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Abstract. We build symmetric encryption schemes from a pseudoran-
dom function/permutation with domain size N which have very high
security – in terms of the amount of messages q they can securely encrypt
– assuming the adversary has S < N bits of memory. We aim to minimize
the number of calls k we make to the underlying primitive to achieve a
certain q, or equivalently, to maximize the achievable q for a given k. We
target in particular q � N , in contrast to recent works (Jaeger and Tes-
saro, EUROCRYPT ’19; Dinur, EUROCRYPT ’20) which aim to beat
the birthday barrier with one call when S <

√
N .

Our first result gives new and explicit bounds for the Sample-then-
Extract paradigm by Tessaro and Thiruvengadam (TCC ’18). We show
instantiations for which q = Ω

(
(N/S)k

)
. If S < N1−α, Thiruvengadam

and Tessaro’s weaker bounds only guarantee q > N when k = Ω(log N).
In contrast, here, we show this is true already for k = Θ(1/α).

We also consider a scheme by Bellare, Goldreich and Krawczyk
(CRYPTO ’99) which evaluates the primitive on k independent random
inputs, and masks the message with the XOR of the outputs. Here, we

show q = Ω
(
(N/S)k/2

)
, using new combinatorial bounds on the list-

decodability of XOR codes which are of independent interest. We also
study best-possible attacks against this construction.

1 Introduction

A number of very recent works [2,19,20,28,29,39,45,48] extend the concrete
security treatment of provable security to account for the memory complex-
ity of an adversary. For symmetric encryption, Jaeger and Tessaro [39] showed
for example that randomized counter-mode encryption (CTR) is secure against
attackers encrypting q = Θ(N/S) messages, where S is the memory complexity
of the adversary and N = 2n is the domain size of the underlying PRF/PRP,
which is assumed to be sufficiently secure. This is a linear time-memory trade-off
– reducing S by a multiplicative factor ε < 1 allows us to increase by a factor
1/ε the tolerable data complexity of the attack.
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The benefit of such a trade-off is that if S <
√

N , one can tolerate q >
√

N ,
which is beyond the so-called “birthday barrier.” Building schemes with beyond-
birthday security is a prime line of research in symmetric cryptography, but con-
structions are generally less efficient without imposing any memory restrictions
on the adversary.

Our contributions: Super-linear trade-offs. The trade-off for CTR
relies on a thin margin: For N = 2128, we only improve upon memory-unbounded
analyses if S � 264. While 264 bits is a large amount of memory, it is not
unreasonably large. One should therefore ask whether we can do better – either
take advantage of a weaker memory limitation or be able to encrypt a much
larger number of messages. More broadly, we want to paint a full picture of
what security is attainable under a given memory restriction – complementing
our understanding of the landscape without memory constraints.

More concretely, we consider constructions which make k calls to a given
block cipher1 with domain size N , and ask the following question:

If the adversary is bounded to S < N bits of memory, what is the highest
security we can achieve (in terms of allowable encryptions q) by a con-
struction making k calls?

Tessaro and Thiruvengadam [45] showed that one can achieve security for q � N
encrypted messages at the cost of k = Ω(log N), whereas here we do much better
by giving schemes that can do so already for k = O(1): They can in particular
encrypt up to q = Θ((N/S)c(k)) messages, for c(k) > 1. (This is what we refer to
as a super-linear trade-off.) For one of our two constructions (in fact, the same
construction as [45], but with a much better analysis), we get c(k) = k − 1 for
messages of length n, and c(k) = k for bit messages. These trade-offs appear
best-possible (or close to best-possible), but proving optimality for now seems
to be out of reach – we move first steps by studying attacks against one of our
constructions.

These schemes can securely encrypt q � N messages as long as S < N . It
is important to appreciate that without the restriction, q < N is an inherent
barrier for current proof techniques (cf. [45] for a discussion).

On practice and theory. We stress that our approach is foundational. Even
for k � 2, practitioners may find the resulting constructions not viable. Still,
security beyond q > N may be interesting in practice – we may want to imple-
ment a block cipher with smaller block length (e.g., N = 280) and then be able
to still show security against q = 2128 encryptions, as long as S < 280, which is
a reasonable assumption.

We also stress that the question we consider here is natural in its own right,
and is a cryptographic analogue and a scaled-up version of the line of works
initiated by Raz [43], with a stronger focus on precise bounds and thus different
techniques. (We discuss the connection further in Sect. 1.4 below.)

1 Assumed to be a secure PRP/PRF.
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1.1 Our Contributions

We start with a detailed overview of our contributions. (A technical overview is
deferred to the next two sections.) Our constructions make k calls to a function
FK : {0, 1}n → {0, 1}n keyed with a key K – this is generally obtained from
a block cipher like AES (in which case, n = 128). We will use the shorthand
N = 2n. For the presentation of our results in this introduction, it is helpful to
assume FK behaves as a random function or a random permutation – this can
be made formal via suitable PRF/PRP assumptions, and we discuss this at the
end of this section in more detail.

The Sample-then-Extract Construction. The first part of this paper
revisits the Sample-then-Extract (StE) construction of [45]. StE depends on a
parameter k � 1 as well as a (strong) randomness extractor2 Ext : ({0, 1}n)k ×
{0, 1}s → {0, 1}�. The encryption of a message M ∈ {0, 1}� under key K is then

C = (R1, . . . , Rk, sd,Ext(FK(0 ‖R1) ‖ · · · ‖FK(k − 1 ‖Rk), sd) ⊕ M) , (1)

where sd ∈ {0, 1}s and R1, . . . , Rk ∈ {0, 1}n−log k are chosen afresh upon each
encryption. We also extend StE to encrypt arbitrary-length messages (which
can have variable length), amortizing the cost of including sd, R1, . . . , Rk, in
the ciphertext. (For this introduction, however, we only deal with fixed-length
messages for ease of exposition.)

Prior work only gives a sub-optimal analysis: For k = Θ(log N) = Θ(n),
Tessaro and Thiruvengadam [45] show security against q = N1.5 encryptions
whenever S = N1−α for a constant α > 0. Here, we prove a much better bound.
For example, for � = n, and a suitable choice of Ext, we show security up to

q = Θ((N/S)k−1)

encryptions. This is improved to q = Θ((N/S)k) for bit messages. Therefore, if
S < N1−α, we can achieve security up to q = N1.5 encryptions with k = 1+ 1.5

α ,
which is constant if α is constant.

The k-XOR Construction. Our second result considers a generalization of
randomized counter-mode encryption, introduced by Bellare, Goldreich, and
Krawczyk [7], which we refer to as the k-XOR construction. For even k � 1,
to encrypt M ∈ {0, 1}n, we pick random R1, . . . , Rk ∈ {0, 1}n, and output

C = (R1, . . . , Rk,FK(R1) ⊕ · · · ⊕ FK(Rk) ⊕ M) . (2)

Alternatively, k-XOR can be viewed as an instance of StE with a seedless Ext.
For this construction, we prove security up to q = Θ((N/S)k/2) encryptions. We
note that in [7], a memory-independent bound of q = Θ(N/k) was proved for
the case where q � N . The two results are complementary. The bound from [7]
does not tell us anything for q > N , in contrast to our bound, but can beat (in
2 Recall that this means that (Ext(X, sd), sd) and (U, sd) are (statistically) indistin-

guishable for sd
$← {0, 1}s, U

$← {0, 1}�, whenever X has sufficient min-entropy.
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concrete terms) our bound for q < N/k. Different from our results on StE, our
proof only works if we assume that FK is a random function. We note however
that this is consistent with the fact that even for the memory-unbounded setting,
no bound based on a random permutation is known. We however discuss how to
instantiate FK from a PRP, and this will result in a construction similar to the
above, just with a high number of calls to F.

It is also clear that we cannot expect to prove any better bound, unless we
change the sampling of the indices R1, . . . , Rk. This is because after q = Nk/2

queries we will see, with very high probability, an encryption with R2i−1 = R2i

for all i = 1, . . . , k/2. This attack only requires S = O(k log N). However, it
is not clear whether this attack extends to leverage larger values of S. Further
discussion of attacks can be found in the full version.

Our proof relies on new tight combinatorial bounds on the list-decodability
of XOR codes which are of independent interest and improve upon earlier works.
Indeed, using existing best-possible bounds in our proof would result in a weaker
bound with exponent k/4 (More details in the full version).

Reducing the ciphertext size. In the above constructions, the ciphertext
size grows with k. An interesting question is whether we can avoid this – in the
full version we do so for the case S = Ω(N). For this setting, our StE analysis
gives k = Ω(n), and thus, the ciphertext has Ω(n2) extra random bits in addition
to the masked plaintext. In contrast, we present a variant of the StE construction
where the number of extra bits in the ciphertext is reduced to O(n). To this
end, we use techniques from randomness extraction and randomness-efficient
sampling to instantiate our construction.

