
Non-malleable Codes, Extractors and
Secret Sharing for Interleaved Tampering

and Composition of Tampering

Eshan Chattopadhyay1(B) and Xin Li2

1 Cornell University, Ithaca, NY 14853, USA
eshan@cs.cornell.edu

2 Johns Hopkins University, Baltimore, MD 21218, USA
lixints@cs.jhu.edu

Abstract. Non-malleable codes were introduced by Dziembowski,
Pietrzak, and Wichs (JACM 2018) as a generalization of standard error
correcting codes to handle severe forms of tampering on codewords. This
notion has attracted a lot of recent research, resulting in various explicit
constructions, which have found applications in tamper-resilient cryp-
tography and connections to other pseudorandom objects in theoretical
computer science. We continue the line of investigation on explicit con-
structions of non-malleable codes in the information theoretic setting,
and give explicit constructions for several new classes of tampering func-
tions. These classes strictly generalize several previously studied classes
of tampering functions, and in particular extend the well studied split-
state model which is a “compartmentalized” model in the sense that
the codeword is partitioned a prior into disjoint intervals for tampering.
Specifically, we give explicit non-malleable codes for the following classes
of tampering functions.

– Interleaved split-state tampering: Here the codeword is partitioned
in an unknown way by an adversary, and then tampered with by a
split-state tampering function.

– Affine tampering composed with split-state tampering: In this
model, the codeword is first tampered with by a split-state adver-
sary, and then the whole tampered codeword is further tampered
with by an affine function. In fact our results are stronger, and we
can handle affine tampering composed with interleaved split-state
tampering.

Our results are the first explicit constructions of non-malleable codes in
any of these tampering models. As applications, they also directly give
non-malleable secret-sharing schemes with binary shares in the split-
state joint tampering model and the stronger model of affine tampering
composed with split-state joint tampering. We derive all these results
from explicit constructions of seedless non-malleable extractors, which
we believe are of independent interest.

Using our techniques, we also give an improved seedless extractor for
an unknown interleaving of two independent sources.

c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12552, pp. 584–613, 2020.
https://doi.org/10.1007/978-3-030-64381-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64381-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-64381-2_21

Non-malleable Codes, Extractors and Secret Sharing 585

Keywords: Non-malleable code · Tamper-resilient cryptography ·
Extractor

1 Introduction

1.1 Non-malleable Codes

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs [36]
as an elegant relaxation and generalization of standard error correcting codes,
where the motivation is to handle much larger classes of tampering functions
on the codeword. Traditionally, error correcting codes only provide meaningful
guarantees (e.g., unique decoding or list-decoding) when part of the codeword
is modified (i.e., the modified codeword is close in Hamming distance to an
actual codeword), whereas in practice an adversary can possibly use much more
complicated functions to modify the entire codeword. In the latter case, it is easy
to see that error correction or even error detection becomes generally impossible,
for example an adversary can simply change all codewords into a fixed string.
On the other hand, non-malleable codes can still provide useful guarantees here,
and thus partially bridge this gap. Informally, a non-malleable code guarantees
that after tampering, the decoding either correctly gives the original message
or gives a message that is completely unrelated and independent of the original
message. This captures the notion of non-malleability: that an adversary cannot
modify the codeword in a way such that the tampered codeword decodes back
to a related but different message.

The original intended application of non-malleable codes is in tamper-
resilient cryptography [36], where they can be used generally to prevent an adver-
sary from learning secret information by observing the input/output behavior of
modified ciphertexts. Subsequently, non-malleable codes have found applications
in non-malleable commitments [40], non-malleable encryption [30], public-key
encryptions [31], non-malleable secret-sharing schemes [38], and privacy ampli-
fication protocols [19]. Furthermore, interesting connections were found to non-
malleable extractors [27], and very recently to spectral expanders [54]. Along
the way, the constructions of non-malleable codes used various components and
sophisticated ideas from additive combinatorics [5,22] and randomness extrac-
tion [18], and some of these techniques have also found applications in construct-
ing extractors for independent sources [46]. As such, non-malleable codes have
become fundamental objects at the intersection of coding theory and cryptog-
raphy. They are well deserved to be studied in more depth in their own right,
as well as to find more connections to other well studied objects in theoretical
computer science.

We first introduce some notation before formally defining non-malleable
codes. For a function f : S → S, we say s ∈ S is a fixed point (of f) if f(s) = s.

Definition 1 (Tampering functions). For any n > 0, let Fn denote the set
of all functions f : {0, 1}n → {0, 1}n. Any subset of Fn is a family of tampering
functions.

586 E. Chattopadhyay and X. Li

We use the statistical distance to measure the distance between distributions.

Definition 2. The statistical distance between two distributions D1 and D2 over
some universal set Ω is defined as |D1 − D2| = 1

2

∑
d∈Ω |Pr[D1 = d] − Pr[D2 =

d]|. We say D1 is ε-close to D2 if |D1 − D2| ≤ ε and denote it by D1 ≈ε D2.

To introduce non-malleable codes, we need to define a function called copy
that takes in two inputs. If the first input is the special symbol “same�”, the
copy function just outputs its second input. Else it outputs its first input. This
is useful in defining non-malleable codes where one wants to model the situation
that the decoding of the tampered codeword is either the original message or
a distribution independent of the message. Thus, we define a distribution on
the message space and the special symbol same�, where the probability that the
distribution takes on the value same� corresponds to the probability that the
tampered codeword is decoded back to the original message. More formally, we
have

copy(x, y) =

{
x if x �= same�

y if x = same�

Following the treatment in [36], we first define coding schemes.

Definition 3 (Coding schemes). Let Enc : {0, 1}k → {0, 1}n and Dec :
{0, 1}n → {0, 1}k ∪ {⊥} be functions such that Enc is a randomized function
(i.e., it has access to private randomness) and Dec is a deterministic function.
We say that (Enc,Dec) is a coding scheme with block length n and message
length k if for all s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1, where the probability is
taken over the randomness in Enc.

We can now define non-malleable codes.

Definition 4 (Non-malleable codes). A coding scheme C = (Enc,Dec) with
block length n and message length k is a non-malleable code with respect to a
family of tampering functions F ⊂ Fn and error ε if for every f ∈ F there
exists a random variable Df on {0, 1}k ∪ {same�} which is independent of the
randomness in Enc and is efficiently samplable given oracle access to f(.), such
that for all messages s ∈ {0, 1}k, it holds that

|Dec(f(Enc(s))) − copy(Df , s)| ≤ ε.

We say the code is explicit if both the encoding and decoding can be done in
polynomial time. The rate of C is given by k/n.

Relevant Prior Work on Non-malleable Codes in the Information Theoretic Set-
ting. There has been a lot of exciting research on non-malleable codes, and it
is beyond the scope of this paper to provide a comprehensive survey of them.
Instead we focus on relevant explicit (unconditional) constructions in the infor-
mation theoretic setting, which is also the focus of this paper. One of the most
studied classes of tampering functions is the so called split-state tampering,

Non-malleable Codes, Extractors and Secret Sharing 587

where the codeword is divided into (at least two) disjoint intervals and the
adversary can tamper with each interval arbitrarily but independently. This
model arises naturally in situations where the codeword may be stored in differ-
ent parts of memory or different devices. Following a very successful line of work
[1,2,4,5,7,18,22,27,34,41,43,44,46,47], we now have explicit constructions of
non-malleable codes in the 2-split state model with constant rate and negligible
error.

The split state model is a “compartmentalized” model, where the codeword is
partitioned a priori into disjoint intervals for tampering. Recently, there has been
progress towards handling non-compartmentalized tampering functions. A work
of Agrawal, Gupta, Maji, Pandey and Prabhakaran [8] gave explicit constructions
of non-malleable codes with respect to tampering functions that permute or
flip the bits of the codeword. Ball, Dachman-Soled, Kulkarni and Malkin [12]
gave explicit constructions of non-malleable codes against t-local functions for
t ≤ n1−ε. However in all these models, each bit of the tampering function only
depends on part of the codeword. A recent work of Chattopadhyay and Li [21]
gave the first explicit constructions of non-malleable codes where each bit of the
tampering function may depend on all bits of the codeword. Specifically, they
gave constructions for the classes of affine functions and small-depth (unbounded
fain-in) circuits. The rate of the non-malleable code with respect to small-depth
circuits was exponentially improved by a subsequent work of Ball, Dachman-
Soled, Guo, Malkin, and Tan [11]. In a recent work, Ball, Guo and Wichs [13]
constructed non-malleable codes with respect to bounded depth decision trees.

Given all these exciting results, a major goal of the research on non-malleable
codes remains to give explicit constructions for broader classes of tampering
functions, as one can use the probabilistic method to show the existence of non-
malleable codes with rate close to 1 − δ for any class F of tampering functions
with |F| ≤ 22

δn

[26].

Our Results. We continue the line of investigation on explicit constructions of
non-malleable codes, and give explicit constructions for several new classes of
non-compartmentalized tampering functions, where in some classes each bit of
the tampering function can depend on all the bits of the codeword. In Sect. 1.2,
we discuss motivations and applications of our new non-malleable codes in cryp-
tography. The new classes strictly generalize several previous studied classes of
tampering functions. In particular, we consider the following classes.
1. Interleaved 2-split-state tampering, where the adversary can divide the code-

word into two arbitrary disjoint intervals and tamper with each interval arbi-
trarily but independently. This model generalizes the split-state model and
captures the situation where the codeword is partitioned into two blocks
(not necessarily of the same length) in an unknown way by the adver-
sary before applying a 2-split-state tampering function. Constructing non-
malleable codes for this class of tampering functions was left as an open
problem by Cheraghchi and Guruswami [27].

