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Abstract. Real-life decision situations almost invariably involve large uncertain-
ties. In particular, there are several difficulties connected with the elicitation of
probabilities, utilities, and criteria weights. In this article, we explore and test a
robust multi-criteria weight generating method covering a broad set of decision
situations, but which still is reasonably simple to use. We cover an important class
of methods for criteria weight elicitation and propose the use of a reinterpretation
of an efficient family (rank exponent) of methods for modelling and evaluating
multi-criteria decision problems under uncertainty. We find that the rank exponent
(RX) family generates the most efficient and robust weighs and works very well
under different assumptions. Furthermore, it is stable under varying assumptions
regarding the decision-makers’ mindset and internal modelling. We also provide
an example to show how the algorithm can be used in a decision-making context.
It is exemplified with a problem of selecting strategies for combatting COVID-19.

Keywords: Multi-criteria decision analysis · Uncertain reasoning · Criteria
weights · Criteria ranking · Rank order · Automatic weight generation ·
COVID-19

1 Introduction

A problemwith manyMulti-Criteria DecisionMaking (MCDM)models is that there is a
lack of numerically precise information available in real life and it is hence difficult for a
decision-maker to enter realistic input data into a model. There is, therefore, a perceived
need for relaxing the demand for precise judgments to more realistically model decision
problems. See, for instance, (Park 2004; Larsson et al. 2014) among others. Solutions to
such problems are sometimes significantly hard to find and the results can be difficult to
interpret. Quitewell-knownmethods for approaching this problem are based on, e.g., sets
of probability measures, upper and lower probabilities as well as interval probabilities
and utilities (Coolen and Utkin 2008), fuzzy measures (Aven and Zio 2011; Shapiro
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and Koissi 2015; Tang et al. 2018) as well as evidence and possibility theory, cf., e.g.,
(Dubois 2010; Dutta et al. 2018; Rohmer and Baudrit 2010) just to mention a few of
them. Other approaches include second-order methods (Ekenberg et al. 2014; Danielson
et al. 2007, 2019) and modifications of classical decision rules, cf., (Ahn and Park 2008;
Sarabando and Dias 2009; Aguayo et al. 2014; Mateos et al. 2014). Regarding MCDM
problems, Salo, Hämäläinen, and others have suggested methods for handling imprecise
information, for instance, the PRIME method (Salo and Hämäläinen 2001) with various
implementations thereof, see e.g. (Mustajoki et al. 2005b). Several other models are
focussing on preference intensities, such as the MACBETHmethod (Bana e Costa et al.
2002), a variety of ROC approaches, such as (Sarabando and Dias 2010), or the Simos’s
method and variants thereof (Figueira andRoy2002). Furthermore, there are smart swaps
methods, such as (Mustajoki and Hämäläinen 2005a). Mixes of the above techniques
are also common, as in Jiménez et al. (2006).

A major problem is combining interval and qualitative estimates without introduc-
ing evaluation measures like �-maximin or (Levi’s) E-admissibility, cf., e.g., (Augustin
et al. 2014). Greco et al. (2008) suggest the UTAGMS methodology for purposes similar
to ours. By using an ordinal regression technique, they can form a representation based
on a set of pairwise comparisons. This is generalised in Figueira et al. (2009) by intro-
ducing cardinalities for obtaining a class of total preference functions compatible with
user assessments. However, this is less suitable for our purposes since it is unclear how
interval constraints can be handled in combination with the extracted preference func-
tions without encountering the computational difficulties discussed in, e.g., (Danielson
and Ekenberg 2007). Also, structural constraints should be taken into consideration as
discussed already in, e.g., (Ekenberg et al. 2005).

