp . . . will send the following
tree of TX to the given tree in R(X × E):

or
����

� ���
�

or
�� or

�� ��
a or

�� ��
b c

d e

�→ orq
�����

���� ������
����

orp��� ���
orp�� ��

(a, qp..) orq
�� �� (b, qp..) (c, qp..)

(d, pq..) (e, pq..)

7.2 Continuation-Based Runners

If we combine interaction laws with algebras only, we get a novel concept of
continuation-based runners.

We define a D-fuelled continuation-based runner of T for an object Z ∈ C to
be a natural transformation typed θX : D(X ⇒ Z) → TX ⇒ Z satisfying

D(X ⇒ Z)
θX ��

εX⇒Z 		���
����

TX ⇒ Z

ηT
X⇒Z��

X ⇒ Z

D(X ⇒ Z)
θX ��

δX⇒Z ��

TX ⇒ Z

μT
X⇒Z��

DD(X ⇒ Z)
DθX �� D(TX ⇒ Z)

θT X �� TTX ⇒ Z

With the appropriate concept of map, D-fuelled continuation-based runners form
a category CRunD(T).

We make the following observation that also extends to isomorphisms of
categories.

Algebraic and Coalgebraic Perspectives on Interaction Laws 201

Proposition 6. For any object Z ∈ C, the following sets are in bijection:

1. D-fuelled continuation-based runners of T with carrier Z,
2. monad morphisms from T to CntDZ , the D-transformed continuation monad

for answer set Z, defined by CntDZ X := D(X ⇒ Z) ⇒ Z,
3. functors Θ : (Coalg(D))op → Alg(T) such that

(Coalg(D))op Θ ��

Uop
��

Alg(T)
U��

Cop −⇒Z �� C
It follows from Corollary 1 that R-residual T,D-interaction laws are in a bijec-

tion with R-algebraic specifications of D-fuelled continuation-based T -runners,
by which we mean carrier-preserving functors Ψ : Alg(R) → CRunD(T).

Explicitly, given an interaction law ψ in the 2nd format, the corresponding
runner spec Ψ is defined by

(Ψ ζ)X := D(X ⇒ Z)
ψX,Z �� TX ⇒ RZ

TX⇒ζ �� TX ⇒ Z

for monad algebras ζ : RZ → Z. In the reverse direction, given a runner spec Ψ ,
the interaction law ψ is

ψX,Z := D(X ⇒ Z)
D(X⇒ηZ)�� D(X ⇒ RZ)

(Ψ μZ)X �� TX ⇒ RZ .

Continuation-based runners can be understood as a predicate-lifting device:
they lift an environment that has as states Z-valued predicates on values X to
a Z-valued predicate on computations TX.

Example 12 (Uncertain stream reader). We look at Example 9 under the lens
of continuation-based runners. Let Ψ be the algebraic specification of runners
associated to ψ, and consider the runner Ψ(Tal) : D(X ⇒ N∞) → TX ⇒ N∞.
Take P ∈ D(X ⇒ N∞) to be some environment over value predicates as states,
which can be expressed as an element of ((X ⇒ N∞)×C)N given by a stream of
data σ ∈ CN and, for any n ∈ N, a value predicate Pn ∈ X ⇒ N∞, determining
what the cost of any return value would be if it were yielded after n gives.

Given a computation t ∈ TX, the predicate Ψ(Tal)(t) delivered by the runner
computes (1) the number n of gives necessary for reaching its return value x ∈ X
(some number of give responses for each get request made), and (2) the cost
associated to x at that point, which is Pn(x). This predicate then yields the sum
n + Pn(x) as the total cost of the computation.

7.3 Running with Both a Coalgebra and an Algebra Given

A running perspective is possible also in the situation of merge functors where
both a coalgebra and an algebra are given, but nothing too exciting happens. In
this case, we concern ourselves only with the final merged algebra as produced
by the merge functor. Here are some equivalent definitions of monad algebras.

202 T. Uustalu and N. Voorneveld

Proposition 7. For any object W ∈ C, the following sets are in bijection:

1. transformations C(X,W) → C(TX,W) natural in X subject to appropriate
equations,3

2. monad morphisms from T to the “external continuation” monad XCntW for
answer set W ,4 defined by XCntW X := C(X,W) � W ,

3. monad algebras of T with carrier W .

A bijection like that between 2 and 3 holds for T a strong monad when one
replaces the external continuation monad XCntW with the ordinary continuation
monad CntIdW

5 and monad morphisms with strong monad morphisms [8]. In Set,
the two continuation monads are isomorphic, every functor is uniquely strong
and every natural transformation is strong; therefore, the two bijections become
the same.

By Corollary 1, R-residual interaction laws of T , D are in a bijection with
functors sending a comonad coalgebra of D with carrier Y and a monad algebra
of R with carrier Z to a monad algebra of T with carrier Y ⇒ Z. By Propo-
sition 7, such algebras are in a bijection with C(X × Y,Z) → C(TX × Y,Z)
natural in X subject to two equations (“state and continuation based run-
ners”), which amount to natural transformations TX × Y → XCntZ(X × Y)
(XCntZ-residual state-based runners) or XCostY (X ⇒ Z) → TX ⇒ Z
(XCostY -fuelled continuation-based runners) where XCostY W = C(Y,W) • Y
is the “external costate” monad, with • denoting tensor. They are also in a
bijection with monad morphisms to the monad XCntY ⇒Z . This monad is iso-
morphic both to the external-continuation-transformed state monad defined by
XCntStY,ZX := Y ⇒ XCntZ(X × Y) and the external-costate-transformed con-
tinuation monad defined by XCostCntY,ZX := XCostY (X ⇒ Z) ⇒ Z.

8 Conclusion

We have seen isomorphisms between, among others, the following four descrip-
tions of interactions between a computation and an environment.

MCILR(T,D)

������
��� ������

���

[Coalg(D),RunR(T)]cp.

������
��

� [Alg(R),CRunD(T)]cp.

������
��

[(Coalg(D))op × Alg(R),Alg(T)]ce.

where ‘cp.’ means “carrier-preserving” and ‘ce.’ means “carrier-exponentiating”.
The right and bottom corners of the diamond are new. Moreover, just as inter-
action laws are the same as monad morphisms from T to D −� R, for each of the
3 Also known as monad algebras of T with carrier W in “no-iteration” form.
4 Also called the endomorphism monad.
5 Also called the double dualization monad.

Algebraic and Coalgebraic Perspectives on Interaction Laws 203

three types of specializations of interaction laws (based on a coalgebra or/and an
algebra), runners of the corresponding type also amount to monad morphisms
from T to specific monads. This is also new for the right and bottom corners.

Algebras ξ : T (Y ⇒ Z) → Y ⇒ Z delivered by a merge functor do not
mention interaction laws or comonads. As such, they are suitable for develop-
ments purely in terms of monads and their algebras. If an algebra is a continuous
morphism in the category of ω-cpos, and its carrier set forms a complete lat-
tice, then it gives rise to a congruent notion of program equivalence (as seen
in previous work [19,23]). It should be relatively easy to extend developed the-
ory to the algebraically compact setting of ω-cpos, using a construction like the
one from Sect. 6 to specify R-residual interaction laws between D and T for
TX := μV. (X + FV)⊥. We want to investigate what such a notion of program-
environment equivalence would look like.

On the other hand, the merged algebra created using the tools of this paper
can be used as a basis for defining and verifying properties of programs. In partic-
ular, the emphasis on state predicates makes it perfectly suitable for formulating
Hoare logic judgments [6]. Consider a postcondition given by Q : X × Y → Z,
which gives for each possible return value from X and final state from Y a quanti-
tative degree of truth from X. Then, a computation over X, which is an element
t of TX, can be transformed using Q into an element of T (Y ⇒ Z). Using the
merged algebra, we can compute the weakest precondition wp(t,Q) : Y → Z,
associating to each possible initial state the corresponding final degree of truth.
In Hoare logic style, we can then formulate that, given a precondition P : Y → Z,
{P} t {Q} holds if, for all y ∈ Y , P (y) ≤ wp(t,Q)(y) (assuming a partial order on
Z). If this is applied to the example of probability with global store, we retrieve
the usual notion of probabilistic Hoare logic [11]. More generally, we see this
as a potential framework for a flexible Hoare-style logic on (quantitative) state
predicates.

Another subject for future research is the cascading of interaction laws. If we
have two interaction laws, each with their own notion of environment, and the
second interacts with the residual effects of the first, we can combine them into
one. This way, computations interact with two layers of environment simultane-
ously. Using the Day convolution to parallel-compose the comonads representing
the two notions of environment, we can cascade the interaction laws into a sin-
gle law. A similar construction can be done on merge functors so that the two
constructions correspond.

Acknowledgements. Exequiel Rivas found out and told us that stateful runners have
been studied under the name of monad coalgebras.

T.U. was supported by the Icelandic Research Fund project grant no. 196323-052
and by the Estonian Ministry of Education and Research institutional research grant
no. IUT33-13. N.V. was supported by the Estonian IT Academy research measure (the
European Social Fund project no. 2014-2020.4.05.19-0001).

204 T. Uustalu and N. Voorneveld

References

1. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative
theories: a coalgebraic view. Theor. Comput. Sci. 300(1–3), 1–45 (2003)

2. Ahman, D., Bauer, A.: Runners in action. In: Müller, P. (ed.) ESOP 2020. LNCS,
vol. 12075, pp. 29–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
44914-8 2

3. Bauer, A.: What is algebraic about algebraic effects and handlers? arXiv eprint
1807.05923 [cs.LO] (2018). https://arxiv.org/abs/1807.05923

4. Capobianco, S., Uustalu, T.: A categorical outlook on cellular automata. In: Kari,
J. (ed.) Proceedings of 2nd Symposium on Cellular Automata, JAC 2010. TUCS
Lecture Notes, vol. 13, pp. 88–89. University of Turku, Turku (2010)

5. Hasuo, I.: Generic weakest precondition semantics from monads enriched with
order. Theor. Comput. Sci. 604, 2–29 (2015). https://doi.org/10.1016/j.tcs.2015.
03.047

6. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
26(1), 53–56 (1983). https://doi.org/10.1145/357980.358001

7. Katsumata, S., Rivas, E., Uustalu, T.: Interaction laws of monads and comonads.
In: Proceedings of 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2020, pp. 604–618. ACM, New York (2020). https://doi.org/10.1145/
3373718.3394808

8. Kock, J.: On the double dualization monads. Math. Scand. 27, 151–165 (1970).
https://doi.org/10.7146/math.scand.a-10995

9. Møgelberg, R.E., Staton, S.: Linear usage of state. Log. Meth. Comput. Sci. 10(1),
1–52 (2014). https://doi.org/10.2168/lmcs-10(1:17)2014

10. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4. Article 17

11. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (1996). https://doi.org/10.1145/
229542.229547

12. Petricek, T., Orchard, D., Mycroft, A.: Coeffects: a calculus of context-dependent
computation. SIGPLAN Not. 49(9), 123–135 (2014). https://doi.org/10.1145/
2692915.2628160

13. Plotkin, G., Power, J.: Tensors of comodels and models for operational seman-
tics. Electron. Notes Theor. Comput. Sci. 218, 295–311 (2008). https://doi.org/
10.1016/j.entcs.2008.10.018

14. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 24

15. Plotkin, G.D., Power, J.: Algebraic operations and generic effects. Appl. Categ.
Struct. 11, 69–94 (2003). https://doi.org/10.1023/a:1023064908962

16. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Log. Meth. Comput. Sci.
9(4), 1–36 (2013). https://doi.org/10.2168/lmcs-9(4:23)2013. Article 23

17. Poinsot, L., Porst, H.E.: Internal coalgebras in cocomplete categories: generalizing
the Eilenberg-Watts theorem. J. Algebra Appl. (to appear). https://doi.org/10.
1142/s0219498821501656

18. Power, J., Shkaravska, O.: From comodels to coalgebras: state and arrays. Electron.
Notes Theor. Comput. Sci. 106, 297–314 (2004). https://doi.org/10.1016/j.entcs.
2004.02.041

https://doi.org/10.1007/978-3-030-44914-8_2
https://doi.org/10.1007/978-3-030-44914-8_2
https://arxiv.org/abs/1807.05923
https://doi.org/10.1016/j.tcs.2015.03.047
https://doi.org/10.1016/j.tcs.2015.03.047
https://doi.org/10.1145/357980.358001
https://doi.org/10.1145/3373718.3394808
https://doi.org/10.1145/3373718.3394808
https://doi.org/10.7146/math.scand.a-10995
https://doi.org/10.2168/lmcs-10(1:17)2014
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/2692915.2628160
https://doi.org/10.1145/2692915.2628160
https://doi.org/10.1016/j.entcs.2008.10.018
https://doi.org/10.1016/j.entcs.2008.10.018
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1023/a:1023064908962
https://doi.org/10.2168/lmcs-9(4:23)2013
https://doi.org/10.1142/s0219498821501656
https://doi.org/10.1142/s0219498821501656
https://doi.org/10.1016/j.entcs.2004.02.041
https://doi.org/10.1016/j.entcs.2004.02.041

Algebraic and Coalgebraic Perspectives on Interaction Laws 205

19. Simpson, A., Voorneveld, N.: Behavioural equivalence via modalities for algebraic
effects. ACM Trans. Program. Lang. Syst. 42(1), 1–45 (2020). https://doi.org/10.
1145/3363518. Article 4

20. Uustalu, T.: Stateful runners of effectful computations. Electron. Notes Theor.
Comput. Sci. 319, 403–421 (2015). https://doi.org/10.1016/j.entcs.2015.12.024

21. Uustalu, T., Vene, V.: The essence of dataflow programming. In: Horváth, Z. (ed.)
CEFP 2005. LNCS, vol. 4164. Springer, Heidelberg (2006). https://doi.org/10.
1007/11894100 5

22. Uustalu, T., Vene, V.: Comonadic notions of computation. Electron. Notes Theor.
Comput. Sci. 203(5), 263–284 (2008). https://doi.org/10.1016/j.entcs.2008.05.029

23. Voorneveld, N.: Quantitative logics for equivalence of effectful programs. Electron.
Notes Theor. Comput. Sci. 347, 281–301 (2019). https://doi.org/10.1016/j.entcs.
2019.09.015

https://doi.org/10.1145/3363518
https://doi.org/10.1145/3363518
https://doi.org/10.1016/j.entcs.2015.12.024
https://doi.org/10.1007/11894100_5
https://doi.org/10.1007/11894100_5
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2019.09.015
https://doi.org/10.1016/j.entcs.2019.09.015

Program Generation, Transactions and
Automation

Stack-Driven Program Generation
of WebAssembly

Árpád Perényi and Jan Midtgaard(B)

The Maersk Mc-Kinney Moller Institute, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark

arpad.perenyi@gmail.com, mail@janmidtgaard.dk

Abstract. WebAssembly (Wasm) is a popular portable assembly-like
language. Besides browser support in the four most common browsers
(Chrome, Firefox, Safari, Edge) a number of standalone Wasm engines
are available. With several such independent implementations naturally
follows a risk of disagreement between the individual implementations.

To help ensure agreement between Wasm implementations, we develop
a stack-directed program generator to drive differential testing of the four
browsers’ Wasm engines. We describe our experimental setup, our devel-
opment of a stack-directed shrinker for reducing a generated counterex-
ample program, and finally report on a number of disagreements and
bugs found. Surprisingly our black-box generator found 2 crashing bugs,
despite browser vendor efforts to fuzz test their Wasm engines using a
state-of-the-art fuzzer.

1 Introduction

WebAssembly (Wasm) is a new open web standard [26] for executing low-level
code in web pages. In order to succeed, Wasm programs should be interpreted
consistently by the four major browsers implementations (Chrome, Firefox,
Safari, Edge). To ensure such consistency both a reference interpreter and an
extensive test suite is available. Given the incompleteness of testing, one may
wonder whether these efforts are sufficient to guarantee consistency. In this paper
we present a generator of arbitrary Wasm programs and report on testing for
this consistency. Furthermore we present a shrinker to automatically reduce a
machine-generated counterexample illustrating inconsistency.

For example, a Wasm program produced by our generator was able to crash
SpiderMonkey, the JavaScript engine inside the Firefox web browser. Figure 1
illustrates a reduced version of the test case and Firefox’s behavior upon attempt-
ing to run it.
Overall the contributions of this paper are:

– We suggest the ideas of (backwards) stack-directed program generation and
stack-directed shrinking.

– We illustrate the approach with an application to WebAssembly.

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 209–230, 2020.
https://doi.org/10.1007/978-3-030-64437-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_11&domain=pdf
http://orcid.org/0000-0002-6506-5468
https://doi.org/10.1007/978-3-030-64437-6_11

210 Á. Perényi and J. Midtgaard

Fig. 1. Wasm program crashing SpiderMonkey

(module
(func (param i32) (param i32) (result i32)

(get_local 0)
(get_local 1)
(i32.add))

(export "add" (func 0)))

Listing 1. A Wasm module in text format with a simple addition function

– We demonstrate that the approach is both viable and useful as illustrated by
a number of real-world Wasm engine bugs found (including crashing bugs).

– We discuss ours findings, documenting real-world bugs that escaped a
coverage-guided “gray-box” fuzzer thus questioning the current focus on such
generators.

2 Background

We first present background material on Wasm and property-based testing.

2.1 WebAssembly

The Wasm standard defines a low-level programming language for a stack-based
virtual machine [12]. For example, Listing 1 shows a simple Wasm module with
a function that takes two arguments and returns their sum. The function loads
each of the numbered parameters onto the operand stack, adds them, and leaves
the result on the stack. Wasm is designed for embedding. This is expressed
as exporting functions for the surrounding context to call and importing func-
tions from the surrounding context for Wasm to call. For example, Listing 1
exports the module’s function under the name "add". In a web-embedding con-
text, this means Wasm modules can call imported JavaScript functions and that
JavaScript can call the exported Wasm functions. Similarly a Wasm module can
import and export functions from other Wasm modules.

Stack-Driven Program Generation of WebAssembly 211

Wasm programs can be expressed in both a textual assembly-like format
(.wat) as in Listing 1 and in a corresponding binary format (.wasm). Transla-
tors are available to translate between the two. In a web-embedding context a
Wasm-module can be loaded from an untrusted source into a browser. A module
then has to be validated to ensure that it is well formed and safe to run. The
validator is phrased as a type system centered around four value types: i32, i64,
f32 and f64, denoting 32-bit and 64-bit integers and 32-bit and 64-bit floating-
point numbers, respectively. For the example in Listing 1 the validator checks
that the two arguments on the stack when performing i32.add are indeed i32s
and that the i32 result agrees with the function’s declared result type.

(module
(table 10 funcref)
(func $f)
(func $f2 (call_indirect 3))
(elem (i32.const 0) $f)
(elem (i32.const 3) $f))

Listing 2. Wasm table initialization

A Wasm program consists of one or more modules. Besides functions, a mod-
ule can contain a combination of elements which we now cover.

Global Variables. A Wasm module can contain global variables. A global vari-
able can be accessed throughout the module using the get_global instruction.
Each global is declared with a value type and optionally marked as mutable.
Mutable global variables can be updated using the set_global instruction.
Global variables can both be imported and exported.

Memories and Data Segments. A Wasm module can also contain a memory
which is a mutable array of raw bytes. By default the memory is initialized
with zeroes. A module can contain a separate section of data segments that
each specify the initial memory contents at a specific offset and length. When
a Wasm module is loaded and instantiated, the allocated memory is initialized
accordingly before Wasm code is run.

Functions. A module can contain multiple functions. Each function’s param-
eters are defined as locals and can only be accessed by the defining function.
Locals are mutable. They can be read and updated with the get_local and
set_local instructions, which push and pop values to and from the stack. A
function can optionally declare a return value type. In the current version of
Wasm, a function can return at most one value. A function’s body is a possi-
bly empty instruction sequence. The instructions may interact with the stack,
locals, globals, memories, or tables. A module can also contain a dedicated start
function. The start function is executed automatically after the memories and
tables have been initialized. The start function cannot take any arguments or
return any value. For example, the Wasm module in Fig. 1 designates function
0, the module’s only (empty) function as the start function.

212 Á. Perényi and J. Midtgaard

Tables. A Wasm module may contain a table of functions. In the current version
of Wasm, a module can only contain a single table instance. A table instance can
be defined by the module itself or imported from another module, hence a table
can also be exported. Tables require a minimum size and can optionally declare
a maximum size. A table can also be initialized through element segments. The
call_indirect instruction calls a function through a table. Listing 2 shows
an example of a table initialization via element segments. The table is declared
to contain 10 elements, with funcref (function reference) type.1 The named
function is then added to the table at indices 0 and 3. The named function

calls the function indirectly through the table.

Fig. 2. Abstract syntax of modules and contexts

Instructions. We summarize the abstract syntax of Wasm instructions and
modules in Fig. 2. Instructions can consume multiple arguments and produce a
result value by popping and pushing the stack. In the current version of Wasm,
instructions can push at most one value to the stack. Numeric instructions per-
form basic operations over numeric values of a specific type, e.g., i32.add in
Listing 1. Parametric instructions operate on operands of any type, e.g., the
select instruction selects one of its first two operands based on whether its
1 In revised text format https://github.com/WebAssembly/spec/issues/884.

https://github.com/WebAssembly/spec/issues/884

Stack-Driven Program Generation of WebAssembly 213

third operand is zero or not. Variable instructions get or set the values of local
and global variables, e.g., get_local in Listing 1. Memory instructions query
or mutate the memory, e.g., the memory.grow instruction extends the size of
a module’s memory. Control instructions affect the flow of control, e.g., the
return instruction breaks from the current instruction block and returns the
current value from the top of the stack.

Module Validation. A Wasm module is executed in a web browser after valida-
tion and instantiation. While validation ensures internal consistency and memory
safety of a module, instantiation ensures that the imports and exports are cor-
rectly formulated. The validator is phrased as a syntax-directed type system [7]
over the abstract syntax of a module. Typing is relative to a context C holding
information about the surrounding functions, tables, memories, globals, locals,
labels, and return type for a given program point. Figure 2 recalls the abstract
syntax of Wasm modules and contexts, utilizing extended BNF grammars for
succinctness. We furthermore let t range over value type, tf range over function
types, tg range over global types, and n range over numbers.

Fig. 3. Typing rules for instructions and instruction sequences

Figure 3 displays a selection of the typing rules. The two judgements are of
the form C � e : [t∗] → [t∗], where e is a single instruction (or an instruction
sequence e∗) and [t∗] is a stacktype. The stacktype expresses e’s requirement to

214 Á. Perényi and J. Midtgaard

elements on the stack prior to its execution (a precondition) and the elements on
the stack as a result of e (a postcondition). Arrow types tf = [t∗] → [t∗] double
as function types, as functions receive parameters and leave their results on the
stack.

The rule (Empty) says that an empty instruction sequence is valid in any
context C and that any value types t∗ on the stack will remain unchanged. The
rule (Non-Empty) for a non-empty instruction sequence e∗e ensures that (parts
of) the resulting stack from executing e∗ agrees with the stack input expected
by e. The congruence rule (Cong) allows one to disregard untouched elements
on the stack and thereby apply the instructions rule in an arbitrary context.

The rule (Const) says that a const instruction requires no input from the
stack and leaves type t on top of the stack. Similarly the rule (BinOp) for a
binary operation requires two elements with type t on top of the stack, and leaves
a single element with type t. The rule (Drop) says that a drop instruction is
valid in any context C with a one-element stack and results in an empty stack
ε. The rule (Call) for a function call instruction expects the function to have
some index i and function type tf = [t∗1] → [t∗2] and requires the parameters
to be present on the stack at entry and leaves the (optional) result type on
the stack. The rule (CallIndir) for a call_indirect instruction additionally
ensures that a function table is present and that the function’s index is available
as an i32 on top on the stack. The rule (Loop) checks a loop instruction’s
body recursively in a context that records the loop head’s label and expected
input type. Finally the rule (Br) for a branch instruction br i checks agreement
between the stack’s input types and the expected stack types [t∗] at the target
label i.

2.2 Property-Based Testing

Property-based testing (also known as QuickCheck) is a randomized testing
approach introduced by Claessen and Hughes [8]. Originally QuickCheck was
phrased as a Haskell library, but the approach has since been ported to over 30
other programming languages. In this paper we will use the QCheck property-
based testing library [9] for OCaml. In property-based testing, a test is described
by a generator and a property. The generator delivers randomized test input
whereas the property expresses a test specification for each such generated
input.2 As an example, consider the following QCheck test:

open QCheck
let t = Test.make (pair pos_int pos_int)

(fun (a, b) -> a + b >= 0)

Here the generator produces pairs of positive integers (including zero). It is
phrased by composing QCheck’s built-in pos_int and pair generator combina-
tors. For each such pair (a, b) we wish to test the property a+b ≥ 0. The generator

2 Other generation approaches exist, e.g., SmallCheck’s enumeration up to some
bound [24].

Stack-Driven Program Generation of WebAssembly 215

and the property are passed as arguments to Test.make and the resulting test
is bound to the name t.

We can now provide QCheck with a (singleton) list of tests to run:

QCheck_runner.run_tests ~verbose:true [t]

This runs a loop for 100 iterations (a configurable number) checking that each
generated pair satisfies the specified property. The framework reports a coun-
terexample if it finds one, i.e., a generated test input that fails to satisfy the spec-
ified property. QCheck quickly finds a counterexample for our example property:

generated error fail pass / total time test name
[✗] 4 0 1 3 / 100 0.0s anon_test_1

--- Failure --

Test anon_test_1 failed (22 shrink steps):

(829922565348744309, 3781763453078643595)

In this case, the 4th generated pair failed the property. We confirm that the
reported pair represents a counterexample, due to integer overflow:

829922565348744309 + 3781763453078643595;;
- : int = -4611686018427387904

Note how this sum coincides with OCaml’s min_int, the least representable
integer within OCaml’s 63-bit integer type. In general, a counterexample trig-
gers a second shrinking loop, that repeatedly tries to reduce the test input and
checks whether the reduced input still fails the property. In the above case,
using QCheck’s built-in shrinkers for integers and pairs it took 22 shrink steps
to reduce the counterexample.

To test more complex systems, custom generators and shrinkers can be devel-
oped. Such generators and shrinkers can be used for testing multiple different
properties. Since its inception, property-based testing has found bugs missed by
hand-written tests across a range of domains, such as telecom protocols [2], data
structures [1,18], election software [15], automotive software [14], and compil-
ers [19,20].

3 Generating WebAssembly

Generating Wasm programs from a more high-level language, such as C, is a
viable solution. In the process of mechanising and verifying the WebAssembly
specification, Watt [25] opted for this approach to verify his model. Although
this approach produces valid Wasm programs that pass the type-checker, it is
not an ideal solution, since the produced programs are confined to the subset of
Wasm utilized by the compiler.

To achieve the highest possible coverage of the Wasm language, we instead
chose to directly generate Wasm text format programs that can be translated

216 Á. Perényi and J. Midtgaard

to the binary format and executed in a browser. To ensure this, the gener-
ated programs must both be syntactically correct to pass the parser, as well
as type-correct to pass the validator. Structuring a generator according to the
productions of the grammar ensures the former. To ensure the generated pro-
gram also passes validation, the generation should follow the typing rules of the
language. Pałka et al. [20] suggested to structure such a type-directed program
generator according to the typing rules. For a functional language with roots
in a typed λ-calculus, this means that a typing relation of the form Γ � e : τ ,
is interpreted as a generation procedure with two inputs: the surrounding type
environment Γ and the goal type τ . In this way, the generator proceeds to build
a term recursively, in each step randomly choosing among the typing rules able
to satisfy (unifying with) the goal type.

With Wasm’s typing rules tracking value types on the stack, we propose to
phrase a stack-directed program generator. In the rest of this paper we show that
such a generator is both viable and useful, as it has helped locate subtle bugs in
major Wasm engines.

3.1 A Stack-Directed Generator

Our generator can generate modules with an arbitrary number of globals and
functions and with an optional memory and an optional table, both of arbitrary
size. In order for the context to have the right entries in scope, this mandates a
certain structure for the generator. Overall our module generator is structured
in the following order:

– generate context with an optional memory and an optional table
– generate global types and constant initializers, function signatures, and

optional data segments for the memory
– generate optional element segments for the table
– generate function bodies

By generating the function signatures before the function bodies, we can add
them to the context, thus enabling us to generate both recursive and mutually
recursive functions. With this order the globals and the optional memory and
table are similarly in scope for function bodies. Our generator of function bodies
follows the typing rule specification:

tf = [t∗1] → [t∗2]C, local t∗1, label (t∗2), return (t∗2) � e∗ : [] → [t∗2]
C � ex∗ func tf e∗

Upon entry to a function, the stack is empty and the actual parameters are
available as locals. To generate a body we extend the context accordingly and
seek to generate a body with the desired result type [t∗2]. This way we generate
Wasm programs backwards in a goal-directed manner.

Our instruction generator performs a back-tracking randomized search. We
use option types to distinguish a successful generation attempt from a failed one.
The algorithm for generating instructions is phrased as two mutually recursive

Stack-Driven Program Generation of WebAssembly 217

(** instrs_rule : context_ -> value_type list -> int -> (instr list) option Gen.t **)
let rec instrs_rule context output_ts size =

let recgen con t_opt tr = Gen.(instr_rule con t_opt (size/4) >>= function

| None -> return None

| Some (con’, instr’, ts’) ->

instrs_rule con’ (ts’@tr) (3*size/4) >>= (function

| None -> return None

| Some instrs -> return (Some (instr’::instrs)))) in

match output_ts with

| [] ->

let empty_gen = recgen context None [] in

Gen.(oneof [empty_gen; return (Some [])])

| t1::trst ->

let empty_gen = recgen context None output_ts in

let non_empty_gen = recgen context (Some t1) trst in

Gen.frequency [1, empty_gen; 4, non_empty_gen;]

Listing 3. The implementation of instrs_rule

function instrs_rule and instr_rule for generating instruction sequences and
single instructions, respectively, thereby reflecting the two forms of typing judg-
ments in Fig. 3. The two search functions are both parameterized by the context
(modeling C) and a “gas parameter” to bound the search depth. In addition
instrs_rule expects a goal stack type matching the resulting stack type in
the corresponding typing judgments. Similarly instr_rule expects an optional
goal type matching the potentially absent type result in the corresponding typing
judgments.

Listing 3 contains the implementation of instrs_rule which heavily uti-
lizes the monadic interface (return, >>=) of QCheck generators. It depends
on a local function recgen that generates the last instruction instr’ and an
instruction list preceding it and then gluing them together. We dedicate 3

4 of the
gas parameter size to generating the instruction list, thinking that more gas
should be dedicated to generating a sequence than an individual instruction. The
instr_rule generator performs a weighted shuffle of the compatible instruction
rules and then tries them one at a time in the resulting order. When no rules
are left to try it returns None to signal failure and backtrack.

Our generator produces a single module with three hard-coded export and
import functions. The three exported functions return an i32, an f32, and
an f64 for the surrounding engine to invoke. We omit i64 as a surrounding
JavaScript engine currently has no way to represent these precisely. We import
three printing functions for printing i32, f32, and f64 values to increase the
chance of some observable program output. Currently our generator does not
produce modules that export or import globals, tables, and memories.

Our implementation builds on the reference interpreter for Wasm [23]. This
saved us from reimplementing a representation of Wasm modules. On the other
hand, the representation is not custom fit for program generation, e.g., with posi-
tional information surrounding all internal AST nodes and functions referenced
by list index which complicates shrinking (described in Sect. 4).

218 Á. Perényi and J. Midtgaard

4 A Stack-Directed Shrinker

As illustrated in Sect. 2.2, a shrinker is useful to automatically reduce a coun-
terexample to help narrow down a potential bug. This is vital as our generator
sometimes produces modules with several large data segments and many func-
tions with long and complex bodies. We have therefore implemented a shrinker.
Since the generator was carefully engineered to produce modules that pass vali-
dation, our shrinker’s reductions should preserve this property. We achieve this
by stack-type preserving simplifications.

Our shrinker is composed of a number of overall heuristics which attempt
the reductions with most impact first. The surrounding QCheck library (like its
Haskell ancestor) wraps this shrinker in a loop that repeatedly applies simpli-
fications while still leading to a false property. This way, the individual shrink
heuristics complement each other and work together to reduce a counterexample
module. To shrink a given Wasm module, the shrinker attempts the following,
in order:

– shrink functions and function types simultaneously
– shrink imports and import types simultaneously
– shrink function bodies
– remove unneeded functions
– remove the start function
– reduce the exported functions
– reduce the globals
– reduce the declared types
– remove the table
– shrink the element segment
– remove the memory
– shrink the data segment

Few of these rewrite steps are semantics preserving. Functions are shrunk by
first attempting to aggressively remove their body or replace it with a constant
0 of the appropriate return type. If this fails, a more complex instruction list
shrinker is invoked. The instruction list shrinker pattern matches on either 1, 2,
or 3 consecutive instructions and attempts stack-preserving rewrites for each of
them. Below we give examples from each category.

One Instruction. Removing nop instructions is the most simple as it has no
effect on the stack. Similarly we can remove tee_local and unary operations

Fig. 4. Experimental setup

Stack-Driven Program Generation of WebAssembly 219

as they leave the same value type on the stack as they consume. Additionally we
rewrite global references to a lower index of the same type, e.g., get_global 321

to get_global 3 of the same type. Although it hardly represents a reduction in
itself, it typically triggers further reductions in the module’s list (tail) of global
variables. As a final example we rewrite a call instruction into a drop instruc-
tion for each argument, finishing with an optional const 0 of the appropriate
type for non-void functions. Again, locally this may not constitute a reduction.
However it may trigger removal of the target function or further reductions
involving the drop instructions.

Two Instructions. Motivated by the above we remove consecutive sequences of
const c drop, get_local i drop, and get_global i drop. Similarly we remove
subsequences of const c br_if i and of get_local i set_local j and its vari-
ations and combinations involving globals. Sequences const c testopiN that
perform a test on c are replaced with const 0 and sequences const c is1

is2 is with a two-armed conditional we attempt to rewrite into either is1@is
or is2@is. Finally, we rewrite two consecutive unreachable instructions into a
single one. Combined with another heuristic that swaps two instructions if the
first is unreachable, this has the effect of bubbling unreachable instructions
last and eliminating duplicates.

Three Instructions. We rewrite a sub-sequence const c const c′ compare into
a const 0 thus removing two instructions. Similarly to the 2 instruction-case,
we omit a sequence consisting of const c const c′ select. Since select expects
three value types [t t i32] on the stack and leaves either the second or the third,
the reduction has the effect of leaving a t and thus preserving the types.

The heuristics were inspired by actual counterexample programs. Generally,
we found that the shrinker got faster as we added more aggressive heuristics,
e.g., removing unused functions saved shrinker time over repeatedly reducing
function bodies. We confirmed this observation by rerunning such tests with
the same randomization seed with and without the added heuristic. Overall the
shrinker fills 535 lines of OCaml code.

5 Testing Experiments

We first describe our experimental setup before discussing our findings.

5.1 Experimental Setup

We use our generator and accompanying shrinker to test four Wasm engines
against the reference interpreter. Concretely we use JSVU [11] to install pre-
built command-line versions of Chakra (ch) from Edge, JavaScriptCore (jsc)
from Safari, SpiderMonkey (sm) from Firefox, and V8 (v8) from Chrome. This
installs nightly builds of each of the four engines. Each JavaScript (JS) engine
contains a WebAssembly module to test.

220 Á. Perényi and J. Midtgaard

The pre-built engines support pure JS and Wasm. As such we cannot run
them on a JS-file that requires file-reading or network to load a generated Wasm
module. As a workaround we have written a conversion script, convert.js, in
Node.js which supports file-reading. The script converts a .wasm-file into a self-
contained JS-file with an embedded Uint8Array containing the Wasm module,
thus suitable for running in each engine (see Fig. 4). The self-contained JS-file
sorts the Wasm-module’s exported functions, calls them in sorted order, prints
the return value from each, and redirects any output to a temporary file. As we
may generate an infinite loop we run each engine with a timeout of 10 s akin
to CSmith [27]. Finally we use the cmp command to compare the resulting out-
put files. Overall, our agreement property ensures that the conversions succeed,
that the timeouts return identical return codes, and that their redirected out-
puts agree. To further compare the four engines with the reference interpreter,
we fork a separate process that interprets the module’s AST directly, using a
Unix.alarm to time out. There are more complications however:

Printing Across Engines. Pure JS does not support console.log, but 3
out of 4 engines support it. As a further complication we experienced that V8
would buffer output when this was redirected to a file. This would show up as
a difference in behavior, e.g., when a generated program console.logs one
line and then enters an infinite loop: after a 10 s timeout the other three engines
would have output, whereas V8 would not. We eventually settled on using print
which happens to be supported by all four JS engines, despite not being part of
the ECMAScript standard.

Host Error Messages. When invoking a generated Wasm module from JS
throws an exception, the attached error message varies across the different JS
engines. We solved this issue by formulating regular expressions for each engine
to catch and normalize engine-specific error messages into comparable ones.

Printing Floating Point Numbers. The different JS engines apply differ-
ent algorithms for printing floating point numbers. For example, one gener-
ated Wasm program returned the floating point number 6.98043994695061
3e+234 to the hosting JS engine. However when invoked as print(6.980
439946950613e+234) the constant prints as 6.980439946950614e+234
in all 3 engines except Chakra where it prints as 6.980439946950613e+234.
This is a known issue and Chakra’s engineers have already adjusted their printer
to agree more with the other JS engines.3 Since we are concerned with testing
Wasm engines we did not want such differences to raise any flags. As a first
attempt we added logic to only print a certain amount of significant digits, thus
checking agreement up to this bound. This left the difficulty of deciding how
many significant digits to leave. Eventually we settled on a simpler approach:
(6.980439946950613e+234).toString(2) instead prints the number in
base 2 which agrees across all engines. To compare these outputs with the refer-
ence interpreter’s output, we then had to implement a compatible base 2 printing
for it.
3 https://github.com/microsoft/ChakraCore/issues/149.

https://github.com/microsoft/ChakraCore/issues/149

Stack-Driven Program Generation of WebAssembly 221

Stack Size. Our generator has a chance of generating programs that require
increasing amounts of stack space and ultimately stack overflow due to exces-
sive (sometimes indirect) recursive calls. When such programs have output, the
number of written characters may differ across implementations. We solved this
problem by comparing only the 5000 first output characters of each JS-embedded
implementation. For the reference interpreter with a significantly smaller stack,
we compare only its first 300 output characters. Even so, the test setup found a
counterexample program where each of the 4 JS engines blew the stack before
the 10 s timeout, whereas the reference interpreter did not. For this example,
JavaScriptCore would blow the stack after 0.241 s, V8 after 6.148 s, SpiderMon-
key after 0.164 s, Chakra after 1.861 s, and the OCaml interpreter after 19.664 s
(all measured with the time command), which may indicate either a significantly
slower reference interpreter or some tail-call optimization.

Maximum Table Size. The official specification declares the maximum table
size to be 232 = 4.294.967.296 however none of the four JS engines support
that value. At first glance all of the four engines allow the maximum table
size to be 10.000.000. Analyzing further, we determined that JavaScriptCore
supports a table with a maximum size of 9.999.999. For a table size set to
10.000.000 precisely, jsc throws the error message couldn’t create Table.
All four engines accepted tables less than 10.000.000 entries, hence we adjusted
the generator accordingly.

Maximum Number of Parameters. During testing, we came across a Wasm
module that caused all of the four tested JS engines to err. This happened
because the number of function parameters exceeded 1.000. Examining the spec-
ification, we did not find any mention of a limitation on the maximum number
of function parameters. Subsequently we adjusted the generator to stay below
this bound.

Square Root Non-determinism. Our generator found a counterexample cal-
culating the square root of a negative number thus resulting in a NaN floating-
point value, which would later be reinterpreted as an integer value and even-
tually printed. Because NaNs can carry additional underspecified bits, this also
showed up as observable output differences. This constitutes one of the few
known sources of Wasm non-determinism [26].

5.2 Testing the Generator

The generator is a non-trivial piece of software with a risk of itself contain-
ing errors. To reduce these errors and to “take our own medicine” we test the
generator using property-based testing. Specifically the generator is engineered
to output valid Wasm modules. As there further exists many implementations
of the validation algorithm in the reference interpreter and in each of the JS
engines, these lend themselves to test the property each generated Wasm module
passes validation. By testing this property for each of the validation implementa-
tions, we effectively test both our own generator as well as each of the validation
implementations.

222 Á. Perényi and J. Midtgaard

5.3 Testing the Shrinker

The shrinker also represents a non-trivial piece of code. To develop and debug it
we again property-based tested it. Initially we tested whether the first shrinking
candidate would pass validation. This did not find much. Eventually we arrived
at a relatively simple property: for all generated modules m and small natu-
ral numbers n, the first n shrink candidates of m should all be valid, meaning
shrinking should not accidentally turn a valid module into an invalid one while
attempting to reduce it in up to n steps.

The refined strategy found multiple bugs as we continued to expand and
improve the shrinker: It found problems lifting If branches and Loop body out
which both caused labels to be off. It found another shrinker bug related to
reducing functions, types, and imports: These are represented as 3 lists, each
containing numbered types and functions. Any reduction in either list therefore
means that potentially all function or type indices need to be updated. However
the representation has catches we did not anticipate: The imports are present
in the type list but not in functions, meaning function indices needed adjusting
with ±3 with 3 hard-coded imports, unless a called function was itself an import.

5.4 Statistics

To ensure that our generator has a reasonable distribution, we have computed
statistics across 1000 generated modules. Our statistics covers the number of
functions (min: 4, avg: 8.93, max: 14), the total function length (min: 6, avg:
153.18, max: 648), element segment length (min: 0, avg: 1.81, max: 94), num-
ber of globals (min: 0, avg: 333.74, max: 9959), data segment length (min: 0,
avg: 2.54, max: 87), number of print calls (min 0, avg: 0.96, max 7), as well
as percentages of the different instructions. Across the latter, nop occurs most
often with an average of 12.24% and callindir is the most rare occurring with
an average of 0.24%. We have added weights to the different instructions in an
attempt to even these.

5.5 Bugs Found

At the time of writing we have found five bugs of which two were already known.
Out of the five bugs three led to a crash of SpiderMonkey and JavaScriptCore.
Below we describe the found counterexamples in more detail.

SpiderMonkey Crash. Our generator found a module which would crash Spi-
derMonkey with a null pointer de-reference. The hand-shrunk test program is
illustrated in Fig. 1.4 We then created a minimal HTML document encapsulat-
ing the test program to investigate how a full Firefox browser would react to
it. Upon running the encapsulated counterexample, the released Firefox version

4 This was found, hand-shrunk, and reported before we developed the automatic
shrinker.

Stack-Driven Program Generation of WebAssembly 223

crashed the tab as illustrated in Fig. 1. We reported the bug in BugZilla and the
error was quickly confirmed and fixed.5

Internally, SpiderMonkey’s Wasm-engine creates a vector of “exported func-
tion” objects, each with a (bit-packed) Boolean, indicating whether a function
is marked explicitly as exported. In the test program the same function occurs
both as a start function and in a table, causing it to occur twice in the vec-
tor, with only one occurrence being marked explicitly. A subsequent removal of
duplicates would however eliminate the marked function entry, leaving only an
unmarked one. At run-time the JIT-compiler would then expect all explicitly
exported functions to have an ‘eager stub’, which would be null in this case
and thus cause a crash.

(module
(type $0 (func))
(type $1 (func (result f64)))
(func $0 (type 0))
(func $1

(type 1)
(loop (result f64)

(f64.const 0.0) (i32.const 0) (br_table 1) (call 0))
(br 0)
(unreachable))

(export "runf64" (func 1)))

Listing 4. Shrunk Wasm module causing JavaScriptCore to loop

The bug is particularly interesting, because SpiderMonkey already employs
a fuzzer based on libFuzzer to detect such issues. However the above issue had
escaped it. We believe this is due to the nature of the bug, being a “logical bug”.
As such, a coverage-driven fuzzer can visit all branches of the described code to
achieve 100% coverage yet still miss the bug. While anecdotal, this represents a
real-world bug escaping a state-of-the-art gray-box fuzzer yet being caught by a
black-box QuickCheck generator.

JavaScriptCore br_table Difference. Our generator and shrinker automat-
ically found the module in Listing 4 to exhibit different behavior on JavaScript-
Core. The other three engines would print 0 when running and printing the result
of the exported function, whereas JavaScriptCore would loop. The cause for the
difference is the br_table 1 instruction, which takes a (in this case empty) table
of labels and does one of two things: (1) if the value on the stack is a valid index
into the table it jumps to that, otherwise (2) it jumps to the provided “fallback”
label (1 above). With label 1 representing the outermost control-context (the
surrounding function) this effectively represents a return. JavaScriptCore would
instead jump to label 0, effectively restarting the surrounding loop. This was
due to a bug in an underlying jump optimizer.

5 https://bugzilla.mozilla.org/show_bug.cgi?id=1545086.

https://bugzilla.mozilla.org/show_bug.cgi?id=1545086

224 Á. Perényi and J. Midtgaard

This was reported and quickly acknowledged and fixed.6 The reported test
case was additionally added to the suite of stress tests. Interestingly, multiple
Safari users reported this bug as websites using Wasm for font rendering were
mis-rendered. While also anecdotal, the example illustrates real-world benefit
of our generator: The minimal counterexample enabled developers to quickly
identify and fix a real-world problem hitting end users.

JavaScriptCore Crash 1. Listing 5 shows another counterexample program
we found triggering a segmentation fault in JavaScriptCore. Upon further inspec-
tion, this crash was only triggered in the nightly builds and thus the error had
not made its way into production. Again we reported the bug along with a
sequence of repeatedly smaller counterexamples, also establishing that the error
was introduced by a commit between versions 249479 and 250961 of the nightly
builds.7 The error was never confirmed though, and eventually the error was
discovered and fixed by other means. We speculate that our ability to file and
report bugs has improved since this early bug report.

(module
(type $0 (func (result f32)))
(global $0 i32 (i32.const 1))
(func $0

(type 0)
(f32.const 0.0)
(f32.const 0.0)
(i32.const 0)
(select)
(loop (result f32)

(f32.const 0.0) (global.get 0) (br_if 0))
(drop))

(export "runf32" (func 0)))

Listing 5. Module causing JavaScriptCore to crash

(module
(func (export "run")

(param i32)
(unreachable)
(tee_local 0)
(drop)))

Listing 6. Module erroneously rejected at compile-time by Chakra

6 https://bugs.webkit.org/show_bug.cgi?id=209333.
7 https://bugs.webkit.org/show_bug.cgi?id=202786.

https://bugs.webkit.org/show_bug.cgi?id=209333
https://bugs.webkit.org/show_bug.cgi?id=202786

Stack-Driven Program Generation of WebAssembly 225

JavaScriptCore Crash 2 (Known). We found another example that would
crash JavaScriptCore with the error FATAL: No color for %ftmp0, indi-
cating an error in jsc’s underlying graph-coloring register allocator. In contrast,
the other three engines would all fail with a stack overflow. Again this was
reported and acknowledged.8 This issue was limited to an earlier revision and
had since then been resolved.

Chakra Compile-Time Rejection (Known). A different mismatch our
test setup located involved an unreachable and a tee_local instruction as
illustrated in Listing 6. The module is erroneously rejected at compile-time
by Chakra’s validator with an error Can’t tee_local unreachable values,
whereas the three other engines throw a run-time error when trying to execute
the unreachable instruction. Again this was reported9 but the issue was already
known.10 A fix was merged in Feb. 2019 but still has not made its way into a
release.

5.6 Inconsistencies in Web-Embedding

Imports aside, Wasm programs can only be observed for errors or non-
termination. We found three issues related to the web-embedding of Wasm.

Different Stack Overflow Exceptions. Our generator found a counterexam-
ple program that would blow the call stack by indirectly calling itself. On V8
and JavaScriptCore this would result in an exception instance of RangeError,
on SpiderMonkey an instance of InternalError, and on Chakra an instance
of Error.