2. Composition of tampering, where the adversary takes two tampering func-
tions and composes them together to get a new tampering function. We note

588 E. Chattopadhyay and X. Li

that function composition is a natural strategy for an adversary to achieve
more powerful tampering, and it has been studied widely in other fields (e.g.,
computational complexity and communication complexity). We believe that
studying non-malleable codes for the composition of different classes of tam-
pering functions is also a natural and important direction.

We now formally define these classes and some related classes below. For nota-
tion, given any permutation π : [n] → [n] and any string x of length n, we let
y = xπ denote the length n string such that yπ(i) = xi.

– The family of 2-split-state functions 2SS ⊂ F2n: Any f ∈ 2SS comprises of
two functions f1 : {0, 1}n → {0, 1}n and f2 : {0, 1}n → {0, 1}n, and for any
x, y ∈ {0, 1}n, f(x, y) = (f1(x), f2(y)). This family of tampering functions
has been extensively studied, with a long line of work achieving near optimal
explicit constructions of non-malleable codes.

– The family of affine functions Lin ⊂ Fn: Any f ∈ Lin is an affine function
from {0, 1}n to {0, 1}n (viewing {0, 1}n as Fn

2), i.e., f(x) = Mx+ v, for some
n × n matrix M on F2 and v ∈ F

n
2 .

– The family of interleaved 2-split-state functions (2, t)-ISS ⊂ Fn: Any f ∈
(2, t)-ISS comprises of two functions f1 : {0, 1}n1 → {0, 1}n1 , f2 : {0, 1}n2 →
{0, 1}n2 such that n1 + n2 = n and min{n1, n2} ≥ t (i.e both partitions are
of length at least t), and a permutation π : [n] → [n]. For any z = (x, y)π ∈
{0, 1}n, where x ∈ {0, 1}n1 , y ∈ {0, 1}n2 , let f(z) = (f1(x), f2(y))π. In this
paper we require that t ≥ nβ for some fixed constant 0 < β < 1. Note this
includes as a special case the situation where the two states have the same
size, which we denote by 2ISS, and in particular 2SS.

– For any tampering function families F ,G ⊂ Fn, define the family F ◦G ⊂ Fn

to be the set of all functions of the form f ◦ g, where f ∈ F , g ∈ G and ◦
denotes function composition.

We now formally state our results. Our most general result is an explicit non-
malleable code with respect to the tampering class of Lin ◦ (2, nβ)-ISS, i.e, an
affine function composed with an interleaved 2-split-state tampering function.
Specifically, we have the following theorem.

Theorem 5. There exist constants β, δ > 0 such that for all integers n > 0
there exists an explicit non-malleable code with respect to Lin ◦ (2, nβ)-ISS with
rate 1/nδ and error 2−nδ

.

We immediately have the following corollary, which records the classes of
functions for which no explicit non-malleable codes were known (for any rate)
prior to this work.

Corollary 1. There exist constants β, δ > 0 such that for all integers n > 0
there exists an explicit non-malleable code with respect to the following classes
of functions with rate 1/nδ and error 2−nδ

:

– 2ISS, (2, nβ)-ISS, Lin ◦ 2ISS and Lin ◦ 2SS.

Non-malleable Codes, Extractors and Secret Sharing 589

1.2 Motivations and Applications in Cryptography

Just as standard non-malleable codes for split-state tampering arise from natural
cryptographic applications, our non-malleable codes for interleaved 2-split-state
tampering and affine tampering composed with interleaved split-state tampering
also have natural cryptographic motivations and applications.

It is known that any non-malleable code in the 2-split-state model gives a 2
out of 2 secret-sharing scheme, if one views the two split states as two shares
[6]. We show that any non-malleable code in the interleaved 2-split state model
gives a non-malleable secret-sharing scheme with binary shares. Secret-sharing
schemes [14,58] are fundamental objects in cryptography, and building blocks for
many other more advanced applications such as secure multiparty computation.
In short, a secret-sharing scheme shares a message secretly among n parties,
such that any qualified subset can reconstruct the message, while any unqualified
subset reveals nothing (or almost nothing) about the message. Equivalently, one
can view this as saying that any leakage function which leaks the shares in an
unqualified subset reveals nothing. In the standard threshold or t out of n secret-
sharing, any subset of size at most t is an unqualified subset while any subset of
size larger than t is a qualified subset. However, it is known that in such a scheme,
the share size has to be at least as large as the message size. Thus, a natural and
interesting question is whether the share size can be smaller under some relaxed
notion of secret-sharing. This is indeed possible when one considers the notion
of (r, t)-ramp secret-sharing, where r > t + 1. In this setting, any subset of size
at most t reveals nothing about the message, while any subset of size at least r
can reconstruct message. Thus t is called the privacy threshold and r is called
the reconstruction threshold. Subsets of size between t + 1 and r − 1 may reveal
some partial information about the message. Again, it is not hard to see that
the share size in this case has to be at least as large as m/(r − t), where m is
the message length. Thus, if one allows a sufficiently large gap between r and t,
then it is possible to achieve a secret-sharing scheme even with binary shares.

Secret-sharing schemes are also closely related to error correcting codes. For
example, the celebrated Shamir’s scheme [58] is based on Reed-Solomon codes.
Similarly, binary secret-sharing schemes are largely based on binary error cor-
recting codes, and they are studied in a series of recent works [15,16,25,48] in
terms of the tradeoff between the message length, the privacy threshold t, the
reconstruction threshold r, and the complexity of the sharing and reconstruction
functions.

However, standard secret-sharing schemes only allow an adversary to pas-
sively observe some shares, thus one can ask the natural question of whether
it is possible to protect against even active adversaries who can tamper with
the shares. In this context, the notion of robust secret-sharing schemes (e.g.,
[17,51]) allows qualified subsets to recover the message even if the adversary can
modify part of the shares. More recently, by generalizing non-malleable codes,
Goyal and Kumar [38] introduced non-malleable secret-sharing schemes, where
the adversary can tamper with all shares in some restricted manner. Naturally,
the guarantee is that if tampering happens, then the reconstructed message is

590 E. Chattopadhyay and X. Li

either the original message or something completely unrelated. In particular,
they constructed t out of n non-malleable secret-sharing schemes in the follow-
ing two tampering models. In the independent tampering model, the adversary
can tamper with each share independently. In the joint tampering model, the
adversary can divide any subset of t+1 shares arbitrarily into two sets of differ-
ent size, and tamper with the shares in each set jointly, but independently across
the two sets. Note that the adversary in the second model is strictly stronger
than the adversary in the first one, since for reconstruction one only considers
subsets of size t + 1. Several follow up works [3,9,39] studied different models
such as non-malleable secret-sharing schemes for general access structures, and
achieved improvements in various parameters.

However, in all known constructions of non-malleable secret-sharing schemes
the share size is always larger than 1 bit. In other words, no known non-malleable
secret-sharing scheme can achieve binary shares. This is an obstacle that results
from the techniques in all known constructions. Indeed, even if one allows (r, t)-
ramp non-malleable secret-sharing with an arbitrarily large gap between r and t,
no known constructions can achieve binary shares, because they all need to put
at least two shares of some standard secret-sharing schemes together to form a
single share in the non-malleable scheme. Thus it is a natural question to see if
one can construct non-malleable secret-sharing schemes with binary shares using
different techniques.

Our non-malleable codes for interleaved 2-split-state tampering directly give
non-malleable secret-sharing schemes with binary shares that protect against
joint tampering. We have the following theorem.

Theorem 6. There exist constants 0 < α < β < 1 such that for all integers n >
0 there exists an explicit (r, t)-ramp non-malleable secret-sharing scheme with
binary shares, where r = n, t = n−nβ and the message length is nα. The scheme
has statistical privacy with error 2−nΩ(1)

, and is resilient with error 2−nΩ(1)
to

joint tampering where the adversary arbitrarily partitions the r shares into two
blocks, each with at most t shares, and tampers with each block independently
using an arbitrary function.

Intuitively, any n-bit non-malleable code for interleaved 2-split-state tam-
pering gives a ramp non-malleable secret-sharing scheme with reconstruction
threshold r = n, as follows. If the code protects against an adversary who can
partition the codeword into two disjoint sets and tamper with each set arbi-
trarily but independently, then each set must reveal (almost) nothing about the
secret message. Otherwise, the adversary can simply look at one set and use the
leaked information to modify the shares in this set, and make the reconstructed
message become a different but related message. In particular, the same proof in
[6] for the standard 2-split state model also works for the interleaved 2-split state
model. Since our code works for interleaved 2-split-state tampering and the size
of one set can be as large as n−nβ , this implies privacy threshold at least n−nβ ,
with the small error in privacy coming from the error of the non-malleable code.
We refer the reader to the full version of our paper for more details.

Non-malleable Codes, Extractors and Secret Sharing 591

It is an interesting open question to construct explicit non-malleable secret-
sharing schemes with binary shares where the reconstruction threshold r < n. We
note that this question is closely related to constructing non-malleable codes for
the tampering class 2SS◦Lin or 2ISS◦Lin (i.e., reverse the order of composition).
This is because to get such a scheme, one natural idea is to apply another secret-
sharing scheme on top of our non-malleable code. If one uses a linear secret-
sharing scheme as in many standard schemes, then the tampering function on
the codeword becomes 2SS ◦ Lin or 2ISS ◦ Lin.

We also note that in an (r, t)-ramp secret-sharing scheme with binary shares,
unless the message has only one bit, we must have r > t + 1. Thus in the joint
tampering model, instead of allowing the adversary to divide r shares arbitrarily
into two sets, one must put an upper bound t on the size of each set as in our
theorem. For example, one cannot allow an adversary to look at a set of shares
with size r − 1, because r − 1 > t and this set of shares may already leak some
information about the secret message.