Instantiating FK . We instantiate FK from a keyed function/permutation
which we assume to be a pseudorandom function (PRF) or permutation (PRP).
The catch is that if we aim for security against q > N queries, we need FK to be
secure for adversaries that also run with time complexity larger than t > q > N .

This assumption is not unreasonable, as already discussed in [45] – one nec-
essary condition is that the key is longer than log q bits to prevent a memory-less
key-recovery distinguisher (e.g., one would use AES-256 instead of AES-128).3

This is also easily seen to be sufficient in the ideal-cipher model, where PRP
security only depends on the key length. Furthermore, our reductions give adver-
saries using memory S < N , and it is plausible that non-trivial attacks against
block ciphers may use large amounts of memory. And finally, key-extension tech-
niques [9,26,27,33] can give ciphers with security beyond N .

1.2 Our Techniques – Sample-Then-Extract

We discuss both constructions, StE and k-XOR, in separate sections, starting
with the former.

Tighter hybrids. Our proof follows a paradigm (first introduced explicitly
in [16], and then adapted in [39] to the memory-bounded setting) developing
3 The best non-trivial attack against AES-256 uses time approximately 2254 [12].
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hybrid-arguments in terms of Shannon-type metrics. This results in bounds of
the form

√
q · ε, whereas a classical hybrid arguments would give us bounds of the

form q
√

ε. We do not know whether the square root can be removed – Dinur [19]
shows how to do so in the Switching Lemma of [39], but it is unclear whether
his techniques apply here.4

The core of our approach relies on understanding the distance from the uni-
form distribution for a sample with form

Y (F) = (R1, . . . , Rk, sd,Ext(F(0 ‖R1) ‖ · · · ‖F(k − 1 ‖Rk), sd)) ,

for a randomly chosen function F : {0, 1}n → {0, 1}n, given additionally access to
(arbitrary) S bits of leakage L(F). We will measure this distance in terms of KL
divergence, by lower bounding the conditional Shannon entropy H(Y (F)|L(F)).
Giving a bound which is as large as possible will require the use of a number of
tools in novel ways.

Decomposition lemma. For starters, we will crucially rely on the decomposi-
tion lemma of Göös et al. [32]: It shows that Fz – which is defined as F conditioned
on L(F) = z – is statistically γ-close to a convex combination of (P, 1−δz)-dense
random variable. A (P, 1 − δ)-dense random variable, in this context, is dis-
tributed over functions F′ : {0, 1}n → {0, 1}n and is such that there exists a set
P ⊆ {0, 1}n of size P with the property that: (1) the outputs F′(x) are fixed for
all x ∈ P, whereas (2) for any subset I ⊆ {0, 1}n \ P, the outputs {F′(x)}x∈I

have jointly min-entropy at least |I| ·(1−δ)n. It is important to notice that there
is a trade-off between γ, δ, and P , in that δz = (Sz + log(1/γ))/(Pn), where
Sz = n2n − H∞(Fz).

Extraction from varying amounts of min-entropy. Our analysis will
choose the parameters δ and P carefully – the key point, however, is that
when we replace Fz with a (P, 1 − δ)-dense function F′, the total min-entropy
of F′(0 ‖R1) ‖ · · · ‖F′(k − 1 ‖Rk) grows with the number of probes Ri such that
(i ‖Ri) /∈ P, i.e., the set of “good” probes which land on an input for which the
output is not fixed. To get some intuition, if one ignores the pre-pended probe
index i, the number of good probes g ∈ {0, 1, . . . , k} would follow a binomial
distribution with parameter |P| /N , and overall min-entropy is g · (1 − δ)n.

Therefore, the extractor is now applied to a random variable which has
variable amount of min-entropy, which depends on g. Here, it is useful to
use an extractor based on a 2-universal hash function: Indeed, the Leftover-
Hash Lemma (LHL) [38] guarantees a very useful property, namely that while
the extractor itself is fixed, the entropy of its output increases as the entropy
of its input increases. Specifically, the entropy of the �-bit output becomes
� − min{�, 2�+1−h} when the input has min-entropy h ≈ g(1 − δ)n.

Our approach is dual to the smoothed min-entropy approach of Vadhan [47],
which is used to build locally-computable extractors in a way that resembles
4 This improvement is irrelevant as long as we only infer the resources needed for con-

stant advantage, which is the standard angle on tightness in symmetric cryptography.
However, as pointed out e.g. in [33], exact bounds also often matter.
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ours. In our language, but with different techniques, he shows that with good
probability, g = Θ(k), where k = Θ(λ). This does not work well for us (we care
mostly about k = O(1)), and thus we take a more fine-grained approach geared
towards understanding the behavior of g.

The advantage of Shannon entropy. It is crucial for the quality of the
established trade-off to adopt a Shannon-entropy version of the LHL. The more
common version bounds the statistical distance as 2(�+1−h)/2, and following this
path would only give us a lower bound on q which is (roughly) the square root
of what we prove. We note that a Shannon-theoretic version of the LHL was
already proved by Bennet, Brassard, Crépeau, and Maurer [10], and the fact
that a different distance metric can reduce the entropy loss is implicit in [4].5

Extra remarks. A few more remarks are in order. Our approach is similar,
but also different from that of Coretti et al. [14,15]. They use the decomposition
lemma in a similar way to transition to (what they refer to as) the bit-fixing
random oracle (BF-RO), i.e., a model where F is fixed on P positions, and
completely random on the remaining ones (as opposed to being just (1−δ)-dense,
as in our case). Using the BF-RO abstraction yields very suboptimal bounds.
Their generic approach would incur an additive factor of (S + log(1/γ))k/P ,
which is too large.

1.3 Our Techniques - k-XOR

Our approach for StE given above does not yield usable results for k-XOR –
namely, any choice of δ prevents us from proving that Fz(0 ‖R1) ⊕ · · · ⊕ Fz(k −
1 ‖Rk) is very close to uniform, even if none of the probes lands in P. A unifying
treatment of both constructions appears to require finding a strengthening of the
decomposition lemma. Instead, we follow a different path.

Predicting XORs. The core of our analysis bounds the ability of predicting
F(R1)⊕· · ·⊕F(Rk) for a random function F : {0, 1}n → {0, 1}, given (arbitrary)
S bits of leakage on F. We aim to upper bound the advantage Δ(N,S, k) which
measures how much beyond probability 1

2 an adversary can guess the XOR given
the leakage and R1, . . . , Rk. The focus is on single-bit outputs – a bound for
the multi-bit case will follow from a hybrid argument. Although this problem
has been studied [17,22,35,37,46], both in the contexts of locally-computable
extractors for the bounded-storage model and of randomness extraction, none
of these techniques gives bounds which are tight enough for us. (We elaborate
on this below.) Here, we shall prove that

Δ(N,S, k) = O((S/N)k/2) .

The coding connection. Our solution leverages a connection with the list-
decoding of the k-fold XOR code (or k-XOR code, for short): This encodes F

5 The benefits of reducing entropy loss by targeting Shannon-like metrics were also
very recently studied by Agrawal [1] in a different context.
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(which we think now as an N -bit string F ∈ {0, 1}N ) as an Nk-dimensional
bit-vector k-XOR(F ) ∈ {0, 1}Nk

such that its component (R1, . . . , Rk) ∈ [N ]k

takes value F (R1) ⊕ · · · ⊕ F (Rk). At the same time, a (deterministic) adversary
A which on input R1, . . . , Rk and the leakage Z = L(F ) attempts to predict
F (R1) ⊕ · · · ⊕ F (Rk) can be thought of as family of 2S “noisy strings” {CZ =
A(·, Z)}Z∈{0,1}S .

Prior works (such as [17]) focused (directly or indirectly) on approximate list-
decoding, as they give reductions, transforming A and L into some predictor for
F , under some slightly larger leakage. (How much larger the leakage is depends
on the approximate list size.) Here, instead, we follow a combinatorial blueprint
inspired by [6,8], albeit very different in its execution. Concretely, we introduce a
parameter ε > 0 (to be set to a more concrete value later), and for all Z ∈ {0, 1}S ,
let BZ be the Hamming Ball of radius (1/2−ε)Nk around CZ . Now, when picking
F

$← {0, 1}N , exactly one of two cases can arise:

(i) k-XOR(F ) ∈ BZ for some Z ∈ {0, 1}S , in which case the overlap between
CZ and k-XOR(F ) is potentially very high.

(ii) F /∈ ⋃
Z BZ , in which case A will be able to predict F (R1) ⊕ · · · ⊕ F (Rk)

with probability at most 1/2 + ε over the random choice of R1, . . . , Rk - no
matter how L(F ) is defined!