Different Data Segment Exceptions. Similarly our generator produced an
example module with out-of-bounds data segment initializers, which would
cause different errors across engines: V8 and SpiderMonkey would throw a
RuntimeError exception, whereas Chakra and JavaScriptCore would throw
a LinkError exception.

Different Exception Name Properties. JavaScriptCore has inconsistent
name properties for JavaScript exceptions, which showed up when printing a
detailed error for comparison. Consider the following JavaScript program:

let e1 = new WebAssembly.CompileError("a compile error")
let e2 = new WebAssembly.LinkError("a link error")
let e3 = new WebAssembly.RuntimeError("a runtime error")
print(e1.name, e1);
print(e2.name, e2);
print(e3.name, e3);

8 https://bugs.webkit.org/show_bug.cgi?id=209294.
9 https://github.com/microsoft/ChakraCore/issues/6185.

10 https://github.com/microsoft/ChakraCore/pull/5889.

https://bugs.webkit.org/show_bug.cgi?id=209294
https://github.com/microsoft/ChakraCore/issues/6185
https://github.com/microsoft/ChakraCore/pull/5889

226 Á. Perényi and J. Midtgaard

On V8, SpiderMonkey, and Chakra this yields:

CompileError CompileError: a compile error
LinkError LinkError: a link error
RuntimeError RuntimeError: a runtime error

but on JavaScriptCore it yielded:

Error Error: a compile error (evaluating ’new [...]’)
Error Error: a link error (evaluating ’new [...]’)
Error Error: a runtime error (evaluating ’new [...]’)

The difference was reported but no acknowledgment has been received yet.11

5.7 Testing Buggy Behavior

Chakra’s different behavior on an unreachable tee_local is relatively often
tested, causing our tester to repeatedly rediscover and report it. Despite having
its fix merged into the master branch over a year ago, the fix has still not made
it into a released version. For this reason, we follow the approach of Hughes in
the AUTOSAR project [14] and adjust the test to the documented buggy behav-
ior. We thus consider a Chakra error about unreachable tee_local acceptable,
despite differing from the other engines.

5.8 A Performance Experiment

We conducted a small experiment to measure the performance of the generator.
The experiment was conducted on a normally loaded MacBook Pro laptop. We
invoked the tester 6 times, each generating and comparing the output of 100
Wasm programs. Out of the 6 invocations, 1 exhibited different behavior on the
9th generated program. After 19 shrinking steps and 78.6 s a counterexample
of ‘different data segment exceptions’ was reported. For the 5 successful invoca-
tions we counted 0–3 timeouts with each invocation taking from 87.8 to 257.1 s
(avg: 158.7). We then reran the experiment with the same randomization seeds,
this time excluding a reference interpreter comparison. We observed the same
timeouts and the same counterexample, this time taking 79.9 s. The 5 successful
invocations now took from 82.3 to 200.0 s (avg: 131.7).

6 Related Work

The research literature is rich with contributions within program generation
for testing language processors. Purdom [21] originally suggested an algorithm
for generating a set of sentences to test parsers and context-free grammars.
McKeeman [17] coined the phrase differential testing (for software), to charac-
terize his C compiler testing approach. This involved both a stochastic grammar

11 https://bugs.webkit.org/show_bug.cgi?id=204054.

https://bugs.webkit.org/show_bug.cgi?id=204054

Stack-Driven Program Generation of WebAssembly 227

associating weights to each production, as well as a test-case reducer repeatedly
applying simplifying heuristics.

Our work builds on Palka et al. [20], who tested the GHC Haskell compiler’s
strictness analyzer by generating random lambda terms. Their generator was
structured as a bottom-up reading of the typing rules, thus introducing the idea
of using the typing rules as a specification for a generation procedure of well-
typed terms. Like our Wasm generator, their generator used backtracking to
enable a higher success rate for term generation. Midtgaard et al. [19] also built
on Palka et al. [20] in their OCaml program generation approach. To prevent
generating programs with evaluation order dependence, they suggest to structure
a generator according to a type and effects system with dedicated effect indica-
tors. Reading the type and effects system bottom-up, their generator was able
to generate evaluation order independent programs and thus find multiple bugs
in OCaml compilers. Like us, they also developed a dedicated type-preserving
shrinker to shorten counterexample programs.

Alternatives to a randomized recursive generator exist, such as enumeration-
based program generation in the style of SmallCheck [22] and Bolzmann sam-
plers to generate typed lambda terms of an approximate size [5]. Both these
approaches have currently only been attempted on languages with relatively few
language constructs.

Multiple C compilers have been tested by means of randomized testing. Yang
et al. introduced CSmith [27], a randomized test-case generator of C program
inputs. They used the generator to differentially test each produced program
across various C compilers to find differences in their outputs. CSmith gener-
ates C programs via a grammar that describes a subset of the C language. It
generates a C program with a top-level main function that returns the result of
the program via a checksum. The rest of the program is randomly generated.
CSmith compares the checksum output across the various compilers. Yang et
al. also had to work around the non-deterministic parts of the C language when
calculating the checksum. Like our generator, a program from CSmith can loop
infinitely and therefore Yang et al. run each program with a timeout.

Barany used differential testing to find missed compiler optimizations in C
programs [4]. To do so, he generated random C programs and compared the
optimised program code generated by GCC, Clang, and CompCert. For the C
program generation he used both CSmith [27] and ldrgen [3], a newly developed
generator. The ldrgen generator addresses CSmith’s tendency to generate dead
code by introducing liveness triples in the generation inference rules in addition
to the typing context. At each generation step, the liveness of the instruction
influences the result. Using this approach, Barany identified multiple missed
optimizations in all three tested compilers.

Le et al. [16] introduced equivalence modulo inputs (EMI) as an alternative
compiler testing approach to differential testing. EMI defines the concept of
equivalence of programs on the same input. As a proof of concept they developed
Orion to target C compilers. Orion takes a test program as an input. First it
extracts coverage information from the given program, and secondly it then

228 Á. Perényi and J. Midtgaard

generates EMI variants of the program. Le et al. used the generated EMI variants
to test GCC, LLVM and ICC. As a result of their work, Le et al. have found
and reported 147 unique bugs in GCC and LLVM.

Donaldson et al. [10] developed GLFuzz, thus using the concept of EMI to test
graphics shader compilers in graphics cards. For a given shader input to GLFuzz,
GLFuzz repeatedly applies a set of semantics-preserving transformations to the
shader. The resulting shader renders a similar image to the original, thereby
allowing a comparison between the original and the transformed shader’s result.
When a significantly different image is rendered, GLFuzz performs reduction
(shrinking) to find a minimal set of transformations that lead to a significant
difference after rendering. With this approach, Donaldson et al. found defects in
all the GPU and driver configurations they tested.

Holler et al. [13] developed LangFuzz, a language-independent program gen-
erator. LangFuzz requires a language grammar, sample source code of language
implementations, and a test suite. In contrast to CSmith and our own generator
which take a generative approach, LangFuzz also utilizes a mutative approach to
learn from the provided code samples and produce similar programs. LangFuzz
first parses the supplied code samples and builds up code fragments. Afterwards
random code fragments are selected and mutated. Finally the mutated program
is run against the test suite. As a result of the mutation process, there is a higher
chance of finding bugs if the sample source code base contains source code of
known bugs. Holler et al. used LangFuzz to generate both JavaScript and PHP
programs and found multiple implementation bugs for both.

Watt formalized and verified the Wasm specification within Isabelle [25].
As part of testing his formal model against Wasm engines, he conducted fuzz
tests (property-based tests). He used CSmith to generate C programs and then
compiled them to Wasm using the Binaryen toolchain [6]. As mentioned, this
approach confines tests to the subset of the Wasm language utilized by the
Binaryen backend. In contrast, our generator is not limited to such a subset.
Consequently we have been able to find errors that span the entire language
specification. On the other hand, our generator benefits from both the Wasm
specification and Watt’s formalization of it to generate valid programs.

7 Conclusion

We have presented a stack-driven generator of WebAssembly programs. For each
generated Wasm program we compare the reference interpreter’s output against
each of the four major browsers WebAssembly engines. In doing so, we have
been able to find both major and minor differences, including crashing bugs. To
reduce the produced programs, we have developed a stack-driven shrinker. The
resulting, minimal counterexample programs allow our bug reports to be short
and to the point. With WebAssembly moving beyond client-side web develop-
ment to new domains such as smart contracts and blockchain, we believe our
generator can be a useful tool to ensure agreement across Wasm engines. We
have released the source code of the generator under a BSD-license: https://
github.com/jmid/wasm-prop-tester.

https://github.com/jmid/wasm-prop-tester
https://github.com/jmid/wasm-prop-tester

Stack-Driven Program Generation of WebAssembly 229

Acknowledgments. We are grateful to Andreas Rossberg for suggesting to build a
Wasm generator, following a presentation of our OCaml generator [19]. We also thank
the APLAS reviewers for their constructive comments.

References

1. Arts, T., Castro, L.M., Hughes, J.: Testing Erlang data types with Quviq
QuickCheck. In: Proceedings of the of ERLANG 2008, pp. 1–8 (2008)

2. Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing telecoms software with
Quviq QuickCheck. In: Proceedings of ERLANG 2006 (2006)

3. Barany, G.: Liveness-driven random program generation. In: Proceedings of LOP-
STR 2017, pp. 112–127 (2017)

4. Barany, G.: Finding missed compiler optimizations by differential testing. In: Pro-
ceedings of CC 2018, pp. 82–92 (2018)

5. Bendkowski, M., Grygiel, K., Tarau, P.: Boltzmann samplers for closed simply-
typed lambda terms. In: Lierler, Y., Taha, W. (eds.) PADL 2017. LNCS, vol.
10137, pp. 120–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
51676-9_8

6. Binaryen: Compiler infrastructure and toolchain library for WebAssembly. https://
github.com/WebAssembly/binaryen. Accessed 02 July 2020

7. Cardelli, L.: Type systems. ACM Comput. Surv. 28(1), 263–264 (1996)
8. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of

Haskell programs. In: Proceedings of ICFP 2000, pp. 53–64 (2000)
9. Cruanes, S.: QCheck: QuickCheck inspired property-based testing for OCaml.

https://github.com/c-cube/qcheck. Accessed 02 July 2020
10. Donaldson, A.F., Evrard, H., Lascu, A., Thomson, P.: Automated testing of graph-

ics shader compilers. PACMPL 1(OOPSLA), 93:1–93:29 (2017)
11. GoogleChromeLabs: JSVU, JavaScript (engine) version updater. https://github.

com/GoogleChromeLabs/jsvu. Accessed 04 July 2020
12. Haas, A., et al.: Bringing the web up to speed with WebAssembly. In: Proceedings

of PLDI 2017, pp. 185–200 (2017)
13. Holler, C., Herzig, K., Zeller, A.: Fuzzing with code fragments. In: Proceedings of

the 21st USENIX Security Symposium (2012)
14. Hughes, J.: Experiences with QuickCheck: testing the hard stuff and staying sane.

In: Lindley, S., McBride, C., Trinder, P., Sannella, D. (eds.) A List of Successes
That Can Change the World. LNCS, vol. 9600, pp. 169–186. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30936-1_9

15. Koopman, P., Plasmeijer, R.: Testing with functional reference implementations.
In: Page, R., Horváth, Z., Zsók, V. (eds.) TFP 2010. LNCS, vol. 6546, pp. 134–149.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22941-1_9

16. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs. In:
Proceedings of PLDI 2014, pp. 216–226 (2014)

17. McKeeman, W.M.: Differential testing for software. Digit. Tech. J. 10(1), 100–107
(1998)

18. Midtgaard, J.: QuickChecking patricia trees. In: Wang, M., Owens, S. (eds.) TFP
2017. LNCS, vol. 10788, pp. 59–78. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89719-6_4

19. Midtgaard, J., Justesen, M.N., Kasting, P., Nielson, F., Nielson, H.R.: Effect-driven
QuickChecking of compilers. PACMPL 1(ICFP), 15:1–15:23 (2017)

https://doi.org/10.1007/978-3-319-51676-9_8
https://doi.org/10.1007/978-3-319-51676-9_8
https://github.com/WebAssembly/binaryen
https://github.com/WebAssembly/binaryen
https://github.com/c-cube/qcheck
https://github.com/GoogleChromeLabs/jsvu
https://github.com/GoogleChromeLabs/jsvu
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1007/978-3-642-22941-1_9
https://doi.org/10.1007/978-3-319-89719-6_4
https://doi.org/10.1007/978-3-319-89719-6_4

230 Á. Perényi and J. Midtgaard

20. Pałka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler by
generating random lambda terms. In: Proceedings of AST 2011, pp. 91–97 (2011)

21. Purdom, P.: A sentence generator for testing parsers. BIT 12(3), 366–375 (1972)
22. Reich, J.S., Naylor, M., Runciman, C.: Lazy generation of canonical test programs.

In: Gill, A., Hage, J. (eds.) IFL 2011. LNCS, vol. 7257, pp. 69–84. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-34407-7_5

23. Rossberg, A.: WebAssembly reference interpreter. https://github.com/
WebAssembly/spec/tree/master/interpreter. Accessed 02 July 2020

24. Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and lazy SmallCheck: auto-
matic exhaustive testing for small values. In: Proceedings of Haskell 2008, pp.
37–48 (2008)

25. Watt, C.: Mechanising and verifying the WebAssembly specification. In: Proceed-
ings of CPP 2018, pp. 53–65 (2018)

26. WebAssembly: Official website. https://webassembly.org/. Accessed 02 July 2020
27. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C

compilers. In: Proceedings of PLDI 2011, pp. 283–294 (2011)

https://doi.org/10.1007/978-3-642-34407-7_5
https://github.com/WebAssembly/spec/tree/master/interpreter
https://github.com/WebAssembly/spec/tree/master/interpreter
https://webassembly.org/

Banyan: Coordination-Free Distributed
Transactions over Mergeable Types

Shashank Shekhar Dubey1(B), K. C. Sivaramakrishnan1, Thomas Gazagnaire2,
and Anil Madhavapeddy3

1 Indian Institute of Technology, Madras, India
ssdubey@cse.iitm.ac.in
2 Tarides, Paris, France

3 University of Cambridge Computer Laboratory, Cambridge, UK

Abstract. Programming loosely connected distributed applications is a
challenging endeavour. Loosely connected distributed applications such
as geo-distributed stores and intermittently reachable IoT devices can-
not afford to coordinate among all of the replicas in order to ensure data
consistency due to prohibitive latency costs and the impossibility of coor-
dination if availability is to be ensured. Thus, the state of the replicas
evolves independently, making it difficult to develop correct applications.
Existing solutions to this problem limit the data types that can be used
in these applications, which neither offer the ability to compose them to
construct more complex data types nor offer transactions.

In this paper, we describe Banyan, a distributed programming model
for developing loosely connected distributed applications. Data types in
Banyan are equipped with a three-way merge function à la Git to handle
conflicts. Banyan provides isolated transactions for grouping together
individual operations which do not require coordination among differ-
ent replicas. We instantiate Banyan over Cassandra, an off-the-shelf
industrial-strength distributed store. Several benchmarks, including a
distributed build-cache, illustrates the effectiveness of the approach.

1 Introduction

When applications replicate data across different sites, they need to make a fun-
damental choice regarding the consistency of data. Strong consistency properties
such as Linearizability [20] and Serializability [9] makes it easier to design cor-
rect applications. However, strong consistency is often at odds with high perfor-
mance. Strong consistency necessitates that all the replicas coordinate to agree
on a global order in which any conflicting operations are resolved. The CAP
theorem [17] and PACELC theorem [1] state that strongly consistent appli-
cations exhibit higher latencies when all the replicas are reachable, and they
are unavailable when some of the replicas are unreachable. This limitation has
spurred the development of commercial weakly consistent distributed databases
for wide-area applications such as DynamoDB [2], Cassandra [3], CosmosDB [4]
and Riak [32]. However, developing correct applications under weak consistency
c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 231–250, 2020.
https://doi.org/10.1007/978-3-030-64437-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-64437-6_12

232 S. S. Dubey et al.

is challenging due to the fact that the operations may be reordered in complex
ways even if issued by the same session [11]. Moreover, these databases only offer
a limited set of sequential data types with a built-in conflict resolution strategies
such as last-write-wins and multi-valued objects. Such built-in conflict resolu-
tion leads to anomalies such as write-skew [8] which makes it difficult (and often
impossible) to develop complex applications with rich behaviours.

Rather than programming with sequential data types while reasoning about
their semantics in a weakly consistent setting, an alternative strategy is to equip
the data types with the ability to reconcile conflicts. Kaki et al. [23] recently
proposed Mergeable Replicated Data Types (MRDTs) as a way to automati-
cally derive correct distributed variants of ordinary data types. The inductively
defined data types are equipped with an invertible relational specification which
is used to derive a three-way merge function à la Git [18], a distributed version
control system.

What does it take to make MRDTs a practical alternative to implement-
ing high-throughput, low-latency distributed applications such as the ones that
would be implemented over industrial-strength distributed databases? There are
several key challenges to getting there.

Firstly, while MRDTs define merge semantics for operations on individual
objects, Kaki et al. do not describe the semantics of composition of operations on
multiple objects – i.e. transactions. Transactions are indispensable for building
complex applications. Strongly consistent distributed transactions suffer from
unavailability [1], whereas highly-available transactions [5] combined with weakly
consistent operations often lead to incomprehensible behaviours [36].

Secondly, MRDTs impose significant burden on the storage and network
layer to be able to support three-way merges to reconcile conflicts. Kaki et al.
implement MRDTs over Irmin [21], a Git-like store for arbitrary objects, not just
files. As with Git, in order to reconcile conflicts, three-way merges in MRDTs
require the storage layer to record enough history to be able to retrieve the lowest
common ancestor (LCA) state. For a distributed database, performance of the
network layer is quite important for throughput and latency. Industrial-strength
distributed databases use gossip protocols [24] to quickly disseminate updates in
order to ensure fast convergence between the replicas. Git comes equipped with
a remote protocol for transferring objects between remote sites using push and
pull mechanisms. Unfortunately, directly using the Git remote protocols would
mean that the client will have to name branches explicitly, complicating the
programming model. The onus is on the client to ensure that all the branches
that have updates are merged in order to ensure that there is convergence. This
is undesirable.

Contributions. In this paper, we present Banyan, a programming model for
building loosely connected distributed applications that provides coordination-
free transactions over MRDTs. Banyan provides per-object causal consistency,
and the transaction model is built on the principles of Git-like branches. Rather
than relying on Git remote protocol for dissemination across replicas, we instanti-
ate Banyan on top of Cassandra, an industrial-strength, off-the-shelf distributed

Banyan: Coordination-Free Distributed Transactions over Mergeable Types 233

store [26]. Unlike Git, Banyan does not expose named branches explicitly, and
ensures eventual convergence. Importantly, Banyan only relies on eventual con-
sistency, and Banyan can be instantiated on any eventually consistent key-value
store. Extensive evaluation shows that Banyan makes it easy to build complex
high-performance distributed applications.

The rest of the paper is organised as follows. We motivate the Banyan model
by designing a distributed build cache in the next section. Section 3 describes
the Banyan programming model. Section 4 describes the instantiation of Banyan
on Cassandra. We evaluate the instantiation of Banyan on top of Cassandra in
Sect. 5. Sections 6 and 8 present the related work and conclusions, respectively.

2 Motivation: A Distributed Build Cache

A distributed build cache enables a team of developers and/or a continuous
integration (CI) system to reuse the build artefacts between several builds. Such
a facility is provided by modern build tools such as Gradle [19] and Bazel [7],
which can store and retrieve build artefacts from cloud storage services such
as Amazon S3 or Google Cloud Storage. Consider the challenge of building a
distributed build cache for OCaml packages. Let us assume that the builds are
reproducible – that is, independent builds of the same source files yield the same
artefact. In addition to storing the artefacts, it would be useful to gather statistics
about the artefacts such as creation time, last accessed time and number of cache
hits. Such information may be used in the cache eviction policy or replicating
artefacts across several sites for increased availability. While an artefact itself
is reproducible, care must be taken to ensure that the statistics are consistent.
For the sake of exposition, we will assume that all the build hosts use the same
operating system and compiler version.

2.1 Mergeable Types

Let us build this distributed cache using Banyan, implementing it in OCaml.
At its heart, Banyan is a distributed key-value store. The keys in Banyan are
paths, represented as list of strings. The values are algebraic data types equipped
a merge function that reconciles conflicting updates. In this example, we will
use the following schema: [<pkg_name>; <version>; <kind>; <filename>] for the keys,
where <kind> is either lib indicating binary artefact or stats indicating statistics
about the artefact. The value type is given below:

type timestamp = float
type value =

| B of bigarray (* binary artefact *)
| S of timestamp (* created *) * timestamp (*last accessed *)

* int (*hits*)

The value is either a binary artefact or a statistics triple. Figure 1 shows
the slice of the build cache key-value store. The cache stores the artefacts
(cmx and cmi files) produced as a result of compiling the source file lwt_mutex.ml

234 S. S. Dubey et al.

from the package lwt version 5.3.0. The build cache also stores the statistics
for every artefact. The example shows that the lwt_mutex.cmx was accessed 25
times. When several developers and/or CI pipelines are running concurrently
on different hosts, they may attempt to add the same artefact to the store,

Fig. 1. A slice of the build cache key-value store.

or, if the artefact is already
present, retrieve it from the cache
and update the corresponding
artefact statistics. It would be
unwise to synchronize across all
of the hosts for updating the
store, and suffer the latency
hit and potential unavailability.
Hence, Banyan only writes an
update to one of the replicas. The
replicas asynchronously share the
updates between each other, and resolve conflicting updates using user-defined
three-way merge function. The merge function for the build cache is given below.

1 let merge (lca: value option) (v1: value) (v2: value) : value =
2 match lca , v1, v2 with
3 | None , B a1 , B a2 (* no lca *)
4 | Some (B _), B a1 , B a2 -> assert (a1 = a2); B a1
5 | None , S(c1 ,la1 ,h1), S(c2 ,la2 ,h2) -> (* no lca *)
6 S(min c1 c2 , max la1 la2 , h1 + h2)
7 | Some(S(_,_,h0)), S(c1 ,la1 ,h1), S(c2 ,la2 ,h2)->
8 S(min c1 c2 , max la1 la2 , h1 + h2 - h0)
9 | _ -> failwith "impossible"

Fig. 2. Merging conflicting statistics updates.

The key idea here is that
Banyan tracks the causal his-
tory of the state updates such
that it is always known what
the lowest common ancestor
(LCA) state is, if one exists.
This idea is analogous to how
Git tracks history with the
notion of branches. The merge
function is applied to the LCA
and the two conflicting ver-
sions to determine the new
state. In the case of build
cache, since the builds are
reproducible, the binary arte-
facts will be the same (line 4).
The only interesting conflicts
are in the statistics. The merge
function picks the earliest creation timestamp, latest last accessed timestamp,
and the sum of the new cache hits since the LCA in the two branches and the
original value at the LCA, if present (lines 5–8).

Banyan: Coordination-Free Distributed Transactions over Mergeable Types 235

Figure 2 shows how the merge function helps reconcile conflicts. The arrows
capture the happens-before relationship between the states. Assume that replica
r2 starts off by cloning the branch corresponding to replica r1. Subsequently both
r1 and r2 performed local updates. The remote updates are reconciled by calling
the merge function on each of the conflicting values. The value v5 is obtained
with merging the values v3 and v4 with v1 as LCA. Importantly, observe that the
cache hit count is 9 in v5 which corresponds to the sum of 3 hits in the initial
state, 4 additional hits in r1 and 2 additional hits in r2. At this point, r1 has
all the changes from r2, but the vice-versa is not true. Subsequently, when r1 is
merged into r2, both the replicas have converged.

Fig. 3. Compiling lwt mutex.ml.

2.2 Transactions

Now that we the mergeable value type for the build cache, let us see how we
can compile lwt_mutex.ml using Banyan. Figure 3 shows the code for compiling
lwt_mutex.ml. In Banyan, the clients interact with the store in isolated sessions. A
session can fetch recent updates using the refresh primitive and make all the local
updates visible to other sessions using the publish primitive. During refresh, any

236 S. S. Dubey et al.

conflicting updates are resolved using the three-way merge function associated
with the value type.

In order to compile lwt_mutex.ml, we first refresh the session to get any recent
updates. Then, we check whether the lwt_mutex.cmx file is in the build cache. If
not, the source file is compiled, and the resultant artefacts (cmx, cmi, o files) and
the corresponding entries for updated statistics are written to the store. Finally,
the all the local updates are published.

The all or nothing property of refresh and publish is critical for the correctness
of this code. Observe that when the artefact is locally compiled, all the artefacts
and their statistics are published atomically. This ensures that if a session sees
the cmx file, then other artefacts and their statistics will also be visible. Thus,
Banyan makes it easy to write highly-available, complex distributed applications
in an idiomatic fashion.

3 Programming Model

p0-c0

p0-c1

p0-c2

p0-c3

p0-c4

p1-c0

p1-c1

p1-c2

p1-c3

s1-c0

s0-c0

connect

publish

connect

s1-c0 publish

remote
refresh

s0-c1

remote
refresh

refresh

s1-c2 publish

pub p0session s1session s0 pub p1

publish

publish

Replica r0 Replica r1

Fig. 4. Banyan system and programming model.

In this section, we shall
describe the system and
programming model of
Banyan from the devel-
opers point-of-view. The
Banyan store consists of
several replicas, which are
fully or partially repli-
cated [13]. The replicas
asynchronously distribute
updates amongst them-
selves until they converge.
The key property that
enables Banyan to support
mergeable types and iso-
lated transactions is that
Banyan tracks the history
of the store in the same way that Git tracks the history of a repository.

Figure 4 presents the schematic diagram of the system and programming
model. Each replica has a distinguished public branch pub, which records the
history of the changing state at that replica. Each node in this connected history
graph represents a commit. Whenever a new client connection is established, a
new branch is forked off the latest commit in the public branch. Any reads
or writes in this session are only committed to this branch unless explicitly
published. This ensures the isolation property of each session. The figure shows
the creation of two sessions in the replica r0.

The simplified Banyan API is given below:

type config (* Store configuration *)
type session

Banyan: Coordination-Free Distributed Transactions over Mergeable Types 237

type key = string list
type value (* Type of mergeable values in the store *)

val connect : config -> session Lwt.t
val close : session -> unit Lwt.t
val read : session -> key -> value option Lwt.t
val write : session -> key -> value -> unit Lwt.t
val publish : session -> unit Lwt.t
val refresh : session -> unit Lwt.t

When a client connects to a Banyan store, a new session is created, which
is rooted to one of the replicas in the store. Every write creates a commit in
the session performing the write. As previously explained, Banyan permits the
sessions to atomically publish their updates and refresh to obtain latest updates.
The publish operation squashes all the local commits since the previous refresh

or publish to a single commit, and then pushes the changes to the public branch
on the replica to which the session is rooted. The refresh operation pulls updates
from the public branch into the current sessions branch. Both publish and refresh

may invoke the merge function on the value type if there are conflicts. The
objects that written to each replica are asynchronously replicated to other repli-
cas. Banyan offers causal consistency for operations on each key.

Periodically, the changes from other public branches are pulled into a replica’s
public branch (remote refresh). This operation happens implicitly and asyn-
chronously, and does not block the client on that replica. When a session is
closed, the outstanding writes are implicitly published. Similarly, when a session
is connected, there is an implicit refresh operation.

Observe that both the local and the remote refresh operations are non-
blocking – it is always safe for refresh to return with updates only from a subset
of public branches. The only push operation is due to publish. When pushing to
a branch, it is necessary to atomically update the target branch to avoid con-
currency errors. The key observation is that only the session that belongs to a
replica can push to the public branch on that replica. This can be achieved with
replica-local concurrency control and does not require coordination among the
replicas. Hence, Banyan transactions do not need inter-replica coordination, and
hence, are available.

When a particular replica goes down, the sessions that are rooted to that
replica may not have enough history to be able to refresh and publish to other
replicas. In particular, refresh and publish will need to discover the LCA in the
case of conflicting updates. Since the objects are asynchronously replicated across
the replicas, the recent writes to the replica that went down may not have been
replicated to other replicas. Hence, Banyan requires sticky availability [5] – the
sessions need to reach the logical replica to which it originally connected. In
practice, with partial replication, a logical replica may be represented by a set of
physical servers. As long as one of these physical servers is reachable, the system
remains available for that session.

Compared to traditional transactions usually executed at a particular iso-
lation level, refresh and publish permits more fine-grained, explicit control of

238 S. S. Dubey et al.

visibility. In Banyan, transactions are delimited by publish operations, begin and
end of sessions. For example, the set of writes performed between consecutive
publish operations are made visible atomically outside the session. The transac-
tion may abort if the three-way merge function throws an exception. However,
in practice, the useful MRDTs are designed in such a way that a merge is always
possible, and the failure of the merge function represents a bug. This idea of
merge always being possible ensures strong eventual consistency, espoused by
convergent replicated data types [33]. Banyan adds transactional support over
strong eventual consistency.

The publish and refresh can be used to achieve well-known isolation levels. For
example, consider parallel snapshot isolation (PSI) [35], which is an extension of
snapshot isolation (SI) [8] for geo-replicated systems. Like SI, the transactions
in PSI operate on a snapshot of the state at a replica. While SI precludes write-
write conflicts, PSI admits them on mergeable types. Since all the data types in
Banyan are mergeable types, every write-write conflict can be resolved. We can
achieve PSI by refreshing at that beginning of the transaction and publishing at
the end of the transaction with no intervening refreshes.

Similarly, we get monotonic atomic view (MAV) [5] isolation level if two con-
secutive publish operations are interspersed with refreshes. Since the refreshes may
bring in new updates from committed transactions, the state of the transaction
grows monotonically.

4 Implementation

In this section, we describe the instantiation of Banyan on Cassandra [3], a popu-
lar, industrial-strength, column-oriented, distributed database. Cassandra offers
eventual consistency with a last-write-wins conflict resolution policy. Cassandra
also offers complex data types such as list, set and map with baked-in conflict
resolution policies. Given the richness of replicated data types, the available com-
plex data types are quite limiting. Cassandra also offers lightweight transactions
(distributed compare-and-update) implemented using the Paxos consensus pro-
tocol [27]. Lightweight transactions are limited to operate on only one object.
Banyan does not use lightweight transactions since their cost is prohibitively
high due to consensus. As mentioned previously Banyan only requires sticky
availability, and so uses a replica-local lock for ensuring mutual exclusion when
multiple sessions try to update the public branch on a replica concurrently.

By instantiating Banyan on Cassandra, we offload the concerns of replica-
tion, fault tolerance, availability and convergence to the backing store. On top
of Cassandra, Banyan uses Irmin [21], an OCaml library for persistent stores
with built-in branching, merging and reverting facilities. Irmin can be config-
ured to use different storage backends, and in our case, the storage is Cassandra.
Importantly, Cassandra being a distributed database serves the purpose of the
networking layer in addition to persistent storage. While Irmin permits arbi-
trary branching and merging, Banyan is a specific workflow on top of Irmin
which retains high availability.

Banyan: Coordination-Free Distributed Transactions over Mergeable Types 239

4.1 Irmin Data Model

pub p0

session s1

session s0

c2

c0

c1

/

/ bar

foo v0

v1

Tag Store Block Store

Fig. 5. A sample Irmin store. The rectangles are
tags, diamonds are commit objects, octagons are tree
object, and circles are blob objects.

The expressivity of Irmin
imposes significant burden
on the underlying storage.
For efficiently storing dif-
ferent versions of the state
as the store evolves, Irmin
uses the Git object model.
Figure 5 shows a snapshot
of the state of the Irmin
store. There are two kinds of
stores: a mutable tag store
and an immutable, content-
addressed block store. The
tag store records the branches
and the commit that corresponds to this branch. In this example, we have three
branches, session s0, session s1 and pub p0.

The block store is content-addressed and has three different kinds of objects:
commits, tree and blobs. A commit object represents a commit, and it may have
several parent commits and a single reference to a tree node. For example, the
commit c2’s parent is c1, and c0 and c1 do not have any parent commits. The tree
object corresponds to directory entries in a filesystem, and recursively refer to
other tree objects or a blob object. Unlike Git, Irmin allows blob objects to be
arbitrary values, not just files. The blob objects may refer to other blob objects.
In the session s1, reading the keys ["foo"] and ["bar"] would yield Some v0 and
Some v1, respectively.

Observe that all the commits share the tree object foo and its descendents,
thanks to the block store being content addressed. Content addressibility of the
block store means that as the store evolves, the contents of the store are shared
between multiple commits, if possible. On the other hand, updating a value in a
deep hierarchy of tree objects would necessitate allocating a new spine in order
to maintain both the old and the new versions. Thus, each write in Banyan will
turn into several writes to the underlying storage.

4.2 Cassandra Instantiation

For instantiating Banyan on Cassandra, we use two tables, one for the tag store
and another for the block store. For the tag store, the key is a string (tag) and
the value is a blob (hash of the commit node). For the block store, the key is a
blob (hash of the content), and the value is a blob (content). Irmin handles the
logic necessary to serialize and deserialize the various Git objects into binary
blobs and back.

Cassandra replicates the writes to the tag and block tables asynchronously
amongst the replicas. Each replica periodically merges the public branches of
other replicas into its public branch to fetch remote updates. Due to eventual

240 S. S. Dubey et al.

consistency of Cassandra, it may be the case that not all the objects from a
remote replica are available locally. For example, the merge function may find a
new commit from a remote replica, but the tree object referenced by a commit
object may not available locally. In this situation, Banyan simply skips merging
this branch in this round. Cassandra ensures that eventually the remote tree
object will arrive at this replica and will be merged in a subsequent remote
refresh operation. Thus, fetching remote updates is a non-blocking operation.

In Irmin, the tag store is updated with a compare-and-swap to ensure that
concurrent updates to the same tag should be disallowed. Naively implementing
this in Cassandra would necessitate the use of lightweight transactions and suffer
prohibitive costs. By restricting the Banyan programming model (Sect. 3) such
that entries in the tag store (in particular, the tag corresponding to the public
branch of the replica) is only updated on that replica, we remove the necessity
for lightweight transactions. Thus, we do not depend on any special features of
Cassandra to realise the Banyan model, and Banyan can be instantiated on any
eventually consistent key-value store.

4.3 Recursive Merges

A particular challenge in making Banyan scalable is the problem of recursive
merges. Consider a simple mergeable counter MRDT, whose implementation is:

let merge lca v1 v2 =
let old = match lca with None -> 0 | Some v -> v in
v1 + v2 - old

Consider the execution history presented in Fig. 6 which shows the evolution
of a single counter. The history only shows the interaction between two replicas,
and does not show any sessions. Each node in the history is a commit. Since we
want to focus on a single counter, for simplicity, we ignore the tree nodes and
the node labels show the counter value.

Initially the counters are 0, and each replica concurrently increments the
counter by 4 and 5. When the replicas perform remote refreshes, they invoke
merge None 4 5 to resolve the conflict updates yielding 9. The LCA is None since
there is no common ancestor.

Subsequently, the replicas increment the counters by 3 and 5. Now, consider
that the replicas merge each other’s branches. When merging 12 and 14, there
are two equally valid LCAs 4 and 5. Picking either one of them leads to incorrect
result. At this point, Irmin merges the two LCAs using merge None 4 5 to yield 9,
which is used as the LCA for merging 12 and 14. This yields the value 17. The
result of merging the LCAs is represented as a rounded rectangle. Importantly,
the result of the recursive merge 9 is not a parent commit of 12 and 14 (dis-
tinguished by the use of dotted arrows). This is because the commit nodes are
stored in the content-addressed store, and adding a new parent to the commit
node would create a distinct node, whose hash is different from the original node.
Any other nodes that referenced the original commit node will continue to ref-
erence the old node. As a result, the recursive merges will need to be performed
again for subsequent requests!

Banyan: Coordination-Free Distributed Transactions over Mergeable Types 241

Fig. 6. Recursive merge. Rounded rectangles
are the results of recursive merges.

Consider that the replicas fur-
ther evolve by incrementing 1 and
2, yielding 18 and 19. When these
commits are merged on remote
refresh, there are two LCAs 12 and
14, which need to be merged. This
in turn has two LCAs 4 and 5,
which need to be merged. Thus,
every subsequent recursive merge,
which is very likely since the repli-
cas merge each other’s branches,
requires repeating all the previous
recursive merges. This does not
scale.

We solve this problem by hav-
ing a separate table in Cassan-
dra that acts as a cache, record-
ing the result of LCA merges.
Whenever Banyan encounters a
recursive merge, the cache is first
consulted before performing the
merge. In this example, when 18

and 19 are being merged, Banyan first checks whether the two LCAs 12 and
14 are in the cache. They would not be. This triggers a recursive merge of LCAs
4 and 5, whose result is in the cache, and is reused. The cache is also updated
with an entry that records that the merge of the LCAs 12 and 14 is the commit
corresponding to 17.

4.4 Garbage Collection

While traditional database systems only store the most recent version of the
data, Banyan necessitates that previous versions of the data must also be kept
around for three-way merges. While persistence of prior versions [15,16] is a
useful property for audit and tamper evidence, the Banyan API presented here
does not provide a way to access earlier versions. The question then is: when can
those prior versions be garbage collected?

We have not yet implemented the garbage collector for Banyan on Cassan-
dra, but we sketch the design here. Git is equipped with a garbage collector that
considers that any object in the block store that is reachable from the tag store is
alive. Unreachable objects are deleted. Our aim is to assist the Git-like garbage
collector by pruning the history graph of nodes which will no longer be used.
The key idea is that if a commit node will not be used for LCA computation,
then that commit node may be deleted. Deleting commit nodes will leave dan-
gling references from its referees, but Irmin can be extended to ignore dangling
references to commit nodes.

242 S. S. Dubey et al.

p0-c0

p0-c1

s0-c0

connect

close

pub p0session s0

p0-c2

s1-c0

session s1

connect

s1-c1
refresh

s1-c2

p1-c0

pub p1

remote
refresh

Fig. 7. Garbage collection. Here, the commits
p0-c0 and s0-c0 may be deleted.

For individual sessions, once
the session is closed, the corre-
sponding entry in the tag store,
and all the commits by that ses-
sion may be deleted. In the exe-
cution history in Fig. 7, the com-
mit node s0-c0 may be deleted. The
next question is when can commits
on public branch be deleted. For
each ongoing session in a replica,
we maintain the latest commit in
the public branch against which
refresh was performed. The earli-
est of such commits in the public
branch and its descendants must
be retained, since they are neces-
sary for the three-way merge. For example, in Fig. 7, session s1 refreshed against
p0-c2, and s1 is the only ongoing session. If s1 publishes, then p0-c2 will be the
LCA commit.

A similar reasoning is used for remote refreshes. When a commit in the public
branch of a replica has been merged into the public branches of all the other
replicas, then the ancestors of such commits will not be accessed and can be
deleted. In Fig. 7, assume that we only have two replicas. Since p0-c1 was merged
by the public branch p1, p0-c1 will be the LCA commit for subsequent remote
refreshes by p1. Given that p0-c0 is neither necessary for remote refreshes nor for
ongoing sessions, p0-c0 can be deleted.

5 Evaluation

In this section, we evaluate the performance of Banyan’s instantiation on Cas-
sandra. Our goal is to assess the suitability of Banyan for programming loosely
connected distributed applications. To this end, we first quantify the overheads of
implementing Banyan over Cassandra. Subsequently, we assess the performance
of MRDTs implemented using Banyan. And finally, we study the performance
of distributed build cache (Sect. 2).

5.1 Experimental Setup

For the experiments, we use a Cassandra cluster with 4 nodes within the same
data center. Each Cassandra node runs on a baremetal Intel®Xeon®E3-1240
CPU, with 4 physical cores, and 2 hardware threads per core. Each core runs at
3.70 GHz and has 128 KB of L1 data cache, 128 KB of L1 instruction cache, 1 MB
L2 cache and 8 MB of L3 cache. Each machine has 32 GB of main memory. The
machines are unloaded except for the Cassandra node. The ping latency between

Banyan: Coordination-Free Distributed Transactions over Mergeable Types 243

the machines is 0.5 ms on average. The clients are run on a machine with the
same configuration in the same data center.

For the experiments, Cassandra cluster is configured with a replication factor
of 1, read and write consistency levels of ONE. Hence, the cluster maintains a
single copy of each data item, and only waits for one of the servers to respond to
return the result of read and write to the client. These choices lead to eventual
consistency where the reads may not return the latest write. The cluster may
be configured with larger replication factor for better fault tolerance. However,
stronger consistency levels are not useful since Banyan enforces per-key causal
consistency over the underlying eventual consistency offered by Cassandra. In
fact, choosing strong consistency for reads and writes in Cassandra does not
offer strong consistency in Banyan since the visibility of updates in Banyan is
explicitly controlled with the use of refresh and publish.

5.2 Baseline Overheads

Number of Clients

Th
ro

ug
hp

ut
 (O

ps
./s

ec
)

10

100

1000

10000

100000

1 2 4 8 16 32 64 128

Banyan Cassandra

Fig. 8. Performance comparison between Banyan
and Cassandra on LWW string value.

Given that Banyan has to per-
sist every version of the store,
what is the impact of Banyan
when compared to using Cas-
sandra in a scenario where
Cassandra would be sufficient?
We measure the throughput
of performing 32k operations,
with 80% reads and 20%
writes with different numbers
of clients. The keys and val-
ues are 8 and 128 byte strings,
respectively. For Banyan, we use last-writer-wins resolution policy, which is the
policy used by Cassandra. The results are presented in Fig. 8.

With 1 client, Banyan performs 16 operations per second, while Cassandra
performs 795 operations per second. Cassandra offers 50× more throughput than
Banyan with 1 client. This is due to the fact that every read (write) performs 4
reads (3 reads and 4 writes) to the underlying store to create and access the tag,
commit and tree nodes. Banyan additionally includes marshalling and hashing
overheads for accessing the content-addressed block store. Cassandra does not
include any of these overheads. Luckily, Banyan overheads are local to a client,
and hence, can be easily parallelized. With 1 client, the cluster is severely under
utilized, and the client overheads dominate. With increasing number of clients,
the cluster is better utilized. At 128 clients, Cassandra performs 31274 operations
per second where as Banyan performs 5131 operations per second, which is a
slowdown of 6.2×. We believe that these are reasonable overheads given the
stronger consistency and isolation guarantees, and better programming model
offered by Banyan.

At the end of 32k operations, Cassandra uses 4.9 MB of disk space, while
Banyan uses 1.8 GB of disk space. As mentioned earlier (Sect. 4.4), we have yet

244 S. S. Dubey et al.

to implement garbage collection for Banyan– once implemented, we expect this
space usage will come down significantly.

5.3 Mergeable Types

Counter. We begin with the counter data type discussed in Sect. 4.3. How does a
Banyan counter perform on when concurrently updated by multiple clients? For
the experiment, the value type is a counter that supports increment, decrement
and read operations. The clients perform 32k increment or decrement operations
on a key randomly selected from a small key space. Each client refreshes and
publishes after every 100 operations. By choosing a small key space, we aim to
study the scalability of the system with large number of conflicts.

Fig. 9. Performance of counter MRDT.

Figure 9 shows the per-
formance result for two key
spaces of size 1024 and 4096
keys. With 1 client, there
are no conflicts. The conflicts
increases with increasing num-
ber of clients. We get a peak
throughput of 1814 (2027)
operations per second with a
key space of 1024 (4096) keys.
Observe that the number of
conflicts is considerably lower
with 4096 keys when compared
to 1024 keys. As a result, the
throughput is higher with 4096
keys. The result shows that the throughput of the system is proportional to the
number of conflicting operations.

Blob Log. Another useful class of MRDTs are mergeable logs, where each log
message is a string. Such a distributed log is useful for collecting logs in a dis-
tributed system, and examining the logs in their global time order. To this end,
each log entry is a pair of timestamp and message, and the log itself is a list of
such entries in reverse chronological order. The merge function for the mergeable
log extracts the newer log entries from both the versions, sorts the newer entries
in reverse chronological order and returns the list obtained by appending the
sorted newer entries to the front of the log at the LCA.

While this implementation is simple, it does not scale well. In particular,
each commit stores the entire log as a single serialized blob. This does not take
advantage of the fact that every commit can share the tail of the log with its
predecessor. Moreover, every append to the log needs to deserialize the entire
log, append the new entry and serialize the log again. Hence, append is an O(n)
operation, where n is the size of the log. Merges are also worst case O(n). This
is undesirable. We call this implementation a blob log.

Banyan: Coordination-Free Distributed Transactions over Mergeable Types 245

Linked Log. We can implement an efficient log by taking advantage of the fact
that every commit shares the tail of the log with its predecessor. The value type
in this log is:

type value =
| L of float (* timestamp *) * string (* message *)

* blob (* hash of prev value *)
| M of blob list (* hashes of the values being merged *)

Fig. 10. A snapshot of linked log storage.

The value is either a log
entry L(t,m,h) with timestamp
t, message m and a hash of
the previous value h, or M hs

where hs is the list of hashes
of the values being merged.
Appending to the log only
needs to add a new object
that refers to the previous log
value. Hence, append is O(1).
Figure 10 shows a snapshot of
the log assuming a single key
x. The log at x in the public
branch p0 (session s0) is [a;b;c]

([a;b;d]). The merge operation
simply adds a new value M [h1;h2], which refers to the hashes of the two log values
being merged. This operation is also O(1). The read function for the log does
the heavy-lifting of reading the log in reverse chronological order.

Fig. 11. Performance of mergeable logs.

Observe that unlike the
examples seen so far where the
values do not refer to other val-
ues, this linked log implemen-
tation refers to other values as
heap data structures would do.
Figure 11 shows the time taken
to add 100 additional mes-
sages to the log with 4 clients.
Observe that the time stays
constant with linked log but
increases linearly with blob
log. By being able to share

objects across different commits (versions), Banyan leads to efficient implemen-
tations of useful data structures.

5.4 Distributed Build Cache

In this section, we evaluate the performance of distributed build cache described
in Sect. 2. We have chosen three OCaml packages: git, irmin and httpaf with

246 S. S. Dubey et al.

common dependent packages. In the first experiment, we measure the benefit of
building a package that has already been built in another workspace. Hence, the
package artefacts will already be in the build cache.

For each library, we measure the baseline build time (1) without using the
build cache, (2) using an empty build cache, and (3) building the same package
on a machine with the same package having built earlier on a different machine.

Fig. 12. Performance of complete and partial reuse of build artefacts.

Figure 12a shows the results. We see that case using an empty build cache is
slower than not using the cache since the artefacts are stored in the cache. We
also see that building the same package on a different machine is faster due to
the build cache when compared to the baseline.

A more realistic scenario is partial sharing of artefacts, where some of the
dependencies are in the cache and other need to be build locally, and added to
the cache. In this experiment, git package is first built on a machine with an
empty cache. Subsequently, irmin package is built on a second machine (which
will now benefit from the common artefacts in the cache). And finally, building
httpaf on a third machine, which benefits from both of the builds. Figure 12b
shows the results. As expected, the git package build is slower with a cache
than without since the cache is empty and the artefacts need to be written to
the cache additionally. Subsequent package builds benefit from partial sharing
of build artefacts. The results illustrate that Banyan not only makes it easy to
build complex applications like distributed build caches, but the implementation
also performs well under realistic workloads.

6 Related Work

Several prior works have addressed the challenge of balancing the programma-
bility and performance under eventual consistency. RedBlue consistency [28]

Banyan: Coordination-Free Distributed Transactions over Mergeable Types 247

offers causal consistency by default (blue), but operations that require strong
consistency (red) are executed in single total order. Quelea [34] and MixT [31]
offer automated analysis for classifying and executing operations at different
consistency levels embedded in weakly isolated transactions, paying the cost of
proportional to the consistency level. Indeed, mixing weaker consistency and
transactions has been well-studied [4,10,25].