This paper will, more particularly, discuss amethod for criteria weight elicitation that
can be generally applied to any case where automatic weight generation is considered
and with the property that weight functions can be elicited while preserving efficiency
and correctness. Below we will provide a brief discussion of so-called surrogate weight
methods and then propose a reinterpretation of the rank exponential method. Herein, we
focus on ordinal information. In many circumstances, there is only ordinal information
availablewhichmerits the investigation into ordinalweights. In (Danielson andEkenberg
2017), it is investigated howmuch contribution cardinality brings over ordinality,where it
is demonstrated that weights are much more insensitive to cardinality than values, which
has implications for all ranking methods. We also provide experimental simulations and
investigate some properties of the method. Thereafter, a problem of selecting a national
strategy for handling the COVID-19 pandemic is discussed. The conclusion is that the
method seems to be a very competitive candidate for weight elicitation and evaluations.

2 Rank Ordering Methods

Ordinal methods for generating weights, sometimes with some kind of further discrimi-
nation mechanism, constitute a quite commonly used approach to handle the difficulties
in eliciting precise criteria weights from decision-makers, c.f., e.g., (Stewart 1993; Arbel
and Vargas 1993; Barron and Barrett 1996a, 1996b; Katsikopoulos and Fasolo 2006).
The decision-maker supplies ordinal information on importance, which subsequently
is converted into numerical weights following the ordinal information. There have in
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the literature been several suggestions of such methods, e.g., rank sum weights (RS),
rank reciprocal weights (RR) (Stillwell et al. 1981), and centroid (ROC) weights (Bar-
ron 1992). Based on simulation experiments, Barron and Barrett (1996b) found ROC
weights superior to RS and RR. Danielson and Ekenberg (2014 2016a, 2016b), applied
in large-scale contexts, such as (Fasth et al. 2020, Komendantova et al. 2018, 2020), have
also suggested a spectrum of methods and suggested some that are more robust than the
earlier suggestions. In these experiments, surrogate weights as well as “true” reference
weights are sampled from some underlying distribution. Then it is investigated howwell
the surrogate number results match the result of using the “true” results. The method is
however dependent on the distribution used for generating the weight vectors.

RS is based on the idea that the rank order should be reflected directly in the weights.
Given a simplex Sw generated by w1 > w2 > … > wN , where �wi = 1 and 0 ≤ wi,
assign an ordinal number to each item in the ranking, starting with the highest-ranked
item as number 1. Let i be the ranking number among N items to rank. RS then becomes

wRS
i = N + 1−i

∑N
j=1(N + 1−j)

= 2(N + 1−i)

N (N + 1)

for all i = 1,…,N.
RR has a similar design as RS but is based on the reciprocals (inverted numbers) of

the rank order items. Assign an ordinal number to each item ranked, starting with the
highest-ranked item (receiving number 1). Then assign the number i to the i:th item in
the ranking to obtain

wRR
i = 1/i

∑N
j=1

1
j

ROC is a function based on the average of the corners in the polytope defined by the
same simplex Sw = w1 > w2 > … > wN , �wi = 1, and 0 ≤ wi, where wi are variables
representing the criteria weights. The ROC weights are given by

wROC
i = 1/N

N∑

j=i

1

j

for the ranking number i among N items to rank.
As a generalization to the RS method previously discussed, a rank exponent weight

method was introduced by (Stillwell et al. 1981). In the original RS formula, they
introduced the exponent z < 1 to yield the rank exponent (RX) weights given by

wRX(z)
i = (N + 1−i)z

∑N
j=1(N + 1−j)z

.

For 0 ≤ z ≤ 1 the parameter z mediates between the case of equal weights (no
discrimination between the importance of criteria) and RS weights such that for z = 0 it
in effect becomes equal weights and for z = 1 it instead becomes RS weights. Thus, for
these values of the parameter z the RX(z) formula is the (exponential) combination of
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equal and RS weights. In this paper, we suggest a reinterpretation of RX.1 This has, to
our knowledge, not been investigated before. Beyond z = 1 it becomes something else,
a novel weighting scheme in its own right. Earlier, before the accessibility and use of
simulations to evaluate different weights, parameters such as the z parameter of RX was
considered hard to estimate and thus less suitable for real-life decisions. In this work,
we examine the potential of RX(z) in detail and compare it to established state-of-the-art
weights such as RS, RR, and ROC.