Now, let Lk
ε be an upper bound on the number of codewords k-XOR(F ) within

any of the BZ . Then,

Δ(N,S, k) � ε + 2S · Lk
ε/2N . (3)

Tight bounds on list-decoding size. What remains to be done here is to
find a bound on Lk

ε – we are not aware of any tight bounds in the literature, and
we give such bounds here.

Our approach (and its challenges) are illustrated best in the case k = 1.
Specifically, define random variables T1, . . . , TN , where, for all R ∈ [N ], TR = 1
if CZ(R) = F (R) and TR = 0 else. When we pick F at random, the Ti’s are
independent, and a Chernoff bound tells us that

Pr

[
N∑

R=1

TR �
(

1
2

+ ε

)

N

]

� 2−Ω(ε2N) ,

which in turn implies L1
ε � 2N(1−ε2). Therefore, setting ε to be of order slightly

larger than
√

S/N gives us the right bound.
Our proof for k > 1 will follow a similar blueprint, except that this will require

us to prove a (much harder!) concentration bound on a sum of Nk variables
which are highly dependent. We will prove such concentration using the method
of moments. The final bound will be of the form Lk

ε � 2N(1−ε2/k).

Relationship to past works. We are not aware of any prior work address-
ing the question of proving tight bounds for the XOR code directly, but prior
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techniques can non-trivially be combined to obtain non-trivial bounds. The best-
possible bound we could derive is (S/N)k/4. This can be obtained by combin-
ing the approach of De and Trevisan [17] with the combinatorial approximate
list-decoding bounds of [37]. Alternatively, one could use the approximate list
decoding bounds from [11]. The resulting indistinguishability bound is harder
to evaluate, but it is inferior for small values of S (roughly, S < N2/3). Further
details are in the full version.

Optimality. We discuss attacks against k-XOR in the full version. In particular,
one can easily see that if we want the bound to hold for all values of S, then
it cannot be improved, as it is tight for small S = O(k log N). For a broader
range of values of S, we give an attack which succeeds with q = Θ((Nk/Sk−1)
messages and for k = 2 we provide an attack that succeeds with q = Θ((N/S)2)
– it is a good question whether our bound can be improved for larger values of
S, or in the case where the R1, . . . , Rk are distinct. (This would preclude our
small-memory attack.)

Our general attack that works for any S and k, stores all linear equations
that have all variables fall in x1, . . . , xS and checks consistency. It is expected
that a linear dependent equation would appear within q = O(Nk/Sk−1) queries.
Our next attack addresses the case where k = 2. By modeling each variable
as a vertex and representing each equation as an edge in the graph, the attack
exploits the tree structure formed by linear independent equations and succeeds
within q = O((N/S)2) queries. However, for k � 3, similar analysis no longer
applies as the hypergraph structure is hard to analyze.

1.4 Further Related Work

Space-time trade-offs for learning problems. A related line of works is
that initiated by Raz [43] on space-time trade-offs for learning problems, which
has by now seen several follow-ups [5,24,25,40,44]. In particular, Raz proposes
a scheme encrypting each bit mi as (ai, 〈ai, s〉 + mi) where s

$← {0, 1}n is a
secret key, and ai

$← {0, 1}n is freshly sampled for each bit. This scheme allows
to encrypt 2n bits as long as the adversary’s memory is at most n2/c bits, for
some (small) constant c > 1. We can scale up this setting to ours, by thinking of
s as the exponentially large table of a random function, but the resulting scheme
would also incur exponential complexity. Some follow-up works consider the cases
where the ai’s are sparse [5,25], but they only study the problem of recovering s,
and it does not seem possible to obtain (sufficiently sharp) indistinguishability
bounds from these results.

Closest to our work on k-XOR is a recent concurrent paper [24] by Garg,
Kothari and Raz, which studies the streaming indistinguishability of Goldreich’s
PRG [30] against memory bounded adversaries. Their target are bounds for
arbitrary predicates for Goldreich’s PRG, and they prove indistinguishability
for up to q = Θ

(
(N/S)k/9

)
output bits when the predicate is k-XOR. The

setting of the analysis is almost identical to ours, with the difference being that
we think of the PRG seed as being an exponentially large random table. Thus our
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techniques also yield a tighter bound in their setting for this special case,6 and
we believe they should also yield improved bounds for more general predicates.

On the flip side, it is an exciting open question whether the branching-
program framework underlying all of these works can be adapted to obtain
bounds as sharp as ours in the indistinguishability setting.

The Bounded-Storage Model. In both cases, our proofs consider the inter-
mediate setting where S bits of leakage Z = L(F ) are given about F , and
we want to show that the output of some locally computable function g(F,R)
is random enough given Z, where R is potentially public randomness. This is
exactly what is considered in the Bounded Storage Model (BSM) [3,17,23,42,47]
and in the bounded-retrieval model (BRM) [18,21]. Indeed, our StE construction
can be traced back to the approach of locally-computable extractors [47], and
the k-XOR construction resembles the constructions of [3,23,42]. A substantial
difference, however, is that we are inherently concerned about the small-probe
setting (i.e., k = O(1)) and the case where S = N1−α, whereas generally the
BSM considers S = O(N) and a linear number of probes. We also take a more
concrete approach towards showing as-tight-as-possible bounds for a given tar-
get k. It would be beneficial to address whether our techniques can be used to
improve existing BSM/BRM schemes.

Another difference is that our bounds are typically multiplied by the number
of encryption queries. This can be done non-trivially, for example, by using
Shannon entropy as a measure of randomness, and relying on the reduced entropy
loss for extraction with respect to Shannon entropy, as we do for StE.

2 Definitions

Let N = {0, 1, 2, . . . }. For N ∈ N let [N ] = {1, 2, . . . , N}. If A and B are finite
sets, then Fcs(A,B) denotes the set of all functions F : A → B and Perm(A)
denotes the set of all permutations on the set A. The set of size k subsets of A
is

(
A
k

)
. Picking an element uniformly at random from A and assigning it to s

is denoted by s
$← A. The set of finite vectors with entries in A is (A)∗ or A∗.

Thus {0, 1}∗ is the set of finite length strings.
If M ∈ {0, 1}∗ is a string, then |M | denotes its bit length. If m ∈ N and

M ∈ ({0, 1}m)∗, then |M |m = |M |/m denote the block length of M and Mi

denote the i-th m-bit block of M . When using the latter notation, m will be
clear from context. The Hamming weight hw(x) of x ∈ {0, 1}n is defined as
hw(x) = |{i ∈ [n] | xi �= 0}|. The Hamming ball of radius r around z ∈ {0, 1}n is
defined as B(z; r) = {x ∈ {0, 1}n | hw(x ⊕ z) � r}.

We say that a random variable X is a convex combination of random variables
X1, ...,Xt (with the same range as X) if there exists α1, ..., αt � 0 such that∑t

i=1 αi = 1 and for any x in the range of X, it holds that Pr[X = x] =
∑t

i=1 αiPr[Xi = x].

6 There is a small formal difference, in that our analysis of k-XOR evaluates the given
function on random indices, whereas in [24] these indices are distinct.
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Games. Our cryptographic reductions will use pseudocode games (inspired by
the code-based framework of [9]). See Fig. 1 for some example games. We let
Pr [G] denote the probability that game G outputs true. It is to be understood
that the model underlying this pseudocode is the formalism we now describe.

Computational model. Our algorithms are randomized when not specified
otherwise. If A is an algorithm, then y ← AO1,O2,...(x1, . . . ; r) denotes running
A on inputs x1, . . . and coins r with access to oracles O1,O2, . . . to produce
output y. The notation y

$← AO1,O2,...(x1, . . . ) denotes picking r at random then
running y ← AO1,O2,...(x1, . . . ; r). The set of all possible outputs of A when run
with inputs x1, . . . is [A(x1, . . . )]. Adversaries and distinguishers are algorithms.
The notation y ← O(x1, . . . ) is used for calling oracle O with inputs x1, . . . and
assigning its output to y (even if the value assigned to y is not deterministically
chosen).

We say that an algorithm (or adversary) A runs in time t if its description
size and running time are at most t. We say that adversary A is S-bounded if it
uses at most S bits of memory during its execution, for any possible oracle it is
given access to and any possible input.

Information theory. For a random variable X with probability distribution
P (x) = Pr [X = x], the Shannon entropy H(X) and collision entropy H2(X)
are defined as H(X) = −∑

x P (x) log P (x) and H2(X) = − log
(∑

x P (x)2
)
.

The min-entropy of X is H∞(X) = − log maxx P (x). For two random vari-
ables X,Y with joint distribution Q(x, y) = Pr [X = x, Y = y], the condi-
tional Shannon entropy and conditional min-entropy are defined by H(Y |X) =
∑

x,y Q(x, y) log Q(x)
Q(x,y) and H∞(Y |X) = − log

∑
x maxy Q(x, y), where Q(x) =

∑
y Q(x, y) is the marginal distribution of X.