In both standard secret-sharing and non-malleable secret-sharing, in addition
to looking at sets of shares, researchers have also studied other classes of leakage
function or tampering function. For example, the work of Goyal et al. [37] studied
secret-sharing schemes that are resilient to affine leakage functions on all shares,
and used them to construct parity resilient circuits and bounded communication
leakage resilient protocols. A recent work of Lin et al. [49] also studied non-
malleable secret-sharing schemes where the adversary can tamper with all shares
jointly using some restricted classes of functions. Specifically, [49] considered
the model of “adaptive” affine tampering, where the adversary is allowed to
first observe the shares in some unqualified subset, and then choose an affine
function based on this to tamper with all shares. In this sense, our non-malleable
codes for affine tampering composed with interleaved 2-split-state tampering
also directly give non-malleable secret-sharing schemes with binary shares that
protect against affine tampering composed with joint tampering, which is strictly
stronger than both the joint tampering model and the affine tampering model
(although our affine tampering is non-adaptive compared to [49]). Specifically,
we have the following theorem (which strictly generalizes Theorem 6).

Theorem 7. There exist constants 0 < α < β < 1 such that for all integers n >
0 there exists an explicit (r, t)-ramp non-malleable secret-sharing scheme with
binary shares, where r = n, t = n−nβ and the message length is nα. The scheme
has statistical privacy with error 2−nΩ(1)

, and is resilient with error 2−nΩ(1)
to an

adversary that tampers in two stages: In the first stage, the adversary partitions
the r shares arbitrarily into two blocks, each with at most t shares, and tampers
with each block independently using an arbitrary function. In the second stage,
the adversary applies an arbitrary affine tampering function jointly on all the
already tampered (from the first stage) r shares.

We provide a formal proof of the above theorem in the full version of our
paper.

Again, it is an interesting open question to construct explicit non-malleable
secret-sharing schemes where the order of tampering is reversed.

592 E. Chattopadhyay and X. Li

1.3 Seedless Non-malleable Extractors

Our results on non-malleable codes are based on new constructions of seedless
non-malleable extractors, which we believe are of independent interest. Before
defining seedless non-malleable extractors formally, we first recall some basic
notation from the area of randomness extraction.

Randomness extraction is motivated by the problem of purifying imperfect
(or defective) sources of randomness. The concern stems from the fact that
natural random sources often have poor quality, while most applications require
high quality (e.g., uniform) random bits. We use the standard notion of min-
entropy to measure the amount of randomness in a distribution.

Definition 8. The min-entropy H∞(X) of a probability distribution X on
{0, 1}n is defined to be minx(− log(Pr[X = x])). We say X is an (n,H∞(X))-
source and the min-entropy rate is H∞(X)/n.

It turns out that it is impossible to extract from a single general weak random
source even for min-entropy n − 1. There are two possible ways to bypass this
barrier. The first one is to relax the extractor to be a seeded extractor, which takes
an additional independent short random seed to extract from a weak random
source. The second one is to construct deterministic extractors for special classes
of weak random sources.

Both kinds of extractors have been studied extensively. Recently, they have
also been generalized to stronger notions where the inputs to the extractor can
be tampered with by an adversary. Specifically, Dodis and Wichs [33] introduced
the notion of seeded non-malleable extractor in the context of privacy amplifi-
cation against an active adversary. Informally, such an extractor satisfies the
stronger property that the output of the extractor is independent of the out-
put of the extractor on a tampered seed. Similarly, and more relevant to this
paper, a seedless variant of non-malleable extractors was introduced by Cher-
aghchi and Guruswami [27] as a way to construct non-malleable codes. Apart
from their original applications, both kinds of non-malleable extractors are of
independent interest. They are also related to each other and have applications
in constructions of extractors for independent sources [46].

We now define seedless non-malleable extractors.

Definition 9 (Seedless non-malleable extractors). Let F ⊂ Fn be a family
of tampering functions such that no function in F has any fixed points. A func-
tion nmExt : {0, 1}n → {0, 1}m is a seedless (n,m, ε)-non-malleable extractor
with respect to F and a class of sources X if for every distribution X ∈ X and
every tampering function f ∈ F , there exists a random variable that is Df,X on
{0, 1}m ∪ {same�} that is independent of X, such that

|nmExt(X),nmExt(f(X)) − Um, copy(Df,X ,Um)| ≤ ε.

Further, we say that nmExt is ε′-invertible, if there exists a polynomial time
sampling algorithm A that takes as input y ∈ {0, 1}m, and outputs a sample from
a distribution that is ε′-close to the uniform distribution on the set nmExt−1(y).

Non-malleable Codes, Extractors and Secret Sharing 593

In the above definition, when the class of sources X is the distribution Un,
we simply say that nmExt is a seedless (n,m, ε)-non-malleable extractor with
respect to F .

Relevant Prior Work on Seedless Non-malleable Extractors. The first construc-
tion of seedless non-malleable extractors was given by Chattopadhyay and Zuck-
erman [22] with respect to the class of 10-split-state tampering. Subsequently,
a series of works starting with the work of Chattopadhyay, Goyal and Li [18]
gave explicit seedless non-malleable extractors for 2-split-state tampering. The
only known constructions with respect to a class of tampering functions differ-
ent from split state tampering is from the work of Chattopadhyay and Li [21],
which gave explicit seedless non-malleable extractors with respect to the tam-
pering class Lin and small depth circuits, and a subsequent follow-up work of
Ball et al. [10] where they constructed non-malleable extractors against tam-
pering functions that are low-degree polynomials over large fields. We note that
constructing explicit seedless non-malleable extractors with respect to 2ISS was
also posed as an open problem in [27].

Our Results. As our most general result, we give the first explicit constructions
of seedless non-malleable extractors with respect to the tampering class Lin ◦
(2, nβ)-ISS.

Theorem 10. There exists a constant β > 0 such that for all n > 0 there exists
an efficiently computable seedless (n, nΩ(1), 2−nΩ(1)

)-non-malleable extractor with
respect to Lin ◦ (2, nβ)-ISS, that is 2−nΩ(1)

-invertible.

This immediately yields the first explicit non-malleable extractors against
the following classes of tampering functions.

Corollary 2. For all n > 0 there exists an efficiently computable seedless
(n, nΩ(1), 2−nΩ(1)

)-non-malleable extractor with respect to the following classes
of tampering functions:

– 2ISS, (2, nβ)-ISS, Lin ◦ 2ISS, and Lin ◦ 2SS.

We derive our results on non-malleable codes using the above explicit con-
structions of non-malleable extractors based on a beautiful connection discovered
by Cheraghchi and Gurswami [27] (see Theorem 25 for more details).

1.4 Extractors for Interleaved Sources

Our techniques also yield improved explicit constructions of extractors for inter-
leaved sources, which generalize extractors for independent sources in the fol-
lowing way: the inputs to the extractor are samples from a few independent
sources mixed (interleaved) in an unknown (but fixed) way. Raz and Yehudayoff
[57] showed that such extractors have applications in communication complexity
and proving lower bounds for arithmetic circuits. In a subsequent work, Chat-
topadhyay and Zuckerman [24] showed that such extractors can also be used to

594 E. Chattopadhyay and X. Li

construct extractors for certain samplable sources, extending a line of work ini-
tiated by Trevisan and Vadhan [60]. We now define interleaved sources formally.

Definition 11 (Interleaved Sources). Let X1, . . . ,Xr be arbitrary indepen-
dent sources on {0, 1}n and let π : [rn] → [rn] be any permutation. Then
Z = (X1, . . . ,Xr)π is an r-interleaved source.

Relevant Prior Work on Interleaved Extractors. Raz and Yehudayoff [57] gave
explicit extractors for 2-interleaved sources when both the sources have min-
entropy at least (1−δ)n for a tiny constant δ > 0. Their construction is based on
techniques from additive combinatorics and can output Ω(n) bits with exponen-
tially small error. Subsequently, Chattopadhyay and Zuckerman [24] constructed
extractors for 2-interleaved sources where one source has entropy (1 − γ)n for a
small constant γ > 0 and the other source has entropy Ω(log n). They achieve
output length O(log n) bits with error n−Ω(1).

A much better result (in terms of the min-entropy) is known if the extractor
has access to an interleaving of more sources. For a large enough constant C,
Chattopadhyay and Li [20] gave an explicit extractor for C-interleaved sources
where each source has entropy k ≥ poly(log n). They achieve output length kΩ(1)

and error n−Ω(1).

Our Results. Our main result is an explicit extractor for 2-interleaved sources
where each source has min-entropy at least 2n/3. The extractor outputs Ω(n)
bits with error 2−nΩ(1)

.

Theorem 12. For any constant δ > 0 and all integers n > 0, there exists an
efficiently computable function i	Ext : {0, 1}2n → {0, 1}m, m = Ω(n), such that
for any two independent sources X and Y, each on n bits with min-entropy at
least (2/3 + δ)n, and any permutation π : [2n] → [2n],

|i	Ext((X,Y)π) − Um| ≤ 2−nΩ(1)
.

2 Overview of Constructions and Techniques

Our results on non-malleable codes are derived from explicit constructions of
invertible seedless non-malleable extractors (see Theorem 25). In this section,
we illustrate our main ideas used to give explicit constructions of seedless non-
malleable extractors with respect to the relevant classes of tampering functions,
and explicit extractors for interleaved sources.

We first focus on the main ideas involved in constructing non-malleable
extractors against 2-split-state adversaries when the partition are of equal length
(we denote this by 2ISS). This serves to illustrate the important ideas that go
into all our explicit non-malleable extractor constructions. We refer the reader to
the full version of our paper for complete details of our non-malleable extractor
and code constructions.

