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Abstract. Time-lock puzzles—problems whose solution requires some
amount of sequential effort—have recently received increased interest
(e.g., in the context of verifiable delay functions). Most constructions

rely on the sequential-squaring conjecture that computing g2
T

mod N
for a uniform g requires at least T (sequential) steps. We study the
security of time-lock primitives from two perspectives:
1. We give the first hardness result about the sequential-squaring con-

jecture in a non-generic model of computation. Namely, in a quanti-
tative version of the algebraic group model (AGM) that we call the
strong AGM, we show that any speed up of sequential squaring is as
hard as factoring N .

2. We then focus on timed commitments, one of the most important
primitives that can be obtained from time-lock puzzles. We extend
existing security definitions to settings that may arise when using
timed commitments in higher-level protocols, and give the first con-
struction of non-malleable timed commitments. As a building block
of independent interest, we also define (and give constructions for)
a related primitive called timed public-key encryption.

1 Introduction

Time-lock puzzles, introduced by Rivest, Shamir, and Wagner [29], refer to a
fascinating type of computational problem that requires a certain amount of
sequential effort to solve. Time-lock puzzles can be used to construct timed
commitments [7], which “encrypt a message m into the future” such that m
remains computationally hidden for some time T , but can be recovered once
this time has passed. Time-lock puzzles can be used to build various other prim-
itives, including verifiable delay functions (VDFs) [5,6,28,33], zero-knowledge
proofs [13], and non-malleable (standard) commitments [19], and have applica-
tions to fair coin tossing, e-voting, auctions, and contract signing [7,23]. In this
work, we (1) provide the first formal evidence in support of the hardness of the
most widely used time-lock puzzle [29] and (2) give new, stronger security defini-
tions (and constructions) for timed commitments and related primitives. These
contributions are explained in more detail next.
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Hardness in the (strong) AGM. The hardness assumption underlying the
most popular time-lock puzzle [29] is that, given a random generator g in the
group of quadratic residues1 QRN (where N is the product of two safe primes),
it is hard to compute g2

T

mod N in fewer than T sequential steps. We study
this assumption in a new, strengthened version of the algebraic group model
(AGM) [15] that we call the strong AGM (SAGM) that lies in between the
generic group model (GGM) [24,32] and the AGM. Roughly, an algorithm A in
the AGM is constrained as follows: for any group element x that A outputs, A
must also output coefficients showing how x was computed from group elements
previously given to A as input. The SAGM imposes the stronger constraint
that A output the entire path of its computation (i.e., all intermediate group
operations) that resulted in output x. We show that if QRN is modeled as a
strongly algebraic group, then computing g2

T

mod N from g using fewer than
T squarings is as hard as factoring N . Our result is the first formal argument
supporting the sequential hardness of squaring in QRN , and immediately implies
the security of Pietrzak’s VDF [28] in the SAGM (assuming the hardness of
factoring). Our technique deviates substantially from known proofs in the AGM,
which use groups of (known) prime order. We also show that in the AGM, it
is not possible to reduce the hardness of speeding up sequential squaring to
factoring (assuming factoring is hard in the first place).

Non-malleable Timed Commitments. The second part of our paper is con-
cerned with the security of non-interactive timed commitments (NITCs). A timed
commitment differs from a regular one in that it additionally has a “forced
decommit” routine that can be used to force open the commitment after a cer-
tain amount of time in case the committer refuses to open it. Moreover, a com-
mitment comes with a proof that it can be forced open if needed. We introduce a
strong notion of non-malleability for such schemes. To construct a non-malleable
NITC, we formalize as a stepping stone a timed public-key analogue that we call
timed public-key encryption (TPKE). We then show how to achieve an appropri-
ate notion of CCA-security for TPKE. Finally, we show a generic transformation
from CCA-secure TPKE to non-malleable NITC. Although our main purpose
for introducing TPKE is to obtain a non-malleable NITC, we believe that TPKE
is an independently interesting primitive worthy of further study.

1.1 Related Work

We highlight here additional works not already cited earlier. Mahmoody et
al. [22] show constructions of time-lock puzzles in the random-oracle model, and
Bitansky et al. [4] give constructions based on randomized encodings. In recent
work, Malavolta and Thyagarajan [23] study a homomorphic variant of time-lock
puzzles. Another line of work initiated by May [25] and later formalized by Rivest
et al. [29] studies a model for timed message transmission between a sender and

1 The problem was originally stated over the ring ZN . Subsequent works have studied
it both over QRN [28] and JN (elements of Z∗

N with Jacobi symbol +1) [23].
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receiver in the presence of a trusted server. Bellare and Goldwasser [3] considered
a notion of “partial key escrow” in which a server can store keys in escrow and
learn only some of them unless it expends significant computational effort; this
model was subsequently studied by others [11,12] as well. Liu et al. [21] propose
a time-released encryption scheme based on witness encryption in a model with
a global clock.

Concurrent Work. In work concurrent with our own, Baum et al. [2] formalize
time-lock puzzles and timed commitments in the framework of universal com-
posability (UC) [9]; universally composable timed commitments are presumably
also non-malleable. Baum et al. present constructions in the (programmable)
random-oracle model that achieve their definitions, and show that their defi-
nitions are impossible to realize in the plain model. Ephraim et al. [14] also
recently formalized a notion of non-malleable timed commitments that is some-
what different from our own. They do not distinguish between time-lock puzzles
and timed commitments, which makes a direct comparison somewhat difficult.
They also give a generic construction of a time-lock puzzle from a VDF in the
random-oracle model. Finally, the work of Rotem and Segev [30] analyzes the
hardness of speeding up sequential squaring and related functions over the ring
ZN . Their analysis is in the generic ring model [1], where an algorithm can only
perform additions and multiplications modulo N , but the algorithm does not get
access to the actual representations of ring elements. This makes their analysis
incomparable to our analysis in the strong AGM.

1.2 Overview of the Paper

We introduce notation and basic definitions in Sect. 2. In Sect. 3 we introduce the
SAGM and state our hardness result about the sequential squaring assumption.
We give definitions for TPKE and NITC in Sect. 2, and give a construction of
CCA-secure TPKE in Sect. 4.2. In Sect. 4.3, we then show a simple, generic
conversion from CCA-secure TPKE to non-malleable NITC.

2 Notation and Preliminaries

Notation. We use “:=” to denote a deterministic assignment, and “←” to
denote assignment via a randomized process. In particular, “x ← S” denotes
sampling a uniform element x from a set S. We denote the length of a bitstring
x by |x|, and the length of the binary representation of an integer n by ||n||. We
denote the security parameter by κ. We write ExptA for the output of experiment
Expt involving adversary A.

Running Time. We consider running times of algorithms in some unspecified
(but fixed) computational model, e.g., the Turing machine model. This is done
both for simplicity of exposition and generality of our results. To simplify things
further, we omit from our running-time analyses additive terms resulting from
bitstring operations or passing arguments between algorithms, and we scale units
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so that multiplication in the group QRN under consideration takes unit time.
All algorithms are assumed to have arbitrary parallel computing resources.