2.1 Streaming Indistinguishability

We review the streaming indistinguishability framework of Jaeger and Tes-
saro [39], which considers a setting where a sequence, X, of random variables

X1,X2, . . . , Xq

with range [N ] is given, one by one, to a (memory-bounded) distinguisher A.
The distinguisher will need to tell apart this setting from another one, where it
is given Y = (Y1, Y2, . . . , Yq) instead.

The streaming model. More formally, in the i-th step (for i ∈ [q]), the dis-
tinguisher A has a state σi−1 and stage number i. Then it receives Vi ∈ {Xi, Yi}
based on which it updates its state to σi. We denote by σi(A(X)) and σi(A(Y))
the state after receiving Xi and Yi when running A on streams X and Y, respec-
tively. We say here that A is S-bounded if all states have bit-length at most S.7

7 Note, quite crucially, that this is different from the definition of S-bounded algo-
rithms, in that we relax our notion of space-boundedness to only consider the states
between stages. This is sufficient for our applications, although the model can be
restricted.



Super-Linear Time-Memory Trade-Offs for Symmetric Encryption 345

Fig. 1. Security games for PRF/PRP security of a family of functions (Left) and INDR
security of an encryption scheme (Right).

We also assume that σq ∈ {0, 1}, and think of σq as the output of A. We define
the following streaming-distinguishing advantage

AdvdistX,Y(A) = Pr [A(X) ⇒ 1] − Pr [A(Y) ⇒ 1] .

We shall use the following lemma by [39].

Lemma 1. Let X = (X1, . . . , Xq) be independent and uniformly distributed over
[N ] and let Y = (Y1, . . . , Yq) be distributed over the same support as X. Then,

AdvdistX,Y(A) � 1√
2

√
√
√
√q log N −

q∑

i=1

H(Yi | σi−1(A(Y))) .

2.2 Cryptographic Preliminaries

Family of functions. A function family F is a function of the form F : F.Ks×
F.Dom → F.Rng. It is understood that there is some algorithm that samples from
the set F.Ks, and that fixing K ∈ F.Ks, there is some algorithm that computes
the function FK(·) = F(K, ·). For our purposes, it suffices to restrict to function
families where F.Dom = {0, 1}n and F.Rng = {0, 1}m for some n and m.

A blockcipher is a family of functions F for which F.Dom = F.Rng and for all
K ∈ F.Ks the function F(K, ·) is a permutation.

We let RFn,m : Fcs({0, 1}n, {0, 1}m)×{0, 1}n → {0, 1}m be the function fam-
ily of all functions mapping n-bits to m-bits, i.e. for any F ∈ Fcs({0, 1}n, {0, 1}m)
and x ∈ {0, 1}n, we define RFn,m(F, x) = F (x). We let RPn : Perm({0, 1}n) ×
{0, 1}n → {0, 1}n be the function family of all permutations on n bits. It is
defined so that for any P ∈ Perm({0, 1}n) and x ∈ {0, 1}n, RPn(P, x) = P (x).

Pseudorandomness security. For security we will consider both pseudoran-
dom function (PRF) and pseudorandom permutation (PRP) security.

Let F be a function family with F.Dom = {0, 1}n and F.Rng = {0, 1}m. PRF
security asks F to be indistinguishable from RFn,m. More formally, consider the
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function evaluation game Gfn
F (A), in which adversary simply gets access to an

oracle evaluating FK for a random and fixed key K. The PRF advantage of A
against F is defined to be

AdvprfF (A) = Pr[Gfn
F (A)] − Pr[Gfn

RFn,m
(A)] .

Similarly, PRP security of a blockcipher F with F.Dom = {0, 1}n is defined
to be

AdvprpF (A) = Pr[Gfn
F (A)] − Pr[Gfn

RPn
(A)] .

Symmetric encryption. A symmetric encryption scheme SE specifies key
space SE.Ks, and algorithms SE.Enc, and SE.Dec (where the last of these is deter-
ministic) as well as set SE.M. Encryption algorithm SE.Enc takes as input key
K ∈ SE.Ks and message M ∈ SE.M to output a ciphertext C. We assume there
exists a constant expansion length SE.xl ∈ N such that |C| = |M |+SE.xl. Decryp-
tion algorithm SE.Dec takes as input ciphertext C to output M ∈ SE.M ∪ {⊥}.
We write K

$← SE.Ks, C
$← SE.Enc(K,M), and M ← SE.Dec(C).

Correctness requires for all K ∈ SE.Ks and all sequences of messages M ∈
(SE.M)∗ that Pr[∀i : M i = M ′

i] = 1 where the probability is over the coins of
encryption in the operations Ci

$← SE.Enc(K,M i) and M ′
i ← SE.Dec(K,Ci)

for i = 1, . . . , |M |.
For security we will require the output of encryption to look like a random

string. Consider the game Gindr
SE,b(A) shown on the right side of Fig. 1. It is param-

eterized by a symmetric encryption scheme SE, adversary A, and bit b ∈ {0, 1}.
The adversary is given access to an oracle Enc which, on input a message M ,
returns either the encryption of that message or a random string of the appro-
priate length according to the secret bit b. The advantage of A against SE is
defined by AdvindrSE (A) = Pr[Gindr

SE,1(A)] − Pr[Gindr
SE,0(A)].

3 Sample-Then-Extract

The StE = StE[F, k,Ext] scheme is defined in Fig. 2: It was originally proposed
by Tessaro and Thiruvengadam [45], and it is based on ideas from the context
of locally-computable extractors [47]. The scheme is extended here to encrypt
multiple blocks of message with the same randomness R1 . . . , Rk, and the same
extractor seed sd. The scheme StE[F, k,Ext] uses a keyed function family F which
maps {0, 1}n to {0, 1}n, as well as an extractor Ext : {0, 1}kn ×{0, 1}s → {0, 1}�.

Below, we instantiate the extractor Ext with 2-universal hash function [13].
We recall that h : {0, 1}w × {0, 1}s → {0, 1}� is 2-universal if for all distinct
x, y ∈ {0, 1}w, it holds that Pr[sd $← {0, 1}s : h(x, sd) = h(y, sd)] = 2−�. For
conciseness, we often write hsd(x) = h(x, sd). If � � s, a construction with w = s
interprets both the input x and the seed sd as elements of the extension field
F2w , and h(x, sd) consists of the first � bits of the product of x and sd.
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Fig. 2. The sample-then-extract encryption scheme SE = StE[F, k,Ext], with F.Dom =
{0, 1}n. All additions and subtractions are done under modulus 2n−�log k�. The key
space and message space of SE are SE.Ks = F.Ks and SE.M = ({0, 1}�)+.

A small-ciphertext version of StE. We also study a version of StE which
produces small ciphertexts, using techniques from randomness efficient sampling.
The proof resembles that for StE given below, and the details are deferred to the
full version due to limited space.

3.1 Security of StE

The security of StE scheme is captured by the following theorem. We first con-
sider the case where F is a PRF – which we prove below first. We will state a
very similar theorem for the PRP case below.8

The proof of the main theorem is deferred to Sect. 3.2.

Theorem 1. (Security of StE). Let N = 2n, let F : F.Ks × {0, 1}n → {0, 1}n

be a keyed function family. Let Ext be a 2-universal hash function h : {0, 1}kn ×
{0, 1}kn → {0, 1}�. For any S-bounded q-query adversary Aindr, where each query
consists of messages of at most B �-bit blocks such that B � N/k, there exists
an (S +B�)-bounded PRF adversary Aprf (with similar time complexity as Aindr)
that issues at most qkB queries to the oracle, such that

AdvindrStE[F,k,h](Aindr) � AdvprfF (Aprf) +

√
1
2
qBε ,

where

ε =
�

Nk
+

k∑

t=0

(
k

t

)(
(2S + 2kn)B

N

)t

· min{�, 2�+1 · (2/N)k−t} .

8 The PRP assumption leads to more straightforward instantiations via a block cipher.
The PRF instantiation is trickier, as we need PRFs that are highly secure – these
can be instantiated with a much higher cost from a good PRP.
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Instantiations and interpretations. We discuss instantiations of the above
theorem for specific parameter regimes. We consider two choices of �, which result
in different bounds. In fact, a subtle aspect of the bound is the appearance of a
min: Depending on the choice of � (relative to N), we will have different t∗ such
that 2�+1 · (2/N)k−t > � for all t < t∗, and the value t∗ affects the bound.

We give two corollaries. The first one dispenses with any fine-tuning, and just
upper bounds the min with 2�+1 · (2/N)k−t. This bound however is enough to
give us a strong trade-off of q = Ω(Nk/Sk) for � = O(1). However, for another
common target, � = n, this would give us q = Ω(Nk−1/Sk). Our second corollary
will show how the setting t∗ in that case will lead to a stronger lower bound of
q = Ω(Nk−1/Sk−1). (In both cases, we are stating this for B = 1.)