Banyan only supports causal consistency, but it is known to be the strongest
consistency level that remains available [29]. While prior works attempt to recon-
cile traditional isolation levels with weak consistency, Banyan leaves the choice of
reading and writing updates to and from other transactions to the client through
the use of publish and refresh. We believe that traditional database isolation lev-
els are already quite difficult to get right [22], and attempting to provide a fixed
set of poorly understood isolation levels under weak consistency will lead to
proliferation of bugs.

Banyan is distinguished by the equipping data types with the ability to handle
conflicts (three-way merge functions). Banyan builds on top of Irmin [21]. Irmin
allows arbitrary branching and merging between different branches at the cost of
having to expose the branch name. Banyan refreshes and publishes implicitly to
the public branch at a repository, which obviates the need for naming branches
explicitly. Irmin does not include a distribution and convergence layer; Banyan
uses Cassandra for this purpose. Banyan provides causal consistency and coor-
dination free transactions over weakly consistent Cassandra. Several prior work
have similarly obtained stronger guarantees on top of weaker stores [6,34].

TARDiS [14] supports user-defined data types, and a transaction model sim-
ilar to Banyan. TARDiS is however a machine model that exposes the details
of explicit branches and merges to the developer, whereas Banyan is a program-
ming model that can be instantiated on any eventually consistent key-value
store. For instance, in TARDiS programmers need to invoke a separate merge
transaction that does an n-way merge. Banyan transaction model is more flexible
than TARDiS. For example, Banyan can support monotonic atomic view, which
TARDiS cannot – TARDiS transactions do not have a way of allowing more
recent updates since the transaction began. TARDiS does not discuss merges
without LCAs or the issue with recursive merges. We found recursive merges to
be a very common occurrence in practice.

Concurrent revisions [12] describe a programming model with branch and
merge workflow with explicit branches and restrictions on the shape of history
graphs. Banyan makes the choice of branches to publish and refresh implicit
leading to a simpler model. Concurrent revisions does not include an implemen-
tation. Antidote SQL [30] is a database system for geo-distributed applications
that provides the user the ability to relax SQL consistency when possible, but
remain strict when necessary. Similar to Banyan, Antidote SQL transactions are
executed over replicated data types. While Antidote SQL only permits paral-
lel snapshot isolation level [35], by making refresh and publish explicit, Banyan
permits weaker isolation levels such as monotonic atomic view [5].

248 S. S. Dubey et al.

7 Limitations and Future Work

Many eventually consistent databases such as CosmosDB [4], DynamoDB [2] and
Cassandra provide tunable consistency levels for operations ranging from even-
tual consistency to strong consistency. Banyan only provides causal consistency,
which is known to be the strongest available consistency level, but does not
provide weaker or strong consistency levels. As such applications that require
strong consistency, such as bank accounts with a minimum balance require-
ment, cannot be expressed in Banyan. We believe that we can extend Banyan
with strongly consistent operations. However, operations with weaker consis-
tency (and presumably better performance) cannot be incorporated in Banyan
due to the underlying expectation about the causal history for each operation.

We have yet to implement the garbage collector for Banyan based on the
design sketched in Sect. 4.4. In the absence of a garbage collector, the storage
requirements are quite significant compared to traditional databases which only
store the most recent version of the data (Sect. 5.2). We leave the implementation
of the garbage collector for future work.

8 Conclusions

We present Banyan, a novel programming model for developing loosely con-
nected distributed applications based on the principles of Git. We illustrate the
practicality of this approach by instantiating Banyan on Cassandra, an off-the-
shelf eventually consistent distributed store. Our experimental results suggests
that Banyan makes it easy to build complex distributed applications without
compromising performance.

Acknowledgements. Parts of this research were funded by grants from the Tezos
Foundation.

References

1. Abadi, D.: Consistency tradeoffs in modern distributed database system design:
CAP is only part of the story. Computer 45(2), 37–42 (2012). https://doi.org/10.
1109/MC.2012.33

2. Amazon DynamoDB: Fast and flexible NoSQL database service for any scale
(2020). https://aws.amazon.com/dynamodb/

3. Apache Cassandra: The right choice when you need scalability and high availability
without compromising performance (2020). https://cassandra.apache.org/

4. Azure CosmosDB: Build or modernise scalable, high-performance apps (2020).
https://azure.microsoft.com/en-in/services/cosmos-db/

5. Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Highly
available transactions: virtues and limitations. Proc. VLDB Endow. 7(3), 181–192
(2013). https://doi.org/10.14778/2732232.2732237

https://doi.org/10.1109/MC.2012.33
https://doi.org/10.1109/MC.2012.33
https://aws.amazon.com/dynamodb/
https://cassandra.apache.org/
https://azure.microsoft.com/en-in/services/cosmos-db/
https://doi.org/10.14778/2732232.2732237

Banyan: Coordination-Free Distributed Transactions over Mergeable Types 249

6. Bailis, P., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Bolt-on causal consistency. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, SIGMOD 2013, pp. 761–772 (2013). https://doi.org/10.1145/2463676.
2465279

7. Bazel: A fast, scalable, multi-language build system (2020). https://bazel.build/
8. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique

of ANSI SQL isolation levels. SIGMOD Rec. 24(2), 1–10 (1995). https://doi.org/
10.1145/568271.223785

9. Bernstein, P.A., Shipman, D.W., Wong, W.S.: Formal aspects of serializability
in database concurrency control. IEEE Trans. Softw. Eng. 5(3), 203–216 (1979).
https://doi.org/10.1109/TSE.1979.234182

10. Brutschy, L., Dimitrov, D., Müller, P., Vechev, M.: Serializability for eventual con-
sistency: criterion, analysis, and applications. In: Proceedings of the 44th ACM
SIGPLAN Symposium on POPL, POPL 2017, pp. 458–472. (2017). https://doi.
org/10.1145/3009837.3009895

11. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification. Optimality. SIGPLAN Not. 49(1), 271–284 (2014). https://
doi.org/10.1145/2578855.2535848

12. Burckhardt, S., Leijen, D., Fähndrich, M., Sagiv, M.: Eventually consistent trans-
actions. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 67–86. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 4

13. Crain, T., Shapiro, M.: Designing a causally consistent protocol for geo-distributed
partial replication. In: Proceedings of the First Workshop on Principles and Prac-
tice of Consistency for Distributed Data, PaPoC 2015 (2015). https://doi.org/10.
1145/2745947.2745953

14. Crooks, N., Pu, Y., Estrada, N., Gupta, T., Alvisi, L., Clement, A.: TARDiS:
a branch-and-merge approach to weak consistency. In: Proceedings of the 2016
International Conference on Management of Data, SIGMOD 2016, pp. 1615–1628
(2016). https://doi.org/10.1145/2882903.2882951

15. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory
of Computing, STOC 1986, pp. 109–121 (1986). https://doi.org/10.1145/12130.
12142

16. Farinier, B., Gazagnaire, T., Madhavapeddy, A.: Mergeable persistent data struc-
tures. In: Vingt-sixièmes Journées Francophones des Langages Applicatifs (JFLA
2015) (2015)

17. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002). https://
doi.org/10.1145/564585.564601

18. Git: A distributed version control system (2020). https://git-scm.com/
19. Gradle: An open-source build automation tool (2020). https://gradle.org/
20. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.org/
10.1145/78969.78972

21. Irmin: A distributed database built on the principles of Git (2020). https://irmin.
org/

22. Kaki, G., Nagar, K., Najafzadeh, M., Jagannathan, S.: Alone together: compo-
sitional reasoning and inference for weak isolation. Proc. ACM Program. Lang.
2(POPL) (2017). https://doi.org/10.1145/3158115

https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/2463676.2465279
https://bazel.build/
https://doi.org/10.1145/568271.223785
https://doi.org/10.1145/568271.223785
https://doi.org/10.1109/TSE.1979.234182
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1145/2578855.2535848
https://doi.org/10.1145/2578855.2535848
https://doi.org/10.1007/978-3-642-28869-2_4
https://doi.org/10.1145/2745947.2745953
https://doi.org/10.1145/2745947.2745953
https://doi.org/10.1145/2882903.2882951
https://doi.org/10.1145/12130.12142
https://doi.org/10.1145/12130.12142
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://git-scm.com/
https://gradle.org/
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://irmin.org/
https://irmin.org/
https://doi.org/10.1145/3158115

250 S. S. Dubey et al.

23. Kaki, G., Priya, S., Sivaramakrishnan, K., Jagannathan, S.: Mergeable replicated
data types. Proc. ACM Program. Lang. 3(OOPSLA) (2019). https://doi.org/10.
1145/3360580

24. Kermarrec, A.M., van Steen, M.: Gossiping in distributed systems. SIGOPS Oper.
Syst. Rev. 41(5), 2–7 (2007). https://doi.org/10.1145/1317379.1317381

25. Kraska, T., Pang, G., Franklin, M.J., Madden, S., Fekete, A.: MDCC: multi-
data center consistency. In: Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys 2013, pp. 113–126 (2013). https://doi.org/10.1145/
2465351.2465363

26. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010). https://doi.org/10.1145/1773912.
1773922

27. Lamport, L.: Paxos made simple. ACM SIGACT News (Distrib. Com-
put. Column) 32(4), 51–58 (2001). https://www.microsoft.com/en-us/research/
publication/paxos-made-simple/. (Whole Number 121, December 2001)

28. Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., Rodrigues, R.: Making geo-
replicated systems fast as possible, consistent when necessary. In: Proceedings of
the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI 2012, pp. 265–278 (2012)

29. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: scalable causal consistency for wide-area storage with COPS. In: Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP
2011, pp. 401–416 (2011). https://doi.org/10.1145/2043556.2043593

30. Lopes, P., et al.: Antidote SQL: relaxed when possible, strict when necessary. CoRR
abs/1902.03576 (2019). http://arxiv.org/abs/1902.03576

31. Milano, M., Myers, A.C.: MixT: a language for mixing consistency in geodistributed
transactions. In: Proceedings of the 39th ACM SIGPLAN Conference on PLDI,
pp. 226–241 (2018). https://doi.org/10.1145/3192366.3192375

32. Riak: Enterprise NoSQL Database (2020). https://riak.com/
33. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data

types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-
3 29

34. Sivaramakrishnan, K., Kaki, G., Jagannathan, S.: Declarative programming over
eventually consistent data stores. In: Proceedings of the 36th ACM SIGPLAN Con-
ference on PLDI, pp. 413–424 (2015). https://doi.org/10.1145/2737924.2737981

35. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP 2011, pp. 385–400 (2011). https://doi.org/
10.1145/2043556.2043592

36. Viotti, P., Vukolić, M.: Consistency in non-transactional distributed storage sys-
tems. ACM Comput. Surv. 49(1) (2016). https://doi.org/10.1145/2926965

https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580
https://doi.org/10.1145/1317379.1317381
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/2043556.2043593
http://arxiv.org/abs/1902.03576
https://doi.org/10.1145/3192366.3192375
https://riak.com/
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1145/2926965

Automatically Generating Descriptive Texts
in Logging Statements: How Far Are We?

Xiaotong Liu1, Tong Jia1, Ying Li1(B), Hao Yu1, Yang Yue2, and Chuanjia Hou1

1 Peking University, Beijing, China
li.ying@pku.edu.cn

2 University of California Irvine, Irvine, CA 92697, USA

Abstract. In most cases, logs are the only accurate information available for
administrators to understand system behavior and diagnose failure root causes.
However, due to the lack of well-defined logging guidance, it is challenging
for developers to decide what to log, especially logging statements that contain
descriptive texts and variables. In this paper, we explore automatically generation
of descriptive texts in logging statements and evaluate the effectiveness of various
automatic generationmethods.Wepropose that to generate descriptive texts in log-
ging statements can be transferred as a retrieval-basedQ&A task. According to the
roles of query and answer,wedesign two retrieval strategies includingCode&Code
and Code&Log. To measure the similarity between the query and answer, we uti-
lize two types of retrieval algorithms including Information retrieval-based and
neural networks-based algorithms. We conduct a systematic analysis of various
retrieval algorithms under different retrieval strategies in terms of their effective-
ness, and assess their accuracy using the automatic metrics and human evaluation
during which 5 instructive findings are presented. We believe that these findings
can provide potential implications for both researchers and practitioners for rel-
evant research. Moreover, we construct and release a log text dataset containing
over 138K valid log texts from 85 Java projects in Apache ecosystem for future
logging statement analysis and generation.

Keywords: Logging · Log text · Automatic generation · Experimental analysis

1 Introduction

Logging is a common and important programming practice to record system runtime
behavior. In most cases, logs are the only accurate information available for administra-
tors to understand system behavior and diagnose failure root causes. Therefore, logging
quality is of great importance for various software maintenance tasks.

However, logging quality of today’s large-scale software systems is unsatisfying.
First, logging decision is not easy for developers. Insufficient logging provides lim-
ited or unclear system runtime information that may slow down the log analysis
process. Conversely, excessive and intensive logging brings non-negligible overhead
and may produce numerous trivial and useless logs that may mislead the developers.
Second, there is currently a lack of rigorous logging guidance and domain-specific
knowledge on logging practice. Industry practice study [29] shows that there is no

© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 251–269, 2020.
https://doi.org/10.1007/978-3-030-64437-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-64437-6_13

252 X. Liu et al.

Fig. 1. Examples of real-world logging statements.
Log texts are marked in red and variables are in
green. (Color figure online)

well-defined guideline to perform
strategic logging. Developers usually
need to rely on their common sense or
personal knowledge to make logging
decisions. This makes logging deci-
sions hard for developers, as a user
study of Microsoft shows that 68% of
the participants have logging difficul-

ties [2]. Third, software consists of components written by multiple developers, it
is hard for developers to align with the project logging style during system update.
Thus, developing appropriate logging statements have become a crucial but challenging
problem.

A logging statement contains descriptive texts (i.e., log texts) and variables. Log
texts usually describe the system status or behaviors in natural language while variables
record runtime values of specific intermediate results in memory. Figure 1 shows a few
real-world examples of logging statements including log texts and variables. Elabo-
rate but concise log texts can accelerate log-based analysis process by providing better
understanding of the system runtime information. On the contrary, immature log texts
may confuse and mislead system developers or operators [1]. Similarly, the variables
directly reflect the running status of systems and are straightforward information for
system fault diagnosis. Therefore, developing appropriate logging statements means
developing appropriate log texts and choosing key variables to print.

In recent years, lots of researchers have been made in developing logging statements
efficiently and effectively. For instance, Log Enhancer [3] automatically adds variables
into logging statements to provide abundant information for failure diagnosis. However,
few researchworks start to study the problem of developing log texts, because generating
natural language log texts is much more difficult than other problems in developing
logging statements such as variable choosing. He et al. [4] conduct an empirical study
on log texts. Statistical analysis results show that compared with common English, the
repetitiveness in logging descriptions is more predictable.

Motived by the predictability of log texts, in this paper, we make step forward on
exploring automatically generation of log texts and evaluating the effectiveness of differ-
ent methods in automatic log text generation. We view automatic log text generation as a
retrieval-based Question and Answer (Q&A) task, considering that code context repre-
sents the query and the appreciate log text to be inserted as the answer. Correspondingly,
according to the roles of query and answer, we design two retrieval strategies including
Code&Code and Code&Log. To measure the similarity between query and answer, we
utilize two types of retrieval algorithms including Information retrieval-based and neural
networks-based algorithms. Then, we construct a dataset with over 138 K valid log texts
from 85 Java projects in Apache ecosystem. Finally, we further perform a systematic
evaluation of various retrieval algorithms under different retrieval strategies in terms of
their effectiveness on the dataset, during which obtain five instructive findings. Eval-
uation results show that different scenarios require different composition of strategies
and algorithms. In most cases, CC retrieval strategy performs better than CL retrieval
strategy, while IR-based algorithm performs better than NNs-based algorithms. And we

Automatically Generating Descriptive Texts 253

demonstrate that there is still a long way to go in automatic log texts generation, and in
particular, the cross-project log text generation is a major challenge. Furthermore, we
find it an effective way to use the combination of the API and Variable information to
generate log texts while trading off the accuracy and efficiency. At last, we also present
a human evaluation to provide real practical quality of generated log texts from human
view. In summary, our contributions include:

– We transfer the log text generation task as a retrieval-based Q&A task, design two
log retrieval strategies CC and CL, and utilize two retrieval algorithms IR-based and
NNs-based algorithms on this task.

– We analyze how different parts of code contexts influence the content of log texts as
well as the effectiveness of various algorithms under different strategies, and obtain
five instructive findings. These evaluation results and the corresponding findings, can
provide guidelines for this problem and serve as a basis for relevant research.

– We provide a log text dataset with over 138K valid log texts and their code con-
texts from Apache ecosystem, which can be used for researchers to explore logging
statement analysis and generation.1

2 Problem Specification

2.1 Problem Definition

Log texts are pieces of natural languages that describe the activity of current programs.
Therefore, the content of log texts is mainly determined by the code around the logging
statement called code context. As proved in prior studies [2, 4, 20], logging statements
are often associatedwith their code contexts. In particular, a recent study [30] highlighted
that the association between code context and log text is especially close. Therefore, we
propose a logical assumption that similar code context should have similar log text for
concise description. For instance, Fig. 2 shows two logged code snippets with similar
code contexts from a real-world project. The corresponding log texts both describe the
interruption activity of the code context which makes them almost the same.

Fig. 2. An example of two similar logged code snippets.

1 https://github.com/liuxiaotong0302/LogSearch.

https://github.com/liuxiaotong0302/LogSearch

254 X. Liu et al.

With this assumption, we can model the log text generation problem as a retrieval-
based Q&A problem [27, 28]. The purpose of retrieval-based Q&A problem is to search
the most possible answer for a new query from existing Q&A knowledges. To achieve
this, researchers first maintain a Q&A base with huge existing knowledge, and then
utilize the new query text to search for the most possible answer from the Q&A base.
Correspondingly,wemodel the code context as query and log text as answer. The problem
is formulated as follows.

A large amount of logged code snippets form a logged code base D = {Si}M
i=1, ∀i, Si

is a logged code snippet including (Ci, Li), where Li is a log text and Ci is the code
context corresponding to Li. Given a query context CQ, our goal is to retrieve a list of
top K code context and log text pair R = [(Ck , Lk)]Kk=1 ∀k, (Ck , Lk) ∈ D after ranking
by the matching score of Ci or Li, then return

[
L1, L2,···, LK

]
for CQ.

2.2 Code Context Information

Code context contains wealth of different information such as program functionality,
system status, program structure and semantics, etc. This information buries in different
parts of code contexts and should be carefully considered during log text generation.
However, different parts of code contexts may affect the content of log text differently,
thus there exists an important confusion: how do different parts of code contexts affect
the content of log text? To answer this question, we test and verify three typical andmajor
parts of code contexts in their effectiveness to the log text generation problem. Exploring
the effectiveness of these parts can guide future works to select appropriate code context
information, thus has a profound impact on both developers and researchers. The three
parts of code contexts are described as follows.

The API Calls in the Code that Reflect the Program Functionality. Source code
contains functional abstractions in a form of API calls [26]. For example, to read the
content of a file, API “File.Readlines()” is called. API information has been widely used
to improve code search tasks [5–7], but it has not been discussed in log text generation
task. Intuitively, developers often record the functional activity of the code context in
the log text, thus the API calls may greatly affect the content of log texts.

The Variables in the Code that Report the System Status. The value of the vari-
ables in source code can reflect the anomaly when system running, thus, during the
process of software development, developers often log one or more variables in order
to record vital system status. In a logging statement, the content of the log text and
logged variables are often closely related. For example, in a real-world logging state-
ment “log.info(‘Networkid = ’ + NetworkId + ‘is already implemented’)”, the logged
variable name “NetworkId” appears in the log text, and “is already implemented” in the
log text is developed around the logged variable.

Other Tokens in the Code that Embody the Program Structure and Semantics.
In addition to the API calls and the variables mentioned above, the remaining tokens
in the code context usually express the program structure and semantics. The program
structure and semanticsmay also affect the content of the log text. For example, according

Automatically Generating Descriptive Texts 255

to our analysis on 85 projects from Apache ecosystem, 65.8% of the log texts for error
messages, which contain keywords of “error”, “failed” and “exception”, are printed in
the catch-blocks.

2.3 Retrieval Models

There aremany retrieval strategies and algorithms in the retrieval Q&Aproblem [11, 41].
However, thesemethods have never been applied and discussed in the log text generation
problem.Understanding the applicable scenarios of these strategies and algorithms in the
log text generation can help researchers to apply them in subsequent practice. Therefore,
combined with different retrieval strategies and algorithms, we build many retrieval
models for the log text generation problem, and conduct experimental analysis to explore
their performance in different scenarios.

3 Workflow

Figure 3 illustrates the overall workflow for log text generation, which involves three
steps: code information extraction, retrieval and ranking. In this section, we give a
detailed description for two main steps: code information extraction and retrieval.

Fig. 3. The workflow of log text generation.

3.1 Code Information Extraction

As discussed before, we test and verify three typical and major parts of code contexts in
their effectiveness to the log text generation problem including API calls, variables and
other tokens. The logged/query code information can be extracted from logged/query
code snippets and formalized as:

C = (A, V , T) (1)

256 X. Liu et al.

where C generally refers to the logged/query code snippet Ci/CQ, A, V and T are the
API, Variable and Token information.

Taking a logged/query code snippet as input, we extract API information, Variable
information and Token information as follows: First, we use the Eclipse JDT compiler
[8] to parse the code snippet into an AST tree. Then, we extract the API sequence and
the logged variables from it. At last, to extract the Token information, we tokenize the
code snippet except for the logging statement, remove the tokens that appeared in the
API and Variable information, and split each token according to camel case [9]. The
extracted API, Variable and Token information can be formalized as:

A = (
a1, . . . , aj . . . a|A|

)

V = (
v1, . . . , vj . . . v|V |

)

Γ =
(
τ1, . . . , τj . . . τ|Γ |

)
(2)

where |·| is the number of elements in a set, aj is the j-th API in A, vj is the j-th variable
in V and τj is the j-th token in Γ . Figure 4 shows examples of the code information
extraction of logged code snippets.

Fig. 4. An example of two logged code snippets with similar log texts.

3.2 Retrieval

The main purpose of this step is to calculate matching scores between CQ and Ci or Li.
According to the roles of query and answer, we design two retrieval strategies including
Code&Code and Code&Log. To measure the similarity between query and answer,
we utilize two types of retrieval algorithms including Information retrieval-based and
neural networks-based algorithms. By pairwise covering, there are four retrieval models
we mainly discuss.

Retrieval Strategies. In the field of retrieval-based Q&A, there are two choices to
find potentially suitable answers: constructing matching between two questions [27]

Automatically Generating Descriptive Texts 257

or between questions and answers [28]. Similarly, we introduce two types of retrieval
strategies: Code&Code (CC) strategy and Code&Log (CL) strategy.

CC Strategy. In this strategy, we score the matching degree between the query and
logged code snippet as the matching score, and return the log texts whose code context
gets high matching scores. The matching score can be formulated as:

Score = Sim(CQ, Ci) (3)

CL Strategy. Considering that log texts are directly affected by their code contexts [30],
a code context should be the most relevant with its most appropriate log text. Thus,
we design another retrieval strategy, directly scoring the matching degree between the
query code context and log text as a matching score, and return the log texts with high
matching score. The matching score can be formulated as:

Score = Sim(CQ, Li) (4)

Retrieval Algorithms. To measure the similarity between query and answer, there are
two types of existing mainstream retrieval algorithms: Information retrieval (IR)-based
algorithms and neural networks (NNs)-based algorithms.

IR-Based Retrieval Algorithm. Code contexts and log texts are actually text sequences.
Therefore, it is intuitive to calculate the text similarity directly. We choose two classic
IR-based algorithms to calculate text similarity: Jaccard index [11] and Levenshtein
distance [10], which are widely used to calculate text similarity [16, 24]. Among them,
themathematical principle behind Jaccard index is set theory,which is order independent;
while the Levenshtein distance is based on string, which is order sensitive.

The Jaccard index measures text similarity based on the bag-of-words (BoW) model
to calculate the number of common keywords in two bags of words:

J (X , Y) = (|X ∩ Y |)/(|X ∪ Y |) (5)

The Levenshtein distance regards X and Y as strings and calculates the character-
based distance, the similarity is calculated as:

E(X , Y) = (Max(|X |, |Y |) − d [|X |][|Y |]) / (Max(|X |, |Y |)) (6)

where d[|X|][|Y|] is the minimum number of delete, insert and replace operations to
convert string X to string Y.

NNs-Based Retrieval Algorithm. In recent years, neural networks are widely used in
code search tasks [6, 7], but never discussed in log text generation task. The basic
principle is to map the hidden information of the inputs to the vectors, and then calculate
the matching scores in the vector space. Given two data sets X and Y , we embed them
into a unified vector space by neural networks so that similar concepts across the two
modalities occupy nearby regions of the space:

N (X , Y) = S(ϕ(X), φ(Y)) (7)

where ϕ and φ are embedding functions to map X and Y to vectors, and S(·, ·) is a vector
similarity measure, for instance, cosine similarity.

258 X. Liu et al.

Retrieval Models. By combining two retrieval strategies and two retrieval algorithms,
four retrieval models are built.

CC-IR Model. After a statistical analysis of the dataset, we find that the if code snippets
print similar log texts, theirAPI information,Variable information andToken information
are also similar respectively (see Fig. 4). Based on this, by adopting the CC strategy and
using the IR-based algorithm, we build the CC-IR model. In this model, we utilize
the IR-based algorithm to calculate the API, Variable and Token information matching
scores respectively, then take the sum of the scores as the final matching score, which
can be formulated as:

Sim
(

CQ, Ci

)
= J/E

(
AQ, AC

i

)
+ J/E

(
V Q, V C

i

)
+ J/E

(
Γ Q, Γ C

i

)
(8)

where J/E refers to Jaccard index/Levenshtein distance.

CL-IR Model. By adopting the CL strategy and using the IR-based algorithm, we build
the CL-IR model. In this model, we utilize the IR-based algorithm to calculate the
matching scores between three types of key information of query code snippet and each
log text respectively, and finally sum up three matching scores:

Sim
(

CQ, Li

)
= J/E

(
AQ, Li

)
+ J/E

(
V Q, Li

)
+ J/E

(
Γ Q, Li

)
(9)

CC-NNs Model. By adopting the CC strategy and using NNs-based algorithm, we build
the CC-NNs model (see Fig. 5). Deriving from the model proposed in [7], we embed
the query and logged code information into vectors through a code embedding compo-
nent and then calculate the matching score with cosine similarity. The code embedding
component consist of three sub-modules and a fusion layer as follows.

Fig. 5. The structure of the CC-NNs model. Fig. 6. The structure of the CL-NNs model.

The API Embedding sub-module and the Token Embedding sub-module embed the
API information and Token information using LSTM with maxpooling. They take the
embedding vector of API at and token τt as input at each time step, and output the
information embedding vector Vec(A) and Vec(Γ):

ht = tanh
(

W X [
ht−1; xt

])
,∀t = 1, 2, . . . , |X |

Automatically Generating Descriptive Texts 259

Vec(X) = maxpooling
([h1, h2, . . . , h|X |]

)
(10)

where X is A and T , xt is at and τt , W X is the parameter matrix in the LSTM.
The Variable Embedding sub-module embeds Variable information into vector

Vec(V) using an MLP with an attached maxpooling:

ht = tanh
(

W V vt

)
,∀t = 1, 2, . . . , |V |

Vec(V) = maxpooling
([h1, h2, . . . , h|V |]

)
(11)

where WV is the parameter matrix in the MLP.
The fully connected layer fuses the outputs of three sub-modules into one vector:

Vec(C) = tanh
(

W C [Vec(A); Vec(V); Vec(Γ)]
)

(12)

where [x;y;z] is the concatenation of x, y, z, W C is the matrix of parameters in the MLP.
By feedingCQ andCi into the code embedding component, we obtain the query code

information embedding Vec
(
CQ

)
and the logged code information embedding Vec(Ci).

Finally, the matching score is calculated with cosine similarity:

Sim
(

CQ, Ci

)
= Vec

(
CQ

) · Vec(Ci)

||Vec
(
CQ

)|| ||Vec(Ci)|| (13)

CL-NNs Model. By adopting the CL strategy and using the NNs-based algorithm, we
construct the CC-NNs model (see Fig. 6). We embed the query code information and log
text into vectores through a code embedding component and a log embedding component
respectively, then apply cosine similarity to calculate matching score.

The code embedding component in CL-NNs model is the same as that in CC-NNs.
As for the log embedding component, we use LSTM to embed the log text into a vector:

ht = tanh
(

W L[
ht−1; wt

])
,∀t = 1, 2, . . . , |L|

Vec(L) = maxpooling
([h1, h2, . . . , h|L|]

)
(14)

where W L is parameter matrix in the LSTM.
The code embedding component takes API, Variable and Token information of query

code snippet as input, then we get the embedding vector Vec(CQ). The log embedding
component takes the i-th log text as input and we get the embedding vector Vec(Li).
Finally, the matching score is calculated with cosine similarity:

Sim
(

CQ, Li

)
= Vec

(
CQ

) · Vec(Li)

||Vec
(
CQ

)|| ||Vec(Li)|| (15)

260 X. Liu et al.

4 Evaluation Study

4.1 Dataset

In this paper, we select projects from Apache ecosystem [25] to construct our dataset.
Apache ecosystemdevelops and incubates hundreds of freely-available, enterprise-grade
projects that serve as the backbone for some of the most visible and widely used appli-
cations in computing today. The projects in Apache ecosystem are not lapped up, but
are selected based on their project status, contribution model and data availability. They
must be active projects using the pull-request model to solicit contributions, and also
need to have a sufficient number of activities from 2016 to 2018. Therefore, we require
all selected projects to have at least 100 issues, 50 pull requests and 100 commits. Such
criteria guarantee that we can get a sufficient amount of elite members’ activities for
analysis and logging statements in our dataset can be considered to have relatively good
specifications. At last, we keep 85 projects from Apache ecosystem.

These projects contain 164,996 method bodies that contain at least one logging
statement, from which we extract 194,771 logging statements. After filtering out log-
ging statements which only print non-alphanumeric characters, we obtain 159266 log
statements. To have a clearer understanding of our datasets and make it easier to use,
we make a statistical analysis on these logging statements. The analysis results show
that majority (70.96%) of logging statements contain log texts and variables concur-
rently, reflecting the strong correlation between log texts and log variables. In addition
to 12.74% of logging statements print variables only, 87.26% contain log texts, which
embodies the significance of log texts in the log printing process of software system
development. Finally, the 138,974 (87.26%) logging statements containing log texts are
regarded as valid logging statements and the log texts of them are regarded as valid log
text. After extracting the code contexts of the log texts and extracting the code informa-
tion, we obtain 138,974 quadruples of log texts, API, Variable and Token information
retained in our dataset.

4.2 Experimental Setup

Dataset Partition. After obtaining the dataset consisting of 138,974 pairs of code con-
text and log text, we split the dataset into a logged code base and a query code set to
evaluate the effectiveness of various automatic generationmethods.We use 10-fold cross
validation, where 90% of the dataset (125024 pairs) are the logged code base and the
training corpus, the remaining 10% (13950 pairs) are the query set after shuffling.

Evaluation Metrics. We use BLEU [12] and ROUGE [13] as evaluation metrics to
evaluate the effectiveness of models in our experiment, which are popular evaluation
metrics widely used in machine translation and text summarization tasks [14, 15]. In our
experiments, the log text generated by retrieval models is regarded as candidate and the
real log text is regarded as reference. The ranges of both BLEU and ROUGE are [0,1],
which are often presented as a percentage value range in [0,100]. In our experiment, we
take BLEU-1, BLEU-4, ROUGE-1 and ROUGE-L into account.

Considering that our models return a log text list instead of a single one, we designed
some derived final evaluation metrics based on BLEU and ROUGE. Specifically, *-
MAX refers to the highest score achieved in the list, and *-TOP refers to the score of the

Automatically Generating Descriptive Texts 261

first result. We obtain 8 accuracy evaluation metrics: BLEU-1-MAX(B1M), BLEU-
1-TOP(B1T), BLEU-4-MAX(B4M), BLEU-4-TOP(B4T), ROUGE-1-MAX(R1M),
ROUGE-1-TOP(R1T), ROUGE-L-MAX(RLM) and ROUGE-L-TOP(RLT).

Parameter Setting. The number of returned log text K is set to 5. For NNs-based
models, the dictionary sizes ofAPI information,Variable information,Token information
and log text are set to 10000, 8000, 8000 and 8000 respectively. Besides, the batch size
is set to 128 and we train the models with 200 epochs. For a log text, we define 10 lines
of code preceding and 5 lines of code succeeding of it in a method body as its code
context. A large number of experiments demonstrate that the setting of the number of
code preceding and succeeding have little effect on the final results, and the setting of
10 and 5 is especially telling without large efficiency burden.

Parameter Setting. The number of returned log text K is set to 5. For NNs-based
models, the dictionary sizes ofAPI information,Variable information,Token information
and log text are set to 10000, 8000, 8000 and 8000 respectively. Besides, the batch size
is set to 128 and we train the models with 200 epochs. For a log text, we define 10 lines
of code preceding and 5 lines of code succeeding of it in a method body as its code
context. A large number of experiments demonstrate that the setting of the number of
code preceding and succeeding have little effect on the final results, and the setting of
10 and 5 is especially telling without large efficiency burden.

4.3 Evaluation Results

RQ1: What Is the Effectiveness of Two Retrieval Strategies and Two Algorithms?
We apply the four groups of models from the combination of two strategies and two
algorithms on our dataset. The retrieval results are presented in Table 1.

Table 1. Retrieval results of four constructed models

B1M B1T B4M B4T R1M R1T RLM RLT

CC-IR Le 56.68 48.79 28.29 24.50 59.72 51.16 58.14 49.99

Ja 58.90 50.25 29.21 24.70 62.05 52.93 60.38 51.59

CL-IR Le 11.63 6.14 3.33 1.77 15.97 8.85 13.62 7.54

Ja 11.90 6.94 4.24 2.33 16.24 10.19 14.01 8.65

CC-NNs 52.82 35.29 26.45 17.03 55.73 37.46 54.13 36.34

CL-NNs 28.28 19.44 10.78 7.60 32.17 22.26 29.72 20.66

Overall, the CC-IR model with Jaccard index achieves the highest accuracy scores
of all models. However, there is no considerable disparity between the results of the CC-
IR model with Jaccard index and Levenshtein distance, and they both achieve higher
accuracy scores than other models. In addition, results show that the relative trend of
these scores among models is consistent. For instance, if the B1M score of the CC-NNs

262 X. Liu et al.

model is higher than the CL-NNs model, the B4M score and other accuracy scores of
CC- NNs model is also higher than that of the CL-NNs model.

By comparing the CC and CL retrieval strategies, we can observe that the accuracy
scores of the CC-IR model are all higher than the CL-IR model, and the CC-NNs model
is better than the CL-NNs model. However, in the experiment, we find that the retrieval
efficiency of the CL strategy is higher than that of the CL strategy because the length of
log texts is far less than code contexts. The B1M and R1M scores of models adopting
the CC strategy are all greater than 52.82 and 55.73 respectively, which is higher than
28.28 and 32.17, the highest scores when adopting the CL strategy. It is a rational
explanation that the data structure of code context and log text is heterogeneous, and
there is difference between high-level intent reflected in the natural language log text and
low-level implementation details in the code context. Thus, the difficulty in matching
code context and log text is more highlighted than matching between code contexts.

Finding 1: Because of the difference between high-level intent reflected in the nat-
ural language log text and low-level implementation details in the code context, the
CL strategy is less applicable to retrieve log texts than the CC strategy.

The relative effectiveness of the IR-based andNNs-based algorithms exhibit diversity
when adopting different strategies. In the CC strategy, the CC-NNs model achieves
inferior performance against the CC-IR model in terms of accuracy while it reverses in
the CL strategy. Previously we expect to obtain higher accuracy scores with the NNs-
based algorithm than the simple IR-based algorithm, since we consider the NNs-based
algorithm captures deeper information of code contexts and log texts. However, it is not
quite in line with expectations when adopting the CC strategy.

Fig. 7. Two result examples when the CC-IR model performs better and the CC-NNs model
performs better.

The identifiers in the source code are not limited and substantial numbers identifiers
in the training set appear only a few times. In this condition, the training set and test
set usually contains a large amount of words out of vocabulary (OOV), which leads to
the inevitable information loss for the NNs-based algorithm. That is the main reason of

Automatically Generating Descriptive Texts 263

the worse performance of the NNs-based algorithm. Figure 7 shows two retrieval result
examples when the CC-IR model performs better and the CC-NNs model performs
better. When the CC-IR performs better, the length of code contexts is often longer and
contains more OOV words. And when the CC-NNs model performs better, the length
of code contexts is often shorter and contains less OOV words. However, the exception
is met when adopting the CL strategy. After manual analysis of the dataset, we find that
even if the information of code contexts and log texts is indeed correlated, the keywords
are rarely shared between them. Therefore, the IR-based algorithm which relies heavily
on coexisting keywords or characters on code contexts and log texts suffers from greater
loss of information than that caused by OOV.

Finding 2: The NNs-based algorithm performs worse than the IR-based algorithm
when adopting the CC strategy due to OOV, and vice versa in the CL strategy since
the IR-based one relies heavier on the rarely shared keywords.

RQ2: What Is the Effectiveness of Cross-Project Retrieval?
When a completely new project is developed, we need to generate log texts from some
other existing relatively mature software systems for developers. That is what we call a
cross-project log text generation scenario. It is essential to evaluate the effectiveness of
different retrieval strategies and algorithms in the cross-project scenario.

Table 2. Retrieval results in cross-project scenario

B1M B1T B4M B4T R1M R1T RLM RLT

CC-IR Le 14.20 8.37 4.54 3.13 17.33 9.94 15.55 9.10

Ja 14.41 8.40 4.66 3.18 17.62 10.09 15.74 9.19

CL-IR Le 8.09 4.10 1.59 0.77 12.12 6.81 9.97 5.57

Ja 7.57 4.34 1.59 0.84 12.16 8.25 9.77 6.44

CC-NNs 13.67 6.43 4.37 2.28 16.70 7.78 14.96 7.06

CL-NNs 13.11 7.47 3.15 1.86 16.52 9.68 14.35 8.41

The general dataset partitioning strategy described in Sect. 4.2 simulates the general
scenario, where we can retrieve log texts from the current or other projects. To simulate a
strict cross-project scenario, we design a cross-project partitioning strategy to repartition
the dataset into a new logged code base and query set. First, we sort all the projects by the
number of log texts contained. Second, we extract the log texts and their code contexts
from the first 35 projects to construct a new logged code base, which contains 125807
pairs of code context and log text, and 13167 pairs in the remaining 50 projects make up
a new query set. This not only ensures that the log texts in the new logged code base and
query set come from different projects, but ensures the log texts in the logged code base
are more mature than the query set, which is in line with the actual application scenario.
We apply the four groups of retrieval models on the repartitioned dataset and the results
are presented in Table 2.

According to the experiment results, theCCstrategy still outperforms theCLstrategy.
Besides, when the CC strategy is adopted, the IR-based algorithm is better than the NNs-
based algorithm, and vice versa in the CL strategy. The above findings are consistent with

264 X. Liu et al.

that in RQ1, which shows that the findings of RQ1 is also applicable in the cross-project
scenario. However, results show that compared with the generic scenario, the accuracy
scores are lower overall in the cross-project scenario. The highest B1M score of all mod-
els obtained by the CC-IRmodel is 14.41, which is only better than that of the worst CL-
IR model in the generic scenario. The above experimental results provide us a negative
empirical result: The retrieval models do not performwell in the cross-project scenario.

Code Context Log Text

General Cross-project General Cross-project

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 8. The distribution of the similarities of code contexts and
log texts in the generic and cross-project scenario.

To address the problem of
poor performance in the
cross-project scenario, we
conduct a statistic analysis
over similarities between
code contexts in different
projects, as well as log
texts. For code contexts, we
study the highest similar-
ity between code contexts
in query code snippets and
logged code base by the

CC-IR model with Jaccard index. For log texts, the similarities refer to similarities
between reference log texts and the first retrieved log text by the CC-IR model with
Jaccard index. The statistic results of the generic and cross-project scenario are shown
in Fig. 8 as boxplots. We can observe that in the cross-project scenario, the similarities
between code contexts and log texts in query code snippets and the logged code base
are generally lower than the generic scenario, which means that the code context and
their corresponding log texts vary dramatically in different projects. After getting these
results, an intuitive understanding is obtained that the functions implemented by different
projects and the coding habits of developers are different, which leads to great differences
in the source code itself, so their corresponding log texts are also quite different.

Finding 3: Log texts in different projects differ greatly, so it is still challenging to
apply the existing log text retrieval methods to the cross-project scenario.

46.39

32.79

53.88
58.12 55.64 53.91

58.90

4.64
3.72

9.13
10.37 10.97

5.60

11.92

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

A V T ReA ReV ReT ALL

BLEU_1_MAX Time(s)

Fig. 9. The comparison results of retrieval time
for and B1M of each information combination.

RQ3:What Is the Impact ofDifferent
Types of Information in Code Con-
texts on Log Texts? We know that a
variety of key information in code con-
texts affect the content of log texts, so do
different types of information perform
different degrees of impact on log texts?
This is what we want to explore in this
section. We utilize the CC-IR model
with Jaccard index which performs best
in previous experiments on the dataset
partitioned in the general way. On this
basis, we first use API, Variable and
Token information to retrieve log texts

Automatically Generating Descriptive Texts 265

separately, and then remove one of them from all information to retrieve log texts.
Figure 9 shows the retrieval results, where Re* means Remove *.

Overall, the retrieval results using one or two types of information are diverse and
worse than using all three types.Comparing the results of using three types of information
respectively, the accuracy scores of using Token information only are the highest, whose
B1M score reaches 53.88 which is close to using all. Besides, when Token information
is removed from all three types of information, the B1M score decreases from 58.90
to 53.91, which is the most significant decline of the removal of API and variable
information. That is to say, the Token information affect the content of log texts to the
greatest extent among three types of information.

Finding 4: The API, Variable and Token information perform different degrees
of impact on log texts, among which the Token information is the most important.

We can observe when using the combination of the API and Variable information,
the accuracy is almost the same as using the Token information only, and both of their
B1M scores are close to 54. We also find that when using the combination of API
and Variable information, the retrieval time is 5.60 s, which is almost half of using
Token information 9.13 s. After a statistical analysis, we find the average length of log
texts, API information, Variable information and Token information are 5, 7, 2 and 38
respectively. The average length of API and Variable information is much shorter than
Token, which is the main reason why retrieval efficiency of using the combination of the
API and Variable information is significantly higher than using the Token information.
Therefore, using the combination of API and Variable information is a recommended
choice when a trade-off between accuracy and efficiency is needed.

Finding 5: It is an effective way to use the combination of the API and Variable
information to generate log texts while trading off accuracy and efficiency.

5 Human Evaluation

In this section, we perform a manual verification to evaluate the quality of the automat-
ically generated log texts by the CC-IR(Ja), CL-IR(Ja), CC-NNs and CL-NNs models
compared with the ground truth so as to provide real practical quality of generated log
texts from human view.

5.1 Procedure

We first randomly select 100 log texts generated by the CC-IR, CL-IR, CC-NNs and
CL-NNs models separately. Then we mix these 400 log texts together and divide them
into eight groups. At last, we invite eight participants with rich programming experience
to give score between 0 to 4 to measure the similarities between the generated log texts
and ground truth log texts. Each group is evaluated by 2 participants and the participants

266 X. Liu et al.

do not know which model generates the log texts. We follow the score criterion defined
by [31], which score 0 means there is no similarity between the two messages, and score
4 means two messages are identical in meaning.

5.2 Evaluation Results

Same as [31], we regard 0 and 1 scores as low quality level, score 2 as medium quality
level, and score 3 and 4 as high quality level. Table 3 illustrates the proportions of
log texts that are evaluated as different quality levels and the mean scores of log texts
generated by each model, which shows that: (1) The mean score and the proportion of
high-quality CC-IR log texts is much higher than that of CC-NNs, and the proportion of
low-quality CC-IR log texts is significantly lower than that of CC-NNs. Therefore, the
IR-based algorithm outperforms the NNs-based one in the CC strategy. (2) The mean
score and proportion of high-quality CL-NNs log texts is higher than that of CL-IR,
and the proportion of low-quality CL-NNs log texts is lower than that of CL-IR. So
the NNs-based algorithm outperforms the IR-based one in the CL strategy. (3) CC-IR
performs best and more than half of the generated log texts can be actually useful in
practice. The above conclusions are consistent with the evaluation results of automatic
metrics.

Table 3. Proportions of log text quality results from human evaluation

Low Medium High Mean
score

CC-IR (Ja) 19.0% 29.0% 52.0% 2.53

CL-IR (Ja) 52.0% 43.0% 5.0% 0.75

CC-NNs 37.0% 23.0% 40.0% 1.81

CL-NNs 40.0% 43.0% 17.0% 1.28

6 Threats to Validity

First, the complete research work is examined only on Java projects. However, methods
in our research does not have strict specific to Java language, and can easily be extended
to other languages. Therefore, the findings of this paper can still serve as a good basis
for follow-up work.

Second, we explore the effectiveness of three key parts of code contexts including
API calls, variables and other tokens in log text generation task. Besides the three parts,
there is also some other information that requires further study. For example, program
syntax tree may influence the functional call orders and structures of different methods,
which may also affect the content of the log text. We will further explore other parts of
code contexts and different weights of different parts in future work.

Third, there are othermodelingmethods for log text generation task besides retrieval-
based Q&A modeling. For instance, we also model the problem as a context-aware

Automatically Generating Descriptive Texts 267

editing task [19]. We built a retrieval sub-module to obtain retrieved log texts, then
built a generative sub-module to rewrote the log texts. However, the generative sub-
module generates worse log texts than the retrieved ones. Thus compared with retrieval-
based Q&A modeling, this modeling method is less effective at this stage. However,
the automatic generation methods explored in this paper are limited, in the future, more
attempts on other retrieval, generative or rewriting methods are still worth exploring.

7 Related Work

Proper logging is important yet tough in practice, so it is necessary to research log
enhancement technology,which is used to improve logging quality. The log enhancement
involves three main issues: where to log, what to log and how to log.

Some where to log research work [2, 17–19] was designed to provide for develop-
ers the suitable logging points. Specifically, ErrLog [17] summarizes various generic
exception patterns associated with system faults to predict Error or Warn logging points.
LogAdvisor [2] makes informed decisions for developers whether a code snippet should
be placed a logging statement. They focused on exception snippet and return-value-check
code snippet while LogOptPlus [18] works on catch-blocks and if-blocks. Jia et al. [19]
automatically identified the log points reflecting the abnormal behavior of the system in
case of failure.

What to log research work [1, 3, 4, 21, 30] focused on the content of logging state-
ments instead of logging points. LogEnhancer [3] adds variables containing useful infor-
mation to logging statements to distinguish different execution paths. Cinque et al. [21]
customed four types of errors and marked them everywhere the errors may occur in the
source code. Yuan et al. [1] gave some guidelines on which variables to log by summa-
rizing the human logs. As far as we know, only [4, 30] focused on the log text so far.
He et al. [4] conducted an empirical study on log texts in mature software projects and
statistical analysis results showed that the repetitiveness in log texts is more predictable
than common English. Li et al. [30] uncovered patterns of duplicate logging code smells
and highlighted the importance of code contexts of log texts.

How to log research work [22, 23] aimed to develop and maintain high-quality log-
ging statement. Chen et al. [22] analyze the modification history of log statements man-
ually, and summarizes a series of anti-patterns, and Li et al. [23] predict an appropriate
log level for developers when they add a new logging statement.