The Quadratic Residue Group QRN . Let GenMod be an algorithm that,
on input 1κ, outputs (N, p, q) where N = pq and p �= q are two safe primes
(i.e., such that p−1

2 and q−1
2 are also prime) with ||p|| = ||q|| = τ(κ); here, τ(κ)

is defined such that the fastest factoring algorithm takes time 2κ to factor N
with probability 1

2 . GenMod may fail with negligible probability, but we ignore
this from now on. It is well known that QRN is cyclic with |QRN | = φ(N)

4 =
(p−1)(q−1)

4 .
For completeness, we define the factoring problem.

Definition 1. For an algorithm A, define experiment FACA
GenMod as follows:

1. Compute (N, p, q) ← GenMod(1κ), and then run A on input N .
2. When A outputs integers p′, q′ /∈ {1, N}, the experiment evaluates to 1 iff

N = p′q′.

The factoring problem is (t, ε)-hard relative to GenMod if for all A running in
time t,

Pr
[
FACA

GenMod = 1
]

≤ ε.

The Repeated Squaring Algorithm. Given an element g ∈ QRN , it is pos-
sible to compute g1, . . . , g2

i

(all modulo N) in i steps: in step i, simply multiply
each value g1, . . . , g2

i−1
by g2

i−1
. (Recall that we allow unbounded parallelism.)

In particular, it is possible to compute gx for any positive integer x in �log x�
steps. We denote by RepSqr the algorithm that on input (g,N, x) computes gx

in this manner.
Given a generator g of QRN , it is possible to sample a uniform element of

QRN by sampling x ← {0, . . . , |QRN | − 1} and running RepSqr(g,N, x). This
assumes that |QRN | (and hence factorization of N) is known; if this is not the
case, one can instead sample x ← ZN2 , which results in a negligible statistical
difference that we ignore for simplicity. Sampling a uniform element of QRN in
this way takes at most

�log x� ≤ �log N2� ≤ 4τ(κ)

steps. We denote by θ(κ) = 4τ(κ) the time to sample a uniform element of QRN .

The RSW Problem. We next formally define the repeated squaring problem
in the presence of preprocessing. This problem was first proposed by Rivest,
Shamir, and Wagner [29] and hence we refer to it as the RSW problem. We write
elements of G (except for the fixed generator g) using bold, upper-case letters.

Definition 2. For a stateful algorithm A, define experiment T -RSWA
GenMod as

follows:

1. Compute (N, p, q) ← GenMod(1κ).
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2. Run A on input N in a preprocessing phase to obtain some intermediate state.
3. Sample g ← QRN and run A on input g in the online phase.
4. When A outputs X ∈ QRN , the experiment evaluates to 1 iff X = g2

T

mod N .

The T -RSW problem is (tp, to, ε)-hard relative to GenMod if for all algorithms
A running in time tp in the preprocessing phase and to in the online phase,

Pr
[
T -RSWA

GenMod = 1
]

≤ ε.

Clearly, an adversary A can run RepSqr(g,N, 2T ) to compute g2
T

mod N in
T steps. This means there is a threshold t∗ ≈ T such that the T -RSW problem is
easy when to ≥ t∗. In Sect. 3.1 we show that in the strong algebraic group model,
when to < t∗ the T -RSW problem is (tp, to, ε)-hard (for negligible ε) unless N
can be factored in time roughly tp + to. To put it another way, the fastest way
to compute g2

T

mod N (short of factoring N) is to run RepSqr(g,N, 2T ).
We also introduce a decisional variant of the RSW assumption where, roughly

speaking, the problem is to distinguish g2
T

mod N from a uniform element
of QRN in fewer than T steps.

Definition 3. For a stateful algorithm A, define experiment T -DRSWGenMod

as follows:

1. Compute (N, p, q) ← GenMod(1κ).
2. Run A on input N in a preprocessing phase to obtain some intermediate state.
3. Sample g,X ← QRN and a uniform bit b ← {0, 1}. If b = 0, run A on inputs

g,X; if b = 1, run A on inputs g, g2
T

mod N in the online phase.
4. When A outputs a bit b′, the experiment evaluates to 1 iff b′ = b.

The decisional T -RSW problem is (tp, to, ε)-hard relative to GenMod if for all
algorithms A running in time tp in the preprocessing phase and to in the online
phase,

∣∣∣ Pr
[
T -DRSWA

GenMod = 1
]

− 1
2

∣∣∣ ≤ ε.

The decisional T -RSW problem is related to the generalized BBS (GBBS)
assumption introduced by Boneh and Naor [7]; however, there are several differ-
ences. First, the adversary in the GBBS assumption is given the group elements
g, g2, g4, g16, g256, . . . , g2

2k

and then asked to distinguish g2
2k+1

from uniform.
Second, the GBBS assumption does not account for any preprocessing. Our def-
inition is also similar to the strong sequential squaring assumption [23] except
that we do not give g to A in the preprocessing phase.

Non-interactive Zero-Knowledge. We recall the notion of a non-interactive
zero-knowledge proof system, defined as follows.
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Definition 4. Let LR be a language in NP defined by relation R. A (tp, tv, tsgen,
tsp)-non-interactive zero-knowledge proof (NIZK) system (for relation R) is a
tuple of algorithms NIZK = (GenZK,Prove,Vrfy,SimGen,SimProve) with the fol-
lowing behavior:

– The randomized parameter generation algorithm GenZK takes as input the
security parameter 1κ and outputs a common reference string crs.

– The randomized prover algorithm Prove takes as input a string crs, an
instance x, and a witness w. It outputs a proof π and runs in time at most
tp for all crs, x and w.

– The deterministic verifier algorithm Vrfy takes as input a string crs, an
instance x, and a proof π. It outputs 1 (accept) or 0 (reject) and runs in
time at most tv for all crs, x and π.

– The randomized simulation parameter generation algorithm SimGen takes as
input the security parameter 1κ. It outputs a common reference string crs and
a trapdoor td and runs in time at most tsgen.

– The randomized simulation prover algorithm SimProve takes as input an
instance x and a trapdoor td. It outputs a proof π and runs in time at most
tsp.

We require perfect completeness: For all crs ∈ {GenZK(1κ)}, all (x,w) ∈ R, and
all π ∈ {Prove(crs, x, w)}, it holds that Vrfy(crs, x, π) = 1.

We next define zero-knowledge and soundness properties of a NIZK.

Definition 5. Let NIZK = (GenZK,Prove,Vrfy,SimGen,SimProve) be a NIZK
for relation R. For an algorithm A, define experiment ZKNIZK as follows:

1. Compute crs0 ← GenZK(1κ) and crs1 ← SimGen(1κ), and choose a uniform
bit b ← {0, 1}.

2. Run A on input crsb with access to a prover oracle PROVE, which behaves
as follows: on input (x,w), PROVE returns ⊥ if (x,w) �∈ R; otherwise it
generates π0 ← Prove(crs0, x, w), π1 ← SimProve(crs1, x, w) and returns πb.

3. When A outputs a bit b′, the experiment evaluates to 1 iff b′ = b.

NIZK is (t, ε)-zero-knowledge if for all adversaries A running in time t,

Pr
[
ZKA

NIZK = 1
]

≤ 1
2

+ ε.

Definition 6. Let NIZK = (GenZK,Prove,Vrfy,SimGen,SimProve) be a NIZK
for relation R. For an algorithm A, define experiment SNDNIZK as follows:

1. Compute crs ← GenZK(1κ).
2. Run A on input crs.
3. When A outputs (x, π), the experiment evaluates to 1 iff Vrfy(crs, x, π) = 1

and x �∈ LR.