Corollary 1. With the same setup as Theorem 1, we have

AdvindrStE[F,k,h](Aindr) � AdvprfF (Aprf) +

√

2�qB

(
(2S + 2kn)B + 3

N

)k

.

Corollary 2. With the same setup as Theorem 1, in addition to n = �, n � 4,
and k � 2, we have

AdvindrStE[F,k,h](Aindr) � AdvprfF (Aprf) +

√

2qBk

(
(2S + 2kn)B + 4n

N

)k−1

.

We defer the proof of both corollaries to the full version.
We further provides an analysis over parameters of practical interests. Con-

cretely, if we instantiate F by a PRF that maps 128-bit to 128-bit, that is,
N = 2128, and we let the block size � = 128 bit. Then for any adversary that
uses at most S = 280 bit of memory and encrypts at most 1 GB message per query
(i.e. B = 233−7 = 226), by following the coarse analysis of Corollary 1 and let-
ting k = 15, our scheme can tolerate roughly q = 2(128−80−26−1)·15−128−26 = 2161

queries. However, we do not need such a large k to achieve q > N . Notice that
� = n = 128, we can use Corollary 2 to improve the analysis. Then by setting
k = 9, we have q = 2(128−80−26−1)·(k−1)−26−1 = 221·8−27 = 2141 queries encrypt-
ing 1GB message. Note that similar analysis can be obtained when adapting the
following PRP instantiation.

PRP instantiation. The security of StE instantiated by a PRP is captured by
the following theorem. Since the StE-PRP security proof is similar to StE-PRF
proof (the latter is slightly easier to present), we provide a proof sketch for the
PRP case in the full version, highlighting the modifications from the PRF case.

Theorem 2. (Security of StE in PRP). Let N = 2n � 16, let F : F.Ks ×
{0, 1}n → {0, 1}n be a keyed permutation family. Let Ext be a 2-universal hash
function h : {0, 1}kn × {0, 1}kn → {0, 1}�. For any S-bounded q-query adversary
Aindr, where each query consists of messages of at most B �-bit blocks such that
(S + k(n + 1))B � N/2, there exists an (S + B�)-bounded PRP adversary Aprp
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(with similar time complexity as Aindr) that issues at most qkB queries to the
oracle, such that

AdvindrStE[F,k,h](Aindr) � AdvprpF (Aprp) +

√
1
2
qBε ,

where

ε =
�

Nk
+

k∑

t=0

(
k

t

)(
(4S + 4kn)B

N

)t

· min{�, 2�+1 · (16/N)k−t} .

3.2 Proof of Theorem 1

Outline and preliminaries. Most of the proof will consider the StE scheme
with direct access to a random function RFn,n. It is immediate to derive a bound
when the scheme is instantiated by F at the cost of an additive term AdvprfF (Aprf).

We will be using Lemma 1, applied to a stream consisting of encryptions of
the all-zero plaintext (padded to B blocks) or truly random ciphertexts, which
we define more formally below. In particular, this will require upper bound-
ing the difference in Shannon entropy (from uniform) of the output of the i-th
query, given the adversary’s state at that point. As in the proof of the k-XOR
construction, we relax our requirements a little, and assume the adversary can
generate arbitrary S bits of leakage of RF. We will then be using a version of the
leftover-hash lemma for bounding Shannon entropy (Proposition 1) to prove the
desired bound.

We would naturally need (at the very least) to understand the min-entropy
of Vi,1‖ · · · ‖Vi,k conditioned on the state σi of stage i. In fact, we will use an even
more fine-grained approach, and see Vi,1‖ · · · ‖Vi,k as the convex combination of
variables with different levels of entropy. To this end, we will use an approach
due to Göös et al. [32] which decomposes a random variable with high min-
entropy (in this case, the random function table conditioned on σi) into a convex
combination of (easier to work with) dense variables. We use here the definition
from [15]:

Definition 1. A random variable X with range [M ]N is called:

– (1 − δ)-dense if for every subset I ⊆ [N ], the random variable XI , which is
X restricted on coordinates set I, satisfies

H∞(XI) � (1 − δ) · |I| · log M .

– (P, 1− δ)-dense if at most P coordinates of X is fixed and X is (1− δ)-dense
on the rest coordinates

Streaming setup. We first define some notations. We use bold-face to denote
a vector R = (R1, . . . , Rk). Moreover, we define

R{j} = (R1 + j − 1, R2 + j − 1, ..., Rk + j − 1) ,
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and R{1:j} = (R{1},R{2}, . . . ,R{j}). For a function F with n-bit inputs, we can
further define

F [R{j}] := F (0 ‖ R1 + j − 1) ‖ · · · ‖ F (k − 1 ‖ Rk + j − 1)) .

Naturally, we extend this to

F [R{1:j}] := (F [R{1}], F [R{2}], ..., F [R{j}])

Below, we first prove an upper bound for streaming indistinguishability and
later upper bound AdvindrStE[RF,k,h] via the streaming distinguishing advantage. To
this end, we define the following two sequences X = (X1, . . . , Xq) and Y =
(Y1, . . . , Yq) of random variables such that:

– Xi = (Wi, sdi,Ri), where Wi
$← {0, 1}B·�,

– Yi = (hsdi(F [R{1}
i ]), . . . , hsdi(F [R{B}

i ]), sdi,Ri), where F is randomly chosen
function from n bits to n bits. (Note that the same sampled function is used
across all Yi’s.)

In both streams, sdi
$← {0, 1}s, and Ri = (Ri,1, . . . , Ri,k) is a vector of k random

probes. We use L to denote the string length of the stream elements, i.e.,

L = |Xi| = |Yi| = B� + s + k(n − log k) .

Main lemma. We will use Lemma 1, and rely on the following lemma, which is
the core of our analysis.

Lemma 2. For any S-bounded adversary A and for all i ∈ [q],

H(Yi | σi−1(A(Y))) � L − Bε

where

ε =
�

Nk
+

k∑

t=0

(
k

t

)(
(2S + 2kn)B

N

)t

· min

{

�, 2�+1

(
2
N

)k−t
}

.

Proof (of Lemma 2). First, we point out that we can easily find a deterministic
function L such that

H(Yi | σi−1(A(Y))) � H(Y | L(F )) .

The function L is first easily described in randomized form: given F , first simu-
lates the first i − 1 steps of the interaction of A with the stream (Y1, . . . , Yi−1)
(by sampling sd1, . . . , sdi−1, as well as R1, . . . ,Ri−1 itself), and then outputs
σi−1(A(Y)). Then, L can be made deterministic by fixing the randomness.
Therefore, we will now lower bound H(Y | L(F )) for an arbitrary function L.

We now want to better characterize the distribution of F conditioned on
L(F ). To this end, we use the following lemma, originally due to Göös et al. [32],
here in a format stated in [14,15].
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Lemma 3. If Γ is a random variable with range [N ]N with min-entropy defi-
ciency SΓ = n · N − H∞(Γ ), then for every δ > 0, γ > 0, Γ can be represented
as a convex combination of finitely many (P, 1 − δ)-dense variables {Λ1, Λ2, ...}
for

P =
SΓ + log 1/γ

δ · n

and an additional random variable Λend whose weight is less than γ.

For every z ∈ {0, 1}S , we define Fz to be the random function F conditioned
on L(F ) = z. We define accordingly its min-entropy deficiency Sz = n · N −
H∞(Fz). Also, we set δz = Sz+log 1/γ

P ·n , for some P to be chosen below. By applying
Lemma 3, Fz is decomposed into finite number of (P, 1 − δz)-dense variables
{Λz,1, Λz,2, . . . }, and an additional variable Λz,end with weight less than γ. We
use αi to denote the weight of each decomposed dense variable in the convex
combination. It holds that

∑
t αt � 1 − γ. Also, by the concavity of conditional

entropy over probability mass functions,

H(hsd(Fz[R{j}]) | sd,R, Fz[R{1:j−1}])

�
∑

t

αt · H(hsd(Λz,t[R{j}]) | sd,R, Λz,t[R{1:j−1}]) .(4)

It will be sufficient now to give a single entropy lower bound for any variable
Λ which is (P, 1 − δz)-dense, and apply the bound to all {Λz,1, Λz,2, . . . }. In
particular, now note that

H(hsd(Λ[R{j}]) | sd,R, Λ[R{1:j−1}]) = E
r

[
H(hsd(Λ[r{j}]) | sd, Λ[r{1:j−1}])

]

� � − E
r

[
min

{
�, 2�+1 · 2−H∞(Λ[r{j}] | Λ[r{1:j−1}])

}]
. (5)

The last inequality follows from the following version of the Leftover Hash
Lemma for Shannon entropy. (We give a proof in the full version for complete-
ness, but note that the proof is similar to that of [10].)