8 Conclusion

In order to ensure the smooth development of the system and accelerate the software
maintenance, developers are expected to design elaborate but concise descriptive texts
in logging statements. However, there is a lack of well-defined logging guidance and
domain-specificknowledge, it is a challenge for developers tomake appropriate decisions
about log text. In this paper, we transform log text generation as a retrieval-based Q&A
task and perform an experimental analysis on it. We present several retrieval strategies
and retrieval algorithms to solve this problem. We further perform a systematic evalua-
tion of the presented methods and different parts of code contexts on our dataset which

268 X. Liu et al.

contains over 138 K valid log texts from 85 Java projects in Apache ecosystem. Finally,
a few instructive findings are proposed for future researches of automatic log text gen-
eration. We believe that our dataset released and instructive findings will accelerate the
development of this field.

References

1. Chen, B., Jiang, Z.M.J.: Characterizing logging practices in Java-based open source software
projects–a replication study in Apache Software Foundation. Empirical Softw. Eng. 22, 330–
374 (2017)

2. Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, M.R., Zhang, D.: Learning to log: helping developers
make informed logging decisions. In: Proceedings of the 37th International Conference on
Software Engineering, vol. 1, pp. 415–425. IEEE Press (2015)

3. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diagnosability via log
enhancement. ACM Trans. Comput. Syst. (TOCS) 30, 4 (2012)

4. He, P., Chen, Z., He, S., Lyu, M.R.: Characterizing the natural language descriptions in
software logging statements. In: Proceedings of the 33rdACM/IEEE InternationalConference
on Automated Software Engineering, pp. 178–189. ACM (2018)

5. Lv, F., Zhang, H., Lou, J.-g., Wang, S., Zhang, D., Zhao, J.: Codehow: effective code
search based on API understanding and extended boolean model (e). In: 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 260–270. IEEE
(2015)

6. Gu, X., Zhang, H., Zhang, D., Kim, S.: Deep API learning. In: Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp. 631–642

7. Gu, X., Zhang, H., Kim, S.: Deep code search. In: IEEE/ACM 40th International Conference
on Software Engineering (ICSE), pp. 933–944. IEEE (2018)

8. Eclipse JDT. http://www.eclipse.org/jdt/
9. Camel Case. https://en.wikipedia.org/wiki/camelcase
10. Levenshtein Distance. https://en.wikipedia.org/wiki/Levenshtein_distance
11. Jaccard Index. https://en.wikipedia.org/wiki/Jaccard_index
12. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evalua-

tion of machine translation. In: Proceedings of the 40th annual meeting on association for
computational linguistics, pp. 311–318. Association for Computational Linguistics (2002)

13. Lin, C.-Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization
Branches Out, pp. 74–81 (2004)

14. Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural
machine translation. arXiv preprint arXiv:1508.04025 (2015)

15. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-generator
networks. arXiv preprint arXiv:1704.04368 (2017)

16. Wu, Y., Wei, F., Huang, S., Wang, Y., Li, Z., Zhou, M.: Response generation by context-
aware prototype editing. In: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 7281–7288 (2019)

17. Yuan, D., et al.: Be conservative: enhancing failure diagnosis with proactive logging. In:
Presented as part of the 10th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 2012), pp. 293–306 (2012)

18. Lal, S., Sardana, N., Sureka, A.: LogOptPlus: learning to optimize logging in catch and if pro-
gramming constructs. In: IEEE40thAnnual Computer Software andApplicationsConference
(COMPSAC), pp. 215–220. IEEE (2016)

http://www.eclipse.org/jdt/
https://en.wikipedia.org/wiki/camelcase
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Jaccard_index
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1704.04368

Automatically Generating Descriptive Texts 269

19. Jia, T., Li, Y., Zhang, C., Xia, W., Jiang, J., Liu, Y.: Machine deserves better logging: a log
enhancement approach for automatic fault diagnosis. In: IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pp. 106–111. IEEE (2018)

20. Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D., Zhou, Y.: The game of twenty
questions: do you know where to log? In: Proceedings of the 16th Workshop on Hot Topics
in Operating Systems, pp. 125–131. ACM (2017)

21. Cinque, M., Cotroneo, D., Pecchia, A.: Event logs for the analysis of software failures: a
rule-based approach. IEEE Trans. Software Eng. 39, 806–821 (2012)

22. Chen, B., Jiang, Z.M.J.: Characterizing and detecting anti-patterns in the logging code. In:
Proceedings of the 39th International Conference on Software Engineering, pp. 71–81. IEEE
Press (2017)

23. Li, H., Shang, W., Hassan, A.E.: Which log level should developers choose for a new logging
statement? Empirical Softw. Eng. 22(4), 1684–1716 (2016). https://doi.org/10.1007/s10664-
016-9456-2

24. Su, Z., Ahn, B.-R., Eom, K.-Y., Kang, M.-K., Kim, J.-P., Kim, M.-K.: Plagiarism detec-
tion using the Levenshtein distance and Smith-Waterman algorithm. In: 3rd International
Conference on Innovative Computing Information and Control, pp. 569–569. IEEE (2008)

25. Apache Ecosystem. https://www.apache.org/
26. McMillan, C.,Grechanik,M., Poshyvanyk,D., Fu, C.,Xie,Q.: Exemplar: a source code search

engine for finding highly relevant applications. IEEETrans. Softw. Eng.38, 1069–1087 (2011)
27. Wang, K., Ming, Z., Chua, T.-S.: A syntactic tree matching approach to finding similar ques-

tions in community-based QA services. In: Proceedings of the 32nd ACM SIGIR conference
on Research and development in information retrieval, pp. 187–194. ACM (2019)

28. Shen, Y., Rong, W., Sun, Z., Ouyang, Y., Xiong, Z.: Question/answer matching for CQA
systemvia combining lexical and sequential information. In: Twenty-NinthAAAIConference
on Artificial Intelligence (2015)

29. Pecchia, A., Cinque, M., Carrozza, G., Cotroneo, D.: Industry practices and event log-
ging: assessment of a critical software development process. In: Proceedings of the 37th
International Conference on Software Engineering, vol. 2, pp. 169–178. IEEE Press (2015)

30. Li, Z., Chen, T.-H., Yang, J., Shang, W.: DLFinder: characterizing and detecting duplicate
logging code smells. In: IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 152–163. IEEE (2019)

31. Liu, Z., Xia, X., Hassan, A.E., Lo, D., Xing, Z., Wang, X.: Neural-machine-translation-based
commit message generation: how far are we? In: IEEE/ACM 33rd International Conference
on Automated Software Engineering (ASE), pp. 373–384. IEEE (2018)

https://doi.org/10.1007/s10664-016-9456-2
https://www.apache.org/

Synthesis and Program Transformation

Parameterized Synthesis with Safety
Properties

Oliver Markgraf1(B), Chih-Duo Hong3, Anthony W. Lin1,2,
Muhammad Najib1, and Daniel Neider2

1 Technical University of Kaiserslautern, Kaiserslautern, Germany
markgraf@cs.uni-kl.de

2 Max Planck Institute for Software Systems, Kaiserslautern, Germany
3 University of Oxford, Oxford, England

Abstract. Parameterized synthesis offers a solution to the problem of
constructing correct and verified controllers for parameterized systems.
Such systems occur naturally in practice (e.g., in the form of distributed
protocols where the amount of processes is often unknown at design time
and the protocol must work regardless of the number of processes). In
this paper, we present a novel learning-based approach to the synthesis of
reactive controllers for parameterized systems from safety specifications.
We use the framework of regular model checking to model the synthe-
sis problem as an infinite-duration two-player game and show how one
can utilize Angluin’s well-known L∗ algorithm to learn correct-by-design
controllers. This approach results in a synthesis procedure that is con-
ceptually simpler than existing synthesis methods with a completeness
guarantee, whenever a winning strategy can be expressed by a regular
set. We have implemented our algorithm in a tool called L∗-PSynth and
have demonstrated its performance on a range of benchmarks, including
robotic motion planning and distributed protocols. Despite the simplicity
of L∗-PSynth it competes well against (and in many cases even outper-
forms) the state-of-the-art tools for synthesizing parameterized systems.

Keywords: Parameterized systems · Reactive synthesis · Machine
learning · Angluin’s algorithm · Regular model checking

1 Introduction

Parameterized systems are systems with a parameterized number of components.
Such systems are ubiquitous in distributed and/or reactive systems, (e.g., where
the number of clients, the size of the environment, etc. can take arbitrary finite
values and the correctness property must hold regardless of the assigned value).
For example, in order to verify safety/liveness of a Dining Philosopher Protocol
with n philosophers, we need to prove the property for each value of n ≥ 3. This
is known as the parameterized verification problem, which is undecidable even
for safety properties [7].

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 273–292, 2020.
https://doi.org/10.1007/978-3-030-64437-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-64437-6_14

274 O. Markgraf et al.

Verification of parameterized systems has been the subject of many papers
spanning across four decades (e.g., see [3,9,47,49] for surveys). Many different
techniques for verifying parameterized systems have been proposed including
cutoff techniques [4,9], acceleration [2,3], learning [16,29,35,45,46], and abstrac-
tions [11], to name a few. The problem of verifying safety property (i.e., bad
things will never happen) has occupied a lot of these research results, owing to
its widely recognized importance.

In this paper, we are interested in automatically synthesizing correct param-
eterized systems with a safety guarantee. In this setting, parameterized systems
are only partially specified, and the task of a synthesis algorithm is to “fill in” the
missing specification in such a way that the desired property is satisfied. Synthe-
sis algorithms aim to produce a correct-by-construction implementation of some
formal properties in a fully automatic fashion, thereby saving the need for per-
forming a further verification step. Program synthesis has been an active research
area with many applications (e.g., to patch faulty parts of a system [1,22,25,43]
or to fill the low-level details of a partial implementation [40–42]). However,
there has not been much work on synthesis for parameterized systems with
safety guarantee.

A common approach to the synthesis with a safety guarantee is by utiliz-
ing games, more specifically a type of games called safety games. Safety games
are two-player games with safety objectives (i.e., the objective is to always stay
inside a “safe” region). Safety games have been widely applied in the context
of verification and synthesis of reactive systems. One example of their usage is
for synthesis of safe controllers, such as a vacuum cleaner robot that tries to
avoid bumping into humans while cleaning the room or a controller for a safety-
critical system that maintains the temperature of a power plant within a certain
safe level. Safety games have been extensively studied in many settings in the
literature, both with finite-state arenas and infinite-state arenas, and includ-
ing timed systems, hybrid systems, counter systems, and arenas generated by
finite-state transducers. Some examples, among many others, can be found in
[13,14,17,18,23,34,35,44]. A parameterized system can naturally be construed
as an infinite-state system. Each parameter instantiation gives us a finite system,
but there are infinitely many such instantiations. The corresponding infinite-
state system is a disjoint union of all finite systems obtained from all possi-
ble parameter instantiations. This is an undecidable problem; in fact, verifying
safety properties (i.e. one-player games) is already undecidable for parameterized
systems [7]. There are a handful of generic methods and tools that have been
designed in the past six years to handle safety games over general infinite-state
systems [8,26,34,35]. Examples include CONSYNTH [8], DT-Synth [34], JSyn-
VG [26], SAT-Synth [35], and RPNI-Synth [35], which have varying degrees of
automation and expressivity. For instance, the former three synthesis tools (i.e.,
CONSYNTH, DT-Synth, and JSyn-VG) support safety games over arenas with
infinitely many vertices that are modeled using integer or real linear arithmetic.
By contrast, the latter two tools (i.e., SAT-Synth and RPNI-Synth) work in a
setting similar to regular model checking [3,28], which encodes parameterized

Parameterized Synthesis with Safety Properties 275

systems by means of regular languages and finite-state transducers. Since regu-
lar model checking is a popular and highly expressive framework for modelling
and verifying parameterized systems, we follow the approach by SAT-Syth and
RPNI-Synth throughout this paper.

Many of these aforementioned algorithms rely heavily on user guidance or
are highly intricate. CONSYNTH, for instance, requires the user to provide
templates that carry high-level information about possible solutions in order
to prune the search space. SAT-Synth, on the other hand, repeatedly solves an
NP-complete problem (learning of minimal finite-state machines from examples)
and, hence, is computationally expensive. In this paper, we thus provide a dif-
ferent and substantially simpler solution to the synthesis problem, which does
not require user guidance and is computationally efficient.

Contribution. The main contribution of this paper is to show how a simple
exact learning algorithm for automata (e.g. Angluin’s L∗ algorithm [5]) can be
employed effectively for solving regular safety games in regular model checking
[3], while remaining competitive with existing tools for parameterized synthesis
with safety properties. Furthermore, we show the efficacy of our procedure in
various problem domains including path planning in a grid with adversaries,
two-player zero-sum games (e.g. Nim), and distributed protocols. We elaborate
below why this is a challenging problem.

We first quickly recall the framework of exact learning of regular languages
[5,27]. A learner’s goal is to learn an unknown regular language L (represented by
minimal DFA—deterministic finite automaton) with the guide of a teacher, who
can answer a membership query and an equivalence query. A membership query
checks whether a given word w ∈ Σ∗ is in L. On the other hand, an equivalence
query asks whether the language L′ := L(A) of a given DFA A coincides with
L; if not, the teacher has to return a counterexample w ∈ (L \ L′) ∪ (L′ \ L) to
the learner. In her seminal paper [5], she provided the so-called L* algorithm,
which learns a DFA in polynomial-time1. Different exact learning algorithms
for automata are by now available that in practice may outperform Angluin’s
original algorithm, e.g., see [27].

Angluin’s exact learning of regular languages is conceptually simple, but
when a problem can be successfully modelled in this framework (e.g. see [15,16]
for such examples in verification), one can tap into a wealth of efficient learning
algorithms. When employing this for infinite-state verification, the language L
to be learned typically represents a kind of correctness proof (e.g. invariants).
This is problematic because this is not unique, which is necessary for a suc-
cessful modelling in the exact learning framework. The proposed strategy in
this paper is to design the so-called strict but generous teacher, which essen-
tially drives the learner to learn the safe region reachable from the set of initial
states (which is unique) but accepts a different correct proof from the learner.

1 The running time by definition accounts for the amount of time taken by the learner
plus the maximum size of the counterexamples provided by the teacher. We assume
the teacher is an oracle that can return an answer in constant time.

276 O. Markgraf et al.

For this idea to work, a membership query (asking whether a given configuration
is reachable and in a safe region) should not be an undecidable problem. To this
end, we propose to consider length-preserving transducers, which is known to
be sufficiently general [3]. With this restriction, we obtain a framework where
membership queries become decidable, and can in fact be checked using fast
finite-state model checkers.

We have implemented our approach in a tool called L∗-PSynth. We also pro-
vide some case studies as benchmarks in order to evaluate our implementation.
Some of the case studies are taken from [35], while the rest are known games,
or inspired by some real world applications. Furthermore, we compare the per-
formance of our tool (using the provided benchmarks) against three existing
sate-of-the-art tools: SAT-Synth, RPNI-Synth [35] and DT-Synth [34]. Despite
its simplicity, the tool competes well in practice against the other three tools,
and even in many cases, outperforms them.

Organization. We start with a couple of motivating examples in the next section.
Section 3 contains preliminaries. We describe the algorithm of our proposed
approach in Sect. 4. In Sect. 5, we provide some case studies and report the
experiments to measure the performance of our implementation against two
existing tools. We conclude in Sect. 7.

2 Motivating Examples

Robotic Motion Planning Example. Consider two robots inhabiting a bounded
two-dimensional grid world, one controlled by a controller/system that we wish
to synthesize, and the other controlled by the environment (which we do not
control.) We call this game “follow game”, which, later in Sect. 5, is also used
as one of the benchmarks. In this game, both robots move in alternating turns,
and by one grid on each turn. The goal of the game is to find (and synthesize)
a strategy such that the robot controlled by the system stays within a certain
distance to the environment’s robot. We can consider this game as an abstraction
of some system in which some drones need to be in close proximity to some
moving targets. Such a strategy thus can be synthesized as a controller for the
drones.

In order to abstract away from the details, we turn the area in which a drone
operates into a bounded two-dimensional grid world, where a number of param-
eters (e.g., width, height, obstacle coordinates, etc.) can be taken into account.
Every possible configuration of a specific grid world, including the positions of
the robots, is modeled by a vertex in the game graph of a regular safety game.
One snippet of such a graph for a variation of the follow game is shown in
Fig. 1. Obstacles, i.e., inaccessible grids, are marked black; the system’s robot
(represented by Player 0) is depicted by a triangle. and the environment’s robot
(represented by Player 1) by a circle. A directed edge between two grid worlds
indicates that there is a possible action from current configuration to reach the
target configuration. Furthermore, all parameterizations are fixed at runtime,

Parameterized Synthesis with Safety Properties 277

and thus, there are no edges from a configuration into another configuration
with different parameters.

Notice that each of the configuration in a runtime can either be “safe”, i.e.,
the drone is within an acceptable proximity to the target, or “unsafe”, i.e.,
beyond the proximity. Figure 2 shows an automaton that parameterizes the grid
world of the follow game by encoding the positions of both robots as bit vec-
tors. The first symbol indicates which player is allowed to move their robot: [11]
means Player 1 can move their robot, whereas [00] indicates Player 0’s turn. The
subsequent vector [x1

x2] encodes the x-coordinates of Player 0’s and Player 1’s
robots in the unary numeral system number, respectively, followed by a separat-
ing symbol S and [y1

y2] which encodes the y-coordinates. The symbol 0 is used
as padding symbol to keep the length of each word encoding a grid world to be
the same.

An automaton representing one winning strategy for the follow game with
the robots start at the same position, and where the grid world does not contain
any obstacles, is shown in Fig. 3. The intuition behind this automaton is that
whenever Player 1 takes a turn, the robots are on top of each other, and once
Player 0 takes a turn, the x and y-coordinates differ by at most one, which
translates into a simple strategy for Player 0: always move the robot on top of
Player 1’s robot. Given such a setting, the objective of the synthesis is to find a
strategy that takes into account the parameters, and, regardless of the value of
the parameters, works for every possible grid world.

... ...

...

... ...

...

...

Fig. 1. One segment of the safety game graph of one version of the follow game.

Distributed Protocol Example. Consider a distributed system which operates on
n processes that may enter critical section. Additionally, there is a single token
in the system. A process can only enter the critical section if it is in possession
of the token. We are interested in a controller which guarantees that at most
one process is in the critical section at a given time. The controller handles the

278 O. Markgraf et al.

qIstart q1 q2

[
1
1

]
,

[
0
0

]
[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]

S

[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]

Fig. 2. Automaton representing the grid world.

resource allocation, i.e., decides which process gets the token and how long the
process keeps it. However, similar to the ring token protocol, it can only move
the token to the right. The processes can be idle (e.g., doing computations in
non-critical sections), requesting a token, or in the critical section. The controller
has to give a process the token if the process is in requesting state and the token
passes the process. The obvious parameter for this protocol is the amount of
processes which are dependent on the system. With parameterization synthesis,
it is enough to only synthesize one controller which can function regardless of the
number of processes. Indeed, later in Sect. 5, we use this motivating example as
one of the benchmarks—we call it “resource allocation game”—and synthesize
the controller.

3 Preliminaries

Let N be the set of natural numbers. Given two sets A and B, we denote their
symmetric difference by A � B = (A \ B) ∪ (B \ A). Moreover, given a relation
E ⊆ A × B, the image of A under E is the set E(A) = {b ∈ B | ∃a ∈ A : (a, b) ∈
E}; similarly, the preimage of B under E is the set E−1(B) = {a ∈ A | ∃b ∈
B : (a, b) ∈ E}.

Word, Languages, and Finite Automata. An alphabet is a nonempty finite set
Σ of elements, called symbols. A word is a finite sequence w = a1 . . . an with
ai ∈ Σ for i ∈ {1, . . . , n}. The empty word is the empty sequence, denoted by
ε. The concatenation of two words u = a1 . . . am and v = b1 . . . bn is the word
u · v = a1 . . . amb1 . . . bn, abbreviated as uv. We denote the set of all words over
the alphabet Σ by Σ∗ and call a subset L ⊆ Σ∗ a language.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, qI , δ, F)
consisting of a nonempty finite set Q of states, an input alphabet Σ, an initial
state qI ∈ Q, a transition relation δ ⊆ Q × Σ × Q, and a set F ⊆ Q of final
states. A run of an NFA A on a word w = a1 . . . an is a sequence q0q1 . . . qn of
states such that q0 = qI and (qi−1, ai, qi) ∈ δ for i ∈ {1, . . . , n}. We call a run
q0 . . . qn accepting if qn ∈ F . The language of an NFA A, denoted by L(A), is
the set of all words w ∈ Σ∗ for which an accepting run of A on w exists. A
language L ⊆ Σ∗ is called regular if there exists an NFA A with L(A) = L. A
deterministic finite automaton (DFA) is an NFA where the transition relation is
effectively a function δ : Q × Σ → Q.

Parameterized Synthesis with Safety Properties 279

16

0

12

1

4

133

0

2

1

0

2

3

4

1

3

0

2

4

14

1

3

4

0

2

15
1

4

3

0

2

0
1
2
3
4

1

2

3

4

2

0

3

1

1

2

3

4

8

0

1

2

3

4

9

0

5

1

4

11

2

6

3

7

0

0

1

4

2

3

4

0

3

4

1

10

2 0

1

2

3

4

0

3

4

1

2

0

1

2

3

4

0

4
1

3

2

1
3

4

2

0

Fig. 3. Automaton representing one winning strategy for a simplified version of the
follow game. The legend for the symbols is as follows: 0 �→ [11], 1 �→ [00], 2 �→ S,
3 �→ [01], 4 �→ [10].

280 O. Markgraf et al.

A length-preserving transducer is a tuple T = (Q,Σ, qI , δ, F) consisting of a
nonempty finite set Q of states, an input alphabet Σ, an initial state qI ∈ Q,
a transition relation δ ⊆ Q × Σ × Σ × Q, and a set F ⊆ Q of final states. In
contrast to NFAs, which process words, a transducer processes pairs of words
that have equal length (hence the name length-preserving). More precisely, a run
of T on pair (u, v) =

(
(a1 . . . an), (b1 . . . bn)

)
of words is a sequence q0q1 . . . qn of

states such that q0 = qI and
(
qi−1, (ai, bi), qi

)
∈ δ for i ∈ {1, . . . , n}. Similar to

NFAs, the run is accepting if qn ∈ F . A transducer T defines a binary relation,
denoted by R(T), that consists of all pairs (u, v) ∈ (Σ × Σ)∗ for which T has
an accepting run.

Reactive Synthesis and Safety Games. In order to synthesize controllers for reac-
tive systems, we follow an approach popularized by McNaughton [30], which
translates the system and specification in question into an infinite-duration two-
player game and a controller into a winning strategy. This approach can be easily
applied to parameterized systems under suitable encoding. Since we are inter-
ested in synthesizing systems from safety specifications, the games we are faced
with are so-called safety games [23]. The basic building block of a safety game is
an arena A = (V0, V1, E), which is a directed graph with a countable vertex set
V = V0 	 V1 and directed edge relation E ⊆ V × V . The game has two players:
Player 0, who represents the system, controls the vertices in V0, and Player 1,
who represents the environment, controls the vertices in V1.

Formally, a safety game is a triple G = (A, I, B) consisting of an arena
A = (V0, V1, E), a set I ⊆ V of initial vertices, and a set B ⊆ V of bad vertices.
A safety game is played as follows: initially, a token is placed on one initial vertex
v0 ∈ I; then, the player having control over the vertex moves the token along
one of the outgoing edges to the next vertex. The process of moving the token is
repeated ad infinitum, resulting in an infinite sequence π = v0v1 . . . of vertices
where v0 ∈ I and (vi, vi+1) ∈ E for all i ∈ N. We call such a sequence a play.

In a safety game, Player 0’s goal is to keep the token away from the bad
vertices, while Player 1’s goal is to reach them. Formally, a play π = v0v1 . . . is
winning for Player 0 if vi /∈ B for all i ∈ N. Conversely, it is winning for Player 1
if vi ∈ B for some i ∈ N. Hence either Player 1 or Player 2 wins for each play.

In McNaughton’s framework, synthesizing a controller amounts to computing
a so-called winning strategy for Player 0. Formally, a strategy for Player 0 is a
mapping σ : V ∗ × V0 → V such that

(
σ(v0 . . . vn), vn

)
∈ E for every finite play

prefix v0 . . . vn ∈ V ∗V0. We say that a play π = v0v1 . . . is played according to σ
if vi = σ(v0 . . . vi−1) for every i ∈ N such that vi ∈ V0. Moreover, a strategy is
said to be winning if every play that is played according to σ is winning.

In this paper, we do not compute winning strategies directly but instead learn
a proxy object, called winning set. Intuitively, a winning set is a set W ⊆ V of
vertices that contains all initial vertices, contains no bad vertex, and is a “trap”
for Player 1 in the sense that Player 1 cannot force the play to a vertex outside
the winning set. Formally, winning sets are defined as follows.

Parameterized Synthesis with Safety Properties 281

Definition 1 (Winning set). Let G = (A, I, B) be a safety game over the
arena A = (V0, V1, E). A winning set is a set W ⊆ V of vertices satisfying the
following four properties:

1. I ⊆ W : all initial vertices are subsumed by the winning set (initial condition).
2. B ∩ W = ∅: no bad vertex is contained in the winning set (bad condition).
3. E({v}) ∩ W �= ∅ for all v ∈ W ∩ V0: every vertex of Player 0 inside the

winning set has at least one outgoing edge connected to another vertex inside
the winning set (existential closedness).

4. E({v}) ⊆ W for all v ∈ W ∩V1: the successors of every Player 1 vertex inside
the winning set is also inside the winning set (universal closedness).

A winning strategy for Player 0 can be derived from a winning set W in a
straightforward manner: starting with a vertex v ∈ I (and, hence, v ∈ W), every
time Player 0 is in control of the token, the strategy is to move the token to a
successor vertex which is also inside the winning set W . It is not hard to verify
that this strategy is in fact winning for Player 0 from every vertex in W : first,
all initial vertices are contained in the winning set, and every Player 0 vertex
has a successor which is inside the winning set; second, since Player 1 can never
leave the winning set (due to universal closedness) and since no vertex inside
the winning set is bad, it is guaranteed that following the strategy results in a
winning play regardless of the moves of Player 1.

Regular Safety Games. We represent safety games using finite automata and
transducers. A regular arena is an arena AR = (L(AV0), L(AV1), R(TE)) where
AV0 and AV1 are NFAs and TE is a length-preserving transducer. A regular safety
game is a safety game GR = (AR, L(AI), L(AB)) where AI and AB are given
as NFAs.

Learner

Teacher

w ∈ R?

R = L(AH)?

Mem(w)

yes or no

Eq(AH)

yes or (no, w)

Fig. 4. General active automata learning framework. The teacher must be able to
answer w ∈ R? and must have some way to determine whether R = L(AH).

282 O. Markgraf et al.

4 Algorithm

An Active Automata Learning Algorithm. Suppose R is a regular language
whose definition is not directly accessible. Automata learning algorithms [5,10,
27,39] automatically infer a DFA AH recognising R. The setting of an active
learning algorithm is shown in Fig. 4 assumes a teacher who has access to R
and can answer the following two queries: (1) Membership query Mem(w): is
the word w a member of R, i.e., w ∈ R? (2) Equivalence query Eq(AH): is the
language of AH equal to R, i.e., L(AH) = R? If not, it returns a counterexample
w ∈ L(AH) � R. The learning algorithm will then construct an DFA AH such
that L(AH) = R by interacting with the teacher. Such an algorithm works
iteratively: in each iteration, it performs membership queries to get from the
teacher information about R. Using the results of the queries, it proceeds by
constructing a hypothesis DFA AH and makes an equivalence query Eq(AH).
If L(AH) = R, the learning algorithm terminates and outputs AH . Otherwise,
the algorithm uses the counterexample w returned by the teacher to refine the
hypothesis DFA in the next iteration.

For completeness, we briefly describe how the learning algorithm com-
putes hypothesis automata. The foundation of the algorithm is the Myhill-
Nerode theorem [36], which states that the minimal DFA recognizing R is
isomorphic to the set of equivalence classes defined by the following relation:
x ≡R y iff it holds that ∀z ∈ Σ∗ : xz ∈ R ↔ yz ∈ R. Informally, two words x
and y belong to the same state of the minimal DFA recognising R iff they cannot
be distinguished by any suffix z. In other words, if one can find a suffix z′ such
that xz′ ∈ R and yz′ /∈ R or vice versa, then x and y belong to different states
of the minimal DFA.

The learning algorithm maintains a Boolean table where the rows are indexed
by X ⊆ Σ∗ and the columns indexed by Y ⊆ Σ∗. Each cell (x, y) of the table
indicates whether or not xy ∈ R. For x, x′ ∈ X, we write x ∼Y x′ iff xy ≡R x′y
for all y ∈ Y . Note that ∼Y is an equivalence relation over X, and that x ∼Y x′

iff the rows indexed by x and x′ contain the identical Boolean values. The table
is consistent iff for all x, x′ ∈ X and x �= x′, it holds that x �∼Y x′. The table is
closed iff for all x ∈ X and a ∈ Σ, there exists x′ ∈ X such that xa ∼Y x′. By the
Myhill-Nerode theorem, the table determines a DFA when it is consistent and
closed: the states of the DFA are {[x]Y : x ∈ X} (where [·]Y is the equivalence
classes induced by ∼Y), the accepting states are {[x]Y : x ∈ X ∩ R}, and the
transition function δ : [X]Y × Σ → [X]Y is defined by δ([x]Y , a) = [xa]Y . Note
that this DFA is minimal as every two states of it can be distinguished by some
word in Y by the definition of consistency.

During the learning process, the algorithm fills and extends the table through
membership queries until the table is consistent and closed. The algorithm then
determines a hypothesis automaton AH from the table and makes an equivalence
query Eq(AH). If the teacher returns a counterexample w, the algorithm will
perform a binary search over w using membership queries to find a suffix y of w
and extend Y to Y ∪ {y}, which will identify at least one more state for R by
the Myhill-Nerode theorem.

Parameterized Synthesis with Safety Properties 283

Proposition 1 ([39]). The learning algorithm in Fig. 4 finds the minimal DFA
AH for the target regular language R using at most n equivalence queries and
n(n + n|Σ|) + n log m membership queries, where n is the number of state of H
and m is the length of the longest counterexample returned from the teacher.

A Teacher for Learning Winning Set. Let GR = (AR, L(AI), L(AB)) be
a regular safety game with regular arena AR = (L(AV0), L(AV1), R(TE)). We
describe below a teacher to learn a regular winning set for GR. Since GR can
have multiple winning sets, we aim to learn the maximal winning set, which, if
exists, is unique as winning sets are closed under union.

Theorem 1. The target object in Fig. 4, the maximal winning set, is unique.

Membership Query. To answer a membership query Mem(w), the teacher needs
to check whether Player 1 can force Player 0 to visit a bad vertex from vertex w.
Since the transition relation is length-preserving, only a finite number of vertices
(i.e. at most |Σ||w| vertices) can be reached from vertex w. Therefore, this check
can be done by solving an induced finite safety game with Iw = {w} as the set
of initial vertices and Bw = {w′ ∈ L(AB) : |w′| = |w|} as the set of bad vertices.
Safety games over finite graphs are known to be decidable [23], thus making our
membership query decidable.

Equivalence Query. To answer an equivalence query Eq(AH), the teacher simply
checks that all conditions in Definition 1 are fulfilled by the hypothesis DFA
AH . Note that a DFA satisfying these conditions serves as a proof for safety
even if it does not recognize the maximal winning set. The pseudo code of the
equivalence check can be found in Algorithm 1. Given an equivalence query
Eq(AH) by the learner, the teacher first checks if L(AI) �⊆ L(AH) and if there
is v ∈ L(AI) \ L(AH), the teacher returns v as a counterexample.

Secondly, the teacher checks whether L(AB) ∩ L(AH) �= ∅. If there is a
v ∈ L(AB) ∩ L(AH), then the teacher returns v as a counterexample.

According to the third part of Definition 1, the teacher checks if there exists
v ∈ L(AH) ∩ L(AV0) and R(TE)({v}) ∩ L(AH) = ∅. Here either v should be
excluded from the hypothesis or one of its successors should be included. The
teacher then makes membership queries to check if v should be excluded: if
Mem(v) returns “no”, the teacher returns v as counterexample. Otherwise, the
teachers returns some u ∈ R(TE)({v}) as a counterexample such that Mem(u)
is “yes”.

Lastly, the teacher checks if there exists v ∈ L(AH) ∩ L(AV1) and
R(TE)({v}) �⊆ L(AH). Again, either v should be excluded or one of its suc-
cessors should be included. If Mem(v) returns “no”, the teacher returns v as a
counterexample. Otherwise, the teacher returns some u ∈ R(TE)({v}) \ L(AH)
as a counterexample.

Since the teacher checks all conditions in Definition 1 for an equivalence
query, if the teacher replies “yes” then the hypothesis DFA indeed recognizes
a winning set. Otherwise, the teacher will pinpoint a counterexample violating

284 O. Markgraf et al.

Algorithm 1: Resolving an equivalence query for regular safety games
Input: GR = (AR, L(AI), L(AB)) over the regular arena

AR = (L(AV0), L(AV1), R(TE)) and an hypothesis DFA AH .

1 if L(AI) \ L(AH) �= ∅ then
2 Find some v ∈ L(AI) \ L(AH) and return (“no”, v)

3 if L(AH) ∩ L(AB) �= ∅ then
4 Find some v ∈ L(AH) ∩ L(AB) and return (“no”, v)

5 if there is v ∈ L(AV0) ∩ L(AH) such that R(TE)({v}) ∩ L(AH) = ∅ then
6 if Mem(v) is “yes” then
7 Find some u ∈ R(TE)({v}) such that Mem(u) is “yes”
8 return (“no”, u)

9 else
10 return (“no”, v)

11 if there is v such that v ∈ L(AV1) ∩ L(AH) and R(TE)({v}) �⊆ L(AH) then
12 if Mem(v) is “yes” then
13 Find some u ∈ R(TE)({v}) \ L(AH) and return (“no”, u)
14 else
15 return (“no”, v)

16 return “yes”

the definition. Furthermore, observe that the counterexamples pinpointed by the
teacher are located in the symmetric difference of the candidate language and the
maximal winning set. Therefore, if the maximal winning set can be recognized
by a DFA of n states, the learning algorithm will terminate in n iterations by
Proposition 1. We summarize the soundness and completeness of our learning
method in the following theorem.

Theorem 2. Given a regular safety game GR = (AR, L(AI), L(AB)), the learn-
ing algorithm in Fig. 4 computes a winning set on termination. Furthermore,
when the maximal winning set W is regular, the algorithm will terminate in at
most n iterations where n is the size of the minimal DFA of W .

5 Case Studies and Experiments

In this section, we provide some case studies as benchmarks and report the
results of the experiments based on given benchmarks. In order to asses the
performance of our tool, L∗-PSynth, we compare it with three existing tools that
are able to solve safety games over infinite graphs: SAT-Synth, RPNI-Synth [35]
and DT-Synth [34]

Tools. The tools SAT-Synth and RPNI-Synth both compute a winning set based
on learning finite automata with a teacher that answers to equivalence queries.
In contrast to L∗-PSynth—which solves regular safety games—these tools are

Parameterized Synthesis with Safety Properties 285

able to solve rational safety games, which is a more general type of safety
games, since in these games, edge relations may be represented by non length-
preserving transducers. Furthermore, the learner of SAT-Synth uses a SAT solver
to learn automata, while RPNI-Synth is based on the popular RPNI learning
algorithm [37].

The tool DT-Synth uses formulas in the first-order theory of linear integer
arithmetic to encode safety games. It uses a learning algorithm that learns from
data in the form of Horn clauses. The teacher in this tool was built on top of
the constraint solver Z3 [31].

L∗-PSynth is implemented with the use of automata libraries and an exist-
ing implementation of an L∗ learner[16]. The teacher is implemented in Java
and uses existing automata methods to implement the algorithms from Sect. 4.
The input format is a text file which encodes a regular safety game GR =
(AR, L(AI), L(AB)).2

The teacher for L∗-PSynth is an extension of the one used by SAT-Synth,
RPNI-Synth, and DT-Synth: it also answers to membership queries in order
to accommodate for the additional queries the learner might ask, since, beside
equivalence queries, our learner also asks membership queries.

Benchmarks. Some of the benchmarks are taken from [35] with some modifica-
tion to fit the framework of regular safety games. In particular, we adjust the
arenas of the game, from infinite arenas into arenas with arbitrary but bounded
size. The other benchmarks are either known games which are translated to a
regular safety game, e.g., the Nim game [12], or inspired by some processes that
happen in real world, such as resource allocation protocols or the movement of
an autonomous robotic vacuum cleaner. The list of benchmarks is as follows:

Box game: A robot moves in an two-dimensional grid world of size n × m with
n,m ≥ 3.3 Player 0 controls the vertical movement of the robot while Player 1
controls the horizontal movement. Player 0 wins if the robot stays within a
horizontal stripe of width 3 around the middle of the arena. We can consider
this kind of game as an abstraction of some autonomous control system, e.g.,
a controller that ensures a drone stay in some range of altitude.

Control unit game: Consider a system that controls the temperature of n
power plants within a certain safe level. We can model this as a game between
two players, 0 and 1. Player 0 acts as the controller who can decrease the
temperature of some plant (e.g., by reducing the boiler temperature). Player 1
acts as the environment who may increase the temperature of some plant
(e.g., weather changes, cooling system malfunction). The game is played in
a sequential fashion, i.e., Player 0 and Player 1 can alternately increase or
decrease the temperature of a plant. Player 0 wins if none of the plants reach
critical temperature.

2 Code and benchmarks are available at https://github.com/lstarsynth/lstar-psynth.
3 The encoding in the benchmarks use a grid world of size 2n ×2n which can be easily

reduced to n × m.

https://github.com/lstarsynth/lstar-psynth

286 O. Markgraf et al.

Diagonal game: A variation of the Box game where Player 0 again controls
the vertical movement and Player 1 controls the horizontal movement of a
robot in a bounded two-dimensional grid world. Player 0 wins if the robot
stays within a two cells of the diagonal in the arena.

Evasion game: Two robots are moving in an bounded discrete two-dimensional
grid world of size n×m with n,m ≥ 3. Each Player is in control of one robot
and they can move their respective robot at most one cell in any direction
(either vertically or diagonally.) If the system moves its robot outside of a
bound it automatically wins4. Player 0 wins if Player 1 never moves its robot
on top of Player 0’s robot.

Follow game: A variation of the evasion game where Player 0 wins if it manages
to keep its robot within a Manhattan distance of two cells to Player 1’s robot.

Nim game: The standard Nim game consists of three piles of chips and two
players taking alternating turns. On each turn, each player must remove one
chip, and may remove any number of chips so long as they all come from the
same pile. The player who removes the last chip wins the game5. The game
is modified to be an infinite duration game by adding an infinite loop at the
end of the game. A winning strategy is computed for all winning starting
positions which are determined by the Nim sum. More information on the
Nim game and its winning strategy can be found in [21].

Resource allocation game: This game involves a single token and n processes.
Each process has three states: idle, requesting, and in critical section. A pro-
cess can move from a requesting state to the critical section if and only if it
has the token. If a process is in a requesting state, it is guaranteed by design
of the game, that it will eventually get the token. Player 0 controls the token
and can either: (i) move the token from one process to another, or (ii) keep
it in the same place if the process is in the critical section, or if there are
only idle processes. Player 1 can change the state of a process from idle to
requesting or vice versa. Additionally, Player 1 can move a process to the
critical section if the process is in control of the token. Once a process enters
the critical section, it may stay in the critical section even without the token.
Player 0 wins if at all times, there is no process in the critical section without
the token.

Robot vacuum cleaner game: A vacuum cleaner robot and a human move
in an two-dimensional grid world of size 2n ×2n with n ≥ 2. Player 0 controls
the movement of the robot and Player 1 controls the movement of the human.
Player 0 wins if the robot never bumps into the human, and if the human
tries to step on the robot, it moves away.

Solitary box: Another variation of the Box game where only Player 0 controls
the vertical and horizontal movement of the robot.

4 The original version of the evasion game is played in an infinite grid world, thus, mak-
ing one valid strategy to always move into one direction, which resembles Player 0
moving out of bound.

5 This version of winning condition is called “misère play condition”, in which the last
player making a move loses. Nim can also be played with “normal play condition”,
i.e., the last player making a move wins.

Parameterized Synthesis with Safety Properties 287

Table 1. Results on the benchmarks on L∗-PSynth, SAT-Synth and RPNI-Synth.
“Size” measures the size of the final automata synthesized by the algorithms. “—”
indicates a timeout after 300s. “N/A” corresponds to not supported by the tool.

L∗-PSynth SAT-Synth RPNI-Synth DT-Synth

Game Time in s Size Time in s Size Time in s Size Time in s

Box 1.62 5 6.83 4 1.92 7 5.76

Control unit 0.40 3 185.50 5 1.13 5 N/A

Diagonal 0.68 3 113.52 7 1.62 7 139.36

Evasion 4.77 11 122.41 7 2.52 11 10.83

Follow 6.71 16 207.12 16 18.53 16 31.67

Nim 3.64 4 — — 7.12 5 N/A

Resource allocation 0.65 4 24.00 3 3.77 4 N/A

Robot vacuum cleaner 1.21 3 — — — — —

Solitary box 1.14 4 5.71 4 0.30 4 1.89

Results. The result of the benchmarks on L∗-PSynth, SAT-Synth, RPNI-Synth
and DT-Synth is shown in Table 1. In this table, we report the time each tool
took to synthesize an automaton that encodes a winning set, as well as the size
of the respective automaton6. We conducted the experiments on an Intel Xeon
E7-8857 v2 CPU with 4 GB of RAM running a 64-bit Debian operating system.
From the results, we can see that L∗-PSynth was able to solve all games, whereas
RPNI-Synth and DT-Synth were not able to solve the robot vacuum cleaner
game, and SAT-Synth did not solve the robot vacuum cleaner game and the
Nim game. Moreover, the aggregated runtime to solve all 9 games for L∗-PSynth
is 20.82 s compared to RPNI-Synth which took 36.91 s to solve 8 games in total.
SAT-Synth was able to solve 7 games taking 665.09 s. Finally, DT-Synth was
only able to solve 5 games within 189.51 s—this is partly due to the inability
of DT-Synth encoding to represent three benchmarks: control unit, Nim, and
resource allocation. Given the results, it is not surprising that L∗-PSynth was
able to outperform the other tools, since the benchmarks are more well suited for
regular safety game framework. On the other hand, if we consider the size of the
solutions, RPNI-Synth performed worst, with only 2 out of 9 solutions that are at
least as small as those produced by other tools, followed by SAT-Synth 5 out of
9 games. L∗-PSynth performed best with 6 out of 9 solutions that are at least as
small as others7. Again, this is not a surprising result with respect to RPNI-Synth
performance, since it was not tailored to find small solutions, whereas SAT-Synth
was designed to find such solutions. However, although L∗-PSynth was also not
tailored to optimize the solution size8, it produced better solutions compared

6 Apart from DT-Synth, since instead of automata, it produces witnesses as decision
trees.

7 Including one case (robot vacuum cleaner) in which the other two tools timed out.
8 In spite of the fact that Angluin’s algorithm computes the minimal DFA for a given

target language, it is not necessarily encoded by a small automaton.

288 O. Markgraf et al.

to SAT-Synth. From the experiments, it appears that L∗-PSynth performs well
on benchmarks where a winning strategy can be synthesized by only looking at
small n in the parameterization. If larger n is needed in order to find a winning
strategy, the runtime significantly increases (up to 5–10 times as much time
needed) as in the case for the evasion, follow and Nim game. We believe this
correlates to the runtime of Angluin’s algorithm which is strongly dependent
on the length of words and counterexamples considered in a given run, which
increases as n increases.

Parameterization in DT-Synth. Encoding the benchmarks as safety games in
DT-Synth is not straightforward, and, in some cases, not possible (i.e., with con-
trol unit, Nim, and resource allocation.) This is because, in those corresponding
cases, either the games specifically parameterize the amount of processes, or
perform bit-sensitive operations. For the rest of the games that are played on
arenas of the size n × m, this can be represented in DT-Synth by letting the
environment pick two additional variables, n and m. These variables further
constrain the initial states and modify the transition system accordingly, i.e.,
enable/disable transitions, based on their value.

6 Related Work

In the context of safety games, a constraint-based approach for solving safety
games over infinite graphs [8,26] and various learning approaches for finite graphs
and infinite graphs have been proposed [32,34,35]. Similar to the framework of
Neider et al. [35] we encode safety games symbolically using the idea of regular
model checking. Their work considers rational safety games which differ with
our regular safety games in the definition of the edge relation. The edge rela-
tion in our framework is encoded by length-preserving transducers while rational
safety games allow a more general type of transducer. The framework for solving
rational safety games is implemented in two tools, SAT-Synth and RPNI-Synth.
On the other hand, the framework in another learning-based approach, which
is implemented in the tool DT-Synth, does not fix the representation of safety
games and uses formulas in the first-order theory of linear integer arithmetic to
encode them [34]. This leads to some encoding difficulties with parameterized
systems as discussed in Sect. 5. The learner in both frameworks learns pas-
sively from a sample and can only ask the teacher equivalence queries while the
algorithm we design is able to employ a learner which is allowed to ask mem-
bership queries in addition to equivalence queries. All frameworks mentioned
above operate on safety games over infinite-state arenas, whereas we consider
infinitely many finite graphs due to the nature of length-preserving transducers.
However, this is not a restriction as we can parameterize the value that goes
towards infinity and finding a strategy which works for every n also gives us a
strategy for every specific place in the infinite-state arena for an appropriately
chosen n. There might be games which will not have a strategy for finite graphs
(see evasion game in Sect. 5) where we extend transitions to go “out of bound”

Parameterized Synthesis with Safety Properties 289

of the parameter and always stay safe. This works because there is a way for one
robot to catch the other then there is going to be a finite example on grid world
with a specific size.

The framework of regular model checking is used in many different areas of
research to verify different properties such as safety [16,24,33,35] or liveness [29,
38,48]. In particular, for verification of those properties in parameterized systems
regular model checking has seen successful application [16,29]. Furthermore, the
approaches in [16,29] also employ Angluin-style L∗-learning to verify properties
of parameterized systems.

7 Conclusion

In this paper, we have developed a learning-based methodology for synthesiz-
ing parameterized systems from safety specifications. Our approach reduces this
synthesis problem to a two-player safety game in an infinite arena, where syn-
thesizing a controller amounts to computing a winning strategy (a winning set)
for the player embodying the system. Inspired by Regular Model Checking and
the work by Neider and Topcu, we encode sets of vertices by means of finite
automata and edges using length-preserving transducers. This encoding allows
us to utilize Angluin’s popular automata learning algorithm, which significantly
reduces the complexity of the underlying learning problem as compared to the
earlier work by Neider and Topcu (the former being polynomial while the latter
being NP-complete). In fact, our experimental evaluation shows that a prototype
of our approach is very effective in synthesizing various types of parameterized
systems, including process resource allocation and robotic motion planning.

There exist various interesting directions for future work. First, we plan to
extend our framework to liveness properties, for example, by learning ranking
functions rather than winning sets [19,20]. Second, we would like to consider
game arenas with uncountably many vertices, which often arise in the context
of cyber-physical systems. One possible approach to this problem would be to
encode such arenas by means of ω-regular languages and ω-transducers, and then
use existing learning algorithms for ω-automata (e.g., Büchi automata) to learn
winning sets [6]. Finally, we want to modify our approach such that it learn a
strategy directly rather than a proxy object (i.e., a winning set). This would
allow us to also optimize for other criteria such as size or number of operations
required to compute the next move.

Acknowledgement. This work was partially funded by the ERC Starting Grant AV-
SMP (grant agreement no. 759969) and MPI-Fellowship as well as the DFG grant no.
434592664.