3 Assessing Automatically Generated Weights

There are basically two categories of elicitation models that are in use depending on the
degrees of freedom (DoF) present when decision-makers assign their weights. In point
allocation (PA), decision-makers are given point sums, e.g. 100, to distribute among N
criteria and there are consequently N−1 degrees of freedom. In the Direct Rating (DR)
way of assigning weights, on the other hand, the decision-makers have no limitation
on the point sum they are allowed to use, and thus a decision-maker may allocate as
many points as desired. Only thereafter, the points are normalized, i.e., in DR there are
N degrees of freedom. Consequently, when generating weight vectors in an N−1 DoF
model, theymust sum to100%, andwhengeneratingvectors for anN DoFmodel, a vector
is generated keeping components within [0%, 100%] which is thereafter normalised.
Other distributions would of course at least theoretically be possible, but it is important
to remember that the validation methods are strongly dependent on these assumptions
and affect the validations. Different decision-makers use different mental strategies and
models when weighting criteria. Thus, a reasonable weighting scheme must be able to
perform well in both PA and DR cases, i.e. regardless of the degrees of freedom being
N−1 or N (Danielson and Ekenberg 2019).

3.1 Experimental Setup

The experiments below for an N−1 DoF model was based on a homogenous N-variate
Dirichlet distribution generator, and a standard round-robin normalised random weight
generator was used for the N DoF experiments. We call the N−1 DoF model type of
generator an N–1-generator and the N DoF model type an N-generator. Details of the
simulation generators are given in (Danielson and Ekenberg 2014).

The simulation experiment consisted of four numbers of criteria N = {3, 6, 9, 12}
and five numbers of alternativesM = {3, 6, 9, 12, 15}, i.e. a total of 20 simulation sce-
narios. These simulation sets were selected to cover the most common sizes of decision
problems. The behaviour with large decision problems is not within the scope of this
article. Each scenario was run 10 times with 10,000 trials for each of them yielding a
total of 2,000,000 decision situations. Unscaled value vectors were generated uniformly,
and no significant differences were observed with other value distributions. The results

1 Stillwell et al. prescribed a very different use of the z parameter, 0 < z < 1, in which z is the
decision-maker’s estimate of the largest weight. In their original version, z is thus a required extra
input parameter. In our reinterpretation, z is a configuration parameter that can be determined
beforehand and not required user input. We still chose to keep the RX name despite that.



Automatic Criteria Weight Generation 5

of the simulations are shown in the tables below, where we show a subset of the results
with chosen pairs (N,M).

The “winner frequency” in the tables refers to the fraction of cases where the best
alternative was correctly predicted. Other measurements include “podium frequency”
where the three best alternatives are correctly predicted and “total frequency” where the
positions of all alternatives are correctly predicted. The latter twomeasurements showed
the same pattern across the weighting methods as the winners, and are thus not presented
here since they would not add to the discussion 2.

The first set of tables shows the winner frequency for the RX(z) family of methods
and the second set of tables shows the winner frequency for the older ROC, RR, RS
methods together with selected RX(z) methods. Both sets of tables utilise the simulation
methods N−1 DoF, N DoF, and an equal combination of N−1 and N DoF. All hit ratios
in all tables are given in percent and are mean values of the 10 scenario runs. With hit
ratios is meant the fraction of times that the correct winner is predicted.

The first set of studies concern the parameter z of the RX(z) method. Recall that z
= 1 is the same as the RS method studied previously and which is used as one of the
comparisons in the next set of tables. For values 0≤ z ≤ 1, which is a combination of RS
and equal weights, the algorithm underperforms compared to already known algorithms.
This is easily understood since equal weights is a very weak weighting scheme as it does
not take any information on the decision situation into account. Thus, this study focuses
on parameters z > 1.