NIZK is (t, ε)-sound if for all adversaries A running in time t,

Pr
[
SNDA

NIZK = 1
]

≤ ε.
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In our applications we also need the stronger notion of simulation soundness,
which says that the adversary cannot produce a fake proof even if it has oracle
access to the simulated prover algorithm.

Definition 7 (Simulation Soundness). Let NIZK = (GenZK,Prove,Vrfy,
SimGen,SimProve) be a NIZK for relation R. For an algorithm A, define exper-
iment SIMSNDNIZK as follows:

1. Compute crs ← SimGen(1κ) and initialize Q := ∅.
2. Run A on input crs with access to a simulated prover oracle SPROVE, which

behaves as follows: on input (x,w), SPROVE generates π ← SimProve(x, t),
sets Q := Q ∪ {x}, and returns π.

3. When A outputs (x, π), the experiment evaluates to 1 iff x �∈ Q, Vrfy(crs, x, π)
= 1, and x �∈ LR.

NIZK is (t, ε)-simulation sound iff for all adversaries A running in time t,

Pr
[
SIMSNDA

NIZK = 1
]

≤ ε.

3 Algebraic Hardness of the RSW Problem

We briefly recall the AGM, and then introduce a refinement that we call the
strong AGM (SAGM) that lies in between the GGM and the AGM. As the
main result of this section, we show that the RSW assumption can be reduced
to the factoring assumption in the strong AGM. (Unfortunately, it does not
seem possible to extend this result to prove hardness of the decisional RSW
assumption based on factoring in the same model.) For completeness, we also
show that it is not possible to reduce hardness of RSW to hardness of factoring
in the AGM (unless factoring is easy).

3.1 The Strong Algebraic Group Model

The algebraic group model (AGM), introduced by Fuchsbauer, Kiltz, and
Loss [15], lies between the GGM and the standard model. As in the standard
model, algorithms are given actual (bit-strings representing) group elements,
rather than abstract handles for (or random encodings of) those elements as in
the GGM. This means that AGM algorithms are strictly more powerful than
GGM algorithms (e.g., when working in Z∗

N an AGM algorithm can compute
Jacobi symbols), and in particular means that the computational difficulty of
problems in the AGM depends on the group representation used. (In contrast,
in the GGM all cyclic groups of the same order are not only isomorphic, but
identical.) On the other hand, an algorithm in the AGM that outputs group
elements must also output representations of those elements with respect to any
inputs the algorithm has received; this restricts the algorithm in comparison to
the standard model (which imposes no such restriction).

In the AGM all algorithms are algebraic [8,27]:
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Definition 8 (Algebraic Algorithm). An algorithm A over G is called alge-
braic if whenever A outputs a group element X ∈ G, it also outputs an integer
vector λ with X =

∏
i Lλi

i , where L denotes the (ordered) list of group elements
that A has received as input up to that point.

The original formulation of the AGM assumes that G is a group of (known)
prime order but this is not essential and we do not make that assumption here.

The Strong AGM. The AGM does not directly provide a way to measure the
number of (algebraic) steps taken by an algorithm. This makes it unsuitable for
dealing with “fine-grained” assumptions like the hardness of the RSW problem.
(This point is made more formal in Sect. 3.3. On the other hand, as we will
see, from a “coarse” perspective any algebraic algorithm can be implemented
using polylogarithmically many algebraic steps.) This motivates us to consider
a refinement of the AGM that we call the strong AGM (SAGM), which provides
a way to directly measure the number of group operations performed by an
algorithm.

In the AGM, whenever an algorithm outputs a group element X it is required
to also provide an algebraic representation of X with respect to all the group
elements the algorithm has received as input so far. In the SAGM we strengthen
this, and require an algorithm to express any group element as either (1) a
product of two previous group elements that it has either received as input or
already computed in some intermediate step, or (2) an inverse of a previous
group element. That is, we require algorithms to be strongly algebraic:

Definition 9 (Strongly Algebraic Algorithm). An algorithm A over G is
called strongly algebraic if in each (algebraic) step A does arbitrary local com-
putation and then outputs2 one or more tuples of the following form:

1. (X,X1,X2) ∈ G3, where X = X1 · X2 and X1,X2 were either provided as
input to A or were output by A in some previous step(s);

2. (X,X1) ∈ G2, where X = X−1
1 and X1 was either provided as input to A or

was output by A in some previous step.

Note that we allow arbitrary parallelism, since we allow strongly algebraic
algorithms to output multiple tuples per step. As an example of a strongly alge-
braic algorithm, consider the following algorithm3 M̃ult computing the prod-
uct of n input elements X1, . . . ,Xn in �log n� steps: If n = 1 then M̃ult(X1)
outputs X1; otherwise, M̃ult(X1, . . . ,Xn) runs Y := M̃ult(X1, . . . ,X�n/2�) and
Z := M̃ult(X�n/2�+1, . . . ,Xn) in parallel, and outputs (YZ,Y,Z). It is also easy
to see that the repeated squaring algorithm RepSqr described previously can be
cast as a strongly algebraic algorithm R̃epSqr such that R̃epSqr(g, x) computes
gx in �log x� steps.

Any algebraic algorithm with polynomial-length output can be turned into
a strongly algebraic algorithm that uses polylogarithmically many steps:
2 Formally, we require A to output a flag in its final step to indicate its final output.
3 In general we use ·̃ to indicate that an algorithm is strongly algebraic.
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Theorem 1. Let A be an algebraic algorithm over G taking as input n group
elements X1, . . . ,Xn and outputting a group element X along with its algebraic
representation (λ1, . . . , λn) (so X = Xλ1

1 · · ·Xλn
n ), where λi ≤ 2κ. Then there is

a strongly algebraic algorithm Ã over G running in κ + �log n� steps such that
the final group element output by Ã is identically distributed.

Proof. Consider the following strongly algebraic algorithm Ã(X1, . . . ,Xn):

1. Run A(X1, . . . ,Xn) and receive A’s output X together with (λ1, . . . , λn).
(Note that this is not an algebraic step, since all computation is “internal”
to Ã and no group element is being output by Ã here.)

2. Run Xλ1
1 := R̃epSqr(X1, λ1), . . . ,Xλn

n := R̃epSqr(Xn, λn) in parallel.
3. Run M̃ult(Xλ1

1 , . . . ,Xλn
n ).

The theorem follows.

Running Time in the SAGM. The SAGM directly allows us to count the
number of algebraic steps used by an algorithm. So far, we have treated all steps
in our discussion as algebraic steps. In some settings, however, we may also wish
to account for other (non-group) computation that an algorithm does, measured
in some underlying computational model (e.g., the Turing machine model). In
this case we will express the running time of algorithms as a pair and say that
a strongly algebraic algorithm runs in time (t1, t2) if it uses t1 algebraic steps,
and has running time t2 in the underlying computational model.