References

1. Griesmayer, A., Staber, S., Bloem, R.: Automated fault localization for C pro-
grams. Electron. Notes Theoret. Comput. Sci. 174(4), 95–111 (2007)

290 O. Markgraf et al.

2. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 47

3. Abdulla, P.A.: Regular model checking. STTT 14(2), 109–118 (2012). https://doi.
org/10.1007/s10009-011-0216-8

4. Abdulla, P.A., Haziza, F., Hoĺık, L.: Parameterized verification through view
abstraction. STTT 18(5), 495–516 (2016). https://doi.org/10.1007/s10009-015-
0406-x

5. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

6. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 57–72 (2016)

7. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

8. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based app-
roach to solving games on infinite graphs. In: Jagannathan, S., Sewell, P. (eds.) The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2014, San Diego, CA, USA, 20–21 January 2014 (2014)

9. Bloem, R., et al.: Decidability of Parameterized Verification. Synthesis Lectures on
Distributed Computing Theory. Morgan & Claypool Publishers, San Rafael (2015)

10. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: IJCAI, pp. 1004–1009

11. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree)
model checking. STTT 14(2), 167–191 (2012). https://doi.org/10.1007/s10009-
011-0205-y

12. Bouton, C.L.: Nim, a game with a complete mathematical theory. Ann. Math.
3(1/4), 35–39 (1901). http://www.jstor.org/stable/1967631

13. Camacho, A., Muise, C.J., Baier, J.A., McIlraith, S.A.: LTL realizability via safety
and reachability games. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July
2018, pp. 4683–4691 (2018)

14. Chatain, T., David, A., Larsen, K.G.: Playing games with timed games. In:
3rd IFAC Conference on Analysis and Design of Hybrid Systems, ADHS 2009,
Zaragoza, Spain, 16–18 September 2009, pp. 238–243 (2009)

15. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.:
Automated assume-guarantee reasoning through implicit learning. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 44

16. Chen, Y., Hong, C., Lin, A.W., Rümmer, P.: Learning to prove safety over param-
eterised concurrent systems. In: Formal Methods in Computer Aided Design,
FMCAD 2017, Vienna, Austria, 2–6 October 2017, pp. 76–83 (2017)

17. Doyen, L.: Games and automata: from boolean to quantitative verification. habil-
itation, ENS de Cachan, LSV (2011)

18. Ehlers, R., Seshia, S.A., Kress-Gazit, H.: Synthesis with identifiers. In: McMil-
lan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 415–433. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54013-4 23

19. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.: Liveness with incomprehensible rank-
ing. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 482–496.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 36

https://doi.org/10.1007/3-540-45657-0_47
https://doi.org/10.1007/s10009-011-0216-8
https://doi.org/10.1007/s10009-011-0216-8
https://doi.org/10.1007/s10009-015-0406-x
https://doi.org/10.1007/s10009-015-0406-x
https://doi.org/10.1007/s10009-011-0205-y
https://doi.org/10.1007/s10009-011-0205-y
http://www.jstor.org/stable/1967631
https://doi.org/10.1007/978-3-642-14295-6_44
https://doi.org/10.1007/978-3-642-54013-4_23
https://doi.org/10.1007/978-3-540-24730-2_36

Parameterized Synthesis with Safety Properties 291

20. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.: Liveness with invisible ranking. In:
Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 223–238. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 19

21. Ferguson, T.S.: Game theory (2014). https://www.math.ucla.edu/∼tom/Game
Theory/Contents.html

22. Fey, G., Staber, S., Bloem, R., Drechsler, R.: Automatic fault localization for prop-
erty checking. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 27, 1138–1149
(2008)

23. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4

24. Habermehl, P., Vojnar, T.: Regular model checking using inference of regular lan-
guages. In: Bradfield, J.C., Moller, F. (eds.) Proceedings of the 6th International
Workshop on Verification of Infinite-State Systems, INFINITY 2004 (2004)

25. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988 23

26. Katis, A., et al.: Validity-guided synthesis of reactive systems from assume-
guarantee contracts. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol.
10806, pp. 176–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89963-3 10

27. Kearns, M.J., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (2014)

28. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. TCS 256(1–2), 93–112 (2001)

29. Lin, A.W., Rümmer, P.: Liveness of randomised parameterised systems under arbi-
trary schedulers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780,
pp. 112–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 7

30. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic
65(2), 149–184 (1993)

31. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

32. Neider, D.: Small strategies for safety games. In: Bultan, T., Hsiung, P.-A. (eds.)
ATVA 2011. LNCS, vol. 6996, pp. 306–320. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-24372-1 22

33. Neider, D., Jansen, N.: Regular model checking using solver technologies and
automata learning. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS,
vol. 7871, pp. 16–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38088-4 2

34. Neider, D., Markgraf, O.: Learning-based synthesis of safety controllers. In: Formal
Methods in Computer Aided Design, FMCAD 2019, San Jose, CA, USA, 22–25
October 2019. pp. 120–128 (2019)

35. Neider, D., Topcu, U.: An automaton learning approach to solving safety games
over infinite graphs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 204–221. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 12

36. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–
544 (1958)

https://doi.org/10.1007/978-3-540-24622-0_19
https://www.math.ucla.edu/~tom/Game_Theory/Contents.html
https://www.math.ucla.edu/~tom/Game_Theory/Contents.html
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/11513988_23
https://doi.org/10.1007/978-3-319-89963-3_10
https://doi.org/10.1007/978-3-319-89963-3_10
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-24372-1_22
https://doi.org/10.1007/978-3-642-24372-1_22
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.1007/978-3-662-49674-9_12

292 O. Markgraf et al.

37. Oncina, J., Garcia, P.: Inferring regular languages in polynomial updated time. In:
Pattern Recognition and Image Analysis: Selected Papers from the IVth Spanish
Symposium, pp. 49–61. World Scientific (1992)

38. Pnueli, A., Shahar, E.: Liveness and acceleration in parameterized verification.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 328–343.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 26

39. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

40. Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 4–13. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10672-9 3

41. Solar-Lezama, A., Arnold, G., Tancau, L., Bod́ık, R., Saraswat, V.A., Seshia, S.A.:
Sketching stencils. ACM (2007)

42. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs (2006)

43. Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72788-0 34

44. Tomlin, C.J., Lygeros, J., Sastry, S.S.: A game theoretic approach to controller
design for hybrid systems. Proc. IEEE 88, 949–970 (2000)

45. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Using language inference to
verify omega-regular properties. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.
LNCS, vol. 3440, pp. 45–60. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31980-1 4

46. Vardhan, A., Viswanathan, M.: LEVER: a tool for learning based verification. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 471–474. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817963 43

47. Vojnar, T.: Cut-offs and automata in formal verification of infinite-state systems,
: habilitation Thesis. Brno University of Technology, Faculty of Information Tech-
nology (2007)

48. Vojnar, T.: Cut-offs and Automata in Formal Verification of Infinite-State Systems.
FIT Monograph 1, Faculty of Information Technology BUT (2007)

49. Zuck, L.D., Pnueli, A.: Model checking and abstraction to the aid of parameterized
systems (a survey). Comput. Lang. Syst. Struct. 30, 139–169 (2004)

https://doi.org/10.1007/10722167_26
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-540-72788-0_34
https://doi.org/10.1007/978-3-540-31980-1_4
https://doi.org/10.1007/978-3-540-31980-1_4
https://doi.org/10.1007/11817963_43

Relational Synthesis for Pattern Matching

Dmitry Kosarev1,2(B) , Petr Lozov1,2 , and Dmitry Boulytchev1,2

1 Saint Petersburg State University, Saint Petersburg, Russia
Dmitrii.Kosarev@pm.me, lozov.peter@gmail.com, dboulytchev@math.spbu.ru

2 JetBrains Research, Saint Petersburg, Russia

Abstract. We present a completely declarative approach to synthesiz-
ing pattern matching construct implementations based on application of
relational programming, a specific form of constraint logic programming.
Our approach is based on relational representations of both the high-level
semantics of pattern matching and the semantics of an intermediate-level
implementation language. This choice makes our approach, in principle,
very scalable as we only need to modify the high-level semantics in order
to synthesize the implementation of a pattern matching new feature.
Our evaluation on a set of small samples, partially taken from existing
literature shows, that our framework is capable of synthesizing optimal
implementations quickly. Our in-depth stress evaluation on a number of
artificial benchmarks, however, has shown the need for future improve-
ments.

Keywords: Relational programming · Relational interpreters ·
Pattern matching

1 Introduction

Algebraic data types (ADT) are an important tool in functional programming
which deliver a way to represent flexible and easy to manipulate data struc-
tures. To inspect the contents of an ADT’s values a generic construct—pattern
matching—is used. The importance of pattern matching efficient implementa-
tion stimulated the development of various advanced techniques which provide
good results in practice. The objective of our work is to use these results as a
baseline for a case study of relational synthesis1—an approach for program syn-
thesis based on application of relational programming [6,10], and, in particular,
relational interpreters [7] and relational conversion [17]. Relational programming
can be considered as a specific form of constraint logic programming centered
around miniKanren2, a combinator-based DSL, implemented for a number

The reported study was funded by RFBR, projects number 18-01-00380 and 19-31-
90053.
1 We have to note that this term is overloaded and can be used to refer to completely

different approaches than we utilize.
2 http://minikanren.org.
c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 293–310, 2020.
https://doi.org/10.1007/978-3-030-64437-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_15&domain=pdf
http://orcid.org/0000-0002-6773-5322
http://orcid.org/0000-0003-3563-2828
http://orcid.org/0000-0001-8363-7143
http://minikanren.org
https://doi.org/10.1007/978-3-030-64437-6_15

294 D. Kosarev et al.

of host languages. Unlike Prolog, which employs a deterministic depth-first
search, miniKanren advocates a more declarative approach, in which a user is
not allowed to rely on a concrete search discipline, which means, that the spec-
ifications, written in miniKanren, are understood much more symmetrically.
The distinctive feature of miniKanren is complete interleaving search [12]. The
basic constraint is unification with occurs check, although advanced implemen-
tations support other primitive constructs, such as disequality or finite-domain
constraints [1]. Syntactically, miniKanren is mutually convertible to Prolog,
but, unlike latter, makes use of explicit logical connectives (conjunction and
disjunction), existential quantification and unification.

A distinctive application of relational programming is implementing rela-
tional interpreters [9]. Unlike conventional interpreters, which for a program
and input value produce output, relational interpreters can operate in various
directions: for example, they are capable of computing an input value for a given
program and a given output, or even synthesize a program for a given pairs of
input-output values. The latter case forms a basis for program synthesis [5,7].

Our approach is based on relational representation of the source language pat-
tern matching semantics on the one hand, and the semantics of the intermediate-
level implementation language on the other. We formulate the condition neces-
sary for a correct and complete implementation of pattern matching and use it
to construct a top-level goal which represents a search procedure for all correct
and complete implementations. We also present a number of techniques which
make it possible to come up with an optimal solution as well as optimizations
to improve the performance of the search. Similarly to many other prior works
we use the size of the synthesized code, which can be measured statically, to
distinguish better programs. Our implementation3 makes use of OCanren4—a
typed implementation of miniKanren for OCaml [13], and noCanren5—a
converter from the subset of plain OCaml into OCanren [17]. An initial eval-
uation, performed for a set of benchmarks taken from other papers, showed our
synthesizer performing well. However, being aware of some pitfalls of our app-
roach, we came up with a set of counterexamples on which it did not provide any
results in observable time, so we do not consider the problem completely solved.
We also started to work on mechanized formalization6, written in Coq [4], to
make the justification of our approach more solid and easier to verify, but this
formalization is not yet complete.

2 Related Works

Pattern matching can be considered as a generalization of conventional condi-
tional control-flow construct “ if .. then .. else” and in principle can be
decomposed into a nested hierarchy of those; from this standpoint the problem
3 https://github.com/Kakadu/pat-match/tree/aplas2020.
4 https://github.com/JetBrains-Research/OCanren.
5 https://github.com/Lozov-Petr/noCanren.
6 https://github.com/dboulytchev/Coq-matching-workout.

https://github.com/Kakadu/pat-match/tree/aplas2020
https://github.com/JetBrains-Research/OCanren
https://github.com/Lozov-Petr/noCanren
https://github.com/dboulytchev/Coq-matching-workout

Relational Synthesis for Pattern Matching 295

of pattern matching implementation can be considered trivial. However, some
decompositions are obviously better than others. We repeat here an example
from [20] to demonstrate this difference (see Fig. 1). Here we match a triple of
boolean values x, y, and z against four patterns (Fig. 1a; we use OCaml [16]
as reference language). The näıve implementation of this example is shown on
Fig. 1b; however if we decide to match y first the result becomes much better
(Fig. 1c).

Fig. 1. Pattern matching implementation example

The quality of a pattern matching implementation can be measured in various
ways. One can either optimise the run time cost by minimizing the amount of
checks performed, or the static cost by minimizing the size of the generated code.
Decision trees are considered suitable for the first criterion as they check every
subexpression no more than once. However, minimizing the size of a decision tree
is known to be NP-hard [3], and as a rule various heuristics, using, for example,
the number of nodes, the length of the longest path and the average length
of all paths are applied during compilation. In [28] the results of experimental
evaluation of nine heuristics for Standard ML of New Jersey are reported.

For minimizing the static cost backtracking automata can be used since they
admit a compact representation but in some cases can perform repeated checks.

There is a certain difference in dealing with pattern matching in strict and
non-strict languages. For strict languages checking sub-expressions of the scru-
tinee in any order is allowed. The pattern matching implementation for strict
languages can operate in direct or indirect styles. In the direct style the con-
struction of an implementation is done explicitly. In indirect the construction of
implementation requires some post-processing, which can vary from easy simpli-
fications to complicated supercompilation techniques [29]. The main drawback
of indirect approach is that the size of intermediate data structures can be expo-
nentially large.

For non-strict languages pattern matching should evaluate only those sub-
expressions which are necessary for performing pattern matching. If not done

296 D. Kosarev et al.

carefully pattern matching can change the termination behavior of the pro-
gram. In general non-strict languages put more constraints on pattern matching
and thus admit a smaller set of heuristics. A few approaches for checking sub-
expressions in lazy languages have been proposed. In [2] a simple left-to-right
order of subexpression checking was proposed with a proof that this particular
order doesn’t affect termination. The backtracking automaton being built takes
a form of a DAG to reduce the code size. A few refinements have been added
in [32] as a part of textbook [24] on the implementation of lazy functional lan-
guages. The approach from this book is used in the current version of GHC [21].
[14] models values in lazy languages using partial terms, although it doesn’t scale
to types with infinite sets of constructors (like integers). The approach doesn’t
test all subexpressions from left to right as does [2] but aims to avoid performing
unnecessary checks by constructing lazy automaton. Pattern matching for lazy
languages has been compiled also to decision trees [18] and later into decision
DAGs which in some cases allows the compiler to make the code smaller [19].

The inefficiency of backtracking automata have been improved in [15]. The
approach utilizes a matrix representation for pattern matching. It splits the
current matrix according to constructors in the first column and reduces the
task to compiling matrices with fewer rows. The technique is indirect; in the
end a few optimizations are performed by introducing special exit nodes to the
compiled representation. The approach from this paper is used in the current
implementation of the OCaml compiler.

The previous approach uses the first column to split the matrix. In [20] the
necessity heuristic has been introduced which recommends which column should
be used to perform the split. Good decision trees which are constructed in this
work can perform better in corner cases than [15], but for practical use the
difference is insignificant.

While existing approaches deliver appropriate solutions for certain forms of
pattern matching constructs, they have to be extended in an ad hoc manner
each time the syntax and semantics of pattern matching construct changes. For
example, besides a simple conventional form of pattern matching there are a
number of extensions: guards (first appeared in KRC language [31]), disjunctive
patterns [16], non-linear patterns [22], active patterns [30] and pattern matching
for polymorphic variants [11] which require a separate customized algorithms to
be developed.

3 The Pattern Matching Synthesis Problem

We describe here a simplified view on pattern matching which does not incorpo-
rate some practically important aspects of the construct such as name bindings
in patterns, guards or even semantic actions in branches. In a purified form, how-
ever, it represents the essence of pattern matching as an “inspect-and-branch”
procedure. Other features can be easily added later once a solution for the essen-
tial part of the problem is found.

Relational Synthesis for Pattern Matching 297

Fig. 2. Matching against a single pattern

First, we introduce a finite set of constructors C, equipped with arities, a set
of values V and a set of patterns P:

C = {Ck1
1 , . . . , Ckn

n }
V = C V∗

P = | C P∗

We define a matching of a value v (scrutinee) against an ordered non-empty
sequence of patterns p1, . . . , pk by means of the following relation

〈v; p1, . . . , pk〉 −−→ i, 1 � i � k + 1

which gives us the index of the leftmost matched pattern or k + 1 if no such
pattern exists. We use an auxiliary relation 〈;〉 ⊆ V × P to specify the notion of
a value matched by an individual pattern (see Fig. 2). The rule [Wildcard] says
that a wildcard pattern “ ” matches any value, and [Constructor] specifies
that a constructor pattern matches exactly those values which have the same
constructor at the top level and all subvalues matched by corresponding sub-
patterns. The definition of “−→” is shown on Fig. 3. An auxiliary relation “−→∗”
is introduced to specify the left-to-right matching strategy, and we use current
index as an environment. An important rule, [MatchOtherwise] specifies that
if we exhausted all the patterns with no matching we stop with the current index
(which in this case is equal to the number of patterns plus one).

The relation “−→” gives us a declarative semantics of pattern matching. Since
we are interested in synthesizing implementations, we need a programmatical
view on the same problem. Thus, we introduce a language S (the “switch” lan-
guage) of test-and-branch constructs:

M = •
| M [N]

S = returnN

| switch M with [C → S]∗ otherwise S
Here M stands for a matching expression, which is either a reference to a

scrutinee “•” or a (multiply) indexed subexpression of a scrutinee. Programs in
the switch language can discriminate on the structure of matching expressions,
testing their top-level constructors and eventually returning natural numbers as
results. The switch language is similar to the intermediate representations for
pattern matching code used in previous works on pattern matching implemen-
tation [15,20], and switch programs are analogous to decision trees.

298 D. Kosarev et al.

Fig. 3. Matching against an ordered sequence of patterns

Fig. 4. Semantics of matching expression

The semantics of the switch language is given by mean of relations “−→M”
and “−→S” (see Fig. 4 and 5). The first one describes the semantics of matching
expression, while the second describes the semantics of the switch language itself.
In both cases the scrutinee v is used as an environment (v �).

The following observations can be easily proven by structural induction.

Observation 1. For arbitrary pattern the set of matching values is non-empty:

∀p ∈ P : {v ∈ V | 〈v; p〉} 	= ∅

Observation 2. Relations “−→” and “−→ S” are functional and deterministic
respectively:

∀p1, . . . , pk ∈ P, ∀v ∈ V, ∀π ∈ S : |{i ∈ N | 〈v; p1, . . . , pk〉 −−→ i}| = 1
|{i ∈ N | v � π −−→S i}| � 1

With these definitions, we can formulate the pattern matching synthesis prob-
lem as follows: for a given ordered sequence of patterns p1, . . . , pk find a switch
program π, such that

Relational Synthesis for Pattern Matching 299

Fig. 5. Semantics of switch programs

∀v ∈ V, ∀1 � i � n + 1 : 〈v; p1, . . . , pn〉 −−→ i ⇐⇒ v � π −−→S i (�)

In other words, program π delivers a correct and complete implementation
for pattern matching.

4 Pattern Matching Synthesis, Relationally

In this section we describe a relational formulation for the pattern matching
synthesis problem. Practically, this amounts to constructing a goal with a free
variable corresponding to the switch program to synthesize for (arbitrary) list
of patterns. In order to come up with a tractable goal certain steps have to be
performed. We first describe the general idea, and then consider these steps in
detail.

Our idea of using relational programming for pattern matching synthesis is
based on the following observations:

– For the switch language we can implement a relational interpreter7 evaloS
with the following property: for arbitrary v ∈ V, π ∈ S and i ∈ N

evaloS v π i ⇐⇒ v � π −−→S i

7 Conventionally for miniKanren, the names of relations are superscripted by “o”.

300 D. Kosarev et al.

In other words, evaloS interprets a program π for a scrutinee v and returns
exactly the same branch (if any) which is prescribed by the semantics of the
switch language.

– On the other hand, we can directly encode the declarative semantics of pattern
matching as a relational program matcho such that for arbitrary v ∈ V, pi ∈ P
and i ∈ N

matcho v p1, . . . , pk i ⇐⇒ 〈v; p1, . . . , pk〉 −−→ i

Again, matcho succeeds with 1 � i � k iff pi is the leftmost pattern, matching
v; otherwise it succeeds with i = k + 1.

We address the construction of relational interpreters for both semantics in
Sect. 4.1.

Being relational, both evaloS and matcho do not just succeed or fail for ground
arguments, but also can be queried for arguments with free logical variables,
thus performing a search for all substitutions for these variables which make the
relation hold. This observation leads us to the idea of utilizing the definition of
the pattern matching synthesis problem, replacing “−→” with matcho, “−→S” with
evalo, and π with a free logical variable ? , which gives us the goal

∀v ∈ V, ∀1 � i � n + 1 : matcho v p1, . . . , pn i ⇐⇒ evalo v ? i

This goal, however, is problematic from relational point of view for a number of
reasons.

First, miniKanren provides rather a limited support for universal quan-
tification. Apart from being inefficient from a performance standpoint, existing
implementations either do not coexist with disequality constraints [5] or do not
support quantified goals with an infinite number of answers [23]. As we will see
below, both restrictions are violated in our case. Second, there is no direct sup-
port for the equivalence of goals (“⇔”). Thus, reducing the original synthesis
problem to a viable relational goal involves some “massaging”.

We eliminate the universal quantification over the infinite set of scruti-
nees, replacing it by a finite conjunction over a complete set of samples. For
a sequence of patterns p1, . . . , pk a complete set of samples is a finite set of
values E(p1, . . . , pk) ⊆ V with the following property:

∀π ∈ S : [∀v ∈ E(p1, . . . , pk), ∀i ∈ N : 〈v; p1, . . . , pk〉 −−→ i⇐⇒v � π −−→S i]⇒
[∀v ∈ V, ∀i ∈ N : 〈v; p1, . . . , pk〉 −−→ i ⇐⇒ v � π −−→S i]

In other words, if a program implements a correct and complete pattern
matching for all values in a complete set of samples, then this program imple-
ments a correct and complete pattern matching for all values. The idea of using
a complete set of samples originates from the following observation: each pattern

Relational Synthesis for Pattern Matching 301

describes a (potentially infinite) set of values, and pattern matching splits the
set of all values into equivalence classes, each corresponding to a certain match-
ing pattern. Moreover, the values of different classes can be distinguished only
by looking down to a finite depth (as different patterns can be distinguished in
this way). The generation of a complete sample set will be addressed below (see
Sect. 4.2). Example-based program synthesis is not a completely new technique
in relational programming [7]; in our case, however, we can ensure the correct-
ness of the synthesis result, while in previous reports it had to be established
externally.

To eliminate the universal quantification over the set of answers we rely on
the functionality of declarative pattern matching semantics. Indeed, given a fixed
sequence p1, . . . , pk of patterns, for every value v there is exactly one answer value
i, such that 〈v; p1, . . . , pk〉 −−→ i. We can reformulate this property as

∃i : 〈v; p1, . . . , pk〉 −−→ i =⇒
(

∀j : 〈v; p1, . . . , pk〉 −−→ j =⇒ j = i
)

Thus, we can replace universal quantification over the sets of answers by exis-
tential one, for which we have an efficient relational counterpart—the “ fresh”
construct.

Following the same argument, we may replace the equivalence with conjunc-
tion: indeed, if

〈v; p1, . . . , pk〉 −−→ i

for some i, then (by functionality), for any other j 	= i

¬ (〈v; p1, . . . , pk〉 −−→ j)

A correct pattern matching implementation π should satisfy the condition

v � π −−→S i

But, by the determinism of the switch language semantics, it immediately
follows, that for arbitrary j 	= i

¬ (v � π −−→S j)

Thus, the goal we eventually came up with is

∧
v∈E (p1,...,pk)

fresh (i) {matcho v p1, . . . , pk i ∧ evaloS v ? i} (��)

From a relational point of view this is a pretty conventional goal which can
be solved by virtually any decent miniKanren implementation in which the
relations evaloS and matcho can be encoded.

302 D. Kosarev et al.

Finally, we can make the following important observation. Obviously, any
pattern matching synthesis problem has at least one trivial solution. This, due
to the completeness of relational interleaving search [12,27], means that the goal
above can not diverge with no results. Actually it is rather easy to see that
any pattern matching synthesis problem has infinitely many solutions: indeed,
having just one it is always possible to “pump” it with superfluous “otherwise”
clauses; thus, the goal above is refutationally complete [6,26]. These observations
justify the totality of our synthesis approach. In Section 5 we show how we can
make it provide optimal solution.

4.1 Constructing Relational Interpreters

In this section we address the implementation of relations evaloS and matcho.
In principle, it amounts to accurate encoding of relations “=⇒” and “=⇒ S” in
miniKanren (in our case, OCanren). We, however, make use of a relational
conversion [17] tool, called noCanren, which automatically converts a subset
of OCaml into OCanren. Thus, both interpreters are in fact implemented in
OCaml and repeat corresponding inference rules almost literally in a familiar
functional style. For example, functional implementation of a declarative seman-
tics looks like follows:

let rec 〈v; p〉 =
match (v , p) with
| (_ , Wildcard) → true
| (Ck v∗ , Ck p∗) → list_all 〈;〉 (list_combine v∗ p∗)
| _ → false

let matcho v p∗ =
let rec inner i p∗ =

match p∗ with
| [] → i
| p : : p∗ → if 〈v; p〉 then i else inner S(i) p∗

in inner O p∗

We mixed here the concrete syntax of OCaml and mathematical notation,
used in the definition of the relation in question, to underline their similarity;
the actual implementation only a few lines of code longer. Note, we use here
natural numbers in Peano form and custom list processing functions in order to
apply relational conversion later.

Using relational conversion saves a lot of efforts as OCanren specifications
tend to be much more verbose; in addition relational conversion implements
some “best practices” in relational programming (for example, moves unifica-
tions forward in conjunctions and puts recursive calls last). Finally, it has to
be taken into account that relational conversion of pattern matching introduces
disequality constraints.

Relational Synthesis for Pattern Matching 303

4.2 Dealing with a Complete Set of Samples

As we mentioned above, a complete set of samples plays an important role in
our approach: it allows us to eliminate universal quantification over the set of all
values. As we replace the universal quantifier with a finite conjunction with one
conjunct per sample value reducing the size of the set is an important task. At
the present time, however, we build an excessively large (worst case exponential
of depth) number of samples. We discuss the issues with this choice in Sect. 6
and consider developing a more advanced approach as the main direction for
improvement.

Our construction of a complete set of samples is based upon the following
simple observations. We simultaneously define the depth measure for patterns
and sequences of patterns as follows:

d (p1, . . . , pk) = max {d (pi)}
d () = 0

d (Ck p1, . . . pk) = 1 + d (p1, . . . , pk)
As a sequence of patterns is the single input in our synthesis approach we will
call its depth synthesis depth.

Similarly, we define the depth of matching expressions

dM (•) = 1
dM (m [i]) = 1 + dM (m)

and switch programs:

dS (return i) = 0
dS (switch m of C1 → s1, . . . , Ck → sk otherwise s) =

max {dM (m), dS (si), dS (s)}
Informally, the depth of a switch program tells us how deep the program can

look into a value.
From the definition of 〈;〉 it immediately follows that a pattern p can only

discriminate values up to its depth d (p): changing a value at the depth greater
or equal than d (p) cannot affect the fact of matching/non matching. This means
that we need only consider switch programs of depth no greater than the syn-
thesis depth. But for these programs the set of all values with height no greater
than the synthesis depth forms a complete set of samples. Indeed, if the height of
a value less or equal to the synthesis depth, then this value is a member of com-
plete set of samples and by definition the behavior of the synthesized program
on this value is correct. Otherwise there exists some value s from the complete
set of samples, such that given value can be obtained as an “extension” of s at
the depth greater than the synthesis depth. Since neither declarative semantics
nor switch programs can discriminate values at this depth, the behavior for a
given value will coincide with the correct-by-definition behavior for s.

The implementation of complete set generation, again, is done using rela-
tional conversion. The enumeration of all terms up to a certain depth can be

304 D. Kosarev et al.

acquired from a function which calculates the depth of a term: indeed, convert-
ing it into a relation and then running with fixed depth and free term arguments
delivers what we need. Thus, we add an extra conjunct which performs the
enumeration of all values to the relational goal (��), arriving at

deptho v n ∧ fresh (i) {matcho v p1, . . . , pk i ∧ evaloS v ? i} (� � �)

Here n is a precomputed synthesis depth in Peano form.

5 Implementation and Optimizations

In this section we address two aspects of our solution: a number of optimizations
which make the search more efficient, and the way it ends up with the optimal
solution.

The relational goal in its final form, presented in the previous section, does
not demonstrate good performance. Thus, we apply a number of techniques,
some of which require extending the implementation of the search. Namely, we
apply the following optimizations:

– We make use of type information to restrict the subset of constructors which
may appear in a certain branch of program being synthesized.

– After a complete set of samples is generated, we use it to put auxiliary con-
straints on matching expressions. For example, if we can detect that a match-
ing expression points to a subexpression of scrutinee which can start with
a single constructor (like tuples), we can prohibit it from being considered
during the synthesis.

– We implement structural constraints which allow us to restrict the shape of
terms during the search, and utilize them to implement pruning.

In our formalization we do not make any use of types since as a rule type
information does not affect matching. In addition, utilizing the properties of a
concrete type system would make our approach too coupled with this particular
type system, hampering its reusability for other languages. Nevertheless we may
use a certain abstraction of type system which would deliver only that part
of information which is essential for our approach to function. Currently, we
calculate the type of any matching expression in the program being synthesized
and from this type extract the subset of constructors which can appear when
branching on this expression is performed. The number of these constructors
restricts the number of branches which a corresponding switch expression can
have. In our implementation we assume the constructor set ordered, and we
consider only ordered branches, which restricts branching even more.

Our approach to finding an optimal solution in fact implements branch-and-
bound strategy. The birds-eye view of our plan is as follows:

– We construct a trivial solution, which gives us the first estimate.

Relational Synthesis for Pattern Matching 305

– During the search we prune all partial solutions whose size exceeds the current
estimate. We can do this due to the top-down nature of partial solution
construction.

– When we come up with a better solution we remember it and update current
estimate.

This strategy inevitably delivers us the optimal solution since there are only
finitely many switch programs, shorter than trivial solution.

In order to implement this strategy we extended OCanren with a new prim-
itive called structural constraint, which may fail on some terms depending on
some criterion specified by an end-user. Structural constraints can be seen as a
generalization of some known constraints8 like absento or symbolo in existing
miniKanren implementations [9], so they can be widely used in solving other
problems as well. Note, we could implement other constraints we considered (on
the depth of switch programs, on the type of scrutinee) as structural. However,
our experience has shown that this leads to a less efficient implementation. Since
these constraints are inherent to the problem, we kept them hardcoded.

5.1 Reducing the Complete Set of Samples

Although in general our approach requires an exponential number of samples
to be generated, in some cases a complete set of examples can be reduced. For
example, for the following pattern matching problem

(_ , _ :: _ :: _)
(_ , _ :: _)

the synthesized program should not investigate the left subtree of the scru-
tinee since its contents can not alter the behaviour of pattern matching.

The set of admissible matching values s∪ also can be restricted using the
same arguments which we described in Sect. 4.2. This set essentially describes
the paths to the “interesting” subexpressions of the scrutinee, and it can be
computed statically before the synthesis procedure:

s (m, C p1 . . . pk) = {m} ∪
k⋃

i=1
s(m[i], pi)

s (m,) = ∅

s∪ (p1, . . . , pk) =
k⋃

i=1
s(•, pi)

For the example above, the set s∪ is

{•, •[1], •[1][1]}
8 The constraint symbolo is similar to symbol? function in Scheme. The constraint
absento ensures that specific term is not a subterm of another term.

306 D. Kosarev et al.

The complete set of samples then can be the following 3-element set:

([], [])
([], 42 :: [])
([], 42 :: 42 :: [])

where underlined expressions are chosen arbitrarily. A straightforward algorithm
from the Sect. 4.2 would generate the larger set of 23 examples.

Table 1. The results of synthesis evaluation

Patterns

Number

of

samples

First

answer

size

First

answer

time

(ms)

Answers

found

Optimal

answer

size

Optimal

answer

time

(ms)

Total

search

time

(ms)

A
B
C

3 2 1 2 1 2 2

true
false

2 1 <1 1 N/A N/A <1

(true , _)
(_ , true)
(false , false)

4 2 5 1 N/A N/A 11

(_ , false , true)
(false , true , _)
(_ , _ , false)
(_ , _ , true)

8 6 ∼1000 3 4 ∼2100 ∼2300

(Succ _ , Succ _)
(Zero , _)
(_ , Zero)

4 2 30 1 N/A N/A ∼50

(Nil , _)
(_ , Nil)
(Nil2 , _)
(_ , Nil2)
(Cons (_ ,_) ,Cons(_ ,_))

9 5 45 1 N/A N/A ∼800

(_ , _ , (Ldi _) : :_)
(_ , _ , (Push _) : :_)

5 3 11 1 N/A N/A ∼ 30

(_ , _ , (Ldi _) : :_)
(_ , _ , (Push _) : :_)
(Int(_) , _ , (IOp _) : :_)

20 7 ∼1700 3 5 ∼1800 ∼11000

Relational Synthesis for Pattern Matching 307

The set s∪ can be used for sample enumeration in the following manner.
During the enumeration we hold current matching expression which will be used
to access current subtree of the sample. If that expression does not belong to
s∪, we can choose an arbitrary inhabitant; if not we enumerate all possible top-
level constructors for this subexpression and recurse. The correctness of this
algorithm relies on the fact that if an expression does not belong to s∪, then all
its extensions also do not belong to s∪.

6 Evaluation

We performed an evaluation of the pattern matching synthesizer on a number
of benchmarks. The majority of benchmarks were prepared manually; we didn’t
use any specific benchmark sets mentioned in literature [28] yet. The evalua-
tion was performed on a desktop computer with Intel Core i7-4790K CPU @
4.00 GHz processor and 8 GB of memory, OCanren was compiled with ocaml-
4.07.1+fp+flambda. All benchmarks were executed in the native mode ten times,
then average monotonic clock time was taken. The results of the evaluation are
shown in Table 1.

The patterns used for synthesis form the input of synthesis algorithm. Out-
puts are: the size of generated complete samples set, the size of the first answer,
the running time before receiving the first answer, the total number of pro-
grams synthesized, the size of the optimal (last) answer and the total time of
the synthesis. The information about the last answer is omitted (“N/A”) if the
synthesizer has found only a single answer. After discovering the last answer the
synthesizer could spend some time to check that no smaller answer existed. In
all benchmarks structural constraints were checked every 100 unifications and
all answers were requested.

We also give an example of synthesized program for the 4th benchmark,
which was taken from [20]. We used this benchmark in the Sect. 2 as the first
example (see Fig. 1).

Our algorithm starts the synthesis and in about 1 s discovers the first answer,
which is equivalent to the solution on Fig. 1b and consists of 6 switch expres-
sions. In about half a second it synthesizes a better answer with 5 switch expres-
sions:
switch •[0] with
| true → (switch •[2] with

| true → (switch •[1] with | true → 4 | _ → 1)
| _ → 3)

| _ → (switch •[1] with
| true → 2
| _ → (switch •[2] with | true → 1 | _ → 3))

And after about half a second it synthesizes the optimal answer of size 4.
Then it searches for an answer which would have less than 4 switch expressions
for some time, fails to find one and finishes the synthesis. The time between the
start and the end of synthesis is shown in the last column of Table 1.

308 D. Kosarev et al.

Our approach currently does not work fast for large benchmarks. On Fig. 7
we cite an example extracted from a bytecode machine for PCF [20,25]. For such
a complex examples (in terms of type definition complexity and the number and
size of patterns) both the size of the search space and the number of samples is
too large for our approach to work so far.

The last two benchmarks were constructed by reducing the number of types
(Fig. 6) and clauses in PCF example.

Fig. 6. Reduced types of PCF example

Fig. 7. An example from a bytecode machine for PCF

7 Conclusion and Future Work

We presented an approach for pattern matching implementation synthesis using
relational programming. Currently, it demonstrates a good performance only
on very small problems. The performance can be improved by searching for
new ways to prune the search space and by speeding up the implementation
of relations and structural constraints. Also it could be interesting to integrate
structural constraints more closely into OCanren’s core. Discovering an optimal

Relational Synthesis for Pattern Matching 309

order of samples and reducing the complete set of samples is another direction
for research.

The language of intermediate representation can be altered, too. It is interest-
ing to add to an intermediate language so-called exit nodes described in [15]. The
straightforward implementation of them might require nominal unification, but
we are not aware of any miniKanren implementation in which both disequality
constraints and nominal unification [8] coexist nicely.

At the moment we support only simple pattern matching without any exten-
sions. It looks technically easy to extend our approach with non-linear and dis-
junctive patterns. It will, however, increase the search space and might require
more optimizations.

References

1. Alvis, C.E., Willcock, J.J., Carter, K.M., Byrd, W.E., Friedman, D.P.: cKanren:
miniKanren with constraints. In: Proceedings of the 2011 Annual Workshop on
Scheme and Functional Programming, October 2011

2. Augustsson, L.: Compiling pattern matching. In: Jouannaud, J.-P. (ed.) FPCA
1985. LNCS, vol. 201, pp. 368–381. Springer, Heidelberg (1985). https://doi.org/
10.1007/3-540-15975-4 48

3. Baudinet, M., MacQueen, D.: Tree pattern matching for ML (1985)
4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -

Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004). https://doi.org/10.1007/978-3-662-
07964-5

5. Byrd, W.: Relational synthesis of programs. http://webyrd.net/cl/cl.pdf
6. Byrd, W.E.: Relational programming in miniKanren: techniques, applications, and

implementations. Ph.D. thesis, Indiana University, September 2009
7. Byrd, W.E., Ballantyne, M., Rosenblatt, G., Might, M.: A unified approach to

solving seven programming problems (functional pearl). PACMPL 1(ICFP), 81–
826 (2017). https://doi.org/10.1145/3110252

8. Byrd, W.E., Friedman, D.P.: αKanren: a fresh name in nominal logic program-
ming. In: Proceedings of the 2007 Annual Workshop on Scheme and Functional
Programming, pp. 79–90 (2007)

9. Byrd, W.E., Holk, E., Friedman, D.P.: miniKanren, live and untagged: quine gen-
eration via relational interpreters (programming pearl). In: Proceedings of the 2012
Annual Workshop on Scheme and Functional Programming, Scheme 2012, Copen-
hagen, Denmark, 9–15 September 2012, pp. 8–29 (2012). https://doi.org/10.1145/
2661103.2661105

10. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. MIT Press,
Cambridge (2005)

11. Garrigue, J.: Programming with polymorphic variants. In: ACM Workshop on ML
(1998)

12. Kiselyov, O., Shan, C., Friedman, D.P., Sabry, A.: Backtracking, interleaving, and
terminating monad transformers: (functional pearl), pp. 192–203 (2005). https://
doi.org/10.1145/1086365.1086390

13. Kosarev, D., Boulytchev, D.: Typed embedding of a relational language in OCaml,
pp. 1–22 (2016). https://doi.org/10.4204/EPTCS.285.1

https://doi.org/10.1007/3-540-15975-4_48
https://doi.org/10.1007/3-540-15975-4_48
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
http://webyrd.net/cl/cl.pdf
https://doi.org/10.1145/3110252
https://doi.org/10.1145/2661103.2661105
https://doi.org/10.1145/2661103.2661105
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.4204/EPTCS.285.1

310 D. Kosarev et al.

14. Laville, A.: Comparison of priority rules in pattern matching and term rewriting.
J. Symb. Comput. 11, 321–347 (1991)

15. Le Fessant, F., Maranget, L.: Optimizing pattern matching. SIGPLAN Not. 36(10),
26–37 (2001). https://doi.org/10.1145/507669.507641

16. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system, Documentation and user’s manual. Technical report, INRIA, August 2020.
https://caml.inria.fr/pub/docs/manual-ocaml-4.11/

17. Lozov, P., Vyatkin, A., Boulytchev, D.: Typed relational conversion. In: TFP (2017)
18. Maranget, L.: Compiling lazy pattern matching. In: LFP 1992 (1992)
19. Maranget, L.: Two techniques for compiling lazy pattern matching (1994)
20. Maranget, L.: Compiling pattern matching to good decision trees. In: Proceedings

of the 2008 ACM SIGPLAN Workshop on ML. ML 2008, pp. 35–46. Association
for Computing Machinery, New York (2008). https://doi.org/10.1145/1411304.
1411311

21. Marlow, S., Peyton Jones, S.: The Glasgow Haskell Compiler. Lulu, The Architec-
ture of Open Source Applications, vol. 2, January 2012. https://www.microsoft.
com/en-us/research/publication/the-glasgow-haskell-compiler/

22. McBride, F., Morrison, D., Pengelly, R.: A symbol manipulation system. Mach.
Intell. 5, 337–347 (1969)

23. Moiseenko, E.: Constructive negation for minikanren. In: miniKanren and Rela-
tional Programming Workshop (2019)

24. Peyton Jones, S.: The Implementation of Functional Programming Lan-
guages. Prentice Hall, January 1987. https://www.microsoft.com/en-us/research/
publication/the-implementation-of-functional-programming-languages/

25. Plotkin, G.D.: Lcf considered as a programming language. Theoret. Comput. Sci.
5, 223–255 (1977)

26. Rozplokhas, D., Boulytchev, D.: Improving refutational completeness of relational
search via divergence test. In: Proceedings of the 20th International Symposium
on Principles and Practice of Declarative Programming. PPDP 2018. Association
for Computing Machinery, New York (2018). https://doi.org/10.1145/3236950.
3236958

27. Rozplokhas, D., Boulytchev, D.: Certified semantics for minikanren. In: miniKan-
ren and Relational Programming Workshop (2019)

28. Scott, K.D., Ramsey, N.: When do match-compilation heuristics matter? (2000)
29. Sestoft, P.: ML pattern match compilation and partial evaluation. In: Danvy, O.,

Glück, R., Thiemann, P. (eds.) Partial Evaluation. LNCS, vol. 1110, pp. 446–464.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61580-6 22

30. Syme, D., Neverov, G., Margetson, J.: Extensible pattern matching via a
lightweight language extension. In: Proceedings of the 12th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2007, pp. 29–40. Asso-
ciation for Computing Machinery, New York (2007). https://doi.org/10.1145/
1291151.1291159

31. Turner, D.A.: Some history of functional programming languages. In: Loidl, H.-W.,
Peña, R. (eds.) TFP 2012. LNCS, vol. 7829, pp. 1–20. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40447-4 1

32. Wadler, P.: Compilation of pattern matching (1987)

https://doi.org/10.1145/507669.507641
https://caml.inria.fr/pub/docs/manual-ocaml-4.11/
https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1145/1411304.1411311
https://www.microsoft.com/en-us/research/publication/the-glasgow-haskell-compiler/
https://www.microsoft.com/en-us/research/publication/the-glasgow-haskell-compiler/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://doi.org/10.1145/3236950.3236958
https://doi.org/10.1145/3236950.3236958
https://doi.org/10.1007/3-540-61580-6_22
https://doi.org/10.1145/1291151.1291159
https://doi.org/10.1145/1291151.1291159
https://doi.org/10.1007/978-3-642-40447-4_1

REFINITY to Model and Prove Program
Transformation Rules

Dominic Steinhöfel(B)

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
steinhoefel@cs.tu-darmstadt.de

Abstract. is a workbench for modeling statement-level
transformation rules on Java programs with the aim to formally verify
their correctness. It is based on Abstract Execution, a verification frame-
work for abstract programs with a high degree of proof automation, and
interfaces with the KeY program prover. We describe the user interface
and functionality of , and illustrate its capabilities along the
application to proving conditional correctness of a code refactoring rule.

1 Introduction
Systematic program transformations are ubiquitous in modern program devel-
opment. Which programmer has never used a refactoring technique like method
extraction, not to mention a compiler? Further, less mundane transformation-
based approaches comprise optimization, incremental program development
which is “correct-by-construction” [9] or program synthesis from a high-level spec-
ification. The latter two are examples for domains where correctness is built into
the problem statement; yet, the question of correctness is also relevant, and has
been approached, in other areas [5,10,12–14,17]. Mechanized correctness argu-
ments about code transformations are frequently conducted in interactive envi-
ronments like Isabelle or . An example is the work on verified compilers [12,17].
While this approach permits expressing a wide range of properties, substantial
effort has to be invested to prove them manually by writing proof scripts. Exist-
ing approaches to prove transformations automatically, on the other hand, are tai-
lored to specific applications (such as regression verification [6], “peephole” opti-
mizations [13] or symbolic execution rules [2]) and lack expressiveness.

Proving the correctness of program transformation rules is a second-order
property involving quantification over programs. It can be understood as a
relational verification [3] problem over schematic programs. For example, the
schematic programs “p q” and “q p” (where p, q represent arbitrary statements)
describe a transformation swapping two statements. It is correct if we can prove,
as usual under additional assumptions, that all instances of those two pro-
grams behave equivalently. Recently, Abstract Execution (AE) has been pro-
posed [15,16], a technique for proving properties of abstract (i.e., schematic)
programs by symbolic execution. AE bridges the gap between expressiveness

This work was funded by the Hessian LOEWE initiative within the Software-Factory
4.0 project.
c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 311–319, 2020.
https://doi.org/10.1007/978-3-030-64437-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_16&domain=pdf
http://orcid.org/0000-0003-4439-7129
https://doi.org/10.1007/978-3-030-64437-6_16

312 D. Steinhöfel

and automation by restricting the class of addressable problems to a (reason-
ably big) subset—universal properties of program behavior—while at the same
time offering a versatile specification framework. Many transformations, even
loop transformations, can be proven fully automatically using AE, including the
example regarded in this paper and the complete refactoring case study of [15].1

AE is implemented on top of KeY [1], a deductive verification framework for
Java programs based on symbolic execution. AE extends the Java language by
Abstract Statements (ASs) “\abstract_statement P;”, and Abstract Expres-
sions (AExps) “\abstract_expression T e;”, where P and e are the identi-
fiers of the abstract statement/expression, and T is the type of the abstract
expression e. Programs containing ASs or AExps are called abstract programs.

In this paper, we present , a graphical tool for modeling statement-
level program transformation rules based on AE. supports the speci-
fication of abstract programs representing inputs and outputs of transformation
rules and of relational pre- and postconditions defining the proof objective. It
automatically generates non-trivial proof obligations for the KeY prover and ini-
tiates an automatic proof attempt. Thus, it significantly eases the workflow of
specifying, proving and refining transformation models. We describe how to use

to model and prove statement-based refactoring techniques.
Related Work. is, to our knowledge, the only existing relational verifi-
cation tool for abstract programs, and, thus, for general source-to-source program
transformations. Therefore, we can only compare our work to existing tools for
verification of concrete programs. LLRêve [8], for instance, is a tool for automat-
ically proving the equivalence of two C programs. SymDiff [11] is a “differential
program verifier.” Both operate on intermediate languages (LLVM IR and Boo-
gie) and use advanced techniques for automatically relating loops and recursive
procedures. relies on manually specified loop invariants and method
contracts, and therefore requires more interaction for concrete code. However,
loop invariants in abstract contexts can frequently be specified generically [15].
Organization. Subsequently, we describe specification language for
abstract programs along an illustrating example. Section 3 shows how to model
and prove this example transformation in . Section 4 concludes the
paper.

can be downloaded at key-project.org/REFINITY/, where we also
publish continuously updated documentation material. Additional support can
be obtained via email to the author of this paper, or via the channels mentioned
at key-project.org/getting-started/. Furthermore, most GUI elements of the tool
provide tooltips with brief help texts.