Non-malleable Codes, Extractors and Secret Sharing 595

2.1 Seedless Non-malleable Extractors with Respect to Interleaved
2-split-state Tampering

We discuss the construction of a non-malleable extractor with respect to 2ISS. In
such settings, it was shown in [27] that it is enough to construct non-malleable
extractors assuming that at least one of f and g does not have any fixed points,
assuming that the sources X and Y have entropy at least n − nδ. Thus, we
construct a seedless non-malleable extractor nmExt : {0, 1}n×{0, 1}n → {0, 1}m,
m = nΩ(1) such that the following hold: let X and Y be independent (n, n−nδ)-
sources, for some small δ > 0. Let f : {0, 1}n → {0, 1}n, g : {0, 1}n → {0, 1}n

be arbitrary functions such that at least one of them has not fixed points, and
π : [2n] → [2n] be an arbitrary permutation. Then,

nmExt((X,Y)π),nmExt((f(X), g(Y))π)) ≈ε Um,nmExt((f(X), g(Y))π) (1)

where ε = 2−nΩ(1)
.

Our construction is based on the framework of advice generators and correla-
tion breakers set up in the work [18], and used in various follow-up works on non-
malleable extractors and codes. Before explaining this framework, we introduce
some notation for ease of presentation. Let Z = (X,Y)π. We use the notation
that if W = h((X,Y)π) (for some function h), then W′ or (W)′ stands for the
corresponding random variable h((f(X), g(Y))π). Thus, Z′ = (f(X), g(Y))π.

On a very high level, the task of constructing a non-malleable extractor can
be broken down into the following two steps:

1. Generating advice: the task here is to construct a function advGen :
{0, 1}2n → {0, 1}a, a ≤ nδ, such that advGen(Z) �= advGen(Z′) with high
probability.

2. Breaking correlation: here we construct an object that can be seen as a relax-
ation of a non-malleable extractor, in the sense that we supply the non-
malleable extractor with a short advice string. This object is called an advice
correlation breaker. We require that for all distinct strings s, s′ ∈ {0, 1}a,

ACB(Z, s),ACB(Z′, s′) ≈ Um,ACB(Z′, s′).

Given the above components, the non-malleable extractor is defined as:

nmExt(Z) = ACB(Z, advGen(Z)).

The fact that the above satisfies (1) is not direct, but relies on further proper-
ties of the function advGen. In particular, we require that with high probability
over the fixings of the random variables advGen(Z) and advGen(Z′), X and Y
remain independent high min-entropy sources.

An Explicit Advice Generator. A natural first idea to construct an advice
generator can be as follows: Take a slice (prefix) of Z, say Z1, and use this to
sample some coordinates from an encoding (using a good error correcting code)

596 E. Chattopadhyay and X. Li

of Z. A similar high level strategy has for example been used in [18], and other
follow-up works. The intuition behind such a strategy is that since we assume
Z �= Z′, encoding it will ensure that they differ on a lot of coordinates. Thus,
sampling a random set of coordinates will include one such coordinate with high
probability. However, in the present case, it is not clear why this should work
since it could be that Z1 contains all bits from say X, and the set of coordinates
where the encoding of Z and Z′ differ may be a function of X, which leads to
unwanted correlations.

The next natural idea could be the following: First use the slice Z1 to sample
a few coordinates from Z. Let Z2 indicate Z projected onto the sampled coor-
dinates. Now, it is not hard to prove that Z2 contains roughly equal number
of bits from both the sources X and Y. A strategy could be to now use Z2 to
sample coordinates from an encoding of Z. However, in this case, we run into
similar problems as before: there may be unwanted correlations between the ran-
domness used for sampling, and the random variable corresponding to the set of
coordinates where the encoding of Z and Z′ differ.

It turns out that the following subtler construction works:
Let n0 = nδ′

for some small constant δ′ > 0. We take two slices from Z, say
Z1 and Z2 of lengths n1 = nc0

0 and n2 = 10n0, for some constant c0 > 1. Next,
we use a good linear error correcting code (let the encoder of this code be E) to
encode Z and sample nγ coordinates (let S denote this set) from this encoding
using Z1 (the sampler is based on seeded extractors [61]). Let W1 = E(Z)S.
Next, using Z2, we sample a random set of indices T ⊂ [2n], and let Z3 = ZT.
We now use an extractor for interleaved sources, i.e., an extractor that takes as
input an unknown interleaving of two independent sources and outputs uniform
bits (see Sect. 1.4). Let i	Ext be this extractor (say from Theorem 12), and we
apply it to Z3 to get R = i	Ext(Z3). Finally, let W2 be the output of a linear
seeded extractor1 LExt on Z with R as the seed. The output of the advice
generator is Z1,Z2,Z3,W1,W2.

Notation: Define x = (x, 0n)π and y = (0n, y)π. Similarly, define f(x) =
(f(x), 0n)π and g(y) = (0n, g(y))π. Thus, (x, y)π = x + y and (f(x), g(y))π =
f(x)+g(y). Let Xi be the bits of X in Zi for i = 1, 2, 3 and X4 be the remaining
bits of X. Similarly define Yi’s, i = 1, 2, 3, 4.

We now proceed to argue the correctness of the above construction. Note
that the correctness of advGen is direct if Zi �= Z′

i for some i ∈ {1, 2, 3}. Thus,
assume Zi = Z′

i for i = 1, 2, 3. It follows that S = S′,T = T′ and R = R′.
Recall that (X,Y)π = X + Y and (f(X), g(Y)π) = f(X) + g(Y). Since E is a
linear code and LExt is a linear seeded extractor, the following hold:

W1 − W′
1 = (E(X + Y − f(X) − g(Y)))S,

W2 − W′
2 = LExt(X + Y − f(X) − g(Y),R).

1 A linear seeded extractor is a seeded extractor where for any fixing of the seed, the
output is a linear function of the source.

Non-malleable Codes, Extractors and Secret Sharing 597

Suppose that Z1 contains more bits from X than Y, i.e., |X1| ≥ |Y1| (where
|α| denotes the length of the string α).

Now the idea is the following: Either (i) we can fix X − f(X) and claim
that X1 still has enough min-entropy, or (ii) we can claim that X − f(X) has
enough min-entropy conditioned on the fixing of (X2,X3). Let us first discuss
why this is enough. Suppose we are in the first case. Then, we can fix X− f(X)
and Y and argue that Z1 is a deterministic function of X and contains enough
entropy. Note that X + Y − f(X) − g(Y) is now fixed, and in fact it is fixed
to a non-zero string (using the assumption that at least one of f or g has no
fixed points). Thus, E(X+Y−f(X)−g(Y)) is a string with a constant fraction
of the coordinates set to 1 (since E is an encoder of a linear error correcting
code with constant relative distance), and it follows that with high probability
(E(X + Y − f(X) − g(Y)))S contains a non-zero entry (using the fact that S
is sampled using Z1, which has enough entropy). This finishes the proof in this
case since it implies W1 �= W′

1 with high probability.
Now suppose we are in case (ii). We use the fact that Z2 contains entropy to

conclude that the sampled bits Z3 contain almost equal number of bits from X
and Y (with high probability over Z2). Now we can fix Z2 without loosing too
much entropy from Z3 (by making the size of Z3 to be significantly larger than
Z2). Next, we observe that Z3 is an interleaved source, and hence R is close
to uniform. We now fix X3, and argue that R continues to be uniform. This
follows roughly from the fact that any extractor for an interleaving of 2-sources
is strong. Thus, R now becomes a deterministic function of Y while at the same
time, X−f(X) still has enough min-entropy. Hence, LExt(X−f(X),R) is close
to uniform even conditioned on R. We can now fix R and LExt(Y − g(Y),R)
without affecting the distribution LExt(X−f(X),R), since LExt(Y− g(Y),R)
is a deterministic function of Y while LExt(X − f(X),R) is a deterministic
function of X conditioned on the previous fixing of R. It follows that after these
fixings, W2 − W′

2 is close to a uniform string and hence W2 − W′
2 �= 0 with

probability 1 − 2−nΩ(1)
, which completes the proof.

The fact that it is enough to consider case (i) and case (ii) relies on a careful
convex combination analysis based on the pre-image size of the function f(x)−x.
In addition, for the above argument to work we need to carefully adjust the sizes
of Z1, Z2 and Z3. We skip the details here, and refer the interested reader to
later parts of the paper for more details.

An Explicit Advice Correlation Breaker. We now discuss the other crucial
component in the construction, the advice correlation breaker ACB : {0, 1}2n ×
{0, 1}a → {0, 1}m. Informally, the advice correlation breaker we construct takes 2
inputs, the interleaved source Z (that contains some min-entropy) and an advice
string s ∈ {0, 1}a, and outputs a distribution on {0, 1}m with the following
guarantee. If s′ ∈ {0, 1}a is another advice such that s �= s′, then

ACB(Z, s),ACB(Z′, s′) ≈ Um,ACB(Z′, s′) (2)

598 E. Chattopadhyay and X. Li

Our construction crucially relies on an explict advice correlation breaker
constructed in [21] that satisfies the following property: Let A be an (n, k)-
source, and A′ = f(A) be a tampered version of A. Further let B be a uniform
random variable, and B′ = g(B). Finally, let C,C′ be arbitrary random variables
such that {A,A′} is independent of {B,B′,C,C′}. Then [21] constructed an
advice correlation breaker ACB1 such that for advice strings s �= s′,

ACB1(B,A + C, s),ACB1(B′,A′ + C′, s′) ≈ Um,ACB1(B′,A′ + C′, s′). (3)

The construction of ACB1 is based on the powerful technique of alternating
extraction introduced by Dziembowski and Pietrzak [35], and later used in almost
all recent works on non-malleable extractors. In particular, the construction in
[21] relies on linear seeded extractors and an elegant primitive known as the
flip-flop alternating extraction, which was introduced by Cohen [29].