3.2 Hardness of the RSW Problem in the Strong AGM

If the factorization of N (and hence φ(N)) is known, then g2
T

mod N can
be computed in at most �log φ(N)/4� algebraic steps by first computing z :=
2T mod φ(N)/4 and then computing R̃epSqr(g, z). Thus, informally, if the T -
RSW problem is hard then factoring must be hard as well. Here we prove a con-
verse in the SAGM, showing that the hardness of factoring implies the hardness
of solving the T -RSW problem in fewer than T sequential steps for a strongly
algebraic algorithm. We rely on a concrete version of the well-known result that
N can be efficiently factored given any positive multiple of φ(N) (A proof follows
by straightforward adaptation of the proof of [17, Theorem 8.50]):

Lemma 1. Suppose N ← GenMod(1κ) and m = α ·φ(N) (where α ∈ Z+). Then
there exists an algorithm Factor(N,m) which runs in time at most 4�log α·τ(κ)+
τ(κ)2� and outputs p′, q′ �∈ {1, N} such that N = p′q′ with probability at least 1

2 .

We now show:

Theorem 2. Assume that factoring is (tp +to +θ(κ)+4�log α ·τ(κ)+τ(κ)2�, ε)-
hard relative to GenMod, and let T be any positive integer. Then the T -RSW
problem is

(
(0, tp) , (T − 1, to) , 2ε

)
-hard relative to GenMod in the SAGM.
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Proof. Let A be a strongly algebraic algorithm that runs in time tp and uses no
algebraic steps in the preprocessing phase, and runs in time to and uses at most
T − 1 algebraic steps in the online phase. Let g be the generator given to A at
the beginning of the online phase of T -RSWGenMod. For any X ∈ QRN output
by A as part of an algebraic step during the online phase of T -RSWGenMod, we
recursively define DLA(g,X) ∈ Z+ as:

– DLA(g, g) = 1;
– If A outputs (X,X1,X2) in an algebraic step, then DLA(g,X) =

DLA(g,X1) + DLA(g,X2);
– If A outputs (X,X1) in an algebraic step, then DLA(g,X) = −DLA(g,X1).

Obviously, gDLA(g,X) = X for any X ∈ QRN output by A. We have:

Claim. For any strongly algebraic algorithm A given only g as input and running
in s ≥ 1 algebraic steps, every X ∈ QRN output by A satisfies |DLA(g,X)| ≤ 2s.

Proof. The proof is by induction on s. If s = 1, the only group elements A can
output are g−1 or g2, so the claim holds. Suppose the claim holds for s − 1.
If A outputs (X,X1,X2) in step s, then X1,X2 must either be equal to g or
have been output in a previous step. So the induction hypothesis tells us that
|DLA(g,X1)|, |DLA(g,X2)| ≤ 2s−1. It follows that

|DLA(g,X)| = |DLA(g,X1) + DLA(g,X2)| ≤ |DLA(g,X1)| + |DLA(g,X2)| ≤ 2s.

Similarly, if A outputs (X,X1) in step s, then |DLA(g,X)| = |DLA(g,X1)| ≤
2s−1. In either case, the claim holds for s as well.

We construct an algorithm R that factors N as follows. R, on input N ,
runs the preprocessing phase of A(N), and then samples g ← QRN and runs
the online phase of A(g). When A produces its final output X, then R (recur-
sively) computes x = DLA(g,X). Finally, R sets m := 4 · (2T − x) and out-
puts Factor(N,m).

When X = g2
T

mod N we have x = 2T mod φ(N)/4, i.e., φ(N) divides
m = 4 · (2T − x). Since, by the claim, |x| < 2T , we have m �= 0 and so m is a
nontrivial (integer) multiple of φ(N) in that case. We thus see that R factors N

with probability at least 1
2 · Pr

[
T -RSWA

GenMod = 1
]
. The running time of R is

at most tp + to + θ(κ) + 4�log α · τ(κ) + τ(κ)2�. This completes the proof.

3.3 The RSW Problem in the AGM

In the previous section we have shown that the hardness of the RSW problem can
be reduced to the hardness of factoring in the strong AGM. Here, we show that
a similar reduction in the (plain) AGM is impossible, unless factoring is easy.
Specifically, we give a “meta-reduction” M that converts any such reduction R
into an efficient algorithm for factoring. In the theorem that follows, we write RA

to denote execution of R given (black-box) oracle access to another algorithm A.
When we speak of the running time of R we assign unit cost to its oracle calls.
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Theorem 3. Let R be a reduction running in time tR and such that for any
algebraic algorithm A with Pr

[
T -RSWA

GenMod = 1
]

= 1, algorithm B = RA

satisfies Pr
[
FACB

GenMod = 1
]

> ε′. Then there is an algorithm M running in

time at most tR · (T + 1) with Pr
[
FACM

GenMod = 1
]

> ε′.

Proof. Let R be as described in the theorem statement. Intuitively, M simply
runs R, handling its oracle calls by simulating the behavior of an (algebraic)
algorithm A that solves the RSW problem with probability 1. (Note that the
running time of doing so is irrelevant insofar as analyzing the behavior of R,
since R cannot observe the running time of A. For this reason, we also ignore
the fact that A is allowed preprocessing, and simply consider an algorithm A for
which A(N, g) outputs (g2

T

mod N, 2T ).) Formally, M(N) runs R(N). When R
makes an oracle query A(N ′, g), algorithm M answers the query by computing
X = g2

T

mod N ′ (using RepSqr) and returning the answer (X, 2T ) to R. Finally,
M outputs the factors that are output by R.

The assumptions of the theorem imply that M factors N with probability
at least ε′. The running time of M is the running time of R plus the time to
run RepSqr (i.e., T steps) each time R calls A.

4 Non-malleable Timed Commitments

In this section we provide appropriate definitions for non-interactive (non-
malleable) timed commitments (NITCs). As a building block toward our con-
struction of NITCs, we introduce the notion of time-released public-key encryp-
tion (TPKE) and show how to construct CCA-secure TPKE.

4.1 Definitions

Timed commitments allow a committer to generate a commitment to a message
m such that binding holds as usual, but hiding holds only until some designated
time T ; the receiver can “force open” the commitment by that time. Boneh and
Naor [7] gave a (somewhat informal) description of the syntax of interactive
timed-commitments and provided some specific constructions. We introduce the
syntax of non-interactive timed commitments and then give appropriate security
definitions.

Definition 10. A (tcm, tcv, tdv, tfo)-non-interactive timed commitment scheme
(NITC) is a tuple of algorithms TC = (PGen,Com,ComVrfy,DecomVrfy,
FDecom) with the following behavior:

– The randomized parameter generation algorithm PGen takes as input the
security parameter 1κ and outputs a common reference string crs.

– The randomized commit algorithm Com takes as input a string crs and a
message m. It outputs a commitment C and proofs πCom, πDecom in time at
most tcm.
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– The deterministic commitment verification algorithm ComVrfy takes as input
a string crs, a commitment C, and a proof πCom. It outputs 1 (accept) or 0
(reject) in time at most tcv.

– The deterministic decommitment verification algorithm DecomVrfy takes as
input a string crs, a commitment C, a message m, and a proof πDecom. It
outputs 1 (accept) or 0 (reject) in time at most tdv.

– The deterministic forced decommit algorithm FDecom takes as input a string
crs and a commitment C. It outputs a message m or ⊥ in time at least tfo.