2 Specifying Abstract Programs
We explain the most relevant elements of specification language for
abstract programs along a code refactoring rule. is a frontend for AE
1 Generally, proofs may require user interaction, especially when relying on incomplete

theories like first-order arithmetic.

key-project.org/REFINITY/
https://www.key-project.org/REFINITY/
key-project.org/getting-started/
https://www.key-project.org/getting-started/

REFINITY to Model and Prove Program Transformation Rules 313

Fig. 1. The Replace Exception with Test Refactoring Schema

Fig. 2. Examples for Violated Constraints (Replace Exception with Test)

and uses its specification framework. Our aim here is not to provide a complete
introduction to the AE framework, for which we refer to [15].

Refactoring is the process of changing code in a way that does not alter its
external behavior, yet improves its internal structure [4]. The Replace Exception
with Test (REwT) refactoring proposes to introduce a check for a condition
causing an exception when it is reasonable to expect that the condition can be
checked. A good example is a division of two numbers put into a try–catch
block since an ArithmeticException is raised if the divisor is zero. Figure 1
visualizes this schema. REwT is a good example since it is generally unsafe due
to a subtlety: If TryStmt changes relevant parts of the state before throwing
an exception, the programs before and after the refactoring behave differently.
Consider, e.g., an instantiation of TryStmt with “z = 42; y = z / x;”: If x is
0, and the value of z is not changed by CatchStmt, the final value of z is 42
before the transformation, but equals the original value after.

One can create a provably correct model of REwT by demanding a statement
Rollback before CatchStmt “resetting” locations changed by TryStmt. For the
example, we could choose “x=0; z=0;” for Rollback. Note that the assigned
rollback values must not depend on locations changed by TryStmt.

In the following, we call the locations that may be changed by abstract
statements or expressions their frame, and the locations they may read their
footprint. We have to encode the following constraints into the refactoring model:
(1) TryStmt throws an exception if cond holds , (2) cond has no side effects, (3)
Rollback must assign the whole frame of TryStmt, and (4) the frame of TryStmt
and the footprint of Rollback must be disjoint. Figure 2 shows a “non-legal”
example instantiation where Constraints (2) to (4) are violated.

314 D. Steinhöfel

Fig. 3. Abstract Program Model for Replace Exception with Test

To impose constraints on the frames and footprints of abstract elements,
we have to define which locations ASs and AExps may write and read. How-
ever, no additional constraints than the mentioned ones should be enforced:
Frames and footprints should match to all programs satisfying Constraints (1)
to (4). We achieve this by using abstract, set-valued specification variables
inspired by the theory of dynamic frames [7]. Concretely, we introduce constants
frameTry/footprintTry, footprintRollback, and frameCatch/footprintCatch, each
representing an unknown set of concrete program variables or heap locations.

The complete abstract program model for Replace Exception with Test is
shown in Fig. 3. Constraints on ASs and AExps are imposed using specification
comments starting with “@”. In lines 6/7, 15/16, 22/23, and 27/28, we assign
the newly introduced abstract location set variables to the abstract program
elements, where the keyword assignable specifies a frame, and accessible
a footprint of AS or an AExp. To realize constraint (3), we put a “\hasTo”
specifier around the frame specification of Rollback. Without \hasTo, frame
and footprint specifications are only upper bounds.

Constraint (1) is implemented by specifying a precondition on abrupt com-
pletion due to a thrown exception for TryStmt in lines 17–19. The specification

REFINITY to Model and Prove Program Transformation Rules 315

language keyphrase used is “exceptional_behavior requires”. There are two
things to explain: i) The symbol throwsExcTryStmt is a new abstract predicate
introduced for specification purposes, and ii) the term “\value(footprintTry)”
represents the value of the location set footprintTry at this point in the program:
The locations represented by footprintTry do not change during program exe-
cution, while their values can change. It remains to specify that cond evaluates
according to the negated value of the predicate throwsExcTryStmt. In lines 8–
10, we constrain the expression’s value (represented by \result) accordingly.
The specification keyphrase “normal_behavior ensures” is used to declare a
functional postcondition on the normal completion behavior of cond.

For constraint (2) (cond is side effect-free), it suffices to specify that the
frame of cond is empty (“assignable \nothing”, line 6) and that it throws an
exception iff “false” holds (lines 11&12)—i.e., never.

Finally, the disjointness of the frame of TryStmt and footprint of Rollback
(Constraint (4)) is imposed on instantiations of the model by lines 1–3. The
keyword “ae_constraint” initiates the declaration of a constraint. Apart from
\disjoint, also other relations, like \subset, are supported.

This example covers all essential specification language features. We did not
cover advanced features like abstract functions (similar to abstract predicates,
but non-boolean), indexed abstract location set families (useful for involved loop
transformations), and mutual exclusion of abrupt completion behavior (using the
“\mutex” keyword in ae_constraints). See [15] for a full account.
Expressiveness. addresses statement-level transformation rules and is
additionally limited to universal, behavioral properties supported by AE. Trans-
formations above statement level, e.g., moving a field, cannot be expressed.
The same holds for structural properties which cannot be written using a fixed
abstract program scaffold with only “behavioral holes.” An example is a prop-
erty addressing all statements with at most three loops: This is not expressible,
since any AS with non-empty semantics represents statements with an arbitrary
number of loops. Statements with at least three loops are in scope, since one can
write an abstract program with three loops of arbitrary guards and bodies.

In the following section, we demonstrate how can be used to model
and prove program transformation rules such as Replace Exception with Test.

3 REFINITY in Action
Figure 4 shows the abstract program model for Replace Exception with Test in
the GUI. The abstract program fragments representing input and
output of the transformation are written to the two text fields at marker .
Field contains free program variables which can be referred to in the input
and output model without declarations; we do not need this feature in our exam-
ple. In the compartment labeled , we define abstract location set specification
variables used in the model, i.e., frameTry/footprintTry, footprintRollback, and
frameCatch/footprintCatch. models include as default an additional

316 D. Steinhöfel

Fig. 4. The window

location set “relevant” representing all relevant locations. If we do not impose
further constraints, e.g., exclude some locations from relevant, correctness has
to be proven under the assumption that all locations are in this set. The sort
for abstract location sets is “LocSet”. The abstract predicate throwsExcTryStmt
is declared in input field . The argument sort “any” in the declaration is a
super type of all types. We use “any” since we pass the value of an abstract
location set to the predicate which can be instantiated to any type.

Fields and specify global assumptions and proof objectives for the
model. The effects of the abstract program fragments specified in field are
recorded in two sequences \result_1 and \result_2 for the input and out-
put model. Their elements can be accessed using standard array syntax, e.g.,
\result_1[0]. If an abstract program completed due to a return of a value,
position 0 in the sequence contains the returned value. Likewise, if it completed
due to a thrown exception, the exception object is stored at position 1. Starting
from position 2, the final values of “relevant locations” declared in fields (in
the order defined there) are stored. In the example, the abstract set relevant is
the only relevant location set, which is also the default. The standard
postcondition, which we see in field , is \result_1==\result_2. Without
constraints about relevant, this specifies that returned values, thrown exceptions,
and the whole memory after termination have to be identical. More fine-grained
postconditions can also be specified: e.g., when an integer variable is registered
as first relevant location, “\result_1[2]>2*\result_2[2]” is admissible.

The global “Relational Precondition” () has access to the initial values of
free program variables (field) and abstract location sets (field). For the
example, we did not specify a global precondition.

REFINITY to Model and Prove Program Transformation Rules 317

A model can be saved in XML-based format using . Pressing
transforms the model into a KeY proof obligation and starts the automatic

proof search. If KeY reports success, the specified model is correct. Saved proof
certificates can be validated against the loaded model using the button. Proofs
of correctly specified refactorings without loops usually take between 30 s and two
minutes; for loop transformations, three minutes and more are possible. During
development of a new model, KeY will usually finish unsuccessfully, leaving one
or more proof goals open. In rare cases and for highly complicated models, the
reason could be that KeY needs more time or is not able to close the proof
although the model is valid—we hit a prover incapacity. In the latter case, one
can try to close the proof by interacting with the prover. More likely, though,
are problems in the model. Inspecting the open goals provides information on
how to refine the model to make it sound. Possible refinements include
(1) declaring the disjointness of abstract location sets,
(2) imposing mutual exclusion on abrupt completion behavior,
(3) declaring a functional postcondition for ASs or AExps, and
(4) refining the relational postcondition or
(5) adding a relational precondition.

The proof obligation generates for KeY consists of a Java class
with two methods left(. . .) and right(. . .) containing the abstract program
fragments, and of a problem description file containing proof strategy settings,
declarations of variable, function, predicate, and abstract location set symbols
and the proof goal (expressed in KeY’s program logic “Java Dynamic Logic” [1]).
The proof goal for Replace Exception with Test in concrete syntax spans 36 lines.
In a condensed representation, it has the form

{_result := null || _exc := null}
¬〈try { _result=obj.left()@Problem; }

catch (Throwable t) { exc=t; }〉
¬P (_result, _exc, value(relevant))

∧ {_result := null || _exc := null}
¬〈try { _result=obj.right()@Problem; }

catch (Throwable t) { exc=t; }〉
¬Q(_result, _exc, value(relevant)) ∧ Pre ∧ · · ·

� ∃ Seq s1, s2; (P (s1) ∧ Q(s2) ∧ Post(s1, s2))

where obj is the object under test,Pre and Post are the global precondition and
relational postcondition, and P and Q are fresh predicates.

spares the user from having to deal with such technicalities, sim-
plifying the modeling process. It automatically creates the mentioned files, starts
a KeY proof with reasonable presets, and displays proof status information in its
status bar. Additionally, it supports syntactic extensions unsupported by KeY.

318 D. Steinhöfel

4 Conclusion
In this paper, we presented , a graphical workbench for modeling
and proving Java program transformation rules based on Abstract Execution,
a verification framework for abstract programs. We demonstrated how to use

by showing how to specify and prove correct a refactoring rule with a
subtle snag. This builds on previous work, where “vanilla” AE has been used to
prove the correctness of several statement-based refactoring rules [16].
significantly eases the modeling process, making AE more accessible. For the
future, we plan to further increase usability and apply it to different
types of program transformations than refactoring rules.

References
1. Beckert, B., Klebanov, V., Weiß, B.: Dynamic logic for Java. Deductive Software

Verification – The KeY Book. LNCS, vol. 10001, pp. 49–106. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49812-6_3

2. Ahrendt, W., Roth, A., Sasse, R.: Automatic validation of transformation rules
for Java verification against a rewriting semantics. In: Sutcliffe, G., Voronkov, A.
(eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 412–426. Springer, Heidelberg
(2005). https://doi.org/10.1007/11591191_29

3. Beckert, B., Ulbrich, M.: Trends in relational program verification. Principled Soft-
ware Development, pp. 41–58. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98047-8_3

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Object Technol-
ogy Series. Addison-Wesley, Boston (1999)

5. Garrido, A., Meseguer, J.: Formal specification and verification of Java refactorings.
In: Proceedings of the 6th SCAM, pp. 165–174. IEEE Computer Society (2006)

6. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of sim-
ilar programs. Softw. Test. Verif. Reliab. 23(3), 241–258 (2013)

7. Kassios, I.T.: The dynamic frames theory. Formal Asp. Comput. 23(3), 267–288
(2011). https://doi.org/10.1007/s00165-010-0152-5

8. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using com-
piler IR - combining static verification and dynamic analysis. J. Autom. Reasoning
60(3), 337–363 (2018). https://doi.org/10.1007/s10817-017-9433-5

9. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Heidelberg (2012)

10. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. Proc. PLDI 2009, 327–337 (2009)

11. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7_54

12. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

13. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Practical verification of
peephole optimizations with alive. Commun. ACM 61(2), 84–91 (2018)

14. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: Proceedings of the 37th POPL, pp. 313–326 (2010)

15. Steinhöfel, D.: Abstract Execution: automatically proving infinitely many pro-
grams. Ph.D. thesis, TU Darmstadt, Department of Computer Science, Darmstadt,
Germany (2020). http://tuprints.ulb.tu-darmstadt.de/8540/

https://doi.org/10.1007/978-3-319-49812-6_3
https://doi.org/10.1007/11591191_29
https://doi.org/10.1007/978-3-319-98047-8_3
https://doi.org/10.1007/978-3-319-98047-8_3
https://doi.org/10.1007/s00165-010-0152-5
https://doi.org/10.1007/s10817-017-9433-5
https://doi.org/10.1007/978-3-642-31424-7_54
http://tuprints.ulb.tu-darmstadt.de/8540/

REFINITY to Model and Prove Program Transformation Rules 319

16. Steinhöfel, D., Hähnle, R.: Abstract Execution. In: Proceedings of the Third World
Congress on Formal Methods - The Next 30 Years, (FM), pp. 319–336 (2019).
https://doi.org/10.1007/978-3-030-30942-8_20

17. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: A new
verified compiler backend for CakeML. In: Proceedings of the 21st ICFP. ACM
(2016)

https://doi.org/10.1007/978-3-030-30942-8_20

Debugging, Profiling and Constraint
Solving

A Counterexample-Guided Debugger for
Non-recursive Datalog

Van-Dang Tran1,3(B), Hiroyuki Kato1,3, and Zhenjiang Hu1,2

1 National Institute of Informatics, Tokyo, Japan
{dangtv,kato}@nii.ac.jp

2 Peking University, Beijing, China
huzj@pku.edu.cn

3 The Graduate University for Advanced Studies, SOKENDAI, Kanagawa, Japan

Abstract. The Datalog language is used in many potential applications
including database queries, program analysis, bidirectional transforma-
tions, and so forth. In practice, such a Datalog program is expected to
be well-written to meet requirements such as the round-tripping prop-
erties in bidirectional programming. Although verifying and debugging
Datalog programs play an essential role to guarantee the expected prop-
erties of these programs, very few approaches have been proposed. The
existing approaches require much users’ effort in finding out unintended
behaviors or unexpected computations of the Datalog program that nei-
ther counterexamples nor bug explanations are provided. In this paper,
we propose an efficient approach to interactively debugging Datalog pro-
grams so that the user’s burden is reduced. Specifically, we provide a
syntax for users to specify properties of non-recursive Datalog programs,
present a counterexample generator that verifies specified properties and
generates counterexamples to show unexpected behaviors of user-written
programs, and design a debugging engine combined with a dialog-based
user interface to assist users in locating bugs in the programs with the
generated counterexamples. We have implemented a prototype of our
approach and demonstrated its feasibility and efficiency.

Keywords: Debugging · Datalog · Bidirectional transformation

1 Introduction

Datalog, a declarative logic programming language, has many applications in
a variety of domains such as deductive databases [17], data integration [12],
program analysis [4,11], bidirectional programming [21], and so forth. Verifying
Datalog programs plays an essential role to guarantee the properties of these pro-
grams required by the applications. When a property is not satisfied, it is more
important to reduce the user’s burden in debugging the unexpected behavior of
the program.

This kind of debugging problem, which arises when a property of a program
is not satisfied, has not been well studied for Datalog. There are two challenges
c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 323–342, 2020.
https://doi.org/10.1007/978-3-030-64437-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-64437-6_17

324 V.-D. Tran et al.

Fig. 1. Motivating example. The unexpected tuple and the buggy rule are highlighted.

in practice. The first challenge is searching for a concrete input database, i.e., a
counterexample that reveals the unexpected behavior of the program. The sec-
ond challenge is locating the buggy Datalog rules that break the property. By
adopting the algorithmic debugging method [7], a few approaches were proposed
for debugging Datalog programs [5,6,14]. However, the existing approaches nei-
ther provide users a way to specify the properties of Datalog programs nor
generate counterexamples to show the incorrectness of the programs. To locate
a bug, these approaches ask the users many questions about the computation
correctness of the Datalog program. In other words, the users have to find out
whether the Datalog program has unintended interpretations, e.g., the intention
is not met by the program results. Identifying such unintended interpretations
becomes costly when the input database of the program is not small.

An ideal approach to debugging would allow the user to specify the program’s
properties and automatically run all the checks. The properties of a program are
commonly specified by a set of assertions such as equalities, domain constraints,
containments, and so forth. For Datalog, which is a logic programming language
in relational databases, it is intuitive for programmers to specify the assertions
in the forms of relational predicates. For example, one may consider that some
relations of the Datalog program must be equivalent or some relations must be
empty, i.e., the corresponding predicates are always false.

We illustrate with the following example the property specifications and the
debugging problem of Datalog programs.

Example 1 (Motivating Example: View Update Strategy). In this example, we
consider an application of Datalog in describing view update strategies [21].
Suppose that we are given a database of two base relations s1(A,B) and s2(A,B)
(Fig. 1) with a view v(A,B) defined over these two relations by a union query:
v = get(s1, s2) = s1 ∪ s2. The following is a buggy Datalog program (denoted as
putdelta) that describes a view update strategy, i.e., a description about how to
update the base relations s1 and s2 through the view v.

Δ−
s1(X,Y) :- s1(X,Y),¬v(X,Y). (r1)

A Counterexample-Guided Debugger for NR Datalog 325

Δ−
s2(X,Y) :- s2(X,Y),¬v(X,Y). (r2)
m(Y,X) :- v(X,Y),¬s1(X,Y). (r3)

Δ+
s1(X,Y) :- m(X,Y),¬s2(X,Y). (r4)

In putdelta, for a relation, Δ+ and Δ− denote the insertion and deletion sets
on the relation, respectively. Rules (r1) and (r2) state that if a tuple 〈X,Y 〉 is
in s1 or s2 but not in v, it will be deleted from s1 or s2, respectively. Rule (r3)
checks the tuples in v but not in s1, and stores these tuples in a mediate relation
m. The last rule states that if a tuple 〈X,Y 〉 is in m but not in s2, it will be
inserted into s1. putdelta takes as input the states of s1, s2, and v to produce
the delta relations of s1 and s2.

Such a putback program putdelta is required to satisfy round-tripping prop-
erties to maintain the consistency of view updates, as formulated in the existing
works [10,21]. Here, we illustrate the problem with the property (called Get-
Put) that in the input of putdelta, if the view is unchanged, i.e., v = s1 ∪ s2,
the output of putdelta must be empty. We use first-order logic sentences (Fig. 1)
to specify the constraints of the input (called precondition) and the constraints
over the output (called postcondition).

Figure 1 shows a counterexample of GetPut that is a collection of tuples in
the source tables and the view (s1, s2, v). Over this counterexample, the result
of putdelta is Δ−

s1 = Δ−
s2 = ∅ and Δ+

s1 = {〈b2, a2〉}. That means tuple 〈b2, a2〉 is
inserted into s1. This insertion is not expected by the postcondition. Since the
input of putdelta satisfies the precondition but the output does not satisfy the
postcondition, the GetPut property of putdelta is violated.

The user may wonder why tuple 〈b2, a2〉 of Δ+
s1 occurs unexpectedly in the

output of putdelta. From this unexpected tuple, the problem now is to detect
which rules in the original Datalog program are the causes. Here, in the head of
rule (r3), the variables X and Y are placed in the wrong positions and thereby
some wrong tuples are derived. This bug must be fixed to make putdelta satisfy
the GetPut property. ��

We believe that for a required property of a Datalog program, the user may
not only have unexpected mistakes such as typos but also have wrong intentions
that do not conform to the property. Providing suggestions on how to correct the
program is very useful to users but is a challenging issue. In addition, debugging
is an ambiguous process that there are many possible causes for a bug. Therefore,
it is essential to design an interface that lets users interact with the underlying
debugging engine. For example, the user can mark suspicious rules to inspect or
decide how to proceed for the bug ambiguity.

The key insight of this paper is that counterexamples play a central role in
debugging Datalog programs. First, a program is buggy if and only if a coun-
terexample exists. Second, to be useful for debugging the Datalog program, a
counterexample is expected to be a realistic and simple database.

326 V.-D. Tran et al.

Our approach is statically generating such a counterexample rather than
dynamically testing the program with randomly generated test cases as in other
works such as [3]. Over the generated counterexample, bugs can be observed in
the execution results of the Datalog program. Although data provenance tech-
niques from the database literature [16] can provide useful support to explain
how and why the unexpected results are derived, whether we can use this prove-
nance information to efficiently track down the detailed source of bugs remains
unclear. In this paper, we fulfill this gap by a novel method that combines the
provenance information with the user interaction for resolving the ambiguity in
debugging. In summary, this paper has the following contributions:

– We present a new way to use a syntactic extension of non-recursive Datalog
for specifying the properties of a Datalog program.

– To explain to the user the behavior of the written Datalog program, we
develop a counterexample generator that statically checks specified proper-
ties of non-recursive Datalog programs and generates counterexamples for
showing why the properties are not satisfied.

– To reduce the user’s effort of correcting buggy Datalog programs, we design a
user interface and a provenance-based debugging engine to assist the user in
locating the bugs with the counterexamples. The debugging engine provides
correction hints to the user when the bugs are found.

– To demonstrate the efficiency and the usability of the proposed approach, we
have implemented a prototype of the approach and evaluated it with Datalog
programs in practice. The source code is available upon request.

The paper is organized as follows. Section 2 gives some background about the
Datalog language with syntax extensions. In Sect. 3, we explain the design of our
proposed counterexample generation method. We describe the counterexample-
guided debugging approach in Sect. 4 and the experiment in Sect. 5. Section 6
presents related works. Section 7 wraps up the paper.

2 Background

A pure Datalog program is a finite set of logical rules, and each rule is an
expression of the form [9]:

r0(X0) :- r1(X1), . . . , rn(Xn).

where r0, r1, . . . , rn are relations, “:- ” is a variant of the standard logical impli-
cation “←” from the rule body in the right-hand side to the rule head in the
left-hand side. Each Xi (i ∈ [0, n]) is a tuple of variables. Each variable occurring
in X0 must occur in at least one of X1, . . . ,Xn in the body.

The relations in a Datalog program are divided into two categories:

A Counterexample-Guided Debugger for NR Datalog 327

Fig. 2. Counterexample generation architecture

– EDB relations, which are physically stored in a relational database, called
extensional database (EDB). These relations are the input of the program.

– IDB (intensional database) relations, which are derived from the EDB rela-
tions using the Datalog program. An IDB relation occurs in some rule heads
while an EDB relation can never be in the head of a rule. An IDB relation
is recursive if it appears in both the head and the body of a rule. A Datalog
program is non-recursive if it has no recursive IDB relation.

We can extend Datalog by allowing negations and built-in predicates such as
equality (=) or comparison (<,>) in Datalog rule bodies but in a safe way that
each variable occurring in the negated atoms or the built-in predicates must also
occur in some positive atoms [9]. Throughout the paper, we refer Datalog to the
Datalog language with the extensions of safe negation and built-in predicates.

Let P be a Datalog program and D be the database of all the EDB and IDB
relations. A tuple A in r, or a fact r(A), is immediately inferred from P and D
if it satisfies one of the following conditions:

– A ∈ r, where r is an EDB relation.
– r(A) :- (¬)r1(A1), . . . , (¬)rn(An). is an instantiation of a rule in P , i.e.,

all variables in the rule are substituted with constants. Here, a negative fact
¬ri(Ai) holds if the fact ri(Ai) does not hold, i.e., Ai is not a tuple of ri in
D. This is based on the Closed World Assumption (CWA) [9].

Semantically, evaluating P is computing the minimum database D such that
every tuple in D is immediately inferred from D and P . In other words, we
compute the least fixpoint of the immediate inference operator. In the standard
bottom-up evaluation strategy for Datalog, the least fixpoint is obtained from
P and the input EDB database by deriving all IDB tuples with a finite number
of immediate inferences. To deal with negations in the Datalog program, the
Datalog program is stratified to ensure that all the tuples of an IDB relation are
derived before using any negative facts of this IDB relation in other immediate
inferences. This is because if an IDB relation is incomplete, it is not sufficient to
judge a negative fact of the IDB relation. The sequence of immediate inferences
used for deriving a fact is called a proof of the fact and can be represented in a
proof tree with different levels of the applied rules and facts.

328 V.-D. Tran et al.

3 Counterexample Generation

In this section, we present our approach to statically validating and generating
counterexamples for a specified property of a non-recursive Datalog program.

Figure 2 shows our counterexample generation architecture. It consists of
two main parts: a validator for statically checking the specified property and
a counterexample generator for finding a counterexample for the property. The
Datalog program with its property specification is first passed to the validator.
If the validator successfully proves that the program satisfies the property, we
conclude there is no counterexample. If the validator fails, the Datalog program
is passed to the counterexample generator. Since many static checks such as
equivalence for Datalog programs are undecidable [19], in both the validator
and generator, we transform the property of the Datalog program into logical
constraints that can be solved by an SMT solver, even though the termination
is not guaranteed.

3.1 Specifying Program Properties

As mentioned previously, rather than introducing a new language, our approach
is to use the same language to specify properties of a non-recursive Datalog
program using preconditions and postconditions. By following the syntax intro-
duced in [8,21], we allow Datalog rules to have truth constant false (denoted as
⊥) in the head. In this way, a precondition, as well as a postcondition, is a set
of Datalog rules that have the following form:

⊥ :- r1(X1), . . . rn(Xn). (*)

That means ∀X, (r1(X1)∧. . .∧rn(Xn)) → ⊥, where X are all the free variables.

Example 2. Consider the GetPut property in Example 1, which says that if
there is no change to the view v, there is no change to the base tables s1 and s2.
We use non-recursive Datalog to specify the precondition as follows:

vold(X,Y) :- s1(X,Y).
vold(X,Y) :- s2(X,Y).

⊥ :- v(X,Y),¬vold(X,Y).
⊥ :- vold(X,Y),¬v(X,Y).

The first two rules store the union of s1 and s2 in a mediate relation vold, and the
last two rules indicate that v is the same as vold, i.e., the view does not change.
And we can specify the postcondition that there is no change to the base tables
as follows.

⊥ :- Δ−
s1(X,Y).

⊥ :- Δ−
s2(X,Y).

⊥ :- Δ+
s1(X,Y).

A Counterexample-Guided Debugger for NR Datalog 329

3.2 Validation

We use an SMT solver to prove the specified property of the Datalog program
by translating the property into a first-order logic (FO) sentence. If there is a
proof such that the FO sentence is valid, the property is satisfied.

Our transformation from non-recursive Datalog to first-order logic is based
on the standard transformation [2,9]. Let P be a non-recursive Datalog program,
we inductively transform each relation r in P and the rules of the precondition
and the postcondition into an equivalent FO formula ϕr as follows:

If r is an EDB relation, ϕr = r(Xr) = r(X1, . . . , Xarity(r)).
If r is an IDB relation, i.e., r occurs in the head of m rules:

r(Xr) :- α1,1, . . . , α1,n1 .
. . .
r(Xr) :- αm,1, . . . , αm,nm

.

The FO formula of r, if considering only the i-th rule, is ϕr,i(Xr) = ∃Ei,
ni∧

j=1

βi,j ,

where Ei contains the bound variables of the i-th rule, i.e., the variables not in
the rule head, and

βi,j =

⎧
⎨

⎩

ϕw(Z), if αi,j is an atom w(Z)
¬ϕw(Z), if αi,j is a negated atom ¬w(Z)
αi,j , if αi,j is an equality or a built-in predicate, e.g., x < y

By combining all the rules of r, we have:

ϕr(Xr) =
m∨

i=1

ϕr,i(Xr) =
m∨

i=1

⎛

⎝∃Ei,

ni∧

j=1

βi,j

⎞

⎠

By having the first-order formulas of all the IDB relations, each special Dat-
alog rule of (*), which has ⊥ in the head in the precondition and postcondition,
is transformed into a first-order sentence: ∀X, (ϕr1(X1) ∧ . . . ∧ ϕrn(Xn)) → ⊥.
The precondition, as well as the postcondition, is a conjunction of all its FO
sentences transformed from the special Datalog rules.

Let ϕpre and ϕpost be the first-order sentences of the precondition and the
postcondition, respectively. We employ an automated theorem prover to prove
whether ϕpost holds if ϕpre holds. In other words, we check whether the following
first-order sentence is valid: ϕpre → ϕpost.

3.3 Generating Counterexamples

As mentioned previously, to assist the user in debugging a specified property, we
shall generate counterexamples, which are used to guide the user to the location
of bugs. The simpler the counterexamples are, the easier the user can succeed in
debugging the program.

330 V.-D. Tran et al.

To generate a counterexample, our idea is to create a symbolic database and
transform the evaluation of the Datalog program over the symbolic database with
the specified property into a constraint program in Rosette [20]. The Rosette
symbolic execution runtime translates the program into logical constraints that
are performed by an underlying SMT solver such as Z3 [1]. The result obtained
by the Rosette framework is an interpretation of the symbolic input over which
the specified property of the Datalog program is violated.

Fig. 3. Transformation from Datalog to functions

To put it more concretely, we construct a symbolic input of the source and
view tables by representing each table as a list of tuples, each tuple is a list,
where each element is a symbolic value. The order and the duplicates of tuples
are ignored because a relation is a set of tuples rather than a list. Considering
Example 1, assuming that the types of attributes A and B are integer and real,
respectively, we define a symbolic table v as follows (similarly for s1 and s2).

(define-symbolic a1 integer?) (define-symbolic a2 integer?)
(define-symbolic b1 real?) (define-symbolic b2 real?)
(define t1 (list a1 b1)) (define t2 (list a2 b2))
(define v (list t1 t2))

Since string values are not supported in the underlying SMT solvers, in our
transformation, we use an integer symbol for a string attribute. A value for this
integer symbol will be mapped to a string value by using a predefined dictionary,
where the integer value is used as an index to determine the corresponding string
value. In other words, we build up a partial bijective function that maps an
integer value to a string in the dictionary. Since the dictionary has finite words,
we limit the values of a string attribute to be in the predefined dictionary. For
example, for a relation r(S : string), we define a symbolic tuple as the following:

A Counterexample-Guided Debugger for NR Datalog 331

(define-symbolic s1 integer?)
(assert (and (< -1 s1) (< s1 dictionary_size)))
(define t1 (list s1))

The assertion in the second line ensures that the value of s1 is in the index range
of the dictionary.

We evaluate a non-recursive Datalog program over a symbolic input by using
four functions: Cartesian product, Filter, Map, and Concat. Figure 3 illustrates
the steps for evaluating a relation r. For each rule of r, we first take a carte-
sian product over all positive relations in the rule body and then apply a filter
(Filter1) for the join attributes, a filter (Filter2) for all built-in predicates, and
another filter (Filter3) for the negative relations. Over the tuples resulted from
these tree filters, we use a mapping function to select the attributes appearing
in the rule head1. If r is defined by multiple rules, we evaluate r in each rule and
concatenate all the resulted tuples. For a non-recursive Datalog program, which
has many IDB relations, we can inductively evaluate all the IDB relations in the
program.

Example 3. For the first rule in Fig. 3, we take a cartesian product of the two
positive relations s and u. The result is first filtered by Filter2 to select only
tuples, where the second attribute of s agrees with the first attribute of u, i.e.,
Ys = Yu. Filter2 is applied to select the tuples satisfying X > 1. Filter3 checks
whether there exists a tuple 〈Xt, Zt〉 in t that agrees with the attributes Xs and
Zu in the tuples resulted from Filter2. The mapping function takes a projection
over the three-dimension tuples and results in two-dimension tuples. Function
Concat gets all the tuples computed by the two rules. ��

We now turn to encode the property that is specified by the precondition and
the postcondition. Recall that the precondition, as well as the postcondition, is
a set of Datalog rules having constant ⊥ in the head. To encode these Datalog
rules into Rosette constraints, we first replace ⊥ with a normal predicate, named
∅pre for the precondition and ∅post for the postcondition, and then encode the
evaluation of the obtained Datalog rules into functions as presented previously.
These two relations, ∅pre and ∅post, are both expected to be empty. With the
evaluation of ∅pre and ∅post over the symbolic input presented previously, we
first encode the precondition into an assertion that the length of table ∅pre is
equal to 0 as the following:

(assert (= 0 (length ∅pre)))
We then add another assertion that the length of table ∅post is greater than 0 to
solve the constraint on the symbolic input that the precondition is satisfied but
the postcondition is violated:

(solve (assert (< 0 (length ∅post))))

1 It is not necessary to filter duplicates here. The duplicates will be eliminated in all
the other checks and algorithms.

332 V.-D. Tran et al.

Algorithm 1: Counterexample generation
n ← 0 // The maximum size of input tables

Success ← False
while not Success do

n ← n + 1
foreach EDB relation ri do // Construct a symbolic input

Define ri as a list of n symbolic tuples.
// Encoding the property

Replace ⊥ in the precondition/postcondition with ∅pre/∅post.
Construct the evaluation of ∅pre and ∅post over the symbolic EDB relations.
Assert the constraints for ∅pre and ∅post:

(assert (= 0 (length ∅pre)))

(solve (assert (< 0 (length ∅post))))

(A list of symbol-value pairs, Success) ← Call the Rosette framework to
resolve the constraints
if Success then

foreach ri do // Instantiate all the EDB tables
Replace each symbol with the corresponding value.
Remove duplicates in ri.

return the instance of all the EDB tables.

Algorithm 1 summarizes the main steps in our proposed counterexample
generation. Starting from 0, we increase the maximum size, denoted as n, of each
input EDB table. With a value of n, we construct n symbolic tuples for each EDB
table. We encode the specified property by constructing assertions corresponding
to the precondition and the postcondition. We input these assertions to the
Rosette framework [20] to find a value for each symbol in the input that the
precondition is satisfied but the postcondition is not. If it succeeds, we stop the
while loop, instantiate all the EDB symbolic tables, and eliminate duplicates.
Otherwise, we continue the loop with an increased value of n.

4 Interactively Locating Bugs with Counterexamples

In this section, we present our method for interactively debugging a non-recursive
Datalog program with counterexamples. Our approach consists of a user interface
and an underlying debugging engine that assists the user in determining the
location of bugs that cause the unexpected behavior of the program.

4.1 Checking Counterexamples

As presented in the previous section, a counterexample is an instance of the input
database of the Datalog program such that the property, which is specified by
the precondition and the postcondition, is not satisfied. Given an instance of
the input database, to check whether the property is violated, we evaluate the
output and check whether the input satisfies the precondition and the output
does not satisfy the postcondition. Recall that both the precondition and the

A Counterexample-Guided Debugger for NR Datalog 333

postcondition are written in Datalog rules with a constant ⊥ in the head. We
check these conditions by replacing ⊥ with ∅pre(X)/∅post(X) for the precondi-
tion/postcondition, where X are variables in the rule body, and evaluating the
obtained Datalog rules. The specified property is violated if ∅pre is empty but
∅post is not empty. Any tuple appearing in ∅post is the symptom of the unex-
pected behavior of the Datalog program with respect to the specified property.

Example 4. Consider the putdelta program with an input database in Example 1
and its GetPut property specified in Example 2. To check GetPut, we check
the emptiness of ∅pre and ∅post in the following rules:

Fig. 4. Strata-based sequentialization.

vold(X,Y) :- s1(X,Y).
vold(X,Y) :- s2(X,Y).
∅pre(X,Y) :- v(X,Y),¬vold(X,Y).
∅pre(X,Y) :- vold(X,Y),¬v(X,Y).
∅post(X,Y) :- Δ−

s1(X,Y).
∅post(X,Y) :- Δ−

s2(X,Y).
∅post(X,Y) :- Δ+

s1(X,Y).

Clearly, in the result, there is no tuple in ∅pre but there is a tuple 〈b2, a2〉 in
∅post. Therefore, GetPut is violated.

4.2 Dialog-Based User Debugging Interface

Given a counterexample, the debugging problem is to locate the buggy Datalog
rules that cause the symptom that the output is faulty. It is extremely ambiguous
to determine the locations of bugs since there may be many possible reasons for a
fault in the output. Therefore, we allow the user to be involved in the debugging
process by designing a dialog-based interface that asks the user to confirm and
choose relevant options to handle the ambiguity occurring in the debugging
process.

Since Datalog is a declarative programming language, the computation is
not explicitly described in the Datalog program. Rather than constructing the
computation tree or graph from the Datalog program as in other existing works

334 V.-D. Tran et al.

[5,6,14], we shall sequentialize the Datalog program to construct an order of
the rules for the evaluation. In other words, we partition the original Datalog
program into a sequence of smaller parts, where the final output of the program
is obtained by evaluating these parts one by one in the order defined by the
sequence. Similarly, we also sequentialize Datalog rules of the postcondition,
where the head ⊥ is replaced by ∅post.

To construct a partition {P1, P2, . . . , Pn} of a Datalog program P , we use
the well-known stratification method for Datalog [9] simplified for the case that
there is no recursion in the Datalog program. Specifically, we use the precedence
graph defined as the following.

Definition 1. The precedence graph GP of a Datalog program P is a directed
graph, where nodes are the IDB relations of P and edges are relation dependen-
cies: if r(X) :- . . . r′(Y) . . . or r(X) :- . . . ¬ r′(Y) . . . is a rule in P , then
〈r′, r〉, which represents that r′ precedes r, is an edge in GP .

For a precedence graph, we assign to each node, which is a relation, all the
rules of the relation. The rules in each node in the precedence graph form a
stratum. We assign to each stratum a unique position such that if stratum Pi

precedes stratum Pj in the precedence graph, then i < j. Clearly, each stratum
in the graph can be evaluated only after all its preceding stratums are evaluated.

Figure 4 shows a program P , which is partitioned into n parts P1, P2, . . . , Pn,
and postcondition rules, which are partitioned into m parts Σ1, . . . , Σm. The
input of P , which consists of EDB relations, is the input for the first part P1.
We evaluate the output of P by evaluating each part individually that the output
of Pi−1 (IDBi−1) becomes the input of Pi (EDBi) for every part Pi. Similarly,
the output of P is the input of the postcondition rules. By evaluating Σ1, . . . , Σm

in this order, we obtain ∅post.
Any tuple unexpectedly appearing in ∅post indicates that the specified prop-

erty is violated. From this fault symptom, the debugging process is to analyze
how the data is changed after each stratum to detect which stratum contains
the bugs. In the input/output of a stratum, there are two types of faulty tuples:
wrong tuples, which unexpectedly appear, and missing tuples, which cannot be
computed as expected. For example, all the tuples in ∅post are wrong. This is
caused by wrong or missing tuples in the input of Σm, i.e., the output of Σm−1.

For each stratum Pi, if there is a wrong/missing tuple in the output of Pi

(IDBi), we have two possible reasons: Pi contains the buggy rules; or the input
of Pi, which is the output of Pi−1, contains wrong/missing tuples.

Since the root cause of the property violation is in the original Datalog pro-
gram P , only P1, P2, . . . , Pn need to be inspected. Meanwhile, the stratums of the
postcondition rules, Σ1, . . . , Σm, do not need to be inspected. They are used to
detect faulty tuples in the output of P . Our underlying debugging engine auto-
matically predicts the possible faults in the input of each stratum Σi. In this
way, the possible faults in the output of P are detected without user interaction.

The user interaction is allowed when the underlying debugging engine
inspects the stratums from Pn to P1. At each stratum Pi, when having a faulty
tuple in the output of Pi, we let the user confirm and choose one of the two

A Counterexample-Guided Debugger for NR Datalog 335

reasons for diagnosing the bugs by questioning the user about the validity of
IDBi−1, i.e., the input of Pi. Specifically, we evaluate all the stratums preceding
Pi to obtain IDBi−1 and use the faulty output of Pi (IDBi) to predict faulty
tuples in IDBi−1. On one hand, if the user confirms that IDBi−1 is valid, the
underlying engine will suspect Pi to infer possible buggy rules. On the other
hand, if the user finds suspiciousness in IDBi−1, the underlying engine will infer
possible wrong/missing tuples in IDBi−1 assuming Pi is correct, and then ques-
tion the user to confirm the relevant faulty tuples.

Fig. 5. Debugging interaction example.

Example 5. Figure 5 illustrates a debugging session for the putdelta program
and its GetPut property shown in Example 1. Here, putdelta is stratified into
four parts, P1, P2, P3, P4, corresponding to the four rules defining the four IDB
relations in the program. There is only one stratum Σ1 for the postcondition
rules. ��

4.3 Debugging Engine

We now present our underlying debugging engine that generates debugging
details for the dialog-based user interaction and performs the debugging pro-
cess based on the user’s choices. Specifically, the debugging engine traverses all
the stratums from the last one to the first one. At each stratum Pi, the debugging
engine predicts possible faults in the input of the stratum that cause the faults
observed in the output of the stratum and lets the user confirm and choose one
fault. If the user confirms the input of Pi is correct, the engine suspects Pi. In
contrast, if the user chooses one fault, the engine goes to the preceding stratum
Pi−1 for inspecting.

Assuming that the rules in the stratum are correct, and there is a faulty
(wrong or missing) tuple in the output of the stratum, we predict faulty tuples
in the input of the stratum based on the provenance information of the faulty
tuple in the output that is how it is derived or how it is not derived.

For a wrong tuple in the output of the stratum, its provenance can be
explained by constructing all the proof trees that are used by the stratum to
derive the tuple. In our stratification strategy, each stratum contains only rules

336 V.-D. Tran et al.

of an IDB relation. Therefore, the maximum height of the proof trees of wrong
output tuples is 1. If a wrong tuple does not belong to the IDB relation, it is
derived directly from the same wrong tuple in the input of the stratum. In con-
trast, if a wrong tuple belongs to the IDB relation, it is derived by an immediate
inference with rules in the stratum, thus its proof trees have height 1. The proof
trees can be extracted from the standard bottom-up evaluation strategy [9] of
Datalog by assembling all the immediate inferences.

Example 6. Considering the putdelta program in Example 4 and its stratifica-
tion in Fig. 5, the provenance of tuple 〈b2, a2〉 of ∅post in the output of the last
stratum is explained by the following proof tree:

Δ+
s1(b2, a2)

∅post(b2, a2)
[∅post(X,Y) :- Δ+

s1(X,Y).]

where Δ+
s1(b2, a2) is explained by the previous stratum as the following:

m(b2, a2) ¬s2(b2, a2)
Δ+

s1(b2, a2)
[Δ+

s1(X,Y) :- m(X,Y),¬s2(X,Y).]

��
From the constructed proof trees, we detect all the faulty tuples in the input

that must be changed to make the wrong tuples in the output disappear. For
a wrong tuple, which is derived directly from the same tuple in the input of
the stratum, we conclude this tuple in the input of the stratum is wrong. For a
wrong tuple derived by the rules of the stratum, all the proof trees of this tuple
must be deconstructed by changing the facts used in these proof trees.

Let w be the IDB relation defined in a stratum Pi, and w(A0) be a wrong
tuple in the output of Pi. A proof tree of w(A0) has the following form:

(¬)r1(A1) . . . (¬)rn(An)
w(A0)

[w(X0) :- (¬)r1(X1), . . . , (¬)rn(Xn).]

Here, we apply the rule w(X0) :- (¬)r1(X1), . . . , (¬)rn(Xn) with the facts
(¬)r1(A1), . . . , (¬)rn(An) to infer w(A0). Since w(A0) is derived if all the facts
(¬)r1(A1), . . . , and (¬)rn(An) hold, changing one of (¬)r1(A1), . . . , (¬)rn(An)
is sufficient to make w(A0) not derived, and thus correct w(A0). In other words,
w(A0) is wrong because one of the facts (¬)r1(A1), . . . , (¬)rn(An) is wrong.
We exclude facts that are from EDB relations because the EDB database is not
computed by the Datalog program. We raise a question to the user interface to
let the user confirm and choose one wrong tuple. This is repeatedly performed
for each proof tree of each wrong tuple in the output of Pi.

Remark 1. A fact ¬r(A) is wrong iff r(A) is missing. This follows from the
closed world assumption (CWA).

A Counterexample-Guided Debugger for NR Datalog 337

A missing tuple, which is not derived in the output of a stratum, is explained
by any proof tree that fails to be constructed. The failed proof tree cannot be
completed because of some facts that are required but do not hold. As presented
previously, in our stratification strategy, each stratum contains only rules of an
IDB relation that the proof trees of a tuple have maximum height 1. A proof
tree, which has height 1, is constructed by instantiating a rule in the stratum. To
avoid constructing an infinite number of proof trees that are not related to the
context of the Datalog program, as other approaches [16], we restrict the Datalog
program to its active domain, which is the set of all constants appearing in the
EDB relations and the program. Specifically, only values in the active domain
are used to instantiate a rule. In this way, we obtain a finite number of proof
trees for a tuple in the output.

We detect the faulty tuples in the input that cause a missing tuple in the
output as follows. If the missing tuple does not belong to the IDB relation defined
by the rules in the stratum, we conclude it is missing in the input of the stratum.
In contrast, we construct a proof tree of the missing tuple by instantiating a rule
in the stratum and then find all the facts not holding in the rule body. Clearly,
these faulty facts explain the missing tuple in the output of the stratum. In
this way, by constructing all the proof trees, we enumerate all possible faults in
the input and raise a question to the user for choosing the most suitable fault.
To reduce the number of possible faults, we also prefer the smaller faults to the
bigger ones. A fault is smaller if the number of faulty facts in the fault is smaller.
The smaller a fault is, the more easily it can be fixed.

We have predicted all the faults (wrong and missing tuples) in the input of
a stratum based on the assumption that the rules in the stratum are correct. At
the user interface level, we have raised questions to the user to confirm the faults
in the input that cause the faulty tuples in the output. Since a stratum contains
only rules of an IDB relation, named ri, changing the rules in the stratum can
only correct the faulty tuples of ri in the output. Therefore, for the faulty tuples
of ri, if in the input, there is no possible fault or the user confirms no predicted
fault is suitable, we can conclude that the rules in the stratum contain the bugs
and start inspecting the stratum’s rules.

Given a faulty tuple in the output of a stratum and assuming that all the
tuples in the input are correct, the problem is to determine which rules of ri are
wrong or whether a rule is missing. For a wrong tuple in the output, to locate
the corresponding buggy rules, we use the wrong tuple’s proof trees constructed
before. Specifically, all the rules applied in these proof trees are wrong since
they must be changed to make the wrong tuple disappear in the output. For a
missing tuple in the output, the user has two ways to fix the rules for producing
the missing tuple. The first option is changing one of the rules in the stratum
so that it can produce the missing tuple. The second option is adding to the
stratum a new rule that can be applied to derive the missing tuple.

To assist the user in correcting the buggy rules in the stratum, we give
the user correction hints by showing the proof trees of the faulty tuples and
showing the input and the output expected for adding/changing the rules. To be

338 V.-D. Tran et al.

efficient, at each stratum, we show all these observations to the users for finding
the cheapest way to correct all the bugs found.

Example 7. We illustrate our debugging approach by considering the putdelta
program in Example 1 with another property, called PutGet [21], specified as
follows. There is no rule for the precondition, and the postcondition is:

snew1 (X,Y) :- s1(X,Y),¬Δ−
s1(X,Y) (r5)

snew1 (X,Y) :- Δ+
s1(X,Y). (r6)

snew2 (X,Y) :- s2(X,Y),¬Δ−
s2(X,Y). (r7)

vnew(X,Y) :- snew1 (X,Y). (r8)
vnew(X,Y) :- snew2 (X,Y). (r9)

⊥ :- vnew(X,Y),¬v(X,Y). (r10)
⊥ :- v(X,Y),¬vnew(X,Y). (r11)

That means if we apply delta relations, Δ±
s1/s2

obtained from the putdelta pro-
gram, to the source relations, s1 and s2, and calculate the view vnew again, we
expect vnew to be the same as the initial view v. Let us consider a counterexample
of PutGet as the following: s1 = {〈a1, b1〉}, s2 = ∅, v = {〈a1, b1〉, 〈a2, b2〉}. Over
this counterexample, the result of putdelta is: Δ−

s1 = Δ−
s1 = ∅, Δ+

s1 = {〈b2, a2〉}.
Thus, vnew = {〈a1, b1〉, 〈b2, a2〉}, leading to that ∅post = {〈a2, b2〉, 〈b2, a2〉} in the
rules (r10) and (r11). Therefore, the PutGet property is violated.