Recall that since Z = X + Y and Z′ = f(X) + g(Y), (2) can be stated as

ACB(X + Y, s),ACB(f(X) + g(Y), s′) ≈ε Um,ACB(f(X) + g(Y), s′)

Our main idea of reducing (2) to (3) is as follows: we again take a short slice
from Z, say Z4 (larger than the size of {Z1,Z2,Z3}), and use a linear seeded
extractor LExt to convert Z4 into a somewhere random source (i.e, a matrix,
where some rows are uniform). This can be done by defining row i of the matrix
to be Wi = LExt(Z4, i). The idea now is to simply apply ACB1 on each row Wi,
using the source Z, and the concatenation of s and the index of the row as the
new advice string, i.e., compute ACB1(Wi,Z, s, i). By appealing to a slightly
more general version of (3), where we allow multiple tampering, it follows that
the output of ACB1 corresponding to some uniform row is now independent of
the output of ACB1 on all other rows (including tampered rows). Thus, we can
simply output ⊕i(ACB1(Wi,Z, s, i)).

This almost works, modulo a technical caveat–the somewhere random source
constructed out of Z4 is a tall matrix, with more rows than columns, but the
parameters of ACB1 require us to work with a fat matrix, with more columns
that rows. This is roughly because, we want the uniform row to have more
entropy than the total size of all tampered random variables. To fix this, we use
another linear seeded extractor on the source Z with each row Wi as the seed
to obtain another somewhere random source of the right shape.

2.2 From Non-malleable Extractors to Non-malleable Codes

To obtain our non-malleable codes, the decoding function corresponds to com-
puting the extractor, which is already efficient. On the other hand, the encoding
function corresponds to sampling from the pre-image of any given output of the
non-malleable extractor. Thus we need to find an efficient way to do this, which
is quite non-trivial. We suitably modify our extractor to support efficient sam-
pling. Here we briefly sketch some high level ideas involved and refer the reader
to the full version of our paper for more details.

Non-malleable Codes, Extractors and Secret Sharing 599

Recall Z = (X,Y)π. The first modification is that in all applications of
seeded extractors in our construction, we specifically use linear seeded extractors.
This allows us to argue that the pre-image we are trying to sample from is in
fact a convex combination of distributions supported on subspaces. The next
crucial observation is the fact that we can use smaller disjoint slices of Z to
carry out various steps outlined in the construction. This is to ensure that the
dimensions of the subspaces that we need to sample from, do not depend on the
values of the random variables that we fix. For the steps where we use the entire
source Z (in the construction of the advice correlation breaker), we replace Z
by a large enough slice of Z. However this is problematic if we choose the slice
deterministically, since in an arbitrary interleaving of two sources, a slice of
length less than n might have bits only from one source. We get around this by
pseudorandomly sampling enough coordinates from Z (by first taking a small
slice of Z and using a sampler that works for weak sources [61]).

We now use an elegant trick introduced by Li [46] where the output of the
non-malleable extractor described above (with the modifications that we have
specified) is now used as a seed in a linear seeded extractor applied to an even
larger pseudorandom slice of Z. The linear seeded extractor that we use has the
property that for any fixing of the seed, the rank of the linear map corresponding
to the extractor is the same, and furthermore one can efficiently sample from
the pre-image of any output of the extractor. The final modification needed is a
careful choice of the error correcting code used in the advice generator. For this
we use a dual BCH code, which allows us to argue that we can discard some
output bits of the advice generator without affecting its correctness (based on
the dual distance of the code). This is crucial in order to argue that the rank
of the linear restriction imposed on the free variables of Z does not depend on
the values of the bits fixed so far. We refer the reader to the full version of
our paper where we provide more intuition and complete details of the modified
non-malleable extractor and sampling procedure.

2.3 Extractors for Interleaved Sources

Here we give a sketch of our improved extractor for interleaved sources Z =
(X,Y)π. We refer the reader to the full version of our paper for more details.
We present our construction and also explain the proof along the way, as this
gives more intuition to the different steps of the construction. The high level
idea is the following: transform Z into a matrix of random variables (called
a somewhere random source) such that at least one of the random variables is
uniform, and the matrix is of the right shape, i.e, a fat matrix with more columns
than rows. Once we have such a matrix, the idea is to use the advice correlation
breaker from [21] mentioned above to break the correlation among the rows of
the matrix. The final output will just be a bit-wise XOR of the output of the
advice correlation breaker on each row of the matrix. We now give some more
details on how to make this approach work.

Let Z = (X,Y)π. We start by taking a large enough slice Z1 from Z (say,
of length (2/3 + δ/2)n). Let X have more bits in this slice than Y. Let X1 be

600 E. Chattopadhyay and X. Li

the bits of X in Z1 and X2 be the remaining bits of X. Similarly define Y1

and Y2. Notice that X1 has linear entropy and also that X2 has linear entropy
conditioned on X1. We fix Y1 and use a condenser (from work of Raz [55]) to
condense Z1 into a matrix with a constant number of rows such that at least
one row is close to a distribution with entropy rate at least 0.9. Notice that this
matrix is a deterministic function of X. The next step is to use Z and each row
of the matrix as a seed to a linear seeded extractor to get longer rows. This
requires some care for the choice of the linear seeded extractor since the seed
has some deficiency in entropy. After this step, we use the advice correlation
breaker from [21] on Z and each row of the somewhere random source, with the
row index as the advice (similar to what is done in the construction of non-
malleable extractors sketched above). Finally we compute the bit-wise XOR of
the different outputs that we obtain. Let V denote this random variable. To
output Ω(n) bits, we use a linear seeded extractor on Z with V as the seed. The
correctness of various steps in the proof exploits the fact that Z can be written
as the bit-wise sum of two independent sources, and the fact that we use linear
seeded extractors.

2.4 Organization

We use Sect. 3 to introduce some background and notation. We present our seed-
less non-malleable extractors with respect to interleaved split-state tampering
in Sect. 4. We conclude with some open problems in Sect. 5.

3 Background and Notation

We use Um to denote the uniform distribution on {0, 1}m.
For any integer t > 0, [t] denotes the set {1, . . . , t}.
For a string y of length n, and any subset S ⊆ [n], we use yS to denote the
projection of y to the coordinates indexed by S.
We use bold capital letters for random variables and samples as the correspond-
ing small letter, e.g., X is a random variable, with x being a sample of X.
For strings x, y ∈ {0, 1}n, we use x + y (or equivalently x − y) to denote the
bit-wise xor of the two strings.

3.1 Probability Lemmas

The following result on min-entropy was proved by Maurer and Wolf [50].

Lemma 1. Let X,Y be random variables such that the random variable Y takes
at most 	 values. Then

Pry∼Y[H∞(X|Y = y) ≥ H∞(X) − log 	 − log(1/ε)] > 1 − ε.

The following lemma is useful in bounding statistical distance of distributions
after conditionings.

Non-malleable Codes, Extractors and Secret Sharing 601

Lemma 2. Let D1 and D2 be distributions on some universe Ω such that |X −
Y | ≤ ε. Let E be some event some that Pr[D1 ∈ E] ≥ δ. Then, |(D1|E)−(D2|E)| ≤
ε/δ.

3.2 Conditional Min-Entropy

Definition 13. The average conditional min-entropy of a source X given a ran-
dom variable W is defined as

H̃∞(X|W) = − log
(
Ew∼W

[
max

x
Pr[X = x|W = w]

])
= − log

(
E

[
2−H∞(X|W=w)

])
.

We recall some results on conditional min-entropy from the work of Dodis et al.
[32].

Lemma 3. ([32]). For any ε > 0,

Prw∼W

[
H∞(X|W = w) ≥ H̃∞(X|W) − log(1/ε)

]
≥ 1 − ε.

Lemma 4 ([32]). If a random variable Y has support of size 2
, then
H̃∞(X|Y) ≥ H∞(X) − 	.

3.3 Seeded Extractors

Definition 14. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded
extractor if for any source X of min-entropy k, |Ext(X,Ud) − Um| ≤ ε. Ext is
called a strong seeded extractor if |(Ext(X,Ud),Ud)−(Um,Ud)| ≤ ε, where Um

and Ud are independent.
Further, if for each s ∈ Ud, Ext(·, s) : {0, 1}n → {0, 1}m is a linear function,

then Ext is called a linear seeded extractor.

We require extractors that can extract uniform bits when the source only has
sufficient conditional min-entropy.

Definition 15. A (k, ε)-seeded average case seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m for min-entropy k and error ε satisfies the following property:
For any source X and any arbitrary random variable Z with H̃∞(X|Z) ≥ k,

Ext(X,Ud),Z ≈ε Um,Z.

It was shown in [32] that any seeded extractor is also an average case extractor.

Lemma 5. ([32]). For any δ > 0, if Ext is a (k, ε)-seeded extractor, then it is
also a (k + log(1/δ), ε + δ)-seeded average case extractor.

We record a folklore lemma, and include a proof for completeness.

602 E. Chattopadhyay and X. Li

Lemma 6. Let Ext : {0, 1}n ×{0, 1}d → {0, 1}m be a (k, ε) strong seeded. Then,
for any source (n, k)-source X and any independent (d, d − λ)-source Y,

|Ext(X,Y),Y − Um,Y| ≤ 2λε.

Proof. Suppose Y is uniform over a set A ⊂ {0, 1}d of size 2d−λ. We have,

|Ext(X,Y),Y − Um,Y| =
1

2d−λ
·
∑

y∈A

|Ext(X, y) − Um|

≤ 1
2d−λ

·
∑

y∈{0,1}d

|Ext(X, y) − Um|

=
1

2d−λ
· 2d · |Ext(X,Ud),Ud − Um,Ud|

= 2λ · ε,

where the last inequality follows from the fact that Ext is a (k, ε) strong seeded
extractor.

3.4 Samplers and Extractors

Zuckerman [61] showed that seeded extractors can be used as samplers given
access to weak sources. This connection is best presented by a graph theoretic
representation of seeded extractors. A seeded extractor Ext : {0, 1}n ×{0, 1}d →
{0, 1}m can be viewed as an unbalanced bipartite graph GExt with 2n left vertices
(each of degree 2d) and 2m right vertices. Let N (x) denote the set of neighbors
of x in GExt.