We require that for all crs ∈ {PGen(1κ)}, all m ∈ {0, 1}κ, and all C, πCom, πDecom

output by Com(crs,m), it holds that

ComVrfy(crs, C, πCom) = DecomVrfy(crs, C,m, πDecom) = 1

and FDecom(crs, C) = m.

To commit to message m, the committer runs Com to get C, πCom, and πDecom,
and sends C and πCom to a receiver. The receiver can run ComVrfy to check that
C can be forcibly decommitted (if need be). To decommit, the committer sends
m and πDecom to the receiver, who can then run DecomVrfy to verify the claimed
opening. If the committer refuses to decommit, C be opened using FDecom.
NITCs are generally only interesting when tfo � tcv, tdv, i.e., when forced open-
ing of a commitment takes longer than the initial verification and decommitment
verification.

NITCs must satisfy appropriate notions of both hiding and binding.

Hiding. For hiding, we introduce a notion of non-malleability for NITCs based
on the CCA-security notion for (standard) commitments by Canetti et al. [10].
Specifically, we require hiding to hold even when the adversary is given access to
an oracle that provides the (forced) openings of commitments of the adversary’s
choice. In the timed setting, the motivation behind providing the adversary with
such an oracle is that (honest) parties may be running machines that can force
open commitments at different speeds. As such, the adversary (as part of the
higher-level protocol) could trick some party into opening commitments of the
attacker’s choice. Note that although the adversary could run the forced opening
algorithm itself, doing so would incur a cost; in contrast, the adversary only
incurs a cost of one time unit to make a query to the oracle.

Definition 11. For an NITC scheme TC and algorithm A, define experiment
IND-CCATC as follows:

1. Compute crs ← PGen(1κ).
2. Run A on input crs with access to a decommit oracle FDecom(crs, ·) in a

preprocessing phase.
3. When A outputs (m0,m1), choose a uniform bit b ← {0, 1}, compute

(C, πCom, 
) ← Com(crs,mb), and run A on input (C, πCom) in the online
phase. A continues to have access to FDecom(crs, ·), except that A may not
query this oracle on C.
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4. When A outputs a bit b′, the experiment evaluates to 1 iff b′ = b.

TC is (tp, to, ε)-CCA-secure if for all adversaries A running in preprocessing
time tp and online time to,

Pr
[
IND-CCAA

TC = 1
]

≤ 1
2

+ ε.

Binding. The binding property states that a commitment cannot be opened to
two different messages. It also ensures that the receiver does not accept commit-
ments that cannot be forced open to the correct message.

Definition 12 (BND-CCA Security for Commitments). For a NITC
scheme TC and algorithm A, define experiment BND-CCATC as follows:

1. Compute crs ← PGen(1κ).
2. Run A on input crs with access to a decommit oracle FDecom(crs, ·).
3. When A outputs (m,C, πCom, πDecom,m′, π′

Decom), the experiment evaluates to
1 iff ComVrfy(crs, C, πCom) = DecomVrfy(crs, C,m, πDecom) = 1 and either of
the following holds:
– m′ �= m and DecomVrfy(crs, C,m′, π′

Decom) = 1;
– FDecom(crs, C) �= m.

TC is (t, ε)-BND-CCA-secure if for all adversaries A running in time t,

Pr
[
BND-CCAA

TC = 1
]

≤ ε.

Time-Released Public-Key Encryption. TPKE can be thought of the coun-
terpart of timed commitments for public-key encryption. As in the case of stan-
dard public-key encryption (PKE), a sender encrypts a message for a designated
recipient using the recipient’s public key; that recipient can decrypt and recover
the message. Timed PKE additionally supports the ability for anyone (and not
just the sender) to also recover the message, but only by investing more compu-
tational effort.

Definition 13. A (te , tfd , tsd)-timed public-key encryption (TPKE) scheme is a
tuple of algorithms TPKE = (KGen,Enc,Decf ,Decs) with the following behavior:

– The randomized key-generation algorithm KGen takes as input the security
parameter 1κ and outputs a pair of keys (pk , sk). We assume, for simplicity,
that sk includes pk.

– The randomized encryption algorithm Enc takes as input a public key pk and
a message m, and outputs a ciphertext c. It runs in time at most te .

– The deterministic fast decryption algorithm Decf takes as input a secret key
sk and a ciphertext c, and outputs a message m or ⊥. It runs in time at most
tfd .

– The deterministic slow decryption algorithm Decs takes as input a public key
pk and a ciphertext c, and outputs a message m or ⊥. It runs in time at
least tsd .
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We require that for all (pk , sk) output by KGen(1κ), all m, and all c output by
Enc(pk ,m), it holds that Decf (sk , c) = Decs(pk , c) = m.

Such schemes are only interesting when tfd  tsd , i.e., when fast decryption is
much faster than slow decryption.

We consider security of TPKE against chosen-ciphertext attacks.

Definition 14. For a TPKE scheme TPKE and algorithm A, define experiment
IND-CCAA

TPKE as follows:

1. Compute (pk , sk) ← KGen(1κ).
2. Run A on input pk with access to a decryption oracle Decf (sk , ·) in a pre-

processing phase.
3. When A outputs (m0,m1), choose b ← {0, 1}, compute c ← Enc(pk ,mb),

and run A on input c in the online phase. A continues to have access to
Decf (sk , ·), except that A may not query this oracle on c.

4. When A outputs a bit b′, the experiment evaluates to 1 iff b′ = b.

TPKE is (tp, to, ε)-CCA-secure iff for all A with preprocessing time tp and online
time to,

Pr
[
IND-CCAA

TPKE = 1
]

≤ 1
2

+ ε.

We remark that in order for TPKE to be an independently interesting prim-
itive, one might require that even for maliciously formed ciphertexts c, Decs

and Decf always produce the same output (a property indeed enjoyed by our
TPKE scheme in the next section). However, since our primary motivation is to
obtain commitment schemes, we do not require this property and hence opt for
a simpler definition that only requires correctness (i.e., of honestly generated
ciphertexts).

4.2 CCA-Secure TPKE

Here we describe a construction of a TPKE scheme that is CCA-secure under the
decisional RSW assumption. While our construction is in the standard model,
it suffers from a slow encryption algorithm. In the full version of our paper, we
describe a CCA-secure construction in the ROM in which encryption can be
sped up, using the secret key.

The starting point of our construction is a CPA-secure TPKE scheme based
on the decisional RSW assumption. In this scheme, the public key is a modulus
N and a generator g ∈ QRN ; the secret key contains φ(N). To encrypt a message
m ∈ ZN s.t. ||m|| < τ(κ) − 1, the sender encodes m as M := m2 ∈ QRN . It
then first computes a random generator R (by raising g to a random power mod-
ulo N), and then computes the ciphertext (R, R2T ·M mod N). This ciphertext
can be decrypted quickly using φ(N), but can also be decrypted slowly without
knowledge of the secret key. (To decode to the original m, one can just compute
the square root over the integers, since m2 < N).
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For any modulus N1, N2 and integer T , define the relation

RN1,N2,T =

{
((R1,R2,X1,X2),M) |

∧
i=1,2

Xi = R2T

i · M mod Ni

}

Let (GenZK,Prove,Vrfy) be a (tpr, tv, tsgen, tsp)-NIZK proof system for this rela-
tion. Define a TPKE scheme (parameterized by T ) as follows:

– KGen(1κ): For i = 1, 2 run (Ni, pi, qi) ← GenMod(1κ), compute φi :=
φ(Ni) = (pi − 1)(qi − 1), set zi := 2T mod φi. Choose gi ← QRNi

and run crs ← GenZK(1κ). Output pk := (crs, N1, N2, g1, g2) and sk :=
(crs, N1, N2, g1, g2, z1, z2).