Figure 6 illustrates how the causes of the wrong tuples ∅post(a2, b2) and
∅post(b2, a2) are predicted. Here, the putdelta program is stratified into P1, P2,
P3, P4 and the PutGet precondition is stratified into Σ1, Σ2, Σ3, Σ4.

Fig. 6. Debugging demonstration.

A Counterexample-Guided Debugger for NR Datalog 339

For the wrong tuple ∅post(b2, a2), by using its proof trees at each stratum of
Σ1, Σ2, Σ3 and Σ4, we have wrong tuples vnew(b2, a2), snew1 (b2, a2), snew1 (b2, a2),
and Δ+

s1(b2, a2), respectively. Since stratum Σ2 does not contain any rules defin-
ing snew1 , the wrong tuple snew1 (b2, a2) in the output of Σ2 is simply derived from
this wrong tuple snew1 (b2, a2) in the input of Σ2.

For the wrong tuple ∅post(a2, b2), at stratum Σ4, we predict a wrong fact
¬vnew(a2, b2) in the input of Σ4. That means vnew(a2, b2) is missing. At stra-
tum Σ3, there are two possible proof trees corresponding to rules (r8) and (r9),
respectively. Therefore, there are two possible causes of vnew(a2, b2): snew1 (a2, b2)
is missing or snew2 (a2, b2) is missing. We continue to predict the causes of each
of these tuples snew1 (a2, b2) and snew2 (a2, b2). Eventually, some predicted causes
are invalid. For example, at Σ2, the cause of the missing tuple snew2 (a2, b2) is a
missing tuple s2(a2, b2) which cannot be fixed because s2 is an EDB relation.
There is only one valid cause: Δ+

s1(a2, b2) is missing.

Table 1. Debugging results. � indicates that the property is satisfied.

ID Program Rules (program &

properties)

Counterexample

generation time (s)

Counterexample size (tuples) Number of

questionsDeltaDis GetPut PutGet

1 luxuryitems 12 8.721 � � 2 0

2 ukaz lok 13 7.162 � � 2 0

3 message 21 10.652 3 2 3 1

4 poi view 23 10.08 � 2 3 1

5 all cars 24 11.116 3 2 3 2

6 newpc 26 10.294 � � 3 1

7 products 28 13.614 � � 4 1

8 purchaseview 29 9.153 � 5 � 0

9 vehicle view 30 Timeout – – – –

10 koncerty 32 47.951 � � 5 2

11 phonelist 33 11.035 4 3 4 1

After predicting the faults in the output of P4, i.e., the output of the putdelta
program, the user interaction is triggered. At stratum P4, assuming P4 is correct,
the cause of the wrong tuple Δ+

s1(b2, a2) is a wrong tuple m(b2, a2) and the cause
of the missing tuple Δ+

s1(a2, b2) is a missing tuple m(a2, b2). Here, a question of
confirming whether m(b2, a2) is wrong and whether m(a2, b2) is missing is raised
to the user interface. If the user confirms there is no faulty tuple, the debugging
engine will inspect P4; in contrast, it goes to stratum P3. For inspecting P4,
since there is only one rule (r4) that is used in the proof tree of Δ+

s1(b2, a2) and
Δ+

s1(a2, b2), (r4) is a buggy rule. For P3, because no fault in the input of P3

is predicted, the engine inspects P3 without user interaction. Interestingly, both
the choices of inspecting P4 or going to P3 can detect the bug that can be solved.
Specifically, changing m(X,Y) in (r4) to m(Y,X) can make Δ+

s1(b2, a2) disap-
pear and make Δ+

s1(a2, b2) appear in the output, and thus PutGet satisfied.
Similarly, changing m(Y,X) in (r3) to m(X,Y) can also correct the program. ��

340 V.-D. Tran et al.

5 Implementation and Experiment

We have implemented a prototype for our debugging approach in Ocaml and
integrated it with Rosette [20] and Z3 [1] as the SMT solvers for our counterex-
ample generation. The user can interact with our system via a command-line
tool. By the tool, the user can start a debugging session with a counterexample
which is automatically generated by the tool or given by the user.

To evaluate our approach, we use non-recursive Datalog programs collected in
[21]. These programs are written for implementing practical view update strate-
gies that are required to be well-defined (called the DeltaDis property) and
satisfy the round-tripping properties, i.e., GetPut and PutGet, with the cor-
responding view definitions to guarantee the consistency between the views and
the source tables. We randomly add bugs to these programs and run an experi-
ment to evaluate the performance of our approach in debugging these programs.
Specifically, we measure the time for generating counterexamples, the size of the
generated counterexamples, and the number of questions used to ask the user
for locating the bugs. The experiment is performed on a computer of 2 CPUs
and 4 GB RAM running Ubuntu Server LTS 16.04. We set up a timeout of 1 min
for generating counterexamples.

Table 1 summarizes the results of our experiment. The time for generating
counterexamples and the size of counterexamples almost increase against the
number of rules in the program and the specified properties. The generating time
also depends on the difficulty of the bugs and the complexity of Datalog rules.
For example, phonelist has a smaller generating time than koncerty because
the rules of phonelist are more straightforward. products has a bigger gener-
ating time than purchaseview because PutGet is usually more complex than
GetPut. For vehicle view, the counterexample generator does not terminate
after the maximum allowed running time. The results show that the number of
questions used in locating bugs is usually small. This number depends on the
complexity of the program and the difficulty of the bugs. Some simple programs
such as luxuryitems have no question, meanwhile, some bigger programs such
as all cars and koncerty, which contain more bugs or more user-written rules,
need more questions with the user interaction to find the buggy rules.

6 Related Work

Algorithmic debugging [18], also known as declarative debugging, is a semi-
automatic debugging technique that is based on the answers of the programmer
to a series of questions generated automatically by the algorithmic debugger.
Due to its abstraction level, this technique is relevant to declarative program-
ming languages such as Datalog. Some approaches [5,6,14] have been proposed
to apply algorithmic debugging to Datalog. These existing approaches can assist
the user after a fault (i.e., a counterexample) is detected but suffer from the
well-known scalability problems of algorithmic debugging [7] that more user
interaction is required in the debugging process. In our approach, we strengthen

A Counterexample-Guided Debugger for NR Datalog 341

the algorithmic debugging technique applied to non-recursive Datalog by stati-
cally generating minimum-size counterexamples for the debugging process. We
exploit provenance techniques [13,15,16] to automatically predict the root causes
of the observed faults of the Datalog programs for reducing the human effort of
answering the questions raised by the algorithmic debugger.

7 Conclusion

In this paper, we have presented a novel debugging approach to non-recursive
Datalog programs. Our framework assists users in checking and generating coun-
terexamples for the programs with properties prespecified by users and then uses
counterexamples to guide the users to the location of bugs via a dialog-based
interface. The experimental results show the performance of our approach.

Acknowledgments. We would like to thank Meng Wang and the anonymous review-
ers for their insightful comments on this paper. This work is partially supported by the
Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research
(S) No. 17H06099.

References

1. Z3: Theorem prover (2018). https://z3prover.github.io
2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,

Boston (1995)
3. Amaral, C., Florido, M., Santos Costa, V.: PrologCheck – property-based testing

in prolog. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 1–17.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0 1

4. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: OOPSLA, pp. 243–262 (2009)

5. Caballero, R., Garćıa-Ruiz, Y., Sáenz-Pérez, F.: A theoretical framework for the
declarative debugging of Datalog programs. In: Semantics in Data and Knowledge
Bases, pp. 143–159 (2008)

6. Caballero, R., Garćıa-Ruiz, Y., Sáenz-Pérez, F.: A new proposal for debugging
Datalog programs. In: WFLP 2007 (2007)

7. Caballero, R., Riesco, A., Silva, J.: A survey of algorithmic debugging. ACM Com-
put. Surv. 50(4), 60:1–60:35 (2017)

8. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Datalog±: a unified approach to ontologies
and integrity constraints. In: ICDT, pp. 14–30 (2009)

9. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog
(and never dared to ask). TKDE 1(1), 146–166 (1989)

10. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: a cross-discipline perspective. In: Theory and Practice
of Model Transformations, pp. 260–283 (2009)

11. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI, pp. 405–416 (2012)

12. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update exchange with
mappings and provenance. In: VLDB, pp. 675–686 (2007)

https://z3prover.github.io
https://doi.org/10.1007/978-3-319-07151-0_1

342 V.-D. Tran et al.

13. Herschel, M., Hernández, M.A.: Explaining missing answers to SPJUA queries.
PVLDB 3(1), 185–196 (2010)

14. Köhler, S., Ludäscher, B., Smaragdakis, Y.: Declarative Datalog debugging for
mere mortals. In: Datalog in Academia and Industry, pp. 111–122 (2012)

15. Köhler, S., Ludäscher, B., Zinn, D.: First-order provenance games. In: In Search
of Elegance in the Theory and Practice of Computation, pp. 382–399 (2013)

16. Lee, S., Köhler, S., Ludäscher, B., Glavic, B.: A SQL-middleware unifying why and
why-not provenance for first-order queries. In: ICDE, pp. 485–496 (2017)

17. Sáenz-Pérez, F., Caballero, R., Garćıa-Ruiz, Y.: A deductive database with Datalog
and SQL query languages. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp.
66–73. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25318-8 8

18. Shapiro, E.Y.: Algorithmic program diagnosis. In: POPL, pp. 299–308 (1982)
19. Shmueli, O.: Equivalence of Datalog queries is undecidable. J. Logic Program.

15(3), 231–241 (1993)
20. Torlak, E., Bod́ık, R.: A lightweight symbolic virtual machine for solver-aided host

languages. In: PLDI, pp. 530–541 (2014)
21. Tran, V.D., Kato, H., Hu, Z.: Programmable view update strategies on relations.

PVLDB 13(5), 726–739 (2020)

https://doi.org/10.1007/978-3-642-25318-8_8

A Symbolic Algorithm for the Case-Split
Rule in String Constraint Solving

Yu-Fang Chen1, Vojtěch Havlena2, Ondřej Lengál2(B) ,
and Andrea Turrini3,4

1 Academia Sinica, Taipei, Taiwan
2 FIT, IT4I Centre of Excellence, Brno University of Technology,

Brno, Czech Republic
lengal@fit.vutbr.cz

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

4 Institute of Intelligent Software, Guangzhou, China

Abstract. Case split is a core proof rule in current decision procedures
for the theory of string constraints. Its use is the primary cause of the
state space explosion in string constraint solving, since it is the only
rule that creates branches in the proof tree. Moreover, explicit handling
of the case split rule may cause recomputation of the same tasks in
multiple branches of the proof tree. In this paper, we propose a symbolic
algorithm that significantly reduces such a redundancy. In particular,
we encode a string constraint as a regular language and proof rules as
rational transducers. This allows to perform similar steps in the proof
tree only once, alleviating the state space explosion. In our preliminary
experimental results, we validated that our technique (implemented in a
Python prototype) works in many practical cases where other state-of-
the-art solvers, such as CVC4 or Z3, fail to provide an answer.

1 Introduction

Constraint solving is a technique used as an enabling technology in many areas
of formal verification and analysis, such as symbolic execution [21,27], static
analysis [23,48], or synthesis [22,38]. For instance, in symbolic execution, feasi-
bility of a path in a program is tested by creating a constraint that encodes the
evolution of values of variables on the given path and checking if it is satisfiable.
Due to the features used in the analysed programs, checking satisfiability of the
constraint can be a complex task. For instance, the solver has to deal with dif-
ferent data types, such as Boolean, Integer, Real, or String. Theories for the first
three data types are well known, widely developed, and implemented in tools,
while the theory for the String data type has started to be investigated only
recently [2,4,5,11,15,16,24,26,31–33,47,50,52], despite having been considered
already by A. A. Markov in the late 1960s in connection with Hilbert’s 10th
problem [18,28,36].

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 343–363, 2020.
https://doi.org/10.1007/978-3-030-64437-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_18&domain=pdf
http://orcid.org/0000-0002-3038-5875
http://orcid.org/0000-0003-4343-9323
https://doi.org/10.1007/978-3-030-64437-6_18

344 Y.-F. Chen et al.

Most current decision procedures for string constraints involve the so-called
case-split rule. This rule performs a case split w.r.t. the possible alignment of
the variables. The case-split rule is used in most, if not all, (semi-)decision pro-
cedures for string constraints, including Makanin’s algorithm [34], Nielsen trans-
formation [37] (a.k.a. Levi’s lemma [30]), and the procedures implemented in
most state-of-the-art solvers such as Z3 [11], CVC4 [31], Z3Str3 [52], Norn [4],
and many more. In this paper, we will explain the general idea of our symbolic
approach using Nielsen transformation, which is the simplest of the approaches;
nonetheless, we believe that the approach is applicable also to other procedures.

Consider the word equation xz = yw, the primary type of atomic string
constraints considered in this paper, where x, z, y, and w are string variables.
When establishing satisfiability of the word equation, Nielsen transformation [37]
proceeds by first performing a case split based on the possible alignments of the
variables x and y, the first symbol of the left and right-hand sides of the equation,
respectively. More precisely, it reduces the satisfiability problem for xz = yw into
satisfiability of (at least) one of the following four (non-disjoint) cases (1) y is a
prefix of x, (2) x is a prefix of y, (3) x is an empty string, and (4) y is an empty
string. For these cases, the Nielsen transformation generates new equations that
we describe in the following paragraphs.

For the case (1), all occurrences of x in xz = yw are substituted to yx′,
where x′ is a fresh string variable (we denote this case as x ↪→ yx′), i.e., we
obtain the equation yx′z = yw, which can be simplified to x′z = w. In fact,
since the transformation x ↪→ yx′ removes all occurrences of the variable x, we
can just reuse the variable x and perform the transformation x ↪→ yx instead
(and take this into account when constructing a model). The case (2) of the
Nielsen transformation is just a symmetric counterpart of case (1) discussed
above. For cases (3) and (4), the variables x and y, respectively, are replaced
by empty strings. Taking into account all four possible transformations of the
equation xz = yw, we obtain the following four equations:

(1) xz = w, (2) z = yw, (3) z = yw, (4) xz = w.

If xz = yw has a solution, then at least one of the above equations has
a solution, too. Nielsen transformation keeps applying the transformation rules
on the obtained equations, building a proof tree and searching for a tautology
of the form ε = ε.

Treating each of the obtained equations separately can cause some redun-
dancy. Let us consider the example in Fig. 1, where we apply Nielsen transfor-
mation to solve the string constraint xz = ab∧wabyx = awbzv, where v, w, x, y,
and z are string variables and a and b are constant symbols. After processing the
first word equation xz = ab, we obtain a proof tree with three similar leaf nodes
wabyab = awbv, wabya = awbbv, and waby = awbabv, which share the prefixes
waby and awb on the left and right-hand side of the equations, respectively. If we
continue applying Nielsen transformation on the three leaf nodes, we will create
three similar subtrees, with almost identical operations. In particular, the nodes

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 345

Fig. 1. A partial proof tree of applying Nielsen transformation on xz = ab ∧ wabyx =
awbzv. The leaves are the outcome of processing the first word equation xz = ab.
Branches leading to contradictions are omitted.

near the root of such subtrees, which transform waby . . . = awb . . . , are going
to be essentially the same. The resulting proof trees will therefore start to differ
only after processing such a common part. Therefore, handling those equations
separately will cause some operations to be performed multiple times. In the case
the proof tree of each word equation has n leaves and the string constraint is a
conjunction of k word equations, we might need to create nk similar subtrees.

Fig. 2. A finite automaton encoding the three equations wabyab = awbv, wabya =
awbbv, and waby = awbabv.

The case split can be performed more efficiently if we process the common
part of the said leaves together using a symbolic encoding. In this paper, we use
an encoding of a set of equations as a regular language, which is represented by
a finite automaton. An example is given in Fig. 2, which shows a finite automaton
over a 2-track alphabet, where each of the two tracks represents one side of the
equation. For instance, the equation wabyab = awbv is represented by the word(
w
a

)(
a
w

)(
b
b

)(
y
v

)(
a
�

)(
b
�

)
accepted by the automaton, where the � symbol is a padding

used to make sure that both tracks are of the same length.

346 Y.-F. Chen et al.

Given our regular language-based symbolic encoding, we need a mechanism
to perform the Nielsen transformation steps on a set of equations encoded as
a regular language. We show that the transformations can be encoded as ratio-
nal relations, represented using finite transducers, and the whole satisfiability
checking problem can be encoded within the framework of regular model check-
ing (RMC). In the past, RMC has already been considered for solving string
constraints (cf. [7,49–51]). In those approaches, the languages of the automata
are, however, the “models of the formula”, so the approaches can be considered
“model-theoretic”. In our approach, the automata languages are the derived con-
straints. Hence the approach is closer to “proof-theoretic”. We believe this novel
aspect has a great potential for further investigation and can bring new ideas to
the field of string solving.

We will provide more details on how this is done in Sects. 3 to 5 stepwise. In
Sect. 3, we describe the approach for a simpler case where the input is a quadratic
word equation, i.e., a word equation with at most two occurrences of every vari-
able. In this case, Nielsen transformation is sound and complete. In Sect. 4, we
extend the technique to support conjunctions of non-quadratic word equations.
In Sect. 5, we extend our approach to support arbitrary Boolean combinations
of string constraints.

We implemented our approach in a prototype Python tool called Retro and
evaluated its performance on two benchmark sets: Kepler22 obtained from [29]
and PyEx-Hard obtained by running the PyEx symbolic execution engine on
Python programs [42] and collecting examples on which CVC4 or Z3 fail. Retro
solved most of the problems in Kepler22 (on which CVC4 and Z3 do not perform
well). Moreover, it solved over 50 % of the benchmarks in PyEx-Hard that could
be solved by neither CVC4 nor Z3.

2 Preliminaries

An alphabet Σ is a finite set of symbols and a word over Σ is a sequence w =
a1 . . . an of symbols from Σ, with ε denoting the empty word. We use w1.w2 (and
often just w1w2) to denote the concatenation of words w1 and w2. Σ∗ is the set
of all words over Σ, Σ+ = Σ∗ \ {ε}, and Σε = Σ ∪ {ε}. A language over Σ is
a subset L of Σ∗. Given a word w = a1 . . . an, we use |w| to denote the length n
of w and |w|a to denote the number of occurrences of the character a ∈ Σ in w.
Further, we use w[i] to denote ai, the i-th character of w, and w[i :] to denote
the word ai . . . an. When i > n, the value of w[i] and w[i :] is in both cases
⊥, a special undefined value, which is different from all other values and also
from itself (i.e., ⊥ �= ⊥). Given an alphabet Σ, we use Σk to denote the k-tape
alphabet Σ × · · · × Σ︸ ︷︷ ︸

k

.

Automata and Transducers. A (finite) k-tape transducer is a tuple T =
(Q,Δ,Σ, Qi, Qf) where Q is a finite set of states, Δ ⊆ Q × Σk

ε × Q is a set of
transitions, Σ is an alphabet, Qi ⊆ Q is a set of initial states, and Qf ⊆ Q is a set

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 347

of final states. A run π of T over a k-tuple of words (w1, . . . , wk) is a sequence of
transitions (q0, a

1
1, . . . , a

k
1 , q1), (q1, a

1
2, . . . , a

k
2 , q2), . . . , (qn−1, a

1
n, . . . , ak

n, qn) ∈ Δ
such that ∀i : wi = ai

1a
i
2 . . . ai

n (note that ai
m can be ε, so wi and wj may be of

a different length, for i �= j). The run π is accepting if q0 ∈ Qi and qn ∈ Qf , and
a k-tuple (w1, . . . , wk) is accepted by T if there exists an accepting run of T over
(w1, . . . , wk). The language L(T) of T is defined as the k-ary relation L(T) =
{ (w1, . . . , wk) ∈ (Σ∗)k | (w1, . . . , wk) is accepted by T }. We call the class of
relations accepted by transducers rational relations. T is length-preserving if no
transition in Δ contains ε. We call the class of relations accepted by length-
preserving transducers regular relations. A finite automaton (FA) is a 1-tape
finite transducer. We call the class of languages accepted by finite automata reg-
ular languages. Given two k-ary relations R1, R2, we define their concatenation
R1.R2 = { (u1v1, . . . , ukvk) | (u1, . . . , uk) ∈ R1 ∧ (v1, . . . , vk) ∈ R2 } and given
two binary relations R1, R2, we define their composition R1 ◦ R2 = { (x, z) | ∃y :
(x, y) ∈ R2 ∧ (y, z) ∈ R1 }. Given a k-ary relation R we define R0 = {ε}k,
Ri+1 = R.Ri for i ≥ 0. Iteration of R is then defined as R∗ =

⋃
i≥0 Ri.

Given a language L and a binary relation R, we define the R-image of L as
R(L) = { y | ∃x ∈ L : (x, y) ∈ R }.

Proposition 1 ([10]). (i) The class of binary rational relations is closed under
union, composition, concatenation, and iteration and is not closed under inter-
section and complement. (ii) For a binary rational relation R and a regular lan-
guage L, the language R(L) is also effectively regular (i.e., it can be computed).
(iii) The class of regular relations is closed under Boolean operations.

String Constraints. Let Σ be an alphabet and X be a set of string variables
ranging over Σ∗ s.t. X ∩ Σ = ∅. We use ΣX to denote the extended alphabet Σ ∪
X. An assignment of X is a mapping I : X → Σ∗. A word term is a string over the
alphabet ΣX. We lift an assignment I to word terms by defining I(ε) = ε, I(a) =
a, and I(x.w) = I(x).I(w), for a ∈ Σ, x ∈ ΣX, and w ∈ Σ∗

X
. A word equation

ϕe is of the form t1 = t2 where t1 and t2 are word terms. I is a model of ϕe

if I(t1) = I(t2). We call a word equation an atomic string constraint. A string
constraint is obtained from atomic string constraints using Boolean connectives
(∧,∨,¬), with the semantics defined in the standard manner. A string constraint
is satisfiable if it has a model. Given a word term t ∈ Σ∗

X
, a variable x ∈ X, and

a word term u ∈ Σ∗
X
, we use t[x �→ u] to denote the word term obtained from t

by replacing all occurrences of x by u, e.g. (abxcxy)[x �→ cy] = abcyccyy. We
call a string constraint quadratic if each variable has at most two occurrences,
and cubic if each variable has at most three occurrences.

2.1 Nielsen Transformation

As already briefly mentioned in the introduction, Nielsen transformation can be
used to check satisfiability of a conjunction of word equations. We use the three
rules shown in Fig. 3; besides the rules x ↪→ αx and x ↪→ ε that we have seen

348 Y.-F. Chen et al.

Fig. 3. Rules of Nielsen transformation, for x ∈ X, α ∈ ΣX, and u, v ∈ Σ∗
X. Symmetric

rules are omitted.

in the introduction, there is also the (trim) rule, used to remove a shared prefix
from both sides of the equation.

Given a system of word equations, multiple Nielsen transformations might
be applicable to it, resulting in different transformed equations on which other
Nielsen transformations can be performed, as shown in Fig. 1. Trying all possible
transformations generates a tree (or a graph in general) whose nodes contain
conjunctions of word equations and whose edges are labelled with the applied
transformation. The conjunction of word equations in the root of the tree is
satisfiable if and only if at least one of the leaves in the graph is a tautology, i.e.,
it contains a conjunction ε = ε ∧ · · · ∧ ε = ε.

Lemma 1 (cf. [17,34]). Nielsen transformation is sound. Moreover, it is com-
plete when the systems of word equations is quadratic.

Lemma 1 is correct even if we construct the proof tree using the following strat-
egy: every application of x ↪→ αx or x ↪→ ε is followed by as many applications
of the (trim) rule as possible. We use x�αx to denote the application of one
x ↪→ αx rule followed by as many applications of (trim) as possible, and x� ε
for the application of x ↪→ ε repeatedly followed by (trim).

2.2 Regular Model Checking

Regular model checking (RMC) [1,12,13] is a framework for verifying infinite
state systems. In RMC, each system configuration is represented as a word over
an alphabet Σ. The set of initial configurations I and destination configurations
D are captured as regular languages over Σ. The transition relation T is captured
as a binary rational relation over Σ∗. A regular model checking reachability prob-
lem is represented by the triple (I, T ,D) and asks whether T rt(I)∩D �= ∅, where
T rt represents the reflexive and transitive closure of T . One way how to solve
the problem is to start computing the sequence T (0)(I), T (1)(I), T (2)(I), . . .
where T (0)(I) = I and T (n+1)(I) = T (T (n)(I)). During computation of the
sequence, we can check if we find T (i)(I) that overlaps with D, and if yes, we
can deduce that D is reachable. On the other hand, if we obtain a sequence such
that

⋃
0≤i<n T i(I) ⊇ T n(I), we know that we have explored all possible system

configurations without reaching D, so D is unreachable.

3 Solving Word Equations Using RMC

In this section, we describe a symbolic RMC-based framework for solving string
constraints. The framework is based on encoding a string constraint into a regular

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 349

language and encoding steps of Nielsen transformation as a rational relation.
Satisfiability of a string constraint is then reduced to a reachability problem of
RMC.

3.1 Nielsen Transformation as Word Operations

In the following, we describe how Nielsen transformation of a single word
equation can be expressed as operations on words. We view a word equa-
tion eq : t� = tr as a pair of word terms eeq = (t�, tr) corresponding to the
two sides of the equation; therefore eeq ∈ Σ∗

X
× Σ∗

X
. Without loss of generality

we assume that t�[1] �= tr[1]; if this is not the case, we pre-process the equation
by applying the (trim) Nielsen transformation (cf. Sect. 3) to trim the common
prefix of t� and tr.

Example 1. The word equation eq1 : xay = yx is represented by the pair of word
terms e1 = (xay, yx). ��

A rule of Nielsen transformation (cf. Sect. 2.1) is represented using a (partial)
function τ : (Σ∗

X
× Σ∗

X
) → (Σ∗

X
× Σ∗

X
). Given a pair of word terms (t�, tr) of

a word equation eq , the function τ transforms it into a pair of word terms of
a word equation eq ′ that would be obtained by performing the corresponding
step of Nielsen transformation on eq . Before we express the rules of Nielsen
transformation, we define functions performing the corresponding substitution.
For x ∈ X and α ∈ ΣX we define

τx�→αx = { (t�, tr) �→ (t′�, t
′
r) | t′� = t�[x �→ αx] ∧ t′r = tr[x �→ αx] } and

τx�→ε = { (t�, tr) �→ (t′�, t
′
r) | t′� = t�[x �→ ε] ∧ t′r = tr[x �→ ε] }.

(1)

The function τx�→αx performs a substitution x �→ αx while the function τx�→ε

performs a substitution x �→ ε.

Example 2. Consider the pair of word terms e1 from Example 1. The applica-
tion τx�→yx(e1) would produce the pair e2 = (yxay, yyx) while the application
τx�→ε(e1) would produce the pair e3 = (ay, y). ��

The functions introduced above do not take into account the first symbols of
each side and do not remove a common prefix of the two sides of the equation,
which is a necessary operation for Nielsen transformation to terminate. Let us,
therefore, define the following function, which trims (the longest) matching prefix
of word terms of the two sides of an equation:

τtrim = { (t�, tr) �→ (t′�, t
′
r) | ∃i(t�[i] �= tr[i] ∧ ∀j(j < i → t�[j] = tr[j])

∧ t′� = t�[i :] ∧ t′r = tr[i :]) }.
(2)

Example 3. Continuing in our running example, the application τtrim(e2) pro-
duces the pair e′

2 = (xay, yx) while τtrim(e3) produces the pair e′
3 = (ay, y). ��

350 Y.-F. Chen et al.

Now we are ready to define functions corresponding to the rules of Nielsen
transformation. In particular, the rule x�αx for x ∈ X and α ∈ ΣX

(cf. Sect. 2.1) can be expressed using the function

τx � αx = τtrim ◦ { (t�, tr) �→ τx�→αx(t�, tr) | (t�[1] = α ∧ tr[1] = x) ∨
(tr[1] = α ∧ t�[1] = x) }

(3)

while the rule x� ε for x ∈ X can be expressed as the function

τx � ε = τtrim ◦ { (t�, tr) �→ τx�→ε(t�, tr) | t�[1] = x ∨ tr[1] = x}. (4)

If we keep applying the functions defined above on individual pairs of word terms,
while searching for the pair (ε, ε)—which represented the case when a solution
to the original equation eq exists—, we would obtain the Nielsen transforma-
tion graph (cf. Sect. 2.1). In the following, we show how to perform the steps
symbolically on a representation of a whole set of word equations at once.

3.2 Symbolic Algorithm for Word Equations

In this section, we describe the main idea of our symbolic algorithm for solving
word equations. We first focus on the case of a single word equation and in
subsequent sections extend the algorithm to a richer class.

Tx � αx =
⋃

x∈X,α∈ΣX

τx � αx

Tx � ε =
⋃

x∈X

τx � ε

Fig. 4. Transformation relations

Our algorithm is based on applying the
transformation rules not on a single equation,
but on a whole set of equations at once. Given
a set of equations, the transformation rules
are applied atomically, i.e., a single trans-
formation rule is applied on the whole set
of equations without interleaving with other
transformation rules. For this, we define the relations Tx � αx and Tx � ε that
aggregate the versions of τx � αx and τx � ε for all possible x ∈ X and α ∈ ΣX.
The signature of these relations is (Σ∗

X
×Σ∗

X
)×(Σ∗

X
×Σ∗

X
) and they are defined in

Fig. 4. Note the following two properties of the relations: (i) they produce out-
puts of all possible Nielsen transformation steps applicable with the first symbols
on the two sides of the equations and (ii) they include the trimming operation.

We compose the introduced relations into a single one, denoted as Tstep and
defined as Tstep = Tx � αx∪Tx � ε. The relation Tstep can then be used to compute
all successors of a set of word terms of equations in one step. For a set of word
terms S we can compute the Tstep-image of S to obtain all successors of pairs of
word terms in S. The initial configuration, given a word equation eq : t� = tr, is
the set Eeq = {(t�, tr)}.

Example 4. Lifting our running example to the introduced notions over sets, we
start with the set Eeq = {e1 = (xay, yx)}. After applying Tstep on Eeq , we obtain
the set S1 = {e′

2 = (xay, yx), e′
3 = (ay, y), (axy, yx), (a, ε)}. The pairs e′

2 and
e′
3 were described earlier, the pair (axy, yx) is obtained by the transformation

τy � xy, and the pair (a, ε) is obtained by the transformation τy � ε. If we continue

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 351

by computing Tstep(S1), we obtain the set S2 = S1 ∪ {(ax, x)}, with the pair
(ax, x) obtained from (axy, yx) by using the transformation τy � ε. ��

Using the symbolic representation, we can formulate the problem of checking
satisfiability of a word equation eq as the task of

– either testing whether (ε, ε) ∈ T rt
step(Eeq); this means that eq is satisfiable, or

– finding a set (called unsat-invariant) Einv such that Eeq ⊆ Einv , (ε, ε) /∈ Einv ,
and Tstep(Einv) ⊆ Einv , implying that eq is unsatisfiable.

In the following sections, we show how to encode the problem into the RMC
framework.

Example 5. To proceed in our running example, when we apply Tstep on S2,
we get Tstep(S2) ⊆ S2. Since e1 ∈ S2 and (ε, ε) /∈ S2, the set S2 is our unsat-
invariant, which means eq1 is unsatisfiable. ��

3.3 Towards Symbolic Encoding

Let us now discuss some possible encodings of the word equations satisfiability
problem into RMC. Recall that our task is to find an encoding such that the
encoded equation (corresponding to initial configurations in RMC) and satisfi-
ability condition (corresponding to destination configurations) are regular lan-
guages and transformation (transition) relation is a rational relation. We start
by describing two possible methods of encodings that do not work and then
describe the one that we use.

The first idea about how to encode a set of word equations as a regular
language is to encode a pair eeq = (t�, tr) as a word t� · = · tr, where = /∈ ΣX.
One immediately finds out that although the transformations τx � αx and τx � ε

are rational (i.e., expressible using a transducer), the transformation τtrim , which
removes the longest matching prefix from both sides, is not (a transducer with
an unbounded memory to remember the prefix would be required).

Another attempt of an encoding may be encoding eeq = (t�, tr) as a rational
binary relation, represented, e.g., by a (non-length-preserving) 2-tape transducer
(with a tape for t� and a tape for tr) and use 4-tape transducers to represent the
transformations (with two input tapes for t�, tr and two output tapes for t′�, t

′
r).

The transducers implementing τx � yx and τx � ε can be constructed easily and
so can be the transducer implementing τtrim , so this solution looks appealing.
One, however, quickly realizes an issue with computing Tstep(Eeq). In particular,
since Eeq and Tstep are both represented as rational relations, the intersection
(Eeq × Σ∗

X
× Σ∗

X
) ∩ Tstep , which needs to be computed first, may not be rational.

Why? Consider Eeq = { (ambn, cm) | m,n ≥ 0 } and Tstep = { (ambn, cn, ε, ε) |
m,n ≥ 0 }. The intersection (Eeq × Σ∗

X
× Σ∗

X
) ∩ Tstep = { (anbn, cn, ε, ε) | n ≥ 0 }

is clearly not rational.

352 Y.-F. Chen et al.

3.4 Symbolic Encoding of Quadratic Equations into RMC

We therefore converge on the following method of representing word equations
by a regular language. A set of pairs of word terms is represented as a regular
language over a 2-track alphabet with padding Σ2

X,�, where ΣX,� = ΣX ∪ {�},
using an FA. For instance, e1 = (xay, yx) would be represented by the reg-
ular language

(
x
y

)(
a
x

)(
y
�

)(�
�

)∗. Formally, we first define the equation encod-
ing function eqencode : (Σ∗

X
)2 → (Σ2

X,�)∗ such that for t� = a1 . . . an and
tr = b1 . . . bm (without loss of generality we assume that |t�| ≥ |tr|), we have
eqencode(t�, tr) =

(
a1
b1

)(
a2
b2

)
. . .

(
am

bm

)(
am+1

�

)
. . .

(
an

�

)
. We lift eqencode to sets in

the usual way and to relations on pairs of word terms τ as eqencode(τ) =
{ (eqencode(t�, tr), eqencode(t′�, t

′
r)) | ((t�, tr), (t′�, t

′
r)) ∈ τ }.

Let σ be a symbol. We define the padding of a k-tuple of words (w1, . . . , wk)
with respect to σ as the set padσ(w1, . . . , wk) = {(w′

1, . . . , w
′
k) | w′

i ∈ wi.{σ}∗}},
i.e., it is a set of k-tuples obtained from (w1, . . . , wk) by extending some of the
words by an arbitrary number of σ’s. We lift padσ to a k-ary relation R as
padσ(R) =

⋃
x∈R padσ(x). Finally, we define the function encode, which we use

for encoding word equations into regular languages and word operations into
rational relations, as encode = pad(�

�

) ◦ eqencode. Properties of encode are given
by the following lemmas.

Lemma 2. If T is a binary regular relation on pairs of word terms, then
encode(T) is rational. If L is a regular language, then encode(L) is regular.

Lemma 3. Given a word equation eq : t� = tr for t�, t� ∈ Σ∗
X
, the set encode(eq)

is regular.

Observe that because of the padding part, which introduces unbounded num-
ber of padding symbols at the end of an encoded relation, even if T is finite,
encode(T) is infinite. Using the presented encoding, when trying to express the
τx � αx and τx � ε transformations, we, however, encounter an issue with the
need of an unbounded memory. For instance, for the language L =

(
x
y

)∗, the
transducer implementing τx � yx would need to remember how many times it
has seen x on the first track of its input (indeed, the image { encode(u, v) | ∃n :
u = (yx)n ∧ v = yn�n } is no longer regular).

We address this issue in several steps: first, we give a rational relation
that correctly represents the transformation rules for cases when the equa-
tion eq is quadratic, and extend our algorithm to equations with more occur-
rences of variables in Sect. 4. Let us define the following, more general, restric-
tion of τx � αx to equations with at most i ∈ N occurrences of variable x as
τ≤i
x � αx = τx � αx ∩ { ((t�, tr), (w,w′)) | w,w′ ∈ Σ∗

X
, |t�.tr|x ≤ i }. We define

τ≤i
x � ε, τ≤i

x�→αx, and τ≤i
x�→ε similarly.

Lemma 4. Given i ∈ N, the relations encode(τ≤i
x � αx) and encode(τ≤i

x � ε) are
rational.

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 353

Input: Encoding I of a formula ϕ (the initial set), transformers Tx � αx, Tx � ε,
and the destination set D

Output: A model of ϕ if ϕ is satisfiable, false otherwise
1 reach0 := ∅;
2 reach1 := I;
3 processed := reach0;
4 T := Tx � αx ∪ Tx � ε;
5 i := 1;
6 while reachi �⊆ processed do
7 if D ∩ reachi �= ∅ then
8 return ExtractModel(reach1, . . . , reachi);
9 processed := processed ∪ reachi;

10 reachi+1 := T (reachi);
11 i++;

12 return false;
Algorithm 1: Solving a string constraint ϕ using RMC

Ieq = encode(t�, tr)

Deq =
{(�

�

)}∗

T eq
x � αx =

⋃

x∈X,α∈ΣX

encode(τ≤2
x � αx)

T eq
x � ε =

⋃

x∈X

encode(τ≤2
x � ε)

Fig. 5. RMC instantiation for
a quadratic equation

In Algorithm 1, we give a high-level algo-
rithm for solving string constraints using RMC.
The algorithm is parameterized by the follow-
ing: a regular language I encoding a formula ϕ
(the initial set), rational relations Tx � αx and
Tx � ε, and the destination set D (also given
as a regular language). The algorithm tries to
solve the RMC problem (I, Tx � αx ∪Tx � ε,D)
by an iterative unfolding of the transition rela-
tion T computed in Line 4, looking for an ele-
ment wi from D. If such an element is found
in reachi, we extract a model of the original word equation by starting a back-
ward run from wi, computing pre-images wi−1, . . . , w1 over transformers Tx � αx

and Tx � ε (restricting them to reachj for every wj), while updating values of
the variables according to the transformation that was performed.

Our first instantiation of the algorithm is for checking satisfiability of a single
quadratic word equation eq : t� = tr. We instantiate the RMC problem with
(Ieq , T eq

x � αx ∪ T eq
x � ε,Deq) defined in Fig. 5.

Lemma 5. The relations T eq
x � αx and T eq

x � ε are rational.

Lemma 6. If eq : t� = tr is quadratic then Algorithm 1 instantiated with
(Ieq , T eq

x � αx ∪ T eq
x � ε,Deq) is sound and complete.

4 Solving a System of Word Equations Using RMC

In the previous section we described how to solve a single quadratic word equa-
tion in the RMC framework. In this section we focus on an extension of this app-
roach to handle a system of word equations Φ : t1� = t1r ∧ t2� = t2r ∧ . . . ∧ tn� = tnr .

354 Y.-F. Chen et al.

In the first step we need to encode the system Φ as a regular language. For this
we extend the encode function to a system of word equations by defining

encode(Φ) = encode(t1� , t
1
r).

{(
#
#

)}
.

{(
#
#

)}
.encode(tn� , tnr), (5)

where # is a delimiter symbol, # /∈ ΣX. From Lemma 3 we know that
encode(ti�, t

i
r) is regular for all 1 ≤ i ≤ n. Moreover, since regular languages

are closed under concatenation (Propostion 1), the set encode(Φ) is also regular.
Because each equation is now separated by a delimiter, we need to extend the
destination set to

{(�
�

)
,
(
#
#

)}∗.

For the transition relation, we need to extend τ≤i
x � αx and τ≤i

x � ε from Sect. 3
to support delimiters. An application of a rule x�αx on a system of equations
can be described as follows: the rule x�αx is applied on the first non-empty
equation and the rest of the equations are modified according to the substitu-
tion x �→ αx. The substitution on the other equations is performed regardless
of their first symbols. The procedure is analogous for the rule x� ε. A series of
applications of the rules can reduce the number of equations, which then leads
to a string in our encoding with a prefix from

{(�
�

)
,
(
#
#

)}∗. The relation imple-
menting x� αx or x� ε on an encoded system of equations skips this prefix.
Formally, the rule x� αx for a system of equations where every equation has
at most i occurrences of every variable is given by the following relation:

T eqs,i
x � αx = Tskip .encode(τ≤i

x � αx).
({(

#
#

)
�→

(
#
#

)}
.encode(τtrim ◦ τ≤i

x�→αx)
)∗

, (6)

where Tskip =
{(�

�

)
�→

(�
�

)
,
(
#
#

)
�→

(
#
#

)}∗. The relation T eqs,i
x � ε is defined similarly.

Lemma 7. The relations T eqs,i
x � αx and T eqs,i

x � ε are rational.

4.1 Quadratic Case

Iq-eqs
Φ = encode(Φ)

Dq-eqs =
{(�

�

)
,
(
#
#

)}∗

T q-eqs
x � αx =

⋃

x∈X,α∈ΣX

T eqs,2
x � αx

T q-eqs
x � ε =

⋃

x∈X

T eqs,2
x � ε

Fig. 6. RMC instantiation for
a system of quadratic equations

When Φ is quadratic, its satisfiability prob-
lem can be reduced to an RMC problem
(Iq-eqs

Φ , T q-eqs
x � αx ∪ T q-eqs

x � ε ,Dq-eqs) where the items
are defined in Fig. 6.

Rationality of T q-eqs
x � αx and T q-eqs

x � ε follows
directly from Proposition 1. The soundness and
completeness of our procedure for a system of
quadratic word equations is summarized by the
following lemma.

Lemma 8. If Φ is quadratic then Algorithm 1 instantiated with (Iq-eqs
Φ ,

T q-eqs
x � αx ∪ T q-eqs

x � ε ,Dq-eqs) is sound and complete.

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 355

Input: System of word equations Φ
Output: Equisatisfiable cubic system of word equations Ψ

1 Ψ := Φ;
2 while There is a word variable x that occurs more than three times in Ψ do
3 Replace two occurrences of x in Φ by a fresh string variable x′ to obtain

a new system Ψ′;
4 Ψ := Ψ′ ∧ x = x′;
5 return Ψ;

Algorithm 2: Transformation to a cubic system of equations

4.2 General Case

Let us now consider the general case when the system Φ is not quadratic. In this
section, we show that this general case is also reducible to an extended version
of RMC.

We first apply Algorithm 2 to a general system of string constraints Φ to get
an equisatisfiable cubic system of word equations Φ′. Then we can use the tran-
sition relations T eqs,3

x � αx and T eqs,3
x � ε to construct transformations of the encoded

system Φ′.

Lemma 9. Any system of word equations can be transformed by Algorithm 2 to
an equisatisfiable cubic system of word equations.

One more issue we need to solve is to make sure that we work with a cubic
system of word equations in every step of our algorithm. It may happen that
a transformation of the type x� yx increases the number of occurrences of the
variable y by one, so if there had already been three occurrence of y before the
transformation, the result will not be cubic any more.

Ieqs
Φ = encode(Φ′)

Deqs =
{(�

�

)
,
(
#
#

)}∗

T vi,eqs
x � αx = TCvi

◦
⋃

x∈X,α∈ΣX

T eqs,3
x � αx

T vi,eqs
x � ε = TCvi

◦
⋃

x∈X

T eqs,3
x � ε

Fig. 7. RMC instantiation for
a system of cubic equations

More specifically, assume a cubic system of
word equations x.t� = y.tr ∧ Φ, where x and y
are string variables and t� and tr are word terms.
If we apply the transformation x� yx, we will
obtain x(t�[x �→ yx]) = tr[x �→ yx] ∧ Φ[x �→
yx]. Observe that (1) the number of occurrences
of y is first reduced by one because the first y
on the right-hand side of x.t� = y.tr is removed
and (2) then the number of occurrences of y can
be at most increased by two because there exist
at most two occurrences of x in t�, tr, and Φ.
Therefore, after the transformation x� yx, a cubic system of word equations
might become (y-)quartic system of word equations (at most four occurrences of
the variable y and at most three occurrences of any other variable).

Given a fresh variable v, we use Cv to denote the transformation from a single-
quartic system of word equations to a cubic system of equations.

Lemma 10. The relation TCv
performing the transformation Cv on an encoded

single-quartic system of equations is rational.

356 Y.-F. Chen et al.

To express solving a system of string constraints Φ in the terms of a (modified)
RMC, we first convert Φ (using Algorithm 2) to an equisatisfiable cubic sys-
tem Φ′. The satisfiability of a system of word equations Φ can be reduced to
a modified RMC problem (Ieqs

Φ , T vi,eqs
x � αx ∪ T vi,eqs

x � ε ,Deqs) instantiating Algorithm
1 with components given in Fig. 7.

For the modified RMC algorithm, we need to assume vi /∈ ΣX. We also need
to update Line 4 of Algorithm 1 to T vi := T vi

x � αx ∪ T vi
x � ε and Line 10 to

reachi+1 := T vi(reachi); X := X∪{vi}; to allow using a new variable vi in every
iteration. Rationality of T vi,eqs

x � αx and T vi,eqs
x � ε follows directly from Proposition 1.

Lemma 11. The modified Algorithm 1 instantiated with (Ieqs
Φ , T vi,eqs

x � αx ∪
T vi,eqs

x � ε ,Deqs) is sound if Φ is cubic.

Completeness. Since Nielsen transformation does not guarantee termination for
the general case, neither does our algorithm. Investigation of possible symbolic
encodings of complete algorithms, e.g. Makanin’s algorithm [34], is our future
work.

5 Handling a Boolean Combination of String Constraints

In this section, we will extend the procedure from handling a conjunction of word
equations into a procedure that handles their arbitrary Boolean combination.
The negation of word equations can be handled in the standard way. For instance,
we can use the approach in [4] to convert a negated word equation t� �= tr to the
string constraint

∨

c∈Σ

(t� = tr · cx ∨ t� · cx = tr) ∨
∨

c1,c2∈Σ,c1
=c2

(t� = x3c1x1 ∧ tr = x3c2x2). (7)

The first part of the constraint says that either t� is a strict prefix of tr or the
other way around. The second part says that t� and tr have a common prefix x3

and start to differ in the next symbols c1 and c2. For word equations connected
using ∧ and ∨, we apply distributive laws to obtain an equivalent formula in the
conjunctive normal form (CNF) whose size is at worst exponential to the size of
the original formula.

Let us now focus on how to express solving a string constraint Φ composed
of arbitrary Boolean combination of word equations using a (modified) RMC.
We start by removing inequalities in Φ using Eq. 7, then we convert the system
without inequalities into CNF, and, finally, apply the procedure in Lemma 9 to
convert the CNF formula to an equisatisfiable and cubic CNF Φ′. For deciding
satisfiability of Φ′ in the terms of RMC, both the transition relations and the
destination set remain the same as in Sect. 4.2. The only difference is the initial
configuration because the system is not a conjunction of terms any more but
rather a general formula in CNF. For this, we extend the definition of encode to
a clause c = (t1� = t1r ∨ . . . ∨ tn� = tnr) as encode(c) =

⋃
1≤j≤n encode(tj� , t

j
r). Then

the initial configuration for Φ′ is given as

Isc
Φ′ = encode(c1).

{(
#
#

)}
.

{(
#
#

)}
.encode(cm), (8)

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 357

where Φ′ is of the form Φ′ : c1 ∧ . . . ∧ cm and each clause ci is of the form
ci = (t1� = t1r ∨ . . . ∨ tni

� = tni
r). We obtain the following lemma directly from

Proposition 1.

Lemma 12. The initial set Isc
Φ′ is regular.

The transition relation and the destination set are the same as the ones in the
previous section, i.e., T vi,sc

x � αx = T vi,eqs
x � αx, T vi,sc

x � ε = T vi,eqs
x � ε , and Dsc = Deqs .

The soundness of our procedure for a Boolean combination of word equations is
summarized by the following lemma.

Lemma 13. Given a Boolean combination of word equations Φ, Algorithm 1
instantiated with (Isc

Φ′ , T vi,sc
x � αx ∪ T vi,sc

x � ε,Dsc) is sound.