Theorem 16 ([61]). Let Ext : {0, 1}n ×{0, 1}d → {0, 1}m be a seeded extractor
for min-entropy k and error ε. Let D = 2d. Then for any set R ⊆ {0, 1}m,

|{x ∈ {0, 1}n : ||N (x) ∩ R| − μRD| > εD}| < 2k,

where μR = |R|/2m.

Theorem 17 ([61]). Let Ext : {0, 1}n ×{0, 1}d → {0, 1}m be a seeded extractor
for min-entropy k and error ε. Let {0, 1}d = {r1, . . . , rD}, D = 2d. Define
Samp(x) = {Ext(x, r1), . . . ,Ext(x, rD)}. Let X be an (n, 2k)-source. Then for
any set R ⊆ {0, 1}m,

Prx∼X[||Samp()
¯

∩ R| − μRD| > εD] < 2−k,

where μR = |R|/2m.

3.5 Explicit Extractors from Prior Work

We recall an optimal construction of strong-seeded extractors.

Non-malleable Codes, Extractors and Secret Sharing 603

Theorem 18 ([42]). For any constant α > 0, and all integers n, k > 0 there
exists a polynomial time computable strong-seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m with d = O(log n + log(1/ε)) and m = (1 − α)k.

The following are explicit constructions of linear seeded extractors.

Theorem 19 ([56,59]). For every n, k,m ∈ N and ε > 0, with m ≤ k ≤ n, there
exists an explicit strong linear seeded extractor LExt : {0, 1}n×{0, 1}d → {0, 1}m

for min-entropy k and error ε, where d = O
(
log2(n/ε)/ log(k/m)

)
.

A drawback of the above construction is that the seeded length is ω(log n) for
sub-linear min-entropy. A construction of Li [45] achieves O(log n) seed length
for even polylogarithmic min-entropy.

Theorem 20 ([45]). There exists a constant c > 1 such that for every n, k ∈
N with c log8 n ≤ k ≤ n and any ε ≥ 1/n2, there exists a polynomial time
computable linear seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m for min-
entropy k and error ε, where d = O(log n) and m ≤ √

k.

A different construction achieves seed length O(log(n/ε)) for high entropy
sources.

Theorem 21 ([18,46]). For all δ > 0 there exist α, γ > 0 such that for all
integers n > 0, ε ≥ 2−γn, there exists an efficiently computable linear strong
seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}αd, d = O(log(n/ε)) for min-
entropy δn. Further, for any y ∈ {0, 1}d, the linear map LExt(·, y) has rank
αd.

The above theorem is stated in [46] for δ = 0.9, but it is straightforward to see
that the proof extends for any constant δ > 0.

We use a property of linear seeded extractors proved by Rao [53].

Lemma 7 ([53]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a linear seeded extrac-
tor for min-entropy k with error ε < 1

2 . Let X be an affine (n, k)-source. Then

Pr
u∼Ud

[|Ext(X,u) − Um| > 0] ≤ 2ε.

We recall a two-source extractor construction for high entropy sources based
on the inner product function.

Theorem 22 ([28]). For all m, r > 0, with q = 2m, n = rm, let X,Y be inde-
pendent sources on F

r
q with min-entropy k1, k2 respectively. Let IP be the inner

product function over the field Fq. Then, we have:

|IP(X,Y),X − Um,X| ≤ ε, |IP(X,Y),Y − Um,Y| ≤ ε

where ε = 2−(k1+k2−n−m)/2.

Rao [52] (based on an argument by Boaz Barak) proved that every two-source
extractor is strong. It is easy to observe that the proof generalizes to the case
of interleaved two-source extractors. We record this below in a slightly more
general setting of unequal length sources.

604 E. Chattopadhyay and X. Li

Theorem 23 ([52]). Suppose i	Ext : {0, 1}n1+n2 → {0, 1}m be an interleaved
source extractor that satisfies the following: if X is a (n1, k1)-source, Y is an
independent (n2, k2)-source, and π : [n1 + n2] → [n1 + n2] is an arbitrary per-
mutation, then

|i	Ext((X,Y)π) − Um| ≤ ε.

Then, in fact i	Ext satisfies the following stronger properties:

– Let X be a (n1, k)-source, Y be an independent (n2, k2)-source, and π : [n1 +
n2] → [n1 + n2] be an arbitrary permutation. Then,

|i	Ext((X,Y)π),X − Um,X| ≤ 2m · (2k−k1 + ε).

– Let X be a (n1, k1)-source, Y be an independent (n2, k)-source, and π : [n1 +
n2] → [n1 + n2] be an arbitrary permutation. Then,

|2i	Ext(X,Y),Y − Um,Y| ≤ 2m · (2k−k2 + ε).

3.6 Advice Correlation Breakers

We use a primitive called ‘correlation breaker’ in our construction. Consider
a situation where we have arbitrarily correlated random variables Y1, . . . ,Yr,
where each Yi is on 	 bits. Further suppose Y1 is a ‘good’ random variable
(typically, we assume Y1 is uniform or has almost full min-entropy). A corre-
lation breaker CB is an explicit function that takes some additional resource
X, where X is typically additional randomness (an (n, k)-source) that is inde-
pendent of {Y1, . . . ,Yr}. Thus using X, the task is to break the correlation
between Y1 and the random variables Y2, . . . ,Yr, i.e., CB(Y1,X) is indepen-
dent of {CB(Y2,X), . . . ,CB(Yr,X)}. A weaker notion is that of an advice cor-
relation breaker that takes in some advice for each of the Yi’s as an additional
resource in breaking the correlations. This primitive was implicitly constructed
in [18] and used in explicit constructions of non-malleable extractors, and has
subsequently found many applications in explicit constructions of extractors for
independent sources and non-malleable extractors.

We recall an explicit advice correlation breaker constructed in [20]. This
correlation breaker works even with the weaker guarantee that the ‘helper source’
X is now allowed to be correlated to the sources random variables Y1, . . . ,Yr in
a structured way. Concretely, we assume the source to be of the form X+Z, where
X is assumed to be an (n, k)-source that is uncorrelated with Y1, . . . ,Yr,Z. We
now state the result more precisely.

Theorem 24 ([20]). For all integers n, n1, n2, k, k1, k2, t, d, h, λ and any ε > 0,
such that d = O(log2(n/ε)), k1 ≥ 2d+8tdh+log(1/ε), n1 ≥ 2d+10tdh+(4ht+
1)n2

2 + log(1/ε), and n2 ≥ 2d + 3td + log(1/ε), let

– X be an (n, k1)-source, X′ a r.v on n bits, Y1 be an (n1, n1 −λ)-source, Z,Z′

are r.v’s on n bits, and Y2, . . . ,Yt be r.v’s on n1 bits each, such that {X,X′}
is independent of {Z,Z′,Y1, . . . ,Yt},

Non-malleable Codes, Extractors and Secret Sharing 605

– id1, . . . , idt be bit-strings of length h such that for each i ∈ {2, t}, id1 �= idi.

Then there exists an efficient algorithm ACB : {0, 1}n1 × {0, 1}n × {0, 1}h →
{0, 1}n2 which satisfies the following: let

– Y1
h = ACB(Y1,X + Z, id1),

– Yi
h = ACB(Yi,X′ + Z′, idi), i ∈ [2, t]

Then,

Y1
h,Y2

h, . . . ,Yt
h,X,X′ ≈O((h+2λ)ε) Un2 ,Y

2
h, . . . ,Yt

h,X,X′.

3.7 A Connection Between Non-malleable Codes and Extractors

The following theorem proved by Cheraghchi and Guruswami [27] that connects
non-malleable extractors and codes.

Theorem 25 ([27]). Let nmExt : {0, 1}n → {0, 1}m be an efficient seedless
(n,m, ε)-non-malleable extractor with respect to a class of tampering functions
F acting on {0, 1}n. Further suppose nmExt is ε′-invertible. Then there exists
an efficient construction of a non-malleable code with respect to the tampering
family F with block length = n, relative rate m

n and error 2mε + ε′.

4 NM Extractors for Interleaved Split-State Adversaries

The main result of this section is an explicit non-malleable extractor for inter-
leaved 2-split-state tampering families with equal length partitions, which we
denote by 2ISS ⊂ F2n.

Theorem 26. For all integers n > 0 there exists an explicit function nmExt :
{0, 1}2n → {0, 1}m, m = nΩ(1), such that the following holds: for arbitrary
tampering functions f, g ∈ Fn, any permutation π : [2n] → [2n] and independent
uniform sources X and Y each on n bits, there exists a distribution Df,g,π on
{0, 1}m ∪ {same�}, such that

|nmExt((X,Y)π),nmExt((f(X), g(Y))π)) − Um, copy(Df,g,π,Um)| ≤ 2−nΩ(1)
.

In such settings, it was shown in [27] that it is enough to construct non-
malleable extractors assuming that at least one of f and g does not have any
fixed points, assuming that the sources X and Y have entropy at least n − nδ.
We thus prove the following theorem, from which Theorem26 is direct.

Theorem 27. There exists a δ > 0 such that for all integers n, k > 0 with
n ≥ k ≥ n − nδ, there exists an explicit function nmExt : {0, 1}2n → {0, 1}m,
m = nΩ(1), such that the following holds: for arbitrary tampering functions f, g ∈
Fn, any permutation π : [2n] → [2n] and independent (n, k)-sources X and Y,
the following holds:

|nmExt((X,Y)π),nmExt((f(X), g(Y))π)) − Um,nmExt((f(X), g(Y))π)| ≤ 2−nΩ(1)
.

606 E. Chattopadhyay and X. Li

We will prove a slightly more general result which is a direct by-product of
our proof technique for proving the above theorem, and lets us re-use this non-
malleable extractor for the class of linear adversaries composed with split-state
adversaries. We prove the following theorem.