3.2 Results

In Table 1, using an N−1-generator, it can be seen that higher parameter values tend
to outperform the others when looking at the winner. In Table 2, the frequencies have
changed according to expectation since we employ a model with N degrees of freedom.
Now lower parameter values outperform higher (lower being closer to RS), but not at all
by as much. In Table 3, the N and N−1 DoF models are combined with equal emphasis
on both. Now, we can see that in total medium-sized parameters generally perform the
best. While (Stillwell et al. 1981) discussed z < 1, it is evident by examining the formula
that it cannot outperform RS (which is z = 1) since it is the linear combination of
RS and equal weights, the latter being the worst performer since it does not take any
information into account. Thus, we did in this experiment vary z from 1 (RS) and up
in steps of 0.1 until the performance declined. The best performances for the different
sizes were always found in the interval [1.1, 1.6]. Thus, it gives guidance to select the
best z given the problem size.

It is clear from the table that parameters z ∈ [1.3, 1.5] are the best performers but that
all of the range [1.2, 1.6] are performing well. Since we do not know exactly what goes
on inside a particular decision-maker’s head when giving input to a decision situation,
it is not wise to rely on a weight function to perform well on only one side of the
dimensionality spectrum above. Instead, we consider the mix ofN and N−1 dimensions
to constitute the most valid measurement of a viable automatically generated weighting
scheme.

2 In a choice problem, which we discuss here, it is better to use “winner frequency” while in an
ordering problem it would be more appropriate to use “total frequency”.
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Table 1. Hit ratio for predicting winners using an N−1-generator

N−1 DoF z = 1.1 1.2 1.3 1.4 1.5 1.6

3 criteria 3 alternatives 89.1 89.5 89.9 90.0 90.1 90.1

3 criteria 15 alternatives 77.0 77.4 77.8 78.3 78.5 78.6

6 criteria 6 alternatives 80.9 81.7 82.5 83.2 83.6 83.8

6 criteria 12 alternatives 76.7 77.7 78.8 79.4 79.8 80.2

9 criteria 9 alternatives 77.4 78.6 79.6 80.4 81.3 81.9

12 criteria 6 alternatives 79.1 80.1 81.2 82.3 83.0 83.6

12 criteria 12 alternatives 75.5 76.9 77.9 79.1 79.9 80.4

Table 2. Hit ratio for predicting winners using an N-generator

N DoF z = 1.1 1.2 1.3 1.4 1.5 1.6

3 criteria 3 alternatives 89.2 89.0 88.8 88.5 88.3 87.9

3 criteria 15 alternatives 81.0 80.8 80.4 79.8 79.4 78.6

6 criteria 6 alternatives 87.0 86.7 86.3 85.7 84.9 84.1

6 criteria 12 alternatives 83.9 83.7 83.0 82.1 81.3 80.4

9 criteria 9 alternatives 86.9 86.5 85.7 84.9 83.7 82.6

12 criteria 6 alternatives 90.1 89.6 89.0 88.2 87.3 86.6

12 criteria 12 alternatives 87.2 86.8 86.1 85.1 83.8 82.6

Table 3. Hit ratio for predicting winners using N and N−1 DoF generators combined

Combined z = 1.1 1.2 1.3 1.4 1.5 1.6

3 criteria 3 alternatives 89.2 89.3 89.4 89.3 89.2 89.0

3 criteria 15 alternatives 79.0 79.1 79.1 79.1 79.0 78.6

6 criteria 6 alternatives 84.0 84.2 84.4 84.5 84.3 84.0

6 criteria 12 alternatives 80.3 80.7 80.9 80.8 80.6 80.3

9 criteria 9 alternatives 82.2 82.6 82.7 82.7 82.5 82.3

12 criteria 6 alternatives 84.6 84.9 85.1 85.3 85.2 85.1

12 criteria 12 alternatives 81.4 81.9 82.0 82.1 81.9 81.5

But in line with that reasoning, we would also like to minimise the spread between
the dimensions, i.e. having a generating function that differs less between both end-
points of the input dimensionality scale is preferred to one that has a larger spread. To
that effect, in addition to studying the overall hit ratio, we also studied the spread of
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the results from different dimensionalities. This is shown in Table 4 for the different
z parameters of RX(z). Now a quite different picture emerges. While all parameters z
∈ [1.2, 1.6] performwell overall, it is clear that higher z keeps the spread down, especially
for problems of larger size. Since this is a highly desirable property given that we don’t
know the thinking process of a particular decision-maker, we tend to favour higher z
parameters for their robustness as long as they do perform well overall. For comparisons
with current well-known weight functions, we select both RX(1.5) and RX(1.6).