Fig. 8. Automata accepting L

6 Implementation

We created a prototype Python tool called Retro, where we implemented the
symbolic procedure for solving systems of word equations. Retro implements
a modification of the RMC loop from Algorithm 1. In particular, instead of
standard transducers defined in Sect. 2, it uses the so-called finite-alphabet regis-
ter transducers (FRTs), which allow a more concise representation of a rational
relation.

Informally, an FRT is a register automaton (in the sense of [25]) where the
alphabet is finite. The finiteness of the alphabet implies that the expressive
power of FRTs coincides with the class of regular languages, but the advantage
of using FRTs is that they allow a more concise representation than FAs.

In particular, transducers (without registers) corresponding to the transform-
ers Tx � αx and Tx � ε contain branching at the beginning for each choice of x
and α. Especially in the case of huge alphabets, this yields huge transducers
(consider for instance the Unicode alphabet with over 1 million symbols). The
use of FRTs yields much smaller automata because the choice of x and α is
stored into registers and then processed symbolically. To illustrate the effect of
using registers, consider the following example.

Example 6. Consider the language L = {w ∈ Σ∗ | |w| ≥ 1 ∧ |w|w[1] ≤ 2 }.
Figure 8a shows an FA Aa accepting words starting with a and having at most
two occurrences of a (it corresponds to a single choice of the first symbol in L).

358 Y.-F. Chen et al.

We obtain the FA A for L as the union of all choices, i.e., A =
⋃

a∈Σ Aa (A has
1 + 2|Σ| states). On the other hand, Fig. 8b shows an FRT R accepting L with
just 3 states (for any alphabet size). ��

As another feature, Retro uses deterministic FAs (i.e., FAs having for each
state and each symbol at most one successor and having a single initial state) to
represent configurations in Algorithm 1. It also uses eager automata minimiza-
tion, since it has a big impact on the performance, especially on checking the
termination condition of the RMC algorithm, which is done by testing language
inclusion between the current configuration and all so-far processed configura-
tions.

7 Experimental Evaluation

We compared the performance of our approach (implemented in Retro) with
two current state-of-the-art SMT solvers that support the string theory: Z3 4.8.7
and CVC4 1.7.

The first set of benchmarks is Kepler22, obtained from [29]. Kepler22 con-
tains 600 hand-crafted string constraints composed of quadratic word equations
with length constraints. In Fig. 9, we give a cactus plot of the results of the solvers
on the Kepler22 benchmark set with the timeout of 20 s. The total numbers of
the solved benchmarks within the timeout were: 119 for Z3, 266 for CVC4, and
443 for Retro (out of which 179 could not be solved by CVC4). On this bench-
mark set, Retro can solve significantly more benchmarks than both Z3 and
CVC4.

Fig. 9. A cactus plot comparing Retro, CVC4, and Z3 on the Kepler22 benchmark

The other set of benchmarks that we tried is PyEx-Hard. Here we want
to see the potential of integrating Retro with DPLL(T)-based string solvers,
like Z3 or CVC4, as a specific string theory solver. The input of this component

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 359

Fig. 10. A cactus plot comparing the Virtual Best Solver with and without Retro on
the PyEx-Hard benchmark. We show ∼500 most difficult benchmarks (from 20,020).

is a conjunction of atomic string formulae (e.g., xy = zb ∧ z = ax) that is
a model of the Boolean structure of the top-level formula. The conjunction of
atomic string formulae is then, in several layers, processed by various string
theory solvers, which either add more conflict clauses or return a model. To
evaluate whether Retro is suitable to be used as “one of the layers” of Z3
or CVC4’s string solver, we analyzed the PyEx benchmarks [42] and extracted
from it 967 difficult instances that neither CVC4 nor Z3 could solve in 10 s.
From those instances, we obtained 20,020 conjunctions of word equations that
Z3’s DPLL(T) algorithm sent to its string theory solver when trying to solve
them. We call those 20,020 conjunctions of word equations PyEx-Hard. We
then evaluated the three solvers on PyEx-Hard with the timeout of 20 s. Out
of these, Z3 could not solve 3,232, CVC4 could not solve 188, and Retro could
not solve 3,099 instances.

Let us now closely look at the hard instances in the PyEx-Hard benchmark
set, in particular on the instances that either CVC4 or Z3 could not solve. These
benchmarks cannot be handled by the (several layers of) fast heuristics imple-
mented in CVC4 and Z3, which are sufficient to solve many benchmarks without
the need to start applying the case-split rule.1 The set contains the 3,232 bench-
marks that Z3 could not solve within 20 s. Out of these, CVC4 could not solve
188 benchmarks (CVC4 could solve every constraint that Z3 could solve), and
Retro could not solve 568 benchmarks. When we compared the solvers on the
examples that Z3 and CVC4 failed to solve, Retro could solve 2,664 examples
(82.4 %) out of those where Z3 failed and 111 examples (59.04 %) of those where
CVC4 failed. In Fig. 10, we give a cactus plot of the Virtual Best Solver on the
benchmarks with and without Retro. Given a set of solvers S, we use V BS(S)
to denote the solver that would be obtained by taking, for each benchmark, the

1 For instance, when Z3 receives the word equation xy = yax, it infers the length
constraint |x|+ |y| = |y|+1+ |x|, which implies unsatisfiability of the word equation
without the need to start applying the case-split rule at all.

360 Y.-F. Chen et al.

solver that is the fastest on the given benchmark. The graph shows that our
approach can significantly help solvers deal with hard equations.

Discussion. From the obtained results, we see that our approach works well
in hard cases, where the fast heuristics implemented in state-of-the-art solvers
are not sufficient to quickly discharge a formula, in particular when the
(un)satisfiability proof is complex. Our approach can exploit the symbolic rep-
resentation of the proof tree and use it to reduce the redundancy of performing
transformations. Note that we can still beat the heavily optimized Z3 and CVC4
written in C++ by a Python tool in those cases. We believe that implementing
our symbolic algorithm as a part of a state-of-the-art SMT solver would push
the applicability of string solving even further, especially for cases of string con-
straints with a complex structure, which need to solve multiple DPLL(T) queries
in order to establish the (un)satisfiability of a string formula.

8 Related Work

The study of solving string constraint traces back to 1946, when Quine [41]
showed that the first-order theory of word equations is undecidable. Makanin
achieved a milestone result in [34], where he showed that the class of quantifier-
free word equation is decidable. Since then, several works, e.g., [4,6,8,15,16,
19,20,32,35,39,40,43,44], consider the decidability and complexity of different
classes of string constraints. Efficient solving of satisfiability of string constraints
is a challenging problem. Moreover, decidability of the problem of satisfiability
of word equations combined with length constraints of the form |x| = |y| has
already been open for over 20 years [14].

The strong practical motivation led to the rise of several string constraint
solvers that concentrate on solving practical problem instances. The typical pro-
cedure implemented within DPLL(T)-based string solvers [3,5,9,16,24,45,46,52]
is to split the constraints into simpler sub-cases based on how the solutions
are aligned, combining with powerful techniques for Boolean reasoning to effi-
ciently explore the resulting exponentially-sized search space. The case-split rule
is usually performed explicitly. In contrast, our approach performs case-splits
symbolically.

A related topic is about automata-based string solvers for analyzing string-
manipulating programs. ABC [7] and Stranger [49] soundly over-approximates
string constraints using transducers [51]. The main difference of these approaches
to ours is that they use transducers to encode possible models (solutions) to the
string constraints, while we use automata and transducers to encode the string
constraint transformations.

Acknowledgment. We thank the anonymous reviewers for helpful comments on how
to improve the paper and Mohamed Faouzi Atig for discussing the topic. This work
has been partially supported by the Guangdong Science and Technology Department
(grant no. 2018B010107004), by the National Natural Science Foundation of China
(grant nos. 61761136011, 61532019, 61836005), the Czech Ministry of Education, Youth

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 361

and Sports project LL1908 of the ERC.CZ programme, the Czech Science Foundation
project 20-07487S, the FIT BUT internal project FIT-S-20-6427, and the project of
Ministry of Science and Technology, Taiwan (grant nos. 109-2628-E-001-001-MY3 and
106-2221-E-001-009-MY3).

References

1. Abdulla, P.A.: Regular model checking. STTT 14(2), 109–118 (2012)
2. Abdulla, P.A., et al.: Flatten and conquer: a framework for efficient analysis of

string constraints. In: PLDI, pp. 602–617 (2017)
3. Abdulla, P.A., et al.: Trau: SMT solver for string constraints. In: FMCAD, pp. 1–5

(2018)
4. Abdulla, P.A., et al.: String constraints for verification. In: Biere, A., Bloem, R.

(eds.) CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 10

5. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 29

6. Abdulla, P.A., Atig, M.F., Diep, B.P., Hoĺık, L., Jank̊u, P.: Chain-free string con-
straints. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol.
11781, pp. 277–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3 16

7. Aydin, A., et al.: Parameterized model counting for string and numeric constraints.
In: SIGSOFT, pp. 400–410 (2018)

8. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations. arXiv
preprint arXiv:1304.4150 (2013)

9. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

10. Berstel, J.: Transductions and context-free languages. Vieweg+Teubner Verlag
(1979)

11. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2 27

12. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree)
model checking. STTT 14(2), 167–191 (2012)

13. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 31

14. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation and
undecidable extensions of this theory. In: Mac Lane, S., Siefkes, D. (eds.) The
Collected Works of J. Richard Büchi, pp. 671–683. Springer, New York (1990).
https://doi.org/10.1007/978-1-4613-8928-6 37

15. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string
constraints with the ReplaceAll function. PACMPL 2(POPL), 3:1–3:29 (2018)

16. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. PACMPL
3(POPL), 49 (2019)

https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
http://arxiv.org/abs/1304.4150
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/978-1-4613-8928-6_37

362 Y.-F. Chen et al.

17. Diekert, V.: Makanin’s Algorithm, pp. 387–442 (2002)
18. Durnev, V.G., Zetkina, O.V.: On equations in free semigroups with certain con-

straints on their solutions. J. Math. Sci. 158(5), 671–676 (2009)
19. Ganesh, V., Berzish, M.: Undecidability of a theory of strings, linear arithmetic

over length, and string-number conversion. arXiv preprint arXiv:1605.09442 (2016)
20. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length

constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012.
LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39611-3 21

21. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI, pp. 213–223 (2005)

22. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: PLDI, pp. 62–73 (2011)

23. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI (2008)

24. Hoĺık, L., Jank̊u, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. PACMPL 2(POPL), 4 (2018)

25. Kaminski, M., Francez, N.: Finite-memory automata. TCS 134(2), 329–363 (1994)
26. Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:

a solver for word equations over strings, regular expressions, and context-free gram-
mars. TOSEM 21(4), 25:1–25:28 (2012)

27. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

28. Kosovskii, N.K.: Properties of the solutions of equations in a free semigroup. J.
Math. Sci. 6(4), 361–367 (1976). https://doi.org/10.1007/BF01084074

29. Le, Q.L., He, M.: A decision procedure for string logic with quadratic equations,
regular expressions and length constraints. In: Ryu, S. (ed.) APLAS 2018. LNCS,
vol. 11275, pp. 350–372. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-02768-1 19

30. Levi, F.W.: On semigroups. Bull. Calcutta Math. Soc. 36, 141–146 (1944)
31. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory

solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 43

32. Lin, A.W., Barceló, P.: String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: POPL, pp. 123–136 (2016)

33. Lin, A.W., Majumdar, R.: Quadratic word equations with length constraints,
counter systems, and Presburger arithmetic with divisibility. In: Lahiri, S.K.,
Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 352–369. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01090-4 21

34. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik 145(2), 147–236 (1977)

35. Matiyasevich, Y.: Computation paradigms in light of Hilbert’s tenth problem. In:
Cooper, S.B., Lowe, B., Sorbi, A. (eds.) New computational paradigms, pp. 59–85.
Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5 4

36. Matiyasevich, Y.V.: A connection between systems of word and length equations
and Hilbert’s tenth problem. Zap. Nauchnykh Semin. POMI 8, 132–144 (1968)

37. Nielsen, J.: Die isomorphismen der allgemeinen, unendlichen Gruppe mit zwei
Erzeugenden. Mathematische Annalen 78(1), 385–397 (1917)

38. Osera, P.M.: Constraint-based type-directed program synthesis. In: TyDe, pp. 64–
76 (2019)

http://arxiv.org/abs/1605.09442
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/BF01084074
https://doi.org/10.1007/978-3-030-02768-1_19
https://doi.org/10.1007/978-3-030-02768-1_19
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-030-01090-4_21
https://doi.org/10.1007/978-0-387-68546-5_4

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 363

39. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In:
FOCS, pp. 495–500 (1999)

40. Plandowski, W.: An efficient algorithm for solving word equations. In: STOC, pp.
467–476 (2006)

41. Quine, W.V.: Concatenation as a basis for arithmetic. JSYML 11(4), 105–114
(1946)

42. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling
up DPLL(T) string solvers using context-dependent simplification. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 453–474. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63390-9 24

43. Robson, J.M., Diekert, V.: On quadratic word equations. In: Meinel, C., Tison, S.
(eds.) STACS 1999. LNCS, vol. 1563, pp. 217–226. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 20

44. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7 4

45. Trinh, M.T., Chu, D.H., Jaffar, J.: S3: a symbolic string solver for vulnerability
detection in web applications. In: CCS, pp. 1232–1243 (2014)

46. Trinh, M.-T., Chu, D.-H., Jaffar, J.: Progressive reasoning over recursively-defined
strings. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 218–
240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 12

47. Wang, H.-E., Tsai, T.-L., Lin, C.-H., Yu, F., Jiang, J.-H.R.: String analysis via
automata manipulation with logic circuit representation. In: Chaudhuri, S., Farzan,
A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 241–260. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 13

48. Wang, Y., Zhou, M., Jiang, Y., Song, X., Gu, M., Sun, J.: A static analysis tool
with optimizations for reachability determination. In: ASE, pp. 925–930 (2017)

49. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol.
6015, pp. 154–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12002-2 13

50. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. FMSD 44(1), 44–70 (2014). https://doi.org/
10.1007/s10703-013-0189-1

51. Yu, F., Shueh, C.Y., Lin, C.H., Chen, Y.F., Wang, B.Y., Bultan, T.: Optimal
sanitization synthesis for web application vulnerability repair. In: ISSTA, pp. 189–
200 (2016)

52. Zheng, Y., et al.: Z3str2: an efficient solver for strings, regular expressions,
and length constraints. FMSD 50(2–3), 249–288 (2017). https://doi.org/10.1007/
s10703-016-0263-6

https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/3-540-49116-3_20
https://doi.org/10.1007/3-540-55124-7_4
https://doi.org/10.1007/978-3-319-41528-4_12
https://doi.org/10.1007/978-3-319-41528-4_13
https://doi.org/10.1007/978-3-319-41528-4_13
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/s10703-016-0263-6
https://doi.org/10.1007/s10703-016-0263-6

P3: A Profiler Suite for Parallel
Applications on the Java Virtual Machine

Andrea Rosà(B) and Walter Binder

Faculty of Informatics, Università della Svizzera italiana (USI), Lugano, Switzerland
{andrea.rosa,walter.binder}@usi.ch

Abstract. We present P3, a new profiler suite for parallel applications
on the Java Virtual Machine. P3 specifically targets metrics related to
parallelism, concurrency, and synchronization. In particular, P3 profiles
the use of concurrent entities (e.g., threads, tasks, actors, futures), con-
structs and classes to implement synchronization (including locks, thread
parking, and the synchronizers from the java.util.concurrent package),
lock-free operations (such as atomic and volatile memory accesses), as
well as synchronized and concurrent collections. To the best of our knowl-
edge, our suite is the first tool detecting the use of volatile memory
accesses, futures, synchronizers, and utility classes commonly used in
concurrent programming. Moreover, P3 incurs only moderate profiling
overhead. P3 can be readily applied to popular benchmark suites and
to public code repositories, facilitating new analyses in the wild. We
describe the design and implementation of P3 and discuss how our tool
was fundamental in the selection of workloads composing the Renais-
sance benchmark suite. Moreover, we use P3 to analyze the variability of
different metrics for multiple iterations of the Renaissance benchmarks.

Keywords: Profiling · Parallelism · Concurrency · Synchronization ·
Java Virtual Machine

1 Introduction

Developing multi-threaded applications is becoming increasingly important to
exploit the massive parallel computing resources of nowadays hardware tech-
nologies. While parallel programming offers major benefits in speeding up appli-
cations, it can also lead to suboptimal performance if not done with care. To
assess the performance of parallel applications and to locate optimization oppor-
tunities, it is fundamental to analyze their behavior under multiple aspects, par-
ticularly in relation to the use of concurrency and synchronization constructs.

We tackle this problem for multi-threaded applications running on the Java
Virtual Machine (JVM). We present P3, a novel profiling suite for parallel appli-
cations focused on metrics related to parallelism, concurrency, and synchro-
nization1. Specifically, P3 profiles the use of concurrent entities, constructs and
1 P3 stands for “Profiler for Parallel Programs”.

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 364–372, 2020.
https://doi.org/10.1007/978-3-030-64437-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-64437-6_19

P3: A Profiler Suite for Parallel Applications on the Java Virtual Machine 365

classes to implement synchronization, lock-free operations, as well as synchro-
nized and concurrent collections. Several profilers for parallel applications have
been proposed in the literature, such as HPCToolkit [1], Free Lunch [3], and the
work of Hofer et al. [4] and Inoue et al. [5]. Our tool enables the collection of
metrics that, to the best of our knowledge, are not targeted by other profilers,
such as the use of volatile memory accesses, futures and promises, synchroniz-
ers, synchronized collections, and concurrent collections. P3 can be run on any
standard JVM that supports the JVM Tool Interface (JVMTI).

P3 is composed of several profiling modules that can be enabled individually,
each incurring only moderate profiling overhead. In addition, P3 can be imme-
diately applied to popular benchmark suites for the JVM (e.g., Renaissance,
DaCapo, ScalaBench, SPECjvm2008) and can be readily used to conduct large-
scale analyses on public software repositories via NAB [13]. The main challenges
in developing P3 lie in achieving moderate overhead (thus reducing measure-
ment perturbations) while also avoiding loss of accuracy. To this end, P3 resorts
to efficient lock-free data structures, a careful architectural design that mini-
mizes computations done in the inserted instrumentation code, and the use of
advanced technologies such as reification of reflective information in a separate
instrumentation process [8].

This paper makes the following contributions. We present P3, describing the
metrics collected by our suite, its architecture and implementation (Sect. 2). We
evaluate P3 by presenting a use case where our suite is used to analyze the vari-
ability of different metrics for multiple iterations of the Renaissance benchmark
suite [7]. We also evaluate the profiling overhead of P3 (Sect. 3). We discuss how
P3 was fundamental in conducting previous research, particularly how Renais-
sance developers used P3 during the development of the suite. We also discuss
the limitations of P3 (Sect. 4). Finally, we give our concluding remarks (Sect. 5).

2 Profiler Suite Overview

In this section, we present the metrics collected by P3, its architecture, and we
explain some aspects of its implementation.

Metrics. P3 mainly focuses on metrics related to parallelism, concurrency,
and synchronization. Metric collection in P3 is organized in modules that can
be enabled or disabled individually, each associated with different metrics, as
reported in Table 1. Overall, the metrics profiled by P3 focus on fundamental
entities and constructs for implementing thread-safe parallel applications, which
may lead to performance bottlenecks if not used with care and whose under-
standing is crucial to locate optimization opportunities.

Four modules focus on metrics related to the creation, execution and
use of concurrent entities, particularly threads, tasks (i.e., Runnable, Callable,
and ForkJoinTask instances), actors (from the Akka library), and futures2.
2 To profile tasks and actors, P3 integrates modified versions of tgp [10] and
AkkaProf [9], respectively. The other metrics are directly profiled by P3.

366 A. Rosà and W. Binder

Six modules focus instead on the use of constructs, patterns, and classes used
to implement synchronization on the JVM, i.e., implicit and explicit locks, the
wait/notify pattern, thread joining and parking, as well as synchronizers. Three
P3 modules are dedicated to the execution of lock-free operations frequently used
to reduce contention in parallel applications, particularly low-level atomic opera-
tions (such as compare-and-swap, get-and-swap, get-and-add), the use of atomic
classes, and accesses to fields declared volatile. Finally, two modules detect the
use of synchronized and concurrent collections offered by the Java Class Library,
which are often used by parallel applications on the JVM.

In addition to the above metrics, P3 can collect useful supporting metrics and
context information, particularly the bytecode count (i.e., the number of byte-
code instructions executed by the application) and the caller contexts (i.e., the
method in which an event occurs). The former can be used to normalize other
metrics wrt. a (mostly) platform-independent quantity describing the amount of
computations performed by an application, and is useful when comparing metrics
in different applications taking into account the amount of computations per-
formed by them [7]. The latter allows P3 to produce per-method event counters,
which allow users to locate the code portions where most events of a given type
occur. This information is fundamental to locate optimization opportunities [10].

Table 1. Metrics collected by P3, broken down by module. The rightmost column
reports the profiling overhead (OH) of a module, discussed in Sect. 3.

Module Metrics OH

thread Threads start and termination 1.00

task Tasks creation and execution (via tgp [10]) 1.03

actor Use of Akka actors (via AkkaProf [9]) 1.01

future Futures and promises from the Java’s, Scala’s and Twitter’s libraries 1.01

ilock Implicit locks: use of synchronized methods and blocks 1.03

elock Explicit locks: use of interfaces Lock, ReadWriteLock and Condition 1.01

wait Calls to Thread.wait, Thread.notify and Thread.notifyAll 1.00

join Calls to Thread.join 1.01

park Thread parking and unparking 1.00

synch Synchronizers: Semaphore, CountDownLatch, CyclicBarrier, Phaser and Exchanger 1.01

cas Compare-and-swap (CAS), get-and-swap (GAS), get-and-add (GAA) 1.01

atomic Use of atomic classes: AtomicInt, AtomicLong, AtomicReference 1.01

volatile Accesses to volatile fields 1.03

scoll Use of synchronized collections 1.00

ccoll Use of concurrent collections: BlockingQueue, ConcurrentMap and subtypes 1.01

Architecture. P3 features a three-component architecture, as shown in Fig. 1.
P3 instruments classes at load-time, performing the instrumentation in a sepa-
rate process, the instrumentation server. When a class is loaded, it is intercepted

P3: A Profiler Suite for Parallel Applications on the Java Virtual Machine 367

(step 1 in the figure) by a native agent attached to the target application,
which sends the class to the instrumentation server 2 . Here, the instrumen-
tation logic determines which methods of the class must be instrumented (if
any) and instructs the weaver 3 to perform the instrumentation 4 . Finally,
the (potentially) instrumented class is sent back to the target application 5 ,
which links it to the JVM’s memory 6 .

When an event of interest occurs, the instrumentation code registers it in
thread-local counters in the memory of the target application 7 . Before the
termination of a thread, such counters are fetched 8 and sent 9 to another
P3 component running in a separate process, the analysis server. The counter
processor in the server stores the received counters in appropriate data structures
10 . When the target application terminates 11 , the trace handler elaborates
the analysis data structures 12 and produces traces containing a concise and
readable representation of the collected metrics 13 . To reduce the interference
of the servers on application execution, they can be deployed on a different
NUMA node or machine from the one where the target application is running.

P3 provides extensible plugins (component A in the figure) that can interface
with popular benchmark suites for the JVM. Such plugins allow P3 to determine
the start and end of different benchmark iterations, hence enabling the collection
of per-iteration metrics, which is useful to differentiate warm-up from steady-
state performance. P3 ships with plugins for the Renaissance [7], DaCapo [2],
ScalaBench [11], and SPECjvm2008 [12] benchmark suites; users can implement
custom plugins for other suites. When plugins are enabled, thread-local counters
are sent to the analysis server also upon iteration start and end, to enable correct
per-iteration accounting. In addition, P3 implements plugins to interface with
NAB [13], a framework for automatically conducting dynamic analyses on public
code repositories. This makes it possible to readily conduct large-scale analyses
with P3 on software hosted in repositories such as GitHub.

Fig. 1. P3 architecture.

368 A. Rosà and W. Binder

Implementation. P3 is built on top of the DiSL framework for Java bytecode
instrumentation [6]. DiSL guarantees complete bytecode coverage, i.e., all meth-
ods with a bytecode representation can be instrumented. This ensures that events
of interest can be detected also in the Java Class Library, which is notoriously
hard to instrument.

To collect the desired metrics, P3 instruments multiple code locations, such
as invocations to specific methods defined in the Java Class Library (including
the special classes sun.misc.Unsafe and LockSupport) and the execution of spe-
cific bytecode instructions (such as monitorenter and monitorexit). Moreover, P3

inspects information contained in the classfile of the class under instrumenta-
tion (e.g., to detect synchronized methods) and intercepts thread start and end
via a dedicated JVMTI native agent. If the bytecode count is needed, P3 also
instruments all basic blocks to update the counter.

The implementation of P3 is designed to keep the profiling overhead mod-
erate while not jeopardizing the accuracy. In the target application, events are
registered in thread-local primitive counters (component B in Fig. 1) that are
updated upon each event occurrence without the need of synchronization. This
avoids the execution of expensive lock acquisitions and of additional object allo-
cations in the heap. The costly elaboration of such counters is done in a separate
process after application execution. Caller contexts (collected only if per-method
metrics are needed) are also stored in thread-local data structures.

The instrumentation logic of P3 often needs to access reflective information
of a class3. Reflective information is usually not available in frameworks per-
forming the instrumentation in a separate process. This results in the insertion
of expensive dynamic checks or the use of the Java Reflection API in the instru-
mentation code, which are known to greatly increase the profiling overhead.
The instrumentation server of P3 is able to partially access such information by
using the DiSL Reflection API [8] (component C). The original API provides
reflective information on the supertypes of a class. We extended the API to offer
information also on the modifiers of a field, which is needed for detecting volatile
accesses without using the Java Reflection API in the inserted instrumentation
code. The DiSL Reflection API greatly helps reduce the profiling overhead of P3

(e.g., it lowers the overhead of module volatile from 1613× to 1.03×).

3 Evaluation

In this section, we evaluate P3 on Renaissance [7], a recently-released benchmark
suite for the JVM containing 25 multi-threaded workloads. First, we use P3 to
assess the variability of different metrics for multiple iterations of the Renaissance
benchmarks. Then, we discuss the profiling overhead of P3 on Renaissance.

Our evaluation considers only steady-state iterations. Before collecting the
metrics of interest, we let the benchmarks run several warm-up iterations (as
specified on the suite’s website) to let dynamic compilation and GC ergonomics
3 In P3, this is needed when modules thread, task, actor, future, elock, synch, atomic,
volatile or ccoll are active.

P3: A Profiler Suite for Parallel Applications on the Java Virtual Machine 369

stabilize. We use Renaissance v0.10.0 and Java OpenJDK 1.8.0 252. We conduct
our analyses on a machine with two NUMA nodes, each containing an Intel Xeon
E5-2680 (2.7 GHz) processor with 8 physical cores and 64 GB of RAM, running
under Ubuntu 18.04.03 LTS (kernel GNU/Linux 4.15.0-66-generic x86 64). We
deploy the instrumentation and analysis servers of P3 on a different NUMA node
from the one where the target application is in execution, to reduce interference
and measurement perturbation. For the same reason, we ensure that no other
CPU-, memory-, or IO-intensive application is in execution during profiling. We
disable Turbo Boost and Hyper-Threading.

Fig. 2. Variability of metrics over multiple steady-state iterations. We report only
benchmarks and metrics showing a variability of ±20% wrt. the median (marked by
the gray area) in at least one iteration.

Variability. Benchmarks are often used as reference workloads against which
compare the performance of different technologies. For this reason, good bench-
marks should exhibit workloads that vary as little as possible in different itera-
tions. In particular, operations related to parallelism, concurrency, and synchro-
nization are those that are more susceptible to variability in a multi-threaded
application (due to the intrinsic non-determinism of thread scheduling), and
should be analyzed with care.

In this section, we conduct an high-level analysis on the variability of dif-
ferent metrics for multiple iterations of benchmarks in Renaissance, focusing in
particular on aspects related to parallelism, concurrency, and synchronization.
Our goal is not to fully assess variability; rather, we aim at finding workloads
showing symptoms of metric variability across multiple iterations, which should
be analyzed in more depth. We apply P3 on Renaissance, collecting, for each
benchmark, all metrics reported in Table 1 in 20 different steady-state itera-
tions. For each metric, we then compare the values obtained in each iteration
with the median across all steady-state iterations. As the presence of small met-
ric variations in multiple iterations can be considered the norm in multi-threaded
workloads, we focus on benchmarks showing a significant variation in at least
one iteration, i.e., ±20% wrt. the median.

Among the 25 benchmarks in Renaissance, we found 3 of them exhibiting
a significant variability in a single metric. Figure 2 reports the relative value

370 A. Rosà and W. Binder

(wrt. the median) of the metric with significant variability in the 3 benchmarks,
over different steady-state iterations. In db-shootout, the amount of implicit locks
(ilock) used by the benchmark varies significantly across different iterations,
being outside the ±20% range in 13 iterations out of 20. On the other hand,
neo4j-analytics shows a constantly increasing number of implicit locks used, start-
ing from a value of −26% in the first iteration and reaching a value of +35%
wrt. the median in the last iteration. Finally, while the amount of volatile accesses
(volatile) in movie-lens is often within the ±20% range, the benchmark exhibits a
huge peak of volatile accesses every five iterations (amounting to +342%, +338%,
+273% and +248% for iterations #5, 10, 15 and 20, respectively) which is an
indication of a repetitive pattern accessing volatile fields frequently.

While the Renaissance benchmarks generally exhibit low metric variability,
the three patterns shown in Fig. 2 indicate the presence of occasional or periodic
operations that may introduce variability in workloads, and should be investi-
gated in more depth4. P3 was fundamental in detecting such patterns, partic-
ularly the variability in movie-lens, as to the best of our knowledge, volatile
accesses cannot be detected by other tools.

Overhead. Here, we briefly discuss the profiling overhead of P3. The rightmost
column of Table 1 reports the median profiling overhead of a module across
all Renaissance benchmarks. Overhead is presented as overhead factor, i.e., the
ratio between the instrumented and uninstrumented application execution time.
For most modules the overhead does not exceed 1.01×, with the exception of
task, ilock and volatile which show an overhead of 1.03×. The relatively higher
overhead of these modules can be explained by the complexity of collecting
task-related metrics [10] (for task) and the high amount of intrinsic-lock and
volatile accesses typically performed by a multi-threaded application (for ilock
and volatile). When all modules are active, the median overhead of P3 is 1.18×.

4 Discussion

Here, we discuss applications of P3 to previous research work and its limitations.

Applications to Previous Research. P3 has been used by researchers from
both academia and industry. In particular, P3 has been fundamental in the devel-
opment of the Renaissance suite. Renaissance developers used P3 attached to
NAB to select candidate workloads hosted in public software repositories show-
ing a high degree of concurrency and synchronization (particularly focusing on
metrics in the future, ilock, wait, synch, cas, atomic and ccoll modules). Moreover,
they used P3 to filter out workloads showing low parallelism and concurrency,
which did not fall in the scope of the suite. Finally, P3 was used to obtain key
metrics on concurrency and synchronization on the selected benchmarks, which

4 We reported our findings to the Renaissance developers, who are investigating them.

P3: A Profiler Suite for Parallel Applications on the Java Virtual Machine 371

demonstrated the higher diversity of Renaissance wrt. other prevalent bench-
mark suites for the JVM. All such analyses are detailed in a PLDI publication
describing Renaissance [7].

In addition, P3 has been used by the developers of NAB to conduct large-
scale analyses on task-parallel workloads running on the JVM (particularly using
the task module), as discussed in an ECOOP publication describing NAB [13].
Overall, the availability of previous research work obtained thanks to P3 further
demonstrates that our suite can be helpful in conducting novel research.

Limitations. As P3 is based on bytecode instrumentation, it may over-profile
some metrics in cases where the just-in-time (JIT) compiler applies on-the-fly
optimizations that remove some events of interest (such as the acquisition/release
of implicit locks) without also removing the instrumentation code that detects
such events. This is a well-known limitation of bytecode instrumentation on
the JVM, affecting any profiler relying on such instrumentation strategy. While
solving this limitation is challenging, previous work has proposed strategies to
partially mitigate this problem for a subset of bytecode instructions [14]. As part
of our future work, we plan to integrate similar strategies into P3 to alleviate
this limitation.

As discussed in Sect. 3, P3 incurs a median profiling overhead of 1.18× when
all modules are active. While this overhead can be considered significant for
some applications, activating all modules at the same time is often not needed.
On the other hand, individual modules incur only moderate overhead, which can
be considered acceptable for most users. We took several measures to mitigate
profiling overhead, as discussed in Sect. 2. We are continuously investigating new
ways of reducing profiling overhead.

5 Concluding Remarks

We presented P3, a new profiler suite for parallel applications on the JVM,
focusing on metrics related to parallelism, concurrency, and synchronization.
To the best of our knowledge, our suite is the first tool detecting the use of
volatile accesses, futures, synchronizers, as well as synchronized and concurrent
collections. P3 incurs only moderate profiling overhead and can be readily applied
to prevalent benchmark suites and to public code repositories, facilitating new
large-scale analyses. P3 has been fundamental in conducting previous research
work. We are confident that our suite can help researchers conduct novel analyses
and better understand the behavior of multi-threaded applications.

As part of our future work, we plan to further increase the accuracy of P3 and
decrease its profiling overhead, as discussed in Sect. 4. We also plan to expand
the metrics profiled by P3 (e.g., including the use of parallel streams) and to
further optimize resource usage by merging the instrumentation and analysis
server into a single one. P3 is available as an evaluation version at http://inf.usi.
ch/postdoc/rosaa/p3/p3-demo.zip.

http://inf.usi.ch/postdoc/rosaa/p3/p3-demo.zip
http://inf.usi.ch/postdoc/rosaa/p3/p3-demo.zip

372 A. Rosà and W. Binder

Acknowledgments. This work has been supported by Oracle (ERO project 1332), by
the Hasler Foundation (project 20022) and by the Swiss National Science Foundation
(project 200020 188688).

References

1. Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. Concurr. Comput. Pract. Exper. 22(6), 685–701 (2010)

2. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: OOPSLA, pp. 169–190 (2006)

3. David, F., Thomas, G., Lawall, J., Muller, G.: Continuously measuring critical
section pressure with the free-lunch profiler. In: OOPSLA, pp. 291–307 (2014)

4. Hofer, P., Gnedt, D., Schörgenhumer, A., Mössenböck, H.: Efficient tracing and
versatile analysis of lock contention in Java applications on the virtual machine
level. In: ICPE, pp. 263–274 (2016)

5. Inoue, H., Nakatani, T.: How a Java VM can get more from a hardware performance
monitor. In: OOPSLA, pp. 137–154 (2009)

6. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: a
domain-specific language for bytecode instrumentation. In: AOSD, pp. 239–250
(2012)

7. Prokopec, A., et al.: Renaissance: benchmarking suite for parallel applications on
the JVM. In: PLDI, pp. 31–47 (2019)

8. Rosà, A., Binder, W.: Optimizing type-specific instrumentation on the JVM with
reflective supertype information. J. Visual Lang. Comput. 49, 29–45 (2018)

9. Rosà, A., Chen, L.Y., Binder, W.: Actor profiling in virtual execution environ-
ments. In: GPCE, pp. 36–46 (2016)

10. Rosà, A., Rosales, E., Binder, W.: Analysis and optimization of task granularity
on the Java Virtual Machine. ACM Trans. Program. Lang. Syst. 41(3), 19:1–19:47
(219)

11. Sewe, A., Mezini, M., Sarimbekov, A., Binder, W.: Da Capo con Scala: design and
analysis of a Scala benchmark suite for the Java Virtual Machine. In: OOPSLA,
pp. 657–676 (2011)

12. Standard Performance Evaluation Corporation (SPEC): SPECjvm2008. https://
www.spec.org/jvm2008/

13. Villazón, A., et al.: Automated large-scale multi-language dynamic program anal-
ysis in the wild. In: ECOOP, pp. 20:1–20:27 (2019)

14. Zheng, Y., Bulej, L., Binder, W.: Accurate profiling in the presence of dynamic
compilation. In: OOPSLA, pp. 433–450 (2015)

https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/

Author Index

Aldrich, Jonathan 125
Aspinall, David 67
Atkey, Robert 67

Biernacka, Małgorzata 147
Biernacki, Dariusz 147
Binder, Walter 364
Boulytchev, Dmitry 167, 293
Bravetti, Mario 105

Ceresa, Martín 25
Charatonik, Witold 147
Chen, Yu-Fang 343

Drab, Tomasz 147
Dubey, Shashank Shekhar 231

Fachinetti, Leandro 3
Francalanza, Adrian 105

Gazagnaire, Thomas 231
Golovanov, Iaroslav 105
Gorostiaga, Felipe 25
Groves, Lindsay 125
Guan, Yong 44

Han, Ning 44
Havlena, Vojtěch 343
Hong, Chih-Duo 273
Hou, Chuanjia 251
Hu, Zhenjiang 323
Hüttel, Hans 105

Iwayama, Naoki 86

Jakobsen, Mathias S. 105
Jia, Tong 251

Kato, Hiroyuki 323
Katsura, Hiroyuki 86
Kettunen, Mikkel K. 105
Kienitz, Daniel 67
Kobayashi, Naoki 86
Kokke, Wen 67
Komendantskaya, Ekaterina 67
Kosarev, Dmitry 293

Lengál, Ondřej 343
Li, Ximeng 44
Li, Ying 251
Lin, Anthony W. 273
Liu, Xiaotong 251
Lozov, Petr 293

Mackay, Julian 125
Madhavapeddy, Anil 231
Markgraf, Oliver 273
Midtgaard, Jan 209

Najib, Muhammad 273
Neider, Daniel 273

Palmer, Zachary 3
Perényi, Árpád 209
Potanin, Alex 125

Ravara, António 105
Rosà, Andrea 364
Rozplokhas, Dmitry 167

Sánchez, César 25
Shi, Zhiping 44
Sivaramakrishnan, K. C. 231
Smith, Scott F. 3
Steinhöfel, Dominic 311

Tran, Van-Dang 323
Tsukada, Takeshi 86
Turrini, Andrea 343

Uustalu, Tarmo 186

Voorneveld, Niels 186
Vyatkin, Andrey 167

Wang, Guohui 44
Wu, Ke 3

Yorihiro, Ayaka 3
Yu, Hao 251
Yue, Yang 251

374 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Integrated Scientific Modeling and Lab Automation
	Object Support for GPU Programming: Why and How
	Generating Programs from Types
	Contents
	Program Analysis and Verification
	A Set-Based Context Model for Program Analysis
	1 Introduction
	2 Overview
	2.1 Shallow A-Normalized Lambda Calculus
	2.2 Plume by Example
	2.3 Models of Context Sensitivity
	2.4 Selective Polyinstantiation

	3 Formalizing Plume
	3.1 Preliminary Definitions
	3.2 The Lookup Function
	3.3 CCFG Closure Construction
	3.4 Soundness and Decidability

	4 Evaluation of Precision
	4.1
	4.2 Comparing Context Models
	4.3 Synchronized Pushdown Systems
	4.4 Threats to Validity

	5 Summary of Performance
	6 Related Work
	6.1 Context Models
	6.2 Selective Polyinstantiation
	6.3 Analysis Techniques

	7 Conclusions
	References

	Declarative Stream Runtime Verification (hLola)
	1 Introduction
	2 Preliminaries
	2.1 Stream Runtime Verification: Lola
	2.2 Haskell as a Host Language for an eDSL

	3 Implementation
	3.1 Language Design
	3.2 Static Analysis
	3.3 Runtime System
	3.4 Additional Features

	4 Extensible Libraries in HLola
	5 Implementation and Empirical Evaluation
	6 Final Discussions, Conclusion and Future Work
	References

	Formal Verification of Atomicity Requirements for Smart Contracts
	1 Introduction
	2 Atomicity Criteria for Smart Contracts
	3 Smart Contract Language
	3.1 Syntax
	3.2 Semantics
	3.3 Preservation of Types by Evaluation

	4 Program Logic
	4.1 The Assertions
	4.2 The Inference System
	4.3 Soundness

	5 Atomicity Verification
	6 Related Work
	7 Conclusion
	References

	Types
	Neural Networks, Secure by Construction
	1 Introduction
	1.1 Example: Verifying the AND-Gate
	1.2 Contributions

	2 An Overview of StarChild
	2.1 A Note on Lazuli
	2.2 The Convenience of Keras Models

	3 Verifying A ``Real'' Example: MNIST
	4 Piecewise-Linear Approximations Made Easy
	5 Lessons Learned
	References

	A New Refinement Type System for Automated HFLZ Validity Checking
	1 Introduction
	2 Preliminaries: HFLZ
	2.1 Syntax
	2.2 Semantics

	3 Refinement Type System
	3.1 Syntax of Refinement Types
	3.2 Semantics of Refinement Types
	3.3 Typing Rules
	3.4 Soundness and Completeness

	4 Relationship with Higher-Order Constrained Horn Clauses
	4.1 The Duality of HFLZ and HoCHC
	4.2 The Similarity and Difference Between Two Refinement Type Systems

	5 Type Inference
	5.1 Constraint Generation
	5.2 Shape of Generated Constraints

	6 Implementation and Experiments
	6.1 Implementation
	6.2 Experiments

	7 Related Work
	8 Conclusion
	References

	Behavioural Types for Memory and Method Safety in a Core Object-Oriented Language
	1 Introduction
	1.1 Our Approach
	1.2 Contributions

	2 The Mungo Language
	3 The Type System
	4 The Dynamic Semantics of Mungo
	5 Results About the Type System
	6 Usage Inference
	7 Conclusions and Future Work
	References

	Syntactically Restricting Bounded Polymorphism for Decidable Subtyping
	1 Introduction
	2 The Undecidability of Bounded Polymorphism in System F<:
	3 Separating Recursion and Contra-Variance in System F<:
	3.1 Subtype Decidability
	3.2 Properties of F<:R

	4 Separating D<:
	4.1 Restricted Subtyping in D<:R
	4.2 Subtype Decidability in D<:R
	4.3 Type Safety
	4.4 Expressiveness

	5 Related Work
	5.1 Strong F<: and Strong D<:
	5.2 Wyvern

	6 Conclusion
	References

	Semantics
	An Abstract Machine for Strong Call by Value
	1 Introduction
	2 Deconstruction of the KN Machine
	2.1 Specification of the KN Machine
	2.2 Shape Invariant
	2.3 Compositional Evaluator

	3 Construction of a Call-by-Value Variant
	3.1 Call-by-Value Evaluator
	3.2 Abstract Machine
	3.3 Shape Invariants
	3.4 An Application: Streaming of Expressions

	4 Reduction Semantics for Strong CbV
	5 Correctness
	5.1 Decoding of Machine Representations
	5.2 Formal Correctness Result
	5.3 Corollaries

	6 Conclusion and Future Work
	References

	Certified Semantics for Relational Programming
	1 Introduction
	2 The Language
	3 Denotational Semantics
	4 Operational Semantics
	5 Equivalence of Semantics
	6 Specification in Coq
	7 Applications
	7.1 Correctness of Transformations
	7.2 SLD Semantics
	7.3 Cut
	7.4 Reference Interpreters

	8 Related Work
	9 Conclusion and Future Work
	References

	Algebraic and Coalgebraic Perspectives on Interaction Laws
	1 Introduction
	2 Effect Handling and Coeffect Production
	2.1 Effect Handling
	2.2 Coeffect Production

	3 Interaction Laws
	4 Merge Functors
	5 The Interaction Law, Merge Functor Isomorphism
	6 Interaction Laws for Free Monads
	7 Runners
	7.1 Stateful Runners
	7.2 Continuation-Based Runners
	7.3 Running with Both a Coalgebra and an Algebra Given

	8 Conclusion
	References

	Program Generation, Transactions and Automation
	Stack-Driven Program Generation of WebAssembly
	1 Introduction
	2 Background
	2.1 WebAssembly
	2.2 Property-Based Testing

	3 Generating WebAssembly
	3.1 A Stack-Directed Generator

	4 A Stack-Directed Shrinker
	5 Testing Experiments
	5.1 Experimental Setup
	5.2 Testing the Generator
	5.3 Testing the Shrinker
	5.4 Statistics
	5.5 Bugs Found
	5.6 Inconsistencies in Web-Embedding
	5.7 Testing Buggy Behavior
	5.8 A Performance Experiment

	6 Related Work
	7 Conclusion
	References

	Banyan: Coordination-Free Distributed Transactions over Mergeable Types
	1 Introduction
	2 Motivation: A Distributed Build Cache
	2.1 Mergeable Types
	2.2 Transactions

	3 Programming Model
	4 Implementation
	4.1 Irmin Data Model
	4.2 Cassandra Instantiation
	4.3 Recursive Merges
	4.4 Garbage Collection

	5 Evaluation
	5.1 Experimental Setup
	5.2 Baseline Overheads
	5.3 Mergeable Types
	5.4 Distributed Build Cache

	6 Related Work
	7 Limitations and Future Work
	8 Conclusions
	References

	Automatically Generating Descriptive Texts in Logging Statements: How Far Are We?
	1 Introduction
	2 Problem Specification
	2.1 Problem Definition
	2.2 Code Context Information
	2.3 Retrieval Models

	3 Workflow
	3.1 Code Information Extraction
	3.2 Retrieval

	4 Evaluation Study
	4.1 Dataset
	4.2 Experimental Setup
	4.3 Evaluation Results

	5 Human Evaluation
	5.1 Procedure
	5.2 Evaluation Results

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

	Synthesis and Program Transformation
	Parameterized Synthesis with Safety Properties
	1 Introduction
	2 Motivating Examples
	3 Preliminaries
	4 Algorithm
	5 Case Studies and Experiments
	6 Related Work
	7 Conclusion
	References

	Relational Synthesis for Pattern Matching
	1 Introduction
	2 Related Works
	3 The Pattern Matching Synthesis Problem
	4 Pattern Matching Synthesis, Relationally
	4.1 Constructing Relational Interpreters
	4.2 Dealing with a Complete Set of Samples

	5 Implementation and Optimizations
	5.1 Reducing the Complete Set of Samples

	6 Evaluation
	7 Conclusion and Future Work
	References

	REFINITY to Model and Prove Program Transformation Rules
	1 Introduction
	2 Specifying Abstract Programs
	3 REFINITY in Action
	4 Conclusion
	References

	Debugging, Profiling and Constraint Solving
	A Counterexample-Guided Debugger for Non-recursive Datalog
	1 Introduction
	2 Background
	3 Counterexample Generation
	3.1 Specifying Program Properties
	3.2 Validation
	3.3 Generating Counterexamples

	4 Interactively Locating Bugs with Counterexamples
	4.1 Checking Counterexamples
	4.2 Dialog-Based User Debugging Interface
	4.3 Debugging Engine

	5 Implementation and Experiment
	6 Related Work
	7 Conclusion
	References

	A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving
	1 Introduction
	2 Preliminaries
	2.1 Nielsen Transformation
	2.2 Regular Model Checking

	3 Solving Word Equations Using RMC
	3.1 Nielsen Transformation as Word Operations
	3.2 Symbolic Algorithm for Word Equations
	3.3 Towards Symbolic Encoding
	3.4 Symbolic Encoding of Quadratic Equations into RMC

	4 Solving a System of Word Equations Using RMC
	4.1 Quadratic Case
	4.2 General Case

	5 Handling a Boolean Combination of String Constraints
	6 Implementation
	7 Experimental Evaluation
	8 Related Work
	References

	P3: A Profiler Suite for Parallel Applications on the Java Virtual Machine
	1 Introduction
	2 Profiler Suite Overview
	3 Evaluation
	4 Discussion
	5 Concluding Remarks
	References

	Author Index