– Enc((crs, N1, N2, g1, g2),M): For i = 1, 2, choose ri ← ZN2
i
and compute

Ri := gri
i mod Ni, Zi := R2T

i mod Ni, Ci := Zi · M mod Ni,

where the exponentiations are computed using RepSqr. Also compute π ←
Prove(crs, (R1,R2,C1,C2),M). Output the ciphertext (R1,R2,C1,C2, π).

– Decf ((crs, N1, N2, g1, g2, z1, z2), (R1,R2,C1,C2, π)): If
Vrfy(crs, (R1,R2,C1,C2), π) = 0, then output ⊥. Else compute
Z1 := Rz1

1 mod N1 (using RepSqr) and M := C1Z
−1
1 mod N , and then

output M if ||M|| < τ(κ) and ⊥ otherwise.
– Decs((crs, N1, N2, g1, g2), (R1,R2,C1,C2, π)): If Vrfy(crs, (R1,R2,C1,C2), π)

= 0, then output ⊥. Else compute Z1 := R2T

1 mod N1 (using RepSqr) and
M := C1Z

−1
1 mod N1, and then output M if ||M|| < τ(κ) and ⊥ otherwise..

Fig. 1. A CCA-secure TPKE scheme

We can obtain a CCA-secure TPKE scheme by suitably adapting the Naor-
Yung paradigm [26,31] to the setting of timed encryption. The Naor-Yung app-
roach constructs a CCA-secure encryption scheme by encrypting a message twice
using independent instances of a CPA-secure encryption scheme accompanied by
a simulation-sound NIZK proof of consistency between the two ciphertexts. In
our setting, we need the NIZK proof system to also have “fast” verification and
simulation (specifically, linear in the size of the input instance). We present the
details of our construction in Fig. 1.

Subtleties in the Simulation. The proof of security in our context requires
the ability to simulate both the challenge ciphertext and the decryption oracle
using a “fast” decryption algorithm. The reason behind this is that if it were
not possible to simulate decryption fast, then the reduction from the decisional
RSW assumption would take too much time simulating the experiment for the
adversary. Fast simulation is possible for two reasons. First, in the proof of the
Naor-Yung construction, the simulator knows (at least) one of the secret keys at
any time. Second, we use a NIZK with simulation soundness for which verification
and proof simulation take linear time in the size of the instance (but not in the
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size of the circuit). Using these two components, the simulator can perform fast
decryption on any correctly formed ciphertext. To reduce from decisional RSW,
it embeds the decisional RSW challenge into the challenge ciphertext component
for which the secret key is not known.

Concretely, for integers N s.t. N = pq for primes p and q, let C be an
arithmetic circuit over ZN , and let SATC denote the set of all (x,w) ∈ {0, 1}∗

s.t. w is a satisfying assignment to C when C’s wires are fixed according to the
instance x. The works of Groth and Maller [16] as well as Lipmaa [20] show
NIZK constructions for SATC which have soundness and simulation soundness
(with suitable parameters), perfect zero-knowledge, perfect correctness and are
such that for all crs ∈ {GenZK(1κ)}, (crs′, td) ∈ {SimGen(1κ)}, all (x,w) ∈ SATC
and all x′ ∈ {0, 1}∗:

– For all π ∈ {Prove(crs, x, w)}, Vrfy runs within time O(|x|) on input (crs, x, π).
– For all π′ ∈ {SimProve(x′, td)}, Vrfy runs within time O(|x′|) on input

(crs′, x′, π′).
– On input (x′, td), SimProve runs in time O(|x′|).
In other words, both Vrfy and SimProve run in a fast manner, i.e., linear in the
scale of the input instance.

We remark that both of the above constructions work over Zp for primes p
only, but can be translated to circuits over ZN , where N is composite, with small
overhead, as shown in [18]. The idea is very simple: any arithmetic operation
over ZN is emulated using multiple (smaller) values in Zp. The multiplicative
overhead in this construction is roughly linear in the size difference between p
and N and is ignored here for readability.

Theorem 4. Suppose NIZK is (tp + to, 2εZK)-zero-knowledge and (tp + to +
θ(κ), εSS)-simulation sound, and the decisional T -RSW problem is (tp+T +tsg +
θ(κ), to + tsp, εDRSW )-hard relative to GenMod. Then the (tpr +T, tv + θ(κ), T +
θ(κ))-TPKE scheme in Fig. 1 is (tp, to, εZK + εSS + 2εDRSW )-CCA-secure.

Proof. Let A be an adversary with preprocessing time tp and online time to. We
define a sequence of experiments as follows.

Expt0: This is the original CCA-security experiment IND-CCATPKE. Denote
A’s challenge ciphertext by (R∗

1,R
∗
2,C

∗
1,C

∗
2, π

∗).

Expt1: Expt1 is identical to Expt0, except that crs and π∗ are simulated. That
is, in Gen run (crs, td) ← SimGen(1κ), and in the challenge ciphertext compute
π∗ ← SimProve((R∗

1,R
∗
2,C

∗
1,C

∗
2), td).

We upper bound |Pr[ExptA1 = 1] − Pr[ExptA0 = 1]| by constructing a reduc-
tion RZK to the zero-knowledge property of NIZK. RZK runs the code of Expt0,
except that it publishes the CRS from the zero-knowledge challenger, and uses
the zero-knowledge proof from the zero-knowledge challenger as part of the chal-
lenge ciphertext. Concretely, RZK works as follows:

– Setup: RZK , on input crs∗, for i = 1, 2 runs (Ni, pi, qi) ← GenMod(1κ),
computes φi := φ(Ni) = (pi − 1)(qi − 1), sets zi := 2T mod φi, and chooses
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gi ← QRNi
. Then RZK runs A(N, g, crs∗).

RZK answers A’s DEC queries using the fast decryption algorithm Decf .
That is, on A’s query DEC(R1,R2,C1,C2, π), RZK computes Z1 := RepSqr

(R1, N1, z1) and M :=
C1

Z1
mod N1; if Vrfy(R1,R2,C1,C2, π) = 1 then RZK

returns M, otherwise RZK returns ⊥.
– Online phase: When A makes its challenge query on (M0,M1), RZK chooses

b ← {0, 1} and for i = 1, 2 chooses r1, r2 ← ZN2 , and computes

R∗
i := RepSqr(gi, Ni, ri), Z∗

i := RepSqr(R∗
i , Ni, zi), C∗

i := Z∗
i · M mod Ni,

π∗ ← PROVE((R∗
1,R

∗
2,C

∗
1,C

∗
2),Mb),

and outputs (R∗
1,R

∗
2,C

∗
1,C

∗
2, π

∗). After that, RZK answers A’s DEC queries
just as in setup.

– Output: On A’s output bit b′, RZK outputs 1 if b′ = b, and 0 otherwise.

RZK runs in time tp + to +2θ(κ) (tp in the setup phase and to +2θ(κ) in the
online phase), and

|Pr[ExptA1 = 1] − Pr[ExptA0 = 1]| ≤ εZK .