Proposition 1. If h : {0, 1}w ×{0, 1}s → {0, 1}� is a 2-universal hash function,
then for any random variables W ∈ {0, 1}w and Z, if seed sd ← {0, 1}s

H(hsd(W ) | sd, Z) � � − min{�, 2�+1 · 2−H∞(W |Z)} .

First off, note that

H∞(Λ[r{j}] | Λ[r{1:j−1}]) = − log

⎛

⎝
∑

V ∈([N ]k)j−1

max
v∈[N ]k

Pr
[
Λ[r{1:j}] = V ‖ v

]
⎞

⎠

where V enumerates all possible outcome of Λ[r{1:j−1}] = (Λ[r{1}], ...,
Λ[r{j−1}]), and v iterates over all possible outcome of Λ[r{j}].
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Now, suppose that exactly t probes of r{j} hit the P fixed coordinates of Λ
and assume that t0 coordinates of r{1:j−1} are fixed. Then, using the fact that
Λ is (1 − δ)-dense on the remaining jk − t − t0 coordinates, by the union bound,
the following inequality holds (the details of calculation can be found in the full
version).

log

⎛

⎝
∑

V ∈([N ]k)j−1

max
v∈[N ]k

Pr
[
Λ[r{1:j}] = V ‖ v

]
⎞

⎠ � n [δk(j − 1) − (1 − δ)(k − t)] .

Therefore, if t probes of r{j} hit the P fixed coordinates of Λ, we have

H∞(Λ[r{j}] | Λ[r{1:j−1}]) � n [(1 − δ)(k − t) − δk(j − 1)] . (6)

Now, for 1 � t � k, we let Pt to be the number of fixed coordinates in the
domain of t-th probe – in particular, 0 � Pt � N/k and

∑
t Pt = P . Then, let

μ := E
r

[
min{�, 2�+1 · 2−H∞(Λ[r{j}]|Λ[r{1:j−1}])}

]

as in (5). Then,

μ �
k∑

t=0

∑

U∈([k]
t )

⎛

⎝
∏

u∈U

(
Pu

N/k

) ∏

v �∈U

(

1 − Pv

N/k

)

min{�, 2�+1N δ(j−1)k+(δ−1)(k−t)}
⎞

⎠

�
k∑

t=0

∑

U∈([k]
t )

(
∏

u∈U

(
Pu

N/k

)

· min{�, 2�+1 · N δ(j−1)k+(δ−1)(k−t)}
)

.

The above expression is maximized when Pu = P/k for all u. The proof can be
found in the full version. Thus we have

μ �
k∑

t=0

(
k

t

)(
P

N

)t

· min{�, 2�+1 · N δ(j−1)k+(δ−1)(k−t)}

=
k∑

t=0

(
k

t

)(
P

N

)t

· min{�, 2�+1 · 2
(Sz+log(1/γ))

P (jk−t) 1
Nk−t

} =: ν .

Plugging this into (4) yields

H(hsd(Fz[R{j}]) | sd,R, Fz[R{1:j−1}]) � (1 − γ) · (� − ν) . (7)

Next, we will need to take everything in expectation over the sampling of F (and
hence of z = L(F )). To this end, we use the following claim to compute Ez[ν].

Claim. For any 0 � t � k, 1 � j � B, if P � Bk − t, then it holds that:

Ez[2
Sz(jk−t)

P ] � 2
S(Bk−t)

P .
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We left the proof of claim to the full version, but note that the proof is similar
to the one from [15]. Now, note that for any function f ,

Ez[min{�, f(z)}] =
∑

z

Pr [z] · min{�, f(z)} � min{�,Ez[f(z)]} , (8)

because min{a, b} + min{c, d} � min{a + c, b + d} for any a, b, c, d. Using (8),
combined with linearity of expectation and the above claim,

Ez[μ] �
k∑

t=0

(
k

t

)(
P

N

)t

· Ez

[

min

{

�,
2�+1 · 2

(Sz+log(1/γ))
P (jk−t)

Nk−t

}]

�
k∑

t=0

(
k

t

)(
P

N

)t

· min

{

�, 2�+1 · Ez

[
2

(Sz+log(1/γ))
P (jk−t)

Nk−t

]}

�
k∑

t=0

(
k

t

)(
P

N

)t

· min

{

�,
2�+1 · 2

(S+log(1/γ))
P (Bk−t)

Nk−t

}

.

Further, we will now finally set γ = N−k and P = (S +kn)B � Bk and simplify
this to

Ez[μ] �
k∑

t=0

(
k

t

)(
(S + kn)B

N

)t

· min
{

�,
2�+1 · 2k

Nk−t

}

=
k∑

t=0

(
k

t

)(
2(S + kn)B

N

)t

· min

{

�, 2�+1 ·
(

2
N

)k−t
}

,

(9)

because S+log 1/γ
P · (Bk − t) � 1

B Bk � k. Therefore, taking expectations of (7),
and using (9), yields

H(hsd(F [R{j}]) | sd,R, F [R{1:j−1}],L(F ))

� (1 − 1
Nk

) ·
(

� −
k∑

t=0

(
k

t

)(
2(S + kn)B

N

)t

· min

{

�, 2�+1 ·
(

2
N

)k−t
})

� � −
k∑

t=0

(
k

t

)(
2(S + kn)B

N

)t

· min

{

�, 2�+1 ·
(

2
N

)k−t
}

− �

Nk
.

The proof is concluded by applying chain rule of conditional entropy and obtain

H(hsd(F [R{1}]), ..., hsd(F [R{B}]), sd,R | L(F ))

= H(sd,R | L(F )) + H(hsd(F [R{1}]), ..., hsd(F [R{B}]) | sd,R,L(F ))

= L − B� +
B∑

j=1

H(hsd(F [R{j}]) | sd,R, hsd(F [R{1}]), ..., hsd(F [R{j−1}]),L(F ))

� L − B

(
k∑

t=0

((
k

t

)(
(2S + 2kn)B

N

)t

· min{�, 2�+1 · (2/N)k−t}
)

+
�

Nk

)

.

��
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4 Time-Memory Trade-Off for the K-XOR Construction

In this section, we show that the k-XOR construction (given in Fig. 3), first
analyzed by Bellare, Goldreich, and Krawczyk [7] in the memory-independent
setting, is secure upto q = (N/S)k/2 queries for S-bounded adversaries. For the
rest of the section, we fix positive integers n and k (required to be even) and let
N = 2n.

Fig. 3. The k-XOR encryption scheme, SE = Xor[F, k]. The key space and message
space of SE are SE.Ks = F.Ks and SE.M = F.Rng.

Theorem 3. Let F : F.Ks × {0, 1}n → {0, 1}m be a function family. Let SE =
Xor[F, k] be the k-XOR encryption scheme for some positive integer k. Let Aindr

be an S-bounded INDR-adversary against SE that makes at most q queries to
Enc. Then, an S-bounded PRF-adversary Aprf can be constructed such that

AdvindrSE (Aindr) � AdvprfF (Aprf) + 2mq ·
√
(

4(S + nk)
N

)k

. (10)

Moreover, Aprf makes at most q ·k queries to its Fn oracle and has running time
about that of Aindr.

Discussion of bounds. Our bound supports q > N even with relative small
k. Concretely, suppose S = 280 and N = 2128. Then for k = 6, we can already
support upto roughly q = 2(128−80)·(6/2)−8 = 2136 queries. Note that it does not
makes sense to set q < S in our bound. This is because q queries can be stored
with O(q) memory. Furthermore, if q < N/k, then one can apply the memory
independent bound of Bellare, Goldreich, and Krawczyk [7] which is of the form
O(q2/Nk). Hence, our bound really shines when q � N . Lastly, we suspect that
our bound is likely not tight in general (it is when S = O(k log N)). In the full
version, we show attacks for a broader range of values of S that achieve constant
success advantage with q = O(

(
N
S

)k
).

The above theorem also requires F to be a good PRF – in the full version we
discuss how to instantiate it from a block cipher.

Theorem 3 follows from standard hybrid arguments and the single-bit case
under random functions, i.e. INDR security of Xor[RFn,1, k], which is captured
by the following lemma.
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Lemma 4. Let SE = Xor[RFn,1, k] be the k-XOR encryption scheme for some
positive integer k. For any S-bounded adversary Aindr that makes q queries to
Enc,

AdvindrSE (Aindr) � 2q ·
√
(

4(S + nk)
N

)k

. (11)

The proof of Theorem 3 from Lemma 4 consists of standard hybrid arguments
(over switching PRF output to random, then over m-output bits to indepen-
dently random). We shall first prove Lemma 4 and defer the hybrid arguments
for later in this section.