Table 4. Spread between hit ratio for predicting winners using N and N−1 DoF generators

Spread z = 1.1 1.2 1.3 1.4 1.5 1.6

3 criteria 3 alternatives 0.1 0.5 1.1 1.5 1.8 2.2

3 criteria 15 alternatives 4.0 3.4 2.6 1.5 0.9 0.0

6 criteria 6 alternatives 6.1 5.0 3.8 2.5 1.3 0.3

6 criteria 12 alternatives 7.2 6.0 4.2 2.7 1.5 0.2

9 criteria 9 alternatives 9.5 7.9 6.1 4.5 2.4 0.7

12 criteria 6 alternatives 11.0 9.5 7.8 5.9 4.3 3.0

12 criteria 12 alternatives 11.7 9.9 8.2 6.0 3.9 2.2

3.3 Comparing with Earlier State-of-the-Art Weights

In (Danielson and Ekenberg 2014), previous classic weighting functions were compared.
Here, these results are repeated together with the new results for RX. The latter is
represented by RX(1.5) and RX(1.6) which achieved the best results above. In Table 5,
using an N−1-generator, it can be seen that ROC outperforms the other classical ones
when looking at the winner. RR is better than RS (which is RX(1.0)). In Table 6, the
frequencies have changed according to expectation since we employ a model with N
degrees of freedom. Now RS outperforms the others including RX while ROC and RR
are far behind. In Table 7, theN andN−1DoFmodels are combinedwith equal emphasis
on both. Now, we can see that in total RX generally performs the best.

It is clear from studying the resulting tables that the RX family of automatic weight
functions easily outperform the more well-known functions, provided that it is possible
to select the z parameter in an informed manner. The picture becomes even clearer
once the spread between different decision-maker ways of thinking is being taken into
consideration.

None of the other studied state-of-the-art functions perform well under varying con-
ditions, while the RX(z) family is able to do so. Especially somewhat higher z parameters
perform very well, making parameter selection a trade-off between pure performance
and robustness. Our suggestion is to use z ∈ [1.5, 1.6] as the optimal compromise for the
parameter. As was seen in Table 4, lower z-values lead to less robustness with respect
to decision-maker styles of reasoning. With a higher parameter, the RX(z) family by far
outperforms the earlier known ROC, RS, and RR weighting schemes.
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Table 5. Hit ratio for predicting winners using an N−1-generator

N−1 DoF ROC RS RR RX(1.5) RX(1.6)

3 criteria 3 alternatives 90.2 88.2 89.5 90.1 90.1

3 criteria 15 alternatives 79.1 76.6 76.5 78.5 78.6

6 criteria 6 alternatives 84.8 79.9 82.7 83.6 83.8

6 criteria 12 alternatives 81.3 75.6 78.2 79.8 80.2

9 criteria 9 alternatives 83.5 75.6 79.5 81.3 81.9

12 criteria 6 alternatives 86.4 77.8 80.8 83.0 83.6

12 criteria 12 alternatives 83.4 72.9 76.8 79.9 80.4

Table 6. Hit ratio for predicting winners using an N-generator

N DoF ROC RS RR RX(1.5) RX(1.6)