Expt2: Expt2 is identical to Expt1, except that C∗
2 is computed as U2 ·Mb mod N2

(instead of Z∗
2 · Mb mod N2), where U2 := RepSqr(g2, N2, u2) and u2 ← ZN2

2
.

We upper bound |Pr[ExptA2 = 1] − Pr[ExptA1 = 1]| by constructing a reduc-
tion RDRSW to the decisional T -RSW problem. RDRSW runs the code of Expt2,
except that it does not know φ2, and uses the group elements from the deci-
sional T -RSW challenger as part of the challenge ciphertext. (Note that A’s DEC
queries can still be answered in a fast manner, since the decryption algorithm
only uses R1, and RDRSW knows φ1.) Concretely, RDRSW works as follows:

– Preprocessing phase: RDRSW , on input N , runs (N1, p1, q1) ← GenMod(1κ),
computes φ1 := φ(N1) = (p1 − 1)(q1 − 1), sets z1 := 2T mod φ1, and chooses
g1 ← QRN1

, g ← QRN ; runs (crs, td) ← SimGen(1κ). Then RDRSW runs
A(crs, N1, N, g1, g). RDRSW answers A’s DEC queries as described in Expt1.

– Online phase: When A makes its challenge query on (M0,M1), RDRSW asks
for (g∗,X∗) from the decisional RSW challenger, chooses b ← {0, 1} and
r1 ← ZN2

1
, and computes

R∗
1 := RepSqr(g1, N1, r1), Z∗

1 := RepSqr(R∗
1, N1, z1), C∗

1 := Z∗
1 · Mb mod N1,

π∗ ← SimProve((R∗
1, g

∗,C∗
1,X

∗ · Mb), td),

and returns (R∗
1, g

∗,C∗
1,X

∗ ·Mb, π
∗). R answers A’s DEC queries as described

in Expt1.
– Output: On A’s output bit b′, RDRSW outputs 1 if b′ = b, and 0 otherwise.
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RDRSW runs in time tp + tsgen in the preprocessing phase, and time to + tsprove

in the online phase, and

|Pr[ExptA2 = 1] − Pr[ExptA1 = 1]| ≤ εDRSW .

Expt3: Expt3 is identical to Expt2, except that C∗
2 is computed as U2 (instead of

U2 · Mb). Since the distributions of U2 and U2 · Mb are both uniform, this is
merely a conceptual change, so

Pr[ExptA3 = 1] = Pr[ExptA2 = 1].

Expt4: Expt4 is identical to Expt3, except that the DEC oracle uses R2 (instead
of R1) to decrypt. That is, when A queries DEC(R1,R2,C1,C2, π), compute

Z2 := RepSqr(R2, N2, z2) and M :=
C2

Z2
mod N2.

Expt4 and Expt3 are identical unless A makes a query DEC(R1,R2,C1,C2, π)

s.t.
C1

R2T
1

mod N1 �= C2

R2T
2

mod N2 (over Z) but Vrfy(R1,R2,C1,C2, π) = 1 (in

which case A receives
C1

R2T
1

mod N1 in Expt3 and
C2

R2T
2

mod N2 in Expt4; in all

other cases A receives either ⊥ in both experiments, or
C1

R2T
1

mod N1 =
C2

R2T
2

mod

N2 in both experiments). Denote this event Fake. We upper bound Pr[Fake] by
constructing a reduction RSS to the simulation soundness of NIZK:

– Setup: RSS , on input crs, for i = 1, 2 runs (Ni, pi, qi) ← GenMod(1κ), com-
putes φi := φ(Ni) = (pi − 1)(qi − 1), sets zi := 2T mod φi, and chooses
gi ← QRNi

. Then RSS runs A(N, g, crs).
On A’s query DEC(R1,R2,C1,C2, π), RSS computes Z1 and Z2 as

described in Expt1. If Vrfy(R1,R2,C1,C2, π) = 0, then RSS returns ⊥;

otherwise RSS checks if
C1

R2T
1

mod N1 =
C2

R2T
2

mod N2, and if so, it returns

C1

R2T
1

mod N1, otherwise it outputs ((R1,R2,C1,C2), π) to its challenger (and

halts).
– Online phase: When A makes its challenge query on (M0,M1), RSS chooses

b ← {0, 1} and computes

R∗
1 := RepSqr(g1, N1, r1), Z∗

1 := RepSqr(R∗
1, N1, z1), C∗

1 := Z∗
1 · Mb mod N1,

u2 ← ZN2
2
,C∗

2 := RepSqr(g2, N2, u2),

π∗ ← SPROVE((R∗
1,R

∗
2,C

∗
1,C

∗
2), td),

and outputs (R∗
1,R

∗
2,C

∗
1,C

∗
2, π

∗). After that, RSS answers A’s DEC(R1,R2,
C1,C2, π) query just as in setup.
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RSS runs in time at most tp+to+θ(κ) (i.e., tp in the setup phase and to+θ(κ)
in the online phase). Up to the point that RSS outputs, RSS simulates Expt4

perfectly. If Fake happens, then RSS outputs ((R1,R2,C1,C2), π) s.t.
C1

R2T
1

mod

N1 �= C2

R2T
2

mod N2 but Vrfy(R1,R2,C1,C2, π) = 1, winning the simulation-

soundness experiment. It follows that

|Pr[ExptA4 = 1] − Pr[ExptA3 = 1]| ≤ Pr[Fake] ≤ Pr[RSS wins] ≤ εSS .

Expt5: Expt5 is identical to Expt4, except that C∗
1 is computed as U ·Mb mod N1

(instead of Z∗
1 · Mb mod N1), where U1 := RepSqr(g1, N1, u1) and u1 ← ZN2

1
.

The argument is symmetric to the one from Expt1 to Expt2; the reduction works
because R1 is not used in DEC. We have

|Pr[ExptA5 = 1] − Pr[ExptA4 = 1]| ≤ εDRSW .

Expt6: Expt6 is identical to Expt5, except that C∗
1 is computed as U1 (instead of

U1 ·Mb). The argument is symmetric to the one from Expt2 to Expt3. We have

Pr[ExptA6 = 1] = Pr[ExptA5 = 1].

Furthermore, since b is independent of A’s view in Expt6, we have

Pr[ExptA6 = 1] =
1
2
.

Summing up the results above, we conclude that

Pr
[
IND-CCAA

TPKE = 1
]

≤ 1
2

+ εZK + εSS + 2εDRSW ,

which completes the proof.

4.3 Constructing Non-malleable Timed Commitments

In this section, we show how our notion of CCA-secure TPKE implies non-
malleable timed commitments. The idea is very simple. At setup, the committer
generates the parameters and keys for a TPKE TPKE and NIZKs NIZKCom

and NIZKDecom. To commit to a message m, the committer computes c :=
Enc(pk ,m; r) (for some random coins r) and uses NIZKCom and NIZKDecom to
prove that (1) it knows (m, r) s.t. c = Enc(pk ,m; r). This proof will be used as
πCom, i.e., to prove that the commitment is well-formed; and (2) it knows r s.t.
c = Enc(pk ,m; r). This proof will be used as πDecom, i.e., to prove (efficiently)
that the opening to the commitment is the correct one. Our construction is
presented in Fig. 2.