Theorem 28. There exists a δ > 0 such that for all integers n, k > 0 with
n ≥ k ≥ n − nδ, there exists an explicit function nmExt : {0, 1}2n → {0, 1}m,
m = nΩ(1), such that the following holds: Let X and Y be independent (n, n−nδ)-
sources, π : [2n] → [2n] any arbitrary permutation and arbitrary tampering
functions f1, f2, g1, g2 ∈ Fn that satisfy the following condition:

– ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) �= x or
– ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) �= y.

Then,

|nmExt((X,Y)π),nmExt(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)−
Um,nmExt(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)| ≤ 2−nΩ(1)

.

Clearly, Theorem 27 follows directly from the above theorem by setting g1(y) =
0 for all y and f2(x) = 0 for all x. We use the rest of the section to prove
Theorem 28.

Our high level ideas in constructing the non-malleable extractor is via the
framework set up in [18] of using advice generators and correlation breakers. We
give intuition behind our construction in Sect. 2. We use Sect. 4.1 to construct an
advice generator and Sect. 4.2 to construct an advice correlation breaker. Finally,
we present the non-malleable extractor construction in Sect. 4.3.

Notation:

– If W = h((X,Y)π) (for some function h), then we use W′ or (W)′ to denote
the random variable h(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π).

– Define X = (X, 0n)π, Y = (0n,Y)π, f1(X) = (f1(X), 0n)π, f2(X) =
(0n, f2(X))π, g1(Y) = (g1(Y), 0n)π and g2(Y) = (0n, g2(Y))π.

– Finally, define Z = X + Y and Z′ = f1(X) + g1(Y) + f2(X) + g2(Y).

4.1 An Advice Generator

Lemma 8. There exists an efficiently computable function advGen : {0, 1}n ×
{0, 1}n → {0, 1}n4 , n4 = nδ, such that with probability at least 1 − 2−nΩ(1)

over the fixing of the random variables advGen((X,Y)π), advGen(((f1(X) +
g1(Y)), (f2(X) + g2(Y)))π), the following hold:

– {advGen((X,Y)π) �= advGen(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)},
– X and Y are independent,
– H∞(X) ≥ k − 2nδ, H∞(Y) ≥ k − 2nδ.

Non-malleable Codes, Extractors and Secret Sharing 607

We present the construction of our advice generator and refer the reader to the
full version of our paper for the proof. We claim that the function advGen com-
puted by Algorithm1 satisfies the above lemma. We first set up some parameters
and ingredients.

– Let C be a large enough constant and δ′ = δ/C.
– Let n0 = nδ′

, n1 = nc0
0 , n2 = 10n0, for some constant c0 that we set below.

– Let E : {0, 1}2n → {0, 1}n3 be the encoding function of a linear error correct-
ing code C with constant rate α and constant distance β.

– Let Ext1 : {0, 1}n1 ×{0, 1}d1 → {0, 1}log(n3) be a (n1/20, β/10)-seeded extrac-
tor instantiated using Theorem 18. Thus d1 = c1 log n1, for some constant c1.
Let D1 = 2d1 = nc1

1 .
– Let Samp1 : {0, 1}n1 → [n3]D1 be the sampler obtained from Theorem 17

using Ext1.
– Let Ext2 : {0, 1}n2 ×{0, 1}d2 → {0, 1}log(2n) be a (n2/20, 1/n0)-seeded extrac-

tor instantiated using Theorem 18. Thus d2 = c2 log n2, for some constant c2.
Let D2 = 2d2 . Thus D2 = 2d2 = nc2

2 .
– Let Samp2 : {0, 1}n2 → [2n]D2 be the sampler obtained from Theorem 17

using Ext2.
– Set c0 = 2c2.
– Let i	Ext : {0, 1}D2 → {0, 1}n0 be the extractor from Theorem 12.
– Let LExt : {0, 1}2n × {0, 1}n0 → {0, 1}n0 be a linear seeded extractor instan-

tiated from Theorem22 set to extract from min-entropy n1/100 and error
2−Ω(

√
n0) .

Algorithm 1: advGen(z)
Input: Bit-string z = (x, y)π of length 2n, where x and y are each n
bit-strings and π : [2n] → [2n] is a permutation.
Output: Bit string v of length n4.
1 Let z1 = Slice(z, n1), z2 = Slice(z, n2).
2 Let S = Samp1(z1).
3 Let T = Samp2(z2) and z3 = zT .
4 Let r = i�Ext(z3).
5 Let w1 = (E(z))S .
6 Let w2 = LExt(z, r).
7 Output v = z1, z2, z3, w1, w2.

4.2 An Advice Correlation Breaker

We recall the setup of Theorem 28. X and Y are independent (n, k)-sources,
k ≥ n − nδ, π : [2n] → [2n] is an arbitrary permutation and f1, f2, g1, g2 ∈ Fn

satisfy the following conditions:

608 E. Chattopadhyay and X. Li

– ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) �= x or
– ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) �= y.

Further, we defined the following: X = (X, 0n)π, Y = (0n ◦ Y)π, f1(X) =
(f1(X), 0n)π, f2(X) = (0n, f2(X))π, g1(Y) = (g1(Y), 0n)π and g2(Y) =
(0n, g2(Y))π. It follows that Z = X+Y and Z′ = f1(X)+g1(Y)+f2(X)+g2(Y).
Thus, for some functions f, g ∈ F2n, Z′ = f(X) + g(Y). Let X′ = f(X) and
Y′ = g(Y).

The following is the main result of this section. Assume that we have
some random variables such that X and Y continue to be independent, and
H∞(X),H∞(Y) ≥ k − 2nδ.

Lemma 9. There exists an efficiently computable function ACB : {0, 1}2n ×
{0, 1}n1 → {0, 1}m, n1 = nδ and m = nΩ(1), such that

ACB(X + Y, w),ACB(f(X) + g(Y), w′) ≈ε Um,ACB(f(X) + g(Y), w′),

for any fixed strings w,w′ ∈ {0, 1}n1 with w �= w′.

We present the construction of our advice correlation breaker, and refer the
reader to the full version of our paper for the proof. We prove that the function
ACB computed by Algorithm 2 satisfies the conclusion of Lemma 9.

We start by setting up some ingredients and parameters.

– Let δ > 0 be a small enough constant.
– Let n2 = nδ1 , where δ1 = 2δ.
– Let LExt1 : {0, 1}n2 × {0, 1}d → {0, 1}d1 , d1 =

√
n2, be a linear-seeded

extractor instantiated from Theorem 19 set to extract from entropy k1 =
n2/10 with error ε1 = 1/10. Thus d = C1 log n2, for some constant C1. Let
D = 2d = nδ2 , δ2 = 2C1δ.

– Set δ′ = 20C1δ.
– Let LExt2 : {0, 1}2n × {0, 1}d1 → {0, 1}n4 , n4 = n8δ3 be a linear-seeded

extractor instantiated from Theorem 19 set to extract from entropy k2 = 0.9k

with error ε2 = 2−Ω(
√

d1) = 2−nΩ(1)
, such that the seed length of the extractor

LExt2 (by Theorem 19) is d1.
– Let ACB′ : {0, 1}n1,acb′ × {0, 1}nacb′ × {0, 1}hacb′ → {0, 1}n2,acb′ , be the

advice correlation breaker from Theorem 24 set with the following param-
eters: nacb′ = 2n, n1,acb′ = n4, n2,acb′ = m = O(n2δ2), tacb′ = 2D,hacb′ =
n1 + d, εacb′ = 2−nδ

, dacb′ = O(log2(n/εacb′)), λacb′ = 0. It can be checked
that by our choice of parameters, the conditions required for Theorem 24
indeed hold for k1,acb′ ≥ n2δ2 .

4.3 The Non-malleable Extractor

We are now ready to present the construction of i	NM that satisfies the require-
ments of Theorem 28.

– Let δ > 0 be a small enough constant, n1 = nδ and m = nΩ(1).

Non-malleable Codes, Extractors and Secret Sharing 609

Algorithm 2: ACB(z, w)
Input: Bit-strings z = (x, y)π of length 2n and bit string w of length n1,
where x and y are each n bit-strings and π : [2n] → [2n] is a permutation.
Output: Bit string of length m.
1 Let z1 = Slice(z, n2).
2 Let v be a D × n3 matrix, with its i’th row vi = LExt1(z1, i).
3 Let r be a D × n4 matrix, with its i’th row ri = LExt2(z, vi).
4 Let s be a D × m matrix, with its i’th row si = ACB′(ri, z, w, i).

5 Output ⊕D
i=1si.

– Let advGen : {0, 1}2n → {0, 1}n1 , n1 = nδ, be the advice generator from
Lemma 8.

– Let ACB : {0, 1}2n × {0, 1}n1 → {0, 1}m be the advice correlation breaker
from Lemma 9.

Algorithm 3: i	NM(z)
Input: Bit-string z = (x, y)π of length 2n, where x and y are each n
bit-strings, and π : [2n] → [2n] is a permutation.
Output: Bit string of length m.
1 Let w = advGen(z).
2 Output ACB(z, w)

The function i	NM computed by Algorithm 3 satisfies the conclusion of Theorem
28 as follows: Fix the random variables W,W′. By Lemma 8, it follows that X
remains independent of Y, and with probability at least 1 − 2−nΩ(1)

, H∞(X) ≥
k − 2n1 and H∞(Y) ≥ k − 2n1 (recall k ≥ n − nδ). Theorem 28 is now direct
using Lemma 9.

5 Open Questions

Non-malleable Codes for Composition of Functions. Here we give efficient con-
structions of non-malleable codes for the tampering class Lin ◦ 2ISS. Many nat-
ural questions remain to be answered. For instance, one open problem is to
efficiently construct non-malleable codes for the tampering class 2SS ◦ Lin or
2ISS ◦ Lin, which as explained before is closely related to the question of con-
structing explicit (r, t)-ramp non-malleable secret-sharing schemes with binary
shares, where t < r. It looks like one needs substantially new ideas to give such
constructions. More generally, for what other interesting classes of functions F
and G can we construct non-malleable codes for the composed class F ◦ G? Is
it possible to efficiently construct non-malleable codes for any tampering class
F ◦ G as long as we have efficient non-malleable codes for the classes F and G?