3 criteria 3 alternatives 87.3 89.3 88.3 88.3 87.9

3 criteria 15 alternatives 77.9 81.1 79.1 79.4 78.6

6 criteria 6 alternatives 80.1 87.3 78.1 84.9 84.1

6 criteria 12 alternatives 76.4 84.3 74.3 81.3 80.4

9 criteria 9 alternatives 76.3 87.2 69.8 83.7 82.6

12 criteria 6 alternatives 77.5 90.3 67.8 87.3 86.6

12 criteria 12 alternatives 73.4 87.6 63.1 83.8 82.6

Table 7. Hit ratio for predicting winners using N and N−1 DoF generators combined

Combined ROC RS RR RX(1.5) RX(1.6)

3 criteria 3 alternatives 88.8 88.8 88.9 89.2 89.0

3 criteria 15 alternatives 78.5 78.9 77.8 79.0 78.6

6 criteria 6 alternatives 82.5 83.6 80.4 84.3 84.0

6 criteria 12 alternatives 78.9 80.0 76.3 80.6 80.3

9 criteria 9 alternatives 79.9 81.4 74.7 82.5 82.3

12 criteria 6 alternatives 82.0 84.1 74.3 85.2 85.1

12 criteria 12 alternatives 78.4 80.3 70.0 81.9 81.5

Mean 81.3 82.4 77.4 83.2 83.0
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Table 8. Spread between hit ratio for predicting winners using N and N−1 DoF generators

Spread ROC RS RR RX(1.5) RX(1.6)

3 criteria 3 alternatives 2.9 1.1 1.2 1.8 2.2

3 criteria 15 alternatives 1.2 4.5 2.6 0.9 0.0

6 criteria 6 alternatives 4.7 7.4 4.6 1.3 0.3

6 criteria 12 alternatives 4.9 8.7 3.9 1.5 0.2

9 criteria 9 alternatives 7.2 11.6 9.7 2.4 0.7

12 criteria 6 alternatives 8.9 12.5 13.0 4.3 3.0

12 criteria 12 alternatives 10.0 14.7 13.7 3.9 2.2

Mean 5.7 8.6 7.0 2.3 1.2

4 Example

In the current outbreak of the COVID-19 pandemic, several nation-states seem to have
been less than fully prepared. Where strategic plans existed, they were often either not
complete or not followed. In some cases, the supply of resources was not sufficient
to sustain the outbreak over time. Further, cognitive and behavioural biases seem to
have played a significant role in the decision-making processes regarding which risk
mitigation and management measures to implement. Many countries were to a large
extent unprepared for a similar scenario to arise, despite the fact that predictions about
a significant probability for a pandemic to occur in a foreseeable future, and national
governments of several countries often acted in an uncoordinated manner, which have
resulted in suboptimal responses from national bodies. The current discourse has had
a strong emphasis on the number of direct fatalities, while there still is a multitude of
relevant aspects of the current crisis. In this example, we briefly discuss how a more
general framework, including epidemiological and socio-economic factors, could look
like using a model for evaluating the qualitative and quantitative aspects involved.

A detailed account of all the relevant aspects is beyond the scope of this article and
for demonstrational purposes only, we just use a few possible options and criteria for a
national policy with four levels of restrictions suggested to be imposed on the population
of a country affected by COVID-19.3

Some examples of possible mitigation strategies could then be:

1. An unmitigated response
2. Response by pharmaceutical measures and case isolation, public communication

encouraging increased hygiene and personal protection.
3. 2 + additional personal protective measures and mild social distancing measures.

3 A more complete discussion of possibilities for how to contain the virus spread from a policy
point of view, while considering different societal and policy factors in a multi-stakeholder-
multi-criteria context, as well as preferences amongst relevant stakeholder groups, is, without
any mathematical details, provided in (Ekenberg et al. 2020).
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4. 3 + self-selected social distancing and comprehensive contact tracing and publicly
disclosed detailed location information of individuals that tested positive forCOVID-
19.

We use the following four criteria:

1. Number of cases (including critical, severe and mild)
2. Economic aspects
3. Human rights violations
4. Effects on education

The estimates (for demonstrational purpose only) on the values of each response level
under each criterion are shown in Table 9 below.