To be able to reduce from CCA-security of the underlying TPKE scheme
for meaningful parameters, we require that proofs of the NIZK scheme can be
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simulated and verified (very) efficiently, i.e., take much less time than a forced
decommit. This is satisfied when instantiating the TPKE scheme with our con-
struction from the previous section, where this relation can be expressed via an
arithmetic circuit. More generally, any scheme whose encryption algorithm can
be expressed via an arithmetic circuit would satisfy our requirements.

Let TPKE = (KGen,Enc,Decf ,Decs) be a (te , tfd , tsd)-TPKE scheme, NIZKCom =
(GenZKCom,ProveCom,VrfyCom, SimGenCom, SimProveCom) be a (tcp, tcv, tcsgen, tcsp)-
NIZK for relation

RCom = {(c, (m, r)) | c = Enc(pk , m; r)},

and NIZKDecom = (GenZKDecom,ProveDecom,VrfyDecom, SimGenDecom, SimProveDecom)
be a (tdp, tdv, tdsgen, tdsp)-NIZK for relation

RDecom = {((c, m), r) | c = Enc(pk , m; r)}.

Define an NITC scheme as follows:

– PGen(1κ): Run (pk , sk) ← KGen(1κ), crsCom ← GenZKCom(1κ), crsDecom ←
GenZKDecom(1κ), and output crs := (pk , crsCom, crsDecom).

– Com((pk , crsCom, crsDecom), m): Choose random coins r, compute
c := Enc(pk , m; r), πCom ← Prove(crsCom, c, (m, r)), πDecom ←
Prove(crsDecom, (c, m), r), and output (c, πCom, πDecom).

– ComVrfy((pk , crsCom, crsDecom), c, πCom): Output VrfyCom(crsCom, c, πCom).
– DecomVrfy((pk , crsCom, crsDecom), c, m, πDecom): Output VrfyDecom(crsDecom,

(c, m), πDecom).
– FDecom((pk , crsCom, crsDecom), c): Output Decs(pk , c).

Fig. 2. An NITC scheme.

Correctness of this scheme follows immediately from correctness of the under-
lying TPKE and NIZK schemes; we next show its CCA-security.

Theorem 5. Suppose TPKE is (tp + tcsgen, tcsp, εTPKE)-CCA-secure, and
NIZKCom is (tp + to + te, εZK)-zero-knowledge. Then the (te + max

{
tcp,

tdp

}
, tcv, tdv, tsd)-NITCS scheme in Fig. 2 is (tp, to, εZK + εCCA)-CCA-secure.

Proof. Let A be an adversary with preprocessing time tp and online time to.
Suppose A’s challenge is (c∗, π∗). We define a sequence of experiments as follows.

Expt0: This is the original CCA-security experiment IND-CCATC.
Expt1: Expt1 is identical to Expt0, except that crsCom and π∗ are simulated. That
is, in the setup phase run (crsCom, td) ← SimGenCom(1κ), and in the challenge
compute π∗ ← SimProveCom(c∗, td).
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We upper bound |Pr[ExptA1 = 1] − Pr[ExptA0 = 1]| by constructing a reduc-
tion RZK to the zero-knowledge property of NIZKCom. RZK runs the code of
Expt1, except that it publishes the CRS from the zero-knowledge challenger, and
uses the zero-knowledge proof from the zero-knowledge challenger as part of the
challenge ciphertext; also, RZK simulates the decommit oracle DEC by running
the fast decryption algorithm. Concretely, RZK works as follows:

– Setup: RZK , on input crs∗, runs P ← PGen(1κ), (sk , pk) ← KGen(P ) and
crsDecom ← GenZKDecom(1κ), sets crs := (pk , crs∗, crsDecom), and runs A(crs).
On A’s query DEC(c), RZK returns Decs(sk , c).

– Online phase: When A makes its challenge query on (m0,m1), RZK chooses
b ← {0, 1}, computes c∗ ← Enc(pk ,mb) and π∗ ← PROVE(c∗,mb), and out-
puts (c, π∗). After that, R answers A’s DEC queries just as in setup.

– Output: On A’s output bit b′, RZK outputs 1 if b′ = b, and 0 otherwise.

RZK runs in time tp + to + te (tp in the setup phase and to + te in the online
phase), and

|Pr[ExptA1 = 1] − Pr[ExptA0 = 1]| ≤ εZK .

Now we analyze A’s advantage in Expt1. Since the challenge is (c, π) where
c = Enc(pk ,m; r) and π is simulated without knowledge of m or r, and DEC
simply runs Decs, A’s advantage can be upper bounded directly by the CCA-
security of TPKE. Formally, we upper bound A’s advantage by constructing a
reduction RCCA to the CCA-security of TPKE (where RCCA’s decryption oracle
is denoted DECTPKE):

– Preprocessing phase: RCCA, on input pk , computes (crsCom, td) ← SimGenCom
(1κ), and runs A(crsCom). On A’s query DEC(c), RCCA queries DECTPKE(c)
and returns the result.

– Challenge query: When A outputs (m0,m1), RCCA makes its challenge
query on (m0,m1), and on its challenge ciphertext c∗, RCCA computes
π∗ ← SimProveCom(c∗, td) and sends (c∗, π∗) to A. After that, R answers
A’s DEC queries just as in preprocessing phase.

– Output: When A outputs a bit b′, RCCA also outputs b′.

RCCA runs in time at most tp + tcsgen in the preprocessing phase, and time
at most to + tcsp in the online phase. RCCA simulates Expt1 perfectly, and wins
if A wins. It follows that

Pr[ExptA1 = 1] = Pr[RCCA wins] ≤ 1
2

+ εCCA.

Summing up all results above, we conclude that

Pr
[
IND-CCAA

TC = 1
]

≤ 1
2

+ εZK + εCCA,

which completes the proof.
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We give a sketc.h of the argument of why our scheme satisfies our notion of
binding. Recall that if A can win BND-CCATC, then it can produce a com-
mitment c along with messages m,m′ and proofs πCom, πDecom s.t. ComVrfy((pk ,
crsCom, crsDecom), c, πCom) = DecomVrfy((pk , crsCom, crsDecom), c,m, πDecom) = 1,
m′ �= m and either

(1) : FDecom((pk , crsCom, crsDecom), c) = m′

or

(2) : DecomVrfy((pk , crsCom, crsDecom), c,m′, π′
Decom) = 1.

Both (1) and (2) can be reduced from soundness of NIZK. For (1), unless A can
come up with a fake proof πCom, then ComVrfy((pk , crsCom, crsDecom), c, πCom) = 1
implies that there exists m and r s.t. Enc(pk,m; r) = c. Now, correctness of TPKE
implies that FDecom((pk , crsCom, crsDecom), c) = Decs(pk , c) = Decf (sk , c) =
m. Similarly, for (2), unless A can come up with a fake proof πDecom, then
DecomVrfy((pk , crsCom, crsDecom), c,m, πDecom) = 1 implies that there exists r s.t.
Enc(pk ,m; r) = c. In this case, correctness of TPKE asserts that Decs(pk , c) =
Decf (sk , c) = m �= m′. Hence the proof π′

Decom must be fake, as otherwise, this
would contradict correctness of TPKE with regard to m′.
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