Bit-distinguishing to bit-guessing. It shall be convenient to consider the
following information theoretic quantity Guess(·), defined for any bit-value
random variable B as Guess(B) = |2 · Pr[B = 1] − 1|. As usual, we extend
this to conditioning via Guess(B | Z) = Ez [Guess(B | Z = z)]. Intuitively,
Guess(B | Z) denotes the best possible guessing advantage for bit B, which
is also the best bit-distinguishing advantage. Note that if U is a uniform ran-
dom bit that is independent of Z (B and Z could be correlated), then for any
adversary A,

Pr [A(B,Z) ⇒ 1] − Pr [A(U,Z) ⇒ 1] � Guess(B | Z) . (12)

Proof of Lemma 4. Consider the INDR games Gindr
SE,0 and Gindr

SE,1. We would like to
bound

AdvindrSE (Aindr) = Pr[Gindr
SE,1(Aindr)] − Pr[Gindr

SE,0(Aindr)]

Towards this end, let us consider hybrid games H0, . . . ,Hq as follows.

Note that H0 = Gindr
SE,0(Aindr) (ideal) and Hq = Gindr

SE,1(Aindr) (real). Fix some
i ∈ {1, . . . , q}. Let Bi = F (Ri,1) ⊕ · · · ⊕ F (Ri,k). It holds (by (12)) that

Pr [Hi] − Pr [Hi−1] � Guess(Bi | σi−1(Aindr), (Ri,1, . . . , Ri,k)) , (13)

where σi−1(Aindr) is the state of Aindr right the point where it makes its i-th
query to Enci (and we assume this query to contain M), and Ri,1, . . . , Ri,k are
the random inputs generated in that query. Note that |σi−1(Aindr)| � S and σi−1

is a (randomized-)function of the function table F . However, there must exist a
deterministic function Li : {0, 1}N → {0, 1}S , so that

Guess(Bi | σi−1(Aindr), Ri,1, . . . , Ri,k) � Guess(Bi | Li(F ), Ri,1, . . . , Ri,k) .

Hence, to prove Lemma 4, it suffices to show the following lemma.
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Lemma 5. Let L : {0, 1}N → {0, 1}S be any function. Then, for F
$← {0, 1}N ,

and R1, . . . , Rk
$← [N ],

Guess(F [R1] ⊕ · · · ⊕ F [Rk] | L(F ), R1, . . . , Rk) � 2 ·
(

4(S + nk)
N

)k/2

. (14)

Assuming Lemma 5, we can derive that

AdvindrSE (Aindr) =
q∑

i=0

Pr[Hi] − Pr[Hi−1]

�
q∑

i=1

Guess(Bi | σi−1(Aindr), Ri,1, . . . , Ri,k))

�
q∑

i=1

Guess(Bi | Li(F ), Ri,1, . . . , Ri,k) � 2q ·
(

4(S + nk)
N

)k/2

,

which concludes the proof of Lemma 4. ��
Connection to list-decodability of k-XOR code. Lemma 5 is the techni-
cal core of our result. Before we go into the details of the proof, we need to recall
the definition of list-decoding. Consider the code k-XOR : {0, 1}N → {0, 1}Nk

,
which is defined by

k-XOR(x)[I] = x[I1] ⊕ · · · ⊕ x[Ik] ,

for any I = (I1, . . . , Ik) ∈ [N ]k. We say that k-XOR : {0, 1}N → {0, 1}Nk

is
(ε, L)-list-decodable if for any z ∈ {0, 1}Nk

, there exists at most L codewords
within a Hamming ball of radius εNk around z. The proof of Lemma 5 consists of
two steps. First, we translate the left-hand side of (14) in terms of list-decoding
properties of k-XOR code. Second, we apply a new list-decoding bound for k-
XOR code to obtain (14). We now give some intuition on how Guess relates to
list-decoding. First, we fix some deterministic guessing strategy g for F [R1] ⊕
· · ·⊕F [Rk] given leakage L(F ) and indices R1, . . . , Rk, which is a function of the
form g : {0, 1}S × [N ]k → {0, 1} (looking ahead, g shall be fixed to be the “best”
one). Note that g can be interpreted as 2S elements of {0, 1}Nk

. In particular,
let g′ : {0, 1}S → {0, 1}Nk

be the function defined to be

g′(x) = g(x, (0, . . . , 0)) ‖ · · · ‖ g(x, (1, . . . , 1)) .

We let G be the set {g′(0S), g′(0S−11), . . . , g′(1S)}. Our set G of 2S guesses lie
in the co-domain of the k-XOR code. We now consider a partition of the {0, 1}N

into sets Good and Bad, where

Good =
{

F ∈ {0, 1}N |� ∃z ∈ G : hw(k-XOR(F ), z) �
(

1
2

− ε/2
)

Nk

}

,

Bad =
{

F ∈ {0, 1}N | ∃z ∈ G : hw(k-XOR(F ), z) �
(

1
2

− ε/2
)

Nk

}

.
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Note that conditioned on F ∈ Good, then the guessing strategy g should not
achieve advantage better than ε. Using Lemma 6 given below, whose proof shall
be given in Sect. 4.1, we can upper-bound the total number of codewords in Bad,
as a function of ε.

Lemma 6. The k-XOR code is ( 12 −ε/2, 2N−ε2/kN/4)-list decodable, i.e. for any
z ∈ {0, 1}Nk

, there are at most 2N−ε2/kN/4 codewords that are within hamming
distance (12 − ε/2)Nk of z.

Finally, obtaining the right-hand size of (14) amounts to picking an ε to
minimize Pr[F ∈ Bad]+ ε. We proceed to the proof, which formalizes the above
intuition.

Proof. (of Lemma 5). Consider the code k-XOR : {0, 1}N → {0, 1}Nk

defined by

k-XOR(x)[I] = x[I1] ⊕ · · · ⊕ x[Ik] ,

for any I ∈ [N ]k. For notational convenience, let B = F [R1] ⊕ · · · ⊕ F [Rk] and
Z = L(F ). Consider the following function Q : {0, 1}S × [N ]k → [−1, 1],

Q(z, I) = 2 · Pr [B = 1 | L(F ) = z, (R1, . . . , Rk) = I] − 1 , (15)

where the probability is taken over F . By definition of Guess,

Guess(B | L(F ), R1, . . . , Rk) = E [|Q(Z, I)|] , (16)

where Z = L(F ) and I
$← [N ]k. Now, we would like to describe the best guessing

strategy gz[I] for bit B given L(F ) = z and indices I. For each z ∈ {0, 1}S , we
define gz ∈ {0, 1}Nk

as follows. For each I ∈ [N ]k we let gz[I] = 1 if Q(z, I) � 0
and set gz[I] = 0 otherwise. Intuitively, gz[I] encodes the best guess for B =
F [I1] ⊕ · · · F [Ik] given that L(F ) = z. Hence, for any z and I

1 − |Q(z, I)|
2

= Pr [B �= gz,I | L(F ) = z, (R1, . . . , Rk) = I] . (17)

Taking expectation of both sides over I
$← [N ]k,

1 − E [|Q(z, I)|]
2

= Pr [B �= gz,I | L(F ) = z] =
hw(k-XOR(F ) ⊕ gz)

Nk
, (18)

where, recall, hw(·) denotes the hamming weight (number of 1’s) of a given
string. With slight abuse of notation, we define Q(z) to be

Q(z) = E
I

$←[N ]k
[|Q(z, I)|] = 1 − 2 · hw(k-XOR(F ) ⊕ gz)

Nk
. (19)

Q(z) encodes the best possible guessing advantage when L(F ) = z, i.e.