Table 9. The valuation of strategies under the respective criteria

Criterion/Measure Cases (in 10s of
thousands)a

Economy (GDP
decline in %)

Human
rights

Education (% of
students having
no access to
online or any
other schooling)

Strategy 1 1415–1729 1–3 Better than
Str.2

0

Strategy 2 1412–1725 1–4 Better than
Str.3

1–5

Strategy 3 1334–1630 5–7 Better than
Str.4

10–20

Strategy 4 1217–1487 5–10 10–30
aEpidemiological simulations and other estimates are from (Ekenberg et al. 2020). The estimates
are based on the effects of variousmeasures,which are sometimes overlapping due to the significant
uncertainties involved and some significant similarities between them.

We need to calibrate the different scales since they are of very different characters
and in this example, we assume that:

• The maximum difference between Str.1 and Str.4 in Cases is more important than the
maximum difference of Str.1 and Str.4 in Economy.

• The maximum difference between Str.1 and Str.4 in Economy is more important than
the maximum difference of Str.1 and Str.4 in Human rights.

• The maximum difference between Str.1 and Str.4 in Human rights is more important
than the maximum difference between Str.1 and Str.4 in Education.

The resulting criteria ranking then becomes the following: The importance of Cases is
higher than that of Economy,which in turn ismore important thanHuman rights. Further,
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Human rights is more important than Education. This ranking is then represented by the
RX(1.5) weight generating algorithm. The weights (using the enumeration above) then
become w(1) = 0.470, w(2) = 0.305, w(3) = 0.166, and w(4) = 0.059 respectively.

The generatedweights togetherwith estimates on the values of each response strategy
can then be evaluated by solving successive optimisation problems using the program
DecideIT which employs the RX weights together with algorithms from (Danielson
et al. 2019). For the evaluation, belief distributions are generated from the input data
(both weights and values) using the algorithms in the program. The value V(Si) for each
strategy is then assessed asV(Si) = ∑

wi ·vij for all weight and value variables involved.
The result can be seen in Fig. 1, where Str.1 is found to be the best option for a policy
given the background information used herein. The strategy values V(Si) are seen at the
top of the evaluation bars. The coloured parts are the contributions from each criterion.

Fig. 1. The result of the analysis. (Color figure online)

Without going into the details, Fig. 1 shows that, given the background information,
the higher the bars representing the strategies, the better the respective strategies are. We
can also see the result’s robustness by the colour markings. A green square means that
there is a significant difference between the strategies and that theremust be large changes
in the input data for it to change. A yellow square means that there is still a significant
difference, but that the result is more sensitive to input data. A black square means that
there is no significant difference between the strategies. An extended explanation of the
semantics regarding the bars and the colour markings are provided in (Danielson et al.
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2019). Str.1 is thus the best option in this example. Furthermore, this result is quite
robust. It is followed by Str.2, which is quite similar to Str.4, but better than Str.3.4

5 Conclusions

This paper aims to define and test a robust multi-criteria weight generating method
covering a broad set of decision situations, but which still is reasonably simple to use.
In the analyses, we have investigated the average hit rate in percent over the pairs (N,
M) of number of criteria and alternatives. From Tables 7 and 8 concerning generated
weight performances, RX(1.5) and RX(1.6) are found to be the best candidates for
representingweights when searching an optimal alternative. The other weight generation
methods are clearly inferior. In particular, ROC is heavily biased by an assumption that
decision-makers have a decision process with N−1 degrees of freedom considering N
criteria, while a reasonable requirement on a robust a rank ordering method is that it
should provide adequate alternative rankings under the varying assumptions that we
have little real-life knowledge about. It is thus clear that the RX family of methods
generates the most efficient and robust weighs and works very well on different problem
sizes. Furthermore, it is stable under varying assumptions regarding the decision-makers’
mindset and internal modelling. As further research, the obvious next step and extension
to the observations in this paper is to find a configuration function that asserts different
parameter values to problems of different sizes. Thiswould further increase the efficiency
of the RX family of automatic weight functions over its previous competitors.
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