610 E. Chattopadhyay and X. Li

Other Applications of Seedless Non-malleable Extractors. The explicit seedless
non-malleable extractors that we construct satisfy strong pseudorandom prop-
erties. A natural question is to find more applications of these non-malleable
extractors in explicit constructions of other interesting objects.

Improved Seedless Extractors. We construct an extractor for 2-interleaved
sources that works for min-entropy rate 2/3. It is easy to verify that there exists
extractors for sources with min-entropy as low as C log n, and a natural ques-
tion here is to come up with such explicit constructions. Given the success in
constructing 2-source extractors for low min-entropy [23,47], we are optimistic
that more progress can be made on this problem.

Acknowledgments. We are grateful for useful comments from anonymous referees.

References

1. Aggarwal, D.: Affine-evasive sets modulo a prime. Inf. Process. Lett. 115(2), 382–
385 (2015)

2. Aggarwal, D., Briët, J.: Revisiting the sanders-Bogolyubov-Ruzsa theorem in Fpn
and its application to non-malleable codes. In: 2016 IEEE International Symposium
on Information Theory (ISIT), pp. 1322–1326. IEEE (2016)

3. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret-sharing
schemes for general access structures. IACR Crypt. ePrint Arch. 2018, 1147 (2018)

4. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions
and applications. In: Proceedings of the Forty-Seventh Annual ACM Symposium
on Theory of Computing, pp. 459–468. ACM (2015)

5. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. SIAM J. Comput. 47(2), 524–546 (2018)

6. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage resilient non-
malleable codes. In: Theory of Cryptography Conference, TCC 2015, pp. 398–426
(2015)

7. Aggarwal, D., Obremski, M.: A constant-rate non-malleable code in the split-state
model. IACR Crypt. ePrint Arch. 2019, 1299 (2019)

8. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, 23–25 March 2015, Proceedings, Part I, pp. 375–397
(2015)

9. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. IACR
Crypt. ePrint Arch. 2018, 1144 (2018)

10. Ball, M., Chattopadhyay, E., Liao, J.J., Malkin, T., Tan, L.Y.: Non-malleability
against polynomial tampering. In: Crypto (2020), to appear

11. Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.Y.: Non-malleable codes
for small-depth circuits. In: 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS) pp. 826–837. IEEE (2018)

12. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: TCC (2016)

Non-malleable Codes, Extractors and Secret Sharing 611

13. Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. IACR Crypt.
ePrint Arch. 2019, 379 (2019)

14. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS
National Computer Conference, pp. 313–317 (1979)

15. Bogdanov, A., Ishai, Y., Viola, E., Williamson, C.: Bounded indistinguishability
and the complexity of recovering secrets. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 593–618. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 21

16. Bogdanov, A., Williamson, C.: Approximate bounded indistinguishability. In:
International Colloquium on Automata, Languages, and Programming (2017)

17. Carpentieri, M., Santis, A.D., Vaccaro, U.: Size of shares and probability of cheat-
ing in threshold schemes. In: EUROCRYPT 1993, 12th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques (1993)

18. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: STOC (2016)

19. Chattopadhyay, E., Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Privacy amplifica-
tion from non-malleable codes. IACR Crypt. ePrint Arch. 2018, 293 (2018)

20. Chattopadhyay, E., Li, X.: Extractors for sumset sources. In: STOC (2016)
21. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth

circuits, and affine functions. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing pp. 1171–1184. ACM (2017)

22. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: Proceedings of the 55th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 306–315 (2014)

23. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient
functions. In: STOC (2016)

24. Chattopadhyay, E., Zuckerman, D.: New extractors for interleaved sources. In:
CCC (2016)

25. Cheng, K., Ishai, Y., Li, X.: Near-optimal secret sharing and error correcting codes
in AC0. In: TCC, pp. 424–458 (2017)

26. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. IEEE Trans.
Inf. Theor. 62(3), 1097–1118 (2016). https://doi.org/10.1109/TIT.2015.2511784

27. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. J. Crypt. 30(1), 191–241 (2017)

28. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

29. Cohen, G.: Local correlation breakers and applications to three-source extractors
and mergers. SIAM J. Comput. 45(4), 1297–1338 (2016)

30. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: sim-
pler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9562, pp. 306–335. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 13

31. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 22

32. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38, 97–139
(2008)

33. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: STOC, pp. 601–610 (2009)

https://doi.org/10.1007/978-3-662-53015-3_21
https://doi.org/10.1007/978-3-662-53015-3_21
https://doi.org/10.1109/TIT.2015.2511784
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22

612 E. Chattopadhyay and X. Li

34. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

35. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: Proceedings
of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2007, pp. 227–237. IEEE Computer Society, Washington, DC, USA (2007). https://
doi.org/10.1109/FOCS.2007.35

36. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4),
20:1–20:32 (2018). https://doi.org/10.1145/3178432

37. Goyal, V., Ishai, Y., Maji, H.K., Sahai, A., Sherstov, A.A.: Bounded-
communication leakage resilience via parity-resilient circuits. In: Proceedings of
the 57th Annual IEEE Symposium on Foundations of Computer Science (2016)

38. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pp. 685–698. ACM
(2018)

39. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures.
In: Advances in Cryptology - CRYPTO 2018–38th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, 19–23 August 2018, Proceedings, Part
I, pp. 501–530 (2018)

40. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing
pp. 1128–1141. ACM (2016)

41. Gupta, D., Maji, H.K., Wang, M.: Constant-rate non-malleable codes in the
split-state model. Technical Report Report 2017/1048, Cryptology ePrint Archive
(2018)

42. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. J. ACM 56(4) (2009)

43. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with
explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 344–375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 11

44. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders
and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 589–617. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7 19

45. Li, X.: Improved two-source extractors, and affine extractors for polylogarithmic
entropy. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 168–177. IEEE (2016)

46. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, pp. 1144–1156 (2017)

47. Li, X.: Non-malleable extractors and non-malleable codes: Partially optimal con-
structions. In: Electronic Colloquium on Computational Complexity (ECCC)
(2018)

48. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Secret sharing
with binary shares. CoRR arXiv:cs/1808.02974 (2018)

49. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Non-malleable
secret sharing against affine tampering. CoRR arXiv:cs/1902.06195 (2019)

https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1109/FOCS.2007.35
https://doi.org/10.1109/FOCS.2007.35
https://doi.org/10.1145/3178432
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1007/978-3-319-78372-7_19
http://arxiv.org/abs/cs/1808.02974
http://arxiv.org/abs/cs/1902.06195

Non-malleable Codes, Extractors and Secret Sharing 613

50. Maurer, U., Wolf, S.: Privacy amplification secure against active adversaries. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307–321. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052244

51. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, pp. 73–85 (1989)

52. Rao, A.: An exposition of Bourgain’s 2-source extractor. In: Electronic Colloquium
on Computational Complexity (ECCC) 14(034) (2007)

53. Rao, A.: Extractors for low-weight affine sources. In: Proceedings of the 24th
Annual IEEE Conference on Computational Complexity (2009)

54. Rasmussen, P.M.R., Sahai, A.: Expander graphs are non-malleable codes. CoRR
(2018). https://arxiv.org/abs/1810.00106

55. Raz, R.: Extractors with weak random seeds. In: Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, pp. 11–20 (2005)

56. Raz, R., Reingold, O., Vadhan, S.: Extracting all the randomness and reducing the
error in Trevisan’s extractors. JCSS 65(1), 97–128 (2002)

57. Raz, R., Yehudayoff, A.: Multilinear formulas, maximal-partition discrepancy and
mixed-sources extractors. J. Comput. Syst. Sci. 77, 167–190 (2011). https://doi.
org/10.1016/j.jcss.2010.06.013

58. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
59. Trevisan, L.: Extractors and pseudorandom generators. J. ACM 48, 860–879 (2001)
60. Trevisan, L., Vadhan, S.P.: Extracting randomness from samplable distributions.

In: IEEE Symposium on Foundations of Computer Science, pp. 32–42 (2000).
https://doi.org/10.1109/SFCS.2000.892063

61. Zuckerman, D.: Randomness-optimal oblivious sampling. Random Struct. Algo-
rithms 11, 345–367 (1997)

https://doi.org/10.1007/BFb0052244
https://arxiv.org/abs/1810.00106
https://doi.org/10.1016/j.jcss.2010.06.013
https://doi.org/10.1016/j.jcss.2010.06.013
https://doi.org/10.1109/SFCS.2000.892063

	Non-malleable Codes, Extractors and Secret Sharing for Interleaved Tampering and Composition of Tampering
	1 Introduction
	1.1 Non-malleable Codes
	1.2 Motivations and Applications in Cryptography
	1.3 Seedless Non-malleable Extractors
	1.4 Extractors for Interleaved Sources

	2 Overview of Constructions and Techniques
	2.1 Seedless Non-malleable Extractors with Respect to Interleaved 2-split-state Tampering
	2.2 From Non-malleable Extractors to Non-malleable Codes
	2.3 Extractors for Interleaved Sources
	2.4 Organization

	3 Background and Notation
	3.1 Probability Lemmas
	3.2 Conditional Min-Entropy
	3.3 Seeded Extractors
	3.4 Samplers and Extractors
	3.5 Explicit Extractors from Prior Work
	3.6 Advice Correlation Breakers
	3.7 A Connection Between Non-malleable Codes and Extractors

	4 NM Extractors for Interleaved Split-State Adversaries
	4.1 An Advice Generator
	4.2 An Advice Correlation Breaker
	4.3 The Non-malleable Extractor

	5 Open Questions
	References