Guess(B | L(F ), R1, . . . , Rk) = E [Q(Z)] .
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Define E to be the event that k-XOR(F ) is of distance more than (12 − ε/2)Nk

from gL(F ) for some ε to be determined later. Note that given E, then

hw(k-XOR(F ) ⊕ gL(F )) �
(

1
2

− ε/2
)

Nk

which means that and Q(L(F )) � ε. Hence,

E [Q(Z)] = Pr [E] · E [Q(Z) | E] + Pr [¬E] · E [Q(Z) | ¬E] (20)

� ε + Pr

[

hw(k-XOR(F ) ⊕ gL(F )) �
(

1
2

− ε/2
)

Nk

]

(21)

� ε + Pr

[

∃s ∈ {0, 1}S : hw(k-XOR(F ) ⊕ gs) �
(

1
2

− ε/2
)

Nk

]

(22)

� ε +
∑

s∈{0,1}S

Pr

[

hw(k-XOR(F ) ⊕ gs) �
(

1
2

− ε/2
)

Nk

]

(23)

� ε + 2S · 2−ε2/kN/4 , (24)

where the last equation is by the ((12 − ε), 2−ε2/kN/4)-list decodability of k-XOR-
code (Lemma 6). We now set

ε =

√
(

4(S + nk)
N

)k

,

which makes it so that E [Q(f(X))] � ε + 2−nk � 2 · ε. Hence,

Guess(Y | f(X), R1, . . . , Rk) � 2 ·
(

4(S + nk)
N

)k/2

. (25)

This justifies Lemma 5. ��

4.1 List Decodability of K-XOR Codes

We relied on the list-decodability of k-XOR code in the proof of Lemma 5.
Recall that k-XOR : {0, 1}N → {0, 1}Nk

is (ε, L)-list-decodable if for any
z ∈ {0, 1}Nk

, there exists at most L codewords within a Hamming ball of
radius εNk around z. The list-decoding property of XOR-code has been studied
extensively in complexity theory in the context of hardness amplification. The
connection between Yao’s XOR Lemma (for a good survey, see [31]) and the
list-decodability of XOR-code was first observed by Trevisan [46]. So proofs of
hardness amplification results (e.g. [34,41]) using XOR in fact yields algorithmic
list-decoding bounds for xor-codes. More recently, [36] has also given approx-
imate list-decoding bounds for k-XOR. We discuss in the full version how the
approximate list-decoding bound by [36] can be viewed as (non-approximate)
list-decoding bound which lead to an inferior result for the k-XOR construction
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that promise security upto q = (N/S)k/4 instead of q = (N/S)k/2. Where as pre-
vious works on list-decoding of k-XOR-code focus on algorithmic list-decoding,
we are interested in the setting of combinatorial list-decoding, and the best
trade-off possible between error ε (especially when it is very close to 1/2) and
the list size L.

Before we begin, we first show the following moment bound on sum of
{−1, 1}-valued random variables.

Lemma 7. Let F1, . . . , FN be i.i.d random variables with Fi
$← {−1, 1}. Then,

for any even m ∈ N

E

⎡

⎣

⎛

⎝
∑

i∈[N ]

Fi

⎞

⎠

m⎤

⎦ � (mN)m/2
. (26)

Proof. Let us first expand the expectation.

E

⎡

⎣

⎛

⎝
∑

i∈[N ]

Fi

⎞

⎠

m⎤

⎦ =
∑

I∈[N ]m

E

[
∏

i∈I

Fi

]

.

We claim that the inside expectation, E
[∏

i∈I Fi

]
, is either 0 or 1 depending on

I. In particular, define I to be even if for every i ∈ [N ], the number of i contained
in I is even. First, for any i ∈ [N ], since Fi takes value in {−1, 1}, it holds that
Fi · Fi = 1. Hence, observe that E

[∏
i∈I Fi

]
is 1 if I is even. Otherwise, if I is

not even, we claim that expectation is 0. To see this, suppose i0 appears an odd
number of times in the vector I. We can expand the expectation by conditioning
on the value of Fi0 being 1 or −1:

E

[
∏

i∈I

Fi

]

= E

⎡

⎣Fi0 ·
∏

i�=i0

Fi

⎤

⎦ = E

⎡

⎣
∏

i�=i0

Fi

⎤

⎦ − E

⎡

⎣
∏

i�=i0

Fi

⎤

⎦ = 0 .

Therefore,

E

⎡

⎣

⎛

⎝
∑

i∈[N ]

Fi

⎞

⎠

m⎤

⎦ � |{I ∈ [N ]m | I is even }| .

For an upper bound of number of even I’s, consider the following way of gen-
erating even I’s. First, we pick a perfect matching (recall that a perfect match-
ing on the complete graph on m vertices is a subset of m/2-edges that uses
all m vertices) on the complete graph of m-vertices, Km. Then, for each edge,
e = (v0, v1), in the matching, we assign a value i ∈ [N ] to nodes v0 and v1, i.e.
�(v0) = �(v1) = i. Now, reading the labels off of each node (wlog we can assume
the set of nodes is [m]), we obtain an I = (�(0), . . . , �(m − 1)) ∈ [N ]m that is
even. Note that any even I can be generated in such a way, since given any even
I it is easy to find a perfect matching and labeling that results in I.
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We move on to compute the number of ways the above can be done. Note
that the number of perfect matching is (m − 1) × (m − 3) × · · · × 1. To see this,
let us fix an order of vertices [m], say 1, . . . , m. At each step, we shall assign an
edge to the smallest vertex that does not yet have an edge. Note that at the i-th
step (with i starting at 0), there are exactly (m − 2i − 1) ways to pick the next
edge. Hence, the number of perfect matchings on Km is bounded above by

m!
2m/2(m/2)!

=

(
m

m/2

)

2m/2
· (m/2)! � 2m

2m/2
· (m/2)m/2 � mm/2 .

Next, for each perfect matching, there are Nm/2 ways of assigning values to
edges, since each one of the m/2 edges can be assigned any of the N -values.
Hence,

E

⎡

⎣

⎛

⎝
∑

i∈[N ]

Fi

⎞

⎠

m⎤

⎦ � (m)m/2 · Nm/2 = (mN)m/2 .

Equipped with Lemma 7, we proceed to prove Lemma 6.

Proof (of Lemma 6). We identify the sets [Nk] with [N ]k. Fix some z ∈ {0, 1}Nk

.
Let Z = (Z1, . . . , ZNk) be the Nk-vector such that ZI = (−1)zI for any I ∈ [N ]k.
Let F1, . . . , Fn

$← {−1, 1}. For each I ∈ [N ]k, we define random variable BI =∏
i∈I Fi. Note that if we map BI to {0, 1}, i.e. define bI such that BI = (−1)bI ,

then (b1, . . . , bNk) is just a uniformly random codeword in {0, 1}Nk

. We have now
that for any I ∈ [Nk], (−1)bI⊕zI = ZI · BI . Fix some codeword (b1, . . . , bNk) ∈
{0, 1}Nk

. The hamming distance between it and z is the hamming weight of
s = (bI ⊕ zI)I∈[N ]k . Now, note that hw(s) � (1/2 − ε/2)Nk if and only if
∑

I(−1)sI � εNk. Hence, to show that there are at most 2N−ε2/kN/4 codewords
within radius (1/2 − ε/2)Nk of z, it suffices to show the following bound,

Pr

⎡

⎣
∑

I∈[N ]k

ZI · BI � εNk

⎤

⎦ � 2−ε2/kN/4 . (27)
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Let us compute the p-th moment of
∑

I∈[N ]k ZI · BI for some even p (we shall
fix the particular value of p later).

E

⎡

⎣

⎛

⎝
∑

I∈[N ]k

ZI · BI

⎞

⎠

p⎤

⎦ = E

⎡

⎣
∑

I1,...,Ip

ZI1 · · · ZIp
BI1 · · · BIp

⎤

⎦ (28)

=
∑

I1,...,Ip

(ZI1 · · · ZIp
)E

[
BI1 · · · BIp

]
(29)

�
∑

I1,...,Ip

E
[
BI1 · · · BIp

]
(30)

= E

⎡

⎣

⎛

⎝
∑

I∈[N ]k

BI

⎞

⎠

p⎤

⎦ (31)

= E

⎡

⎢
⎣

⎛

⎝
∑

i∈[N ]

Fi

⎞

⎠

k·p⎤

⎥
⎦ (32)

� (kpN)kp/2 , (33)

where (30) is because E
[
BI1 · · · BIp

] ∈ {0, 1} and ZI1 · · · ZIp
∈ {−1, 1}. To see

the former claim, compute that

E
[
BI1 · · · BIp

]
= E

⎡

⎣
∏

j∈[p]

∏

i∈Ij

Fi

⎤

⎦ =
∑

i∈[N ]

E
[
F ki

i

]
,

for some k1, . . . , kN . Note that E
[
F k

i

]
= 1 for any even power k, and E

[
F k

i

]
= 0

for any odd power k. We note that after (30), the expression is independent
of Z. This is the crucial fact that we rely on when computing the moments of∑

I∈[N ]k ZI ·BI . Applying Markov’s inequality to the p-th moment of
∑

I∈[N ]k ZI ·
BI and using (33) as well as Lemma 7, we get

Pr

⎡

⎣
∑

I∈[N ]k

ZI · BI � εNk

⎤

⎦ � (kpN)kp/2

εpNkp
�

(
kp

ε2/kN

)kp/2

. (34)

Now, we would be done if we could set p so that kp
ε2/kN

= 1
2 . We cannot do so

directly since it only makes sense when p is an even integer. However, we can set
p = p0 to be the smallest even integer such that 2kp0 � ε2/kN . In other words,
we set p = p0 = 2 · � ε2/kN

4k �. Note that the right hand side of (34) is minimized
when kp

ε2/kN
= 1

e and increases as p deviates from this value. Hence, to derive
the final bound, as long as kp0

ε2/kN
� 1

e (which is easily checked), we can plug
p = p1 = (ε2/kN)/2k into the right-hand side of (34) to derive the final bound
of 2−ε2/kN/4. ��
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